

Lecture Notes in Computer Science 6295
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Barbara Catania Mirjana Ivanović
Bernhard Thalheim (Eds.)

Advances in Databases
and Information Systems

14th East European Conference, ADBIS 2010
Novi Sad, Serbia, September 20-24, 2010
Proceedings

13

Volume Editors

Barbara Catania
University of Genova
Department of Computer and Information Science
Via Dodecaneso, 35, 16146 Genova, Italy
E-mail: catania@disi.unige.it

Mirjana Ivanović
University of Novi Sad, Faculty of Science
Department of Mathematics and Informatics
Trg Dositeja Obradovica 4, 21000 Novi Sad, Serbia
E-mail: mira@dmi.uns.ac.rs

Bernhard Thalheim
Christian-Albrechts-University of Kiel
Institute of Computer Science and Applied Mathematics
Olshausenstr. 40, 24098 Kiel, Germany
E-mail: thalheim@is.informatik.uni-kiel.de

Library of Congress Control Number: Applied for

CR Subject Classification (1998): H.2, H.4, H.3, C.2, J.1, H.2.8

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-642-15575-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-15575-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

This volume contains the best papers presented at the 14th East-European Con-
ference on Advances in Databases and Information Systems (ADBIS 2010), held
during September 20-24, 2010, in Novi Sad, Serbia.

ADBIS 2010 continued the ADBIS series held in St. Petersburg (1997),
Poznan (1998), Maribor (1999), Prague (2000), Vilnius (2001), Bratislava (2002),
Dresden (2003), Budapest (2004), Tallinn (2005), Thessaloniki (2006), Varna
(2007), Pori (2008), and Riga (2009). The main objective of the ADBIS series
of conferences is to provide a forum for the dissemination of research accom-
plishments and to promote interaction and collaboration between the database
and information systems research communities from Central and East European
countries and the rest of the world. The ADBIS conferences provide an interna-
tional platform for the presentation of research on database theory, development
of advanced DBMS technologies, and their advanced applications.

ADBIS 2010 spans a wide area of interests, covering all major aspects related
to theory and applications of database technology and information systems. Two
different submission lines were considered for ADBIS 2010, one within the classic
track and another one within a special track organisation. ADBIS comprised five
tracks:

1. Conceptual Modeling in Systems Engineering (CMSE)
2. Data Mining and Information Extraction (DMIE)
3. Business Processes in E-Commerce Systems (e-commerce)
4. Personal Identifiable Information: Privacy, Ethics, and Security (PIIPES)
5. Warehousing and OLAPing Complex, Spatial and Spatio-Temporal Data

(WOCD)

In total, the conference attracted 165 paper submissions from Algeria,
Armenia, Australia, Austria, Bosnia and Herzegovina, Brazil, Bulgaria, Canada,
Chile, China, Czech Republic, Estonia, France, Germany, Greece, Hungary,
India, Ireland, Italy, Jordan, Lithuania, FYR Macedonia, Malaysia, New Zealand,
Nigeria, Poland, Portugal, Republic of Korea, Romania, Russia, Serbia, Slovakia,
Spain, Sweden, Tunisia, Turkey, Ukraine, and USA. In a rigorous reviewing pro-
cess, 36 papers were selected for inclusion in these proceedings as long contribu-
tions. Moreover, we selected 14 papers as short contributions. All papers were
evaluated by at least three reviewers. The selected papers span a wide spec-
trum of topics in the database and information systems field, including database
theory, database management system architectures, design methods, data min-
ing and data warehousing, spatial, temporal, and moving objects, database
applications.

We would like to thank everyone who contributed to the success of ADBIS
2010. We thank the authors, who submitted papers to the conference. A spe-
cial thanks to the Track Co-chairs, to the main conference and track Program

VI Preface

Committee members as well as to the external reviewers, for their support in
in evaluating the papers submitted to ADBIS 2010, ensuring the quality of the
scientific program. We thank our colleagues and the students of our universities
for their help in the workshop organization. Thanks to all members of the local
organizing team in Novi Sad, for giving their time and expertise to ensure the
success of the conference. Finally, we thank Springer for publishing the proceed-
ings containing invited and research papers in the LNCS series. The Program
Committee work relied on MuCoMS, which proved to be a very convenient tool
for this kind of work, and we are grateful to the MuCoMS development team
and to its leader, Markus Kirchberg, who created and maintain it. Last but
not least we thank the Steering Committee and, in particular, its Chair, Leonid
Kalinichenko, for their help and guidance. Last, but not least, we thank the par-
ticipants of ADBIS’2010 for having made our work useful.

September 2010 Barbara Catania
Mirjana Ivanović

Bernhard Thalheim

Conference Organization

General Chair

Mirjana Ivanović University of Novi Sad, Serbia

Program Co-chairs

Barbara Catania University of Genova, Italy
Bernhard Thalheim Christian Albrechts University of Kiel,

Germany

Program Committee

Costin Badica (Romania)
Guntis Barzdins (Latvia)
Alberto Belussi (Italy)
Andras Benczur (Hungary)
Maria Bielikova (Slovakia)
Omar Boucelma (France)
Stephane Bressan (Singapore)
Zoran Budimac (Serbia)
Dumitru Burdescu (Romania)
Albertas Caplinskas (Lithuania)
Boris Chidlovskii (France)
Alfredo Cuzzocrea (Italy)
Johann Eder (Austria)
Pedro Furtado (Portugal)
Matteo Golfarelli (Italy)
Giovanna Guerrini (Italy)
Hele-Mai Haav (Estonia)
Leonid Kalinichenko (Russia)
Damir Kalpić (Croatia)
Ahto Kalja (Estonia)
Mehmed Kantardžić (USA)
Panagiotis Karras (Singapore)
Sergei Kuznetsov (Russia)
Ivan Luković (Serbia)
Federica Mandreoli (Italy)
Rainer Manthey (Germany)

Manuk Manukyan (Armenia)
Joris Mihaeli (Istrael)
Paolo Missier (UK)
Tadeusz Morzy (Poland)
Alexandros Nanopoulos (Germany)
Pavol Navrat (Slovakia)
Mykola Nikitchenko (Ukraine)
Boris Novikov (Russia)
Gordana Pavlović-Lazetić (Serbia)
Jaroslav Pokorny (Czech Republic)
Stefano Rizzi (Italy)
Paolo Rosso (Spain)
Ismael Sanz (Spain)
Vaclav Snasel (Czech Republic)
Predrag Stanǐsić (Montenegro)
Bela Stantic (Australia)
Dragan Stojanović (Serbia)
Manolis Terrovitis (Greece)
Stefan Trausan Matu (Romania)
Athena Vakali (Greece)
Olegas Vasilecas (Lithuania)
Panos Vassiliadis (Greece)
Goran Velinov (FYR Macedonia)
Tatjana Welzer (Slovenia)
Marek Wojciechowski (Poland)
Limsoon Wong (Singapore)

VIII Conference Organization

Tracks Co-chairs

Sabah Al-Fedaghi PIIPES Kuwait University, Kuwait
Mikaël Ates PIIPES France Entr’Ouvert, Paris, France
Alfredo Cuzzocrea WOCD University of Calabria, Italy
Ajantha Dahanayake CMSE Georgia College and State University,

USA
Andreas Speck e-Commerce Christian-Albrechts-Universität zu Kiel,

Germany
Milan Zorman Data mining Maribor University, Slovenia

Track Program Committee Members

Alberto Abello
Fabrizio Angiulli
Joshep Barjis
Ladjel Bellatreche
Francesco Buccafurri
Richard Chbeir
Frederic Cuppens
Ernesto Damiani
Antonios Deligiannakis
Curtis Dyreson
Todd Eavis
Jacques Fayolle
Filippo Furfaro
Douglas Goings
Chen Gongliang
Jos van Hillegersberg
Hannu Jaakkola
Philippe Jaillon

Yoshio Kakizaki
Peter Kokol
Anne Laurent
Maryline Laurent
Gianluca Lax
Jens Lechtenborger
Jason Li
Loick Loth
Pat Martin
Pierre Parrend
Marc Pasquet
Torben Bach Pedersen
Sudha Ram
Mirek Riedewald
Michel Riguidel
Matti Rossi
Andreas Rusnjak
Marcel Schulz

Alkis Simitsis
Henk Sol
Arne Solvberg
Zoran Stojanovic
David Taniar
Panos Vassiliadis
Alexander Verbraeck
Laurent Vercouter
Wei Wang
Richard Welke
Robert Wrembel
Howard Woodard
Ma Ying Hua
Yoo Jang-Hee
Karine Zeitouni
Bin Zhou
Esteban Zimanyi

Additional Reviewers

Irina Astrova
Eftychia Baikoussi
Michal Barla
Andreas Behrend
Carlo Combi
Claus Dabringer
Bogdan Franczyk
Marko Holbl
Julius Koepke
Christian Koncilia
Stefano Lodi

Saša Malkov
Riccardo Martoglia
Yosi Mass
Sara Migliorini
Margus Nael
Barbara Oliboni
Marco Patella
Pavle Mogin
Wilma Penzo
David Eduardo
Janari Pold

Margus Pold
Vlad Posea
Elke Pulvermüller
Traian Rebedea
Sonja Ristić
Tarmo Robal
Simona Sassatelli
Marian Simko
Irena Spasić
Wee Hyong Tok

Conference Organization IX

Organizing Committee

Zoran Putnik Organizing General Chair University of Novi Sad, Serbia
Dejan Mitrović Secretary University of Novi Sad, Serbia

Markus Kirchberg Paper Reviewing and
Submission System A*STAR, Singapore

Members (all from University of Novi Sad)

Miroslav Vesković
Ivan Luković
Miloš Radovanović
Ivan Pribela
Saša Tošić
Vladimir Kurbalija

Jovana Vidaković
Živana Komlenov
Gordana Rakić
Doni Pracner
Milan Ćeliković

Organizing Institutions

Faculty of Sciences, University of Novi Sad, Serbia
Faculty of Technical Sciences, University of Novi Sad, Serbia

ADBIS Steering Committee

Chairman: Leonid Kalinichenko, Russian Academy of Science, Russia

Paolo Atzeni (Italy)
Andras Benczur (Hungary)
Albertas Caplinskas (Lithuania)
Johann Eder (Austria)
Marite Kirikova (Latvia)
Hele-Mai Haav (Estonia)
Mirjana Ivanović (Serbia)
Hannu Jaakkola (Finland)
Mikhail Kogalovsky (Russia)
Yannis Manolopoulos (Greece)
Rainer Manthey (Germany)
Manuk Manukyan (Armenia)

Joris Mihaeli (Israel)
Tadeusz Morzy (Poland)
Pavol Navrat (Slovakia)
Boris Novikov (Russia)
Mykola Nikitchenko (Ukraine)
Jaroslav Pokorny (Czech Republic)
Boris Rachev (Bulgaria)
Bernhard Thalheim (Germany)
Gottfried Vossen (Germany)
Tatjana Welzer (Slovenia)
Viacheslav Wolfengagen (Russia)
Ester Zumpano (Italy)

Sponsoring Institutions of the ADBIS 2010 Conference

ADBIS 2010 Conference was partially financially supported by:

Ministry of Science and Technological Development, Republic of Serbia
Provincial Secretariat for Science and Technological Development

Autonomous Province of Vojvodina, Republic of Serbia

Table of Contents

Invited Papers

Reasoning with Imperfect Context and Preference Information in
Multi-context Systems . 1

Grigoris Antoniou, Antonis Bikakis, and
Constantinos Papatheodorou

Paid Content a Way to Electronic Knowledge-Based Economy 13
Wojciech Cellary

DBTech EXT: Education and Hands-On Training for the Database
Professional . 15

Martti Laiho, Dimitris A. Dervos, José F. Aldana-Montes, and
Fritz Laux

New Frontiers in Business Intelligence: Distribution and
Personalization . 23

Stefano Rizzi

Research Papers

Effectively Monitoring RFID Based Systems . 31
Fabrizio Angiulli and Elio Masciari

Quality–Driven Query Processing Techniques in the MOMIS Integration
System . 46

Domenico Beneventano and R. Carlos Nana Mbinkeu

Towards a Model for the Multidimensional Analysis of Field Data 58
Sandro Bimonte and Myoung-Ah Kang

Exploiting the Semantics of Location Granules in Location-Dependent
Queries . 73

Carlos Bobed, Sergio Ilarri, and Eduardo Mena

On a Fuzzy Group-By and Its Use for Fuzzy Association Rule
Mining . 88

Patrick Bosc, Olivier Pivert, and Grégory Smits

OLAP Operators for Complex Object Data Cubes 103
Doulkifli Boukraâ, Omar Boussäıd, and Fadila Bentayeb

ADBdesign: An Approach to Automated Initial Conceptual Database
Design Based on Business Activity Diagrams . 117

Drazen Brdjanin, Slavko Maric, and Dejan Gunjic

XII Table of Contents

Efficiently Computing and Querying Multidimensional OLAP Data
Cubes over Probabilistic Relational Data . 132

Alfredo Cuzzocrea and Dimitrios Gunopulos

Correcting Missing Data Anomalies with Clausal Defeasible Logic 149
Peter Darcy, Bela Stantic, and Abdul Sattar

Horizontal Partitioning by Predicate Abstraction and Its Application
to Data Warehouse Design . 164

Aleksandar Dimovski, Goran Velinov, and Dragan Sahpaski

Checkable Graphical Business Process Representation 176
Sven Feja, Andreas Speck, Sören Witt, and Marcel Schulz

Applying the UFO Ontology to Design an Agent-Oriented Engineering
Language . 190

Renata S.S. Guizzardi and Giancarlo Guizzardi

A Model of Independence and Overlap for Transactions on Database
Schemata . 204

Stephen J. Hegner

Using a Time Granularity Table for Gradual Granular Data
Aggregation . 219

Nadeem Iftikhar and Torben Bach Pedersen

Automation of the Medical Diagnosis Process Using Semantic Image
Interpretation . 234

Anca Loredana Ion and Stefan Udristoiu

A Language for Ontology-Based Metamodeling Systems 247
Stéphane Jean, Yamine Aı̈t-Ameur, and Guy Pierra

A Framework for OLAP Content Personalization . 262
Houssem Jerbi, Franck Ravat, Olivier Teste, and Gilles Zurfluh

A Coverage Representation Model Based on Explicit Topology 278
Salahaldin Juba and Peter Baumann

Exact and Efficient Proximity Graph Computation 289
Michail Kazimianec and Nikolaus Augsten

Concurrency and Replica Control for Constraint-Based Database
Caching . 305

Joachim Klein

Exploiting Conflict Structures in Inconsistent Databases 320
Solmaz Kolahi and Laks V.S. Lakshmanan

Table of Contents XIII

Satisfiability and Containment Problem of Structural Recursions with
Conditions . 336

Balázs Kósa, András Benczúr, and Attila Kiss

Query Evaluation Techniques for Cluster Database Systems 351
Andrey V. Lepikhov and Leonid B. Sokolinsky

Consistent Caching of Data Objects in Database Driven Websites 363
Pawe�l Leszczyński and Krzysztof Stencel

An Ontology Driven Approach to Software Project Enactment with a
Supplier . 378

Miroslav Ĺı̌ska and Pavol Návrat

Determining Objects within Isochrones in Spatial Network Databases . . . 392
Sarunas Marciuska and Johann Gamper

CM-Quality: A Pattern-Based Method and Tool for Conceptual
Modeling Evaluation and Improvement . 406

Kashif Mehmood, Samira Si-Said Cherfi, and
Isabelle Comyn-Wattiau

A Performance Analysis of Semantic Caching for Distributed
Semi-structured Query Processing . 421

Boris Novikov, Alice Pigul, and Anna Yarygina

CFDC: A Flash-Aware Buffer Management Algorithm for Database
Systems . 435

Yi Ou, Theo Härder, and Peiquan Jin

Expert-Assisted Classification Rules Extraction Algorithm 450
Vili Podgorelec

Information Extraction from Concise Passages of Natural Language
Sources . 463

Sandi Pohorec, Mateja Verlič, and Milan Zorman

A Process to Derive Domain-Specic Patterns: Application to the Real
Time Domain . 475

Saoussen Rekhis, Nadia Bouassida, Claude Duvallet,
Rafik Bouaziz, and Bruno Sadeg

A Sample Advisor for Approximate Query Processing 490
Philipp Rösch and Wolfgang Lehner

Estimation of the Maximum Domination Value in Multi-dimensional
Data Sets . 505

Eleftherios Tiakas, Apostolos N. Papadopoulos, and
Yannis Manolopoulos

XIV Table of Contents

The Objects Interaction Graticule for Cardinal Direction Querying in
Moving Objects Data Warehouses . 520

Ganesh Viswanathan and Markus Schneider

Opening the Knowledge Tombs – Web Based Text Mining as Approach
for Re-evaluation of Machine Learning Rules . 533

Milan Zorman, Sandi Pohorec, and Boštjan Brumen

Challenges Papers

Faceoff: Surrogate vs. Natural Keys . 543
Slavica Aleksic, Milan Celikovic, Sebastian Link, Ivan Lukovic, and
Pavle Mogin

An Optimal Relationship-Based Partitioning of Large Datasets 547
Darko Capko, Aleksandar Erdeljan, Miroslav Popovic, and
Goran Svenda

Design and Semantics of a Query Language for Multidimensional
Data . 551

Ingo Claßen

An Approach to Defining Scope in Software Product Lines for the
Telecommunication Domain . 555

Radovan Cvetković and Sinǐsa Nešković

Stones Falling in Water: When and How to Restructure a View–Based
Relational Database . 559

Eladio Domı́nguez, Jorge Lloret, Ángel L. Rubio, and
Maŕıa A. Zapata

Graph Object Oriented Database for Semantic Image Retrieval 563
Eugen Ganea and Marius Brezovan

Natural Language Querying over Databases Using Cascaded CRFs 567
Kishore Varma Indukuri, Srikumar Krishnamoorthy, and
P. Radha Krishna

A Data Mining Design Framework – A Preview . 571
Kai Jannaschk and Tsvetelin Polomski

On Support of Ordering in Multidimensional Data Structures 575
Filip Křǐzka, Michal Krátký, and Radim Bača

Construction of Messaging-Based Integration Solutions Using
Constraint Programming . 579

Pavol Mederly and Pavol Návrat

Table of Contents XV

Criteria for Reducibility of Moving Objects Closeness Problem 583
Elena Snegova

Platform Independent Database Replication Solution Applied to
Medical Information System . 587

Tatjana Stankovic, Srebrenko Pesic, Dragan Jankovic, and
Petar Rajkovic

Indexing Temporal Data with Virtual Structure . 591
Bela Stantic, Justin Terry, Rodney Topor, and Abdul Sattar

Detecting XML Functional Dependencies through Formal Concept
Analysis . 595

Katalin Tunde Janosi-Rancz, Viorica Varga, and Timea Nagy

Author Index . 599

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 1–12, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Reasoning with Imperfect Context and Preference
Information in Multi-context Systems

G. Antoniou, A. Bikakis, and C. Papatheodorou

Institute of Computer Science, FO.R.T.H.
Vassilika Vouton, P.O. Box 1385, GR 71110

Heraklion, Greece
{Antoniou,bikakis,cpapath}@ics.forth.gr

Abstract. Multi-Context Systems (MCS) are logical formalizations of distri-
buted context theories connected through a set of mapping rules, which enable
information flow between different contexts. Recent studies have proposed add-
ing non-monotonic features to MCS to handle problems such as incomplete,
uncertain or ambiguous context information. In previous work, we proposed a
non-monotonic extension to MCS and an argument-based reasoning model that
enable handling cases of imperfect context information based on defeasible rea-
soning. To deal with ambiguities that may arise from the interaction of context
theories through mappings, we used a preference relation, which is represented
as a total ordering on the system contexts. Here, we extend this approach to
additionally deal with incomplete preference information. To enable this, we
replace total preference ordering with partial ordering, and modify our argu-
mentation framework and the distributed algorithms that we previously
proposed to meet the new requirements.

1 Introduction

A Multi-Context System consists of a set of contexts and a set of inference rules
(known as mapping rules) that enable information flow between different contexts. A
context can be thought of as a logical theory (a set of axioms and inference rules) that
models local knowledge. Different contexts are expected to use different languages,
and although each context may be locally consistent, global consistency cannot be
required or guaranteed.

The notions of context and contextual reasoning were first introduced in AI by
McCarthy [1], as an approach for the problem of generality. In the same paper, he
argued that the combination of non-monotonic reasoning and contextual reasoning
would constitute an adequate solution to this problem. Since then, two main formali-
zations have been proposed to formalize context: the Propositional Logic of Context,
PLC [2,3], and the Multi-Context Systems introduced in [4], which later became as-
sociated with the Local Model Semantics proposed in [5]. Multi-Context Systems
have been argued to be most adequate with respect to the three properties of contex-
tual reasoning (partiality, approximation, proximity) and shown to be technically
more general than PLC [6].

Context reasoning mechanisms have already been used in practice in various dis-
tributed reasoning applications, and are expected to play a significant role in the

2 G. Antoniou, A. Bikakis, and C. Papatheodorou

development of the next generation AI applications. Prominent examples include (a)
the CYC common sense knowledge base designed as a collection of interrelated par-
tial "microtheories" [7,8]; (b) languages that have been developed for the expression
of contextualized ontologies, such as Distributed Description Logics [9] and C-OWL
[10]; and (c) the MCS-based agent architectures of [11] and [12].

Recent studies proposed adding non-monotonic features to MCS to address incom-
plete, uncertain or ambiguous context information. Two representative examples are:
(a) the non-monotonic rule-based MCS framework [13], which supports default nega-
tion in the mapping rules; and (b) the multi-context variant of Default Logic, ConDL
[14], which models bridge relations between different contexts as default rules, in
order to handle the case of mutually inconsistent context information. A third ap-
proach [15], proposed a non-monotonic extension to MCS, which supports cases of
missing or inaccurate local context knowledge by representing contexts as local theo-
ries of Defeasible Logic. To handle potential inconsistencies caused by the interaction
of contexts, the MCS model was extended with defeasible mapping rules and with a
total preference ordering on the system contexts. A semantic characterization of the
model using arguments and an operational model in the form of a distributed algo-
rithm for query evaluation were provided. This approach was applied to the Ambient
Intelligence domain, which is characterized by open and dynamic environments, dis-
tributed context information and imperfection of the available knowledge.

In this paper, we extend the work of [15] to cover cases of incomplete preference
information. So far, perfect preference information was assumed in the sense that (a)
all agents need to be compared to each other, and (b) that each agent has a total prefe-
rence relation on all fellow agents. However, this requirement may not by realistic in
uncertain environments. In Ambient Intelligence environments an agent may collect
information of various types from several different information sources, which cannot
be compared in terms of confidence. It is not, for example, rational to compare a loca-
lization service with a weather forecast service. To handle such cases, we assume in-
complete preference information, modeled as partial ordering on the system contexts,
and modify accordingly the argumentation semantics and the distributed query evalu-
ation algorithm. Using an illustrative scenario from Social Networking, we demon-
strate the main features of this new approach.

The rest of the paper is structured as follows. Section 2 describes a scenario that
highlights the requirements for reasoning with imperfect context and preference in-
formation. Section 3 describes the context representation model, Section 4 provides
an argumentation system for the intended contextual reasoning in the model, while
Section 5 provides distributed query evaluation algorithm that is sound and complete
w.r.t. the argumentation system. Section 6 discusses related work, while section 7
concludes and proposes directions for future work.

2 Illustrative Scenario

This scenario involves a student, Adam, using a cell phone and takes place at Univer-
sity of Crete, Greece. An SMS is received by Adam's cell phone at 10 am from a mul-
tiplex cinema to inform him that a new action movie is available at 10pm that night at
the open air cinema by the beach. Based on Adam's profile information that it carries
and on knowledge about Adam's context, the mobile phone must determine whether
Adam should be informed about the movie.

Reasoning with Imperfect Context and Preference Information 3

Adam’ profile contains rules dictating activity notification based on information
involving his schedule, weather, personal interests and university obligations.

Adam's preferences about movies are included in his profile. Adam has also specified
two web sites – meteo.gr and poseidon.gr – as external sources for information about
weather conditions. Meteo.gr describes general weather conditions, while poseidon.gr
specializes more on wind reports. For class related information, the mobile phone con-
tacts the University of Crete web server that retains the schedule of all classes. Finally,
the external sources used for information about movies are IMDB and Rotten Tomatoes.
Adam has also specified that he considers poseidon.gr more trustworthy than meteo.gr,
while when it comes to movie-related information, he prefers IMDB to Rotten Tomatoes.

For the specific scenario, we assume that Adam is interested in action movies.
Knowledge imported from meteo.gr indicates good weather conditions for an outdoor
activity, while poseidon.gr claims the opposite regarding winds. Based on class in-
formation imported from the University of Crete web server, there is no conflict for
the date and time in question. Finally, we assume that IMDB suggests it’s a good
movie, while Rotten Tomatoes holds the opposite view.

3 Context Representation Model

We model a Multi-Context System as a collection of distributed context theories :
A context is defined as a tuple of the form , , where is the vocabulary used
by , is a set of rules, and is a preference relation on .

 is a set of positive and negative literals. If is a literal in , ~ denotes the
complementary literal, which is also in . If is a positive literal p then ~ is ¬ ;
and if is ¬ , then ~ is . We assume that each context uses a distinct vocabulary.

 consists of two sets of rules: the set of local rules and the set of mapping rules.
The body of local rules is a conjunction of local literals (literals that are contained),
while their head contains a single local literal. There are two types of local rules:

– Strict rules, of the form: : 1, 2, … 1 . They express local know-
ledge and are interpreted in the classical sense: whenever the literals in the body
of the rule are strict consequences of the local theory, then so is the literal in the
head of the rule. Local rules with empty body denote factual knowledge.

– Defeasible rules, of the form: : 1, 2, … 1 . They are used to
express uncertainty, in the sense that a defeasible rule cannot be applied to
support its conclusion if there is adequate contrary evidence.

Mapping rules associate local literals with literals from the vocabularies of other con-
texts (foreign literals). The body of each such rule is a conjunction of local and for-
eign literals, while its head contains a single local literal: : 1, 2, … 1 .

 associates local literals of (e.g. 1) with local literals of (2), and
possibly other contexts. is a local literal of the theory that has defined ().

Finally, each context defines a preference order. Formally it is defined as a par-
tial order on , to express its confidence in the knowledge it imports from other
contexts. Represented as a set: , where is a list representing a path of the
partial order tree in which when a context precedes another context then is
preferred over .

4 G. Antoniou, A. Bikakis, and C. Papatheodorou

Example. The scenario described in Section 2 can be represented by the following
context theories. Rules to constitute the context theory of the mobile phone
(represented as context), rules and constitute the context theory of me-
teo.gr (), while rules , , and constitute respectively the context theories
of poseidon.gr (), the university web server (), imdb.com () and Rotten Toma-
toes (). Note that through rules to , the mobile phone imports context infor-
mation from the available external sources. represents the preference ordering
defined by .

– 11: goodWeather1, freeSchedule1, likesMovie1, goodMovie1 activity1

– 12: badWeather1 activity1

– 13: badMovie1 activity1

– 14: actionMovie1 likesMovie1
– 15: actionMovie1
– 16: 2, _ 2 goodWeather1
– r : windy badWeather
– r : scheduledlesson freeSchedule
– r : highratedMovie goodMovie
– r : lowratedMovie goodMovie
– , , ,

– : :
– : _ :
– : :

4 Argumentation Semantics

The argumentation framework described in this section extends the argumentation
semantics of Defeasible Logic [19] with the notions of distribution of the available
information, and preference among system contexts. It modifies the argumentation
framework in [15] by relaxing the requirements of total preference order.

The framework uses arguments of local range, in the sense that each one contains
rules of a single context only. Arguments of different contexts are interrelated in the
Support Relation (Definition 1) through mapping rules. The relation contains triples;
each triple contains a proof tree for a literal of a context using the rules of the context.
The proof tree may contain either only local rules, or both local and mapping rules. In
the second case, for a triple to be contained in the Support Relation, similar triples for
the foreign literals of the triple must have already been obtained. We should also note
that for sake of simplicity we assume that there are no loops in the local context theo-
ries, and thus proof trees are finite. However the global knowledge base may contain
loops caused by mapping rules, which associate different context theories.

Definition 1. Let C C be a Defeasible MCS. The Support Relation of C SR is
the set of all triples of the form C , PT , p , where C C, p V , and PT , is the

proof tree for p based on the set of local and mapping rules of C . PT , is a tree with

Reasoning with Imperfect Context and Preference Information 5

nodes labeled by literals such that the root is labeled by p , and for every node with
label q: 1. , … , 1, … , : , … , , … , 2. , , , 3. .

Definition 2. , , .
Any literal labelling a node of PT is called a conclusion of A. However, when we
refer to the conclusion of A, we refer to the literal labelling the root of PT p . We
write r A to denote that rule r is used in the proof tree of A.

The definition of subarguments is based on the notion of subtrees.

Definition 3. A (proper) subargument of A is every argument with a proof tree that is
(proper) subtree of the proof tree of A.

Based on the literals contained in their proof tree, arguments are classified to local
arguments and mapping arguments. Based on the type of the rules that they use, local
arguments are either strict local arguments or defeasible local arguments.

Definition 4. A local argument of context is an argument that contains only local
literals of . If a local argument A contains only strict rules, then A is a strict local
argument; otherwise it is a defeasible local argument. A is mapping argument if its
proof tree contains at least one foreign literal.

Definition 5. is the set of arguments derived from context . is the set
of all arguments in : .

The conclusions of all strict local arguments in Args are logical consequences of C .
Distributed logical consequences are derived from a combination of local and map-
ping arguments in Args . In this case, we should also consider conflicts between
competing rules, which are modelled as attacks between arguments, and preference
orderings, which are used in our framework to compare mapping arguments.

Definition 6. An argument A attacks a defeasible local or mapping argument B at ,
if is a conclusion of B, ~ is a conclusion of A, and the subargument of B with
conclusion is not a strict local argument.

Definition 7. An argument A defeats a defeasible or mapping argument B at , if A
attacks B at , and for the subarguments of A, with conclusion ~ , and of B, B
with conclusion , it holds that either:

1. A is a local argument of C or
2. and , : ,

6 G. Antoniou, A. Bikakis, and C. Papatheodorou

We assume that a literal a is de ined in context and C C . Partial orders
are acyclic, therefore it cannot happen that A defeats B and B defeats A based on
condition 2.

To link arguments through the mapping rules that they contain, we introduce in our
framework the notion of argumentation line.

Definition 8. An argumentation line A for a literal p is a sequence of arguments in Args , constructed in steps as follows:

– In the first step add in A one argument for p .
– In each next step, for each distinct literal q labeling a leaf node of the proof

trees of the arguments added in the previous step, add one argument with
conclusion q , with the following restriction.

– An argument B for a literal q can be added in A only if there is no
argument D B for q already in A .

The argument for added in the first step is called the head argument of . If the
number of steps required to build an is finite, then is a finite argumentation
line. Infinite argumentation lines imply loops in the global knowledge base. Argu-
ments contained in infinite argumentation lines participate in attacks against counter-
arguments but may not be used to support the conclusion of their argumentation lines.

The notion of supported argument is meant to indicate when an argument may
have an active role in proving or preventing the derivation of a conclusion.

Definition 9. An argument A is supported by a set of arguments S if:

– every proper subargument of A is in S and
– there is a finite argumentation line with head A, such that every argu-

ment in is in S

That an argument A is undercut by a set of arguments S means that we can show that
some premises of A cannot be proved if we accept the arguments in S.

Definition 10. A defeasible local or mapping argument A is undercut by a set of ar-
guments S if for every argumentation line with head A: there is an argument B,
such that B is supported by S, and B defeats a proper subargument of A or an argu-
ment in .

The definition of acceptable arguments that follows is based on the definitions given
above. Intuitively, that an argument A is acceptable w.r.t. S means that if we accept
the arguments in S as valid arguments, then we feel compelled to accept A as valid.

Definition 11. An argument A is acceptable w.r.t. a set of arguments S if:

1. A is a strict local argument; or
2. (a) A is supported by S and

(b) every argument defeating A is undercut by S

Based on the concept of acceptable arguments, we proceed to define justified argu-
ments and justified literals.

Reasoning with Imperfect Context and Preference Information 7

Definition 12. Let C be a MCS. is defined as follows:

– ;
– | . . .

The set of justified arguments in a MCS C is . A literal is justi-
fied if it is the conclusion of an argument in . That an argument A is justified
means that is resists every reasonable refutation. That a literal is justified, it actu-
ally means that it is a logical consequence of C.

Finally, we also introduce the notion of rejected arguments and rejected literals for
the characterization of conclusions that do not derive from C. That an argument is
rejected by sets of arguments S and T means that either it is supported by arguments
in S, which can be thought of as the set of already rejected arguments, or it cannot
overcome an attack from an argument supported by T, which can be thought of as the
set of justified arguments.

Definition 13. An argument A is rejected by sets of arguments S, T when:

1. A is not a strict local argument, and either
2. (a) a proper subargument of A is in S; or

(b) A is defeated by an argument supported by T; or
(c) for every argumentation line with head A there exists an argument

, such that either a subargument of is in S; or is
defeated by an argument supported by T.

Based on the definition of rejected arguments, is defined as follows:

Definition 14. Let C be a MCS, and the set of justified arguments in C. is
defined as follows:

– ;
– | ,

The set of rejected arguments in a MCS C is . A literal is re-
jected if there is no argument in that supports . That a literal is
rejected means that we are able to prove that it is not a logical consequence of C.

Lemmata 1-3 describe some formal properties of the framework. Their proofs are
omitted due to space limitations.

Lemma 1. The sequences and are monotonically increasing.

Lemma 2. In a Multi-Context System C:

– No argument is both justified and rejected.
– No literal is both justified and rejected.

Lemma 3. If the set of justified arguments of C, contains two arguments with
complementary conclusions, then both arguments are local arguments of the same
context.

8 G. Antoniou, A. Bikakis, and C. Papatheodorou

Example (continued). The arguments that are derived from of the previous
section are depicted in Figure 1 along with their subarguments. J contains no arguments, while J contains the strict local arguments of the sys-
tem; namely A , A , A , A , A , A , B , D , where A and A are the strict local
subarguments of A with conclusion likesMovie and actionMovie respectively. J additionally contains A ’s subarguments with conclusions goodWeather , freeSchedule_1, goodMovie as well as B ’s subargument with conclusion badWeather and D ’s subargument with conclusion badMovie . J actually consti-
tutes the set of justified arguments in C (JArgs J), as there is no argument that
can be added in the next steps of J .

On the other hand, R JArgs contains no arguments, while R JArgs , which
equals RArgs JArgs contains A , B and D , as each of them is defeated by a justi-
fied argument. Hence activity and activity are rejected literals since every argu-
ment supporting them is rejected.

Fig. 1. Arguments in the scenario

5 Distributed Algorithm for Query Evaluation

P2P_DR is a distributed algorithm for query evaluation that implements the proposed
argumentation framework. The specific problem that it deals with is: Given a MCS C,
and a query about literal issued to context , compute the truth value of . For an
arbitrary literal , P2P_DR returns one of the following values: (a) true; indicating
that is a logical consequence of C; (b) false; indicating that is not a logical

_

 _

Reasoning with Imperfect Context and Preference Information 9

consequence of C; or (c) undefined; indicating that based on C, we cannot derive nei-
ther true nor false as a truth value for . This algorithm differs from the one that im-
plemented our original approach [15] only in the Stronger function which implements
the comparison between two sets of literals. Below, we describe the algorithm ver-
bally, and give the code of the Stronger function that implements the modification to
our original approach.

5.1 Algorithm Description

P2P_DR proceeds in four main steps. In the first step, P2P_DR determines whether p , or its negation ~ p are consequences of the strict local rules of C , returning
true/false respectively as an answer for p and terminates.

In the second step, P2P_DR calls Support to determine whether there are applica-
ble and unblocked rules with head p . We call applicable those rules that for all liter-
als in their body P2P_DR has computed true as their truth value, while unblocked are
the rules that for all literals in their body P2P_DR has computed either true or unde-
fined as their truth value. Support returns two data structures for p : (a) the Supportive
Set of pi (), which is the set of foreign literals used in the most preferred (accord-
ing to) chain of applicable rules for ; and (b) the Blocking Set of p (),
which is the set of foreign literals used in the most preferred chain of unblocked rules
for (). If there is no unblocked rule for p (), the algorithm returns
false as an answer and terminates. Similarly, in the third step, P2P_DR calls Support
to compute the respective constructs for ~ (~ , ~).

In the last step, P2P_DR uses the constructs computed in the previous steps and the
preference order , to determine the truth value of . In case there is no unblocked
rule for ~ ~), or SS is computed by Stronger to be stronger than ~ ,
P2P_DR returns true as an answer for . That is stronger than BS means that
the chains of applicable rules for involve information from contexts that are pre-
ferred by to the contexts that are involved in the chain of unblocked rules for ~ .
In case there is at least one applicable rule for ~ , and is not stronger than ~ , P2P_DR returns false as an answer for . In any other case, the algorithm re-
turns undefined.

The Stronger(A, B, T) function computes the strongest between two sets of literals,
A and B according to the preference order .

Stronger (, ,
1: if , : , then
2: Stronger = A
3: else if , : , then
4: Stronger = B
5: else
6: Stronger = None
7: return Stronger

Example (continued). Given a query about , P2P_DR proceeds as follows. At
first, it fails to compute an answer based only on ’s local theory from which it derives
only likesMovie using strict local rules r and r . Next step is to use mapping rules

10 G. Antoniou, A. Bikakis, and C. Papatheodorou

r , r and r to compute an answer for goodWeather , freeSchedule and goodMovie , based on strict local rules of C , C and C respectively. These rules are
applicable and support activity , as are rules r and r supporting the opposite activity . Their respective computed sets are the following: SS high , sunny , scheduledlesson , highratedMovie and the BS~ windy , lowratedMovie .

Based on T , Stronger returns none and eventually P2P_DR returns false
for . The same result would occur for a query about activity .
5.2 Properties of the Algorithm

Below, we describe some formal properties of P2P_DR regarding its termination,
soundness and completeness w.r.t. the argumentation framework, communication and
computational load. Here, we give an overview of the results. The proofs for the fol-
lowing propositions are omitted due to space limitations. Prop. 1 is a consequence of
the cycle detection process within the algorithm.

Proposition 1. (Termination) The algorithm is guaranteed to terminate returning
either a positive or a negative answer for the queried literal.

Prop. 2 associates the answers produced by P2P_DR with the concepts of justified
and rejected arguments.

Proposition 2. For a Multi-Context System C and a literal in C, P2_ DR returns:

1. Ans
2. Ans
3. Ans

Prop. 3 is consequence of two states that we retain for each context, keeping track of
the incoming and outgoing queries of the context. The worst case is that all contexts
have defined mappings that contain literals from all other contexts, and the evaluation
of the query involves all mappings defined in the system.

Proposition 3. (Number of Messages) The total number of messages exchanged be-
tween the system contexts for the evaluation of a query is , where n stands
for the total number of system contexts, and stands for the number of literals a con-
text may define.

6 Related Work

The argumentation framework that we propose in this paper belongs to the broader
family of preference-based argumentation systems. The main feature of such systems
is that the comparison between arguments (e.g. between an argument and its counter-
arguments) is enabled by a preference relation, which is either implicitly derived from
elements of the underlying theory, or is explicitly defined on the set of arguments.
Such systems can be classified into four categories. In the first category, which
includes the works of [16] and [17], the preference relation takes into account the

Reasoning with Imperfect Context and Preference Information 11

internal structure of arguments, and arguments are compared in terms of specificity.
The second category includes systems in which preferences among arguments are
derived from a priority relation on the rules in the underlying theory (e.g. [18,19]). In
Value Based Argumentation Frameworks, the preference ordering on the set of argu-
ments is derived from a preference ordering over the values that they promote (e.g.
[20,21]). Finally, the abstract argumentation frameworks proposed by Amgoud and
her colleagues ([22,23]) assume that preferences among arguments are induced by a
preference relation defined on the underlying belief base.

Our argumentation framework is an extension of the framework of Governatori
et al. [19], which is based on the grounded semantics of Dung’s abstract argumenta-
tion framework [24] to provide an argumentative characterization of Defeasible
Logic. In our framework, preferences are derived both from the structure of argu-
ments – arguments that use strict local rules are considered stronger than those that
use defeasible local or mapping rules - and from a preference ordering on the infor-
mation sources (contexts). Our approach also shares common ideas with [22], which
first introduced the notion of contextual preferences (in the form of several pre-
orderings on the belief base), to take into account preferences that depend upon a par-
ticular context. The main differences are that in our case, these orderings are applied
to the contexts themselves rather than directly to a set of arguments, and that we use a
distributed underlying knowledge base.

7 Conclusions

The paper studies the problem of reasoning with imperfect context and preference
information in Multi-Context Systems. In the proposed framework, uncertainty in the
local theories is modelled using defeasible local theories, while conflicts that may
arise from the interaction of contexts through mappings are resolved using contextual
preference information. To support missing preference information, we use partial
preference ordering on the set of contexts. The paper also provides an argumentation-
based semantic characterization of the model, and a distributed algorithm for query
evaluation that implements the argumentation framework.

Our ongoing work involves: (a) studying the complexity of the proposed algorithm,
based on the complexity results of our original approach [15]; (b) studying alternative
methods for conflict resolution, which differ in the way that agents evaluate the imported
context information; and (c) implementing real-world applications of our approach in
Ambient Intelligence environments, such as those described in [24,25], but also in other
domains with similar requirements such as Social Networks and the Semantic Web.

References

1. McCarthy, J.: Generality in Artificial Intelligence. Communications of the ACM 30(12),
1030–1035 (1987)

2. Buvac, S., Mason, I.A.: Propositional Logic of Context. In: AAAI, pp. 412–419 (1993)
3. McCarthy, J., Buvac, S.: Formalizing Context (Expanded Notes). In: Aliseda, A., van

Glabbeek, R., Westerstahl, D. (eds.) Computing Natural Language, pp. 13–50. CSLI Pub-
lications, Stanford (1998)

4. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics, or: how we can do without
modal logics. Artificial Intelligence 65(1) (1994)

12 G. Antoniou, A. Bikakis, and C. Papatheodorou

5. Ghidini, C., Giunchiglia, F.: Local Models Semantics, or contextual reasoning=locality+
compatibility. Artificial Intelligence 127(2), 221–259 (2001)

6. Serafini, Bouquet, P.: Comparing formal theories of context in AI. Artificial Intelligence
155(1-2), 41–67 (2004)

7. Guha, R.: Contexts: a formalization and some applications. PhD thesis, Stanford, CA,
USA (1992)

8. Lenat, D., Guha, R.: Building Large Knowledge-Based Systems; Representation and Infe-
rence in the Cyc Project. Addison-Wesley Longman Publishing Co. Inc., Boston (1989)

9. Borgida, A., Serafini, L.: Distributed Description Logics: Assimilating Information from
Peer Sources. Journal of Data Semantics 1, 153–184 (2003)

10. Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.: C-OWL:
Contextualizing Ontologies. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003.
LNCS, vol. 2870, pp. 164–179. Springer, Heidelberg (2003)

11. Parsons, S., Sierra, C., Jennings, N.R.: Agents that reason and negotiate by arguing. Jour-
nal of Logic and Computation 8(3), 261–292 (1998)

12. Sabater, J., Sierra, C., Parsons, S., Jennings, N.R.: Engineering Executable Agents using
Multi-context Systems. Journal of Logic and Computation 12(3), 413–442 (2002)

13. Roelofsen, F., Serafini, L.: Minimal and Absent Information in Contexts. In: IJCAI, pp.
558–563 (2005)

14. Brewka, G., Roelofsen, F., Serafini, L.: Contextual Default Reasoning. In: IJCAI, pp. 268–
273 (2007)

15. Bikakis, A., Antoniou, G.: Contextual Argumentation in Ambient Intelligence. In: Erdem,
E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 30–43. Springer,
Heidelberg (2009); An extended version was accepted by IEEE Transactions on Know-
ledge and Data Engineering

16. Simari, G.R., Loui, R.P.: A Mathematical Treatment of Defeasible Reasoning and its Im-
plementation. Artificial Intelligence 53(2-3), 125–157 (1992)

17. Stolzenburg, F., García, A.J., Chesñevar, C.I., Simari, G.R.: Computing Generalized
Specificity. Journal of Applied Non-Classical Logics 13(1), 87–113 (2003)

18. Prakken, H., Sartor, G.: Argument-Based Extended Logic Programming with Defeasible
Priorities. Journal of Applied Non-Classical Logics 7(1) (1997)

19. Governatori, G., Maher, M.J., Billington, D., Antoniou, G.: Argumentation Semantics for
Defeasible Logics. Journal of Logic and Computation 14(5), 675–702 (2004)

20. Bench-Capon, T.: Persuasion in Practical Argument Using Value-based Argumentation
Frameworks. Journal of Logic and Computation 13, 429–448 (2003)

21. Kaci, S., van der Torre, L.: Preference-based argumentation: Arguments supporting mul-
tiple values. Internation Journal of Approximate Reasoning 48(3), 730–751 (2008)

22. Amgoud, L., Parsons, S., Perrussel, L.: An Argumentation Framework based on contextual
Preferences. In: International Conference on Formal and Applied and Practical Reasoning
(FAPR 2000), pp. 59–67 (2000)

23. Amgoud, L., Cayrol, C.: A Reasoning Model Based on the Production of Acceptable
Arguments. Annals of Mathematic and Artificial Intelligence 34(1-3), 197–215 (2002)

24. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell. 77, 321–357 (1995)

25. Bikakis, A., Antoniou, G.: Distributed Defeasible Contextual Reasoning in Ambient Com-
puting. In: Aarts, E., Crowley, J.L., de Ruyter, B., Gerhäuser, H., Pflaum, A., Schmidt, J.,
Wichert, R. (eds.) AmI 2008. LNCS, vol. 5355, pp. 308–325. Springer, Heidelberg (2008)

26. Antoniou, G., Papatheodorou, C., Bikakis, A.: Distributed Reasoning about Context in
Ambient Intelligence Environments: A Report from the Filed. In: Proceedings of the 12th
International Conference on the Principles of Knowledge Representation and Reasoning,
KR 2010 (accepted 2010)

Paid Content a Way to Electronic

Knowledge-Based Economy

Wojciech Cellary

Department of Information Technology, Poznan University of Economics

Mansfelda 4, 60-854 Poznan, Poland

cellary@kti.ue.poznan.pl

Abstract of a Keynote Speech

Nowadays, two the most significant concepts determining the future of the world
are: information society and knowledge-based economy. Information society may
be defined as a community whose collective life is organized by the wide use of
the information and communication technologies, and which economy is based on
knowledge. An economy is based on knowledge if the market value of dominating
products and services depends mostly on knowledge, instead of resources, energy,
or physical work.

This keynote speech deals with the dilemma followed from the double charac-
ter of knowledge. On the one hand, knowledge is an individual and social good
determining quality of life. On the other hand, knowledge has to be treated as
an economical good, a funding concept of the knowledge-based economy. The
dilemma is: should knowledge be for free or paid? It is argued in the speech that
achievement of information society without knowledge-based economy is impos-
sible. In countries focused on education, about 50% of young people study at
universities. This means that after unavoidable, natural replacement of the old
generation by the young one, a half of society would like to earn a living provid-
ing knowledge-based services, then such activity must be a part of economy. As
totally unrealistic should be evaluated an economic model in which non-educated
part of the society works physically in the private sector and pays taxes to fi-
nance public sector, while the educated part of the society is paid from taxes to
provide ”free of charges” knowledge-based services. In addition, a characteristic
feature of knowledge is a positive feedback: more knowledge acquired – more
demand for new knowledge. Due to cognitive curiosity of highly-skilled people,
their demand for new knowledge is bigger than this of non-educated people, even
though objectively, a non-educated person should be interested in receiving more
knowledge to improve his/her life.

The more knowledge the society will be given for free – which means in real-
ity financed from public funds – the more knowledge well-educated part of the
society will demand. As a consequence, it will be necessary to increase the fiscal
charges of non-educated part of the society. Such economic system – as every
one based on the positive feedback, a phenomenon well known from the control
theory – is unstable and must fail. That is why the knowledge-based economy

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 13–14, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

14 W. Cellary

needs a stable economic model in which knowledge will be first of all considered
as an economic good – a commodity – an object of purchase and sale.

Economical activity with respect to knowledge – like in every healthy economic
model – should generate profit for enterprises, and should be taxed to bring
income to the state budget enabling realization of social goals. To conclude,
the more knowledge workers will earn a living providing paid knowledge-based
services as business activities, the more profits for the whole society.

The necessity of knowledge-based economy development does not exclude pub-
lic aid and realization of its part in the public sector. Knowledge financed from
the public sources is motivated by the need of sustainable development of econ-
omy as a condition of social welfare. However, a question arises: what can be
realized in the public sector to prevent knowledge-based economy from dam-
ages? The proposed answer is: only precisely defined part of the knowledge sec-
tor: first, knowledge that does not develop any more, and knowledge necessary
to bring new social groups of people to the knowledge-based economy. For eco-
nomic reason, it is purposeful to finance every action aiming at extension of the
knowledge sector market from public funds. The argument for such financing
is that people without certain basic knowledge cannot play an active role on
the knowledge market. From the economic point of view, it is also acceptable
to finance the ”knowledge without development”, i.e., a canon of knowledge.
Such financing does not stop knowledge-based economy development, because
this kind of knowledge does not develop anymore.

A completely different threat for knowledge-based economy development is
knowledge privatization. Privatization of knowledge can also stop development
of the knowledge-based economy. First, for economic reasons: potential users of
knowledge cannot afford to buy it. Second, for lack of permission of the knowl-
edge owners to use the knowledge they own. The second reason seems to be irra-
tional from the economic point of view. However, in many real circumstances, an
enterprise decides to launch a new knowledge-based product or service not in the
earliest possible moment, but in the most convenient for it, i.e., when economic
conditions are considered the best. The owner of some piece of knowledge may
do not want to use it to develop new products or services, because he/she does
not want the new products or services to compete with its current ones, whose
sale is still going well. Moreover, such owner of a piece of knowledge may prevent
his/her competitors from exploiting that piece of knowledge, even if they have
acquired the same piece of knowledge independently.

As follows from considerations presented in this speech, it is very important
to find an appropriate economic model based on a right trade-off between social
and economic values. Free access to knowledge for everyone financed from public
funds is not a right model, because it does not contribute to development.

Reference

1. Cellary, W.: Paid content a way to electronic knowledge-based economy. In: Hansen,

H.R., Karagiannis, D., Fill, H.-G. (eds.) 1st CEE Symposium on Business Informat-

ics, pp. 11–18. Austrian Computer Society, Vienna (2009)

DBTech EXT: Education and Hands-On

Training for the Database Professional�

Martti Laiho1, Dimitris A. Dervos2, José F. Aldana-Montes3, and Fritz Laux4

1 Haaga-Helia University of Applied Sciences, Helsinki, Finland

martti.laiho@haaga-helia.fi
2 Alexander Technology Educational Institute, Thessaloniki, Greece

dad@it.teithe.gr
3 Universidad de Málaga, Málaga, España

jfam@lcc.uma.es
4 Reutlingen University, Reutlingen, Germany

Friedrich.Laux@Reutlingen-University.DE

Abstract. In this presentation the audience will be: (a) introduced to

the aims and objectives of the DBTechNet initiative, (b) briefed on the

DBTech EXT virtual laboratory workshops (VLW), i.e. the educational

and training (E&T) content which is freely available over the internet

and includes vendor-neutral hands-on laboratory training sessions on key

database technology topics, and (c) informed on some of the practical

problems encountered and the way they have been addressed. Last but

not least, the audience will be invited to consider incorporating some

or all of the DBTech EXT VLW content into their higher education

(HE), vocational education and training (VET), and/or lifelong learn-

ing/training type course curricula. This will come at no cost and no

commitment on behalf of the teacher/trainer; the latter is only expected

to provide his/her feedback on the pedagogical value and the quality of

the E&T content received/used.

Keywords: DBTechNet, vendor-neutral educational and training con-

tent, virtual laboratory workshops, lifelong learning, e-learning.

1 Introduction

Established in 1997, the DBTechNet initiative [1] has set forth a plan to ad-
dress the lack of knowledgeable and well-trained database professionals in the
European labour market: a low productivity problem that has led to failed and
delayed application development projects in the industry. The precondition first
to be met was the formation of a team of HE teachers who all were: (a) enthusi-
astic in sharing the common EU vision, (b) willing to contribute their specialised

� This presentation is the result of collaborative work undertaken along the lines of the

DBTechNet Consortium. All the co-authors participate in DBTech EXT, a project

partially funded by the EU LLP Transversal Programme (Project Number: 143371-

LLP-1-2008-1-FI-KA3-KA3MP).

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 15–22, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

16 M. Laiho et al.

Fig. 1. The DBTechNet framework of subject areas and technologies

knowledge and skills for the success of the common cause, and (c) ready to work
in order to bridge the gap between HE database technology teaching and the
industrial practice, as well as that between the former and the corresponding
vocational education and training (VET) practice.

Following the completion of the EU (Leonardo da Vinci) project DBTech Pro
in 2005 [2], the second EU-funded DBTechNet project in currently progress:
DBTech EXT (LLP Transversal Program, 01/2009 - 12/2010, [3]). The part-
nership has evolved to have its inner-circle (core) project participation include
members from six (6) EU member states: seven (7) HE academic institutions,
three (3) VET centres, and one (1) company. In addition, an outer-circle part-
nership has been established, its members currently representing nine (9) EU
members states: thirteen (13) HE academic institutions, three (3) VET cen-
tres, and eight (8) I.T. companies/DBMS vendors. Outer-circle members act as
project deliverables recipients and evaluators.

Two of of the main activities undertaken in DBTech Pro had to do with (a)
the identification of the professional roles, the technologies, and the subject areas
pertaining to today’s requirements of the European database technology labour
market, and (b) the compilation of a framework and a plan for the education
and training content that comes to serve the requirements outlined in (a) [4,5].

Figure 1 summarises on the DBTechNet framework of database subject ar-
eas/technologies and, it is implicitly indicative of the professional roles involved.

2 The DBTech EXT Project

As stated in the introduction above, the project participation (both inner- and
outer-circle type) involves HE institutions, VET centres, and I.T. companies
from nine (9) EU member states. The two-year project has a budget of e508,391

DBTech EXT 17

(75% of which consists the contribution of the EU LLP Transversal Program),
and it is due to conclude in December 2010.

Seven (7) work packages (WP) comprise the units of categorisation and or-
ganisation of the activities undertaken:

– WP1 involves the overall project co-ordination management
– WP2 focuses on the pedagogical value and the quality of the deliverables
– WP3 undertakes the compilation of the DBTechNet framework of courses,

and their learning outcomes along the lines of the European Qualifications
Framework (EQF) as well as the European Credit Transfer System (ECTS).
On the basis of this framework, WP3 co-ordinates the development of the vir-
tual laboratory workshops’ (VLW) educational and training (E&T)
content

– WP4 considers the vocational education and training (VET) dimension of
the DBTechNet framework of courses and recommends the actions that need
to be undertaken in order to have the E&T content comply with the require-
ments of the VET and the lifelong learning/training type course curricula

– WP5 conducts a survey on and reports on the current needs for post-graduate
(i.e. MSc and PhD) studies on database technologies with emphasis on the
professional dimension of the latter, considering the present and the near
future needs of the European labour market

– WP6 and WP7 co-ordinate activities of dissemination and exploitation (re-
spectively) of the project deliverables

Figure 2 summarizes on the DBTech EXT work packages and their interrela-
tionships.

Fig. 2. The DBTech EXT work packages

18 M. Laiho et al.

3 Virtual Laboratory Workshops (VLWs)

Virtual laboratory workshops admittedly comprise the DBTech EXT project de-
liverable that has the potential to evolve further in the direction of facilitating
the co-operation and the productive sharing of database technologies expertise
across the European Union (EU) Higher Education (HE) institutions, the Voca-
tional Education and Training (VET) and Lifelong Learning (LLL) centres on
one hand, and the EU information technology (IT) industry on the other. The
task is not an easy one to achieve. The collaboration framework can be successful
only if it is laid on a sound foundation of mutual benefit: knowledge and training
skills providers need invaluable feedback from the industry to make sure that the
E&T content they develop and offer serves the present as well as the foreseen
near future needs of the labour market, and the industry can highly benefit by
having access to vendor-neutral, high quality E&T content on modern trends
and practices in database technologies.

The seven (7) VLWs developed along the lines of the DBTech EXT project
have as follows:

– Database Modeling and Semantics
– Data Access Patterns, Technologies and Frameworks
– Distributed, Replicated, Mobile, and Embedded Databases
– Concurrency Control and Recovery Technologies
– OLAP and Data Warehouses
– Business Intelligence and Knowledge Discovery from Databases
– XML and Databases

The E&T content of a typical DBTechNet VLW consists of:

– Tutorial slides
– Guidelines for self-study reading with the recommended bibliography
– Exercises with model answers
– Self-paced lab practicing material
– Hands-on laboratory exercises and case-studies
– Access to the appropriate software (commercial and/or open source)
– VLW participant’s guide
– VLW teacher/trainer’s guide
– Self-assessment multiple choice questionnaire (MCQ) for the VLW partici-

pants to identify the VLW topics which they need to improve their knowledge
and skills on

One of the VLWs (Business Intelligence and Knowledge Discovery from Databases,
[6]) includes a number of digital videos in its E&T content, as an act of probing
one possible extension which is likely to be implemented next in all VLWs.

DBTech EXT 19

4 Internet-Based Teaching and Training in Practice

One of the most useful lessons learnt from conducting teaching and training ses-
sions over the internet (in particular: when the E&T content includes hands-on
training session as in the case of the DBTechNET VLWs) is that communication
comprises the single-most decisive parameter for success.

The DBTechNet VLW E&T content is organised, alongside with all the
DBTechNet material, in the DBTechNet portal [7]. The structure of the latter is
such that each one VLW comprises a logical unit, within the portal environment.
Each one VLW unit is assigned one or more portal user accounts who act(s) as
the unit’s (local) co-ordinator(s). The administrator of the portal assigns op-
erational privileges to unit co-ordinators, enabling them to (a) administer the
unit’s (local) user membership, and (b) determine the accessibility level of each
one item published within their unit, by choosing one from three possible lev-
els: ”public”, ”portal users”, and ”unit users, only” [8]. The unit co-ordinator(s)
control the subset of the portal users population who are granted membership
to the unit they co-ordinate, but they have no control over the administration
of the portal users population; the latter requires portal administration author-
ity. The portal is implemented by configuring the Moodle content management
system to achieve the desirable functionality [9].

The information and communication technology (ICT) tools and services suite
used for communicating with the VLW participants includes also the utilisation
of the Alexander Technology Educational Institute (DBTech EXT inner-circle
partner) video-on-demand server for organizing and managing the digital video
content. For conducting synchronous tele-conferencing sessions involving the
VLW instructor(s) and participants, use is made of the University of Malaga and
the HAAGA-HELIA University of Applied Sciences (both: inner-circle DBTech
EXT partners) Adobe Connect Pro web conferencing facilities [10].

Last but not least comes the software which is made available to the VLW
participants in order to conduct their self-paced lab practicing and hands-on
laboratory workshop sessions. To begin with, each VLW may utilize two types
of software: open source/free or commercial. In both cases, care is taken so that
the VLW participant does not deal with technical issues (i.e. the installation
and tuning of the software used), and make sure that s/he focuses on the main
topic(s) of the workshop. In this respect, use is made of the operating system
virtualisation technology. For the open source/free software, the approach is
pretty straightforward: use is made of free virtualisation technology software
(e.g. VMWare[11], MS PC Virtual[12], Oracle/Sun VirtualBox[13]) to create a
virtual machine (VM) image of a standard free operating system, including the
latest open source/free versions of the VLW software, and the corresponding
DBTech EXT tutorial/self-study E&T content. DBTech VLW participants are
directed to the DBTech portal to download their VM images which they may
then use on their own PCs by means of the corresponding (free) players [14].

Except from open source/free software, DBTech VLWs utilise commercial
software made available via academic licensing [15,16]. To make it possible for the
industrial and VET center participants to have access to such ”for educational

20 M. Laiho et al.

Fig. 3. The UMA Virtual Desktop Infrastructure Architecture

use, only” software resources, use is made of the University of Malaga (UMA)
virtual desktop infrastructure and service (VDI) [17].

Figure 3 is taken from [18] and represents graphically the architecture of the
UMA VDI infrastructure, consisting of:

– VMWare infrastructure virtualisation servers (Virtual centre plus multiple
ESX VMWare servers),

– Connection broker,
– Re-compressors, and
– Additional servers: DNS servers, DHCP servers, databases, authentication

servers (LDAP, ActiveDirectory).

The UMA PCVirtual service makes possible the creation of virtual computer
images on the Virtual Desktop Infrastructure (VDI) server. All the VLW par-
ticipant needs to access and use his/her VM image via the internet is a browser
which supports the ActiveX technology (MS Internet Explorer), or the java ap-
plet technology (MS Internet Explorer, Mozilla Firefox, Safari, etc.) [18]. It is
via the UMA PCVirtual service that VET center and non-academic/non-HE
student participants of the OLAP and Data Warehousing, and Business Intelli-
gence and Knowledge Discovery from Databases VLWs establish access to and
use proprietary software like Microsoft SQL Server, and IBM Intelligent Miner
for Data.

5 Conclusion

In this presentation, the whole range of the DBTech EXT project deliverables
is presented and the audience are given the opportunity to realise the benefits
of a ’no commitment/no risk’ contact and collaboration with the DBTech EXT

DBTech EXT 21

partnership. More specifically, the presentation includes a sample of the project’s
virtual laboratory workshops (VLWs) educational and training (E&T) content.
The latter is freely available to academics and trainers who wish to incorporate it
into their HE, and/or VET course curricula, as well as to I.T. professionals and
companies who wish to utilise it in lifelong training sessions. The E&T content
in question is subject to DBTech EXT internal, as well as to external evaluation
with regard to its pedagogical value, and quality. In addition to the hands-
on/internet-based VLWs on selected DB Technology topics, project deliverables
include a VET provision plan for a framework of intermediate DBMS professional
knowledge and skills course syllabi, plus an investigation of (a) the currently
existing opportunities for professional certification of DB Technology knowledge
and skills in the EU, and (b) the possibilities of opting for an advanced HE
degree study (MSc and PhD) focusing on the stated professional role.

References

1. DBTechNet initiative, http://www.dbtechnet.org/

2. DBTech Pro project,

http://myy.haaga-helia.fi/%7Edbms/dbtechnet/project2002-05_en.HTML

3. DBTech EXT project, http://dbtech.uom.gr/mod/resource/view.php?id=181

4. Connolly, T.M.: DBTech Pro Specification of Knowledge Areas (2005),

http://myy.haaga-helia.fi/%7Edbms/dbtechnet/finalr/WP2

5. Dervos, D.A.: DBTech Pro Content Planning (2005),

http://myy.haaga-helia.fi/%7Edbms/dbtechnet/finalr/WP4.PDF

6. Dervos, D.A., Evangelidis, G., Karamitopoulos, L., Aunimo, L., Aldana Montes,

J.F., Farfán-Leiva, J.J., Siakas, K., Valkama, H.: DBTech EXT Virtual Laboratory

Workshop: Business Intelligence. In: eRA-4 International Conference on the Con-

tribution of I.T. to Science, Technology, Society and Education, Spetses, Greece

(2009), http://dbtech.uom.gr/mod/resource/view.php?id=143

7. DBTechNet portal, http://dbtech.uom.gr/

8. Evangelidis, G., Pitsiougkas, E., Dervos, D.A., Laiho, M., Laux, F., Aldana-Montes,

J.F.: DBTech portal: A Gateway to Education and Training for the European

Database Technology Professional. In: eRA-4 International Conference on the Con-

tribution of I.T. to Science, Technology, Society and Education, Spetses, Greece

(2009), http://dbtech.uom.gr/mod/resource/view.php?id=144

9. Moodle CMS, a free web application, http://moodle.org/

10. Adobe Connect Pro, http://www.adobe.com/products/acrobatconnectpro/

11. VMWare, http://www.vmware.com/

12. MS PCVirtual, http://www.microsoft.com/windows/virtual-pc/

13. Oracle/VirtualBox, http://www.virtualbox.org/

14. Aunimo, L., Laiho, M., Lassila, A.: DBTech Database Virtual Laboratory Work-

shops in Teaching. In: 14th Workshop of the Special Interest Group on Experimen-

tal Interactive Learning in Industrial Management of the IFIP Working Group 5.7:

“Experimental Learning on Sustainable Management, Economics and Industrial En-

gineering”, Poliscript Politecnico di Milano, Italy (2010), ISBN 97888-6493-004-6

http://www.dbtechnet.org/
http://myy.haaga-helia.fi/%7Edbms/dbtechnet/project2002-05_en.HTML
http://dbtech.uom.gr/mod/resource/view.php?id=181
http://myy.haaga-helia.fi/%7Edbms/dbtechnet/finalr/WP2
http://myy.haaga-helia.fi/%7Edbms/dbtechnet/finalr/WP4.PDF
http://dbtech.uom.gr/mod/resource/view.php?id=143
http://dbtech.uom.gr/
http://dbtech.uom.gr/mod/resource/view.php?id=144
http://moodle.org/
http://www.adobe.com/products/acrobatconnectpro/
http://www.vmware.com/
http://www.microsoft.com/windows/virtual-pc/
http://www.virtualbox.org/

22 M. Laiho et al.

15. IBM academic initiative program,

http://www.ibm.com/developerworks/university/academicinitiative/

16. Microsoft MSDN Academic Alliance program,

http://msdn.microsoft.com/en-us/academic/

17. University of Malaga PCVirtual/VDI service, https://pcvirtual.cv.uma.es

18. Delgado, I.N., Roldán-Garćıa, M., Farfán-Leiva, J.J., Martti, L., Laux, F., Dervos,

D.A., Aldana Montes, J.F.: Innovative Unity in the Diversity of Information Man-

agement Skills Teaching and Training across Europe. IADAT Journal of Advanced

Technology on Education (IJAT-e) 3(3), 439–443 (2009)

http://www.ibm.com/developerworks/university/academicinitiative/
http://msdn.microsoft.com/en-us/academic/
https://pcvirtual.cv.uma.es

New Frontiers in Business Intelligence:

Distribution and Personalization

Stefano Rizzi�

DEIS - University of Bologna, V.le Risorgimento 2, 40136 Bologna, Italy

Abstract. To meet the new, more sophisticated needs of decision mak-

ers, a new generation of BI systems is emerging. In this paper we focus on

two enabling technologies for this new generation, namely distribution

and personalization. In particular, to support complex business scenarios

where multiple partner companies cooperate towards a common goal, we

outline a distributed architecture based on a network of collaborative,

autonomous, and heterogeneous peers, each offering monitoring and de-

cision support functionalities to the other peers. Then we discuss some

issues related to OLAP query reformulation on peers, showing how it can

be achieved using semantic mappings between the local multidimensional

schemata of peers. Finally, as to personalization, we discuss the benefits

of annotating OLAP queries with preferences, focusing in particular on

how preferences enable peer heterogeneity in a distributed context to be

overcome.

Keywords: Business Intelligence, Distributed Data Warehousing, User

Preferences.

1 Introduction

Business intelligence (BI) transformed the role of computer science in companies
from a technology for passively storing data into a discipline for timely detecting
key business factors and effectively solving strategic decisional problems. How-
ever, in the current changeable and unpredictable market scenarios, the needs
of decision makers are rapidly evolving as well. To meet the new, more sophisti-
cated user needs, a new generation of BI systems (often labeled as BI 2.0) has
been emerging during the last few years. Among the characterizing trends of
these systems, we mention BI as a service, real-time BI, collaborative BI, and
pervasive BI.

In this paper we focus on two enabling technologies for BI 2.0, namely distri-
bution and personalization.

� Part of this work has been jointly carried out in collaboration with Matteo Golfarelli,

Wilma Penzo, Elisa Turricchia (Univ. of Bologna, Italy), and Federica Mandreoli

(Univ. of Modena and Reggio Emilia, Italy).

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 23–30, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

24 S. Rizzi

1.1 Motivating Scenario and Envisioned Architecture

Cooperation is seen today by companies as one of the major means for increasing
flexibility and innovating so as to survive in today uncertain and changing mar-
ket. Companies need strategic information about the outer world, for instance
about trading partners and related business areas. Indeed, it is estimated that
above 80% of waste in inter-company and supply-chain processes is due to a lack
of communication between the companies involved.

In such a complex and distributed business scenario, where multiple partner
companies/organizations cooperate towards a common goal, traditional BI sys-
tems are no longer sufficient to maximize the effectiveness of monitoring and
decision making processes. Two new significant requirements arise:

– Cross-organization monitoring and decision making: Accessing local infor-
mation is no more enough, users need to transparently and uniformly access
information scattered across several heterogeneous BI platforms [8].

– Pervasive and personalized access to information: Users require that infor-
mation can be easily and timely accessed through devices with different
computation and visualization capabilities, and with sophisticated and cus-
tomizable presentations [14].

The architecture we envision to cope with this scenario is that of a dynamic, col-
laborative network of peers, each hosting a local, autonomous BI platform (see
Figure 1). Each peer relies on a local multidimensional schema that represents
the peer’s view of the business and offers monitoring and decision support func-
tionalities to the network users. Users transparently access business information
distributed over the network in a pervasive and personalized fashion. Access is
secure, depending on the access control and privacy policies adopted by each
peer.

A typical user interaction in this context is the following. A user formulates an
OLAP query q by accessing the local multidimensional schema of her peer, p. She

Fig. 1. Envisioned architecture for a collaborative BI network

New Frontiers in Business Intelligence: Distribution and Personalization 25

Fig. 2. Multidimensional schemata of related facts at two peers

can annotate q by a preference that enables her to rank the returned information
according to her specific interests. To enhance the decision making process, q
is forwarded to the network and reformulated on the other peers in terms of
their own multidimensional schemata. Each involved peer locally processes the
reformulated query and returns its (possibly partial or approximate) results to p.
Finally, the results are integrated, ranked according to the preference expressed
by the user, and returned to the user based on the lexicon used to formulate q.

In the working example we adopt in this paper, a set of local health-care de-
partments participate in a collaborative network to integrate their data about
admissions so as to enable more effective analysis of epidemics and health-care
costs by the Ministry. For simplicity we will focus on two peers: the first, located
in Rome, hosting data on hospitalizations at patient-level detail; the second,
located in Florence, hosting data on admissions grouped by patient gender, res-
idence city, and birth year. The underlying multidimensional schemata for these
two peers are shown in Figure 2, using the Dimensional Fact Model notation [4].

2 Distribution

Although the integration of heterogeneous databases has been widely discussed
in the literature, only a few works are specifically focused on strategies for data
warehouse integration [2,16] and federation [1]. Indeed, in this context, problems
related to data heterogeneity are usually solved by ETL (Extraction, Transfor-
mation, and Loading) processes that read data from several data sources and
load them in a single multidimensional repository to be accessed by users. While
this centralized architecture may fit the needs of old-style, stand-alone compa-
nies, it is hardly feasible in the context of a collaborative BI network, where the

26 S. Rizzi

dynamic nature of the business, together with the independence and autonomy
of peers, call for more sophisticated solutions.

Peer Data Management Systems (PDMSs [7]) have been proposed in the lit-
erature as architectures to support sharing of operational data across networks
of peers while guaranteeing peer autonomy, based on interlinked semantic map-
pings that mediate between the heterogeneous schemata exposed by peers [10].
The architecture we outlined in the previous section is in line with the PDMS
infrastructure, but requires a number of specific issues —mostly related to the
multidimensional nature of the information exchanged— to be faced:

– Query reformulation on peers is a challenging task due to the presence of
aggregation and to the possibility of having information represented at dif-
ferent granularities and under different perspectives in each peer.

– The strategic nature of the exchanged information and its multidimensional
structure, as well as the presence of participants that belong to different
organizations, require advanced approaches for security, ranging from proper
access policies to data sharing policies that depend on the degree of trust
between participants, as well as techniques for protecting against undesired
information inference.

– Mechanisms for controlling data provenance and quality in order to provide
users with information they can rely on should be provided. A mechanism
for data lineage is also necessary to help users understand the semantics
of the retrieved data and how these data have been transformed to handle
heterogeneity.

– A unified, integrated vision of the heterogeneous information collected must
be returned to users. To this end, object fusion functionalities that take into
account the peculiarities of multidimensional data must be adopted.

As a first step in this direction, we are currently working on query reformulation.
In particular, we devised a language for the definition of semantic mappings
between the multidimensional schemata of peers, and we introduced a query
reformulation framework that relies on the translation of these mappings towards
a ROLAP platform. A basic multidimensional model is considered, where a fact
(e.g., patient admissions) is associated to a set of coordinates called dimensions
(e.g., ward and admission date) and is quantified by a set of numerical measures
(e.g., the total cost of the stay). A dimension can be further described by a set
of hierarchically-structured attributes connected by many-to-one associations
(e.g., a patient lives in one city, that in turn belongs to one region). As to the
workload, we consider OLAP queries that can be expressed in GPSJ (Generalized
Projection - Selection - Join) form [6]:

πG,AGG(m)(σP (χ))

where π denotes a generalized projection, i.e., an aggregation of measure m using
aggregate function AGG() over the attributes in G; σP is a selection based on
Boolean predicate P ; and χ denotes the star join between the fact table and the
dimension tables. For instance, the following query expressed at the Rome peer

New Frontiers in Business Intelligence: Distribution and Personalization 27

computes the total hospitalization cost of female patients for each region and
year:

πregion,year,SUM(cost)(σgender=′F ′(χRome))

Now, let p and q be two peers in a collaborative BI network. The language we
propose to express how the local multidimensional schemata of p maps onto the
one of q includes five mapping predicates, namely same, equi-level, roll-up, drill-
down, and related. Each mapping establishes a semantic relationship from a list of
concepts (measures or attributes) of p (on the left side of the mapping predicate)
to a list of concepts of q (on the right side of the mapping predicate), and
enables a query formulated on p to be (exactly or approximately) reformulated
on q. Optionally, a mapping can be associated with an encoding function that
specifies how values of the left-side list of concepts can be obtained from values
of the right-side list of concepts. If this function is available, it is used during
query reformulation and data integration to return more query-compliant results
to users.

While discussing in detail the whole set of mapping predicates and the query
reformulation framework is outside the scope of this paper, we will give an in-
tuition of the underlying mechanism with a basic example.

Example 1. The same predicate is used to state that a set c of measures in p
has the same semantics than a set d of measures in q. If knowledge is available
about how values of c can be derived from values of d, it can be expressed by
two encoding functions f : dom(c) → R and g : dom(d) → R. The semantics of
these functions is that, whenever f(c) is asked in a query at p, it can safely be
rewritten as g(d) at q. For instance,

< Rome.cost > samef,g < Florence.totStayCost, Florence.totExamCost >

with

f(< cost >) = cost

g(< totStayCost, totExamCost >) = totStayCost + totExamCost

states that measure cost can be derived by summing totStayCost and totExam-
Cost.

Similarly, the roll-up predicate states that a set c of attributes in p is a roll-up
of (i.e., it aggregates) a set d of attributes in q. If knowledge is available about
how to roll-up values of d to values of c, it can be expressed by a non-injective
encoding function f : dom(d) → dom(c) that establishes a one-to-many relation
between values of c and values of d, and is used to aggregate data returned by
q and integrate them with data returned by p. For instance,

< Rome.week > roll-upf < Florence.date >

with f(< date >) =< week : weekOf(date) >, states that weeks are an aggre-
gation of dates.

28 S. Rizzi

Now consider the OLAP query (formulated at Rome) asking for the weekly
hospitalization costs:

πweek,SUM(cost)(χRome)

This query group-by is reformulated using the roll-up mapping from week to date,
while measure cost is derived using the same mapping:

πweekOf(date),SUM(totStayCost+totExamCost)(χFlorence)

�

3 Personalization

Personalizing e-services by allowing users to express preferences is becoming
more and more common. When querying, expressing preferences is seen as a
natural way to avoid empty results on the one hand, information flooding on the
other. Besides, preferences allow for ranking query results so that the user may
first see the data that better match her tastes.

Though a lot of research has been carried out during the last few years on
database preferences (e.g., [11,3]), the problem of developing a theory of pref-
erences for multidimensional data has been mostly neglected so far with a few
exceptions [15,9,17,12]. Indeed, expressing preferences could be valuable in this
domain because:

– Preferences enable users to focus on the most interesting data. This is par-
ticularly beneficial in the OLAP context, since multidimensional databases
store huge amounts of data. Besides, OLAP queries may easily return huge
volumes of data (if their group-by sets are too fine), but they may return
little or no information as well. The data ranking entailed by preferences
solves both these problems.

– During an OLAP session, the user often does not exactly know what she is
looking for. The reasons behind a specific phenomenon or trend may be hid-
den, and finding those reasons by manually applying different combinations of
OLAP operators may be very frustrating. Preferences enable users to specify
a “soft” pattern that describes the type of information she is searching for.

– In a collaborative BI network like the one envisioned in Section 1.1, hetero-
geneity in peers’ multidimensional schemata and data may lead to obtaining
empty results when reformulating queries, while a query annotated with a
preference can produce meaningful results even when a common schema is
not defined and the searched data are not found.

The last motivation plays a key role in the distributed framework outlined in
this work. In our health-care example, consider a query asking in Rome for some
statistics on hospitalizations, aggregated at the finest level along the patient
hierarchy. If the patient group-by were expressed as a “hard” constraint, no data
from Florence could be returned because the patient granularity is not present
there (see Figure 2). If the patient group-by is expressed in a “soft” form using
a preference, instead, data aggregated by patient gender, city, and birth year

New Frontiers in Business Intelligence: Distribution and Personalization 29

can be returned from Florence. Though this granularity does not exactly match
the one preferred by the user, the resulting information could be valuable in
improving decision-making effectiveness. Similarly, a query in Rome could ask
for data on hospitalizations whose duration of stay exceeds, say, 30 days. If the
Florence peer stores no admissions yielding durations higher than 30, it can still
return its admissions ranked by decreasing durations.

In [5] we presented myOLAP, an approach for expressing and evaluating
OLAP preferences. From the expressiveness point of view, the main features of
our approach can be summarized as follows:

– Preferences can be expressed not only on attributes, that have categorical
domains, but also on measures, that have numerical domains. Remarkably,
the preference constructors that operate on attributes take the presence of
hierarchies into account.

– Preferences can also be formulated on the aggregation level of data, i.e., on
group-by sets, which comes down to expressing preferences on schema rather
than on instances.

– Preferences can be freely composed using the Pareto and prioritization op-
erators, thus forming an algebra that can easily be incorporated into a mul-
tidimensional query language like MDX [13].

We close this section by showing how the two preference query suggested above
can be formulated in myOLAP.

Example 2. The first query, asking for total hospitalization cost preferably ag-
gregated by patient, can be annotated with the simple myOLAP preference
FINEST(PATIENT), stating that data should be preferably aggregated at the
finest group-by set along the PATIENT hierarchy. While at Rome the finest
group-by is patient, at Florence the finest group-by is patientCity, patientGender,
patientBirthYear. Of course, proper visualization techniques will be required for
displaying results at different granularities together while preserving the typical
intuitiveness and navigability of OLAP interfaces.

The second query asks for hospitalizations whose duration of stay exceeds
30 days. To express the constraint about duration in a “soft” way, a myOLAP
preference like BETWEEN(durationOfStay,30,999) can be used. The best match
for this preference are the hospitalizations whose duration of stay is higher than
30; however, if no such data are found, the returned hospitalizations are ranked
in decreasing order by their durationOfStay values. �

4 Conclusions

In this paper we have outlined a peer-to-peer architecture for supporting dis-
tributed and collaborative decision-making scenarios. We have shown, using some
examples, how an OLAP query formulated on one peer can be reformulated on
a different peer, based on a set of inter-peer semantic mappings. The we have
discussed the role of OLAP preferences in overcoming peer heterogeneity in both
schemata and data.

30 S. Rizzi

Currently, we are finalizing a reformulation algorithm that relies on the trans-
lation of semantic mappings towards a ROLAP implementation. However, a large
number of issues still need to be faced, as mentioned in Section 2. Our future
work in this direction will be mainly focused on multidimensional-aware object
fusion techniques for integrating data returned by different peers, on smart al-
gorithms for routing queries to the most “promising” peers in the BI network,
and on optimizing OLAP preferences in a distributed context.

References

1. Abiteboul, S.: Managing an XML warehouse in a P2P context. In: Eder, J., Mis-

sikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 4–13. Springer, Heidelberg

(2003)

2. Banek, M., Vrdoljak, B., Tjoa, A.M., Skocir, Z.: Automated integration of hetero-

geneous data warehouse schemas. IJDWM 4(4), 1–21 (2008)

3. Chomicki, J.: Preference formulas in relational queries. ACM TODS 28(4), 427–466

(2003)

4. Golfarelli, M., Rizzi, S.: Data Warehouse design: Modern principles and method-

ologies. McGraw-Hill, New York (2009)

5. Golfarelli, M., Rizzi, S., Biondi, P.: MYOLAP: An approach to express and evaluate

olap preferences. IEEE Trans. Knowl. Data Eng. (to appear 2010)

6. Gupta, A., Harinarayan, V., Quass, D.: Aggregate-query processing in data ware-

housing environments. In: Proc. VLDB, Zurich, Switzerland, pp. 358–369 (1995)

7. Halevy, A.Y., Ives, Z.G., Madhavan, J., Mork, P., Suciu, D., Tatarinov, I.: The

Piazza peer data management system. IEEE Trans. Knowl. Data Eng. 16(7), 787–

798 (2004)

8. Hoang, T.A.D., Nguyen, B.: State of the art and emerging rule-driven perspec-

tives towards service-based business process interoperability. In: Proc. Int. Conf.

on Computing and Communication Technologies, Danang City, Vietnam, pp. 1–4

(2009)

9. Jerbi, H., Ravat, F., Teste, O., Zurfluh, G.: Applying recommendation technology

in OLAP systems. In: Proc. ICEIS, Milan, Italy, pp. 220–233 (2009)

10. Kehlenbeck, M., Breitner, M.H.: Ontology-based exchange and immediate applica-

tion of business calculation definitions for online analytical processing. In: Peder-

sen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2009. LNCS, vol. 5691, pp.

298–311. Springer, Heidelberg (2009)

11. Kießling, W.: Foundations of preferences in database systems. In: Proc. VLDB,

Hong Kong, China, pp. 311–322 (2002)

12. Koutrika, G., Ioannidis, Y.: Answering queries based on preference hierarchies. In:

Proc. VLDB, Auckland, New Zealand (2008)

13. Microsoft: MDX reference (2009),

http://msdn.microsoft.com/en-us/library/ms145506.aspx
14. Rizzi, S.: OLAP preferences: a research agenda. In: Proc. DOLAP, Lisbon, Portu-

gal, pp. 99–100 (2007)

15. Stefanidis, K., Pitoura, E., Vassiliadis, P.: Adding context to preferences. In: Proc.

ICDE, Istanbul, Turkey, pp. 846–855 (2007)

16. Torlone, R.: Two approaches to the integration of heterogeneous data warehouses.

Distributed and Parallel Databases 23(1), 69–97 (2008)

17. Xin, D., Han, J.: P-cube: Answering preference queries in multi-dimensional space.

In: Proc. ICDE, Cancún, México, pp. 1092–1100 (2008)

http://msdn.microsoft.com/en-us/library/ms145506.aspx

Effectively Monitoring RFID Based Systems

Fabrizio Angiulli2 and Elio Masciari1

1 ICAR-CNR – Institute of Italian National Research Council

masciari@icar.cnr.it
2 DEIS-UNICAL

Via P. Bucci, 87036 Rende (CS) Italy

fangiulli@deis.unical.it

Abstract. Datastreams are potentially infinite sources of data that flow

continuously while monitoring a physical phenomenon, like temperature

levels or other kind of human activities, such as clickstreams, telephone

call records, and so on. Radio Frequency Identification (RFID) technol-

ogy has lead in recent years the generation of huge streams of data.

Moreover, RFID based systems allow the effective management of items

tagged by RFID tags, especially for supply chain management or ob-

jects tracking. In this paper we introduce SMART (Simple Monitoring

enterprise Activities by RFID Tags) a system based on outlier template

definition for detecting anomalies in RFID streams. We describe SMART

features and its application on a real life scenario that shows the effec-

tiveness of the proposed method for effective enterprise management.

1 Introduction

In this paper we will focus on Radio Frequency Identification (RFID) data
streams monitoring as RFID based systems are emerging as key components
in systems devoted to perform complex activities such as objects tracking and
supply chain management. Sometimes RFID tags are referred to as electronic
bar codes. Indeed, RFID tags use a signal that contains basic identification in-
formation about a product. Such tags can be used to track a product from
manufacturer through distribution and then on to retailers. These features of
RFID tags open new perspectives both for hardware and data management. In
fact, RFID is going to create a lot of new data management needs. In more
details, RFID applications will generate a lot of so called “thin” data, i.e. data
pertaining to time and location. In addition to providing insight into shipment
and other supply chain process efficiencies, such data provide valuable infor-
mation for determining product seasonality and other trends resulting in key
information for the companies management. Moreover, companies are exploring
more advanced uses for RFIDs. For instance, tire manufacturers plan to embed
RFID chips in tires to determine tires deterioration. Many pharmaceutical com-
panies are embedding RFID chips in drug containers to better track and avert
the theft of highly controlled drugs. Airlines are considering RFID-enabling key
onboard parts and supplies to optimize aircraft maintenance and airport gate

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 31–45, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

32 F. Angiulli and E. Masciari

preparation turnaround time. Finally, US Department of Defense recognizes the
value of expanding the global RFID infrastructure and propose a RFID-capable
supply chain as a critical element of defense transformation.

Such a wide variety of systems for monitoring data streams could benefit
of the definition of a suitable technique for detecting anomalies in the data
flows being analyzed. As a motivating example you may think about a company
that would like to monitor the mean time its goods stay on the aisles. The
goods are tagged by an RFID tag so the reader continuously produces readings
reporting the electronic product code of the item being scanned, its location
and timestamp, this information can be used for signaling that the item lays
too much on the shelf since it is repeatedly scanned in the same position. It
could be the case that the package is damaged and consequently customers tend
to avoid the purchase. If an item exhibits such a feature it deserves further
investigation. Such a problem is relevant to a so huge number of application
scenario that make impossible to define an absolute notion of anomalies (in the
follow we refer to anomalies as outliers). In this paper we propose a framework for
dealing with the outliers detection problem in massive datastreams generated in
a network environment for objects tracking and management. The main idea is to
provide users a simple but rather powerful framework for defining the notion of
outliers for almost all the application scenarios at an higher level of abstraction,
separating the specification of data being investigated from the specific outlier
characterization.

Our approach is based on the definition of a template for specifying outlier
queries on datastreams. The template need to be powerful enough to model all
the interesting surveillance scenarios. In this respect, it should allow the defini-
tion of four components, namely: the reference population P (due to the infinite
nature of datastreams we need to work on significant sample of the whole stream)
depending on the application context, the kind of objects (O) to be monitored,
the attributes (A) of the population used for signing out anomalies, the out-
lier definition by means of a suitable function F(P, A, O) → {0, 1}. Finally, a
mapping function that for a given template and data stream schema, resolves
the template in a set of “outlier continuous queries” to be issued on the nodes
generating the datastreams being monitored.

The function F to be used can be any stream oriented implementation of
an outlier detection technique and it is completely orthogonal to the template
definition since our goal is to design a management system that could help
the decision makers in the analysis of huge streams of data. In particular, we
provide a modular environment that provides several features for managing the
company streams. Consider again the problem of singling out items lying on the
shelf too much time. In this case the population of reference (P) is composed
by all the items of the same kind placed in the same shelf during the last year,
the objects of interests (O) are items, the attribute of interest (A) is the time
of stay on the shelf, while the outlying function (F) could be a statistical test
stating that an object becomes an outlier if its time of stay deviates too much
from the mean time of stay of the population (e.g. is more than 3 times further

Effectively Monitoring RFID Based Systems 33

the standard deviation from the mean). This kind of template is always active
at the nodes being monitored and could be modified by the master according
to the (possible) concept drift. As an example of concept drift consider the case
that due to decreased sales due to financial crisis the average stay of an item
increases of some minutes, this information must be kept into account by the
master that should modify the templates accordingly.

2 Related Work

The problem of representing and querying data streams has been investigated
extensively in recent years due to increasing number of applications that generate
huge amounts of data that flow continuously over communication networks. In
particular many works address the problem of producing (approximate) answers
to queries issued on an (infinite) datastream. Concerning the general task of
querying the physical world (wired or wireless sensors can be modeled nearly
the same of RFID reader networks) the problem of representing and querying
data streams has been recently investigated from different viewpoints. Many of
the systems proposed focused on sensor network readings management, which
could be considered a more general case of RFID data stream. In the following
we will briefly recall both theoretical and applied results on these topics. In [5]
the authors analyze the space requirements of algorithms that operate on data
streams and thus make only one (or a small number of) pass(es) over input data.
In particular the authors treat the problem from different viewpoint, one-pass vs.
multi-pass algorithms, deterministic vs. randomized and exact vs. approximation
algorithms. In [2] the problem of modeling infinite datastreams and answering
to continuous queries is discussed. In particular a system architecture for data
stream management is presented. A query processing mechanism called Eddies
that continuously reorder operators in the query plan as it runs is described
in [1]. In particular they introduce the notion of synchronization barriers and
moments of symmetry. In [8] a new class of samples called icicles is described.
Icicles are samples that adapt to changes in the workload based on the relevance
of a tuple for query answering.

Systems for managing and querying data generated by sensor networks are
generally classified according to the approach adopted to execute queries. In
centralized systems the access to the sensor network is separated from query
evaluation. That is, data are continuously extracted from sensors and stored
into a database server. Thus, queries are issued on the centralized database.
ALERT[7] is one of the most popular centralized systems, and is widely employed
in the context of environmental data processing. In the distributed approach
(which is adopted by COUGAR[6] and TinyDB[4] systems) data are extracted
from sensors only if they must be accessed to evaluate some queries.

The problem of efficiently managing RFID data has been studied w.r.t. dif-
ferent application scenarios. Specifically, RFID data management it has been
studied in [3], where the problem of defining an efficient warehousing model
along with techniques for summarizing and indexing data has been investigated.

34 F. Angiulli and E. Masciari

More in detail, in [3] the authors propose a model that eliminates the redun-
dancy in RFID data. For instance, the proposed model collapse multiple RFID
readings for the same tag coming from the same reader, by assigning the inter-
val of stay (timein, timeout) instead of every timestamps . To further compress
RFID data they register a single transition for items that are packed together
(e.g. CDs in the same pallet). Finally, they introduced a model based on hierar-
chy of summary called RFID-Cuboids of the RFID data aggregated at different
abstraction levels in order to allow different kinds of data analysis. In [10] the
author exploited a matrix of RFID tags in order to track data. More in details
they collected trajectories followed by tagged objects in order to extract typi-
cal activity phenomenon (i.e. goods traveling the same path through the supply
chain).

Finally, in the context of Data Stream Languages the ESL language [9] has
been proposed to extend SQl-3 capabilities in order to deal with the peculiar
features of datastreams. It provides a wide collection of operators for defining
stream sources and continuous queries on them, In this paper we will refer mainly
to ESL syntax for the implementation of our monitoring system.

3 Preliminaries

3.1 RFID Data Streams

An RFID system consists of three components: the tag, the reader and the ap-
plication which uses RFID data. Tags consist of an antenna and a silicon chip
encapsulated in glass or plastic. Tags for commercial use contain a very small
amount of information. For instance, many kinds of tag contain only a code
number (denoted as Electronic Product Code (epc)). Currently, 128-bit epc is
the most prevailing version and contains information about the manufacturer,
the category of the object and a serial number that identifies the specific object
being monitored. Regarding the transmission mode, tags can be passive, active
or semi-active. An active tag contains some type of power source on the tag,
whereas the passive tags rely on the radio signal sent by the reader for power.
Most RFID applications today use passive tags because they are much cheaper
to manufacture. However, the lack of power poses significant restrictions on the
tags ability to perform computations and communicate with the reader. It must
be within range of the reader in order to work properly. Semi-active tags use a
battery to run the microchips circuitry but not to communicate with the reader.
RFID readers or receivers are composed of a radio frequency module, a control
unit and an antenna to query electronic tags via radio frequency (RF) commu-
nication. They also include an interface that communicates with an application
(e.g., the check-out counter in a store). Readers can be hand-held or mounted
in specific locations in order to ensure they are able to read the tags as they
pass through a query zone that is the area within which a reader can read the
tag. The query zone are the locations that must be monitored for application
purposes.

Effectively Monitoring RFID Based Systems 35

Fig. 1. Supply Chain Scenario

In order to explain the typical features of an RFID application we consider a
supply chain such as the one depicted in Figure 1.

The chain from the farm to the customer has many stages. At each stage
goods are typically delivered to the next stage, but in some case a stage can
be missing. The following three cases may occur: 1) the goods lifecycle begin
at a given point (i.e. production stages, goods are tagged there and then move
through the chain) and thus the reader in the zone register only departures of
goods, we refer to this reader as source reader ; 2) goods are scanned by the
reader both when they arrive and they leave the aisle, in this case we refer to
this reader as intermediate reader ; 3) goods are scanned and the tag is killed,
we refer to this reader as destination reader.

RFID data can be exploited by traditional operational data management sys-
tems in order to perform operational tasks such as good delivery, packaging etc...
and by data analysis applications used to support managers in making strategic
level decisions. In the next section we consider the latter type of applications.
In such applications we have to deal with the redundant nature of RFID data
that being continuously scanned generate multiple readings for the same object
thus making the analysis task quite intriguing.

A RFID stream is (basically) composed of an ordered set of n sources (i.e.,
tag readers) located at different positions, denoted by {r1, . . . , rn} producing n
independent streams of data, representing tag readings. Each RFID stream can
be basically viewed as a sequence of triplets 〈idr, epc, τs〉, where:

1. idr ∈ {1, .., n} is the tag reader identifier (observe that it implicitly carries
information about the spatial location of the reader) ;

2. epc is the product code read by the source identified by idr;
3. τs is a timestamp, i.e., a value that indicates the time when the reading epc

was produced by the source idr.

This simple schema could be enriched with additional information about loca-
tions and products as will be explained in section 4.

4 Statement of the Problem

In our model, epc is the identifier associated with a single unit being scanned
(this may be a pallet or a single item, depending on the level of granularity
chosen for tagging the goods being monitored).

36 F. Angiulli and E. Masciari

This basic schema is simple enough to be used as a basic schema for a data
stream environment, anyway since more information are needed about the out-
lier being detected we can access additional information by using some auxiliary
tables maintained at a Master site as shown in figure 2. More in detail, the
Master maintains an intermediate local warehouse of RFID data that stores in-
formation about items, items’ movements, product categories and locations and
is exploited to provide details about RFID data upon user requests. The informa-
tion about items’ movements are stored in the relation ItemMovement and the
information about product categories and locations are stored in the relations
Product and Locations, respectively. These relations represent, respectively, the
Product and the Location hierarchy. Relation EPCProducts maintains the asso-
ciation between epcs and product category, that is, every epc is associated to a
tuple at the most specific level of the Product hierarchy. Finally, RFID readers
constitute the most specific level of the Location hierarchy.

More in detail, the main characteristics of the Product and the Location hi-
erarchy can be described as follows:

– ProductCategories: this hierarchy takes into account, using different gran-
ularity levels, the differences among products. The bottom of the hierarchy
groups items having common features, while the intermediate nodes rep-
resent the different aggregation that could be considered (e.g., bread →
bakey → perishable → foodstuffs);

– Locations: this hierarchy has as bottom the single readers, and as intermedi-
ate nodes regions sharing the same goal (e.g., reader → aisle → warehouse
→ docks → city).

This information can be accessed when user requires aggregate information about
readings. ItemMovements contains tuples of the form 〈epc, DL〉, where epc has
the usual meaning, and DL is string built as follows: each time an epc is read
for the first time at a node Ni a trigger fires and DL is updated appending the
node identifier.

In the following we define a framework for integrating Data Stream Manage-
ment Systems (DSMS) technologies and outlier detection framework in order to
effectively manage outliers in RFID datastreams. In particular we will exploit
the following features:

– The definition of a template for specifying outlier queries on datastreams
that could be implemented on top of a DSMS by mapping the template in a
suitable set of continuous queries expressed in a continuous query language
language such as ESL[9];

– The template need to be powerful enough to model all the interesting surveil-
lance scenarios. In this respect, it should allow the definition of four compo-
nents, namely:
1. the kind of objects (O) to be monitored,
2. the reference population P (due to the infinite nature of datastream)

depending on the application context,

Effectively Monitoring RFID Based Systems 37

3. the attributes (A) of the population used for signing out anomalies,
4. the outlier definition by means of a suitable function F(P, A, O) →

{0, 1}.
– A mapping function that for a given template and DSMS schema, resolve the

template in a set of outlier continuous queries to be issued on the datastream
being monitored.

The basic intuition behind the template definition is that we want to run an ag-
gregate function that is raised by the Master and then instantiated on a subset of
nodes in the network as shown in figure 2, it is easy to see that the system works
in a master-slave way. An incoming stream is processed at each node where the
template is activated by the Master that issued the request for monitoring the
stream. Once a possible outlier is detected, it is signaled to the Master. The
Master maintains management information about the network and some addi-
tional information about the items using two auxiliary tables OutlierMovement
and NewTrend. In the OutlierMovement table it stores information about the
outlying objects, in particular it stores their identifiers and the paths traveled
so far as explained above for ItemMovements. The NewTrend table stores in-
formation about objects that are not outliers but instead they represent a new
phenomenon in the data. It contains tuples of the form 〈epc, N, τa, τl, 〉, where
N is a node, τa and τl are, respectively, the arrival time and the latency time
(i.e. the time interval spent at node N by the epc). The latter table is really
important since it is intended to deal with the concept drift that could affect the
data. In particular, when items are marked as unusual but they are not outliers
(as in the case of varied selling rates) they are recorded for later use since they
are the symptom of a new trend for items being monitored . Once the new trend
has been consolidated, new statistics for the node where the objects appeared
will be computed at Master level and then forwarded to the pertaining node in
order to update the parameters of its population.

As mentioned above candidate outliers are signaled at node level and they are
managed by the Master. More in detail, as a possible outlier is signaled by a
given node the Master stores it in the OutlierMovement table along with its
path if it is recognized as an anomaly or in the NewTrend table if a signaled
item could represent the symptom of a new trend in data. To summarize, given
a signaled object o two cases may occur: 1) o is an outlier and then it is stored
in the Outlier table; 2) o represents a new trend in data distribution and then it
should not be considered as an outlier and we store it in the NewTrend table.
To better understand such a problem we define three possible scenarios on a toy
example.

Example 1. Consider a container (whose epc is p1) containing dangerous material
that has to be delivered through check points c1, c2, c3 in the given order and con-
sider the following sequence of readings: SeqA = {(p1, c1, 1), (p1, c1, 2), (p1, c2, 3),
(p1, c2, 4), (p1, c2, 5), (p1, c2, 6), (p1, c2, 7), (p1, c2, 8), (p1, c2, 9), (p1, c2, 10), (p1, c2,
11), (p1, c2, 12)}. Sequence A correspond to the case in which the pallet tag is
read repeatedly at the check point c2. This sequence may occur because: i) the
pallet (or the content) is damaged so it can no more be shipped until some

38 F. Angiulli and E. Masciari

Fig. 2. Structure of our RFID stream environment

recovery operation has been performed, ii) the shipment has been delayed. De-
pending on which one is the correct interpretation different recovery action need
to be performed. To take into account this problem in our prototype imple-
mentation we maintain appropriate statistics on latency time at each node for
signaling the possible outlier. Once the object has been forwarded to the Master
a second check is performed in order to store it either in OutlierMovement or
in NewTrend table. In particular, it could happen that due to new shipping
policy additional checks have to be performed on dangerous material, obviously
this will cause a delay in shipping operations, thus the tuple has to be stored in
the NewTrend table.

Consider now a different sequence of readings: SeqB = {(p1, c1, 1), (p1, c1, 2),
(p1, c1, 3), (p1, c1, 4), (p1, c3, 5), (p1, c3, 6), (p1, c3, 7), (p1, c3, 8), (p1, c3, 9), (p1, c3,
10), (p1, c3, 11), (p1, c3, 12)}. Sequence B correspond to a more interesting sce-
nario, in particular it is the case that the pallet tag is read at check point c1, is
not read at check point c2 but is read at checkpoint c3. Again two main explana-
tion could be considered: i) the original routing has been changed for shipment
improvement, ii) someone changed the route for fraudulent reason (e.g. in order
to steal the content or to modify it). In this case suppose that the shipping plan
has not been changed, this means that we are dealing with an outlier then we
store it in the OutlierMovement table along with its path.

Finally, consider the following sequence of readings regarding products p1, p2,
p3 that are frozen foods, and product p4 that is perishables, all readings being
generated at a freezer warehouse c: SeqC = {(p1, c, 1), (p2, c, 2), (p3, c, 3), (p4, c, 4),
(p1, c, 5), (p2, c, 6), (p3, c, 7), (p4, c, 8), (p1, c, 9), (p2, c, 10), (p3, c, 11), (p4, c, 12)}.
Obviously, p4 is an outlier for that node of the supply chain and this can be

Effectively Monitoring RFID Based Systems 39

easily recognized using a distance based outlier function since its expiry date
greatly deviates from the expiry dates of other goods.

4.1 Template Definition and Functionalities

The Template in a Short. In this section we will describe the functionalities
and syntax of the Template introduced so far. A Template is an aggregate func-
tion that takes as input a stream. Since the physical stream could contain several
attributes as explained in previous sections we allow selection and projection
operation on the physical stream. As will be clear in next section we will use a
syntax similar to ESL with some specific additional features pertaining to our
application scenario. This filtering step is intended for feeding the reference pop-
ulation P . In particular, as an object is selected at a given node it is included in
the reference population for that node using an Initialize operation, it persists
in the reference population as a Remove operation is invoked (it can be seen as
an Initialize operation on the tuples exiting the node being monitored).

We recall that a RFID tagged object is scanned multiple times at a given node
N so when the reader no more detects the RFID tag no reading is generated.
First time an object is read a V alidate trigger fires and send the information to
the Master that eventually updates the ItemMovement table. In response to a
V alidate trigger the Master performs a check on the item path, in particular it
checks if shipping constraints are so far met. In particular, it checks the incoming
reading for testing if the actual path so far traveled by current item is correct.
This check can be performed by the following operations: 1) selection of the path
for that kind of item stored in ItemMovement, 2) add the current node to the
path, 3) check the actual path stored in an auxiliary table DeliveryP lans storing
all the delivery plans (we refer to this check as DELIVERY CHECK). This step
is crucial for signaling path anomalies since as explained in our toy examples that
source of anomaly arise at this stage. If the item is not validated the Master
stores the item information in order to solve the conflict, in particular it could
be the case that delivery plans are changing (we refer to this check as NEW
PATH CHECK) so information is stored in NewTrend table for future analysis
, otherwise it is stored in the OutlierMovement table. To better understand this
behavior consider the SeqB in example 1. When the item is first time detected
at node c3 the V alidate trigger fires, the path so far traveled for that object is
retrieved obtaining path = c1, the current node is added thus updating path =
c1.c3 but when checked against the actual path stored in DeliveryP lans an
anomaly is signaled since it was supposed to be c1.c2.c3. In this case the item
is stored in the OutlierMovement table and the Master signals for a recovery
action. It works analogously for SeqA as explained in example 1.

When an epc has been validated it is added to the reference population for that
node (PN) then it stays at the node and is continuously scanned. It may happen
that during its stay at a given node an epc could not be read due to temporary
electro magnetic field problem, we should distinguish this malfunction from the
“normal” behavior that arise when an item is moved for shipping or (in case of
destination nodes) because it has been sold. To deal with this feature we provide

40 F. Angiulli and E. Masciari

a trigger Forget that fires when an object is not read for a (context depending)
number of reading cycles (we refer in the following as TIMESTAMP CHECK.
We point out that this operation is not lossy since at each node we maintain
(updated) statistics on items. When Forget trigger runs, it removes the “old”
item from the actual population and update the node statistics. Node statistics
(we refer hereafter to them as modelN where N is the node they refer to) we
take into account for outlier detection are: number of items grouped by product
category (count), average time spent at the node by items belonging to a given
category (m), variance for items (v) belonging to a given category, maximum
time spent at the current node by items belonging to a given category (maxt),
minimum time spent at the current node by items belonging to a given category
(mint). By means of the reference population PN and the node statistics modelN
the chosen outlier function checks for anomalies. In particular, we can search for
two kind of anomalies: 1) item based anomalies, i.e. anomaly regarding the item
features, in this case we will run a distance-based outlier detection function; 2)
time based anomalies, i.e. anomaly regarding arrival time or latency time, in this
case we will run a statistical based outlier detection function.

In the following we report the tables structure:

DeliveryP lans(id, actualPath, expectedT imestamp, maxT imestamp).
Wherein: id identifies the item being monitored, actualPath is the scheduled
path for the item, expectedT imestamp is the suitable time value for an item to
be delivered, maxT imestamp is the maximum time value after that the item
has to be signaled as an outlier;

ItemMovement(id, path, timestamp). Wherein: id identifies the actual item,
path is the actual path traveled so far and timestamp is the actual time stamp;

Population(id, timestamp). The attributes have the same meaning above ex-
plained and the table is updated with those items exhibiting normal behaviors;

OutlierMovement(id, path, timestamp). The attributes have the same meaning
above explained and the table is updated with those items exhibiting exceptional
behaviors;

NewTrend(id, path, timestamp). The attributes have the same meaning above
explained and the table is updated with those items that deviated from normal
behavior but could not be considered as outliers, this table is intended to take
into account the possible concept drift in data.

The above functionalities are summarized in the following table where we report
for each action the expected results depending on the response to the check being
performed and if it acts on the population (P) or the model (M) and the tables
involved in the (eventual) updates:

4.2 The RFID-T Syntax

In this section we formalize the syntax for template definition. For basic stream
operation we will refer to ESL syntax[9].

Effectively Monitoring RFID Based Systems 41

Cause Action Response P M Updates

Validate Trigger DELIVERY CHECK OK X X ItemMovemt

Validate Trigger DELIVERY CHECK FAIL NewTrend or OutlierMovement

DELIVERY CHECK NEW PATH CHECK OK NewTrend

DELIVERY CHECK NEW PATH CHECK FAIL OutlierMovement

Forget Trigger TIMESTAMP CHECK OK X X

Forget Trigger TIMESTAMP CHECK FAIL X X

Fig. 3. Main action performed for items monitoring

CREATE STREAM < name >
ORDER BY < attribute >
SOURCE < systemnode >

DEFINE OUTLIER TEMPLATE < name >
ON STREAM < streamname >
REFERENCE POPULATION (< definepopulation >)

MONITORING (< target >)

USING < outlierfunction >

< definepopulation > INSERT INTO < PopulationName >
SELECT < attributelist >
FROM < streamname >
WHERE < conditions >

< target > < attributelist > | < aggegatefunction >

< outlierfunction > < distancebased > | < statisticalbased >

Fig. 4. Template Definition syntax

AGGREGATE <Function Name> <Type>(Next Real) : Real

{ TABLE <Table Name> (<attribute list>);

INITIALIZE: { INSERT INTO <Table Name> VALUES (Next, 1); }
ITERATE: { UPDATE <Population Name> SET <update condition>;

INSERT INTO RETURN SELECT <output attribute> FROM <Table Name> }
TERMINATE : {} }

Fig. 5. Aggregate Function syntax

The first step is to create the stream related to nodes being monitored. Once
the streams are created at each node the Template definition has to be provided.

Aggregate function can be any SQL available function applied on the ref-
erence population as shown in Fig. 5, where Return and Next have the same
interpretation as in SQL and < Type > can be any SQL aggregate function. An
empty TERMINATE clause refer to a non-blocking version of the aggregate.

As the template has been defined it must be instantiated on the nodes being
monitored. In particular triggers V alidate and Forget are activated at each node.
As mentioned above they will continuously update the reference population and
node and Master statistics. The syntax of these triggers is shown in figure 6.

42 F. Angiulli and E. Masciari

CREATE TRIGGER Validate

BEFORE INSERT ON <Population Name>
REFERENCING NEW AS NEW READING

IF PATH CHECK > 0 INSERT INTO <Population Name> VALUES (NEW READING)

ELSE IF DELIVERY CHECK INSERT INTO NewTrend VALUES (NEW READING)

ELSE INSERT INTO OutlierMovement VALUES (NEW READING)

CREATE TRIGGER Forget

AFTER INSERT ON <Population Name>
REFERENCING OLD AS OLD READING

IF TIMESTAMP CHECK {DELETE FROM <Population Name> OLD READING

UPDATE STATISTICS ON <Population Name> }

Fig. 6. Validate and Forget Trigger

CREATE FUNCTION PATH CHECK RETURN NUMBER AS

BEGIN

SELECT COUNT(*)

FROM ItemMovement I, DeliveryPlans D

WHERE I.id=D.id AND

I.path=D.actualPath;

END

Fig. 7. PATH CHECK syntax

We point out again that V alidate trigger has the important side-effect of
signaling path outliers. We point out that the above presented definition is com-
pletely flexible so if the user may need a different outlier definition she simply
needs to add its definition as a plug-in in our system.

5 A Case Study

In this section, we present a real-life application scenario where we exploited our
system for detecting outliers in RFID data streams. The streams are related to a
set of pallets of tinned foods being tracked from the farm to distribution centers
through all stages of the productive chain of a food company. We analyzed about
100 streams, belonging to 5 main product category (daily production): 1) Tuna
Fish, whose readings are generated by 5000 tagged pallets storing 500 cans each;
2) Tomato, whose readings are generated by 6500 tagged pallets storing 40 cans
each; 3) Syrupy Peach, whose readings are generated by 2000 tagged pallets
storing 50 cans each; 4) Meat, whose readings are generated by 3500 tagged
pallets storing 600 cans each and 5) Ice Cream whose readings are generated by
3000 tagged pallets storing 400 cans each.

The supply chain has 10 nodes, 3 nodes at production sites (source readers for
RFID analysis purpose), 5 nodes at distribution centers (intermediated readers)
and 2 selling points (destination readers).

Effectively Monitoring RFID Based Systems 43

CREATE FUNCTION DELIVERY CHECK RETURN NUMBER AS

DECLARE

result NUMBER
BEGIN

SELECT −1INTO result

FROM ItemMovement I, DeliveryPlans D

WHERE I.id=D.id AND

I.timestamp>D.maxTimestamp;

UNION

SELECT −1INTO result

FROM ItemMovement I, DeliveryPlans D

WHERE I.id=D.id AND

I.timestamp<D.expectedTimestamp;

UNION

SELECT −1INTO result

FROM ItemMovement I, DeliveryPlans D

WHERE I.id=D.id AND

I.timestamp>D.expectedTimestamp AND

I.timestamp<D.maxTimestamp;

RETURN result

END

Fig. 8. DELIVERY CHECK syntax

CREATE FUNCTION TIMESTAMP CHECK (forgetTime IN NUMBER) RETURN NUMBER AS

BEGIN

SELECT *

FROM PopulationName P

WHERE P.timestamp+forgetTime < CURRENT TIME;

END

Fig. 9. TIMESTAMP CHECK syntax

We tested our prototype for one month monitoring the readings generated at
each node in particular we focused on monitoring some parameters as requested
by the company management: delivery efficiency, packaging quality and weight
management control. While the first two parameters are clearly understandable
the third parameter is quite interesting since tinned food passes through many
stages from the raw materials collection to the final tinned products, during this
working stages food has a natural weight decrease that is quite predictable, so
the goal of the monitoring stage is to avoid theft during the production stages
by workers that steal material trying to hide it as a natural weight loss.

In the table 1 we report the statistics generated at each node. In particular for
each node we report the average population, the average stay time, the maximum
stay time and minimum stay time, the path outlier detected at that node, and
the item based outlier and the time based outlier. Note that node N1 is the first
production node so only time based outlier could be detected at that node.

44 F. Angiulli and E. Masciari

Table 1. Results for SMART monitoring for a supply chain

node Population size Stay Time Max Stay Time Min Stay Time Path Outlier Item Outlier Time Outlier

N1 2000 40 49 28 0 0 4

N2 1227 27 41 21 0 20 3

N3 774 31 43 23 0 15 4

N4 300 22 33 17 7 8 1

N5 600 26 42 22 5 25 2

N6 450 21 29 17 4 9 5

N7 250 18 21 13 3 13 3

N8 400 20 25 17 6 14 2

N9 1100 34 39 26 8 22 1

N10 900 28 35 23 7 12 0

Values represent averages per node. Outliers values are the exact numbers of outliers

detected. Times are expressed as minutes.

6 Conclusions

In this paper we presented SMART a system for effective monitoring of enter-
prise activities based on RFID data. We showed our notion of outliers and a
suitable template for modeling them in an effective way by the enterprise man-
agement. A case study concerning the use of our system in a real life application
scenario is presented and it shows the high quality of the results obtained exploit-
ing SMART system for shipping monitoring. The system is subject to further
improvement, in particular we plan as a first step to include additional outlier
functions.

References

1. Avnur, R., Hellerstein, J.M.: Eddies: Continuously adaptive query processing. In:

Proceedings of the ACM SIGMOD International Conference on Management of

Data, Dallas, Texas, USA, pp. 261–272 (2000)

2. Datar, M., Motwani, R., Babcock, B., Babu, S., Widom, J.: Models and Issues in

Data Stream Systems. In: Twenty-first ACM SIGACT-SIGMOD-SIGART Sym-

posium on Principles of Database Systems, Madison, Wisconsin, USA, pp. 1–16

(2002)

3. Li, X., Gonzalez, H., Han, J., Klabjan, D.: Warehousing and Analyzing Massive

RFID Data Sets. In: Proc. of the ICDE Conference (2006) (to appear)

4. Madden, S., Hellerstein, J.M.: Distributing queries over low-power wireless sensor

networks. In: ACM SIGMOD Int. Conf. on Management of Data, Madison (WI),

USA (2002)

5. Raghavan, P., Henzinger, M.R., Rajagopalan, S.: Computing on data streams.

Technical Report 1998-011, Digital Systems Research Center (1998),

http://www.research.digital.com/SRC/

6. Gehrke, J., Bonnet, P., Seshadri, P.: Querying the Physical World. IEEE Personal

Communication 7 (2000)

http://www.research.digital.com/SRC/

Effectively Monitoring RFID Based Systems 45

7. Alert System, http://www.alertsystems.org

8. Li Lee, M., Ganti, V., Ramakrishnan, R.: ICICLES: Self-tuning Samples for Ap-

proximate Query Answering. In: Proceedings of 26th International Conference on

Very Large Data Bases, Cairo, Egypt, pp. 176–187 (2000)

9. Thakkar, H., Wang, H., Bai, Y., Luo, R.C., Zaniolo, C.: An introduction to the

Expressive Stream Language (ESL). Tech. Report

10. Pei, J., Chen, Q., Liu, Y., Chen, L., Zhao, Y.: Mining frequent trajectory patterns

for activity monitoring using radio frequency tag arrays. In: PerCom, pp. 37–46

(2007)

http://www.alertsystems.org

Quality–Driven Query Processing Techniques in

the MOMIS Integration System

Domenico Beneventano and R. Carlos Nana Mbinkeu

DII - Università di Modena e Reggio Emilia

Via Vignolese 905, 41100 Modena- Italy

firstname.lastname@unimore.it

Abstract. In the NeP4B project the MOMIS data integration system

was extended with data quality concepts. Starting from this obtained

framework, the aim of this paper is twofold; first, we consider data quality

metadata in the specification of queries on the Global Schema of the

integration system; in this way we can express the quality of the retrieved

data by means of threshold of acceptance. Second, we will discuss how

the quality constraints specified in the query are useful to perform some

query optimization techniques.

1 Introduction

MOMIS (Mediator envirOnment for Multiple Information Sources) is a frame-
work to perform integration of structured and semi-structured data sources
[10,11,13,12,4]; the MOMIS integration process gives rise to a Global Virtual
View (GV V), in the form of global classes and global attributes, which repre-
sents a unified and integrated view of data residing in the different local data
sources. MOMIS is characterized by a classical wrapper/mediator architecture:
the data sources contain the real data, while the GV V provides a reconciled,
integrated, and virtual view of the underlying sources. The MOMIS query man-
agement environment is able to process incoming queries on the GV V .

In the context of the Nep4B project (http://www.dbgroup.unimo.it/nep4b)
the MOMIS system was extended with data quality concepts [6]; the issue of data
quality is gaining an increasingly important role in the context of information
integration [1]; with respect to other aspects of information integration, such as
schema mapping, which have been extensively studied, this issue requires further
investigation.

Starting from this obtained framework, the aim of this paper is twofold; first,
we consider data quality metadata in the specification of queries on the GVV ; in
this way we can express the quality of the retrieved data by means of threshold
of acceptance; in particular, we will consider Data Quality Aware Queries, where
data quality metadata are used in the specification of queries on the GVV.

Second, we will discuss how the quality constraints specified in the query are
useful in a Quality-Driven Query Processing to perform some query optimization
techniques.

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 46–57, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Quality–Driven Query Processing Techniques 47

The rest of this paper is organized as follows. Section 2 introduces the basic
definition of the MOMIS Data Integration System. In Section 3 the MOMIS
framework is extended to allow data at sources to be annotated with data quality
metadata. Section 4 introduces Data Quality Aware Queries; in particular, in
section 4.1 we will discuss how the quality constraints specified in the query are
useful to perform some query optimization techniques.

2 The MOMIS Data Integration System

In this section we will introduce the basic definition of the MOMIS frame-
work that will be used along this paper. A MOMIS Data Integration System is
constituted by:

– A Global Virtual View GV V .
– A set N of local data sources with the related local schema.
– A set M of GAV (Global-As-View) mapping assertions between GV V and

N , where each assertion associates to a class G in GV V a mapping query
over a set of local sources in N . More precisely, for each global class G ∈
GV V we define a set of local classes L(G) ∈ N and a mapping query MQ G
over the schemas of local sources in N .

Intuitively, the GV V is the intensional representation of the information pro-
vided by the Integration System, whereas the mapping assertions specify how
such an intensional representation relates to the local sources managed by the
Integration System. Both the GV V and the local source schemata are expressed
in the ODLI3 language [5]. However, for the scope of this paper, we consider
both the GV V and the local source schemata as relational schemata.

As described in [3], the GV V and the mapping assertions are defined in a
semi-automatic way (i.e the integration designer is supported by the system) as
follows:

1. The system detects semantic similarities among the involved source schemas
and automatically generates a GV V (constitued by global classes and global
attributes); moreover, for each Global Class G in the GV V , the system
defines the local classes L(G) belonging and a Mapping Table (MT), whose
columns represent L(G) and whose rows represent the global attributes of G.
An element MT [GA][L] represents the local attribute of L which is mapped
onto the global attribute GA. As example we consider the following two local
classes (relations) of two different local sources:

resort(name, rooms, amount, stars)
hotel(name, hotelrooms, price, wifi)

Starting from these local classes, a GV V with the global class Hotel and
the related Mapping Table of Figure 1 are automatically generated.

48 D. Beneventano and R.C.N. Mbinkeu

Hotel resort hotel

Name name name

Room rooms hotelrooms

Price amount price

Stars stars -

Wifi - wifi

Fig. 1. Mapping Table of global class Hotel

2. Join Conditions are defined, by the integration designer, between pairs of
local classes belonging to G in order to identify instances of the same real-
world object in different sources.
In our example, we specify as join condition resort.name=hotel.name in-
tending that instance of the classes resort and hotel having the same name
represent the same real object.

3. Resolution Functions [14,15] are introduced for global attributes to solve
data conflicts of local attribute values associated to the same real-world ob-
ject. In [14] several resolution functions are described and classified; in our
framework we consider and implement some of such resolution functions, in
particular, the PREFERRED function, which takes the value of a preferred
source and the RANDOM function, which takes a random value. If the de-
signer knows that there are no data conflicts for a global attribute mapped
onto more than one source (that is, the instance of the same real object in
different local classes have the same value for this common attribute), he
can define this attribute as an Homogeneous Attribute; of course, for homo-
geneous attributes resolution functions are not necessary. A global attribute
mapped into only one local class is a particular case of an homogeneous
attribute. Attributes Price and Room are non-homogeneous therefore it is
necessary to apply a resolution function. In our case, we apply an AVG func-
tion on attribute Price and CONCATENATE function on attribute Room.

4. The mapping query for a global class G is obtained by performing the full
outerjoin-merging of the local classes L(G) belonging to G; from an exten-
sional point of view, the mapping query defines the instance of a global class
starting from the instances of local classes. The full outerjoin-merge opera-
tor was introduced in [15] and is defined in the MOMIS framework in [7];
intuitively, it corresponds to the following two operations:

(a) Computation of the full outerjoin on the basis of the join conditions;
(b) Application of the Resolution Functions

As an example, by considering the instances of resort and hotel show in
figure 2, the result of the full outerjoin-merge between resort and hotel, is
in figure 3. For the local attributes resort.name and hotel.name which are
used in join condition, we do not consider values for data quality dimension,
since this quality information is not used in our method.

Quality–Driven Query Processing Techniques 49

resort hotel

name stars amount rooms

Hilton 5 120 12

Kyriad 5 350 NULL

Sofitel NULL 210 40

Ibis 4 100 6

Garden 4 100 24

Continental 3 225 122

name price hotelrooms wifi

Hilton 80 13 false

Kyriad 400 4 true

Garden 100 18 NULL

Sofitel 100 6 true

Madison 100 NULL false

Dream 200 35 true

Fig. 2. Instances of local classes hotel and resort

Hotel

Name Stars Price Rooms Wifi

Hilton 5 100 12, 13 false

Kyriad 5 375 4 true

Sofitel NULL 160 6, 40 true

Ibis 4 100 6 NULL

Garden 4 100 18, 24 NULL

Continental 3 225 122 NULL

Madison NULL 100 NULL false

Dream NULL 200 35 true

Fig. 3. Instances of global class Hotel computed as the Full outerjoin-merge between

hotel and resort

3 Data Quality Dimensions in MOMIS

In the Nep4B project the MOMIS system was extended with data quality con-
cepts [6]; on the basis of these results, we assume a set QD of quality dimensions
with the following hypothesis:

1. As in [13], we consider that each quality dimension QDim in QD is associ-
ated with a domain of possible values, and a total order is assumed to be
defined on the domain. All quality dimensions are normalized: each quality
dimension value is linearly mapped to a number in the interval [0,1]. The
mapping is done so that high quality dimension values are always more de-
sirable than low values; that is, the worst quality dimension value is mapped
to 0, and the best to 1.

2. As in [19], quality dimensions are defined at the source attribute level: every
local attribute LA has a subset QD GA of QDim associated with it. Starting
from the quality dimensions associated with local attributes, for each global
attribute GA of a global class G is defined a set of quality dimensions QD GA
as the union of the quality dimensions of the local attributes corresponding
to GA in the mapping table of G.
As an example, we will use as quality dimensions the following set:

QD = {accuracy, completeness, consistency, currency}

50 D. Beneventano and R.C.N. Mbinkeu

Hotel resort hotel

Name name name

Room rooms hotelrooms

accuracy 0.8 0.9

Price amount price

accuracy 0.7 0.8

completeness 0.8 0.9

consistency NULL 0.8

Stars stars -

accuracy 0.6

completeness 0.5

consistency 0.3

currency 0.7

Wifi - wifi

consistency 0.5

Fig. 4. Mapping Table and Quality Mapping Table of the global class Hotel

where accuracy stands for accuracy, completeness for completeness,
consistency for consistency and currency for currency; moreover, we
consider:

QD resort.amount = {accuracy, completeness} and
QD hotel.price = {accuracy, completeness, consistency}

Then for the global attribute Price we obtain:

QD Price = {accuracy, completeness, consistency}
The quality dimension values for local attributes are represented by means of a
Quality Mapping Table MTQ associated to a global class G: MTQ is a table
whose columns represent the local classes L(G) belonging to G and whose rows
represent the quality dimensions defined for each global attributes A of G. An
element MTQ[A.QDim][L] represents the value of QDim for the local attribute
LA = MT [A][L] of L, or is NULL if QDim is not associated to LA, i.e. if QDim �∈
QD LA; as an instance, in our example MTQ[Price.cons][resort] = NULL. To
give an immediate representation of quality dimensions we represent both the
Mapping Table MT and the Quality Mapping Table MTQ in the same table, as
in figure 4 (when MT [A][L] is NULL, MTQ[A.QDim][L] doesnt exists: in the
figure, this is denoted by a empty cell).

4 Data Quality Aware Queries in the MOMIS

In this section we introduce Data Quality Aware Queries in the MOMIS frame-
work: in the specification of a global query on the GV V , quality dimensions can
be used to express the quality of the retrieved data.

The term quality-aware queries is introduced in [19] where the authors propose
to include user specific quality considerations into query formulations, in order

Quality–Driven Query Processing Techniques 51

to address user specific requirements. The approach of [19] is based on generic
Collaborative Information Systems. A more specific approach in the context of
Data Integration Systems is proposed in [13], where queries on the integrated
and global schema are able to express the quality of the retrieved data by means
of threshold of acceptance with which users can ensure minimal performance of
the data. Other mechanisms by which queries can be expressed over data and
quality metadata have been proposed [17,16].

In this paper we adopt the proposal of [13]: quality dimensions are used to
specify quality constraints1 that express the quality of the retrieved data,
by means of threshold of acceptance, excluding from the answer data that do
not satisfy the specified quality constraint.

A global query with quality constraints is a conjunctive query on a global
class G of the GV V expressed in an extended SQL syntax as follow:

select [restrictive] A1, . . . , Ak

from G
where pred1 and . . . and predn

using Qpred1, . . . , Qpredm

where Ai are global attributes of G, pred is a (simple) predicate : A op value
Qpred is a quality constraint : A.QDim > Qvalue , where QDim is a quality
dimension defined for the global attribute A and Qvalue is a value in [0, 1].

Example 1. Let us consider the query Q1 without quality constraints.

Q1 = select Name, Room

from Hotel

where Price = 100 and Stars > 3

By considering the instance of Hotel of figure 3, the answer of this query is:

Name Room

Hilton 12, 13

Ibis 6

Garden 24,18

The using clause implements a selection predicate for specifying the desired
quality criteria of the answer. In analogy with the where clause, which re-
stricts the answer set with a condition on attributes, the using clause restricts
the answer set with a condition on quality dimensions. Let us give an intu-
itive explanation of the semantics of the using clause; a deep discussion about
quality constraints is in [13]. Let A be a global attribute, L a local class and
LA = MT [A][L] the local attribute of L mapped into A. Since a quality di-
mension QDim is defined at the local attribute level, the quality constraint
(A.QDim op Qvalue), specifies that the values of LA will be considered in the
answer of the query only if the quality dimension QDim associated with LA
is greater than the desired Qvalue, i.e. if MTQ[A.QDim][L] > Qvalue. In this
case we will say that the quality constraint is satisfied by LA. As discussed in
1 In [13] the term quality predicate is used.

52 D. Beneventano and R.C.N. Mbinkeu

[13] , when MTQ[A.QDim][L] is NULL the quality constraint is satisfied by LA,
i.e the values of LA will be considered in the answer of the query, only if re-
strictive is specified.

Example 2. Let Q2 obtained from Q1 by adding some quality constraints:

Q2 = select Name, Room

from Hotel

where Price = 100 and Stars > 3

using Price.acc > 0.7, Price.cons > 0.6, Room.acc > 0.7

The result of the query Q2 is:

Name Room

Garden 24,18

where we can observe that there is no longer (w.r.t the Q1 answer) a Hilton
record. Since the quality constraint Price.acc > 0.7 is not satisfied by the
local attribute amount, the values of this local attribute are not considered to
calculate the value of the Price global attribute: then the value of Price for
Hilton record is equal to 80 and thus the constraint Price = 100 is false for this
record. For the same reason the Ibis record is not in the Q2 result.

4.1 Quality-Driven Query Processing

To answer a global query on G, the query must be rewritten as an equivalent
set of queries (local queries) expressed on the local classes L(G) belonging to G.
This query rewriting is performed by considering the mapping between the GVV
and the local schemata; in a GAV approach the query rewriting is performed by
means of query unfolding, i.e., by expanding the global query on G according to
the definition of its mapping query MQ G.

The query unfolding of a global query Q produces, for each local class L
belonging to G, a local query Q L

Q_L = select S_L
from L
Where C_L

where the select list S L is a list of local attributes of L and the condition C L
is a conjunction of (simple) predicates on L. These local queries are executed
on the local sources and local queries answers are then fused by means of the
mapping query MQ G to obtain the answer of the global query.

We defined this query execution process in several papers [2,4]. The novelty
contribution of this paper is to describe how quality constraints are used in the
query unfolding process. In particular, we will show how quality constraints are
useful to perform query optimization.

Quality–Driven Query Processing Techniques 53

The process for executing the global query consists of the following steps:

1. Computation of Local Query predicates:
In this step is evaluated whether a predicate of the global query may be
pushed down to the local level, i.e. if it may be into the local query con-
dition for a local class; this decision also depends on the presence of qual-
ity constraints. A predicate (GA op value) is translated into the predicate
(MT [GA][L] op value) on the local class L only if:

(1) MT [GA][L] is not null and
(2) all quality constraints on GA are satisfied by MT [GA][L] and
(3.a) GA is an homogeneous attribute or
(3.a) for any other local attribute LA different from MT [GA][L] where GA

is mapped, there are quality constraints on GA not satisfied from LA.

Condition (1) and (2) are straightforward; conditions (3.a) and (3.b) are
discussed in the following by considering queries Q1 and Q2, respectively.

For the query Q1, since the global attribute Stars is mapped only in
resort, and then it is homogeneous, the predicate (Stars > 3) is pushed
down for the local class resort. On the other hand, the global attribute
Price is not homogeneous (it is defined by means of the AVG function) and
then the predicate (Price = 100) cannot be pushed at the local level: since
the AVG function is calculated at a global level, the predicate may be globally
true but locally false. Thus, for the query Q1 we obtain the following local
query conditions:

C hotel: true (i.e. the local query does not have a where condition)
C resort: stars > 3

For query Q2 the translation of the predicate (Stars > 3) doesn’t change
w.r.t. query Q1 since for Stars there are no quality constraints specified.
In the translation of the predicate (Price = 100) on the local class hotel
condition (3.b) is true: since the quality constraint (Price.acc > 0.7) is
not satisfied by the other local attribute resort.amount, only values coming
from hotel must be considered in the evaluation of predicate (Price =
100), as discussed above; then this predicate can be pushed down on hotel.
In this way, for query Q2 we obtain the following local query conditions:

C hotel: price = 100
C resort: stars > 3

In this way the presence of a quality constraint allows to perform the push
down of the predicate (Price = 100) on local class hotel.

2. Computation of Residual Conditions: A predicate on a global attribute
GA that in step (1) is pushed down on all local classes such that MT [GA][L]
is not null, is already solved, i.e. in the full join of the local queries this pred-
icate is already satisfied; otherwise the predicate is considered as residual
and have to be solved at the global level.

54 D. Beneventano and R.C.N. Mbinkeu

For the query Q1, the computation of residual conditions gives: Price =
100 while for query Q2 there are no residual predicates.

3. Generation and execution of local queries: The select list S L is ob-
tained as X − Y where
(a) X = union of the attributes of the global select list, of the Join Condition

and of the Residual Condition; these attributes are transformed into the
corresponding ones at the local level on the basis of the Mapping Table.

(b) Y = union of local attribute LA = MT [A][L] such that there is a quality
constraint on A not satisfied from LA.

For instance, for the query Q2 since (Price.acc > 0.7) is not sat-
isfied by resort.amount, this local attribute can be eliminated from
the select list of Q resort. In other words, the presence of quality con-
straints may allow the elimination of attributes from the select list of a
local query: this corresponds to a query optimization technique (called
projection reduction) since it reduces the size of the local query answer.

With the step 3, query unfolding ends and local queries are generated; for
the query Q1 we obtain

LQ_hotel_1 = select name, price, hotelrooms from hotel

LQ_resort_1 = select name, amount, rooms from resort

where stars > 3

and for the query Q2 we obtain

LQ_hotel_2 = select name, hotelrooms from hotel

where price = 100

LQ_resort_2 = select name, rooms from resort

where stars > 3

4. Fusion of local answers: The local answers are fused into the global an-
swer on the basis of the mapping query MQ G defined for G. As intuitively
discussed in Section 2, MQ G is defined by using a Full Outerjoin-merge
operation which, given the local answer LQ L1 and LQ L2, is substantially
performed in two steps:
(a) Computation of the full outerjoin FOJ on the basis of the join condi-

tion JC(L1,L2) defined between L1 e L2

FOJ = LQ L1 full outerjoin LQ L2 on JC(L1,L2)
(b) Application of the Resolution Functions: for each pairs of at-

tributes in FOJ (except for attributes used in the join condition) mapped
in the same global attributes the related Resolution Function is applied.
For example, in query Q1, we need to apply the resolution function AVG
and CONCATENATE respectively to global attribute Price and Room.

Quality–Driven Query Processing Techniques 55

In step 4.a the computation of the full outerjoin operation can be optimized
by reducing it to a left/right or inner join on the basis of the following rules:

(1) FOJ = LQ L1 left join LQ L2 on JC(L1,L2)
if there exists a predicate pushed down only on L2

(2) FOJ = LQ L1 inner join LQ L2 on JC(L1,L2)
if there exists a predicate pushed down only on L2 and a predicate
pushed down only on L1

For the query Q1, since the predicate Stars > 3 is pushed down only in
resort, rule (1) holds and then FOJ can be computed as

FOJ_1 = LQ_resort_1 as R1 left join LQ_hotel_1 as H1

on (R1.name = H1.name)

For the Query Q2, besides the predicate Stars > 3, is pushed down only
in resort, we have Price = 100 pushed down only in hotel, then rule (2)
holds and thus FOJ can be computed by using inner join:

FOJ_2 = LQ_resort_2 as R2 inner join LQ_hotel_2 as H2

on (R2.name = H2.name)

The substitution of a full outer join with a left/right outer join or a join con-
stitutes a relevant query optimization result, since full outer join queries are
very expensive, especially in a distributed environment as the one of medi-
ator/integration systems. Moreover, while database optimizers take full ad-
vantage of associativity and communtativity properties of join to implement
efficient and powerful optimizations on join queries, only limited optimiza-
tion is performed on full outer join [9]. The presence of quality constraints
in the global query may contribute to perform this kind of optimization, as
shown for the query Q2.

5. Application of the Residual Condition: the result of the global query
is obtained by applying the residual condition to the R FOJ.
In our example, for the query Q1 we have Price = 100 as residual condition
then its result is obtained as

select Name, Room from R_FOJ_1 where Price = 100

while for the query Q2, we have no residual condition then its result is
obtained as select Name, Room from R_FOJ_2.

5 Conclusions and Future Work

In this paper, we presented our current work to extend the MOMIS Data In-
tegration System with Data Quality Information; in particular, we introduced
data quality metadata in the specification of queries on the Global Schema, by
considering Data Quality Aware Queries. An interesting result is that quality
constraints specified in the query are useful to perform some relevant query op-
timization techniques, such as predicate push down, projection reduction and
fulf outer join simplification.

56 D. Beneventano and R.C.N. Mbinkeu

Our future work will consist in investigate how quality metadata can be used
in other important aspects of a Data Integration System. First of all, we will
evaluate how quality metadata can be exploited to define quality-based resolu-
tion function and how these new resolution functions affect the query processing.
To this end, we will consider the approach to conflict resolution adopted in the
Fusionplex (which is similar to the one used in the DaQuinCIS [17], as discussed
in in [6]): to resolve attribute conflicts on the basis of quality metadata associated
with data of local sources.

Moreover, we will further investigate Data Quality Aware Queries, by con-
sidering new kind of quality constraints and how the Quality-driven Query Pro-
cessing need to be extended for these new quality constraints.

Finally, we will evaluate the definition of quality dimension associated to a
global schema level, since these quality metadata can be useful for a high level
integration process, when an integration system need to expose its information
knowledge to other integration systems (i.e. in a peer-to-peer system where global
classes can exchange information mutually). The computation of quality meta-
data for the global schema needs a strategy to aggregate the value metadata of
multiple local sources to obtain a single value that summarizes all the values.

References

1. Batini, C., Scannapieco, M.: Data Quality: Concepts, Methodologies and Tech-

niques, Data-Centric Systems and Applications. Springer, New York (2006)

2. Beneventano, D., Bergamaschi, S.: Semantic search engines based on data inte-

gration systems. In: Semantic Web Services: Theory, Tools and Applications. Idea

Group, USA (2006) (to appear), http://dbgroup.unimo.it/SSE/SSE.pdf

3. Beneventano, D., Bergamaschi, S., Guerra, F., Vincini, M.: Synthesizing an inte-

grated ontology. IEEE Internet Computing 7(5), 42–51 (2003)

4. Beneventano, D., Bergamaschi, S., Vincini, M., Orsini, M., Mbinkeu, R.C.N.:

Query translation on heterogeneous sources in momis data transformation systems.

In: VLDB 2007 - International Workshop on Database Interoperability (InterDB

2007), Vienna, Austria, September 24 (2007)

5. Bergamaschi, S., Castano, S., Vincini, M., Beneventano, D.: Semantic integration

of heterogeneous information sources. Data Knowl. Eng. 36(3), 215–249 (2001)

6. Consortium, T.N.: Revised specification for building semantic peer. Nep4b

- networked peers for business, deliverable d2.2, Dipartimento di Ingegneria

dell’Informazione (2009),

http://dbgroup.unimo.it/TechnicalReport/NeP4BD2.2.pdf

7. Beneventano, D., et al.: Detailed design for building semantic peer, nep4b techni-

cal report. Technical report, Dipartimento di INgegneria dell’Informazione (2008),

http://www.dbgroup.unimo.it/nep4b/risorse/d2.1.m20.pdf

8. Huh, Y., et al.: Data quality, information and software technology. Information

and Software Technology 32(8), 559–565 (1990)

9. Galindo-Legaria, C.A., Rosenthal, A.: Outerjoin simplification and reordering for

query optimization. ACM Trans. Database Syst. 22(1), 43–73 (1997)

10. Garcia-Molina, H., et al.: The TSIMMIS approach to mediation: Data models and

languages. In: NGITS workshop (1995),

ftp://db.stanford.edu/pub/garcia/1995/tisimmis-models-languages.ps

http://dbgroup.unimo.it/SSE/SSE.pdf
http://dbgroup.unimo.it/TechnicalReport/NeP4BD2.2.pdf
http://www.dbgroup.unimo.it/nep4b/risorse/d2.1.m20.pdf
ftp://db.stanford.edu/pub/garcia/1995/tisimmis-models-languages.ps

Quality–Driven Query Processing Techniques 57

11. Genesereth, M.R., Keller, A.M., Duschka, O.: Infomaster: An Information Integra-

tion System. In: Proceedings of 1997 ACM SIGMOD Conference (1997)

12. Halevy, A.Y.: Answering queries using views: A survey. VLDB J. 10(4), 270–294

(2001)

13. Motro, A., Anokhin, P.: Fusionplex: resolution of data inconsistencies in the inte-

gration of heterogeneous information sources. Inf. Fusion 7(2), 176–196 (2006)

14. Naumann, F., Bleiholder, J.: Conflict handling strategies in an integrated informa-

tion system. In: Proceedings of the WWW Workshop in Information Integration

on the Web, IIWEB (2006)

15. Naumann, F., Freytag, J.C., Leser, U.: Completeness of integrated information

sources. Inf. Syst. 29(7), 583–615 (2004)

16. Naumann, F., Leser, U., Freytag, J.C.: Quality-driven integration of heterogenous

information systems. In: VLDB 1999, pp. 447–458 (1999)

17. Scannapieco, M., Virgillito, A., Marchetti, M., Mecella, M., Baldoni, R.: The

daquincis architecture: a platform for exchanging and improving data quality in

cooperative information systems. Inf. Syst. 29(7), 551–582 (2004)

18. Wang, R.Y., Reddy, M.P., Kon, H.B.: Toward quality data: an attribute-based

approach. In: Special Issue on Information Technologies and Systems, March 1995,

pp. 349–372. Elsevier Science Publishers, Amsterdam (1995)

19. Yeganeh, N.K., Sadiq, S.W., Deng, K., Zhou, X.: Data quality aware queries in

collaborative information systems. In: APWeb/WAIM, pp. 39–50 (2009)

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 58–72, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Towards a Model for the Multidimensional Analysis of
Field Data

Sandro Bimonte1 and Myoung-Ah Kang2

1 CEMAGREF, Campus des CEZEAUX,
63173 AUBIERE, France

2 LIMOS-UMR CNRS 6158,ISIMA, Blaise Pascal University, Campus des CEZEAUX,
63173 AUBIERE, France

Sandro.bimonte@cemagref.fr, kang@isima.fr

Abstract. Integration of spatial data into multidimensional models leads to the
concept of Spatial OLAP (SOLAP). Usually, SOLAP models exploit discrete
spatial data. Few works integrate continuous field data into dimensions and
measures. In this paper, we provide a multidimensional model that supports
measures and dimension as continuous field data, independently of their
implementation.

Keywords: Spatial OLAP, Field data, Spatial Data Warehouses, Multidimen-
sional models.

1 Introduction

It has been estimated that about 80% of the data stored in corporate databases inte-
grates geographic information [7]. This information is typically represented according
two models, depending on the nature of data: discrete (vector) and field [22]. The
latter model represents the space as a continuous field. Fields have to be discretized to
be represented into computers according to data input, and data analysis. These repre-
sentations can be grouped into two categories: incomplete and complete. Incomplete
representations store only some points and need supplementary functions to calculate
the field in non-sampled areas. Complete representations associate estimated values to
regions and assume that this value is valid for each point in the regions (raster). Fields
are very adapted for modeling spatial phenomena such as pollution, temperature, etc.
They allow a point by point analysis through the Map Algebra operators [16] [22].

In order to benefit from Data warehousing and OLAP decision support technolo-
gies [11] also in the context of spatial data, some works extended them leading to
the concept of Spatial OLAP (SOLAP), which integrates OLAP and Geographic In-
formation Systems (GIS) functionalities into a unique framework [2]. As for the
model underlying SOLAP systems, several research issues from theoretical and im-
plementation point of view have risen. Indeed, several works focus on indexing [20]
and visualization techniques [6]. Motivated by the relevance of a formal representa-
tion of SOLAP data and operators, some spatio-multidimensional models based on
vector data have been defined (a review can be found in [4]). Few works consider
field data into multidimensional models [1], [23] and [15]. These models present

 Towards a Model for the Multidimensional Analysis of Field Data 59

some limitations that do not allow fully exploiting continuous field data into OLAP
from these points of view: aggregation functions, hierarchies based on field, and
independence of field data implementation. Thus, in this paper we propose a spatio-
multidimensional model integrating field data.

The reminder of this paper is organized as follows: Section 2 recalls fundamentals
of spatial analysis techniques, and existing SOLAP models for field data. Our model
is proposed in the Section 3. Finally, in Section 4 conclusions and future work are
presented.

2 Related Work

The term Map Algebra was first introduced in [22] to describe operators on raster data
(complete field data). Map Algebra operators are classified according to the number
of grids and cells involved. Local operators apply a mathematical or logical function
to the input grids, cell by cell. Focal operators calculate the new value of each cell
using neighboring cells values of the input grid. Zonal operators calculate new values
as a function of the values of the input grid which are associated with the zone of
another grid, called zone layer. An extension of the Map Algebra (Cubic Map Alge-
bra) to the temporal dimension is presented in [16]. The authors redefine Map Alge-
bra operators on a cube of cells whose coordinates are three-dimensional. Then, the
sets of operators are modified accordingly as shown on Figure 1. In [5] the authors
define an algebraic model for field data. This framework provides a formal definition
of Map Algebra operators independent of their implementation. Along this line, the
work of [8] formally describes how Map Algebra fundamentals can be used for image
manipulation. Finally, Map Algebra has been defined also for incomplete field data
such as Voronoi tessellations [13]. Indeed, "Map Algebra obliges analysts to organize
reality according to a particular data structure (raster) instead of allowing making
the reality suggest the most adequate data structure for the analysis" [10].

On the other hand, the integration of spatial data into data warehousing and OLAP
systems leads to the concept of Spatial OLAP (SOLAP). SOLAP is based on the spa-
tial multidimensional model that defines spatial dimensions and spatial measures. In
particular, a spatial dimension is a classical dimension whose levels contain spatial
attributes. This allows for visualizing measures on maps to discover (spatial) relations
and unknown patterns. According to the vector model, a spatial measure is defined as
a set of geometries and/or the result of spatial operators [2] [14]. Some spatial multi-
dimensional models, based on the vector model, have been proposed [4]. Despite of
the significant analysis power of field data and its associated spatial analysis opera-
tors, only few works address this issue. [15] extends the concepts of spatial dimension
to informally define "spatial matrix (raster) dimension" where at least one level repre-
sents raster data. Then, a member is a cell of the raster. Moreover, she introduces also
the concept of "matrix cube" where each fact is associated to a cell of the raster data
with its attributes. Aggregation functions are Map Algebra operators (local, focal and
zonal). The author limits field data to raster. By this way, the work loses in terms of
abstraction for field data. Indeed, Map Algebra has been defined also on other forms
of representation of field data such as Voronoi tessellation [13], and terrain represen-
tations, such as TIN, that could be very useful for understanding and analyzing multi-
dimensional data [6].

60 S. Bimonte and M.-A. Kang

(a) (b) (c)

(d) (e)

Fig. 1. Map Algebra: a) local, b) focal, c) zonal [22], Cubic Map Algebra: d) focal,
e) zonal [16]

Hence, [23] proposes a conceptual multidimensional model for taking into account
field data independently of their implementation. They define a "field measure" as a
value that changes in space and/or time. The model limits aggregation functions for
field measure to local Map Algebra functions. They also introduce a "field hierarchy"
when a level is a field data that is not linked to facts. Consequently, it is not possible
to have field measures at different granularities, which are mandatory for spatial
analysis [21]. Finally [1] defines the concept of "continuous cube" when spatial di-
mensions are composed of infinite spatial members whose associated numerical
measures are calculated using interpolation functions, as they use an incomplete rep-
resentation of spatial members. This model does not allow introduce field data as
measures and in hierarchies.

Therefore, a formal model is necessary to create the foundation for a framework
for the multidimensional analysis of field data as dimensions (field hierarchies) and
measures. Table 1 shows the requirements for this model and how existing works
address them. As shown in table 1, there is no existing model that supports all of these
requirements. This is the reason why we propose a new SOLAP model in this paper.

Table 1. Requirements for spatial multidimensional model for continuous field data

Requirements [1] [23] [15]
Measures as continuous field data NO YES Partially (only for raster

data)
Hierarchy on continuous field data NO NO Partially (only for raster

data)
Aggregation functions as Map Algebra

functions
NO Partially (only local

functions)
Partially (only for raster

data)
Independence of implementation YES YES NO

 Towards a Model for the Multidimensional Analysis of Field Data 61

3 Spatio-multidimensional Model for Field Data

Before introducing our model we present a SOLAP application for monitoring earth-
quakes in Italian regions. Spatial analyst wants answer to queries like this: “Where
were earthquakes, and what was their intensity per region at different scales (resolu-
tions)?”. This SOLAP application presents a measure that is a field object represent-
ing the earthquakes, a temporal dimension, and a spatial dimension that represents
terrain models of Italian regions at different scales.

3.1 Geographic Data Model

In this section, we provide a uniform representation for field and vector data, which
are used by the multidimensional model to define measures and dimensions members.

An Object represents an object of the real world described by some alphanumeric
attributes. It is used in the model to represent levels and members (Sec. 3.2).

Definition 1. Object
An Object Structure Se is a tuple 〈a1, …an〉 where ∀ i ∈ [1,…n] ai is an attribute defined
on a domain dom(ai)

An Instance of an Object Structure Se is a tuple 〈val(a1),…val(an)〉 where ∀ i ∈ [1,…n]
val(ai) ∈ dom(ai)

We denote by 'I(Se)' the set of instances of Se

A Geographic Object extends an Object to represent geographic information accord-
ing to the vector model. Indeed, a Geographic Object [3] is a geometry (geom) and an
optional set of alphanumeric attributes ([a1, …an]) whose values are associated to the
whole geometry according to the vector model (Figure 2a).

Definition 2. Geographic Object
Let g ⊂ R2 i.e. a subset of the Euclidian space. An Object Structure Se = 〈geom, [a1,
…an]〉 is a Geographic Object Structure if the domain of the attribute geom is a set of
geometries: dom(geom)∈ 2g
geom is called 'geometric support'

Example 1
The geographic object structure representing Italian regions is Sregion=〈geom, name〉
where 'geom' is the geometric support, and 'name' is the name of the region. An in-
stance of Sregion is t2 = 〈plo, Lombardia〉 where 'plo' is the geometry of the region
Lombardia (Figure 2a).

 p2

f2(x;y)=12

 (a) (b)

Piemonte

Lombardia

Emilia-Romagna

plo

Fig. 2. a) Italian regions: Instances of Sregion, b) Earthquakes: an instance of Searthq

62 S. Bimonte and M.-A. Kang

According to [13] fields are geographic objects with a function that maps each
point of their geometry to an alphanumeric value. This definition allows for represent-
ing field data independently of their implementation (complete/incomplete) (Field
Object). Thus, A Field Object extends a Geographic Object with a function that asso-
ciates each point of the geometry to an alphanumeric value. In this way, a Field Ob-
ject allows for representing geographic data according to the field and the vector
model at the same time ("Independence of implementation" requirement of Table 1).

Definition 3. Field Object
Let Se = 〈geom, field, [a1, …an]〉 a Geographic Object Structure. Se is a Field Object
Structure if the domain of the attribute field is a set of functions defined on m sub-sets
of points of geom having values in an alphanumeric domain domfield : dom(field)= {f1 …
fm}

An Instance of an Field Object Structure Se is a tuple 〈g, fj, val(a1),…val(an)〉 where:

− ∀ i ∈ [1,…n] val(ai) ∈ dom(ai), g ∈ dom(geom)
− fj : g → domfield and fj ∈ {f1 , …, fm}

We note 'field support' the input domain of fj

Example 2
The field object structure representing earthquakes is Searthq=〈geom, intensity〉 where
'geom' is the geometric support, and 'intensity' is a set of functions defined on 'geom'
with values in R. 'intensity' represents the intensity of the earthquake. An instance of
Searthq is t2 = 〈p2, f2〉 where p2 is a geometry and f2 represents the intensity of the earth-
quake on the 11-1999 in Lombardia. f2 is defined on each point of p2 with values in R,
for example f2 (x;y) = 12 (Figure 2b).

By the same way, we can define a field object structure to represent terrain models
of Italian regions at different scales by adding to the geographic object Sregion the field
attribute representing terrain elevation.

3.2 Spatio-multidimensional Model for Field Data

A spatio-multidimensional model organizes data using the concepts of dimensions
composed of hierarchies, and facts described by measures. An instance of the spatio-
multidimensional model is a hypercube. Section 3.2.1 presents the concepts of dimen-
sions, facts, and measures, and Section 3.2.2 formalizes cuboids.

3.2.1 Hierarchies and Facts
According to [3] a spatial hierarchy organizes vector objects in a hierarchical way.
Formally, a Spatial Hierarchy organizes the Geographic Objects [3] (i.e. vector ob-
jects) into a hierarchy structure using a partial order ≤h where Si ≤h Sj means that Si is
a less detailed level than Sj. An instance of a hierarchy is a tree (<h) of instances of
Geographic Objects (spatial members). Then, measures are aggregated according to
the groups of spatial members defined by the tree <h.

 Towards a Model for the Multidimensional Analysis of Field Data 63

Hence, in this work we define a Field Hierarchy as a hierarchy of field objects. For
that, we extend the spatial hierarchy by defining a tree (<f) on the geometric coordi-
nates (field supports) of the spatial members represented by field objects ("Hierarchy on

continuous field data" requirement of Table 1). By this way it is possible to visualize field
objects at different scales or resolutions (Figure 4). Moreover, the alphanumeric val-
ues associated to each point of the field measures are aggregated according to the
groups of coordinates of spatial members defined by the tree <f . By this way, our
model uses the continuous representation of spatial members (Field Objects) to ag-
gregate measure, allowing visualizing field measures at different scales or resolutions
(see Figure 6b).

Definition 4. Field Hierarchy
A Field Hierarchy Structure, Hh, is a tuple 〈L h, ⎣h, ⎡h, ≤h〉 where:

− ⎣h, ⎡h, are of Field Object Structures, and Lh is a set of Field Object Structures
− ≤h is a partial order defined on L h, ⎣h, ⎡h as defined in [3]

An Instance of a Field Hierarchy Structure Hh is two partial orders: <h and <f such
that:
− <h is defined on the instances of L h, ⎣h, ⎡h as defined in [3]

We note <h 'geographic objects order'

− <f is defined on the field supports of the instances of L h, ⎣h, ⎡h such that:
- if coodi <f coodj then Si ≤h Sj , where coodi belongs to a field support of an

instance of Si , and coodj belongs to a field support of an instance of Sj, (coodi and
coodj are geometric coordinates)

- ∀ coodi which does not belong to the field supports of the instances of ⎡h, ∃ one
coodj belonging to the field support of an instance of Sj such that coodi <f coodj

- ∀ coodi which does not belong to the field supports of the instances of ⎣h, ∃ coodj
belonging to the field support of an instance of Sj such that coodj <f coodi

We note <f 'field objects order'

The set of leafs of the tree represented by <h with root ti are denoted as leafs(Hh, ti).
The set of leafs of the tree represented by <f with root coodi are denoted as leafsField-
Support(Hh, coodi).

Example 3
The field hierarchy structure representing the administrative dimension that groups
regions into zones is Hlocation = 〈Llocation, Sregion, Sall_location, ≤location〉 where Llocation =
{Szone} and (Sregion ≤location Szone). Sregion and Szone are the spatial levels of the
hierarchy (Figure 3a). An example of instance of Hlocation is shown on Figure 3b
and 3c. We can notice two trees: the geographic objects order that is represented by
black lines (Figure 3b), and the field objects order, which is represented by dashed
lines (Figure 3c).

64 S. Bimonte and M.-A. Kang

Sregion

Szone

North Italy

Lombardia

Piemonte

Val d’Aosta
Veneto

Friuli
Trentino

x;y

x;y

x1;y1

x1;y1

(a) (b) (c)

Fig. 3. Field hierarchy grouping regions into zones, a) Schema, b) Hierarchical relationships
between geographic objects, c) Hierarchical relationships between geometric coordinates.

Example 4
The hierarchy structure representing the terrain models of Italian regions at different
resolutions is Hregres = 〈Lregres, Sregion, Sall_regres, ≤regres〉 where Lregres = {Sregres} and (Sregion

≤regres Sregres) (Figure 4a). Its instance is shown on Figure 4b and Figure 4c. Note that a
geometric coordinate at the coarser resolution is associated with a set of geometric
coordinates at the most detailed resolution (Figure 4c). For example, this hierarchy
can be defined using the bilinear interpolation algorithms used for changing resolution
for raster data at different scales.

Sregion

Sregres

Lombardia

Piemonte

Val d’Aosta

Lombardia

Piemonte

Val d’Aosta

x;y

x;y

x1;y1

 (a) (b) (c)

Fig. 4. Field hierarchy representing regions at different scales, a) Schema, b) Hierarchical
relationships between geographic objects (geographic objects order), c) Hierarchical relation-
ships between geometric coordinates (field objects order)

Once we have introduced the concepts of measures, and hierarchies for field data,
we present the concept of Field Cube. A Field Cube Structure represents the spatio-
multidimensional model schema where a field object is used as measure that is ana-
lyzed according classical hierarchies and one field hierarchy ("Measures as continuous field

data" requirement of Table 1). Note that without losing in generalization, we suppose
to have only one spatial dimension and one field measure to simplify the formalism of
the model. In the same way, we do not introduce numerical measures as they can be

 Towards a Model for the Multidimensional Analysis of Field Data 65

simply represented using numeric attributes as defined in [3]. An instance of a field
cube structure represents the fact table or the basic cuboid of the lattice cuboids.

Definition 5. Field Cube
A Field Cube Structure, FCc , is a tuple 〈H1,…Hn, FieldObject〉 where:

- H1 is a Field Hierarchy Structure (Spatial dimension)
- ∀ i ∈ [2,…n] Hi is a Hierarchy Structure (Dimensions)
- FieldObject is Field Object Structure (Field measure)

An Instance of a Field Cube Structure FCc , I(FCc), is a set of tuples {〈tb1,…tbn, tbf〉}
where:

- ∀ i ∈ [1,…n] tbi is an instance of the bottom level of Hi (⎣i) (Most detailed levels
members)

- tbf is an instance of FieldObject (Field measure value)

Example 5
The field cube structure of our case study is FCearthq = 〈Hregtres, Htime, Searthq〉. Hregtres is the
field hierarchy (the spatial dimension), Htime is the temporal dimension, and Searthq is
the field measure. It allows answering previous formulated query “Where were earth-
quakes, and what was their intensity per region at different scale (resolutions)?”. Table
2 shows the instance of FCearthq. Its cartographic representation is shown on Figure 5.

Table 2. Instance of FCearthq

Reg Month Earthq
Lombardia 9-1998 t1
Lombardia 11-1999 t2
Piemonte 11-1999 t6

Lombardia

Piemonte
t2

t3

Month: 11-1999

Lombardia

t1

Month: 9-1998

Fig. 5. Cartographic representation of the instance of FCearthq

3.2.2 Hypercube
The instance of the spatio-multidimensional model is a hypercube. A hypercube can be
represented as a hierarchical lattice of cuboids [9]. The most detailed cuboid contains
detailed measures (basic cuboid). Other cuboids contain aggregated measures. Then,
cuboids are represented by levels and (aggregated) measures values (Sec. 3.2.2.2).
How field measures are aggregated from fact table data (basic cuboid) to represent
non-basic cuboids is presented in Sec. 3.2.2.1.

66 S. Bimonte and M.-A. Kang

3.2.2.1 Aggregation of Field Measures
The aggregation of field measures is defined by means of:

- For the geometric support: spatial aggregation,
- For alphanumeric attributes: alphanumeric aggregations
- For the field attribute:

- Local Map Algebra, or focal/zonal map cubic algebra operator when aggre-
gating on the non-field hierarchies

- Alphanumeric aggregation when aggregating on the field hierarchy

Indeed aggregation of field measures is done in two steps. In the first step we aggre-
gate along the non-field hierarchies, and then along the field hierarchy.

3.2.2.1.1 Aggregation on Non-Field Hierarchies
In this section we formalize the geometric and alphanumeric aggregations.

Definition 6. Spatial aggregation
Let G the geometric attribute. Its aggregation is defined by means of a function OG
that has as input n geometries of the attribute G, and that returns one geometry:

 OG : dom(G)×… × dom(G) → 2g where g is a subset of the Euclidian Space R2

Definition 7. Alphanumeric aggregation
Let A be an alphanumeric attribute. Its aggregation is defined by means of a function
OA that has in input n values of the attribute A, and that returns one value of the at-
tribute A:

OA : dom(A)×… × dom(A) → dom(A)

On non-field hierarchies, the aggregation of the field attribute is defined by means of
a function (OF) that takes as input a set of functions representing the field attributes
values (f1…fn), and it returns a new function (f1n). This function is defined on the field
support of f1…fn, and the value of each point (f1n(x;y)) is calculated by applying a al-
phanumeric function OA to the values of the other functions (OF (f1(x;y)…fn(x;y))). Then,
OF represents a map/map cubic algebra operator that is specialized in local, focal or
zonal by means of the OA function. Indeed, OA is applied point by point for local map
function, or to sets of coordinates defined by the functions Neighborhood(x;y) and
Zone(FieldObjects, (x;y)) for focal map cubic and zonal map cubic operators respectively
(("Aggregation functions as Map/Map Cubic Algebra functions " requirement of Table 1)).

Definition 8. Aggregation of the Field attribute on non-field hierarchies using
Map Algebra and Cubic Map algebra functions
Let F be a field attribute, and f1…fn functions of the domain of F with g as field
support (without loss of generality, we suppose the f1…fn have the same field support)

f1 : g → domF … fn : g → domF, and f1…fn ∈ dom(F).

 Towards a Model for the Multidimensional Analysis of Field Data 67

Let OA be an alphanumeric aggregation
Then, the aggregation of F is defined by means of a function OF that takes as input

f1…fn, and that returns a function f1n defined on g and having values in domF (f1n : g →
domF) (f1n = OF (f1…fn)) such that:

- using Local operator:
f1n (x; y) = OA(f1(x;y), …, fn(x;y)) for each point (x;y) of g

- using Cubic Focal operator:
f1n (x; y)= OA(f1 (Neighborhood(x;y))…fn(Neighborhood(x;y))) for each point (x;y) of g
where:
Neighborhood(x;y) is a function that returns the neighbourhood points of (x;y),

- using Cubic Zonal operator:
 f1n (x; y)= OA(f1(Zone(FieldObjects,(x;y))…fn(Zone(FieldObjects,(x;y))) for each point (x;y)
of g where:
Zone(FieldObjects, (x;y)) is a function that takes as input a set of Field Objects and a
point, and it returns the neighbourhood points of (x;y)that belong to the zone in-
dentified by the FieldObjects on this point.

Definition 9. built non-field (Figure 7)
Let tbf1,…tbfk and tnf

 instances of the field object structure Se = 〈geom, field, [a1, …am]〉
Let ONF, called non-field aggregation mode, a set of aggregation functions:
- OG the spatial aggregation for geom
- O1... Om the alphanumeric aggregations for a1, …am

- OF the Map Algebra/Map Cubic Algebra aggregation for field

We say that tnf is built non-field from tbf1,…tbfk using ONF if:

- tnf.geom = OG (tbf1. geom,…, tbfk.geom)
- ∀ i ∈ [1,…m] tnf .ai. = Oi (tbf1. ai,…, tbfk. ai)
- tnf .field = OF(tbf1.field,…, tbfk. field)

Example 6
Let an instance of Searthq t1 = 〈p1, f1〉 where p1 is a geometry and f1 represents the in-
tensity of the earthquake on the 9-1998 in Lombardia. It is defined on each point of p1
with values in R. For example f1 (x;y) = 10 (Figure 6a). To aggregate the field
attribute intensity on the temporal dimension, we use a cubic focal operator
AVG. Therefore the result of the aggregation of f1 and f2 on (x;y) by taking into
account neighbours of (x;y) is f3 (x;y)= ((13*4+10)+(11*4+12))/10=11.7 (we suppose
that the values of neighbourhood points of (x;y) of t1 and t2 are 10 and 12 respectively)
(Figure 6a). We suppose that we apply the geometric union for geometry.

Then, t3 is built non-field from t1 and t2. t3 is an aggregated measure of the cuboid
defined by the century level of the temporal dimension (see Table 3).

Table 3. Instances of the cuboid defined by the century level of the temporal dimension

Region Century Earthq
Lombardia 900 t3
Piemonte 900 t6

68 S. Bimonte and M.-A. Kang

Then, as a field measures is mapped also on spatial dimensions, then a particular
aggregation must be provided taking into account the field hierarchy in order to allow
the visualization of field measures at different resolutions or scales.

3.2.2.1.2 Aggregation on the field hierarchy
The aggregated measures of a cuboid defined by coarser spatial levels are the aggre-
gation of the (aggregated) measures of the cuboids defined by non-spatial levels.

Definition 10. Built field (Figure 7)
Let t1nf,…, tvnf and tf

 be instances of the field object structure Se 〈geom, field, [a1, …am]〉.
Let OF, called field aggregation mode, a set of aggregation functions:

- OG the spatial aggregation for geom

- O1... Om the alphanumeric aggregations for a1, …am

- OA the alphanumeric aggregation for field

We say that tf is built field from t1nf,…, tvnf using OF if:

- tf .geom = OG (t1nf. geom,…, tvnf.geom)
- ∀ i ∈ [1,…m] tf .ai. = OG (t1nf. ai,…, tvnf. ai)
- tf .field (x; y)= OA (f1(x1;y1), …, fm(xm;ym)) where f1, …, fm

 belong to t1nf.field , … tvnf.field,
for each point (x;y) of the field support of field

p1

f1(x;y)=10

p2

f2(x;y)=12

f1(xi;yi)=13

f2(xi;yi)=11

p3

f3(x;y)=11.7

Focal AVG =
f3(x;y)=11.7f3(x1;y1)=10

f4(x2;y2)=10.85

 (a) (b)

t1

t2

t3 t3

t4

Fig. 6. a) Aggregation on the "intensity" field attribute on the temporal dimension, b) Aggrega-
tion on the "intensity" field attribute on the field hierarchy

Example 7
In order to visualize the measure at different resolutions, we aggregate on the Field
Hierarchy Hregres applying the average. Then f4(x;y) =
AVG(leavesFieldSupport(Hdeptres, (x2;y2))) = AVG(f3(x;y), f3(x1;y1)) = (10+11.7)/2 =
10.85 (Figure 6b). Then, t4 is built field from t3. t4 is an aggregated measure of the
cuboid defined by the century and regres levels (see Table 4).

 Towards a Model for the Multidimensional Analysis of Field Data 69

Table 4. Instance of FCearthq

Regres (region at scale
1:1.000)

Century Earthq

Lombardia 900 t4

Piemonte 900 t5

3.2.2.2 Cuboids of Field Data
Once described how the measures of the different cuboids are related by aggregation
functions, in this section we formalize the concept of cuboid. In particular, a cuboid
schema, noted Field View Structure, is composed by a set of levels, a non-field aggre-
gation mode, and a field aggregation mode. An instance of a field view structure is a
set of tuples composed of a member for each level and a (aggregated) field measure
value. The aggregated field measure value on the spatial dimension (tf) is obtained
aggregating measures (t1nf …, tvnf) obtained after the aggregation on the non-spatial
dimensions of detailed measures (tbf1 …, tbfk) as shown on Figure 7.

Definition 11. Field View
A Field View Structure Vv is a tuple 〈FCc, L, ONF, OF〉 where:

- FCc=〈H1,…Hn, FieldObject〉 is a Field Cube Structure (Spatio-multidimensional
model schema)

- L is a tuple 〈S1,…Sn〉 where∀ i ∈ [1,…n] Si is a level of Hi (Levels that define the
cuboid)

- ONF is a non field aggregation mode (Aggregation functions used on non-spatial
dimensions)

- OF is a field aggregation mode (Aggregation functions used on the spatial dimension)

An Instance of a field view Structure is a set of tuples {〈t1,…tn , tf〉} where:

- ∀ i ∈ [1,…n] ti is an instance of Si (Dimensions members)

- tf is: ((aggregated) field measure on spatial dimension, Figure 7 - see Table 4 for
an example)
- an instance of FieldObject
- built field from t1nf,…, tvnf using OF where ((aggregated) field measures on non-

spatial dimensions, Figure 7 - see Table 3 for an example):
- tf.field (x;y)= OF.OA (f1(x1;y1), …, fm(xm;ym)) for each point (x;y) of its field

support where:
- (x1;y1), …, (xm;ym) belong to leafsFieldSupport(H1, (x;y))
- f1 , …, fm belong to t1nf.field,…, tvnf.field

- Eachtjnf is built non field from tbjf1, …, tbjfk using ONF where (Non aggregated
field measures, Figure 7 - see Table 2 for an example):

- tbjf1, …, tbjfk
 are the measure values of the tuples of I(FCc) 〈tbj1,

tb12… tb1n, tbjf1〉, ...,〈tbj1, tbk2… tbkn, tbjfk〉 where:
- ∀ i ∈ [2,…n] tb1i … tbki = leafs(Hi, ti)
- tbj1 belongs to leafs(H1, t1)

70 S. Bimonte and M.-A. Kang

tf is built field from
t1

nf… tv
nf using OF

t1
nf is built non field

from tb1
f1 ,… tb1

fk

using ONF

tb1
1… tbv

1 = leafs(H1, t1)

tb1
2… tbk

2= leafs(H2, t2)

Instance of the
Field Cube (basic

cuboid)

Instance of the
Field view (cuboid)

Fig. 7. Instance of a Field View Structure

Example 8
The Field View Structure representing earthquakes per region at the scale 1:10000
and per century is Vearthq = 〈FCearth, 〈Scentury, Sregres〉, 〈Union, Focal-Avg〉, 〈Union, Avg〉〉.
Table 4 shows its instance.

4 Conclusion and Future Work

Integration of spatial data into multidimensional models leads to the concept of SO-
LAP. SOLAP models exploit the discrete representation of spatial data. Few works
integrate continuous field data into dimensions and measures. In this paper, motivated
by the relevance of a formal representation of SOLAP data, we provide a multidimen-
sional model that considers field data independently form their implementation, as
measures and dimensions. In particular we provide a unique data model for vector and
field data (Geographic and Field Objects). We provide a formal representation of the
spatio-multidimensional model schema (Field Cube: Field Hierarchy and Field Meas-
ures) and the associated hypercube's cuboids (Field View).

Actually, we are working on the formal definition of SOLAP operators that allows
the navigation between the cuboids (roll-up/drill-down), and slicing the cuboids
(slice). We plan to work on the implementation of the model in a ROLAP architec-
ture. This implies the definition of: (i) query languages for OLAP server [18] for field
data [12], (ii) indexes [20] and pre-aggregation techniques [19] for spatial data ware-
houses using field dimensions and measures, and (iii) interactive field maps [17] for
SOLAP clients.

 Towards a Model for the Multidimensional Analysis of Field Data 71

References

[1] Ahmed, T., Miquel, M.: Multidimensional Structures Dedicated to Continuous Spatio-
temporal Phenomena. In: Jackson, M., Nelson, D., Stirk, S. (eds.) BNCOD 2005. LNCS,
vol. 3567, pp. 29–40. Springer, Heidelberg (2005)

[2] Bédard, Y., Han, J.: Fundamentals of Spatial Data Warehousing for Geographic Knowl-
edge Discovery. In: Geographic Data Mining and Knowledge Discovery. Taylor & Fran-
cis, New York (2009)

[3] Bimonte, S., Gensel, J., Bertolotto, M.: Enriching Spatial OLAP with Map Generaliza-
tion: a Conceptual Multidimensional Model. In: IEEE International Workshop on Spatial
and Spatiotemporal Data Mining, pp. 332–334. IEEE CS Press, Los Alamitos (2008)

[4] Bimonte, S., Tchounikine, A., Miquel, M., Pinet, F.: When Spatial Analysis Meets OLAP:
Multidimensional Model and Operators. International Journal of DataWarehousing and
Mining (to appear)

[5] Câmara, G., De Freitas, U., Cordeiro, J.: Towards an algebra of geographical fields. In:
Brazilian Symp. on Computer Graphics and Image Processing, Anais, Curitiba, pp. 205–
212 (1994)

[6] Di Martino, S., Bimonte, S., Bertolotto, M., Ferrucci, F.: Integrating Google Earth within
OLAP Tools for Multidimensional Exploration and Analysis of Spatial Data. In: ICEIS
2009. LNBIP, vol. 24, pp. 940–951. Springer, Heidelberg (2009)

[7] Franklin, C.: An Introduction to Geographic Information Systems: Linking Maps to data-
bases. Database 15(2), 13–21 (1992)

[8] Gutierrez, A., Baumann, P.: Modeling Fundamental Geo-Raster Operations with Array
Algebra. In: IEEE International Workshop on Spatial and Spatiotemporal Data Mining,
pp. 607–612. IEEE CS Press, Los Alamitos (2007)

[9] Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing Data Cubes Efficiently. In:
ACM SIGMOD International Conference on Management of Data, pp. 205–216. ACM
Press, New York (1996)

[10] Kemp, K.: Environmental Modeling with GIS: A Strategy for Dealing with Spatial Conti-
nuity. Technical Report 93-3. National Center for Geographic Information and Analysis,
University of California, Santa Barbara, USA (1993)

[11] Kimball, R.: The Data Warehouse Toolkit: Practical Techniques for Building Dimen-
sional Data Warehouses. John Wiley & Sons, New York (1996)

[12] Laurini, R., Gordillo, S.: Field Orientation for Continuous Spatio-temporal Phenomena.
In: International Workshop on Emerging Technologies for Geo-based Applicatons, pp.
77–101. Swiss Federal Institute of Technology, Lausanne (2000)

[13] Ledoux, H., Gold, C.M.: A Voronoi-based Map Algebra. In: 12th International Symp. on
Spatial Data Handling, pp. 117–131. Springer, Heidelberg (2006)

[14] Malinowski, E., Zimányi, E.: Advanced Data Warehouse Design From Conventional to
Spatial and Temporal Applications. Springer, Heidelberg (2008)

[15] McHugh, R.: Intégration De La Structure Matricielle Dans Les Cubes Spatiaux. Univer-
sité Laval (2008)

[16] Mennis, J., Viger, R., Tomlin, C.D.: Cubic Map Algebra functions for spatio-temporal
analysis. Cartography and Geographic Information Systems 30(1), 17–30 (2005)

[17] Plumejeaud, C., Vincent, J., Grasland, C., Bimonte, S., Mathian, H., Guelton, S., Boulier,
J., Gensel, J.: HyperSmooth, a system for Interactive Spatial Analysis via Potential Maps.
In: Bertolotto, M., Ray, C., Li, X. (eds.) W2GIS 2008. LNCS, vol. 5373, pp. 4–16.
Springer, Heidelberg (2008)

72 S. Bimonte and M.-A. Kang

[18] Silva, J., Castro Vera, A.S., Oliveira, A.G., Fidalgo, R., Salgado, A.C., Times, V.C.: Que-
rying geographical data warehouses with GeoMDQL. In: Brazilian Symposium on Data-
bases, pp. 223–237 (2007)

[19] Stefanovic, N., Han, J., Koperski, K.: Object-Based Selective Materialization for Efficient
Implementation of Spatial Data Cubes. IEEE Transactions on Knowledge and Data Engi-
neering 12(6), 938–958 (2000)

[20] Tao, Y., Papadias, D.: Historical spatio-temporal aggregation. ACM Trans. Inf.
Syst. 23(1), 61–102 (2005)

[21] Timpf, S., Frank, A.U.: Using hierarchical spatial data structures for hierarchical spatial
reasoning. In: Frank, A.U. (ed.) COSIT 1997. LNCS, vol. 1329, pp. 69–83. Springer,
Heidelberg (1997)

[22] Tomlin, C.D.: Geographic Information Systems and Cartographic Modeling. Prentice Hall,
Englewood Cliffs (1990)

[23] Vaisman, A., Zimányi, E.: A multidimensional model representing continuous fields in
spatial data warehouses. In: 17th ACM SIGSPATIAL International Symp. on Advances
in Geographic Information Systems, pp. 168–177. ACM Press, New York (2009)

Exploiting the Semantics of Location Granules

in Location-Dependent Queries

Carlos Bobed, Sergio Ilarri, and Eduardo Mena

IIS Department

University of Zaragoza

50018 Zaragoza, Spain

{cbobed,silarri,emena}@unizar.es

Abstract. The need for location-based services has motivated an im-

portant research effort in the efficient processing of location-dependent

queries. Most of the existing approaches only deal with locations at max-

imum precision (e.g., GPS coordinates). However, due to imprecision or

expressivity requirements, there are situations in which locations must be

handled at different granularity levels (e.g., neighborhoods, cities, states,

etc.). Indeed, whenever a set of locations are represented together as a

granule, a meaning is implicitly given to the set. So, the use of different

granularities brings different semantics to the location data.

In this paper, we propose the use of semantic location granules to

enhance the expressivity of location-dependent queries. This is done by

exploiting the semantic information that is asserted about different gran-

ularity levels. This information could be, for example, the cost incurred

by a moving object to traverse a spatial area or a requirement to traverse

a connection (e.g., need of a visa or passport). In particular, we propose:

1) an ontological model for describing the semantics inherent to location

granules; 2) an upper-level ontology that can be extended and adapted

to different scenarios; and 3) the use of a reasoner to exploit the seman-

tics expressed in the ontologies, to make it possible to add new query

constraints and so extend the expressivity of the queries.

1 Introduction

Nowadays, the interest in mobile computing has grown due to the ever-increasing
use of mobile devices and their pervasiveness. The computing capabilities of mo-
bile devices are also growing and users are demanding data access anywhere and
at anytime. This has motivated, in the mobile computing field, an intensive re-
search in Location-Based Services (LBS) [22]. These services provide value-added
by considering the locations of the mobile users to offer customized information.

Processing location-dependent queries has been the subject of intense re-
search [20], as it is a major building block of location-based services. Existing
works on location-dependent query processing implicitly assume GPS locations
for the objects in a scenario (e.g., [4,10]). However, precise locations may be un-
available or even be inconvenient for the user. In those scenarios, it is useful to

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 73–87, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

74 C. Bobed, S. Ilarri, and E. Mena

define the concept of location granule (similar to the concept of place in [14]) as a
set of physical locations. Some examples of location granules could be: freeways,
buildings, offices in a building, etc.

The use of location granules to enhance the expressivity of location-dependent
queries was first proposed in [18]. By using location granules in query constraints,
the user is able to express queries and retrieve results according to the needed
resolution. As described in that work, the use of location granules can have an
impact on: 1) the presentation of results (location granules can be represented by
using graphics, text, sounds, etc., depending on the requirements of the user),
2) the expressivity of the queries (the user expresses the queries according to
his/her location terminology, and therefore the answers to those queries will
depend on the interpretation of location granules), and 3) the performance of
the query processing (the location tracking overload is alleviated when coarse
location granules, instead of precise GPS locations, are used). In [17], the im-
plications of using location granules in inside and nearest neighbour constraints
were studied, and the granule-based query processing was also extended to deal
with uncertainty, which led to consider probabilistic granule-based inside queries
and probabilistic granule-based nearest neighbour queries.

However, thus far, the impact of location granules regarding location-depen-
dent queries has only been studied from the point of view of query processing,
leaving aside concerns about the semantics of location granules. Looking at the
big picture, whenever a set of locations is represented as a location granule,
we are assigning it an implicit meaning (e.g., cities, neighbourhoods, etc.). Even
when the use of location granules is forced by the resolution given by the location
service used, an implicit meaning arises (e.g., mobile phone cells). Making these
meanings explicit would allow to further extend the expressivity of granule-
based location-dependent queries. Besides, several properties and relationships
could be considered once we have stated the exact interpretation of the location
granules (e.g., when considering countries, different tolls could be established for
traversing different boundaries).

In this paper, we propose to study the semantic dimension of location granules,
extending their definition to obtain semantic location granules. This approach,
which is complementary to our previous works on location granules [17,18], al-
lows to make their implicit semantics explicit and to take advantage of them
to further extend the semantics of granule-based location-dependent queries.
Firstly, we define the notion of semantic location granule and advocate the use
of ontologies (which offer a formal, explicit specification of a shared concep-
tualization [11]) to represent them, by making explicit their properties, their
relationships, and other logical rules that capture their semantics. Secondly, we
analyze the most basic relationships that exist between location granules and
propose a base ontology that can be extended and adapted to different scenar-
ios. Thirdly, by using ontologies, and with the help of a reasoner [1], we propose
an approach that allows extending dynamically the expressivity of the queries
that can be processed. This extension of the expressivity is done by asserting
new properties, relationships, and rules, into the granule ontology used. Using

Exploiting the Semantics of Location Granules 75

the inference capabilities of the reasoner, we make it possible to use this newly
asserted knowledge to build new query constraints with the semantics explicitly
stated in the ontology.

The structure of the rest of the paper is as follows. In Section 2, we present
two running examples that will accompany the explanations along the paper. In
Section 3, the definition of semantic location granules is provided. In Section 4,
we describe the base ontology that we propose. In Section 5, we focus on studying
the impact of the added semantics in the processing of inside constraints. In
Section 6, we present some related works. Finally, some conclusions and plans
for future work appear in Section 7.

2 The Importance of Adding Semantics

In this section, we briefly overview the basics of the use of location granules in
location-dependent queries, and then we show a couple of motivating examples.

2.1 Location-Dependent Query Processing with Location Granules

For illustrative purposes, we use an SQL-like syntax along the paper to ex-
press the queries and constraints, which allows to emphasize the use of location
granules and state the queries concisely. The structure of location-dependent
queries is:

SELECT projections
FROM sets-of-objects

WHERE boolean-conditions

where sets-of-objects is a list of object classes that identify the kind of objects
interesting for the query, boolean-conditions is a boolean expression that selects
objects from those included in sets-of-objects by restricting their attribute values
and/or demanding the satisfaction of certain location-dependent constraints, and
projections is the list of attributes or location granules that must be retrieved
from the selected objects. Specifications of the use of granules can appear in
the SELECT and/or in the WHERE clause of a query, depending on whether
those location granules must be used for the visualization of results or for the
processing of constraints, respectively. If no location granules are specified, GPS
locations are assumed.

In Figure 1, an example of how to process a granule-based inside constraint
is shown. The general syntax of an inside constraint is inside(r, obj, target),
which retrieves the objects of a certain class target (such objects are called target
objects and their class the target class) within a specific distance r (which is called
the relevant radius) of a certain moving object obj (that is called the reference
object of the constraint). Thus, for example, the constraint inside(130 miles,
gr(province, car38), gr(province, Car)) retrieves the cars in provinces within 130
miles of the province where car38 is located. To process that constraint: 1) the
granule where the reference object (car38) is located is obtained and a buffering

76 C. Bobed, S. Ilarri, and E. Mena

(a) Step 1 (b) Step 2 (c) Step 3

Fig. 1. Inside with granules for the reference object and the target class: steps

operation is performed to obtain the surrounding area within 130 miles; 2) the
granules that intersect that area are retrieved; and 3) the objects of the class
Car that are inside those relevant granules are retrieved. For further details on
how to process granule-based constrains we refer the reader to [17,18].

2.2 Motivating Examples

In this section we present two examples that show that, although the semantics
of the queries are extended by the use of granules, there is still a need for richer
semantics. We will re-visit these examples in Section 5.3, once we have proposed
a solution to represent the missing semantics.

Traffic Monitoring Example. The first example is a traffic monitoring appli-
cation. In spite of using a traffic application as motivating example, we want to
remark that our approach does not focus on query processing on road networks,
as opposed to works such as [16,24]. Thus, neither the trajectories of the mov-
ing objects in our approach are restricted to a fixed network nor the location
granules are limited to represent roads. In fact, the granules we have modelled
for the example can be considered as coarser representations of the motorways,
which might include some fragments of surrounding roads. As we are not limited
to work with road segments (arbitrary regions can be used to define the location
granules), we can obtain also the objects that are likely to use the motorways
without having to specify all the surrounding roads. Thus, we consider works
that model objects moving on road networks complementary to our approach,
as they could adopt our approach to add a separate layer to take into account
semantic aspects that otherwise would be lost.

At a particular moment in time, let us suppose that we want an overview of
the evolution of the traffic density that the A2 motorway is supporting, along
with its surroundings, to be able to foresee possible traffic jams in that entry of
Madrid. We have modelled the motorways entering Madrid as shown in Figure 2.
A query with an inside constraint such as:

SELECT COUNT(Car.id)
FROM Car

WHERE inside(50 miles, A21, Car)

Exploiting the Semantics of Location Granules 77

A11

M501

M504

M502

M503

A51

A41

A42

A5

A12

A21

2

A31

A32

2

A62

A61

Madrid

A3

A2

A1

A6

A4

A5

A2

Buffering operation on A21

Fig. 2. Location granule map: motorways entering Madrid

would seem perfect to obtain the number of cars going to Madrid using the A2
motorway; however, its semantics are not accurate enough because the buffering
operation (see Section 2.1, and particularly the step 1 in the example of Figure 1)
over the A21 granule could retrieve also cars that are going through the A1 and
A3 motorways, which would introduce noise in the answer. This problem is not
easy to solve. For example, using granules for the target objects of the query:

SELECT COUNT(Car.id)
FROM Car

WHERE inside(50 miles, A21, gr(Motorways, Car))

does not resolve our problem as, despite retrieving the cars in A21 and A22, the
system would also retrieve all the cars in A11, A31, M501, and M504.

Taxi Monitoring Example. Let us move to another example: a taxi cab mon-
itoring application. Leaving aside the distance, the cost of taxi services usually
depends on different aspects of the origin and target destination. Imagine a per-
son that has already landed in the airport of Barajas (Madrid), and that s/he
wants to call a taxi to go to the suburbs. S/he may also know that a taxi that
might be closer in terms of physical distance could be more expensive than an-
other that is farther, due to special taxes that are applied when taxis have to
move into other zones. Using location granules in the queries allows to consider
the taxis according to the different zones, but not the additional costs that the
taxi driver is going to charge to the user.

78 C. Bobed, S. Ilarri, and E. Mena

3 Semantic Location Granules

In previous works [17,18], we proposed a definition of location granule from a
physical point of view (see Definition 1).

Definition 1. A location granule is a set of one or more geographic areas which
represent a set of GPS locations under a common name.

For example, the set of locations that belong to Madrid would be a location
granule. In this section, we bring this definition to a higher abstraction level to
capture the semantic dimension of location granules. Let us analyse what we do
when forming a location granule: we group a set of locations and give them a
name. This way we are also giving them a meaning (in this case, Madrid is a
city, the capital of Spain). The grouped locations become a new different entity
as a whole, which could be related to other location granules in different ways
besides spatial relations.

To formalize these notions, we advocate the use of ontologies [11]. Ontologies
offer a formal, explicit specification of a shared conceptualization. Mathemat-
ically, an ontology can be seen as a tuple < C, R, I, Rl >, where C would be
the set of concepts and their definitions, R the set of roles (relationships be-
tween concepts), I the set of instances that belong to the different concepts (the
ontology population), and Rl the set of logical rules that are to be considered1.
Regarding location granules and their properties:

– Focusing on the semantic dimension of location granules, the bare notion of
location granule is itself a concept and the concrete location granules would
be its instances. The set composed by the basic type of Granule and the pos-
sible definitions of specialized types, along with the set of instances of those
location granule definitions, map directly to the C and I sets, respectively.
For example, Madrid would be an instance of the city concept.

– The different characteristics of the granules would be the attributes (datatype
properties) of the concept. They might be or not geographical properties.
For example, when considering cities, we could want to know their extension
but also other characteristics such as possible fees that would be charged
if we visit them (for example, in Mallorca, Spain, a special EcoTax fee is
charged to travelers in order to fund environment protection). Moreover, the
possible relationships between location granules would be the roles of an
ontology (object properties). For example, considering countries, there could
be special visa requirements to travel from one country to another. Both sets
of attributes and relationships map directly to the R set.

– Finally, apart from the definitions of the granules, we can provide rules
that allow to represent dynamic facts and extend the reasoning about the
granules. This set of rules would directly map to the Rl set.

1 In OWL [13], the reference language for ontologies in the Web, Concepts correspond

to Classes, Roles correspond to ObjectProperties and DataTypeProperties, and Indi-
viduals to the homonym elements.

Exploiting the Semantics of Location Granules 79

So, the use of ontologies fits perfectly the definition of location granule and
its semantics. Making the semantics of location granules explicit turns them into
semantic location granules (see Definition 2).

Definition 2. A semantic location granule is a location granule with well-defined
semantics, i.e., explicitly stated.

The most important operator for a location granule is inGr (short for inGranule),
which returns a boolean indicating whether a certain GPS location is within the
granule.

Location granules will not be used in isolation in an application. Instead,
they participate in groups of locations granules that provide an interpretation
of the location space, conforming semantic layers or semantic granule maps (see
Definition 3).

Definition 3. A semantic granule map is a set of semantic granules identified
by a common name. It provides the global semantics of the location granules that
participate in it.

Following with the previous example, Madrid is a cityGranule, but it is assigned
different global semantics if it participates in an application as being part of the
citiesOfSpain or capitalsOfTheWorld sets of granules. Different semantic granule
maps could be defined over the same geographic area.

The most important operators for location granule maps are getGrs (getGran-
ules) and getGrsObj (getGranulesObject), which return the subset of granules
that contain a specified GPS location or object, respectively. In the rest of the
paper, when referring to location granules and granule maps, we mean semantic
ones, and, for brevity, we will use gr instead of getGrs.

4 Modeling Location Granules with Ontologies

In the previous section, we have seen the definition of semantic location granules.
In this section, we analyze the most basic properties of the granules and propose
a base ontology for representing them and their associated granule maps.

4.1 Base Ontology for Location Granules

This ontology (see Figure 3) is not meant to be complete, but a starting point
to be extended and adapted to particular scenarios. The most basic properties
that we identify are the following:

– Contains : it represents the physical inclusion of a granule inside another.
For example, the granule Spain (the country) contains, among others, the
granules Madrid and Barcelona (the cities). This property permits to estab-
lish a spatial hierarchy to organize the granule instances. IsContained is its
inverse property.

80 C. Bobed, S. Ilarri, and E. Mena

– Groups : it represents the relationship that there exists between a granule
map and the granules that make it up. For example, the granule map Coun-
tries would group the granules Spain, France, etc. Participates is its inverse
property. Note that a granule can participate in several granule maps.

– Encapsulates : it allows to establish hierarchies between granule maps accord-
ing to the granularity level. For example, the granule map provincesOfSpain
could encapsulate citiesOfSpain. IsEncapsulated is its inverse property.

Granule

ContainsGroups

URI

String

Participates Groups−1

IsContained Contains−1

EncapsulatesIsEncapsulated −1

T = Transitive Role

Additional Properties

Concept

Datatype

Role

Domain
Range

GrMap

T

Encapsulates
T

Name
Identifier

PhysicalSet

Fig. 3. Base ontology that can be dynamically extended

The rest of the properties are used to identify the granules (Name) and the
granule maps (Identifier), and to associate a granule to one or several sets of
physical coordinates (PhysicalSet). The physical coordinates are also accessible
at the semantic level to allow including statements about them in the asserted
knowledge and, therefore, to allow the system to perform spatial reasoning (for
example, using RCC [12,21]).

Although this basic ontology may seem too simple, direct benefits can be
obtained out of it. For example, even without any additional extension in the
semantics, the presentation of results of the queries can be enhanced by exploit-
ing the inclusion relationships to offer different views of the same answer set.
Besides, we wanted to keep the model as simple as possible to make it easier to
adapt it to the desired semantics.

4.2 Extending the Base Ontology

The proposed ontology can be loaded and handled by a Description Logics (DL)
reasoner [1]. This allows making new knowledge available to the system dynam-
ically by asserting it into the ontology. This task is meant to be performed by
the final application developer or an advanced user. To extend the semantics we

Exploiting the Semantics of Location Granules 81

could specialize the existing concepts or add new properties. To illustrate it, let
us get back to the examples. In the taxi monitoring application, if we want to
consider zones with no additional initial cost, we could assert the following:

1)InitialCost : datatypeProperty

domain(InitialCost) = Granule

range(InitialCost) = float

functional

2)InitialCostFreeZone := Granule and (InitialCost = 0)

Where functional indicates that the property can only hold a single value for a
given individual. Let us focus now on the traffic monitoring example. We want
to add a new role to the ontology to express the existence of a direct connection
from one granule to another (an object can move from one granule to another
directly without going through a different granule2). Of course, we also need to
assert information about how the instances are related, but this process can be
automated by using propagation rules; so, in the first example, we would assert:

1)DirectlyConnected : role

domain(DirectlyConnected) = Granule

range(DirectlyConnected) = Granule

symmetric, reflexive

2)DirectlyConnected(A21, A22), DirectlyConnected(A21, M501)

DirectlyConnected(A31, A32), DirectlyConnected(A31, M504)

. . .

Along with the following Horn rule3:

IsContained(?x, ?y) ∧ IsContained(?u, ?v)∧
∧Participates(?y,?z) ∧ Participates(?v,?z)∧

∧DirectlyConnected(?x, ?u) −→ DirectlyConnected(?y, ?v)

The assertion of the rule allows to spread automatically (thanks to the use of
a DL reasoner) the knowledge asserted, which makes it usable by other granule
maps that might be using the upper-level granules; for instance, a granule A2
which contains the A21 and A22 segments would be automatically detected as
directly connected to M50, as one of its inner granules is directly connected to
one of the inner granules of M50. The inclusion of both Participates clauses in
the Horn rule is to control that different granularities are not mixed.

2 Note that this property is different from just sharing some edges in the boundary,

as the existence of a shared boundary between granules in fact does not assure the

possibility to traverse it.
3 It can be expressed in SWRL [15], an extension of OWL to support rule-based

inferences.

82 C. Bobed, S. Ilarri, and E. Mena

5 Extending the Semantics of Inside Queries

In this section, we explain how to take advantage of the explicit semantics of the
granules to enhance the expressivity of granule-based inside constraints. Firstly,
we extend the operators defined for granules to be able to take into account the
new semantics. Then, we analyze how this affects the definitions of granule-based
inside constraints. Finally, the examples in Section 2 are reconsidered with the
new available semantics.

5.1 Extending the GetGranules Operator with a Holds Function

Before extending the gr operator (getGranules, see Section 3), we have to intro-
duce the holds function. Holds takes as input a semantic location granule (slg)
and an expression that it has to satisfy in order to be considered relevant for
the query. The allowed operators in the expression are And, Or and Not. The
atoms used in the expression are the names of the concepts or the properties
of the (possibly extended) ontology, so holds has to be defined separately for
evaluating concepts or properties between individuals or sets of individuals:

holds(slg, concept) = true ⇔ slg ∈ concept

holds(slg, property, slg′
) = true ⇔ property(slg, slg′

) ∈ property

holds(slg, property,{slgi}) = true ⇔ ∃slg′ ∈ {slgi} | holds(slg, property, slg′
)

These definitions assume a Closed World scenario4. When dealing with ontolo-
gies and reasoners, we have to bear in mind that they usually assume Open
World scenarios. This implies that the reasoner cannot infer anything which has
not been directly asserted or inferred from the previously asserted axioms. This
affects directly the definition and evaluation of the holds function. Assuming an
Open World scenario, holds5 would be defined as:

holds(slg, concept)

{
slg �∈ concept ⇒ false

otherwise ⇒ true

holds(slg, property, slg′
)

{
property(slg, slg′) �∈ property ⇒ false

otherwise ⇒ true

holds(slg, property,{slgi})
{ ∀slg′ ∈ {slgi}, property(slg, slg′) �∈ property ⇒ false

otherwise ⇒ true

In this context, it seems to be more useful to have a Closed World instead of
an Open World semantics as, in fact, the facts to be asserted can be controlled.
So, assuming Closed World, we redefine the gr operator as a three argument
function with an optional fourth argument:

gr(m,obj, cond) = {slg | participates(slg,m) ∧ inGr(slg, obj.loc)∧
∧ holds(slg, cond)}

gr(m,obj, cond, {slgi}) = {slg | participates(slg,m) ∧ inGr(slg, obj.loc)∧
∧ holds(slg, cond, {slgi})}

4 If the Reasoner cannot retrieve the exact fact, holds is evaluated to false.
5 In an Open World scenario, whenever in doubt, holds is evaluated to true.

Exploiting the Semantics of Location Granules 83

being m an instance of granule map, obj an object, and cond a list of conditions
that the granules comprising the answer set must fulfil.

5.2 Extended Granule-Based Inside Constraints

In this section, we focus on how the change in the gr operator affects the seman-
tics of granule-based inside constraints. To ease the explanations, and without
loss of generality, we consider only constraints with concepts. If properties are
to be used in the constraints, the gr operator would also take a set of granules
as fourth argument as defined above.

Inside constraint with a granule for the reference object. In this case,
the corresponding inside constraint is now interpreted as follows:

inside(r, gr(map, obj, cond), target) = {oi | (oi ∈ target)∧ (∃p ∈ GPS |
inGr(gr(map, obj, cond), p) ∧ distance(p, (oi.loc.x, oi.loc.y)) ≤ r)}

Why could we want to express a constraint over the granule where the reference
object is? There are many reasons, e.g., the reference object might be crossing
a granule that does not hold some specific condition. For example, imagine a
person walking in the rain in a zone in which taxis are not allowed to enter (or
they do not want to because it is a dangerous zone). It would make no sense to
ask for taxis there as that granule is defined as a taxi-free zone; so, the application
could automatically add this constraint and inform the user. Moreover, granules
might overlap each other, so it is possible for a location to be in two granules
at the same time. In this way, we could restrict which of the potential granules
are to be considered. Notice that the inGr operator in the formula above (see
Section 3) evaluates as false when the gr operator returns no granules.

Inside constraint with granules for the target objects. An inside con-
straint can include a granule map for the target class, in which case the constraint
is interpreted as follows:

inside(r, obj, gr(map, target, cond)) = {oi | (oi ∈ target)∧ (∃p ∈ GPS |
inGr(gr(map, oi, cond), p) ∧ distance(p, (obj.loc.x, obj.loc.y)) ≤ r)}

As mentioned previously, when no granule holds the condition, gr will return
an empty list of granules and, consequently, inGr will be evaluated to false.

Inside constraint with granules for the reference and target objects.
This final situation is a mixture of the two previous cases. The new inside con-
straint is interpreted as follows:

inside(r, gr(map1, obj, cond1), gr(map2, target, cond2)) =

{oi | (oi ∈ target)∧ (∃p1, p2 ∈ GPS | distance(p1, p2) ≤ r ∧
∧ inGr(gr(map1, obj, cond1), p1) ∧ inGr(gr(map2, oi, cond2), p2))}

Note that we can specify different sets of conditions as well as different granule
maps for the reference object and the target class. This provides the user with
huge flexibility to express the conditions over the granules involved in the query.

84 C. Bobed, S. Ilarri, and E. Mena

5.3 Reconsidering the Examples with Semantic Location Granules

With the newly added semantics, the user of the traffic monitoring application
can now pose the exact query (with the help of a GUI):

SELECT COUNT(Car.id)
FROM Car

WHERE inside(50 miles, A21,
gr(Motorways, Car, DirectlyConnected, {A21}))

Now, the system will only retrieve the cars that are in segments directly con-
nected to the segment whose traffic we want to monitor. On the other hand, the
taxi user that wanted to save money could pose a query such as6:

SELECT Taxi.pos
FROM Taxi

WHERE inside(1 mile, me, gr(TaxiZones, Taxi, InitialCostFreeZone))

to look for taxis within one mile in zones that would not imply initial additional
costs. Note that, to extend the expressivity of the queries, in the first exam-
ple we are using a property and in the second one a concept definition in the
corresponding constraints.

6 Related Work

Several works on spatial databases and geographic information systems deal
with the problem of managing spatial data at different levels of detail (e.g., [5,9]).
These works focus on the problem of dealing with different levels of
detail/specification of the spatial entities, and therefore they do not consider
the use of locations at different granularities to enhance the expressiveness of
queries. In the same field, the use of ontologies is mainly devoted to achieve data
integration and interoperability between systems [2,3,8,25].

In the field of pervasive computing, several works have emphasized the impor-
tance of adding semantics to location data [7,23], although they do not look at
this problem from the perspective of a user that wants to express queries using
a suitable location granularity and with the required semantics:

– In [7], according to pervasive computing criteria, a taxonomy of types of
locations is given. Therefore, locations are assigned implicit meta-semantics
depending on the classification.

– In [23], the authors propose a location model that supports different expres-
sive representations for spaces, spatial relationships, and positioning systems.
However, this work focuses on positioning systems, with an emphasis in sen-
sor data fusion. Thus, for example, the location measured by a sensor may
have associated a symbolic representation. On the contrary, we handle sym-
bolic representations (location granules) at a higher level, from the point of

6 Where “me” is interpreted as the location of the user.

Exploiting the Semantics of Location Granules 85

view of the user (the user uses the terminology that s/he requires). More-
over, we concern about how this can enhance the expressivity of location-
dependent queries on moving objects.

There are also works that have considered locations at different granularity levels
but with no semantic information attached, such as [6]. However, the authors
of this work focus on data representation, leaving aside the semantics that we
want to add to our granularity model. Their approach is complementary to our
work, as ours can be used directly on top of their model.

Finally, existing works on location-dependent query processing implicitly as-
sume GPS locations for the objects in a scenario. As it is difficult to provide
a good overview of contributions in this area in a short space, we refer the in-
terested reader to [20]. Although some works acknowledge the importance of
considering different location resolutions (e.g., [14]), the processing of classical
constraints such as inside or nearest is not considered in that context. No ex-
isting proposal has considered using ontologies to extend the expressivity of the
queries dynamically.

7 Conclusions and Future Work

The bare use of granules in location-dependent queries enhances their expressiv-
ity. It brings the query to the user’s level and may impact not only the query
semantics but also the performance and the way the results are presented to
the user. In this paper, we have studied how semantic location granules can be
used to further enhance the expressivity of this kind of queries. In particular,
our proposal:

– provides a definition of semantic location granules within the formal frame-
work given by ontologies.

– offers a base ontology to represent the different granularities and the relation-
ships that might exist. This ontology is intended to serve as starting point
and can be easily extended to represent the semantics of the relationships
that the user might want to add to the system.

– dynamically adapts the query processing to the newly added semantics, al-
lowing to extend the expressivity of the queries that can be processed.

Besides, we have illustrated how this approach allows us to express queries that
would not be possible otherwise. As far as the authors know, there is no other
proposal that considers the use of ontologies to extend dynamically the expres-
sivity of granule-based location-dependent queries.

As future work, we plan to integrate the proposal into the distributed location-
dependent query processing system LOQOMOTION [19], adapting the granule-
based processing that it is currently implemented. We are also studying how to
extend other constraints with our semantic approach.

Acknowledgments

This work has been supported by the CICYT project TIN2007-68091-C02-02.

86 C. Bobed, S. Ilarri, and E. Mena

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Pastel-Scheneider, P.: The

Description Logic Handbook. In: Theory, Implementation and Applications. Cam-

bridge University Press, Cambridge (2003)

2. Bittner, T., Donnelly, M., Smith, B.: A spatio-temporal ontology for geographic

information integration. International Journal of Geographical Information Sci-

ence 23, 765–798 (2009)

3. Cai, G.: Contextualization of geospatial database semantics for human–GIS inter-

action. Geoinformatica 11, 217–237 (2007)

4. Cai, Y., Hua, K.A., Cao, G., Xu, T.: Real-time processing of range-monitoring

queries in heterogeneous mobile databases. IEEE Transactions on Mobile Com-

puting 5, 931–942 (2006)

5. Camossi, E., Bertolotto, M., Bertino, E., Guerrini, G.: Issues on modeling spatial

granularities. In: COSIT 2003 Workshop: Fundamental Issues in Spatial and Geo-

graphic Ontology, Ittingen, Switzerland. Springer, Heidelberg (September 2003)

6. Camossi, E., Bertolotto, M., Bertino, E., Guerrini, G.: A multigranular spatiotem-

poral data model. In: 11th ACM Intl. Symposium on Advances in Geographic In-

formation Systems (GIS 2003), New Orleans, Louisiana, USA, pp. 94–101. ACM,

New York (2003)

7. Dobson, S.: Leveraging the subtleties of location. In: 2005 Joint Conference on

Smart Objects and Ambient Intelligence (sOc-EUSAI 2005), Grenoble, France, pp.

189–193. ACM, New York (2005)

8. Fonseca, F., Egenhofer, M., Agouris, P., Câmara, C.: Using ontologies for integrated

geographic information systems. Transactions in GIS 6, 231–257 (2002)

9. Fonseca, F., Egenhofer, M., Davis, C., Câmara, G.: Semantic granularity in

ontology-driven geographic information systems. Annals of Mathematics and Ar-

tificial Intelligence 36(1-2), 121–151 (2002)

10. Gedik, B., Liu, L.: Mobieyes: A distributed location monitoring service using mov-

ing location queries. IEEE Transactions on Mobile Computing 5(10), 1384–1402

(2006)

11. Gruber, T.R.: Towards principles for the design of ontologies used for knowledge

sharing. In: Guarino, N., Poli, R. (eds.) Formal Ontology in Conceptual Analy-

sis and Knowledge Representation, Deventer, The Netherlands. Kluwer Academic

Publishers, Dordrecht (1993)

12. Grütter, R., Scharrenbach, T., Bauer-Messmer, B.: Improving an RCC-derived

geospatial approximation by OWL axioms. In: Sheth, A.P., Staab, S., Dean, M.,

Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS,

vol. 5318, pp. 293–306. Springer, Heidelberg (2008)

13. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: OWL 2

web ontology language primer. W3C Recommendation (November 2009)

14. Hoareau, C., Satoh, I.: A model checking-based approach for location query pro-

cessing in pervasive computing environments. In: OTM 2007 Workshops (PerSys

2007), Algarve, Portugal, November 2007, pp. 866–875. Springer, Heidelberg (2007)

15. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:

SWRL: A Semantic Web Rule Language combining OWL and RuleML. W3C Mem-

ber Submission (May 2004)

16. Huang, R., Peng, Z.R.: A spatiotemporal data model for dynamic transit networks.

International Journal of Geographical Information Science 22, 527–545 (2008)

Exploiting the Semantics of Location Granules 87

17. Ilarri, S., Corral, A., Bobed, C., Mena, E.: Probabilistic granule-based inside and

nearest neighbor queries. In: Grundspenkis, J., Morzy, T., Vossen, G. (eds.) ADBIS

2009. LNCS, vol. 5739, pp. 103–117. Springer, Heidelberg (2009)

18. Ilarri, S., Mena, E., Bobed, C.: Processing location-dependent queries with location

granules. In: OTM 2007 Workshops (PerSys 2007), Algarve, Portugal, pp. 856–866.

Springer, Heidelberg (November 2007)

19. Ilarri, S., Mena, E., Illarramendi, A.: Location-dependent queries in mobile con-

texts: Distributed processing using mobile agents. IEEE Transactions in Mobile

Computing 5(8), 1029–1043 (2006)

20. Ilarri, S., Mena, E., Illarramendi, A.: Location-dependent query processing: Where

we are and where we are heading. ACM Computing Surveys 42(3), 1–73 (2010)

21. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection.

In: 3rd. Intl. Conference on Knowledge Representation and Reasoning, pp. 165–176.

Morgan Kauffmann, San Francisco (1992)

22. Schiller, J., Voisard, A. (eds.): Location-Based Services. Morgan Kaufmann, San

Francisco (2004)

23. Stevenson, G., Ye, J., Dobson, S., Nixon, P.: LOC8: A location model and extensible

framework for programming with location. IEEE Pervasive Computing 9, 28–37

(2010)

24. Vazirgiannis, M., Wolfson, O.: A spatiotemporal model and language for moving

objects on road networks. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J.

(eds.) SSTD 2001. LNCS, vol. 2121, pp. 20–35. Springer, Heidelberg (2001)

25. Visser, U., Stuckenschmidt, H., Schuster, G., Vögele, T.: Ontologies for geographic

information processing. Computers & Geosciences 28, 103–117 (2002)

On a Fuzzy Group-By
and Its Use for Fuzzy Association Rule Mining

Patrick Bosc, Olivier Pivert, and Grégory Smits

Irisa – Enssat, University of Rennes 1
Technopole Anticipa 22305 Lannion Cedex France

bosc@enssat.fr, pivert@enssat.fr, smits@irisa.fr

Abstract. Group-by is a core database operation that is used extensively in data
analysis and decision support systems. In many application scenarios, it appears
useful to group values according to their compliance with a certain concept in-
stead of founding the grouping on value equality. In this paper, we propose a new
SQLf construct that supports fuzzy-partition-based group-by (FGB). We show
that FGB can be used to generate fuzzy summaries as well as to mine fuzzy as-
sociation rules (whose head or body are bound to a specific fuzzy value) in a
practical and efficient way.

1 Introduction

The relationships between databases and fuzzy sets have been studied for a long time.
Among the very first works is that by V. Tahani’s in the 70s [1], which was about the
design of new querying capabilities for relational databases. The basic idea was to use
fuzzy sets in order to devise new predicates intended for representing a graded satis-
faction instead of the “all-or-nothing” behavior conveyed by Boolean conditions. If this
type of issue was quite innovative at that time, it turns out that it has gained more and
more acceptance for some years in the database community. Many fuzzy querying ap-
proaches have ben proposed in the last two decades, among which a fuzzy extension of
the SQL language, called SQLf [2]). This language has the same general philosophy as
SQL (as to querying features and syntax in particular) and offers new possibilities re-
garding flexible querying. The underlying principle is to introduce graduality wherever
it appeared meaningful (by using fuzzy predicates in the where clause of a base block,
but also by introducing fuzzy nesting operators, fuzzy quantifiers and so on). However,
the group-by clause in SQLf remained unchanged with respect to SQL. As noted in [3],
grouping capabilities have been extensively studied and implemented in data manage-
ment systems. The standard group-by operator has relatively good execution time and
scalability properties. However, while its semantics is simple, it is also limited because
it is based only on equality, i.e., all the tuples in a group have exactly the same values of
the grouping attributes. In this paper, we aim to extend this core database operation by
defining a “fuzzy grouping” mechanism. The contributions of this paper are as follows:

– we introduce the fuzzy group-by (FGB) operator which extends standard group-
by to allow the formation of groups based on predefined fuzzy partitions of the
attribute domains rather than equality of data,

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 88–102, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On a Fuzzy Group-By and Its Use for Fuzzy Association Rule Mining 89

– we show how this mechanism makes it possible to perform some kind of data sum-
marization “on demand”,

– we point out the interest of the FGB operator for the purpose of fuzzy association
rule mining.

The remainder of the paper is organized as follows. Section 2 recalls some basic notions
of fuzzy set theory and presents the general framework of the SQLf language. Section
3 introduces the definition of the FGB operator and shows how fuzzy summaries can
be obtained by means of appropriate aggregates applied to the fuzzy groups that are
produced by this operator. Section 4 discusses different forms that the complementary
having clause can take. Section 5 deals with the way FGB can be used for mining
fuzzy association rules whose head or body are bound to a specific fuzzy value. Section
6 briefly tackles implementation aspects. Related work is presented in Section 7, and
Section 8 gives the conclusions and some directions for future research.

2 Reminder about Fuzzy Sets and Fuzzy Queries

2.1 Basic Notions about Fuzzy Sets

Fuzzy set theory was introduced by Zadeh [4] for modeling classes or sets whose
boundaries are not clear-cut. For such objects, the transition between full membership
and full mismatch is gradual rather than crisp. Typical examples of such fuzzy classes
are those described using adjectives of the natural language, such as young, cheap,
fast, etc. Formally, a fuzzy set F on a referential U is characterized by a member-
ship function μF : U → [0, 1] where μF (u) denotes the grade of membership of u
in F . In particular, μF (u) = 1 reflects full membership of u in F , while μF (u) = 0
expresses absolute non-membership. When 0 < μF (u) < 1, one speaks of partial
membership.

Two crisp sets are of particular interest when defining a fuzzy set F :

– the core C(F) = {u ∈ U | μF (u) = 1}, which gathers the prototypes of F ,
– the support S(F) = {u ∈ U | μF (u) > 0}.

In practice, the membership function associated with F is often of a trapezoidal
shape. Then, F is expressed by the quadruplet (A, B, a, b) where C(F) = [A, B] and
S(F) = [A − a, B + b], see Figure 1.

Let F and G be two fuzzy sets on the universe U , we say that F ⊆ G iff μF (u) ≤
μG(u), ∀u ∈ U . The complement of F , denoted by F c, is defined by μF c(u) =

Fig. 1. Trapezoidal membership function

90 P. Bosc, O. Pivert, and G. Smits

1 − μF (u). Furthermore, F ∩ G (resp. F ∪ G) is defined the following way: μF∩G =
min(μF (u), μG(u)) (resp. μF∪G = max(μF (u), μG(u))).

As usual, the logical counterparts of the theoretical set operators ∩, ∪ and com-
plementation operator correspond respectively to the conjunction ∧, disjunction ∨ and
negation ¬. See [5] for more details.

2.2 About SQLf

The language called SQLf described in [2] extends SQL so as to support fuzzy queries.
The general principle consists in introducing gradual predicates wherever it makes
sense. The three clauses select, from and where of the base block of SQL are kept in
SQLf and the “from” clause remains unchanged. The principal differences affect mainly
two aspects :

– the calibration of the result since it is made with discriminated elements, which can
be achieved through a number of desired answers (k), a minimal level of satisfaction
(t), or both, and

– the nature of the authorized conditions as mentioned previously.

Therefore, the base block is expressed as:

select [distinct] [k | t | k, t] attributes
from relations
where fuzzy-cond

where “fuzzy-cond” may involve both Boolean and fuzzy predicates. This expression
is interpreted as:

– the fuzzy selection of the Cartesian product of the relations appearing in the “from”
clause,

– a projection over the attributes of the “select” clause (duplicates are kept by default,
and if “distinct” is specified the maximal degree is attached to the representative in
the result),

– the calibration of the result (top k elements and/or those whose score is over the
threshold t).

The operations from the relational algebra — on which SQLf rests — are straightfor-
wardly extended to fuzzy relations by considering fuzzy relations as fuzzy sets on the
one hand and by introducing gradual predicates in the appropriate operations (selections
and joins especially) on the other hand. The definitions of these extended relational op-
erators can be found in [6]. As an illustration, we give the definitions of the fuzzy
selection and join operators hereafter, where r and s denote two fuzzy relations defined
respectively on the sets of domains X and Y .

– μselect(r, cond)(t) = �(μr(t), μcond(t)) where cond is a fuzzy predicate and � is
a triangular norm (most usually, min is used),

– μjoin(r, s, A, B, θ)(tu) = �(μr(t), μs(u), μθ(t.A, u.B)) where A (resp. B) is a
subset of X (resp. Y), A and B are defined over the same domains, θ is a binary
relational operator (possibly fuzzy), t.A (resp. u.B) stands for the value of t over
A (resp. u over B).

On a Fuzzy Group-By and Its Use for Fuzzy Association Rule Mining 91

3 An Extended Group-By Clause

In SQLf as in SQL, a group by clause builds a partition based on the (atomic) values
of the attributes specified in this clause. Then, “group by A” leads to a partition where
every group is associated with an A-value present in the relation. The idea we advocate
here is to extend this mechanism so as to build a partition based on intervals or fuzzy
sets of values.

3.1 Use of a Crisp Partition

The generic form of such a query is:

select label(A) [, aggregate, ...] from r [where ψ]
group by label(A)
using part(A) = {L1, . . . , Ln}
where part(A) is a partition defined on the domain of A, label(A) denotes any label
Li from part(A), and ψ is a (fuzzy or crisp) condition.

Example 1. Let Emp be a relation of schema (id, nom, age, salary). Let us assume that
one wants to retrieve the average salary for each age class (twenties, thirties, etc). In
SQL, one has to express as many queries as there are age classes. However, one can
imagine an expression of the type:

select label(age), avg(salary) from Emp
group by label(age)
using part(age) = {[20, 29], [30, 39], [40, 49], [50, 59]}.

With the data from Table 1, the result is:

{〈[20, 29], 2650〉, 〈[30, 39], 3200〉, 〈[40, 49], 4500〉,
〈[50, 59], 6100〉, 〈[60, 69], 3700〉 }. �

In the case where ψ is a fuzzy condition, the only type of aggregate which can appear in
the select clause is count, because of the difficulty of defining the other aggregates on
fuzzy sets. Indeed, the existing approaches dealing with the interpretation of aggregates
in the general case [7] cannot be used in the framework of SQLf since they deliver a
fuzzy set of possible evaluations (then, the lower and upper bounds of this fuzzy set
of numbers can be computed). In SQLf, a unique degree of satisfaction attached to
a condition such as agg(A) is C — where agg denotes an aggregate and C a fuzzy
condition — is needed in order to maintain compositionality.

For a given Li from part(A), count(Li) is computed as follows:

count(Li) =
∑

t∈r ∧ t.A ∈ Li

μψ(t).

One also introduces a variant of count, denoted count-rel, which computes the average
membership degree inside a group. It is defined as:

count-rel(Li) =

∑
t∈r ∧ t.A ∈ Li

μψ(t)
|{t ∈ r | t.A ∈ Li}| .

92 P. Bosc, O. Pivert, and G. Smits

Table 1. Extension of relation emp

#e e-name position age w-dep sal(k$)
17 Smith engineer 51 3 65
76 Martin engineer 40 5 45
26 Jones secretary 24 3 19
12 Green technician 39 3 32
19 Duncan clerk 28 1 24
8 Brown manager 54 1 57
31 Harris technician 29 5 18
9 Davis janitor 61 1 15
44 Howard manager 22 3 45
23 Lewis engineer 62 1 59

Example 2. Let us consider the query:

select label(age), count, count-rel from Emp
where salary is medium group by label(age)
using part(age) = {[20, 29], [30, 39], [40, 49], [50, 59]}.

With the fuzzy term medium defined as in Fig. 2 and the data from Table 1, one gets:

{〈[20, 29], 1, 0.25〉, 〈[30, 39], 0.7, 0.7〉, 〈[40, 49], 1, 1〉,
〈[50, 59], 0.8, 0.4〉, 〈[60, 69], 0.6, 0.3〉}. �

3.2 Use of a Fuzzy Partition

The extension to the fuzzy partition case — which allows to take into account vague
classes and to have a better robustness by making query results less sensitive to the
boundaries of the classes — is rather straightforward. One just has to have available
fuzzy partitions defined on the attribute domains. On the other hand, it is not possible
anymore to use any type of aggregate in the select clause: one is limited to using count
even when the condition in the where clause is Boolean (since the groups themselves
are fuzzy). In the following, we assume that Ruspini partitions [8] are used, i.e.,

∀x ∈ X,
∑

Li∈P

μLi(x) = 1

where P denotes a partition defined on domain X (cf. Fig. 2).

Fig. 2. Fuzzy partitions of the domains of attribute age (left) and salary (right)

On a Fuzzy Group-By and Its Use for Fuzzy Association Rule Mining 93

Table 2. Tuples from emp and their degrees

#e age μyg μma μold sal μlow μmed μhigh

17 51 0 0.9 0.1 65 0 0 1
76 40 0 1 0 45 0 1 0
26 24 0.6 0.4 0 19 1 0 0
12 39 0 1 0 32 0.3 0.7 0
19 28 0.2 0.8 0 24 1 0 0
8 54 0 0.6 0.4 57 0 0.8 0.2
31 29 0.1 0.9 0 18 1 0 0
9 61 0 0 1 15 1 0 0
44 22 0.8 0.2 0 45 0 1 0
23 62 0 0 1 59 0 0.6 0.4

Example 3. Let us consider the partition from Figure 2 (left) denoted by part(age),
and the query “find for each fuzzy age class the number of employees who earn more
than $30,000.” It can be expressed as:

select label(age), count from Emp
where salary > 30k group by label(age)
using part(age) = {young, middle-aged, old}.

With the data from Table 2, the result is: {〈young, 0.8〉, 〈middle-aged, 3.7〉, 〈old, 1.5〉}
where each number returned corresponds to a Σ-count. �
We now have the following definitions:

count(Li) =
∑
t∈r

�(μψ(t), μLi(t.A)) (1)

count-rel(Li) =
∑

t ∈ r �(μψ(t), μLi(t.A))∑
t ∈ r μLi(t.A)

. (2)

The fuzzy group by clause makes it possible to compute fuzzy summaries “on demand”,
in contrast with the approach proposed in [9] which first builds a summary of the whole
database, then uses it to answer queries. An example of a query aimed at providing a
fuzzy summary is given hereafter.

Example 4. Let us consider the query: “how are the ages of the employees whose salary
is medium?”. It can be expressed as:

select label(age), count from Emp
where salary is medium group by label(age)
using part(age) = {young, middle-aged, old}.

With the data from Table 2, and using � = min, one gets:

{〈young, 0.8〉, 〈middle-aged, 2.5 〉, 〈old, 1.0〉}. �
Example 5. Let us now consider the query: “which proportion of employees from each
age class has a salary which is medium?”. It can be expressed as:

94 P. Bosc, O. Pivert, and G. Smits

select label(age), count-rel from Emp
where salary is medium group by label(age)
using part(age) = {young, middle-aged, old}.

With the data from Table 2, and using � = min, one gets:

{〈young, 0.47〉, 〈middle-aged, 0.43 〉, 〈old, 0.4〉}. �

4 Having Clause

The different forms of a having clause that can come as a complement to a group-by
clause are described hereafter through a few examples.

4.1 Inclusion Constraint

An example which involves a Boolean condition in the having clause is: “find every age
class such that at least 30% of the employees from that class have a high salary”:

select label(age) from Emp E1
group by label(age)
having count ≥

(select count * 0.3 from Emp where salary is high and age is E1.label(age))
using part(age) = {young, middle-aged, old}.

Another example, which involves a fuzzy having clause is: “find the extent to which all
the employees of a given age class have a high salary:

select label(age) from Emp E1
group by label(age)
having (select #e from Emp where salary is high) contains set(#e)
using part(age) = {young, middle-aged, old}.

The evaluation of such a query rests on a graded inclusion. It constitutes the prototype
expression for fuzzy association rule mining and will be detailed in Section 5.

4.2 Aggregate1 θ Aggregate2

Even though a limitation exists as to the aggregates which can be computed on a fuzzy
set — as already mentioned —, it is still possible to evaluate conditions which compare
two aggregates [10]. The idea is to start with a definition valid for crisp sets, then to
extend it to fuzzy sets. In the case where A and B are crisp, it is possible to express the
meaning of the statement agg1(A) ≤ agg2(B) using an implication according to the
formula:

∀x, [agg1(A) ≥ x] ⇒ [agg2(B) ≥ x] (3)

where x is used to scan the definition domain of agg1 and agg2.
When A and B are two fuzzy sets, the expression agg1(A) ≤ agg2(B) (resp.

agg1(A) ≥ agg2(B)) is more or less satisfied. Its degree of truth t(agg1(A) ≥ x)

On a Fuzzy Group-By and Its Use for Fuzzy Association Rule Mining 95

(resp. t(agg2(A) ≥ x)) can be obtained by considering the different α-level cuts of
predicate A:

t(agg(A) ≥ x) = maxα∈[0, 1] min(α, μ≥x(agg(Aα))).

Since “≥ x” is a Boolean predicate, its truth value is either 0 or 1 and we get:

t(agg(A) ≥ x) = maxα∈[0, 1]such that agg(Aα)≥x α.

If the universal quantifier in (3) is interpreted as a generalized conjunction, the satisfac-
tion degree of agg1(A) ≤ agg2(B) is given by:

minx∈D t(agg1(A) ≥ x) → t(agg2(B) ≥ x) (4)

where → stand for a fuzzy implication [11] and D is the definition domain of agg1 and
agg2. More detail can be found in [10].

An example of such a query is: “find the age classes such that the maximum of the
technician’s salaries is greater than the minimum of the engineer’s salaries”. It can be
expressed as:

select label(age) from Emp E1 where job = ’technician’
group by label(age)
having max(salary) >

(select min(salary) from Emp where age is E1.label(age) and job = ’engineer’)
using part(age) = {young, middle-aged, old}.

In such a query, the where clause could also involve a fuzzy condition.

4.3 Aggregate is ψ

One may also compute the extent to which an aggregate satisfies a fuzzy condition ψ, by
means of the approach proposed in [12]. For instance, when both the aggregate and the
predicate ψ are increasing, one may start from the following definition of the statement
agg(A) is ψ when A is a crisp set and ψ is a Boolean condition:

agg(A) is ψ ⇔ ∃n such that ψ(n) and agg(A) ≥ n. (5)

When A is a fuzzy set and ψ is a fuzzy condition, the preceding formula may be gener-
alized into:

t(agg(A) is ψ = maxα∈[0, 1] min(α, μψ(agg(A))). (6)

The case where agg is not monotonous is more tricky, but an approach has also been
proposed to deal with this situation, cf. [12].

An example of a query involving a condition of the form is agg(A) is ψ inside a
having clause is: “find the age classes where the average salary of engineers is high”. It
can be expressed as:

select label(age) from Emp where job = ’engineer’
group by label(age)
having avg(salary) is high
using part(age) = {young, middle-aged, old}.

Here again, the where clause may also involve a fuzzy condition.

96 P. Bosc, O. Pivert, and G. Smits

5 Use for Association Rule Mining

We now explain how the fuzzy group by clause can be used for evaluating in a simple
way fuzzy association rules of the type (age is Li → salary is L′

j) where Li and L′
j

are two fuzzy labels defined respectively on the domain of age and that of salary. As
mentioned in [13], at least two fuzzy extensions of association rules may be considered:
those based on (fuzzy or scalar) cardinalities, and those based on fuzzy implications (cf.
also [14] for the latter category). Hereafter, we do not deal with fuzzy-cardinality-based
rules since they may be somewhat difficult to interpret for an end-user (and also because
they cannot be represented and handled easily in a purely relational DBMS).

The approach based on a scalar cardinality (Σ-count) rests on a straightforward ex-
tension of the usual definition of confidence. Let us consider a fuzzy association rule of
the type (A is Li → B is L′

j). In this approach, the validity (confidence) of the rule is
defined as: ∑

t∈r �(μLi(t.A), μL′
j
(t.B))∑

t∈r μLi(t.A)

In the fuzzy-implication-based approach, the rule (A is Li → B is L′
j) expresses a con-

straint on the B-value for each tuple in the relation. The association rule, also denoted
by (A, Li) → (B, L′

j), then means: “for every tuple t, the more t.A is Li, the more
t.B is L′

j”, i.e.:

(A, Li) → (B, L′
j) ⇔ ∀t ∈ r, μLi(t.A) →f μL′

j
(t.B)

where →f denotes a fuzzy R-implication. In this case, the confidence of the rule is
equal to:

mint∈r μLi(t.A) →f μL′j(t.B).

5.1 Rules of the Type A Is Li → B Is L′

Computation of the Support. First, one introduces a variant of count named count-g
whose general definition is:

count-g(Li) =
∑

t ∈ r �(μψ(t), μLi(t.A))
|r| . (7)

Let us consider the generic SQLf query:

select label(A), count-g from r where B is L′

group by label(A)
using p(A) = {L1, . . . , Ln}
It allows for computing the support of every fuzzy association rule of the type “A is Li

→ B is L′” for a given L′.

On a Fuzzy Group-By and Its Use for Fuzzy Association Rule Mining 97

Computation of the Confidence. Let us consider the generic SQLf query:

select label(A) from r
group by label(A)
having (select K from r where B is L′) contains set(K)
using p(A) = {L1, . . . , Ln}
where K denotes the primary key of the relation.

Scalar Cardinality Using the approach based on scalar cardinality, the confidence of
the rule corresponds to the cardinality-based degree of inclusion of the fuzzy set:

E(Li) = (select #e from r where A is Li)

in the fuzzy set:

F = (select #e from r where B is L′)

i.e., to the degree μ produced by the evaluation of the having clause:

μ =
∑

t ∈ r �(μL′(t.B), μLi(t.A))∑
t ∈ r μLi(t.A)

.

R-implication. Using the approach based on a fuzzy R-implication, the confidence of
the rule corresponds to the implication-based degree of inclusion of E(Li) in F — see,
e.g., [15] —, i.e. to the degree μ produced by the evaluation of the having clause when
contains is replaced by contains-f :

μ = mint∈r μLi(t.A) →f μL′(t.B).

For instance, with Łukasiewicz’ implication (contains-Lu), we have:

μ = mint∈r min(1, 1 − μLi(t.A) + μL′(t.B)).

Example 6. Let us consider the set of rules of the form:

age is Li → salary is medium

where Li belongs to p(age). They can be evaluated by means of the following two
queries:

select label(age), count-g from Emp where salary is medium
group by label(age)
using p(age) = {young, middle-aged, old};

which, using the data from Table 1, the partitions from Fig. 2, and � = min returns:

{0.08/〈young〉, 0.25/〈middle-aged〉, 0.1/〈old〉}.

98 P. Bosc, O. Pivert, and G. Smits

and

select label(age) from Emp group by label(age)
having (select #e from Emp where salary is medium)

contains set(#e)
using p(age) = {young, middle-aged, old}
which returns:

{0.47/〈young〉, 0.43/〈middle-aged〉, 0.4/〈old〉}.
If contains were replaced by contains-Lu in the second query, we would get:

{0.4/〈young〉, 0.1/〈middle-aged〉, 0/〈old〉}. �

5.2 Rules of the Type A Is L → B Is L′
i

Now let us consider mining fuzzy association rules of the type “A is L → B is L′
i” for

a given L. Again, two SQLf queries are necessary:

select label(B), count-g from r where A is L
group by label(B)
using p(B) = {L′

1, . . . , L′
n}

for computing the support of the rules considered, and:

select label(B) from r group by label(B)
having set(K) contains (select K from r where A is L)
using p(B) = {L′

1, . . . , L′
n}

for computing their confidence values.

Example 7. Let us consider the set of rules of the form:

age is young → salary is L′
i

where L′
i belongs to p(salary). They can be evaluated by means of the following two

queries:

select label(salary), count-g from Emp where age is young group by label(salary)
using p(salary) = {low, medium, high}
and

select label(salary) from Emp group by label(salary)
having set(#e) contains

(select #e from Emp where age is young)
using p(salary) = {low, medium, high}.

With the data from Table 1 and the partitions from Fig. 2, the first query returns:

{0.09/〈low〉, 0.08/〈medium〉, 0/〈high〉}.

On a Fuzzy Group-By and Its Use for Fuzzy Association Rule Mining 99

As to the second one — which corresponds to the scalar cardinality approach since it
involves the operator contains —, it returns the result:

{0.53/〈low〉, 0.47/〈medium〉, 0/〈high〉}.

If contains were replaced by contains-Lu in the second query, we would get:

{0.2/〈low〉, 0.4/〈medium〉, 0.2/〈high〉} �

6 About the Evaluation of a Fuzzy Group-By

The complexity of the evaluation of an FGB clause is very similar to that of a regular
group-by clause. Two cases may be distinguished:

– if the attribute appearing in the FGB clause — let us denote it by A — is indexed,
it is possible to directly access the tuples which belong to a given fuzzy class Li:
they are the tuples t such that t.A ∈ support(Li). Let us recall that the support of
a fuzzy label is expressed as an interval and can be straightforwardly determined
from the membership function associated with that label. The degree to which tuple
t belongs to class Li is equal to μLi(t.A).

– otherwise, as usual, one may sort the relation on attribute A and compare the A-
value of each tuple with the (overlapping) segments which correspond to the sup-
ports of the different fuzzy labels in the partition of domain(A) in order to build
the fuzzy groups. Here too, of course, μLi(t.A) must be computed for each tuple t.

As can be seen, the cost of the evaluation of an FGB clause should be more or less
equivalent to that of a regular group-by clause since the only additional cost is that
related to the computation of the membership degrees.

7 Related Work

7.1 Extended Group-By

The work in [16] proposes some SQL constructs to make clustering facilities available
from SQL in the context of spatial data. Basically, these constructs act as wrappers
of conventional clustering algorithms but no further integration with database systems
is studied. Li et al. [17] extend the group-by operator to approximately cluster all the
tuples in a predefined number of clusters. Their framework makes use of conventional
clustering algorithms, e.g. K-means, and employ summaries and bitmap indexes to inte-
grate clustering and ranking into database systems. Silva et al. [3] introduce a similarity
group-by operator in order to group objects with similar values. Our study differs from
[17] and [3] in that (1) we focus on fuzzy grouping based on vague concepts, not on
similarity-based grouping; (2) we do not aim at “discovering” the clusters, since in our
approach the groups are explicitly specified in the query (by means of a fuzzy partition),
which by the way gives them a well-identified meaning; and (3) the authors of [17] and
[3] do not consider a general fuzzy querying framework such as SQLf (where the fuzzy
group-by construct is just a piece of the puzzle) but only extend a particular feature of
SQL.

100 P. Bosc, O. Pivert, and G. Smits

7.2 Fuzzy OLAP

A few research works, e.g. [18,19], have been devoted to the introduction of fuzziness
into OLAP systems. These approaches share some common characteristics with ours
(use of fuzzy partitions, fuzzy association rule mining) but they do not rely on a general
purpose database querying language such as SQL(f). They rather extend operators such
as roll-up and drill-down, or devise specific rule mining algorithms.

7.3 Fuzzy Database Summarization Techniques

Developed by Rasmussen and Yager, SummarySQL [20] is a fuzzy query language
which can evaluate the truth degree of a summary guessed by the user. A summary
expresses knowledge about the database in a statement under the form “Q objects in
DB are S” or “Q R objects in DB are S” where DB stands for the database, Q is a
linguistic quantifier and R and S are linguistic terms. The expression is evaluated for
each tuple and the associated truth values are later used to obtain a truth value for the
summary. The statements considered by the authors are in a sense more general than the
fuzzy association rules that we deal with, since they involve fuzzy quantifiers. However,
our approach can easily be extended to capture such statements by relaxing the operator
contains that appear in the having clause, using e.g. one of the approaches described in
[15]. When it comes to mining fuzzy statements, the main difference lies in the fact that
[20] does not propose any SQL construct to evaluate these statements “in a batch” as
we do thanks to the FGB clause: the statements have to be checked one by one and no
fuzzy partitioning of the domains is used.

In [9], Saint-Paul et al. propose an approach to the production of linguistic sum-
maries structured in a hierarchy, i.e., a summarization tree where the tuples from the
database are rewritten using the linguistic variables involved in fuzzy partitions of the
attribute domains. The main difference with our approach is that [9] views summa-
rization as an independent process, which is not performed by means of SQL queries
but by a specific algorithm. As mentioned before, the FGB operator enables to obtain
summaries “on demand” without having to summarize the whole database.

7.4 Mining Association Rules with SQL

The use of SQL queries for mining association rules has been advocated by several
authors, see e.g. [21,22,23,24,25,26,27]. However, none of these approaches considers
an extended group-by mechanism, and none considers fuzzy association rules either. To
the best of our knowledge, the only approach which uses a fuzzy extension of SQL for
mining fuzzy association rules (or gradual functional dependencies, as the authors call
them) is [28], which relies on SummarySQL already discussed in the subsection above.

8 Conclusion

In this paper, we have introduced a fuzzy group-by (FGB) operator based on the use
of fuzzy partitions of attribute domains and described how it could be integrated into

On a Fuzzy Group-By and Its Use for Fuzzy Association Rule Mining 101

the SQLf language. The main goal of FGB is to generate more meaningful and use-
ful groupings than the regular group-by operator. We have shown how this construct
makes it possible to generate fuzzy summaries “on demand’, as well as to mine fuzzy
association rules in a practical way.

Among perspectives for future work, let us mention:

– implementation aspects and experimentations: it is of course important to make
sure that queries involving a fuzzy grouping have execution times comparable to
those involving a classical group-by. One can be reasonably optimistic about this
issue given the results presented in [3] about a similarity-based group-by (SGB),
which show that the overhead in this case is no more than 25%. FGB should be
even more efficient than SGB since i) the clusters are predefined, ii) the use of
fuzzy partitions still makes it possible to employ evaluation techniques based on
sorts and/or indexes (cf. Section 6).

– an investigation about the way other measures than support and confidence for as-
sessing fuzzy association rules, cf. [29], could be taken into account;

– an extension of the format of the rules to be mined, for instance through a relaxation
of the universal quantifier based on one of the approaches proposed in [15].

References

1. Tahani, V.: A conceptual framework for fuzzy query processing — a step toward very intel-
ligent database systems. Information Processing and Management 13(5), 289–303 (1977)

2. Bosc, P., Pivert, O.: SQLf: a relational database language for fuzzy querying. IEEE Transac-
tions on Fuzzy Systems 3(1), 1–17 (1995)

3. Silva, Y.N., Aref, W.G., Ali, M.H.: Similarity group-by. In: Proc. of ICDE 2009, pp. 904–915
(2009)

4. Zadeh, L.A.: Fuzzy sets. Information and control 8(3), 338–353 (1965)
5. Dubois, D., Prade, H.: Fundamentals of fuzzy sets. The Handbooks of Fuzzy Sets, vol. 7.

Kluwer Academic Pub., Netherlands (2000)
6. Bosc, P., Buckles, B., Petry, F., Pivert, O.: Fuzzy databases. In: Bezdek, J., Dubois, D., Prade,

H. (eds.) Fuzzy Sets in Approximate Reasoning and Information Systems. The Handbook of
Fuzzy Sets Series, pp. 403–468. Kluwer Academic Publishers, Dordrecht (1999)

7. Dubois, D., Prade, H.: Measuring properties of fuzzy sets: a general technique and its use in
fuzzy query evaluation. Fuzzy Sets and Systems 38(2), 137–152 (1990)

8. Ruspini, E.H.: A new approach to clustering. Information and Control 15(1), 22–32 (1969)
9. Saint-Paul, R., Raschia, G., Mouaddib, N.: General purpose database summarization. In:

Proc. of VLDB 2005, pp. 733–744 (2005)
10. Bosc, P., Pivert, O., Liétard, L.: On the comparison of aggregates over fuzzy sets. In:

Bouchon-Meunier, B., Foulloy, L., Yager, R. (eds.) Intelligent Systems for Information Pro-
cessing: From Representation to Applications, pp. 141–152. Elsevier, Amsterdam (2003)

11. Fodor, J., Yager, R.: Fuzzy-set theoretic operators and quantifiers. In: Dubois, D., Prade, H.
(eds.) Fundamentals of Fuzzy Sets. The Handbooks of Fuzzy Sets Series, vol. 1, pp. 125–193.
Kluwer Academic Publishers, Dordrecht (2000)

12. Bosc, P., Liétard, L.: Aggregates computed over fuzzy sets and their integration into SQL.
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 16(6), 761–
792 (2008)

102 P. Bosc, O. Pivert, and G. Smits

13. Bosc, P., Pivert, O.: On some fuzzy extensions of association rules. In: Proc. of the Joint 9th
IFSA World Congress and 20th NAFIPS International Conference, Vancouver, Canada, pp.
1104–1109 (2001)

14. Hüllermeier, E.: Implication-based fuzzy association rules. In: Siebes, A., De Raedt, L. (eds.)
PKDD 2001. LNCS (LNAI), vol. 2168, pp. 241–252. Springer, Heidelberg (2001)

15. Bosc, P., Pivert, O.: On two qualitative approaches to tolerant inclusion operators. Fuzzy Sets
and Systems 159(21), 2786–2805 (2008)

16. Zhang, C., Huang, Y.: Cluster by: a new SQL extension for spatial data aggregation. In: Proc.
of ACM GIS, pp. 53–56 (2007)

17. Li, C., Wang, M., Lim, L., Wang, H., Chang, K.C.C.: Supporting ranking and clustering as
generalized order-by and group-by. In: Proc. of SIGMOD 2007, pp. 127–138 (2007)

18. Delgado, M., Molina, C., Ariza, L.R., Sánchez, D., Miranda, M.A.V.: F-cube factory: a fuzzy
olap system for supporting imprecision. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 15(Suppl. 1), 59–81 (2007)

19. Kaya, M., Alhajj, R.: Online mining of fuzzy multidimensional weighted association rules.
Appl. Intell. 29(1), 13–34 (2008)

20. Rasmussen, D., Yager, R.R.: Summary SQL – a fuzzy tool for data mining. Intell. Data
Anal. 1(1-4), 49–58 (1997)

21. Meo, R., Psaila, G., Ceri, S.: An extension to SQL for mining association rules. Data Min.
Knowl. Discov. 2(2), 195–224 (1998)

22. Clear, J., Dunn, D., Harvey, B., Heytens, M.L., Lohman, P., Mehta, A., Melton, M., Rohrberg,
L., Savasere, A., Wehrmeister, R.M., Xu, M.: Nonstop SQL/MX primitives for knowledge
discovery. In: Proc. of KDD 1999, pp. 425–429 (1999)

23. Thomas, S., Sarawagi, S.: Mining generalized association rules and sequential patterns using
SQL queries. In: Proc. of KDD 1998, pp. 344–348 (1998)

24. Yoshizawa, T., Pramudiono, I., Kitsuregawa, M.: SQL based association rule mining using
commercial RDBMS (IBM DB2 UDB EEE). In: Kambayashi, Y., Mohania, M., Tjoa, A.M.
(eds.) DaWaK 2000. LNCS, vol. 1874, pp. 301–306. Springer, Heidelberg (2000)

25. Imielinski, T., Virmani, A.: MSQL: A query language for database mining. Data Min. Knowl.
Discov. 3(4), 373–408 (1999)

26. Rajamani, K., Cox, A.L., Iyer, B.R., Chadha, A.: Efficient mining for association rules with
relational database systems. In: Proc. of IDEAS 1999, pp. 148–155 (1999)

27. Pereira, R., Millan, M., Machuca, F.: New algebraic operators and SQL primitives for mining
association rules. In: Neural Networks and Computational Intelligence, pp. 227–232 (2003)

28. Rasmussen, D., Yager, R.R.: Finding fuzzy and gradual functional dependencies with Sum-
marySQL. Fuzzy Sets and Systems 106(2), 131–142 (1999)

29. Dubois, D., Hüllermeier, E., Prade, H.: A systematic approach to the assessment of fuzzy
association rules. Data Min. Knowl. Discov. 13(2), 167–192 (2006)

OLAP Operators for Complex Object Data

Cubes

Doulkifli Boukraâ1, Omar Boussäıd2, and Fadila Bentayeb2

1 High School of Computer Science, Oued-Smar, Algiers

d boukraa@esi.dz
2 Lumière University - Lyon 2, 5 avenue Pierre Mendès-France, 69676 Bron Cedex

{omar.boussaid,fadila.bentayeb}@univ-lyon2.fr

Abstract. Nowadays, multidimensional models are recognized to best

reflect the decision makers’ analytical view of data. The classical multi-

dimensional models were meant to analyze conventional data (numerical

and categorical). However, they fail to handle data complexity, which is

expressed by the multiplicity of data sources, the heterogeneity of for-

mats, the diversity of structures, etc. To this end, new multidimensional

models have been proposed for OLAP purposes. Nevertheless, data com-

plexity is partially covered in these models, which may cause a lack in

decision making. In our previous work, we proposed to integrate data

complexity within a complex object-based multidimensional model. In

this paper, based on our proposed model, we provide adapted OLAP

operators that take into account data complexity. Thus, we define op-

erators to create complex data cubes, to visualize them and to analyze

them.

Keywords: Multidimensional model, complex object, complex cube,

OLAP operator.

1 Introduction

1.1 Context and Related Work

Nowadays, multidimensional modeling is recognized to best reflect the decision
makers’ analytical view of data as witnessed by the literature richness about
multidimensional models. These models were surveyed in [1]. Associated with
the models are the OLAP operators that allow expressing analysis needs such
as slice-and-dice, rollup and drill-down [5]. Besides, decision making involves
more and more complex data (multiple sources, heterogeneous formats, diverse
structures, etc.) Warehousing and analyzing complex data are not straightfor-
ward activities. Moreover, we believe that the more data complexity aspects are
considered in the warehousing process, the more accurate decisions are.

Recently, there have been several papers on warehousing and analyzing non-
conventional data. Examples of related work deal with unstructured textual data
[9], semistructured data, represented with XML [8], temporal data [16], spatial
data [7].

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 103–116, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

104 D. Boukraâ, O. Boussäıd, and F. Bentayeb

Regarding data modeling and analysis, three approaches can be distinguished.
The first approach consists in using existing OLAP tools to analyze non conven-
tional data. In this case, data may remain in their sources as in [10] and OLAP
operates on a integrated virtual schema of a middleware. User queries are then
translated according to the data source schemes. Some other papers propose to
capture the multidimensional concepts from non-conventional data in a bottom-
up way and provide multidimensional models that can integrate into existing
OLAP tools [8]. The advantage of this approach is to benefit from the maturity
of existing OLAP technologies. However, data complexity is lost due to the lim-
itation of the underlying multidimensional models. A mixed solution consists in
extending traditional OLAP querying to external object data [14]. In this case,
the object data serves as a decoration of the retrieved multidimensional data.

In the second approach, new multidimensional models are provided to deal
with one or many aspects of data complexity. Some models are brought to the
conceptual level such as object-models [12,13], temporal data models [16] or
spatial models [2]. Other models are described at the logical level, especially
with XML for semistructured data. Besides, the underlying OLAP operations are
revisited with respect to data nature and new operators are proposed. Examples
include the XML OLAP operators [17] and textual data aggregation [15].

1.2 Motivation and Contributions

The related work shows that many aspects of data complexity are covered, yet
separately. Furthermore, there is a lack of a framework that integrates as many
aspects as possible. We believe that such a framework would leverage the decision
making process since it provides the analysts with different points of view of the
same data, which is likely to be the case in real life. For instance, to best diagnose
a medical case, doctors would combine numerical data (e.g. measurements) with
textual reports, radiographies, etc. Moreover, a complex data-warehousing and
analysis framework has to address the following issues:

– Cover as many data complexity aspects as possible in the multidimensional
model;

– Integrate into existing OLAP tools when only some aspects of complexity
are considered;

– Support a large set of OLAP visualization techniques.

In a previous work, we proposed a multidimensional model that addresses the
first issue [3]. Our model is based on the concept of complex object that covers
many aspects of data complexity, such as the multiplicity of structures, formats,
sources, etc. In this paper, our main contributions are the following:

– a set of OLAP operators to construct complex data cubes;
– a set of OLAP operators to visualize the data cubes and to analyze them.

The remainder of this paper is organized as follows. In section 2, we recall the
concepts of our proposed model. Then, we present in section 3 the set of operators

OLAP Operators for Complex Object Data Cubes 105

that construct complex cubes, visualize their data and analyze them. In section 4,
we present some implementation details. Finally, we conclude in section 5 and
give some perspectives.

2 The Complex Object-Based Multidimensional Model

In this section, we recall the main concepts underlying our multidimensional
model of complex objects. Further details can be found in [3].

2.1 Concepts and Definitions

The Complex Object. The concept of complex object (CO) was proposed
by Boussäıd et al [4] as a solution for complex data integration. According to
the authors, a CO is a physical or abstract entity composed by one or many
sub-documents1. Each sub-document may represent a simple or tagged text, a
relational view, an image or temporal data (e.g. sound, video). Basically, a CO
describes low level features of data (e.g. image color) and other features such
as the object’s source name and languages, but it can be extended to include
other features such as semantic information (e.g. image content). In our model,
we use a CO to represent both facts and dimension members. Compared to
existing object multidimensional models, a fact or dimension member can be
represented with a whole UML class diagram rather than a single UML class as
in many models. The advantage of such a conceptualization is the possibility to
describe structurally and semantically rich facts and dimensions. A CO fact is
equivalent to the xFact introduced by Nassis et al. [13]. In addition, we abstract
a CO as a set of attributes. An attribute may be simple (e.g. image color)
or complex if composed by simple or other complex attributes (e.g. a whole
image). Attributes are then related to each other via several relationships such
as composition and association. At this stage, however, we consider only one
kind of relationships that organizes attributes in hierarchies, as it will be seen
later.

Definition 1. A CO is a pair Obj = (IDObj , SAObj) where IDObj represents the
object’s identifier and SAObj = {AObj

i /i ∈ N} represents the set of its attributes.

The Complex Relationship. A complex relationship (CR) is an explicit link
between two COs. It may range from simple associations to aggregations, compo-
sitions and specialization/generalization, etc. A CR is characterized by its name
and by the names of the two COs that it links.

Definition 2. A CR is a pair R = (ObjR
s , ObjR

t) where ObjR
s represents the

source object of R and ObjR
t represents its target object.

1 The term document is used in a broad sense.

106 D. Boukraâ, O. Boussäıd, and F. Bentayeb

The Attribute Hierarchy. An attribute hierarchy (AH) is a special relation-
ship between a CO’s attributes. It is characterized by its name and by the set
of its attributes, each one having a level within the hierarchy.

Definition 3. An AH is denoted by AHObj = {AObj
i ∈ SAObj ∪ {IDObj}/i ∈

N} ∪ {AllA} where AllA denotes a dummy attribute at the least detailed level.

The Object Hierarchy. An object hierarchy (OH) is similar to an AH but it
is defined between many COs rather than between attributes. An OH is char-
acterized by its name and by the set of COs, each one having a level within the
hierarchy.

Definition 4. An OH is denoted by OH = {Obji/i ∈ N} ∪ {AllObj} where
AllObj represents a dummy object at the least detailed level.

The Multidimensional Schema. The multidimensional schema is composed
by: (1) the set of complex objects, (2) the set of complex relationships, (3) the
set of attribute hierarchies and (4) the set of object hierarchies.

Definition 5. The multidimensional schema is denoted by SCM=(SO, SR,
SAH , SOH) where SO = {Obji/i ∈ N}, SR = {Rj/j ∈ N}, SAH = {AHk/k ∈
N} and SOH = {OHm/m ∈ N}.

2.2 Example 1

A research laboratory wishes to warehouse data about scientific publishing in
order to answer different analysis needs like (1) assessing the quality of publica-
tions according to different criteria (e.g. publication ratings), (2) assessing the
scientific production of a researcher according to his/her publishing frequency.
Data of scientific publishing can be considered as complex: they originate from
many sources (e.g. DBLP, PubZone.org), they may have different formats (e.g.
images in conference websites) and they may be diversely structured (e.g. publi-
cations are typically semistructured). In order to meet the users’ analysis needs,
the data may be organized using our model as follows.

1. The complex objects: Publication, Author, Proceedings, Conference,
Jounal number, Journal volume, Journal, Date. Examples of attributes for
the object Publication are title, pages, keyword, type and the identifier
publication id ;

2. The relationships: Authored by between Publication and Author, Date pub
between Publication and Date, Publi conf between Publication and Proceed-
ings, Publi journal between Publication and Journal number ;

3. The attribute hierarchies: H pub associated with Publication and composed
by publication id and type, H time associated with Date and composed by
date id, month and year ;

OLAP Operators for Complex Object Data Cubes 107

4. The object hierarchies : H conf composed by Proceedings and Conference,
H journal composed by Journal number, Journal volume and Journal.

The multidimensional schema described above is depicted in Figure 1.

Fig. 1. Example of a complex object-based multidimensional schema

3 OLAP Operators

Our proposed multidimensional model is independent from any analysis context,
i.e. there is no a priori fact or dimension. Indeed, the fact and dimensions are
defined on-line using a projection operation of the multidimensional schema on
a set of its components. The projection produces a new structure, called complex
cube that can be materialized and visualized. Furthermore, existing cubes can
serve as the basis to create new ones, by modifying either their structure or their
data. In this section, we present all these operations.

3.1 The Cube Construction Operators

Cubic Projection. The objective of this operation is to construct a com-
plex cube from the multidimensional schema by projecting it on the following
elements:

1. one complex object to play the role of the fact;
2. a set of measures, each one associated with

(a) one attribute of the fact containing the basic (most detailed) values of
the measure;

(b) one function that aggregates the measure values;
(c) a set of relationships along which the aggregation of the measure values

makes sense (i.e. respecting the measure additivity);
3. a set of relationships that link the fact to the other objects;
4. a set of objects that are directly linked to the fact;
5. a set of object hierarchies containing the projected objects in 4;
6. a set of object hierarchies associated with the objects projected in 4 and 5.

108 D. Boukraâ, O. Boussäıd, and F. Bentayeb

A dimension is then composed by the members of all the object hierarchies that
contain the object directly linked to the fact.

Definition 6. Let SCM = (SO, SR, SAH, SOH) be a multidimensional schema
and SAF = {afi, i ∈ N} be a set of aggregation functions. The cubic projection
is denoted by ΠCObj(SCM) = C = (F, SM, SRC , SD, SAHC , SOHC) where

– F is the fact object such that F ∈ SO;
– SM is the set of measures such that SM = {Mi/i ∈ N} where Mi represents

a measure. We also define the following three functions. (1) AttM associates
each measure Mi with one of the fact attributes, denoted by AMi where
AMi ∈ {IDF } ∪ SAF . (2) AggRel associates each measure Mi with the set
SRMi . The set SRMi is such that SRMi = SRC if Mi is additive, SRMi = φ
if Mi is non-additive and SRMi ⊂ SRC if Mi is semi-additive. (3) AggFun
associates each measure Mi with a function afMi ∈ SAF ;

– SRC = {RC
i , i ∈ N} is the set of relationships where SRC ⊆ SR;

– SD = {Dj , j ∈ N} is the set of dimensional objects SD ⊆ SO;
– SAHC = {OHC

m, m ∈ N} is the set of reduced attribute hierarchies;
– SOHC = {AHC

k , k ∈ N} is the set of reduced object hierarchies.

Example 2. Consider the multidimensional schema (Fig. 1) called SCM pub.
Let’s suppose that the user aims at analyzing the publication ratings and their
keywords to get the maximum ratings of publications by author and period of
time and the top keywords by author and conference. The corresponding cube for
this analysis context is the result of projecting SCM Pub on the CO Publication.
We denote by C pub such a cube. Then, C pub= ΠC Publication(SCM pub)=
(F, SM, SRC pub, SD, SAHC pub, SOHC pub) such that

– F = Publication
– SM = {max rating, top keyword} where

• AttM(max rating) = Rating
• AggRel(max rating) = {Authored by, Date pub}
• AggFun(max rating) = max
• AttM(top keyword) = keyword
• AggRel(top keyword) = {Authored by, Publi conf }
• AggFun(top keyword) = top keyword

– SRC pub={Authored by, Date pub, Publi journal, Publi conf }
– SD = {Time, Author, Proceeding, Conference, Journal number,

Journal volume, Journal}
– SAHC pub = {H time}
– SOHC pub = {H conf, H journal}

Constructing new cubes from existing cubes. In our model, a complex
cube is a materialized view of the multidimensional schema. Materialized views
(MV) are used to significantly enhance query response time in data warehouses
[11]. In our work, we use MV (existing cubes) to construct new cubes as an

OLAP Operators for Complex Object Data Cubes 109

Table 1. Structure-related operators for complex cube construction

Operation Definition

Add / remove a relationship ADDR(C, R+)|REMR(C,RC
−)

Add / remove an attribute hierarchy ADDAH(C, AH+)|REMAH(C, AHC
−)

Add / remove an object hierarchy ADDOH(C, OH+)|REMOH(C, OHC
−)

Add / remove a measure ADDM (C, M+)|REMM (C, MC
−)

Table 2. Data-related operators for complex cube construction

Operation Definition

Data selection according to a predicate on an object σCC(P (Objσ))

Union of two cubes C1 ∪ C2

Difference of two cubes based one object C1 −C C2(Obj−)

Intersection of two cubes based on one object C1 ∩ C2(Obj∩)

alternative to using the multidimensional schema. This is argued by the follow-
ing. First, from a structural standpoint, the analysis contexts are likely to share
many common elements (the same fact, the same dimensions, etc.) and it is
natural to modify the structure of existing cubes by adding or deleting some el-
ements. Secondly, from a content standpoint, many analysis contexts may corre-
spond to the same cube structure while containing different data. In this section,
we provide two kinds of cube-based operators: (1) structure-related operations
(table 1) that modify the structure of existing cubes and (2) data-related oper-
ations (table 2) that produce same-structured cubes but that contain different
data.

Example 3. Based on the cube C pub of example 2, the user can create a new
cube in order to analyze max rating by author and by date. We can write C pub1

= REMOH (REMOH (REMR (REMR (REMM (C pub, top keyword),
Publi journal),Publi conf),H conf),H journal). Now, based on C pub1, the user
can switch from max rating to top keyword and analyze it by author and by
journal. We can write C pub2 = ADDOH (ADDR (REMR (REMM (ADDM

(C pub1, top keyword), max rating), Date pub), Publi journal),
H journal). Then, based on C pub2, the user can create two cubes that con-
tain respectively publications whose titles contain the word database: C1 =
σC(Contains(Publication.T itle,=′ database′)) and authors whom surnames be-
gin with the letter A: C2 = σC(FirstLetter(Author.FamilyName =′ A′))).
Finally, based on C1 and C2, a cube can be created for publications whose ti-
tles contain the word database and written, among others, by authors whom
surnames begin with A:C1 ∩ C2(Publication).

3.2 Visualization Operators

In order to perform OLAP analyzes, data are displayed using different visual-
ization solutions (e.g. cross-tabs). Choosing a convenient solution for the user is

110 D. Boukraâ, O. Boussäıd, and F. Bentayeb

an issue in OLAP visualization [6]. Therefore, as stated in [6], there is a need
of an abstraction layer of OLAP visualization that enables switching from one
visualization technique to another. In this paper, we introduce the notion of view
over a complex cube as an abstract visualization solution. Thus, it is possible
to describe OLAP analysis operations at an abstract level and then let the user
choose the appropriate interface according the nature of data to be analyzed.
Furthermore, we provide a formal description of a view that can be stored and
grouped with other view definitions to form navigation contexts. Then, the nav-
igation contexts can be further processed using different techniques (e.g. data
mining) to enhance or personalize the OLAP user interface.

View Projection. A view projection operation is similar to the Display op-
eration introduced in [15]. In our work, this operation displays the following
elements:

– A view fact (VF) that maps onto to the fact of the complex cube. A VF is
characterized by its name and by the set of its features. A feature maps onto
a fact attribute of the complex cube;

– A set of measures, selected among the measures of the cube;
– A view dimension (VD) per relationship of the cube. A VD corresponds to a

dimension of the cube and it is characterized by its name and by the set of
its features. A VD feature maps onto one attribute of a dimension member
of the cube. Moreover, in order to know the aggregation level of the measure
values, we associate the VD with two elements:
• a complex object that belongs to one object hierarchy of the dimension

if there is any. We denote by AO such an object. In case there is no
hierarchy, the VD is associated with the object directly linked to the
fact;

• an attribute that belongs to one attribute hierarchy related to AO. Let
us call this attribute AA.

Fig. 2. The notion of view over a complex cube

OLAP Operators for Complex Object Data Cubes 111

The aggregated values of a measure are calculated along the AO then along
AA. The VD features that may be displayed on a view depend on AO and
AA. Figure 2 depicts the notion of view over a complex cube. In this figure,
the VF features are AV F

1 and AV F
2 , the measures are M1 and M2, the VDs

are V D1, V D2 and V D3 which correspond to the relationships R1, R2 et R3

and the VD features are AV D1
1 , AV D1

2 , AV D2
1 , AV D2

2 , AV D2
3 and AV D3

1 .

Definition 7. Let C = (F, SM, SRC , SD, SAHC , SOHC) be a complex cube.
The view projection is denoted by V (C) = V C = (FV , SMV , SDV) where

– FV is the VF such that FV = {AFV
p /p ∈ N} where FV ⊆ SAF ∪ IDF if the

view displays the basic data of the cube (no aggregation is performed) and
it is set to a constant Undefined if the view displays aggregated values of at
least one measure;

– SMV = {MV
i /i ∈ N} ⊆ SM is the set of measures to be displayed;

– SDV = {DV Rj /j ∈ N} where DV Rj is a view dimension corresponding to
the relationship Rj of C. Moreover, we define the function V iewObj(DV Rj)
= V OV Rj which associates DV Rj with an object belonging to the cube
dimension that corresponds to the relationship Rj . Finally, we define the
function V iewAtt(DV Rj) = V AV Rj that associates DV Rj with an attribute
belonging to one attribute hierarchy of V OV Rj .

Example 4. Let us suppose that the user wants to analyze max rating by author
and by year and top keyword by author and by proceedings. The user wants to
display the publication titles, the authors’ first names and surnames and the
proceedings’ titles. The view that corresponds to such an analysis is depicted
in Fig. 3. Here, the VF features (the publication titles) are set to Undefined
because the values of max rating are aggregated at the year level along the
hierarchy H time. Formally, let C be the cube defined by this analysis context and
V RK the view that the user wants to display. Then, V RK = ΠV (C)=(FV RK ,
SMV RK , SDV RK) where

– FVRK=Undefined;
– SMV RK={max rating, top keyword};
– SDV RK = {Authors, Time, Conferences} such that

• Authors = {Author.Firstname, Author.Lastname} where
∗ ViewObj(Authors) = Author
∗ ViewAtt(Authors) = Author.Author id

• Time = {Date.Year} where
∗ ViewObj (Time) = Date
∗ ViewAtt(Time) = {Date.Year}

• Conferences={Proceedings.Name} where
∗ ViewObj (Conferences) = Proceedings
∗ ViewAtt(Conferences) = Proceeding.Proceeding ID

112 D. Boukraâ, O. Boussäıd, and F. Bentayeb

Fig. 3. Example of a view over a complex cube

Structuring the view and restricting the data. Structuring a view consists
in adding or deleting features or measures according to the user’s needs, i.e.
to have more or less information displayed. The operations of restricting data
are similar to slice-and-dice operations in traditional OLAP. They consist in
applying a selection predicate either to the fact/dimension feature values or to
the detailed/aggregated measure values. Conversely, unrestricting data consists
in displaying all the values of a feature or a measure and it applies to previously
restricted values. Table 3 summarizes these operations.

Table 3. Structure and data-related operators on views over complex cubes

Operation Definition

Add / Remove measures ADDV M (V C , M+)|REMV M (V C , M−)

Add / Remove features of fact ADDF F (V C , FF+)|REMF F (V C , FF−)

of dimension ADDDF (V C , DF+)|REMDF (V C , DF−)

Restrict/Unrestrict data of fact σF F V C(P (FF))|μF F V C(FF)

of dimension σDF V C(P (DF))|μDF V C(DF)

of measure σMV C(P (M))|μMV C(M)

Example 5. Examples of visualization operation on the view V RK of ex-
ample 4 are (1) adding the names of conferences: ADDDF (V RK, Confer-
ences.Conference.Name) and (2) displaying only publications of year 2000:
σDF V RK(Time.Date.year = ’2000’).

3.3 Aggregate Operators

An aggregate operation consists in changing the associated object of a view
dimension or its associated attribute. The measure values are then aggregated
or detailed consequently. We define three kinds of aggregate operations.

OLAP Operators for Complex Object Data Cubes 113

– the Object hierarchy-based operations consist in changing the current AO by
the object at the upper level according to an object hierarchy (rollup) or at
the lower level (drill down);

– the Attribute hierarchy-based operations consist in changing the current AA
by the attribute at the upper level according to an attribute hierarchy
(rollup) or at the lower level (drill down);

– the Hierarchyless operations are applicable if AO (resp. AA) does not belong
to any object-hierarchy (resp. to any attribute hierarchy). The hierarchyless
rollup/drill-down consist respectively in removing/displaying the VD.

Note. Due to space limitation, we omit the formal notations for aggregate
operations. Yet, we summarize them in table 4.

Table 4. Aggregate Operators

Operation Definition

Rollup Object hierarchy-based RollUpOH(V C , DV RRU , OHC)

Attribute hierarchy-based RollUpAH(V C , DV RRU , AHC)

Hierarchyless RollUpHL(V C , DV RRU)

Drill down Object hierarchy-based DrillDownOH (V C , DV RRU , OHC)

Attribute hierarchy-based DrillDownAH (V C , DV RRU , AHC)

Hierarchyless DrillDownHL(V C , DV RRU)

Example 6. Examples of aggregate operations on the view V RK are the
following: (1) Attribute hierarchy-based rollup along the hierarchy H time and
according to the relationship Date pub to get max rating by authors and for
all periods of time: RollUpAH(V RK, T ime, H time). (2) Object hierarchy-
based rollup along the hierarchy H conf to get top keyword by author and
by conference: RollUpOH(V RK, Conferences, H Conf). (3) Hierarchyless
rollup to get max rating by year and top keyword by proceedings for all au-
thors : RollUpHL(V RK,Authors). The drill down operations are the converse
of the previous operations.

4 Implementation

In order to validate our multidimensional schema and operators, we implemented
the core of a warehousing and analysis framework (Fig. 4). We have translated
the conceptual modeling elements into the logical and physical levels using XML.
The choice of XML is motivated by its widespread use and its power to describe
heterogeneous and diversely structured data or complex data in general. Thus,
we developed an XML schema that describes the structure of any data warehouse
and any complex cube. Then, for a functional validation, we used the dblp.xml
file as the main source of our data warehouse. At the metadata level, we defined

114 D. Boukraâ, O. Boussäıd, and F. Bentayeb

Fig. 4. System architecture

an XML file dblp xwh.xml that describes the content of the data warehouse
which is then materialized as a set of other XML files.

The modules of the platform the following. (1) the ETL module reads dblp.xml
and loads the data into the data warehouse XML files. These files are then stored
into a native XML database (eXist). (2) the cube specification module imple-
ments the cubic projection operator. It reads the meta data file (dblp xwh.xml)
as well as the data files and produces a metadata file (cube.xml) and a set
of XML documents that contain the real data. The visualization and analysis-
related operators will be implemented in a next step.

5 Conclusion

In this paper, we have presented a set of OLAP operators for a complex object-
based multidimensional model. The first set of operators allows constructing of
complex data cubes from the multidimensional schema or from existing cubes.
The structure-related operators produce new cubes having a different struc-
ture than the original cubes whereas the data-related operators produce same-
structured cubes but containing more or less data. We have also defined a
projection operator over a data cube in order to display its data. Other view-
related operators aim at displaying more or less features or measures on a view
(structure-related operators) or at getting more or less data displayed (data-
related operators). Finally, the aggregate operators aim at having more or less
detail about the measures’ values. There are many perspectives for our work.
First, we plan to consider more complex-structured measures instead of simple
attributes. Then, we shall extend the cube structure by considering the attribute
hierarchies in relation to the fact and the object hierarchies that contain the fact.
These hierarchies will then allow observing a same measure at different levels

OLAP Operators for Complex Object Data Cubes 115

of the hierarchies and thus enable fact-based aggregate operations. Finally, we
plan to extend the visualization and analysis operations to displaying the inter-
nal structure of the complex objects (e.g. the relationships between attributes)
and thus enable relationship-aware analyzes.

References

1. Abelló, A., Samos, J., Saltor, F.: A framework for the classification and description

of multidimensional data models. In: Mayr, H.C., Lazanský, J., Quirchmayr, G.,

Vogel, P. (eds.) DEXA 2001. LNCS, vol. 2113, pp. 668–677. Springer, Heidelberg

(2001)

2. Bimonte, S., Tchounikine, A., Miquel, M.: Towards a spatial multidimensional

model. In: Song, I.-Y., Trujillo, J. (eds.) Proceedings of the ACM 8th International

Workshop on Data Warehousing and OLAP (DOLAP 2005), Bremen, Germany,

pp. 39–46. ACM, New York (2005)

3. Boussäıd, O., Boukraâ, D.: Multidimensional Modeling of Complex Data. In: En-

cyclopedia of Data Warehousing and Mining, 2nd edn., pp. 1358–1364. IGI Pub-

lishing, Hershey (2009)

4. Boussäıd, O., Tanasescu, A., Bentayeb, F., Darmont, J.: Integration and dimen-

sional modelling approaches for complex data warehousing. Journal of Global Op-

timization 37(4), 571–591 (2007)

5. Chaudhuri, S., Dayal, U.: An overview of data warehousing and olap technology.

SIGMOD Record 26(1), 65–74 (1997)

6. Cuzzocrea, A., Mansmann, S.: OLAP Visualization: Models, Issues, and Tech-

niques. In: Encyclopedia of Data Warehousing and Mining, 2nd edn., pp. 1439–

1446. IGI Publishing, Hershey (2009)

7. Damiani, M.L., Spaccapietra, S.: Spatial Data Warehouse Modelling. In: Processing

and Managing Complex Data for Decision Support. Idea Group Publishing, USA

(2006)

8. Golfarelli, M., Rizzi, S., Vrdoljak, B.: Data warehouse design from XML sources.

In: Proceedings of teh 4th ACM International Workshop on Data Warehousing and

OLAP (DOLAP 2001), Atlanta, Georgia, USA (2001)

9. Inokuchi, A., Takeda, K.: A method for online analytical processing of text data.

In: Silva, M.J., Laender, A.H.F., Baeza-Yates, R.A., McGuinness, D.L., Olstad,

B., Olsen, Ø.H., Falcão, A.O. (eds.) Proceedings of the 16th ACM Conference

on Information and Knowledge Management (CIKM 2007), Lisbon, Portuga, pp.

455–464. ACM, New York (2007)

10. Jensen, M.R., Møller, T.H., Pedersen, T.B.: Specifying olap cubes on XML data.

Journal of Intelligent Information Systems 17(2-3), 255–280 (2001)

11. Lin, B., Hong, Y., Lee, Z.-H.: Data Warehouse Performance. In: Encyclopedia of

Data Warehousing and Mining, 2nd edn., pp. 580–585. IGI Publishing, Hershey

(2009)

12. Luján-Mora, S., Trujillo, J., Song, I.-Y.: Multidimensional modeling with UML

package diagrams. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER

2002. LNCS, vol. 2503, pp. 199–213. Springer, Heidelberg (2002)

13. Nassis, V., Rajugan, R., Dillon, T.S., Rahayu, J.W.: Conceptual design of XML

document warehouses. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK

2004. LNCS, vol. 3181, pp. 1–14. Springer, Heidelberg (2004)

116 D. Boukraâ, O. Boussäıd, and F. Bentayeb

14. Pedersen, T.B., Gu, J., Shoshani, A., Jensen, C.S.: Object-extended olap querying.

Data Knowledge Engineering 68(5), 453–480 (2009)

15. Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: Algebraic and graphic languages for

olap manipulations. International Journal of Data Warehousing and Mining 4(1),

17–46 (2008)

16. Vaisman, A.A., Mendelzon, A.O.: A temporal query language for olap: Implemen-

tation and a case study. In: Ghelli, G., Grahne, G. (eds.) DBPL 2001. LNCS,

vol. 2397, pp. 78–96. Springer, Heidelberg (2002)

17. Wiwatwattana, N., Jagadish, H.V., Lakshmanan, L.V.S., Srivastava, D.: X3: A

cube operator for XML olap. In: Proceedings of the 23rd International Confer-

ence on Data Engineering (ICDE 2007), Istanbul, Turkey, pp. 916–925. IEEE, Los

Alamitos (2007)

ADBdesign: An Approach to Automated Initial

Conceptual Database Design Based on
Business Activity Diagrams

Drazen Brdjanin1, Slavko Maric1, and Dejan Gunjic2

1 University of Banja Luka, Faculty of Electrical Engineering, Patre 5,

78000 Banja Luka, Bosnia and Herzegovina

{bdrazen,ms}@etfbl.net
2 NITES, Petra Kocica 41,

78000 Banja Luka, Bosnia and Herzegovina

dejan.gunjic@gmail.com

Abstract. This paper presents a new approach to automated initial

conceptual database design based on detailed UML business activity di-

agrams. The most important concepts of detailed business activity di-

agrams, as a frequently used business process modeling notation, are

identified and the XMI represented. Based on those concepts, we define

the rules for the automated generation of the class diagram as the target

initial conceptual database model. We also give a short description of

the used software development environment and implemented generator

with some experimental results of application to a real business model.

Keywords: business activity diagram, class diagram, database, initial

conceptual model, UML.

1 Introduction

Business systems are complex systems that provide required products and/or
services to customers. They are characterised by an appropriate organisational
structure and business processes taking place in order to satisfy customers’ needs
or requirements. Customers, business processes and the organisational structure
together make up what is often called business domain. Modeling of business
domain is the subject of the business modeling discipline. The business model,
as the result of business modeling, is an abstraction of business system elements
and their interrelationships [1].

According to modern methodologies, business modeling is the first phase of
software system development for two reasons. On the one hand, the business
model is used for the identification of system requirements, i.e. the architecture of
an information system that best supports a given business system. On the other
hand, through some mappings and/or transformations, business models can be
used directly for building target software system models, which significantly

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 117–131, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

118 D. Brdjanin, S. Maric, and D. Gunjic

increases the software development efficiency. This aspect is the very foundation
of Model Driven Development (MDD), a paradigm that sees the business model
(CIM - Computational Independent Model) as the basis for automated Platform
Independent Model (PIM) design [2].

The related literature suggests a large number of database design methodolo-
gies and notations [3]. Database design mainly undergoes the following phases:
requirements analysis, conceptual design, logical design and physical design.
Each phase ends in an appropriate model, which is characterised by the pre-
sented abstraction level on the one hand, and the reached level of the implemen-
tation details of the target database on the other. The main goal of conceptual
design is a model that provides an overall view of information in the entire sys-
tem. This model is usually called the conceptual database model and represents
a semantic data model. The related literature is more significantly focused on
conceptual design than on other phases, considering it to be the most important
design phase, because the following phases are only subsequent transformations
of the model from the previous one.

The initial phase in database design includes the preliminary specification and
modeling of the information needs of the business system for which a database is
designed. Use cases, as one of important approaches in software engineering [4],
are a frequently used mechanism for the identification of system functionalities
and a reliable basis for the system requirements specification at a high level of
abstraction. It is business use case driven business models that are used in this
paper as the starting point for the automated design of the initial conceptual
model of relational database.

Modern database design approaches [5] emphasize the initial phase, consider-
ing that the most important part of conceptual design is already completed in
that phase, because all business entities and their interrelationships are mainly
identified, so the following design phases are mainly just subsequent transfor-
mations of the initial conceptual model. Therefore, the database design pro-
cess consists of the following phases: initial conceptual design, conceptual model
refinement and optimization, model mapping to the target database schema,
and schema optimization. During this process, the conceptual model undergoes
several transformations which either maintain the equivalence of the model or
change it by introducing new or removing some existing concepts.

The fact that business modeling and database design use different notations
that usually don’t conform to the same or common metamodel imposes a partic-
ular problem and challenge in automated initial conceptual model design based
on the business model. Business modeling is mainly characterised by process-
oriented notations, such as: IDEF0 [6], EPC [7], Petri nets [8], BPMN [9], etc.
On the other hand, the E-R (Entity-Relationship) notation [10] or one of its
modifications such as IE [11] is traditionally used for conceptual database mod-
eling, while the development of UML (Unified Modeling Language) has seen
an increasing use of the UML class diagram as well [12]. Different, i.e. non-
harmonized notations are one of the reasons for a fairly small number of papers
in the field.

ADBdesign: An Approach to Automated Initial Conceptual Database Design 119

Fig. 1. Approach to automated initial conceptual model design

One of the ways to overcome the problem of non-harmonised notations is the
use of UML for both business modeling and for database design. UML [13] is
the industry standard for software modeling, but the open concept, which allows
the specialisation of the rich notation, ensures the application of UML in other,
non-software disciplines as well. This paper presents an approach to automated
initial conceptual database model design which uses a unified notation (Fig. 1).
The proposed approach aims to generate the UML class diagram as the target
initial conceptual model, on the basis of the detailed UML business activity
diagram as the diagram which documents business use cases [14].

Following the introduction, the second section of the paper describes detailed
business activity diagrams as the basis for automated initial conceptual model
design. The third section presents the XMI representation of detailed activity
diagrams as the source diagrams, and of class diagrams as the target diagrams.
Target generator requirements and implementation are described in the fourth
section, while the experimental results of the generator’s application in a concrete
business system are given in the fifth section. An overview of the related work is
presented in the sixth section. Finally, we conclude the paper and highlight the
directions for further research.

2 Detailed Business Activity Diagrams

The UML activity diagram is a widely accepted business process modeling no-
tation [15]. There are a large number of papers dealing with the formalisa-
tion of semantics and the analysis of activity diagram suitability for business
modeling [16].

In business modeling, the activity diagram can be used in two ways [17]. The
first form is the so-called macroactivity diagram, which is used in developing

120 D. Brdjanin, S. Maric, and D. Gunjic

the initial business model for the rough specification of activities which
realise business use cases, i.e. for modeling business processes at a high level
of abstraction.

The second form is the so-called detailed activity diagram which is developed
by populating the macroactivity diagram with all business process participants
(business actors, workers, organisational units, etc.), used objects and object
flows. The participants’ areas of responsibility are modelled by swimlanes. All
activities, objects and object flows related to a participant are shown in the
same swimlane. Hence, there are as many swimlanes as there are participants
involved in the process. The input of an object into an activity is an input
object flow, which is modelled as a dependency directed from the object toward
the activity. An object which is an output from an activity is connected by a
dependency directed from the activity toward the object, which is called output
object flow.

Detailed activity diagrams represent a reliable starting point for developing
the initial conceptual model, because business objects, object flows, activities on
objects, and participants’ responsibilities fully document the identified business
use cases. It is these details (participants and objects) that are the basis for the
initial conceptual model, because they are directly mapped into the classes of
the target class diagram, while the identified activities are mapped into the class
associations with the appropriate multiplicity, as given in [14] (Fig. 2).

The relationships between all participants (be it the business actor, worker
or organisational unit) and business objects are agent-object relationships [18]
(the business actor buys a product or files an application, the worker issues
a required document, etc.) Multiplicity is most often that of type ”1..*” (the
business actor can file several applications, buy several products, etc.). Other

Fig. 2. Mapping of detailed activity diagram into (business) class diagram

ADBdesign: An Approach to Automated Initial Conceptual Database Design 121

types of multiplicity can often be classified under type ”1..*” multiplicity (e.g.
”1..1” is a special case of ”1..*” multiplicity).

3 XMI Representation of UML Diagrams

XMI (XML Metadata Interchange) [19] is the OMG standard for platform inde-
pendent metadata interchange enabling the serialization of MOF (Meta-Object
Facility)-based models and metamodels into XML, and vice versa, the visuali-
sation of MOF-based models and metamodels from XML.

3.1 XMI Representation of Detailed Activity Diagram

According to [19], each MOF instance, and in this case each element of the de-
tailed activity diagram, is represented by an appropriate XML element marked
by a specific XML tag <group>, <node> or <edge> and contains a certain number
of attributes. Each XML element is at least characterised by the xmi:type at-
tribute as the UML metaclass identifier, and the xmi:id attribute as the unique
instance identifier in the model. Apart from these, there may be other attributes
as well, such as: name for naming an instance, inPartition for identifying the
swimlane an instance belongs to, incoming and outgoing for identifying input
and output object flows, etc.

For illustration, Table 1 shows the XMI representation of the key concepts of
the generic activity diagram in Fig. 3 (left).

Fig. 3. Generic activity diagram (left) and corresponding class diagram (right)

122 D. Brdjanin, S. Maric, and D. Gunjic

Table 1. XMI representation of activity diagram key concepts

Element XMI representation

Swimlane <group xmi:type="uml:ActivityPartition"

xmi:id="id P" name="Swimlane"

node="id A id IO id OO ..." edge="id IF id OF ..."/>

Activity <node xmi:type="uml:OpaqueAction"

xmi:id="id A" name="Activity" inPartition="id P"

outgoing="id OF ..." incoming="id IF ..."/>

InputObject <node xmi:type="uml:CentralBufferNode"

xmi:id="id IO" name="InputObject"

outgoing="id IF" inPartition="id P"/>

OutputObject <node xmi:type="uml:CentralBufferNode"

xmi:id="id OO" name="OutputObject"

incoming="id OF" inPartition="id P"/>

InputObjectFlow <edge xmi:type="uml:ObjectFlow"

xmi:id="id IF" name="InputObjectFlow"

source="id IO" target="id A" inPartition="id P"/>

OutputObjectFlow <edge xmi:type="uml:ObjectFlow"

xmi:id="id OF" name="OutputObjectFlow"

source="id A" target="id OO" inPartition="id P"/>

3.2 XMI Representation of Class Diagram

According to [19], each class in the class diagram is represented by an appropriate
XML element which is marked by the XML tag <packagedElement> and whose
xmi:type attribute has the "uml:Class" value.

Each class attribute is represented by an XML element marked by the tag
<ownedAtttribute>. Attributes may be class data members, as well as those
based on associations with other classes. Apart from the unique identifier xmi:id,
an XML element representing a class data member has two attributes - name
and type. The attribute name contains the name of a class data member (e.g.
firstName), while the attribute type represents the data member type.

An XML element representing an attribute related to an association with
another class is always called "target", and apart from the xmi:id, it has the
attributes association and type, which contain the identifiers of an association
and the other class with which the association has been established, respectively.
Attributes related to associations are additionally characterised by the target end
multiplicity (<upperValue> and <lowerValue>).

Each class association is represented by an XML element marked by the
<packagedElement> tag, whose xmi:type attribute has the "uml:Association"
value, while two memberEnd attributes identify the source and target associa-
tion ends. An association is also characterised by the <ownedEnd> element which
defines the source multiplicity (the target multiplicity is already defined).

ADBdesign: An Approach to Automated Initial Conceptual Database Design 123

Table 2. XMI representation of class diagram key concepts

Element XMI representation

class <packagedElement xmi:type="uml:Class"

InputObject xmi:id="id IO" name="InputObject">

<ownedAttribute xmi:id="id aO" name="id" type="int"/>

</packagedElement>

class <packagedElement xmi:type="uml:Class"

Swimlane xmi:id="id P" name="Swimlane">

<ownedAttribute xmi:id="id aP" name="id" type="int"/>

<ownedAttribute xmi:id="id t" name="target"

type="id IO" association="id A">

<upperValue xmi:type="uml:LiteralUnlimitedNatural"

xmi:id="id uP" value="*"/>

<lowerValue xmi:type="uml:LiteralInteger"

xmi:id="id lP"/>

</ownedAttribute>

</packagedElement>

association <packagedElement xmi:type="uml:Association" xmi:id="id A"

Activity name="Activity" memberEnd="id t id oEA">

<ownedEnd xmi:id="id oEA" name="source"

type="id P" association="id A">

<upperValue xmi:type="uml:LiteralUnlimitedNatural"

xmi:id="id uO" value="1"/>

<lowerValue xmi:type="uml:LiteralInteger"

xmi:id="id lO" value="1"/>

</ownedEnd>

</packagedElement>

For illustration, Table 2 shows the XMI representation of the key concepts
of the generic class diagram in Fig. 3 (right), which is the initial conceptual
model for the given activity diagram (OutputObject class is omitted, because
its representation is very similar to the InputObject class).

4 Initial Conceptual Model Generator

This section defines the requirements for the target generator of the initial con-
ceptual model and describes its implementation according to those requirements.

4.1 Requirements for Target Generator

The initial conceptual model generator is to implement the transformation process
illustrated by the activity diagram in Fig. 4. Following the selection of a source
activity diagram, an appropriateXML tree is to be generated in order to enable the
extraction of characteristic concepts and the generation of the target class diagram.

124 D. Brdjanin, S. Maric, and D. Gunjic

Fig. 4. Initial conceptual model design process

The first step in creating a class diagram is the extraction of swimlanes from
the XML tree and the generation of the corresponding classes. The generator is
to recognise a swimlane as the <group> element, whose xmi:type attribute has
the "uml:ActivityPartition" value as shown in Table 1. For each swimlane a
class of the same name is to be created in accordance with Table 2. Additionally,
the attribute "id" representing the primary key in the target key-based initial
conceptual database model, is to be added to the created class. Following the
same analogy, business objects are to be extracted from the XML tree and the
classes of the same name are to be generated, in accordance with the XMI
definitions provided in Tables 1 and 2.

After generating classes for the swimlanes and business objects, the asso-
ciations of the created classes are to be generated based on object flows and
activities. The generator is to extract object flows (according to the Table 1),
and to identify the source and target for each object flow in order to distin-
guish input and output object flows, since this directly affects the association
multiplicity. The source end of an association is always a class representing a
swimlane. Its identifier can be determined indirectly. Firstly, the identifier of an
activity for which the given object flow represents an input or output is to be
determined, and then the swimlane the activity belongs to, is to be identified.
The target end is always a class representing a business object and its identifier
is determined directly. An association is to be generated in accordance with the
XMI definition given in Table 2, with multiplicity ”1” on the source end, and
”*” on the target end. The name of the association corresponds to the activity
performed on the object.

ADBdesign: An Approach to Automated Initial Conceptual Database Design 125

4.2 Implementation

The target generator can be implemented in different ways and on different de-
velopment platforms. Given the experimental nature of the approach and efforts
to implement the generator independently from commercial tools, the choice is
reduced to an Eclipse-based development environment.

Although there are a relatively large number of available Eclipse plugins en-
abling UML model manipulation, the number of plugins enabling an adequate
manipulation of detailed activity diagrams, as well as a satisfactory visualisation
of the generated class diagram, is relatively small. This paper uses the Eclipse-
based Topcased development platform [20], v3.2.0.

Topcased. Topcased v3.2.0 (Toolkit in Open-source for Critical Application
& Systems Development) is a system/software engineering toolset based on
Galileo (Eclipse 3.5). It includes several graphical model editors (UML, SysML,
SAM, AADL), OCL tools, QVT processor, some code generators (UML2Java,
UML2Python, etc), and some other experimental features. Topcased UML toolkit
enables the manipulation of most UML diagrams and ensures a satisfactory vi-
sualisation of automatically generated diagrams.

The functionality of the Topcased platform and the implemented initial con-
ceptual database model generator is based on the standard UML2 Eclipse plugin
as the EMF (Eclipse Modeling Framework) - based [21] implementation of the
UML 2.1 specification [22] for the Eclipse platform, which enables visual UML
modeling, as well as the program generation of UML diagrams.

Each UML diagram in the Topcased model is represented by two files of
the same name, but different extensions. The .uml file contains the XMI rep-
resentation of a diagram, while the .umldi file describes the visualisation of a
diagram. The implemented generator processes the .uml description of the ac-
tivity diagram and generates the .uml representation of the class diagram, and
the visualisation (generation of the corresponding .umldi file) is then performed
by using the integrated Topcased functionality. Given the applied UML2 plugin,
the generator manipulates diagrams that are compliant with the UML 2.1.0 and
the XMI 2.1 specifications.

ADBdesign plugin. The proposed activity diagram transformations are of en-
dogenous nature, because both the source and the target diagram have the same
metamodel, and the transformation rules are relatively simple. The generator
implementation is therefore not based on the QVT [23] approach, but on the
combination of the DOM XML parser for the source diagram analysis and the
UML2 factory for the target diagram generation [24].

The ADBdesign plugin implements the generator in accordance with the iden-
tified requirements. The architecture of the implemented plugin is shown in
Fig. 5. The GUI package contains classes that enable integration into the Top-
cased environment and user interface, while the Generator package contains the
ad2cd class, which implements the transformation process.

Following the selection of a source diagram (ad2cdWizard), an appropriate
XML tree is generated by fileToDocument() method (based on the DOM

126 D. Brdjanin, S. Maric, and D. Gunjic

Fig. 5. ADBdesign plugin architecture

DocumentBuilderFactory). The generation of the target class diagram starts
if the selected diagram is an activity diagram (method activityCheck()).

The extraction of swimlanes from the XML tree and the generation of ap-
propriate classes is done by generateFromActivityPartitions()method. The
XMI identification of the created classes is done by the used UML2 generator of
the Topcased development platform. The attribute "id", which is the primary
key, is added to the generated classes. The code of the described generator is
provided in the following listing:

public static void generateFromActivityPartitions()

{

org.eclipse.uml2.uml.Class classAP;

NodeList swlanes = document.getElementsByTagName("group");

for (int i=0; i<swlanes.getLength(); i++)

{

NamedNodeMap attribs = swlanes.item(i).getAttributes();

Attr typeA = (Attr)attribs.getNamedItem("xmi:type");

String type = typeA.getValue().toString();

if (type.equals("uml:ActivityPartition"))

{

Attr attribute = (Attr)attribs.getNamedItem("name");

String name = attribute.getValue().toString();

classAP = diagram.createOwnedClass(name, false);

classAP.createOwnedAttribute("id", primitiveType_int);

}

}

}

ADBdesign: An Approach to Automated Initial Conceptual Database Design 127

The generateFromObjects() generator, which extracts business objects and
generates appropriate classes, is implemented following the same analogy. Given
the similarity, we don’t describe the implementation.

The generateFromObjectFlows() method implements the associations gen-
erator. It uses the HashMap<String,Class> objects hashO and hashA with data
on the created classes for business objects and extracted activities respectively, as
well as the HashMap<String,String> object hashActInP with data on activities
belonging to the swimlanes. These objects are created by activityExtraction()
method. The code of the described generator is provided in the following listing:

public static void generateFromObjectFlows()

{

NodeList edges = document.getElementsByTagName("edge");

for (int i=0; i<edges.getLength(); i++)

{

NamedNodeMap attribs = edges.item(i).getAttributes();

Attr typeA = (Attr)attribs.getNamedItem("xmi:type");

String type = typeA.getValue().toString();

if (type.equals("uml:ObjectFlow"))

{

Attr idSoA = (Attr)attribs.getNamedItem("source");

String idS = idSoA.getValue().toString();

Attr idTaA = (Attr)attribs.getNamedItem("target");

String idT = idTaA.getValue().toString();

String idA = (hashA.containsKey(idS)) ? idS : idT;

String idO = (hashA.containsKey(idS)) ? idT : idS;

if (hashActInP.get(idA) != null)

{

String source = hashActInP.get(idA);

String name = hashA.get(idA);

org.eclipse.uml2.uml.Class classO =

(org.eclipse.uml2.uml.Class)hashO.get(idO);

org.eclipse.uml2.uml.Class classAP =

(org.eclipse.uml2.uml.Class)hashActParts.get(source);

Association asc = classAP.createAssociation(true,

AggregationKind.NONE_LITERAL, "target", 0,

LiteralUnlimitedNatural.UNLIMITED, classO, false,

AggregationKind.NONE_LITERAL, "source", 1, 1);

asc.setName(name);

}

}

}

}

5 “Real-World” Example

The implemented generator of the initial conceptual database model is applied to
the business model of the visa issuance system, which is also used for illustration

128 D. Brdjanin, S. Maric, and D. Gunjic

Fig. 6. Detailed activity diagram for VisaIssuance business use case (up) and corre-

sponding automatically generated initial conceptual model (down)

ADBdesign: An Approach to Automated Initial Conceptual Database Design 129

in [14]. Here we take the VisaIssuance business use case for illustration. A de-
tailed activity diagram, which documents the realization of the selected business
use case, is provided in Fig. 6 (up). Since the presented workflow is very obvious,
we don’t provide its description.

The result of the generator’s application to the .uml file containing the XMI
representation of the taken detailed activity diagram is the .uml file that con-
tains the XMI representation of the target class diagram. Due to its size, we
omit the listing, but we provide the visualisation result in the Topcased envi-
ronment (Fig. 6 (down)). It is obvious that classes named Foreigner, Officer
and VisaIssuer are generated directly from swimlanes, while other classes are
generated directly from used business objects. Class associations are generated
and named according to activities performed on those business objects by ap-
propriate business process participant. Beside the single class associations, the
implemented generator is also able to generate multiple associations between
classes, such as associations named Personalisation, StickerPasting and
Verification that are established between Visa and VisaIssuer classes.

6 Related Work

Although the idea of the conceptual database model design based on the business
model is not very new, there are no papers that present implemented automatic
generator and provide experimental results, while the great majority just give
the method overview.

Kamimura et al. in [25] propose detailed algorithm for generating the E-R
diagram using the well-disciplined IDEF0-based business model, but without an
actual implementation.

Garcia Molina et al. in [26] propose an approach to the transition from busi-
ness models to the initial conceptual model, which is based on detailed UML ac-
tivity diagrams and supplementary glossary. They propose the direct mapping
of all information objects in activity diagram to the respective classes in the
target class diagram, but don’t propose creation of classes for business process
participants. They base creation of class associations on business rules informally
specified in glossary, which is not suitable basis for automatic generation.

Suarez et al. in [27] follow the approach proposed by Garcia Molina et al.
and propose the enhancement in creation of class associations. They propose
creation of associations for activities that have input and output objects, as
direct mapping of those activities to the respective associations between classes
that correspond to input and output objects. This proposal can be used for
automated generation of associations, but has limitations related to automated
generation of association multiplicity, since they don’t propose the explicit rules.

In this paper, we follow the approach proposed by Brdjanin and Maric in [14].
Beside the proposal for direct mapping of all business objects into the respective
classes, they propose direct mapping for all business process participants, too.
They define rules for creation of associations between business process partici-
pants and business objects based on activities performed on those objects. Some

130 D. Brdjanin, S. Maric, and D. Gunjic

further transformations of the initial conceptual model are also specified and
illustrated, but without an actual implementation, too.

7 Conclusion and Future Work

Business modeling and database design use different notations that usually don’t
conform to the same or common metamodel. That fact imposes a particular prob-
lem and challenge in automated design of the initial conceptual database model
based on the business model. Another reason for a fairly small number of papers
in the field, beside the different and/or non-harmonized notations, is related to
the semantic capacity of business models, which has not been completely ex-
plored yet, and should be exploited for automated conceptual database model
design.

This paper presents an original and unique approach to the automated design
of the initial conceptual key-based model of the relational database which is
based on detailed activity diagrams. The described approach and implemented
generator proved the concept and imply that detailed business activity diagrams
(as a frequently used business process modeling notation) have a semantic ca-
pacity for automated initial conceptual model design.

The proposed approach can significantly speed up design of the database
conceptual model, especially for business models that contain large number of
business use cases. Then, the automatic transformation and generation process
should be applied to all detailed activity diagrams in the business model. In
that case, the generator incrementally builds the initial conceptual model by
incremental addition of new classes and associations for each activity diagram.

The implemented automatic generator of the class diagram (as the initial
conceptual model) is the main advantage of this approach as compared to the
existing few approaches that take business models as a direct basis for database
design. Given the fact that the shortcomings and limitations of the proposed
approach mainly result from the insufficiently explored potential of activity di-
agrams, further research will focus on the full identification and additional en-
hancement of the semantic capacity of detailed activity diagrams for automated
database design, the complete definition of the transformation rules and the
formalization of the approach.

References

1. Eriksson, H., Penker, M.: Business Modeling with UML. OMG Press, New York

(2000)

2. Rodriguez, A., Fernandez-Medina, E., Piattini, M.: CIM to PIM Transformation:

A Reality. In: Xu, L., Tjoa, A., Chaudry, S. (eds.) Research and Practical Issues of

Enterprise Information Systems II, vol. 2, pp. 1239–1249. Springer, Boston (2008)

3. Elmasri, R., Navathe, S.: Fundamentals of Database Systems, 5th edn. Addison-

Wesley, Reading (2006)

4. Jacobson, I.: Object-Oriented Software Engineering. Addison-Wesley, Reading

(1992)

ADBdesign: An Approach to Automated Initial Conceptual Database Design 131

5. Proper, H., Halpin, T.: Conceptual Schema Optimisation - Database Optimisation

before sliding down the Waterfall. DoCS, University of Queensland (2004)

6. National Institute of Standards and Technology (NIST): FIPSP 183 - Integration

Definition for Function Modeling (IDEF0). NIST, Gaithersburg (1993)

7. Scheer, A.: Business Process Engineering: Reference Models for Industrial Enter-

prises, 2nd edn. Springer, New York (1994)

8. Reising, W., Muchnick, S., Schnupp, P.: A Primer in Petri Net Design. Springer,

New York (1992)

9. White, S., Miers, D.: BPMN Modeling and Reference Guide. Future Strategies,

Lighthouse Point (2008)

10. Chen, P.: The Entity-Relationship Model: Toward a Unified View of Data. ACM

ToDS 1(1), 9–36 (1976)

11. Martin, J.: Information Engineering. Prentice Hall, Englewood Cliffs (1990)

12. Naiburg, E., Maksimchuk, R.: UML for Database Design. Addison-Wesley, Reading

(2001)

13. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User

Guide, 2nd edn. Addison-Wesley Professional, Reading (2005)

14. Brdjanin, D., Maric, S.: An Example of Use-Case-driven Conceptual Design of

Relational Database. In: EUROCON 2007 - The Int. Conference on Computer as

a Tool, pp. 538–545. IEEE Press, New York (2007)

15. Ko, R., Lee, S., Lee, E.: Business process management (BPM) standards: A survey.

Business Process Management Journal 15(5), 744–791 (2009)

16. Russell, N., van der Aalst, W., ter Hofstede, A., Wohed, P.: On the Suitability of

UML 2.0 Activity Diagrams for Business Process Modeling. In: 3rd Asia-Pacific

Conference on Conceptual Modeling, pp. 95–104. Australian Computer Society,

Darlinghurst (2006)

17. Brdjanin, D., Maric, S.: UML-business profile-based Business Modeling in Iterative-

Incremental Software Development. In: EUROCON 2005 - The Int. Conference on

Computer as a Tool, pp. 1263–1266. IEEE Press, New York (2005)

18. Storey, V.: Understanding Semantic Relationships. VLDB Journal 2(4), 455–488

(1993)

19. Object Management Group (OMG): MOF2.0/XMI Mapping, v 2.1.1. OMG (2007)

20. TOPCASED Project: Toolkit in Open-source for Critical Application & SystEms

Development, v 3.2.0, http://www.topcased.org
21. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.: Eclipse Modeling

Framework. Pearson Education, Boston (2003)

22. Object Management Group (OMG): Unified Modeling Language: Superstructure,

v 2.1.1. OMG (2007)

23. Object Management Group (OMG): MOF 2.0 Query / View / Transformation

Specification, v 1.0. OMG (2008)

24. Hussey, K.: Getting Started with UML2. IBM Corp., New York (2006)

25. Kamimura, M., Inoue, K., Hasegawa, A., Kawabata, R., Kumagai, S., Itoh, K.:

Integrated Diagrammatic Representations For Data Design In Collaborative Pro-

cesses. Journal of Integrated Design & Process Science 7(4), 35–49 (2003)

26. Garcia Molina, J., Jose Ortin, M., Moros, B., Nicolas, J., Toval, A.: Towards Use

Case and Conceptual Models through Business Modeling. In: Laender, A.H.F.,

Liddle, S.W., Storey, V.C. (eds.) ER 2000. LNCS, vol. 1920, pp. 281–294. Springer,

Heidelberg (2000)

27. Suarez, E., Delgado, M., Vidal, E.: Transformation of a Process Business Model

to Domain Model. In: WCE 2008 - World Congress on Engineering, vol. 1, pp.

165–169. IAENG, London (2008)

http://www.topcased.org

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 132–148, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Efficiently Computing and Querying Multidimensional
OLAP Data Cubes over Probabilistic Relational Data

Alfredo Cuzzocrea1 and Dimitrios Gunopulos2

1 ICAR-CNR and University of Calabria, Italy
2 Dept. of Informatics and Telecommunications

University of Athens, Greece
cuzzocrea@si.deis.unical.it, dg@di.uoa.gr

Abstract. Focusing on novel database application scenarios, where datasets
arise more and more in uncertain and imprecise formats, in this paper we pro-
pose a novel framework for efficiently computing and querying multidimen-
sional OLAP data cubes over probabilistic data, which well-capture previous
kinds of data. Several models and algorithms supported in our proposed frame-
work are formally presented and described in details, based on well-understood
theoretical statistical/probabilistic tools, which converge to the definition of the
so-called probabilistic OLAP data cubes, the most prominent result of our re-
search. Finally, we complete our analytical contribution by introducing an in-
novative Probability Distribution Function (PDF)-based approach for efficiently
querying probabilistic OLAP data cubes.

1 Introduction

Multidimensional OLAP data cubes [20] are powerful tools allowing us to support
rich and multi-perspective analysis over large amounts of data sets, based on a multi-
dimensional and multi-resolution vision of data. Efficiently computing OLAP data
cubes over the input dataset (e.g., relational databases) is a well-known research chal-
lenge that has been deeply investigated during last decades (e.g., [22,1]), with alter-
nate fortune. Probabilistic data (e.g., [3,10,16,17,32,4,2,34]) are becoming one of the
most attracting kinds of data for database researchers, due to the fact such a for-
mat/formalism perfectly captures two novel, interesting classes of datasets that very
often occur in modern database application scenarios, namely uncertain and imprecise
data. Uncertain and imprecise data are indeed very popular, as uncertainty and impre-
cision affect the same processes devoted to collect data from input data sources and
make use of these data in order to populate the target database. Consider, for instance,
the simplest case represented by a sensory database [5] populated by a sensor net-
work monitoring the temperature T of a given geographic area S. Here, being T moni-
toring a natural, real-life measure, it is likely to retrieve an uncertain and imprecise
estimate of T, denoted by , with a given confidence interval [31], denoted by , , such that < , having a certain probability pT, such that 0 ≤ pT ≤
1, rather than to obtain the exact value of T, denoted by . The semantics of this

 Efficiently Computing and Querying Multidimensional OLAP Data Cubes 133

confidence-interval-based model states that the (estimated) value of T, , ranges be-
tween and with probability pT. In popular probabilistic database models
(e.g., [4,2,34]), confidence intervals and related probabilities are directly embedded
into the probabilistic tables directly, thus originating probabilistic attributes storing
probabilistic (attribute) values, which compose probabilistic tuples. Physical reasons
of uncertain and imprecision of data are many-fold, and they can be found in inherent
randomness and incompleteness of data, sampling errors, human errors, instrument
errors, data unavailability, delayed data updates, and so forth.

Since probabilistic datasets are becoming very popular, it is natural and reasonable
to define and introduce the problem of efficiently computing OLAP data cubes over
probabilistic data, which has been firstly proposed in [6]. Basically, [6] introduces the
possible-world semantics concept, according to which, given a probabilistic database
DP, DP can be represented and processed (e.g., during query evaluation) via admitting
the existence of different possible-world databases DP,k, each one obtained from DP
via assigning possible values to probabilistic attributes in DP among those modeled by
the respective confidence intervals, based on the associated probabilities. It would be
clear enough to notice that this approach curs the risk of generating an exponential
number of possible-world databases (i.e., | |, such that |DP| denotes the
cardinality of DP), even because a combinatory dependence among probabilistic
attributes of DP exists. Based on this model for representing probabilistic databases,
[6] finally retrieves the output data cube over DP, denoted by C(DP), via estimating
aggregates (to be stored within data cube cells of C(DP)) from the universe of possi-
ble-world databases derived from DP by means of probabilistic/statistical estimation
tools and techniques [31] and via detecting several probability-inspired consistency
conditions [6].

While there is a wide and rich literature on the issue of efficiently processing and
querying probabilistic databases (see Sect. 3), despite the relevance of OLAP applica-
tions for next-generation Data Warehousing (DW) and Business Intelligence (BI)
systems very few papers address at now the yet-interesting problem of computing and
querying OLAP data cubes over probabilistic data (e.g., [6,7,8]). Contrary to this actual
trend, it is natural to foresee that this problem will play more and more a leading role in
the context of DW and BI systems, due to the obvious popularity of uncertain and
imprecise datasets (e.g., environmental sensor networks, data stream management
systems, alarm and surveillance systems, RFID-based applications, supply-chain man-
agement systems).

Inspired by these motivations, starting from limitations of [6] in this paper we pro-
pose a framework for efficiently computing and querying multidimensional OLAP
data cubes over probabilistic data, which we name as probabilistic data cubes. Most
distinctive contributions of our research are the following: (i) a meaningful decompo-
sition approach that allows us to extract the so-called decomposed probabilistic data-
base from the input probabilistic database at the cost of a sub-linear complexity – the
decomposed probabilistic database is then used to compute the final probabilistic data
cube based on conventional multidimensional aggregation methods [20]; (ii) a novel
Probability Distribution Function (PDF) [31]-based model, inspired by [36], that
allows us to query probabilistic data cubes efficiently.

134 A. Cuzzocrea and D. Gunopulos

2 Problem Formulation

Given a probabilistic database DP modeled in terms of a collection of probabilistic
relations Ri, i.e. , , … , | | , the problem we investigate in this research
consists in effectively and efficiently computing and querying a data cube over DP,
C(DP), given an input data cube schema [37] W. According to the nature of DP, we
properly define C(DP) as a probabilistic data cube (we detail this novel definition
next). Now, focus the attention on the class of probabilistic databases considered in
our research, which is inspired from fundamental works in [4,2,34]. Given a probabil-
istic relation Ri in DP modeled in terms of a collection of attributes, i.e. , , , , … , ,| | , such that , , with kj in {0, 1, …, |Ri| − 1}, denotes an

attribute in Ri, two distinct sub-set of attributes in Ri can be identified. The first one,
denoted by ⊂ Ri, such that , , , , … , , , with kj in {0, 1, …, |Ri|

− 1}, stores the sub-set of exact attributes in Ri, i.e. attributes in Ri whose values are
exact. The second one, denoted by ⊂ Ri, such that , , , , … , , ,

with kj in {0, 1, …, |Ri| − 1} stores the sub-set of probabilistic attributes in Ri, i.e.
attributes in Ri whose values are probabilistic. Obviously, . An exact

attribute , in is defined as follows: , , , , , where ,

denotes an exact value of , and , the domain of , , respectively. A probabil-

istic attribute , in is defined as follows:

, , , , , , , , , , , , , , , ,
, , , , , 0 , 1 (1)

such that: (i) , , and , , denote probabilistic values of , , respectively;

(ii) , , , , , denotes the confidence interval associated to , ; (iii) ,

denotes the probability associated to , , , , , ; (iv) , denotes the domain

of , . The semantics of this confidence-interval-based model states that the possible

value of , ranges between , , and , , with probability , . Also, a law

describing the probability distribution according to which possible values of ,

vary over the interval , , , , , is assumed. Without loss of generality, the

Uniform distribution [12] is very often taken as reference. The Uniform distribution
states that (possible) values in , , , , , have all the same probability of

being the exact value of , , denoted by , , actually, i.e.:

, , , , .
, , , , , : , 0,1, … , | | 1 , 0,1, … , | | 1 (2)

 Efficiently Computing and Querying Multidimensional OLAP Data Cubes 135

Despite the popularity of the Uniform distribution, the confidence-interval-based
model above is prone to incorporate any other kind of state-of-the-art probability
distribution [31].

Given a data cube C, the data cube schema of C, W, is defined as the tuple: , , , such that [20]: (i) D = {d0, d1, …, d|D|-1} denotes the set of dimen-
sions of C; (ii) H = {h0, h1, …, h|H|-1} denotes the set of hierarchies of C, being hi in H
the hierarchy associated to the dimension di in D; (iii) M denotes the set of measures
of C. As directly related to data cubes measures, a SQL aggregation operator (e.g.,
SUM, COUNT, AVG) is set as the baseline operation of the aggregation process
generating data cube cells [20]. Without loss of generality, in this paper we consider
as reference the class of SUM-based data cubes, which is general enough to capture a
wide spectrum of real-life DW and BI applications [15]. In addition to this, as regards
the specific in-memory data representation, we refer to MOLAP data cubes [21], i.e.
data cubes represented in terms of multidimensional arrays, a general format to which
any alternative in-memory data cube representation technique (e.g., ROLAP, HO-
LAP) may converge easily [21]. Also, for the sake of simplicity, we hereby assume of
dealing with single-measure data cubes, i.e. M = {m0}, and discard the case of mul-
tiple-measure data cubes [18], i.e. M such that |M| > 1, as the latter case can be
straightforwardly obtained via extending actual models and algorithms provided for
single-measure data cubes. Dimensions d0, d1, …, d|D|-1 in D and the measure m0 in M
are defined from attributes in DP, meaning that the DW administrator assigns the role
of dimension to a partition of attributes in DP whereas he/she assigns the role of meas-
ure to one attribute in DP. This is what is commonly intended as a multidimensional
abstraction of relational data [20]. For the sake of simplicity, in our research we
assume that the measure m0 is chosen among exact attributes in DP, i.e. m0 ∈ ⊂ Ri,
such that Ri ∈ DP. Contrary to the constraint on the measure m0, dimensions in D can
instead be chosen among both exact and probabilistic attributes in DP, i.e. di ∈ ⊂
Ri or di ∈ ⊂ Ri, such that Ri ∈ DP.

Given a probabilistic data cube C, each cell of C, denoted by c(i0, i1, …, i|D|-1)
= C[i0][i1]…[i|D|-1], such that i0 ∈ {0, 1, …, |d0| − 1}, i1 ∈ {0, 1, …, |d1| − 1}, …,
i|D|-1 ∈ {0, 1, …, |d|D|-1| − 1}, is probabilistic in nature, according to DP.

Formally, c(i0, i1, …, i|D|-1) =
.. | | , .. | | , .. | | , such that: (i) .. | | , .. | |

 denotes the confidence interval (over aggregate values)

associated to c(i0, i1, …, i|D|-1), with
.. | | .. | |

; (ii) .. | | de-

notes the probability associated to
.. | | , .. | |

, with 0 .. | |1. As a first result, it should be noted that our notion of probabilistic data cube is
novel under the classical notion proposed in [6], which aims at outputting exact data
cubes.

To give a practical example, consider Fig. 1, where a probabilistic database storing
purchase data (Fig. 1 (a)) and a two-dimensional probabilistic data cube (Fig. 1 (b))
built on top of such a database are depicted, respectively. In the database of Fig. 1 (a),
(probabilistic) table Customer stores information on customers making purchases. In
particular, Customer is characterized by two probabilistic attributes, namely Age,
which models the age of customers, and City, which models the city of customers.

136 A. Cuzzocrea and D. Gunopulos

(Probabilistic) table Product stores information on the available products. In particu-
lar, Product is characterized by a singleton probabilistic attribute, namely Discount,
which models the discount applied to products. Finally, (exact) table Purchase
represents associations among tuples stored in Customer and tuples stored in Product,
respectively. In the data cube of Fig. 1 (b), (probabilistic) attributes Age and City play
the role of dimensions d0 and d1, respectively, whereas (exact) attribute Price
plays the role of measure m0, being SUM the basic SQL aggregation operator. In
particular, Fig. 1 (b) shows the measure values (i.e., aggregate values) of two distinct
(probabilistic) data cube cells, with associated confidence intervals and probabilities,
respectively.

(a) (b)

Fig. 1. An example probabilistic database storing purchase data (a) and a two-dimensional
probabilistic data cube (b) built on top of such a database

As highlighted in Sect. 1, beyond to the problem of computing probabilistic data
cubes from probabilistic databases, in our research we also investigate the issue of
querying probabilistic data cubes efficiently. First, we fix the class of OLAP queries
of interest for our research. Among several alternatives, range aggregation queries
[24] represent a popular and useful solution for extracting summarized knowledge
from OLAP data cubes [15]. Given a |D|-dimensional OLAP data cube C and a target
SQL aggregation operator F (e.g., SUM, COUNT, AVG), an M-dimensional range-F
query Q over C is defined as the tuple: Q = 〈L, F〉, such that: (i) L denotes a multidi-
mensional range over C, i.e. , , , , … , , , with ki
in {0, 1, …, |D| − 1}, where and , with , model a lower bound and
an upper bound over the dimension in D, respectively; (ii) F denotes the
target SQL aggregation operator. Evaluated against C, Q applies F over the domain
of all the data cubes cells in C bounded by L, denoted by and defined as fol-
lows: , , … , , , … , ,

 Efficiently Computing and Querying Multidimensional OLAP Data Cubes 137

 , , … , , and retrieves a probabilistic
aggregate value. Similarly to the probabilistic model for representing data cube cells
of (probabilistic) data cubes above, in our framework we model the probabilistic
answer to an OLAP query Q, denoted by AP(Q), over a probabilistic data cube C as the
tuple: , , , , , such that: (i) , , , denotes the
confidence interval associated to Q, with , < , ; (ii) denotes the probabil-
ity associated to , , , , with 0 1. To give an example, consider
Fig. 2, where two range-SUM queries (and related probabilistic answers) Qi and
Qj over the two-dimensional probabilistic data cube of Fig. 1 (b) are depicted,
respectively.

Fig. 2. Two example range-SUM queries over the two-dimensional probabilistic data cube of
Fig. 1 (b)

As we demonstrate in Sect. 5, a relevant contribution of our research is represented
by the innovative approach for evaluating range queries over probabilistic data cubes
in order to retrieve probabilistic answers.

3 Related Work

The problem of effectively and efficiently processing and querying probabilistic data
has recently gained a great deal of attention from the database research community,
due to the wide spread of application scenarios where probabilistic data occur. It
would be clear enough how the latter issue plays a fundamental role for our main
research context (i.e., efficiently computing and querying OLAP data cubes over
probabilistic data), hence in this Section we initially focus the attention on probabilis-
tic database research issues. Then, we move the attention on state-of-the-art proposals
directly related to our research.

A first problem investigated by authoritative research initiatives deals with the is-
sue of representing probabilistic data, which mainly reflects the intrinsic nature of
such kind of data sources characterized by uncertainty and imprecision. In this
research setting, [3] puts theoretical and conceptual bases for the management of

138 A. Cuzzocrea and D. Gunopulos

probabilistic data, hence constituting a milestone for sub-sequent research efforts,
such as [17] that further extends foundations proposed in [3] by also defining new
unexplored challenges, mainly from a theoretical point of view. Basically, two main
classes of proposals for representing probabilistic databases exist. First one introduces
the so-called probabilistic database model [4,2,34], which essentially embeds proba-
bilities within relational tables directly, like in our reference model (see Sect. 2) that
is in fact inspired from these research initiatives. Second class of proposals for
representing probabilistic databases instead pursues the so-called uncertain object
model [10,16,17,32], according to which uncertain objects over probabilistic databas-
es that can be modeled in terms of sample-based PDF [31] are introduced and ex-
ploited for data representation and query evaluation purposes.

Querying probabilistic data is obviously one of the hot topics in probabilistic data-
base research, due to the fact different kinds of query semantics can be defined on top
of such databases, and the query evaluation process itself can be “customized” accor-
dingly. Different query semantics introduce indeed different benefits and limitations,
but several aspects remain unsolved, so that this research issue can be still considered
as an open problem. In this research setting, [10], on the basis of the notion of uncer-
tain objects, defines suitable query strategies for probabilistic databases that directly
exploit statistical properties of model PDF. Then, [16] completes previous results via
finding safety conditions for SQL plans derived from queries over probabilistic data-
bases, and [32] studies approximate query evaluation opportunities on top of such
databases. Based on the above-mentioned experiences, database researchers have
devoted a significant deal of attention to the problem of effectively and efficiently
evaluating a wide family of queries that can be posed over probabilistic databases,
among which noticeable ones are the following: (i) join queries (e.g., [11,28]); (ii)
top-k queries (e.g., [35,38]); (iii) rank queries (e.g., [29,25]).

For what regards the main problem of efficiently computing and querying OLAP
data cubes over probabilistic data, we can identify two classes of state-of-the-art pro-
posals directly related to our research. First one comprises a collection of contribu-
tions that deal with the issue of efficiently evaluating aggregates over probabilistic
databases. This line of research is relevant for our context as computing aggregates
over probabilistic data can be indented as the baseline operation for computing (prob-
abilistic) aggregate values to be stored within (probabilistic) data cube cells (see Sect.
2). [9] first puts formal bases of the issue of supporting efficient aggregate query
evaluation over imprecise data, a significant sub-set of probabilistic data (see Sect. 1).
[30] moves the attention on the most relevant case of computing aggregates over
uncertain and imprecise databases, and proposes a novel model-based approach to
this end. Finally, [33] investigates theoretical and complexity aspects of computing
aggregates over probabilistic databases. Second class of proposals directly related to
our research match perfectly the same problem investigated by us, i.e. computing and
querying OLAP data cubes over probabilistic data. As highlighted in Sect. 1, [6] first
introduces the problem of effectively and efficiently computing OLAP data cubes
over probabilistic data, hence it has to be considered as the state-of-the-art proposal in
our reference research context. According to [6], the ambiguity of uncertain and im-
precise tuples of a given probabilistic database DP can be solved by admitting the
existence of a family of different possible worlds DP,k built on top of DP, such that,
in each possible world DP,k, probabilistic tuples alternatively take (exact) values of

 Efficiently Computing and Querying Multidimensional OLAP Data Cubes 139

probabilistic attributes among those modeled by the associated confidence intervals.
Also, a weight wk is associated to each possible world DP,k, in order to capture the
likelihood of DP,k of actually being the “true” world among the possible ones [6]. As
stated in [6], the number of possible worlds can become exponential, also due to the
combinatory dependence among probabilistic attributes of DP. In more detail, given a
probabilistic database DP and a relation Ri in DP having | | probabilistic attributes , , , , … , , , with kj in {0, 1, …, |Ri| − 1}, Ri leads to ∏ ,| |

 possible worlds that can be extracted from DP [6], being , the

domain of , . For a probabilistic database DP having P probabilistic relations, such

that P ≤ |DP|, the number of possible worlds is: ∏ ∏ ,| |
, which is clearly

not acceptable for real-life database environments.
A critical aspect discussed in [6] is represented by the so-called allocation policies,

which determine how to compute the probability to be assigned to uncertain and
imprecise tuples. In more detail, this probability captures the likelihood of a given
uncertain and imprecise tuple of being aggregated within one of the measures of
the target OLAP cube. In this respect, several alternatives are proposed in [6]
and, sub-sequentially, extended by the same authors in [7]. Finally, in [8] authors
address the problem of efficiently computing and querying OLAP data cubes over
probabilistic data in the presence of constraints on attribute domains by further ex-
ploiting and extending the baseline solution for free-of-constraint attribute domains
given in [6].

4 Computing Probabilistic OLAP Data Cubes

In this Section, we provide models and algorithms for computing probabilistic OLAP
data cubes from probabilistic databases, as one of the most prominent contribution of
our research. Given a probabilistic database , , … , | | , and a data
cube schema , , , the probabilistic data cube C(DP) over DP is defined by
means of a multidimensional mapping scheme , , , such

that: (i) : , … , | | , … , | | represents a mapping (sub-)scheme
between attributes in DP and dimensions in D ∈ W, such that , denotes a

mapping between an attribute , of a relation in DP and a dimension in D,

with kj in {0, 1, …, |Ri| − 1} and hl in {0, 1, …, |D| − 1}; (ii) : , … , | | , … , | | represents a mapping (sub-)scheme between attributes in DP and hie-
rarchies in H ∈ W, such that , denotes a mapping between an attribute ,

of a relation in DP and a hierarchy in H, with kj in {0, 1, …, |Ri| − 1} and vm in

{0, 1, …, |H| − 1}; (iii) : , … , | | represents a mapping (sub-
)scheme between an attribute , of a relation in DP and the measure m0 in M ∈

W (from Sect. 2, recall that |M| = 1), denoted by , , with kj in {0, 1, …, |Ri| −

1}. For the sake of simplicity, in this research we investigate the case of computing
probabilistic data cubes such that , which determines the special case of data

140 A. Cuzzocrea and D. Gunopulos

cubes without hierarchies. It should be noted that such data cubes are general enough
to capture a wide family of real-life applications, as clearly highlighted in [14]. On the
other hand, models and algorithms presented in our paper can be easily extended as to
deal with more significant hierarchy-equipped data cubes.

Before presenting our proposed approach for computing probabilistic data cubes,
we need to recall a well-known concept in Data Mining (DM), i.e. discretization of
relational database attributes (e.g., [21]). Given a database D and an attribute , of

a relation Ri in D, such that kj in {0, 1, …, |Ri| − 1}, having , as domain, the dis-

cretized domain of , , denoted by , , , , , , , … , , ,| , | , is

defined as a collection of discretized members , , derived from , on the

basis of the nature of , . If , is numeric in nature, then , is composed by

all the numeric members extracted from the domain that is in a bijective relation
with , starting from the minimum value in , , denoted by , , to the

maximum value in , , denoted by , . For instance, if , stores positive integ-

er values, then , is in a bijective relation with the domain of natural numbers

 and , , , , 1, … , , 1, , . If , is categorical

in nature, then a topological ordering relation over categorical members in ,

must be introduced. Note that, in the previous example, . On the basis of the
ordering determined by , , is composed by all the categorical members in , starting from the “minimum” member in , , , , to the “maximum” mem-

ber in , , , . For instance, if , stores the week days, then , , , … , (e.g.,).
On the basis of the formal DM framework above, given a database D and an

attribute , of a relation Ri in D, such that kj in {0, 1, …, |Ri| − 1}, having , as

domain and as topological ordering relation, we introduce the function nextM that
takes as input , , , , and a member , in , , and returns as output the

member , that “follows” , in , based on the ordering determined by .

Formally, nextM(, , , , , ,) = , , such that , , .

Now, focus the attention on how the probabilistic data cube C(DP) is finally com-
puted from the input probabilistic database DP and data cube schema W. Let , … , | | , , , , … , , | | , , | | , , | | , … , , | | | | be the set of

|D| = |P| − |E| dimensions in W, selected from |E| exact attributes and |P| probabilistic
attributes in DP (see Sect. 2), respectively, such that (i) , , with kj in {0, 1, …, |Ri| −

1}, being Ri a relation in DP, denotes an exact attribute in DP and (ii) , , with kj in

{0, 1, …, |Ri| − 1}, being Ri a relation in DP, denotes a probabilistic attribute in DP. Let
DE denote the set of exact attributes/dimensions in D and DP the set of probabilistic
attributes/dimensions in D, respectively (DE ∩ DP =∅). Let M = {m0} = { , } be the

singleton measure in W, such that , , with kj in {0, 1, …, |Ri| − 1}, being Ri a

 Efficiently Computing and Querying Multidimensional OLAP Data Cubes 141

relation in DP, denotes an exact attribute in DP (from Sect. 2, recall that, in our
probabilistic data cube model, measures are always chosen among exact attributes in
DP).

The approach for computing C(DP) we propose is two-step in nature. In the first
step, the so-called decomposed probabilistic database, denoted by , is obtained
from DP directly by means of an innovative decomposition technique whose main aim
consists in breaking confidence intervals of probabilistic attribute values, while pre-
serving the probabilistic nature of tuples in DP. In the second step, C(DP) is finally
computed from based on conventional multidimensional aggregation methods
[20].

First, we describe the proposed approach for extracting from DP. Basically, for
each dimensional attribute , of relations Ri in DP, in the first step we decompose

attribute values , of , into a set of decomposed attribute values, denoted by , , depending on the nature of , (exact, or probabilistic) and by exploiting

the multidimensional relation with the corresponding attribute value , of the

measure attribute , of relations Ri in DP. Then, decomposed attribute value sets , are used to populate and, finally, C(DP) is aggregated from directly,

based on the input data cube schema W. It should be noted that, depending on W,
since OLAP dimensions and measures are typically a sub-set of the whole attribute set
of the input database [20], without loss of generality we observe that | | | |.
This nice amenity contributes to lower the spatial complexity of the approach we
propose.

Let: (i) , be an exact dimension in W; (ii) , be the exact meas-

ure in W; (iii) , ℓ , be an exact value of , at position ℓ, such that 0 ℓ , 1, being , the domain of , ; (iv) , ℓ , be the cor-

responding exact value of , at position ℓ, such that 0 ℓ , 1, being , the domain of , . Since is exact, decomposing the pair ,
, , , generates the following set of decomposed attribute values ,, , 1, , . Note that , 1. Contrary to the latter case, let: (i) , be a probabilistic dimension in W; (ii) , be the exact measure in W;

(iii) , ℓ , , , , , , , be a probabilistic value of , at position ℓ, such that 0 ℓ , 1, being , the domain of , ; (iv) , ℓ ,

be the corresponding exact value of , at position ℓ, such that 0 ℓ , 1,

being , the domain of , . Since is probabilistic, decomposing the

pair , , , , generates the following set of decomposed attribute

values:

142 A. Cuzzocrea and D. Gunopulos

, , , , ,
, , , , , ,

, , , , ,
nextM , , , , , , , , ,

, , , , ,
,

, , , , ,… ,
, , , ,

, , , , , ,
, , , ,

 (3)

Note that , , , , : , , , such that : denotes the

sub-set operator that, given a set I, extracts from I the sub-set spanning from Imin ∈ I
to Imax ∈ I.

For each dimensional attribute value in W, the decomposition task implemented by
the first step of the approach we propose generates in a decomposed attribute
value set storing tuples of kind: , , , , , . By composing such tuples for all

the |D| dimensional attributes in W, we finally obtain the generic tuple stored in as
follows: , , , , , , , , , , , , … , , | | , , | | , , | | . It should

be noted that, with respect to the original database schema of DP and the input data
cube schema W, the (database) schema of only maintains the dimensional
attributes d0, d1, …, d|D|-1 and discards the (singleton) measure attribute m0. This
because the contribution of measure attribute values in DP is “distributed” across de-
composed attribute values in . Again, similarly to the previous consideration on the
cardinality of with respect to the cardinality of DP, it should be clear enough that
this further nice amenity contributes to lower the final spatial complexity of .

In the second step of our proposed approach for computing probabilistic OLAP data
cubes, the final data cube C(DP) is aggregated from directly based on conventional
multidimensional aggregation methods [20] plus the novelty represented by an innova-
tive technique for computing confidence intervals and probabilities of probabilistic
data cube cells (see Sect. 2). For the sake of simplicity, let us to denote as , … , | | , , , , … , , | | the set of |D| dimensions in W, by remov-

ing the notation allowing us to distinguish between exact and probabilistic dimensional
attributes, due the fact that, as shown above, the decomposition task implemented by
the first step of our proposed approach treats both kinds of attributes in a unified man-

ner. Equally, we could refer to the schema of as: , , , , … , , | | .

Let , , , , … , , | | be the discretized domains of , , , , … , , | | , respectively. Based on conventional multidimensional

 Efficiently Computing and Querying Multidimensional OLAP Data Cubes 143

aggregation methods [20], for each multidimensional entry , , , , , , … , , | | , | | in the multidimensional space defined by the

Cartesian product , , … , | | , such that h0 ∈ {0, 1, …,

| , | − 1}, h1 ∈ {0, 1, …, | , | − 1}, …, h|D|-1 ∈ {0, 1, …, | , | | | −

1}, a set of attribute values Ψ Ψ , , , , , , … , , | | , | | is selected

from . Ψ is defined as follows: Ψ , , , , , , … , , | | , | | , , , , , ,… ,, | | , , | | , , | |, , ,… , | | , | | , | |
 (4)

Finally, Ψ is used to compute the value of the probabilistic data cube cell , , , whose characteristic parameters , and
are defined as follows (from Sect. 2, recall that in our research we focus on SUM-
based data cubes):

 ,Ψ , 0 | | 1 (5)

 ,| |
, (6)

,| |
, (7)

5 Querying Probabilistic OLAP Data Cubes

Given a probabilistic |D|-dimensional data cube C and an input M-dimensional range-
SUM query Q = 〈L, SUM〉 = 0, 0 , 1, 1 , … , 1, 1 , SUM over C,
such that M ≤ |D|, ki in {0, 1, …, |D| − 1}, and, for each ki, , evaluating Q
against C corresponds to compute a probabilistic answer to Q, , , , , , such that , < , and 0 1 (see Sect.
2). Due to uncertainty an imprecision of multidimensional data stored in C, a proba-
bilistic estimator Ω(Q) [31] must be introduced in order to provide an accurate answer
to Q, . To this end, our general approach consists in providing in terms
of some statistics extracted from an appropriate PDF describing probabilistic multi-
dimensional data bounded by the multidimensional range L of Q. It should be noted

144 A. Cuzzocrea and D. Gunopulos

that a similar previous approach has been applied in the context of querying uncertain
and imprecise data streams during past significant research efforts [13,26]. This con-
firms to us the authority of the approach we propose. With these ideas in mind, in
order to efficiently answer range-SUM queries over probabilistic data cubes we pro-
pose the definition of a reliable 〈ε, δ〉-based probabilistic estimator over uncertain
and imprecise multidimensional data, denoted by 〈ε, δ〉-Ω(Q), which belongs to the
well-known class of 〈ε, δ〉 probabilistic estimators [31], among which the Hoeffding-
based estimator [23] is the most popular one that has been extensively used in the
context of database and data-warehouse processing (e.g., [27]). Since the theory for
probabilistic estimators is already available [31] and it can be directly exploited with-
in our proposed framework for OLAP over probabilistic data, the most important
research contribution we provide in this respect is represented by the methodology for
building the appropriate PDF describing uncertain and imprecise multidimensional
data bounded by L (of Q).

To this end, we exploit an analytical interpretation of multidimensional data cubes
that has been proposed by us in some of our previous research experiences [14]. Ac-
cording to this interpretation, MOLAP data cubes (like the ones we consider in our
research – see Sect. 2) are viewed in terms of a collections of data rows, which offers
powerful optimization opportunities for OLAP data cube processing like the case of
OLAP data cube compression techniques investigated in [14]. In this research, we
argue to represent range queries in terms of collections of rows, since, intuitively
enough, range queries can be structurally viewed as data cubes themselves [14].
Among other nice amenities highlighted in [14], one of the merits of the analytical
interpretation of MOLAP data cubes proposed in [14] is represented by the fact it can
be easily implemented within the core layer of any arbitrary OLAP server platform,
due to the fact it is essentially based on the well-known slice (OLAP) operator, which
is made available as a native operator in any OLAP server platform.

Based on this main assertion, given a range query Q, in our proposed framework
for OLAP over probabilistic data we model Q as follows: , , , , … , ,| | , such that: (i) di ∈ {0, 1, …, |D| − 1} denotes
the OLAP dimension with respect to which the slice operation is performed, called
slicing dimension; (ii) , , with r in {0, 1, …, |R| − 1}, denotes a row-based range
query extracted from Q on the basis of such a slice operation and well-understood
abstractions of matrix theory [19]; (iii) R denotes the total number of row-based range
queries extracted from Q, which, in turn, depends on the selectivity of Q, denoted by
||Q||. It should be noted that this proposed row-based representation of range queries is
flexible enough to result independent on the number of dimensions of queries.

Let , denote the multidimensional range associate to , . Let ∏ denote
the projection operator that, given a multidimensional item and a dimension di in
the multidimensional space of , projects with respect to di. Given a range-SUM
query Q over a probabilistic data cube C, on the basis of the previous analytical inter-
pretation of range queries, for each row-based range query , in , we intro-
duce a discrete PDF [31] that is obtained by composing all the confidence intervals,
and related probabilities, of (probabilistic) data cube cells in C contained by , ,

 Efficiently Computing and Querying Multidimensional OLAP Data Cubes 145

denoted by , . “Describing” the probabilistic variation of data cube cells in C con-
tained by , is the main goal of , . Formally, , is defined as follows:

, ∏ , ∏ , ∏,
∏ , , (8)

In our proposed framework for OLAP over probabilistic data, the probabilistic answer
to Q, , is retrieved according to the following 5-step methodology:

1. Fix a slicing dimension di among the available |D| dimensions of C.
2. Based on di, decompose Q into R row-based range queries: , , , , … , ,| | .
3. For each row-based range query , in , compute the PDF , (8), thus

obtaining the set (of PDF): , , , , … , ,| | .

4. From the set , compute the joint PDF [31], denoted by – intuitively

enough, models the joint contribution of all the PDF associated to probabilistic
multidimensional data involved by Q – this approach is inspired by [36], where
PDF describing independent observations are combined for pre-aggregation pur-
poses in the context of probabilistic Data Warehouse servers.

5. Retrieve as follows: ,…, ,…,
,…, ,…, (9)

Finally, since globally models the joint contribution of all the PDF associated to
probabilistic multidimensional data involved by Q, we can break the dependency of

 from the M-dimensionality exposed in (9), and retrieve by means of com-

puting appropriate statistics over

. From active literature [31], relevant moments

of , i.e. mean, denoted by , and variance, denoted by , play the role
of most appropriate statistics in this respect. In fact, according to several studies

[13,26], these moments well-summarize the statistical content of , and are well-
suited for answering OLAP queries over the involved (uncertain and imprecise) data.
Based on these statistics, we finally retrieve as follows:

 (10)

Furthermore, the parameters ε and δ of the probabilistic estimator 〈ε, δ〉-Ω(Q) allows
us to compute a suitable confidence interval with related probability for , i.e.
expressing as , , , , that is the main goal of query-

ing probabilistic OLAP data cubes (see Sect. 2), from directly. Since is a

joint PDF obtained from a set of PDF, it can be supposed that follows a quasi-
Gaussian distribution [31] (see Fig. 3). Therefore, we can exploit numerical methods

on to compute both parameters ε and δ of 〈ε, δ〉-Ω(Q), and, in turn, the model

146 A. Cuzzocrea and D. Gunopulos

Fig. 3. An example quasi-Gaussian discrete PDF with statistical parameters ε and δ of an esti-
mate

parameters , , , and . From active literature [31], for each probability p
= 1 – δ, which is equal to the area of the Gaussian bell, fixed the confidence interval , of an estimate , we can retrieve the corresponding value of the para-
meter ε, such that 1 . ε is recognized as the accuracy of 〈ε, δ〉-
Ψ(Q) for that estimate [31]. In our proposed framework for OLAP over probabilis-

tic data, we set and we compute parameters ε and δ from for the

probability value for which (i.e., (10)), denoted by

and (note that 1), respectively. Finally, we derive , and , as

follows: , and , , respective-
ly, which authoritatively complete our query model for probabilistic OLAP data
cubes.

6 Conclusions and Future Work

A complete framework for computing and querying multidimensional OLAP data
cubes over probabilistic data has been proposed in this paper. We also conducted a set
of preliminary experiments over synthetic probabilistic datasets (not shown in this
paper for space reasons) that have confirmed the feasibility of the proposed frame-
work. Future work is mainly focused on developing and conducting a wide experi-
mental campaign on both synthetic and real-life probabilistic datasets, and on extend-
ing the framework in order to make it able of dealing with more complex SQL aggre-
gation operators beyond the simple ones considered in the actual research (e.g., SUM,
COUNT) and domain constraints over dataset attributes like those considered in [8].

References

[1] Agarwal, S., Agrawal, R., Deshpande, P., Gupta, A., Naughton, J.F., Ramakrishnan,
R., Sarawagi, S.: On the Computation of Multidimensional Aggregates. In: Proceed-
ings of VLDB 1996 Int. Conf. (1996)

[2] Agrawal, P., Benjelloun, O., Sarma, A.D., Hayworth, C., Nabar, S.U., Sugihara, T.,
Widom, J.: Trio: A System for Data, Uncertainty, and Lineage. In: Proceedings of
VLDB 2006 Int. Conf. (2006)

 Efficiently Computing and Querying Multidimensional OLAP Data Cubes 147

[3] Barbarà, D., Garcia-Molina, H., Porter, D.: The Management of Probabilistic Data.
IEEE Transactions on Knowledge Data Engineering 4(5) (1992)

[4] Benjelloun, O., Sarma, A.D., Halevy, A.Y., Theobald, M., Widom, J.: Databases with
Uncertainty and Lineage. VLDB Journal 17(2) (2008)

[5] Bonnet, P., Gehrke, J.E., Seshadri, P.: Towards Sensor Database Systems. In: Proceed-
ings of ACM MDM Int. Conf. (2001)

[6] Burdick, D., Deshpande, P.M., Jayram, T.S., Ramakrishnan, R., Vaithyanathan, S.:
OLAP over Uncertain and Imprecise Data. In: Proceedings of VLDB 2005 Int. Conf.
(2005)

[7] Burdick, D., Deshpande, P.M., Jayram, T.S., Ramakrishnan, R., Vaithyanathan, S.: Ef-
ficient Allocation Algorithms for OLAP over Imprecise Data. In: Proceedings of
VLDB 2006 Int. Conf. (2006)

[8] Burdick, D., Doan, A., Ramakrishnan, R., Vaithyanathan, S.: OLAP over Imprecise
Data with Domain Constraints. In: Proceedings of VLDB 2007 Int. Conf. (2007)

[9] Chen, A.L.P., Chiu, J.-S., Tseng, F.S.-C.: Evaluating Aggregate Operations over Im-
precise Data. IEEE Transactions on Knowledge Data Engineering 8(2) (1996)

[10] Cheng, R., Kalashnikov, D., Prabhakar, S.: Evaluating Probabilistic Queries over Im-
precise Data. In: Proceedings of ACM SIGMOD 2003 Int. Conf. (2003)

[11] Cheng, R., Singh, S., Prabhakar, S., Shah, R., Vitter, J.S., Xia, Y.: Efficient Join
Processing over Uncertain Data. In: Proceedings of ACM CIKM 2006 Int. Conf.
(2006)

[12] Colliat, G.: OLAP, Relational, and Multidimensional Database Systems. SIGMOD
Record 25(3) (1996)

[13] Cormode, G., Garofalakis, M.: Sketching Probabilistic Data Streams. In: Proceedings
of ACM SIGMOD 2007 Int. Conf. (2007)

[14] Cuzzocrea, A.: Improving Range-Sum Query Evaluation on Data Cubes via Polynomi-
al Approximation. Data & Knowledge Engineering 56(2) (2006)

[15] Cuzzocrea, A., Wang, W.: Approximate Range-Sum Query Answering on Data Cubes
with Probabilistic Guarantees. Journal of Intelligent Information Systems 28(2) (2007)

[16] Dalvi, N., Suciu, D.: Efficient Query Evaluation on Probabilistic Databases. In: Pro-
ceedings of VLDB 2004 Int. Conf. (2004)

[17] Dalvi, N., Suciu, D.: Management of Probabilistic Data: Foundations and Challenges.
In: Proceedings of ACM PODS 2007 Int. Conf. (2007)

[18] Deligiannakis, A., Roussopoulos, N.: Extended Wavelets for Multiple Measures. In:
Proceedings of ACM SIGMOD 2003 Int. Conf. (2003)

[19] Golub, G.H., Van Loan, C.F.: Matrix Computation, 2nd edn. Johns Hopkins University
Press, Baltimore (1989)

[20] Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pel-
low, F., Pirahesh, H.: Data Cube: A Relational Aggregation Operator Generalizing
Group-By, Cross-Tab, and Sub-Totals. Data Mining and Knowledge Discovery 1(1)
(1997)

[21] Han, J., Kamber, M.: Data Mining: Concepts and Techniques, second ed. Morgan
Kauffmann Publishers, San Francisco (2006)

[22] Harinarayan, V., Rajaraman, A., Ullman, J.: Implementing Data Cubes Efficiently. In:
Proceedings of ACM SIGMOD 1996 Int. Conf. (1996)

[23] Hellerstein, J.M., Haas, P.J., Wang, H.J.: Online Aggregation. In: Proceedings of ACM
SIGMOD 1997 Int. Conf. (1997)

[24] Ho, C.-T., Agrawal, R., Megiddo, N., Srikant, R.: Range Queries in OLAP Data
Cubes. In: Proceedings of ACM SIGMOD 1997 Int. Conf. (1997)

148 A. Cuzzocrea and D. Gunopulos

[25] Hua, M., Pei, J., Zhang, W., Lin, X.: Ranking Queries on Uncertain Data: A Probabil-
istic Threshold Approach. In: Proceedings of ACM SIGMOD 2008 Int. Conf. (2008)

[26] Jayram, T.S., McGregor, A., Muthukrishnan, S., Vee, E.: Estimating Statistical Aggre-
gates on Probabilistic Data Streams. In: Proceedings of ACM PODS 2007 Int. Conf.
(2007)

[27] Jin, R., Glimcher, L., Jermaine, C., Agrawal, G.: New Sampling-Based Estimators for
OLAP Queries. In: Proceedings of IEEE ICDE 2006 Int. Conf. (2006)

[28] Kimelfeld, B., Sagiv, Y.: Maximally Joining Probabilistic Data. In: Proceedings of
ACM PODS 2007 Int. Conf. (2007)

[29] Lian, X., Chen, L.: Probabilistic Ranked Queries in Uncertain Databases. In: Proceed-
ings of EDBT 2008 Int. Conf. (2008)

[30] McClean, S.I., Scotney, B.W., Shapcott, M.: Aggregation of Imprecise and Uncertain
Information in Databases. IEEE Transactions on Knowledge Data Engineering 13(6)
(2001)

[31] Papoulis, A.: Probability, Random Variables, and Stochastic Processes, second ed.
McGraw-Hill, New York (1984)

[32] Ré, C., Suciu, D.: Approximate Lineage for Probabilistic Databases. PVLDB 1(1)
(2008)

[33] Ross, R., Subrahmanian, V.S., Grant, J.: Aggregate Operators in Probabilistic Databas-
es. Journal of the ACM 52(1) (2005)

[34] Sarma, A.D., Theobald, M., Widom, J.: Exploiting Lineage for Confidence Computa-
tion in Uncertain and Probabilistic Databases. In: Proceedings of IEEE ICDE Int.
Conf. (2008)

[35] Soliman, M.A., Ilyas, I.F., Chang, K.C.-C.: Top-K Query Processing in Uncertain Da-
tabases. In: Proceedings of IEEE ICDE 2007 Int. Conf. (2007)

[36] Timko, I., Dyreson, C.E., Pedersen, T.B.: Pre-Aggregation with Probability Distribu-
tions. In: Proceedings of ACM DOLAP 2006 Int. Conf. (2006)

[37] Vassiliadis, P., Sellis, T.: A Survey of Logical Models for OLAP Databases. SIGMOD
Record 28(4) (1999)

[38] Yi, K., Li, F., Srivastava, D.: Kollios. G.: Efficient Processing of Top-K Queries in
Uncertain Databases. In: Proceedings of IEEE ICDE 2008 Int. Conf. (2008)

Correcting Missing Data Anomalies with Clausal

Defeasible Logic

Peter Darcy, Bela Stantic, and Abdul Sattar

Institute for Integrated and Intelligent Information Systems

Griffith University

{P.Darcy,B.Stantic,A.Sattar}@griffith.edu.au

Abstract. Databases are used globally to store essential information re-

quired for various business applications such as automated data captur-

ing. Unfortunately, due to missing record anomalies present within the

repository, the overall integrity of stored information is compromised.

Currently, filtration and rule-based techniques have been proposed to

correct the problem, but due to a lack of high-level reasoning, ambiguous

scenarios lead to anomalies persisting within the database. In this paper,

we propose an enhanced Non-Monotonic Reasoning cleaning architecture

that utilises intelligent analysis coupled with Clausal Defeasible Logic
to rectify the missing data by generating and restoring imputed data.

From our experimental evaluation, we have found that our proposed tech-

nique surpasses other leading intelligence classifiers such as Bayesian and

Neural Networks.

1 Introduction

False negative anomalies are missing gaps of information that are meant to be
present within databases. This problem is significant due to its potential to lower
the accuracy and quality of the entire data set resulting in further data processes
being hindered. Missing data anomalies are most persistent within automatic
data capturing technology that utilises hardware to record information. Without
high level intelligence designed to correct false negative anomalies, data sets
that store information acquired from technologies such as automated recording
devices will continue to process incorrect information hindering the applications
it was designed for.

Radio Frequency Identification (RFID) is data capturing technology which
automatically records data from tags that respond to readers. Of the problems
found within passive RFID systems, ambiguous false negative observations re-
main the hardest to correct [1]. To correct the problem of missing observations,
past approaches have utilised filtering algorithms and rule-based correction tech-
niques to prevent the false negatives where possible. Unfortunately, within am-
biguous situations in which the correction method is not easily determined, these
methodologies fail to clean the data set adequately. The problems hindering these
approaches include the fact that there is a lack of analytical information and
intelligence when cleaning the data set with filters and rules respectively.

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 149–163, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

150 P. Darcy, B. Stantic, and A. Sattar

In this paper, we propose a methodology that cleans the stored data set using
a high level intelligence reasoning engine. The system utilises analytical infor-
mation generated from the missing observation coupled with Non-Monotonic
Reasoning engines to correctly establish the likeliest set of data to insert back
into the database. We specifically employ Clausal Defeasible Logic (CDL) as
our Non-Monotonic Reasoning approach to arrive at a conclusion. We believe
that by cleaning the data at a deferred stage allows the cleaning algorithm to
have access to enough information needed to correctly impute the correct results.
Additionally, by incorporating a high level intelligence algorithm such as Non-
Monotonic Reasoning, we ensure the maximum likelihood to decipher highly
ambiguous situations.

To evaluate the performance of our proposed system, we have conducted two
experiments. The first was designed to assess which CDL formulae provided
the highest cleaning rate, while the second evaluated the performance of our
approach against Bayesian and Neural Network approaches. From our experi-
ments, we have found the highest performing Clausal Defeasible Logic formula.
With regards to our significance investigation, we have demonstrated that our
proposed concept achieves the highest average cleaning rate when compared to
Bayesian and Neural Networks under the same conditions.

The remainder of this paper is structured as follows: Section 2 will deliver
background information relating to RFID and Non-Monotonic Reasoning crucial
to understanding our proposed concept. A concise description of previous and
related work will be provided in Section 3 shortly before we explore our own
methodology in Section 4. An evaluation of our experimentation will be provided
in Section 5 followed by our results and analysis in Section 6. Finally, Section 7
will discuss conclusions we have drawn from the our proposed methodology and
future work we intend to investigate following the research we have conducted.

2 Background

RFID systems refer to a system that automatically identifies multiple amounts
of tagged objects within a certain proximity to a reader. Although the potential
benefits of cheap and durable passive tagging architectures are great, ambiguous
anomalies such as missed readings hinder the world-wide adoption of this tech-
nology. High level intelligence engines, such as Non-Monotonic reasoning, may
be harnessed to provide the resolution to highly ambiguous scenarios such as
missing data to increase the integrity of the data set. Non-Monotonic reasoning
approaches such as defeasible logic and clausal defeasible logic are employed to
determine the optimal conclusion when given ambiguous information as input.

2.1 Radio Frequency Identification

Radio Frequency Identification (RFID) utilises radio transmissions between a
reader and identifying tags to wirelessly locate objects automatically. Items are
fitted with tags which are interrogated by readers resulting in the return of the

Correcting Missing Data Anomalies with Clausal Defeasible Logic 151

unique Electronic Product Code (EPC) [2]. Unfortunately, there are several is-
sues associated with the RFID architecture, specifically the passive tag system.
There are two persistent anomalies found within recorded data sets that are
continually introduced. This may be attributed to various factors such as col-
lision, detuning or water/metallic interference among tags [3]. These anomalies
are false positive readings where the data captured did not exist in reality, and
false negative readings where data is not present in the data set but is required to
be. Of these two anomalies, false negative errors may be considered the hardest
to correct as the data is not recorded into the database minimising the contex-
tual information needed to correctly impute what readings may have originally
been present. It has been estimated that only 60%-70% of recordings have been
estimated to be captured within any RFID architecture [4].

2.2 Non-monotonic Reasoning

Non-Monotonic Reasoning utilises logic to eliminate potential answers to a given
problem based on available information until a single conclusion has been deter-
mined. When given the option to arrive at a conclusion, it will utilise present
information to either prove or disprove an ambiguous situation with high level
intelligence. An example in which Non-Monotonic Reasoning would decipher the
correct solution would be when determining if Siberian Huskies bark. It is gen-
erally accepted that all dogs inherently bark, however, the Siberian Huskies are
one of a few rare breeds of dogs which do not [5].

Clausal Defeasible Logic (CDL) is software designed to incorporate the logic
found in Non-Monotonic Reasoning within a computational environment and to
be integrated into various applications [6]. The benefit of embedding Clausal
Defeasible Logic is that the engine will deterministically arrive at various intel-
ligent conclusions due to the use of different levels of ambiguous strengths. The
scenario in which Siberian Huskies do not bark has been represented within the
logical map utilised in CDL as pictured in Figure 1. As seen in the logic map,
the specific rule that Siberian Huskies do not bark outweighs the general rule in
which dogs bark is represented with an arch that favours rules which are further
anti-clockwise. In most cases, the logic arrives at the general conclusion, how-
ever this may be beaten by the specific rules that defy the previously established

Fig. 1. The Logic Map that houses the clausal defeasible rules used when deciding if

the Siberian Huskies will bark due to it being a dog or not

152 P. Darcy, B. Stantic, and A. Sattar

deduction. To properly find the correct conclusion, there are five core ambiguity
strengths [7] which include the following:

– μ: The strongest of the formulae which will only prove the conclusion with
factual information.

– α: A formula in which any conjunction of the π and β formulae are used to
reach its conclusion.

– π: The formula in which ambiguity is propagated to reach its conclusion.
– β: The formula in where ambiguity will not be allowed to be used to draw

its conclusions.
– δ: The disjunction of π and β are used to draw conclusions.

3 Related Work

Passive RFID anomalies has been studied extensively within related work with
two main methods used to correct the missed readings. The first methodology
uses filtering algorithms to correct incoming records when data is first captured.
The filtration processes rely on anti-collision protocols to correct tagged observa-
tions as they are being physically read pre-data storage [8]. The second approach
applies correcting algorithms to the stored data, which enhances the integrity of
the observations within the data storage. This approach employs user-specified
rules to modify the recorded observations in an attempt to enhance the integrity
post-data storage [9].

While the proposed approaches can correct simple false-negative anomalies,
highly ambiguous missing data may not be recovered due to the complex nature
of the observations. We believe that due to flaws such as low level of analytical in-
formation and lack of high level intelligence, the filtration and rule-based method-
ologies will not be able to handle scenarios in which missing data is not easily re-
placed. With regards to the filtration approach, the cleaning process is performed
at the edge which will only review the present and past information passed to the
middleware. This results in the correction not taking future observations into ac-
count and has been compared with a Bayesian Network in previous literature [10].
In contrast, the rule-based approach utilises user-specified rules that are applied
to the data set after the readings have been stored. However, logical anomalies
may be introduced unknowingly in the event where false negative anomalies have
a huge level of ambiguity. Previous research has found that by adding a higher
level intelligence such as Plausible Logic improves upon the framework [11].

4 Methodology

In this paper, we propose the use of an advanced data analysis methodology
coupled with high level intelligence to correctly decipher the likeliest candidates
of observations to be returned into the data set. In the following section, we
will outline the motivation and scenario considered in this work followed by a
description of the system architecture of our approach. These discussions will be
followed by the database structure that houses the RFID observations and all
assumptions made towards our methodology.

Correcting Missing Data Anomalies with Clausal Defeasible Logic 153

4.1 Motivation and Scenario

False Negative anomalies are hazardous to all applications that utilise RFID as
it prevents the recording of data lowering the overall integrity of the whole data
set. Within previous work, we have established that there is large potential for
the fusion of thorough analysis coupled with high level intelligence to adequately
replace missed readings. Additionally, we have also put forth a preliminary anal-
ysis of a simplistic CDL logic engine using high level analysis which resulted in
high cleaning rates. We have since decided to enhance the cleaning rules using
different Non-Monotonic Reasoning software and comparing these against an
already state-of-the-art approach.

The scenario upon which we have tailored our approach would include an
enclosed static environment where tracking items is essential. Missed readings,
however, may occur in this approach which need to be corrected before the
data can be utilised in meaningful contexts. The most beneficial scenario would
include false negative readings to occur randomly and rarely in which case it
would be easier to correct. Our concept has been focused to provide higher
intelligence for case studies in which missed readings occur consecutively.

For example, within a stocking warehouse that transfers stocked items via
conveyer belt to various locations of the environment, such as the mock environ-
ment depicted in Figure 2. The circles within the diagram represent the readers
and their respective ranges. The box with T1 inside represents the stocked item
being tracked as Tag 1 and the dotted line represents the path of which T1 would
travel in this scenario. If the items come too close within proximity or the tag is
facing the opposite direction to the reader, the stock’s tags may not be observed
at certain locations.

Fig. 2. A graphical representation of our ideal scenario in which a RFID-enabled con-

veyer belt tracks items from a warehouse to a truck

154 P. Darcy, B. Stantic, and A. Sattar

Table 1. A Table housing our ideal sample scenario RFID captured data.

EPC Reader ID Timestamp

T1 R1 2009-11-24 10:30:00.000

T1 R2 2009-11-24 10:31:00.000

T1 R3 2009-11-24 10:32:00.000

T1 R7 2009-11-24 10:26:00.000

Within this scenario, there may be a situation in which the insertion of the
observation may not be straight forward. Within our sample scenario previously
mentioned, and the sample data generated within Table 1, we can see that T1
is read at readers R1, R2, R3 R7. From this information, conventional data
correction algorithms would either replace all readings between R3 and R7 with
the reader location R3 or discard R7 as a false positive anomaly. However, our
approach would instead derive the shortest path from the available map data
and insert it within the data set, thereby increasing the integrity of the overall
information of T1.

4.2 System Architecture

As seen in Figure 3, we have divided our system’s architecture into three core
components. The first is designed to analyse the data where the missed reading
occurred which we have named the Analysis Phase. The data discovered in this
Analysis Phase is then passed onto the Intelligence Phase where the correct
permutation is selected. After the resulting data set has been chosen, the Loading
Phase will complete the program’s cycle by inputting the information back into
the data warehouse.

Fig. 3. A high level visualisation of inner processes used within our approach

Correcting Missing Data Anomalies with Clausal Defeasible Logic 155

Analysis Phase. The analysis phase consists of our tool locating missed read-
ings and then discovering essential data about the anomaly. The first process is
to divide the tags into “Tag Streams” as seen in Figure 4. These tag streams
include chronical information relating only to one individual tag. From these tag
streams, certain information is ascertained relating to the nature of the false neg-
ative anomaly. This includes finding the reader locations of the observations two
readings before and directly before the anomaly (a and b respectively), directly
after and two readings after the reader (c and d respectively). Additionally, the
shortest path between readings b and c using the map data is found. The total
missing readings calculated via the number of missing timestamps (n), and the
amount of observations within the shortest path (s), is then calculated. From
this information, we ascertain the following analytical data:

– a == b
– b ↔ c
– b == c
– d == c
– n == (s − 2)
– n > (s − 2)
– n > (s − 2)

We utilise four main arithmetic operations to obtain these binary analytical
information. These include the equivalent symbol ==, the less < and greater
than > symbols, and the ↔ symbol we have elected to represent geographical
proximity. The reason as to why s is always having two taken away from it is
that the shortest path always includes the boundary readers b and c which are
not included within the n calculation.

Fig. 4. A visual representation of how we analyse one tag at a given moment within a

Tag Stream

Intelligence Phase. The intelligence phase is when the various permutations
of the missing data are generated as candidates to be restored in the data set.
The five different permutations that are been generated depicted in Figure 5 are
described below:

– Permutation 1: All missing values are replaced with the reader location of
observation b.

– Permutation 2: All missing values are replaced with the reader location of
observation c.

156 P. Darcy, B. Stantic, and A. Sattar

– Permutation 3: The shortest path is slotted into the middle of the missing
data gap. Any additional missing gaps on either end of the shortest path are
substituted with values b for the left side, and c for the right.

– Permutation 4: The shortest path is slotted into the latter half of the missing
data gap. Any additional missing gaps on the former end are substituted with
value b.

– Permutation 5: As the anti-thesis of Permutation 4, the shortest path is
slotted into the former half of the missing data gap. Additional missing gaps
found at the latter end of the missing data gap are substituted with value c.

Fig. 5. An illustration of what reader values are placed into each false negative anomaly

for each of the five different permutations. Please note that the shortest path is repre-

sented as x.

After the data analysis and permutation formations are completed, all relevant
information is passed into the Non-Monotonic Reasoning Engine. The engine
will then return an answer deterministically as to which permutation best suits
the missing gap of data, based on the rules we have created shown in Tables
2 - 6. Each of the rules present within the tables are combinations found from
the analytical data joined by “and” statements

∧
) which have been gathered

within the Analysis Phase. Within the logic engine build, the precedence of
the rules correspond to the larger number of the rule (for example, rule 17
will beat rule 4 in Table 3. In the event that more than one permutation has
been found to be ideal in a given situation, we use the following hierarchical
weighting: Permutation 3 > Permutation 1 > Permutation 2 > Permutation 4
> Permutation 5. In the unlikely case where no conclusions have been drawn
from the Non-Monotonic Reasoning Engine, Permutation 3 will be elected as the
default candidate due to it having perfect symmetry within the imputed data.
This ordering has been configured to be the most accurate conclusion assuming
that the amount of consecutive missed readings are low due to the randomness
of the anomalies.

Correcting Missing Data Anomalies with Clausal Defeasible Logic 157

Table 2. A Table depicting the Non-Monotonic Reasoning rules used to create the

Permutation 1 logic engine

Rule No. Rule Conclusion

1 b==c ∼perm1

2 b==c
∧

n<(s-2) ∼perm1

3 b==c
∧

n==(s-2) ∼perm1

4 a==b perm1

5 c==d
∧

n==(s-2) ∼perm1

6 c==d
∧

n>(s-2) ∼perm1

7 c==d
∧

b↔c
∧

n==(s-2) ∼perm1

8 c==d
∧

b↔c
∧

n>(s-2) ∼perm1

9 a==b
∧

b↔c perm1

10 a==b
∧

b↔c
∧

n==(s-2) perm1

11 a==b
∧

b↔c
∧

b==c
∧∼c==d

∧
n==(s-2) perm1

12 c==d ∼perm1

13 c==d
∧

b↔c ∼perm1

14 a==b
∧

b↔c
∧

n>(s-2) perm1

15 a==b
∧

b==c
∧

b↔c
∧∼c==d

∧
n>(s-2) perm1

16 ∼b↔c ∼perm1

17 n<(s-2) ∼perm1

Table 3. A Table depicting the Non-Monotonic Reasoning rules used to create the

Permutation 2 logic engine

Rule No. Rule Conclusion

1 b==c ∼perm2

2 b==c
∧

n<(s-2) ∼perm2

3 b==c
∧

n==(s-2) ∼perm2

4 c==d perm2

5 a==b
∧

n==(s-2) ∼perm2

6 a==b
∧

n>(s-2) ∼perm2

7 a==b
∧

b↔c
∧

n==(s-2) ∼perm2

8 a==b
∧

b↔c
∧

n>(s-2) ∼perm2

9 b↔c
∧

c==d perm2

10 b↔c
∧

c==d
∧

n==(s-2) perm2

11 ∼a==b
∧

b↔c
∧

b==c
∧

c==d
∧

n==(s-2) perm2

12 a==b ∼perm2

13 a==b
∧

b↔c ∼perm2

14 b↔c
∧

c==d
∧

n>(s-2) perm2

15 ∼a==b
∧

b==c
∧

b↔c
∧

c==d
∧

n>(s-2) perm2

16 ∼b↔c ∼perm2

17 n<(s-2) ∼perm2

158 P. Darcy, B. Stantic, and A. Sattar

Table 4. A Table depicting the Non-Monotonic Reasoning rules used to create the

Permutation 3 logic engine

Rule No. Rule Conclusion

1 a==b
∧

c==d perm3

2 ∼a==b
∧∼c==d ∼perm3

3 a==b
∧

c==d
∧

n>(s-2) perm3

4 ∼a==b
∧∼c==d

∧∼n>(s-2) ∼perm3

5 n==(s-2) perm3

6 b==c ∼perm3

7 a==b
∧

c==d
∧

n==(s-2) perm3

8 n<(s-2) ∼perm2

Table 5. A Table depicting the Non-Monotonic Reasoning rules used to create the

Permutation 4 logic engine

Rule No. Rule Conclusion

1 c==d ∼perm4

2 b==c ∼perm4

3 a==b perm4

4 ∼a==b ∼perm4

5 n>(s-2)
∧

a==b perm4

6 ∼n>(s-2) ∼perm4

7 ∼a==b
∧∼n>(s-2) ∼perm4

Table 6. A Table depicting the Non-Monotonic Reasoning rules used to create the

Permutation 5 logic engine

Rule No. Rule Conclusion

1 a==b ∼perm5

2 b==c ∼perm5

3 c==d perm5

4 ∼c==d ∼perm5

5 n>(s-2)
∧

c==d perm5

6 ∼n>(s-2) ∼perm5

7 ∼c==d
∧∼n>(s-2) ∼perm5

Loading Phase. The loading phase consists of the selected permutation be-
ing uploaded back into the data storage at the completion of the Intelligence
Phase. The user will have the opportunity to either elect to load the missing
data into the current data repository, or copy the entire data set and only mod-
ify the copied data warehouse. This option would effectively allow the user to
revisit the original data set in the event that the restored data is not completely
accurate.

Correcting Missing Data Anomalies with Clausal Defeasible Logic 159

4.3 Database Structure

To store the information recorded from the RFID reader, we utilise portions
of the “Data Model for RFID Applications” DMRA database structure found
in Siemens Middleware software [12]. Additionally, we have introduced a new
table called MapData designed to store the map data crucially needed within
our application. Within the MapData table, two Reader IDs are stored in each
row to dictate if the two readers are geographically within proximity.

4.4 Assumptions

We have made three assumptions that are required for the entire process to
be completed. The first assumption is that the data recorded will be gathered
periodically. The second assumption we presume within our scenario is that the
amount of time elected for the periodic readings is less than the amount of
physical time needed to move from one reader to another. This is important as
we base our methodology around the central thought that the different readings
will not skip over readers that are geographically connected according to the
mapdata. The final assumption we make is that all readers and items required
to be tracked will be enclosed in a static environment that has readers which
cover the tracking area.

5 Experimental Evaluation

Within the following section, we have included a thorough description of the
setup of the experimentation used in our methodology. First, we discuss the
environment used to house the programs. This is followed by a detailed discussion
of our experimentation including the two experiments we performed and their
respective data sets used.

5.1 Environment

Our methodology has been coded in the C++ language and compiled with Mi-
crosoft Visual Studio C++. The code written to derive the lookup table needed
for the Non-Monotonic Reasoning data has been written in Haskell and com-
piled using Cygwin Bash Shell. All programs were written and executed on Dell
machine with Windows XP Service Pack 3 operating system installed.

5.2 Experiments

We have conducted two experiments to adequately measure the performance of
our methodology. The first experiment conducted was to determine which of the
clausal defeasible logic formulae performs most successfully when attempting to
correct large amounts of scenarios. The training cases used in the first experiment
consisted of three sets of data consisting of 100, 500 and 1,000 ambiguous false

160 P. Darcy, B. Stantic, and A. Sattar

negative anomaly cases. These three sets of data is used to represent the 60% -
70% anomalies of a small, medium and large database respectively.

The second experiment was designed to test the performance of our selected
highest performing Non-Monotonic Reasoning logic against both a bayesian and
neural Network approach. The reason as to why these techniques were selected
as opposed to other related work is that only other state-of-the-art classifying
techniques can be compared in respect to seeking the select solution from a
highly ambiguous situation.

The second experiment testing sets included four data repositories consist-
ing of 500, 1,000, 5,000 and 10,000 ambiguous false negative anomaly cases. We
defined our scoring system as if the respective methodologies were able to re-
turn the correct permutation of data that had been previously defined. All data
within the training and testing set have been simulated to emulate real RFID
observational data.

6 Results and Analysis

To thoroughly test our application, we devised two different examinations which
we have labelled the Non-Monotonic Reasoning and Significance Experiments.
The Non-Monotonic reasoning experiment compared the cleaning rate of each of
the Clausal Defeasible Logic formulae. The highest performing Non-Monotonic
reasoning setup was then compared to Bayesian and Neural network approaches
to demonstrate the significance of our cleaning algorithm.

6.1 Non-monotonic Reasoning Experiment

We created the first experiment with the goal of determining which of the five
CDL formulae would be able to clean the highest rate of highly ambiguous
missing RFID observations. We did this by comparing the cleaning results of the
μ, α, π, β and δ formulae on various training cases. There were three training sets
in all with 100, 500 and 1,000 ambiguous false negative anomalies. Additionally,
at the completion of these experiments, the average was determined for all three
test cases and was used to ascertain which of the five formulae would be used
within the Significance Experiment.

As seen in Figure 6, the highest average achieving formula has been found
to be α (Alpha). This is probably due to the fact that it discovers cases in
which both the β and π formulae agree upon, increasing the intelligence of the
decision. Also of note is that the disjunction of β and π formulae shown within
δ achieves a relatively high average cleaning rate also. The lowest performing
average cleaning rate has been found to be β, which is probably due to its non-
acceptance of ambiguity when drawing its conclusion. We believe it is crucial for
the cleaner to have a low level of ambiguity when drawing its conclusions as the
problem of missed readings needs a level probability to infer what readings need
to be replaced. As stated above, we have chosen the α formula as the highest
performing cleaner to be used within the Significance Experiment.

Correcting Missing Data Anomalies with Clausal Defeasible Logic 161

Fig. 6. The results of the Non-Monotonic Reasoning Experiment where the cleaning

rate has been found for the five CDL formulae μ (Mu), α (Alpha), π (Pi), β (Beta)

and δ (Delta)

6.2 Significance Experiment

The goal of our second experimental evaluation was designed to put three classi-
fiers through a series of test cases with large amounts of ambiguous missing obser-
vations. The three different classifications techniques included our Non-Monotonic

Fig. 7. The results of the Significance Experiment where the cleaning rate has been

found for the Bayesian Network, Neural Network and Non-Monotonic Reasoning using

the α formula

162 P. Darcy, B. Stantic, and A. Sattar

Reasoning engine with CDL using the α compared against both Bayesian and Neu-
ral Networks.

Both of the networks were trained using a Genetic Algorithm using 10 chromo-
somes with a single-point crossover function bred for 50 generations. We designed
the experiment to have an abnormally high amount of ambiguous false negative
anomalies consisting of 500 and 1,000 test cases to thoroughly evaluate each ap-
proach. After these experiments had concluded, we derived the average of each
technique to find the highest performing classifier.

The results of this experiment, depicted in Figure 7, has shown that on aver-
age, our Non-Monotonic Reasoning approach achieved the highest cleaning rate.
It is important to note that it achieved the highest results when cleaning the
data set with 1,000 test cases. We believe that the high results may be due to the
deterministic nature of our methodology preventing erroneous permutations be-
ing selected. In contrast, the probabilistic methodologies have a higher chance of
selecting incorrect imputed values which in turn produces artificial false positive
anomalies and not recovering the original missing data.

7 Conclusion

In this paper, we have proposed the utilisation of intelligent Clausal Defeasible
Logic engines to clean highly ambiguous false negative RFID anomaly cases.
Through experimental studies we have identified that our concepts performs
most effectively when used to restore consecutive missed observations. We have
also conducted experiments to demonstrate the significance of our approach com-
pared to other state-of-the-art technologies. More specifically this work makes
the following contributions to the field:

– We put forth an enhanced logic engine and showed that it can deal with
ambiguous false negative RFID observation anomalies.

– We found that the highest performing Clausal Defeasible Logic formula is α.
– We compared our proposed concept to other leading state-of-the-art classi-

fication techniques and found that our approach obtains a higher cleaning
rate.

We have specifically tailored our approach to be compatible with RFID tech-
nology. However, this concept may be applied to other applications that have
missing spatio-temporal observational data. With regards to future work, it
would be interesting to investigate “Would the increase of complexity in the anal-
ysis phase result in a higher cleaning rate?” Specifically, increasing the amount
of observational data collected in the analysis phase. We would also like to apply
our methodology to a practical RFID supply chain and other applications that
would benefit from our concept.

Acknowledgment

This research is partly sponsored by ARC (Australian Research Council) grant
no. DP0557303.

Correcting Missing Data Anomalies with Clausal Defeasible Logic 163

References

1. Derakhshan, R., Orlowska, M.E., Li, X.: RFID Data Management: Challenges and

Opportunities. In: RFID 2007, pp. 175–182 (2007)

2. Chawathe, S.S., Krishnamurthy, V., Ramachandran, S., Sarma, S.E.: Managing

RFID Data. In: VLDB, pp. 1189–1195 (2004)

3. Floerkemeier, C., Lampe, M.: Issues with RFID usage in ubiquitous computing ap-

plications. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001,

pp. 188–193. Springer, Heidelberg (2004)

4. Jeffery, S.R., Garofalakis, M.N., Franklin, M.J.: Adaptive Cleaning for RFID Data

Streams. In: VLDB, pp. 163–174 (2006)

5. Lam, B.: NICTA: SPINdle. NICTA (2009)

http://spin.nicta.org.au/spindleOnline/demo.html (accessed: October 25,

2009)

6. Billington, D.: Propositional Clausal Defeasible Logic. In: Hölldobler, S., Lutz, C.,

Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 34–47. Springer,

Heidelberg (2008)

7. Billington, D.: An Introduction to Clausal Defeasible Logic. David Billington’s

Home Page (August 2007), http://www.cit.gu.edu.au/~db/research.pdf (ac-

cessed: July 3, 2008)

8. Shih, D.H., Sun, P.L., Yen, D.C., Huang, S.M.: Taxonomy and Survey of RFID

Anti-Collision Protocols. Computer Communications 29(11), 2150–2166 (2006)

9. Rao, J., Doraiswamy, S., Thakkar, H., Colby, L.S.: A Deferred Cleansing Method

for RFID Data Analytics. In: VLDB, pp. 175–186 (2006)

10. Darcy, P., Stantic, B., Sattar, A.: Improving the Quality of RFID Data by Utilising

a Bayesian Network Cleaning Method. In: Proceedings of the IASTED Interna-

tional Conference Artificial Intelligence and Applications (AIA 2009), pp. 94–99

(2009)

11. Darcy, P., Stantic, B., Derakhshan, R.: Correcting Stored RFID Data with Non-

Monotonic Reasoning. Principles and Applications in Information Systems and

Technology (PAIST) 1(1), 65–77 (2007)

12. Liu, S., Wang, F., Liu, P.: A Temporal RFID Data Model for Querying Physical

Objects. Technical Report TR-88, TimeCenter (2007)

http://spin.nicta.org.au/spindleOnline/demo.html
http://www.cit.gu.edu.au/~db/research.pdf

Horizontal Partitioning by Predicate Abstraction

and Its Application to Data Warehouse Design

Aleksandar Dimovski1, Goran Velinov2, and Dragan Sahpaski2

1 Faculty of Information-Communication Technologies, FON University, Skopje,

1000, Republic of Macedonia
2 Institute of Informatics, Faculty of Sciences and Mathematics, Ss. Cyril and

Methodius University, Skopje, 1000, Republic of Macedonia

Abstract. We propose a new method for horizontal partitioning of re-

lations based on predicate abstraction by using a finite set of arbitrary

predicates defined over the whole domains of relations. The method is

formal and compositional: arbitrary fragments of relations can be parti-

tioned with arbitrary number of predicates. We apply this partitioning

to address the problem of finding suitable design for a relational data

warehouse modeled using star schemas such that the performance of a

given workload is optimized. We use a genetic algorithm to generate an

appropriate solution for this optimization problem. The experimental re-

sults confirm effectiveness of our approach.

Keywords: Data Warehouse, Horizontal Partitioning, Predicate

Abstraction.

1 Introduction

Given a database shared by distributed applications in a network, the perfor-
mance of queries would be significantly improved by proper data distribution
to the physical locations where they are needed most. This can be achieved
by using partitioning (or fragmentation). Partitioning is the process of splitting
large relations (tables) into smaller ones so that the DBMS does not need to re-
trieve as much data at any one time. There are two ways to partition a relation:
horizontally and vertically. Horizontal partitioning involves splitting the tuples
(rows) of a relation, placing them into two or more relations with the identical
structure. Vertical partitioning involves splitting the attributes (columns) of a
relation, placing them into two or more relations linked by the relation’s primary
key. Advantages that partitioning brings are the following: it can significantly
impact the performance of the workload, i.e. set of queries that executes against
the database system by reducing the cost of accessing and processing data; it al-
lows parallel processing of data by locating tuples where they are most frequently
accessed, etc.

Data Warehouses (DW) store active data of business value for an organiza-
tion. Relational DW often contain large relations (fact relations or fact tables)

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 164–175, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Horizontal Partitioning by Predicate Abstraction 165

and require techniques both for managing these large relations and for provid-
ing good query performance across these large relations. Our goal is to find an
optimal partitioning scheme of a data warehouse for a given representative work-
load by using partitioning on relations and indexes. An important issue about
partitioning is to which degree should it occur. We need to find a suitable level
of partitioning relations within the range starting from single attribute values
or tuples to the complete relations. The space of possible physical partitioning
scheme alternatives that need to be considered is very large. For example, each
relation can be partitioned in many different ways.

In this paper we describe a new formal approach for horizontal partitioning
and its application for optimizing data warehouse design in a cost-based manner.
Horizontal partitioning is based on predicate abstraction which maps the domain
of a relation to be partitioned to an abstract domain following a finite set of
arbitrary predicates chosen over the whole concrete domain. To address the above
optimization problem, we first choose a set of predicates to horizontally partition
some (or all) dimension relations of a DW with star scheme, and then split the
fact relation by using the predicates specified on dimension relations. This creates
a number of sub-star fragments of the data warehouse we consider, where each
sub-star fragment consists of a partition of the fact table and corresponding
to it partitions of dimension relations. Then we use a genetic algorithm, known
evolutionary heuristic, to find a suitable solution which minimizes the query cost.
Our method does not guarantee an optimal partitioning, but the experimental
results suggest that it produces good solutions in practice.

Organization. After discussing related work, in Section 2 we formally present a
procedure for horizontal partitioning of relations based on predicate abstraction.
Section 3 contains brief review of relational DW with star scheme model. In
Section 4, the optimization problem is defined and a genetic algorithm addressing
it is described. We present experimental results in Section 5. Finally, in Section
6, we conclude and discuss future work.

Related Work. The work on optimal partitioning of a database design for a given
representative workload and its allocation to a number of processor nodes has
been extensive [13,19]. The ideas were then adapted to the setting of a data
warehouse [1,6]. In [7] is proposed a technique for materializing data warehouse
views in vertical fragments, aimed to tightly fit the reference workload. In our
previous works, we develop a technique for optimizing a data warehouse scheme
by using vertical partitioning [16,17], and then extend it by defining multiversion
implementation scheme in order to take into account the dynamic aspect of a
warehouse due to the changes of the scheme structure and queries [15].

Predicate abstraction (or boolean abstraction) has been widely used in model
checking [8]. The idea of predicate abstraction is to map concrete states of a
system to abstract states according to their evaluation under a finite set of
predicates. Automatic predicate abstraction has been developed for verifying
infinite-state systems such as software programs [2,5].

166 A. Dimovski, G. Velinov, and D. Sahpaski

Horizontal partitioning has also been used for optimizing the performance of
queries [4,12,14]. However, the method has not been formalized before, and in
such way, it has not been applied in a concrete algorithm. The work presented
in this paper is close to [3], which also uses horizontal partitioning for selecting
an optimal scheme of a warehouse. However, our work brings several benefits.

– We formally define the method of horizontal partitioning of a relation by
using the notion of predicate abstraction.

– In our optimizing procedure we use arbitrary predicates which can be defined
over the whole domain of a relation, not as in [3] where only atomic predicates
applied to single attributes are used.

– Our partitioning method is compositional, which enables partitioning arbi-
trary fragments of relations with arbitrary number of predicates.

– A global index table is created which maintains pointers to each of the sub-
star fragments.

In our experiments we use genetic algorithms that are also used for optimization
of a data warehouse schema in [3] and [18]. We conducted the experiments using
the Java Genetic Algorithm Framework JGAP [11].

2 Horizontal Partitioning by Predicate Abstraction

Let R be a relation, and A1, ..., An be its attributes with the corresponding do-
mains Dom(A1), ..., Dom(An). A predicate represents a pure boolean expression
over the attributes of a relation R and constants of the attributes’ domains. An
atomic predicate p is a relationship among attributes and constants of a relation.
For example, (A1 < A2) and (A3 >= 5) are atomic predicates. Then, the set of
all predicates over a relation R is:

φ ::= p | ¬φ |φ1 ∧ φ2 |φ1 ∨ φ2

We define horizontal partitioning as a pair (R, φ), where R is a relation and φ
is a predicate, which partitions R into at most 2 fragments (sub-relations) with
the identical structure (i.e. the same set of attributes), one per each truth value
of φ. The first fragment includes all tuples t of R which satisfy φ, i.e. t � φ. The
second fragment includes all tuples t of R which do not satisfy φ, i.e. t � φ. It
is possible one of the fragments to be empty if all tuples of R either satisfy or
do not satisfy φ. Note that, the partitioning (R, φ) is identical to (R,¬φ). If we
apply the predicate true (or false) to a relation, then it remains undivided.

Example 1. Let R = (A1 int, A2 int, A3 date) be a relation. It can be divided
into 2 partitions by using one of the following predicates:

– φ = (A1 = A2), which results into a fragment where the values of A1 and
A2 are equal for all tuples, and a fragment where those values are different.

– φ = (A3 >=′ 01 − 01 − 07′) ∧ (A3 <′ 01 − 01 − 09′), which results into
a fragment where the values of A3 are in the range from ′01 − 01 − 07′ to
′01 − 01 − 09′, and a fragment where those values are not in the specified
range. �

Horizontal Partitioning by Predicate Abstraction 167

Embedded horizontal partitioning is also allowed. We can apply horizontal parti-
tioning using a predicate φ2 to each of the fragments obtained by a partitioning
(R, φ1), denoted as (R, φ1, φ2). In this way, we can split the initial relation R
into at most 4 fragments:

R1 = {t ∈ R | t � φ1 ∧ φ2}
R2 = {t ∈ R | t � φ1 ∧ ¬φ2}
R3 = {t ∈ R | t � ¬φ1 ∧ φ2}
R4 = {t ∈ R | t � ¬φ1 ∧ ¬φ2}

Embedded horizontal partitioning can go on to an arbitrary depth m, such
that in each level an arbitrary predicate is applied to the obtained fragments.
Embedded horizontal partitioning of a relation R with depth m is denoted as
(R, φ1, φ2, ..., φm) where φ1, φ2, ..., φm are arbitrary predicates. The partitioning
with depth m splits the initial relation R into at most 2m fragments.

Example 2. Let we have the relation R from Example 1.
(
R, (A3 >=′ 01− 01−

07′)∧(A3 <′ 01−01−09′), A3 <′ 01−01−07′
)

splits R into at most 3 fragments:

– R1 with tuples satisfying A3 <′ 01 − 01 − 07′.
– R2 with tuples satisfying ′01 − 01 − 07′ <= A3 <′ 01 − 01 − 09′.
– R3 with tuples satisfying A3 >=′ 01 − 01 − 09′.

Note that, the final number of fragments depends on the structure of R. For
example, if there are no tuples that satisfy (A3 >=′ 01 − 01 − 09′) then the
fragment R3 will be empty. �

2.1 Predicate Abstraction

Given a relation R = (A1, ..., An) and a set of predicates P = {φ1, φ2, ..., φm},
we define the concrete domain of R as:

Dom(R) = Dom(A1) × Dom(A2) × . . . × Dom(An)

and the abstract domain of R with respect to P , denoted as AbsDom(R)P , as
the set of bitvectors of length m (one bit per predicate φi ∈ P , for i = 1, . . . , m):

AbsDom(R)P = {0, 1}m

The abstraction function is the mapping from the concrete domain Dom(R)
to the abstract domain, assigning a tuple t in R the bitvector representing the
Boolean covering of t:

α : Dom(R) → AbsDom(R)P ,
t = (a1, . . . , an) �→ (v1, . . . , vm), t � v1 · φ1 ∧ . . . ∧ vm · φm

where 0 · φ = ¬φ and 1 · φ = φ. The concretization function is the mapping

γ : AbsDom(R)P → Dom(R),
(v1, . . . , vm) �→ {t | t � v1 · φ1 ∧ . . . ∧ vm · φm}

168 A. Dimovski, G. Velinov, and D. Sahpaski

Given a relation R = (A1, ..., An) and a set of predicates P = {φ1, φ2, ..., φm},
the horizontal partitioning (R, φ1, . . . , φm), or (R,P) for short, splits R into at
most 2m fragments:

R(v1,...,vm) = {t |α(t) = (v1, . . . , vm)}
We form an index table with 2m entries representing all possible bitvectors of
length m:

{(v1, . . . , vm) | vi ∈ {0, 1}, i = 1, . . . , m}
An index entry (v1, . . . , vm) specifies the tuples of R satisfying the entry value
with respect to the set of predicates P . So, each single entry (v1, . . . , vm) from
the index table points to exactly one fragment R(v1,...,vm). If some fragment is
empty, then there will be no pointer to it. Then, local index tables are created
on each of the fragments.

Example 3. Let us have the relation R from Examples 1 and 2. The partitioning(
R, (A3 >=′ 01− 01− 07′)∧ (A3 <′ 01− 01− 09′), A3 <′ 01− 01− 07′

)
splits R

into the following fragments: R(0,0) with tuples satisfying A3 >=′ 01− 01− 09′;
R(0,1) with tuples satisfying A3 <′ 01 − 01 − 07′; R(1,0) with tuples satisfying
′01−01−07′ <= A3 <′ 01−01−09′; R(1,1) with tuples satisfying both predicates,
which is an empty set. The index table contains 4 entries: (0, 0), (0, 1), (1, 0),
and (1, 1) pointing to the corresponding fragments. �

2.2 Predicate Selection

We can obtain a set of predicates P = {φ1, ..., φm} applicable to a relation R for
horizontal partitioning by extracting them from a set of given (input) queries.
The predicates are specified in the selection clause of a query. As we have seen,
the number of horizontal fragments is in the worst case exponential in the number
of predicates involved. Therefore, it is important to use as few predicates as
possible. Given P and R we want to generate a set of complete and minimal
predicates Pcomin and then partition R by using (R,Pcomin). A set of predicates
is complete if it partitions the relation into a set of mutually disjoint fragments
such that the access frequency of all tuples within a fragment is uniform for all
queries. A set of predicates is minimal if the resulting partitioning is obtained by
minimal number of predicates. There might be some redundant predicates in P
for our horizontal partitioning algorithm, which lead to no additional fragments.

Example 4. Let we have the relation R from the previous Examples. Consider
predicates φ1 = (A3 >=′ 01− 01− 07′)∧ (A3 <′ 01− 01− 09′) and φ2 = (A3 <′

01 − 01 − 07′). Then (R, φ1, φ2) splits R into 3 fragments as in Example 2. But
if we have predicate φ3 = (A3 >=′ 01 − 01 − 09′), then (R, φ1, φ2, φ3) generates
again the same 3 fragments as before. So, φ3 is a redundant predicate. Also
the partitionings (R, φ1, φ3) and (R, φ2, φ3) are identical to (R, φ1, φ2, φ3). This
means that any one of the predicates φ1, φ2, and φ3 can be eliminated. �

The procedure ComputeMin for computing a minimal set of predicates based
on a given complete set of predicates and a relation is presented in

Horizontal Partitioning by Predicate Abstraction 169

The procedure computes a set of minimal predicates Pmin for a given complete set

of predicates P = {φ1, ..., φm} and a relation R.

1 Let P = {φ1, ..., φm} be a set of predicates. Let i := 1 and Pmin := ∅.
2 If i > m, return Pmin.

3 If (φi ∈ Pmin) or (¬φi ∈ Pmin), then φi is redundant. Set i := i + 1, and repeat

from 2.

4 Otherwise, if φi is relevant to Pmin, then Pmin := Pmin ∪ {φi}. If there exists a

φ ∈ Pmin that is not relevant to Pmin \ {φ}, then set Pmin = Pmin \ {φ}. Set

i := i + 1, and repeat from 2.

5 If φi is not relevant to Pmin, then φi is redundant. Set i := i + 1, and repeat

from 2.

Fig. 1. ComputeMin procedure

Figure 1. It checks for each of the predicates whether it can be eliminated or not.
We say that a predicate φ is relevant to a set of predicates P if there are two
tuples t and t′ of a fragment F , where F ∈ (R,P), such that t � φ and t′ � φ.
Note that, it is still possible that some fragments produced from (R,Pmin) to
be empty.

2.3 Derived Horizontal Partitioning

Derived Horizontal Partitioning is defined on a relation table which refers to
another relation by using its primary key as reference. Since this relationship
will be used during execution of join operations over the two relations, it is of
advantage to propagate a horizontal fragmentation obtained for one relation to
the other relation and to keep the corresponding fragments at the same place.

Let R = (A1, . . . , An) and S = (B1, . . . , Bm) be relations, Aj (1 ≤ j ≤ n)
be a primary key of R, and Bi (1 ≤ i ≤ m) be a foreign key of S referring to
Aj . Given a horizontal fragmentation of R into R1, . . . , Rk, then this induces the
derived horizontal fragmentation of S into k fragments:

Sl = S � Rl, l = 1, . . . , k

where the semi-join operator � is defined as S � R = πB1,...,Bm(S �� R), i.e. the
result is the set of all tuples in S for which there is a tuple in R that is equal on
their common attributes.

3 Data Warehouse Schema

In the core of any data warehouse is a concept of a multidimensional data cube.
The data in the cube is stored in specialized relations, called fact and dimen-
sion relations. Fact relations contain basic facts about a model, and they are
referencing any number of dimension relations. On the other hand, dimension
relations contain extra information about the facts. There are two schemes of

170 A. Dimovski, G. Velinov, and D. Sahpaski

implementation: star and snowflake scheme. In the star scheme all attributes
of each dimension are stored in one relation, while in the snowflake scheme at-
tributes in each dimension are normalized and stored in different relations. In
this paper we consider data warehouse with star scheme.

Let (F, D1, D2, . . . , Dk) be a star scheme. Given a set D = {D1, D2, . . . , Dk} of
dimension relations, let us suppose that each of them Di (1 ≤ i ≤ k) is horizon-
tally partitioned by using a set of predicates Pi into ni fragments. Then, a fact
relation F is partitioned using derived horizontal partitioning in the following
way:

Fj =
(
...(F � D1r1) � . . . � Dkrk

)
where 1 ≤ ri ≤ ni, 1 ≤ i ≤ k, and 1 ≤ j ≤ ∏k

i=1 ni. So the fact rela-
tion will be partitioned into

∏k
i=1 ni fragments. Given a fact relation partition

Fj =
(
...(F � D1r1) � . . . � Dkrk

)
, we can create a sub-star scheme fragment

(Fj , D1r1 , . . . , Dkrk
). If each dimension Di is partitioned into ni (1 ≤ i ≤ k)

fragments, then there will be
∏k

i=1 ni sub-star schemes in the implementation
scheme of a data warehouse.

More formally, if dimension relations are partitioned by sets of predicates Pi =
{φi,1, φi,2, . . . φi,mi} for 1 ≤ i ≤ k, then each dimension relation Di will be divided
into at most 2mi fragments, and the fact table into at most 2

∑k
i=1 mi fragments.

We can form a global index table with 2
∑k

i=1 mi entries representing all possible
bitvectors of length

∑k
i=1 mi. An index entry (v1,1, . . . , v1,m1 , . . . , vk,mk

) specifies
the tuples of dimension relations satisfying the entry value with respect to the
corresponding set of predicates. Each single entry (v1,1, . . . , v1,m1 , . . . , vk,mk

) from
the index points to exactly one sub-star scheme created by dimension relations
Di(vi,1,...,vi,mi

) for 1 ≤ i ≤ k, and a fact sub-relation
(
...(F � D1(v1,1,...,v1,m1)) �

. . .�Dk(vk,1,...,vk,mk
)

)
. Then, local index tables are created on each of the sub-star

schemes.

4 Optimization Problem

As we have seen the number of generated sub-star schemes grows rapidly as the
number of fragments of dimensions increases. Thus, it will be difficult for the
data warehouse administrator (DWA) to maintain all these sub-star schemes.
We want to compute an (near) optimal number of fragments such that the
performance of queries will be good and the cost of maintaining and managing
so many fragments will be acceptable. The latter is addressed by allowing to
choose in our procedure a maximal number of sub-star scheme fragments that
DWA can maintain. We now formally define the problem of finding an optimal
partitioning implementation scheme of a data warehouse.

4.1 The Optimization Problem

Let (F, D1, D2, . . . , Dk) be a star scheme, Q = {Q1, Q2, . . . , Ql} be a set of
queries, and Cost be a cost evaluation function. The optimization problem is

Horizontal Partitioning by Predicate Abstraction 171

defined as follows. Find a set of sub-star fragments S = {S1, S2, . . . , SN} such
that the cost

Cost(S,Q) is minimal

subject to the constraint N ≤ W , where W is a threshold representing a maximal
number of fragments that can be generated. The cost evaluation function is
defined according to the linear cost model [9]. The cost of answering a query
Qi, denoted as Cost(S, Qi), is taken to be equal to the space ocupied by the
fragment Sj ∈ S from which the query is answered, i.e. proportional to the total
number of rows of the fragment Sj .

4.2 The Optimization Procedure

We now describe an optimization procedure for obtaining an optimal partitioning
implementation scheme given a workload:

1 Extract all predicates P used by Q.
2 Find a complete set of predicates Pi ⊆ P (1 ≤ i ≤ k) corresponding to each

dimension relation Di.
3 Use ComputeMin(Pi,Di) procedure to find a minimal set of predicates for

each relation.
4 Apply a genetic algorithm to find an optimal partitioning scheme.

Genetic algorithm (GA) [10] is a search method for finding approximate so-
lutions to optimization problems. It uses techniques inspired by evolutionary
biology such as mutation, selection, crossover, and survival of the fittest. Can-
didate solutions to a given problem, also called chromosomes, are represented
most commonly as bit strings, but other encodings are also possible. The algo-
rithm starts from a population of randomly generated solutions and happens in
iterations (i.e. generations). In each generation, the cost of every solution in the
population is evaluated, multiple solutions are selected from the current pop-
ulation based on their cost, and modified (recombined and possibly randomly
mutated) to form a new population. The new population is then used in the next
iteration. The algorithm terminates when either a maximum number of gener-
ations has been produced, or a solution with satisfactory cost has been found.
We now present the design of our genetic algorithm.

Representation of Solution. Let Pi = {φi,1, φi,2, . . . φi,mi} (1 ≤ i ≤ k)
be a complete and minimal set of predicates that needs to be applied to the
dimension Di for horizontal partitioning. A possible solution of our problem is a
set of N (N ≤ W) different sub-star fragments. Each fragment Sj (1 ≤ j ≤ N)
is represented by a bit array (or, bit-vector).

(v1,1, . . . , v1,m1 , . . . , vk,1, . . . , vk,mk
)

172 A. Dimovski, G. Velinov, and D. Sahpaski

containing one bit for each predicate used in the partitioning. Each bit in the
solution is set to 1, if the respective predicate is satisfied by all tuples in Sj ;
otherwise it is set to 0. So, we have that

Sj = F(v1,1,...,v1,m1 ,...,vk,mk
) = {t |α(t) = (v1,1, . . . , v1,m1 , . . . , vk,mk

)}

or

Sj = F(v1,1,...,v1,m1 ,...,vk,mk
) =
(
...(F � D1(v1,1,...,v1,m1)) � . . . � Dk(vk,1,...,vk,mk

)

)
The entry from the local index table which points to Sj will be its bit array
representation (v1,1, . . . , v1,m1 , . . . , vk,1, . . . , vk,mk

). In this way, we obtain that
the search space of our optimization problem is 2N

∑k
i=1 mi , or in the worst case

it is 2W
∑k

i=1 mi .
A chromosome consists of N composite genes, where each composite gene is

a bit-vector representing one fragment Sj as described above. One chromosome
represents one possible solution to the problem.

Genetic Algorithm Operators. A single point crossover operator is used,
which chooses a random bit from two parent chromosomes, i.e. solutions, and
then performs a swap of that bit and all subsequent bits between the two parent
chromosomes, in order to obtain two new offspring chromosomes.

The mutation operation is performed over each gene of a chromosome and
mutates them with a given probability. Because the genes are represented as bit
arrays, a mutation of a gene means fliping the value of every bit with the given
probability.

We use a natural selection operator where a chromosome is selected for sur-
vival in the next generation with a probability inversely proportional to the cost
of the solution represented by the chromosome. A strategy of elitist selection is
also used where the best chromosome of the population in the current generation
is always carried unaltered to the population in the next generation.

The termination of the GA is established as follows. We perform a number
of GA experiments, and we determine the number of iterations that are needed
for the GA, such that no significant improvement in the solution quality can be
detected for a specified number of iterations.

5 Experimental Results

The experiments were performed by using four sets of 25, 50, 100 and 200 distinct
queries on a star scheme with 4 dimensions, which contain 11 attributes, and 1
fact table with size of 1.25 ∗ 109 rows. Each query contains a selection clause of
the form: φ1 ∧ ... ∧ φn. The sets of 25, 50, 100 and 200 queries are composed
of 178, 341, 711 and 1387 predicates, respectively. The number of predicates in
a query is generated using a gaussian distribution with mean 7 and standard
deviation 1. The attribute and its value in a given predicate are generated using

Horizontal Partitioning by Predicate Abstraction 173

1 4 8 16 32 64
W - threshold of number of partitions

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

R
el

at
iv

e
Q

u
er

y
E

x
ec

u
ti
on

C
os

t Q25

Q50

Q100

Q200

Fig. 2. The query cost for different values of the threshold W

a uniform distribution on the set of attributes and the domain of the selected
attribute, respectively. The termination condition of all the experiments is set
to 200 iterations and the population size is set to 200 chromosomes.

In Figure 2, we show the query execution cost for different query sets and
different values of the threshold W . The query execution cost is represented in
percentage relative to the worst query execution cost (on a star scheme with
no partitioning) for the given query set. We can see that the query execution
cost on a partitioned star schema is reduced by the order of 103 compared to an
unpartitioned schema. Also, note that the query cost reduces when the threshold
increases.

In Figure 3, we compare the relative query execution costs on three query
sets composed of 100 queries each, which contain predicates generated using a
gaussian distribution with mean 3, 7 and 15 and standard deviation 1, on the

1 4 8 16 32 64
W - threshold of number of partitions

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

R
el

at
iv

e
Q

u
er

y
E

x
ec

u
ti
on

C
os

t

QAP3

QAP7

QAP15

Fig. 3. The cost of query sets with different average number of predicates

174 A. Dimovski, G. Velinov, and D. Sahpaski

same star schema used in Figure 2. The three sets of queries with 3, 7 and
15 average number of predicates per query are composed of 305, 711 and 1100
predicates, respectively. It can be seen that the query execution cost reduces
more rapidly when the average number of predicates in the generated queries is
smaller.

6 Conclusion

In this paper we present a novel formal approach for horizontal partitioning
of relations based on predicate abstraction. Then, we show how to use this
approach for finding an optimal data warehouse design which takes account
of the performance of queries and the maintenance cost.

A possible direction for extension is to combine our partitioning method with
vertical partitioning, and see its effects on the problem of computing an optimal
data warehouse design. It is also interesting to extend the proposed approach to
dynamically evolving data warehouse, which can change its scheme structures
and its queries.

References

1. Agrawal, S., Narasayya, V., Yang, B.: Integrating Vertical and Horizontal Parti-

toning into Automated Physical Database Design. In: Proceedings of the ACM

SIGMOD International Conference on Management of Data, pp. 359–370 (2004)

2. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and Cartesian Abstraction for

Model Checking C Programs. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS,

vol. 2031, p. 268. Springer, Heidelberg (2001)

3. Bellatreche, L., Boukhalfa, K.: An Evolutionary Approach to Schema Partitioning

Selection in a Data Warehouse. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2005.

LNCS, vol. 3589, pp. 115–125. Springer, Heidelberg (2005)

4. Bellatreche, L., Karlapalem, K., Simonet, A.: Algorithms and Support for Horizon-

tal Class Partitioning in Object-Oriented Databases. The Distributed and Parallel

Databases Journal 8(2), 155–179 (2000)

5. Dimovski, A., Ghica, D.R., Lazić, R.: Data-Abstraction Refinement: A Game Se-

mantic Approach. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672,

pp. 102–117. Springer, Heidelberg (2005)

6. Furtado, P.: Experimental Evidence on Partitioning in Parallel Data Warehouses.

In: Proceedings of the 7th ACM International Workshop on Data Warehousing and

OLAP (DOLAP), pp. 23–30 (2004)

7. Golfarelli, M., Maniezzo, V., Rizzi, S.: Materialization of Fragmented Views in Mul-

tidimensional Databases. Data & Knowledge Engineering 49(3), 325–351 (2004)

8. Graf, S., Saidi, H.: Construction of Abstract Atate Graphs with PVS. In: Grum-

berg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

9. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes efficiently.

In: Proceedings of the 1996 ACM SIGMOD International Conference on Manage-

ment of Data, vol. 25(2), pp. 205–216. ACM Press SIGMOD Record, New York

(1996)

Horizontal Partitioning by Predicate Abstraction 175

10. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michi-

gan Press (1995)

11. Meffert, K.: JGAP - Java Genetic Algorithms and Genetic Programming Package,

http://jgap.sf.net

12. Ozsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Prentice-

Hall, Englewood Cliffs (1999)

13. Sacca, D., Wiederhold, G.: Database Partitioning in a Cluster of Processors. Pro-

ceedings of the ACM Transactions on Database Systems (TODS) 10(1), 29–56

(1985)

14. Sanjay, A., Narasayya, V.R., Yang, V.R.: Integrating Vertical and Horizontal Par-

titioning into Automated Physical Database Design. In: Proceedings of the 2004

ACM SIGMOD International Conference on Management of Data, pp. 359–370.

ACM Press SIGMOD Record, New York (2004)

15. Sahpaski, D., Velinov, G., Jakimovski, B., Kon-Popovska, M.: Dynamic Evolution

and Improvement of Data Warehouse Design. In: Proceedings of Balkan Conference

in Informatics, IEEE Computer Society’s Conference Publishing (IEEE BCI), pp.

115–125 (2009)

16. Velinov, G., Gligoroski, D., Kon-Popovska, M.: Hybrid Greedy and Genetic Algo-

rithms for Optimization of Relational Data Warehouses. In: Proceedings of Multi-

Conference: Artificial Intelligence and Applications (IASTED), pp. 470–475 (2007)

17. Velinov, G., Jakimovski, B., Cerepnalkoski, D., Kon-Popovska, M.: Framework for

Improvement of Data Warehouse Optimization Process by Workflow Gridification.

In: Atzeni, P., Caplinskas, A., Jaakkola, H. (eds.) ADBIS 2008. LNCS, vol. 5207,

pp. 295–304. Springer, Heidelberg (2008)

18. Yu, J.X., Yao, X., Choi, C., Gou, G.: Materialized Views Selection as Constrained

Evolutionary Optimization. Proceedings of IEEE Transactions on Systems, Man

and Cybernetics, Part C: Applications and Reviews 33(4), 458–468 (2003)

19. Zilio, D.: Physical Database Design Decision Algorithms and Concurrent Reor-

ganization for Parallel Database Systems. Ph. D. Thesis, University of Toronto

(1998)

http://jgap.sf.net

Checkable Graphical Business Process

Representation

Sven Feja1, Andreas Speck1, Sören Witt1, and Marcel Schulz2

1 Christian-Albrechts-University Kiel

Olshausenstrasse 40, 24098 Kiel, Germany
2 Intershop Communications AG,

Intershop Tower, 07740 Jena, Germany

Abstract. There are different model types to model business processes,

like ARIS models, BPMN or UML activity diagrams. These models are

well elaborated. Moreover, almost all commercial systems or web-based

systems are driven by their dynamic behavior which needs to be de-

scribed precisely by the business process models. The challenge is the

validation of these business process models against behavioral dynamic

rules. However, the question is what is to be checked in detail and how

this is represented in the models and how the results of the checks are

displayed.

In the paper we present a graphical representation supporting the

checking business process models. A graphical specification of business

rules and regulations is presented which allows to display both the busi-

ness process models and the rules in one graphical editor. Both models

are transformed into a formal language which may be processed by a

verification tool – a model checker in our case. The graphical represen-

tation is realized with Eclipse which allows to integrate different other

verification systems and to extend the current implementation.

Keywords: business process models, process verification, graphical rep-

resentation of process models, graphical rules representation.

1 Introduction

There are many different model types for business processes. This stresses the
importance of processes in commercial systems. And when business processes
are that crucial the models of the processes and the correctness of these models
are of high importance.

In the paper we focus on business systems and model types like Event-Process
Chains (EPCs) [21]. Instead of deriving new (formal) models from these for
verification purposes, we propose to integrate the means which are necessary for
verification into the existing modeling environment. The goal is to provide an
easy-to-understand checking solution for the domain engineer who is usually not
a formal methods expert.

The commercial application we use to demonstrate our approach is a high-
performance e-commerce system: Intershop Enfinity (Intershop Communications

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 176–189, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Checkable Graphical Business Process Representation 177

AG). This e-commerce system is used in large scale systems of retailers (Otto or
Quelle), in the automotive branch (Volkswagen,MAN, BMW) or in e-procurement
systems (run by the German Federal Ministry of the Interior or governments of
other countries or large companies).

The in the following we present an overview over the typical model type in the
e-commerce (ARIS EPC). Section 2 outlines related work in the domain of busi-
ness process verification. Section 3 describes our Temporal Logics Visualization
Framework (TLVF) with its elements (in particular its visual temporal logic lan-
guage and its visual error representation) followed by a demonstrating example
and a conclusion. In section 4 the modeling tool (BAM – Business Application
Modeler) is presented.

1.1 ARIS for Enfinity Modeling Approach

ARIS (ARIS (Architecture of integrated Information Systems) is a well-known
approach supporting business systems in general. ARIS for Enfinity is a specific
profile for the modeling of Intershop Enfinity e-commerce systems [3].

The Enfinity-based e-commerce systems are modeled in various model types.
The model type used is mainly the EPC. Further models are the value added
chain or function hierarchies.

The EPCs are used to model the business processes on a specific detail level
(cf. model elements description in section 1.2). EPCs are more concrete than
value added chains and present the business aspects of the processes very well.
However, they are no concrete implementation models e.g. like UML sequence
charts (here ARIS for Enfinity provides Pipeline Models which are executed by
an application server). The EPC models are ideal for the communication between
the domain experts (economists) and the computer scientists, since they are still
understood by both groups.

Based on the EPC models the design of the implementation may start. In
the case of Intershop Enfinity, executable workflow models (called Pipelines)
represent the design and are executed by the system’s application server.

When the domain experts want to check the business process descriptions of
an e-commerce system, this is generally performed on the level of EPC models.
Therefore, business rules, regulations and system specific requirements which
have to be implemented by the system are to be verified on this business process
(EPC) level. If the EPC models do not represent the required rules and regula-
tions correctly then the resulting system will hardly meet the needs. Therefore
it is essential to verify the EPC models.

1.2 EPC Model Elements

The EPC model type is part of the modeling concept. For research purpose
we use a prototype modeling tool based on ARIS and ARIS for Enfinity which
has been developed in cooperation with the tow originators IDS Scheer and
Intershop. This system Temporal Logics Visualization Framework (TLVF) is
presented in subsection 3.1.

178 S. Feja et al.

Fig. 1. EPC Model

The basic elements of an EPC model are shown in figure 1 (in the middle):
The control flow is symbolized by a sequence of events (magenta hexagons) and
functions (green rectangles with rounded edges) which are connected by arrows
representing the control flow. Branches in the control flow are defined by the
Boolean logic operators: AND, OR and XOR. In the figure an XOR is depicted.
AND requires that all paths of the branch are active. OR indicates that at least
one path is used. XOR allows that one and only one path is chosen.

2 Related Work

In the paper we present the integration of means to verify business process mod-
els directly into these models. This reduces the gap between domain knowledge
and formal methods expertise. Model as well as specification are on the same
abstraction level. One part of related work may be found in the field of require-
ments specification. A comparison of rule elicitation and specification/definition
methodologies can be found in [17],[9]. According to [9], the use of formal and
automatic methods is “the least ambiguous regulations and rules representation
allowing for automatic verification techniques.” A push-button formal technique
to verify the fulfillment of automata-based specifications is model checking [4].
It uses (temporal) logics as specification language and checks these (temporal)
rules against a model. As opposed to other formal approaches (e.g. theorem
provers) it is more restricted in what can be verified leading, on the other hand,
to the advantage of a developer-friendly extensive automation.

A model used model checkers are often finite state machines (e. g. [4]). The
checking of software systems in general has been quite early. The early approaches

Checkable Graphical Business Process Representation 179

motivate our work and demonstrate the general applicability of model checking for
software systems.

The usage of model checking requires the input of formal specification for-
mulas/rules and finite state machine models. Therefore, any input needs to be
transformed to such a formal format. The core idea of our approach is similar to
the idea of Model-Driven software development [22]. High-level platform inde-
pendent models are successively transformed to lower-level platform dependent
models. Some examples for a powerful transformation concept which is base of
our transformation are [12] [13]. An approach demonstrating the transformation
from higher abstraction levels to formal models for the purpose of verification is
[8]. Other approaches transform business process models not directly into check-
able models but first to transform them into Petri-Net models and then to check
the Petri-Net models. [7] describe such a procedure.

The rules and regulations the business process models have to fulfill are ex-
pressed on the same (higher, visual) abstraction level as these business process
models. The path to raise the abstraction level of models, rules and error repre-
sentation may also be found in [5] and [15], for instance.

Other interesting approaches to raise the abstraction level of the rules may be
found in mapping natural language to formal descriptions as well as in visualizing
business processes and rule models. For instance, [6] provides temporal logic
patterns to ease the mapping of natural language to temporal formulas.

A very similar approach to ours is [11]. Here UML activity diagrams are
used to model business processes and then checked by an LTL-based model
checker. The focus here is the direct transformation to the checker and then
the presentation of the result of the model checker. The focus here is on this
LTL checking and to explore the usability of this kind of checking concept. This
makes clear that not only EPC models are useful for the modeling of business
processes but also UML (especially activity diagrams) and BPMN as well [16].
These modeling languages are issue of our future work.

Besides model checking there are other promising verification approaches. One
is constraint solving. [20] presents such an approach. The modeling concept we
present in this paper is intended to integrate such approaches as well in future.

3 Business Process Modeling

In our approach we combine the graphical business process models with the
graphical representation of the (temporal) logic rules. This makes it possible that
the rules for processes are on the same level of abstraction as the business process
models. Given specification properties which are typically difficult to understand
and available in a textual format, we have to deal with the challenge to provide
graphical models for them. We solve this task by means of the Temporal Logics
Visualization Framework (TLVF [10]). Subsection 3.1 gives a short overview
of the Framework. Subsection 3.2 provides our approach to handle the errors
detected by the checker.

180 S. Feja et al.

Temporal Logics

Operator SymbolsOperator Symbols
Layer

Temporal Logics
Layer

Integrated Process
Model Layer

Tr
an
s-

fo
rm
at
io
n

C
om
po
ne
nt

P
ro
ce
ss

M
od
el

C
om
po
ne
nt

G
ra
ph
ic
al

Va
lid
at
io
n

R
ul
es

C
om
po
ne
nt

Fig. 2. Temporal Logics Visualization Framework

3.1 Temporal Logics Visualization Framework – TLVF

TLVF is the organizational framework of our visualization concept. It supports
all tasks for the visualization of temporal logics in combination with business
process models. As depicted in figure 2 the framework is divided in three layers.
The first aggregates the logics. The second defines the symbols for each operator
of a logic and the third layer delivers the process model, the graphical rules
definition and the required transformation tasks.

In general the TLVF allows to state graphical rules of any aggregated logic (e. g.
CTL and LTL) in combination with desired process models (e. g. EPC or BPMN).

The general graphical representations of Graphical CTL (G-CTL) is depicted
in figure 3. The graphical logic is defined by their operator symbols. We added so
called placeholders. These may represent functions and events of the EPC model.
The operator symbols are the corresponding graphical representation of the tex-
tual operator (e. g. quantifiers and Boolean operators). To define rules with those
symbols a connection with the process model elements is required. Therefore,
the placeholder can be filled with an appropriate process model element. The
dashed rectangles (a and b) are the placeholders.

G-CTL operators are based on CTL operators [2]. In CTL there are two
types of operators which are combined pairwise: Path quantors always (A) and
exists (E) which indicate the occurrence within a path. The temporal operators
determine the temporal order. The most important temporal operators are: in
the future (F), globally (G), next (X) and until (U). Examples for pairwise
combinations are: AG always globally or EX exists next.

This visualized logic can be combined with any desired process model. In
our case, G-CTL is combined with the process model event-driven process chain
(EPC). The name of the notation of rules for EPCs specified in G-CTL is EPC-
G-CTL which results from the names of the used components.

Checkable Graphical Business Process Representation 181

EXISTS FORALL

EX a

EG a

AX a

AG a

EF a AF a

E(aUb) A(aUb)

a

a

a

a

a

a

U baU ba

T

F

True

False

Boolean Operators

Fig. 3. Symbols of G-CTL

3.2 Validation Errors

Besides the the graphical specification of the rules and regulations as well as
the business process models, the systems have to be checked. This is done by a
model checker. Two systems are available nuSMV or CoV (Component Verifier)
at the moment. Therefore the model and the specification are transformed into
a format which can be processed by the checking tool. The concrete process is
presented in [19]. The CoV model checker is a symbolic model checker prototype
with the goal to reduce the gap between low-level formal models and higher-
level component-oriented software systems and without further consideration of
performance optimization. Properties to be checked may be assigned to states
as well as recursively to properties.

Logical Operator Path-/ Temporalquantifier Atomic proposition

CTL Formula

Model Checker (e. g. SMV)

False True

CTL Formula Counter Example

Visualization

Fig. 4. Visualization of error trace

182 S. Feja et al.

If the model checker passes with no violated rule nothing has to be visualized.
In case of a violated rule there the checker presents a counter-example. This
describes a state of error of the model. Next to this counter-example the error
causing rule is delivered. Both are the starting point of the visualization process
of our approach and are shown on the bottom of figure 4.

When a specific rule is not satisfied the process paths which need to be re-
garded may be identified. The model checker delivers one or more paths which
are the counter-examples.

Currently we are working on the presentation of the error. It is intended to
depict the problem graphically. There are different ways to visualize the violation
in the process model. One would be the visualization of all witness scenarios in
the terms of the original model. This was done for UML in [16]. A second way is
the presentation of the counter-example in terms of the original model as done
in [14] by generating a sequence diagram of the problem scenario. In contrast to
[16] and [14] our approach presents the results of the validation in the original
process model. The main advantage is a view on the previously modeled process
which directly shows the point of violation. Additionally, this allows it to provide
adaption advice for a validation error. This is achieved by an interpretation of
the validation error.

4 Process and Rule Modeling

Figure 5 depicts a typical, however still rather small example of a (sub-) business
process (named Order finalization process). This is a typical model of the En-
finity e-procurement system. The model describes the approval functionality in
an e-procurement system modeled as EPC. This model is one small sub-process
out of a set of some tens to several hundreds of such sub-processes (the number
depends on the complexity of the system), which represent the complete business
process description.

When a tool – like TLVF (Temporal Logics Visualization Framework, cf.
section 3.1) – is used each of these sub-models is developed in a screen page of
its own. Other tools similar to TLVF realize the connections in-between these
sub-models as hyperlinks.

In the e-commerce system domain there exist business rules (as in most other
domains) to which the business process models have to keep. In most cases these
rules are based on experience or legal regulations. Some examples for such rules are:

1. An order is always to be completed by the payment and the order confirma-
tion. This seems to be simple. However, when a large number of sub-models
are developed there is a certain risk, that there might occasionally exist a
path which bypasses the payment. Maybe the payment procedure is bypassed
for testing purposes.

2. If the condition that an Authorization is required exists then the next step
is the Approval decision.

3. An order is only valid when the Purchase information is complete and either
an Authorization is not required exclusive or an Authorization is required
and the Purchase request is approved.

Checkable Graphical Business Process Representation 183

Fig. 5. Example: Approval Procedure in the Order finalization process of an e-

Procurement System

The first example is a simple check if all paths contain the payment function.
This problem may also be detected by a manual check. However, an automated
check may save time and is less error-prone. Below in this paper we focus on
the verification of the second and third example since they point to some typical
problems.

4.1 BAM – Business Application Modeler

The Business Application Modeler (BAM) realizes the TLVF modeling con-
cept (cf. subsection 3.1). It supports the business process model (EPC) and the

184 S. Feja et al.

Fig. 6. BAM View of Approval Procedure in the Order finalization process of an e-

Procurement System

Checkable Graphical Business Process Representation 185

graphical rule notation G-CTL. BAM is based on the Eclipse Graphical Editing
Framework (GEF) [1]. GEF supports the required presentation functions and is
comparatively portable which means that the BAM editor runs on different oper-
ating system platforms. The goal of this Eclipse-based implementation is a high
degree of portability and the ability to integrate transformation and checking
systems as simple as possible.

Figure 6 depicts the BAM view of the e-procurement model of figure 5. All
modeling elements of the ARIS EPCs are available. In this sense there is no
difference to any other EPC editor like ARIS or ViFlow.

The EPC models may be sequentialized and the stored as files. Alternatively,
the models may be converted to an XML model which is then the base for any
transformation into another format, e.g. the format required by a model checker.
Currently not realized but desirable would be the possibility to import models
from other modeling tool. However, since the technical base is given this will be
issue of future work.

4.2 BAM – Rule Editor

Like other EPC editors is supports defining business rules as already discussed.
In contrast to these other editors BAM provides a visualization rules. An exam-
ple of a simple rule is depicted in figure 7. This is actually the already presented

Fig. 7. BAM Rule Visualization

186 S. Feja et al.

rule (rule 2): If the condition that an Authorization is required exists then the
next step is the Approval decision. The figure shows how the temporal logic is
represented graphically. Logical operators (the implication in this case) are rep-
resented by symbols which may be connected with other operators (logical or
temporal logical operators) and model elements such as events or functions. Tem-
poral logical operators like the AG (always globally) and AX (always next) are
realized as containers since they embrace as operands a sub-formula or element.

The CTL formula in the header of the window is just a name for the rule:

AGAuthorization is required− > AXApproval decision
Since our development team is experienced in CTL they use the CTL notation
to name the rules. However, other users, e.g. domain experts, may name the
rules different. It is just the name of the rule and the window representing the
rule.

BAM supports the modeling of the rules by providing all required G-CTL
operators. Moreover, it presents the set of elements used in the business process
model. By this it is impossible to create a rule which does contain element
not being in the business process model. If a user wants to create such a rule
intentionally it comes clear that this rule is violated and either the rule or the
model is wrong. This is an additional error detection mechanism by checking the
set of elements of the business process model.

Fig. 8. Screen Shot BAM Editor Overview

Checkable Graphical Business Process Representation 187

The integration of the BAM rule editor is presented in the screen-shot of
the complete view of the BAM editor in figure 8. The figure shows a possible
composition of the different windows. The model window and the rule window
are in the center. The windows supporting the composition of the model and the
graphical rule are at the left side. In the bottom window attributes as well as
stereotypes used by the elements of the model (and the rule) may be defined.

5 Conclusion and Future Work

The Temporal Logics Visualization Framework (TLVF) enables the visual mod-
eling and validation of temporal rules. In the development of business process
based systems (e.g. e-commerce systems) it is essential to assure the correctness
of the process models. Since usually the domain experts are not experienced to
use checking systems or to formulate rules in a temporal logic language like CTL
it is necessary to bridge the gap between the domain experts and the low-level
verification viewpoint. The paper proposes a language which allows to express
the domain rules like business rules with a similar model type than the business
process model types (ARIS EPCs in our case). The graphical logic language
G-CTL based on CTL. A modeling tool BAM (Business Application Modeler)
supports the modeling by realizing the Temporal Logics Visualization Frame-
work (TLVF). BAM is implemented with the Eclipse GEF. Eclipse supports
the integration of subsystems in an excellent way which is very helpful for the
integration of the checking systems.

The BAM visualization concept may be improved by supporting different
viewpoints on the models. The domain expert should be able to select different
abstraction levels and views on the business process model to reason about rules
and regulations. The current BAM version is limited to EPC models. The editor
may be extended to support other modeling languages such as BPMN. Therefore,
the architecture of BAM allows to display other modeling languages. A generic
meta model is of interest to support the integration of different checking systems.
Such a generic meta model would be the base of new transformations to other
target models than those being processed by model checkers. This means that
other checking systems like constraint solvers may be integrated as well.

References

1. Anders, E.: Modellierung und Validierung von Prozessmodellen auf Basis variabler

Modellierungsnotationen und Validierungsmethoden als Erweiterung für Eclipse.

Diploma Thesis, Christian-Albrechts-University Kiel, Germany (2010)

2. Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Sch-

noebelen, P.: Systems and Software Verification – Model-Checking Techniques and

Tools. Springer, Berlin (2001)

3. Breitling, M.: Business Consulting, Service Packages & Benefits. Technical report,

Intershop Customer Services, Jena, Germany (2002)

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking, 3rd edn. The MIT

Press, Cambridge (2001)

188 S. Feja et al.

5. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Păsăreanu, C.S., Robby,

Zheng, H.: Bandera: extracting finite-state models from Java source code. In: ICSE

2000: Proceedings of the 22nd International Conference on Software Engineering,

pp. 439–448. ACM, New York (2000)

6. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Robby: Expressing Checkable Properties

of Dynamic Systems: The Bandera Specification Language. International Journal

on Software Tools for Technology Transfer (STTT) 4, 34–56 (2002)

7. De Backer, M., Snoeck, M.: Business Process Verification: a Petri Net Approach.

Technical report, Catholic University of Leuven, Belgium (2008)

8. DuVarney, D.C., Purushothaman, I.S.: C Wolf - A Toolset for Extracting Mod-

els from C Programs. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS,

vol. 2529, pp. 260–275. Springer, Heidelberg (2002)

9. Escalona Cuaresma, M.J., Koch, N.: Requirements Engineering for Web Applica-

tions A Comparative Study. Journal of Web Engineering 2, 192–212 (2004)

10. Feja, S., Fötsch, D.: Model Checking with Graphical Validation Rules. In: 15th

IEEE International Conference on the Engineering of Computer-Based Systems

(ECBS 2008), Belfast, NI, GB, pp. 117–125. IEEE Computer Society, Los Alamitos

(2008)

11. Förster, A., Engels, G., Schattkowsky, T., Van Der Straeten, R.: Verification of

Business Process Quality Constraints Based on Visual Process Patterns. In: Pro-

ceedings of the First Joint IEEE/IFIP Symposium on Theoretical Aspects of Soft-

ware Engineering (TASE 2007), pp. 197–208 (2007)

12. Fötsch, D., Pulvermüller, E.: A Concept and Implementation of Higher-level XML

Transformation Languages. Knowledge-Based Systems Journal 22, 186–194 (2009)

13. Fötsch, D., Pulvermüller, E., Rossak, W.: Modeling and Verifying Workflow-based

Regulations. In: Proceedings of the Workshop on Regulations Modelling and their

Validation & Verification (REMO2V), In Conjunction with the 18th Conference on

Advanced Information System Engineering - Trusted Information Systems (CAiSE

2006). Namur University Press (2006)

14. Goldsby, H., Cheng, B.H.C., Konrad, S., Kamdoum, S.: Enabling a Roundtrip

Engineering Process for the Modeling and Analysis of Embedded Systems. In:

Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS,

vol. 4199, pp. 707–721. Springer, Heidelberg (2006)

15. Hatcliff, J., Dwyer, M.B.: Using the Bandera Tool Set to Model-Check Properties

of Concurrent Java Software. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001.

LNCS, vol. 2154, pp. 39–58. Springer, Heidelberg (2001)

16. Konrad, S., Goldsby, H., Lopez, K., Cheng, B.H.C.: Visualizing Requirements in

UML Models. In: REV 2006: Proceedings of the 1st International Workshop on Re-

quirements Engineering Visualization, Washington, DC, USA, vol. 1. IEEE Com-

puter Society, Los Alamitos (2006)

17. Parry, P.W., Özcan, M.B.: The Application of Visualisation to Requirements En-

gineering (1998)

18. Pulvermüller, E.: Reducing the Gap between Verification Models and Software

Development Models. In: Proceedings of the 8th International Conference on New

Software Methodologies, Tools, and Techniques (SoMeT 2009), pp. 297–313. IOS

Press, Amsterdam (2009)

Checkable Graphical Business Process Representation 189

19. Pulvermüller, E., Feja, S., Speck, A.: Developer-friendly Verification of Process-

based Systems. Knowledge Based Systems. Knowledge-Based Systems Journal 23

(to appear 2010)

20. Runte, W.: Modelling and Solving Configuration Problems on Business Processes

Using a Multi-Level Constraint Satisfaction Approach. In: The Young Researchers

Workshop on Modeling and Management of Business Processes (YRW-MBP 2009).

GI LNI, vol. 147, pp. 237–238 (2007)

21. Scheer, A.-W.: ARIS - Modellierungsmethoden, Metamodelle, Awendungen.

Springer, Berlin (1998)

22. Völter, M., Stahl, T.: Model-Driven Software Development: Technology, Engineer-

ing, Management. John Wiley & Sons, Chichester (June 2006)

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 190–203, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Applying the UFO Ontology to Design an Agent-Oriented
Engineering Language

Renata S.S. Guizzardi and Giancarlo Guizzardi

Ontology and Conceptual Modeling Research Group (NEMO)
Federal University of Espírito Santo

Av. Fernando Ferrari, S/N, 29060-970, Vitória/ES, Brazil
{rguizzardi,gguizzardi}@inf.ufes.br

Abstract. The problem of designing suitable conceptual modeling languages
for system engineering is far from being solved. In the past years, some works
have proposed the use of foundational ontologies as analysis tools to enable
semantic coherence when (re)designing such languages. In this paper, we ex-
emplify this approach by applying a foundational ontology named UFO in the
design of an agent-oriented modeling language for the ARKnowD methodol-
ogy. Instead of proposing new concepts and constructs, ARKnowD relies on ex-
isting work, combining two different approaches, namely Tropos and AORML.
Each work is applied in a different development activity, according to their
natural propensity: Tropos in Requirements Analysis and AORML in System
Design. Besides the ontological approach, we propose some mapping rules
between the notations, inspired in the Model Driven Architecture (MDA) meta-
model transformation method. This approach helps to guarantee a smooth tran-
sition from one activity to the other.

Keywords: conceptual modeling languages design; foundational ontologies,
agent-oriented engineering language, model-driven architecture.

1 Introduction

The problem of designing suitable conceptual modeling languages for system engi-
neering is far from being solved. This is a complex matter because, on the one hand,
one expects a language which is expressive enough to capture the important aspects of
the particular domain in which the system is to be inserted. And on the other hand,
one also wants this language to be accessible and provide the right level of abstraction
to enable effective analysis and communication with stakeholders. These require-
ments are often contradictory and hard to achieve.

In the past years, some works have proposed the use of foundational ontologies as
analysis tools to enable semantic coherence when (re)designing such languages.
Foundational ontologies may be understood as formal systems of domain-independent
categories that can be used to characterize the different modes of existence and, thus,
can be used to characterize the most general aspects of concepts and entities that be-
long to different domains in reality.

 Applying the UFO Ontology to Design an Agent-Oriented Engineering Language 191

In this paper, we exemplify this approach by applying a foundational ontology
named UFO in the design of an agent-oriented modeling language for the ARKnowD
(Agent-oriented Recipe for Knowledge Management System Development, read “Ar-
nold”) methodology [1]. Given the current stage of research on the agent-oriented
paradigm, and the vast availability of methodologies and languages for agent-oriented
analysis and design, the methodology presented here is built over existing work. It is
our belief that not one methodology possesses all the right characteristics to be ap-
plied in a particular domain and/or situation. Instead, these characteristics can often
be attained by combining different approaches. ARKnowD explores the combination
of Tropos [2] and AORML[3]. Each work is applied in a different development activ-
ity, according to their natural propensity: Tropos in Requirements Analysis and
AORML in System Design.

The main idea behind the application of UFO regards interpreting the concepts of
the languages applied in ARKnowD (i.e. the Tropos’s notation and AORML) in terms
of the concepts of the ontology. Having understood that, we may simply assume that
the concepts of Tropos and AORML which map to the same concept of UFO are
equivalent. This has both theoretical and practical implications. For instance, it is
common to promote some redesign in the languages due to the deeper analysis pro-
vided by the ontology. This analysis enables one to understand better how such
languages should model specific domains, which often leads to introducing or sup-
pressing concepts from the original language. In practice, this leads to distinctions in
the designed models. Hopefully, these distinctions are not too many, so as to justify
the use of this particular language. Such changes generally result in engineering
models which are clearer to understand and communicate (thus addressing the
requirements mentioned in paragraph one).

Besides the ontological approach, we propose some mapping rules between the no-
tations, inspired in the Model Driven Architecture (MDA) metamodel transformation
method [4]. This guarantees a smooth transition from Requirements Analysis to Sys-
tem Design, guiding the developer on the use of the methodology, and facilitating
automatic model transformation from one activity to the other.

The focus of this particular paper is to illustrate our approach by: (i) describing the
ontological interpretations of Tropos and AORML and (ii) presenting the mapping
rules which enable guidance to the designer in producing a detailed design model,
whose draft is automatically mapped from the system’s architectural model (section 4).
Before these core sections, section 2 describes the ontological approach applied to
design ARKnowD’s language and section 3 provides introductory information on
Tropos and AORML, also discussing why these two approaches are appropriate to
engineer KM systems. Complementarily, section 5 illustrates the transformation of a
Tropos diagram into an AORML diagram, following the proposed mapping rules;
finally, section 6 presents some final considerations.

2 Using Foundational Ontologies to Analyze, (re)Design and
Combine Conceptual Modeling Languages

Ontologies are recognized as important conceptual tools in Computer Science since the
end of the 60s, especially in the areas of conceptual modeling and artificial intelligence
[5]. In the past years, we observed an explosion of works related to ontologies in

192 R.S.S. Guizzardi and G. Guizzardi

several scientific communities. This is motivated by the potential of ontologies to solve
semantic interoperability problems (e.g. application and database integration).

An important point to notice is the difference in meaning of the term “ontology”
when used, on the one hand, by the conceptual modeling community and, on the other
hand, by the artificial intelligence, software engineering and semantic web communi-
ties. In conceptual modeling, the term is used in accordance with its original defini-
tion in philosophy, i.e. as a formally and philosophically well-founded model of
categories that can be used to articulate conceptualizations in specific engineering
models and knowledge domains. Conversely, in the other areas mentioned above, the
term ontology has been used to describe: (i) a concrete engineering artifact, designed
to serve a specific function, without (or with minimum) concern to theoretical founda-
tional aspects; or (ii) domain models (e.g. biology, finance, logistics etc.) expressed in
a knowledge representation language (e.g. RDF, OWL, F-Logic or conceptual model-
ing language (e.g. UML, EER, ORM).

With respect to the analysis and (re)design of conceptual modeling languages (i.e.
the focus of this particular paper), we must understand ontology as in conceptual mod-
eling, i.e. as a theoretical body of knowledge or foundation (that is why we call it foun-
dational ontology). Using this foundational ontology as a reference model enables the
evaluation, comparison, and identification of correspondences between different mod-
eling languages, in other words, UFO is employed here as a well-founded basis for (1)
making explicit the ontological commitments of each modeling language; (2) defining
(ontological) real-world semantics for their underlying concepts; (3) providing guide-
lines for the correct use of these concepts; (4) relating concepts defined in different
languages via their ontological semantics. The adequacy of this ontology for our pur-
poses lies on the fact that an important part of UFO (named UFO-C) includes the con-
cepts that are relevant to engineer systems in this particular domain, i.e. knowledge
management. More about how UFO-C has been developed may be found in [1].

Finally, we would like to highlight the fact that Ontology-Based approach for
combining modeling languages such as the one employed here should not be seen in
opposition to a Model-Driven one. Typically, in the former, languages are related
either by producing a merged metamodel (using a language such as OMG’s MOF), or
by defining a transformation model (using a language such as OMG’s QVT), which
relates the constructs of the complementary languages. Now, one should bear in mind
that, in any case, language interoperability is first and foremost a semantic interop-
erability problem. Hence, before we can define a set of transformation rules mapping
constructs from a metamodel A to a metamodel B, we must establish the relationship
between these constructs. But these relations can only be discovered once we know
the relationship between their respective interpretations, i.e., between the elements in
the underlying domain conceptualizations which are represented by them. In sum-
mary, as demonstrated in this article, the Ontology-Based and Model-Driven
approaches can be seen as complementary: while the former focuses on semantic
aspects of language interoperability, the latter focuses on syntactic ones.

3 ARKnowD Methodology: Combining Tropos and AORML

ARKnowD’s life cycle is composed of four activities, namely requirements elicita-
tion, requirements analysis, architectural design and detailed design. These activities

 Applying the UFO Ontology to Design an Agent-Oriented Engineering Language 193

may be iteratively executed up to the point that the solution is modeled in enough
detail to enable implementation. Tropos is applied in the first three activities while
AORML covers the forth one. More about the lifecycle of this methodology and de-
tailed guidelines on how to proceed to apply it can be found it [1].

3.1 Tropos

The Tropos methodology [2] uses visual modeling language and a set of techniques
for goal analysis. Basic constructs of the conceptual modeling language are: actor,
representing a stakeholder in a given domain, a role or a set of roles played by an
actor in a given organizational setting, and actor’s goal, plan and resource. Moreover,
a dependency link between pairs of actors allows to model the fact that one actor
depends on another in order to achieve a goal, execute a plan, or acquire a resource.
Goal analysis is conducted from the point of view of each individual actor; i.e. for
each actor's goal, we may consider: means to satisfy it (means-end relationship);
alternative ways to achieve it (OR decomposition); possible sub-goals (AND decom-
position); goals or plans or resources that can contribute positively or negatively to its
achievement (contribution). This type of information can be graphically depicted in
actor and goal diagrams.

3.2 AORML

The Agent-Object-Relationship (AOR) modeling approach [3] is based on an onto-
logical distinction between active and passive entities, i.e. between agents and ob-
jects. In AORML, an entity can be an agent, an event, an action (also specialized in
interaction), a claim, a commitment, or an object. Agent and object form, respec-
tively, the active and passive entities, while actions and events are the dynamic
entities of the system model. Commitments and claims establish a special type of
relationship between agents. These concepts are fundamental components of social
interaction processes and can explicitly help to achieve coherent behavior when these
processes are semi or fully automated. Besides AOR models human, artificial and
institutional agents. Institutional agents are usually composed of a number of human,
artificial, or other institutional agents that act on its behalf. Organizations, such as
companies, government institutions and universities are modeled as institutional
agents, allowing us to model the rights and duties of their internal agents. For further
reference, we refer to [9] and to the AOR website: [http://oxygen.informatik.tu-
cottbus.de/aor/].

3.3 Using Tropos and AORML to Engineer KM Systems

KM can be defined as a systematic process for acquiring, organizing and communi-
cating knowledge to all members of an organization, enabling them to be more effec-
tive and productive in their work [1,6,7,8]. This process is based on practices and
technologies that motivate knowledge exchange, so that knowledge can be replicated
and amplified to be used in all points-of-action within the organization.

Perhaps, the main attractive characteristic of Tropos is the fact that it is based in
goal modeling. According to Nonaka and Takeuchi [8], one of the most important KM
references today, one of the main drivers of knowledge creation is the organization’s

194 R.S.S. Guizzardi and G. Guizzardi

intention, defined as “an organization’s aspiration to its goals”. This turns goal model-
ing into an important step towards understanding the strategies of the organization
regarding knowledge creation and sharing.

If on one hand, Tropos provides a good abstract view of the organization, on the
other hand, this methodology’s weakness stems from the fact that it does not provide
tools to model agent’s interaction and behavior with an appropriate amount of detail.
We propose to overcome this limitation by also adopting AORML, an UML-based
language to model agent-oriented systems. Understanding how well people interact is
crucial to grasp how knowledge flows within the organization. This understanding is
also important to enable system agents to go through detailed design, thus being pre-
pared for implementation. AORML offers a set of three types of interaction dia-
grams, modeling agent’s interaction protocols as well as their internal behavior. An-
other strength from AORML is providing deontic modeling constructs such as com-
mitments and claims, which form the basis for the establishment of norms and con-
tracts. Such normative dimension is an important one when dealing with agent-
mediated KM [7], so as to regulate coordination and operational mechanisms within
the organization, while dealing with knowledge creation and dissemination.

4 Ontology-Based Analysis and Design of ARKnowD

As mentioned in section 2, in order to guarantee the consistency of the resulting mod-
eling language, we seek theoretical support in a foundational ontology. The UFO
foundational ontology covers concepts such as entities (agents and objects), events
and actions, but also what we call social concepts such as plan, action, goal, agent,
intentionality, commitment etc. UFO has been assembled mainly based on works
from Philosophy and Cognitive Sciences [5,9,10]. The positive outcomes of UFO’s
application has been multiple. First, because this work provided us with a consistent
method to evaluate and combine the Tropos’s notation and AORML. But also because
it confirmed our intuitions (discussed in section 3.3) that these two applied ap-
proaches are indeed suitable for the KM domain. In other words, the concepts which
we found suitable to model the KM domain (which are included in the foundational
ontology) were mainly the ones covered by these two modeling languages applied in
combination.

4.1 UFO

In the sequel, we discuss a fragment of UFO in line with the purposes of this article.
For a full discussion regarding this foundational ontology, one should refer to
[5,9,10].

We start with the fundamental distinction between universals and individuals. The no-
tion of universal underlies the most basic and widespread constructs in conceptual
modeling. Universals are predicative terms that can possibly be applied to a multitude of
individuals, capturing the general aspects of such individuals. Individuals are entities that
exist instantiating a number of universals and possessing a unique identity.

Further, UFO makes a distinction between the concepts of Endurants and Events (also
known as Perdurants). Endurants are individuals said to be wholly present whenever they

 Applying the UFO Ontology to Design an Agent-Oriented Engineering Language 195

are present, i.e., they are in time, in the sense that if we say that in circumstance c1 an
endurant e has a property P1 and in circumstance c2 the property P2 (possibly incom-
patible with P1), it is the very same endurant e that we refer to in each of these situa-
tions. Examples of endurants are a house, a person, the moon, a hole, an amount of
sand. For instance, we can say that an individual John weights 80kg at c1 but 68kg at
c2. Nonetheless, we are in these two cases referring to the same individual John. Events
(Perdurants), in contrast, are individuals composed by temporal parts, they happen in
time in the sense that they extend in time accumulating temporal parts. An example of
an Event is a business process. Whenever an Event occurs, it is not the case that all of
its temporal parts also occur. For instance, if we consider a business process “Buy a
product” at different time instants when it occurs, at each of these time instants only
some of its temporal parts are occurring.

A Substantial is an Endurant that does not depend existentially on other Endurants,
roughly corresponding to what is referred by the common sense term “Object”. In
contrast with Substantials, we have Moments (also known as particularized properties and
objectified properties). Moments are existentially dependent entities, i.e., for a Moment x
to exist, another individual must exist, named is bearer. Examples of Substantials in-
clude a person, a house, a planet, and the Rolling Stones; examples of Moments include
the electric charge in a conductor, a marriage, a covalent bond as well as mental states
such as individual Beliefs, Desires and Intentions (or internal commitments). The last three
examples fall in the subcategory of Mental Moments.

UFO also adds distinctions concerning the intentionality of events to this basic core.
Examples include the concepts of Action, Action Universal, Action Contribution and Agent.

Actions are intentional events, i.e., events which instantiate a Plan (Action Universal)
with the specific purpose of satisfying (the propositional content of) some Commitment
of an Agent. The propositional content of a commitment is termed a Goal. Only agents
(entities capable of bearing intentional moments) can perform Actions. As events, actions
can be atomic (Atomic Action) or complex (Complex Action). While an Atomic Action is
an action event that is not composed by other action events, a Complex Action is a
composition of at least two basic actions or Participations (that can themselves be atomic
or complex).

Participations can themselves be intentional (i.e., Actions) or non-intentional Events.
For example, the stabbing of Caesar by Brutus includes the intentional participation of
Brutus and the non-intentional participation of the knife. In other words, we take that it
is not the case that any participation of an agent is considered an action, but only those
intentional participations called Action Contributions.

The category of agents further specializes in Physical Agents (e.g., a person) and So-
cial Agents (e.g., an organization, a society). In an analogous manner, Non-Agentive
Substantials (or Objects) can also be categorized as Physical Objects (e.g., cars, rocks and
threes) or Social Objects (e.g., a currency, a language, the Brazilian constitution). Agents
can also be further specialized into Human Agent, Artificial Agent and Institutional Agent,
which can be represented, respectively, by human beings, computationally-based
agents and organization or organizational unit (departments, areas and divisions).
Institutional Agents are composed by a number of other agents, which can themselves be
Human Agents, Artificial Agents or other Institutional Agents.

196 R.S.S. Guizzardi and G. Guizzardi

Fig. 1. Fragment of UFO

 Applying the UFO Ontology to Design an Agent-Oriented Engineering Language 197

Fig. 2. Fragment of UFO with social aspect

4.2 Applying UFO to Analyze Tropos

We interpret the metaclasses Actor and Role in Tropos as the concepts of Agent and
Social Role in UFO (respectively). An an agent role is defined by the set of social
moment universals (commitments and claims implied by the role) [10].

We view Tropos goals as Goals in UFO. Goals in UFO are sets of intended states of
affairs of an agent. The relation between an Actor in Tropos and a Goal (through the
meta-association wants) is interpreted indirectly by making use of the concept of Inten-
tion (or Internal Commitment) in UFO, which is a Mental Moment of an Agent. As previously
discussed, UFO contemplates a relation between Situations and Goals such that a Situa-
tion (or possibly a number of Situations) may satisfy a Goal. In other words, since a Goal
is a proposition (the propositional content of an Intention), we have that a particular state of
affairs can be the truthmaker of that proposition. This interpretation choice seems to
model directly the intention behind the concept of hardgoal in Tropos. For the case of
softgoals, a different analysis must be conducted.

The concept of softgoals does not have a uniform treatment in the Tropos commu-
nity. Sometimes, softgoals are taken to represent non-functional requirements [11]. In
other times, a softgoal is considered as a fuzzy proposition, i.e., one which can be par-
tially satisfied (or satisfied to a certain degree, or yet, satisficed) by Situations [12]. We
here take a different stance, namely, that a softgoal is one “subjective to interpretation”
and “context-specific”.

As a consequence of this conception, for the case of softgoals, it seems to be impos-
sible to eliminate a judging agent (collective or individual) from the loop. Thus, instead
of considering in the ontology a new satisfices relation between Situation and Goal
which perhaps should contemplate a fuzzy threshold of satisfaction, we take a different
approach. We consider the relation of satisfaction as a ternary relation that can hold
between an agent, a goal and situation. An instance of this relation is derived from the
belief of an agent that a particular situation satisfies the goal at hand. Now, in this
view, different agents can have different beliefs about which sets of situations satisfy a
given goal. In fact, it is exactly this criterion which seems to capture the aforemen-
tioned notion of softgoals and its differentiae w.r.t. hardgoals: (i) a goal G is said to be
a hardgoal iff the set of situations that satisfy that goal is necessarily shared by all

198 R.S.S. Guizzardi and G. Guizzardi

rational agents; (ii) a goal G is said to be a softgoal iff it is possible that two rational
agents X and Y differ in their beliefs to which situations satisfy that goal.

Seeing the distinction between these subcategories of goals under this light, allows
us to talk about different levels of “softness” between different formulations of a goal.
In one end of the spectrum, each individual agent would have a different belief about
which situations satisfy a goal. In the opposite end, we have a hardgoal. In between, we
can have communities of agents (or collective agents) of different sizes which share a
common belief regarding this set of situations.

The mapping of the Plan concept from Tropos to some UFO concept is established
in a direct manner. In section 3.1, we stated that a Plan in Tropos is a specific way of
doing something to satisfy some Goal (or satisfacing some Softgoal). From the UFO
ontology (section 4.1), we have that an Action (instance of an Action Universal) is an in-
tentional event performed by agents with the purpose of achieving goals. Conse-
quently, the Tropos Plan construct can be interpreted as an Action Universal.

In Tropos, goals can be further structured by using different types of relations,
namely, AND-decomposition and OR-decomposition. Since Goals are taken here to be
propositions, if we have that goals G1…Gn AND-decompose goal G0, this relation
should be interpreted as: (G0 ↔ (G1 ∧ G2 ∧…∧Gn)). In an analogous manner, and OR-
decomposition G1…Gn of goal G0 should be interpreted as: (G0 ↔ (G1 ∨ G2 ∨…∨ Gn)).
Here once more, these relations reflect logical relations between propositions and,
accordingly, are independent of an Agent’s point of view (contra Fig.2).

We have offered an ontological analysis of the relation of Dependency in Tropos
elsewhere [10]. In that paper, we show that Tropos overloads in the same construct the
two different (ontological) relations of Dependency and Delegation, which constitutes
another case of construct overload in the language. As discussed in depth there, these
relations belong to different ontological categories: whilst the former is an example of
a formal relation, the latter is one a material relation. To put it baldly, agent X depends on
agent Y for goal G iff G is a goal of X, X cannot achieve G, and Y can achieve G.
Notice that in this case, agents X and Y do not even have to be aware of this depend-
ency. In contrast, if agent X delegates goal G to agent Y then: there is a social com-
mitment c from Y to X; G is the propositional content of c.

The remaining relationship types from Tropos (namely, means-end and contribu-
tion) remain to be analyzed in detail. This remains as future work and should thus
bring new theoretical and practical implications.

4.3 Applying UFO to Analyze AORML

The primitives contained in AORML and the ontological categories in UFO bear a
rather straightforward relation to each other. Here, due to space limitations we refrain
from presenting an AORML metamodel and focus on the fragment of this language
which is germane to the purposes of this article. The notions of agent, action, event,
commitment and claim in AORML are directly mapped to their counterparts in UFO.
The notion of Object in AORML is mapped to the one of Non-Agentive Substantial (or
Object) in UFO. An interaction in AORML is interpreted as an Action in UFO, i.e.,
interactions in AORML can also represent a single-contribution of an Agent in joint
action. Finally, a relationship in AORML is interpreted as a relation universal in UFO
(further specialized in both formal relation and material relation) [1].

 Applying the UFO Ontology to Design an Agent-Oriented Engineering Language 199

4.4 Combining Tropos and AORML through Metamodel Transformation

Having clarified the semantics of the modeling constructs through interpretation in
terms of UFO, we can establish the correspondence between the constructs in each of
the identified fragments of Tropos and AORML (see in Table 1).

Table 1. Mapping Tropos into AORML

Tropos Concepts AORML Constructs

actor agent

plan interaction

resource object

dependency relationship

delegation relationship and commitment

resource acquisition relationship and commitment

In this work, we apply the MDA’s metamodel transformation technique, which re-

quires a mapping from the modeling constructs of the source (the Tropos’ notation) to
the destiny language (AORML). In other words, mapping concepts as prescribed by
Table 1 has practical implications in designing the system’s model. For example, a
Tropos’s plan may be mapped into AORML’s interaction concept. In practice, for
each plan in a Tropos model, there can be one or more AOR Interaction Sequence
Diagram, modeling the interactions of the agents participating in this plan (i.e. agents
having the plan, or being connected to it by a dependency link). Another interesting
illustration comes from the differentiation we introduced between Tropos’ depend-
ency and delegation. The former only maps into an AORML relationship while the
latter maps both to a relationship and a commitment. Conceptually, this should be
clear from section 4. However, in practice, this leads to the following distinctions:
both for Tropos dependency and delegation, an association link may be depicted be-
tween these agents in an AOR Agent Diagram, typically used for information model-
ing. Now, besides this association delegations also lead to the establishment of an
AORML commitment/claim pair between the (delegate and delegator) agents. This
construct is usually depicted in interaction modeling, using one or more types of
AOR interaction diagrams.

Note that one of the most important entities in Tropos, i.e. the concept of goal is
not mapped into AORML. This is not a contradiction. Conversely, it relates to the fact
that ARKnowD applies goal modeling exclusively for requirements analysis and
architectural design. On detailed design, all goals have already been dealt with. For
instance, goals may have been fulfilled or abandoned. But most commonly, goal
analysis leads to the delegation of unsolved goals to new or old agents, who are either
part of the organization or a new information system. And finally, concrete plans are
assigned to goals with the purpose of accomplishing them. Consequently, when the
detailed design activity starts, plans should be modeled rather than goals. As observed
in Table 1, plan modeling may be done through the use of AOR Interaction Sequence

200 R.S.S. Guizzardi and G. Guizzardi

Diagrams, which detail the protocol of communication between agents to realize a
specific sequence of actions. In the end, we do not, however, loose the connection to
the goals initially modeled in during requirements analysis. This is still traceable
through the plan trees linked to each of these goals.

After conceiving the mapping rules of Table 1, it is possible to automate the meta-
model transformation between the two languages, by implementing these rules. Aiming
at providing automated support to ARKnowD, we started to integrate AORML into an
existing Tropos modelling tool named TAOM4E (http://sra.itc.it/tools/taom4e/), imple-
menting the mapping of a Tropos Actor Diagram into an AORML agent Diagram. For
that, we used a transformation engine named Tefkat (http://tefkat.sourceforge.net/),
Basically, Tefkat receives as input the metamodels of the two modeling languages (i.e.
the metamodels of the Tropos language and AORML), along with the source Tropos
model developed with the use of TAOM4E. The mapping between the two metamodels
is directly implemented using Tefkat’s declarative language. The result is an AORML
model. Future work remains on the remaining mappings, so as to deliver a modelling
tool which enables full design using ARKnowD.

5 Working Example

In this section, we present a simple example of the use of ARKnowD, with the main
purpose of illustrating the transformation between the notations of Tropos and
AORML. We find the conference review process an appropriate scenario to exem-
plify ARKnowD, because this is a well-known setting for the academic community.
For space limitation, we just exemplify the use of two diagrams (one of each lan-
guage) that were targeted in the aforementioned automation initiative. For a full de-
scription of this working example, including other diagrams, as well as for a more
complex scenario of application of ARKnowD in the Knowledge Management do-
main, please refer to [1].

Figure 3 presents a Tropos actor diagram, depicting the main agents of the sce-
nario, along with some goal and resource dependencies between them. The diagram
shows that the scenario involves the participation of four agents, namely the Confer-
ence Chair, the PC Chair, the Paper Author and the PC Member. For realizing the
conference, the Conference Chair depends on the Paper Author to submit papers
that will be selected for presentation in the conference (submitting paper goal). For
this papers selection, the Conference Chair delegates to the PC Chair the responsi-
bility of selecting the best papers to be published in the conference proceedings (se-
lecting proceedings’ papers goal). The PC Chair and the Paper Author have a
mutual relationship. While the PC Chair wants to acquire papers submitted by the
Paper Author (submitted paper resource), the Paper Author delegates to the PC
Chair the goal of having his paper reviewed as part of the papers selection process
(having paper reviewed goal). However, the PC Chair does not review all papers
on his own. For that, he relies on PC Members (reviewing papers goal). For ac-
complishing this goal, the PC Member must receive the papers assigned to them
(assigned paper resource), along with the review form (review form resource) from
the PC Chair.

 Applying the UFO Ontology to Design an Agent-Oriented Engineering Language 201

Fig. 3. Tropos Actor Diagram

Fig. 4. AOR agent diagrams: (A) automatically generated from previous Tropos actor diagram
and (B) finalized, after designer’s edition

At this point, we can already exemplify the first transformation. Figure 4(A) de-

picts an AOR Agent Diagram (AD) that can be automatically generated with basis on
the goal diagram of Fig. 3, using the transformation rules described in Table 1.

This figure depicts the agents and objects of the scenario, respectively transformed
from the Tropos agent and resource constructs. Besides the scenario’s entities, the
diagram also depicts the relations between them, converted from the dependencies,
delegations and acquisitions shown in the previously presented Tropos actor diagram.
Both the number and direction of the relations between agents are inferred from the
number and directions of the dependency, delegation and acquisition links on the

202 R.S.S. Guizzardi and G. Guizzardi

actor diagram. For instance, between PC Chair and PC Member, there are three
relations, corresponding to the two acquisitions and one delegation previously de-
picted in Fig. 3, and following the same directions of such links. Although this first
automatic AD is truthful to our scenario, some modifications may be necessary for
enabling its best use in practice. This diagram can then be revised and modified, re-
sulting in the AD of Fig. 4(B). In this second AD, two objects from the AD of
Fig.4(A), namely Submitted Paper and Assigned Paper were merged into the
Paper object. This comes from the realization that the previously depicted resources
on the Tropos actor diagram actually referred to the same object, in two different
states (i.e. ‘submitted’ and ‘assigned’). Hence, the two objects originated a single one,
and such state is now given by the status attribute in the Paper object. In addition to
that change, multiple relations between agents were reduced to one (as a result of a
choice made by the designer. In other situations, multiple relations may be considered
desirable, thus being maintained) and all relations were named. Finally, some associa-
tions between two agents were substituted by a specific type of relation, named com-
munication relation (note the communication stereotype, an extension introduced by
AORML). Besides being related by associations, agents typically relate through
communication relations, which indicate that they interact to accomplish their goals.
Typically, communication relations occur among agents that previously delegated
goals or tasks, or acquired resources from one another. In other words, for a delega-
tion or an acquisition to occur, agent A must explicitly interact with agent B, either to
ask him/her to accomplish some goal or execute a task on his/her behalf, or to acquire
a resource controlled by agent B.

Note also that the diagram of Fig. 4(B) presents the cardinalities (not present in the
type of model of Fig. 4(A)) of all agents and objects of the scenario. In the case de-
picted here, only association relations are necessary among the scenario’s entities. In
other cases, generalization and composition relations may be necessary. In general, all
UML relations may be normally used in the AOR AD.

6 Final Considerations

This paper described our approach to design an engineering language to the
ARKnowD methodology, which combines two distinct agent-oriented software engi-
neering approaches, namely Tropos and AORML. For mapping the two notations, a
theoretical analysis was made with the use of the UFO foundational ontology. More-
over, an MDA-inspired transformation method was used and partially implemented in
an agent-oriented modeling tool named TAOM4E, currently under development.
Ongoing work in that respect includes analysing further concepts and relationships
from the source languages. Moreover, we are currently developing case studies in a
real setting. The results of this case study should point out to other directions regard-
ing the evolution of the ARKnowD methodology.

Furthermore, our research group has been involved in several initiatives applying
ontological foundations to enable modelling languages evaluation and (re) design.
The most related ones regard: a) the combination of goal modelling (Tropos) and
business process modelling (ARIS-EPC) to enable a comprehensive strategic analysis
before stepping into business process engineering within organizations [13]; b) ana-
lyzing and exposing the semantics behind Software Process Reference Models [9].

 Applying the UFO Ontology to Design an Agent-Oriented Engineering Language 203

Acknowledgments. This research has been partially supported by FAPES (Grants
#37274554/07 and #45444080/09) and CNPq (Grant #481906/2009-6). The second
author of this chapter holds the CNPq (Brazilian National Research Council) Produc-
tivity Grant #309382/2008 4. We are grateful to João Paulo A. Almeida, Evellin C.
Cardoso and Paulo Sérgio Santos Jr. for their valuable contributions to this work.

References

1. Guizzardi, R.S.S.: Agent-oriented Constructivist Knowledge Management. PhD Thesis,
University of Twente, The Netherlands (2006)

2. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos: An Agent-
Oriented Software Development Methodology. Int. J. of Autonomous Agents and Multi
Agent Systems 8(3), 203–236 (2004)

3. Wagner, G.: The Agent-Object-Relationship Meta-Model: Towards a Unified View of
State and Behavior. Information Systems 28(5), 475–504 (2003)

4. Miller, J. and Mukerji, J.: MDA Guide Version 1.0.1, omg/2003-06-01 (2003),
 http://www.omg.org/docs/omg/03-06-01.pdf

5. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. PhD Thesis,
University of Twente, The Netherlands (2005)

6. Dignum, V.: A Model for Organizational Interaction: Based on Agents, Founded in Logic.
PhD thesis, Utrecht University, The Netherlands (2004)

7. Dignum, V.: An Overview of Agents in Knowledge Management. Technical Report UU-
CS-2004-017, Inst. Information and Computing Sciences, Utrecht University, The Nether-
lands (2004)

8. Nonaka, I., Takeuchi, H.: The Knowledge Creating Company: How Japanese Companies
Create the Dynamics of Innovation. Oxford University Press, New York (1995)

9. Guizzardi, G., Guizzardi, R.S.S., Falbo, R.A.: Grounding Software Domain Ontologies in
the Unified Foundational Ontology (UFO): The case of the ODE Software Process Ontol-
ogy. In: Proc. of the Iberoamerican Conference on Software Engineering (CIbSE 2008),
Recife, Brazil (2008)

10. Guizzardi, R.S.S., Guizzardi, G.: From Tropos to AORML, Using a Foundational Ontol-
ogy. In: Giorgini, P., Maiden, N., Mylopoulos, J., Yu, E. (eds.) Tropos/i*: Applications,
variations and Extensions, Cooperative Information Systems Series. MIT Press, Cam-
bridge (forthcoming)

11. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-functional requirements in Software
Engineering. Kluwer Academic Publishers, Dordrecht (2000)

12. Letier, E., van Laamsweerde, A.: Reasoning about Partial Goal Satisfaction for Require-
ments and Design Engineering. ACM SIGSOFT Software Engineering Notes 29(6) (2004)

13. Cardoso, E.C.S., Almeida, J.P.A., Guizzardi, G., Guizzardi, R.S.S.: Eliciting Goals for
Business Process Models with Non-Functional Requirements Catalogues. In: 10th Interna-
tional Workshop on Business Process Modeling, Development and Support, CAISE 2009,
Amsterdam, vol. 29, pp. 33–45 (2009)

A Model of Independence and Overlap

for Transactions on Database Schemata

Stephen J. Hegner

Ume̊a University, Department of Computing Science

SE-901 87 Ume̊a, Sweden

hegner@cs.umu.se

http://www.cs.umu.se/~hegner

Abstract. Traditional models of support for concurrent transactions

invariably rely upon a notion of serializability, which involves not only

complex scheduling, but also primitives (such as locks) for requiring

transactions to wait, as well for aborting a transaction and forcing it

to re-run. For batch transactions, this approach is often the most rea-

sonable. On the other hand, for interactive transactions, only a very

limited amount of waiting and aborting is tolerable, and so minimizing

their occurrence, even at the cost of increased analysis of the transactions

themselves, is warranted. In this work, a systematic study of indepen-

dence for transactions, without any explicit serialization, is initiated.

Each transaction operates on a view of the main schema, and each such

view is partitioned into a write region and a read-only region. For a set of

transactions to run concurrently, their views may overlap only on their

read-only regions. These regions need not be specified explicitly; rather,

they are defined naturally using a component-based model of the main

schema. Furthermore, when two transactions do conflict, because their

views overlap on write regions, the precise point of conflict is immedi-

ately identified. To illustrate the utility of the framework, the case of

relational schemata governed by the most common types of constraints

in practice — functional and foreign-key dependencies — is developed

in detail.

1 Introduction

Support for concurrent transactions has long been a crucial feature of database-
management systems. Central to all approaches is a notion of conflict. Typically,
the database is modelled as a set X = {x1, x2, . . . , xn} of data objects, each
of which may be read and modified by transactions. Two transactions are in
potential conflict if they operate on the same data object in certain ways. In
the case of a potential conflict, the standard criterion for admissibility is that
the transactions involved be interleaved in such a way that the the result is
equivalent to that obtained were they not interleaved; so-called serializability
[3, Ch. 22] [15, Ch. 2]. For enforcement, the scheduler may require a transaction
to wait (e.g., via locking) for a resource which is held by another transaction,
and in the worst case it may require a transaction to abort and re-run.

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 204–218, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Model of Independence and Overlap 205

In recent years, the need to support interactive transactions has grown enor-
mously. With humans in the loop, techniques which impose long waits (such as
locking) are clearly undesirable, if not outright unacceptable. Therefore, such
actions must be used sparingly, if at all. Of course, there is no magical way
to avoid conflict of concurrent operations. On the other hand, with interactive
transactions, additional overhead of a few milliseconds or even a few seconds
is a reasonable tradeoff for reduced delays and aborts, so it is realistic to work
with a more complex model of data objects, providing a finer analysis of how the
operations of distinct transactions interact and resulting in fewer conflicts and a
better model of identifying those conflicts which do occur. The goal of this work
is to provide such a model. The basic idea is that data objects are not just sets
of tuples, but rather are defined by objects which are structured views. Each
such view-object has a number of sub-views which define a read-only region.
Two objects can never entail a conflict of transactions if those objects overlap at
most on their read-only regions. There is furthermore a calculus of combination
of these objects which creates larger objects. If all objects which contain a given
read-only region are combined, then that region becomes writable. The formal
model is based database schema components, as developed in [8]. As such, it dis-
tinguishes itself from other work on similar topics, such as [18] and [17], which
focus more on transaction primitives. On the other hand, it also distinguishes
itself from semantic approaches, such as [12], in which increased concurrency is
obtained by modelling the the data objects as abstract data types with explicitly
defined operations. In the work reported here, the data objects have no structure
beyond the definitions of write and read-only regions.

In describing the work in this paper, the term claim, rather than lock, will
be used to describe a data object which has been assigned to a transaction.
The reason is that this paper is not about locking or serialization, it is rather
about modelling independence and conflict. How the latter is prevented or re-
solved is not the focus. Locking is one way to prevent conflict, but solutions
which involve negotiation, for example, may also be appropriate in the context
of interactive transactions. Before proceeding to the development of the main
ideas, it is useful to illustrate the basic idea via a running example, which will
also be used in other parts of the paper. The relational schema E0 has the three
relations and integrity constraints identified in Fig. 1. The keys are underlined,

Employee(EmpID, Name, Salary, Dept, Area, Level)

Department(DptID, Mgr, Location)

Mentor(Area, Level, MntID)
︸ ︷︷ ︸

︸ ︷︷ ︸

MntID → Area

Fig. 1. Diagrammatic representation of the running example E0

206 S.J. Hegner

and foreign keys are indicated by the arrows from the foreign key to the associ-
ated primary key. Thus, Department[Mgr] ⊆ Employee[EmpID], Mentor[MntID] ⊆
Employee[EmpID], and Employee[Area, Level] ⊆ Mentor[Area, Level]. The func-
tional dependency MntID → Area is shown explicitly because it is not a key
constraint. All relations are in 3NF (third normal form). The relation Mentor,
constrained by both of the FDs (functional dependencies) {Area, Level}→ MntID
and MntID → Area, is a classical example of a relation which cannot be decom-
posed further into BCNF (so that the only FDs are key dependencies) while
retaining a cover of the governing dependencies [4, Sec. 10.5].

In most approaches to defining data objects for transactions, even those which
forward using so-called predicate locks such as [5] and [14], the data objects al-
ways return a set of tuples from a relation. However, it is advantageous, and
also a natural feature of the theory developed here, to allow claim sets to be
defined by views, since two transactions may be able to update different fields
of the same tuple. Consider two simple transactions. T1 is to give a 5% raise
to each employee in the Research department, and T2 is to change the names
of employees in the set NSet (because they married, say). It is clear that these
two operations may be carried out concurrently, even though they may oper-
ate on the same tuples (in the case that NSet contains employees who work
in the Research department). Formally, T1 operates on the view defined by
σDept=Research〈Employee[EmpID, Salary, Dept]〉; i.e., the selection to the Research
department of the projection Employee[EmpID, Salary], while T2 operates on the
view defined by σName=NSet〈Employee[EmpID, Name]〉. These two data objects
overlap on their read claims, but not on their write claims. Specifically, the
write claim of T1 involves only the values of the Salary field, while that for T2

involves only the name field. Their read claims overlap on the EmpIDs of their
common tuples. Since neither transaction may alter these EmpIDs, they may
be shared. More complex operation on this example schema and others will be
considered in that which follows.

The remainder of the paper is composed of two main sections. In Section 2,
the formal model is developed, independently of any specific data model. In
Section 3, these ideas are applied to the relational model, constrained by FDs and
foreign-key dependencies (FKDs). The basic components identified via vertical
decomposition (i.e., projections) are augmented with a further decomposition
into horizontal components, defined by selection. Finally, Section 4 provides a
summary and indication of possible further directions.

2 Component-Based Independent Updates

In this section, the fundamental ideas of the model for complex update objects
for transactions are developed. As they do not depend upon any particular data
model, they are developed within a general framework of set-based schemata.
The basic definitions of schema, morphism, view, complement, and the like par-
allel those developed in [6], to which the reader is referred for details. A summary
of some of these ideas may be found in [7, Sum. 2.1] as well. The basic ideas for
the component-based concepts are based upon those in [8]. The relational model

A Model of Independence and Overlap 207

will nevertheless be used for some examples. Because it is so widely known, the
standard notation and terminology surrounding it, as may be found in textbooks
such as [4] and [13], will not be reviewed but rather assumed.

Definition 2.1 (Database schemata, views, and updates). A set-based
database schema D is one for which a finite set LDB(D) of legal database
states is given. In the relational model, LDB(D) is the set of states which
satisfy the integrity constraints of the schema. A morphism f : D1 → D2 of
set-based schemata is given by a function LDB(f) : LDB(D1) → LDB(D2).
Since no confusion can result, the qualifier LDB will usually be dropped; i.e.,
f : LDB(D1) → LDB(D2). For the rest of this section, unless stated specifically
to the contrary, the term database schema will mean set-based database schema.

A view of the database schema D is a pair Γ = (V, γ) in which V is a database
schema and γ : D → V is a database morphism for which the underlying function
γ : LDB(D) → LDB(V) is surjective. The surjectivity ensures that every state
of the view schema V is the image of some state of the main schema D. The
equivalence relation Congr(Γ) = {(M1, M2) ∈ LDB(D) × LDB(D) | γ(M1) =
γ(M2)} is called the congruence of Γ . If Γ1 = (V1, γ1) and Γ2 = (V2, γ2) are
views with Congr(Γ1) ⊆ Congr(Γ2), then Γ2 may be thought of as a smaller view
than Γ1, in that Γ1 preserves more information about the state of D than does
Γ2. The special notation Γ2 �D Γ1 will be used to indicate that Congr(Γ1) ⊆
Congr(Γ2). To make this idea more precise, given that Γ2 �D Γ1, define the
function λ〈Γ1, Γ2〉 : V1 → V2 by N �→ γ1(M) for any M ∈ γ−1

1 (N). This
function is well defined, since if M1, M2 ∈ γ−1

1 (N), then γ2(M1) = γ2(M2), owing
to the fact that Congr(Γ1) ⊆ Congr(Γ2). Furthermore, Γ2 may be regarded as a
view Λ(Γ1, Γ2) = (V2, λ〈Γ1, Γ2〉) of V1. As a concrete example, let E1 be the
relational schema with the single relation schema R[ABC], constrained by the
functional dependencies (FDs) A → C and B → C. Let ΠE1

AB = (E1AB , πE1
AB) be

the view which defines the projection of R[ABC] onto AB; the single relation
symbol of E1AB is R[AB]. Similarly, let ΠE1

B = (E1B , πE1
B) be the view which

defines the projection of R[ABC] onto B; the single relation symbol of E1B is
R[B]. The function λ〈ΠE1

AB , ΠE1
B 〉 is just the projection πEAB1

B of R[AB] onto
R[B], with the relative view Π

E1AB

B = (E1B , πEAB1
B).

It is also important to note that each equivalence relation r ⊆ LDB(D) ×
LDB(D) defines a set-based view Γ[r] = (V[r], γ[r]) with LDB(V[r]) = LDB(D)/r,
the blocks of the equivalence relation r, and with γ[r] : M �→ {M ′ | r(M, M ′)}.
Indeed, the congruence of a set-based view Γ = (V, γ) characterizes it up to a
renaming of the elements of LDB(V). More formally, a morphism h : Γ1 → Γ2

of views is given by a morphism h : V1 → V2 on the underlying schemata with
the property that h◦γ1 = γ2. In the case of set-based views, h is bijective (hence
an isomorphism) iff Congr(Γ1) = Congr(Γ2).

The zero view on D, denoted ZViewD , is a view whose congruence is
LDB(D) × LDB(D). Thus, its schema has only one state, and so it conveys
no information about the state of the main schema. Dually, the identity view
IdViewD = (D, IdMorD) on D is the view which is the identity on LDB(D).
Each will be useful in certain constructions.

208 S.J. Hegner

The join of two set-based views Γ1 and Γ2 is the set-based view (unique up to
isomorphism) whose congruence is Congr(Γ1)∩Congr(Γ2). It is denoted Γ1 	Γ2.
In the case of relational views, the join may be constructed explicitly by taking
the view schema to be the (disjoint) union of the schemata of the two views.
See [9, Def. 4.3] for details. Since the join is associative, the definition extends
naturally to an arbitrary finite set. The join of a finite set S = {Γ1, . . . , Γn} of
views is denoted Γ1 	 . . . 	 Γn, or

⊔n
i=1 Γi, or just

⊔
S.

An update on the schema D is a pair (M1, M2) ∈ LDB(D) × LDB(D), with
M1 the old state and M2 the new state. The set of all updates on D is denoted
Updates(D). Let u = (N1, N2) ∈ Updates(V) be an update on the view schema
V, and let M1 ∈ LDB(D) with γ(M1) = N1. A reflection (or translation) of the
view update u to D relative to M1 is an update u′ = (M1, M2) on D with the
property that γ(M2) = N2.

The update (M1, M2) ∈ Updates(D) is constant on Γ if γ(M1) = γ(M2).

Notation 2.2. Throughout this section, unless specifically stated to the con-
trary, D will be taken to be a set-based database schema. Furthermore, Γ =
(V, γ), as well as Γx = (Vx, γx) for any subscript x, will be taken to be a
set-based view over D.

If Ex is a relational schema with single relation R[U] for some set U of
attributes, and W ⊆ U, then ΠEx

W = (ExW , πEx

W) is the projection view on W
whose relation symbol is denoted by R[W].

Definition 2.3 (Complementary sets and pairwise definability). Let
C = {Γ1, Γ2, . . . , Γn} be a finite set of views of D. Call C a complementary set
if
⊔N

i=1 Γi = IdViewD . If n = 2, C is also called a complementary pair. The
decomposition mapping for C is γ1 × . . . × γk : LDB(D) → LDB(V1) × . . . ×
LDB(Vk), given on elements by M �→ (γ1(M), . . . , γk(M)). It is immediate that
u is a complementary set iff γ1× . . .×γk is injective. Thus, a complementary set
of views defines a way to recover the state of the main schema from the combined
states of the views. In classical terms, it defines a lossless decomposition.

Think of C as representing the set X of data objects in the concurrency
model, as identified in Section 1. A transaction T wishes to effect an update u
which involves some subset ST ⊆ C; formally, u is specified as an update on the
schema of

⊔
ST . Ideally, other transactions could then be allowed to update the

views not in ST . Unfortunately, for most realistic schemata, it is not possible
to find a useful set C of views whose members are independent in the sense
that each may be updated without affecting the states of the others. Rather,
the elements of such a set of views typically overlap, and the updates which are
permitted must respect that overlap. The necessary additional condition is found
in a classical result in the theory of database decomposition. In [2], a number
of “desirable” aspects of universal relational schemata are presented. One of
these is pairwise definability. Let U be a finite set of attributes, and consider
EU , as defined in Notation 2.2, constrained by some set F of dependencies. Let
Z = {ΠEU

Ui
| 1 ≤ i ≤ k}. be a finite set of projections of EU and assume that

Z is a complementary set of views. Call a sequence S = 〈M1, M2, . . . , Mk〉 with

A Model of Independence and Overlap 209

Mi ∈ LDB(EUi), 1 ≤ i ≤ k, compatible for Z if there is an M ∈ LDB(EU) with
the property that π

EU

Ui
(M) = Mi for 1 ≤ i ≤ n, and call S pairwise compatible for

Z if whenever Ui ∩Uj �= ∅, then π
EUi

Ui∩Uj
(Mi) = π

EUj

Ui∩Uj
(Mj). Call Z pairwise

definable if every pairwise compatible set for Z is compatible for Z; that is,
agreement on the overlapping columns is sufficient to ensure consistency. Within
this model, there is a simple characterization of pairwise definability; namely,
that a cover of F embed into the members of Z. For a complementary pair, a
proof may be found in [6, 2.17]; the extension to larger sets is straightforward.

To extend this idea to the general case of a set C = {Γ1, Γ2, . . . , Γn} of views
of D, first define a sequence S = 〈M1, . . . , Mn〉 of states with Mi ∈ LDB(Vi)
for 1 ≤ i ≤ k to be compatible for C if there is an M ∈ LDB(D) with the
property that γi(M) = Mi for 1 ≤ i ≤ n. To obtain a notion of pairwise
compatibility, the idea is to specify a set P of views on which the elements of
C = {Γ1, Γ2, . . . , Γn}must agree, called the set of ports. More precisely, say that S
is pairwise compatible for C with respect to P if λ〈Γi, Γ 〉(Mi) = λ〈Γj , Γ 〉(Mj) for
every pair {Γi, Γj} ⊆ C and every Γ ∈ P for which Γ �D Γi and Γ �D Γj . Say
that C is pairwise definable via P if every pairwise compatible set is compatible.
In the relational example above, the set of ports is {ΠEU

W | W ⊆ U}; that is,
the set of all projections. There is a useful visualization of pairwise definability,
using the conventions introduced in [8]. Each main view in C (corresponding
to a component in [8] is represented using a rectangle, and each port in P is
represented using a circle, with lines connecting the components to the ports
which they subsume. Fig. 3 shows the representation for a decomposition of the
schema E0 of Sec. 1 (to be discussed in detail in the next section), and Fig.
2 illustrates this idea for the views {ΠE3

AB, ΠE3
BC , ΠE3

CD, ΠE3
CE} of the relational

schema E3 with the the single relation R[ABCDE], constrained by the FDs in
F3 = {A → B, B → C, C → DE}. The set of ports is taken to be the three
projections {ΠE3

A , ΠE3
B , ΠE3

C }.
In Fig. 2, the port R[A] is shown with dashed lines because it is not necessary,

as it is connected to only one component. Such a port is called irrelevant. More
generally, returning to the general case of C and P, call Γ ∈ P a port of Γi ∈ C
if Γ �D Γi, and call it an essential port of Γi if there is at least one other
component Γj , distinct from Γi, for which it is also a port. Call Γ ∈ P relevant

R[AB]

A → B

R[BC]

B → C

R[CD]

C → D

R[CE]

C → E

R[B] R[C]

R[A]

πB πB πC

πC

πC

πA

Fig. 2. The components of E3

210 S.J. Hegner

for C if it is an essential port for at least two distinct members of C, and call P
completely relevant for C if every Γ ∈ P is relevant for C. It is always possible to
render P completely relevant by removing elements which are not relevant. Let
RelRedC〈P〉 denote the subset of P obtained by removing all elements which are
not relevant for C.

Definition 2.4 (Independent updates). Using pairwise definability, it is
possible to give a formal definition of what is meant by independent updates.
First, let u = 〈(N1, N

′
1), . . . , (Nn, N ′

n)〉 ∈ Updates(V1) × . . . × Updates(Vn).
Call u initial-state compatible (resp. final-state compatible) for C if 〈N1, . . . , Nn〉
(resp. 〈N ′

1, . . . , N
′
n〉) is compatible for C. If u is both initial-state and final-state

compatible, it is called simply compatible for C. It is immediate that the set
of all elements of Updates(V1) × . . . × Updates(Vn) which are compatible for
C is in bijective correspondence with Updates(D). Of interest here, however, is
the subset of the compatible updates which are independent. To this end, let
u ⊆ Updates(V1) × . . . × Updates(Vn) consist of compatible n-tuples. Call u
independent for C if it is compatible for C and the following two conditions are
satisfied.

(ind1) For every M ∈ LDB(D), the corresponding identity n-tuple
〈(γ1(M), γ1(M)), . . . , (γn(M), γn(M)〉 is in u as well.

(ind2) For every n-element set {〈Ni1, N
′
i1), . . . , (Nin, N ′

in)〉 | 1 ≤ i ≤ n} ⊆ u,
the diagonal tuple 〈(N11, N

′
11), . . . , (Nii, N

′
ii), . . . , (Nnn, N ′

nn)〉 is in u when-
ever it is initial-state compatible.

Condition (ind2) is the core of the definition, allowing one to “mix and match”
updates from distinct n-tuples, subject only to the condition that the result is
initial-state compatible. Condition (ind1) ensures that each view update may be
considered alone, by matching it with identity updates from the other views.

For Γi ∈ C, define UpdFam〈Γi, P〉 to be the set of all updates on the schema
Vi of Γi on which every Γ ∈ P is constant and define IndUpd〈C, P〉 to be the set
of initial-state compatible pairs in UpdFam〈Γ1, P〉 × . . .× UpdFam〈Γn, P〉. The
following result then provides the largest independent set.

Proposition 2.5. Let C = {Γ1, . . . , Γn} and P be finite sets of views of D,
and suppose further that P is completely relevant for C and that C is pairwise
definable via P. Then for any u ⊆ Updates(V1) × . . . × Updates(Vn) which is
independent for C, u ⊆ IndUpd〈C, P〉.
Proof. Let u ⊆ Updates(V1) × . . . × Updates(Vn) be independent for C, and
let u = 〈(N1, N

′
1), . . . , (Nn, N ′

n)〉 ∈ u. Choose i ∈ {1, . . . , n} and let u′ =
〈(N1, N1), . . . , (Ni−1, Ni−1), (Ni, N

′
i), (Ni+1, Ni+1), . . . , (Nn, Nn)〉. Thus, u′ is

obtained from u by retaining (Ni, N
′
i) and replacing each other entry with the

identity which keeps it initial-state compatible. In view of the complete relevance
of P, u′ is constant on every view in P, since every such view is contained in
at least two distinct members of C, at least one of which is held constant by
the update. In particular, (Ni, N

′
i) is constant on all views Γ ∈ P for which

Γ �D Γi. Since i was chosen arbitrarily, it follows that all of u must be constant
on every view in P. �

A Model of Independence and Overlap 211

Definition 2.6 (Compound components and external ports). The ideas
of Definition 2.4 and Proposition 2.5 identify the conditions under which up-
dates may be executed independently on the components in the set C of data
objects. However, not all updates are so representable. In particular, any up-
date would change the state of of an essential port of P is disallowed. Thus,
this framework, by itself, is not adequate. When no atomic component in C is
adequate to support an update, the solution is to combine several components
into one complex one. For example, referring to E3 of Definition 2.3 and Fig. 2,
suppose that a transaction wishes to update the AB projection of R[ABCDE].
This is not possible within any single component; indeed, it requires an update
on a port. The solution is to combine the components R[AB] and R[BC] into
a single component defined by R[ABC]. The new set of components is then
{ΠE3

ABC , ΠE3
CE , ΠE

CF }, and an update to the AB-projection is now possible. The
port R[B] of this combination becomes internal, and hence irrelevant.

More generally, returning to the general case of C and P of Definition 2.3, a
compound component over C is any join of views in C. For S ⊆ C, the essential
ports of the compound component

⊔
C are exactly those Γ ∈ P which are ports

for some Γi ∈ S as well as some Γj ∈ C \ S. Thus, for the join ΠE3
AB 	ΠE3

BC , the
only essential port is R[C].

Discussion 2.7 (The support of independent updates). Continuing with
the above framework, a transaction whose task is to perform an update must
identify the components in C which are necessary for the operations which it is
to perform. The claim set S ⊆ C which it is to hold must satisfy the following
two conditions.

(u1) The update operations which it is to perform must be expressible within
the view

⊔
S.

(u2) All essential ports of
⊔

S must be constant under these update operations;
that is, they are read(-only) claims but not write claims.

For a set of transactions to proceed independently, their claim sets may overlap
only on their ports, and these overlaps identify the read claims. Any update
is supportable by choosing S sufficiently large; indeed, by choosing S = C, all
updates are possible (but without any parallelism).

It might seem a suitable strategy to allow a transaction to express its goal to
update an arbitrary view Γ and then to seek a subset S ⊆ C which “covers” Γ .
However, this is not possible in general. Consider the example schema E0 of Sec.
1 and Figs. 1 and 3. Suppose that the view to be updated is the projection of
Employee[Salary]. It makes no sense, in general, to insert salaries. They must be
associated with employees. Thus, the transaction itself must have knowledge of
the set C of components and determine which ones to claim for its operations.

There is one further point which should be discussed briefly, and that is read
claims. If a transaction claims an object

⊔
S, it may not need to be able to

update all of it. For example, considering again the example E0, the task of a
transaction may be to update employee salaries, based upon information about
the department of each employee. Such a transaction would need to read claim

212 S.J. Hegner

the department information, but it would not require write access. The extension
the model presented here to such read claims is straightforward, but due to space
limitations it will not be developed further.

3 The Basic Components of a Relational Schema

The examples of Sec. 2 were all based upon classical “vertical” decomposition
of relational schemata, which is not by itself adequate for defining useful read
or write claims. In the context of the running schema E0, a transaction which
is to update the salary of Alice should not need to claim the entire projec-
tion Employee[EmpID, Salary]. Rather, it should suffice to claim just those tuples
involving Alice. Thus, a complementary theory of horizontal decomposition is
needed. That which is required for this work is very different from the hor-
izontal decomposition of in [16, Ch. 5], which is based upon exceptions and
afunctional dependencies. Unfortunately, that form of decomposition does not
lead to pairwise definability. Rather, what is needed is an approach to horizontal
decomposition which is based upon the relational operation of selection, just as
vertical decomposition is based upon projection.

The context for this section is relational schema which are constrained by
functional dependencies (FDs) and foreign-key dependencies (FKDs), which are
undeniably the two most important types of constraints in real-world database
schemata. Since classical vertical decomposition almost never considers inclusion
dependencies (of which FKDs are a special case), it is prudent to begin with a
short description of how they are incorporated into a vertical decomposition. To
keep the focus on the key ideas, null values will not be considered; it will be
assumed that all values are non null.

Discussion 3.1 (Conventions for vertical decomposition). The overall
approach is to begin with a vertical decomposition, and then decompose each
component into its horizontal sub-components. Thus, it is important to begin
with a clarification of exactly what properties the vertical decomposition must
have. First of all, the theory only applies to acyclic decompositions, which is
equivalent to the existence of pairwise definable decompositions [2, Cond. 3.7].
Although that topic is usually approached from the perspective of join depen-
dencies, cyclicity can also arise from decompositions arising entirely from FDs
[1, Thm. 4]. Fortunately, such schemata occur rarely, if ever, in practice, but in
any case, they are not covered by the theory presented here.

Figure 3 depicts the vertical decomposition for the schema E3, introduced
in Sec. 1 and Fig. 1. For compactness, the relations Employee, Department, and
Mentor are abbreviated to E, D, and M in the ports (the circles). Keys are un-
derlined, while

������
foreign

�����
keys have a wavy line beneath them. These abbreviations

and conventions will also be used in that which follows.
In the classical theory of vertical decomposition, there is a tradeoff between

3NF, which always admits dependency-preserving decompositions but which
may require non-key dependencies in some of the components, and BCNF,
in which each component is governed only by key dependencies but for which

A Model of Independence and Overlap 213

Employee[EmpID,Area, Level]

Mentor[Area, Level
��������

]

Employee[EmpID,Dept]

Department[DptID
����

]

Employee[EmpID,Salary]

Employee[EmpID,Name] Mentor[Area, Level,MntID]

Department[DptID,Mgr]

Employee[EmpID
�����

]

Department[DptID, Location]

Mentor[Area,MntID]

E[EmpID]

D[DptID]

M[Area,

Level]

M[Area,

MntID]

Fig. 3. The vertical components of the running example E0

dependency-preserving decomposition is not always possible. For this work, de-
pendency preservation is essential. However, support for non-key dependencies
within a component is also to be avoided. To address this dilemma, there is a trick
which is arguably useless for classical normalization but which serves the pur-
poses of support of independent updates very well. It is illustrated by the example
of Mentor[MntID, Area, Level], governed by {Area, Level}→ MntID and MntID →
Area. The relation Mentor is “decomposed” into Mentor[MntID, Area, Level], in
which only the key dependency is enforced, and Mentor[MntID, Area], in which
only the local key dependency EmpID → Area is enforced. The latter FD is en-
forced in Mentor[MntID, Area, Level] via the common port M[Area, MntID]. This
approach is taken also when a relation has more than one key, which must be split
into several components, one for each key. For example, if the relation Department
were to have an additional attribute DName which were also a (secondary) key, it
would necessary to have two additional components, Department[DptID, DName]
and Department[DptID, DName]. Their common port would be the entire rela-
tion Department[DptID, DName], but each key would be checked separately in its
component. Thus, it is always possible to arrange things so that only one key
dependency need be checked in each vertical component. In Fig. 3, the key to
be checked in a given component is exactly that which is underlined.

In most cases each component relation may have only one non-key attribute.
The only exception is foreign keys consisting of more than one attribute, which
must be grouped. An example of the latter is Employee[EmpID, Area, Level]. Oth-
erwise, for example, the relation Employee[EmpID, Salary, Dept] must be decom-
posed into Employee[EmpID, Salary] and Employee[EmpID, Dept], even though the
composite is already in BCNF.

FKDs are of the form R1[F] ⊆ R2[K], in which K is the (primary) key of R2

and F is a set of attributes of R1, called the foreign key. The case that F includes
some key attributes of R1 is not excluded. To preserve such a dependency in
the component framework, both sides of the FKD must be contained in a single

214 S.J. Hegner

component. The convention that R2[K] be included in the component containing
R1[F] is adopted. The satellite projection (e.g., R2[K]) is then connected, via a
port, to the corresponding component containing the full R2 as the main relation.
This is illustrated in three cases in Fig. 3.

Given a relational schema D, a simple key schema is a set of projections of
D with the following properties. First, it contains a main relation R, governed
by a single key dependency; i.e., an FD which determines all other attributes.
Second, it contains all projections onto their primary keys of the other relations
R′ in D for which the primary key of R′ is a foreign key for R. It thus embodies
the FKDs. All of the schemata in Fig. 3 are simple key schemata.

Convention 3.2 (The finite domain property). In that which follows for
horizontal decomposition, it will always be assumed that each attribute A has
the finite domain property; that is, the set Dom(A) of domain elements for A,
the set of all possible values for attribute A, is finite. This condition is always
met in real examples, and it simplifies the theory substantially by keeping the
number of basic components in a horizontal decomposition finite.

Definition 3.3 (Views defined by selection). Just as projection is the
defining operation for vertical decomposition, so too is selection the operation
for horizontal decomposition. For a schema D whose relation symbols include
{R1, . . . , Rk}, the notation σϕ〈R1, . . . , Rk〉 will be used to denote the selection
ϕ applied to those relations. The select view Σϕ〈R1, . . . , Rk〉 has σϕ〈R1, . . . , Rk〉
as its underlying morphism.

The selects which will be applied to simple key schemata to obtain hor-
izontal decompositions will always be of a particular form. The selection is
defined only on the main relation, with all other relations “following” that
select, based upon the embodied FKDs. The notation σ(ϕ)+〈R1, . . . , Rk〉 will
be used to denote such a selection, with Σ(ϕ)+〈R1, . . . , Rk〉 the corresponding
view. For example, considering the schema defined by the upper-left rectan-
gle of Fig. 3, Σ(EmpID=Alice)+〈E[EmpID, Dept], D[DptID

�����
]〉 has selection morphism

σ((EmpID=Alice))+〈E[EmpID, Dept], D[DptID
�����

]〉 which is the same as the selection

σ(EmpID=Alice)∧(Dept=DptID)〈E[EmpID, Dept], D[DptID
�����

]〉, while the selection

σ((EmpID=Alice)∧(Dept=Research))+〈E[EmpID, Dept], D[DptID
�����

]〉 is identical to

σ(EmpID=Alice)∧(Dept=Research)∧(Dept=DptID)〈E[EmpID, Dept], D[DptID
�����

]〉.
If D is a simple key schema, simple key select on E is a select view

Σ(K=t)+〈E〉, where K = A1 . . . Ak is the key of the main relation of D and
t = (a1, . . . , ak) ∈ Dom(A1)× . . .× Dom(Ak). Thus, in a simple key select, only
a selection on the primary key of the main relation is allowed, with that selec-
tion extending to those parts of foreign keys which reference the primary key.
For example, Σ(EmpID=Alice)+〈(E[EmpID, Dept], D[DptID

�����
])〉 is a simple key select

while Σ((EmpID=Alice)∧(Dept=Research))+〈(E[EmpID, Dept], D[DptID
�����

])〉 is not.

A Model of Independence and Overlap 215

Simple key schemata may be decomposed on a key-by-key basis into simple
key selects, with complete independence. The following observation, whose proof
is immediate, recaptures this.

Observation 3.4 (Horizontal decomposition of a simple key schema).
Let D be a simple key schema with primary key K = A1 . . . Ak, and whose

relations include {R1, . . . , Rk}. Then {Σ(K=S)+〈R1, . . . , Rk〉 | S ∈ Dom(A1) ×
. . .×Dom(Ak)} is pairwise definable, with the ports the relativized zero views. �

Examples 3.5 (Combined horizontal and vertical decomposition). To
visualize the nature of decomposition using simple key selects as the horizontal
part of a vertical-horizontal decomposition, it is best to begin with a schema
which is simpler and more regular than that running example E0. To that end, let
E2 be as defined in Definition 2.3, having a vertical decomposition into the basic
schema components {ΠE2

AB, ΠE2
BC , ΠE2

CD}, The combined horizontal and vertical
decomposition is depicted in Fig. 4. Each horizontal decomposition is actually
represented by a vertical stack of components defined by simple key selects. Note
that the ports are each selections on single elements. The horizontal components
associated with R[AB] and R[BC] have connections to each projection on the
non-key attribute.

Now return to the running example E0 of Fig. 3, the vertical component de-
fined by Employee[EmpID, Salary]. There is one horizontal component for each
element of Dom(EmpID). To update the salary of Alice, only the component
Σ(EmpID=Alice)+〈E[EmpID, Salary]〉 need be claimed; the salary of any other em-
ployee may be updated independently.

Next consider changing the department of Alice. The relevant component is
Σ((EmpID=Alice))+〈E[EmpID, Dept], D[DptID]〉 Again, only the tuple corresponding
to Alice need be claimed; all others are available to other transactions. However,
the entire set of names of departments is read claimed, since
Σ((EmpID=Alice))+〈E[EmpID, Dept], D[DptID]〉 has a port connecting to each

ΣA=a1 〈R[AB]〉

ΣA=a2 〈R[AB]〉

...

ΣA=akA
〈R[AB]〉

ΣB=b1 〈R[BC]〉

ΣB=b2 〈R[BC]〉

...

ΣB=bkB
〈R[BC]〉

ΣC=c1 〈R[CD]〉

ΣC=c2 〈R[CD]〉

...

ΣC=ckC
〈R[CD]〉

Σ
R[B]
B=b1

Σ
R[B]
B=b2

...

Σ
R[B]
B=bkB

Σ
R[C]
C=c1

Σ
R[C]
C=c2

...

Σ
R[C]
C=ckC

Fig. 4. Visualization of the horizontal and vertical components for E6

216 S.J. Hegner

horizontal component of Department[DptID, Location]. Thus, while it is possible
to execute other updates concurrently which read the list of department names,
it is not possible for any transaction to update this list. More will be said about
this point in Discussion 3.6.

Finally, suppose that a transaction wishes to add (French, 1, DuBois) and
(German, 1, Dimpflmeier) to Mentor[Area, Level, MntID]. The constraint
MntID → Area must be verified to support this change. This update may be ef-
fected with support from a write claim for
Σ((Area∈{French,German})∧(Level=1))+〈Mentor[Area, Level, MntID]〉, which is the join
Σ((Area=French)∧(Level=1))+〈Mentor[Area, Level, MntID]〉

	Σ((Area=German)∧(Level=1))+〈Mentor[Area, Level, MntID]〉
of two simple key selects. It also effects a read claim on the port defined by
Mentor[Area, MntID]. The transaction read claims this port, and hence the en-
tire component of the same name. If DuBois is a already a mentor for French, and
Dimpflmeier is already a mentor for German (as recorded in
Mentor[Area, MntID]), then no further claims are necessary. However, if this is
not the case, then Mentor[Area, MntID] must be write claimed for DuBois and
Dimpflmeier as well. Since this read claims all Area values in Mentor[Area, MntID],
this effectively claims the entire Mentor relation, and no parallel updates are pos-
sible (although much may still be read).

Discussion 3.6 (Range restriction). As illustrated in Examples 3.5, claim-
ing a relation even for one key value claims every non-key value. For example, for
a transaction T1 to place new employee Alice in the Research department, the
view Σ(EmpID=Alice)+〈E[EmpID, Dept], D[DptID]〉 must be claimed, which reserves
every possible value for Dept as a new value for the tuple with key Alice. Thus, a
second transaction T2, whose task it is to delete the Education department, could
not proceed independently because it is not known that T1 will not change the de-
partment for Alice to Education. It might seem that a solution would be for T1 to
claim only Σ((EmpID=Alice)∧(Dept=Research))+〈E[EmpID, Dept], D[DptID

�����
]〉 However,

that would open the door for another transaction to put Alice into another de-
partment, say TechSupport, concurrently, since it is impossible to verify within
Σ((EmpID=Alice)∧(Dept=Research))+〈E[EmpID, Dept], D[DptID

�����
]〉 whether the FD

EmpID → Dept is satisfied for EmpID = Alice. Since the whole purpose of this
approach is to detect and prevent such conflicts and support truly independent
updates, simply ignoring this conflict is not acceptable. Fortunately, there is a
solution, provided the transaction provides a bit more information. Roughly, the
idea is that the transaction claims the data object
Σ((EmpID=Alice)∧(Dept=Research))+〈E[EmpID, Dept], D[DptID

�����
]〉 as suggested, and for

the life of that claim, the system excludes any other possibilities for tuples with
EmpID = Alice. This does not reduce possible parallelism in any way, since only
one transaction may have write privileges on a field of a tuple with a given
key. Furthermore, it allows the transaction which is to delete the Education de-
partment to proceed independently (provided that no other employee works in

A Model of Independence and Overlap 217

that department). This approach may be used to increase the possible concur-
rency for the examples involving the Mentor at the end of Examples 3.5 as well.

It is a straightforward exercise to extend the framework of Sec. 2 to incorporate
these additional features, called range restriction. Unfortunately, space limitation
preclude a full presentation here.

4 Conclusions and Further Directions

A theory of updateable data objects has been presented. A key of this approach
is that transactions may claim data objects which overlap on read areas. It
requires more structural analysis of the schema, but in return it supports a finer
grain of concurrency than in achievable with traditional models. It is particularly
suited to interactive applications, which can tolerate more preprocessing for a
transaction to begin but are much more sensitive to long waits and aborts.

Important further directions include the following.

Application to cooperative update: An approach to the support of coop-
erative updates which is based upon components has been developed recently
[11], [10]. Indeed, the ideas for this paper began as a search for appropriate
ways to support concurrency in such an environment, and the topic will be
developed further.

Application to nondeterministic update requests: A key aspect of the ap-
proach to cooperative updates in [11] and [10] is that requests may be nonde-
terministic; that is, a user may request that one of a number of alternative
updates be supported. For example, a business travel request may involve al-
ternatives regarding hotel, flight, date, etc.. Some of these alternatives may
become impossible as the processing of the transaction proceeds. The model of
conflict developed here seems well suited to identifying and eliminating parts of
the nondeterministic request which conflict with other needs and thus cannot
be supported, while allowing the others to proceed.

Acknowledgement. Some of the ideas reported here have their origins in dis-
cussions with Peggy Schmidt. Her contribution is gratefully acknowledged.

References

1. Aho, A.V., Beeri, C., Ullman, J.D.: The theory of joins in relational databases.

ACM TODS 4(3), 297–314 (1979)

2. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic

database schemes. JACM 30(3), 479–513 (1983)

3. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery

in Database Systems. Addison-Wesley, Reading (1987)

4. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, 5th edn. Addison

Wesley, Reading (2006)

218 S.J. Hegner

5. Eswaran, K.P., Gray, J., Lorie, R.A., Traiger, I.L.: The notions of consistency and

predicate locks in a database system. ACM Comm. 19(11), 624–633 (1976)

6. Hegner, S.J.: An order-based theory of updates for closed database views. Ann.

Math. Art. Intell. 40, 63–125 (2004)

7. Hegner, S.J.: The complexity of embedded axiomatization for a class of closed

database views. Ann. Math. Art. Intell. 46, 38–97 (2006)

8. Hegner, S.J.: A model of database components and their interconnection based

upon communicating views. In: Jakkola, H., Kiyoki, Y., Tokuda, T. (eds.) Infor-

mation Modelling and Knowledge Systems XIX. Frontiers in Artificial Intelligence

and Applications, pp. 79–100. IOS Press, Amsterdam (2008)

9. Hegner, S.J.: Semantic bijectivity and the uniqueness of constant-complement up-

dates in the relatiional context. In: Schewe, K.-D., Thalheim, B. (eds.) SDKB 2008.

LNCS, vol. 4925, pp. 172–191. Springer, Heidelberg (2008)

10. Hegner, S.J.: A simple model of negotiation for cooperative updates on database

schema components. In: Kiyoki, Y., Tokuda, T., Heimbürger, A., Jaakkola, H.,

Yoshida, N. (eds.) Frontiers in Artificial Intelligence and Applications XX11 (in

Press, 2011)

11. Hegner, S.J., Schmidt, P.: Update support for database views via cooperation. In:

Ioannidis, Y., Novikov, B., Rachev, B. (eds.) ADBIS 2007. LNCS, vol. 4690, pp.

98–113. Springer, Heidelberg (2007)

12. Herlihy, M., Weihl, W.E.: Hybrid concurrency control for abstract data types. J.

Comput. System Sci. 43(1), 25–61 (1991)

13. Kemper, A., Eickler, A.: Datenbanksysteme, p. 6. Oldenbourg, Auflage (2006)

14. Klug, A.C.: Locking expressions for increased database concurrency. J. Assoc.

Comp. Mach. 30(1), 36–54 (1983)

15. Papadimitriou, C.: The Theory of Database Concurrency Control. Computer Sci-

ence Press, Rockville (1986)

16. Paredaens, J., De Bra, P., Gyssens, M., Van Gucht, D.: The Structure of the

Relational Database Model. Springer, Heidelberg (1989)

17. Sampaio, M.C., Turc, S.: Cooperative transactions: A data-driven approach. In:

29th Annual Hawaii International Conference on System Sciences (HICSS-29),

Maui, Hawaii, January 3-6, pp. 41–50. IEEE Computer Society, Los Alamitos

(1996)

18. Wieczerzycki, W.: Transaction management in databases supporting collaborative

applications. In: Litwin, W., Morzy, T., Vossen, G. (eds.) ADBIS 1998. LNCS,

vol. 1475, pp. 107–118. Springer, Heidelberg (1998)

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 219–233, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Using a Time Granularity Table for Gradual Granular
Data Aggregation

Nadeem Iftikhar and Torben Bach Pedersen

Aalborg University, Department of Computer Science, Selma Lagerløfs Vej 300,
9220 Aalborg Ø, Denmark

{nadeem,tbp}@cs.aau.dk

Abstract. The majority of today’s systems increasingly require sophisticated
data management as they need to store and to query large amounts of data for
analysis and reporting purposes. In order to keep more “detailed” data available
for longer periods, “old” data has to be reduced gradually to save space and
improve query performance, especially on resource-constrained systems with
limited storage and query processing capabilities. A number of data reduction
solutions have been developed, however an effective solution particularly based
on gradual data reduction is missing. This paper presents an effective solution
for data reduction based on gradual granular data aggregation. With the gradual
granular data aggregation mechanism, older data can be made coarse-grained
while keeping the newest data fine-grained. For instance, when data is 3 months
old aggregate to 1 minute level from 1 second level, when data is 6 months old
aggregate to 2 minutes level from 1 minute level and so on. The proposed solu-
tion introduces a time granularity based data structure, namely a relational time
granularity table that enables long term storage of old data by maintaining it at
different levels of granularity and effective query processing due to a reduction
in data volume. In addition, the paper describes the implementation strategy
derived from a farming case study using standard technologies.

Keywords: Data reduction, data aggregation, gradual granular data aggrega-
tion, multi-granular data.

1 Introduction

In order to have both fine grained data and to store data for as long time periods as
possible, we need to aggregate the data in an intelligent way. Further, the queries that
are being used by various applications for extracting the logged data must continue to
work and generate valid results even after aggregation. Furthermore, as the detailed
data grows older, it slowly loses its value or may not have the same value as before.
Examples include details about spray related tasks in the farming business, such as
task start time, task end time, task duration, task status, spraying pressure, number of
active nozzles, working width of the nozzles etc.

Although these details were useful for some time, after a year or so they may not
be of much importance and they could reduce the query performance. Therefore, to
save disk space and to perform efficient query processing there may be two options of

220 N. Iftikhar and T.B. Pedersen

data reduction, either to delete older data or to aggregate it. However, the major prob-
lem with deleting the older data could be organizational or governmental level data
retention laws; therefore it may not be a feasible solution. Instead, data aggregation is
preferable. Furthermore, the aggregated data could be quite useful for analysis
purposes. For example, by using spray related aggregated data, maintenance of the
farming machinery such as when the service of the spraying equipment is due or to
determine the working life of different components of the equipment as well as future
planning on task management could be done.

This paper presents an effective data reduction solution based on gradual granular
data aggregation and time granularity table. The solution saves vital storage capacity
and keeps data for long time periods. The gradual aggregation solution for data reduc-
tion is mainly based on the time granularity table and derived from the specifications
provided by [1]. To the best of our knowledge, this paper is the first to present and
demonstrate a data reduction solution that maintains the data at different levels of
granularity.

The paper is structured as follows. Section 2 presents the real-world farming case
study and explains the motivation behind the proposed gradual granular data aggrega-
tion. Section 3 presents the handling of time granularities. Section 4 describes the data
aggregation methods. Section 5 evaluates the proposed approach. Section 6 presents
the related work. Finally, Section 7 summarizes and points to the future research.

2 Motivation

This section presents a real-world case study based on the farming business. The case
study is a result of LandIT [2] that was an industrial collaboration project about de-
veloping technologies for integration, aggregation and exchange of data between
embedded farming devices and other farming-related IT systems, both for operational
and business intelligence purposes. The farming devices represent computing devices
with the ability to produce and store data for instance, spray control devices, climate
control and production monitoring devices and so on. These devices are either in-
stalled at a fixed location of a farm, or on a moving object such as a tractor.

One of the main goals of this case study is to aggregate data at different levels of
granularity, according to the needs of the application domain. We use the case study
to illustrate the kind of challenges faced by aggregating data at different levels of
granularity, which are addressed by this paper.

This case study concerns spray related data in a field that has to be logged in order
to comply with environmental regulations. The requirement analysis of the case study
result in two main types of data: sensor data and setting data. The sensor data set
contains the following attributes: tractor speed in kilometers/hour, application rate in
liters/hectare, distance covered in meters, area sprayed in hectares, time in seconds,
volume of chemical used in liters etc. The setting data set contains the following at-
tributes: nozzle type, nozzle size, nozzle flow rate, number of active nozzles, working
width of the nozzles, spraying pressure etc. Further, the logged data is initially kept in
detailed format in the Datalog table that consists of following attributes: Taskid,
Timeid, DatalogDDI and Datalogvalue. The Taskid represents activities to distinguish
all the work that is carried out by a contractor for a farmer in a particular field of a

 Using a Time Granularity Table for Gradual Granular Data Aggregation 221

farm. The Timeid specifies a recording of a time event at different levels of granular-
ity. The DatalogDDI represents the codes (DDIs) against which actual values are
being logged from different devices and the Datalogvalue specifies a numeric value
against a specific DDI or code. For example, a single instance of the Datalog table
looks as follows: a Datalogvalue of 165 is recorded against DatalogDDI “0074” that
stands for “total area sprayed in hectares” at a specific time for a specific task. Fur-
thermore, in order to save storage space, LandIT data requirements also impose that
older data should not be deleted; however, it should be reduced gradually by aggre-
gating it per task level.

The readings from the devices are logged and then aggregated after some interval
in time, or if lack of space occurs. In addition, data values are aggregated differently.
Some of the values have to be aggregated using SUM() or MAX() and some using
COUNT(). For example, total distance travelled by the tractor should be aggregated
using SUM(), total number of tasks should be aggregated using COUNT() and so on.
Moreover, according to the requirements the aggregation should not be a onetime
process; rather it should be a continuous process, meaning that data should be aggre-
gated gradually.

The main reason behind aggregating data gradually is to maintain data at different
levels of granularity ranging from fine-grained to coarse-grained data, where each
level can be used for analysis and reporting purposes. For example as shown in Fig. 1,
if we initially have the granularity of spray related data at a second level (meaning
that each data value is being recorded every second) then it could be aggregated from
a second level to a minute level if it is more than three months old, further to a 2 min-
utes level if it is more than six months old, furthermore to a 10 minutes level if it is
more than twelve months old and so on. In conclusion, an effective data reduction
based on gradual granular aggregation is important not only for the farming industry
but for any other type of industry in which significant amounts of data are generated.

Fig. 1. Data at 10 minutes, 2 minutes, minute and second granularity levels

3 Handling Time Granularities

In this section, we first describe the structure of the time granularity table in order to
store multi-granular data, followed by an example based on the real-world case study
presented in Section 2. The time granularity table is used along with the Datalog table
(Section 2) to store data at different levels of granularity. The Timegranularity table

18 Months 12 Months 6 Months 3 Months Today
No Aggregation

1 Minute Granularity
Level

2 Minutes Granularity
Level

10 Minutes Granularity
Level

1 Second Granularity
Level

222 N. Iftikhar and T.B. Pedersen

presented in this paper is based on a single hierarchy that is further composed of nu-
merous one-to-many relationships. Moreover, the proposed time granularity based
solution can easily be applied to the fact tables having time as a dimension, in order to
specify instances of fact table at different levels of granularity.

3.1 The Timegranularity Table

In the case study presented in Section 2, it is preferred not to throw away the older
data; instead it should be kept in a summarized form. Again, it is not a good option to
summarize the older data at the same granularity level; instead it should be summa-
rized at different levels of granularity. This means that newer data which is needed
most should be fine-grained, and older data which may not be needed as frequently as
the newer data but could be used for analysis purposes, should be coarse-grained. This
paper presents an effective technique based on the semantic foundation provided by
[1] for gradual granular data aggregation.

The implementation of this technique is done in the form of a time granularity
based data structure, namely a relational Timegranularity table, presented as Table 1.
In the proposed table, in addition to the standard time associated attributes, a new
attribute Gran (Granularity) is added, in order to handle granularity at different levels
rather than at a single level. The attribute Granularity represents the level of detail of
each time instance stored in the Timegranularity table. Thus, with the inclusion of this
new attribute in the time dimension table, the associated Datalog or fact table is no
longer restricted to store data only at the same single level of granularity. Further-
more, the reason to consider the time granularity only, rather than any other granular-
ity(s), is that different levels of granularity always occur for time and the solution also
works for other granularity phenomena.

Table 1. Snapshot of the Timegranularity table

Tid Y Q M D POD 4H H 20M 10M 2M M S Gran
1 2009 Null Null Null Null Null Null Null Null Null Null Null Y
2 2009 3 Null Null Null Null Null Null Null Null Null Null Q
3 2009 3 8 Null Null Null Null Null Null Null Null Null M
4 2009 3 8 12 Null Null Null Null Null Null Null Null D
5
6
7
8
9
10
11
12

2009
2009
2009
2009
2009
2009
2009
2009

3
3
3
3
3
3
3
3

8
8
8
8
8
8
8
8

12
12
12
12
12
12
12
12

Day[8-16[
Day[8-16[
Day[8-16[
Day[8-16[
Day[8-16[
Day[8-16[
Day[8-16[
Day[8-16[

Null
[12-16[
[12-16[
[12-16[
[12-16[
[12-16[
[12-16[
[12-16[

Null
Null
15
15
15
15
15
15

Null
Null
Null
[20-40[
[20-40[
[20-40[
[20-40[
[20-40[

Null
Null
Null
Null
[20-30[
[20-30[
[20-30[
[20-30[

Null
Null
Null
Null
Null
[24-26[
[24-26[
[24-26[

Null
Null
Null
Null
Null
Null
25
25

Null
Null
Null
Null
Null
Null
Null
40

POD
4H
H
20M
10M
2M
M
S

The Timegranularity table contains the following attributes: Tid (Timeid), which is
an auto generated primary key attribute. Y (Year), Q (Quarter), M (Month) and D
(Day), represent the standard calendar year, quarter, month and day. The values of
these attributes depend on the level of granularity. For example, row number 1 in the
Timegranularity table has a granularity at the year level and it is read as follows: year =
2009. Since the granularity of this row is at the year level, therefore the values for
quarter, month, day, part of day, four-hour, hour, twenty-minute, ten-minute, two-
minutes, minute and second are NULL. Row number 4 has a granularity at the day

 Using a Time Granularity Table for Gradual Granular Data Aggregation 223

0
500000

1000000
1500000
2000000

Before
aggregation

First level
aggregation

Minute

Second

level and it is read as follows: year = 2009, 3rd quarter, month of August and day in day
= 12. As the granularity level of this row is at day level; therefore the values of rest of
the attributes are NULL. Further, POD (Partofday) represents an eight-hour time span.
Hence each day, is divided into three eight-hour time spans, from 0000 to 0800 hours,
0800 to 1600 hours and 1600 to 0000 hours. The symbol shown in the Timegranularity
table for Partofday is Day[8-16[, which means that it is the second time span of the
day, where 0800 hours are included but 1600 hours are excluded. 1600 hours will be
included in the next time span. Furthermore, 4H (4Hour) represents a four-hour time
span. H (Hour) represents the standard hour in 24 hours time format. 20M (20Minute),
10M (10Minute) and 2M (2Minute), represents twenty-minute, ten-minute and two-
minute time spans. Moreover, M (Minute) and S (Second) represent the standard min-
ute and second in any time format. Finally, Gran (Granularity) represents the level of
granularity of each row. For instance, row number 12 has a granularity at the second
level and it is read as follows: year = 2009, 3rd quarter, month of August, day in
month = 12, partofday = 0800 – 1600 (eight-hour time span), four-hour = 1200 – 1600
(four-hour time span), hour = 15, twenty-minute = 20 – 40 (twenty-minute time span),
ten-minute = 20 – 30 (ten-minute time span), two-minute = 24 – 26 (two-minute time
span), minute = 25 and second = 40. Lastly, the granularity column represents the time
granularity of each stored time instance. To make sense of this flexible structure, con-
sider the Datalog table (Section 2). For instance if the values of tractor speed are
logged at second granularity level, then they could be aggregated at the minute level, 2
minutes level and so on. This whole process could be done gradually, in other words,
the data log values could point to time periods of any predefined granularity.

3.2 Gradual Granular Data Aggregation Example

As an example, we have considered the data consists of 1,800,000 rows (data log
values) distributed uniformly across a two-year time period; values were logged for
30 DDIs in total, out of which 20 DDIs at a granularity of one second per 20 values
with 40,000 readings for each DDI and 10 DDIs at a granularity of one minute per 10
values with 20,000 readings for each DDI . First, the first level aggregation is applied
(using the time granularity table); “for data which is more than three months old,
aggregate to the minute granularity level from the second granularity level”. The data
is aggregated at per task level. After applying the first level aggregation, the number
of rows is reduced from 1,800,000 to 767,500 rows, as shown in Fig. 2a. Out of the
767,500 rows, 542,500 rows are at the minute granularity level and 225,000 rows are
at the second granularity level, since they are less than three months old.

Fig. 2a. Data reduction after first level aggregation (note zoom on y-axis)

224 N. Iftikhar and T.B. Pedersen

Second, the second level aggregation is applied “for data which is more than six
months old, aggregate to the 2 minutes granularity level from the minute granularity
level”. After applying the second level aggregation, the number of rows is reduced
from 767,500 to 586,666 rows, as shown in Fig. 2b. Out of the 586,666 rows, 191,666
rows are at the 2 minutes granularity level, 170,000 rows are at the minute granularity
level, since they are less than six months old and 225,000 rows are at the second granu-
larity level. The reduction in the number of rows at this level is about 24 %, compared
to the first level aggregation, where the reduction was about 57 %. The reason is that
the first level aggregation was applied to a larger set of fine-grained data, whereas the
second level aggregation is applied to a smaller set of coarse-grained data.

0

200000

400000

600000

800000

First level
aggregation

Second level
aggregation

2 minutes

minute

second

Fig. 2b. Data reduction after second level aggregation (note zoom on y-axis)

Last, the third level aggregation is applied. “for data which is more than twelve
months old, aggregate to the 10 minutes granularity level from the 2 minutes granu-
larity level”. After applying the third level aggregation, the number of rows is reduced
from 586,666 to 484,443 rows that is further 18 % reduction in the number of rows, as
shown in Fig. 2c. Out of these 484,443 rows, 25,555 rows are at the 10 minutes
granularity level, 63,888 rows are at the 2 minutes granularity level since they are less
than twelve months old, 170,000 rows are at the minute granularity level and 225,000
rows are at the second granularity level.

In total, approximately 73 % reduction in the number of rows has been achieved.
Similarly, the graph in Fig. 3 shows the effects on an approximate set of data log values
for a five-year time period. The graph shows the results in the form of “before aggrega-
tion” at the second level and “after aggregation” to the minute level after three months,

0

200000

400000

600000

Second level
aggregation

Third level
aggregation

10 minutes

2 minutes

minute

second

Fig. 2c. Data reduction after third level aggregation (note zoom on y-axis)

 Using a Time Granularity Table for Gradual Granular Data Aggregation 225

the 2 minutes level after six months and the 10 minutes level after twelve months. Based
on the same scenario, if we assume that, on average only one task is done each day in a
five year time period, the Datalog table, without aggregation could end up with ap-
proximately two hundred million rows. If gradual granular aggregation is applied
then this number is reduced from two hundred million to approximately ten million six
hundred thousand, this is an approximately 95 % reduction in the number of rows.

Although, the reduction in the number of rows is quite large however, it really de-
pends on the specific data application, since none of the data is deleted and data exists at
different levels of granularity ranging from fine-grained to coarse-grained for analysis
and reporting purpose, as seen in Fig.3. It shows the data for the five years time period
at four different levels. Level one “white” is quite visible that contains data at the sec-
ond granularity level this means that the data is not aggregated at all because it is less
than three months old; accordingly it has to be kept as fine-grained. Furthermore, higher
levels in Fig. 3 shows the data that is aggregated at three levels: minute, 2 minutes and
10 minutes. The minute level shows the data that is more than three months old. Further,
the 2 minutes level shows the data that is more than six months old. Furthermore, the 10
minutes level shows the data that is more than twelve months old.

9600000

9800000

10000000

10200000

10400000

10600000

10800000

10 minutes

2 minutes

minute

second

Fig. 3. Row counts for five years’ data (note zoom on y-axis)

4 Aggregation Methods

The proposed methods aggregate the data log values per task level. In the requirement
specifications of the case study presented in Section 2, the launch of the data aggrega-
tion process should be based on a time interval or lack of storage space. For time
interval based data aggregation, the aggregation methods would be called manually.
For example, a call to aggregation_at_minute_level method would aggregate the data
that is older than three months at the minute level from the second granularity level.
Similarly, a call to aggregation_at_two_minute_level method would aggregate the
data that is older than six months at the 2 minutes level from the minute granularity
level and so on.

Further, for lack of space based data aggregation, the aggregation methods could
be executed automatically with the help of a trigger. The trigger is based on a row
count mechanism and it would be fired when the number of rows exceeded a thresh-
old value. For example, if the threshold value reaches one million then the rows
which are older than three months are aggregated to the minute granularity level from
the second granularity level. Similarly, when the rows reaches one million level again
then once more the rows which are less than three months old are not going to be

226 N. Iftikhar and T.B. Pedersen

aggregated at all, only the rows which are older than three months and not aggregated
at the minute granularity level before, would be aggregated at the minute level.

The complete aggregation process consists of 1) aggregating the existing rows based
on single or different levels of granularity, 2) generating the new rows in the time
granularity table in order to point to the higher granularity rows in the Datalog table, 3)
inserting the newly aggregated rows in the Datalog table and 4) deleting the previous
rows from the Datalog table. There are numerous methods that work together to per-
form the desired gradual granular data aggregation, however in this paper, we have
presented the methods that aggregate the data at the minute granularity level.

CREATE PROCEDURE aggregation_at_minute_level()
MODIFIES SQL DATA
BEGIN

 DECLARE total_task INT;
 DECLARE task_counter INT;
 DECLARE taskid INT;
 SET total_task= count_task();
 SET task_counter = 1;
 WHILE taskcounter <= totaltask DO
 SET taskid = get_task_id();
 CALL aggregate_data(taskid);
 CALL delete_detailed_data(taskid);
 SET task_counter =task_counter +1;
 END WHILE;

END

The aggregation_at_minute_level method aggregates the data from a lower granular-
ity level (lower than a minute) to the minute granularity level and it works as follows.
Other methods, with almost similar configuration, aggregate data at a higher granular-
ity level for example 2 minutes, 10 minutes, 20 minutes and so on.

• First, all those tasks which have been completed and are due for the minute
level aggregation are going to be counted.

• Second, depending on the codes or DDIs some of the values will be aggregated
by summing and others by counting, maximizing and minimizing.

• Third, the aggregated rows are stored in the record set or CURSOR and then
manipulated one by one.

• Fourth, before an aggregated row is inserted in the Datalog table, a new
Timeid with a higher level of granularity is required. It will represent the start-
ing time of each task at a higher granularity level than the available one. How-
ever, before generating the new Timeid, one of the methods will check
whether that Timeid already exists or not. If it exists, then the new Timeid will
not be generated, instead the existing one will be retrieved.

• Fifth, the newly created aggregated rows in the DataLog table along with the
newly created or retrieved Timeid will be inserted into the DataLog table.

• Last, all the rows whose data is already being aggregated will be deleted from
the Datalogvalue table.

 Using a Time Granularity Table for Gradual Granular Data Aggregation 227

CREATE PROCEDURE aggregate_data(task int)
MODIFIES SQL DATA
BEGIN
DECLARE value INT;
DECLARE codeno INT;
DECLARE code INT;
DECLARE total_codes INT;
SET codeno = 1;
SET total_codes = count_codes();
 WHILE (codeno <= total_codes) DO
 SET code = get_code_value(codeno);
 CASE
 WHEN code = 0001 OR code = 0002 OR code = 0025
 THEN CALL calculate_max_and_insert(task, code);
 WHEN code = 0050 OR code = 0051 OR code = 0074
 OR code = 0075 OR code = 0077 OR code = 0079
 THEN CALL calculate_sum_and_insert(task, code);
 WHEN code = 0076 OR code = 0078
 THEN CALL calculate_count_and_insert(task, code);
 END CASE;
 SET codeno = codeno + 1;
 END WHILE;
END

CREATE PROCEDURE calculate_max_and_insert_data(task int,
code int)
MODIFIES SQL DATA

BEGIN
 DECLARE ddi INT;
 DECLARE aggregated_value INT;
 DECLARE time INT;
 DECLARE taskno INT;
 DECLARE time_value INT;
 DECLARE newtimeid INT;
 DECLARE aggregate CURSOR FOR
 SELECT taskid, timeid, datalogDDI, MAX(datalogvalue),
 FROM datalog, timegranularity
 WHERE datalogDDI = code
 AND taskid = task
 AND timeid = timeid
 GROUP BY year, qtr, month, week, day,
 partofday, 4hour, hour, 20minute,
 10minute, 2minute, minute;
 OPEN aggregate;
 REPEAT
 FETCH aggregate INTO taskno, time, ddi,
 aggregated_value;
 SET time_value = checktimeid(time);
 IF time_value IS NULL THEN
 CALL inserttime(time_value);
 SET newtimeid = lastvalueoftime();

228 N. Iftikhar and T.B. Pedersen

 ELSE SET newtimeid = time_value;
 END IF;
 INSERT INTO datalog(Taskid, Timeid, DatalogDDI,
 Datalogvalue)
 VALUES(taskno, time, ddi, aggregated_value);
 UNTIL DONE END REPEAT;
END

The following example will help in understanding how a task could be aggregated.
For the time being, we look at task 1 only, in total it ran for 120 seconds. Before call-
ing the aggregation methods, it is of interest to see the data in the Datalog and Time-
granularity tables, shown in Table 2 and 3. These are the tables which are going to be
affected by the aggregation methods later. In the Timegranularity table (Table 2), the
initial granularity is at the second level. It has 120 rows in total; the obvious reason to
have 120 rows is due to the nature of task 1 which ran for 120 seconds. So, there is a
row to represent each passing second. The rows in the Timegranularity table are al-
ready explained in sub-section 3.1.

Table 2. Timegranularity table before aggregation

Tid Y Q M D POD 4H H 20M 10M 2M M S Gran
1 2009 1 4 2 Day[16-00[[16-20[19 [20-40[[20-30[[28-30[28 1 S
..
60 2009 1 4 2 Day[16-00[[16-20[19 [20-40[[20-30[[28-30[28 60 S
61 2009 1 4 2 Day[16-00[[16-20[19 [20-40[[20-30[[28-30[29 1 S
..
120 2009 1 4 2 Day[16-00[[16-20[19 [20-40[[20-30[[28-30[29 60 S

Table 3. Datalog table before aggregation

Taskid Timeid DatalogDDI Datalogvalue
1 1 0002 268
1 1 0001 1000
1 1 0074 0
..
1 120 0075 54
1 120 0076 18
1 120 0078 28
1 120 0077 31

Whereas, in the Datalog table there are 11 different DDIs with their values and ref-
erences to Timeid in the Timegranularity table as well as to Taskid in the Task table.
For example, row number 1 in the Datalog table (Table 3) reads as follows: Taskid =
1 (represents: id for a task), Timeid = 1 (represents: 19:28:01 02.04.2009), Datalog-
DDI = 0002 (represents: setpoint volume per area application rate) and Datalogvalue
= 268 (represents: actual value).

After the minute level aggregation method is being called, it will aggregate the data
which is older than three months; in the given example whole data set is older than
three months, so the following changes in the Timegranularity and Datalog tables
have taken place. New rows have been added with the minute level time granularity in
the Timegranularity table, as shown in the Table 4. Further, new rows have also been

 Using a Time Granularity Table for Gradual Granular Data Aggregation 229

added in the Datalog table, as shown in the Table 5, these new rows contain aggre-
gated data (per task per minute level). Depending on the DDIs, values will be aggre-
gated as SUM, MAX and COUNT. Furthermore, all the rows containing detailed
data, which is aggregated, have been deleted.

As seen, in the Timegranularity table (Table 4) after minute level aggregation, two
new rows have been added, rows with Timeid 121 and 122. As the granularity of
these newly added rows is at minute level, for that reason the values after Minute
attribute are NULL. Also, Timeid 121 and 122 have been used in the Datalog table
(Table 5) to represent the newly aggregated values at the minute granularity level.

Furthermore, after data is being aggregated at the minute level, we could also call
the 2 minutes level aggregation method if the data fulfill the time requirements, such
as the data should be older than six months that is also the case in this example. Af-
ter calling the 2 minutes level aggregation method the following changes in the
Timegranularity and Datalog tables have taken place. New rows have been added
with the 2 minutes level time granularity in the Timegranularity table, as shown in
the Table 6.

Moreover, new rows have also been added in the Datalog table (Table 7), these
new rows contain aggregated data (at per task per 2 minutes level). Depending on the
DDIs some of those values will be aggregated as maximums, other as counts and
sums. Furthermore, all the rows containing detailed data, which is aggregated, have
been deleted. Table 7 shows the final result of the aggregation methods.

To summarize the aggregation process, we started with Table 3, which has 1320
rows in total, then after first phase of data aggregation from the second granularity
level to the minute granularity level, Table 5 is generated with 22 rows, 98.34% re-
duction (from the starting rows 1320). After second phase of data aggregation from
the minute granularity level to the 2 minutes granularity level, Table 7 is generated
with only 11 rows, 99.17% reduction (from the starting rows 1320). The data aggre-
gation process is responsible not only for huge reduction in the volume of data over
time but also the aggregated data can be used for analysis and planning purposes.

Table 4. Timegranularity table after minute level aggregation

Tid Y Q M D POD 4H H 20M 10M 2M M S Gran
..
120 2009 1 4 2 Day[16-00[[16-20[19 [20-40[[20-30[[28-30[18 60 S
121 2009 1 4 2 Day[16-00[[16-20[19 [20-40[[20-30[[28-30[28 NULL M
122 2009 1 4 2 Day[16-00[[16-20[19 [20-40[[20-30[[28-30[29 NULL M

Table 5. Datalog table after minute level aggregation

Taskid Timeid DatalogDDI Datalogvalue
1 121 0002 298
1 121 0001 1000
1 121 0074 1017
..
1 122 0075 54
1 122 0076 76
1 122 0078 57
1 122 0077 31

230 N. Iftikhar and T.B. Pedersen

Table 6. Timegranularity table after 2 minutes level aggregation

Tid Y Q M D POD 4H H 20M 10M 2M M S Gran
..
120 2009 1 4 2 Day[16-00[[16-20[19 [20-40[[20-30[[28-30[28 60 S
121 2009 1 4 2 Day[16-00[[16-20[19 [20-40[[20-30[[28-30[28 NULL M
122 2009 1 4 2 Day[16-00[[16-20[19 [20-40[[20-30[[28-30[29 NULL M
123 2009 1 4 2 Day[16-00[[16-20[19 [20-40[[20-30[[28-30[NULL NULL 2M

Table 7. Datalog table after 2 minutes level aggregation

Taskid Timeid DatalogDDI Datalogvalue
1 123 0002 328
1 123 0001 900
1 123 0074 1721
1 123 0077 31
1 123 0079 1000
1 123 0050 19
..

5 Evaluation

An evaluation of the gradual granular data aggregation solution has been done with
the proposed time granularity table. Performance tests have been carried out on sin-
gle-level aggregation queries. The queries aggregate data gradually from a single
lower level of granularity to a higher level of granularity. For example, to aggregate
values from per parameter per task per second to per parameter per task per minute,
further to aggregate values from per parameter per task per minute to per parameter
per task per 2 minutes and so on. The tests were designed to measure the initial stor-
age used in MB (before the gradual aggregation process is performed), aggregation
speed in seconds, deletion speed in seconds (for rows that have just been aggregated),
size of each level of granularity in MB (data reduction after each level of aggrega-
tion), overall aggregation speed in seconds and total storage used in MB (after the
gradual aggregation process has been performed). The tests were performed on a 2.0
GHz Intel® Core Duo with 512 MB RAM, running Ubuntu 8.04 (hardy) and MySQL
5.0.5. Every test was performed 5 times. The maximum and minimum values are
discarded and an average is calculated using the middle three values.

From the tests, it is observed that the initial storage used by the proposed solution
(before the gradual aggregation process) to store 10,000,000 rows is approximately
451 MB (Fig. 4a). As a matter of fact, the Datalog table is more critical than the
Timegranularity table, since in the Timegranularity table, rows are likely to comprise
less than 3 % of the total size of the database, whereas, in the case of Datalog table it
is 97 %. The reason for the difference is that the values were logged for 20 DDIs at a
granularity of one second per 20 values with approximately 222,222 readings for each
DDI and 10 DDIs at a granularity of one minute per 10 values with approximately
111,111 reading for each DDI, which requires approximately 333,333 rows in the
Timegranularity table to represents 10,000,000 rows in the Datalog table. The total
data consists of 10,000,000 rows (data log values) distributed uniformly across a two-
year time period. Out of 10,000,000 rows 1,000,000 rows were less than three months

 Using a Time Granularity Table for Gradual Granular Data Aggregation 231

 Fig. 4a. Size of each level of granularity Fig. 4b. Aggregation speed

old; as a result actually 9,000,000 rows were aggregated. The aggregation speed of
the single-granular query is 110,000 rows per second and the deletion speed is 45,000
rows per second. The size of the data after the first level of aggregation (from the
second to the minute granularity level) is 63 MB. The reduction in storage space at
this level is thus 86 %. Similarly, after the second level of aggregation (from the min-
ute to the 2 minutes granularity level) the size of data is 54 MB that indicates a further
reduction of 15 %. Finally, after third level of aggregation (from the 2 minutes level
to the 10 minutes level) the size of data is 47 MB, which represents an additional
reduction of 13 % (Fig. 4a). The reduction in the number of rows at level two and
three is fewer as compared to the first level aggregation. The reason is that, the first
level aggregation was applied to a larger set of fine-grained data, whereas the second
and third level aggregation is applied to a smaller set of coarse-grained data. The
complete aggregation process consists of 1) finding the tasks that are due for aggrega-
tion, 2) aggregating the existing rows based on single granularity, 3) generating the
new rows in the Timegranularity table in order to point to the higher granularity rows
in the Datalog table, 4) inserting the newly aggregated rows in the Datalog table and
5) deleting the previous rows from the Datalog table. It takes approximately 1250
seconds to aggregate 6,000,000 rows from the second granularity level to the minute
granularity level, insert approximately 100, 000 new aggregated rows and delete ap-
proximately 5,900,000 previous rows (Fig. 4b). Finally, the total storage used by the
proposed solution (after gradual aggregation process has been per formed) is ap-
proximately 47 MB (Fig. 4a) that suggests a total reduction in the storage is 89.5 %.
In conclusion, the above mentioned test results have shown that the proposed solution
scales reasonably. The reduction in the number of rows is quite significant. The major
aspect of the solution is that it maintains the data at different levels of granularity
depending on the age of the data. The data at the each level of granularity can be used
for analysis and reporting purpose. To the best of our knowledge this is the first paper
to conduct a performance evaluation of the gradual data aggregation methods.

6 Related Work

Previously, other studies on data aggregation have been done. A comprehensive survey
of most relevant techniques for the evaluation of aggregate queries on spatiotemporal

232 N. Iftikhar and T.B. Pedersen

data is presented by [3]. Efficient aggregation algorithms for compressed data ware-
houses are proposed by [4]. Techniques such as pattern identification, categorization,
feature extraction, drift calculation and generalization for the aggregation of informa-
tion are summarized in [5]. Multi-dimensional extension of the ER model to use ag-
gregated data in complex analysis contexts is proposed by [6]. However, the main
objective of these approaches is to perform one time aggregation of data rather than
gradual aggregation, as presented in this paper. In the context of gradual data aggrega-
tion work has been reported. An efficient tree based indexing schemes for gradually
maintaining aggregates is presented in [7]. The focal point of this work is on presenting
effective indexing schemes for storing aggregated data. A language for specifying a
strategy to archive data and keep summaries of archived data in data warehouses is
presented by [8]. Further, the semantic foundation for data reduction in data ware-
houses that permits the gradual aggregation of detailed data as the data gets older is
provided by [1]; however, both of these related works are highly theoretical. Finally, a
concept for gradual data aggregation in multi-granular databases has been described in
[9]; though, a concrete example and an implementing strategy are missing. In compari-
son to most of the above mentioned approaches, our work concentrates on all aspects
of gradual data aggregation solution that includes conception, implementation and
evaluation.

7 Conclusion

This paper proposed an effective solution for data reduction. The data reduction tech-
nique is based on a gradual granular data aggregation mechanism. By using the pro-
posed solution, not only data is kept for long time periods by keeping the newer data
as fine-grained and the older data as coarse-grained, but also major gains of 70 -90 %
reduction in storage space are achieved. To save storage space is important not only
for the farming industry but for any other type of industry in which significant
amounts of data are generated. In future research, the direction of interest is to im-
plement a high level rule-based tool for gradual granular data aggregation. It is also
interesting to investigate, how to remove the redundancies from the Timegranularity
table.

Acknowledgements. This work is supported by the LandIT project, and is funded by
the Danish Ministry of Science, Technology and Innovation.

References

1. Skyt, J., Jensen, C.S., Pedersen, T.B.: Specification-based Data Reduction in Dimensional
Data Warehouses. Information Systems 33(1), 36–63 (2008)

2. LandIT, http://www.tekkva.dk/page326.aspx
3. Lopez, I.F.V., Moon, B., Snodgrass, R.T.: Spatiotemporal Aggregate Computation: A Sur-

vey. IEEE Transactions on Knowledge and Data Engineering 17(2), 271–286 (2005)
4. Li, J., Srivastava, J.: Efficient Aggregation Algorithms for Compressed Data Warehouses.

IEEE Transactions on Knowledge and Data Engineering 14(3), 515–529 (2002)

 Using a Time Granularity Table for Gradual Granular Data Aggregation 233

5. Rasheed, F., Lee, Y.K., Lee, S.: Towards using Data Aggregation Techniques in Ubiquitous
Computing Environments. In: 4th IEEE International Conference on Pervasive Computing
and Communication Workshops, pp. 369–392. IEEE Press, New York (2006)

6. Schulze, C., Spilke, J., Lehner, W.: Data Modeling for Precision Dairy Farming within the
Competitive Field of Operational and Analytical Tasks. Computers and Electronics in Agri-
culture 59(1-2), 39–55 (2007)

7. Zhang, D., Gunopulos, D., Tsotras, V.J., Seeger, B.: Temporal and Spatio-Temporal Aggre-
gations over Data Streams using Multiple Time Granularities. Information Systems 28(1-2),
61–84 (2003)

8. Boly, A., Hébrail, G., Goutier, S.: Forgetting Data Intelligently in Data Warehouses. In:
IEEE International Conference on Research, Innovation and Vision for the Future, pp. 220–
227. IEEE Press, New York (2007)

9. Iftikhar, N.: Integration, Aggregation and Exchange of Farming Device Data: A High Level
Perspective. In: 2nd IEEE Conference on the Applications of Digital Information and Web
Technologies, pp. 14–19. IEEE Press, New York (2009)

Automation of the Medical Diagnosis Process

Using Semantic Image Interpretation

Anca Loredana Ion and Stefan Udristoiu

Faculty of Automation, Computers, and Electronics, Bvd. Decebal, Nr. 107, 200440,

Craiova, Romania

{anca soimu,s udristoiu}@yahoo.com
http://www.software.ucv.ro

Abstract. This paper is a part of a complex study of developing meth-

ods for semantic interpretation of medical images, to permit the semi-

automatic diagnosis. The first objective of the study is to develop new

methods for medical image segmentation and a set of visual features. The

second objective consists of developing a unifying framework for semantic

images annotation, to be used in the process of medical diagnosis. The

developed diagnosis method is based on on semantic pattern rules ca-

pable to discover associations between visual features of medical images

and their diagnoses. Although we present the results achieved in endo-

scopic images analysis, our methods can be used to analyze other types

of medical images. The prototype system was applied to real datasets

and the results show high accuracy.

Keywords: medical image diagnosis, image colour, image texture, image

shape, semantic association rules, image mining.

1 Introduction

In recent years, significant advances have been made in the area of automatic
extraction of low-level features from visual content of medical images. However,
little progress has been achieved in the identification of high-level semantic fea-
tures or the effective combination of semantic features derived from different
modalities [1], [11].

An impressive amount of medical images is daily generated in hospitals and
medical centers. Consequently, the physicians have an increasing number of im-
ages to analyze manually. Computational techniques can be provided to assist
the physician’s work, as computer assisted diagnosis systems, which support
physicians in analyzing digital images and to find out possible diseases [3], [4].

For medical applications of CBIR, an earlier overview was given by Müller [2]
in 2004. Regarding image analysis, there are numerous advanced object recogni-
tion algorithms for the detection of specific organs and structures from medical
images. However, existing image analysis methodologies are not generic enough
to directly handle different organs or imaging modalities outside of the original
application domain.

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 234–246, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.software.ucv.ro

Automation of the Medical Diagnosis Process 235

In the recent past, applications like FIRE [11] showed that image retrieval
based only on sub-symbolic interpretation of the images works well for a number
of applications.

In the IRMA project [12], this technology was applied to the medical do-
main. A number of researches use ontology-based image retrieval to emphasize
the necessity to combine sub-symbolic object recognition and abstract domain
knowledge.

In [13] an integration of spatial context and semantic concepts into the fea-
ture extraction and retrieval process using a relevance feedback procedure is
proposed.

In [14] a system that aims at applying a knowledge-based approach to interpret
X-ray images of bones and to identify the fractured regions is proposed. In
[15] a hybrid method which combines symbolic and sub-symbolic techniques
for the annotation of brain Magnetic Resonance images is developed. In [6],
[7], relevant methods using association rules for radiology image analysis are
developed.

In this paper, we propose a method that employs semantic pattern rules to
support computer assisted diagnosis systems. The rules reflect how humans an-
alyze and combine the visual features to determine the images diagnosis. In this
paper, we will show that pattern rules can be successfully applied to support
medical image diagnosis.

The remainder of this paper is structured as follows. Section 2 presents the
selection of visual features; section 3 presents the mapping between visual fea-
tures and diagnosis; section 4 presents the generation of semantic rules and
details the process of medical diagnosis based on semantic pattern rules. Finally,
section 5 discusses the experiments and Section 6 summarizes the conclusions of
this study.

2 Visual Representation of Images

Many techniques have been proposed and many prototype systems have been
developed to solve the problems in retrieving images according to their visual
image content. One problem of the feature-based technique is that there is a con-
siderable ’gap’ between users’ interest in reality and the image contents described
by the low-level perceptive features.

The selection of the visual feature set and the image segmentation algorithm
are the definitive stage for establishing the diagnosis of medical colour images.
The diagnosis of medical images is directly related to the visual features (colour,
texture, shape, position, dimension, etc.) because these attributes capture the
information about the semantic meaning.

A set of colour regions is obtained from each image by segmentation after
colour characteristic [9]. The specialist selects the minimum rectangle (MR),
which bounds the sick regions of an image. In the area bounded by the mini-
mum selected rectangle, the colour-set back projection algorithm [8] detects the

236 A.L. Ion and S. Udristoiu

Fig. 1. Segmentation results from the image diagnosed with colon cancer

Fig. 2. Segmentation results from an image diagnosed with colon cancer

adjacent pixels of the same colour. The results of the segmentation algorithm
applied to two images diagnosed with colon cancer [17] can be visualized in
Figure 1 and Figure 2.

In conformity with the defined characteristics [9], a region is described
by:

– The colour, which is represented in the HSV colour space quantized at 166
colours. A region is represented by a colour index which is, in fact, an integer
number between 0..165.

– The spatial coherency, which measures the spatial compactness of the pixels
of the same colour.

– A seven-dimension vector (maximum probability, energy, entropy, contrast,
cluster shade, cluster prominence, correlation), which represents the texture
characteristics.

– The region dimension descriptor, which represents the number of pixels from
region.

– The spatial information which is represented by the centroid coordinates of
the region and by minimum bounded rectangle.

Automation of the Medical Diagnosis Process 237

– A two-dimensional vector (eccentricity and compactness), which represents
the shape feature.

3 Visual Semantic Indicators

The developed vocabulary is based on the concept of semantic indicators, and
the syntax captures the basic models about patterns and diagnosis. The pro-
posed representation language is simple, because the syntax and vocabulary are
elementary.

The vocabulary words are limited to the name of semantic indicators. Being
visual elements, the semantic indicators are, by example, the colour (colour-light-
red), spatial coherency (spatial coherency-weak, spatial coherency-medium, spa-
tial coherency-strong), texture (energy-small, energy-medium, energy-big, etc.),
dimension (dimension-small, dimension-medium, dimension-big, etc.), position
(vertical-upper, vertical-center, vertical-bottom, horizontal-upper, etc.), shape
(eccentricity- small, compactness-small, etc.) [16].

The syntax is represented by the model, which describes the images in terms
of semantic indicators values. The values of each semantic descriptor are mapped
to a value domain, which corresponds to the mathematical descriptor. The value
domains of visual characteristics were manually experimented on images of WxH
dimension. A value of colour semantic indicator is associated to each region
colour in the HSV colour space quantized at 166 colours. The colour correspon-
dence between the mathematical and semantic indicator values is determined
based on the experiments effectuated on a training image database. The colour
correspondence is illustrated by the following examples: light-red (108), medium-
red (122), dark-red (139), light-yellow (109), medium-yellow (125), dark-yellow
(141).

Similarly, a hierarchy of values, which are mapped to semantic indicator val-
ues, is also determined for the other visual characteristics.

At the end of the mapping process, a medical image is represented in Prolog by
means of the terms figure(ListofRegions), where ListofRegions is a list of image
regions [16]. The term region(ListofDescriptors) is used for region representation,
where the argument is a list of terms used to specify the semantic indicators.
The term used to specify the semantic indicators is of the form:

descriptor(DescriptorName, DescriptorValue).

The mapping between the values of low-level (mathematical) descriptors and
the values of semantic indicators is based on experiments effectuated on images
from different diagnoses and the following facts are used:

mappingDescriptor(Name,SemanticValue,ListValues).

The argument Name is the semantic indicator name, SemanticValue is the value
of the semantic indicator, ListValue represents a list of mathematical values

238 A.L. Ion and S. Udristoiu

and closed intervals, described by the following terms: interval(InferiorLimit,
SuperiLimit).

4 Determining Image Medical Diagnosis Using Semantic
Pattern Rules

A semantic pattern rule is of form:

semantic indicators → diagnosis

The semantic pattern rules have the body composed by conjunctions of semantic
indicators, while the head is the diagnosis. The steps of the learning process
are:

– relevant images are used to learn a diagnosis,
– each image is automatically segmented and the primitive visual features are

computed,
– for each image, the primitive visual features are mapped to semantic indica-

tors,
– the rule generation algorithm is applied to produce rules, which will identify

each diagnosis from the database.

The image testing phase has as scope automatic diagnosing of images:

– each new image is processed and segmented into colour regions,
– for each new image the low-level characteristics are mapped to semantic

indicators,
– the classification algorithm is applied for identifying the image diagnosis.

4.1 Semantic Pattern Rule Generation

In our system, the learning of semantic pattern rules is continuously made, be-
cause when a diagnosed image is added in the learning database, the system
continues the process of rules generation.

The image pattern rules have to find the semantic relationships between im-
age objects and diagnosis. The proposed method uses the Apriori algorithm
for discovering the semantic pattern rules between primitive characteristics ex-
tracted from images and diagnosis, which images belong to [7]. Before producing
semantic rules based on region patterns, a pre-processing phase for determin-
ing the visual similitude between the image regions from the same diagnosis is
necessary.

In the preprocessing phase, the region patterns, which appear in the images,
are determined. So, each j region of an i image, Regij, is compared with other
image regions with the same diagnosis. If the region Regij matches the m region
of the k image, Regkm, having similar features on the positions n1, n2,..,nc, then
the generated region pattern is RS(-, -, -, n1, n2,..,nc,-,-), and the other features

Automation of the Medical Diagnosis Process 239

are ignored. The algorithm that generates image region patterns is described in
pseudo-code:

Algorithm. Generation of region patterns for each image.
Input: set of images {I1, I2,..,In} laying in the same diagnosis;

each image Ii is a set of regions Regim, where i = 1..n,
and n is the number of images with the same diagnosis,
m=1..Ii.nregions, and Ii.nregions is the regions number of
the Ii image.

Output: set of region patterns RSi for each image Ii.
Method:
for i1 = 1, n-1 do {

for j1 = 1, Ii1.nregions do {
for i2 = i1 + 1, n do {

for j2 = 1, Ii2.nregions do{
if Regi1j1 matches Regi2j2 in the

components n1,n2,.., nc then {
RSi1 = RSi1 + RS(-,-,n1,n2,..,nc,-,-)
RSi2 = RSi2 + RS(-,-,n1,n2,..,nc,-,-)

}
}

}
}

}

A database with five images, relevant for a diagnosis, is considered. An example
of image representations using region patterns is presented in Table 1.

Table 1. Relevant images for a certain diagnosis

ID Image Regions

1 R(a,b,c,d), R(a’,b’,c’,d’)

2 R(a,b,c,f), R(a’,b’, c’,d’)

3 R(a,b,c,f”), R(a’,b’,c’,i)

4 R(a,b,c,f’), R(a’,b’,c’,i’)

5 R(a,b,e,d), R(m,b’,c’,d’)

Table 2. Region patterns of images from a certain diagnosis

ID Region Patterns

1 RS(a,b,c,-), RS(a,b,-,d), RS(a’,b’,c’,d’), RS(a’,b’,c’,-), RS(-,b’,c’,d’)

2 RS(a,b,c,-), RS(a,b,-,-), RS(a’,b’,c’,d’), RS(a’,b’,c’,-), RS(-,b’,c’,d’)

3 RS(a,b,c,-), RS(a,b,-,-), RS(a’,b’,c’,-), RS(-,b’,c’,-)

4 RS(a,b,c,-), RS(a,b,-,-), RS(a’,b’,c’,-), RS(-,b’,c’,-)

5 RS(a,b,-,d), RS(a,b,-,-), RS(-,b’,c’,d’), RS(-,b’,c’,-).

240 A.L. Ion and S. Udristoiu

By determining the region patterns, the results from the Table 2 are obtained.
The image modeling in terms of itemsets and transactions is the following:

- the transactions represent the set of images represented as region patterns,
determined by the previous algorithm.

- the itemsets are formed by region patterns of the images laying in the same
diagnosis.

- the frequent itemsets represent the itemsets with the support bigger than
the minimum support.

- the itemsets of cardinality between 1 and k are iteratively found, where k
represents the maximum length an itemset.

- the frequent itemsets are used for rule generation, with k > 1.
- each semantic pattern rule is associated to support that represents the per-

cent of transactions, in which both the body and head of the rule appear, and
to confidence that represents the ratio between the number of transactions, in
which both the body and the head appear, and the number of transactions, in
which only the body appears.

The algorithm for rules generation based on region patterns is described in
pseudo-code:

Algorithm. Rule generation on the training set of the transactional
database with the collection divided in subsets
by diagnosis.

Input: a set of |D| dimension including images with a diagnosis di;
each image is represented as a set of region patterns.

Output: the set of semantic pattern rules for diagnosis di.
Method:

Ck: itemsets of k-length.
Lk: itemsets of k-length.
Rulesi: the set of rules constructed from

the frequent itemsets for k>1.
L1= {frequent region patterns};
for(k = 1; Lk != null; k++)
{

Ck+1=itemsets generated from the set Lk.
foreach transaction t in the database
{

/* Increment by 1 the number of all itemsets
that appear in t.*/

count(Ck+1) = count(Ck+1)+1
/* Compute the support of itemsets */
sup(Ck+1) = (count(Ck+1)/|D|)*100

}
Lk+1 = candidates from Ck+1 that has the

support greater than suport_min.
Rulesi = Rulesi + {Lk+1->di}

}

Automation of the Medical Diagnosis Process 241

Table 3. Step 1 - Generation of itemsets of cardinality one

Itemsets Support(%)

RS(a,b,c,-) 80

RS(a,b,-,d) 40

RS(a’,b’,c’,d’) 40

RS(a’,b’,c’,-) 80

RS(-,b’,c’,d’) 60

RS(a,b,-,-) 80

RS(-,b’,c’,-) 60

Table 4. The frequent itemsets of cardinality one

Itemsets Support(%)

RS(a,b,c,-) 80

RS(a’,b’,c’,-) 80

RS(-,b’,c’,d’) 60

RS(a,b,-,-) 80

RS(-,b’,c’,-) 60

Table 5. Step 2 - Generation of itemsets of cardinality two

Itemsets Support(%)

RS(a,b,c,-), RS(a’,b’,c’,-) 80

RS(a,b,c,-), RS(-,b’,c’,d’) 40

RS(a,b,c,-), RS(a,b,-,-) 60

RS(a,b,c,-), RS(-,b’,c’,-) 40

RS(a’,b’,c’,-), RS(-,b’,c’,d’) 40

RS(a’,b’,c’,-), RS(a,b,-,-) 60

RS(a’,b’,c’,-), RS(-,b’,c’,-) 40

RS(-,b’,c’,d’), RS(a,b,-,-) 40

RS(-,b’,c’,d’), RS(-,b’,c’,-) 20

RS(a,b,-,-), RS(-,b’,c’,-) 60

Applying the algorithm on transaction set from Table 2, the following results are
obtained (the minimum support is 40%, and the minimum confidence is 70%).
Table 3 contains the itemsets of one-length.

Table 4 contains the frequent itemsets of cardinality one, that have the support
bigger than the minimum support.

Table 5 contains the itemsets of two-length generated from the itemsets from
Table 4.

Table 6 contains the frequent itemsets of cardinality two, that have the sup-
port bigger than the minimum support.

Table 7 contains the itemsets of three-length generated from the itemsets from
Table 6.

242 A.L. Ion and S. Udristoiu

Table 6. The frequent itemsets of cardinality two

Itemsets Support(%)

RS(a,b,c,-), RS(a’,b’,c’,-) 80

RS(a,b,c,-), RS(a,b,-,-) 60

RS(a’,b’,c’,-), RS(a,b,-,-) 60

RS(a,b,-,-), RS(-,b’,c’,-) 60

Table 7. Step 3 - Generation of itemsets of cardinality three

Itemsets Support(%)

RS(a,b,c,-), RS(a’,b’,c’,-), RS(a,b,-,-) 60

RS(a,b,c,-), RS(a’,b’,c’,-), RS(-,b’,c’,-) 40

RS(a’,b’,c’,-), RS(a,b,-,-), RS(-,b’,c’,-) 40

Table 8. The frequent itemsets of cardinality three

Itemsets Support(%)

RS(a,b,c,-), RS(a’,b’,c’,-), RS(a,b,-,-) 60

The patterns set from Table 8 contains the frequent itemsets of cardinality
three, that have the support bigger than the minimum support.

The diagnosis di of images from Table 1 is determined by the following se-
mantic pattern rules. A semantic pattern rule is composed by conjunctions of
region patterns of k cardinality (k > 1):

RS(a,b,c,-) and RS(a’,b’,c’,-) → di ,
RS(a,b,c,-) and RS(a,b,-,-) → di,
RS(a’,b’,c’,-) and RS(a,b,-,-) → di,
RS(a,b,-,-) and RS(-,b’,c’,-) → di,
RS(a,b,c,-) and RS(a’,b’,c’,-) and RS(a,b,-,-) → di.
At the end of the generation of rule sets for each diagnosis di from the

database, the rule confidence is computed:

Algorithm. Compute the rule confidence.
Input: Sets of Rulesi, where each rule has the representation:

body(rule) determines head(rule).
Output: c, confidence of each rule.
Method:

Rules = union all the rules {Rulesi}
foreach rulek from Rules
{

N1k=number of rules that contain body(rulek) and
head(rulek).

N2k=number of rules that contain body(rulek).
conf(rulek) = N1k/N2k

}

Automation of the Medical Diagnosis Process 243

Fig. 3. Image semantic classifier

4.2 Medical Image Annotation

The set of generated rules Rulesi (the ith- diagnosis from the database) represent
the classifier. The classifier is used to predict which diagnosis the images from test
database belong to. Being given a new image, the classification process searches
in the rules set for finding its most appropriate diagnosis, as in Figure 3.

A semantic pattern rule matches an image if all characteristics, which appear
in the body of the rule, also appear in the image characteristics. The semantic
pattern rules with maximum confidence are selected.
Algorithm. Semantic classification of an image.
Input: new unclassified image and the set of semantic pattern rules;

each pattern rule has the confidence Ri.conf.
Output: the classified image, and the score of matching.
Method:

S = null
foreach rule R in Rules do{
begin

if R matches I then {
*Keep R and add R in S
I.score = R.conf
*Divide S into subsets one
foreach category: S1,..,Sn do{

foreach subset Sk from S do {
*Add the confidences of all rules from Sk.
*Add I image in the category identified by
the rules from Sk with the greatest confidence.
I.score = maxSk.conf

}
}

}
}

244 A.L. Ion and S. Udristoiu

5 Experiments

In the experiments realized through this study, two databases are used for learn-
ing and testing. The database used to learn the correlations between images and
diagnoses, contains 400 images with digestive diagnoses.

The learning database is categorized into the following diagnoses: colon cancer,
ulcer, polyps, gastric cancer, esophagitis, and rectocolitis. The system learns each
concept by submitting about 20 images per diagnosis. For each diagnosis, the
following metrics (accuracy-A, sensitivity-S, specificity-SP) are computed:

A =
TP + TN

TP + FP + FN + TN
. (1)

S =
TP

TP + FN
. (2)

SP =
TN

FP + TN
. (3)

where, TP represents the number of true positives (images correctly diagnosed
with the searched diagnosis), FP represents the number of false positives (images
incorrectly diagnosed with the searched diagnosis), TN represents the number
of true negatives (images correctly diagnosed with a different diagnosis), FN
represents the number of false negatives (images incorrectly diagnosed with a
different diagnosis.

The results of the presented method are very promising, being influenced by
the complexity of endoscopic images as can be observed in Table 9. Improvements
can be brought using a segmentation method with greater semantic accuracy.

Table 9. Recorded results

Diagnosis Accuracy(%) Sensitivity(%) Specificity(%)

Ulcer 96.5 92.5 71

Polyps 96.5 92 71.5

Esophagitis 96.0 90.5 71

Gastric Cancer 96.1 90.5 71.5

Rectocolitis 97.1 93.7 72.9

Colon Cancer 97.1 92.3 72.5

6 Conclusion

Methods proposed and developed in this study could assist physicians by doing
automatic diagnosis based on visual content of medical images. An important
feature of these methods is their general applicability, because the semantic
concepts and the rules from images can be learned in any domain.

In the future work, we try to resolve the problems of the current methods
for interpreting the image diagnoses: the improvement of the semantic classifiers

Automation of the Medical Diagnosis Process 245

accuracy, the semantic concept description and understandability such that the
relations between the low-level visual features and the semantic concepts of the
diagnosis could be more clear. We have to improve the methods of selecting
the visual feature value sets that can well capture the semantic concepts of
medical images.

Actually, the results of experiments are very promising, because they show a
good accuracy and sensitivity and a medium precision for the majority of the
database categories, making the system more reliable.

Acknowledgment

This work was supported by the strategic grant POSDRU/89/1.5/S/61968,
Project ID 61968 (2009), co-financed by the European Social Fund within the
Sectorial Operational Program Human Resources Development 2007-2013,title
of the project ”Methods for automatic diagnosis of medical images, assisted by
computer”.

References

1. Zhou, X.S., Zillner, S., Moeller, M., Sintek, M., Zhan, Y., Krishnan, A., Gupta, A.:

Semantics and CBIR: a medical imaging perspective. In: Proceedings of the 2008

International Conference on Content-Based Image and Video Retrieval (2008)

2. Müller, H., Michoux, N., Bandon, D., Geissbuhler, A.: A review of content-based

image retrieval systems in medical applications clinical benefits and future direc-

tions. International Journal of Medical Informatics 73(1), 1–23 (2004)

3. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based

image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Machine

Intelligence. 22(12), 1349–1380 (2000)

4. Duncan, J., Ayache, N.: Medical image analysis: Progress over two decades and the

challenges ahead. IEEE Trans. Pattern Anal. Machine Intelligence 22(1), 85–106

(2000)

5. Ribeiro, M.X., Traina, A.J., Rosa, N.A., Marques, P.M.: How to Improve Medical

Image Diagnosis through Association Rules: The IDEA Method. In: Proceedings of

the 2008 21st IEEE International Symposium on Computer-Based Medical Systems

(2008)

6. Antonie, M.L., Zaane, O.R., Coman, A.: Associative classifiers for medical images.

In: Zäıane, O.R., Simoff, S.J., Djeraba, C. (eds.) MDM/KDD 2002 and KDMCD

2002. LNCS (LNAI), vol. 2797, pp. 68–83. Springer, Heidelberg (2003)

7. Pan, H., Li, J., Wei, Z.: Mining interesting association rules in medical images.

Advance Data Mining and Medical Applications (2005)

8. Smith, J.R., Chang, S.-F.: VisualSEEk: a fully automated content-based image

query system. In: The Fourth ACM International Multimedia Conference and Ex-

hibition, Boston, MA, USA (1996)

9. Ion, A.L.: Methods for Knowledge Discovery in Images. Information Technology

and Control 38(1), 43–49 (2009)

10. Liu, Y., Zhang, D., Lu, G., Ma, W.-Y.: A survey of content-based image retrieval

with high-level semantics. Pattern Recognition 40(1), 262–282 (2007)

246 A.L. Ion and S. Udristoiu

11. Deselaers, T., Keysers, D., Ney, H.: FIRE-flexible image retrieval engine: Image-

CLEF 2004 evaluation. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck,

M., Magnini, B. (eds.) CLEF 2004. LNCS, vol. 3491, pp. 688–698. Springer, Hei-

delberg (2005)

12. Lehmann, T., Güld, M., Thies, C., Fischer, B., Spitzer, K., Keysers, D., Ney, H.,

Kohnen, M., Schubert, H., Wein, B.: The IRMA project. A state of the art report on

content-based image retrieval in medical applications. In: Proceedings 7th Korea-

Germany Joint Workshop on Advanced Medical Image Processing, pp. 161–171

(2003)

13. Vompras, J.: Towards adaptive ontology-based image retrieval. In: Stefan Brass,

C.G. (ed.) 17th GI-Workshop on the Foundations of Databases, Wrlitz, Germany,

pp. 14–152 (2005)

14. Su, L., Sharp, B., Chibelushi, C.: Knowledge- based image understanding: A rule-

based production system for X-ray segmentation. In: Proceedings of Fourth Inter-

national Conference on Enterprise Information System, Ciudad Real, Spain, pp.

530–533 (2002)

15. Mechouche, A., Golbreich, C., Gibaud, B.: Towards an hybrid system using an

ontology enriched by rules for the semantic annotation of brain MRI images. In:

Marchiori, M., Pan, J.Z., Marie, C.d.S. (eds.) RR 2007. LNCS, vol. 4524, pp. 219–

228. Springer, Heidelberg (2007)

16. Ion, A.L.: Image Annotation Based on Semantic Rules. In: Human-Computer Sys-

tems Interaction: Backgrounds and Applications, pp. 83–97. Springer, Heidelberg

(2009)

17. Jackson Siegelbaum Gastroenterology,

http://gicare.com/Endoscopy-Center/Endoscopy-images.aspx

http://gicare.com/Endoscopy-Center/Endoscopy-images.aspx

A Language for Ontology-Based Metamodeling

Systems

Stéphane Jean, Yamine Aı̈t-Ameur, and Guy Pierra

LISI-ENSMA and University of Poitiers

BP 40109, 86961 Futuroscope Cedex, France

{jean,yamine,pierra}@ensma.fr

Abstract. Nowadays, metamodeling techniques and ontologies play a

central role in many computer science problems such as data exchange,

integration of heterogeneous data and models or software reuse. Yet,

if many metamodeling repositories and ontology repositories have been

proposed, few attempts have been made to combine their advantages into

a single repository with a dedicated language. In this paper, we present

the capabilities of the OntoQL language for managing the various levels

of information stored in a metamodeling systems where (1) both data,

models and metamodels are available and (2) semantic descriptions are

provided using ontologies. Some of the main characteristics of OntoQL

are: management of the metamodel level using the same operators as

the ones applied to data and to model levels, semantic queries through

ontologies and SQL compatibility. We report several applications where

this language has been extensively and successfully used.

1 Introduction

In the last two decades, with the appearance of model driven engineering tech-
niques where both data, models and mappings between models are represented
as data, metadata play a major role and become central concepts manipulated
by these techniques. They are used in the definition of computer based solu-
tions for interoperability, data exchange, software reuse, model transformation
and so on. At the origin, databases with their system catalogs and functional
languages with continuations (like in Lisp) were the first systems that permitted
the explicit manipulation of these metadata.

When designing information systems, the introduction of metadata leads to
information systems whose architecture is composed of three levels represent-
ing: data, models and metamodels. Such systems are named metamodel based
systems (MMS). Three domains present relevant examples putting into practice
MMS systems: 1) ontologies, 2) database and 3) software engineering.

1. In the semantic web, ontology models are used for representing ontologies.
Yet, these ontologies are themselves models of their instances. As a conse-
quence, managing these data actually requires the three levels of information.

2. In database systems, data are instances of schemas whose structure is rep-
resented by instantiating metadata stored in the system catalog.

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 247–261, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

248 S. Jean, Y. Aı̈t-Ameur, and G. Pierra

3. In software engineering, UML environments are designed on the basis of the
MOF architecture [1] that also uses three levels of information.

A major problem that arises when managing MMS is the growing number of
evolving metamodels. Coming back to our three examples, we notice that:

1. many ontology models are used: OWL [2], RDFS [3] or PLIB [4]. Moreover,
most of these models are evolving regularly to satisfy new user needs;

2. each database system has its own system catalog structure supporting com-
mon features, with specificities not available in other system catalogs;

3. each UML environment supports a specific subset of the UML standard.

To support metamodels evolution, the OMG proposal consists in introducing a
fourth upper level: the metametamodel [1]. Thus new metamodels are created as
instances of this upper level. If this approach has been followed in software en-
gineering and databases with systems such as ConceptBase [5] or Rondo[6] and
languages such as mSQL [7] or QML [8], it is not generalized to ontology-based
applications. These systems and languages could be used to represent ontolo-
gies but they would not exploit specific features of ontologies such as universal
identification of concepts using namespaces/URI or multilingual descriptions.

The aim of this paper is to highlight capabilities of the OntoQL language
for managing the various levels of information stored in a semantic MMS i.e,
supporting semantic descriptions through ontologies. We have introduced this
language in [9,10] by presenting its capabilities to query ontologies and instances
with its formal definition. In this paper, we show that this language can be used
to access and modify the metamodel level in addition to its capability to express
semantic queries and its compatibility with SQL. To illustrate our proposals, we
consider a concrete example of semantic MMS: databases embedding ontologies
and their instances namely Ontology Based DataBases (OBDBs). But, the reader
shall notice that this approach is generic. In particular, the core metamodel
defined for designing the OntoQL language managing OBDBs can be set up
for other MMSs. Indeed, as shown later in the paper, the structure as well as
the semantics of this core metamodel can be extended according to the targeted
application domain. We report several applications where this feature of OntoQL
has been extensively and successfully used.

This paper is structured as follows. In the next section, we introduce an ex-
ample showing the need of modifying the metamodel level in OBDBs, i.e. the
ontology model. This example is used throughout this paper. In section 3, we
present the OBDB context we have used to illustrate our approach. The capa-
bility of the OntoQL language to uniformly manipulate the three levels of an
OBDB is then presented in section 4. Its implementation on the OntoDB OBDB
[11] and application in several projects are described in section 5. Finally, our
conclusion, as well as some challenges for future work, are given in section 6.

2 A Motivating Example

When an ontology must be designed, an ontology model is required. This choice
is difficult not only because of the numerous existing ontology models but also

A Language for Ontology-Based Metamodeling Systems 249

because they all have their own particularities that may be simultaneously
needed for the addressed problem. For example, in the context of the e-Wok
Hub project1 whose aim is to manage the memory of many engineering projects
on the CO2 capture and storage, experts must design an ontology on this do-
main. They must choose an ontology model knowing that on the one hand they
have to precisely and accurately represent the concepts of this domain (by defin-
ing their physical dimensions associated with their units of measure and the
evaluation context). This need suggests to use an ontology model such as PLIB.
On the other hand, constructors introduced by ontology models borrowed from
Description Logics such as OWL are also required to perform inferences in or-
der to improve the quality of documents search. This example shows the need
for manipulating the ontology model used in order to take advantages of each
model.

Post

content: String
content_encode: String
createdAt: Date
attachement: String

User

first name: String
last name: String
email: String
email_SAI: String

Administrator

hasCreator 1

Invalid Post

<<OWLAllValuesFrom>>

hasModifiers 0..*

onProperty = hasModifiers

allValuesFrom = Administrator

Fig. 1. An extract of an ontology for online communities

To illustrate the OntoQL language, we use an example of ontology. Instead of
illustrating the use of OntoQL on a complex ontology related to the CO2 capture
and storage domain, we have chosen an ontology example describing the on-line
communities domain. This example, depicted in Figure 1, is influenced by the
SIOC ontology (http:// sioc-project.org/). This ontology defines concepts such as
Community, Usergroup or Forum. In this example we have identified the User and
Post classes specialized by the Administrator and InvalidPost classes. The
InvalidPost class is defined as an OWL restriction (OWLAllValuesFrom) on the
hasModifiers property whose values must be instances of the Administrator
class. Thus, an invalid post is a post that may be modified by administrators only.
Since the UML notation does not allow us to represent this constructor, we have
used a stereotype and a note to represent the InvalidPost class. Also notice
that the UML notation prevents us to show the whole classes and properties
description of this ontology (e.g. synonymous names or associated documents).

Before developing our proposal, we overview some systems that support on-
tologies management within database systems.
1 http://www-sop.inria.fr/acacia/project/ewok/index.html

http://sioc-project.org/
http://www-sop.inria.fr/acacia/project/ewok/index.html

250 S. Jean, Y. Aı̈t-Ameur, and G. Pierra

3 Context of the Study: OBDBs

Our proposal has been designed to manage MMS. However, to provide a concrete
example of the interest of the proposed language, we consider a particular type of
MMS: databases that store both ontologies and their instances, namely OBDBs.
This section gives an overview of existing OBDBs and their associated languages.

3.1 Different Storage Structures for OBDBs

The most simple schema to store ontologies in a database is a three columns
table (subject, predicate, object) [12] inspired from RDF triples. In this
representation all the information (both ontologies and instances) are encoded by
triples. This representation supports ontology model storage and modification.
However, the performances of this representation led the research community to
propose new solutions [13].

The second representation approach for OBDB consists in separating ontolo-
gies from their instance data. Data are stored either by 1) a triple representation
[14], 2) or by a vertical representation [14,15] where each class is represented by
an unary table and each property by a binary table 3) or by a horizontal rep-
resentation [11] where a table with a column for each property is associated to
each class. Notice that whatever is the chosen representation for data, these sys-
tems use a fixed logical model depending on the used ontology model to store
ontologies. By fixed, we mean a logical model that cannot evolve.

Finally, to our knowledge, OntoDB [11] is the only OBDB which separates
ontologies and data and proposes a structure to store and to modify the un-
derlying ontology model (PLIB). The representation of this part, namely the
metaschema, allows a user to make the PLIB ontology model evolve or extend
it with constructors from other ontology models if required.

As this section shows, the triple representation and the explicit representation
of the metamodel are the only ways to enable the dynamic evolution of the
ontology model used in an OBDB. In the next section we show the limits of
existing languages for OBDBs to exploit this capability.

3.2 Existing Languages for OBDBs

Many languages have been proposed for managing OBDBs outlined in the pre-
vious section. This section overviews some of these languages according to the
exploited ontology model.

Languages for RDFS

The RQL language [16] supports queries of both ontology and instances repre-
sented in RDFS. Many other languages with similar features have been proposed
(see [17] for a survey). In RQL, all constructors of the RDFS ontology model
are encoded as keywords in its grammar. For example the keyword domain is a
function returning the domain of a property. As a consequence every evolution
of this model requires a modification of the language grammar.

A Language for Ontology-Based Metamodeling Systems 251

To manage the diversity of ontology models, the data model of the RQL
language is not fully frozen. Indeed this data model can be extended by special-
izing the built-in entities Class and Property. However new entities can not be
added except if they inherit from these two entities. As a consequence, PLIB
constructors for associating documents to concepts of an ontology or the OWL
constructor Ontology for grouping all the concepts defined in an ontology can
not be represented. The data model of RQL can also be extended with new at-
tributes. This extension may be useful to characterize concepts of an ontology
(e.g., by a version number or an illustration). However such an extension requires
to use the property constructor. So, the modification of the metamodel level also
impacts a modification of the model level. Finally, even if these (partial) capa-
bilities are offered by RQL, they are not supported or at least not explicitly on
the OBDB RDF-Suite [15] and Sesame [14] which support this language.

Languages for RDF

SPARQL [18] is a recommendation of the W3C for exploiting RDF data. As a
consequence it considers both ontologies and instances as triples. Thus, differing
from RQL, SPARQL does not encode the constructors of a given ontology model
as keywords of its grammar. This approach gives a total freedom to represent
data, ontologies and the ontology model used as a set of triples. However, since
ontology constructors such as class definition or subsumption relationship are not
included in this model, SPARQL does not define any specific semantics for them.
So SPARQL does not provide operators to compute the transitive closure of the
subsumption relationship for given classes or operators to retrieve properties
applicable on a class (those defined or inherited by this class). The result of a
SPARQL query is dependent of the set of triples on which it is executed.

Langages independent of a given ontology model

To our knowledge, the SOQA-QL language [19] is the only language available to
query ontologies and instances independently of the used ontology model. This
capability has been provided by defining this language on a core ontology model
(SOQA Ontology Meta Model) containing the main constructors of different
ontology models. However this model is frozen. As a consequence evolutions of
ontology models as well as addition of specific features are not supported.

As the previous analysis shows, each category of existing languages presents
some limitations to support an uniform and shared manipulation of the three
levels of an OBDB. These limits can be summarized as follows.

– Languages of the RQL category offer operators to exploit the semantics of
the ontology model RDFS but extensions of this model are limited and mix
the different levels of an OBDB.

– Langages of the SPARQL category offer a total freedom when manipulating
the three levels of an OBDB considering all the information as triples. How-
ever, they do not offer operators supporting the exploitation of the usual
semantics of ontology models.

– The SOQA-QL language supports the manipulation of data of an OBDB
whatever is the used ontology model, provided that the used constructors

252 S. Jean, Y. Aı̈t-Ameur, and G. Pierra

are in the core ontology model on which this language is defined. However
constructors not included in this core model can not be added.

This analysis leads us to propose another language. We design this language,
named OntoQL, to manage the three levels of a MMS encoded in an OBDB.

4 OntoQL: Managing the Three Levels of MMS

We first present the data model targeted by OntoQL. Then, we present the
OntoQL operators that manage each information level.

4.1 Data Model

The OntoQL language shall fulfill two requirements (1) enabling the modifica-
tion of the metamodel level and (2) ensuring that these modifications match the
semantics of MMSs: an instance of a metamodel (level named M2 in the MOF)
defines a valid model (M1) which is itself expected to represent populations
instances (M0). These two requirements are fulfilled in the following way. (1)
Contrary to usual DBMS where the metamodel level is fixed, OntoQL assumes
the availability of a metametamodel level which is itself fixed (M3). So instanti-
ating this metametamodel modifies the metamodel level ensuring the flexibility
of the metamodel level. (2) The metamodel level is composed of a predefined
core model associated to an operational semantics. We describe this core model
in the next section and then we show how it can be extended.

Core Metamodel

In an OBDB, the metamodel corresponds to the ontology model used to define
ontologies. Contrariwise to the SOQA-QL language, we have chosen to include
in this core model only the shared constructors of the main ontology models
used in our application domain (engineering): PLIB, RDFS and OWL. However,
the possibility to extend this model remains available.

Figure 2 presents the main elements of this core ontology model as a simplified
UML model. We name entities and attributes the classes and properties of this
UML model. The main elements of this model are the following.

– An ontology (Ontology) introduces a domain of unique names also called
namespace (namespace). It defines concepts which are classes and properties.

– A class (Class) is the abstract description of one or many similar objects.
It has an identifier specific of the underlying system (oid) and an identifier
independent of it (code). Its definition is composed of a textual part (name,
definition) which can be defined in many natural languages (Multilin-
gualString). These classes are organized in an acyclic hierarchy linked by
a multiple inheritance relationship (directSuperclasses).

– Properties (Property) describe instances of a class. As classes, properties
have an identifier and a textual part. Each property must be defined on
the class of the instances it describes (scope). Each property has a range
(range) to constraint its domain of values.

A Language for Ontology-Based Metamodeling Systems 253

Ontology

namespace: String

Concept

oid: String
code: String
name: MultilingualString
definition: MultilingualString

definedBy1

Class Property

scope1

Datatype

range 1

RefTypeonClass

1

PrimitiveType CollectionType

ofDatatype1

directSuperclasses

0..*

Fig. 2. Extract of the core metamodel

– The datatype (Datatype) of a property can be a simple type (primitiveType)
such as integer or string. A property value can also be a reference to an instance
of a class (refType). Finally, this value can be a collection whose elements are
either of simple type or reference type (collectionType).

This core metamodel contains some specific features of ontologies (namespaces,
multilinguism, universal identifier). A MMS based on this model supports ontol-
ogy management and uses the defined ontologies to semantically describe other
models. Moreover, since it includes the core components of standard metamodels
(i.e, class, property and datatype), it may also be used as a kernel for numerous
applications requiring a three-level architecture (e.g., enrichment of DBMS sys-
tem catalog). Section 5 presents two examples issued from a real-world project.

Extensions of the Core Metamodel

The core metamodel can be extended with new entities and new attributes.
When an extension is made by specialization, new entities inherit the behavior
of their super entities. This behavior is defined in the operational semantics of
the core metamodel. Thus, every specialization of the entity Class defines a
new category of classes which supports by inheritance the usual behavior of a
class. Every instance of the entity Class (or one of its specialization) defines
a container which may be associated with instances. The name of this container
is generated by a concretization function to access it through its representation
at the meta level (M2). Also every specialization of the entity Property defines
relationships associating instances of classes to domain of values. The name of
these relationships is also derived from the instances of properties which define
them. Finally the specializations of the entity Datatype define domains of values
that can be associated to properties.

4.2 OntoQL Operators for This Data Model

According to the data model defined, the creation of an element at the level
Mi is done by instantiating the level Mi+1. However this process is not always

254 S. Jean, Y. Aı̈t-Ameur, and G. Pierra

practical. Indeed, in an usual DBMS, it would consist in creating a table us-
ing insert statements on the system catalog tables. So syntactic equivalences
are systematically defined between insert statements (INSERT) at the level Mi+1

and containers creation (CREATE) at the level Mi. These two syntactic construc-
tions are valid but in general the second one is more compact. Figure 3 gives
an overview of the statements available at the different levels as well as their
meanings according to the target data structure. As shown on this figure, two
equivalent syntactic constructions are provided for, on the one hand, inserting
at the level M3 or creating at the level M2 and, on the other hand, inserting at
the level M2 or creating at the level M1. In the following sections we describe
more precisely the available statements.

Model M
2
: ENTITY #class, #property,...

ATTRIBUTE #oid, ….

CREATE ENTITY #OWL_class UNDER #class (…)

INSERT ENTITY (#OWL_class,…)

INSERT ATTRIBUTE (#comment, …)

Model M
3
: Entity ENTITY

(fixed) Entity ATTRIBUTE

INSERT #OWL_class (student,…)

INSERT#property (age…)

Model M
1
: #class

CREATE #class_OWL student (….)
INSERT student (steve, 25,.…)

Fig. 3. Overview of the OntoQL language

Metamodel Definition Level and Model Manipulation/Querying

The OntoQL language provides operators to define, manipulate and query on-
tologies from the core metamodel presented in the previous section. Since this
core metamodel is not static but can be extended, the elements of this level of
information must not be encoded as keywords of the OntoQL language. So we
have defined a syntactic convention to identify in the grammar a metamodel
element. The convention we have chosen is to prefix each element of this model
by the character #. This prefix indicates that this element definition must be
inserted or searched in the metamodel level of the used MMS system.

To define the syntax of the OntoQL language, we have chosen to adapt SQL
to the data model we have defined. Thus, the data definition language creates,
modifies and deletes entities and attributes of the metamodel using a syntax
similar to the manipulation of SQL user-defined types (CREATE, ALTER, DROP).
In this paper, we give examples to demonstrate the use of OntoQL only. However
a more formal definition (an algebra) can be found in [10].

Example. Add the AllValuesFrom constructor OWL to the core metamodel.
CREATE ENTITY #OWLAllValuesFrom UNDER #Class (

#onProperty REF(#Property),
#allValuesFrom REF(#Class))

This statement adds the OWLAllValuesFrom entity to our core metamodel as
subentity of the Class entity . This entity is created with two attributes,

A Language for Ontology-Based Metamodeling Systems 255

onProperty and allValuesFrom, which take respectively as value identifiers
of properties and identifiers of classes.

To create, modify or delete the elements of ontologies we have defined a data
manipulation language. In the same way as for the data definition language, we
have adapted the data manipulation language of SQL (INSERT, UPDATE, DELETE)
to the data model of this part.

Example. Create the class named InvalidPost of our example ontology.
INSERT INTO #OWLRestrictionAllValuesFrom

(#name[en], #name[fr], #onProperty, #allValuesFrom)
VALUES (’InvalidPost’, ’Post invalide’, ’hasModifiers’, ’Post’)

This example shows that values of multilingual attributes can be defined in
different natural languages ([en] for English and [fr] for French). It also shows
that the names of classes and properties can be used to identify them. Indeed the
value of the onProperty attribute is hasModifiers: the name of a property (and
not its identifier). Notice that thanks to the syntactic equivalences previously
presented, we could have written this statement with the CREATE syntax closer
to the creation of user-defined types in SQL. It is also often more concise because
properties can be created in the same time.

Finally a query language allows users to search ontologies elements stored in
the OBDB. By designing this language starting from SQL we benefit from the
expressivity of the object-oriented operators introduced in this language by the
SQL99 standard. Thus the OntoQL language provides powerfull operators such
as path expressions, nesting/unnesting collections or aggregate operators. The
following example shows a path expression.

Example. Search the restrictions defined on the hasModifiers property with
the class in which the values of this property must be taken.
SELECT #name[en], #allValuesFrom.#name[en]
FROM #OWLRestrictionAllValuesFrom

WHERE #onProperty.#name[en] = ’hasModifiers’

This query consists in a selection and a projection. The selection retrieves the
restrictions on the property named in English hasModifiers. The used path
expression in this selection is composed of the onProperty attribute which re-
trieves the identifier of the property on which the restriction is defined and of
the name attribute which retrieves the name in English of this property from its
identifier. The projection also applies the name attribute to retrieve the name
of the restriction and the path expression composed of the allValuesFrom and
name attributes to retrieve the name of the class in which the property implied
in the restriction must take its values.

Model Definition and Data Manipulation/Querying

At this level, OntoQL defines, manipulates and queries instances of ontologies.
The corresponding OntoQL syntax has again been defined starting from SQL
to get an uniform syntax and remain compatible with existing database models.

256 S. Jean, Y. Aı̈t-Ameur, and G. Pierra

Thus each class can be associated to an extent which stores its instances. This
data model generalizes the existing link between a user-defined type in SQL and
a typed table which stores its instances. Indeed, contrary to a database schema
which prescribes the attributes characterizing the instances of a user-defined
type, an ontology only describes the properties that may be used to characterize
the instances of a class. As a consequence the extent of class is only composed of
the subset of properties which are really used to describe its instances. Thus, the
OntoQL construct to create an extent of a class is similar to an SQL statement
to create a typed table from a user-defined type. The only difference is that this
statement precises the set of used properties.

Example. Create the extent of the Administrator class assuming that an ad-
ministrator is described by his last name and his first name only.
CREATE EXTENT OF Administrator ("first name", "last name")

This statement creates a table with two columns to store instances of the Admi-
nistrator class knowing that only the first name and last name properties
describe them. This structure could also be a view on a set of normalized tables.

The semantics of OntoQL has been defined to search values of an instance for
each property defined on its belonging class. When this property is not used to
describe this instance, the NULL value is returned.

Example. Retrieve the users whose email address is known.
SELECT first_name, last_name FROM User WHERE email IS NOT NULL

The previous query will not return any administrator since the property email
is not used on this class.

Another particularity of ontologies is that classes and properties have a names-
pace. The USING NAMESPACE clause of an OntoQL statement indicates in which
namespace classes and properties must be searched. If this clause is not specified
and no default namespace is available, OntoQL processes this clause as an SQL
statement and thus it is compatible with SQL.

Example. Retrieve the content of the invalidate posts knowing that the class
InvalidPost is defined is the namespace http://www.lisi.ensma.fr.
SELECT content FROM InvalidPost
USING NAMESPACE ’http://www.lisi.ensma.fr’

In this example the InvalidPost class and the content property are searched
in the ontology which defines the namespace http://www.lisi.ensma.fr. In
OntoQL many namespaces can be specified in the USING NAMESPACE clause and
used to express queries composed of elements defined in different ontologies.

The next example illustrates a third particularity of ontologies: classes and
properties have a textual definition that may be given in several different natural
languages. This particularity is used in OntoQL to refer to each class and to each
property by a name in a given natural language. The same query can be written
in many natural languages.

A Language for Ontology-Based Metamodeling Systems 257

Example. Retrieve the first and last names of users using a query in English (7a)
and in French (7b).2

7a. SELECT "first name", "last name" <=> 7b. SELECT prénom, nom
FROM User FROM Utilisateur

The query 7a must be executed when the default language of OntoQL is set to
English while the query 7b requires the French default value.

Model and Data Querying

Queries on ontologies take as input/output parameter a collection of elements
of the model level (e.g. classes or properties) while queries on instances take as
input/output parameter a collection of instances of these elements (instances
of classes and values of properties). The link between these two levels can be
established in the two ways described in the next sections. (1) From ontology to
instances, and (2) from instances to ontology.

From ontology to instances. Starting from classes retrieved by a query on ontolo-
gies, we can get the instances associated to these classes. Then we can express
a query on data from this collection of instances. To query instances, following
the approach of usual databases languages, OntoQL proposes to introduce an
iterator i on the instances of a class C using the C AS i construct. The class C is
known before executing the query. Moreover, OntoQL extends this mechanism
with iterators on the instances of a class identified at run-time.

Example. Retrieve instances of the classes whose name ends by Post.
SELECT i.oid FROM #class AS C, C AS i WHERE C.#name[en] like
’%Post’

In this query, the Post and InvalidPost classes fulfill the condition of selection.
As a consequence this query returns instances identifiers of these two classes. And
since InvalidPost is a subclass of Post, instances identifiers of the InvalidPost
class are returned twice.

From instances to Ontology. Starting from instances retrieved by a query on
data, we can retrieve the classes they belong to. Then a query on ontologies
starting from this collection of classes can be expressed. OntoQL proposes the
operator typeOf to retrieve the basic class of an instance, i.e. the minorant class
for the subsumption relationship of the classes it belongs to.

Example. Retrieve the English name of the basic class of User instances.
SELECT typeOf(u).#name[en] FROM User AS u

This query iterates on the instances of the User class and on those of the
Administrator class as well. For each instance, the query returns User or
Administrator according to its member class.
2 In the following examples, the default namespace is http://www.lisi.ensma.fr

258 S. Jean, Y. Aı̈t-Ameur, and G. Pierra

4.3 Exploitation of the Capability of the OntoQL Language

Building Defined Concepts or Derived Classes

OntoQL can be used to compute the extent of a defined concept i.e., a concept
defined by necessary and sufficient conditions in terms of other concepts. It also
corresponds to a derived class in UML terminology.

Example. Build the extent of the class InvalidPost.
CREATE VIEW OF InvalidPost AS
SELECT p.* FROM Post AS p WHERE NOT EXISTS
(SELECT m.* FROM UNNEST(p.hasModifiers) AS m
WHERE m IS NOT OF REF(Administrator))

This query iterates on the instances p of the Post class. For each instance a
subquery determines if this post has been modified only by administrators using
the operator UNNEST (unnest a collection) and IS OF (type testing).

Model Transformation

The OntoQL language can also be used for model transformation. For example,
an ontology represented in a source ontology model can be transformed in an-
other one in a target ontology model. It requires to encode with the OntoQL
operators, the defined equivalences between the source and target models.

Example. Transform the OWL classes into PLIB classes knowing that the at-
tribute comment in OWL is equivalent to the attribute remark of PLIB.

INSERT INTO #PLIBClass (#oid, #code, #name[fr], #name[en], #remark)
SELECT (#oid, #code, #name[fr], #name[en], #comment) FROM #OWLClass

This statement creates a PLIB class for each OWL class. The value of the remark
attribute of the created PLIB classes is defined with the value of the comment
attribute of the OWL source classes. Other complex transformations may be
written within this approach. We are currently extending OntoQL to allow a
complete transformation language.

5 Implementation and Cases Study

OntoQL is implemented on the OntoDB OBDB. We briefly describe this im-
plementation in next section, and then overview two case studies where this
implementation has been put into practice.

5.1 Implementation of the OntoQL Engine

Two approaches could be followed to implement the OntoQL language on an
OBDB. The first method consists in translating OntoQL into SQL. This ap-
proach has been followed in the RDF-Suite [15] system. The second method,

A Language for Ontology-Based Metamodeling Systems 259

followed by Sesame [14], consists in translating an OntoQL statement into a set
of API-functions call that return a set of data of the OBDB.

The first solution benefits from the important effort on SQL optimization.
However it has the drawback to be dependent of the OBDB on which the
language is implemented. The second solution ensures the portability of the
implementation on different OBDBs since it is possible to provide different im-
plementation of the API for each OBDB. However in this case optimization is
delegated to the implemented query engine.

In our implementation we have mixed these two methods. OntoQL is trans-
lated into SQL using an API which encapsulates the specificities of the OBDB.
It follows 3 main steps: (1) generation of OntoQL algebra tree from a textual
query (2) transformation of this tree into a relational algebra tree using an API
(3) generation of SQL queries from this tree.

In addition to the implementation of the OntoQL Engine we have developed
the following tools to ease the exploitation of this language.

OntoQL*Plus : an editor of OntoQL statements similar to SQL*Plus provided
by Oracle or isql provided by SQLServer.
OntoQBE : a graphical OntoQL interface that extends the QBE interface such

as the one provided by Access.
JOBDBC : an extension of the JDBC API to execute OntoQL statements from

the JAVA programming language.

Demonstrations and snapshots of these tools are available at http://www.plib.
ensma.fr/plib/demos/ontodb/index.html

5.2 Case Study: CO2 Capture and Storage

The capabilities of the OntoQL language to manipulate the metamodel level
have been exploited in various projects [20,21,22] and especially in the eWokHub
project we have introduced in section 2. Two extensions we have realized are
outline below: (1) annotation of engineering models and (2) handling user
preferences.

Engineering Models Annotation

The CO2 capture and storage rely on various engineering models. Engineers have
to face several interpretation difficulties due to the heterogeneity of these models.
To ease this process, we have proposed to annotate these models with concepts
of ontologies [20]. However, the notions of annotations and engineering models
were not available at the metamodel level. Thus, OntoQL was used to introduce
these notions as first-order model concepts using a stepwise methodology. First,
elements of the engineering models were created with the CREATE ENTITY oper-
ator. Then, an association table was defined to annotate the engineering models
by a class of an ontology. Once the metamodel was extended, OntoQL has been
used to query the engineering models departing from the ontology concepts.

http://www.plib.ensma.fr/plib/demos/ontodb/index.html
http://www.plib.ensma.fr/plib/demos/ontodb/index.html

260 S. Jean, Y. Aı̈t-Ameur, and G. Pierra

User Preferences Handling

When the amount of ontological data (or instances) available becomes huge,
queries return a lot of results that must be sorted by a user in order to find
the relevant ones. This requirement raised from the eWokHub project where a
huge amount of documents and engineering models were annotated by concepts
and/or instances of ontologies. As a solution, we have enriched the metamodel
to handle user preferences when querying the OBDB. Our proposition is based
on a model of user preferences [21] defined at the metamodel level and stored
in the OBDB using the CREATE ENTITY operator of OntoQL. This preference
model is linked to the ontology model by associating preferences to classes or
properties of ontologies (ALTER ENTITY). Finally, OntoQL has been extended
with a PREFERRING clause interpreting preferences when querying the OBDB.

6 Conclusion

This paper presents the OntoQL language that combines capabilities of meta-
modeling languages i.e, a uniform manipulation of the three levels composing
MMS systems with those of ontology query languages i.e, queries at the knowl-
edge (semantic) level. This language is based on a core metamodel containing
the common and shared constructors of most of the usual ontology models. Thus
this core metamodel is used to define ontologies. Moreover, it can be extended in
order to take into account specific features of a particular metamodel as shown
in section 5. An implementation of the ontoQL language has been developed on
top of the OntoDB ontology based database together with a suite of tools similar
to those existing for SQL. This language has been used in the application do-
main of the CO2 capture and storage to annotate engineering models, to handle
preferences and to semantically index Web Services [22].

Currently, we are studying new mechanisms to extend the core metamodel
with new operators and behaviors. The challenge is to enable the automatic
definition of operators behavior without any interactive programming but by
exploiting a metamodel for behavioral modeling. More precisely, we are working
on the possibility to dynamically add new functions that could be triggered
during query processing preserving persistance of the models and their instances.

References

1. Object Management Group: Meta Object Facility (MOF), formal/02-04-03 (2002)

2. Dean, M., Schreiber, G.: OWL Web Ontology Language Reference. W3C Recom-

mendation February 10 (2004)

3. Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF

Schema. World Wide Web Consortium (2004)

4. Pierra, G.: Context Representation in Domain Ontologies and its Use for Semantic

Integration of Data. Journal Of Data Semantics (JODS) X, 34–43 (2007)

5. Jeusfeld, M.A., Jarke, M., Mylopoulos, J.: Metamodeling for Method Engineering.

MIT Press, Cambridge (2009)

A Language for Ontology-Based Metamodeling Systems 261

6. Melnik, S., Rahm, E., Bernstein, P.A.: Rondo: a programming platform for generic

model management. In: Proceedings of the 2003 ACM SIGMOD International Con-

ference on Management of Data (SIGMOD 2003), pp. 193–204 (2003)

7. Petrov, I., Nemes, G.: A Query Language for MOF Repository Systems. In: Pro-

ceedings of the OTM 2008 Conferences (CoopIS 2008), pp. 354–373 (2008)

8. Kotopoulos, G., Kazasis, F.C.S.: Querying MOF Repositories: The Design and

Implementation of the Query Metamodel Language (QML). In: Digital EcoSystems

and Technologies Conference (DEST 2007), pp. 373–378 (2007)

9. Jean, S., Aı̈t-Ameur, Y., Pierra, G.: Querying Ontology Based Database Using

OntoQL (an Ontology Query Language). In: Proceedings of Ontologies, Databases,

and Applications of Semantics (ODBASE 2006), pp. 704–721 (2006)

10. Jean, S., Aı̈t-Ameur, Y., Pierra, G.: An Object-Oriented Based Algebra for Ontolo-

gies and their Instances. In: Ioannidis, Y., Novikov, B., Rachev, B. (eds.) ADBIS

2007. LNCS, vol. 4690, pp. 141–156. Springer, Heidelberg (2007)

11. Dehainsala, H., Pierra, G., Bellatreche, L.: Ontodb: An ontology-based database

for data intensive applications. In: Kotagiri, R., Radha Krishna, P., Mohania, M.,

Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 497–508. Springer,

Heidelberg (2007)

12. Harris, S., Gibbins, N.: 3store: Efficient bulk rdf storage. In: Proceedings of the 1st

International Workshop on Practical and Scalable Semantic Systems (2003)

13. Theoharis, Y., Christophides, V., Karvounarakis, G.: Benchmarking Database Rep-

resentations of RDF/S Stores. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A.

(eds.) ISWC 2005. LNCS, vol. 3729, pp. 685–701. Springer, Heidelberg (2005)

14. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture

for Storing and Querying RDF and RDF Schema. In: Horrocks, I., Hendler, J.

(eds.) ISWC 2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002)

15. Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D., Tolle, K.: The

ics-forth rdfsuite: Managing voluminous rdf description bases. In: Proceedings of

the Second International Workshop on the Semantic Web, SemWeb 2001 (2001)

16. Karvounarakis, G., Magkanaraki, A., Alexaki, S., Christophides, V., Plexousakis,

D., Scholl, M., Tolle, K.: Querying the Semantic Web with RQL. Computer Net-

works 42(5), 617–640 (2003)

17. Bailey, J., Bry, F., Furche, T., Schaffert, S.: Web and Semantic Web Query

Languages: A Survey. In: Reasoning Web, pp. 35–133 (2005)

18. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Rec-

ommendation (January 15, 2008)

19. Ziegler, P., Sturm, C., Dittrich, K.R.: Unified Querying of Ontology Languages

with the SIRUP Ontology Query API. In: Proceedings of Business, Technologie

und Web (BTW 2005), pp. 325–344 (2005)

20. Mastella, L.S., Aı̈t-Ameur, Y., Jean, S., Perrin, M., Rainaud, J.F.: Semantic ex-

ploitation of persistent metadata in engineering models: application to geological

models. In: Proceedings of the IEEE International Conference on Research Chal-

lenges in Information Science (RCIS 2009), pp. 147–156 (2009)

21. Tapucu, D., Diallo, G., Aı̈t-Ameur, Y., Ünalir, M.O.: Ontology-based database

approach for handling preferences. In: Data Warehousing Design and Advanced

Engineering Applications: Methods for Complex Construction, pp. 248–271 (2009)

22. Belaid, N., Ait-Ameur, Y., Rainaud, J.F.: A semantic handling of geological mod-

eling workflows. In: International ACM Conference on Management of Emergent

Digital EcoSystems (MEDES 2009), pp. 83–90 (2009)

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 262–277, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Framework for OLAP Content Personalization

Houssem Jerbi, Franck Ravat, Olivier Teste, and Gilles Zurfluh

IRIT, Institut de Recherche en Informatique de Toulouse
118 route de Narbonne, F-31062 Toulouse, France
{jerbi,ravat,teste,zurfluh}@irit.fr

Abstract. A perennial challenge faced by many organizations is the manage-
ment of their increasingly large multidimensional databases (MDB) that can
contain millions of data instances. The problem is exacerbated by the diversity
of the users’ specific needs. Personalization of MDB content according to how
well they match user’s preferences becomes an effective approach to make the
right information available to the right user under the right analysis context. In
this paper, we propose a framework called OLAP Content Personalization
(OCP) that aims at deriving a personalized content of a MDB based on user
preferences. At query time, the system enhances the query with related user pre-
ferences in order to simulate its performance upon an individual content. We
discuss results of experimentation with a prototype for content personalization.

Keywords: OLAP content, Multidimensional databases, Personalization,
Preferences.

1 Introduction

Personalized data selection aims at providing users with only relevant data from the
huge amount of available information. It has become an increasingly important prob-
lem for many applications in a variety of fields [12,17]. However, it has not been
well-studied in the context of data warehousing, including many important applica-
tions like business intelligence, OLAP (On-Line Analytical Processing), and decision
support.

1.1 Context and Issues

The MultiDimensional Database (MDB) design process aims at defining a unified
multidimensional schema which considers the analysis needs of a group of users.
Typically a MDB schema is modeled through a constellation of subjects of analysis,
called facts, and axes of analysis, called dimensions [13]. An ETL (Extract, Trans-
form, and Load) process takes charge of extracting the data from different source
systems. These data, called the MDB content, represent the schema instances, i.e.,
the fact data as well as the dimensions parameters instances. Typically, a single
ETL process is set up for a MDB because designing such process is extremely com-
plex and time consuming [16]. However, users sharing the same MDB have usually

 A Framework for OLAP Content Personalization 263

different perceptions of its content since they have various interests and goals [3, 15].
For example, a user is interested in analyzing sales only in France, whereas another
user likes to see more global data of all the European countries. Furthermore, the
same user may have interest on data content that varies from one analysis context to
another [3, 10]. For example, a decision-maker needs to analyze data about all years
in the context of analysis of purchases, while she considers only the current year when
analyzing sales. Therefore, users must often define complex queries with several
constraints to restore accurate data, which could be a hard task.

Besides, the data loading process may consolidate a quite large content as it may
deliver information to many kinds of users. The increasing amount of data stored in
OLAP databases often leads to the many-answers problem. Therefore, acquiring the
required information is more costly than expected. In this context, the research agenda
in [15] identifies personalization as one of the main topics to be addressed by
both academics and practitioners in order to avoid information flooding in the OLAP
context.

We argue that personalization of MDB content represents an important step to pro-
vide customized content for every particular user, thus better satisfying users.

1.2 Motivating Example

In this paper, we use for our running example a multidimensional database housing
the laboratory publications and information about the researchers’ missions. Part of
the schema is illustrated in Fig. 1. Publications and research missions can be analyzed
by events, authors and dates. Within the dimension events, the attributes type, catego-
ry, editor, and level refer to the event type (conference, journal, or workshop), catego-
ry of the publication (IEEE, ACM, …), editor of the proceeding, and the event level
(international or national), respectively.

AFFILIATION

POSITION

EMAIL_A

EDITOR

EId

NAME_E

CATEGORY TYPE

DAY

AId

NAME_A

AUTHORS

EVENTS

GROUP

STATUS
FEES

NB_MISS

MISSIONS HPOS

HT

NB_PUBLIS
NB_SUBMISS

NB_CITATIONS

PUBLICATIONS
NAME_M

DATES
DIdMONTHQUARTERYEAR

HMONTH

Fact

MeasureDimension

Hierarchy

Parameters

ACCEPTANCE_RATE

LEVEL

CITY COUNTRY

DEPARTMENT REGION

STATE

GEO_FR

GEO_US

Fig. 1. Example of MDB schema

Consider for instance two research teams’ heads. Prof. Brian is mainly interested in
publications in IEEE and ACM events, while Prof. John is rather interested in all
publications. In order to analyze the research performance of their teams, the deci-
sion-makers need to observe the number of publications during the current year by
quarter and by category of events. When asking the laboratory secretary about such
information, she provides each decision-maker with a dashboard according to his
interests and specific constraints. She relies upon the personal relationship she
has with everyone and her past informal communication with him. However, when

264 H. Jerbi et al.

applying a query under a decision-support tool, the query engine restores for both of
decision-makers the same answer including data of all events categories. Therefore,
Prof. Brian is forced to explore the whole multidimensional result space to find data
about IEEE and ACM events which is a frustrating task. Note that the publication
year (year = 2010) represents for Prof. Brian an immediate need which is explicitly
expressed within his query, while the publication category is a long-term information
representing a main interest that distinguishes him from the other researchers.
Such feature is a constraint that the OLAP system must fulfill to satisfy the user
expectations.

We argue that the MDB system will restore more personalized data by better un-
derstanding of the user specific interests. For this purpose, user analysis preferences
should be stored in a user profile, then, the system could automatically integrate them
into the original query, in order to satisfy expectations of each user.

1.3 Aims and Contributions

In this paper, we take a step towards personalized content access in OLAP systems.
We present a new framework, called OLAP Content Personalization (OCP), which
aims at personalizing dynamically the MDB content with the use of user profiles. The
main contributions of the paper are the following:

- OCP framework. The main goal of OCP is defined as follows. Given a set of users
that share a MDB, we wish to extract a personalized content for each user. In prac-
tice, this leads to include the user profile parts into the qualification of the user
queries to further restrict the universe of data content that generates the query re-
sult. The major steps for personalized content extraction are: (a) preference selec-
tion, where the preferences relevant to the query and most interesting to the user
are derived from the user profile, and (b) preference integration, where the derived
preferences are integrated into the user query producing a modified personalized
one, which is actually executed.

- Preference model for user profiles. User preferences are of the form (predicate,
degree) | X, meaning that the user is interested about data issued from predicate in
the analysis context X. Each preference is associated with a degree of interest. Pre-
ferences are stored in a user profile as long-term information need.

- Experimental results. The proposed framework has been implemented and it is
discussed through a set of experiments that show its potential.

Roadmap. The rest of the paper is organized as follows: Section 2 describes the per-
sonalized data model. Section 3 presents our personalization framework. Section 4
discusses results of experimentation. Section 5 presents related work. Finally, conclu-
sions and future work are drawn in the last section.

2 Personalized OLAP Data

We define OLAP content personalization like the process of adapting the MDB con-
tent to the user specific interests. This leads to enrich the MDB by a descriptor layer
consisting of the user-related information needed to personalize. Such information is
specified in a so-called user profiles.

 A Framework for OLAP Content Personalization 265

2.1 OLAP Data Modeling

OLAP data are designed according to a constellation of facts and dimensions.
Dimensions are usually organized as hierarchies, supporting different levels of data
aggregation.

A constellation regroups several facts, which are studied according to several di-
mensions. It is defined as (NCS, FCS, DCS, StarCS) where NCS is the constellation name,
FCS is a set of facts, DCS is a set of dimensions, StarCS: FCS → 2DCS associates each
fact to its linked dimensions.

A fact, noted Fi∈FCS, reflects information that has to be analyzed through
indicators, called measures. It is defined as (NFi, MFi) where NFi is the fact name,
MFi={f1(m1),…, fw(mw)} is a set of measures associated to aggregation functions fi.

A dimension, noted Di∈DCS, is defined as (NDi, ADi, HDi) where NDi is the dimen-
sion name, ADi = {aDi

1,…, aDi
u} is a set of dimension attributes, HDi = {HDi

1,…, HDi
v}

is a set of hierarchies. Within a dimension, attribute values represent several data
granularities according to which measures could be analyzed. In a same dimension,
attributes may be organized according to one or several hierarchies.

A hierarchy, noted HDi
j∈HDi, is defined as (NHj, PHj) where NHj is the hierarchy

name, PHj=<idDi, pHj
1,…, pHj

vj, All> is an ordered set of attributes, called parameters,
which represent useful graduations along the dimension Di, ∀k∈[1..vj], p

Hj
k∈ADi.

The constellation depicted in Fig. 1 consists of two facts (publications and mis-
sions) and three dimensions (events, dates and authors). Within the dimension
authors, the hierarchy GEO_FR allows analyzing data according to the French geo-
graphy (i.e., cities are regrouped into departments and regions), while GEO_US hie-
rarchy illustrate the US geography, i.e., cities are regrouped into states.

2.2 User Profiles Modeling

Given our focus on personalization of OLAP content access, our user model assigns
preferences to the MDB content. More specifically, we model OLAP user’s prefe-
rences by 1) preferences on dimension data (e.g., publications during the last 3 years),
and 2) preferences on fact data (e.g., a number of publications greater than 10).

Definition. Given a MDB, for an attribute A associated with a data type Type(A), a
preference PA is defined as (predA; θ), where

- predA is a disjunction of restriction predicates of the form A op ai that specify
condition on the values ai ∈Type(A),

- θ is a real number between 0 and 1 that indicates the user interest degree in
results that exactly satisfy this restriction predicate.

According to A, the predicate pred may be a restriction of fact data, i.e., A is a meas-
ure associated with an aggregate function fi(m

F
i)∈MF, or a condition on dimension

data, i.e., A is a dimension attribute pi ∈ADi. We assume op ∈{=,<,>,≤ ,≥, ≠} for
numerical attributes and op ∈{=,≠} for the other data types.

The level of a user's desire to analyze contents may be different depending on her
ongoing analysis context. For example, a user can denote different preferences when
she is focusing on publication statistics of her team than when she is analyzing those

266 H. Jerbi et al.

of all researchers, in general. We argue that the preference model should allow han-
dling multiple ratings in different analysis contexts. For this reason, a user preference
may be associated with a specific analysis context. Such context is more or less
general.

Preference analysis context, or simply preference context (cp), is of the form ([Fi
(.fi(m

Fi) / pr /…/ pr)*]; [D1 / (a /pr /…/ pr)*] ; … ; [Dp/(a /pr /…/ pr)*])1,
where

- Fi is the analyzed subject through a set of measures mj ∈MF associated with
aggregate functions fj (AVG, SUM, …),

- D1,…, Dp are the analysis dimensions, Dj ∈ DCS, a ∈ ADq is the detail level
within Dq, and

- pr is a restriction predicate over the values of an attribute or a measure.

Certain elements of cp may be empty. Actually, the context of a user preference does
not necessarily contain all the analysis components. If there is no descriptor for a
context element, the value ALL is assumed. For instance, a preference related to cp =
(ALL, Authors/position=’PhD Student’, Dates/ALL) is relevant for any analysis of
data related to PhD students according to the temporal axis, irrespective of the analy-
sis subject and the detail level within dimension Dates.

To cope with the context-awareness of user preferences, a preference Pi is mapped
to an analysis context cpj in order to specify its applicable circumstances. This leads
to contextual mappings mij of the form (Pi, cpj). The semantics of such mappings in
terms of the MDB content is the following: for mij = ((predi, θi), cpj), θi expresses the
importance of taking into account the content involved by predi into the qualification
of the analysis context cpj.

Note that some preferences are not context-aware; they are global preferences that
hold in any analysis context. By convention, global preferences are mapped to ‘ALL’.

User preferences and associated contexts form a user profile that is used at query
time to expeditiously provide personalized content.

A user profile Pu is defined as a set M of contextual mappings which relates user pre-
ferences to a set of analysis contexts CP: Pu = {mij(Pi,cpj) | Pi= (predi,θi), cpj CP}.

Example 1. In addition to his interest in IEEE and ACM events, Prof. Brian has the
following contextual preferences: (Status = ‘permanent’; 0.9), (SUM(Nb_publis) >1;
0.6), (Affiliation = ‘IRIT’; 0.5), (Affiliation = ‘IRIT’; 0.9), (SUM(Fees) ≥ 50Eur;
0.8), and (AVG(Fees) ≥ 200Eur; 0.75). These preferences are associated to contexts:

- cp1: analysis of publications by event; cp1 = Publications; Events
- cp2: analysis of the publications number during the current year; cp2 = Publica-

tions.Sum(Nb_publis); Dates/Year = 2010
- cp3: analysis of data of PhD students; cp3 = Authors/ Position = ‘PhD student’

Fig. 2 depicts Prof. Brian profile. Several preferences may be related to the same
attribute (e.g. Fees). A preference predicate can be related to several contexts, even-
tually with different scores (e.g. Affiliation=’IRIT’). Likewise, an analysis context
may be mapped to many preferences (e.g. cp2).

1 The symbol “*” denotes zero or more repetitions of elements.

 A Framework for OLAP Content Personalization 267

0.9
1cp

2cp

3cp

ALL

PREDICATES SCORES CP

0.6

0.9

0.75

1
AVG(Fees) >200Eur

Category=‘IEEE’ OR ‘ACM’

Status=‘permanent’

SUM(Nb_publis) > 1

Affiliation = ‘IRIT’

SUM(Fees) ≥ 50Eur

0.8

0.5

Fig. 2. Prof. Brian profile

Note that preferences may evolve through time. Thus, Fig. 2 illustrates Prof. Brian
profile for a given point in time. The content personalization process (see section 3) is
not affected by changes in the profiles, since it considers the stored preferences at
runtime.

3 OCP Framework

The general architecture of an OCP framework is depicted in Fig. 3 and includes
several modules surrounding a traditional OLAP content access module. The system
keeps a repository of user-related information (user profiles) that is either inserted
explicitly or inferred within the user log data. This profile information is integrated
into an incoming request during content selection (query reformulation). The major
steps for query reformulation are: (a) extraction of user profile parts that are related to
the query (profile manager), then (b) construction of a Personalized Virtual Content,
and query enhancement (PVC constructor).

This paper concentrates on taking advantage of user profiles for content access per-
sonalization in OLAP. Profiles generation is out of the scope of this paper.

User Query

QUERY EXCECUTION

OLAP QUERY ENGINE

QUERY-REFROMULATION

QUERY FORMULATION

PERSONALIZED CONTENT

MDB

USER PROFILES

USER INTERACTION

PERSONALIZED RESULT

Reformulated User Query

Result

PVC
Constructor

Profile
Manager

Fig. 3. Framework overview

268 H. Jerbi et al.

3.1 Preferences Engineering

Active preferences. Some preferences among those stored in the user profile are
related to the incoming query Q. Without loss of generality, we focus on OLAP que-
ries that request data from one fact; i.e., a query is applied on a star schema S of the
MDB. Therefore, only preferences that are related to S are considered to execute Q,
i.e., preferences defined on the fact FQ and the measures MQ

1,…, MQ
w of the user

query, as well as all dimensions that are connected to FQ, i.e. StarCS(FQ). Such prefe-
rences are called active preferences.

In order to speed up the active preferences extraction, an offline preprocessing step
consists in storing within a metatable mappings between couples (fact, measure) of
the MDB and the related preferences. For a given query Q, active preferences are
those mapped to (FQ, MQ).

Example 2. Suppose that Prof. Brian poses the query Q1: number of publications
during the two last years by event type and by research group. Preferences
(SUM(Fees) ≥ 50Eur; 0.8) and (AVG(Fees) ≥ 200Eur; 0.75) are not active w.r.t. Q1
since they are related to the measure Fees which is not concerned by Q1.

Candidate preferences. As user preferences are contextualized, the content persona-
lization considers only those active preferences that are associated with the current
analysis context. Such preferences form, in addition to the active global preferences,
the set of candidate preferences PCand.

Definition. The Current Analysis Context CAC is the context of analysis induced by
the user query Q. It consists of the fact FQ, measures MQ

1,…, MQ
w, dimensions dQ

1, ...,
dQ

x, the detail levels pQ
1, ..., pQ

y, and possibly restrictions predQ
1, …, predQ

z of the
query Q.

PCand is determined by context resolution where preferences that are associated with
CAC are selected. This step is described in section 3.2.

However, during the OCP process, conflicts may arise.

Conflicts Resolution. We identify two types of conflicts: 1) a preference is conflict-
ing with a query if it is conflicting with a condition already there; and 2) a preference
is conflicting with another preference if their predicates are contradictory.

Definition. We say that two predicates pred1 and pred2 (normalized predicates, i.e.,
conjunction of disjunctions) are conflicting, if pred1 pred2 = False (i.e., their con-
junction returns no results).

Conflicts are detected syntactically with the use of the predicate logic rules. However,
syntactical resolution does not identify some conflicts that arise at the semantic level.
For example, a query condition Name_E = ‘CIDR’ (such that CIDR is a biennial
conference that holds at odd-numbered years) is conflicting with the preference Year
= 2010. In order to decide whether a preference is conflicting with a query at the
semantic level, additional knowledge about the data is needed other than information
derived from the constellation.

Each active preference is validated with the remaining active ones, then with all the
conjunctive combinations of the user query predicates. Actually, although certain
preferences are not conflicting with each query predicate individually, its conjunction

 A Framework for OLAP Content Personalization 269

with all of them may return no results. When a preference predicate is conflicting with
a query predicate, the former is rejected. Besides, conflicts between preferences are
resolved either offline or online. In the first case, conflict arises when a new prefe-
rence P1 is defined on the same target (measure or dimension attribute) than another
preference P2 that already exists in the user profile: P1 and P2 are either global prefe-
rences or contextual preferences associated with the same context. We assume that the
most recent preference is maintained. However, some conflicts are detected at query
time during the context resolution: a contextual preference may be conflicting with a
global one; moreover, two contextual preferences may be conflicting if they are asso-
ciated with different contexts, and they are both relevant for the user query. In this
case, both preferences are discarded.

The output of the conflict resolution step is a set of homogenous candidate
preferences.

3.2 Preference Selection

This step consists in identifying at runtime user preferences that are related to the
current analysis context involved by the user query. Intuitively, only preferences that
are associated with CAC (Pi | cpi = CAC) are considered. However, some preferences
related to a subset of the CAC are also useful.

Example 3. Consider Prof. Brian query Q1 (see Example 2). Prof. Brian has active
contextual preferences associated with contexts cp1, cp2, and cp3. Which of them to use?

Preference associated with cp1 is valid since CAC concerns also the analysis of
publications by event. Likewise, those related to cp2 are relevant as the current year is
among the two last years that are concerned by CAC. However, the active preference
related to cp3 has to be discarded because the analysis precision of CAC through the
axis authors is different from the attribute position. Thus, a candidate preference
context must consist of items that already exist in CAC, and the common items must
be organized according to the same hierarchical order in CAC (e.g., analyzing publi-
cations by years then by months is different form analyzing publications by months
then by years). Overall, cpi of a candidate preference is more general than (or domi-
nates) CAC.

Context Tree. In order to formalize the context resolution paradigm, we need to de-
fine a tree representation for CAC and preference contexts cpi to state which context
preference is close to CAC. The context tree reflects the nature of the relationships
between components of an OLAP analysis [10]. There are two types of nodes in this
tree:

- structure nodes, for the analysis context fact, measures, dimensions, and attributes
- predicate nodes, one for each restriction predicate of the analysis context

All predicates on the same dimension attribute (respectively measure) are conjunc-
tively combined and represented by one node that is linked to the underlying attribute
node (resp. measure node). Before building the preference context tree and the CAC
tree (BuildTreeC), repeated and transitive predicates are removed. This allows avoid-
ing useless matching and further inaccurate estimation of the tree size.

270 H. Jerbi et al.

Context Matching. Intuitively, it is possible to state that an analysis context C1
(represented by means of the tree T1) is more general than another context C2
(represented by T2), if T1 is included in or equal to T2 (T1 ⊆ T2). This is determined
through context trees matching that checks if all edges of T1 belong to T2.

Context matching is performed by traversing synchronously the two context trees in a
breadth-first order, i.e., level by level, as they are not so deep. For each iteration, the
system checks if the two corresponding nodes from the two trees respectively fit. This
leads to nodes comparing: two structure nodes fit together if they consist of the same
node value, while predicate nodes comparison is performed by predicate logic rules to
check if one predicate is either a reduced form of the second, or is equal to the second.

The context matching generates the set of preference contexts that dominate CAC.
Contexts that overlap with CAC are rejected, since integrating their related prefe-
rences leads to approximate results that correspond to contexts near to CAC.

Example 4. Let’s revisit the previous example. cp3 is rejected since its tree overlaps
with the CAC tree. Fig. 4 depicts the tree of cp2 and its matching with the tree of CAC.

YEAR

YEAR
GROUP

AUTHORS
SUM (NB_PUBLIS)

≥2009

DATES

PUBLICATIONS

SUM (NB_PUBLIS)DATES

PUBLICATIONS
= 2010

TYPE

EVENT.

Tree of cp2

Tree of CAC

Context Trees Matching

Fact

Measure

Dimension

Parameter

Measure/Parameter predicate

Fig. 4. Example of context trees matching

Preference Selection Algorithm. Preference selection consists in extracting prefe-
rences stored in user profile, that, when combined with the user query, would maxim-
ize the interest in the results. Intuitively, the more preferences are considered, the
more user interest in the query result is. In practice, this may lead to impractical im-
plantation, since maximum interest is achieved by incorporating all preferences, and
the resulting query is likely to be very expensive or have an empty answer. In order to
cope with such personalization problems, the system may select top K preferences.
The parameter K may be retrieved from the user profile based on information col-
lected by the system. Alternatively, it may be automatically derived at query time
considering various constraints, e.g., the query execution time of the final query, the
query result size, etc.

Thereafter, the top K preferences will be integrated into the qualification of CAC.
Thus, candidate preferences Pi are ranked according to their interest degrees under
CAC, called . As cpi ⊆ CAC, should be a function of θi,

 A Framework for OLAP Content Personalization 271

which is the degree of interest of Pi under cpi. In principle, one may imagine several
such functions. Anyone of them, however, should satisfy the following condition, in
order to be intuitive: = f(θi) ≤ θi. In other words, the degree of interest
in a preference decreases as it is related to a more general context. In this way, the
more the context of a given preference covers CAC, the more its related score is pre-
served. Thus, score (Pi)

CAC is proportional to the covering rate of the context of Pi.
The formal definition is the following:

Score (Pi)
CAC = θi * covering_rate (1) covering_rate = ∈ [0, 1] (2)

Card(cpi) (resp. Card(CAC)) is the cardinality (i.e., number of edges) of the cpi tree
(resp. CAC tree); hence covering_rate is a real between 0 and 1, since cpi ⊆ CAC.
Therefore, essentially approaches θi as more and more cpi covers CAC.
Note that for global preferences, = θi, since they are relevant under
every analysis context.

Fig. 5. Preference Selection Algorithm

Input :
CAC: the current analysis context induced by the user query Q
PACT = {(Pi,cpi), …, (Pm,, cpm)}: user active preferences
K= number of preferences to select
Output : PCAND = {P1,… , Pk} : homogenous top-K candidate preferences

BEGIN
1. PCAND Ø, Rank_ Act Ø, p 0
2. PACT Resolve_conflicts (PACT, Q)
3. Compute Score(Pi)

CAC for each Pi in PACT
4. Rank_ Act Rank PACT according to Score(Pi)

CAC
5. TCAC BuildTreeC(CAC)
6. While (∃ Mi = (Pi, cpi) in Rank_ Act) And (p ≤ K) Do
7. included True
8. Ti BuildTreeC (cpi)
9. While (∃ edgej in Ti) And (included) Do
10. If (edgej ∉ TCAC) Then
11. included False
12. End if
13. End while
14. If (included = True) Then
15. PCAND PCAND Pi
16. p++
17. End if
18. End while
19. Return (PCAND)
END.

272 H. Jerbi et al.

The preference selection algorithm is depicted in Fig. 5. The algorithm takes as
input a list of active preferences in the form ((predi, θi), cpj), the number K of prefe-
rences to select, and the current analysis context. It outputs the top K candidate prefe-
rences. If K is omitted, all candidate preferences are selected.

Example 5. Let’s consider the query Q1. Recall that Prof. Brian candidate preferences
are:

P1 = (pred1; 0.9), P2 = (pred2; 0.6), P3 = (pred3; 0.5), and P4 = (Category=’IEEE’ OR
Category=’ACM’, 1). P1 is associated to cp1, while P2 and P3 are related to cp2, and P4
is a global preference. The covering rate of cp1 and cp2, computed according to (2),
are respectively 0.125 and 0.5. The scores of the preferences under CAC are respec-
tively: 0.112, 0.3, 0.25, and 1. For K=2, selected preferences are P2 and P4. Note that,
initially, the interest degree of P1 (0.9) is greater than the degree of P2 (0.6).

3.3 Query Enhancement

OLAP offers a rich set of multidimensional operations. However, as the majority of
OLAP systems store data in R-OLAP context using fact and dimension tables, all user
operations are executed according to SELECT-GROUP-BY-HAVING queries, even-
tually extended with CUBE and ROLLUP operators [6] (see Fig. 6).

The purpose of the query enhancement step is to integrate the K selected prefe-
rences into the user query and produce a new, personalized query that will generate
satisfactory results for the user.

SELECT D1.a1, ..., Dn.an, [f
AGREG (] Fi.mj [)],...

FROM Fi, D1, ...,Dn
WHERE Fi. key1 = D1.keyD1 AND ... AND Fi. keyn = Dn. keyDn

[AND Dj.aj Op Cj, …] [AND Fi.mk Op Ck, …]

GROUP BY [ROLLUP | CUBE] D1.a1, ..., Dn.an,…

[HAVING fAGREG (Fi.mx) Op Cx,…]

[ORDER BY Dy. ay, ...];

Fig. 6. OLAP Query Prototype

If there are no homogenous candidate preferences (PCAND is empty), we say that the
MDB content is fully adapted with the user preferences under the current analysis
context. This occurs when all user preferences have been explicitly defined in the
query Q, or if the user does not have non-conflicting preferences under CAC. There-
fore, the system executes the query without preprocessing. Otherwise, preferences are
included in Q. To this aim, predicates of the selected preferences are embedded in
conjunction with those of Q within WHERE and HAVING clauses. Furthermore, any
additional query element required for the preference predicates are also incorporated
into Q, i.e., extending FROM clause with new dimension tables, and adding join
conditions to WHERE clause.

 A Framework for OLAP Content Personalization 273

Predicates on dimension parameters (e.g., year = 2010) and predicates on the non-
aggregated measures (e.g., nb_publis > 2) are inserted into the WHERE clause to
restrict tuples that will be aggregated. However, predicates on aggregated measures
(e.g., SUM (nb_publis) > 4) are inserted into the HAVING clause to eliminate the
result cells that do not match with user preferences.

4 Experimental Results

In order to evaluate our framework, we have implemented a java prototype system on
top of Oracle 11g. In this section, we present results of our experiments. Data primari-
ly comes from the publication database of our research laboratory (see Fig. 1). Con-
stellation data are stored in R-OLAP context. User profiles (preferences and contexts)
are stored in metatables. The MDB consists of two facts, 3 dimensions, 5 measures
and 22 attributes. It contains 2 500 000 fact tuples and 500 dimension tuples.

Size of Personalized Content
In the first experiment we measured the change in the size of the MDB obtained from
the extension of the original one with user profiles. Recall that a preference may be
associated with several contexts, and vice-versa. We chose real user profiles with
different number of preferences and various numbers of contexts by preference (nb.
cps = 0, 2, and 5). For each nb. cps, we calculated the percentage of the profiles' size
to the size of the initial MDB. Fig. 7 shows this percentage for intervals of 200 prefe-
rences. We see that the size of global preferences (i.e., with nb. cps = 0) is very small;
it does not exceed 0.4% of the size of the original MDB. This is explained by their
low storage requirements as they include only atomic predicates (string) and scores
between 0 and 1 (float). Besides, for the same preference number range, the profile
size is larger when user preferences are associated to more contexts. The difference of
size arises from the storage of more contexts and their mappings to preferences. Fur-
thermore, Fig. 7 shows a rapid increase in the profile size for preferences number
between 0 and 600. However, we observe a slight increase from 800 preferences. In
fact, the total number of contexts, whose size is the major part of the profile size, does
not rise significantly from this point. Actually, users do not visit all possible analysis

0%

5%

10%

15%

20%

200 400 600 800 1000 1200

%
 o

f S
iz

e
of

 t
he

 M
D

B

Profile Size

nb. cps = 0

nb. cps = 2

nb. cps = 5

Fig. 7. Impacts of User Profile Storage

274 H. Jerbi et al.

contexts, since, in practice, they navigate through a subset of the MDB constellation
[3]. So, new preferences are associated with existing contexts (only mappings are
stored). However, the whole MDB size may rise significantly for huge profiles. De-
fining a threshold for the interest degrees of the stored preferences may help at moni-
toring the profiles’ sizes.

Overall, this experiment has shown that the benefits of dynamically personalizing
OLAP data can be significant in terms of the storage size (5% from the MDB). The
generation of different versions of the MDB at design time for different user types
leads to store a huge volume of data, while our framework stores only user profiles.

Efficiency of Preference Selection Algorithm
As the main step of preference selection is the context trees matching, we measured
the execution time of our context matching algorithm for 20 synthetic user profiles
varying the size of the current analysis context (see Fig. 8 (a)). Such size denotes the
number of the context tree edges. User profiles were automatically produced with the
use of a profile generator. Then, we measured the algorithm time for different sizes
of preference contexts (see Fig. 8 (b)). This size refers to the average size of all con-
text trees in the user profiles.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

5 10 15 20 25 30

Co
nt

ex
tM

at
ch

in
g

Ti
m

e
(S

ec
on

ds
)

CAC Size

Context Matching Times with CAC Size (K=10)

(a)

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8

5 10 15 20 25 30

Co
nt

ex
tM

at
ch

in
g

Ti
m

e
(S

ec
on

ds
)

Preference Context Size

Context Matching Times with cp Size (K=10)

(b)

Fig. 8. Efficiency of our Context Resolution Algorithm

As expected the performance of the matching algorithm degrades as the size of
context tree increases. However, the execution time does not rise dramatically for
large sizes of CAC and cp. This surprising behavior can be explained considering the
way the algorithm proceeds. The algorithm performs a first traversal of the user pro-
file and extracts active preferences with their first and second-level context trees
edges. Then, several preference contexts are discarded by a partial context matching
without requiring database accesses. The remaining contexts are fully matched with
CAC. As the selected active preferences are already ranked by their scores under
CAC, the algorithm stops when the preference context, which matches with CAC, of
rank K is derived. Therefore, the more the best-ranked active preferences match with
CAC, the less the required matching iterations are.

Performance of Query Personalization
This experiment aims at evaluating the performance of content personalization
process. We ran 10 queries with different values of K over a set of 20 random user
profiles. In each run, we calculated the average response time of the personalized
queries and the response time of the initial one. As Fig. 9 shows, the overall time for

 A Framework for OLAP Content Personalization 275

execution of the personalized query is slightly greater than the time required for the
execution of the initial one. This is explained by the fact that, as more preferences are
integrated (in the form of restriction predicates) into the query, the personalized query
returns less rows than the initial one. The decrease in the size of the query results
leads to relatively regularize the overall query response time that would be raised with
the time for personalization. The results follow the trends expected by the nature of K
that allows monitoring the personalized query execution time w.r.t. specific con-
straints: personalization performs well with K. It is important to notice that, for K = 1,
personalized query time is less than the initial query time: the decrease in the content
selection time due to data restriction is more important than the response time in-
crease due to selecting one preference.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

1 5 10 20 30 40

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

Number of integrated preferences k

Performance of Personalization with K

Initial Query Time
Personalized Query Time

Fig. 9. Performance of Query Personalization w.r.t. K

5 Related Works

A lot of research has been carried out on database personalization [11,12]. For in-
stance, the framework in [12] provides preferences as atomic predicates to personalize
the user query. Preferences are independent from user contexts; hence each preference
is applicable for every query. This leads to inaccurate results in an OLAP environ-
ment, e.g., a preference “year = 2010” which is intuitively related to the analysis of
the missions’ fees will be also applied when analyzing publications. We enhance
preferences with analysis contexts and focus on how context-aware preferences have
impact on the multidimensional data selection. Recently, it has been recognized that
an ad hoc approach must be devised for dealing with OLAP preferences [15]. We will
discuss related works in the OLAP field using the following axes: personalization
approaches, and user preference models.

OLAP personalization approaches can be classified into three main categories.
(a) Schema personalization approaches. The works in [2,7] deal with updating
the MDB dimensions and hierarchies in order to adapt the schema to changing re-
quirements. [3] proposes to personalize the OLAP schema at the conceptual level.
User models are defined at design time, and then are combined with rules in order to
generate user-specific schemas at runtime. In this paper, we propose to personalize
dynamically the OLAP content.

276 H. Jerbi et al.

(b) Queries personalization approaches. Two approaches have been proposed for
personalizing OLAP queries: 1) ranking of query results based either on clustering
techniques [18], or on user preferences [5], and 2) query enhancement with dimen-
sions attributes using user-defined rules [14] or using preferences that are defined on
the schema structures [8]. These approaches allow personalizing the OLAP structures
querying, whereas we deal with the personalization of the content selection. Besides,
Bellatreche et al. [1] propose a preference-based framework for personalizing user
queries visualization w.r.t. specific visualization constraints. Thus, the personalization
process is performed after the content selection, while in our framework personaliza-
tion is performed before.
(c) Queries recommendation approaches aim at suggesting queries to the user in
order to assist her in exploring the MDB [4,9]. For a user query Q, the system gene-
rates in addition to the query result, further queries Q1, …Qn that have been posed by
the users [4], or that are computed incrementally based on user preferences [9]. Our
approach, however, consists in integrating preferences into the query Q, then generat-
ing an enhanced query Q’, such that Q is syntactically included in Q’. Our content
personalization approach may be applied at the end of a recommendation process to
more customize the recommended queries.

User preferences are expressed as strict partial order (e.g,. I prefer A to B) [1,5] or
may be associated with a number indicating the user interest degree [10]. [1,5] cannot
capture different degrees of interest, such as ‘I like journal papers very much’, ‘I like
publications about information retrieval a little’. Besides, user preferences are ex-
pressed as (a) hard constraints, that are either satisfied or not satisfied at all [3,8]; or
(b) soft constraints, that should be fulfilled as closely as possible [5]. In this paper, we
are concerned with preferences expressed as hard constraints. Each preference is
associated to a number, which, in our case, indicates the user interest in results that
exactly satisfy this preference. Incorporating other types of preferences within our
framework is part of ongoing work. In [5], the user preferences are integrated within
the query using preference constructors. The focus of our work is different, since we
are interested by preferences as long-term information needs stored in a user profile,
and then automatically extracted at query time saving user effort. Finally, our model
differs from the above models since preferences are context-aware. Their selection is
driven by a context resolution process.

6 Conclusions

Providing customized content is crucial to better satisfying users. One solution here is
static personalization, where different versions of the MDB are generated at design time
for different user types. Such solution will result in both storing a huge volume of data
and implanting several ETL processes. In this paper, we propose a framework for dy-
namic personalization where the MDB content is built at runtime depending on the user
preferences and analysis context. User preferences are defined as predicates on the
OLAP content, and are associated with analysis contexts of different levels of detail. At
runtime, content selection is based on a combination of the user query and preferences
stored in a profile in order to provide a personalized content. We presented personaliza-
tion algorithms and experimental results showing the efficiency of our algorithms.

 A Framework for OLAP Content Personalization 277

Currently, we are focusing on a mining technique that acquires user preferences by
inferring their data analysis behavior. Our future work will focus on the following
issues: we intend to extend our preference model in order to support more types of
preferences, such negative and soft ones, and to personalize content selection using
these types; and we plan to evaluate various scoring functions for preferences.

References

1. Bellatreche, L., Giacometti, A., Marcel, P., Mouloudi, H., Laurent, D.: A personalization
framework for OLAP queries. In: DOLAP, pp. 9–18. ACM, New York (2005)

2. Favre, C., Bentayeb, F., Boussaid, O.: Evolution of Data Warehouses’ Optimization: a
Workload Perspective. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2007. LNCS,
vol. 4654, pp. 13–22. Springer, Heidelberg (2007)

3. Garrigós, I., Pardillo, J., Mazón, J., Trujillo, J.: A Conceptual Modeling Approach for
OLAP Personalization. In: Laender, A.H.F., et al. (eds.) ER 2009. LNCS, vol. 5829, pp.
401–414. Springer, Heidelberg (2009)

4. Giacometti, A., Marcel, P., Negre, E.: Recommending Multidimensional Queries. In: Pe-
dersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2009. LNCS, vol. 5691, pp. 453–
466. Springer, Heidelberg (2009)

5. Golfarelli, M., Rizzi, S.: Expressing OLAP Preferences. In: Winslett, M. (ed.) SSDBM
2009. LNCS, vol. 5566, pp. 83–91. Springer, Heidelberg (2009)

6. Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data cube: A relational aggregation op-
erator generalizing group-by, cross-tab, and sub-total. In: ICDE, pp. 152–159 (1996)

7. Hurtado, C.A., Mendelzon, A.O., Vaisman, A.A.: Maintaining Data Cubes under Dimen-
sion Updates. In: ICDE, pp. 346–355. IEEE Computer Society, Los Alamitos (1999)

8. Jerbi, H., Ravat, F., Teste, O., Zurfluh, G.: Management of Context-aware Preferences in
Multidimensional Databases. In: IEEE ICDIM, pp. 669–675 (2008)

9. Jerbi, H., Ravat, F., Teste, O., Zurfluh, G.: Applying Recommendation Technology in
OLAP Systems. In: Filipe, J., Cordeiro, J. (eds.) ICEIS 2009. LNBIP, vol. 24, pp. 220–
233. Springer, Heidelberg (2009)

10. Jerbi, H., Ravat, F., Teste, O., Zurfluh, G.: Preference-Based Recommendations for OLAP
Analysis. In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2009. LNCS,
vol. 5691, pp. 467–478. Springer, Heidelberg (2009)

11. Kießling, W.: Foundations of preferences in database systems. In: VLDB, pp. 311–322
(2002)

12. Koutrika, G., Ioannidis, Y.E.: Personalized Queries under a Generalized Preference Model.
In: International Conference on Data Engineering, pp. 841–852 (2005)

13. Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: Algebraic and graphic languages for OLAP
manipulations. International Journal of Data Warehousing and Mining 4(1), 17–46 (2008)

14. Ravat, F., Teste, O.: Personalization and OLAP databases. In: Volume New Trends in Data
Warehousing and Data Analysis of Annals of Information Systems, pp. 71–92 (2009)

15. Rizzi, S.: OLAP preferences: a research agenda. In: DOLAP, pp. 99–100 (2007)
16. Simitsis, A., Vassiliadis, P., Sellis, T.: State-Space Optimization of ETL Workflows. IEEE

Transactions on Knowledge and Data Engineering 17(10), 1404–1419 (2005)
17. Smyth, B., Bradley, K., Rafter, R.: Personalization Techniques for Online Recruitment

Services. Communications of the ACM 45(5), 39–40 (2002)
18. Xin, D., Han, J., Cheng, H., Li, X.: Answering top-k queries with multi-dimensional selec-

tions: The ranking cube approach. In: VLDB, pp. 463–475 (2006)

A Coverage Representation Model Based on

Explicit Topology

Salahaldin Juba and Peter Baumann

Jacobs University, 28759 Bremen, Germany

Abstract. In geoservices, coverages denote space-time varying extended

phenomena. Examples include sensor observation time series, raster im-

ages (like hyperspectral satellite imagery), and climate and ocean data.

Coverage properties include both topological (e.g., neighborhood) and

geometrical (e.g., resolution) elements. Obviously, it is paramount for

open geoservices to have a well-defined coverage data model which can

lead to a more efficient processing of spatial queries.

The representation model proposed here is based on the cw-complex

notion and adds a geometrical realization to each topological primitive

in the cw-complex. This model can capture structured coverages such

as raster grids and unstructured coverages such as triangulated irregular

networks (TINs). Also, this model provides a conceptual model for ma-

nipulating coverages in scientific database systems.

Keywords: Coverages, spatial databases, topology.

1 Introduction

Coverage and field terms can be used interchangeably in the literature to ex-
press space-time varying phenomena. coverage/field can be considered a func-
tion (F : D → R) that maps specific location identified by spatial coordinates
(domain D) to physical values (range R) such as temperature and radiometric
reflectance. Coverage domain and range depend on their application which might
be a capturing device such as remote sensor or a simulation model. Coverage dy-
namics and properties vary from one coverage type to another. In ISO 19123 [7],
coverages are described based on there internal cell structure as shown in the
Tables 1 and 2.

Coverages classification according to the internal cell structure [7] facilitate
the description of specific coverage functions and properties1. However, it is
very complex to extend this standard to support other coverages because it does
not provide a coherent definition for different coverage types. In this model,
coverage definition is based on the combinatorial structure of cells constructed
from topological primitive elements including vertices, edges, faces, and volumes
glued together in an inductive way.

1 ISO19123 is approved for reversion by ISO/TC 211 programme maintenance group

(PMG).

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 278–288, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Coverage Representation Model Based on Explicit Topology 279

Table 1. Discrete coverage internal cell structure

Discrete coverages

Coverage Type Internal cell structure

CV DiscretePointCoverage point

CV DiscreteGridPointCoverage point

CV DiscreteCurveCoverage line segment

CV DiscreteSurfaceCoverage polygon

CV DiscreteSolidCoverage volume

Table 2. Continuous coverage internal cell structure

Continuous coverages

Coverage Type Internal cell structure

CV ContinuousThiessenPolygonCoverage point

CV ContinuousQuadrilateralGridCoverage point

CV ContinuousTINCoverage triangle

CV ContinuousHexagonalcoverage hexagon

CV ContinuousSegmentedCurvecoverage line

2 Previous Work

Sharing scientific data is required for collaborative cooperation between scien-
tists and commercial/noncommercial services provision. There are already de-
fined services and standards to achieve this goal such as web coverage service
(WCS)[12]. However, because the underlying data models where these standards
are built on are defined for a specific coverage types, up till now, there is no a
coherent framework for serving different coverage types.

Some of the existing specialized data models, application programming inter-
faces (APIs) and protocols such as raster data array manager (rasdaman)[13],
OpenDAP[11], HDF[4], and NetCDF[10] provide the means for storing, manip-
ulating and sharing array-based scientific data such as time series raster im-
ages. Other services, such as FieldGML[8], assume that continuous phenomena
in space time is acquired by the process of discretization and interpolation. In
order to share a coverage, FieldGML ships the sample data and the interpola-
tion methods that are required to build the coverage to the client. FieldGML
model can save the network bandwidth but it assumes that clients have suf-
ficient processing resources. In the area of computer-aided design and manu-
facturing (CAD/CAM), the existing models, such as boundary representation
(b-rep) and constructive solid geometry (CSV), do not provide a suitable opera-
tion set for manipulating coverages. However, they give a clue how to define the
coverage domain. Furthermore, most of the 3D GIS models are utilizing CAD
models such as b-rep and CSG or 3D TEN (Tetrahedral network)[1]. In general,
these models are suited for discrete object representations, and can not represent
multi-dimensional data.

280 S. Juba and P. Baumann

The coverage representation model is highly influenced by gridfield model [6].
The gridfield model defines a set of minimal closed operations for both structured
and unstructured grids. One drawback of gridfield model is that it treats the
geometrical data exactly as fields and totally based on topological attributes
of grids. Also, gridfield model is very general and grid constraints need to be
validated.

3 Coverage Model

Topology concerned with spatial properties that are preserved under continu-
ous deformations of objects. Encoding topological properties explicitly is very
useful in answering certain geographical queries such as adjacency, and connec-
tivity. Topological spaces are easier to manipulate and process in computers than
geometrical spaces since computers can not be used to completely represent con-
tinuity based on Euclidean distance [3]. For example, in processing geometrical
object, the rounding function may lead to wrong spatial relationship such as con-
tainment. Algorithms that are immune to floating-point errors are introduced
by [9]. Currently, many of the n-dimension models and applications are based
on topology such 3D city, simplified spatial model(SSM), urban spatial model
(USM), etc[15].

Coverage domain can be represented as a cell complex X . Cell complex is any
topological space that can be constructed form the union of non-intersecting
cells. Cells can be restricted to very special cases such as triangles (simplicial
complex) or can allow individual cells to be attached to one another in generic
way (cw-complex). Mathematically, cell complex is based on the definition of
open cells

Definition 1. Let X be a Hausdorff space. A set c ⊂ X is an open k− cell if it
is homeomorphic to the interior of the open k-dimensional ball Dk = {x ∈ Rk| ‖
x ‖< 1}. The number k is unique by the invariance of domain theorem, and is
called dimension of c.

Definition 2. A cell complex constructed inductively indicated as Xk ={Di, 0 ≤
i ≤ k} Where Di is called space partition or subspace, i is the subspace dimen-
sion, k is the cell complex dimension, and i, k ∈ N .

Definition 3. The space partition Di is a set of all cells that have the same
topological dimension i.

The above definitions are general enough to represent different coverage types.
For example, the coverage domain of xyz 3D linear meshes can be represented
as a cell complex X3 such that:

D0 ⊆ {a0, a2, ..., an} where ai is a 0-cell, i, n ∈ N .
D1 ⊆ {a ∈ ρ(D0)| |a| = 2}
D2 ⊆ {a ∈ ρ(D1)| |a| ≥ 3}
D3 ⊆ {a ∈ ρ(D2)| |a| ≥ 4}

A Coverage Representation Model Based on Explicit Topology 281

Fig. 1. Cuboid topology

Where ρ() indicates power set, a indicates n-cell, and || indicates cardinality
constraints

The space partitions D0, D1, D2, D3 represents a set of vertices, edges, faces,
and volumes respectively. The cardinality constraints define the number of min-
imum cells required to construct a higher cells. For example, the minimum num-
ber of 1-cells needed to construct a 2-cell is three. The coverage domain of xyz
3D can be altered to support time, such that D4 = {a ∈ ρ(D3)| |a| = 2} or to
support other coverage types such as time series point observation. The coverage
definition is based on incident relationship[2,6,5]. For example, a � b reads as a
indecent to b if a ∈ b.

This combinatorial structure of cell complex allows data binding for different
cell complex partition [6]. In this context, the coverage can be defined as a set
of functions that map each space partition Di to a certain range Ri, that is
C = {fi, ..., fk} where fi : Di �→ Ri for 0 ≤ i ≤ k.

3.1 Coverage Topological Constraints

The combinatorial structure of cell complex may lead to the construction of im-
proper meshes. To insure the generation of well-structured cell complexes certain
rules can be validated. Note that, the coverage domain topological constraints
are not necessarily mutually exclusive.

1. Coverage cells do not coincide, i.e., they are not redundant, that is, (∀a, b ∈
Xk|a �= b)

2. Coverage domain should be homogeneous, that is, (∀a ∈ Xk|k > 0) there
exists b ∈ Xk such that a ∈ b. Homogeneity ensures that nD grid is a set on
n− cells where isolated vertices and dangling edges are not allowed.

3. The coverage domain is strongly connected, that is, given Xk, any two k-cells
can be joined by a “chain” of k-cells in which each pair of neighboring cells
have a common k − 1− cell.

4. The coverage domain do not branch, i.e., given Xk coverage domain each
K − 1− cell is indecent to precisely two k-Cells.

Fig 2. depicts different invalid coverage domains. Homogeneity, branching and
connectivity are violated by Fig 2. a, b and c respectively.

282 S. Juba and P. Baumann

Fig. 2. Invalid coverage domain

The validity of certain coverage domain constraints such connectivity can
be achieved by the employment of Euler-Poincarè Formula. The Euler-Poincarè
formula of space Xk can be given by:

χ(Xk) =
k∑

i=0

(−1)i|ai| = k (1)

Where |ai| represents the number of cells which have the ith topological dimen-
sion. For 2D spaces, χ(X2) = 2, which reduce to classical Euler formula

V − E + F = 2 (2)

Cardinality constraints can be altered to capture different coverage types. For
example, xyz 3D domain can be altered to capture only TEN meshes by changing
the cardinality constraints of D2 and D3 subspaces as follows:

1. D2 ⊆ {a ∈ ρ(D1)| |a| = 3}
2. D3 ⊆ {a ∈ ρ(D2)| |a| = 4}

3.2 The Geometric Realization of the Coverage Model

Topology and geometry have a tight relationship and in some cases they are de-
pendent. For example, point set topology was developed using metric (distance)
relationships. Furthermore, grid dimensionality is an attribute that depends on
both topological and geometrical attributes. To illustrate, one can not construct
4-dimensional object in 2D space.

The definition of cell complex do not take into account geometrical properties.
This issue can be treated by mapping each element in the coverage domain to its
geometrical realization. For example, given a cell complex Xk which represent a
linear coverage domain such as the Cartesian grid. The geometrical realization
of the coverage domain can be achieved by mapping D0 to a set of vectors in
k-dimensional euclidean space such that ai �→ V̂ where V̂ ∈ Rk, ai ∈ D0, i ∈ N .

A Coverage Representation Model Based on Explicit Topology 283

Fig. 3. On the left: Topological space, on the right: its geometrical realization

3.3 Geometrical Constraints of Coverages

The addition of the geometrical realization requires more data integrity checks.

1. 0-cells do not coincide, i.e. they have different assigned vectors in the eu-
clidean space. That is (∀x, y ∈ D0|x �= y) ⇒ (X̂ �= Ŷ |x �→ X̂, y �→ Ŷ).

2. Any two cells in the same coverage are not geometrically intersected. i.e.
(∀x, y ∈ Xk|x �= y) ⇒ (intersect(x, y) = φ). See Fig.2 d.

The first condition ensures that each vertix is unique which in turn can be used
to support the topological integrity constraints. The second condition, ensures
that each point in space has a valid data assigned to it.

4 Coverage Model Benefits

The generality of the coverage representation model can lead to the provision of
a coherent models for representing spatial data as follows:

– Coherent model for scientific data: The coverage model can represent differ-
ent scientific data sets including structured/ unstructured meshes. Different
scientific communities utilize different coverage types. For example, in ecol-
ogy hexagonal girds are widely used to represent movement paths. Rectilin-
ear grids are used to represent different spatial resolutions and it is used in
near ocean simulations.

– Coherent model for raster data interpretation: In GIS, raster images can
be interpreted as point raster and as cell raster. In point raster, each point
represents an observation in the euclidean space and it has an exact loca-
tion. In cell raster, each cell represents an area segment. Digital elevation
model(DEM) falls in point raster classification and land use raster images
falls in cell raster interpretation.

The cell complex definition Xk = {Di, 0 ≤ i ≤ k} can capture both cases.
Point raster, is constructed from D0 subspace while cell raster is constructed
from D0, D1, and D2 subspaces. Furthermore, raster data model is imple-
mented as a multidimensional arrays where the array index either represents
the top left cell corner or cell center. These two cell coordinate systems,

284 S. Juba and P. Baumann

center-based and upperleft-based, may lead to overlaying problems in raster
algebra. In this model, these errors can be found immediately by comparing
the geometrical realization of the 0-cells of the raster grid.

Fig. 4. Different interpretation of raster images

5 Coverage Model Operations

Operators are defined on three levels, which are cell, space partition and coverage
and can be classified to geometrical and topological operators. The Bind oper-
ation [6] (simply the constructor) assigns metadata information to coverages,
and binds subspaces to physical values. In GIS, metadata is very important not
only for social and reference purposes but also for processing purposes. For ex-
ample, even if the coverage cells have geometrical realization(e.g. coordinates
for 0-cells), it is impossible to project coverages if they are not assigned spatial
reference information.

The assignment of metric data to each n-cell allows the calculation of grid
metric attributes such as distance between two cells, length of line segment,
polygon perimeter, cell area, cell volume, the total coverage area and the relation
between cells such as containment, and intersection. For example, The Hausdorff
distance of two cells A and B in the cell complex Xk can be calculated by the
following algorithm. For every 0-cell a of A, find its smallest distance to any
0-cell b of B and keep the smallest distance found among all points. That is
D(A, B) = mina�A{minb�B{d(a, b)}} where d(a, b) = (

∑k
i=1 |xi + yi|2)

1
2 where

a, b ∈ D0, a �→ x̂, b �→ ŷ and k is the length of x and y vectors and i is the vector
index. The calculation of geometrical attributes such as distance and volumes
returns a scalar values which can be used as predicates in spatial queries such as
select all 2-cells from a coverage where the area is greater that a specific value.

A Coverage Representation Model Based on Explicit Topology 285

Fig. 5. The intersection and the union of two coverages

A more complicated operations are the overlaying operations such as intersect
and union of different coverages which in turn creates a new coverage. Fig. 5
shows an example of two coverages intersection and union based on geometrical
attributes. This kind of operation is quite complex, the attributes from both
coverages are merged leading to null values. Furthermore, the new coverage
domain topology needs to be reconstructed properly.

Regarding the topological operations, gridfield algebra defines a minimal al-
gebraic operations for handling grids. These operators can handle both coverage
domain and attributes. The following gives a brief description of these operators:

– Restrict operator: works as a relational select, the restrict operator ensure
that the resulting gridfield domain is well supported after applying the
predicate.

– Accrete operator: grows a gridfield by attaching cells from another gridfield.
– Merge operator: find the topological intersection between two gridfields and

retains the data values defined over this intersection.
– Cross Product: create a higher-dimensional gridfield from two

lower-dimensional gridfields.
– Regrid: maps a source gridfield cell values to target gridfield cells and then

aggregates the bounded data and binds it to the target coverage.

6 Case Study

The current WCS standard offers three operations which are getCapabilities,
describeCoverage and getCoverage. The first two operations gives a brief de-
scription and detailed description a bout the server offering and can be served

286 S. Juba and P. Baumann

Fig. 6. Conceptual GetCoverage evaluation sequence, src:[12]

Fig. 7. GetCoverage evaluation scenario. Topological and geometrical operators are

represented in different colors

by querying the assigned coverage metadata. The most complicated operation
is getCoverage which might require different processing stages. Each getCover-
age processing step can be mapped to a certain coverage representation model
operation. The spatial subsetting can be achieved by employment of the geomet-
rical intersection. Also, the Bind operation can be employed to perform range
subsetting. The coverage model operations are suited for processing getCover-
age operation since GetCoverage operations preserve the coverage underlying
topology.

The following scenario shows how WCS getCoverage operation can be eval-
uated. Assume a coverage (time series raster images) with radiance. Radiance
has two axes, wave length with three keys(0.6, 0.7, 0.9) and forecast time with
four keys (1/1/2005, 1/1/2006, 1/1/2007, 1/1/2008). A simple getCoverage re-
quest can be formulated as the following: select 0.6 and 0.7 radiance at 1/1/2005
within a certain bounding box (BBox). This query can be answered as shown
in Fig. 7. First, the coverage domain can be constructed by applying the cross
product and restrict operation. After that, the coverage domain can be mapped
to the suitable wave lengths and intersected with BBox.

A Coverage Representation Model Based on Explicit Topology 287

7 Discussion and Future Work

The coverage representation model can be used to process manipulate and share
scientific data and one single set of operations is available for regular meshes
and irregular meshes. Also, this model can handle some of the raster data model
drawbacks such as closed curve theorem and Egenhofer relations[14].

This model tackles gridfield limitations and adds extra constraints and func-
tionalities based on the geometrical properties of grids to capture coverages
properly. Coverage spatial queries requires the combination of different oper-
ations which in turn leads to the generation of different execution plans. For
example, in the WCS scenario the bind operation and the restrict operation can
be swapped. This model provides the basis for defining a query language for
manipulating coverages.

Currently we are working on additionally modeling special coverage types
such as curvilinear grids.

Acknowledgement

This Work is supported by ESA under contract HMA-FO Task 3.

References

1. Abdul-Rahman, A., Pilouk, M. (eds.): Spatial Data Modelling for 3D GIS. Springer,

Heidelberg (2008)

2. Berti, G.: Generic Software Components for Scientic Computing. PhD thesis, Tech-

nical University Cottbus (2000)

3. Franklin, W.: Cartographic errors symptomatic of underlying algebra problems,

pp. 190–208 (1984)

4. Hartnett, E.: Merging the NetCDF and HDF5 Libraries to Achieve Gains in Per-

formance. In: Earth Science Technology Conference, ESTC (2004)

5. Heinzl, R.: Data structure properties for scientific computing: an algebraic topol-

ogy library. In: POOSC 2009: Proceedings of the 8th Workshop on Parallel/High-

Performance Object-Oriented Scientific Computing, pp. 1–6. ACM, New York

(2009)

6. Howe, B.: Gridfields: Model-Driven Data Transformation in the Physical Sciences.

PhD thesis, Portland State University (2007)

7. ISO. The OpenGIS Abstract Specification Topic 6, Schema for Coverage Geometry

and Functions (August 2003)

8. Ledoux, H.: Representing Continuous Geographical Phenomena with FieldGML.

Technical report, Geo-Database Management Center (2008)

9. Mount, D.M.: Geometric intersection. In: Handbook of Discrete and Computational

Geometry, pp. 615–630. CRC Press, Inc., Boca Raton (1997)

10. Rew, R., Davis, G.: NetCDF: An Interface for Scientific Data Access. IEEE Com-

puter Graphics and Applications 10, 76–82 (1990)

11. Sgouros, T.: OPeNDAP User Guide (July 2007)

12. Whiteside, A., Evans, J.: Web Coverage Service (WCS) Implementation Standard

(March 2008)

288 S. Juba and P. Baumann

13. Widmann, N., Baumann, P.: Efficient execution of operations in a dbms for multi-

dimensional arrays. In: SSDBM 1998: Proceedings of the 10th International Confer-

ence on Scientific and Statistical Database Management, pp. 155–165 (July 1998)

14. Winter, S., Frank, A.: Topology in raster and vector representation. GeoInformat-

ica 4, 35–65 (2004)

15. Yanbig, W., Lixin, W., Wenzhing, S., Xiaomeng, L. (eds.): On 3D GIS Spatial

Modeling, ISPRS Workshop on Updating Geo-spatial Databases with Imagery &

The 5th ISPRS Workshop on DMGISs. ISPRS (2007)

Exact and Efficient Proximity Graph

Computation

Michail Kazimianec and Nikolaus Augsten

Faculty of Computer Science, Free University of Bozen-Bolzano,

Dominikanerplatz 3, 39100 Bozen, Italy

kazimianec@inf.unibz.it, augsten@inf.unibz.it

Abstract. Graph Proximity Cleansing (GPC) is a string clustering al-

gorithm that automatically detects cluster borders and has been suc-

cessfully used for string cleansing. For each potential cluster a so-called

proximity graph is computed, and the cluster border is detected based

on the proximity graph. Unfortunately, the computation of the prox-

imity graph is expensive and the state-of-the-art GPC algorithms only

approximate the proximity graph using a sampling technique.

In this paper we propose two efficient algorithms for the exact com-

putation of proximity graphs. The first algorithm, PG-DS, is based on

a divide-skip technique for merging inverted lists, the second algorithm,

PG-SM, uses a sort-merge join strategy to compute the proximity graph.

While the state-of-the-art solutions only approximate the correct prox-

imity graph, our algorithms are exact. We experimentally evaluate our

solution on large real world datasets and show that our algorithms are

faster than the sampling-based approximation algorithms, even for very

small sample sizes.

1 Introduction

String data is omnipresent and appears in a wide range of applications. Often
string data must be partitioned into clusters of similar strings, for example, for
cleansing noisy data. Cleansing approaches that are based on clustering substi-
tute all strings in a cluster by the most frequent string. Such cleansing methods
are typically applied for non-dictionary strings since for such data the cleansing
algorithm can not take advantage of a reference table with the correct values.
Non-dictionary data are, for example, personal data like name and address, or
proper names in geography, biology, or meteorology (e.g., names of geographic
regions, plants, cyclones, and hurricanes).

Recently, Mazeika and Böhlen [1] introduced the graph proximity cleansing
(GPC) method for clustering and cleansing non-dictionary strings. A distin-
guishing feature of the GPC clustering is the automatic detection of the cluster
borders using a so-called proximity graph. The proximity graph measures the
number of strings within different neighborhoods of the cluster center.

The computation of the proximity graphs is the bottleneck in GPC algo-
rithms. The proximity graph is expensive to compute and must be computed

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 289–304, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

290 M. Kazimianec and N. Augsten

for each potential cluster. To make GPC feasible for realistic datasets, Mazeika
and Böhlen [1] propose an algorithm that approximates the proximity graphs
using a sampling technique on an inverted list index. The approximated prox-
imity graphs are then used to decide the cluster borders. But the approximate
proximity graphs are different from the exact ones and thus lead to errors in the
clusters.

In this paper we present two efficient GPC algorithms that compute the exact
proximity graph. The first algorithm, PG-SM, is based on a sort-merge tech-
nique; the second algorithm, PG-DS, uses an inverted list index and a divide-skip
strategy to compute the proximity graph. We experimentally evaluate our exact
algorithms on large real-world datasets (for example, misspellings of the Ox-
ford text archives) and show that our algorithms are faster than the previously
proposed sampling algorithm even for small samples.

Summarizing, our contribution is the following:

– We propose two new algorithms, PG-SM and PG-DS, for the exact compu-
tation of GPC clusters. To the best of our knowledge, this is the first work
to propose an exact solution for GPC.

– We experimentally evaluate our solution on large real-world datasets and
show the scalability of our approach.

– We compare to the state-of-the-art GPC algorithm that is based on sampling
and only approximates the GPC clusters. We show that our exact algorithm
is faster even for small samples, for which the approximation error is large.

The remaining paper is organized as follows. In Section 2 we introduce basic
concepts and the state-of-the-art GPC algorithm. We define the problem in Sec-
tion 3. In Section 4 we present our solution for GPC, in particular, a novel
algorithm for computing the cluster center and two efficient algorithms, PG-SM
and PG-DS, for computing the exact proximity graph. We experimentally eval-
uate our solution on large real world datasets in Section 5 and discuss related
work in Section 6. In Section 7 we draw conclusions and point to future work.

2 Background

In this section we introduce the proximity graph, the GPC method, and the
state-of-the-art GPC algorithm.

2.1 Proximity Graph

Given a string s, the extended string s̄ is s prefixed and suffixed with q − 1
dummy characters ‘#’. A q-gram, κ, of s is a substring of length q of the
extended string s̄. The profile P (s, q) of s is the set of all pairs (κ, i), where κ
is a q-gram of s, and i is the i-th occurrence of κ in s̄. We use the term q-gram
interchangeably for κ and the pair (κ, i), and denote (κ, i) with κi.

The overlap o(P (s, q), P (u, q)) = |P (s, q) ∩ P (u, q)| between two profiles
P (s, q) and P (u, q) is defined as the number of q-grams that two profiles share.
Intuitively, two strings are similar if they have a large overlap.

Exact and Efficient Proximity Graph Computation 291

adriana
marvin

manuel jeanne

vivian

clive

vivien vivyan

2

4

6

3

1

5

(a) Neighborhoods

1 2 3 4 5 6

2

4

6

0

vivian
vivien
vivyan

vivian
8

7

vivianvivian

of
 s

tr
in

gs

vivian
vivien
vivyan
marvin

vivien
vivyan
marvin
adriana
manuel
jeanne
clive

overlap

(b) Exact Proximity Graph

1 2 3 4 5 6

2

4

6

0

8

7

vivian
vivian

of

 s
tr

in
gs

vivian

manuel
jeanne

adriana

vivian

vivyan

vivyan
vivien

overlap

(c) Approx. Proximity Graph

Fig. 1. Neighborhoods, Exact and Approximate Proximity Graphs for ‘vivian’

The dataset, D, is a set of strings. The neighborhood of profile P in dataset
D for overlap threshold τ is the set of all strings of D which have an overlap
of at least τ with P , N(D, P, τ) = {s ∈ D : o(P, P (s, q)) ≥ τ}. If P and D are
clear from the context, we write Nτ for N(D, P, τ).

Example 1. The profiles of the strings s = vivian and u = vivien for q = 2 1 are
P (s, q) = {#v1, vi1, iv1, vi2, ia1, an1, n#1} and P (u, q) = {#v1, vi1, iv1, vi2,
ie1, en1, n#1}. The overlap between the profiles of s and u is o(P (s, q), P (u, q)) =
|{#v1, vi1, iv1, vi2, n#1}| = 5. The neighborhood of the profile P1 = P (s1, q) in
the dataset D = {s1, s2, . . . , s8} = {vivian, adriana, vivien, marvin, vivyan,
manuel, jeanne, clive} for overlap threshold τ = 3 is N(D, P1, τ) = {s1, s3, s5}.
Figure 1(a) illustrates the neighborhoods of P1 in D.

The center Pc(Nτ , q) of the neighborhood Nτ = N(D, P, τ) is a profile that
consists of the K most frequent q-grams in B, where B =

⊎
s∈Nτ

P (s, q) is the
bag of all q-grams of neighborhood Nτ , and K = � |B|

|Nτ | + 0.5� is the average size
of the profiles in Nτ . Formally, a profile P is a center of the neighborhood Nτ

iff (i) P ⊂ B, (ii) |P | = K, and (iii) ∀κ′ ∈ P ∀κ ∈ B \ P : φ(κ′, B) ≥ φ(κ, B),
where φ(κ, B) is the number of occurrences of κ in B.

Example 2. We continue Example 1 and compute the center of the neighborhood
N3 = N(D, P1, 3) = {s1, s3, s5}: B = P (s1, q) � P (s3, q) � P (s5, q) = {#v1,
#v1, #v1, vi1, vi1, vi1, iv1, iv1, iv1, vi2, vi2, ia1, an1, an1, n#1, n#1, n#1,
ie1, en1, vy1, ya1}, K = � 21

3 + 0.5� = 7, and the center of N3 is Pc(N3, q) =
{#v1, vi1, iv1, n#1, vi2, an1, ia1}.
The proximity graph, PG(s, D, q) = ((1, |N1|), (2, |N2|), . . . , (k, |Nk|)), k =
|P (s, q)|, of string s ∈ D maps each overlap thresholds τ , 1 ≤ τ ≤ k, to the sizes
of the respective neighborhoods Nτ , where Nτ is recursively defined as follows:

Nτ =

{
{s} if τ = |P (s, q)|,
N(D, Pc(Nτ+1, q), τ) ∪Nτ+1 otherwise

(1)

1 In the following examples we use q = 2 by default.

292 M. Kazimianec and N. Augsten

Intuitively, the proximity graph shows the neighborhood sizes of the string s for
all possible overlap thresholds. The maximum overlap is the size of the string
profile, the minimum overlap is 1 (the trivial case τ = 0, for which the neighbor-
hood is D, is not considered). A large overlap threshold requires all strings in the
respective neighborhood to be similar to s. Thus the size of the neighborhood
increases if the overlap threshold decreases.

The proximity graph of a string s is computed from right to left, i.e., from the
largest to the smallest overlap. The neighborhood of the rightmost point in the
proximity graph is defined to be {s}. For the other points the neighborhood is
computed around the center of the previous neighborhood, as defined in (1). The
union with Nτ+1 guarantees that the proximity graph is a monotonic decreasing
function even though the center changes.

Example 3. We continue the previous example and compute the proximity graph
for the string s1 = vivian. The overlap threshold ranges between τ = 1 and
τ = |P (s1, q)| = 7. For the maximum overlap threshold the neighborhood is
N7 = {s1} by definition. The neighborhood N6 is computed around the cen-
ter Pc(N7, q) = {#v1, vi1, iv1, vi2, ia1, an1, n#1} of N7, the neighborhood N5

around the center of N6, etc. Table 1 shows the neighborhoods Nτ and their
centers for all values of τ . The resulting proximity graph PG(s1, D, q) = {(1, 8),
(2, 4), (3, 3), (4, 3), (5, 3), (6, 1), (7, 1)} is illustrated in Figure 1(b).

2.2 Proximity Graph Cleansing

We discuss the Graph Proximity Cleansing (GPC) method for clustering strings.
GPC takes a string dataset D as input and returns a set of clusters. The clusters
are mutually disjoint and cover the dataset D, i.e., no clusters overlap and the
union of all clusters is the dataset D.

The pseudo-code for GPC is given in Algorithm 1. GPC randomly picks a
string s from the set of eligible cluster centers, which initially is the dataset D.
The cluster for s consists of strings in the neighborhood of s, i.e., strings similar
to s. The size of the neighborhood that forms the cluster is computed based on
the proximity graph of s, as detailed below. The new cluster is added to the set
of clusters, and all strings of the new cluster are removed from the set of eligible

Table 1. Computation of the Proximity Graph PG(vivian, D, q) in Example 3

τ Neighborhood Nτ Center of Nτ

7 {s1} {#v1, vi1, iv1, vi2, ia1, an1, n#1}
6 {s1} {#v1, vi1, iv1, vi2, ia1, an1, n#1}
5 {s1, s3, s5} {#v1, vi1, iv1, vi2, ya1, an1, n#1}
4 {s1, s3, s5} {#v1, vi1, iv1, vi2, ya1, an1, n#1}
3 {s1, s3, s5} {#v1, vi1, iv1, vi2, ya1, an1, n#1}
2 {s1, s3, s4, s5} {#v1, vi1, iv1, vi2, #m1, an1, n#1}
1 {s1, s2, s3, s4, s5, s6, s7, s8} {#v1, vi1, iv1, vi2, ma1, an1, n#1}

Exact and Efficient Proximity Graph Computation 293

Algorithm 1: GPC(D,q)
Data: D: dataset of strings; q: size of q-grams
Result: set of mutually disjoint clusters covering D
begin1

Clusters ← ∅; // initialize the set of string clusters2
E ← D; // initialize the set of eligible centers3
while E
= ∅ do // while non-clustered strings are left4

s ← random string from the set E of eligible centers;5
P ← P (s, q);6
// compute the proximity graph
PG[1..|P |] : empty array of neighborhoods; // initialize the proximity graph7
PG[|P |] = {s}; // neighborhood of P for τ = |P | is {s}8
for τ = |P | − 1 to 1 do // for each overlap threshold9

P ← Pc(P [τ + 1], q); // P is center of previously computed neighborhood10
PG[τ] ← N(D, P, τ) ∪ PG[τ + 1]; // τ-neighborhood of P in D11

b ← cluster border (rightmost index of the longest horizontal line in PG);12
// update clusters and eligible centers
Clusters ← Clusters ∪ {PG[b]}; // add new cluster13
E ← E \ PG[b]; // clustered strings not eligible as centers14

// merge overlapping clusters
while ∃Ci, Cj ∈ Clusters : Ci
= Cj , Ci ∩ Cj
= ∅ do15

Clusters ← Clusters \ {Ci, Cj} ∪ {Ci ∪ Cj};16

return Clusters;17

end18

Fig. 2. GPC Clustering Algorithm

centers. When the set of eligible centers is empty, all strings are clustered. The
resulting clusters may overlap. In order to get a hard clustering, overlapping
clusters are merged.

GPC uses the proximity graph to detect cluster borders. The cluster border is
a specific overlap threshold τ . Intuitively, the overlap is decreased until decreas-
ing it further does not increase the neighborhood size. This corresponds to a
horizontal line in the proximity graph. If there are multiple horizontal lines, the
cluster border is defined by the longest one; between multiple horizontal lines
of the same length the rightmost horizontal line is chosen. The cluster border is
the overlap threshold at the right endpoint of the longest horizontal line.

Example 4. Consider the proximity graph PG(s, D, q) illustrated in Figure 1(b).
The longest horizontal line is given by |N3| = |N4| = |N5|. Therefore, the cluster
border is b = 5 and the cluster is {vivian, vivien, vivyan}.

2.3 State-of-the-Art Proximity Graph Computation

In Algorithm 1, the proximity graph is computed in the innermost loop in
Lines 1–1. The critical operation in this loop is the computation of the neighbor-
hood N(D, P, τ). The straightforward algorithm computes the overlap between
P and each string in the dataset D and selects the strings with overlap at least τ .
This approach is too expensive, since the neighborhood must be computed |P |
times for each proximity graph, and the number of proximity graphs is propor-
tional to the number of strings in the dataset.

294 M. Kazimianec and N. Augsten

The state-of-the-art algorithm by Mazeika and Böhlen [1] uses an inverted
list index and sampling. An inverted list L(κ, D) = (s | s ∈ D, κ ∈ P (s, q)) of a
q-gram κ is the list of all strings s ∈ D that contain κ. The inverted list index
LIndex(D, q) is the array of all inverted lists of the q-grams that exist for D.

Example 5. The inverted list index for D = {s1, s2, . . . , s8} = {vivian, adriana,
vivien, marvin, vivyan, manuel, jeanne, clive} consists of 36 inverted lists.
The inverted lists of the q-grams in P = {#v1, vi1, iv1, vi2, ya1, an1, n#1} are

L(#v1, D) = (s1, s3, s5)
L(vi1, D) = (s1, s3, s4, s5)
L(iv1, D) = (s1, s3, s5, s8)
L(vi2, D) = (s1, s3)

L(ya1, D) = (s5)
L(an1, D) = (s1, s2, s5, s6, s7)
L(n#1, D) = (s1, s3, s4, s5)

A string is in the neighborhood Nτ = N(D, P, τ) of profile P if it has τ q-grams
in common with P . Thus all strings that are in the intersection of the inverted
lists of τ q-grams of P are in the τ -neighborhood Nτ . In order to get all strings
in Nτ , the inverted lists of all subsets of size τ of P must be intersected.

With {κ1, κ2, . . . , κτ} ⊆ P we denote a subset of τ q-grams of P . The number
of subsets of size τ of P is

(|P |
τ

)
, and we enumerate them as {κi

1, κ
i
2, . . . , κ

i
τ},

1 ≤ i ≤
(|P |

τ

)
. The τ -neighborhood N(D, P, τ) is computed as the union of the

intersected inverted lists for all subsets of size τ of P :

N(D, P, τ) =
(|P |

τ)⋃
i=1

(L(κi
1, D) ∩ L(κi

2, D) ∩ . . . ∩ L(κi
τ , D))

Obviously, it is not feasible to compute a combinatorial number of intersections.
The state-of-the-art algorithm by Mazeika and Böhlen [1] uses sampling to deal
with the high runtime complexity. Instead of computing the intersection for all
subsets, the intersection is computed only for a sample of S subsets. The pseudo-
code is shown in Algorithm 2.

Algorithm 2: PG-S(LIndex,S, s,q)
Data: LIndex: array of inverted lists, S: sample size, s: string; q: size of q-grams
Result: PG: array of neighborhoods
begin1

P ← P (s, q);2
PG[1..|P |] : empty array of neighborhoods; // initialize the proximity graph3
PG[|P |] = {s}; // neighborhood of P for τ = |P | is {s}4
for τ = |P | − 1 to 1 do5

P ← Pc(P [τ + 1], q); // P is center of previously computed neighborhood6
for i = 1 to S do7

Generate a random τ -subset {κ1, . . . , κτ} ⊂ P ;8
PG[τ] ← PG[τ] ∪ (LIndex[κ1] ∩ · · · ∩ LIndex[κτ]);9

PG[τ] ← PG[τ] ∪ PG[τ + 1]; // τ-neighborhood for P in D10

return PG;11

end12

Fig. 3. PG-S: Proximity Graph Computation with Inverted Lists and Sampling

Exact and Efficient Proximity Graph Computation 295

Sampling introduces an error, and the neighborhood is only approximated.
Figure 1(c) shows an approximate proximity graph that results from the sam-
pling approach; it is different from the exact graph in Figure 1(b).

Example 6. We continue Example 5 and compute the neighborhood N(D, P, 3)
for P = {#v1, vi1, iv1, vi2, ya1, an1, n#1} and sample size S = 2. We need to
find the strings that contain at least 3 q-grams of P . First, we pick two random
subsets of size τ of P and get {#v1, iv1, ya1} and {vi1, iv1, an1}. Then we com-
pute the intersections of the inverted lists, L(#v1, D)∩L(iv1, D)∩L(ya1, D) =
{s1, s3, s5}∩{s1, s3, s5, s8}∩{s5} = {s5} and L(vi1, D)∩L(iv1, D)∩L(an1, D) =
{s1, s3, s5} ∩ {s1, s3, s5, s8} ∩ {s1, s2, s5, s6, s7} = {s1, s5}. Finally, we compute
N3 = {s5} ∪ {s1, s5} = {s1, s5}.

3 Problem Definition

GPC is a clustering approach for strings that automatically detects the cluster
borders. The brute force GPC algorithm intersects inverted q-gram lists to com-
pute the cluster borders and requires a combinatorial number of intersections,
making the exact computation of GPC infeasible. The state-of-the-art algorithm
uses sampling to reduce the number of intersections and only approximates the
GPC clusters, thus trading in quality for speed.

Our goal is to develop an exact algorithm for computing GPC clusters that
is efficient and scales to large datasets with thousands of strings.

4 Efficient Proximity Graph Computation

In this section we present our solution for the exact proximity graph computa-
tion. We give a new data structure to manage inverted q-gram lists efficiently,
we discuss an efficient algorithm to compute the center of a neighborhood, and
finally introduce the PG-DS and PG-SM algorithms.

4.1 Initialization of String Profiles

In our algorithms we frequently need to access data for all q-grams of a profile,
for example, their inverted lists. We assign consecutive IDs to strings and q-
grams that allow us to perform this operation in constant time. For dataset D
we initialize an array of size |D| in which element i stands for string si and points
to its profile. The profile is an array of q-gram IDs.

To produce this data structure, we scan the dataset and assign consecutive
IDs to the strings. For each string s the profile P (s, q) is computed. We maintain
a dictionary of (κi, ID)-pairs that assigns consecutive IDs to q-grams κi and is
implemented as a binary tree. We look up each q-gram of the newly computed
profile in the dictionary. If the q-gram is there, we assign the respective ID,
otherwise the q-gram is new, gets the next free ID, and is stored in the dictionary.
The profile is stored as the array of its q-gram IDs. After the initialization the
q-gram dictionary is no longer needed and can be dropped.

296 M. Kazimianec and N. Augsten

Example 7. We show the initialization step for dataset D = {s1, s2, . . . , s8} =
{vivian, adriana, vivien, marvin, vivyan, manuel, jeanne, clive}. The dictio-
nary maps the 36 distinct q-grams of D to IDs:

#v1 vi1 iv1 vi2 ia1 an1 n#1 · · · nn1 ne1 e#1 #c1 cl1 li1 ve1

↓ ↓ ↓ ↓ ↓ ↓ ↓ · · · ↓ ↓ ↓ ↓ ↓ ↓ ↓
1 2 3 4 5 6 7 · · · 30 31 32 33 34 35 36

We get the following data structure that associates the string IDs with the
corresponding profiles of q-gram IDs (the string names shown below are not part
of the data structure):

String ID → String Profile String ID → String Profile
vivian: 1 → (1, 2, 3, 4, 5, 6, 7) vivyan: 5 → (1, 2, 3, 21, 22, 6, 7)
adriana: 2 → (8, 9, 10, 11, 5, 6, 12, 13) manuel: 6 → (16, 17, 6, 23, 24, 25, 26)
vivien: 3 → (1, 2, 3, 4, 14, 15, 7) jeanne: 7 → (27, 28, 29, 6, 30, 31, 32)
marvin: 4 → (16, 17, 18, 19, 2, 20, 7) clive: 8 → (33, 34, 35, 3, 36, 32)

4.2 Computation of the Center Profile

Recall that the center of neighborhood Nτ is a profile with the K most frequent
q-grams in Nτ , where K is the average length of the profiles in the neighborhood.
In order to compute the center (see Algorithm 3), we maintain a min-heap of
size K that stores (frequency, q-gram)-pairs. The top element is the pair with
the minimum frequency value. In addition, we maintain an array of q-gram
frequencies (histogram) and an array with the address of each q-gram in the
min-heap (or −1 if the q-gram is not in the heap). The indices of both arrays
are q-gram IDs, and we access the value for a specific q-gram in constant time.

First, we compute the size K of the center. Then we incrementally update
the histogram with the frequencies of the q-grams that exist for the neighbor-
hood Nτ . If the frequency of an updated q-gram is equal to or greater than the
minimum frequency on the heap, the heap must be updated. If the q-gram is
not yet in the heap, we add the q-gram and its frequency as a new element.
Otherwise, we use the address array to find the q-gram on the heap in constant
time; we update its frequency and heapify. We pop the top element if the heap
grows larger than K. When all q-grams are processed, the heap stores the K
most frequent q-grams of the neighborhood Nτ .

The heap operations push, pop, and update maintain the array of addresses
whenever a heap element changes its position, is removed, or inserted. The top
operation returns the minimum key, i.e., the minimum frequency of the heap.

Example 8. We continue Example 7 and compute the center of the neighborhood
N3 = {s1, s3, s5} = {1, 3, 5}. The average profile size of the strings in the neigh-
borhood is K = 7. The heap stores pairs (hist[κ], κ), where hist[κ] is the current
frequency of κ in the histogram. After processing vivian, the top element of the
heap is (1, 1), the other elements are (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7). After
vivien, the heap stores (1, 15) (top), (2, 4), (1, 6), (2, 1), (2, 2), (2, 3), (2, 7). The
final heap stores the K most frequent q-grams in the neighborhood N3: (1, 22)
(top), (2, 4), (2, 6), (3, 1), (3, 2), (3, 3), (3, 7).

Exact and Efficient Proximity Graph Computation 297

Algorithm 3: AdjustCenter(N,q)
Data: N : string neighborhood; q: size of q-grams
Result: center of neighborhood N
begin1

minHeap : empty min-heap of (frequency,q-gram)-pairs;2
κmax ← max(

⋃
s∈N P (s, q)); // find the q-gram with the maximum ID3

addr[1..κmax]: q-gram addresses in minHeap; // initialize with −1’s4
hist[1..κmax]: q-gram frequencies; // initialize with 0’s5
K ← �(0.5 +

∑
s∈N |P (s, q)|)/|N |�; // compute the average size of the center6

foreach s ∈ N do7
foreach κ ∈ P (s, q) do // for each q-gram of s8

hist[κ] ← hist[κ] + 1; // increment the frequency of κ in the histogram9
if |minHeap| < K or hist[κ] ≥ top(minHeap) then10

if addr[κ] = −1 then // κ not in the heap11
push(minHeap, (hist[κ], κ), addr);12

else // update frequency of κ in heap13
update(minHeap, addr[κ], (hist[κ], κ), addr);14

if |minHeap| > 0 then pop(minHeap, addr);15

return all q-grams stored in minHeap;16

end17

Fig. 4. AdjustCenter: Compute the Center of a Neighborhood

4.3 PG-DS Algorithm

In this section we present the PG-DS algorithm that computes the exact prox-
imity graph and is based on the DivideSkip technique [2].

The input of PG-DS are the inverted list index LIndex(D, q), the center string
s ∈ D for which the proximity graph should be computed, and the q-gram size
(Algorithm 4). PD-DS computes the τ -neighborhoods by stepwise decreasing
τ and calling DivideSkip at each step. The DivideSkip algorithm takes a set
of inverted lists and a threshold τ and returns all string IDs that appear at
least τ times in the inverted lists. In order to compute the τ -neighborhood of
s, DivideSkip receives only the inverted lists of the q-grams of s, i.e., a subset
PIndex(D, s, q) ⊆ LIndex(D, q) such that ∀κ ∈ P (s, q) : L(κ, D) ∈ PIndex.

In the following paragraphs we give a short introduction to DivideSkip. Di-
videSkip is among the fastest algorithms for intersecting inverted lists and it
combines MergeOpt and MergeSkip [2], both based on the Heap algorithm.

The Heap algorithm assumes all inverted lists to be ordered by string IDs.
The heading (smallest) string ID of each inverted list is pushed to a min-heap.
Further an array of counts is maintained, which stores the number of occurrences
of each string ID. At each step, the algorithm pops the string with the smallest
ID from the min-heap, inserts the next string on the corresponding inverted list
to the heap, and increments the count of the popped string in the array of counts.
A string is added to the result if its count meets the threshold τ . The runtime
complexity of the algorithm is O(m log p), where p is the number of inverted lists
and m is the total number of string IDs on these lists. For PG-DS, p = |P (s, q)|
and m is the number of strings in which the q-grams in P (s, q) appear.

298 M. Kazimianec and N. Augsten

1

1 1

1 151

(a) Initial Heap

2

3 3

5 3 3 3

(b) s1’s are popped

3

3 3

53 45

(c) s2, s3 are popped

Fig. 5. Heap Structure for Computing N3 Using MergeSkip in Example 9

MergeOpt improves over the Heap algorithm by processing the τ − 1 longest
inverted lists differently from the remaining shorter lists. On the shorter lists the
Heap algorithm with threshold 1 is computed, resulting in a list of all string IDs
that appear in these lists with their counts. For each candidate string on that
list a binary search over the τ − 1 long lists is executed to verify if the string
appears at least τ times among all the lists.

MergeSkip extends the Heap algorithm in that it ignores irrelevant string IDs
on the inverted lists. Instead of popping one element at a time, MergeSkip pops
all elements from the heap that have the same string ID as the top element.
If the number k of popped elements reaches τ , the string ID of this element is
added to the result and the next k string IDs on the corresponding inverted lists
are pushed to the heap. If k < τ , the method additionally pops the τ − 1 − k
smallest string IDs from the heap. For each inverted list of the τ − 1 popped
string IDs, the algorithm moves on to the smallest string ID on the list that is
equal or greater than the current ID at the heap top and pushes it to the heap.

Example 9. We compute N(D, P, 3) for P = {#v1, vi1, iv1, vi2, ya1, an1, n#1}
using MergeSkip (see Example 5 for the inverted lists of P in D). Figure 5(a)
shows the initial heap structure. First, we pop all the elements with value 1. Since
1 is popped 6 times, we add it to Nτ . The head string IDs of the corresponding

Algorithm 4: PG-DS(LIndex, s,q)
Data: LIndex: inverted list index; s: string ID; q: size of q-grams
Result: PG: array of neighborhoods
begin1

P ← P (s, q);2
PG[1..|P |] : empty array of neighborhoods; // initialize the proximity graph3
PG[|P |] = {s}; // neighborhood of P for τ = |P | is {s}4
for τ = |P | − 1 to 1 do5

P ← AdjustCenter(P [τ + 1], q); // compute the center P (see 4.2)6
PIndex[1..|P |] : empty inverted list index of q-grams in P7
i ← 0; foreach κ in P do PIndex[i++] ← LIindex[κ];8
PG[τ] ← DivideSkip(PIndex, τ) ∪ PG[τ + 1]; // τ-neighborhood for P in D9

return PG;10

end11

Fig. 6. PG-DS: Proximity Graph Computation with DivideSkip

Exact and Efficient Proximity Graph Computation 299

inverted lists are pushed to the heap (Figure 5(b)). We next pop 2, which appears
only k = 1 times on the heap; thus we also pop the next τ−1−k = 1 elements, i.e.,
one of the elements with string ID 3 (let us assume s3 of the list L(vi1, D)). We
pop the τ−1 = 2 head elements of the corresponding lists, i.e., of L(an1, D) and
L(vi1, D) (Figure 5(c)). Repeating these steps we finally get Nτ = {s1, s3, s5}.

DivideSkip partitions the inverted lists of PIndex(D, s, q) into short and long
lists. The number of long lists is l. MergeSkip is computed on the short lists to
find the set of string IDs that appear at least τ − l times. Similar to MergeOpt,
for each string in the result set of the short lists the algorithm does a binary
search in the long lists. If the number of occurrences of the string among all the
lists is at least τ , the string is added to the result. In our implementation of
PG-DS, DivideSkip uses the empirical value for the number l of long lists that
was proposed by Li et al. [2].

4.4 PG-SM Algorithm

In this section we present the PG-SM method, which uses a sort-merge join for
computing the proximity graph.

Instead of the inverted list index, the PG-SM algorithm uses the sort-merge
index GIndex(D, q), an array of pairs ((κ, s)| κ ∈ P (s, q), s ∈ D) sorted by
q-gram IDs. The size of GIndex(D, q) is equal to |

⊎
s∈D P (s, q)|.

Example 10. For the dataset D = {s1, s2, . . . , s8} = {vivian, adriana, vivien,
marvin, vivyan, manuel, jeanne, clive}, index GIndex(D, q) is shown below:

1 2 3 4 · · · 53 54 55 56
↓ ↓ ↓ ↓ · · · ↓ ↓ ↓ ↓

(#v1, s1) (#v1, s3) (#v1, s5) (vi1, s1) · · · (#c1, s8) (cl1, s8) (li1, s8) (ve1, s8)
� � � � · · · � � � �

(1, 1) (1, 3) (1, 5) (2, 1) · · · (33, 8) (34, 8) (35, 8) (36, 8)

In order to find strings that have τ q-grams in common with the center P , PG-SM
(Algorithm 5) maintains a counter for each string in the array ACounts. For each
q-gram κ of P , the algorithm does a binary search in GIndex. Once the position
pos of κ is found, the algorithm looks for other copies of κ that immediately
precede or succeed κ. For each copy of κ the count of the corresponding string
in ACounts is incremented by 1. Whenever the count of some string reaches τ ,
the string is added to the τ -neighborhood.

Example 11. We compute N(D, P, 3) for P = {#v1, vi1, iv1, vi2, ya1, an1, n#1}
using PG-SM. We search for the q-gram #v1 with ID 1 in GIndex(D, q) and
find it at position 3 in the pair (1, 5) (see Example 10). We search for preced-
ing/succeeding copies of #v1 and find the pairs (1, 3), (1, 1). We increment the
counts of the strings 1, 3, and 5. If the count of some string meets the threshold
3, we add it to the neighborhood. Repeating this procedure for all q-grams in P
we get N = {s1, s3, s5}.

300 M. Kazimianec and N. Augsten

Algorithm 5: PG-SM(GIndex, s,q)
Data: GIndex: sort-merge index of a dataset D; s: string ID; q: size of q-grams
Result: PG: array of neighborhoods
begin1

ACounts[1..|D|]: array of string frequences; // initialize string ID counts to 0’s2
P ← P (s, q);3
PG[1..|P |] : empty array of neighborhoods; // initialize the proximity graph4
PG[|P |] = {s}; // neighborhood of P for τ = |P | is {s}5
for τ = |P | − 1 to 1 do6

P ← AdjustCenter(P [τ + 1], q); // compute the center P (see 4.2)7
foreach κ in P do8

pos ← BinarySearch(GIndex, κ); // get the position of κ ∈ P9
TempSet ← ∅; // initialize the temporary set of updated string IDs10
i ← pos;11
while getGram(GIndex, i) = κ do12

j ← getString(GIndex, i); ACounts[j] ← AC[j] + 1;13
if ACounts[j] = τ then PG[τ] ← PG[τ] ∪ {s};14
if ACounts[j] = 1 then TempSet ← TempSet ∪ {j};15
i ← i − 1;16

i ← pos + 1;17
while getGram(GIndex, i) = κ do18

j ← getString(GIndex, i); ACounts[j] ← ACounts[j] + 1;19
if ACounts[j] = τ then PG[τ] ← PG[τ] ∪ {s};20
if ACounts[j] = 1 then TempSet ← TempSet ∪ {j};21
i ← i + 1;22

foreach j ∈ TempSet do ACounts[j] ← 0;23

return PG;24

end25

Fig. 7. PG-SM: Proximity Graph Computation with Sort-Merge Join

To avoid the initialization of all counts after each neighborhood computation,
the algorithm maintains a temporary set of all strings, for which the counts were
updated (TempSet). After the neighborhood computation, PG-SM only resets
the counts of the strings in this set.

Let n be the size of the dataset D, p̄ = |s̄| + q − 1 be the profile size of the
average length string |s̄| in D. The time complexity of PG-SM for a string of
length s̄ is O(p̄2 log (n · p̄)).

5 Experiments

Experimental Setup. We evaluate efficiency and effectiveness of our algo-
rithms on three real-world datasets with different string length distributions
(Figure 8). The Bozen dataset stores 1313 street names (4–35 characters); the
Oxford dataset is a natural language collection of unique misspellings of the Ox-
ford text archives with 39030 strings (1-18 characters); the DBLP dataset stores
10000 article titles with lengths up to 280 characters.

Clustering Efficiency. We compare the scalability of our algorithms (PG-DS
and PG-SM) to the state-of-the-art algorithm PG-Sx, where x is the sample
size. Figure 9 shows the runtime results for clustering each of the three datasets.

Exact and Efficient Proximity Graph Computation 301

0
20
40
60
80

100
120
140
160

0 5 10 15 20 25 30 35

of

 S
tr

in
gs

String Length

(a) Bozen Sreet Names

0

1

2

3

4

5

6

0 5 10 15 20

of

 S
tr

in
gs

 (t
ho

us
an

ds
)

String Length

(b) Oxford Misspellings

0
20
40
60
80

100
120
140
160
180
200

0 100 200 300

of

 S
tr

in
gs

String Length

(c) DBLP Paper Titles

Fig. 8. String Length Distributions

For the two larger datasets, Oxford and DBLP, we also show the computation
times for subsets of different size. PG-DS is almost as fast as PG-S with the
smallest sample size; only for the long strings of the DBLP dataset PG-S10 is
significantly faster. PG-DS clearly outperforms PG-S for larger sample sizes in
all settings. Note that PG-DS computes the exact GPC clusters, while PG-S10
only computes an approximation. Between our algorithms, PG-DS is consistently
faster than PG-SM.

Proximity Graph Computation. The runtime for computing the proxim-
ity graph PG(s, D, q) depends on the length of the center string s. We group
the centers by their length and measure the average runtime of the proximity
graph computation for each group. Figure 10 compares our exact algorithms
with PG-S for different sample sizes. The runtime of PG-S quickly increases
with the sample size, and only PG-S10 is comparable to our PG-DS and PG-SM
algorithms.

Quality of the Proximity Graph. We measure the clustering quality using
the established Normalized Mutual Information (NMI) [3], an information theo-
retic similarity measure between two clusterings. NMI is 1 for identical and zero
for very different clusterings. The quality of a clustering is defined as its similar-
ity to the ground truth, which is the exact GPC clustering in our experiments.

Figure 11 shows the tradeoff between the clustering quality and the runtime of
GPC with sampling (PG-S) for different sample sizes. For the Bozen and Oxford
datasets the smallest sample size gives only moderate results; good results can
only be obtained with large samples of size 50 or 100 that drastically increase
the runtime. PG-S with sample size 10 gives good results for the DBLP dataset;
the strings in this dataset are long and strings from different clusters are very
far from each other, making clustering easy. Note that our algorithms compute
the exact GPC clusters, thus NMI = 1 for PG-DS and PG-SM.

Lesson Learned. The experiments show that our exact algorithms scale to
large datasets. PG-DS outperforms PG-SM in all settings and is the algorithm
of choice. The state-of-the-art algorithm PG-S uses sampling to approximate the
GPC clusters. Our experiments show that PG-S is much slower than PG-DS for
reasonable sample sizes in most settings. If the sample size of PG-S is reduced

302 M. Kazimianec and N. Augsten

0

2

4

6

8

10

12

14

PG-DS PG-SM PG-S10 PG-S50 PG-S100PG-S150

Ru
nt

im
e,

 s

Method

(a) Bozen Sreet Names

0

1

2

3

Ru
nt

im
e,

 s
 (t

ho
us

an
ds

)

of Strings

PG-S150 PG-S100 PG-SM

PG-S50 PG-DS PG-S10

(b) Oxford Misspellings

0

2

4

6

8

10

12

14

1000 2500 5000 7500 10000

Ru
nt

im
e,

 s
 (t

ho
us

an
ds

)

of Strings

PG-S150 PG-S100 PG-S50
PG-SM PG-DS PG-S10

(c) DBLP Paper Titles

Fig. 9. Clustering Runtime

0

10

20

30

40

4 6 8 10 12 14 16 18 20 22 24 26 28 30 33 35

PG
 C

om
pu

ta
ti

on
 T

im
e,

 m
s

String Length

PG-S150 PG-S100 PG-S50
PG-SM PG-S10 PG-DS

(a) Bozen Street Names

0

50

100

150

200

1 2 3 4 5 6 7 8 9 101112131415161718

PG
 C

om
pu

ta
ti

on
 T

im
e,

 m
s

String Length

PG-S150 PG-S100 PG-S50
PG-SM PG-DS PG-S10

(b) Oxford Misspellings

0

1000

2000

3000

4000

5000

3 13 23 33 43 53 63 73 83 93 10
3

11
3

12
3

13
3

14
3PG

 C
om

pu
ta

ti
on

 T
im

e,
 m

s

String Length

PG-S150 PG-S100 PG-S50

PG-SM PG-DS PG-S10

(c) DBLP Paper Titles

Fig. 10. Runtime of Proximity Graph Computation

0.88

0.9

0.92

0.94

0.96

0.98

1

10 50 100 150

NMI

Sample Size

PG-DS/PG-SM PG-S

(a) Bozen Street Names

0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

10 50 100 150

NMI

Sample Size

PG-DS/PG-SM PG-S

(b) Oxford Misspellings

0.99

0.992

0.994

0.996

0.998

1

10 50 100 150

NMI

Sample Size

PG-DS/PG-SM PG-S

(c) DBLP Paper Titles

0
2
4
6
8

10
12
14

10 50 100 150

Ru
nt

im
e,

 s

Sample Size

PG-S PG-SM PG-DS

(d) Bozen Street Names

0
500

1000
1500
2000
2500
3000
3500

10 50 100 150

Ru
nt

im
e,

 s

Sample Size

PG-S PG-SM PG-DS

(e) Oxford Misspellings

0
2
4
6
8

10
12
14
16

10 50 100 150

Ru
nt

im
e,

 s
 (t

ho
us

an
ds

)

Sample Size

PG-S PG-SM PG-DS

(f) DBLP Paper Titles

Fig. 11. (a)-(c) Quality vs. (d)-(f) Runtime of GPC with Sampling

to a small value such that PG-DS and PG-S have similar runtime, then the
clustering quality of PG-S is typically low. PG-DS always computes the exact
GPC clusters.

Exact and Efficient Proximity Graph Computation 303

6 Related Work

Computing the similarity between strings is a problem that has received much
attention from different research communities [4,5,6,7,8,9]. The q-gram distance
[4,5], which is used for GPC [1], can be computed efficiently and it is an effective
lower bound of the well-known string edit distance [10]. Fuzzy string match-
ing techniques based on q-grams where used in data cleansing to find spelling
mistakes and different syntactic representations [11,12].

Our PG-DS algorithm uses a divide-skip strategy to merge inverted q-gram
lists efficiently. This strategy was introduced by Li et al. [5] and it solves the
τ -occurrence problem; in our experiments we use the authors’ implementation2.
PG-SM uses a sort-merge join to solve the same problem. Sort-merge joins on
q-grams have been used for approximate joins of strings [13] and XML trees [14].

7 Conclusion and Future Work

GPC is a clustering approach for strings that has successfully been used to
cleanse non-dictionary strings [1]. Its distinguishing feature is the automatic
cluster border detection, i.e., the number of clusters is not required as input.
State-of-the-art GPC algorithms use sampling and only approximate clusters.

In this paper we addressed the problem of computing the exact GPC clusters
efficiently and proposed the PG-DS and PG-SM algorithms. Both algorithms
scale to datasets with thousands of strings. PG-DS, the faster of our algorithms,
is faster than the state-of-the-art sampling algorithm, unless a very small sample
size is used; small sample sizes give poor clustering results. To the best of our
knowledge, we propose the first exact and scalable GPC algorithm.

We plan to further improve the scalability of GPC with pruning rules that
allow to abort the cluster border detection early. Deciding the borders before
the proximity graph is fully computed could substantially improve the runtime.

References

1. Mazeika, A., Böhlen, M.H.: Cleansing databases of misspelled proper nouns. In:

CleanDB (2006)

2. Li, C., Lu, J., Lu, Y.: Efficient merging and filtering algorithms for approximate

string searches. In: ICDE 2008: Proceedings of the 2008 IEEE 24th International

Conference on Data Engineering, pp. 257–266. IEEE Computer Society, Los Alami-

tos (2008)

3. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.

Cambridge Univ. Press, Cambridge (2008)

4. Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukrishnan, S.,

Pietarinen, L., Srivastava, D.: Using q-grams in a dbms for approximate string

processing. IEEE Data Eng. Bull. 24(4), 28–34 (2001)

5. Li, C., Wang, B., Yang, X.: Vgram: Improving performance of approximate queries

on string collections using variable-length grams. In: VLDB (2007)

2 Flamingo package: http://flamingo.ics.uci.edu

304 M. Kazimianec and N. Augsten

6. Levenshtein, V.: Binary Codes Capable of Correcting Deletions, Insertions and

Reversals. Soviet Physics Doklady 10, 707 (1966)

7. Landau, G.M., Vishkin, U.: Fast parallel and serial approximate string matching.

J. Algorithms 10(2), 157–169 (1989)

8. Waterman, M.S., Smith, T.F., Beyer, W.A.: Some biological sequence metrics.

Advances in Mathematics 20(3), 367–387 (1976)

9. Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P., Fienberg, S.: Adaptive name

matching in information integration. In: IEEE Intelligent Systems (2003)

10. Navarro, G.: A guided tour to approximate string matching. ACM Comput.

Surv. 33(1), 31–88 (2001)

11. Chaudhuri, S., Ganti, V., Motwani, R.: Robust identification of fuzzy duplicates.

In: International Conference on Data Engineering, pp. 865–876 (2005)

12. Xiao, C., Wang, W., Lin, X., Yu, J.X.: Efficient similarity joins for near duplicate

detection. In: WWW 2008: Proceeding of the 17th International Conference on

World Wide Web, pp. 131–140. ACM, New York (2008)

13. Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukrishnan, S., Sri-

vastava, D.: Approximate string joins in a database (almost) for free. In: VLDB

2001: Proceedings of the 27th International Conference on Very Large Data Bases,

pp. 491–500. Morgan Kaufmann Publishers Inc., San Francisco (2001)

14. Augsten, N., Böhlen, M.H., Dyreson, C.E., Gamper, J.: Approximate joins for

data-centric XML. In: ICDE, pp. 814–823. IEEE, Los Alamitos (2008)

Concurrency and Replica Control

for Constraint-Based Database Caching

Joachim Klein

Databases and Information Systems, Department of Computer Science,

University of Kaiserslautern, Germany

jklein@cs.uni-kl.de

Abstract. Efficient and dynamic reallocation of data is a major chal-

lenge of distributed data management, because current solutions re-

quire constant monitoring and manual adjustment. In contrast, future

solutions should provide autonomic mechanisms to achieve self-tuning

and exhibit high degrees of flexibility and availability. Constraint-based

database caching (CbDBC) is one of the most ambitious approaches to

reach these goals, because it is able to dynamically respond to work-

load changes and keep subsets of data near by the application. In turn,

caching of data always generates replicas whose consistency needs to be

controlled—for reasons of data independence, transparent for both appli-

cation and underlying DBMS. Hence, such a task can best be approached

by a middleware-based solution.

This paper discusses challenges arising when distributed replicas are

synchronized within CbDBC. We compare proposals using eager and

lazy update propagation and review their feasibility within middleware-

based realizations. Because constraints have to be maintained by the

cache, they restrict the implementation of concurrency control mecha-

nisms. Therefore, we explore, as a novel contribution, the far-reaching

influence of these constraints.

1 Motivation

Similar to concepts used for Web Caching, database caching keeps subsets of
records close to applications, which allows local and, hence, faster execution of
declarative queries. In contrast to Web caching only supporting ID-based queries,
database caching services set-oriented requests and must, therefore, verify that
the predicates used by SQL queries can be evaluated, i.e., that their predicate
extensions [12] are contained in the cache. To this end, constraint-based data-
base caching (CbDBC) uses simple constraints (cp. Section 2), which need to be
fulfilled at any time and allow to decide whether or not a predicate extension is
completely kept. Many database vendors have extended their systems with simi-
lar but less flexible ideas [1,2,21]. The most important competitor approach uses
materialized views to determine the predicate completeness of records cached
[16]. A big challenge of these approaches is replica control, because caching of
data always implies the existence of distributed replicas. In addition, database

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 305–319, 2010.
� Springer-Verlag Berlin Heidelberg 2010

306 J. Klein

caching has to guarantee transaction properties, so that the employed concur-
rency control mechanism is of special importance. Because database caching has
to solve exactly the problems occurring in (partially) replicated environments,
the research results of this area are used as a starting point to choose an ap-
propriate solution for CbDBC. Section 3 inspects the results and clarifies which
methods can be used for replica control and concurrency control (CC) for data-
base caching.

But, there is a major difference between caching and replication: the content
of a cache is managed dynamically, which is a great advantage. The caching
system can try to limit the number of replicas (regarding one data item) on
its own, so that the number of caches that need to be updated remains small,
even when many caches coexist. However, dynamic organization is the biggest
problem. The constraints used to determine completeness become inconsistent, if
updates are made. Therefore, applying an update requires additional refreshment
or invalidation steps to guarantee consistency. Section 4 describes the problems
arising for the constraint-based database caching approach.

Our CbDBC prototype ACCache [5] is realized as a middleware-based solution
and, up to now, independent of a specific database system. We try to preserve
this property and, hence, we explore the feasibility of various middleware-based
approaches (cp. Section 5). But in doing so, we rely on the concurrency control
of the underlying database system. First, we try to realize lazy update propaga-
tion being highly desired, before we explore eager approaches. Regarding schemes
with lazy update propagation, we demonstrate that a middleware-based solution
is only realizable providing limited functionality, so that just read-only transac-
tions can be executed . Based on this observation, we explore eager approaches
(cp. Section 5.2) which enable the cache to accelerate any read statement (also
of writer transactions). Eager solutions, however, have to use RCC value locks
(introduced in Section 4) to speed-up commit processing, which are not needed
in lazy solutions.

The following section describes the constraint-based approach in more detail
and repeats the most important concepts just for comprehension.

2 Constraint-Based Database Caching

A constraint-based database cache stores records of predicate extensions in so-
called cache tables. The records are retrieved from a primary database system
called backend. Each cache table T belongs to exactly one backend table TB

and, hence, their definitions are equivalent, except for foreign key constraints,
which are not adopted. The tables and constraints maintained by a cache are
represented as a so-called cache group.

A CbDBC system uses two different types of constraints to determine which
predicate extensions are completely contained in the cache: Referential Cache
Constraints (RCCs) and Filling Constraints (FCs). Both are defined using the
fundamental concept of value completeness.
Definition 1 (Value completeness). A value v is value-complete (or com-
plete for short) in a column T .a if and only if all records of σa=vTB are in T .

Concurrency and Replica Control for Constraint-Based Database Caching 307

An RCC S.a → T .b is defined between a source column S.a and a target col-
umn T .b (not necessarily different from S.a) to ensure value completeness in
T .b for all distinct values v in S.a. Please note, value completeness is just given
for the target column. This allows, e. g., to execute an equi-join S ��a=b T if
value completeness is given for a value v in S (let us say for v in S.c), so that
σS.c=v(S ��a=b T) delivers the correct result. In the reverse case (value complete-
ness is given for a value v in T), this join is could produce incomplete results1.

Definition 2 (Referential cache constraint, RCC). A referential cache
constraint S.a → T .b from a source column S.a to a target column T .b is satisfied
if and only if all values v in S.a are value-complete in T .b.

Fig. 1. The main components of a cache group and its internal representation

An FC is defined on a single column (e. g., S.b) and determines when a value
v needs to be loaded completely. The loading is initialized as soon as a query
refers to v explicitly (e. g., through σS.b=vS) and v is in a set of values to be
loaded (called candidate values [12]). To implement the behavior of FC S.b,
we internally use a so-called control table (ctrl) and an RCC ctrl.id → S.b
(cp. Figure 1). Conceptually, we put the value v in the id column of the control
table. This violates RCC ctrl.id → S.b and, hence, triggers maintenance, i.e., all
records σb=vSB have to be made available. In doing so, new RCC source-column
values in S arrive at the cache. This may violate outgoing RCCs which need to
be satisfied again. In this way, depending on the value we put into the control
table, the cache tables need to be filled-up in a consistent way.

Because of the special importance of values kept in an RCC source column,
we denote such values as control values [15]. As illustrated, the presence of
a control value (e. g., v) demands the availability of (recursively) dependent
records. Hence, we denote this set of records as closure of the control value v.

Definition 3 (Closure of a control value). Let v be a control value of RCC
S.a → T .b and, thus, I = σa=vTB the set of records that have to be value-
complete. The closure of v is the set of records C(v) = I ∪ C(vi), ∀vi ∈ V (I),
where V (I) = (v1, ..., vn) denotes the control values included in I.

1 One reason that shows that an RCC is different from a foreign key.

308 J. Klein

Both constraint types (FCs and RCCs) are used to determine if a set of records
currently stored in the cache is value-complete. Values of unique columns are
implicitly, i.e., always complete. With help of this simple concept, it becomes
possible to decide if predicates are completely covered by the cache and, hence,
whether queries can be executed locally or not.

3 Preliminary Considerations

The main challenge regarding a replicated database environment is replica con-
trol. Typically used to control read-intensive workloads2, our approach is based
on a “read one replica write all (available) replicas” (ROWA(A)) schema. In
the seminal paper of Gray et al. [8], replication techniques are classified by two
parameters. The first parameter specifies where updates can be executed, at a
primary copy or everywhere.

With database caching, caches temporarily hold data from a primary data
source maintaining the consistency of all data items [12]. This so-called backend
defines the schema that is visible to the user, whereas the caches as in-between
components remain transparent. In contrast to replication, a primary copy ap-
proach fits into such a system architecture in a natural way, where the backend
performs all updates and propagates them to the caches (if needed).

However, the given system architecture extremely complicates an update-
everywhere solution. An important problem is that a cache cannot decide if
an update violates constraints defined at the backend database, because it does
not store any foreign-key constraints, check constraints, definitions for tables not
present, triggers, or other information needed. All this meta-information had to
be available to perform updates, so that cache maintenance could be done lo-
cally. In addition, update everywhere requires complex concurrency control or
conflict resolution [8]; therefore, we strongly recommend the use of a primary
copy approach where updates are always forwarded to the backend.

The second parameter introduced in Gray’s paper [8] describes when replicas
are refreshed, which can be done in eager or lazy fashion. In eager approaches, the
changes of a transaction are propagated to all replicas before commit, whereas
in lazy approaches the propagation may take place after commit. Because eager
solutions delay transaction execution and lazy solutions have to deal with consis-
tency problems, the most recent approaches (e. g., [3,11,14,17,22]) are designed
as interim solutions, providing a well-defined isolation level and a so-called hybrid
propagation, where, on the one hand, transactions accessing the same replicas do
coordinate before commit (eager) and, on the other hand, successful commit of a
replica is acknowledged to the client (lazy update propagation). In Section 5, we
illustrate that, using database caching, it is possible to apply lazy update prop-
agation without consistency problems. Hence, we can use an approach where
commit is acknowledged to the client as soon as the transaction updates are
committed at the backend database, while caches are updated lazily.

2 This can be generally assumed in scenarios where database caching takes place.

Concurrency and Replica Control for Constraint-Based Database Caching 309

However, update propagation must be combined with an adequate CC mech-
anism [17,22]. As the most important requirement when choosing or rather de-
veloping a tailor-made CC policy for CbDBC, the chosen mechanism should
preserve a caching benefit, i. e., the performance gained from local query evalua-
tion should not be outbalanced by cache maintenance. If the approach needs to
access remotely maintained caches or the backend to perform read statements,
the caching benefit will be compromised. For that reason, read accesses should
never be blocked, e. g., to acquire distributed read locks as needed in a dis-
tributed two-phase locking (D2PL) approach. Another main problem for CC is
that database caching is designed to cache data near to applications and, hence,
caches are often allocated far away from the original data source, only reachable
via wide-area networks. For that reason, a comparatively high network latency
has to be anticipated to send CC messages (ca. 50–200ms) and, thus, they must
be avoided if possible.

If we scan recent research for CC approaches that fulfill these basic require-
ments, we find that only optimistic CC schemes and approaches using snapshot
isolation (SI)3 [4,7] as its isolation level are sufficient (cp. Section 5). Another
possibility is to allow inconsistencies [9,10], but, first, the level of inconsistency
needs to be defined by developers within SQL statements and, second, such cache
systems do not scale if a high isolation level is required.

The preceding discussion clarifies that the basic assumptions and requirements
of CbDBC dramatically decrease the number of viable approaches (for replica con-
trol and concurrency control). Moreover, it should be easy to combine the chosen
approach for replica control with CC. Hence, our solutions provide SI which facil-
itate a simple integration with eager and lazy update propagation schemes.

In the following section, we examine the specific challenges that need to be
solved if we implement update propagation, i. e., from the backend to the caches
involved, within CbDBC.

4 Update Propagation

Theprocess of propagating updates consists of threemain tasks: gathering changed
records (capture), identifying and informing the caches which are affected by
changes (distribution), and accepting changes at the cache (acceptance).

Capture. ACCache can be used on top of any relational database system and
relies just on the SQL interface to implement its functionality. Provided by most
database systems [13,18,19,20], triggers or appropriate capture technology for
changed data is thus necessary. Eager approaches (cp. Section 5.2), therefore,
have to gather all changes of a transaction before commit. Lazy approaches, in
turn, allow to collect changes after commit. Such an approach can be handled
3 SI is a multi-version concurrency control mechanism presenting to a transaction T

the DB state committed at EOT (T). It does not guarantee serializable execution,

but it is supplied by Oracle and PostgreSQL for “Isolation Level Serializable” or in

Microsoft SQL Server as “Isolation Level Snapshot”.

310 J. Klein

much more efficiently by log-sniffing techniques, which may be even processed
concurrently. The collected data must be provided as a write set (WS) that
includes at least the following information for each transaction: transaction id
(XId), begin-of-transaction (BOT) timestamp, end-of-transaction (EOT or com-
mit) timestamp, and all records changed. Furthermore, each record is described
by an identifier (RId), the type of values included (VType := new values or old
values), the type of DML operation (DMLType := insert, update, or delete), and
the values themselves. For each update, two records (with old and new values)
are included.

Distribution. For each record in a WS, we need to decide whether or not some
of the connected caches have to be informed about the change. For this task,
ACCache provides a dedicated service (Change Distributor, CD) running at the
backend host. Depending on the meta-information maintained, a fine-grained or
just a coarse-grained solution is possible. We distinguish the following levels of
meta-information to be maintained:

– Cache Information. In this case, CD only knows that connected caches exist.
Therefore, its only option is to ship the whole WS to all of them. In most
cases, this level is not recommended, because, typically, just a few tables of
a schema are of interest and, hence, appear in a cache.

– Table Information. This level additionally keeps for each cache the names
of the cached tables. Therefore, selective shipment of the changed records is
possible.

– Cache Group Information. It expands table information by storing all cache
group definitions at the backend. Providing no additional help for the CD
service, all changed records still have to be shipped to a cached table. How-
ever, we differentiate between this level and table information, because the
backend can effectively assist loading policies using this additional informa-
tion (cp. prepared loading in [15]).

– Perfect Information. In this case, CD maintains a special hash-based index
to determine if a record is stored in a cache or not. With this support, it is
possible to check each record of the WS and ship just the currently stored
ones.

Obviously, perfect information enables a fine-grained selection of the records that
need to be shipped to a cache. But the meta-information maintained must be
continuously refreshed and needs to be consistent to ensure correctness. In sum-
mary, perfect information unnecessarily stresses the backend host and, therefore,
we suggest using table information or cache group information.

Acceptance. The most critical part of CbDBC is the dynamic and concurrent
acceptance of changes. Using “normal” replication, it is sufficient to reproduce
the changes of the primary copy to refresh a replica. Within CbDBC, a change,
for example, of value v to w may violate constraints and, therefore, changes in
a cache must be hidden until all constraints are satisfied. Because we internally
model FCs through RCCs (and control tables, cp. Section 2), we only need

Concurrency and Replica Control for Constraint-Based Database Caching 311

Fig. 2. Arrival of new control values (a), records losing their dependencies (b)

to observe RCC violations. The only situation, where RCCs can be violated,
occurs when new control values reach the cache, i. e., during an update or insert.
Figure 2a gives an example for this situation. The WS of table Order Lines
includes a new record with RId = 10 that inserts the control value IId = 47
and an update for the record with RId = 5 changing the control value 11 to 22.
Hence, RCC Order Lines.IId → Item.Id is no longer satisfied and the closures
of 22 and 47 need to be loaded first, before the WS can be accepted. In all other
cases, the RCCs remain valid, but some records may be unloaded, if no incoming
RCC implies their existence (cp. Figure 2b). Here, the delivered WS claims the
deletion of record with RId = 10 and signals an update from OId = 1 to OId = 5
for the record with RId = 5. After acceptance of these changes, the closure of
Orders.Id = 1 is empty and, thus, all records in the tables Order Lines and
Items should be unloaded.

Because the load of closures may be time consuming [15], commit processing
may be considerably delayed. To overcome this problem, we use RCC value locks
which indicate that, for a given RCC, some of the control values are not value-
complete at the moment. This allows us to accept updates as soon as all locks
are set (cp. Figure 3, where the same WS is applied as shown in Figure 2a).

Fig. 3. Accepting of changes (WS from Figure 2a) using RCC value locks

312 J. Klein

These locks accelerate the processing of write sets, which is very important for
eager concurrency control schemes. However, RCC locks constrain the execution
of joins and, hence, using them with lazy approaches is not recommendable.

5 Concurrency Control

As described in Section 3, the most important requirement when choosing an
appropriate CC mechanism is to preserve the caching benefit. Middleware-based
solutions (like ACCache) are implemented on top of existing CC policies provided
by the underlying database system and have to regard their special properties.
Most restricting, a transaction T accessing these underlying systems has only
access to the latest transaction-consistent state valid at BOT (T). Hence, we
denote this state as latest snapshot.

Observing current research activities, the simplest and, hence, most likely the
best way to preserve the caching benefit is to allow read accesses without taking
further actions, i. e., without retrieval of read locks, setting of timestamps, or
collecting of read sets (e. g., for an optimistic CC policy). This has been possible
since we know about the very powerful properties of SI, where reads are never
blocked. It allows a cache to execute any read statement from any transaction
without gathering information about elements read. However, to provide SI for
database caching, the same snapshot has to be maintained for all statements of
a transaction. Hence, this so-called global snapshot needs to be provided by a
cache in combination with the backend.

This basic requirement can only be realized if either backend and caches pro-
vide always the latest snapshot (eager, cp. Figure 4a) or the caches have access
to required snapshots at the backend (lazy, cp. Figure 4b).

Fig. 4. Providing the same versions/snapshots either eager (a) or lazy (b)

Concurrency and Replica Control for Constraint-Based Database Caching 313

In Figure 4, the point in time (represented through an integer value) when a
version is locally committed is given in parentheses. Because cache and backend
use their own local CC mechanisms, the timestamps assigned to the same version
by both sides will differ. A cache is always supported by local CC mechanism
providing SI and, hence, it maintains multiple versions. In the model for eager
update propagation (given by Figure 4a), all caches have to accept a transac-
tion’s WS logically at the same time. During lazy update propagation (reconsider
Figure 4b), caches maintain a queue of WSs that have to be applied in FIFO
(first in first out) order. The queue of Cache1 is currently empty and Cache2
has to accept at first WS(T2) and after that WS(T3).

In all further explanations, we mark a read-only user transaction Tj with
a subscript sr (e. g., Tsr1), if it executes just a single read, and with mr, if
the transaction consists of multiple read statements. Write transactions are not
differentiated any further.

Each user transaction is executed by a cache Ci and the backend where Ci is the
cache that took control over the user transaction. Hence, for each user transaction
Tj, the cache maintains a cache transaction T ca

j to access its local data source
(i. e., the cached data) and a backend transaction T be

j to access the backend data.
A cache transaction or a backend transaction not initiated by the user is simply
marked with its purpose (e. g., T load

j is used to load new cache contents).
Regarding correctness, it is sufficient to prove that each user transaction Tj

realized with the aid of T ca
j and T be

j accesses the same snapshot Si, because all
changes are synchronized by the backend database.

5.1 Lazy Update Propagation

To allow lazy schemes, the only solution is to keep a backend transaction T load

open that allows reading the latest snapshot provided by the cache. Regardless
of the problems of realizing a user transaction (i. e., commit cannot be processed
without losing the link to the right snapshot), the refresh of such connections
(i. e., switching to the next transaction representing a new snapshot) is critical.
In addition, T load must be used to execute read statements of user transactions
that accesses the backend to reach the correct snapshot and because the commit
of T load is not permitted, the cache can just execute read-only user transactions.

Assume a cache retains a backend transaction T load
1 that reads a snapshot

representing the state before transactions T1 and T2 are finished (cp. Figure 5a).
To refresh T load

1 (e. g., after a short period of time), the cache creates a new
transaction T load

2 representing the state after commit of T1 and T2. Given that
the cache can arrange T load

2 (i. e., it can determine that BOT(T load
2) > EOT(T1)

and BOT(T load
2) > EOT(T2)), the cache has to accept the changes of WS(T1)

and WS(T2) (e. g., through a cache transaction T accept
1), before switching to T load

2

is possible (cp. Figure 5b).
In addition, while changes are accepted, new records need to be loaded (cp.

Section 4). The loading is still performed by T load
1 and, thus, newly loaded records

can recursively be affected by changes within WS(T1) and WS(T2). Hence, each
record loaded must be checked against WS(T1) and WS(T2) to ensure that all

314 J. Klein

Fig. 5. Refreshing of T load
1 to T load

2

changes get accepted correctly. Only if all changes within WS(T1) and WS(T2)
have been processed completely or the loading over T load

1 gets shortly suspended,
T accept

1 can be committed and T load
2 can be used for further processing. T load

1

is released as soon as no user transaction requires it anymore (i. e., if just user
transactions Tj with BOT(Tj) > BOT(T load

2) are executed by a cache).
Absolutely impossible is the usage of databases that apply pessimistic CC.

The retained transaction will cause deadlocks and after an induced abort the
state needed is no longer accessible.

Single-read transactions. To overcome the problem of accessing the same
snapshot at cache and backend, we can try to allow only single-read transactions
at the cache. We have to limit transactions to execute just one read statement,
because further statements may need backend access. This approaches restrict
the usage of the cache but, even in that case, lazy update propagation cannot
be realized, as our following example shows.

Figure 6 illustrates the situation mentioned before. Cache1 provides the
transaction-consistent state (snapshot) before T1 was committed, because the
WS of T1 is still available in the queue of WSs to be processed. For that rea-
son, the transactions Tsr6 and Tsr7 are logically executed before T1. Cache2 has
already applied WS(T1) and, hence, Tsr9 is after T1 and before T2. Assuming
that backend and caches provide serializability for their local transactions, the
transactions are also globally serializable, because writers are synchronized at
the backend. This concept appears to be realizable in a simple way. Caches
could be lazily refreshed by accepting the WSs delivered as explained in Sec-
tion 4. However, global serializability is only guaranteed if caches always provide
a transaction-consistent state for its locally executed transactions.

The following example clarifies that this is not possible if only the latest snap-
shot is accessible at the backend, because, then, necessary loading operations (e. g.,

Concurrency and Replica Control for Constraint-Based Database Caching 315

Fig. 6. Caches only executing single-read transactions

triggered through the standard filling behavior or during update acceptance) ac-
cess different snapshots.

Considering Figure 7, we assume that the transaction T1 increases the total
amount of order 1 from 30 to 40 and of order 2 from 70 to 90. If we sum up
the total amounts of order 1 and 2 before T1 starts, we see a consistent state of
100; after commit of T1 the sum of 130 is correct. The cache shown in Figure 7
has already loaded order 1 and starts accepting changes in the WS of T1. Hence,
at that moment, it provides the state before T1. In this state, two single-read
transactions run before the acceptance of WS(T1) are finished. The first one,
Tsr1, selects the order 2 that is not kept by the cache but triggers the loading of
it. We assume that the loading occurs immediately and loads order 2, but now,
the loading operation accesses the snapshot after T1, because this is the latest
snapshot and T1 already committed at the backend. If the second transaction
Tsr2 now sums up the total amount of order 1 and 2, the answer given by the
cache is 120, which was never a consistent state at the backend.

As a result, we conclude that a middleware-based solution with lazy up-
date propagation can only be implemented on top of databases providing SI.
Middleware-based approaches cause a lot of limitations: Changes of multiple
write sets must be accepted together, only one transaction can be kept to access
the correct snapshot, concurrently loaded records need to be checked against
write sets, and the cache can just perform reads of read-only transactions.

Therefore, to support all read statements (also of writer transactions) at the
cache using a middleware-based solution, building an eager solution is mandatory.

5.2 Eager Update Propagation

It is well known that eager solutions do not scale well, but within database
caching they have important advantages: As backend, they allow any kind of

316 J. Klein

Fig. 7. Loading operations construct an inconsistent state and cause chaos

database system providing SI4 and their realization does not cause changes at
the backend. In addition, if the locality at caches is very high5, updates mostly
affect only a very small number of caches (in the best case only one), so that
commit processing performance is acceptable even when many caches co-exist.
Subsequently, we explain the tailor-made commit procedure based on the well-
known two-phase commit (2PC) protocol. It can be easily integrated with the
update propagation described in Section 4 to reach a fully working concurrency
control. However, beyond the limited scalability, the realization of eager ap-
proaches pose problems that impede the cache.

Commit Processing. A 2PC protocol synchronizes the replicas before commit
and, thereby, guarantees that the backend and all caches provide only the latest
snapshot to the user. The most ambitious challenge is to prepare the caches,
so that the subsequent abort or commit message can be safely executed. But
first of all, we respond to error processing which can be substantially simplified
because cache databases do not need to be durable.

It allows us to commit transactions even if errors occur within the prepara-
tion phase at caches. After sending the WSs to the affected caches, the back-
end defines a period of time (timeout) in which the caches have to answer.
If a cache signals a failed prepare or is not answering, it is invalidated. That
means, all affected transactions are aborted. In the simplest case, a reinitial-
ization is enforced (i. e., purging or restarting) to achieve a consistent state at
failed caches. At the end, the transaction and all caches in the prepared state
can commit.

4 For eager methods, a database system using pessimistic CC could also serve as

backend, in principle, but it may cause deadlocks that potentially affect performance.

In addition, its use limits the level of isolation, because transactions running in the

cache do not acquire read locks.
5 Using database caching, the system can try to reach this state through an adaptive

reorganization.

Concurrency and Replica Control for Constraint-Based Database Caching 317

If the coordinator crashes, all running user transactions whose statements
need to be redirected to the backend are automatically aborted. Transactions
that were currently in the prepare phase are aborted after restarting the backend.
If the backend is available again, normal processing can be continued without
further adjustments. The last scenario nicely shows the improved fault tolerance
of the global system, because the data kept by the caches remains accessible in
case of a coordinator failure.

Preparation of Changes. When a cache receives a Prepare request of a user
transaction (e. g., T1), it has to process the corresponding WS(T1) as fast as possi-
ble to shorten commit processing. Hence, loading of all records, needed to remedy
violated RCCs (cp. Section 4), would imply excessive costs. Moreover, if an Abort
message is received later, records were unnecessarily loaded. For that reason, we
start a cache transaction T accept

1 that accepts the changes and assigns RCC value
locks (cp. Figure 3) to all invalidated control values. As a result, the control values
locked are invisible for probing, i. e., they can not be used to determine the com-
pleteness of records in target columns of RCCs checked. Furthermore, an RCC
holding value locks can not be used to perform an equi-join.

As soon as all RCC value locks are applied, the cache sends the Ready signal to
the backend and waits for the Commit/Abortmessage. If an Abort is received, the
cache simply aborts T accept

1 and removes all RCC value locks previously assigned.
After a Commit instruction, T accept

1 gets committed, too, and a loading process
is initiated for each RCC value lock, which reconstructs value completeness for
the control value and removes the lock.

Since the cache management system provides SI for its locally executed trans-
actions, the changes and locks assigned through T accept

1 are only visible for local
transactions T ca

i , whose BOT(T ca
i) > BOT(T accept

1), so that transactions with
BOT(T ca

i) < BOT(T accept
1) are not hindered.

Problems. Our proposal indicates how eager solutions should be designed for
CbDBC. To cover the entire spectrum of approaches, we explored other oppor-
tunities as well [6], but all of them need to invalidate records or control values,
which straiten the usage of cache contents.

But, furthermore, all proposals suffer from another important disadvantage:
All participating instances of the system have to logically commit at the same
time. If the backend would first commit (e. g., after having received all Prepare
messages), the updates of a transaction T at the backend are immediately visible.
But at the cache side, if the Commit instruction has not been received yet, T ’s
snapshot is still present. Hence, a user transaction (e. g., T2) initiating such a
situation may access different snapshots (cp. Figure 8a). Of course, this problem
can be simply avoided by redirecting requests from T2 to the backend using T be

2

after the cache sends Ready to the backend. And after receiving Commit, a cache
transaction T ca

2 can be initialized and used (cp. Figure 8b). But cache usage is
again prevented for transactions initiated in the meantime.

In summary, eager approaches do not scale and, thus, they should not be used
within wide-area networks.

318 J. Klein

Fig. 8. T2 can still access different snapshots (a) and is thus redirected (b)

6 Summary and Future Work

Using database caching, preserving the caching benefit is a superordinated re-
quirement. In order to fulfill it, we can only use CC policies that allow to read
the cached data without further coordination steps (e. g., accessing the backend
database to acquire read locks). Multi-version concurrency control mechanisms
providing SI (attached to the most recent database systems) offer almost perfect
properties to realize this high concurrency level in database caching and espe-
cially in CbDBC. Middleware-based realizations are indeed implementable, but
our observations clarify that they have some restrictions. The preferred lazy up-
date propagation only supports read-only transactions and using eager update
propagation, cache contents need to be temporarily locked. As a big drawback,
backend systems using pessimistic CC policies may seriously affect transaction
processing, because update acceptance in a cache triggers load operations that
may cause deadlocks.

With help of our examination, we found out that an integration of lazy update
propagation in a CC mechanism providing SI is realizable, but a middleware-
based solution is challenging and shows restrictions, because backend transac-
tions can only access the latest snapshot. Hence, we start implementing a closer
integration of both CC mechanisms used at backend and cache, so that the cache
has an influence of selecting the right snapshot for backend transactions.

References

1. Altinel, M., Bornhövd, C., Krishnamurthy, S., Mohan, C., Pirahesh, H., Reinwald,

B.: Cache Tables: Paving the Way for an Adaptive Database Cache. In: VLDB

Conf., pp. 718–729 (2003)

2. Amiri, K., Park, S., Tewari, R., Padmanabhan, S.: DBProxy: A Dynamic Data

Cache for Web Applications. In: ICDE Conf., pp. 821–831 (2003)

Concurrency and Replica Control for Constraint-Based Database Caching 319

3. Amza, C., Cox, A., Zwaenepoel, W.: Distributed Versioning: Consistent Replication

for Scaling Back-end Databases of Dynamic Content Sites. In: Endler, M., Schmidt,

D.C. (eds.) Middleware 2003. LNCS, vol. 2672, Springer, Heidelberg (2003)

4. Berenson, H., Bernstein, P.A., Gray, J., Melton, J., O’Neil, E.J., O’Neil, P.E.: A

Critique of ANSI SQL Isolation Levels. In: SIGMOD Conference, pp. 1–10 (1995)

5. Bühmann, A., Härder, T., Merker, C.: A Middleware-Based Approach to Database

Caching. In: Manolopoulos, Y., Pokorný, J., Sellis, T.K. (eds.) ADBIS 2006. LNCS,

vol. 4152, pp. 184–199. Springer, Heidelberg (2006)

6. Braun, S.: Implementation and Analysis of Concurrency Control Policies

for Constraint-Based Database Caching. Master’s thesis, TU Kaiserslautern

(2008) (in German), http://wwwlgis.informatik.uni-kl.de/cms/fileadmin/

users/jklein/documents/_2008_Braun_.DA.pdf

7. Fekete, A.: Snapshot Isolation. In: Ency. of Database Systems, pp. 2659–2664

(2009)

8. Gray, J., Helland, P., O’Neil, P.E., Shasha, D.: The Dangers of Replication and a

Solution. In: SIGMOD Conference, pp. 173–182 (1996)

9. Guo, H., Larson, P.A., Ramakrishnan, R.: Caching with “Good Enough” Currency,

Consistency, and Completeness. In: VLDB, VLDB Endowment, pp. 457–468 (2005)

10. Guo, H., Larson, P.A., Ramakrishnan, R., Goldstein, J.: Relaxed Currency and

Consistency: How to Say “Good Enough” in SQL. In: SIGMOD, pp. 815–826.

ACM, New York (2004)

11. Holliday, J., Agrawal, D., Abbadi, A.E.: The Performance of Database Replication

with Group Multicast. In: FTCS, pp. 158–165 (1999)

12. Härder, T., Bühmann, A.: Value Complete, Column Complete, Predicate Complete

– Magic Words Driving the Design of Cache Groups. The VLDB Journal 17(4),

805–826 (2008)

13. IBM: InfoSphere Change Data Capture (2009), http://www-01.ibm.com/

software/data/infosphere/change-data-capture/

14. Jiménez-Peris, R., Patiño-Mart́ınez, M., Kemme, B., Alonso, G.: Improving the

Scalability of Fault-Tolerant Database Clusters. In: International Conference on

Distributed Computing Systems, p. 477 (2002)

15. Klein, J., Braun, S.: Optimizing Maintenance of Constraint-Based Database

Caches. In: ADBIS, pp. 219–234 (2009)

16. Larson, P., Goldstein, J., Zhou, J.: MTCache: Transparent Mid-Tier Database

Caching in SQL Server. In: ICDE Conf., pp. 177–189 (2004)

17. Lin, Y., Kemme, B., Patiño-Mart́ınez, M., Jiménez-Peris, R.: Middleware-based

Data Replication providing Snapshot Isolation. In: SIGMOD, pp. 419–430 (2005)

18. Microsoft Corporation: SQL Server 2008–Change Data Capture (2009), http://

msdn.microsoft.com/en-us/library/bb522489.aspx

19. Oracle Corporation: Data Warehousing Guide–Change Data Capture (2009),

http://download.oracle.com/docs/cd/E11882_01/server.112/e10810.pdf

20. The PostgreSQL Global Development Group: Postgresql 8.4.3 Documentation–

Triggers (2009), http://www.postgresql.org/files/documentation/pdf/8.4/

postgresql-8.4.3-A4.pdf

21. The TimesTen Team: Mid-tier Caching: The TimesTen Approach. In: SIGMOD

Conf., pp. 588–593 (2002)

22. Wu, S., Kemme, B.: Postgres-R(SI): Combining Replica Control with Concurrency

Control based on Snapshot Isolation. In: ICDE, pp. 422–433 (2005)

http://wwwlgis.informatik.uni-kl.de/cms/fileadmin/users/jklein/documents/_2008_Braun_.DA.pdf
http://wwwlgis.informatik.uni-kl.de/cms/fileadmin/users/jklein/documents/_2008_Braun_.DA.pdf
http://www-01.ibm.com/software/data/infosphere/change-data-capture/
http://www-01.ibm.com/software/data/infosphere/change-data-capture/
http://msdn.microsoft.com/en-us/library/bb522489.aspx
http://msdn.microsoft.com/en-us/library/bb522489.aspx
http://download.oracle.com/docs/cd/E11882_01/server.112/e10810.pdf
http://www.postgresql.org/files/documentation/pdf/8.4/postgresql-8.4.3-A4.pdf
http://www.postgresql.org/files/documentation/pdf/8.4/postgresql-8.4.3-A4.pdf

Exploiting Conflict Structures in Inconsistent

Databases

Solmaz Kolahi and Laks V.S. Lakshmanan

University of British Columbia

{solmaz,laks}@cs.ubc.ca

Abstract. For an inconsistent database that violates a set of (condi-

tional) functional dependencies, we define a basic conflict as a minimal

set of attribute values, of which at least one needs to be changed in

any attribute-based repair. Assuming that the collection of all basic con-

flicts is given, we show how we can exploit it in two important applica-

tions. The first application is cleaning the answer to a query by deciding

whether a set of tuples is a possible answer, i.e., they are present in the

result of the query applied to some minimal repair. We motivate an al-

ternative notion of answer with a consistent derivation, which requires

that the tuples are obtained through the same occurrences of attribute

values in both the inconsistent database and the repair. The second ap-

plication is cleaning data by generating repairs that are at a “reasonable”

distance to the original database. Finally, we complement the above re-

sults and show that, if dependencies do not form a certain type of cycle,

the cardinality of basic conflicts in any inconsistent database is bounded,

and therefore it is possible to detect all basic conflicts in an inconsistent

database in polynomial time in the size of input database.

1 Introduction

Dirt or inconsistency in data is a common phenomenon in many applications
today. Reasons for inconsistency abound and include, among other things, error
in data entry, inconsistency arising from collecting information from multiple
sources with “conflicting” facts, or just the plain uncertain nature of the available
data. Inconsistency in data is usually captured as violations of the constraints
that the data is supposed to obey. Integrity constraints such as key and functional
dependencies, or even statistical constraints about the data are prime examples
of constraints that are useful in inconsistency management.

The two well-known approaches for exploiting constraints in managing in-
consistency are data cleaning and consistent query answering. Data cleaning
basically refers to minimally repairing or modifying the database in such a way
that the (integrity) constrains are satisfied [11,9,25]. In consistent query answer-
ing [2,8,14,4,15], the goal is extracting the most reliable answer to a given query
by considering every possible way of repairing the database. In both of these
approaches, the notion of minimal repair is used: an updated version of the
database that is minimally different and satisfies the constraints, which can be
obtained by inserting/deleting tuples or by modifying attribute values.

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 320–335, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Exploiting Conflict Structures in Inconsistent Databases 321

name postalCode city areaCode phone

Smith V6B Vancouver 514 123 4567

Simpson V6T Vancouver 604 345 6789
Rice H1B Montreal 514 876 5432

(a)

name postalCode city areaCode phone
Smith V6B Vancouver ? 123 4567

Simpson V6T Vancouver 604 345 6789
Rice H1B Montreal 514 876 5432

name postalCode city areaCode phone
Smith ? Montreal 514 123 4567

Simpson V6T Vancouver 604 345 6789
Rice H1B Montreal 514 876 5432

(b)

Fig. 1. (a) An inconsistent database and its basic conflicts (b) Two minimal repairs

In this paper, we consider inconsistent databases that violate a set of func-
tional dependencies, or conditional functional dependencies, a recent useful ex-
tension to functional dependencies [19]. We focus on attribute-based repairs that
are obtained by modifying attribute values in a minimal way. We are interested
in two main problems. The first problem is clean query answering by identifying
impossible portions of a query answer. More specifically, given a set of tuples in
the answer, we would like to find out whether the set will appear in the result
of the query on any repair of the inconsistent database. The second problem is
data cleaning, specifically, finding repairs that have been obtained by making
(close to) minimum changes to the input inconsistent instance.

We introduce the notion of basic conflict as a set of attribute value occurrences,
not all of which can remain unchanged in any minimal repair. A basic conflict
can be thought of as an independent source of inconsistency that needs to be
resolved in any repair. We show that we can benefit from knowing basic conflicts
both in data cleaning and in clean query answering.

Example 1. Figure 1(a) shows a database instance containing address informa-
tion for a number of customers. We know, as a fact, that when the value of
attribute postalCode is V6B, then city should be Vancouver. Also, if the value of
attribute areaCode is 514, then city should be Montreal. These constraints can
be expressed as conditional functional dependencies (see [19]). Notice that for
customer Smith, there is a dependency violation with areaCode and city , and
one of these values must be changed in any repair. Thus, the set of positions
corresponding to the values of these attributes, shown with boxes, form a ba-
sic conflict. There is another source of inconsistency with the value of attributes
postalCode and areaCode in the same tuple: they imply different cities for Smith,
and therefore no repair can retain both of these values. Thus, the two shaded
positions form a second basic conflict. Now consider the query: find postal codes
of customers in the area code 514. Clearly, V6B is a wrong answer. It would be
beneficial if we could detect this wrong tuple in the answer by propagating the
basic conflicts. If we want to take the data cleaning approach instead and modify
this database to make it consistent, we can pick any of the two repairs shown in
Figure 1(b) that have changed at least one value in every basic conflict. abc �

322 S. Kolahi and L.V.S. Lakshmanan

Our solution to clean query answering is to make query answering “conflict-
aware”, by propagating the basic conflicts in an inconsistent database instance,
to the answer of a query, and then check whether a set of tuples in the query
answer is created by a conflicting set of values. If not, those tuples form a pos-
sible answer. For recording and propagating the information on the positions
of basic conflicts we make use of annotations and use a mechanism similar
to provenance management. More precisely, we annotate every data value in
the inconsistent database with a unique annotation, say a natural number, and
represent each basic conflict as a set of annotations. We define a simple an-
notated relational algebra that copies the annotations in the input instance
to the tuples selected in the answer and records a light form of provenance
for each tuple. We motivate the notion of answers with a consistent deriva-
tion as a restrictive alternative to possible answers that admits easier rea-
soning. Intuitively, a set of tuples in the answer of a query has a consistent
derivation if they can appear in the answer of the query over some repair
exactly through the same occurrences of attribute values of the inconsistent
database. Clearly, any answer with a consistent derivation is a possible an-
swer. We develop sufficient conditions that ensure a set of tuples has a con-
sistent derivation (and therefore is a possible answer). For restricted classes of
queries we show our condition is also necessary. We also show that for certain
classes of queries, the notions of possible answer and answer with a consistent
derivation coincide. It is worth pointing out two appealing features of our ap-
proach. First, it is compositional, in the sense that by having the annotated
answer to a view, written as a query, we can reuse it for clean query answer-
ing over the view. Second, there is no extra overhead for processing queries
using the annotated relational algebra if basic conflicts are identified ahead of
time.

In addition to query answering, we take advantage of basic conflicts in data
cleaning. To clean the data, there is usually a large number of minimal repairs
to choose from. The quality of a repair is sometimes evaluated by a distance
or cost measure that shows how far the repair is from the original inconsis-
tent database. Finding minimum repairs w.r.t. such a cost measure is usually
NP-hard, and we need techniques to generate repairs whose distance is rea-
sonably close to minimum [9,11,20,29,16,25]. We show that if the collection of
basic conflicts is given, then a minimum-cost or optimum repair would corre-
spond to the minimum hitting set of the collection of basic conflicts. Using
this, we can apply a greedy approximation algorithm for finding an approximate
solution to the minimum hitting set, and produce a repair whose distance to
the original database is within a constant factor of the minimum repair dis-
tance. This is under the condition that the cardinality of all basic conflicts is
bounded.

For both of the above approaches to work, we need to have the complete col-
lection of basic conflicts in the database. However, this may sound too ambitious
as basic conflicts can come in unusual shapes, as shown in the next example.

Exploiting Conflict Structures in Inconsistent Databases 323

Example 2. Consider the set of functional dependencies Σ1 = {AB → C, CD →
A}, and the database instance shown below.

A B C D
a1 b1 c1
a1 b1 d1
a2 c1 d1

It is easy to see that no matter how the blank positions are filled, we cannot
come up with a consistent instance. In other words, the values shown in the
instance form a basic conflict. abc �

We next look at the complexity of detecting the collection of basic conflicts for an
input inconsistent database. We present a sufficient condition on the cycles, that
may exist in the set of functional dependencies, which guarantees an instance-
independent bound on the cardinality of each basic conflict for any given input
database. We therefore conclude that for this class of functional dependencies,
it is possible to compute the collection of basic conflicts in polynomial time in
the size of the input database.

Related Work. Attribute-based repairs have been studied by many both for
query answering over inconsistent databases [9,20,31,24] and for generating re-
pairs that are close to the inconsistent database with respect to a distance or
cost measure [9,11,29,16,25]. Query answering over inconsistent databases has
mostly focused on finding the certain answer: tuples that persist in the answer
of the query over all repairs, which is usually done by query rewriting [2,21,32]
or using logic programs [3]. In this paper, we consider detecting tuples that are
in the answer to the query over some minimal attribute-based repair. In other
words, we focus on possible answers. Possible query answering is a well-studied
subject in incomplete databases (see, e.g., [1,23]).

The notion of conflicts has been used before in the context of inconsistent
databases, but it mostly refers to a group of tuples that do not satisfy a key
constraint or the general form of a denial constraint [15,9,4]. A natural and
appealing alternative to tuple deletions for database repair is to change attribute
values. Since we adopt this model in this paper, we use the notion of conflict as
a set of attribute values. There is a similarity between a basic conflict and an
incomplete database that does not weakly satisfy a set of dependencies, which
has been studied in the context of incomplete databases (see [28,27]).

Annotations and provenance (or lineage) have previously been used for
many problems, such as view maintenance [13], query answering over uncertain
and probabilistic data [7,22], and consistent query answering over inconsistent
databases with logic program [5,6]. Our work is different in that, through an-
notations and provenance, we would like to propagate conflicts among attribute
values in a database that are not necessarily within a single tuple. The annota-
tions that we use provide some sort of where provenance as introduced in [12].

The paper is organized as follows. In Section 2, we provide the necessary
background, define the notion of basic conflict, and show how they relate to
minimal repairs. We present the applications of basic conflicts in query answering

324 S. Kolahi and L.V.S. Lakshmanan

and data cleaning in Sections 3 and 4. We discuss the complexity of detecting
conflicts in Section 5. Finally, in Section 6, we present our concluding remarks.
Some of the omitted proofs can be found in the full version of paper [26].

2 Inconsistent Databases

We denote a database schema by a set of relation names S = {R1, . . . , Rl}.
A functional dependency (FD) over attributes of relation Ri (sort(Ri)) is an
expression of the form X → Y , where X, Y ⊆ sort(Ri). An instance IRi of
relation Ri satisfies X → Y , denoted by IRi |= X → Y , if for every two tuples
t1, t2 in IRi with t1[X] = t2[X], we have t1[Y] = t2[Y]. An instance satisfies a set
of FDs Σ, if it satisfies all FDs in Σ. We say that an FD X → A is implied by
Σ, written Σ |= X → A, if for every instance I satisfying Σ, I satisfies X → A.
The set of all FDs implied by Σ is denoted by Σ+. In this paper, we always
assume that Σ is minimal, i.e., a set of FDs of the form X → A (with a single
attribute on the right-hand side), such that Σ �|= X ′ → A for every X ′ � X , and
Σ−{X → A} �|= X → A. We usually denote sets of attributes by X, Y, Z, single
attributes by A, B, C, and the union of two attribute sets X and Y by XY .

Conditional functional dependencies (CFDs) have recently been introduced
as an extension to traditional functional dependencies [10,16,19,18]. CFDs are
capable of representing accurate information and are useful in data cleaning. A
CFD is an expression of the form (X → A, tp), where X → A is a standard FD,
and tp is a pattern tuple on attributes XA. For every attribute B ∈ XA, tp[B] is
either a constant in the domain of B or the symbol ‘ ’. To define the semantics
of CFDs, we need an operator �. For two symbols u1, u2, we have u1 � u2 if
either u1 = u2 or one of u1, u2 is ‘ ’. This operator naturally extends to tuples.
Let IR be an instance of relation schema R, and Σ be a set of CFDs over the
attributes of R. Instance IR satisfies a CFD (X → A, tp) if for every two tuples
t1, t2 in IR, t1[X] = t2[X] � tp[X] implies t1[A] = t2[A] � tp[A]. Like traditional
FDs, we can assume that we deal with a minimal set of CFDs [10].

2.1 Repairs and Basic Conflicts

In this paper, we deal with inconsistent database instances that do not satisfy a
set of dependencies. We consider repairs that are modifications of the database
by changing a minimal set of attribute values. We therefore need a notion of
tuple identifier with which we can refer to a tuple and its updated version. In
a relational database, a tuple identifier can be implemented as a primary key
whose values are clean. In general, we say that an attribute is clean if the values
of this attribute never involve in any dependency violation. We also need a notion
of position to refer to a specific attribute value for a given tuple identifier. For
an instance I of schema S = {R1, . . . , Rl}, the set of positions of I is defined as
Pos(I) = {(Rj , t, A) | Rj ∈ S, A ∈ sort(Rj), and t identifies a tuple in IRj}.
We denote the value contained in position p = (Rj , t, A) ∈ Pos(I) by I(p) (or
I(Rj , t, A)). For two instances I and I ′ such that Pos(I) = Pos(I ′), the difference
between I and I ′ is defined as the set Diff (I, I ′) = {p ∈ Pos(I) | I(p) �= I ′(p)}.

Exploiting Conflict Structures in Inconsistent Databases 325

Algorithm HittingSetRepair
Input: Instance I, FDs Σ, hitting set H of Σ-Confs(I).
Output: A minimal repair IH for I.
IH := I;
change := ∅;
while there is an FD X → A ∈ Σ and tuples t1, t2 in IR such that t1[X] = t2[X] and
{(R, ti, B) | i ∈ [1, 2], B ∈ XA} ∩ (H \ change) = {(R, t2, A)} do

IH (R, t2, A) := IH (R, t1, A);
change := change ∪ {(R, t2, A)};

while change
= H do
pick p ∈ H \ change;
IH (p) := a, where a is a fresh value not in the active domain of IH ;
change := change ∪ {p};

return IH ;

Fig. 2. Constructing a minimal repair for a minimal hitting set of Σ-Confs(I)

Let Σ be a set of (conditional) functional dependencies, and I be an instance
of schema S that does not satisfy Σ, i.e., I �|= Σ. Instance I ′ of S is an attribute-
based repair for I if Pos(I) = Pos(I ′) and I ′ |= Σ. We say that I ′ is a minimal
repair if there is no repair I ′′ of I such that Diff (I, I ′′) � Diff (I, I ′).

Definition 1. For a database instance I that does not satisfy a set of (C)FDs
Σ, a set of positions T ⊆ Pos(I) is a basic conflict if there is no repair I ′ of I
such that Diff (I, I ′) ∩ T = ∅, and no proper subset of T has this property. The
collection of all basic conflicts for an instance I is denoted by Σ-Confs(I).

In this paper, we assume that there is no domain constraint for the attribute
values in a database that could interact with (conditional) functional dependen-
cies, e.g, constraints that put a restriction on the number of occurrences for each
value. Moreover, the domain of each attribute is large enough that, there are
always enough fresh values, not already in the active domain, to replace the ex-
isting values. With these assumptions, it is easy to see that once the collection of
basic conflicts for an inconsistent database is given, then minimal repairs would
exactly correspond to minimal hitting sets of this collection. Recall that for a
collection of sets over the elements of a universe, a hitting set is a subset of the
universe that intersects every set in the collection. A minimal hitting set is a
hitting set such that none of its proper subsets is also a hitting set.

Theorem 1. Let Σ be a set of (conditional) functional dependencies, and I be
a database instance, then

1. for every minimal hitting set H of Σ-Confs(I), there is a minimal repair IH

of I, such that Diff (I, IH) = H.
2. for every minimal repair I ′ of I, Diff (I, I ′) is a minimal hitting set for

Σ-Confs(I).
3. for a set of positions P ⊆ Pos(I), there is a minimal repair I ′ for I with

Diff (I, I ′) ∩ P = ∅ if and only if for every conflict T ∈ Σ-Confs(I), T �⊆ P .

The chase procedure in Figure 2 shows how a repair IH can be constructed for
a given hitting set H of Σ-Confs(I), when Σ is a set of FDs. After changing
the value of positions that are forced by FDs, the other positions in the hitting

326 S. Kolahi and L.V.S. Lakshmanan

set are updated with fresh values that are not in the active domain. The chase
could be similarly done for a set of CFDs.

3 Conflict-Aware Query Answering

In this section, we show how we can take advantage of basic conflicts for query
answering over inconsistent databases. By conflict-aware query answering, we
mean a query evaluation framework that first, in a preprocessing step, detects
the collection of basic conflicts in an input inconsistent database, and then takes
advantage of this collection to do useful reasoning for answering queries without
adding a significant overhead to the time and space required for usual query
evaluation. To this end, we use annotated databases and introduce an annotated
relational algebra, which simply adds a number of annotation propagation rules
to the classical relational algebra semantics.

Let Annt be a set of annotations, e.g., the set of natural numbers, and
Dom be the domain of all attributes. An annotated database instance Î of a
database schema S = {R1, . . . , Rl} consists of a set of annotated relation in-
stances Î = {ÎR1 , . . . , ÎRl

}. Each annotated instance ÎRi of Ri(A1, . . . , Am) is a
set of annotated tuples of the form (t̂,S,D), where t̂ is an m-tuple of (annota-
tion, value) pairs, and S ⊆ Annt, D ⊆ 2Annt are used for recording provenance
information for selection operators σA=a, σA=A′ respectively.

For an attribute A, t̂[A].val corresponds to the value of attribute A, and
t̂[A].annt denotes the annotation. The underlying m-tuple of attribute values
obtained by ignoring the annotations of t̂ is denoted by t̂.val , and the m-tuple of
annotations appearing in t̂ is denoted by t̂.annt . The set of all such annotations in
tuple t̂ is referred to by t̂.aset . For instance, for the first annotated tuple (t̂,S,D)
in Figure 4(b), we have t̂.val = (a1, b1, c1), t̂.annt = (1, 2, 3), and t̂.aset =
{1, 2, 3}. Similarly, for a set of annotated tuples Ŝ, Ŝ.val denotes the set of
classical tuples {t | t = t̂.val , (t̂,S,D) ∈ Ŝ}, and Ŝ.aset denotes the set of
annotations appearing in t̂, S, or D for all annotated tuples (t̂,S,D) ∈ Ŝ.

Using these notations, in Figure 3, we define the semantics of a simple anno-
tated relational algebra, which we need for propagating the conflicts to query
answers. The purpose of this annotated algebra is first copying the annotations
of the data values in the input relation to the values appearing in the answer,
and then producing a light form of provenance by saving the annotations of
values that have been involved in the selections. Intuitively, the provenance sets
S,D for each annotated tuple (t̂,S,D) carry the annotation of data values that

σA=a(ÎR) = {(t̂,S,D) | (t̂,S′,D) ∈ ÎR, t̂[A].val = a, S = S′ ∪ {t̂[A].annt}}
σA=A′ (ÎR) = {(t̂,S,D) | (t̂,S,D′) ∈ ÎR, t̂[A].val = t̂[A′].val, D = D′ ∪ {{t̂[A].annt, t̂[A′].annt}}}
πX (ÎR) = {(t̂[X],S,D) | (t̂,S,D) ∈ ÎR}
ÎR1 × ÎR2 = {(〈t̂1, t̂2〉,S,D) | (t̂1,S1,D1) ∈ ÎR1 , (t̂2,S2,D2) ∈ ÎR2 , S = S1 ∪ S2, D = D1 ∪D2}
Î1

R ∪ Î2
R = {(t̂,S, D) | (t̂, S,D) ∈ Î1

R or (t̂,S,D) ∈ Î2
R}

ρA′←A(ÎR) = {(t̂,S,D) | (t̂,S,D) ∈ ÎR}

Fig. 3. Annotated relational algebra

Exploiting Conflict Structures in Inconsistent Databases 327

A B C
a1 b1 c1
a2 b1 c1

A B C S D
1,a1 2,b1 3,c1 ∅ ∅
4,a2 5,b1 6,c1 ∅ ∅

A S D
1,a1 {2} ∅
4,a2 {5} ∅

(a) (b) (c)

Fig. 4. (a) database instance (b) annotated instance (c) after running πA(σB=b1(Î))

have contributed to the selection of the tuple. A single annotation is added to
S whenever the single selection operator σA=a is performed, and a set of two
annotations is added to D whenever the double selection operator σA=A′ is per-
formed. For simplicity, we sometimes write S∪D to denote the set of annotations
that appear in S or D.

Given an instance I of a database schema S = {R1, . . . , Rl}, we create an
annotated relational database Î by giving a unique annotation p̂ ∈ [1, |Pos(I)|]
to each position p ∈ Pos(I). That is, Annt = {1, . . . , |Pos(I)|}. The annotated
database instance Î consists of ÎR1 , . . . , ÎRl

, where

ÎRi = {(t̂, ∅, ∅) | t̂ = ((p̂1, I(p1)), . . . , (p̂m, I(pm))), where
(I(p1), . . . , I(pm)) ∈ IRi}.

Intuitively, Î annotates every position p in the instance with a unique number
p̂ and initializes the provenance sets to be empty (see Figure 4(b)). If I is an
inconsistent database, then each minimal repair I ′ of I can have a similar rep-
resentation Î ′: for each annotated tuple (t̂, ∅, ∅) in Î, there is (t̂′, ∅, ∅) in Î ′ with
t̂.annt = t̂′.annt , but the values in t̂.val and t̂′.val may not agree.

For a relational algebra query Q, we write Q(I) to denote the classical answer
obtained by usual evaluation of Q over I, and Q̂(Î) to denote the annotated an-
swer obtained by the rules shown in Figure 3. Similarly, we use t (resp., (t̂,S,D))
to denote a classical (resp., annotated) tuple. For a tuple t ∈ Q(I), an annotated
tuple (t̂,S,D) ∈ Q̂(Î) is called a derivation of t if t̂.val = t. Similarly, for a set
of tuples S ⊆ Q(I), a set of annotated tuples Ŝ ⊆ Q̂(Î) is called a derivation
of S if Ŝ.val = S. Intuitively, a derivation is one of the possibly many ways of
obtaining a (set of) tuple(s) in the answer.

3.1 Answers with Consistent Derivation

Let I be an inconsistent database instance that violates a set of (conditional)
functional dependencies Σ. Now we define answers with consistent derivation for
a relational algebra query Q.

Definition 2. A set of tuples S ⊆ Q(I) has a consistent derivation if S has a
derivation Ŝ ⊆ Q̂(Î) such that Ŝ ⊆ Q̂(Î ′) for some minimal repair I ′.

Intuitively, S has a consistent derivation if for some minimal repair I ′, all the
tuples in S appear in Q(I ′) through the same set of positions. That is, one of the
derivations of S persists in Q̂(Î ′). Notice that this definition does not suggest
that answers with consistent derivation could be efficiently computed, because
the number of minimal repairs could potentially be exponential in the size of

328 S. Kolahi and L.V.S. Lakshmanan

inconsistent database. Suppose that the collection of basic conflicts Σ-Confs(I)
is given, where each basic conflict is represented as a subset of [1, |Pos(I)|]. Next
we would like to show that after having Σ-Confs(I), we can capture answers
with consistent derivation at no extra computational cost for query evaluation.

Example 3. Figure 4(b) shows the annotated version Î of database instance
I in Figure 4(a). The result of running the query πA(σB=b1 (Î)) is shown in
Figure 4(c). Consider the set of CFDs Σ = {(A → C, (a1, c1)), (B → C, (b1, c2)),
stating that if A is a1, then C should be c1, and if B is b1, then C should be c2.
The set of basic conflicts for instance I is Σ-Confs(I) = {{1, 2}, {2, 3}, {5, 6}}.
Notice that the subset {(a1)} of the answer does not have a consistent derivation,
and this is reflected in the first annotated tuple of Figure 4(c): the annotations
in this tuple contain a basic conflict. abc �

The next theorem shows that S ⊆ Q(I) has a consistent derivation if it has a
derivation Ŝ ⊆ Q̂(Î) that contains none of the basic conflicts in Σ-Confs(I), i.e.,
if S could be obtained by a non-conflicting set of values.

Theorem 2. (Soundness) Let Q be a positive relational algebra query. A set
of tuples S ⊆ Q(I) has a consistent derivation if S has a derivation Ŝ ⊆ Q̂(Î),
such that Ŝ.aset does not contain any of the basic conflicts in Σ-Confs(I).

We achieve completeness for queries that satisfy either of these restrictions:

Restriction I: Query has no projection.
Restriction II: For every attribute A in one of the base relations, there is

at most one selection operator σA=a in the query. Furthermore, for every
selection operator σA=A′ , either A or A′ refer to a clean attribute.

Theorem 3. (Completeness) Let Q be a positive relational algebra query that
satisfies Restriction I or Restriction II. A set of tuples S ⊆ Q(I) has a
consistent derivation only if S has a derivation Ŝ ⊆ Q̂(Î), such that Ŝ.aset does
not contain any of the basic conflicts in Σ-Confs(I).

Remark. We can remove the first condition for Restriction II if we have more
sets like S in the annotated tuples to record the provenance of all selection
operators of the form σA=a.

3.2 Possible Answers

In the previous section, we showed how we can efficiently check whether a set of
tuples in the answer of a query over an inconsistent database can be obtained by
running the query over some minimal repair with the same derivation. However,
we may be interested in answers that can be obtained from some minimal repair
regardless of the derivation. This is referred to as possible answer checking, which
is a well-studied problem for incomplete databases (see [1]). Possible answers for
inconsistent databases can be defined as follows.

Let I be an inconsistent database instance that violates a set of (conditional)
functional dependencies Σ, and Q be a relational algebra query.

Exploiting Conflict Structures in Inconsistent Databases 329

A B S D
1,a1 2,b1 ∅ ∅
3,a2 4,b2 ∅ ∅

A B S D
1,a1 2,b1 ∅ ∅
1,a1 4,b2 ∅ ∅
3,a2 2,b1 ∅ ∅
3,a2 4,b2 ∅ ∅

(a) (b)

Fig. 5. (a) annotated instance (b) after running πA(Î) × πB(Î)

Definition 3. A set of tuples S ⊆ Q(I) is a possible answer if S ⊆ Q(I ′) for
some minimal repair I ′.

In this paper, we are interested in possible answers with bounded size, |S|, be-
cause it is easy to show that if the size of S is not bounded, then possible answer
checking becomes NP-complete for very simple queries. This is not a surprising
result as unbounded possible answer checking is NP-complete for some positive
queries over simple representations of incomplete databases [1].

Proposition 1. There is a set of functional dependencies Σ with only one FD
and a query Q with natural join and projection (π, σA=A′ ,×), for which un-
bounded possible answer checking is NP-complete.

Next, we would like to show how conflict-aware query answering can help us
identify possible answers of bounded size. Soundness of this framework is an
immediate corollary of soundness for answers with consistent derivation.

Corollary 1. (Soundness) Let Q be a positive relational algebra query. A set
of tuples S ⊆ Q(I) is a possible answer if S has a derivation Ŝ ⊆ Q̂(Î), such
that Ŝ.aset does not contain any of the basic conflicts in Σ-Confs(I).

For some queries, however, a set of tuples can be a possible answer without
having a consistent derivation in the inconsistent database. In other words, a
minimal repair could make changes to the inconsistent database in a way that
those tuples could be obtained in the answer through a different set of positions,
and realizing this may require additional reasoning.

Example 4. Consider CFDs Σ = {(A → B, (a1, b2)), (A → B, (a2, b1))}. For the
instance I shown in Figure 5(a), we have Σ-Confs(I) = {{1, 2}, {3, 4}}. Observe
that for the query Q(I) = πA(I)× πB(I), the tuple (a1, b1) is a possible answer,
while it does not have a consistent derivation in Q̂(Î) in Figure 5(b). abc �

Nonetheless, there are still some queries for which we can efficiently check
whether a set of tuples is a possible answer using our light-weight conflict-
aware query evaluation framework. More specifically, we achieve completeness
for queries satisfying any of the following restrictions, which implies that pos-
sible answers and answers with consistent derivation coincide for these queries.
In these restrictions, by self product we mean the Cartesian product of two
expressions that have a relation name in common.

Restriction III: Query has no projection, no union, at most one self product.

330 S. Kolahi and L.V.S. Lakshmanan

Restriction IV: Query has no union and no self product. Furthermore, for
every attribute A in one of the base relations, there is at most one selection
operator σA=a in the query. Also σA=A′ is allowed only when both A and A′

refer to a clean attribute.

Theorem 4. (Completeness) Let Q be a positive relational algebra query that
satisfies Restriction III or Restriction IV. A set of tuples S ⊆ Q(I) is a
possible answer only if S has a derivation Ŝ ⊆ Q̂(Î), such that Ŝ.aset does not
contain any of the basic conflicts in Σ-Confs(I).

4 Generating Repairs Using Conflicts

One way to deal with inconsistency in databases is data cleaning: modifying
attribute values to generate repairs. The quality of generated repairs is usually
evaluated by a distance or cost measure that represents how far the repair is to
the original inconsistent database. An optimum repair is a repair that minimizes
the distance measure. Here we define such a measure and show how the notion of
basic conflicts can help generate repairs whose distance to the input inconsistent
database is reasonably close to the minimum distance.

Given a database instance I that violates a set of (C)FDs Σ, we define the
distance between I and a repair I ′ to be Δ(I, I ′) =

∑
(R,t,A)∈Diff (I,I′) w(t),

where w(t) is the cost of making any update to tuple t and represents the level
of certainty or accuracy placed by the user who provided the fact . Intuitively,
Δ(I, I ′) shows the total cost of modifying attribute values that are different in
I and I ′. In the absence of tuple weights, we can assume they are all equal to 1.

It has previously been shown that finding an optimum repair IOpt that min-
imizes a distance measure such as Δ(I, I ′) is an NP-hard problem [9,11,20,25].
Furthermore, it is also NP-hard to find an approximate solution I ′ whose distance
to I is within a constant factor of the minimum distance, i.e., Δ(I, I ′) ≤ α ·Δmin

(where the factor α does not depend on (C)FDs) [25].
It is, however, possible to produce repairs whose distance to I is within a factor

αΣ of Δmin in polynomial time, where αΣ is a constant that depends on the set of
dependencies Σ. In [25], we presented an approximation algorithm for producing
such repairs that works in two steps: first, the initial conflicting sets of positions
are detected by looking at the dependency violations, and a candidate set of
positions for modification is found by applying an algorithm that approximates
the minimum hitting set for the collection of the initial conflicts. In the second
step, the value of some additional positions is changed as there still might be
some dependency violations as a result of the changes made in the first step. In
this section, we show that a second step would not be necessary if we have the
collection of all basic conflicts Σ-Confs(I). Note that the initial conflicts used
in the repair algorithm of [25] is basically a subset of Σ-Confs(I).

Here we assume that the cardinality of each basic conflict T ∈ Σ-Confs(I)
is bounded by bΣ. That is |T | ≤ bΣ for some constant bΣ that depends only
on Σ. In the next section, we will present a sufficient condition on the set of

Exploiting Conflict Structures in Inconsistent Databases 331

Algorithm ApproximateOptRepair
Input: Instance I, (C)FDs Σ, Basic conflicts Σ-Confs(I).
Output: Repair I′.
for every position p = (R, t, A) ∈ Pos(I) do

assign w(p) := w(t);
find an approximation H for minimum hitting set of Σ-Confs(I);
apply HittingSetRepair for I, Σ, and H;
return the output I′;

Fig. 6. Algorithm for finding an approximation to optimum repair

dependencies Σ that guarantees this bound. We show that we can have a repair
algorithm that approximates optimum repair within a factor of bΣ simply by
applying a standard greedy algorithm that finds an approximate solution H for
minimum hitting set of Σ-Confs(I) (see [17,30]), and then changing the value
of positions that fall in H . This is what algorithm ApproximateOptRepair
(Figure 6) does. Intuitively, since we resolve all the conflicts in the instance in
one step, there is no need for a second step to take care of the new (C)FD
violations caused by the modifications made in the first step. This highlights the
importance of detecting all basic conflicts.

Theorem 5. For every input inconsistent instance I, ApproximateOptRe-
pair generates a repair I ′ with Δ(I, I ′) ≤ bΣ ·Δmin, where bΣ is a constant that
depends only on Σ.

5 Detecting Conflicts

In previous sections, we have seen how having the collection of basic conflicts
can be helpful in both conflict-aware query answering and in finding repairs. A
natural question is whether it is possible to find this collection efficiently. In par-
ticular, we are interested in the following question: whether for any inconsistent
instance I of a given schema and set Σ of (conditional) functional dependencies,
we can compute Σ-Confs(I) in polynomial time in the size of I. We show that
the answer is yes if Σ does not have a sink-free cycle, defined below. In fact in
that case, we show that there is a bound on the size of basic conflicts for any
inconsistent instance. For simplicity, we do not discuss the case when Σ is a set
of CFDs (when pattern tuples exist), but the results of this section can easily
be applied to CFDs as well, simply by ignoring pattern tuples.

For a set of FDs Σ, we define a directed graph GΣ(Σ, E), where Σ is the set of
vertices, and E is the set of edges, such that (X1 → A1, X2 → A2) ∈ E whenever
A1 ∈ X2. Let C = {X1 → A1, . . . , Xk → Ak} be a subset of Σ that forms a cycle
in GΣ . That is, Ai ∈ Xi+1 for i ∈ [1, k) and Ak ∈ X1. Then C is called sink-free
if for every FD Xi → Ai ∈ C, there exists an FD Xj → Aj ∈ C, such that
Σ �|= Xj → Xi. The following example shows how an instance that violates a
set of FDs with a sink-free cycle can have arbitrarily large basic conflicts.

Example 5. Consider schema R(A, B, C, D) with FDs Σ = {AB → C, CD →
A}. The FDs in Σ form a sink-free cycle since Σ �|= AB → CD and Σ �|=

332 S. Kolahi and L.V.S. Lakshmanan

A B C D
a1 b1 c1
a1 b1 d1
a2 c1 d1

A B C D
a1 b1 c1
a1 b1 d1

b2 c1 d1
a1 b2 d2
a2 c1 d2

A B C D
a1 b1 c1
a1 b1 d1

b2 c1 d1
a1 b2 d2

b3 c1 d2
a1 b3 d3
a2 c1 d3

Fig. 7. Instances with large basic conflicts

Algorithm ChaseExpansion
Input: Instance I, FDs Σ, Positions T ⊆ Pos(I).
Output: Chase expansion of T w.r.t. Σ.

T+ := T ;
while there is an FD X → A ∈ Σ and tuples t1, t2 in IR such that t1[X] = t2[X] and

{(R, ti, B) | i ∈ [1, 2], B ∈ XA} \ T+ = {(R, t2, A)} do
I(R, t2, A) := I(R, t1, A);

T+ := T+ ∪ {(R, t2, A)};
return T+;

Fig. 8. Chase expansion of a set of positions w.r.t. a set of FDs

CD → AB. Figure 7 shows three instances of R, where the filled positions form
a basic conflict. Observe that we can create instances with arbitrarily-large basic
conflicts by repeating the pattern that exists in these instances. abc �

Next, we show that inconsistent instances can have arbitrarily-large basic con-
flicts only if the set of FDs has a sink-free cycle. First, we define the notions of
chase expansion and chase DAG (directed acyclic graph) for a set of positions in
the database. Let T ⊆ Pos(I). The chase expansion of T , denoted by T+, is the
output of the chase procedure shown in Figure 8. Each step of this procedure
adds one position (R, t2, A) to T + if there is an FD X → A and two tuples t1, t2
that agree on X , of which the only position not already in T + is (R, t2, A). The
value in position (R, t2, A) of I is also updated to the value in (R, t1, A). Clearly,
a set of positions T ⊆ Pos(I) contains a basic conflict in Σ-Confs(I) if and only
if the chase expansion of T w.r.t. Σ contains a violation of an FD in Σ+.

Let (t1, t2, X → A) denote a step in the chase expansion of T , and N denote
the set of all these steps. We define chase DAG of T to be the DAG D(N, F),
with vertices N and edges F , where there is an edge from (t1, t2, X1 → A1) to
(t2, t3, X2 → A2) in F whenever A1 ∈ X2. Clearly, (t2, t3, X2 → A2) is a step
that takes place after (t1, t2, X1 → A1) in the chase, and, intuitively, it shows
that the value produced by the former step is being used by the latter by being
placed on the left-hand side of an FD application.

Theorem 6. For every set of FDs Σ that does not have a sink-free cycle, there
exists a number bΣ, such that for every inconsistent instance I and every basic
conflict T ∈ Σ-Confs(I), we have |T | ≤ bΣ.

Proof sketch. Suppose there is a set of FDs Σ, such that for every integer l, there
is an inconsistent instance I and a basic conflict T ∈ Σ-Confs(I) with |T | > l.
We need to show that Σ has a sink-free cycle. Note that if for a set of FDs, the

Exploiting Conflict Structures in Inconsistent Databases 333

depth of chase DAG (length of the longest path from a leaf to a root) for every
basic conflict is bounded, then an arbitrarily large basic conflict cannot exist,
because the in-degree of vertices is bounded. We therefore assume that for such
a set of FDs and every integer l, there is an instance I, such that for a basic
conflict T ∈ Σ-Confs(I), the depth of the chase DAG of T is larger than l.

We can assume, w.l.o.g., that the chase DAG of T is a chain, meaning that
each vertex has at most one incoming and one outgoing edge. This is because for
every instance I, a basic conflict T ∈ Σ-Confs(I), and a path q from a leaf to a
root in the chase DAG of T , we can create another instance I ′ with a basic conflict
T ′ ∈ Σ-Confs(I ′) whose chase DAG is a chain that exactly looks like q (it is
enough to make the following updates to I: for every chase step (t1, t2, X → A)
not on q, we change the value of t2[A] in I to the value that the chase step
introduces). Next, observe that the depth of any chase DAG is bounded by the
depth of the FD graph GΣ(Σ, E) if Σ does not have a cycle. Thus, Σ should be
cyclic. Suppose cyclic FDs C = {X1 → A1, . . . , Xk → Ak} ⊆ Σ are repeatedly
applied in the chain: Xi+1 → Ai+1 is applied right after Xi → Ai for i ∈ [1, k)
(Ai ∈ Xi+1), and X1 → A1 is applied right after Xk → Ak (Ak ∈ X1) and
so on. Next, we observe that if an FD, e.g., X1 → A1, is applied twice in a
chain for two different chase steps (t1, t2, X1 → A1) and (tk+1, tk+2, X1 → A1),
then t1[X1] �= tk+1[X1] in the chase expansion of T . Otherwise, we can directly
perform the chase step (t1, tk+2, X1 → A1), and the path between these two
steps is not necessary. This would contradict with the fact that T is a minimal
set. Note that right after the chase step (tk+1, tk+2, X1 → A1) is performed,
T +, the partial chase expansion until this step, would not have contained an FD
violation. Otherwise, the chase would have reached a violation before visiting
all the positions in T , which implies that T has a proper subset that is a basic
conflict. It is easy to observe that t1[X1] can be different from tk+1[X1] without
T + containing a violation only if X1 is not implied by all the left-hand sides of the
FDs applied between the two chase steps. That is, there must be Xj → Aj ∈ C
such that Σ �|= Xj → X1, which means Σ has a sink-free cycle. abc �
The main result of this section can be stated as a corollary to Theorem 6.

Corollary 2. For every set of FDs Σ that does not have a sink-free cycle, and
every inconsistent database instance I, the set of basic conflicts Σ-Confs(I) can
be computed in polynomial time in the size of I.

6 Conclusions

We presented the notion of basic conflicts in inconsistent databases that violate
a set of (conditional) functional dependencies. We considered possible answers,
and introduced answers with consistent derivation as a more restrictive notion of
possibility. By annotating databases and propagating annotations during query
evaluation, we showed how we can identify possible answers or answers with
consistent derivation by checking whether the annotated answers contain a ba-
sic conflict. Then we showed that basic conflicts could also be used in data

334 S. Kolahi and L.V.S. Lakshmanan

cleaning, when the goal is generating repairs that are close to the input inconsis-
tent database according to a distance measure. We characterized dependencies
for which the size of each basic conflict is bounded for any inconsistent database,
and thus the collection of basic conflicts is computable in polynomial time.

Other problems for inconsistent databases could be reexamined using the no-
tion of basic conflicts. For instance, it would be interesting to find out whether
there is any connection between conflict-aware query answering and consistent
query answering for finding certain answers. We would also like to examine
conflict-aware query answering for more expressive queries, such as queries with
inequalities. It would also be interesting to look for efficient algorithms for gen-
erating the collection of basic conflicts.

Acknowledgments. This work was supported by a grant from the Natural Sci-
ences and Engineering Research Council of Canada for the Business Intelligence
Network, which is gratefully acknowledged.

References

1. Abiteboul, S., Kanellakis, P.C., Grahne, G.: On the representation and querying

of sets of possible worlds. Theor. Comput. Sci. 78(1), 158–187 (1991)

2. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent

databases. In: PODS, pp. 68–79 (1999)

3. Arenas, M., Bertossi, L.E., Chomicki, J.: Answer sets for consistent query answering

in inconsistent databases. TPLP 3(4-5), 393–424 (2003)

4. Arenas, M., Bertossi, L.E., Chomicki, J., He, X., Raghavan, V., Spinrad, J.: Scalar

aggregation in inconsistent databases. Theor. Comput. Sci. 3(296), 405–434 (2003)

5. Arenas, M., Bertossi, L.E., Kifer, M.: Applications of annotated predicate calculus

to querying inconsistent databases. In: Computational Logic, pp. 926–941 (2000)

6. Barceló, P., Bertossi, L.E., Bravo, L.: Characterizing and computing semantically

correct answers from databases with annotated logic and answer sets. In: Semantics

in Databases, pp. 7–33 (2001)

7. Benjelloun, O., Sarma, A.D., Halevy, A.Y., Widom, J.: Uldbs: Databases with

unvertainty and lineage. In: VLDB, pp. 953–964 (2006)

8. Bertossi, L.E.: Consistent query answering in databases. SIGMOD Record 35(2),

68–76 (2006)

9. Bertossi, L.E., Bravo, L., Franconi, E., Lopatenko, A.: The complexity and approx-

imation of fixing numerical attributes in databases under integrity constraints. Inf.

Syst. 33(4-5), 407–434 (2008)

10. Bohannon, P., Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional func-

tional dependencies for data cleaning. In: ICDE, pp. 746–755 (2007)

11. Bohannon, P., Flaster, M., Fan, W., Rastogi, R.: A cost-based model and effective

heuristic for repairing constraints by value modification. In: SIGMOD Conference,

pp. 143–154 (2005)

12. Buneman, P., Khanna, S., Tan, W.C.: Why and where: A characterization of data

provenance. In: ICDT, pp. 316–330 (2001)

13. Buneman, P., Khanna, S., Tan, W.C.: On propagation of deletions and annotations

through views. In: PODS, pp. 150–158 (2002)

Exploiting Conflict Structures in Inconsistent Databases 335

14. Chomicki, J.: Consistent query answering: Five easy pieces. In: ICDT, pp. 1–17

(2007)

15. Chomicki, J., Marcinkowski, J.: Minimal-change integrity maintenance using tuple

deletions. Inf. Comput. 197(1-2), 90–121 (2005)

16. Cong, G., Fan, W., Geerts, F., Jia, X., Ma, S.: Improving data quality: Consistency

and accuracy. In: VLDB, pp. 315–326 (2007)

17. Hochbaum, D.S.: Approximation Algorithms for NP-Hard Problems. PWS (1997)

18. Fan, W.: Dependencies revisited for improving data quality. In: PODS, pp. 159–170

(2008)

19. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional functional dependen-

cies for capturing data inconsistencies. ACM Trans. Database Syst. 33(2) (2008)

20. Flesca, S., Furfaro, F., Parisi, F.: Consistent query answers on numerical databases

under aggregate constraints. In: DBPL, pp. 279–294 (2005)

21. Fuxman, A., Miller, R.J.: First-order query rewriting for inconsistent databases. J.

Comput. Syst. Sci. 73(4), 610–635 (2007)

22. Geerts, F., Kementsietsidis, A., Milano, D.: Mondrian: Annotating and querying

databases through colors and blocks. In: ICDE, p. 82 (2006)

23. Grahne, G., Mendelzon, A.O.: Tableau techniques for querying information sources

through global schemas. In: ICDT, pp. 332–347 (1999)

24. Greco, S., Molinaro, C.: Approximate probabilistic query answering over incon-

sistent databases. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008.

LNCS, vol. 5231, pp. 311–325. Springer, Heidelberg (2008)

25. Kolahi, S., Lakshmanan, L.V.S.: On approximating optimum repairs for functional

dependency violations. In: ICDT, pp. 53–62 (2009)

26. Kolahi, S., Lakshmanan, L.V.S.: Exploiting conflict structures in inconsistent

databases (2010) (full version),

http://www.cs.ubc.ca/~solmaz/conflict-proofs.pdf

27. Levene, M., Loizou, G.: Database design for incomplete relations. ACM Trans.

Database Syst. 24(1), 80–125 (1999)

28. Levene, M., Loizou, G.: A Guided Tour of Relational Databases and Beyond.

Springer, London (1999)

29. Lopatenko, A., Bravo, L.: Efficient approximation algorithms for repairing incon-

sistent databases. In: ICDE, pp. 216–225 (2007)

30. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2003)

31. Wijsen, J.: Database repairing using updates. ACM Trans. Database Syst. 30(3),

722–768 (2005)

32. Wijsen, J.: Consistent query answering under primary keys: a characterization of

tractable queries. In: ICDT, pp. 42–52 (2009)

http://www.cs.ubc.ca/~solmaz/conflict-proofs.pdf

Satisfiability and Containment Problem of
Structural Recursions with Conditions

Balázs Kósa�, András Benczúr, and Attila Kiss

Eötvös Loránd University, Faculty of Informatics,
1118, Budapest, Pázmány Péter sétány 1/C
{balhal,abenczur,kiss}@inf.elte.hu

Abstract. Structural recursion is a general graph traversing and re-
structuring operation. In [9][10] we extended structural recursions with
not-isempty conditions and a limited form of registers in order to simulate
a large fragment of XPath 1.0 and XSLT 1.0. In this paper we address
the satisfiability and containment problem of structural recursions with
not-isempty conditions. We examine two cases, when else-branches are
allowed in the conditions and when they are not. In the second case it
turns out that the satisfiability problem can be solved in quadratic time,
while the question of containment is coNP-complete in general. In the
first case both problems are PSPACE-complete in general. Our results
have their theoretical importance of their own, however, we hope that
they can also be used to fill in some of the gaps in the research of XPath
and XSLT.

Keywords: Semistructured Data, XML, Structural Recursion.

1 Introduction

Structural recursion is a graph traversing and restructuring operation applied
on many fields of computer science including syntax analysis, code generation
and program transformation. In the context of databases it was already recom-
mended as a query language alternative in the early 90’s to be able to overstep
the limitations of the relational data model, and to move toward to the expressive
capability of a relational query language embedded into a general purpose pro-
gramming language [4]. Its expressive power suffice for most practical problems
and its easy computation makes it a good candidate for this purpose.

The rising of semistructured databases and XML put structural recursions
again in the limelight. It has formed the basis of UnQL [5], a query language
for semistructured databases and also of XSLT. Several papers appeared then
dealing with their properties [6][14]. However, later, other formal models were
proposed [3][13], which superseded structural recursions.

� The research was supported by the project TÁMOP-4.2.1/B-09/1/KMR-2010-003
of Eötvös Loránd University.

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 336–350, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Structural Recursions with Conditions 337

In [8] we examined static analytical and optimization questions of simple
structural recursions, i.e., structural recursions without conditions, in the pres-
ence of schema graphs [6]. In [9] we extended structural recursions with not-
isempty conditions and a limited form of registers in order to simulate a large
fragment of XPath 1.0. In [10] we showed how this simulation can be extended
to a fragment of XSLT 1.0.

In this paper we address the question of satisfiability and containment for
structural recursions with not-isempty conditions. Our results have their theo-
retical importance of their own, however, we hope that they can also be used in
the static analysis of XPath and XSLT (acknowledging that most of the prob-
lems have been already solved in this field [2][12]. We examine two cases, when
the else-branches are allowed in the conditions and when they are not. In the
second case it turns out that the satisfiability problem can be solved in quadratic
time, while the question of containment is coNP-complete in general. In the first
case both problems are PSPACE-complete in general.

2 Preliminaries

XML documents and semistructured data are usually modelled with rooted,
labelled, directed trees or graphs [1]. XML documents are represented as node-
labelled trees in general, nonetheless, in our paper it is more convenient to use
edge-labelled trees instead. Both node-labelled and edge-labelled trees can be

¬a(x) ¬a(x) ∧ ¬b(x)
u1

¬b(x)

a

v1

a c

v2 v3
b

u3

(u1, v1)

(u1, v2)

(u1, v3)

(u2, v1)

(u2, v2)

(u2, v3)

(u3, v1)

(u3, v2)

(u3, v3)

¬a(x) ∧ ¬b(x)

c

b

a
c

c

¬a(x) ∧ ¬b(x)

ca

(a) (b) (c) (d)

a
b

c

εa

e d

a
b

c

e
d

a

(e)

ε ε

S1 S2

(f)

u

u2

a

c d

b

e

(g)

Fig. 1. (a) A data graph. (b) A data graph. (c) The intersection of the data graphs of
(a) and (b). (d) The final result of this intersection. (e) An example of eliminating ε
edges. (f) The union of data graphs. (g) {a : {c : {}} ∪ {d : {}}} ∪ {b : {e : {}}}.

338 B. Kósa, A. Benczúr, and A. Kiss

transformed into each other without any difficulties [1]. We shall not enter into
the details of the XML data model owing to our more theoretical approach, but
it is not difficult to reformulate the followings in that setting.

Data graphs. Formally, let U be the universe of all constants (U = Int ∪
String ∪ . . .). Then a data graph (instance) I is a triplet I = (V, E, v0), where
V is the set of nodes, E ⊂ V × U × V is the set of labelled edges and v0 is
the distinguished root [5]. V.I, E.I denotes the sets of nodes and edges of an
instance I respectively.

Basic notions of graphs. A sequence of subsequent edges of a graph, a1 . . . an

in notation, is called a path. A path, whose nodes are mutually different from
each other, is said to be a simple path. By a pregraph we mean a subgraph of an
instance I with the same root as that of I. Two edges having the same starting
node are said to be neighbours. By a cycle we mean a simple path whose first
and last node are the same. Looping edges will also be considered as cycles.

ε edges. ε edges will be used to ease the explanation. Their role is similar to the
role of silent transitions in automata theory. At the end of computations they
should be always eliminated. The elimination is accomplished in the following
way: in an arbitrary instance I let (u, ε, v) ∈ E.I be an ε edge. For every edge
(v, a, w) ∈ E.I, where the starting node is the same as the end node of (u, ε, v),
add (u, a, w) to E.I. With that delete the preceding (v, a, w) edges. Finally
(u, ε, v) should also be deleted. As an example consider Figure 1.(e).

Union. For the union of arbitrary instances I, I ′ [5], let u be a new node different
from all of the nodes of I and I ′. Add ε edges from u to the root of I and I ′ and
then eliminate these ε edges. For a graphical representation consider Figure 1.(f).

Data trees. Data trees can be built up using three constructors: the empty tree
{} consisting of a node only, the singleton set {l : t}, which is a directed l edge
with subtree t in its end node, and the union ∪ operation. For example

{a : {c : {}} ∪ {d : {}}} ∪ {b : {e : {}}}
stands for the tree of Figure 1.(g). This construction also gives us a notation
to represent data trees. These representations are said to be ssd-expressions [1]
(ssd: semistructured data). In what follows {l1 : t1, . . . , ln : tn} will abbreviate
{l1 : t1} ∪ . . . ∪ {ln : tn}.

Operational graphs. Operational graphs [8] are rooted, directed graphs, whose
edges are labelled with labels of the form [p, a]. Here p is a unary formula con-
sisting of the Boolean combination of predicates b(x) (b ∈ U) and a is a constant
in U . We fix an interpretation throughout the paper, in which b(x) becomes true
iff x = b. A typical formula of this kind will look like as follows: ¬b(x) ∧ ¬c(x).
Note that the evaluation of p over this fixed interpretation can be accomplished
in linear time. A [p, a] labelled edge will represent that for those edges of data
graphs, whose edge label satisfies p, an a edge should be constructed in the
output.

Structural Recursions with Conditions 339

Problems of satisfiability and containment. A structural recursion f is
satisfiable, if there exists a data graph I s.t. f(I) is not empty. For structural
recursion f ′, f contains f ′, in notation f � f ′, if for all instances I, if I satisfies
f , then I also satisfies f ′.

3 Simple Structural Recursions

3.1 Tree Data Graphs

In order to describe the main features of structural recursions first we consider only
trees as inputs. A structural recursion f is constituted by structural functions,
in notation f = (f1, . . . , fn), which may call each other. The syntax rules of a
structural function can be found in Figure 2. Note that here for a tree input t, we
consider t as how it is built by constructors. In the definition we give that what
should happen for the different constructors. Here, if fi contains rows for singleton
sets {a1 : t}, . . . , {ak : t}, then li = ¬a1 ∧ . . . ∧ ¬ak. If there are not such rows
before the default case, then li = �, where� denotes the predicate satisfied by all
constants of U . On the right hand side {li : {}}means that an edge is constructed
with the same label as that of the singleton set which is being processed.

We may have allowed the use of the union constructor on the right hand
side, however, for the sake of transparency we have omitted this possibility. Our
results can be extended to this general case without any serious changes.

As an example consider the following example f = (f1, f2), which copies the
subgraphs under Ann edges.:

f1 : (t1 ∪ t2) = f1(t1) ∪ f1(t2) f2 : (t1 ∪ t2)= f2(t1) ∪ f2(t2)
f1 : ({Ann : t})= {Ann : f2(t)} f2 : ({l2 : t})= {l2 : f2(t)}
f1 : ({l1 : t}) = f1(t) f2 : ({}) = {}
f1 : ({}) = {}.

Since the f(t1 ∪ t2), {} rows are always the same, we shall not write them down
in the the rest of the paper. Furthermore, we shall consider "rooted" structural
recursions, which means that in all cases the first structural function f1 is called
on the root of the input.

a row of fi ::= (t1 ∪ t2) = fi(t1) ∪ fi(t2) | ({}) = {} |
({a : t}) = singl_set | ({li : t}) = singl_set_def

singl_set ::= {} | {b : {}} | fj(t) | {b : fj(t)}
singl_set_def ::= {} | {b : {}} | {li : {}} | fj(t) | {b : fj(t)} | {li : fj(t)}

Fig. 2. The syntax of structural function fi. Here the constants a, b are not necessarily
different from each other. Similarly, fi and fj may also be the same structural functions.

3.2 Semantics

From now on we do not assume that the inputs are data trees. We define the
semantics by means of intersection of operational graphs and data graphs [8].

340 B. Kósa, A. Benczúr, and A. Kiss

f1

f2
f3

[a, ε]

[¬b ∧ ¬c, a]
[c, c]

[�,�]
[b, d]

a b

a b c

c

d

1

2

3 4

5

6

7

8

(f1, 1)

(f1, 2)

(f1, 3)

(f1, 4)

(f1, 5)

(f1, 6)

(f1, 7)

(f1, 8)

(f2, 1)

(f2, 2)

(f2, 3)

(f2, 4)

(f2, 5)

(f2, 6)

(f2, 7)

(f2, 8)

(f3, 1)

(f3, 2)

(f3, 3)

(f3, 4)

(f3, 5)

(f3, 6)

(f3, 7)

(f3, 8)

[a, ε]

[a, ε]

[b, b]

[b, b]

[d, a]

[c, c]

[c, c]

f2
f3

[¬b ∧ ¬c, a]
[c, c]

[�,�]
[b, d]

b
b

a

c

c

(b) (c)(a) (d)

Fig. 3. (a) The operational graph of f = (f1, f2, f3). (b) A tree input, whose nodes
are labelled with numbers for the sake of transparency. (c) The intersection of the
operational graph of (a) and the tree input of (b). (d) The result.

First for a structural recursion f = (f1, . . . , fn) we construct the corresponding
operational graph, Uf in notation.
|V.Uf | := n+1, and let the names of the nodes be f1, . . . , fn and w respectively.

E.Uf is given with respect to rows of fi-s.

– For an ({a : t}) = {b : fj(t)} row (see Figure 2.), we add an [a, b]-labelled
edge from fi to fj. Clearly, this edge represents that as a result of an a edge
fi calls fj and constructs a b edge. If fi is the same as fj, a looping edge is
constructed.

– We do not give in detail how for other types of rows the corresponding edge
e in the operational graph should be constructed. We only note that in an
[a, ε] edge ε indicates that no edge is to be constructed in the result. If fi

does not call any structural functions for singleton set ({a : t}), e ends in w.
Finally, an [li, li] label shows that the label of the edge to be constructed is
the same as the label of the processed input edge.

An example the operational graph of structural recursion f = (f1, f2, f3) can be
seen in Figure 3.(a).

f1 : ({a : t})= f1(t) f2 : ({b : t})= {d : f2(t)}
({l1 : t})= {b : f2(t)} ({c : t})= {c : f3(t)}

({l2 : t})= {a : f1(t)}
f3 : ({l3 : t})= {l3 : f3(t)}

Definition 1. Let Uf be an operation graph and I a data graph. Then the in-
tersection of Uf and I, Uf � I in notation, is defined as follows: V.Uf � I :=
{(u, v) | u ∈ V.Uf , v ∈ V.I}, E.Uf � I := {((fi, u), [a, φ], (fj , v)) | (fi, [p, φ], vj) ∈
E.Uf , (u, a, v) ∈ E.I,U |= p(a)}, φ ∈ U ∪ {ε}.

Note that edge ((fi, u), [a, φ], (fj , v)) ∈ E.Uf � I shows that structural function
fi is called on edge e = (u, a, v), a φ edge is constructed and fj is called on the
subtree under e. Examples can be found in Figure 3.(a)-(c). Now, in order to

Structural Recursions with Conditions 341

construct the result the second elements of the labels should be considered, and
the ε edges should be eliminated. An example can be seen in Figure 3.(b)-(d).

4 Structural Recursions with Conditions

Again we begin with the syntax rules. These can be found in Figure 4. Here n.i.
stands for the not-isempty function, whose domain is the set of data graphs, and
it returns true iff its actual parameter is not the empty graph. Note that in the
if-then-else conditions the else-branch is not required to give. What is more, we
shall not consider embedded conditions. As an example consider the following
structural recursion, which copies the subgraphs under b edges, if they contain
an Ann edge:

f1 : ({b : t})= if n.i.(f2(t)) then {b : f3(t)} f2 : ({Ann : t})= {ψ : {}}
else f1(t) ({l2 : t}) = f2(t)

({l1 : t})= f1(t) f3 : ({l3 : t}) = {l3 : f3(t)}

Definition 2. Owing to their importance we give a distinguished name for struc-
tural recursions without else-branches. They will be called pure structural recur-
sions in the sequel.

a row of fi ::= (t1 ∪ t2) = fi(t1) ∪ fi(t2) | ({}) = {} |
({a : t}) = c_singl_s | ({li : t}) = c_singl_s_def

c_singl_s ::= {} | {b : {}} | fj(t) | {b : fj(t)} |
if n.i.(fj(t)) then singl_set
if n.i.(fj(t)) then singl_set else singl_set

c_singl_s_def ::= {} | {b : {}} | {li : {}} | fj(t) | {b : fj(t)} | {li : fj(t)}
if n.i.(fj(t)) then singl_set_def
if n.i.(fj(t)) then singl_set_def else singl_set_def

singl_set ::= {} | {b : {}} | fj(t) | {b : fj(t)}
singl_set_def ::= {} | {b : {}} | {li : {}} | fj(t) | {b : fj(t)} | {li : fj(t)}

Fig. 4. The syntax of structural function fi with not-isempty subqueries. Here the
constants a, b are not necessarily different from each other. Similarly, fi and fj may
also be the same structural functions.

4.1 Operational Graphs

As it is expected, the former definition is extended to this case. For a structural
recursion f = (f1, . . . , fn), |V.Uf | := 2n + 2, and let the names of the nodes be
f1, . . . , fn, f ′

1, . . . , f
′
n, w, w′ respectively.

The f ′
i nodes will represent that case, when a structural function is called

inside the check of a not-isempty condition. In this case the only important
thing is that whether a construction is done or not. Thus an edge representing
a construction will be linked to w′ showing that the check of the non-emptiness

342 B. Kósa, A. Benczúr, and A. Kiss

of the result stops there. The subgraphs constituted by the f ′
i , w

′ nodes and
the edges between these nodes will be referred as the conditional part, while the
pregraph of fj , w nodes and the edges between these nodes will be called the
main part. E.Uf is given with respect to the rows of fi-s again (1 ≤ i ≤ n).

– For rows without a condition the main part is constructed exactly in the
same way as the operational graphs of simple structural recursions.

In the conditional part, as we have already indicated, for the {b : fj(t)}
rows an [a, b] ([li, b])-labelled edge is added from f ′

i to w′ instead of f ′
j .

Otherwise, the construction works in the same way as for the main part.
– For rows with a condition if n.i.(fj(t)) then . . . else . . . , a polyedge is con-

structed. First an edge with label [a, ε] ([l, ε]) is added from fi (f ′
i) to f ′

j .
Such an edge will be called premise in the sequel. These edges, however not
all of them, connect the main part to the conditional part. Edges represent-
ing the then- and else-branches are added according to the rules given for
the rows without condition.

For instance in case of if n.i.(fj(t)) then {b : fk(t)} else {fl(t)}, an [a, b]-
labelled and an [a, ε]-labelled edge is added to fk and fl in the main part
respectively, while in the conditional part the [a, b]-labelled edge is added to
w′ and [a, ε]-labelled to f ′

l . These edges will be respectively referred as then-,
else-edges. The premise, then- and else-edge will be sometimes referred as
conditional edges. Together they form a polyedge, (fi, [a, (b, ε)], (f ′

j , fk, fl)),
(f ′

i , [a, (b, ε)], (f ′
j , w

′, f ′
l)) for the previous example. In the sequel, since the

check of n.i. condition starts there fi, f
′
i will be called beginning of a condition

or shortly b.o.c.

A constructor edge is an edge representing a construction. This means that the
second element of its label is different from ε.

f1 f4

f5

f3

f ′
2

¬ad

¬d

[d, ε]

[¬a, ε]

[�, ε]

[¬d, e]

[d, ε]

[¬d, ε][a, ε]
[¬a, ε]

(b)

[¬a, ε][d, ε]

[¬d,¬d]

[d, ε]
[¬d, e]

[d, ε]

[¬d, ε]
[¬a, ε]

(c)

(d)

b [b, b]

f1 [b, ε]

[¬b, ε]

Ann

¬Ann

f ′
2

f3

[�,�]

(a)

w′
w′

f̌1

f2

[a, ε]

f̂1 f4

f5

f3
[�, ε]

[a, ε]

Fig. 5. (a) The operational graph of f = (f1, f2, f3). (b) The operational graph of Q1.
Here and in the rest of the paper the premise, then, else polyedge is drawn from left
to right order. (c) f

(f1,¬a,f ′
2)

Q1
. (d) f

(f1,[¬a,ε],f4)
Q1

.

Structural Recursions with Conditions 343

The operational graphs of structural recursions f = (f1, f2, f3) in the begin-
ning of this section and of Q1 on page 345 can be seen in Figure 5.(a)-(b). In
Figure 5.(b) f1 is a b.o.c., (f1,¬a, f ′

2) is a premise, (f1, [¬a, ε], f3) is a then-,
(f1, [a, ε], f4) is an else-edge, while (f ′

2,¬d, w′
1), (f5, [¬d, e], f5) are constructor

edges.
Now, for each b.o.c. b find those constructor edges e that are reachable through

a path not containing any premises except for the premise of b. Clearly, if a
construction is done through e, then the appropriate condition belonging to b is
satisfied. In the sequel, we shall say that e belongs to b. In Figure 5.(b) (f ′

2,¬d, u)
belongs to f1.

Note that the construction of an operational graph can be accomplished in
time O(n). Here n is the number of the rows of f . Furthermore from a given
operational graph the original form of its structural recursion can be recovered
without difficulties.

4.2 Definition of Semantics

Again we develop the semantics similarly as in the previous case. For a data graph
I we construct Uf �I and then consider only the output part of this intersection.
However, in this case we should reduce the polyedges into normal edges first, i.e.,
for a polyedge we should keep only the then- or else-edge depending on the result
of the not-isempty condition.

First, Definition 1. should be extended to the case, when an operational graph
may contain polyedges. Owing to lack of space we only give an example of this
straightforward extension in Figure 6.(a)-(c).

For an edge (eUf
, eI) in E.Uf � I, eUf

, eI are called ancestor images in Uf

and I respectively. In Uf � I e is a premise if its ancestor image in Uf is also
a premise. The following notions: then-, else-, constructor edge, b.o.c. can be
defined similarly in Uf � I. A constructor edge belongs to a premise in Uf � I
iff their ancestor images belongs together.

Condition evaluation. For the reduction of polyedges we develop an algorithm
called condition evaluation that will decide whether a not-isempty condition is
satisfied or not in Uf � I.

(i) In the first step consider those b.o.c.-s b from whose premise a constructor
edge is reachable through a path not containing any conditional edge. Clearly,
such a constructor edge e belongs to b. Obviously, if we applied the former
semantics developed for simple structural recursions, then a construction would
be done as a result of "reaching" e, i.e., the condition belonging to b would be
satisfied. Hence we reduce the polyedge of b to its then-edge. In the following
steps, the remaining then-edge edge is considered as a non-conditional edge. An
example of this step can be seen in Figure 6.(a)-(d).

(ii) In case of those b.o.c.-s that do not have the former property, and from
whose premise no other premise is reachable, we reduce their polyedges to the
corresponding else-edges. Consider Figure 6.(d) for an example.

344 B. Kósa, A. Benczúr, and A. Kiss

f1

f ′
2

f ′
3 f ′

4

f5 f6

[a, b]

[a, ε]

a

b
b b [�,�]

w′

a

a
a

c

c

1

2

3

4

a

b

c

(f1, 1)

(f ′
2, 2)

(f ′
3, 3)

(f ′
4, 3)

(f5, 2) (f6, 2)

[a, b]

[a, ε]

a

b b b [b, b]

(w′, 4)

c

c

(f1, 1)

(f ′
2, 2)

(f ′
3, 3)

(f ′
4, 3)

(f5, 2) (f6, 2)

[a, b]
[a, ε]

a

b [b, b]

(w′, 4)

c

c

(f1, 1)

(f ′
2, 2)

(f ′
4, 3)

(f5, 2)
[a, ε]

b [b, b]

(w′, 4)

c

b

a

b

a

1

2

3

(f1, 1)

(f ′
2, 2)

(f ′
3, 3) (f ′

4, 3)

(f5, 2) (f6, 2)

[a, b]
[a, ε]

a

b
b b [b, b]

w′

a

a
a

(f1, 1)

(f ′
2, 2)

(f ′
3, 3)

(f5, 2) (f6, 2)

[a, b]
[a, ε]

a

b [b, b]

w′

a

(f1, 1)

(f6, 2)

[a, b]

b

(a) (b)

(c)

(d)

(e)

(f)

(g)

(h) (i)

(j)

(k)

Fig. 6. (a) A part of an operational graph. (b) A tree input. (c) The intersection of
the operational graph of (a) and the instance of (b). (d) The first step of the condition
evaluation algorithm. The dashed-dotted circles indicate the reduced polyedges. (e)
The second step. (f) The result. (g) An input with a cycle. (h) The intersection of the
operational graph of (a) and the instance of (g). The dashed-dotted circles indicate
b.o.c.-s whose premises form a cycle as it is described in the (iii) part of the condition
evaluation algorithm. (i) The first step of the algorithm. (j) The second step. (k) The
result.

In the next step we continue our algorithm with this new graph. Owing to
the reduction of some polyedges, new polyedges may be reduced.

(iii) However, it may happen that steps (i), (ii) cannot be applied and there
are still unreduced polyedges. It is easy to see that in this case some of the b.o.c.-
s "form cycles" through their premise edges. Since the corresponding conditions
cannot be satisfied their polyedges should be reduced to their else-edges. An
example can be found in Figure 6.(h)-(j).

Structural Recursions with Conditions 345

The algorithm stops, when all of the polyedges are reduced. Consider Figure
6.(a)-(e) for an example. Then f(t) is defined as the output part of this graph
with ε edges eliminated. See Figure 6.(f) and (k) for examples.

5 Polyedge Reduction and the Equivalence of the
Problems of Satisfiability and Containment

Polyedge reduction. Note that since we have only used the notions of b.o.c.,
constructor edge and polyedge, which have been already defined for operational
graphs, the former condition evaluation algorithm can also be applied to opera-
tional graphs instead of intersections. This form of the algorithm will be called
polyedge reduction. As an example consider Figure 7.(a)-(d). Polyedge reduction
gives us a sufficient condition for the unsatisfiability of a condition.

a
[a, b]

b
b

a a a

e
c

b

b

a
[a, b]

b b

a

e
c

b

b

a
[a, b]

(a) (b) (c)

b

a

b

b

f1

f ′
2

f ′
3

f ′
4

f ′
6f ′

5

f ′
7

[�,�]

f8

f1

f ′
2

f ′
7

f ′
6

f ′
3

[�,�]

f8

f1

f ′
2

f ′
7

f8

[�,�]

f1

f8

[a, b]

[�,�]
(d)

a

g
b

b
a

c

e
b

(e)

w′
1

w′
2

w′
3

w′
2

w′
3

w′
3

Fig. 7. (a) An operational graph.(b) The result of the first step of polyedge reduction
applied on the operational graph of (a). (c) The second step. (d) The result.

Lemma 1. For an arbitrary operational graph Uf , if in the polyedge reduction
algorithm a polyedge is reduced to the else-edge, then the corresponding condition
is not satisfiable.

Equivalence of the problems of containment and satisfiability. To see
that why this condition is not necessary, consider he following example.

Q1: f1 : ({a : t})= f1(t) f4 : ({d : t})= f5(t)
({l1 : t})= if n.i.(f2(t)) then f3(t) ({l4 : t})= f4(t)

else f4(t)
f5 : ({d : t})= f3(t)

f2 : ({d : t})= f2(t) ({l5 : t})= {e : f5(t)}
({l2 : t})= {l2 : f2(t)}

f3 : ({l3 : t})= f3(t)

346 B. Kósa, A. Benczúr, and A. Kiss

The corresponding operational graph can be seen in Figure 5.(b). Here those
instances that may result in construction through the else-branch ¬a.¬d∗.d.¬d of
b.o.c. f1, also "satisfy" the premise branch, ¬a.d∗.¬d. Hence for such inputs the
else branch is never called, consequently this structural recursion is unsatisfiable
despite the fact that polyedge reduction reduces the polyedge of f1 to its then-
edge. Here d∗ denotes arbitrary number of consecutive d edges.

To be able to examine this phenomenon in a general setting a new construction
is needed. Let Uf be an operational graph and po = (p, th, el) a polyedge, whose
b.o.c. b is in the main part. Here p, th, el denote the premise, then- and else-edge
of po respectively. Denote Up

f (U th
f , Uel

f) the subgraph of Uf reachable through p
(th, el) with root b. The corresponding structural recursions of these subgraphs,
fp (f th, fel) will be called premise (then, else) structural recursions belonging to
p, (th, el). Consider f

(f1,¬a,f ′
2)

Q1
and f

(f1,[¬a,ε],f4)
Q1

as examples in Figure 5.(c)-(d).

Clearly, Q1 is unsatisfiable, for f
(f1,¬a,f ′

2)
Q1

contains f
(f1,[¬a,ε],f4)
Q1

. From this
reasoning it follows that if there is an algorithm A solving the question of satis-
fiability for structural recursions in general, then the containment problem can
also be decided by means A. The reverse direction is also true. For deciding
whether an arbitrary structural recursion f is satisfiable, it is enough to check
whether Q1 � f holds or not, where, remember, Q1 is unsatisfiable. All in all
we get the following theorem.

Theorem 1. The question of satisfiability for structural recursions is in com-
plexity class C in general iff the containment problem for structural recursions is
in C in general.

In the next section it will turn out that this theorem does not hold for pure
structural recursions (Definition 2).

Note that one may ask the question whether there are conditions, for which
it holds that any of the instances, which satisfy the structural recursion of the
premise fp, does not satisfy the structural recursion of the then-edge f th. This
would also mean that the corresponding condition is unsatisfiable. In the general
case this may occur, however, it is not difficult to prove that in case of pure
structural recursions, if instance I satisfies fp and I ′ satisfies f th, then I ∪ I ′

satisfies both fp and f th.

6 The Satisfiability and Containment Problem of Pure
Structural Recursions

The satisfiability problem. In order to solve the satisfiability problem of
pure structural recursion we use the "shape" of the operational graph. Namely,
in a given operational graph Uf we pull the edges of a polyedge into one edge.
Formally, from the end node of the premise we add ε edges to the end nodes of
the then- and else-edge and then eliminate these ε edges. Then, in this new graph
we substitute edge labels p ([p, θ]) with constants a s.t. U |= p(a) (θ ∈ {b, ε}).
An example can be seen in Figure 7.(e). These instances will be called matching
instances of Uf .

Structural Recursions with Conditions 347

Lemma 2. A given pure structural recursion is satisfiable iff a matching in-
stance satisfies it.

From the proof of this lemma it also follows that if a matching instance satisfies
its structural recursion, then all of the matching instances satisfy it. Lemma 2
can be formulated in an other way.

Lemma 3. A pure structural recursion is satisfiable iff after polyedge reduction
a constructor edge is reachable from the root.

Theorem 2. The satisfiability problem of pure structural recursions can be
solved in quadratic time.

Problem of containment. We shall prove that the containment problem of
pure structural recursions is coNP-complete. The question is clearly in coNP. To
prove coNP-completeness we use the problem of deciding that whether a formula
in CNF is a tautology or not, which is a well-known coNP-complete problem [7].
We explain the reduction by means of an example. First, we need a definition.

Definition 3. For a structural recursion f , I is a minimal satisfier, if (i) f(I)
is non-empty, (ii) for each real pregraph I ′ of I f(I ′) is empty.

§ §

§ § §

x

§ §

§
§ §

¬x y

¬y
z

¬z

x
y

¬z
x

¬y
z

¬x z

fP
2

fP
1

(a) (b)

§

§

x ¬y ¬z

(c)

Fig. 8. (a) fP
2 . (b) fP

1 . (c) A minimal satisfier of fP
2

In Figure 8.(c) one can find a minimal satisfier of the structural recursion, whose
operational graph is given in Figure 8.(a).

Now, consider formula P = (X∨Y ∨¬Z)∧(X∨¬Y ∨Z)∧(¬X∨Z) and the two
operational graphs in Figure 8.(a)-(b). Clearly, each minimal satisfier of fP

2 gives
an interpretation of the variables of P . On the other hand, minimal satisfiers of
fP
1 also encode possibilities to give true or false values to the variables, here,

however, X may get both a true and a false value, or it may not get any of them.
All in all, it can be proven that P is a tautology iff fP

1 contains fP
2 .

Theorem 3. The problem of containment of pure structural recursions is coNP-
complete.

348 B. Kósa, A. Benczúr, and A. Kiss

7 Satisfiability and Containment Problem of Structural
Recursions

The question of satisfiability is in PSPACE. Here, a very similar lemma
to that of Lemma 3 can be proven.

Lemma 4. A given structural recursion f is satisfiable iff there exists a pregraph
G of Uf s.t. after polyedge reduction a constructor edge is reachable from the root
in G.

From this lemma it easily follows that the satisfiability problem of structural
recursions is in PSPACE in general.

The satisfiability question is PSPACE-complete. As a quite straightfor-
ward idea in the proof we use the satisfiability problem of non-deterministic finite
state automata (NDFSA), which is a well-known PSPACE-complete problem [15].
In the reduction there are three problems to be coped with. (i) Owing to the spe-
cial shape of operational graphs most of the times the graph representation of an
automaton cannot be taken as an operational graph immediately. In particular,
an automaton may have several neighbour edges with the same label, while an
operational graph has at most three, which in fact constitute a polyedge. (ii) We
should represent somehow the non-deterministic nature of an automaton. (iii) The
accepting states of the automaton should be represented as well.

For solving problem (i) we use a well-known construction substituting an
automaton with an encoding at which every node has at most two neighbour
edges with a given label. An example for this rewriting can be found in Figure
9.(a)-(b). Note that in the general case every path a1 . . . an in NDFSA A is
substituted with a path a1.§s . . . §s.an in the rewriting of A (s ≥ 0). Here, we
assume that § is not contained by the alphabet of A. From now on without loss of
generality we only consider NDFSA-s having at most two neighbour edges with

a
a

a a a

b

§ § §
§ § § § §

§ § § § § §
a a a a a b

a
a

b b

c

a
[a, ε]

[a, ε]

b

[b, ε]

[b, ε]

[c, ε]
w′

w

�

�

[�, ψ]

[�, ψ]

(a)

(b)

(d)

(c)

a

b

c

a

b

c�

�
(e) (f)

Fig. 9. (a) An NDFSA A1 with 5 outgoing a edges. (b) The "binary representation"
of A1. (c) An NDFSA A2. The dotted circles represent accepting states. (d) The cor-
responding operational graph UA2 of A2. (e) A word w accepted by A2. (f) The data
tree representation Iw of w.

Structural Recursions with Conditions 349

the same label for every node and label. In the operational graph representation
of automaton A we use the graph representation of A, and in order to solve
problems (ii) and (iii) we add some new edges.

(ii) To represent the non-deterministic nature for each label a and neighbour
edges e1, e2 having a labels, we add an a.� path to the starting node of e1 and e2.
This path will be the "premise branch" ending in constructor edge � by means
of which we shall be able to switch between the paths through e1 and e2. e1, e2

will be taken as the then- and else-edge respectively. Again, we assume that � is
distinct from the letters of the alphabet of A.

(iii) Finally, in order to represent accepting states, for each node corresponding
to an accepting state we add a [�, ψ]-labelled constructor edge. These will be the
only constructor edges in the main part of the operational graph. For an NDFSA
A denote UA its operational graph representation.

An example for this rewriting can be found in Figure 9.(c)-(d). Now, the
following lemma can be proven.

Lemma 5. Let A be an NDFSA, w an arbitrary word accepted by A and I a
data graph satisfying UA. (i) There exists a tree representation Iw of w s.t. Iw

satisfies UA. (ii) There exists a pregraph I ′ of I and a word w′ accepted by A
s.t. I ′ is the tree representation (Iw′) of w′.

An example for this lemma can be found in Figure 9.(e)-(f). The following the-
orem is a straightforward consequence of Lemma 5 and Theorem 1.

Theorem 4. Both the satisfiability and the containment problem of structural
recursions are PSPACE-complete in general.

Conclusions and Future Work

In the preceding sections we have discussed static analytical questions relating
to structural recursions with not-isempty conditions. We have showed that the
questions of satisfiability and containment are in complexity classes PTIME,
coNP and PSPACE depending on whether else-branches are allowed in the con-
ditions or not. In the next step of our research we shall examine whether our
results can be applied in the research of XPath and XSLT. Since most of the
static analytical questions have been already solved in this field, we are going
to concentrate on XPath 2.0. We also plan to analyze these problems in the
presence of single-type extended DTD-s [11], which are formal models of XML
Schema Definitions.

References

1. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to
SemistructuredData andXML.MorganKaufmannPublishers, SanFrancisco (2000)

2. XPath satisfiability in the presence of DTDs. In: Proceedings of the twenty-fourth
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
pp. 25-36 (2005)

350 B. Kósa, A. Benczúr, and A. Kiss

3. Bex, G.J., Maneth, S., Neven, F.: A formal model for an expressive fragment of
XSLT. Information Systems 27(1), 21–39 (2002)

4. Breazu-Tannen, V., Buneman, P., Naqui, S.: Structural Recursion as a Query Lan-
guage. In: Proceedings of the 3rd International Workshop on Database Program-
ming Languages, pp. 9–19 (1991)

5. Buneman, P., Fernandez, M., Suciu, D.: UnQL: a query language and algebra for
semistructured data based on structured recursion. The VLDB Journal 9, 76–110
(2000)

6. Buneman, P., Davidson, S., Fernandez, M., Suciu, D.: Adding Structure to Un-
structured Data. University of Pennsylvania, Computer and Information Science
Department (1996)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability. In: A Guide to the
Theory of NP-completeness. W. H. Freeman and Company, New York (1979)

8. Kósa, B., Benczúr, A.: Static Analysis of Structural Recursion in Semistructured
Databases and Its Consequences. In: 8th East European Conference Proceedings,
Advances in Databases and Information Systems, pp. 189–203 (2004)

9. Kósa, B., Benczúr, A., Kiss, A.: An Efficient Implementation of an Expressive
Fragment of XPath for Typed and Untyped Data Using Extended Structural Re-
cursions. In: Proceedings of the ADBIS 2009 (2009)

10. Kósa, B., Benczúr, A., Kiss, A.: Extended Structural Recursion and XSLT. Acta
Univ. Sapientiae, Inform. 1(2), 165–213 (2009)

11. Martens, W., Neven, F., Schwentick, T., Bex, G.-J.: Expressiveness and complexity
of XML Schema. ACM Transactions on Database Systems (2006)

12. Neven, F., Schwentick, T.: XPath Containment in the Presence of Disjunction,
DTDs, and Variables. In: Proceedings of the 9th International Conference on
Database Theory, pp. 315–329 (2003)

13. Milo, T., Suciu, D., Vianu, V.: Type checking for XML transformers. In: Proceed-
ings of the Nineteenth ACM Symposium on Principles of Database Systems, pp.
11–22. ACM Press, New York (2000)

14. Suciu, D.: Distributed Query Evaluation on Semistructured Data. ACM Transac-
tions on Database Systems 27(1), 1–65 (2002)

15. Yu, S.: Regular Languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, ch. 3, vol. 1, pp. 41–110. Springer, Heidelberg (1997)

Query Evaluation Techniques for Cluster

Database Systems�

Andrey V. Lepikhov and Leonid B. Sokolinsky

South Ural State University, Chelyabinsk, Russia

Abstract. The paper is dedicated to a problem of effective query pro-

cessing in cluster database systems. An original approach to data allo-

cation and replication at nodes of a cluster system is presented. On the

basis of this approach the load balancing method is developed. Also, we

propose a new method for parallel query processing on the cluster sys-

tems. All described methods have been implemented in “Omega” paral-

lel database management system prototype. Our experiments show that

“Omega” system demonstrates nearly linear scalability even in presence

of data skew.

1 Introduction

Nowadays, parallel database system applications became more and more widely
distributed. Current parallel DBMS solutions are intended to process OLAP
queries in petabyte data arrays. For example, DBMS Greenplum based on the
MapReduce technology processes six and a half Petabyte of storage for deep
analysis on a 96-nodes cluster system in the eBay [1]. DBMS Hadoop handles
two and half Petabyte of storage on a cluster system consisting of 610 nodes
for popular web-tool facebook. There are several commercial parallel DBMS in
the area of parallel OLTP query processing among which the most known are
Teradata, Oracle Exadata and DB2 Parallel Edition.

Modern researches in this area follow in a direction of self-tuning DBMS [2],
data partitioning and load balancing [3], parallel query optimization [4] and an
effective using of modern multicore processors [5].

One of the major objectives in parallel DBMS is load balancing. In the pa-
per [6], it has been shown that a skews appearing in a parallel database manage-
ment systems with a shared-nothing architecture at processing of a query, can
lead to almost complete degradation of a system performance.

In the paper [7], an approach to solve the load balancing problem for parallel
database management systems with shared-nothing architecture is proposed.
This approach is based on data replication. The given solution allows reducing
the network data transfer overhead during load balancing. However this approach
is applicable in rather narrow context of spatial databases in a specific segment
� This work was supported by the Russian foundation for basic research (project 09-

07-00241-a) and Grant of the President of the Russian Federation for young scientists

supporting (project MK-3535.2009.9).

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 351–362, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

352 A.V. Lepikhov and L.B. Sokolinsky

of a range queries. In paper [3], the load balancing problem is solved by partial
repartitioning of the database before running a query execution. This approach
reduces total amount of data transferred between computing nodes during a
query processing, however it demands a very high interprocessor communication
bandwidth.

In this paper, we present a new parallel query processing method based on
the approach to database partitioning named “partial mirroring”. This method
solves problem of effective query processing and load balancing in cluster system.

The article is organized as follows. In section 2, the method of parallel query
processing in DBMS for cluster system is described. In section 3, a data partition-
ing strategy for cluster system and algorithm of load balancing are proposed.
In section 4, the results of computing experiments are shown and discussed.
In conclusion, we summarize the obtained results and discuss the future work
directions.

2 Organization of Parallel Query Processing

In relational database management systems with shared-nothing architecture,
parallel query processing is based on data fragmentation. In this case, each rela-
tion is divided into a number of disjoint horizontal fragments, which are parti-
tioned into different disk units of multiprocessor system. Fragmentation strategy
is defined by a fragmentation function φ. For each tuple of the relation, this func-
tion calculates the cluster node number where this tuple has to be placed. The
query is executed on all cluster nodes by parallel agents [8]. Each agent processes
it’s own fragments of the relations and generates partial query result. These par-
tial results are merged in the resulting relation. In general case, it is necessary
to perform passing tuples between the cluster nodes in order to obtain the cor-
rect result. For managing these communications, we insert the special exchange
operator [9] in appropriate points of query execution plan tree.

The exchange operator is defined by a distribution function ψ. For each input
tuple, this function calculates the number of the cluster node where this tuple
has to be processed.

The exchange operator passes tuples between parallel agents by using the
communication channels. Each channel is defined by the pair (node number,
port number). As the node number we use the parallel agent number and as the
port number we use the sequence number of the exchange operator in the query
tree.

Let’s describe the parallel query processing scheme in a parallel DBMS for
cluster systems. We assume that the computing system is a cluster consisting
from N of nodes as shown in Figure 1. We suppose the database to be partitioned
into all nodes of the cluster system. According to the given scheme, SQL-query
processing consists of three stages.

At the first stage, the SQL query is translated into a sequential physical plan.
At the second stage, the sequential physical plan is transformed to the parallel
plan being a set of parallel agents. It is obtained by inserting the exchange

Query Evaluation Techniques for Cluster Database Systems 353

Fig. 1. The scheme of query processing in parallel DBMS for cluster systems. Q –

physical query plan, Ai – parallel agent, CNi – computing node.

operator in appropriate points of the plan tree. All parallel agents have the
same structure.

At the third stage, parallel agents are spread among cluster nodes where each
of them is interpreted by the query executor. Resulting relations produced by the
agents are merged through the root exchange operators on the some dedicated
node.

3 Data Placement and Load Balancing

3.1 Data Fragmentation and Segmentation

In the cluster system, we use the following database partitioning [10]. Each re-
lation is divided into disjoint horizontal fragments, which are distributed among
cluster nodes. We suppose that tuples in the fragment are ordered in a certain
way. This order defines the sequence, in which the tuples are being read by the
scan operator. We called this order as natural order. In practice, the natural
order can be defined by a physical sequence of tuples or by an index.

At the logical level, each fragment is divided into sequence of segments with
an equal length. The length of the segment is measured in tuples. This is a
system parameter. Dividing tuples into segments is performed by the natural
order beginning from the first tuple. The last segment of a fragment can be
incomplete.

Let’s denote the quantity of segments in fragment F as S(F).

S(F) =
⌈

T (F)
L

⌉
.

Here T (F) – number of tuples in fragment F , L – segment length.

354 A.V. Lepikhov and L.B. Sokolinsky

3.2 Data Replication

Let fragment F0 be allocated on disk d0 ∈ D in the cluster system. We suppose
each disk di ∈ D(i > 0) contains a partial replica Fi, which contains some (may
be empty) subset of tuples of fragment F0.

Segment is the smallest replication unit. The size of replica Fi is determined
by the replication factor

ρi ∈ R, 0 ≤ ρi ≤ 1,

which is a property of replica Fi. It is computed by the formula:

T (Fi) = T (F0)− �(1− ρi) · S(F0)� · L.

The natural order of tuples in replica Fi is determined by the natural order of
tuples in fragment F0. The following formula determines the first tuple number N
of replica Fi:

N(Fi) = T (F0)− T (Fi) + 1.

If replica Fi is empty, then N(Fi) = T (F0) + 1. It corresponds to “end-of-file”
position.

3.3 Load Balancing Method

Parallel Agent Work Scheme. Let SQL query use n relations. Let Q be the
parallel plan of the SQL query. Each agent Q ∈ Q has n input streams s1, . . . ,
sn. Each stream si(i = 1, . . . , n) is determined by the four parameters:

1. fi – pointer to the fragment;
2. qi – quantity of segments in part to be processed;
3. bi – number of the first segment in the part;
4. ai – load balancing indicator: 1 – load balancing is admitted, 0 – load bal-

ancing is not admitted.

An example of the parallel agent with two input streams is presented in Figure 2.
Parallel agent Q can exist in one of the two states: active and passive. In

active state, agent Q sequentially scans tuples from the all input streams. Pa-
rameters qi and bi dynamically changed for all i = 1, . . . , n during scan process.
In passive state, agent Q does not perform any actions. At the initial stage
of query processing, the agent executes an initialization procedure, which de-
fines all the parameters of the input streams and sets the agent state equal to
active.

The agent begins to process fragments associated with its input streams. The
agent processes only that part of the fragment, which belongs to the section
defined by the parameters of the stream. When all assigned segments in all
input streams have been processed, the agent turns into passive state.

Query Evaluation Techniques for Cluster Database Systems 355

Fig. 2. Parallel agent with two input streams

Load Balancing Algorithm. During query parallel plan processing, some
agents became finished while other agents of the plan continue processing seg-
ment intervals assigned to them. So we have load skew. To prevent the load
skew, we proposes the following load balancing algorithm based on partial repli-
cation [10].

Let parallel agent Q̄ ∈ Q have finished processing the segment intervals in all
input streams and be turned into passive state. In the same time, let agent Q̃ ∈ Q
still continue processing its segment intervals. So we have to do load balancing.

/* load balancing procedure between agents Q̄ (forward)

and Q̃ (backward). */

ū = Node(Q̄); // pointer to the agent node Q̄
pause Q̃; // turn agent Q̃ into passive state

for (i=1; i≤n; i++) {

if(Q̃.s[i].a == 1) {
f̃i = Q̃.s[i].f ; // fragment assigned to agent Q̃
r̄i = Re(f̃i, ū); // replica f̃i into the node ū
δi = Delta(Q̃.s[i]); // quantity of segments to trans-

fer

Q̃.s[i].q− = δi;

Q̄.s[i].f = r̄i;

Q̄.s[i].b = Q̃.s[i].b + Q̃.s[i].q;
Q̄.s[i].q = δi;

} else
print(”Load balancing is not permitted.”);

};
activate Q̃ // turn agent Q̃ into active state

activate Q̄ // turn agent Q̄ into active state

Fig. 3. Load balancing algorithm for two parallel agents

356 A.V. Lepikhov and L.B. Sokolinsky

We name the idle agent Q̄ as forward and the overloaded agent Q̃ – as an
backward. To prevent load skew we have transfer a part of unprocessed segments
transferred from agent Q̃ to agent Q̄. The scheme of load balancing algorithm
is shown in Figure 3. In the algorithm, we use the balancing function Delta. For
each stream, the balancing function calculates the quantity of segments, which
have been transferred from the backward agent Q̃ to the forward agent Q̄.

For effective using the described algorithm, we have to manage the following
problems.
1. For each forward agent, we have to choose a backward agent, which will be

the subject of balancing. A way of choosing backward agent we will name as
backward choice strategy.

2. We have to solve, what quantity of unprocessed segments will be transferred
from the backward to the forward. We will name the function calculating
this quantity as balancing function.

Backward Choice Strategy. Let cluster system T execute parallel query
plan Q. Let Ψ be the number of nodes of cluster T . Let forward agent Q̄ ∈ Q
located on the node ψ̄ ∈ Ψ have finished its work. We have to choose a backward
agent Q̃ ∈ Q(Q̃ �= Q̄) from the set of agents in parallel plan Q. Denote by ρ̃ the
replication factor which defines a size of the replica f̃i for fragment f̄i.

To choose a backward agent, we will use ratings. In the parallel plan, we
assign to each agent a rating, which is a real number. The agent with maximum
positive rating has to be selected as the backward. If all the agents have negative
ratings, the forward agent Q̄ has to be over. If several agents have the maximum
positive rating at the same time, we choose from them the agent, which was idle
for the longest time.

The optimistic strategy uses the following rating function γ : Q → R:

γ(Q̃) = ãi · sgn(max
1≤i≤n

q̃i −B) · ρ̃ · ϑ · λ.

Here λ – some positive weight coefficient; B – the nonnegative integer defining
the minimal quantity of segments to be transferred during load balancing; ρ̃ –
the replication factor; ϑ – the statistical coefficient accepting one of following
values:

– (−1) – the quantity of unprocessed segments for the backward is less than B;
– 0 – the backward did not participate in load balancing;
– a positive integer – the quantity of completed load balancing procedures, in

which the backward has took a part.

Balancing Function. For each stream s̃i of backward agent Q̃ the balancing
function Δ defines the quantity of segments, which has to be transferred to the
forward agent Q̄. In the simplistic case we can define:

Δ(s̃i) =

⌈
min (q̃i, S(f̃i) · ρ̃)

N

⌉
,

where N is the quantity of the parallel agents participating in query processing.

Query Evaluation Techniques for Cluster Database Systems 357

Function S(f̃i), introduced into the section 3.1, calculates the quantity of seg-
ments in fragment f̃i. So, function Δ splits unprocessed segments of fragment f̃i

into N buckets and transfers one of them from Q̃ to Q̄. Such balancing function
provides the uniform distribution of the load among the forward agents, which are
idle.

4 Experiments

To verify the described load balancing method we performed three series of
computing experiments using the “Omega” parallel database management pro-
totype [11]. These experiments had the following aims:

– to obtain an estimations of optimum values for the parameters of the load
balancing algorithm;

– to investigate the influence of the load balancing algorithm on the DBMS
scalability;

– to perform the efficiency analysis of the load balancing algorithm for different
kinds of the skew.

For investigation of the load balancing algorithm we used the in-memory hash-
join algorithm. This algorithm is used when one of the input relations can be
allocated in main memory.

4.1 Parameters of Computing Experiments

Both relations R and S have five attributes having common domain: nonnegative
integers in a range from 0 to 10 million. In our experiments we processed θ−join
for relations R and S by the in-memory hash join method.

R was the build relation, and S was the probe relation. We selected the size
of build relation R so that any fragment of R fit in main memory of the cluster
node. Building hash table did not demand load balancing due to the small size
of the build relation R. So we used load balancing only at the second stage of
MHJ execution.

Relations R and S were created by the automated generating procedure. We
used a probability model to fragment the relations on the cluster nodes. Ac-
cording to this model, the skew factor θ, (0 ≤ θ ≤ 1) defines the set of weight
coefficients pi, (i = 1, . . . , N)

pi =
1

iθ ·H(θ)
N

,

N∑
i=1

pi = 1,

where N - the number of fragments, Hs
N = 1−s + 2−s + . . . + N−s – N -th

harmonic number with the degree s. Each weight coefficient pi defines the size
of i−th fragment in tuples.

We used one more skew factor μ to fill join attribute values in different frag-
ments. Skew factor μ determines the percentage of “own” and “alien” tuples in
the fragment. The “own” tuple should be processed in the same cluster node
where it’s being stored. The “alien” tuples should be transferred to another
cluster node for its processing.

358 A.V. Lepikhov and L.B. Sokolinsky

4.2 Investigation of Load Balancing Parameters

In the first series of experiments we investigated the following parameters: bal-
ancing interval, segment size and replication factor. The result of investigation
of balancing interval is shown in Figure 4. We can see that the optimal value
is 0.1 seconds. Increasing the balancing interval from 0.1 seconds to 6 seconds
considerably worsens efficiency of load balancing procedure.

The result of segment size investigation is shown in Figure 5. We can see that
the optimal value is 20 000 tuples. This value is approximately equal to 1% of
the fragment size.

The impact of replication factor on query processing time is shown in Fig-
ure 6. We made tests for four different values of the skew factor θ. In all cases,
skew factor μ was equal to 50%. We can see that the optimal value of replication
factor is 0.8. In this case, the load balancing almost completely eliminates the
negative impact of the skew in sizes of fragments. The full replication (ρ = 1.0)

Fig. 4. Impact of balancing interval (n = 64, μ = 50%)

Fig. 5. Impact of segment size (n = 64, μ = 50%)

Query Evaluation Techniques for Cluster Database Systems 359

Fig. 6. Impact of replication factor (n = 64, μ = 50%)

demonstrates a worse result due to increasing the overhead of load balancing.
Also, we can see that the effectiveness of load balancing grows significantly for
big values of skew factor θ. If skew factor θ is equal to 0.2 (rule “25-15”), then
load balancing allows us to reduce the query execution time by 30%. If θ = 0.68
(rule “80-20”), then the load balancing reduces query execution time by 60%.
The experiments show that the load balancing method, described in the pa-
per, can be successfully used to eliminate a load disbalance in cluster database
systems.

4.3 Scalability of Load Balancing Algorithm

In the last series of experiments, we investigate the scalability of the load bal-
ancing algorithm presented in the paper. The results of these experiments are
shown on figures 7, 8 and 9.

Fig. 7. Speedup versus replication factor (θ = 0.5, μ = 50%)

360 A.V. Lepikhov and L.B. Sokolinsky

Fig. 8. Speedup versus skew factor θ (ρ = 0.50, μ = 50%)

Fig. 9. Speedup versus skew factor μ (θ = 0.5, ρ = 0.50)

In Figure 7, we presented the impact of replication factor on speedup. In this
experiment, we used the following skew values: μ = 50%, θ = 0.5. The result
of the experiment demonstrates the significant growth of speedup when load
balancing is being performed. Increasing the replication factor value leads to
“lifting” of speedup curve. In case replication factor ρ is equal to 0.8, we have
speedup near to linear.

In Figure 8, we presented the speedup curves for various values of skews factor
θ. In this experiment we used replication factor ρ = 0.5. We can see that load
balancing provides a significant speedup even at presence of severe data skew
(θ = 0.68 corresponds to rule “80-20”).

In Figure 9, we presented the speedup curves for various values of skews
factor μ. We can see that, even in the worst case μ = 80% (80% of tuples are
“alien”), load balancing provides a visible speedup.

Query Evaluation Techniques for Cluster Database Systems 361

5 Conclusions

The problem of parallel query execution in cluster systems is considered. A
load balancing method and a data placement strategy are presented. Proposed
approach is based on logical splitting the relation fragment by segments of equal
size. The proposed load balancing algorithm is based on the method of partial
replication. A strategy for choosing the backward agent is described. It uses a
rating function. Proposed methods and algorithms are implemented in “Omega”
DBMS prototype. The experiments at cluster system are performed. The results
confirm the efficiency of proposed approach.

There are at least two directions of future work suggested by this research.
First, it is useful to incorporate the proposed technique of parallel query exe-
cution into open source PostgreSQL DBMS. Second, it is interesting to extend
this approach on GRID DBMS for clusters with multicor processors.

References

1. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.

Communications of ACM 51(1), 107–113 (2008)

2. Chaudhuri, S., Narasayya, V.: Self-tuning database systems: a decade of progress.

In: Proceedings of the 33rd International Conference on Very Large Data Bases,

Vienna, Austria, September 23-27, pp. 3–14 (2007)

3. Xu, Y., Kostamaa, P., Zhou, X., Chen, L.: Handling data skew in parallel joins

in shared-nothing systems. In: Proceedings of ACM SIGMOD International Con-

ference on Management of Data Vancouver, Canada, June 9-12, pp. 1043–1052.

ACM, New York (2008)

4. Han, W., Ng, J., Markl, V., Kache, H., Kandil, M.: Progressive optimization in

a shared-nothing parallel database. In: Proceedings of the 2007 ACM SIGMOD

International Conference on Management of Data, Beijing, China, June 11-14, pp.

809–820 (2007)

5. Zhou, J., Cieslewicz, J., Ross, K.A., Shah, M.: Improving database performance on

simultaneous multithreading processors. In: Proceedings of the 31st International

Conference on Very Large Data Bases, Trondheim, Norway, August 30-September

2, pp. 49–60 (2005)

6. Lakshmi, M.S., Yu, P.S.: Effect of Skew on Join Performance in Parallel Architec-

tures. In: Proceedings of the First International Symposium on Databases in Par-

allel and Distributed Systems, Austin, Texas, United States, pp. 107–120. IEEE

Computer Society Press, Los Alamitos (1988)

7. Ferhatosmanoglu, H., Tosun, A.S., Canahuate, G., Ramachandran, A.: Efficient

parallel processing of range queries through replicated declustering. Distrib. Par-

allel Databases 20(2), 117–147 (2006)

8. Kostenetskii, P.S., Lepikhov, A.V., Sokolinskii, L.B.: Technologies of parallel

database systems for hierarchical multiprocessor environments. Automation and

Remote Control 5, 112–125 (2007)

362 A.V. Lepikhov and L.B. Sokolinsky

9. Sokolinsky, L.B.: Organization of Parallel Query Processing in Multiprocessor

Database Machines with Hierarchical Architecture. Programming and Computer

Software 27(6), 297–308 (2001)

10. Lepikhov, A.V., Sokolinsky, L.B.: Data Placement Strategy in Hierarchical Sym-

metrical Multiprocessor Systems. In: Proceedings of Spring Young Researchers

Colloquium in Databases and Information Systems (SYRCoDIS 2006), June 1-2,

pp. 31–36. Moscow State University, Moscow (2006)

11. Parallel DBMS “Omega” official page, http://omega.susu.ru

http://omega.susu.ru

Consistent Caching of Data Objects

in Database Driven Websites

Pawe�l Leszczyński and Krzysztof Stencel

Faculty of Mathematics and Computer Science

Nicolaus Copernicus University

Chopina 12/18, 87-100 Toruń

{pawel.leszczynski,stencel}@mat.umk.pl

http://www.mat.umk.pl

Abstract. Since databases became bottlenecks of modern web applica-

tions, several techniques of caching data have been proposed. This paper

expands the existing caching model for automatic consistency mainte-

nance of the cached data and data stored in a database. We propose a

dependency graph which provides a mapper between update statements

in a relational database and cached objects. When update on a database

is performed the graph allows detecting cached objects which have to be

invalidated in order to preserve the consistency of the cache and the data

source. We describe a novel method of caching data and keeping it in a

consistent state. We believe that this model allows keeping the number of

invalidations as low as possible. We illustrate the method using a simple

web community forum application and provide some benchmarks which

prove that our method is efficient when compared with other approaches.

Keywords: database caching, cache consistency, scalability, web

applications.

1 Introduction

WEB 2.0 applications are data-intensive. As the number of users grows, the
backend database rapidly becomes a bottleneck. Thus, various data caching tech-
niques has been developed. Most e-commerce applications have high browse-to-
buy ratios [9], which means that the read operations are dominant. Furthermore,
such applications have a relatively high tolerance for some data to be out of date.

In this paper we show a novel method of running the cache of a data-intensive
WEB 2.0 application. The goal of our research is to minimize the number of ob-
jects residing in a cache which must be invalidated after an update to the stored
data. The main contribution of this paper is a coarse method to map data up-
dates onto as small as possible sets of cached objects to be invalidated. The
method uses the dependency graph composed of queries executed in order to
populate the cache, objects of this cache and updates of the cached data. This
graph is analysed at compile time in order to identify dependencies between

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 363–377, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

364 P. Leszczyński and K. Stencel

cached objects and the updates. Then, at the run-time cache objects are inval-
idated according to the inferred dependencies. This method allows keeping the
invalidations as rare as possible.

Sometimes not all select or update statements are identified at the applications
development time. Some new statements can arise during the operation of the
application, because e.g. they are generated at run-time by a framework. In such
cases the dependency graph is augmented with new vertices and edges.

We use a web community forum application as a running example. We employ
it to illustrate the whole method. It also serves as a benchmark. The experimental
results prove the efficiency of our method.

The paper is organized as follows. Section 2 we present the motivating example
of a forum application. In Section 3 we describe existing caching techniques and
outline our consistency preserving object caching model. Section 4 we present
the model in detail. Section 5 describes carried out experiments and their results.
Section 6 concludes.

2 Motivating Example—A Community Forum
Application

Let us consider a community forum application as a example. Suppose we have
four tables: user, forum, topic, post. Each forum consists of topics, each of which
contains a list of posts. Let us assume the following database schema:

user: user_id, user_nick
forum: forum_id, forum_name, forum_desc
topic: topic_id, forum_id
post: post_id, topic_id, post_title, post_text, user_id,

created_at

When a new topic is added, its title and other data is stored in the first post.
From the database’s point of view the website consists of three views which are
database extensive: listing forums, listing topics and listing posts. Let us now
focus on listing topics. Figure 1 contains a view of a real forum application to
show which data is needed when displaying list of forums.

Performing a query to display it each time the website is loaded could be
extensive and harm the database. Thus such an architecture is not used in prac-
tice. Instead modern systems modify the database schema by adding redundant

Fig. 1. The figure shows a single line from a list of visible topics. Each line contains:

a topic name which is the first post name, an owner of the topic and the date it was

created, a post count, and an information about the last post: its author and the date

it was added.

Consistent Object Caching in Database Driven Websites 365

data. In particular, one can add first post id,last post id and post count fields to
the tables forum and topic and also topic count to the table forum.

Such a solution resolves efficiency problem stated before but also introduces
new ones. It adds derived attributes to the database schema, which is discouraged
in OLTP applications. Each time a new post is added, not only the post table
needs to be modified but also topic and forum, to maintain the post count and
information about latest added post. This also does not solve the main problem
since the database is still the bottleneck of the system. Adding redundant data
means also adding several logical constrains that have to be maintained and are
error prone. It would also introduce problems when trying to replicate the whole
database.

The solution is to use a cache to keep all these data in memory. However, the
data are updated by the users who add posts. Whenever this happens, many
post counters have to be recalculated. The desired property of a cache is to
recompute only those counters which have become invalid and possibly nothing
else. In this paper we show a method how to reduce the invalidations as much
as it is practically possible.

3 Caching

3.1 Existing Caching Algorithms

Before the WEB 2.0 era several techniques of caching whole websites have been
proposed and surveyed in [14,18]. They construct mappers between URLs and
database statements. However this approach loses efficiency in WEB 2.0 appli-
cations since the same HTML can used on many pages and it does not make
sense to invalidate the whole pages.

The existing caching models can be divided into caching single queries, mate-
rialized views and tables. When caching single queries it may be hard to discover
similarities and differences between the queries and their result. Let us consider
two similar queries which return the same result set, but the first one produces
it in ascending order, while the second one emits the descending order.

Caching based on hash based algorithms does not work well in the pre-
sented application and applies more to caching files than to the OLTP database
schemas. The idea of caching tables’ fragments has been first shown in [5] where
authors propose a model with dividing tables into smaller fragments. It can
be understood as storing data sets in caches and allowing them to be queried
[21,8,9]. However this does not solve the whole problem since it lacks count
operations. In the forum example and most WEB 2.0 applications the website
contains several counters which cannot be evaluated each time the website is
loaded. Performing count operations on the cached data sets is difficult because
of the complexity of detecting that all data to be counted is loaded to the cache.
There is also no need to store whole data when only counters are needed. The
data can be loaded ad hoc or loaded dynamically each time it is needed. When all
data is loaded to cache at once, one can easily discover which count queries can
be performed but it also means caching data that may never be used. Also when

366 P. Leszczyński and K. Stencel

an update occurs all cache needs to be reloaded. This may cause severe problems
because updates occur frequently in OLTP. This also means performing updates
to maintain the consistency of the cached data which is never used but stored
in cache. Invalidation can occur each time the update occurs or in the speci-
fied time intervals [13]. The second case would be efficient but would also allow
storing and serving data that is not up to date. Loading data statically is more
like database replication than a caching technique. An interesting recent work
on replicating data sources and reducing communication load between backend
database and cache servers has been described in [6]. It presents an approach
based on hash functions that divide query result into data chunks to preserve the
consistency. However this also does not solve the problem of aggregation queries
whose results are difficult to be kept consistent via hash similarity.

Authors of [1,2,3] present model that detects incosistency based on statements’
templates which is similar to the presented model. However their approach can-
not handle join or aggregation in select statements. Our approach is based on a
graph which edges determine the impact of the update statements on the cached
data. The idea of the graph representation has been first presented in [10,11,12].
The vertices of the graph represent instances of update statements and cached
data objects. However nowadays most webpages are personalized and number
of data objects has increased and multiplied by a number of application users.
According to these observations the graph size can grow rapidly and the method
becomes impractical. In our approach the dependency graph has vertices which
represent classes of update and select statements and not individual objects.
This idea allows reducing the number of vertices.

The problem can be understood as finding the best trade-off between efficiency
and consistency for the given application. Described schemata show that data
granularity of the cached data is strongly desired. In that case only atoms which
are not up to date would be invalidated thus improving the efficiency. However
these atoms cannot be understood as table rows, since count would be difficult
to define, and they should be more like tuples containing data specified by the
application logic. Schemata shown above cannot afford it because of persistent
proxy between application server and database. On one hand this feature aids
software programmers because they do not need to dig into caching techniques.
On the other hand it is the software programmer who has to specify what data
has to be cached because it is strongly related to the application’s specific logic.

3.2 Caching Objects vs. Caching Queries

Most of previously described caching techniques include caching queries. This
solution needs a specification of queries that need to be cached because they
are frequently performed. If a query used for listing topics from the community
forum is taken into consideration, one can argue if it makes sense to cache its
result. On one hand the query is performed each time the user enters a specific
forum but on the other hand one should be aware of user conditions. If the user
searches for topics with a post containing a specific string it may be useless to
cache them because of the low probability they will ever be reused.

Consistent Object Caching in Database Driven Websites 367

Instead of caching queries one should take into consideration caching objects.
Suppose objects of class topic and forum are created and each of them contains
the following fields:

FORUM: forum_id, forum_name, post_count, topic_count,
last_post_author_nick, last_post_created_at

TOPIC: topic_id, first_post_title, first_post_created_at,
first_post_author_nick, last_post_author_nick,
last_post_created_at

Having such objects stored in a cache, the query listing topics could be the
following:

SELECT topic_id FROM topic WHERE topic_id = $topic_id
AND ## user condition LIMIT 20;

When having list of id’s of topics we simply get those objects from the cache.
Each time the object does not exist in the cache it is loaded from the database
and created. This means significant reduction of the query complexity and
the performance improvement. Memcached [15] is an example of the mecha-
nism widely used in practice. It is high-performance, distributed memory object
caching system and is used by Wikipedia, Facebook and LiveJournal. In Decem-
ber 2008 Facebook considered itself as the largest memcached user storing more
than 28 terabytes of user data on over 800 servers [17].

From theoretical point of view the idea can be seen as using a dictionary for
storing data objects created from the specified queries. One can argue if storing
relational data inside the dictionary is sensible. Here the performance becomes
an issue. Since all the cached data is stored in RAM (it makes no sense to cache
data on a disk) a cache server only needs to hash the name of the object and
return data which is stored under the hashed location. The caching mechanism
is outside the database which means a significant performance gain since the
database workload reduced.

3.3 Data Consistency Problem

Data consistency problem arises when caching techniques are applied. Let us
assume topic objects in the forum example are cached. Suppose one software
programmer has created functionality of caching objects and few months later
the other is asked to add functionality of editing user’s user nick. Each time
user nick is changed all objects of topics owned by this user or topics where user
has his last post need to invalidated. How can the programmer from one depart-
ment know about the functionality made by the other one which is hidden in
the data model? According to [19] Wikipedia uses a global file with a desrciption
of all classes stored in a cache, the file is available on [20]. However this is not a
general solution to the problem but only an improvement which helps program-
mers to manually make a safe guard from using objects in an inconsistent state.
In this paper we propose the model of fully automatic system which maintains
the consistency of cached data.

368 P. Leszczyński and K. Stencel

4 The Dependency Graph

4.1 Basic Assumptions

As described before data granularity is strongly needed in the caching systems.
However when caching objects, it is not possible to track the dependencies be-
tween all possible update statements and objects. The graph will track only
the dependencies within the database schema. It assumes update statements
are performed on single rows identified by primary keys and cached objects are
identified by the class and the primary key of the specified relation.

The following assumptions restrict the syntax of SQL facilitated by our method.
This restriction is needed since mapping the relational data to the dictionary is
performed.

1. Select statements are significantly more frequent than inserts and updates.
2. Database consists of k relations.
3. Each table’s primary key consist of a single attribute.
4. One can identify a set of select statements S = {S1, S2, ..., Sr} which are

used for creating cached objects.
5. Set U = {U1, U2, ..., Um} is a set of queries which modify the database and

each of them modifies only single row in a table reached by its primary
key. Additionally select statement can have other conditions in the WHERE
clause but they can only involve columns of the parameterised table.

6. Cached objects and queries from S and U are parameterised by the primary
key of some relation.

7. For each class of the object we can identify subset of queries from S used to
create the object.

8. System does not assume anything about data in cached objects, but only
knows select statements used to create them.

Sometimes it is convenient to know cached data to optimise invalidation clues.
However the model assumes data inside objects to be persistent because some-
times instead of caching data developers decide to cache whole HTML fragments
corresponding to the cached objects. Other database caching systems could not
allow this because of being persistent to the application server. Once again the
persistence of caching models reveals its drawback. The presented model can be
also seen as conjunction of caching static HTML pages, which mechanisms are
clearly described in [7], and data from database.

4.2 Query Identification

Let us first identify queries used by the application when creating objects. List
of queries used when creating topic object follows:

S1: SELECT * FROM topic WHERE topic_id = $topicId;
S2_1: $max = SELECT max(p.created_at) FROM post p, topic t WHERE

t.topic_id = p.topic_id AND t.topic_id = $topicId;

Consistent Object Caching in Database Driven Websites 369

S2_2: SELECT u.user_nick FROM post p, user u, topic t WHERE
t.topic_id = p.topic_id AND t.topic_id = $topicId AND
p.user_id = u.user_id AND p.created_at = $max;

S3_1: $min = SELECT min(p.created_at) FROM post p, topic t WHERE
t.topic_id = p.topic_id AND t.topic_id = $topicId;

S3_2: SELECT u.user_nick FROM post p, user u, topic t WHERE
t.topic_id = p.topic_id AND t.topic_id = $topicId AND
p.user_id = u.user_id AND p.created_at = $min;

S4: SELECT count(p.post_id) FROM post p, topic t WHERE
p.topic_id = t.topic_id AND t.topic_id = $topicId

The first statement gets a row from a topic table. S2 1, S2 2 and S3 1, S3 2
are very similar and are used for getting data of the first and the last post in
the topic. Additionally S4 is performed to evaluate a number of posts in the
topic.

4.3 Dependency Graph Construction

In this section a creation of the dependency graph is described. As before in
the model description let us assume k relations R in the database schema and
define the set of attributes for each relation. Additionally let O denotes the set
of classes of objects stored in a cache

Attr(R1) = {r11, ..., r1m1}, ..., Attr(Rk) = {rk1, ..., rkmk
} (1)

R = Attr(R1) ∪Attr(R2), ... ∪Attr(Rk) (2)

O = {O1, O2, ..., On} (3)

Vertices The dependency graph consists of the vertices from sets O, R, S, U
where S and U are sets of select and update statements defined before. The
vertices of the graph form four layers as presented on Figure 2. Each ellipse
denotes vertices of attributes in a relation but only attributes are vertices of the
graph.

U2

r21 r2jr22

Um

rk1 rkmkrk2

U1

r11 r1kir12

S1 S2 S3 S4 S5 SrSr-1

O1 O2 O3 O4 On

Fig. 2. Vertices of the dependency graph

370 P. Leszczyński and K. Stencel

Edges As vertices are defined let us now construct edges in the graph. There are
two kinds of edges: weak and strong. Weak edges are used to find object to be
invalidated, while strong edges are used to identify keys of these objects.

1. Edges with vertices from U : As assumed before, each update performs mod-
ification of a single row identified by a primary key. We create edges from
update vertex Ui to all attributes that have been modified (Fig. 3). Espe-
cially if a new row is inserted or existing one is deleted then all attributes
are modified and edges to all vertices are added. Additionally we will distin-
guish between strong and weak edges and the edge connecting attribute of
the primary key are strong while the other are weak.

Fig. 3. Edges corresponding to update statement U1. Strong edges are solid, while

weak edges are dotted.

2. Edges between attributes are between the primary key and all other attributes
within a relation and also between the primary key attribute and its corre-
sponding foreign keys (see Figure 4). All edges between attributes are strong.

r11 r1ir12 rk1 rkkrk2 rm1 rmnrm2

Fig. 4. Edges between attributes

3. Edges for select queries: The simplest case is when single row in a table is
accessed via primary key. The left-hand side of Figure 5 shows this. The
edges connect the query node to all selected attributes and the attributes
used in the WHERE clause. The edge containing primary key of the relation
is strong.

On the right of Figure 5 one can see edges for a join query. Only one-to-
one and one-to-many joins are facilitated by our method. It means that join
can be performed only using a primary key. Attributes that are used within
the selection are connected by an edge with the query vertex.

In our running example four queries: S1, S2 1, S2 2, S3 1, S3 2 and S4
have been identified for creating the topic object. The S1 statement returns
single row of the table identified by the primary key. S4 is a select statement
with join on one to many relation and is allowed by the model. The S2 1, S2 2

Consistent Object Caching in Database Driven Websites 371

r21 r2jr22 rk1 rklrk2r11 r1ir12

S1 S2

Fig. 5. Selection queries: a single point select query and a join querie

and S3 1, S3 2 look quite similar and are used for retrieving data of the
first and the last post. S2 1 and S3 1 are select statements with the single
join on one to many relation. S3 1 and S3 2 include two joins but the last
condition in the WHERE clause does not correspond to the parameterised
table. Both statements are parameterised with the topic primary key and
the condition uses columns from the post table which is ruled out by the
restrictions imposed in the model. In that case the caching system treats
such a condition as non-existent. The system is then still correct, since it will
not miss any object invalidation. However, it can sometimes unnecessarily
invalidate objects normally filtered out by the uncared for condition.

4. Edges mapping objects to queries The lowest layer of the graph connects
cached objects with select statements used for creating them and only those
statements need to be added to the graph. Cached objects are parameterised
by the primary key attribute and model works under the assumption that
only this parameter can be used in the select statements as the condition.

Si Sj Sk

O2

Fig. 6. Select statements used for creating objects

4.4 Forum Example

In the community forum example update statements need to be identified. We
can find five statements that manipulate data:

U1: INSERT INTO user VALUES ...
U2: INSERT INTO forum VALUES ...
U3: INSERT INTO topic VALUES ...
U4: INSERT INTO post VALUES ...
U5: UPDATE user SET nick WHERE user_id = ...

In Section 4.2 we listed select statements used to retrieve a topic object. Since we
have the updates and the queries we can create the dependency graph. Figure 7
shows the graph of the running example.

372 P. Leszczyński and K. Stencel

Fig. 7. A graph created for a topic objects in the community forum example

4.5 The Algorithm

The presented algorithm relies on the dependency graph. It can be statically
generated at the system set up. On one hand it can be assumed that the graph
is created before the web application runs. However this assumption can be false
in some cases. In most modern development frameworks programmers do not
write SQL statements by hand. These statements are automatically generated
from the database schema. In such a case it is impossible to list upfront the
queries used by the application. Therefore, the dependency graph needs to be
created dynamically with respect to performed statements.

Even if some graph elements will be identified when a web application runs,
many of them are known in advance. Attribute vertices and edges between them
can be created from the database schema.

1. static G := initial_graph(database schema)

The rest of algorithm can be divided into two separate parts: the action for an
update statement and the action for a select statement. When select statements
are performed, the system checks if new vertices and edges need to be added to
the graph. This routine only checks if an augment to the graph is needed. No
object gets invalid. Therefore, this routine is not performed when the graph is
static, i.e. no new select statements can appear at run-time. The following code
snippet shows the routine for select statements:

1. validateSelect(stmt, class)
2. {
3. if (object_vertex(class) is null) V(G) += {class}
4. v := statement_vertex(stmt)
5. if (v is null)
6. V(G) += {stmt};
7. edges := {weak_edges(stmt), strong_edges(stmt)};
8. E(G) += edges;
9. }

Consistent Object Caching in Database Driven Websites 373

Given the statement and the class of the cached objects we need first to check if
the vertex corresponding to the object class exists. If not it is added to the graph.
Then the vertex of the performed select statement is being found. If it does not
exist it is being added. In that case additionally weak and strong edges need to
be identified. Weak edges are easily identified since they bind the columns used
by the selection. On the other hand strong edges between the attributes have
been added on the system set up and only the edges between attributes, select
statements and cached object need to be detected. This is however easy since
SQL statement is parameterised only via one parameter.

Let us now focus on the action for update statements. Again, if all update
statements are known at the compile time, the graph updating part (lines 6–9)
of the following routine need not to be performed.

1. validateUpdate(stmt)
2. {
3. param := statement_parameter(stmt);
4.
5. v := statement_vertex(stmt);
6. if (v is null)
7. V(G) += {stmt};
8. E(G) += edges_of_update_statement(stmt);
9.
10. ov := objects_reached_by_path_three(v);
11.
12. foreach (o in ov)
13. spath := shortest_path(v,o);
14. params := [param];
15. prev := v;
16. while (next := next_node_in_path(spath, prev))
17. params := next_vertex_params(params, prev, next);
18. prev := next;
19. invalidate_objects_of_class(o, params);
20. }

When new update statement is received we first need to check if the correspond-
ing vertex exists. If not it is being added with all edges: one strong edge to the
primary key attribute and weak edges to all attributes of the modified columns.
Then, at line 10, the system identifies classes of objects that may need an inval-
idation. It searches for the paths of length 3 between the given update vertex
and vertices of object classes using both: strong and weak edges. The length 3 is
important since it means that there is a column modified by the update and used
by some select statement. This can be also seen on the example graph (Fig. 7).
When a new forum is added there exists a path between U2 and topic vertex
but topic object needs not to be invalidated since no column used to create it
have been changed.

374 P. Leszczyński and K. Stencel

Having found the classes which may contain invalid objects the algorithm
finds those invalid instances. For each object vertex the system searches for the
shortest path between the update vertex and the object node but only using
strong edges. Weak edges are used to find vertices of object classes, while the
strong edges are applied for getting keys of those objects. For each object vertex
the system goes through the shortest path and gathers parameters of reached
vertices. Eventually it stops in the object vertex with the list of cached objects
parameters. Those objects instances are removed from the cache. This time when
going through the path the algorithm uses only the strong edges because they
allow to gather parameters of next vertices.

Let us consider statement U4 (adding new post). The system starts from node
U4 and goes through the post id attribute to the topic id in the post and the
topic table. Having the topic id it knows the exact key of the object to invalidate
since topic object and select statements are parameterised by the same primary
key. In this case no additional queries need to be performed on a database.

However, in case of U5 (updating a user’s nick), having a user id the system
needs to find all posts written by the user. This means a query to the database
must be performed. The system invalidates then all topics where user has written
posts. This can be seen as a drawback but it is impossible to examine if a user’s
post is really the first or last without querying the database. One can argue if
it can be improved for min() and max() functions but it surely cannot be done
for avg() so no general solution without digging into SQL syntax exists.

The other thing is the chain of joins between tables. If the shortest path goes
through several joins which require querying database the system can be ineffi-
cient. However, it applies well in most cases since in OLTP queries shall be kept
as simple as possible. One should also resemble that even having complicated
database schema not all of data has to be cached and objects should be kept as
granular as possible to prevent extensive invalidation.

5 Experiments

The presented model has been tested on a RUBiS benchmark [22]. RUBiS is
an auction site prototype modelled after www.ebay.com and provides a web ap-
plication and a client emulator. The emulator is modelled according to a real
life workload and redirects the client from one web page to another due to a
predefined transition probability. In the presented benchmark we have used 100
client threads running at the same time for 18 minutes.

We have tested the application in different modes: without caching, caching
with a defined time-to-live of the cached objects and caching with the invalida-
tion management based on the dependency graph. The application benchmark
has been run 3 times in each mode. Figures 8 and 9 display achieved results. Our
consistency preserving model reduces up to 54% of performed queries. It is more
efficient than techniques based on time-to-live and does not store stale data. In
the experiment no cached objects have been invalidated when unnecessary and
there have been no queries that did not fit to the SQL syntax restrictions set by
our model.

Consistent Object Caching in Database Driven Websites 375

Fig. 8. The comparison of different caching techniques. The numbers indicate average

count of select statements for each technique.

Fig. 9. (a) Number of data modifications. (b) Number of cache invalidations in different

models.

We have also measured a number of data modifications and the number of
cache invalidations as stated in a figure 9. In the presented benchmark 7.1%
of database statements have modified data and none of them updated more
than one row. Our assumption that we deal with the read dominant database
communication is therefore correct. The left part of the figure shows that the
number of cache invalidations does not grow rapidly when compared to database
statements. The right figure shows that almost 61% cache invalidations can be
saved by the presented model when compared to time-to-live techniques which
proves the significant improvement of the presented model to those technique.

6 Conclusion

The database bottleneck is the most serious problem in modern web applica-
tions which is solved in practice by providing a scalable key-value cache stor-
age engines. This however causes the consistency problem between a relational
database and a cache. In this paper we presented a novel cache model based on
the dependency graph which detects invalidations of the cached objects when
updates occur.

376 P. Leszczyński and K. Stencel

We provided series of tests on the RUBiS benchmark. We observed that re-
strictions on SQL introduced in the model are not harmful in the context of
web applications. We observed a significant reduction of performed database
statements.

The presented approach is more efficient than time-to-live techniques and
does not allow serving data which is not up to date. When compared to the
template approach several improvements need noting. First, we allow join and
aggregation in select statements which is very important since many aggregation
functions are used in the modern web applications to provide frequent counters
displayed on websites. Second, template based approaches need to know all per-
formed statements classes in advance since the evaluation of invalidation rules
is time consuming. Our dependency graph can be easily updated at any time
since adding or removing vertices does not require complex operations. When
compared to materialized views our mechanism does not exploit any knowledge
of cached data and its structure. Also note that materialized views reside on the
database side and thus they cannot solve the database communication bottle-
neck.

Since the invalidation policy does not rely on the cached data and its structure,
it allows storing semi-structured data. The future work may involve caching
whole HTML code fragments. This can be also understood as an interesting
consistency mapper between database and websites components for storing the
current HTML. We also consider integration of the algorithm with one of the
existing Object Relational Mappers. This could be also extended to an automatic
generation of cached objects and invalidation rules due to a predefined database
schema.

References

1. Garrod, C., Manjhi, A., Ailamaki, A., Maggs, B., Mowry, T., Olston, C., Tomasic,

A.: Scalable query result caching for web applications. In: Proceedings of the VLDB

Endowment Archive, vol. 1(1), pp. 550–561 (2008)

2. Garrod, C., Manjhi, A., Ailamaki, A., Maggs, B., Mowry, T., Olston, C., Tomasic,

A.: Scalable Consistency Management for Web Database Caches. Computer Science

Technical Reports, School of Computer Science. Carnegie Mellon University (2006)

3. Manjhi, A., Gibbons, P.B., Ailamaki, A., Garrod, C., Maggs, B., Mowry, T.C., Ol-

ston, C., Tomasic, A., Yu, H.: Invalidation Clues for Database Scalability Services.

In: Proceedings of the 23 rd International Conference on Data Engineering (2006)

4. Choi, C.Y., Luo, Q.: Template-based runtime invalidation for database-generated

Web contents. In: Yu, J.X., Lin, X., Lu, H., Zhang, Y. (eds.) APWeb 2004. LNCS,

vol. 3007, pp. 755–764. Springer, Heidelberg (2004)

5. Dar, S., Franklin, M.J., Jónsson, B.P., Srivastava, D., Tan, M.: Semantic Data

Caching and Replacement. In: Proceedings of the 22th International Conference

on Very Large Data Bases Table of Contents, pp. 330–341 (1996)

6. Tolia, N., Satyanarayanan, M.: Consistency-preserving caching of dynamic

database content. In: Proceedings of the 16th International Conference on World

Wide Web, pp. 311–320 (2007)

Consistent Object Caching in Database Driven Websites 377

7. Katsaros, D., Manolopoulos, Y.: Cache Management for Web-Powered Databases.

Encyclopedia of Information Science and Technology (I), 362–367 (2005)

8. Altnel, M., Bornhvd, C., Krishnamurthy, S., Mohan, C., Pirahesh, H., Reinwald,

B.: Cache tables: Paving the way for an adaptive database cache. In: Proc. VLDB

2003, pp. 718–729 (2003)

9. Luo, Q., Krishnamurthy, S., Mohan, C., Pirahesh, H., Woo, H., Lindsay, B.,

Naughton, J.: Middletier database caching for e-business. In: Proceedings of the

2002 ACM SIGMOD International Conference on Management of Data, pp. 600–

611 (2002)

10. Iyengar, A., Challenger, J., Dias, D., Dantzig, P.: High-Performance Web Site De-

sign Techniques. IEEE Internet Computing (4), 17–26 (2000)

11. Challenger, J., Dantzig, P., Iyengar, A., Squillante, M.S., Zhang, L.: Efficiently

Serving Dynamic Data at Highly Accessed Web Sites. IEEE/ACM Transactions

on Networking 12, 233–246 (2004)

12. Challenger, J., Iyengar, A., Dantzig, P.: A Scalable System for Consistently Caching

Dynamic Web Data (1999)

13. Zhao, W., Schulzrinne, H.: DotSlash: Providing Dynamic Scalability to Web Ap-

plications with On-demand Distributed Query Result Caching, Computer Science

Technical Reports, Columbia University (2005)

14. Katsaros, D., Manolopoulos, Y.: Cache management for Web-powered databases.

In: Web-Powered Databases, pp. 201–242 (2002)

15. Memcached, Danga Interactive, http://www.danga.com/memcached/

16. Velocity, http://code.msdn.microsoft.com/velocity

17. Scaling memcached at Facebook,

http://www.facebook.com/note.php?note_id=39391378919

18. Li, W., et al.: CachePortal II: Acceleration of very large scale data center-hosted

database-driven web applications. In: Proc. VLDB (2003)

19. Managing Cache Consistency to Scale Dynamic Web Systems; Chris Wasik; Master

thesis at the University of Waterloo (2007),

http://uwspace.uwaterloo.ca/handle/10012/3183

20. memcached.txt in Wikipedia,

http://svn.wikimedia.org/viewvc/mediawiki/trunk/phase3/

docs/memcached.txt?view=markup (04.04.2009)

21. Amiri, K., Tewari, R.: DBProxy: A Dynamic Data Cache for Web Applications.

In: Proc. ICDE, pp. 821–831 (2003)

22. RUBiS (Rice University Bidding System), http://rubis.ow2.org/

An Ontology Driven Approach to Software

Project Enactment with a Supplier

Miroslav Ĺı̌ska1 and Pavol Návrat2

1 DATALAN, a. s., Galvaniho 17A, 821 04 Bratislava, Slovakia
2 Faculty of Informatics and Information Technologies,

Slovak University of Technology in Bratislava,

Ilkovičova 3, 842 16 Bratislava, Slovakia

miroslav_liska@datalan.sk, navrat@fiit.stuba.sk

Abstract. SPEM is metamodel based standard used to define soft-

ware and systems development processes and their components. Unfor-

tunately, its architecture is semiformal, thus it is not possible to make

and to verify created language statements with formal techniques such as

the consistency or satisfiability verification. Recently, the combination of

MDA and the Semantic Web, in which data processing is concerned with

regard to their semantics, become the leading subject in this direction.

In this work we present a SPEM transformation to the Semantic Web

technical space and consequently we propose its utilization that is an

ontology based approach to software project enactment with a supplier.

We discuss its usage scenarios that are a verification of a set of SPEM

methods and processes with ontology, and a project plan generation and

verification with a set of SPEM method plugin ontologies. Additionally

we present examples that addresses to the proposed usage scenarios.

Keywords: MDA, SPEM, OWL, Semantic Web, project plan verifi-

cation, software project enactment.

1 Introduction

The difficulty of software development is greatly enhanced when it is inevitable
to cooperate with a supplier. The general issue is to manage a lot of differ-
ences such as different tasks, software work products, guidelines, roles etc. (IEEE
2004). The ideal state is that a company and its supplier use the same software
framework and they use it equally. Otherwise risk of budget and time overrun
together with quality fall are greatly increased. Unfortunately the ideal state
that we have mentioned cannot exist. Either companies use different software
frameworks, or they use the same software framework but necessarily differently.
It is natural that companies have different knowledge obtained from their various
projects, and also have different peoples with different experiences. Thus even
they use the same software framework, e.g. Rational Unified Process (Kruchten
2003), the project enactment is problematic. One of the problems is that stan-
dard software development process frameworks are usually used as a navigable

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 378–391, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

miroslav_liska@datalan.sk
navrat@fiit.stuba.sk

An Ontology Driven Approach to Software Project Enactment 379

websites that contain only human-readable descriptions. This fact allows ex-
istence of undesirable ambiguities inevitably. Thus, these kinds of frameworks
cannot be used to represent machine interpretable content (Zualkernan 2008).
Moreover, these frameworks are used in the technical spaces (Kurtev 2002) that
have model based architecture, such as the Model Driven Architecture (MDA)
or the Eclipse Modeling Framework (EMF) (Steinberg 2009). These kinds of
technical spaces also limit knowledge based processing, owing to their weakly
defined semantics (Gašević 2009).

However, at present the emerging field of Semantic Web technologies promises
new stimulus for Software Engineering research (Happel 2006). The Semantic
Web is a vision for the future of the Web, in which information is given explicit
meaning, making it easier for machines to automatically process and integrate
information available on the Web (Mcguinness 2004). The today’s key Semantic
Web technology is the Web Ontology Language (OWL). OWL is intended to
be used when the information contained in documents needs to be processed
by applications, as opposed to situations where the content only needs to be
presented to humans (Smith 2004).

Thus if we transform a definition of software methods to the technical space of
the Semantic Web, we can use many knowledge oriented techniques to maintain
them. In this work we address such an opportunity. We propose an approach
to software method specification in technical space of the Semantic Web and
consequently we propose its inherent utilization that is an ontology based soft-
ware methods integration. Our goal is to use this ontology oriented method for
project enactment with a supplier in the context of the SWEBOK (IEEE 2004).
We use SPEM, the MDA standard used to define software and systems develop-
ment processes and their components (OMG 2008). We transform SPEM from
the MDA technical space into the Semantic Web technical space; so we can work
with SPEM as with an ontology.

1.1 Related Works

Usability of ontologies in software engineering and technology (SET) can be dis-
tinguished into two main categories: SET domain ontologies and ontologies as
software artifacts (Calero 2006). SET domain ontologies refer to the ontologies
whose main goal is to represent (at least partially) knowledge of a certain subdo-
main within SET matter. In the second category, ontologies are used as software
artifacts of diverse types, in some software process. Based on the SWEBOK
guide, prototypes of ontologies for the representation of the complete software
engineering domain have been created (Mendes 2005, Sicilia 2005). Other ontol-
ogy that also conceptualizes the software engineering domain, is OntoGLOSE
(Hilera 2005), created and based on the ”Glossary of Software Engineering Ter-
minology” published by the IEEE (2002). Falbo et al. (1992) and Larburu et
al.(2003) have proposed ontologies to model the knowledge related to the soft-
ware process, including concepts such as Life Cycle Model, Software Process,
Activity, Procedure, Task, Role, or Artifact, among others. Since we want to use
SPEM in the technical space of the Semantic Web and SPEM is MDA based, we

380 M. Ĺı̌ska and P. Návrat

can utilize research results that concern with using MDA in the technical space
of the Semantic Web.

SPEM is specified in the Meta Object Facility (MOF) language that is the
key language of MDA. MOF is a language for metamodel specification and it
is used for specification of all model-based MDA standards (Frankel 2003). It
provides metadata management framework, and a set of metadata services to
enable the development and interoperability of model and metadata driven sys-
tems (OMG 2006). On the Semantic Web side, OWL is intended to provide a
language that can be used to describe the classes and relations between them
that are inherent in Web documents and applications. OWL is based on Resource
Description Framework Schema (RDFS) (Brickley 2004). Both MOF and RDFS
provide language elements, which can be used for metamodeling. Although they
have similar language concepts such as mof:ModelElement with rdf:Resource,
or mof:Class with rdf:Class, these languages are not equivalent. RDFS, as a
schema layer language, has a non-standard and non-fixed-layer metamodeling
architecture, which makes some elements in model to have dual roles in the
RDFS specification (Pan 2001). MOF is also used for specification of the Unified
Modeling Language (UML) that is a language for specification, realization and
documentation of software systems (OMG 2009a). Even if UML and RDFS are
similar in a domain of system specification, they are also substantially different.
One issue that has been addressed was the problem that RDF properties are first
class entities and they are not defined relative to a class. Therefore a given prop-
erty cannot be defined to have a particular range when applied to objects of one
class and another range when applied to objects of a different class (Cranefield
2001). Note this difference have also been propagated between OWL and UML
(Hart 2004). At present the main bridge that connects the Semantic Web with
MDA is stated in the Ontology Definition Meta-Model (ODM) (OMG 2009b).
ODM defines the OWL Meta-Model specified in MOF (MOF - OWL mapping)
and also the UML Profile for Ontology modeling (UML - OWL mapping). This
architecture can be extended with additional mappings between the UML Pro-
file for OWL and other UML Profiles for custom domains (Gašević 2005, 2006).
In our previous work we have utilizied this principle and created an approach of
SPEM UML model validation in SPEM Ontology (Ĺı̌ska 2009) and approach of
project plan generation and verification with SPEM Ontology (Ĺı̌ska 2010a).

An approach that is close to the topic of this work which uses SPEM in the
Semantic Web technical space proposes the use of defining SPEM process con-
straint with the Semantic rules with SWRL (Rodŕıguez 2009). SWRL is W3C
Semantic Web Rule Language that combines OWL and RuleML (Horrocks 2004).
The paper proposes OWL-DL consistency reasoning between a software process
ontology and a project plan, where SWRL rules can be used to define additional
logical constraints. The second approach (Zualkernan 2008) that also uses SPEM
in the domain of Semantic Web presents a competency framework for software
process understanding. The paper describes an ontology and a system that au-
tomatically generates assessments for the SCRUM (Schwaber 2002) engineering
process.

An Ontology Driven Approach to Software Project Enactment 381

1.2 Aims and Objectives

We aimed in our research to devise a transformation of SPEM into the Seman-
tic Web technical space; and an ontology based approach to software project
enactment with a supplier. Besides that, we present an example of the enact-
ment with formal model, where the subjected software methods are two different
requirements specification work definitions.

The rest of the paper is structured as follows. Section 2 presents our solution
to the problem. First we define a conformance level with the SPEM compliance
point, and also we present a SPEM transformation into the Semantic Web tech-
nical space. Then we describe our approach to ontology based software project
enactment with a supplier. Subsequently, Section 3 presents an example of us-
ability of such method with formal model. Finally, Section 4 provides conclusion
and future research direction.

2 Approach

SPEM is MDA standard used to define software and systems development pro-
cesses and their components. The scope of SPEM is purposely limited to the min-
imal elements necessary to define any software and systems development process,
without adding specific features for particular development domains or disci-
plines (e.g., project management). SPEM metamodel is MOF-based and reuses
UML 2 Infrastructure Library (OMG 2009c). Its own extended elements are
structured into seven main meta-model packages. Above these packages SPEM
defines three Compliance Points (CP) which are: SPEM Complete CP, SPEM
Process with Behavior and Content CP and SPEM Method Content CP. The
scope of our solution is covered with Compliance Point ”SPEM Complete”. The
reason of this compliance point is because we need to use all SPEM elements,
where the most important are defined within the Method Content package, the
Process with Method package and the Method Plugin package. The Method
Content metamodel package provides the concepts for SPEM users and organi-
zations to build up a development knowledge base that is independent of any
specific processes and development projects. The Method Content elements are
the core elements of every method such as Roles, Tasks, and Work Product Def-
initions. The second necessary metamodel package that we need is the Process
with Method metamodel package. Process with Methods defines the structured
work definitions that need to be performed to develop a system, e.g., by perform-
ing a project that follows the process. Such structured work definitions delineate
the work to be performed along a timeline or lifecycle and organize it in so-
called breakdown structures. Finally, the third necessary package is the Method
Plugin metamodel package. The Method Plugin allows extensibility and vari-
ability mechanisms for Method Content and Process specification. It provides
more flexibility in defining different variants of method content and processes
by allowing content and process fragments to be plugged-in on demand, thus
creating tailored or specialized content only when it is required and which can
be maintained as separate units worked on by distributed teams.

382 M. Ĺı̌ska and P. Návrat

2.1 Moving SPEM into the Semantic Web

In order to enable use of SPEM in the Semantic Web technical space, we make
use of the fact that OWL, ODM and SPEM are serialized in XML format (OMG
2007). The mapping between OWL and ODM is expressed in ODM that contains
OWL Metamodel (Djurić 2006). The OWL Metamodel is a MOF2 compliant
metamodel that allows a user to specify ontologies using the terminology and
underlying model theoretic semantics of OWL. Thus only a mapping between
SPEM and OWL has to be created. Since the hallmark work (Gašević 2009)
proposes the transformation of a MDA standard to the Semantic Web technical
space with a mapping between UML Ontology Profile and an arbitrary UML
Profile, we have either used this principle, thus we have created a mapping
between the Ontology UML Profile and the SPEM UML Profile as it is shown
in Figure 1. For more detailed and comprehensive description about the SPEM
transformation to the Semantic Web technical space and its utilizations, a reader
may refer to (Ĺı̌ska 2010b).

Model Driven Architecture Semantic Web

Meta Object Facility (MOF)

SPEM
UML
Profile

M0

models

instances

Ontology
UML
Profile

ODM

RDF
RDFS

OWLMappingMappingMapping

M1

M2

M3

lo
gi
ca
l

la
ye
r

sc
he
m
a

la
ye
r

m
et
ad
at
a

la
ye
r

Fig. 1. Mapping between SPEM and OWL

2.2 Ontology Based Software Project Enactment

The main idea of our approach consists of two major steps. The first step is OWL
DL consistency verification between two method plugin ontologies, which repre-
sent different methods and processes of a company and its supplier. In addition
to be assured that both method plugins are specified correctly with SPEM, it is
necessary that either the SPEM ontology is included in the verification. More-
over, since the scope of SPEM is purposely limited to the minimal elements
necessary to define any software and systems development process, SPEM does
not provide concepts such as Iteration, Phase etc. Therefore an ontology of the
SPEM Base Plugin has to be included to the reasoning as well. However, to
enable OWL DL consistency verification between set of ontologies, a mapping
between their elements has to be created first (Shvaiko 2007), because some of
them are usually related.

An Ontology Driven Approach to Software Project Enactment 383

SPEM metamodel
merged with SPEM

UML Profile

SPEM method
plugin 1

SPEM method
plugin 2

SPEM method
ontology 1

SPEM process
ontology 1

SPEM process
ontology 2

SPEM method
ontology 2

SPEM
Ontology

SPEM Base
Method Plugin
Ontology

resulted
ontology

SPEM Base
Method Plugin

«Transformation»
{SPEMMethodContent2OWL}

«Transformation»
{SPEMMethodContent2OWL}

«Transformation»
{SPEM2OWL}

«Transformation»
{MethodPlugin2OWL}

SPEM
process
individuals

resulted
ontology

project plan

Are the ontologies
consistent?

«Transformation»
{MPP2OWL}

Are the
ontologies
consistent?

Desired
state

«Transformation»
{SPEMProcess2OWL}

mapping and OWL DL reasoning

project plan
correction

method plugin 2
correction

OWL DL
reasoning

[no]

[yes]

[yes][no]

Fig. 2. Approach to Software Project Enactment with a Supplier

The second step of our approach extends the ontology based project plan
verification (Ĺı̌ska 2010) with a set of method plugin ontologies. Once the con-
sistency between these method plugin ontologies is established, it is necessary
also to validate it either with concrete project plan that covers mutual develop-
ment between company and its supplier. Likewise as SPEM supports a process
enactment with a project planning system with instantiation relation, we use
information defined within a project plan as individuals of a SPEM process on-
tology; hence the OWL DL consistency reasoning can be executed. For the sake
of clarity, the approach is depicted in Figure 2.

The figure shows both mentioned steps, the mapping and OWL reasoning
with two method plugin ontologies and the OWL DL reasoning with a project
plan. Since a SPEM method plugin consists of a SPEM method content and a
SPEM process, we have created transformations SPEMMethodContent2OWL
and SPEMProcess2OWL for a SPEM method plugin transformation to the

384 M. Ĺı̌ska and P. Návrat

Semantic Web technical space. The former transforms a SPEM method con-
tent model to a SPEM method ontology, and the latter transforms a SPEM
process model to a SPEM process ontology. Therefore, the Method Plugin 1
(i.e. company’s method plugin) is transformed to the SPEM Method Ontology 1
and the SPEM Process Ontology 1; whereas the Method Plugin 2 (i.e. supplier’s
method plugin) is transformed to the SPEM Method Ontology 2 and the SPEM
Process Ontology 2. In like manner, the project plan is transformed with XSL
transformation MPP2OWL to the individuals of the SPEM Process Ontology
1. Since we have created mapping between the Method Plugin 1 and Method
Plugin 2, an OWL DL reasoner will realize the individuals of the project plan
either in the SPEM Process Ontology 2. The following paragraphs present the
usage scenarios which our approach provides.

– Scenario 1. Verification of a set of SPEM methods with ontology.
This scenario can be used for verification, whether at least two different
SPEM method contents are consistent. Since it is necessary to manage a
lot of differences such as different tasks, software work products, guidelines,
roles etc., this scenario can be used to reveal and to remove such differences
that are inconsistent.

– Scenario 2. Verification of a set of SPEM processes with ontology.
This scenario is similar than the previous, but this time processes of a soft-
ware development are the subject for the OWL DL verification. The scenario
is used to verify, whether at least two different SPEM processes are consistent

– Scenario 3. Project plan generation of a set of method plugins with
ontology. This scenario can be executed when a project manager wants to
create a project plan that is based at least on two method plugins. First it is
necessary to select the desired method contents and a processes from the set
of method plugins a transform them to the ontologies. Then the scenarios 1
and 2 can be used to reveal inconsistencies. If the ontologies are consistent,
then the reversed XSL transformation OWL2SPEMProcess is executed for
the project plan generation.

– Scenario 4. Project plan verification of a set of method plugins with
ontology. This scenario can be executed when a project manager wants to
verify a project plan with a set of method plugins. When he makes changes
to his project plan or assigns resources to the tasks, he can ensure that the
changes he made still preserve the consistency between his project and a
SPEM process.

To be more precise, we give the formally defined conditions that cover the men-
tioned utilization scenarios. Since the scenario 3 consists of the scenario 1 and
2 we only present the formal specification of scenarios 1, 2 and 4. Scenario 1 is
covered with Formula 4, scenario 2 with Formula 5 and scenario 4 with Formu-
las 3 and 6. First we define the two method plugins and the Project Planning
Knowledge:

SPEMMethodP lugin1Ontology = SPEMMethodOntology1	
SPEMProcessOntology1 (1)

An Ontology Driven Approach to Software Project Enactment 385

SPEMMethodP lugin2Ontology = SPEMMethodOntology2	
SPEMProcessOntology2 (2)

ProjectP lanningKnowledge = SPEMOntology	
SPEMBaseP luginOntology	
SPEMMethodP lugin1Ontology	
SPEMMethodP lugin2Ontology

(3)

Then we say that the two SPEM method contents are consistent if

SPEMOntology � SPEMBaseP luginOntology �
SPEMMethodOntology1 �
SPEMMethodOntology2

(4)

and the two SPEM processes are consistent if

SPEMOntology � SPEMBaseP luginOntology �
SPEMMethodP lugin1Ontology �
SPEMMethodP lugin2Ontology

(5)

Finally, the Project Planning Knowledge is satisfied in a project plan if

ProjectP lan � ProjectP lanningKnowledge (6)

3 Example with Formal Model

This section presents an example of our ontology based approach to software
project enactment with a supplier in Description Logic (Baader 2004). First, we
specify a Method Content 1 that represents a software requirements method and
a Process 1 that defines a process for the Method Content 1. The Method Con-
tent 1 contains two separated Role Definitions that are the Business Analyst and
Requirements Specifier. The former performs the Task Definition “Create Busi-
ness Analysis” and the later “Create Requirements”. For the sake of simplicity,
the formal models are focused to the Role Definition “Requirements Specifier”.
However, the Method Content 1 and Method Content 2 constitute the Method
Plugin 1 that is a company’s method plugin in our case.

Secondly, we present similar software requirements method, a Method Content
2 that contains only one Role Definition “Analyst”, which performs the Task
Definitions “Create BPM” (i.e. a Business Process Model) and “Create SRS”
(i.e. a Software Requirements Specification). For the sake of variability we do
not use any process for the Method Content 2, thus the Method Plugin 2 (i.e.
suppliers method plugin in our case) consists only of the Method Content 2.

Consequently, we present the usability of the first usage scenario that is
the verification of the set of SPEM method contents with ontology. Formula 9
presents the case when the mentioned method contents are consistent, whereas
Formula 10 presents their inconsistency. Then it is possible to use third usage
scenario that is a project plan generation with the set of method plugins with

386 M. Ĺı̌ska and P. Návrat

ontology. The generated project plan is depicted in Figure 5. Finally we present
usability of the fourth usage scenario that is the project plan verification with
a set of method plugins with ontology. Formula 11 illustrates a case when the
project planning knowledge is not satisfied in the project plan, whereas Formula
12 present the opposite situation. So, Figure 3 shows the Method Content 1.

BusinessAnalysisBusinessAnalyst

RequirementsSpecifier

FunctionalSpecification

UCPEstimates

CreateBusinessAnalysis

CreateRequirements

«mandatoryOutput»

«optionalOutput»

«performs»

«mandatoryInput»

«mandatoryOutput»«performs»

«responsible»

«responsible»

«responsible»

Fig. 3. Method Content 1

An excerpt of its formal model is as follows:

MethodContent1Ontology=
RequirementsSpecifier � RoleDefinition �
responsible.(FunctionalSpecification 	 UCPEstimates),
FunctionalSpecification � WorkProductDefinition,
UCPEstimates � WorkProductDefinition,
CreateRequirements � TaskDefinition �
∀ mandatoryOutput.FunctionalSpecification �
∀ optionalOutput.UCPEstimates �
∀ performs.RequirementsSpecifier,
BusinessAnalyst � RequirementsSpecifier ≡ ∅.

Consequently we give an excerpt of a formal model of Process1 as follows:

ProcessOntology=
RequirementsProcess1 � Process,
PhaseInception � Phase,
Iteration1 � Iteration,
CreateRequirementsSpecification � Activity,
RequirementsSpecifierI1 � RoleUse �
responsible.FunctionalSpecificationV1,

An Ontology Driven Approach to Software Project Enactment 387

CreateRequirements � TaskUse �
∀ mandatoryOutput.FunctionalSpecificationV1 �
∀ performs.RequirementsSpecifierI1.

In like manner, Figure 4 illustrates the second (i.e. supplier’s) Method Content
2 ”Software Requirements”.

Analyst

CreateSRS

CreateBPM

SRS

BPM

«mandatoryOutput»
«performs»

«mandatoryInput»

«mandatoryOutput»

«performs»

«responsible»

«responsible»

Fig. 4. Method Content 2

An excerpt of its formal model is as follows:

MethodContent2Ontology=
Analyst � RoleDefinition �
∀ responsible.(BPM 	 SRS),
CreateSRS � TaskDefinition �
∀ mandatoryInput.BPM �
∀ mandatoryOutput.SRS �
∀ performs.Analyst.

If we state that the mappings between the Method Content 1 and Method Con-
tent 2 are

Analyst ≡ BusinessAnalyst (7)

Analyst ≡ RequirementsSpecifier (8)

then it is true that

MethodContent1 � MethodContent2 (9)

Formula 9 means that the Method Content 1 is not consistent with the Method
Content 2, thus it is not possible to establish enactment of these methods in a
software project. The reason of the inconsistency is because the Method Content

388 M. Ĺı̌ska and P. Návrat

1 does not permit that the same Role Definition ”Analyst” performs both Task
Definitions ”Create Requirements Specification” and ”Create Business Analy-
sis”. To avoid this inconsistency, we have to remove asserted axiom which states
that the Business Analyst and Requirement Specifier cannot be the same person,
for example. After this is done, then it is true that

MethodContent1 � MethodContent2 (10)

Now, since we have established consistency between the Method Content 1 and
Method Content 2, we can generate a project plan from the Process 1. The
generated project plan is depicted in Figure 5.

Fig. 5. The project plan generated from the Process 1

The figure shows that the tasks defined in the project plan up to now have
not assigned resources. We set these assignments in the project plan environment
and then we generate the project plan ontology. An excerpt of its formal model
is as follows:

ProjectPlan1Ontology=
BusinessAnalyst(”BusinessAnalyst1”),
RequirementsSpecifier(”RequirementsSpecifier1”),
TestAnalyst(”TestAnalyst1”),
performs(”CreateBusinessAnalysis1”,”BusinessAnalyst1),
performs(”CreateRequirementsSpecification1”, ”BusinessAnalyst1”),
performs(”CreateRequirementsSpecification1”, ”TestAnalyst1”).

It can be proved that

ProjectP lan1Ontology � (MethodP lugin1	MethodP lugin2) (11)

The reason of this inconsistency is because we have intentionally stated that the
Task Use” CreateRequirementsSpecification1” performs the Role Use ”Business-
Analyst”, what is in the contradiction with the SPEM Process 1 ontology, where

An Ontology Driven Approach to Software Project Enactment 389

it is stated that the performer is the Requirements Specifier. Hence, when this
is corrected, then it is true that

ProjectP lan1Ontology � (MethodP lugin1	MethodP lugin2) (12)

4 Conclusions

We have presented our approach to software project enactment with a supplier.
We shown the new approach how ontologies can support a real software project
in the context of the selected SWEBOK knowledge areas (i.e. process definition,
project planning and project enactment). Likewise as another MDA’ standard
UML has brought a new generation into specification, documentation and re-
alization of information systems, it is very probable that SPEM will play the
same role in the domain of software process engineering. Hence we believe that
our presented approach is at least in the right direction, since we aim to im-
prove the SPEM capabilities with the OWL DL reasoning. However, when we
compare our work with the closest approach (Rodŕıguez 2009) we conclude that
we have created the more accurate SPEM ontology architecture with respect to
the actual SPEM metamodel. Likewise as SPEM provides concepts for a method
content, a process or a method plugin, our approach is based on a method con-
tent ontology, a process ontology and either method plugin ontology. Moreover,
the work is not concerned with method contents or processes integrations, hence
neither with the software project enactment with a supplier. However, we can-
not to say that our approach of project plan verification that was either used in
this approach is more accurate (with respect to the SPEM metamodel), rather
is more comprehensive. If we focus only on the substantive part of project plan
verification, the work uses instantiation relation between a project plan and a
SPEM process either, thus it conforms to the project plan enactment as it SPEM
defines. Additionally, the work proposes use of SWRL that add rules to the rea-
soning process, thus we conclude, that it proposes a project plan reasoning with
advanced expressiveness.

Acknowledgments. “This work was partially supported by the Scientific Grant
Agency of Slovak Republic, grant No. VG1/508/09.”

References

Baader, F., Horrocks, I., Saatler, U.: Description Logics. In: Handbook on Ontologies,

International Handbooks on Information Systems, pp. 3–28. Springer, Heidelberg

(2004)

Brickley, D., Guha, R.V., McBride, B.: RDF Vocabulary Description Language 1.0:

RDF Schema. W3C Recommendation (2004)

Calero, C., Ruiz, F., Piattini, M.: Ontologies for Software Engineering and Software

Technology. Springer, Heidelberg (2006)

Cranefield, S.: Networked Knowledge Representation and Exchange using UML and

RDF. Journal of Digital Information 1(8) (2001)

390 M. Ĺı̌ska and P. Návrat

Djurić, D.: MDA-based ontology infrastructure. Computer Science and Information

Systems 1(1), 91–116 (2006)

Falbo, R.A., Guizzardi, G., Duarte, K.C.: An Ontological Approach to Domain Engi-

neering. In: Proceedings of 14th International Conference on Software Engineering

and Knowledge Engineering (SEKE), Ischia, Italy, pp. 351–358 (1992)

Frankel, D.S.: Model Driven Architecture. In: Applying MDA to Enterprise Computing.

Willey, USA (2003)

Gašević, D., Djurić, D., Devedžić, V.: Bridging MDA and OWL Ontologies. Journal of

Web Engineering 4(2), 119–134 (2005)

Gašević, D., Djurić, D., Devedžić, V.: MDA and Ontology Development. Springer,

Heidelberg (2006)

Gašević, D., Djurić, D., Devedžić, V.: Model Driven Engineering and Ontology Devel-

opment, 2nd edn. Springer, Berlin (2009)

Happel, H.J., Seedorf, S.: Applications of ontologies in software engineering. In: Inter-

national Workshop on Semantic Web Enabled Software Engineering SWESE 2006,

Athens, USA (2006)

Hart, L., Emery, P., Colomb, B., Raymond, K., Taraporewalla, S., Chang, D., Ye, Y.,

Kendall, E., Dutra, M.: OWL Full and UML 2.0 Compared. OMG TFC Report

(2004)

Hilera, J.R., Sánchez-Alonso, S., Garćıa, E., Del Molino, C.J.: OntoGLOSE: A Light-

weight Software Engineering Ontology. In: 1st Workshop on Ontology, Conceptual-

izations and Epistemology for Software and Systems Engineering (ONTOSE). Alcalá

de Henares, Spain (2005)

Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, T., Grosof, B., Dean, M.: SWRL:

A Semantic Web Rule Language. Combining OWL and RuleML. W3C Member

Submission (2004)

IEEE Computer Society: IEEE Std 610.12-1990(R2002). IEEE Standard Glossary of

Software Engineering Terminology. IEEE, New York, USA (2002)

IEEE Computer Society: Software Engineering Body of Knowledge - SWEBOK. Angela

Burgess, EUA (2004)

Kruchten, P.: The Rational Unified Process: An Introduction, 3rd edn. Addison-Wesley

Professional, Reading (2003)

Kurtev, I., Bézivin, J., Aksit, M.: Technological spaces: An initial appraisal. In: Meers-

man, R., Tari, Z., et al. (eds.) CoopIS 2002, DOA 2002, and ODBASE 2002. LNCS,

vol. 2519. Springer, Heidelberg (2002)

Larburu, I.U., Pikatza, J.M., Sobrado, F.J., Garćıa, J.J., López, D.: Hacia la imple-

mentación de una herramienta de soporte al proceso de desarrollo de software. In:

Workshop in Artifificial Intelligence Applications to Engineering (AIAI), San Se-

bastián, Spain (2003)

Ĺı̌ska, M.: Extending and Utilizing the Software and Systems Process Engineering

Metamodel with Ontology. PhD Thesis, ID:FIIT-3094-4984. Slovak Technical Uni-

versity in Bratislava (2010)

Ĺı̌ska, M., Návrat, P.: An Approach to Project Planning Employing Software and Sys-

tems Engineering Meta-Model Represented by an Ontology. Computer Science and

Information Systems Journal (conditional acceptance with minor revision) (2010)

Ĺı̌ska, M.: An Approach of Ontology Oriented SPEM Models Validation. In: Proceed-

ings of the First International Workshop on Future Trends of Model-Driven Devel-

opment (FTMDD), Conjuction with 11th International Conference on Enterprise

Information Systems, pp. 40–43. INSTICC Press, Milan (2009)

Mcguinness, D.L., Harmelen, F.: OWL Web Ontology Language Overview. W3C Rec-

ommendation (2004)

An Ontology Driven Approach to Software Project Enactment 391

Mendes, O., Abran, A.: Issues in the development of an ontology for an emerging engi-

neering discipline. In: First Workshop on Ontology, Conceptualizations and Episte-

mology for Software and Systems Engineering (ONTOSE). Alcalá de Henares, Spain

(2005)

Object Management Group: Meta Object Facility (MOF) 2.0 Core Specification. Ob-

ject Management Group, USA (2006)

Object Management Group: MOF 2.0 / XMI Mapping Specification, v2.1.1. Object

Management Group, USA (2007)

Object Management Group: Ontology Definition Meta-Model 1.0. Object Management

Group, USA (2009)

Object Management Group: UML 2.2 Infrastructure Specification. Object Management

Group, USA (2009)

Object Management Group: UML 2.2 Superstructure Specification. Object Manage-

ment Group, USA (2009)

Object Management Group: Software and Systems Process Engineering Meta-Model

2.0. Object Management Group, USA (2008)

Pan, J., Horrocks, I.: Metamodeling Architecture of Web Ontology Languages. In:

Proceedings of the First Semantic Web Working Symposium, Stanford, USA, pp.

131–149 (2001)

Rodŕıguez, D., Sicilia, M.A.: Defining SPEM 2 Process Constraints with Semantic Rules

Using SWRL. In: Proceedings of the Third International Workshop on Ontology,

Conceptualization and Epistemology for Information Systems, Software Engineering

and Service Science Held in Conjunction with CAiSE 2009 Conference, Amsterdam,

The Netherlands, pp. 95–104 (2009)

Shvaiko, P., Euzenat, J.: Ontology Matching. Springer, Heidelberg (2007)

Schwaber, K., Beedle, M.: Agile Software Development with SCRUM. Prentice-Hall,

Englewood Cliffs (2002)

Sicilia, M.A., Cuadrado, J.J., Garćıa, E., Rodŕıguez, D., Hilera, J.R.: The evaluation of

ontological representation of the SWEBOK as a revision tool. In: 29th Annual Inter-

national Computer Software and Application Conference (COMPSAC), Edinburgh,

UK (2005)

Smith, M.K., Welty, C., McGuinness, D.L.: OWL Web Ontology Language Guide. W3C

Recommendation (2004)

Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Frame-

work, 2nd edn. Addison-Wesley Longman, Amsterdam (2009)

Zualkernan, I.A.: An Ontology-Driven Approach for Generating Assessments for the

Scrum Software Process. In: Proceedings of the seventh SoMeT, pp. 190–205. IOS

Press, The Netherlands (2008)

Determining Objects within Isochrones in

Spatial Network Databases

Sarunas Marciuska and Johann Gamper

Free University of Bolzano-Bozen, Italy

{gamper,marciuska}@inf.unibz.it

Abstract. Isochrones are generally defined as the set of all space points

from which a query point can be reached in a given timespan, and they

are used in urban planning to conduct reachability and coverage ana-

lyzes in a city. In a spatial network representing the street network, an

isochrone is represented as a subgraph of the street network. Such a

network representation is not always sufficient to determine all objects

within an isochrone, since objects are not only on the network but might

be in the immediate vicinity of links (e.g., houses along a street). Thus,

the spatial area covered by an isochrone needs to be considered.

In this paper we present two algorithms for determining all objects

that are within an isochrone. The main idea is to first transform an

isochrone network into an isochrone area, which is then intersected with

the objects. The first approach constructs a spatial buffer around each

edge in the isochrone network, yielding an area that might contain holes.

The second approach creates a single area that is delimited by a polygon

composed of the outermost edges of the isochrone network. In an empir-

ical evaluation using real-world data we compare the two solutions with

a precise yet expensive baseline algorithm. The results demonstrate the

efficiency and high accuracy of our solutions.

1 Introduction

Urban planning has to deal with tasks such as to analyze the reachability of
strategic objects in a city and to place these objects in optimal positions. For
example, what is the best place to build a metro station or a school such that a
large number of people can reach that place in comfortable times?

Isochrones, which are defined as the set of all space points from which a
query point can be reached in a given timespan, are used as an instrument to
perform such analyses. By joining an isochrone with the inhabitants database
the number of citizens living in a certain distance from a query point can be
determined. Figure 1(a) shows the 5 minutes isochrone for a single query lo-
cation (star) in the city of Bozen-Bolzano. The isochrone is represented by
the street segments in bold and covers all points in the street network from
where the query point can be reached in 5 minutes, assuming a walking speed
of 1.6 m/s and considering walking as the only mode of transportation. In
general, the computation of isochrones needs to consider multiple modes of

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 392–405, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Determining Objects within Isochrones in Spatial Network Databases 393

transportation, e.g., walking, bus, train, metro, etc. An isochrone is then a
possibly disconnected set of space points: a large area around the query point
and smaller areas around bus/metro/train stops, from where the query point
can be reached by a combination of walking and using public transporta-
tion. For the sake of simplicity, in this paper we consider mainly isochrones
in a pedestrian network (walking mode only). The proposed solutions can eas-
ily be extended for multiple modes of transportation, as we briefly discuss in
Sec. 4.

(a) Isochrone Network (b) Isochrone Area

Fig. 1. Isochrone Representation as Network and Area

The representation of isochrones as a subgraph of the street network is not
always sufficient. A representation as an area, such as illustrated in Fig. 1(b), is
often desirable for several reasons. First, the objects within an isochrone we are
looking for might not lie exactly on the network but in the immediate vicinity
of links, e.g., houses in a street have usually a distance of up to 50 meters or
more from the street. In Fig. 1 such objects are represented as dots. With a rep-
resentation as an area, it is straightforward to determine all (static or dynamic)
objects within an isochrone. Second, for human users isochrones are usually vi-
sualized as an area rather than as a subgraph. Therefore, we aim at transforming
an isochrone network representation into an isochrone area representation that
covers the (immediate) vicinity of the isochrone network.

The computation of an isochrone area from an isochrone network is similar to
the computation of a footprint for a set of points. The most common methods for
this are concave hull [10] and alpha shapes [4]. Since these methods compute an
area from a set of 2D points and we have a set of 2D links, they cannot directly be
applied. By transforming the links into a set of points, we loose the edge informa-
tion which might result in large errors, as illustrated in Fig. 2. The isochrone net-
work in Fig. 2(a) is transformed into a set of points in Fig. 2(b). Figure 2(c) shows
the area that is obtained with the alpha shapes or concave hull method; the large
area indicated by the letter “A” is missing. While a parameter allows to control
the computation of the area, it is generally impossible to find the right parameter
to obtain the correct area, and the problem remains that with the transformation
into a set of points relevant pieces of spatial information are lost.

394 S. Marciuska and J. Gamper

(a) Isochrone Network (b) Points (c) Concave Hull

Fig. 2. Concave Hull (and Alpha Shapes) Method

In this paper we present two different solutions to transform an isochrone
network into an isochrone area. The link-based approach constructs a buffer of
a user-specific size around each individual link of the isochrone network, yield-
ing an area that possibly contains holes. This solution exploits existing spatial
database functionalities. The surface-based approach computes first a polygon
that covers the isochrone network and then creates a buffer around this poly-
gon. The obtained area doesn’t contain holes. To determine all objects within
an isochrone, the constructed area is intersected with the relation that stores
the objects. We empirically evaluate the two solutions using real-world data and
determining all objects within an isochrone. We measure the quality of each so-
lution by comparing it with a baseline solution that is precise but expensive in
terms of runtime. As quality estimators we use recall, precision, and f-measure.
The experiments show that the quality of the surface-based approach is higher
for buffers smaller than approximately 60 meters. For a larger buffer size both
approaches give similar results, since the area constructed by the link-based ap-
proach contains less holes and becomes more similar to the area constructed
by the surface-based approach. The surface-based approach is faster than link-
based approach, though both approaches scale almost linearly with the size of
the isochrone.

The rest of the paper is organized as follows. In Section 2 we discuss related
work. Sections 3 and 4 present the two different approaches for the computation
of an isochrone area. Section 5 presents the experimental results, and Section 6
draws conclusions and points to future work.

2 Related Work

Isochrones are first introduced in [1,7] as a new query type in spatial network
databases, which is used by city planners as an instrument to analyze coverage
and reachability queries in a city. The work in [1,7] computes isochrones for
bimodal networks, consisting of a pedestrian network and one or more bus net-
works. Since isochrones are represented as a subgraph of the pedestrian network,
only objects that lie exactly on the network edges can be determined. In this
paper we extend this work to represent isochrones as areas and to determine all
objects that lie within this area.

Determining Objects within Isochrones in Spatial Network Databases 395

Among the various queries in spatial network databases, range queries are
closest to isochrones. A range query determines all objects (of a specific type)
that are within a specific distance from a query point. The main difference is
that an isochrone represents an area (containing all space points) from where
a query point is reachable in a given timespan, while a range query returns all
objects within a given distance. An isochrone can be intersected with any type
of objects without recomputing it from scratch, and it can also be graphically
visualized for a human user.

Range queries for spatial network databases are first introduced in [12], where
the Range Euclidean Restriction (RER) algorithm and the Range Network Ex-
pansion (RNE) algorithm are presented. Deng et al. [2] improve over the work
in [12] by performing less network distance calculations and therefore accessing
less network data. Mouratidis et al. [11] present a solution for continuous near-
est neighbor monitoring in road networks, where the query points and the data
objects move frequently and arbitrarily in the network. All these frameworks for
range queries and nearest neighbor queries assume that the objects lie exactly on
the network links. Isochrones, in particular the isochrone areas as constructed in
this paper can also catch objects that are in a (user-specified) immediate vicinity
of the links.

The work which is closest to our work is the continuous intersection join
presented in [13]. It proposes a solution to determine all objects that can be
reached from a moving query point within a specified time. The main idea is to
use a distance range query from the query point in order to determine the objects
that can be reached from there. However, the range query uses the Euclidean
distance resulting in a circular area around the query point, which is intersected
with the objects. Isochrones use the network distance, and the main challenge is
to construct a minimal area around the isochrone network which represents all
space points within the isochrone.

The computation of an isochrone area from an isochrone network is similar to
the computation of a convex or concave hull for a finite set of 2D points. Two
main algorithms are known for the concave hull: Jarvis March [9] and Graham
scan [8]. The main idea of the Jarvis March approach [9] is to include a point in
the convex hull that has the smallest polar angle with respect to a previous point.
As the initial point, the left-most point among all points is taken. The algorithm
runs in O(nh) time, where n is the number of points in the data set and h is a
number of points on the convex hull. The Graham scan approach [8] works in
three steps. First, the point with the smallest y-coordinate is chosen. Second, the
remaining points are increasingly sorted according to the x-coordinate. Finally,
for each next point in a convex hull, the turn between the point and the previous
two points is computed. If it is a right turn, the link from the second to the last
point is removed. If a left turn occurs, the last point is included into the convex
hull, and the next point is taken from the sorted array. The algorithm runs in
O(n log n) time for a finite set of n points.

In general, the shape of an isochrone area is closer to a concave hull than
to the convex hull. Different from the convex hull, there is no unique concave

396 S. Marciuska and J. Gamper

hull. An algorithm for the computation of concave hulls for a set of 2D points is
presented in [10]. The algorithm is based on the k-nearest neighbors. Depending
on the choice of k, different concave hulls are generated. With a higher number
of k, the shape becomes smoother. With k = n, the concave hull coincides with
the convex hull. It is difficult to determine the right value of k to get a good
shape for the isochrone area.

A similar problem of finding footprints for a set of 2D points is discussed in [6]
and [3,4,5]. These approaches are based on so-called alpha shapes. The main idea
of the alpha shape algorithm is to draw circles with a radius of 1/alpha such
that they touch at least two points and none of the other points is inside those
circles. All points that touch a circle are selected and connected. If the radius is
big enough, the result is the convex hull. If the radius is too small, the result is
the set of all points without any connections.

Since isochrone networks are represented as 2D links, the above approaches
for the computation of convex/concave hulls and alpha shapes cannot be directly
applied to compute isochrone areas. If we first transform the links into points,
we loose important spatial information, which might lead to significant errors in
the shape of the isochrone area.

3 Link-Based Approach

In this section we describe the link-based approach, which draws a buffer around
each individual link of the isochrone network and returns the union of these
buffers as the isochrone area.

An isochrone network is represented as a graph G = (V, E, γ), where V is
a set of vertices (or nodes), E ⊆ V × V is a set of links (or edges), and γ is
a function that assigns a geometry to each edge. The geometry is a polyline,
γ((u, v)) = {p1, . . . , pn}, where p1, . . . , pn are space points that are connected by
lines.

To create the buffers we use Oracle’s built-in function SDO BUFFER(A,d),
which creates a buffer of size d around the spatial object A. Unfortunately, by
applying this function for a link, the border of the buffer is not going through the
endpoints of the link, as illustrated in Figure 3(a). The isochrone consists of the
nodes V = {q, a, b} and the links E = {(q, a), (q, b)}, where a and b represent the
outermost points from where the query point q is reachable in the given timespan
tmax. Drawing a buffer of distance d around each of the two links introduces an
error near the nodes a and b.

To remedy from this problem, we reduce the maximal timespan, tmax, of the
isochrone by an amount that corresponds to the buffer size d. That is, we deter-
mine t′max = tmax− d

s as the new timespan for the computation of the isochrone
network; s is the walking speed used for the computation of the isochrone. Using
t′max results in a smaller isochrone network. By constructing a buffer for each
link in the reduced isochrone network, the buffers cross exactly the outermost
points a and b of the original network (see Fig. 3(b)).

Determining Objects within Isochrones in Spatial Network Databases 397

(a) (b)

Fig. 3. Decreasing the Timespan for the Computation of the Isochrone Network

Algorithm: lISO(I, d)

Input: Isochrone I = (V, E, γ); distance d;

Output: Isochrone area B;

B ← ∅ ;

foreach link l ∈ E do
B ← B ∪ {SDO BUFFER(l, d)};

end
return B;

Fig. 4. Link-based Approach for the Computation of an Isochrone Area

(a) Buffer Size = 30 m (b) Buffer Size = 50 m

Fig. 5. Isochrone Area with the Link-Based Approach

Figure 4 shows the algorithm lISO for the computation of an isochrone area
using the link-based approach. The algorithm has two input parameters: an
isochrone network I; a buffer size d. The algorithm iterates over all links in the
isochrone network I and constructs a buffer of size d around each link. These
buffers are collected in B and are returned as area representation of the isochrone
I, covering all space point on the network and in the immediate vicinity from
where q is reachable in the given timespan.

Figure 5(a) shows the isochrone area computed with the link-based approach,
using a buffer size of 30 meters. Depending on the size of the buffer, the isochrone
contains more or less holes. The isochrone in Fig. 5(b) uses a buffer size of 50
meters, resulting in less holes.

398 S. Marciuska and J. Gamper

4 Surface-Based Approach

The surface-based approach computes first the minimum bounding polygon of
the isochrone network, termed its surface, and draws then a buffer around the
surface. The surface of an isochrone I = (V, E, γ) is defined as the minimal set
of links S ⊆ E that form a polygon and cover all other links in E. Figure 6(a)
shows the surface of the isochrone in our running example, which covers all street
links of the isochrone network.

Next, we construct a buffer of a user-specified size d around the surface poly-
gon in order to include also space points in the outer vicinity of the surface
polygon. Figure 6(b) shows the isochrone area that is constructed with the
surface-based approach. Obviously, the isochrone area does not contain any holes
(different from the link-based approach).

(a) Surface of the Isochrone (b) Isochrone Area

Fig. 6. Isochrone Area with Surface-Based Approach

The algorithm to compute the surface of an isochrone is a generalization of
Jarvis’ algorithm [9] for the computation of the convex hull. The main idea is to
find first the link with the left-most endpoint (i.e., smallest x-coordinate) and
the smallest counter-clockwise angle with the y-axis. (Any other link which lies
on the surface polygon could be used as the initial link as well). Starting from
the initial link, the algorithm iteratively adds an adjacent link to the surface,
which has the smallest counter-clockwise angle with the link that has been added
previously. The algorithm terminates when it returns to the initial link.

Figure 7 shows the algorithm, which has two input parameters: an isochrone
network I and the size d of the buffer. The algorithm returns the area represen-
tation of the isochrone I, using the surface-based approach.

The algorithm determines first the left-most node, u0, of the isochrone net-
work. Then, the link through u0 which has the smallest counter-clockwise angle
with the y-axis is determined. Figure 8(a) illustrates this step. The left-most
node is n1, which has two links (n1, n3) and (n1, n2). The link (n1, n3) has the
smaller angle, α1, and is chosen as the initial link and added to the surface
S. Next, the algorithm enters a loop, in which the surface is incrementally ex-
tended with a new link on each iteration until the initial link is encountered

Determining Objects within Isochrones in Spatial Network Databases 399

Algorithm: sISO(I, d)

Input: Isochrone I = (V, E, γ); distance d;

Output: Isochrone area B

u0 ← argmin
v∈V

{v.x};
α ← 360◦;
foreach link (u, v) ∈ E such that u = u0 do

α′ ← angle(u−(0, 1), u, v);

if α′ < α then
α ← α′;
(u0, v0) ← (u, v);

end

end
S ← {(u0, v0)};
(up, vp) ← (u0, v0);

repeat
α ← 360◦;
foreach link (u, v) ∈ E such that u = vp do

α′ ← angle(up, u, v);

if α′ < α then
α ← α′;
(u′, v′) ← (u, v);

end

end
S ← S ∪ {(u′, v′)};
(up, vp) ← (u′, v′);

until (u′, v′) �= (u0, v0) ;

B ← SDO BUFFER(S,d);

return B

Fig. 7. Algorithm sISO

again. (up, vp) represents the link that has been added in the previous iteration
(or the initial link on the first iteration). On each iteration all links that are
connected to (up, vp), i.e., have vp as source node, are considered. The link with
the smallest counter-clockwise angle with (up, vp) is on the surface and is added
to S. This step is illustrated in Fig. 8(b). The links (n3, n4) and (n3, n5) are
considered as possible extensions of the initial link (n1, n3). Since α3 is smaller
than α4, the link (n3, n4) is added to the surface S. The loop terminates when
the initial link (u0, v0) is encountered again. Figure 8(c) shows the completed
surface. As a last step, the algorithm creates a buffer of size d around the surface
of the isochrone, which is returned as a result.

Finding the left-most link at the beginning and the next link in each iteration
takes O(n) time, where n is the number of nodes in the isochrone. In the worst
case, the extension step iterates over all nodes (if all nodes are on the surface),
yielding an overall complexity of O(n2).

400 S. Marciuska and J. Gamper

(a) (b) (c)

Fig. 8. Step-Wise Computation of the Surface of an Isochrone

When multiple modes of transportation are considered, isochrones get typi-
cally disconnected. For instance, Fig. 9(a) shows an isochrone when walking in
combination with buses are considered. There is a large island (area) around the
query point and small islands around the reachable bus stops. While lISO cor-
rectly handles disconnected isochrones, the surface-based algorithm sISO works
only for isochrones that form a connected graph. To adapt the algorithm for
disconnected isochrones (as produced when multiple transportation modes are
considered), a pre-processing step is required to determine the connected com-
ponents (i.e., maximal connected subgraphs) of the isochrone, which can be
done in linear time. Then for each connected component the algorithm sISO is
called.

(a) (b)

Fig. 9. Isochrone for Multiple Modes of Transportation

5 Experimental Evaluation

In this section we present the results of an experimental evaluation of the two
algorithms using real-world data.

Determining Objects within Isochrones in Spatial Network Databases 401

5.1 Setup and Data

The two algorithms for the computation of an isochrone area and the intersection
of the isochrone area with objects (e.g., houses) were implemented in Java on
top of the Oracle Spatial DBMS. The algorithms use built-in functionalities of
Oracle Spatial to construct buffers and to compute the intersection between
areas and objects. To compute the initial isochrone network, which is passed as
input to sISO and lISO, we use the algorithm in [7]. The spatial data, including
the isochrones and the objects, are stored in the database. All experiments were
run on a computer with a 2GHz CPU and 1.5 GB RAM.

For the experiments we used the street network of the city of Bolzano-Bozen,
which consists of approximately 3500 links (streets segments). As objects within
an isochrone we used the houses in Bolzano-Bozen (approximately 12300 houses),
which are stored in a separate table.

To measure the quality of lISO and sISO we implemented a baseline ap-
proach as a reference solution, which essentially works as follows. Each house
h is projected perpendicularly to the closest edge (u, v) in the pedestrian net-
work. More specifically, it is projected to a segment (pi, pi+1) of the polyline
γ((u, v)) = {p1, . . . , pn} that represents the edge’s geometry. Assume that a
house is mapped to point p on edge (u, v). Then a house is considered to be
within an isochrone if its Euclidean distance to p plus the network distance from
p to query point q is smaller than the maximal timespan of the isochrone. While
the basline approach is slow, since it needs to determine for each house the dis-
tance to each individual segment of all edges, we use it as a reference solution
to measure precision, recall, and f-measure of the surface-based and link-based
solutions.

5.2 Precision, Recall, and F-Measure

Varying the Location of the Query Point. In the first experiment we use a
fixed timespan of 15 min, a walking speed of 1.6 m/s, and a buffer size of 30 m,
and we vary the location of the query point between locations in the center and
the border of the city as well as between dense, average, and sparse areas. To
measure the quality of the two approaches the f-measure is used. The result
of this experiment is presented in Fig. 10 and shows that the location of the
query point (and hence different densities of houses) has almost no impact on
the quality. Therefore, in the remaining experiments we use a fixed query point
in the city center.

Varying Buffer Size and Maximum Timespan. In the second experiment
we use a fixed query point in the city center and a walking speed of 1.6 m/s, and
we vary the buffer size between 10 and 120 m and the maximal timespan for the
isochrone between 10 and 50 min.

Figure 11 presents the precision of sISO and lISO. For both solutions the
precision depends on the size of the isochrone. The bigger the maximal timespan,
the higher is the precision. Vice versa, if the size of the buffer is too large,

402 S. Marciuska and J. Gamper

Fig. 10. F-measure for Different Query Points

(a) sISO (b) lISO

Fig. 11. Precision

the precision is decreasing, since many false positives are included. There is no
substantial difference in precision between sISO and lISO. The best precision
is obtained when the buffer size is between 10 and 30 m.

Figure 12 shows the recall, which for both solutions increases with the size of
the isochrone and with the size of the buffer, though the size of the buffer has
less impact in lISO. While the precision is almost identical for both solutions,
the surface-based approach has a significantly higher recall for small buffers up
to a size of 30 m. When the buffer size is small, the link-based approach misses
many objects that are located in the holes.

Figure 13 shows the f-measure. For a small buffer size up to approximately
60 m the surface-based approach is superior. For large buffers the difference be-
tween the two solutions disappears, since the isochrone area produced by the
link-based approach becomes more and more similar to the isochrone area pro-
duced by the surface-approach. The highest f-measure for both solutions is ob-
tained with a buffer size of approximately 60 m.

5.3 Runtime

In the last experiment we analyze the efficiency of the proposed solutions, by
varying the size of isochrone, since the number of links in an isochrone is the
most influencing factor for the running time. All other parameters are fixed:
buffer size 60 m, walking speed 1.6 m/s, and query point in the city center.

Determining Objects within Isochrones in Spatial Network Databases 403

(a) sISO (b) lISO

Fig. 12. Recall

(a) sISO (b) lISO

Fig. 13. F-measure

(a) sISO (b) lISO

Fig. 14. Runtime

Figure 14 shows the results of the runtime experiment, distinguishing between
the time for computing the isochrone area, intersecting the area with the objects,
and the total runtime. The creation of the link-based area is more efficient.
However, the intersection of the isochrone area with the objects is faster in
the surface-based approach, since only one large area needs to be intersected.
Overall, both solutions scale almost linearly with the size of the isochrone, and
the surface-based approach is faster than the link-based approach in terms of
total runtime.

404 S. Marciuska and J. Gamper

6 Conclusion and Future Work

In this paper we present two different solutions, termed link-based approach and
surface-based approach, to determine all objects that lie within an isochrone.
Both solutions first transform an isochrone network into an isochrone area and
then perform an intersection with the relation that stores the objects. The link-
based approach constructs a buffer around each individual link of the isochrone
network. The surface-based approach computes first a polygon that covers the
isochrone network and then creates a buffer around this polygon. We run ex-
periments with real-world data to measure the quality and efficiency of the two
solutions. Both approaches achieve a high quality (compared to a precise yet slow
reference solution). The surface-based approach is superior for small buffers, and
it is more efficient than the link-based approach.

Future work is possible in various directions. More specifically, we will con-
duct more extensive experiments both to study the quality of the two solu-
tions for different types of objects and to analyze the scalability for very large
isochrones.

References

1. Bauer, V., Gamper, J., Loperfido, R., Profanter, S., Putzer, S., Timko, I.: Comput-

ing isochrones in multi-modal, schedule-based transport networks (demo paper).

In: ACMGIS 2008, Irvine, CA, USA, November 5-7, pp. 1–2 (2008)

2. Deng, K., Zhou, X., Shen, H.T., Sadiq, S.W., Li, X.: Instance optimal query pro-

cessing in spatial networks. VLDB J. 18(3), 675–693 (2009)

3. Edelsbrunner, H.: Weighted alpha shapes. Technical Report:UIUCDCS-R-92-1760

(1992)

4. Edelsbrunner, H., Kirkpatrick, D.G., Seidel, R.: On the shape of a set of points in

the plane. IEEE Transactions on Information Theory 29(4), 551–558 (1983)

5. Edelsbrunner, H., Mücke, E.P.: Three-dimensional alpha shapes. In: VVS, pp. 75–

82 (1992)

6. Galton, A., Duckham, M.: What is the region occupied by a set of points? In:

Raubal, M., Miller, H.J., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2006.

LNCS, vol. 4197, pp. 81–98. Springer, Heidelberg (2006)

7. Gamper, J., Böhlen, M., Cometti, W., Innerebner, M.: Scalable computation

of isochrones in bimodal spatial networks. Technical report, Free University of

Bolzano-Bozen (2010)

8. Graham, R.L.: An efficient algorithm for determining the convex hull of a finite

planar set. Inf. Process. Lett. 1(4), 132–133 (1972)

9. Jarvis, R.A.: On the identification of the convex hull of a finite set of points in the

plane. Inf. Process. Lett. 2(1), 18–21 (1973)

10. Moreira, A.J.C., Santos, M.Y.: Concave hull: A k-nearest neighbours approach for

the computation of the region occupied by a set of points. In: GRAPP (GM/R),

pp. 61–68 (2007)

Determining Objects within Isochrones in Spatial Network Databases 405

11. Mouratidis, K., Yiu, M.L., Papadias, D., Mamoulis, N.: Continuous nearest neigh-

bor monitoring in road networks. In: VLDB, pp. 43–54 (2006)

12. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network

databases. In: VLDB, pp. 802–813 (2003)

13. Zhang, R., Lin, D., Ramamohanarao, K., Bertino, E.: Continuous intersection joins

over moving objects. In: ICDE, pp. 863–872 (2008)

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 406–420, 2010.
© Springer-Verlag Berlin Heidelberg 2010

CM-Quality: A Pattern-Based Method and Tool for
Conceptual Modeling Evaluation and Improvement

Kashif Mehmood1,2, Samira Si-Said Cherfi1, and Isabelle Comyn-Wattiau1,2

1 CEDRIC-CNAM, 292 Rue Saint Martin, F-75141 Paris Cedex 03, France
2 ESSEC Business School, Avenue Bernard Hirsch B.P. 50105,

95021 Cergy-Pontoise Cedex, France
Kashif.Mehmood@essec.fr,

{samira.cherfi,isabelle.wattiau}@cnam.fr

Abstract. Conceptual models serve as the blueprints of information systems
and their quality plays a decisive role in the success of the end system. It has
been witnessed that majority of the IS change-requests result due to deficient
functionalities in the information systems. Therefore, a good analysis and de-
sign method should ensure that conceptual models are correct and complete, as
they are the communicating mediator between the users and the development
team. Our approach evaluates the conceptual models on multiple levels of
granularity in addition to providing the corrective actions or transformations for
improvement. We propose quality patterns to help the non-expert users in
evaluating their models with respect to their quality goal. This paper also
demonstrates a software utility (CM-Quality) that implements the proposed
evaluation approach.

Keywords: Conceptual Model Quality, Quality Patterns, Quality Attributes,
Quality Metrics, Quality Evaluation, Quality Improvement.

1 Introduction

Information Systems (IS) require high cost for maintenance activities and therefore
software quality is considered as an important issue in IS firms. It has now been
widely agreed that the quality of the end-system depends on the quality of the Con-
ceptual Models (CM). These CMs are designed as part of the analysis phase and are
the basis for further design and implementation. Thus, if there are errors and deficien-
cies in the CMs then they are propagated along the development process. These errors
are more expensive to fix once the system is developed and deployed. For these rea-
sons, different methodologies propose different methods and guidelines to ensure a
certain degree of quality to the produced deliverables. These methodologies can in-
clude the identification of different design patterns, such as the GRASP (General
Responsibility Assignment Software Patterns) design patterns, as they propose solu-
tions to common problems in a given context. However, these design patterns does
not explicitly target the quality but propose an expert solution to a common problem.
There does not exist any design pattern that integrates the evaluation or improvement
of quality of the end system.

 CM-Quality: A Pattern-Based Method and Tool for Conceptual Modeling Evaluation 407

In order to incorporate the notion of quality evaluation or improvement within the
design patterns, a new concept (named as quality pattern) has recently emerged. It
uses the epistemology of design patterns and includes criteria to guide the evaluation
of conceptual models and suggestions to improve them. To date, we have identified
sixteen quality patterns.

This article aims to propose a quality evaluation and improvement process for con-
ceptual models based on quality patterns. This paper includes both:

- The definition of “quality pattern” concept similarly to design pattern.
- CM-Quality: A software utility implementing the proposed approach.

One main advantage of our adaptive quality approach is that it can answer different
goal specific quality needs. It is enriched with corrective actions provided to the de-
signer, leading to a guided modeling process. The rest of the paper is organized as
follows. Section 2 is a brief state-of-the-art. Section 3 describes our quality model. A
software prototype “CM-Quality” implementing the proposed approach is described
in Section 4. Section 5 concludes and lists the future research directions.

2 Literature Review

Conceptual Models (CM) are the abstraction of the universe of discourse under con-
sideration [1]. They are designed as part of the analysis phase and serve as a commu-
nicating mediator between the users and the development team. They provide abstract
descriptions and hide the implementation details. Although a CM may be consistent
with the universe of discourse, it might not necessarily be correct. This suggests that
there is a strong urge for a quality-oriented approach that can help in ensuring the
consistency, completeness and correctness of the conceptual models.

Research in software quality is rather mature and has produced several standards
such as ISO 9126 and ISO 25030:2007[2, 3] whereas, in the domain of CM, research
on quality evaluation is rather young. The first structured approach dates back to the
contribution of [4]. They were the pioneers in proposing quality criteria relevant to
CM evaluation. In [5], the quality of models is evaluated along the three dimensions:
syntax, semantics and pragmatics. In [6, 7], we proposed a more comprehensive
model for CM quality evaluation and improvement. However, the selection of the
proposed quality criteria (attributes, metrics etc.) can be tricky for a novice user.
There is a lack of methodologies putting together the evaluation of quality and its
improvement through a real guidance process. [8] argues for employing quality pat-
terns to guide the evaluation process. The idea of patterns was originally proposed by
[9] as an architectural concept and was later applied to the computer science pro-
gramming domain by [10]. However, the concept of patterns proved significantly
influential after the advent of Design patterns as they contributed towards the im-
provement in the software reusability and maintainability as demonstrated by [11].
The concept of quality patterns was first proposed by [12] and it targets the software
engineers. Our objective is to propose an analogous approach dedicated to conceptual
modeling.

The concept of quality pattern was proposed in [8]. This paper presents a more
comprehensive quality approach. It proposes a quality pattern driven evaluation and

408 K. Mehmood, S.S.-S. Cherfi, and I. Comyn-Wattiau

improvement process for conceptual models. Moreover, an evolutionary software
prototype (CM-Quality) implementing the overall quality approach is also presented.

3 Proposed Approach and its Expected Contributions

The scope of this paper includes the creation of certain artifacts (quality approach,
software utility etc.). Therefore we employed design science as the principal research
methodology. Much of the Information systems (IS) research can be classified into
either behavioral science or design science research. The behavioral science research
seeks to develop and verify theories that explain or predict human or organizational
behavior whereas design science seeks to extend the human and organizational
capabilities by creating new and innovative artifacts [16]. Similarly designing, im-
provements and maintenance tasks are largely considered as design science activities.
Authors in [16] have defined IT artifacts to be:

i. Constructs (Vocabulary and Symbols),
ii. Models (Abstractions and Representations),

iii. Methods (Algorithms and Practices), and
iv. Instantiations (Implemented and Prototype systems).

The authors in [17] have argued that research aimed at developing IT systems or im-
proving IT practice has been more successful and important than traditional scientific
attempts to understand it. Moreover, design science attempts to create technology-
oriented artifacts that serve human purposes and its products are assessed against
criteria of value or utility such as “Does it work?” or “Is it an improvement?” etc.

The lack of largely used and validated quality frameworks was noticed in [13].
Thus we considered synthesizing (existing concepts proposed by researchers) and
adding the new concepts to formulate a comprehensive quality approach for concep-
tual modeling. This approach encompasses both quality evaluation and improvement
in a guided way. The main contributions include: (i), the identification of a set of
quality attributes, relevant to both researchers and practitioners, (ii) the definition of
“quality pattern” concept similar to design pattern. Sixteen quality patterns, based on
validated quality attributes, are already identified; (iii) CM-Quality: A research proto-
type implementing the proposed approach.

3.1 Identification and Validation of Quality Attributes

Quality attributes can be defined as the group of properties observable over the prod-
uct lifecycle [18] or the group of properties of the service delivered by the system to
its users. Within system engineering domain, quality attributes can also be regarded as
the non-functional requirements for evaluating the performance of the system. These
attributes are also referred to as “ility” due to the common suffix of many of the qual-
ity attributes such as “compatibility, extensibility, modifiability, etc.” [19] defines
"ility" as a characteristic or quality of a system that applies across a set of functional
or system requirements.

There exist numerous definitions of quality attributes specific to different domains
and applications. Within the domain of conceptual modeling quality, researchers have

 CM-Quality: A Pattern-Based Method and Tool for Conceptual Modeling Evaluation 409

classified their evaluation criteria into dimensions, attributes, characteristics, factors,
metrics, etc. There is a clear distinction between metrics and other classification cate-
gories due to the widely accepted format of metrics. However, there exists a huge
confusion among the definitions of dimensions, attributes, characteristics, factors, etc.
Some researchers have defined a concept as a dimension whereas others have used
the same definition and called this concept an attribute. For example [20], [21], [22]
considered the quality criteria such as correctness, completeness, simplicity and un-
derstandability as dimensions whereas the authors in [1] have considered the same
criteria as quality attribute.

Similarly, ISO-9126 standard classified quality criteria into characteristics (such as
maintainability) and sub-characteristics (such as changeability, testability, customiza-
bility). However, these quality characteristics are variously called quality dimensions,
factors, principles, criteria, categories, goals etc. Curiously, none of the proposals
refer to the ISO terminology [13].

Another main problem in the area of CM quality is the presence of independent
quality models not drawing conclusion from similar work. This has resulted in the
existence of multiple definitions for the same concept and different names for seman-
tically same concepts. The authors in [23] have identified different definitions of the
same quality concepts e.g. they have identified nine different definitions for the qual-
ity attribute “completeness”. Similarly, there exist numerous definitions for the same
quality concept and identical names for some semantically different metrics [24].

In order to resolve the above mentioned issues, we performed the following:

- Different aspects of conceptual modeling quality are identified and classified
into multiple attributes thorough a comprehensive literature review. Each
selected attribute is generic and valid for all types of conceptual models.

- The concept of quality attributes in our approach unifies the existing concepts
such as dimensions, attributes, characteristics or sub-characteristics, criteria,
factors etc.

- Multiple definitions of similar concepts (such as completeness, as mentioned
above) are catered by formulating different metrics.

- A selected set of quality attributes was validated using a web-based survey. Re-
spondents were asked to provide feedback over the efficacy of the selected
attributes. The description about the quality attributes and the survey results can
be consulted from [6, 7].

3.2 Quality Pattern and Quality Oriented Development Process

Quality evaluation is a difficult activity requiring a high level of expertise. Moreover,
the proliferation of quality concepts in literature and the absence of agreement about
their definition and usage increase this difficulty. After the first step that led to quality
attributes selection and validation, we propose to capitalize knowledge and existing
“good practices” in the field of quality evaluation and improvement. Indeed, there is a
lack of methodologies putting together the evaluation of conceptual models and their
improvement through a guidance process. Most of the existing approaches or propos-
als fail to provide post evaluation improvement guides [13]. This capitalization relies
on the concept of Quality Pattern. A quality pattern as presented in [8] is a ground-
breaking concept for quality driven modeling process. Similarly, to design patterns, a

410 K. Mehmood, S.S.-S. Cherfi, and I. Comyn-Wattiau

quality pattern is a reusable solution to a commonly occurring problem in quality
evaluation and improvement. It aims to capitalize the expertise required to guide ana-
lysts and designers in solving quality problems. Our quality pattern driven approach
provides a four-step quality problem approach:

1- Helps in quality goals elicitation,
2- Matches the goal with suitable quality attributes and metrics,
3- Helps in the evaluation of the quality attributes, and
4- Provides recommendations on how to improve quality.

The following sections define with more detail the concept of quality pattern and the
quality pattern driven modeling process.

3.2.1 The Proposed Quality Meta-model
Our quality meta-model follows a Goal Question Metric (GQM) [14] approach. It is
based on the notion of quality patterns and manages the model quality with respect to
user’s needs. The meta-model in Figure-1 is generic and simple. A “quality goal”
expresses a need to improve the quality of a CM. A quality goal could be related to
several quality attributes.

For example, the quality goal “make my CM more extendible” is related to “modu-
larity” and “complexity” quality attributes. Quality attributes are contained in quality
patterns that guide their measurement and improvement. Quality attributes are quanti-
fiable through quality metrics. Based on the results of the quality metrics, correspond-
ing predefined transformations and/or appropriate design patterns are proposed for
improvement.

QualityGoals

ModelElement
DesignPatterns

0..n
+Related Patterns

0..n

QualityMetrics

QualityAttributes

TransformationsRules

QualityPattern

0..n

0..n

0..n

0..n

0..n
1..n

0..n
1..n

Related patterns

Measures

Calculated on
Is applied on

Realized by

Uses

Suggests

Suggests

Fig. 1. Proposed Quality Meta-Model

One strength of our proposal lies in the relationship between the quality patterns
(as a mean of quality evaluation) and design patterns (as a mean of model transforma-
tion). In addition to the search for suitable design patterns whose application is under
the responsibility of the designer, our approach provides him/her with a set of
transformation rules as a more helpful way for quality improvement.

 CM-Quality: A Pattern-Based Method and Tool for Conceptual Modeling Evaluation 411

3.2.2 An Instantiation of the Quality Pattern Meta-model
Currently we have identified sixteen quality patterns based on the above mentioned
meta-model. Each quality pattern respects the following outline that has become fairly
standard within the software community to structure patterns.

Table-1 sketches an example of a quality pattern dedicated to the evaluation and

improvement of the simplicity of a conceptual model.

Table 1. Quality Pattern for Model Simplicity

Pattern Name Model Simplicity
Context There is a need to maintain model simplicity
Problem Complex models are difficult to understand, implement and maintain. The

complexity could be difficult to manage as it could be related to several
sources (domain, structure, modeling notation etc.).

Solution Design patterns: High cohesion GRASP pattern, indirection GRASP pat-
tern and polymorphism GRASP pattern.
Transformation rules: divide a model, merge classes/entities, use
factorization mechanism etc.

Keywords Complexity, Simplicity, Structural Complexity, Size
Related patterns Model Modifiability; Model Reusability

3.2.3 Quality-Pattern Driven Evaluation Process
Our proposed quality aware methodology aims at helping the achievement of a qual-
ity goal formulated by an IS designer. The process starts with the formulation of a
quality goal (by the IS designer). The approach helps in the achievement of this goal
by identifying and proposing a set of applicable quality patterns. The interpretation
of a quality pattern proposes either a set of transformation rules or a set of suitable
design patterns leading to the improvement of the CM according to the formulated
quality goal.

Our proposed quality aware methodology does not require a long learning process.
As depicted in the meta-model, quality patterns are formulated by using the existing
quality attributes in the knowledgebase. Quality patterns are created to help the user
(beginner or expert) to achieve his/her quality goal efficiently.

The quality-pattern based evaluation process starts with the formulation of a spe-
cific quality goal. For example, a user is interested in evaluating a conceptual model
with respect to the ease with which it could be changed. This goal is a vague state-
ment. Thus the approach proposes to define it more precisely using questions. For
example, for ease of change, we could ask to make clear the kind of change (preven-
tive, perfective or corrective). This refinement of the goal helps in matching it with

Name: a significant name summarizing the pattern objective.
Context: characterization of the situation in which the pattern applies.
Problem: description of the problem to solve or the challenge to be addressed.
Solution: the recommendation to solve the problem.
Keywords: a list of keywords related to the pattern content
Related patterns: patterns that are closely related to the one described.

412 K. Mehmood, S.S.-S. Cherfi, and I. Comyn-Wattiau

predefined quality patterns stored in the knowledgebase. . These quality patterns have
been identified by extracting and integrating quality evaluation practices from the
literature. A first informal validation has been conducted by several experts. We are
currently working on a larger validation experiment with students and practitioners in
order to evaluate the acceptance of these patterns by novice and expert analysts and
designers.

To enhance the flexibility of the process, the approach offers the possibility to se-
lect the quality pattern to be used or even the quality attributes to be evaluated. This,
however, requires both expertise in quality evaluation and a degree of familiarity with
the quality pattern concept. After a quality pattern is matched to the quality goal, the
quality pattern drives the evaluation of quality according to the related quality attrib-
utes and metrics. The analyst and designer are requested during the process to make
one or several choices among those proposed.

Fig. 2. Quality Pattern Driven Evaluation Process

The above mentioned methodology to identify and link quality patterns with user
specific quality goal is summarized in Figure-2.

4 CM-Quality: An Automated Environment Implementing the
Proposed Approach

We have designed and developed a prototype, “CM-Quality”, which implements
our quality approach. This implementation has two core objectives. It first helps in
demonstrating the feasibility of the approach. The second objective is related to the
validation of the approach as we plan to make the prototype available to students,
researchers, and practitioners to collect their feedbacks.

CM-Quality works along with an independent software utility, Qualis, which
we developed in a previous research. The two modules of the CM-Quality use the

 CM-Quality: A Pattern-Based Method and Tool for Conceptual Modeling Evaluation 413

services related to metrics definition and calculation offered by the modules of Qualis
for the evaluation process.

Finally, CM-Quality has an import functionality based on XML allowing the
evaluation of quality of IS specifications generated by existing commercial and open
source CASE tools (Rational Rose, Objecteering, StarUML etc).

4.1 General Architecture

The general architecture includes two main modules to be used by two roles: Quality
expert and IS analyst. The quality expert introduces and maintains the quality con-
cepts defined by the quality driven methodology (patterns, attributes, metrics etc.).
The IS analyst uses these concepts for IS quality evaluation. The two modules refer to
a common knowledgebase (Figure 3).

CM Quality

IS analyst

Existing
Case tool

Quality
Metamodel

Quality Patterns,
Attributes, Metrics,
recommendations

Evaluation sessions

Pattern
definition

Attributes definition

Metrics
definition

Recommendations
definition

Pattern
definition

Attributes definition

Metrics
definition

Recommendations
definition

Goal
definition

Quality parameters
selection

Quality
evaluation

Recommendations
application

Goal
definition

Quality parameters
selection

Quality
evaluation

Recommendations
application

Knowledge BaseIS
Analyst

Interface

Quality
expert

Interface

Fig. 3. General architecture of the solution

4.1.1 The Quality Definition Module
The quality expert is responsible for defining the core of the methodology. For
this usage, CM-Quality proposes four utilities allowing respectively quality pattern
definition; quality attributes definition, metrics definition and improvement recom-
mendation definition.

The Pattern definition tool guides the definition of quality patterns by proposing
predefined quality concepts extracted from the knowledgebase. The quality experts
are provided with editors helping the patterns definition according to the pattern defi-
nition structure defined in Section 3. The quality definition tool provides a rich set of
predefined quality attributes with their definition and reference to the literature. It
also offers the possibility to add new attributes definition in a guided and structured
way. The metric definition tool is a complete and complex set of utilities providing
both a language and a set of editors for metrics definition. It also provides the expert
with a set of predefined quality metrics that could be browsed and modified. Finally,
the recommendation definition tool enables the definition of corrective suggestions
according to a given quality threshold. These recommendations correspond to best
practices extracted from literature and validated by IS quality experts.

414 K. Mehmood, S.S.-S. Cherfi, and I. Comyn-Wattiau

4.1.2 The Quality Evaluation Module
This module provides an IS analyst with a set of utilities for quality evaluation and
improvement. It implements the quality driven process presented in Section 3.

The quality parameters selection tool initializes the quality evaluation session.
This initialization includes information about the modeling notation used (ER, UML
etc.), the specification to be evaluated (class diagram, ER diagram etc.), the specifica-
tion purpose (implementation, usage, specification) etc. The goal definition tool en-
ables quality goal expression. The IS analyst simply describes the desired quality goal
in a natural language style. The quality evaluation tool includes two main functional-
ities, namely goal-pattern matching and quality pattern interpretation. The first one is
based on text matching techniques performed on the goal expression and quality pat-
terns components such as key words, context description etc. The quality pattern
interpretation supports the selection of appropriate quality attributes and quality met-
rics. The evaluation of the quality metrics on the IS specification produces a set of
quality values for the selected quality attributes. Finally, based on the obtained quality
values, the recommendation application tool proposes quality improvement advices.
In the future version, this module will implement the transformation rules associated
to the recommendations.

4.1.3 The Knowledgebase Structure
The knowledgebase has three abstraction levels. The highest level contains the quality
meta-model implementation. The intermediate level is dedicated to quality concepts
defined by the quality expert. It contains the quality attributes, metrics and recom-
mendations created throughout Qualis and CM-Quality. Finally, the lowest level
stores the results of the evaluation sessions.

4.2 Quality Definition in CM-Quality

CM-Quality is a user-friendly tool aiming to support the quality evaluation approach
described in Section 3. As depicted in the meta-model, quality patterns are formulated
by using the existing quality attributes in the knowledgebase. Quality patterns serve as
guidelines helping IS analysts (naïve or expert) to achieve a quality goal.

CM-Quality includes two interfaces; the first one, dedicated to quality experts aims
to maintain and enrich the knowledge base content. The second, dedicated to quality
evaluation and improvement by IS analysts, attempts to match a quality goal with the
quality patterns and/or quality attributes stored in the knowledgebase.

4.2.1 Quality Pattern Definition
Defining a new quality pattern requires answering the following three questions:

i. What is the context of this quality pattern or when can this pattern be used?
ii. What is the problem that this pattern can solve?

iii. How can this pattern solve the problem?

Once the quality expert answered the three questions, he/she can use Quality Pattern
interface to add a new quality pattern to the knowledgebase. Similarly, he/she can use
the same interface to edit or delete the quality patterns from the knowledgebase.
Figure-4 depicts the Quality Pattern interface.

 CM-Quality: A Pattern-Based Method and Tool for Conceptual Modeling Evaluation 415

Fig. 4. CM-Quality : Managing quality patterns

4.2.2 Quality Attributes and Metrics Definition
Analysts can add/edit/delete quality attribute from the knowledgebase using the
Quality Attribute interface. However, adding a new quality attribute requires its asso-
ciation to the appropriate quality metrics for its quantification. Quality metrics are an
important part of the evaluation process. They can be added/edited/deleted from the
knowledgebase.

An important strength of our approach is the fact that we have developed in a pre-
vious work a prototype (Qualis) for metrics definition and evaluation. The metrics are
not hard coded providing more flexibility in their definition. This also allows a simple
enrichment of metrics. Here is an example of metric definition calculating the number
of classes in a class diagram:

<metric name="NB_Classes_Metric" domain="model" >
<description>The number of classes belonging to a
model.</description>
<projection globalrelation="true" target="class"
condition="id!=''" />
</metric>

Finally, the quality expert may define a set transformation rules. Transformation

rules are guidelines on how to transform the initial model in order to improve its qual-
ity. These guidelines are inspired from best practices in conceptual modeling.

4.3 Quality Evaluation in CM-Quality

The scenario presented in this section illustrates how the CM-Quality can be used to
evaluate and improve the models. This is a complete scenario that demonstrates the

416 K. Mehmood, S.S.-S. Cherfi, and I. Comyn-Wattiau

complete flow of the CM-Quality application and how it interfaces with Qualis for
metric calculation and feedback generation.

This scenario doesn’t include the housekeeping of knowledgebase i.e. it doesn’t
discuss about the insertion, modification or deletion of quality patterns, quality attrib-
utes, metrics etc to the knowledgebase. It uses the existing contents of knowledgebase
for evaluation and propositions. However, CM-Quality contains numerous screens for
manipulating the knowledgebase including the interfaces to manage quality patterns
and quality attributes as shown above.

4.3.1 Goal Expression and Resolution
In this example, the IS analyst wants to improve the quality of his/her conceptual
model with respect to complexity. The formulation of quality goals is based on natu-
ral language. The CM-Quality tool integrates a searching engine to map the words of
the expressed goal and terms associated to patterns quality in several fields such as
context, keys words etc. Let’s suppose that the user proposed “how complex is my
model” as a quality goal.

Matching a goal to quality patterns
The search engine associated to CM-Quality uses information contained in patterns
and their associated metric to match a quality goal. This matching process could take
a lot of time. However, in order to accelerate the searching, the user may select the
target fields for searching by restricting the explored fields (one or several among
name, context, problem, keywords, quality metrics etc.)

In addition to the automatic detection of quality patterns, the user can select
patterns by browsing the content of the knowledge base. He/she could also exclude
quality patterns from the resulting ones. This manual selection necessitates expertise
in quality evaluation. Figure-5 depicts the automatic searching of quality patterns
relevant to the user defined goal.

The next step is dedicated to the selection of quality attributes.

Quality Attributes & Metrics Selection
The structure of a quality pattern contains a set of quality attributes. However, the
evaluation of all the quality attributes is not mandatory. The IS analyst can change the
selection and decide the quality attributes to be used from each quality pattern for
his/her goal specific evaluation project. Similarly, the IS analysts can also modify the
selection of metrics for their evaluation project. For example, in Figure-6, “Model
Structural Complexity” is selected as the selected quality pattern and “Structural
Complexity” is selected as the quality attribute. The table displays all the metrics
associated with the selected quality attribute. Among the whole list, only seven met-
rics are selected for evaluation.

Goal Evaluation
The goal evaluation consists in evaluating the selected metrics on the model defined
by the IS analyst. In our example, the model was a UML class diagram. The results
could be visualized for a specific model element or globally for the entire model. Due
to space constraints we may not provide the reader with the result screen.

 CM-Quality: A Pattern-Based Method and Tool for Conceptual Modeling Evaluation 417

Fig. 5. Goal Creation: Automatic searching of quality patterns

Fig. 6. Goal Creation: Validating the metrics selection for evaluation

 Post evaluation feedback on the model
As mentioned above, one main quality of our approach lies in the post evaluation
feedback in the form of transformations rules or corrective actions. Our knowledge-
base contains different propositions or transformations that are available to the user
once the model is evaluated. These propositions depend on the metrics values.
For example, Figure-7 displays the recommendation explaining in a textual form the

418 K. Mehmood, S.S.-S. Cherfi, and I. Comyn-Wattiau

Fig. 7. Post evaluation recommendations

relationship between the complexity of a model and the number of contained struc-
tural elements. In the current version of the tool, the recommendations are not applied
automatically on the model under evaluation.

We have applied the approach on a Human Resource (HR) management case
study. The specification was a UML class diagram with 46 classes, 174 attributes, 120
operations, 50 associations and 14 inheritance links. The specification has been
judged difficult to understand by students. Our quality approach led to decrease com-
plexity by essentially splitting the model into two sub models, namely “Payroll” and
“Personnel data” and factorizing associations and operations. Two quality patterns
(complexity and modularity) were selected. The validation of the approach using the
HR case study is under realization. For lack of space, the example could not be in-
cluded in this paper.

5 Conclusion and Implications for Further Research

This paper proposes a comprehensive quality-pattern driven evaluation and improve-
ment process for conceptual models. The quality approach is based on a generic and
flexible quality meta-model that remains valid for different types of conceptual mod-
els (ER models, UML diagrams etc.). The meta-model is simple and could be easily
instantiated. The instantiation process produces a tree structure that could be used to
incrementally guide an IS designer or a quality engineer in achieving a quality goal.
This user specified quality goal is refined through quality patterns or quality attributes
and is measured by quality metrics. The last level of the quality aware process sug-
gests the possible transformations that propose actions leading to the quality im-
provement according to the desired quality goal. These quality patterns, representing
both researcher’s and practitioner’s quality practices, are capitalized in an evolution-
ary knowledgebase.

Our approach is based on existing conceptual modeling literature as its theoretical
foundation to formulate a multi faceted quality knowledgebase. Different concepts,

 CM-Quality: A Pattern-Based Method and Tool for Conceptual Modeling Evaluation 419

from the previously existing quality frameworks or literature, are extracted and fil-
tered to construct the proposed knowledgebase. More details on the contents of the
knowledgebase can be consulted in [6, 7].

CM-Quality, a software utility was developed to implement the proposed a semi-
automatic quality approach. Users can state their quality goals using CM-Quality and
the utility will guide them in formulating their quality project by proposing the corre-
sponding quality patterns that are in line with the stated quality goal. After the verifica-
tion and selection of the quality criteria, the utility evaluates the model on the selected
criteria and suggests an improvement strategy (in the form of propositions or transfor-
mations) for conceptual models.

Future directions of this work include:

- The extension and enrichment of the current quality model;
- A more comprehensive validation of the approach employing a suitable

research methodology.

References

1. Cherfi, S.S., Akoka, J., Comyn-Wattiau, I.: Measuring UML Conceptual Modeling Qual-
ity-Method and Implementation. In: Pucheral, P. (ed.) Proceedings of the BDA Confer-
ence, Collection INT, France (2002)

2. ISO/IEC 9126, Software Engineering - Product quality - Part 1: Quality model (2001)
3. ISO/IEC 25030:2007, Software Engineering - Software Product Quality Requirements and

Evaluation (SQuaRE) - Quality Requirements, Int’l Organization for Standardization
(2007)

4. Batini, C., Ceri, S., Navathe, C.: Conceptual Database Design: An Entity-Relationship ap-
proach, p. 496. Benjamin/Cummings Publishing Company Inc. (1992)

5. Lindland, O.I., Sindre, G., Sølvberg, A.: Understanding Quality in Conceptual Modeling.
IEEE Software 11(2), 42–49 (1994)

6. Mehmood, K., Cherfi, S.S., Comyn-Wattiau, I.: Data Quality Through Model Quality: A
Quality Model for Measuring and Improving the Understandability of Conceptual Models.
In: DQS 2009, International Workshop on Data Quality and Security in Conjunction with
(CIKM 2009), Hong Kong, November 2-6 (2009)

7. Mehmood, K., Cherfi, S.S., Comyn-Wattiau, I.: Data Quality through Conceptual Model
Quality - Reconciling Researchers and Practitioners through a Customizable Quality
Model. In: ICIQ (Intl. Conference on Information Quality), Germany, November 7-8
(2009)

8. Cherfi, S.S., Akoka, J., Comyn-Wattiau, I.: Quality Patterns for Conceptual Modeling. In:
Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 142–153.
Springer, Heidelberg (2008)

9. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel, S.: A
Pattern Language: Towns, Buildings, Construction. Oxford University Press, USA (1977)

10. Beck, K., Cunningham, W.: Using Pattern Language for Object-Oriented Programs. In:
OOPSLA 1987 Workshop on the Specification and Design for Object-Oriented Program-
ming (1987)

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1995)

420 K. Mehmood, S.S.-S. Cherfi, and I. Comyn-Wattiau

12. Houdek, F., Kempter, H.: Quality Patterns – An approach to packaging software engineer-
ing experience. ACM SIGSOFT Software Engineering Notes 22(3) (1997)

13. Moody, D.L.: Theoretical and Practical Issues in Evaluating the Quality of Conceptual
Models. Data & Knowledge Engineering 55, 243–276 (2005)

14. Basili, V.R., Gianluigi, C., Rombach, H.D.: The Goal Question Metric Approach. In: En-
cyclopedia of Software Engineering. Wiley, Chichester (1994)

15. Larman, C.: Applying UML and Patterns: an Introduction to Object-Oriented Analysis and
Design and the Unified Process, 2nd edn. Prentice Hall, Englewood Cliffs (2001)

16. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information Systems Re-
search. MIS Quarterly 28(1), 75–105 (2004)

17. March, S.T., Smith, G.F.: Design and Natural Science Research on Information Technol-
ogy. Decision Support Systems 15, 251–266 (1995)

18. Preiss, O., Wegmann, A., Wong, J.: On Quality Attribute Based Software Engineering. In:
Proceedings of the 27th EUROMICRO Conference (2001)

19. Manola, F.: Providing Systemic Properties (Ilities) and Quality of Service in Component-
Based Systems. Object Services and Consulting, Inc., Technical Report (1999)

20. Moody, D.L., Shanks, G.G.: Improving the quality of data models: empirical validation of
a quality management Framework. Information Systems 28(6), 619–650 (2003)

21. Moody, D.L., Shanks, G.G., Darke, P.: Strategies for improving the quality of entity rela-
tionship models. In: Information Resource Management Association (IRMA) Conference,
Idea Group Publishing, USA (2000)

22. Moody, D.L., Shanks, G.G.: What makes a good data model? A framework for evaluating
and improving the quality of entity relationship models. Australian Computer Journal
(1998)

23. Nelson, R.R., Todd, P.A.: Antecedents of Information and System Quality: An Empirical
Examination within the Context of Data Warehousing. Journal of Management Informa-
tion Systems 21(4), 199–235 (2005)

24. Purao, S., Vaishnavi, V.: Product Metrics for Object-Oriented Systems. ACM Computing
Surveys 35(2), 191–221 (2003)

A Performance Analysis of Semantic Caching for

Distributed Semi-structured Query Processing�

Boris Novikov, Alice Pigul, and Anna Yarygina

Saint-Petersburg University

borisnov@acm.org, alica pigul@bk.ru, anya safonova@mail.ru

Abstract. Caching is important for any system attempting to achieve

high performance. The semantic caching is an approach trying to benefit

from certain semantical knowledge of the data to be processed.

The expectation is that semantical information might help to reduce

the number of cache misses and in certain cases even avoid queries to

the primary data. However, the major obstacle for wide application of

semantic caching is the query containment problem which is computa-

tionally hard.

In this paper we introduce an approximate conservative algorithm for

semantic caching of semistructured queries and analyze its applicability

for distributed query processing. Based on this analysis, we outline few

scenarios where semantic caching can be benefitial for query processing

in a distributed system of heterogeneous semi-structured information

resources.

1 Introduction

The need to uniformly access heterogeneous information resources triggered a
huge amount of research in the area of information integration performed in
last decades. Several industrial strength integration software tools are currently
available. However, the query evaluation performance is still far from practi-
cally acceptable for any complex queries and is often unpredictable. Common
techniques for performance improvement, such as indexing, query optimization,
and caching, should be revised and re-evaluated in the distributed heterogeneous
environment.

The focus of this research is on advanced caching techniques for distributed
heterogeneous systems, call semantic caching. In contrast with usual caching
techniques, in addition to the usage patterns, semantic caching takes into ac-
count relationships and inter dependencies between data items to improve cache
effectiveness and enable local query processing of cached data instead of dis-
tributed query processing.

� This research is supported by HP Labs Innovation Award program (project: HPL-

800481-20080624052858282) and Russian Foundation for Basic Research, grant

10-07-00156.

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 421–434, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

422 B. Novikov, A. Pigul, and A. Yarygina

The goal of this research is to evaluate the potential impact of different
approaches to semantic caching and obtain quantitative estimations of their
suitability.

The idea of caching is to reduce the number of repeated accesses to the data
items located in relatively slow large storage. Instead, copies of data items are
temporarily copied into fast (and relatively small) memory.

In almost all implementations cache is completely transparent for the appli-
cation or system that uses the cached data. That is, the presence of cache affects
performance, but not the functionality of the application, and, moreover, the
application cannot explicitly control the behavior of the cache.

In this research, the data items copied from the primary memory into cache
are called cache units.

In a common caching the cache units are pages, blocks, or other low-level
data structures defined for the physical storage. However, this is not applicable
for distributed environment because low level units are not related to the units
transferred over a network, and high level objects, such as web pages, are cached
instead. A potential disadvantage is that the cache unit is considered atomic and
can be used only for exactly the same request.

The caching is called semantic caching if the cache units are meaningful items
or sets in the high-level application data model. Thus, parts of cache unit may
be used to process queries other than original one, or data from several cache
units may be used together to evaluate new query.

The expectation is that the above mentioned should improve reuse of the
cached data. On the other hand, the extraction of cached data becomes more
complex and may result in certain performance penalties. Hence, our goal is to
find conditions under which the semantic caching is benefitial.

A significant amount of work have been done during the last two decades.
It turns out that the major restricting factor for effective use of semantic

caching is the query containment problem which is proven to be decidable only
for limited class of queries and has polynomial complexity for much smaller class
of queries.

To make the semantic caching efficient, one has to restrict the class of cached
queries and use approximate algorithms for query containment problem. If an
approximate algorithm can produce false positive answers, the use of cache may
result in data loss in the query responses.

An algorithm for query containment problem is called conservative if it never
returns false positives.

We consider only conservative algorithms in this research.
The rest of the paper is organized as follows.
We provide an overview of this work in the next section. We then outline the

detailed goals of our study and describe experimental environment, followed by
analysis of experimental results. Based on this analysis, we outline few use cases
where semantic caching is beneficial. More details on experiments are included
as an appendix.

A Performance Analysis of Semantic Caching 423

2 Related Work

The notion of semantic caching was elaborated in numerous works including
[11,19,14,2,27,5]. Among past research areas related to semantic caching there are
query containment and satisfiability problems [16], view materialization [21,1],
query folding [26] and semantic query optimization [9].

Franklin et al. in [11] proposed to use the queries that have been used to
obtain the results in the cache as high level descriptors. According to [11] the
entries in the semantic cache are organized by semantic regions. Semantic regions
are defined dynamically based on answered queries. Each semantic region has a
constraint formula (high-level description).

The authors of [19] suggested to reduce the number of semantic regions by
merging them whenether possible. The same idea was used in [2]. They presented
an approach for systematically creating new semantic region to consider for
caching and merging them when possible.

The major obstacle for wide use of semantic caching in relational systems is the
query containment problem complexity. It forces to limit the class of predicates
to conjunctive predicates with simple range conditions.

Deciding whether a query is answerable or not is similar to finding complete
rewritings of a query using views ([21],[26],[20]). The main difference is that
rewriting techniques transform a given query based on the views [10], while
semantic caching evaluate a given query according to semantic views ([11]).

Linear constraint-based semantic caching, based on the idea of constraint
databases, representation method of cache information and the cache examina-
tion algorithm were considered in [17]. The design and the evaluation of the
ADMS optimizer were described in [22]. Efficiently and effectively solving the
satisfiability problem, i. e. whether there exists a contradiction in a formula
consisting of conjunctive inequalities was studied in [15].

Semantic caching, a caching architecture for online data services and
e-commerce applications , that caches the results of selection queries were
considered in [18].

The XPath language to navigate XML documents and extract information
from them was used in ([32],[33]), XQuery language was studied in ([23],[31],[29]).

How to decide that the cached information is sufficient to answer a query
(that is, the cache contains needed data), and how to incrementally maintain
the cached XML document was discussed in [32] . It also shows how represent
cached XML data by a set of XPath queries.

The problem of rewriting XPath queries using materialized XPath views,i.e.
whether there exists a rewriting of a query using XPath views and the prob-
lem of finding minimal rewritings, were considered in [33]. The cached data are
organized as modifided incomplete tree in [31]. The authors also describe an algo-
rithm for construction of reminder query to extract data which are not contained
in the cache, from the primary data source.

Techniques for caching frequent query patterns are introduced in [29]. The
paper presents an algorithm to generate query subpatterns, check query con-
tainment, and choose query subpatterns for caching.

424 B. Novikov, A. Pigul, and A. Yarygina

The problem of partial query matching was studied in [23]. A semantic cache
architecture was presented in ([23],[32],[31],[29]) .

A huge volume of theoretical and implementation work was done in the last
decade on semantics representation based on onologies. A significant part of
this work is related to RDF and OWL languages, and some of papers address
performance issues [12,25,3]. However, we study semantic-driven caching of data,
rather than caching of semantics definitions in this research. Also, several authors
consider triple-based storage extremely inefficient for bulk processing in any
industrial environment [13].

In [24] a scheme for reducing the latency perceived by users by predicting and
prefetching files that are likely to be requested soon, while the user is browsing
through the currently displayed page was investigated. A content-blind query
caching middleware for hosting Web applications, which stores the query results
independently and does not merge different query results was considered in [30].

A mechanism for efficient caching of Web queries and the answers received
from heterogeneous Web providers was used in ([7],[6]). Caching mechanism for
conjunctive Web queries based on signature files was used in [4].

The replacement policy was considered essential for any caching technique.
The effectiveness of a cache replacement policy depends on data distribution

and access patterns. It is known that widely used LRU replacement policy is not
optimal for query processing. More complicated policies, based on the knowledge
of access patterns, are described in [28], [8].

In the context of semantic caching the replacement becomes a hard prob-
lem because data associated with different cache units may intersect and hence
cache clean-up becomes computationally hard. For this reason, typically seman-
tic cache prototypes just drop the whole cache contents, instead of partial re-
placement. As result, the semantic cache can only be useful if the ratio of primary
memory size to cache size is not too high.

3 Targets, Goals, and Experimental Environment

This section describes the target architecture and how caching engine can be
used to improve the performance, the goals of the study and experimental
environment.

3.1 The Caching Engine

Our target in this research is cache support for query processing in the dis-
tributed heterogeneous context with autonomous resources (mealing higher de-
gree of uncertainty, sometimes absence of known schema or reliable statistics).

The architecture of such environment, may, of course, be very complex. How-
ever, we assume that all heterogeneous information resources accessible to the
query processing engine are hidden behind wrappers and mediators which pro-
vide a semi-structured representation of these resources in the XML format.
These resources are still heterogeneous as we do not need any assumptions re-
stricting structure, schema, or other constraints on data. However, we further

A Performance Analysis of Semantic Caching 425

assume that all queries are represented in XQuery language, both from the client
and to wrappers or mediators.

The major architectural unit considered in our research is caching engine.
A caching engine is a process that accepts queries to a certain data source,

retrieves the data from this data source and, in addition to returning it to request,
stores them in the internal cache to be used for processing of subsequent queries.

The caching engine is not responsible for any kinds of query routing to the
data sources, as well as for merging data from different data sources (except for
merge of cached data with data coming from primary source). For this reason,
the caching engine does not depend on the distributed or heterogeneous nature
of the environment. In our experiments, we run a model of caching engine as a
stand-alone query processor.

Of course, the content of the data source, query patterns, and statistical proper-
ties of query sets depend heavily on the type of data source and on the application.

A minimal unit of data from the primary data source that can be stored and
accounted in the cache is called cache unit. Each cache unit stored in the cache
is identified by a cache unit descriptor.

For example, in traditional database server cache a cache unit typically is a
page and the cache unit descriptor is the page address on the hard drive. For
web caching the cache unit might be a downloaded web page and the URL might
be used as a descriptor.

In our model the cache unit is the result of the query evaluation, and the
query itself represents the semantics of this result and serves as a cache unit
descriptor.

Of course, the query results are not as simple as database pages. The results of
different queries may intersect, and merged results of several queries may contain
also data need to process other queries.

To decide if a given query can be processed in the cache only or access to the
primary data source is needed, the query is compared with cache unit descriptors,
to find out if the needed data are available in the cache. The answer must be
found based on the query text only, without any evaluation, that is, a query
containment problem must be solved.

To avoid computational complexity, we restrict the class of queries accepted
by the caching engine to very simple XPath expressions for which it is known
that the query containment problem can be solved in polynomial time [32]. This
class of queries is, however, too restrictive to be useful in practise. For this reason,
we extended the class of accepted queries to more complex expressions and use
approximate algorithm fo solve the query containment problem. Specifically we
allow range predicates at the last step in the XPath query.

All other queries are passed to the primary data source without any processing
in the cache.

3.2 Updates and Replacement

Processing of the updates of data located at the primary data source are critical for
effectiveness of any cache. Indeed, the cache can be completely transparent only

426 B. Novikov, A. Pigul, and A. Yarygina

if it contains exactly same data as the primary source. Consequently, the updates
of the primary data store must be propagated to the cache, and, if an application
updated the cache, these updates must be propagated to the primary data store.

These needs have motivated a huge amount of research as well as industrial so-
lutions for problems of cache synchronization and cache coherence which relates
to multiple cache locations for single primary data store (e.g. in shared memory
multiprocessor systems, distributed middle ware sharing a database etc.)

Technically the problem of cache synchronization can be splitted into two
almost independent problems:

– Update awareness
– Cache replacement.

That is, the information on the updates of the primary data source should some-
how reach the caching engine. If the primary resource is using query-response
model, then this information may be obtained only via polling the data source
periodically.

This hardly can be considered feasible in our heterogeneous environment be-
cause wrapped or mediated resources tend to be slow and this kind of polling
would jeopardize any potential benefits of caching.

Alternatively, if the server is based on publish-subscribe model, the update
notifications can be received and processed in the caching engine as the updated
data are requested from the server when they are actually updated.

As soon as the updates are received, the obsolete data must be removed from
the cache. There is no need to download new values as this will happen when these
data will be requested by the application next time. In other words, lazy approach
might be good here. We do not elaborate this topic futher in this research.

For semantic caching the engine must decide which cache units are affected by
the update and hence must be removed. Further, data items that do not belong
to the remaining cache units can be deleted from the cache. The latter is exactly
same problem as incremental cache replacement. Although this problem is not
computationally hard, it might require significant amount of query evaluations.
For this reason, most of proposed semantic cache implementations do not do any
incremental updates of the cache. Instead, they simply clean all data from the
cache when it is overflowing. We use the same strategy for this project.

3.3 The Metrics

The quantitative metrics to be experimentally measured are the following:

Cache misses percentage shows how many of incoming queries are sent to
the primary data source.

Saturation For a given rate of cache misses shows the size of cache, which is
capable to store all data from the hot set.

Precision Shows the percentage of false negatives when solving query contain-
ment problem for cache unit descriptors, that is, shows how imprecise the
approximate algorithm is.

All metrics listed above depend on the primary data source size and cache size.

A Performance Analysis of Semantic Caching 427

3.4 The Experimental Environment

The environment includes several XML (XQuery) processing engines. These en-
gines are used to (1) as a cache storage, (2) cache descriptor storage, (3) Primary
data source, (4) merge query results (if needed).

Each experiment runs as it is controlled as the following pseudo-code:

begin
while (get next incoming query returns a query)
loop
-- extract simple expressions from the incoming query stream
Match simple (sub)queries against cache descriptors
Case
when subquery is matched successfully

submit the (sub)query to the cache database
collect the output

when NOT matched
submit the query to primary DB
collect results
store results to the cache DB
store the query as a descriptor

end case
merge results of (sub)queries
end loop
exit

We used pre-existing database engines, eXist in our experiments. The reasons to
use this extremely simple implementation of XQuery were pre-existing expertise
and the assumption that absolute performance is not essential for the model
experiments.

3.5 Cache Unit Descriptors

For semi-structured (XML) data sources we consider two representations of de-
scriptors and matching algorithms in this research:

– String-based representation and simple matching
– Tree representation with recursive matching.

Both algorithms are conservative as defined above, however, they differ in pre-
cision, computational complexity and hence speed of computations.

In the first approach, we use the string presentation of the query in ‘a normal’
form to describe the processed query in cache. There are different string-based
representations of the same query. As result of normalization we can reduce
semanticaly equal and syntactically different queries to the same form. In the
second representation of descriptors syntactically different but equivalent queries
are mapped to the same tree. Consequently, for both representations the syn-
tactical variations do not affect the behavior of the cache.

428 B. Novikov, A. Pigul, and A. Yarygina

The matching algorithm for the string representation compares the query in
question with stored cache unit descriptors and, if a cache unit descriptor coin-
cides with a prefix of the query to be processed, then the data can be obtained
from the cache, otherwise the query is forwarded to the primary data source.

This algorithm can be implemented efficiently as the string prefix mathc-
ing can be supported with database indexes and range scans. Hence the main
advantage of this implementation of descriptors in cache is in high speed of
computations in match algorithm.

This algorithm does not attempt to recover the structure of the primary data
source and therefore we expect the precision of this algorithm is not high.

The second implementation of cache unit descriptors is based on more complex
data structure.

We present each processed query by branch in description tree with XPath
steps represented as nodes of the tree, i.e. the description tree defines all queries
which can be retrieved from cache without any access to the primary data source.

Essentially this tree represents a descriptive schema of the part of the primary
data source retrieved by cached queries.

To check that the current query can be answered from the cache we use the
recursive tree descent. If the path in description tree which represents the current
query is found then the match algorithm returns true.

The query in considered as its tree representation during the homomorphism
construction and there is only one representation for the query. The answer to the
question if there is full answer to the query in cache could not always been given
because of special steps in the query. For example, if there is answer to the query
a/b/c in the cache and the current query is //c, the answer to the containment
problem could not be done. This proves that our algorithm is approximate.

This algorithm takes some time to construct, increment the tree of descriptors
and todecide the containment problembut it ismore precise than the previous one.

Most of the experiments described below were performed with the tree-based
implementation of descriptors.

3.6 The Data Sets

Two main opportunities for data sets were considered:

1. Generated data based on xMark benchmark definition
2. XBRL reports

The set of experiments described in this research is based on xMark generated
data sets.

We rely on XMark data generator and use a simple XPath queries derived
from 20 benchmark queries of xMark.

The queries are restricted to the following types of fragments of XPath:

– XP {/,//,[]}

– XP {/,∗,[]} and
– XP {/,//,∗}

A Performance Analysis of Semantic Caching 429

Our queries are constructed from steps:

– ‘//’ - descendant axes,
– ‘[]’- branches
– ‘*’ - wildcards
– ‘/’ - child axes.

Acceptable query consists of any two of first three steps and optionnally fourth.
We allow queries to contain simple predicates (comparisons and range pred-

icates). To avoid NP-hardness we will consider the queries with exactly one
predicate at the last step. This extension does not effect the algorithm com-
plexity. The containment problem is reduced by recursive descent to the tree
homomorphism ([32]).

We alleviate complexity problems by implementing an approximate cache,
such as conservative cache.

4 Experimental Results

The first set of experiments was actually performed on synthetic data (generated
from xMark definition). The original plan was to run the randomized series of
queries on a varying database size from few megabytes to few gigabytes, with
range of cache sizes.

For each combination of the primary data source size and cache size a ran-
domized series of queries were run several times, and the average values and
dispersion were calculated.

Due to performance limitations, actually the experiments were run only on
tiny sizes of the primary data source and also very small cache sizes.

Typical charts drawn from the experimental data are included as an appendix.
The results of experiments are discouraging. First of all, the saturation is

reached only when significant portion of the primary source data are fetched
into the cache. This, however, is due to completely random generation of the
queries with uniform distribution. The recommendation is to use the cache only
if the distribution of queried data is not uniform, that is, only if the existence of
relatively small hot set can be expected.

Although the absolute performance of the XQuery engine does not affect the
measured characteristics, in practice it is prohibitevely poor. Moreover, many
experiments were stopped because the capacity of the XQuery engine has been
exceeded.

The approximate algorithm for query containment problem, used in this re-
search, can handle even more complex XPath expressions than those suggested
theoretically based on complexity of the exact algorithm.

As our algorithm is conservative, the only important measure of quality is its
precision, which stays at the acceptable level in our experiments. However, the
precision decreases as the complexity of the query grows.

For the range and predicate queries the expected results do not differ signifi-
cantly from those for relational databases.

430 B. Novikov, A. Pigul, and A. Yarygina

For overall performance, the cache may be estimated as follows.
Let

– T be the (average) query processing time on the primary data source,
– t be the (average) query processing time on the cache engine,
– m be the percentage of cache misses (in the range 0-1),
– c be the time for cache overhead (query containment etc.)

Obviously, the expected speed-up may be estimated as T/(mT +(1−m)t+c). It
is clearer that high performance gains may be expected only if T >> t, T >> c
and m is small.

Unfortunately, our experiments show that native XML databases are not de-
signed for high performance on any significant volume of data, especially for
complex queries. For this reason, we hardly can expect that T, t, and c will
differ sufficiently. Distribution is not the major factor contributing to the value
of T .

The poor performance of XQuery engines was also observed on high-end in-
dustrial strength database management systems which deliver excellent perfro-
mance on relational data. This suggests that XQuery engines cannot be used as
a base for caching engine due to unacceptably high cost of both query matching
and data extraction from the cache.

Let us’ outline few scenarios when semantic caching of semi structured data
sources can still be useful.

4.1 Cascade Architecture

The practice of building new system on top of existing systems inevitably leads
to cascade architecture where sub queries are routed to the underlying query
processing engins.

The optimization is really hard for this kind of systems. For this reason, it
should be expected that certain queries may be submitted several times, espe-
cially at the lower levels of the system.

If the query processing engins do not cache the output, the caching engine
can eliminate multiple execution of these queries.

4.2 Complex XQuery Views and Functions

In this scenario, the complexity of the primary data source is hidden behind a
function (say, XQuery function). Externally this data source will be represented,
in extreme case, with single XML node parametrized with attributes:

<FunctionName param1="value" param2="value">
...
</FunctionName>

An attempt to extract an element with specific attribute values is then inter-
preted in a mediator or query processor on top of mediator as a function call.

In this scenario, the complexity of data is hidden in the function and hence
affects the access time to the primary data source but not the cache.

Of course, this pattern can be used several times at different levels of the
XML tree.

A Performance Analysis of Semantic Caching 431

4.3 High Performance Database Engine in the Cache

Although the structure of the cached data in the above scenario is very simple,
the amount of cached data may be huge as each set of parameter values will be,
most likely, cached as a separate cache unit.

Probably it makes sense to use a high-performance database engine to store
cache units as it can provide really high performance of the cache. This ap-
proach, however, will work if the internal structure of the caching engine will
use relational representation of data.

A prototype of the caching engine based on a combination of the second
and third scenarios outlined above was implemented for processing of complex
financial documents represented in XBRL format. For reasons of computational
efficiency, the cache was implemented on top of relational database and very
simple conservative matching algorithm was used.

This type of caching engine provides drammatic performance improvements.

5 Conclusions

In this research, we presented an analysis of existing approaches to semantic
caching in several environments. The usefulness of any semantic caching system
is limited due to complexity of the query containment problem.

Starting from the knowledge gained from previous research, we developed a
model of semantic caching engine for distributed heterogeneous environment of
semi-structured data sources and experimentally evaluated its performance. We
implemented an efficient approximate conservative algorithm for query contain-
ment problem.

Although quantitative metrics measured on our model meet, in general, our ex-
pectations, the extremely poor performance of native XML databases used inside
the caching engine makes the whole approach useful only in very special cases.

We outlined few scenarioswhere semantic caching of semi-structured XML data
can still be useful. Preliminary experiments related to these scenarios show dram-
matic performance improvements. However, additional experiments are still needed.

References

1. Larson, P.A., Yang, H.Z.: Computing queries from derived relations: Theoretical

foundation. Technical report (1987)

2. Ashish, N., Knoblock, C.A., Shahabi, C.: Intelligent caching for information medi-

ators: A kr based approach. In: KRDB, pp. 3.1–3.7 (1998)

3. Bizer, C., Schultz, A.: Benchmarking the performance of storage systems that

expose sparql endpoints. In: 4th International Workshop on Scalable Semantic

Web Knowledge Base Systems, SSWS 2008 (October 2008)

4. Chidlovskii, B., Borghoff, U.M.: Signature file methods for semantic query caching.

In: Nikolaou, C., Stephanidis, C. (eds.) ECDL 1998. LNCS, vol. 1513, pp. 479–498.

Springer, Heidelberg (1998)

5. Chidlovskii, B., Borghoff, U.M.: Semantic caching of web queries. The VLDB Jour-

nal 9(1), 2–17 (2000)

432 B. Novikov, A. Pigul, and A. Yarygina

6. Chidlovskii, M., Roncancio, C.: Semantic cache mechanism for heterogeneous web

querying (1999)

7. Chidlovskiiy, B., Roncancioz, C., Schneidery, M.l.: Optimizing web queries through

semantic caching (1999)

8. Chou, H.-T., DeWitt, D.J.: An evaluation of buffer management strategies for rela-

tional database systems. In: VLDB, pp. 127–141. Morgan Kaufmann, San Francisco

(1985)

9. Chu, W.W., Chen, Q., Hwang, A.: Query answering via cooperative data inference.

J. Intell. Inf. Syst. 3(1), 57–87 (1994)

10. Cluet, S., Kapitskaia, O., Srivastava, D.: Using ldap directory caches. In: PODS,

pp. 273–284. ACM Press, New York (1999)

11. Dar, S., Franklin, M., Jonsson, B., Srivastava, D., Tan, M.: Semantic data caching

and replacement. In: VLDB 1996: Proceedings of the 22th International Conference

on Very Large Data Bases, pp. 330–341. Morgan Kaufmann Publishers Inc., San

Francisco (1996)

12. Erling, O., Mikhailov, I.: Rdf support in the virtuoso dbms. In: CSSW, pp. 59–68

(2007)

13. Faroult, S., Robson, P.: (2006)

14. Godfrey, P., Gryz, J.: Answering queries by semantic caches. In: Bench-Capon,

T.J.M., Soda, G., Tjoa, A.M. (eds.) DEXA 1999. LNCS, vol. 1677, pp. 485–498.

Springer, Heidelberg (1999)

15. Guo, S., Sun, W., Weiss, M.A.: Solving satisfiability and implication problems in

database systems. ACM Trans. Database Syst. 21(2), 270–293 (1996)

16. Guo, S., Sun, W., Weiss, M.A.: Addendum to “on satisfiability, equivalence, and

implication problems involving conjunctive queries in database systems”. IEEE

Trans. Knowl. Data Eng. 10(5), 863 (1998)

17. Ishikawa, Y., Kitagawa, H.: A semantic caching method based on linear constraints.

In: Proc. of International Symposium on Database Applications in Non-Traditional

Environments, DANTE 1999 (1999)

18. Jonsson, B.T., Arinbjarnar, M., Thorsson, B., Franklin, M.J., Srivastava, D.: Per-

formance and overhead of semantic cache management. ACM Trans. Interet Tech-

nol. 6(3), 302–331 (2006)

19. Keller, A.M., Basu, J.: A predicate-based caching scheme for client-server database

architectures. The VLDB Journal 5, 35–47 (1996)

20. Levy, A.Y.: Answering queries using views: A survey. Technical Report, VLDB

Journal (2000)

21. Levy, A.Y., Mendelzon, A.O., Sagiv, Y.: Answering queries using views (extended

abstract). In: PODS 1995: Proceedings of the Fourteenth ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems, pp. 95–104. ACM, New

York (1995)

22. Melvin, C., Roussopoulos, C.N.: The implementation and performance evaluation

of the adms query optimizer: Integrating query result caching and matching (1994)

23. Vaidehi, V., Sumalatha, M.R., Kannan, A.: Xml query processing - semantic cache

system (2007)

24. Padmanabhan, V.N., Mogul, J.C.: Using predictive prefetching to improve world

wide web latency. Computer Communication Review 26, 22–36 (1996)

25. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of sparql. ACM

Trans. Database Syst. 34(3), 1–45 (2009)

26. Qian, X.: Query folding. In: Proceedings of the 12th International Conference on

Data Engineering, pp. 48–55. IEEE Computer Society, Los Alamitos (1996)

A Performance Analysis of Semantic Caching 433

27. Ren, K.V.Q., Dunham, M.H.: Semantic caching and query processing. IEEE Trans-

actions on Knowledge and Data Engineering 15, 192–210 (2003)

28. Sacco, G.: Index access with a finite buffer space. In: VLDB14, pp. 301–310 (1988)

29. Shen, H.T., Li, J., Li, M., Ni, J., Wang, W. (eds.): APWeb Workshops 2006. LNCS,

vol. 3842. Springer, Heidelberg (2006)

30. Sivasubramanian, S., Pierre, G., van Steen, M., Alonso, G.: GlobeCBC: Content-

blind result caching for dynamic web applications. Technical Report IR-CS-022,

Vrije Universiteit, Amsterdam, The Netherlands (June 2006)

31. Petropoulos, M., Hristidis, V.: Semantic caching of xml databases (2002)

32. Xu, W.: The framework of an xml semantic caching system. In: WebDB, pp. 127–

132 (2005)

33. Xu, W., Ozsoyoglu, Z.M.: Rewriting xpath queries using materialized views. In:

VLDB, pp. 121–132 (2005)

Appendix: Measurement Results Summary

This appendix contains a summary of results measurement represented as charts.
The figure 1 shows the behavior of the cache after a cold start or cache clean-

up. As expected, the pecentage of cache misses decreases when the number of
processed queries grows.

The lines represent behavior of the cache for simple and complex queries.
For example, /site/people/person/name is considered simple while /site/ ∗
/open auction/ ∗ /personref and /site//open auction// ∗ /increase are con-
sidered complex. The number of cache misses for complex queries is less than for
simple ones as the data fetched for simple queries is reused for complex ones.

The figure 2 show how many times the cached data was re-used for subsequent
queries. This measurement shows how hot the cached data are.

The figure 3 shows the dispersion of experimental data used to produce the
charts above, that is, how reliable our measurements are.

The figure 4 shows the precision of our conservative matching algoritm (the
complex one, based on tree-representation of the cache descriptors).

The precision is calculated as a ratio of a difference between the total num-
ber of processed queries and false negatives to the total number of processed

Fig. 1. Cache misses Fig. 2. The reuse of cached data

434 B. Novikov, A. Pigul, and A. Yarygina

Fig. 3. The dispersion Fig. 4. The precision

queries.To find false negatives, we evaluage the queries against the cache and
compare the result with one obtained from the primary data source. Our results
show that the precision is not really good for complex queries.

The figure 5 shows how the number of cach misses depends on the size of the
primary data source, with cache of proportional size.

The experiment shows that the behavior of cache depends on its relative size,
but not on the absolute size of the primary data source. This might be caused,
however, by the uniform distribution of the generated data.

The figure 6 shows how the number of cach misses depends on the ratio of
cache size to the primary data source size.

This experiment proves the existence of predictable but still interesting phe-
nomena: at certain intervals of the argument the curve is nearly constant, mean-
ing that at these intevrals an increase of the cache size does not result in any
performance gains. In other words, the cache demonstrates a kind of saturation.
As soon as the size of cache reached a saturation point, only significant increase
of the cache size may provide performance gains. This observation might be prac-
tically useful, however, the saturation points depend, of course, on the nature of
the data set and the query mix.

Fig. 5. Size db to cache Fig. 6. The saturation

CFDC: A Flash-Aware Buffer Management

Algorithm for Database Systems

Yi Ou1, Theo Härder1, and Peiquan Jin2

1 University of Kaiserslautern, Germany

{ou,haerder}@cs.uni-kl.de
2 University of Science & Technology of China

jpq@ustc.edu.cn

Abstract. Classical buffer replacement policies, e.g., LRU, are subop-

timal for database systems having flash disks for persistence, because

they are not aware of the distinguished characteristics of those storage

devices. We present CFDC (Clean-First Dirty-Clustered), a flash-aware

buffer management algorithm, which emphasizes that clean buffer pages

are first considered for replacement and that modified buffer pages are

clustered for better spatial locality of page flushes. Our algorithm is

complementary to and can be integrated with conventional replacement

policies. Our DBMS-based performance studies using both synthetic and

real-life OLTP traces reveal that CFDC significantly outperforms previ-

ous proposals with a performance gain up to 53%.

1 Introduction

Flash disks will play an increasingly important role for server-side computing,
because—compared to magnetic disks—they are much more energy-efficient and
they have no mechanical parts and, therefore, hardly any perceptible latency.
Typically, flash disks are managed by the operating system as block devices
through the same interface types as those to magnetic disks. However, the distin-
guished performance characteristics of flash disks make it necessary to reconsider
the design of DBMSs, for which the I/O performance is critical.

1.1 Performance Characteristics

The most important building blocks of flash disks are flash memory and flash
translation layer (FTL). Logical block addresses are mapped by the FTL to vary-
ing locations on the physical medium. This mapping is required due to the intrin-
sic limitations of flash memory [1]. The FTL implementation is device-related
and supplied by the disk manufacturer. Many efforts are made to systematically
benchmark the performance of flash disks [2,3]. The most important conclusions
of these benchmarks are:

– For sequential read-or-write workloads, flash disks often achieve a perfor-
mance comparable to high-end magnetic disks.

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 435–449, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

436 Y. Ou, T. Härder, and P. Jin

– For random workloads, the performance asymmetry of flash disks and their
difference to magnetic disks is significant: random reads are typically two
orders of magnitude faster than those on magnetic disks, while random writes
on flash disks are often even slower than those on magnetic disks1.

– Due to the employment of device caches and other optimizations in the
FTL, page-level writes with strong spatial locality can be served by flash
disks more efficiently than write requests without locality. In our context,
spatial locality refers to the property of contiguously accessed DB pages
being physically stored close to each other.

Interestingly, many benchmarks show that flash disks can handle random writes
with larger request sizes more efficiently. For example, the bandwidth of random
writes using units of 128 KB is more than an order of magnitude higher than
writing at units of 8 KB. In fact, a write request of, say 128 KB, is internally
mapped to 64 sequential writes of 2-KB flash pages inside a flash block. Note
that sequential access is an extreme case of high spatial locality.

1.2 The Problem

Flash disks are considered an important alternative to magnetic disks. Therefore,
we focus here on the problem of buffer management for DBMSs having flash
disks as secondary storage. If we denote the sequence of n logical I/O requests
(x0, x1, . . . , xn−1) as X , a buffer management algorithm A is a function that
maps X and a buffer with b pages into a sequence of m physical I/O requests
Y := (y0, y1, . . . , ym−1), m ≤ n, i. e., A(X, b) = Y .

Let C(Y) denote the accumulated time necessary for a storage device to serve
Y , we have C(Y) = C(A(X, b)). Given a sequence of logical I/O requests X , a
buffer with b pages, and a buffer management algorithm A, we say A is optimal,
iff for any other algorithm A′, C(A(X, b)) ≤ C(A′(X, b)).

For magnetic disks, C(Y) is often assumed to be linear to |Y |. Clearly, this
assumption does not hold for flash disks, because C heavily depends on the
write/read ratio and the write patterns of Y . Therefore, each I/O request, either
logical or physical, has to be represented as a tuple of the form (op, pageNum),
where op is either “R” (for a read request) or “W” (for a write request).

While the above formalization defines our problem, our goal is not to find the
optimal algorithm in theory, but a practically applicable one that has acceptable
runtime overhead and minimizes I/O cost as far as possible.

An intuitive idea to address the write pattern problem is to increase the DB
page size, which is the unit of data transfer between the buffer layer and the file
system (or the raw device directly) in most database systems. It would be an
attractive solution if the overall performance could be improved this way, because
only a simple adjustment of a single parameter would be required. However, a
naive increase of the page size generally leads to more unnecessary I/O (using

1 As an example, the MTRON MSP-SATA7525 flash disk achieves 12,000 IOPS for

random reads and only 130 IOPS for random writes of 4 KB blocks, while high-end

magnetic disks typically have 200 IOPS for random I/O [2].

CFDC: A Flash-Aware Buffer Management Algorithm 437

the same buffer size), especially for OLTP workloads, where random accesses
dominate. Furthermore, in multi-user environments, large page sizes favor thread
contentions. Hence, a more sophisticated solution is needed.

Even with flash disks, maintaining a high hit ratio—the primary goal of con-
ventional buffer algorithms—is still important, because the bandwidth of main
memory is at least an order of magnitude higher than the interface bandwidth
provided by flash disks. Based on our discussion so far, we summarize the basic
principles of flash-aware buffer management as follows, which are also the design
principles of the CFDC algorithm:

P1 Minimize the number of physical writes.
P2 Address write patterns to improve the write efficiency.
P3 Keep a relatively high hit ratio.

1.3 Contributions

This paper is an extension of our preliminary work on flash-aware buffer man-
agement [4], where the basic ideas of the CFDC algorithm are introduced. The
major contributions that distinguish this paper from [4] and improve the CFDC
algorithm are:

– We discuss critical issues related to transaction management.
– We demonstrate the flexibility and efficiency of CFDC using a variant of it

that integrates LRU-k as a base algorithm. To the best of our knowledge,
this is the first work that examines the feasibility of a hybrid algorithm for
flash-aware buffer management.

– We introduce metrics to quantitatively study spatial locality of I/O requests.
– We accomplish an extensive empirical performance study covering all rel-

evant algorithms in a DBMS-based environment. So far, such a study is
missing in all previous contributions.

The remainder of this paper is organized as follows. Sect. 2 sketches the re-
lated work. Sect. 3 introduces our algorithm, while its experimental results are
presented in Sect. 4. The concluding remarks are given in Sect. 5.

2 Related Work

LRU and CLOCK [5] are among the most widely-used replacement policies.
The latter is functionally identical to the Second Chance [6]: both of them of-
ten achieve hit ratios close to those of LRU. LRU-k is a classical algorithm
specific for DB buffer management [7]. It maintains a history of page refer-
ences which keeps track of the recent k references to each buffer page. When
an eviction is necessary, it selects the page whose k-th recent reference has the
oldest timestamp. Parameter k is tunable, for which the value 2 is recommended.
Both recency and frequency of references are considered in its victim selec-
tion decisions. Thus theoretically, it can achieve higher hit ratios and is (more)
resistant to scans than LRU-based algorithms, for which recency is the only
concern.

438 Y. Ou, T. Härder, and P. Jin

CFLRU [8] is a flash-aware replacement policy for operating systems based
on LRU. At the LRU end of its list structure, it maintains a clean-first region,
where clean pages are always selected as victims over dirty pages. Only when
clean pages are not present in the clean-first region, the dirty page at the LRU
tail is selected as victim. The size of the clean-first region is determined by a
parameter w called the window size. By evicting clean pages first, the buffer area
for dirty pages is effectively increased—thus, the number of flash writes can be
reduced.

LRUWSR [9] is a flash-aware algorithm based on LRU and Second Chance,
using only a single list as auxiliary data structure. The idea is to evict clean and
cold-dirty pages and keep the hot-dirty pages in buffer as long as possible. When
a victim page is needed, it starts search from the LRU end of the list. If a clean
page is visited, it will be returned immediately (LRU and clean-first strategy).
If a dirty page is visited and is marked “cold”, it will be returned; otherwise, it
will be marked “cold” (Second Chance) and the search continues.

REF [10] is a flash-aware replacement policy that addresses the pattern of
page flushes. It also maintains an LRU list and has a victim window at the
MRU end of the list, similar to the clean-first region of CFLRU. Victim pages
are only selected from the so-called victim blocks, which are blocks with the
largest numbers of pages in the victim window. From the set of victim blocks,
pages are evicted in LRU order. When all pages of the victim blocks are evicted,
a linear search within the victim window is triggered to find a new set of victim
blocks. This way, REF ensures that during a certain period of time, the pages
evicted are all accommodated by a small number of flash blocks, thus improving
the efficiency of FTL.

CFLRU and LRUWSR do not address the problem of write patterns, while
REF does not distinguish between the clean and dirty states of pages. To the
best of our knowledge, CFDC is the only flash-aware algorithm that applied all
the three basic principles P1 to P3 introduced in Sect. 1.

3 The CFDC Algorithm

3.1 The Two-Region Scheme

CFDC manages the buffer in two regions: the working region W for keeping
hot pages that are frequently and recently revisited, and the priority region P
responsible for optimizing replacement costs by assigning varying priorities to
page clusters. A cluster is a set of pages located in proximity, i. e., whose page
numbers are close to each other. Though page numbers are logical addresses,
because of the space allocation in most DBMSs and file systems, the pages in
the same cluster have a high probability of being physically neighbored, too.
The size of a cluster should correspond, but does not have to be strictly equal
to the size of a flash block, thus information about exact flash block boundaries
are not required.

CFDC: A Flash-Aware Buffer Management Algorithm 439

Fig. 1. Page movement in the two-region scheme

A parameter λ, called priority window, determines the size ratio of P relative
to the total buffer. Therefore, if the buffer has B pages, then P contains λ pages
and the remaining (1− λ) · B pages are managed in W . Note W does not have
to be bound to a specific replacement policy. Various conventional replacement
policies can be used to maintain high hit ratios in W and, therefore, prevent hot
pages from entering P .

Fig. 1 illustrates the page movement in our two-region scheme. The code to
be executed upon a fix-page request is sketched in Algorithm 1. If a page in W
is hit (line 3), the base algorithm of W should adjust its data and structures
accordingly. For example, if LRU is the base algorithm, it should move the page
that was hit to the MRU end of its list structure. If a page in P is hit (line
5), a page min(W) is determined by W ’s victim selection policy and moved
(demoted) to P , and the hit page is moved (promoted) to W . In case of a buffer
fault, the victim is always first selected from P (line 7). Only when all pages in
P are fixed, we select the victim from W . Considering recency, the newly fetched
page is first promoted to W .

3.2 Priority Region

Priority region P maintains three structures: an LRU list of clean pages, a pri-
ority queue of clusters where dirty pages are accommodated, and a hash table
with cluster numbers as keys for efficient cluster lookup. The cluster number is
derived by dividing page numbers by a constant cluster size.

The victim selection logic in P is shown in Algorithm 2. Clean pages are
always selected over dirty pages (line 1–2). If there is no clean page available,
a cluster having the lowest priority is selected from the priority queue of dirty
pages and the oldest unfixed page in this cluster is selected as victim (line 3–6).
The oldest page in the cluster will be evicted first, if it is not re-referenced there.
Otherwise, it would have been already promoted to W . Once a victim is selected
from a cluster, its priority is set to minimum (line 8) and will not be updated
anymore, so that the next victims will still be evicted from this victim cluster,
resulting in strong spatial locality of page evictions.

For a cluster c with n (in-memory) pages, its priority P (c) is computed ac-
cording to Formula 1:

P (c) =

n−1∑
i=1

|pi − pi−1|

n2 × (globaltime− timestamp(c))
(1)

440 Y. Ou, T. Härder, and P. Jin

Algorithm 1. fixPageTwoRegion
data : buffer B with working region W and priority region P ;

page number of the requested page p
result : fix and return the requested page p
if p is already in B then1

if p is in W then2

adjust W as per W ’s policy;3

else4

demote min(W), promote p;5

else6

page q := selectVictimPr;7

if q is null then8

q := select victim from W as per W ’s policy;9

if q is dirty then10

flush q;11

clear q and read content of p from external storage into q;12

p := q;13

if p is in P then14

demote min(W), promote p;15

fix p in the buffer and return p;16

where p0, ..., pn−1 are the page numbers ordered by their time of entering the
cluster. The algorithm tends to assign large clusters a lower priority for two
reasons: 1. Flash disks are efficient in writing such clustered pages. 2. The pages
in a large cluster have a higher probability of being sequentially accessed.

Both spatial and temporal factors are considered by the priority function. The
sum in the dividend in Formula 1, called inter-page distance (IPD), is used to
distinguish between randomly accessed clusters and sequentially accessed clus-
ters (clusters with only one page are set to 1). We prefer to keep a randomly
accessed cluster in the buffer for a longer time than a sequentially accessed clus-
ter. For example, a cluster with pages {0, 1, 2, 3} has an IPD of 3, while a cluster
with pages {7, 5, 4, 6} has an IPD of 5.

The purpose of the time component in Formula 1 is to prevent randomly,
but rarely accessed small clusters from staying in the buffer forever. The cluster
timestamp timestamp(c) is the value of globaltime at the time of its creation.
Each time a dirty page is inserted into the priority queue (min(W) is dirty),
globaltime is incremented by 1. We derive its cluster number and perform a
hash lookup using this cluster number. If the cluster does not exist, a new cluster
containing this page is created with the current globaltime and inserted to the
priority queue. Furthermore, it is registered in the hash table. Otherwise, the
page is added to the existing cluster and the priority queue is maintained if
necessary. If page min(W) is clean, it simply becomes the new MRU node in
the clean list.

CFDC: A Flash-Aware Buffer Management Algorithm 441

Algorithm 2. selectVictimPr
data : priority region P consisting of a list of clean pages L in LRU order and

a priority queue of dirty-page clusters Q
result : return a page v as replacement victim

if L not empty then1

v := the first unfixed page starting from the LRU end of L;2

if v is null then3

cluster c := lowest-priority cluster in Q with unfixed pages;4

if c not null then5

v := the oldest unfixed pages in c;6

if v not null then7

c.ipd := 0;8

return v ;9

After demoting min(W), the page to be promoted, say p, will be removed
from P and inserted to W . If p is to be promoted due to a buffer hit, we update
its cluster IPD including the timestamp. This will generally increase the cluster
priority according to Formula 1 and cause c to stay in the buffer for a longer
time. This is desirable since the remaining pages in the cluster will probably
be revisited soon due to locality. In contrast, when adding demoted pages to a
cluster, the cluster timestamp is not updated.

3.3 Independence of Transaction Management

In principle, recovery demands needed to guarantee ACID behavior for transac-
tion processing [11] may interfere with the optimization objectives P1 – P3. To
achieve write avoidance and clustered writes to the maximum possible extent,
the buffer manager should not be burdened with conflicting update propaga-
tion requirements. Fortunately, our CFDC approach implies a NoForce/Steal
policy for the logging&recovery component providing maximum degrees of free-
dom [11]. NoForce means that pages modified by a transaction do not have to
be forced to disk at its commit, but only the redo logs. Steal means that modi-
fied pages can be replaced and their contents can be written to disk even when
the modifying transaction has not yet committed, provided that the undo logs
are written in advance (observing the WAL principle (write ahead log)). Fur-
thermore, log data is buffered and sequentially written—the preferred output
operation for flash disks. With these options together, the buffer manager has a
great flexibility in its replacement decision, because the latter is decoupled from
transaction management. In particular, the replacement of a specific dirty page
can be delayed to save physical writes or even advanced, if necessary, to facilitate
clustered page flushes and thereby improve the overall write efficiency. Hence,
it comes as no surprise that NoForce/Steal is the standard solution for existing
DBMSs.

Another aspect of recovery provision is checkpointing to limit redo recov-
ery in case of a system failure, e.g., a crash. To create a checkpoint at a “safe

442 Y. Ou, T. Härder, and P. Jin

place”, earlier solutions flushed all modified buffer pages thereby achieving a
transaction-consistent or action-consistent firewall for redo recovery on disk.
Such direct checkpoints are impractical anymore, because—given large DB buffer
sizes—they would repeatedly imply limited responsiveness of the buffer for quite
long periods2. Today, the method of choice is fuzzy checkpointing [12], where
only metadata describing the checkpoint is written to the log, but displacement
of modified pages is obtained via asynchronous I/O actions not linked to any
specific point in time. Clearly, these actions may be triggered to perfectly match
with flash requirements and the CFDC principle of performing clustered writes.

3.4 Further Performance Considerations

As outlined, CFDC pe se is not constrained by recovery provisions, in partic-
ular, properties such as NoSteal or Force [11]. Such constraints could occur if
orthogonality to other components would be violated. An example is the Force
policy, with which we could achieve transaction-consistent DB states together
with shadowing and page locking. But such an approach would cause low concur-
rency and overly frequent page propagations—two properties extremely hurting
high-performance transaction processing [12].

Prefetching of pages plays an important role for conventional disk-based buffer
management: It is not hindered by flash disks. But, because of their random-read
performance, prefetching becomes much less important, because pages can be
randomly fetched on demand without (hardly) any penalty in the form of access
latency. Even better, because prefetching always includes the risk of fetching
pages later not needed, CDFC must not use this conventional speed-up technique
and can, nevertheless, provide the desired access performance.

As a final remark: The time complexity of our algorithm depends on the com-
plexity of the base algorithm in W and the complexity of the priority queue. The
latter is O(log m), where m is the number of clusters. This should be acceptable
since m " λ · B, where λ ·B is the number of pages in P .

4 Performance Study

4.1 Test Environment

In all experiments, we use a native XML DBMS designed according to the clas-
sical five-layer reference architecture. For clarity and simplicity, we only focus
on its bottom-most two layers, i. e., the file manager supporting page-oriented
access to the data files, and the buffer manager serving page requests. Although
designed for XML data management, the processing behavior of these layers is
very close to that of a relational DBMS.

2 While checkpointing often done in intervals of few minutes, systems are restricted

to read-only operations. Assume that many GBytes would have to be propagated to

multiple disks using random writes (in parallel). Hence, reaction times for update

operations could reach a considerable number of seconds or even minutes.

CFDC: A Flash-Aware Buffer Management Algorithm 443

The test machine has an AMD Athlon Dual Core Processor, 512 MB of main
memory, is running Ubuntu Linux with kernel version 2.6.24, and is equipped
with a magnetic disk and a flash disk, both connected to the SATA interface
used by the file system EXT2. Both OS and DB engine are installed on the
magnetic disk. The test data (as a DB file) resides on the flash disk which is a
32 GB MTRON MSP-SATA7525 based on NAND flash memory.

We deactivated the file-system prefetching and used direct I/O to access the
DB file, so that the influences of file system and OS were minimized. All ex-
periments started with a cold DB buffer. Except for the native code responsible
for direct I/O, the DB engine and the algorithms are completely implemented
in Java. CFDC and competitor algorithms are fully integrated into the XML
DBMS and work with other components of the DB engine.

In the following, we use CFDC-k to denote the CFDC instance running LRU-
k (k = 2) and use CFDC-1 for the instance running LRU in its working region.
Both of them are referred to as CFDC if there is no need to distinguish. We
cross-compared seven buffer algorithms, which can be classified in two groups:
the flash-aware algorithms including CFLRU, LRUWSR, REF, CFDC-k, and
CFDC-1; the classical algorithms including LRU and LRU-k (k = 2). The block
size parameter of REF, which should correspond to the size of a flash block,
was set to 16 pages (DB page size = 8 KB, flash block size = 128 KB). To be
comparable, the cluster size of CFDC was set to 16 as well. The V B parameter of
REF was set to 4, based on the empirical studies of its authors. Furthermore, we
used an improved version of CFLRU which is is much more efficient at runtime
yet functionally identical to the original algorithm.

4.2 Measuring Spatial Locality

We define the metric cluster-switch count (CSC) to quantify the spatial locality
of I/O requests. Let S := (q0, q1, . . . , qm−1) be a sequence of I/O requests, the
metric CSC(S) reflects the spatial locality of S:

CSC(S) =
m−1∑
i=0

{
0, if qi−1 exists and in the same cluster as qi

1, otherwise (2)

Sequential I/O requests are a special case of high spatial locality, where pages
are accessed in a forward or reverse order according to their locations on the
storage device. If d(S) is the set of distinct clusters addressed by a sequential
access pattern S, we have CSC(S) = |d(S)|.

Let R := (p0, p1, . . . , pn−1) be the sequence of logical I/O requests and S the
sequence of physical I/O requests, we further define the metric cluster-switch
factor (CSF) as:

CSF (R, S) = CSC(S)/CSC(R) (3)

CSF reflects the efficiency to perform clustering for the given input R. To com-
pare identical input sequences, it is sufficient to consider the CSC metric alone.
For magnetic disks, if we set the cluster size equal to the track size, then CSC(S)
approximates the number of disk seeks necessary to serve S. For flash disks, we

444 Y. Ou, T. Härder, and P. Jin

consider only the CSC and CSF of logical and physical write requests, because
flash read performance is independent of spatial locality.

The clustered writes of CFDC are write patterns with high spatial locality
and thus minimized cluster-switch counts. Compared to CFDC, the sequence of
dirty pages evicted by the algorithm REF generally has a much higher CSC,
because it selects victim pages from a set of victim blocks and the victim blocks
can be addressed in any order. Because the sequence of dirty pages evicted can
be viewed as multiple sequences of clustered writes that are interleaved with one
another, we call the approach of REF semi-clustered writes.

4.3 Synthetic Trace

Our synthetic trace simulates typical DB buffer workloads with mixed random
and sequential page requests. Four types of page references are contained in the
trace: 100,000 single page reads, 100,000 single page updates, 100 scan reads, and
100 scan updates. A single page read requests one page at a time, while a single
page update further updates the requested page. A scan read fetches a contigu-
ous sequence of 200 pages, while a scan update further updates the requested
sequence of pages. The page number of the single page requests are randomly
generated between 1 and 100,000 with an 80–20 self-similar distribution. The
starting page numbers of the scans are uniformly distributed in [1, 105]. All the
100,000 pages are pre-allocated in a DB file with a physical size of 784 MB in
the file system. Thus a page fault will not cause an extra allocate operation.

We varied the buffer size from 500 to 16,000 pages (or 4–125 MB) and plotted
the results of this trace in Fig. 2a. CFDC-k and CFDC-1 are very close, with
CFDC-k being slightly better. Both CFDC variants clearly outperform all other
algorithms compared. For example, with a buffer of 4,000 page frames, the per-
formance gain of CFDC-k over REF is 26%. Detailed performance break-downs
are presented by Fig. 2b, 2c, and 2d, corresponding to the three metrics of inter-
est: number of page flushes, spatial locality of page flushing, and hit ratio. REF
suffers from a low hit ratio and a high write count, but is still the third-best
in terms of execution times due to its semi-clustered writes. LRU-k performs
surprisingly good on flash disks—even better than the flash-aware algorithms
CFLRU and LRUWSR. This emphasizes the importance of principle P3.

To examine scan resistance, we generated a set of traces by changing the
locality of the single page requests of the previous trace to a 90–10 distribution
and varying the number of scan reads and scan updates from 200 to 1,600. The
starting page numbers of the scans are moved into the interval [100001, 150000].
The buffer size configured in this experiment equals the length of a scan (200
pages). Thus, we simulate the situation where sequential page requests push the
hot pages out of the buffer. The buffer hits in this experiment are compared
in Fig. 3a. While most algorithms suffer from a drop in the number of hits
between 5% to 7%, the hits of CFDC-k only decrease by 1% (from 144,926 to
143,285) and those of LRU-k only decrease about 2.5%. This demonstrates that
CFDC-k gracefully inherits the merits of LRU-k. Another advantage of CFDC
is demonstrated by Fig. 3b: it has always the lowest CSF , i. e., its page flushes
are efficiently clustered.

CFDC: A Flash-Aware Buffer Management Algorithm 445

(a) Execution time (b) Page-flush count

(c) Cluster-switch count (d) Hit ratio

Fig. 2. Performance figures of the synthetic trace

(a) Hit count (b) Cluster-switch factor

Fig. 3. Increasing the number of scans

446 Y. Ou, T. Härder, and P. Jin

4.4 Real-Life OLTP Traces

In this section we present the experiments performed using two real-life OLTP
traces. CFDC-k and LRU-k are of lower practical importance due to their higher
complexity (O(log n)), therefore, we keep them out for better clarity.

The TPC-C Trace. The first trace was obtained using the PostgreSQL DBMS.
Our code integrated into its buffer manager recorded the buffer reference string
of a 20-minutes TPC-C workload with a scaling factor of 50 warehouses.

In our two-region scheme, the size of the priority region is configurable with
the parameter λ, similar to the parameter window size (w) of CFLRU. The
algorithm REF has a similar configurable victim window as well. For simplic-
ity, we refer to them uniformly with the name “window size”. In the experi-
ments discussed so far, this parameter is not tuned—it was set to 0.5 for all
related algorithms. To examine its impact under real workload, we ran the TPC-
C trace with algorithms CFDC, CFLRU, and REF configured with window
size from 0.1 to 0.99 relative to the total buffer size using 1,000 pages in this
experiment.

(a) Execution time (b) Page-flush count

(c) Cluster-switch count (d) Hit ratio

Fig. 4. Impact of window size on the TPC-C trace

CFDC: A Flash-Aware Buffer Management Algorithm 447

(a) Execution time (b) Page-flush count

(c) Cluster-switch count (d) Hit ratio

Fig. 5. Performance figures of the Bank trace

The performance metrics are shown in Fig. 4. The performance of CFDC
benefits from an increasing window size. Its runtime goes slightly up after a
certain window size is reached (0.9 in this case). This is because, with the size of
the working region approaching zero, the loss of the hit ratio is too significant to
be covered by the benefit of reducing physical writes and performing clustered
writes in the priority region. Similar behavior is also observed for CFLRU at at
window size 0.8. For CFDC and CFLRU, a larger window size leads to smaller
number of writes. In contrast, the number of physical writes generated by REF
grows quickly with an increase of the window size (Fig. 4b), resulting in a sharp
runtime increase beginning at window size 0.8. This is due to two reasons: First,
in REF’s victim window, the sizes of the blocks are the only concern when
selecting a victim block, while temporal factors such as recency and frequency
of references are ignored. Second, REF does not distinguish between clean and
dirty pages such that an increase of the window size does not necessarily lead to
more buffer hits of dirty pages.

448 Y. Ou, T. Härder, and P. Jin

The Bank Trace. The second trace used here is a one-hour page reference
trace of the production OLTP system of a Bank. It was also used in experiments
of [7] and [13]. This trace contains 607,390 references to 8-KB pages in a DB
having a size of 22 GB, addressing 51,870 distinct page numbers. About 23% of
the references update the page requested, i. e., the workload is read-intensive.
Even for the update references, the pages must be first present in the buffer,
thus more reads are required. Moreover, this trace exhibits an extremely high
access skew, e.g., 40% of the references access only 3% of the DB pages used in
the trace [7].

For each of the algorithms CFDC, CFLRU, and REF, we ran all experiments
three times with the window size parameter set to 0.25, 0.50, and 0.75 respec-
tively, denoted as REF-25, REF-50, REF-75, etc., and chose the setting that had
the best performance. The results are shown in Fig. 5. Even under this read-
intensive and highly skewed workload, CFDC is superior to the other algorithms.
The performance gain of CFDC over CFLRU is, e.g., 53% for the 16,000-page
setting and 33% for the 8,000-page setting. Under such a workload, most of the
hot pages are retained in a large-enough buffer. Therefore, the differences in hit
ratios become insignificant as the buffer size is beyond 2000 pages.

The performance study does not focus on the MTRON flash disk. We also ran
all the experiments on a low-end flash disk (SuperTalent FSD32GC35M) with
similar observations. Furthermore, except for the execution time, other metrics
collected are independent of any system and device.

5 Conclusions and Outlook

As systematic and empirical study, we extensively evaluated the performance
behavior of all competitor algorithms for flash-aware DB buffer management in
an identical environment. Therefore, we could accurately and thoroughly cross-
compare those algorithms under a variety of parameters and workloads, where
the majority of measurement results clearly prove CFDC’s superiority among its
competitors. The advantages of CFDC can be summarized as follows:

– With the clean-first strategy and the optimization in the priority region, it
minimizes the number of physical writes (P1).

– It efficiently writes on flash disks by exploiting spatial locality and perform-
ing clustered writes, i. e., it evicts the sequence of writes that can be most
efficiently served by flash disks (P2).

– Flash-specific optimizations do not compromise high hit ratios (P3), i. e., a
large number of reads and writes can be served without I/O.

– Our two-region scheme makes it easy to integrate CFDC with conventional
replacement policies in existing systems. The CFDC-k variant—maybe of
lower practical importance due to its higher complexity—served as an ex-
ample for this flexibility. Modern replacement policies such as ARC [13] and
LIRS [14] can be easily integrated into CFDC without modification.

Our experiments did not cover asynchronous page flushing. In practice, page
flushes are normally not coupled with the victim replacement process—most

CFDC: A Flash-Aware Buffer Management Algorithm 449

of them are performed by background threads. However, these threads can ob-
viously benefit from CFDC’s dirty queue, where the dirty pages are already
collected and clustered.

In this paper, we explored flash disks as an exclusive alternative to magnetic
disks. However, database systems may employ hybrid storage systems, i. e., flash
disks and magnetic disks co-exist in a single system. As another option in DBMS
I/O architectures, flash memory could serve as a non-volatile caching layer for
magnetic disks. Both I/O architectures posing challenging performance problems
deserve a thorough consideration in future research work.

Acknowledgement

We are grateful to Gerhard Weikum for providing the OLTP trace and to Sebas-
tian Bächle and Volker Hudlet for the team work. We thank anonymous referees
for valuable suggestions that improved this paper. The research is partially sup-
ported by the Carl Zeiss Foundation.

References

1. Woodhouse, D.: JFFS: the journalling flash file system. In: The Ottawa Linux

Symp. (2001)

2. Gray, J., Fitzgerald, B.: Flash disk opportunity for server applications. ACM

Queue 6(4), 18–23 (2008)

3. Bouganim, L., et al.: uFLIP: Understanding flash IO patterns. In: CIDR (2009)

4. Ou, Y., et al.: CFDC: a flash-aware replacement policy for database buffer man-

agement. In: DaMoN Workshop, pp. 15–20. ACM, New York (2009)

5. Corbato, F.J.: A paging experiment with the multics system. In: Honor of Philip

M. Morse, p. 217. MIT Press, Cambridge (1969)

6. Tanenbaum, A.S.: Operating Systems, Design and Impl. Prentice-Hall, Englewood

Cliffs (1987)

7. O’Neil, E.J., et al.: The LRU-K page replacement algorithm for database disk

buffering. In: SIGMOD, pp. 297–306 (1993)

8. Park, S., et al.: CFLRU: a replacement algorithm for flash memory. In: CASES,

pp. 234–241 (2006)

9. Jung, H., et al.: LRU-WSR: integration of LRU and writes sequence reordering for

flash memory. Trans. on Cons. Electr. 54(3), 1215–1223 (2008)

10. Seo, D., Shin, D.: Recently-evicted-first buffer replacement policy for flash storage

devices. Trans. on Cons. Electr. 54(3), 1228–1235 (2008)

11. Härder, T., Reuter, A.: Principles of transaction-oriented database recovery. ACM

Computing Surveys 15(4), 287–317 (1983)

12. Mohan, C., et al.: ARIES: A transaction recovery method supporting fine-

granularity locking and partial rollbacks using write-ahead logging. ACM Trans.

Database Syst. 17(1), 94–162 (1992)

13. Megiddo, N., Modha, D.S.: ARC: A self-tuning, low overhead replacement cache.

In: FAST. USENIX (2003)

14. Jiang, S., Zhang, X.: LIRS: an efficient low inter-reference recency set replacement

policy to improve buffer cache performance. In: SIGMETRICS, pp. 31–42 (2002)

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 450 – 462, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Expert-Assisted Classification Rules
Extraction Algorithm

Vili Podgorelec

University of Maribor, FERI, Smetanova ulica 17,
SI-2000 Maribor, Slovenia

Vili.Podgorelec@uni-mb.si

Abstract. Machine learning algorithms nowadays are important and
well-accepted tools which help in demanding and ever-more challenging data
analysis in many fields. In this paper, we study an approach to machine learning
and knowledge discovery, where a learning algorithm uses experts’ domain
knowledge to induce solutions, and experts use the algorithm and its solutions
to enhance their “information processing strength”. An adaptation of
evolutionary method AREX for automatic extraction of rules is presented that is
based on the evolutionary induction of decision trees and automatic
programming. The method is evaluated in a case study on a medical dataset.
The obtained results are assessed to evaluate the strength and potential of the
proposed classification rules extraction algorithm.

Keywords: machine learning, knowledge discovery, classification, medical
data.

1 Introduction

The general idea of discovering knowledge in large amounts of data is both appealing
and intuitive, but technically it is significantly challenging and difficult, especially in
the fields where really huge amounts of relational data have been collected over last
decades or even centuries (like medicine). Many such disciplines, generally speaking,
are conservative sciences, where all new knowledge has to be fully acknowledged and
well understood. In order to fulfill this additional constraint of the knowledge
discovery process one should assist domain experts in learning rather than trying to
“produce” the knowledge from data fully automatically. Although we will focus on
the examples from the field of medicine in the following text, the general idea is very
similar also for other fields and can be, therefore, used without constraints.

The literature review reveals a lot of machine learning applications in medicine [6,
7]. Machine learning technology is currently well suited for analyzing medical data,
and in particular there is a lot of work done in medical diagnosis in small specialized
diagnostic problems. In many cases one or another machine learning algorithm has
been developed and/or used for medical diagnosis. In this manner machine learning
algorithms are used to automatically learn on the stored data in order to correctly
predict, or classify, the unseen cases. Only a few authors suggest the possibility of

Expert-Assisted Classification Rules Extraction Algorithm 451

computers to assist in learning. In [21] authors investigate a simple Bayesian belief
network for the diagnosis of breast cancer. In [19] authors present a computer-assisted
system for classification of interphase HEp-2 immunofluorescence patterns in
autoimmune diagnostics: designed as an assisting system, representative patterns are
acquired by an operator with a digital microscope camera and transferred to a
personal computer; by use of a novel software package based on image analysis,
feature extraction and machine learning algorithms, relevant characteristics describing
patterns could be found out. However, both studies still regard the machine learning
algorithm as an automated, non-interactive process.

In this paper, we want to present an enhanced approach in machine learning, called
machine-assisted learning. In this manner an iterative learning algorithm interacts
with an expert and takes advantage of expert’s knowledge to learn better and to focus
on the preferred patterns. For this purpose, we present a rules induction algorithm that
is based on synergetic effects of algorithm’s automatic learning and expert’s
knowledge. Hopefully, this approach should be able to overcome the pitfalls of
discovering statistically relevant, but practically worthless or even misleading patterns
in data. We are not going to argue that the resulting learning paradigm is necessarily
what experts would wish for in their everyday practice, but we are going to suggest
that it might be a sound base for what we call the machine-assisted learning.

2 Automatic Classification Rules Extraction Algorithm

For a machine learning system to be useful in solving medical diagnostic tasks, the
following features are desired: good performance, the ability to appropriately deal
with missing data and with noisy data (errors in data), the transparency of diagnostic
knowledge, the ability to explain decisions, and the ability of the algorithm to reduce
the number of tests necessary to obtain reliable diagnosis [6].

One of the mostly used methods in medicine are decision trees (DTs) [15], with
good efficiency, high classification accuracy and the transparency of the classification
process that one can easily interpret, understand and criticize. The usual impurity
measures approaches to induction of DTs on the other hand have some disadvantages,
like inability to build several trees for the same dataset, inability to use the preferred
attributes, etc. Encouraged by the success of evolutionary algorithms for optimization
tasks a series of attempts occurred to induce a DT-like models with evolutionary
methods [3, 9, 13]. Although GPs have proven extremely difficult to interpret, many
researchers have tried to use the power of GAs/GPs for the problem of data mining
and knowledge discovery [12, 4]. In this paper we present an upgrade of one such
approach to build DTs (or rulesets) with the use of GAs/GPs.

The core method of our approach is Expert-Assisted AREX (Automatic Rules
Extractor), an adaptation of a rule extraction algorithm that we have proposed earlier
[14]. It is an algorithm that is able to induce a set of classification (if–then) rules
based on the given dataset. The two key components are an evolutionary-based
construction of classification rules and a multi-level classification approach,
combined in a way that enables interaction with experts during the induction process.
In this manner, the process would eventually lead to a set of highly accurate rules,
which should ideally give an explanation of a problem domain [5, 22].

452 V. Podgorelec

In order to enable an efficient the interaction with domain experts, the results are
presented in a form of classification (if–then) rules, which are straightforward to
understand, accept or reject. The input data for the knowledge discovery process is

represented with a set of vectors 1o , …, No – a training set. Each training object io

is described with the values of attributes ai1, …, aiK and the accompanied decision
class ωi from the set of M possible decisions [Ω1, …,ΩM]. Attributes can be either
numeric (value is a numbers from a continuous interval) or discrete (value is one from
the discrete set of possible values). AREX is able to process data with missing values.

Knowledge that is learned with AREX from training data is represented with a set
of classification (if–then) rules. Each single rule in a set is in the following form:

if <condition> then <decision>, where
<condition> := <c1> and ... and <cd>, and
<decision> := ω, ω ∈ [Ω1, ..., ΩM]

This means that the rules are 1) simple enough to understand, and 2) powerful enough
for an accurate classification.

2.1 Multi-level Gradual Classification Model

One of the most important characteristic of classification rules is their readability to a
human [20]. A simple classification rule is easy to comprehend, analyze, and make
advantage of. However, for the classification of a whole dataset several rules are
needed, each one supporting only a portion of cases. In order for a human to
understand the complete classification process, one must not only comprehend each
single rule but also their interconnections. In this manner, the complexity of a
classification model, represented as a set of rules, greatly depends on the number and
the form of all the rules.

In general, real-world medical datasets are very complex, consisting of many
attributes, relations, decision classes. It would be irrational to expect high
classification accuracy from a small set of simple rules. Usually for the classification
of medical datasets complex rulesets, composed of many rules, are needed [10]. On
the other hand, in our approach the interpretability of the rules is of the highest
importance, as the induced rules should assist experts in learning. In this manner, we
decided to build the set of rules gradually, level by level. On a single level only a
portion of cases will be classified and the others will be transferred to the next level.

An important contributor to the complexity of rulesets is the diversity of the cases
in a dataset. There are usually many so-called special cases, which are quite different
from the others. Therefore, the ruleset needs to grow in order to accurately classify all
those special cases, which consequentially increases the complexity of the ruleset. If
we want to keep the number of classification rules low, those cases should be
somehow left out. Afterwards, when common cases are classified with a small set of
simple rules, the special cases can be classified separately. Following this proposition,
all training objects in AREX are distributed according to their class confusion score
(see below, Eq. 2) into several classification levels. For each classification level a
specific ruleset is induced. In this manner, the whole dataset is classified gradually
(Figure 1).

Expert-Assisted Classification Rules Extraction Algorithm 453

Fig. 1. Multi-level gradual classification approach of AREX

For the distribution of training objects between classification levels an algorithm
for the construction of decision trees genTrees is used [13]. With genTrees several
decision trees are induced. For each training object a class classification cci(x) is
calculated for all decision classes (Eq. 1) – the resulting value represents a number
of DTs that classified object x with the decision class i. Then classification
confusion score CCS(x) is calculated for each training object x (Eq. 2) – the result
represents the confusion score of a set of DTs when classifying object x. If all DTs
provide the same classification, then the result is 0. The higher is CCS(x), the more
problematic is the object x for classification. In this manner, the CCS (Eq. 2)
actually represents the classification complexity of a specific training object. Based
on the classification complexity of an object the appropriate classification level is
determined according to the given complexity threshold (class confusion score
tolerance).

[]classesnumii
otherwise

ixDTclass
xcc

DTsnum

j

j
i _...1,;

;0

),(;1
)(

_

1

∈∀
⎩
⎨
⎧ =

= ∑
=

 (1)

∑
=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

classesnum

i

i

xcc

xcc
xCCS

_

1

2

max

1
)(

)(
)((2)

2.2 The Outline of AREX

AREX is a rules extracting algorithm that induces one classification ruleset for each
classification level based on a given training set. It includes a hybrid system of two
basic algorithms:

1. an evolutionary algorithm genTrees for the construction of DTs [13], and
2. proGenesys system for the automatic evolution of programs in an arbitrary

programming language.

The algorithm genTrees is used for the induction of decision trees, which are then
used for the distribution of training objects into classification levels (as described

454 V. Podgorelec

above) and for inducing an initial set of classification rules. The proGenesys system is
used for the construction of classification rules on a single level. The basic outline of
AREX is presented in Figure 2.

0. input: a set of training objects S and class

confusion score tolerance ccst=0.5
1. with genTrees build T evolutionary DTs based on

training objects from S
2. for each object x from S: if CCS(x)≤ccst, then move

x from S to S*
3. reject ⎣T/2⎦ of the less accurate DTs and convert the

remaining ⎡T/2⎤ DTs into R initial classification
rules

4. with proGenesys create another R classification
rules randomly; initial population now contains 2×R
classification rules

5. with proGenesys evolve the final set of
classification rules based on training set S*

6. find the optimal final set of classification rules
at the current classification level

7. if S is not empty (there are still non-classified
training objects for the next level):

a. add |S| randomly chosen objects from S* to S
b. increase ccst=2×ccst
c. repeat the whole procedure for the next

classification level from step 2
8. finish if S is empty

Fig. 2. The basic algorithm AREX

2.3 Evolutionary Algorithm genTrees for the Construction of DTs

A first step of the genetic algorithm is the induction of the initial population. A
random decision tree is constructed based on the algorithm presented in Figure 3.

1. input: number of attribute nodes V that will be in
the tree

2. select an attribute Ai from the set of all possible K
attributes and define it a root node tn

3. in accordance with the selected attribute's Ai type
(discrete or continuous) define a test for this node
tn:
a. for continuous attributes in a form of ƒtn(Ai) <

φi , where ƒtn(Ai) is the attribute value for a

data object and φi is a split constant

b. for discrete attributes two disjunctive sets of
all possible attribute values are randomly
defined

Expert-Assisted Classification Rules Extraction Algorithm 455

4. connect empty leaves to both new branches from node
tn

5. randomly select an empty leaf node tn
6. randomly select an attribute Ai from the set of all

possible K attributes
7. replace the selected leaf node tn with the attribute

Ai and go to step 3
8. finish when V attribute nodes has been created

Fig. 3. The basic algorithm for the construction of a random decision tree

For each empty leaf the following algorithm determines the appropriate decision
class: let S be the training set of all training objects N with M possible decision classes
ω1, .., ωM and Ni is the number of objects within S of a class ωi. Let Stn be the sample
set at node tn (an empty leaf for which we are trying to select a decision class) with
Ntn objects; Ni

tn is the number of objects within Stn of a decision class ωi. Now we can
define a function that measures a potential percentage of correctly classified objects
of a class ωi:

i

tn
i

N

N
itnF =),((3)

Decision ωi
tn for the leaf node tn is then marked as the decision ωi, for which F(tn,i) is

maximal. The ranking of an individual DT within a population is based on the local
FF:

∑ ∑
= =

⋅++−⋅=
M

i

V

i
uiii nuwtncaccwLFF

1 1

)()1((4)

where M is the number of decision classes, V is the number of attribute nodes in a
tree, acci is the accuracy of classification of objects of a specific decision class ωi, wi
is the importance weight for classifying the objects of the decision class ωi, c(tni) is
the cost of using the attribute in a node tni, nu is number of unused decision (leaf)
nodes, i.e. where no object from the training set fall into, and wu is the weight of the
presence of unused decision nodes in a tree.

2.4 System proGenesys for Automatic Evolution of Rules

For evolving classification rules we used a system we developed for the evolution of
programs in an arbitrary programming language, described with BNF productions –
proGenesys (program generation based on genetic systems) [11]. In our approach an
individual is represented with a syntax tree (a derivation tree). To get the final
solution this tree (genotype) is transformed into a program (phenotype) [18]. In the
case of rule induction, a single rule is represented as a simple program (i.e. a
derivation tree), that evolves through generations.

A good classification rule should simultaneously be clear (most of the objects
covered by the rule should fall into the same decision class) and general (it covers

456 V. Podgorelec

many objects – otherwise it tends to be too specific). Those two criteria can be
measured using the following equations:

classdecisionofobjectsofno

objectsclassifiedofno
generality

.
1. −= (5)

1

1

2

2

1

Ω

Ω−= ω

ω

clearness (6)

where ω1 is the number of objects covered by the rule that belong to the most frequent
decision class, ω2 is the number of objects covered by the rule that belong to the
second most frequent decision class, Ω1 is the number of all objects in the training set
that belong to the most frequent decision class of the rule, and Ω2 is the number of all
objects in the training set that belong to the second most frequent class of the rule.
Now a fitness function can be defined as

∑
=

+×=
V

i
itncgeneralityclearnessFF

1

)((7)

where the last part represents a cost of the use of specific attributes, the same as in the
local fitness function LFF in building DTs (Eq. 4).

2.5 Finding the Optimal Set of Rules

System proGenesys is used to evolve single rules, whereas for the classification of all
objects on a specific level a set of rules is required. For this purpose between all the
evolved rules a set of rules should be found that together classify all the objects – with
high classification accuracy and a small number of rules. A problem is solved with a
simple genetic algorithm that optimizes the following fitness function:

∑∑
==

⋅+⋅++−⋅=
V

i
umi

M

i
ii nuwnmwtncaccwFF

11

)()1((8)

where the first two parts are the same as in the LFF for building decision trees (Eq. 4),
and instead of a penalty for unused decision nodes penalties for multiple classified
objects and non-classified objects are used here. The appropriate coverage of the
training set is thus achieved by reducing the number of not classified and multiple
classified objects [2].

3 A Case Study

In order to assess the presented approach, the method has been applied to a medical
dataset. The early and accurate identification of cardiovascular problems in children
patients is of vital importance. Based on a specially defined protocol to collect the

Expert-Assisted Classification Rules Extraction Algorithm 457

important data, a cardiovascular dataset has been composed from the clinical database
to be used for the knowledge discovery process. It contains data for 100 pediatric
patients from Maribor Hospital. The attributes include general data (age, sex, etc.), a
health status (data from family history and child’s previous illnesses), a general
cardiovascular data (blood pressure, pulse, chest pain, etc.) and more specialized
cardiovascular data – data from child’s cardiac history and clinical examinations (with
findings of ultrasound, ECG, etc.) [1]. In this manner 37 different values have been
determined for each patient, which should reveal the type of patients’ cardiovascular
problems.

In the dataset each patient has been diagnosed in one of the five different possible
diagnosis (Table 1). The distribution of diagnosis classes is non-uniform, with the
frequency of the most frequent class 5 times higher than the frequency of the less
frequent class.

Table 1. The basic information for the used dataset

diagnosis decision class
name frequency

class 0 innocent heart murmur 36
class 1 congenital heart disease with left to right shunt 12
class 2 aortic valve disease with aorta coarctation 23
class 3 arrhythmias 22
class 4 non-specific chest pain 7

The small size of the dataset, the high number of decision classes and the non-
uniformity of class distribution all speak for the difficult classification problem. On
the other hand, the number of attributes and the lack of comprehensive clinical trials
in the specific domain, make the problem very interesting for the knowledge
discovery process.

3.1 Results

The most common measure of efficiency when assessing a classification method is
accuracy, defined as a percentage of correctly classified objects from all objects
(correctly classified and not correctly classified). In many cases, especially in
medicine, accuracy of each specific decision class is even more important than the
overall accuracy. When there are two decision classes possible (i.e. positive and
negative patients), the common measures in medicine are sensitivity and specificity.
In our case of cardiovascular dataset, as in many other real-world medical datasets,
there are more than two decision classes possible, actually five. In this case the direct
calculation of sensitivity and specificity is not possible. Therefore, the separate class
accuracy of i-th single decision class is calculated as:

ii

i
ik FT

T
ACC

+
=, (9)

458 V. Podgorelec

and the average accuracy over all decision classes is calculated as

∑
= +

⋅=
M

i ii

i
k FT

T

M
ACC

1

1
 (10)

where M represents the number of decision classes.

Quantitative results. To evaluate the classification results of our method AREX the
above mentioned measures of efficiency were calculated based on 10 independent
evolutionary runs. For the comparison with other classification algorithms we
calculated the classification results obtained with algorithms ID3, C4.5, See5/C5 [16,
17], Naïve-Bayes (N-B), and instance-based classifier (IB) [8]. Based on 10-fold
cross validation for each algorithm we calculated overall accuracy on a training set
and a testing set (Table 2 and Figure 4), average class accuracy on a training set and a
testing set (Table 3 and Figure 5), and also average accuracies on specific classes on a
testing set (Figure 6).

From the classification results (Table 2 and Figure 4) it can be seen that there are
three algorithms that achieved perfect score on a training set, namely ID3, IB, and
AREX. On the other hand, no algorithm scored perfectly on a testing set. The best
score was achieved by AREX (89.85), followed by Naïve-Bayes (81.25) and See5/C5
(79.17). Both ID3 and IB, which scored perfectly on a training set, achieved much
worse results – this fact speaks for extreme over-fitting in those two (also present in
C4.5 to some extent). The best classification results of AREX on both training and
testing set speak for high learning and generalization capability of AREX (at least for
the used dataset). Beside AREX, only See5/C5 and Naïve-Bayes scored similarly on
both training and testing set (although not as well as AREX). Standard deviation of
the results is also the lowest with AREX (beside C4.5, ID3, and Naïve-Bayes), what
is actually surprisingly outstanding for an evolutionary method.

When considering the average class accuracy, i.e. accuracies achieved on single
decision classes (Table 3 and Figure 5), similar conclusions as with the overall
accuracy can be made regarding the comparison of a training and a testing set scores.
The best result (by far) on a testing set was achieved by AREX (85.83), followed by
Naïve-Bayes and See5/C5 (71.67). Again, AREX achieved the lowest standard
deviation of the results. This result is very important and speaks for AREX’s ability to

Table 2. Average classification accuracy on training and on testing set for different
classification algorithms

accuracy on the training set [%] accuracy on the testing set [%] classification
algorithm average stdev average stdev
See5/C5.0 76.00 1.33 79.17 4.17

C4.5 88.67 2.00 68.75 2.08
AREX 100.00 0.00 89.58 2.08

ID3 100.00 0.00 72.92 2.08
IB 100.00 0.00 72.92 6.25

Naïve-Bayes 88.00 5.33 81.25 2.08

Expert-Assisted Classification Rules Extraction Algorithm 459

See5/C5 C4.5 AREX IB ID3 Naive-Bayes
70

75

80

85

90

95

100

105

ac
cu

ra
cy

Average accuracy with std. deviation on train data.

See5/C5 C4.5 AREX ID3 IB Naive-Bayes
65

70

75

80

85

90

95

ac
cu

ra
cy

Average accuracy with std. deviation on test data.

a) training data b) testing data

Fig. 4. Average accuracy for different classification algorithms

Table 3. Average class accuracy on training set and on testing set for different classification
algorithms

class accuracy on the
training set [%]

class accuracy on the
testing set [%]

classification
algorithm

average stdev average stdev
See5/C5.0 65.67 35.00 71.67 38.80
C4.5 84.65 11.01 65.00 29.30
AREX 100.00 0.00 85.83 23.33
ID3 100.00 0.00 66.67 30.61
IB 100.00 0.00 60.83 31.17
Naïve-Bayes 89.64 8.12 71.67 28.93

See5/C5 C4.5 AREX ID3 IB Naive-Bayes
30

40

50

60

70

80

90

100

110

ac
cu

ra
cy

Average class accuracy with std. deviation on train data.

See5/C5 C4.5 AREX ID3 IB Naive-Bayes
20

30

40

50

60

70

80

90

100

110

120

cl
as

s
ac

cu
ra

cy

Average class accuracy with std. deviation on test data.

a) training data b) testing data

Fig. 5. Average class accuracy for different classification algorithms

460 V. Podgorelec

class 0 class 1 class 2 class 3 class 4

0

20

40

60

80

100

ac
cu

ra
cy

Average class accuracies on test data for different methods.

See5/C5
C4.5
AREX
IB
ID3
Naive-Bayes

Fig. 6. Average class accuracies on a testing set for different classification algorithms

0 10 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

generations

fit
ne

ss
 s

co
re

Average and best fitness of AREX solutions for first 100 generations.

best
average

Fig. 7. Change of fitness through the first 100 generations

classify equally well different decision classes, either if they are more or less frequent.
In most of the classification algorithms the less frequent decision classes are often
neglected or even ignored, because they do not contribute much to the overall
accuracy. However, especially in medicine those less frequent classes are very
important, since they usually represent specific patients, which have to be treated
even with more care. Furthermore, the correct classification of those rare cases has the
highest potential to reveal some new patterns to medical experts. The class accuracies
for all five decision classes, as achieved with different algorithms, are presented in
Figure 6. There can be seen that AREX scored the best in all but class2.

For the clear understanding of induced rulesets by domain experts it is important
that the number of classification rules is not very high. When using evolutionary
methods it is also important to guarantee the convergence of evolutionary runs with
stable increase of fitness scores. Figure 7 shows an average convergence rate of an

Expert-Assisted Classification Rules Extraction Algorithm 461

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

generations

nu
m

be
r

of
 r

ul
es

Number of classification rules for average and best AREX solution.

best
average

Fig. 8. Number of induced classification rules through the first 100 generations

evolutionary run for the first 100 generations; a moderate and stable increase can be
seen with a few bigger drops. Figure 8 shows the number of induced classification
rules for average and best solution during the evolution of the first 100 generations;
after some initial oscillation the number of rules remains stable between 5 and 15 rules.

4 Conclusion

The quantitative classification results of the presented method on the studied
cardiovascular dataset are outstanding; regarding the accuracy and the class accuracy
our method outperformed all of the well known classification algorithms considered
in the case study. Although the experiments do not directly show the influence of
expert knowledge on the classification results, it is reasonable to believe that it had
contributed a small, but important part.

On the other hand, it is exactly this influence of expert knowledge on the
classification process that can be seen as the biggest disadvantage of the proposed
method. Namely, the machine-assisted learning paradigm of AREX requires an expert
to qualitatively assess a set of rules for their relevancy several times before the whole
process is finished. None of the compared algorithms requires any interaction, which
makes them more appropriate for everyday practice. On the other hand, it is enough
for the knowledge discovery process to be performed only once, after which the
obtained results can be used indefinitely. Especially if they are good.

Considering all the results, it can be concluded that the presented machine-assisted
learning approach, as presented in this paper and implemented in AREX, equip the
medical experts with a powerful tool to 1) help them in diagnosing, 2) confirm their
existing knowledge about a medical problem, and 3) enable them searching for new
facts, which should reveal some new interesting patterns and possibly improve the
existing medical domain knowledge.

In this manner, we would like to perform more exhaustive testing on other datasets
and in other domains. Furthermore, we will work on the integration of domain
knowledge right within the machine learning process in order to reduce the experts’
effort in assessing the evolving classification rules.

462 V. Podgorelec

References

1. Anderson, H.R., et al.: Clinicians Illustrated Dictionary of Cardiology. Science Press,
London (1991)

2. Anglano, C., Giordana, A., Lo Bello, G., Saitta, L.: An experimental evaluation of
coevolutive concept learning. In: Proceedings of the International Conference on Machine
Learning ICML 1998, pp. 19–27 (1998)

3. DeJong, K.A.: Hybrid learning using genetic algorithms and decision trees for pattern
classification. In: Proceedings of the IJCAI Conference (1995)

4. Freitas, A.A.: A survey of evolutionary algorithms for data mining and knowledge discovery.
In: Advances in Evolutionary Computation, pp. 819–845. Springer, Heidelberg (2002)

5. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San
Francisco (2000)

6. Kononenko, I.: Machine learning for medical diagnosis: history, state of the art and
perspective. Artificial Intelligence in Medicine 23, 89–109 (2001)

7. Magoulas, G.D., Prentza, A.: Machine Learning in Medical Applications. In: Paliouras, G.,
Karkaletsis, V., Spyropoulos, C.D. (eds.) ACAI 1999. LNCS (LNAI), vol. 2049, pp. 300–
307. Springer, Heidelberg (2001)

8. Machine Learning in C++, MLC++ library, http://www.sgi.com/tech/mlc
9. Papagelis, A., Kalles, D.: Breeding decision trees using evolutionary techniques. In:

Proceedings of the ICML 2001 (2001)
10. Peña-Reyes, C.A., Sipper, M.: Evolutionary computation in medicine: an overview.

Artificial Intelligence in Medicine 19(1), 1–23 (2000)
11. Podgorelec, V.: ProGenesys – program generation tool based on genetic systems. In:

Proceedings of the ICAI 1999, pp. 299–302 (1999)
12. Podgorelec, V., Kokol, P.: Towards more optimal medical diagnosing with evolutionary

algorithms. Journal of Medical Systems 25(3), 195–220 (2001)
13. Podgorelec, V., Kokol, P.: Evolutionary induced decision trees for dangerous software

modules prediction. Information Processing Letters 82(1), 31–38 (2002)
14. Podgorelec, V., Kokol, P., Molan Stiglic, M., Hericko, M., Rozman, I.: Knowledge

discovery with classification rules in a cardiovascular dataset. Computer Methods and
Programs in Biomedicine 80(1), S39–S49 (2005)

15. Podgorelec, V., Zorman, M.: Decision Trees. In: Meyers, R.A. (ed.) Encyclopedia of
Complexity and Systems Science, vol. 2, pp. 1826–1845. Springer, New York (2009)

16. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco
(1993)

17. RuleQuest Research Data Mining Tools, http://www.rulequest.com
18. Ryan, C.: Shades – a polygenic inheritance scheme. In: Proceedings of Mendel 1997

Conference, pp. 140–147 (1997)
19. Sack, U., Knoechner, S., Warschkau, H., Pigla, U., Emmrich, F., Kamprada, M.:

Computer-assisted classification of HEp-2 immunofluorescence patterns in autoimmune
diagnostics. Autoimmunity Reviews 2, 298–304 (2003)

20. Tan, K.C., Yu, Q., Heng, C.M., Lee, T.H.: Evolutionary computing for knowledge
discovery in medical diagnosis. Artificial Intelligence in Medicine 27(2), 129–154 (2003)

21. Wang, X.-H., Zheng, B., Good, W.F., King, J.L., Chang, Y.-H.: Computer-assisted
diagnosis of breast cancer using a data-driven Bayesian belief network. International
Journal of Medical Informatics 54, 115–126 (1999)

22. Weiss, S.M., Indurkhya, N.: Predictive Data Mining. Morgan Kaufmann, San Francisco
(1998)

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 463–474, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Information Extraction from Concise Passages of Natural
Language Sources

Sandi Pohorec, Mateja Verlič, and Milan Zorman

University of Maribor, Faculty of Electrical Engineering and Computer Science, Smetanova
ulica 17, 2000Maribor, Slovenia

{Sandi.Pohorec,Mateja.Verlic,Milan.Zorman}@uni-mb.si

Abstract. This paper will present a semi-automated approach for information
extraction for ontology construction. The sources used are short news extracts
syndicated online. These are used because they contain short passages which
provide information in a concise and precise manner. The shortness of the
passage significantly reduces the problems of word sense disambiguation. The
main goal of knowledge extraction is a semi-automated approach to ontology
construction.

Keywords: knowledge engineering, knowledge formalization, knowledge
extraction, ontology construction, ontology population, natural language
processing, POS tagging, named entity recognition.

1 Introduction

Information extraction (IE) is a technology based on analysing natural language in
order to extract snippets of information. The process takes texts (and sometimes
speech) as input and produces fixed format,unambiguous data as output [1].
Information extraction tries to extract, from natural language, several different types
of information: entities, mentions, descriptions of entities, relations between entities
and events involving entities. Entities in text are people, places, dates, mentions are
the places in the text where an entity is mentioned (by its name or reffered to). The
process of named entity recognition is believed to be weakly domain-independent.
This means that entity recognition would need minor changes when switching the
process from healt news to technology news and major changes when switching from
news to scientific literature [1].

Ontology construction is defined [1] as consisting of the following steps: domain
understanding, data understanding, ontology learning, ontology evaluation and
refinement. The task of ontology learning is addressed in this paper. We are focusing
on the definition of key ontology terms and relations between them. As the example
we will use an ontology that focuses on “computer hardware” and we will be using
the news items to find new instances of ontology concepts and additional information
about them. For these we are using knowledge discovery approaches on a collection
of documents. The approach is semi-automated, human interaction is intensive in the
first phases. We are using natural language processing in order to determine domain
terms and information about them. This is the data used to populate the ontology (or

464 S. Pohorec, M. Verlič, and M. Zorman

enhance it). The understanding of the text meaning is a decisive element in the
extraction process.

To understand natural language a complex process is required. Meaning cannot be
inferred with only the simple sequencing of individual word meaning from
dictionaries. The process of understanding natural language is comprised of sentence
parsing, semantic meaning representation and interpretation of the meaning in the
context of the target domain. Naturally as the average length of the processed texts
increases, this also increases the complexity of the sense disambiguation. For these
reasons we have chosen to process shorter, more concise passages of text where the
meaning is summarized with only a few sentences. Since there is a limited amount of
sources of these particular data type we have chosen the online news services as the
primary data source. Also an important factor in the natural language understanding is
the scope of the approach. In other words the factor varies with regard to the
understanding of general (multi-domain) text versus understanding domain specific
text. Since we are extracting only domain-specific data we are assigning only domain-
specific meaning to the terms extracted.

2 Domain and Data Understanding

The process of domain understanding is vital to the success of knowledge extraction.
A knowledge engineer rarely possesses enough knowledge on the target domain. One
of the first tasks in the domain understanding is the definition of the domain
boundaries. This is accomplished with an extensive examination of the target domain.
Understanding of the domain is crucial if the knowledge engineer is to incorporate his
skills in the entire knowledge extraction process. Domain boundaries are defined with
a firm, formal definition of the target domain. This definition should leave no
questions regarding what lies inside the domain and what outside. For our purposes
the domain is defined as knowledge on computer hardware. The source data for the
extraction process will be online news. They are syndicated with the use of RSS
(Really Simple Syndication) format. RSS [2] is a web content syndication format; all
RSS files must conform to the XML 1.0 [3] specification. According to the RSS each
document is a channel. The channel has a list of items. The required elements of a
channel are: title, link and description. Elements of an item are: title, link, description,
author, category, comments, enclosure, guid, publication date and source.

In order to gather the data we have implemented a crawler similar to the web
crawlers of search engines [4].The major tasks of the crawler we developed, for the
transfer of news sources, do not differentiate from a typical web crawler: continuous
visiting of content and content downloading. However the content in the news
syndicated is for the most part already in plaintext. Therefore the problem of the
transformation to plaintext that in traditional crawlers is quite demanding is reduced
only to the transformation of the content in html.

 At the first stage of the news gathering all news sources are treated equally - the
revisiting policy is uniform and the revisiting interval is set to a very frequent degree
(so not to miss any news).After some time when the statistics on the frequency of
news publishing for individual sources are calculated the policy changes to a
proportional one. The latter dictates frequency of visits according to the publishing

 Information Extraction from Concise Passages of Natural Language Sources 465

style of individual sources. The sources that publish more visits are visited more
frequently and others less frequently. The interval between visits is based on the
probability of observed content change [5]. The metric is calculated with the
following equation: 1 (1)

This way the work load is more evenly distributed and the number of visits which
result in no new content is reduced.

The crawler in the terms of content limitation is a focused crawler [6].

3 Natural Language Processing

In order to acquire new terms, their descriptions and relations to other entities,
multiple steps of natural language preprocessing are necessary. For the approach we
are presenting these include: tokenization, part-of-speech tagging, lemmatization, and
chunking (grouping of individual words into syntactically linked parts).

For the entire natural language processing process (NLP) we are using a custom
framework that provides dynamic workflow capabilities for NLP. The system is
designed with formal, strong typed modules that can be combined to a custom
workflow. Each module is a NLP module that is formally described (formal signature
of the required input parameters and type of results returned) and enables automatic
validation of the workflow (if one module can be used with another). The architecture
of the framework is shown on Fig. 1.For the news processing we have created a
custom workflow that is comprised of the following modules: word and sentence level
tokenization, part-of-speech (POS) tagging and chunking, named entity recognition
and the sentence level syntactic features resolution (relations between individual words
in a sentence). These modules are examined in their corresponding subsections.

3.1 Word and Sentence Level Tokenization

When processing natural language the texts are essentially just sequences of
characters without explicit annotations of word and sentence level boundaries. Since
most NLP processing applications work on sentences and words, they require
appropriate levels of tokenization [7].The process of tokenization is highly dependent
on the language on which it is being done. Alphabet languages separate words with
spaces. This enables the simplest of approaches (use space as the delimiter between
words) to achieve effective word tokenization. This level, although quite capable, is
insufficient for the use of tokenization in a knowledge extraction process. Well known
problems in tokenization are: ambiguity of the period punctuation mark and others
(exclamations), multi word expressions (for instance 1. January 2010), abbreviations
where one word actually represents two (“we’ll” actually represents “we will”),
separated words (two words are actually one) and missing spaces (typing errors).

Punctuation ambiguity is most common with the period mark. The period can be
used for in an abbreviation, an acronym, a date and other. Other punctuations are less
ambiguous. Of course there are exceptions, such as “Yahoo!” where the exclamation
point is a part of the company name. Colon and semicolon are often difficult to

466 S. Pohorec, M. Verlič, and M. Zorman

Fig. 1. The architecture of the framework used for natural language processing. The consumer
application (news processing) uses the server service broker to create and execute workflows
that combine different NLP services. The server service broker sequentially invokes each NLP
service until the workflow is completed.

interpret since they can represent the end of a sentence, the beginning of an
enumeration or just punctuations within the sentence. Also multi word expressions are
an exception to the rule that a space separates two words. These expressions should be
handled without separating the words. Separated words (two words that are actually
one, they contain a hyphen and a carriage return line feed character; CRLF) that are a
consequence of line breaks are most commonly an instance of one of the following
cases: the word was split because of the line break (the hyphen and the CRLF should
be removed), the word is normally written with a hyphen (the CRLF should be
removed) and the passage contains a phrase such as pre- and post-processing (the
CRLF should be replaced with a space).

Since the tokenization process is highly content dependent it is essential to increase
its effectiveness with an analysis of the individual words in order to determine which
punctuation marks are used as delimiter and which only serve as syntactic or semantic
annotations (period ending an abbreviation is not a delimiter, it is however an
syntactic annotation). For the purpose of analysis and examination the tagger that
combines hard coded rules and an ensemble of specialized taggers (also used with
POS tagging). These are combined with the boosting[8] method. The taggers
ensemble is comprised of four different classes of taggers: (1) an example based
tagger (with example dataset), (2) a tagger that generates examples according to some
logic,(3) a tagger that uses regular expressions and (4) a combination tagger that tags
a sequence of words tagged by other taggers. Examples of taggers implemented are:

NEWS PROCESSING

SERVER

DOCUMENTS

SERVICE BROKER

NEWS PROCESSING

NLP SERVICE

SERVICE BROKER

NLP PROCESSING

SERVICE BROKER

WORKFLOW
CREATION /
EXECUTION

PROCESSING
REQUEST

 Information Extraction from Concise Passages of Natural Language Sources 467

name tagger (type 1), number generation tagger (type 2 - generates word
representation for numbers), email and web address taggers (type 3) and multiword
entity tagger (type 4). The latter tags entities such as “prof. John Ryan” where a
combination of an abbreviation and two names forms a multiword entity.

3.2 Part-of-Speech Tagging and Chunking

For the part of speech tagging, we are using a hybrid tagger composed of the TnT
tagger [9] and our own dictionary-pattern based tagger. The combination is used for
mutual verification of the correctness of tagging and enhancing the results. Our
implementation of the tagger is a pattern based approach that is intended for sentence
scale tagging. The algorithm of the pattern based tagger follows these steps:

1. Loop through all words in a sentence. Try to determine each word’s part-of-
speech with the use of dictionaries. If there is no dictionary entry, tag the current
word with unknown tag (“?”). If the word has multiple parts-of-speech (the same
word can be a noun or a verb) tags assign a tag that indicates multiple possible
MSD (morphological syntactic descriptor) tags and associate all of the possible
MSD tags to the word. If however the word has only one possible MSD tags assign
that tag to the word.

2. Check if any of the unknown words (tagged with “?”) can be POS tagged with the
ensemble of specialized taggers (use only taggers which are known to be highly
reliable).

3. If the sentence contains any words with multiple possible tags: find sentences in
the corpora that are similar to the currently processed sentence and try to resolve
the words with multiple tags. Use statistical similarity measures to determine
which of the possible tags the correct one is.

4. If the sentence still contains (after steps 1 and 2) any unknown words: determine
the possible word tags from the similar sentences in the corpora. Evaluate the
statistical probabilities of each possibility and use the most probable one.

Step 1 is rather simple to understand, since it is mainly concerned with dictionary
lookup. The ensemble used in step 2 is the same briefly described in subsection 3.1.
So we continue with the explanation of step 3. Each of the sentences in the example
set has the full string representation, each of the words have MSD tags assigned. Each
sentence also has a sentence pattern. The pattern is a single string that contains only
non-numeric characters. Each word in the sentence is represented as a single character
(the first letter in the MSD). The “NVSN” pattern describes a sentence where the first
word is a noun (N), the second a verb (V), the third a preposition (S) and the fourth
again a noun (N). The search for similar sentences is conducted with the use of full-
text search operators in a relational database. This is the reason why unknown words
are tagged with “?”. “?” is a wild card operator (any character match). Using
the wildcard operator it is simple to find sentences that are similar to the current one.
The search itself is executed in two phases: in the first the sentences that match the
number of words are sought and in the second sentences that exceed the current word
count are sought (they are longer and contain a sequence of words similar to the
current sentence).

468 S. Pohorec, M. Verlič, and M. Zorman

Step 4 evaluates the statistical probability that a certain word can be assigned a
specific part-of-speech tag. This process is a combination of statistical factors and
suggestions provided by the specialized taggers ensemble. The statistical factors are
essentially the matching percentage between the processed sentence and the pattern
matched one. If every word, except the unknown one, matches in number, gender,
case, etc. it is very probable that the unknown word is in the same part-of-speech as
the word in the pattern matched sentence. The statistical factors are combined with
the ensemble suggestions according to the following possible scenarios: (i) statistics
suggests an MSD that matches the suggestion from the ensemble: the MSD is
accepted and used to tag the unknown word, (ii) the suggestions do not match: the
choice between them is made according to the probability and the known reliability of
the ensemble member that provided the suggestion (if multiple members suggested it,
the reliability is a normalized sum). If the calculated probability is low and the taggers
are reliable (have been proven in the past) the ensemble suggestion is selected. In the
opposite case the tag from the statistical evaluation is selected.

When every word has been POS tagged, they are chunked together according to
grammar rules. The result of this process is the parse tree. An example of the tree for
a simple sentence is shown on Fig.2. At the end of this phase of preprocessing, words
have been assigned their individual local information (POS tag and chunk
identification), necessary for the sentence disambiguation process.

Fig. 2. The result of the POS tagging and chunking, the parse trees, shown on the example
sentence "John was late". Each word is tagged with a POS tag and the words “John” and “was”
are chunked together to form a noun phrase.

3.3 Named Entity Recognition

For the named entity recognition we are again using a hybrid approach. For the
detection of known entities a dictionary of all ontology terms is used. As for the
detection of previously unknown entities we are using a trend analysis based
approach. It incorporates time aligned multi language news on the same subject. This
approach is based on the common news property: when something occurs it is quickly
reported all over the world. Usually there is a time interval, on which news on the
new subjects are reported continuously. So when a new term emerges it is mentioned

 Information Extraction from Concise Passages of Natural Language Sources 469

constantly for a (short) period of time. This metric, we believe, can be used to
distinguish ontology terms from other, common words.

The candidates for new ontology terms are the unknown words in the processed
news.Since named entities are sought after only unknown words that have been
tagged as nouns by the POS tagger are considered for further evaluation.

The approach for the verification of an individual unknown word as a domain term
is based on trends analysis. A prerequisite for the approach is a long enough history of
processed news stories. The analysis of every word is essentially the daily word
occurrence frequency analysis. The procedure is comprised of these steps:

• Determine the daily occurrence frequencies for the word for a predetermined
time period.

• Extract the individual intervals where the word frequencies are higher from the
neighboring days.

• Check if the intervals are spikes (the average frequency count in the interval is
much higher than its surroundings).

• Cross check the word usage in other languages (news items in other
languages).

Fig. 3 shows the chart of the frequency of occurrence for the term “iPad” on a time
period from mid-2008 until May of 2010. As we can see this term does have the
characteristic spikes on its usage counters. The first spike occurs on the interval from
the 25. to the 27. of May 2009. While the previous interval (April 2008 – 25. May
2009) has an average frequency of occurrence of 3, the three days in question have an
average of 138. Similar, only more powerful in frequency of occurrence, is the
interval from the 30. of March 2010 to the 14. of April where an average frequency of
the term is 1318. The spikes on the English language news items are also correlated to
the non-English news items therefore proving this to be a domain term.

The local features of the word, confirmed by the analysis to be domain terms, are
enhanced with the tag indicating this word to be a domain term.

3.4 Sentence Level Syntactic Features

The syntactic features of the sentences need to be inferred in order to be able to
formalize the meaning of the sentence. The formalization process transforms the
meaning of the sentence from a natural language notation to a formal notation. Since
the purpose is to construct ontology on the target domain, the formal notation is that
of ontology.

Ontology is formally defined [10] as a structure: , , , , , , , , , , , , ,

It consists of disjoint set of: (C) concepts, (T) types, (R) relations, (A) attributes, (I)
instances and (V) values. The partial orders (on C) and (on T) define a
concept hierarchy and a type hierarchy, respectively. The function :

specifies which concepts can be linked by this relation. Function : lists the
concepts that an individual attribute belongs to and its datatype. The partial
instantiation functions are: instances to concepts (, values to types , instances

470 S. Pohorec, M. Verlič, and M. Zorman

Fig. 3. Daily occurrence frequencies for the “iPad” term, showing the sought after spikes in
word occurrence frequencies. The spikes determine that the word in question is not used
regularly within the wider domain and that indeed it is the focus of reporting, therefore proving
to be a domain entity.

to relations and values of each attribute of each instance . Usually an
ontology is thought of as a: set of concepts, relationships between concepts and a set
of instances assigned to concepts. The formalization process needs to one of these
tags to every word (chunk) in the processed sentence.

The first step in the formalization of the senteces is the creation of a semantic
network that represents the relationships between individial words. Semantic
networks is a term that encompasses a family of graph-based representations which
share a common set of assumptions and concerns. A visual representation is that of a
graph where node connections are the relations between concepts. Nodes and
connections are labelled to provide the necessary information about the concept and
type of association. The usual transformation from natural language to the semantic
network is the mapping of nouns to concepts and verbs to the connections between
them. The problem can be viewed in the following manner: a sentence without the
punctuation marks is a sequence of words (… and it is the task of the
transfomation to a semantic network to assign each word to its appropriate type
(concept or link). Therefore the transformation is essentially a classification task:
types of semantic network building blocks are the classes and the classification
method assigns each word (chunk) to its appropriate type. The required granularity of
the classification is on the level of coarse grained classes. The transformation uses a
word associated with its POS tag to map it to its type class. We will demonstrate this
procedure an the example sentence:

The iPad has a 9.7-inch glass screen.

 Information Extraction from Concise Passages of Natural Language Sources 471

The vector contains the words with their appropriate POS tags: : , : , : , : , 9.7: … , the Types (function maps the sentence
to a semantic net representation shown on Fig. 4.

Fig. 4. The semantic network representation of the sentence "The iPad has a 9.7-inch glass
screen"

We are using a supervised approach with a labeled training set for the classification
function Types (. The analysis of the news item has shown that the limited lenght
of the syndicated news items is summarized and that the sentences are generally
similar in structure. The approach selected is knowledge based. The knowledge that
the function uses is essentially a machine readable dictionary of manually annotated
sentences. For this purpose a manual selection of the most common sentence types in
the gathered news items has been manually annotated. This is the training set for the
naive Bayes classifier. A Naive Bayes classifier is a simple probabilistic classifier
based on the Bayes's theorem [11]. It calculates the conditional probability of each
type of a word with the use of local word features in the context. The type T is
chosen as the most appropriate type from the formula:
 argmax | , … argmax , … , | , … , argmax ∏ . (2)

Parameter mis the number of features and the final formula is based on the
assumption that the features are conditionally independent from the type. The
probabilities and are estimated as the occurence frequencies in
the training set of type and feature in the presence of the type .

The goal of the semantic network representation is the construction of the subject-
predicate-object triples that are used for the semantic network and for the ontology
learning process.

472 S. Pohorec, M. Verlič, and M. Zorman

4 Ontology Learning

An ontology can be viewed as just another class of models which needs to be
expressed in some kind of hypothesis language [1]. Ontology learning can be
addressed via different tasks: learning the ontology concepts, learning the relationships
between concepts or populating an existing ontology. Formally the ontology learning
tasks are defined in terms of mapping between ontology components, where some of
the components are given and some are missing and we want to induce the missing
ones [1]. Typical ontology learning scenarios are: (1) inducing concepts, (2) inducing
relations, (3) ontology population, (4) ontology generation and (5) ontology updating.

The approach we are presenting can be used for the ontology learning scenarios 2,
3 and 5. Relations inducing is presented on the example from section 3.4 where a new
relationship of has a glass screen has been induced for the hardware device type
tablet computer, the iPad.The main problem in the transformation from the
representation, of the relationships between individual words in a sentence, in the
form of a semantic net and that of the ontology is again a mapping one. The entities,
in the semantic network, need to be mapped to either concepts or instances. For these
purpose the named entity recognition module was included in the preprocessing
workflow. The words tagged as named entities or domain terms as actually the
instances of ontology subjects. However additional information is required for the
mapping to the exact concept. In some cases the news items are manually tagged with
a category tag, usually in the form of one or more words that begin with the
number/hash sign and are positioned at the end of the news item category. For
example: “Title about apples #fruit”, the #fruit tags this news item in the fruit
category, therefore an apple is a type of fruit. However, when this information is
missing or is too ambiguous or can’t be mapped to an ontology concept, additional
information is required for the mapping. This can only be retrieved from the so called
definition statement. A definition statement is a sentence that clearly defines a named
entity to be something. Most common types of definition statements are the

Fig. 5. The semantic network representation of two sentences: "The iPad has a 9.7-inch glass
screen" and “iPad is a tablet computer.”These two networks can be combined as they provide
the necessary information for the ontology population. The latter maps the entity “iPad” to the
ontology concept of tablet computer and the former provides additional information about that
instance (and the concept itself).

iPad

has Screen:
glass

size

Unit:inchValue:9.7 iPad

Is inst. of Computer
: tablet

 Information Extraction from Concise Passages of Natural Language Sources 473

consequence (first the named entity then the definition) and the causal type (first the
definition then the entity). Typical examples of the types respectively are the
following two sentences: “Apples are a type of fruit!” and “A typical example of a
garden fruit is the apple”.

Fig. 5 shows the two semantic representations from two news items sentences.
These two provide enough information to be able to map the recognized entity (iPad)
to the appropriate ontology concept. A computer is a domain concept and combined
information of the two nets provides this information: iPad is an instance of a domain
subject; it has a domain object of a screen with the properties of glass and size. This is
all the necessary information that is required in order to enhance the ontology with a
new instance and associate it with additional (previously unknown) information.

5 Conclusion

We have shown that a semi-automated approach for ontology construction/
population, based on natural language processing of concise passages is successful.
The necessary prerequisite is foremost the amount of the text passages that are used as
data sources. The names entity recognition, based on word use trend analysis, requires
as long a history of news items as possible. This is essential in order to prevent false
positives on entity recognition. However this is not something that involves a lot of
human interaction. Once the crawler has been developed it is only a matter of time
until the amount of news gathered is high enough to allow the accurate recognition of
named entities. For the purposes presented here it is essential that entities are
recognized correctly because they are the basis for the building of the semantic
networks, that represent a formal knowledge representation of the sentences that
contain or refer to named entities. A significant role in the entity recognition is played
by the tokenization and POS tagging modules. However trivial the task of
tokenization seems it is in fact a serious problem. In fact in some cases it is
impossible to tokenize successfully if the context information is not evaluated as well.
Therefore it was decided that the tokenization would be combined with the various
modules of our ensemble tagger to provide the necessary context. The ensemble
tagger plays an important role in the hybrid approach we have chosen for the POS
tagging.

The semi-automated nature of the approach is expressed mostly in the construction
of the initial ontology and the verification of the results. While the full examination of
the successfulness of the approach has not been completed, the initial results show
that with a sufficient level of development of the initial ontology, the approach
provides very usable results. The merit is shown on the fact that the approach
provides an automated means of population the ontology with new instances and their
information. That means the ontology is constantly updated with real world
developments and changes. The updating is a tedious task for knowledge engineers. If
the knowledge represented in any formal means (ontology is a type of knowledge
formalism) is not up to date then its usefulness is degraded linearly or even
exponentially according to the age of the data.

For the future work we are planning an extensive evaluation of both the supervised
and unsupervised uses of the presented approach. Additionally we will explore the

474 S. Pohorec, M. Verlič, and M. Zorman

possibilities of enhancing the approach in such a way that human supervision will be
further reduced. The final goal is to reduce the human involvement in the ontology
population process to its minimum.

References

1. Davies, J., Studer, R., Warren, P.: Semantic Web Technologies: Trends and Research in
Ontology-based Systems. John Wiley & Sons Ltd., Great Britain (2006)

2. RSS 2.0 Specification, http://www.rssboard.org/rss-specification
3. Extensible Markup Language (XML) 1.0, http://www.w3.org/TR/REC-xml/
4. Heydon, A., Najork, M.: A scalable extensible web crawler. In: Proceedings of the Eight

World Wide Web Conference, pp. 219–229 (1999)
5. Brewington, B.E., Cybenko, G.: How Dynamic is the Web. In: Proceedings of the Ninth

International World Wide Web Conference, pp. 257–276 (2000)
6. Chakrabarti, S., van den Berg, M., Dom, B.: Focused crawling: a new approach to topic-

specific Web resource discovery. In: Proceedings of the Eight International Conference on
World Wide Web, pp. 1623–1640 (1999)

7. Grefenstette, G., Tapanainen, P.: What is a word, what is a sentence? Problems of
tokenization. In: 3rd International Conference on Computer Lexicography, pp. 79–87
(1994)

8. Meir, R., Rätsch, G.: An introduction to boosting and leveraging. In: Mendelson, S.,
Smola, A.J. (eds.) Advanced Lectures on Machine Learning. LNCS (LNAI), vol. 2600, pp.
118–183. Springer, Heidelberg (2003)

9. Brants, T.: TnT – A Statistical Part-of-Speech Tagger. In: Proceedings of the Sixth
Conference on Applied Natural Language Processing, pp. 224–231 (2000)

10. Ehrig, M., Haase, P., Hefke, M., Stojanovic, N.: Similarity for ontologies – A
comprehensive framework. In: Proceedings of the 13th European Conference on
Information Systems (2004)

11. Navigli, R.: Word Sense Disambiguation: A Survey. ACM Comput. Surv. 41(2), 1–69
(2009)

A Process to erive Domain-Specific Patterns:
Application to the Real Time Domain

Saoussen Rekhis1, Nadia Bouassida1, Claude Duvallet2,
Rafik Bouaziz1, and Bruno Sadeg 2

1 MIRACL-ISIMS, Sfax University, BP 1088, 3018, Sfax, Tunisia.
{saoussen.rekhis, raf.bouaziz}@fsegs.rnu.tn,

nadia.bouassida@isimsf.rnu.tn
2 LITIS, UFR des Sciences et Techniques, BP 540, 76 058, Le Havre Cedex, France.

{claude.duvallet, bruno.sadeg}@univ-lehavre.fr

Abstract. Domain Specific Design Patterns are sets of objects and com-
ponents that capture the experts knowledge and that can be used in a
specific software domain. They provide for a higher software quality and a
reduced development cost. However, their design remains a difficult task
due to the generality and variability they must encompass, in order to be
instantiated for various applications in the domain. This paper presents a
design process that generates domain specific design patterns from a set
of concrete application designs. The proposed process defines unification
rules that apply a set of comparison criteria on various applications in
the pattern domain. In addition, domain requirements, constraints and
invariants are extracted and then confronted to the pattern, in order to
validate it. The process integrates bottom-up and top-down approaches
and assists the designer in the construction of domain specific patterns.
Finally, the design process is illustrated and evaluated through the design
of a pattern in the real-time domain.

Keywords: bottom-up process, top-down process, domain specific design
pattern, real-time application.

1 Introduction

Design patterns [10] are recognized as a means for design reuse. They present a
successful mechanism adopted by the object oriented community to capture and
promote best practices in the software design. They promise several reuse ben-
efits, such as high quality and a reduced development cost. These benefits have
spread the adoption of patterns to many domains including human computer
interaction, security, hypermedia and real-time systems.

However, due to the fact that general patterns are too abstract, their use can
result in systems that do not correspond to reality. Moreover, their instantiation
remains a difficult task since it is hard to determine in which context or in which
part of the system the patterns can be used. These reasons motivated several
works on domain-specific patterns ([15] [13] [6]). In fact, a domain-specific design

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 475–489, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

D

pattern is a collection of interrelated objects that represent particular software
domain knowledge, and thus supports vertical reuse. It offers a flexible archi-
tecture with clear boundaries, in terms of well-defined and highly encapsulated
parts that are in alignment with the natural constraints of the domain [15].

Nowadays, domain-specific design patterns receive special attention from the
many research communities dealing with reuse and domain knowledge repre-
sentation. One of the reasons for this tendency is the increasing variability of
software systems and the need to acquire expertise in the different evolving do-
mains. Nevertheless, the difficulty of the domain specific patterns development
and specification slows their expansion. This is due essentially to the fact they
have to incorporate flexibility and variability in order to be instantiated for
various applications in the domain. As a result, there is a need for a design pro-
cess that guides the domain-specific patterns development and defines rules to
facilitate their specification.

Several researchers have been interested in domain-specific patterns. How-
ever, most of them deal with patterns representation ([7][11][13][9]) and only
few works are interested in patterns development processes ([17] [5]).

In this paper, we propose a new domain-specific pattern development process
based on a UML profile appropriate to pattern specification and reuse [19]. This
process has to guide the developer in determining the different aspects in which
applications may differ and the common aspects, which remain unchanged in all
these applications. The proposed process is illustrated through the development
of a pattern in the real-time domain: the sensor pattern.

This paper is organized as follows. Section 2 describes related works. Section
3 presents the domain-specific pattern process based on our proposed language
for pattern representation. Section 4 applies our development process to derive
a pattern for the real-time domain. Firstly, it presents three applications (an
air traffic control system [12], a freeway traffic management system [1], and an
industrial regulation system [18]). Secondly, it applies the unification phases
to construct the domain-specific pattern i.e., sensor pattern. Finally, section 5
concludes the paper and outlines future works.

2 Related ork

Domain specific patterns are similar to object-oriented frameworks, since they of-
fer design reuse for a particular domain. However, they differ in their granularity
since frameworks reuse all the domain architecture while domain specific pat-
terns offer only small structures reusable in a certain domain. Thus, to propose
a domain specific patterns development process, we have been inspired in our
work from frameworks development processes, which we briefly present in Sub-
section 2.2. The domain specific pattern development processes are overviewed
in Subsection 2.1.

476 S. Rekhis et al.

2.1 Patterns evelopment rocesses

Domain-specific patterns development processes can be classified as either bottom-
up or top-down.

A bottom-up process starts form a set of applications representing the domain
and identifies common and variable elements. The purpose of examining sample
applications is to create a generic pattern that is understandable and easy to
reuse. Note that the bottom-up design process works well when a domain is
already well understood, for example, after some initial evolutionary cycles [3].
However, there is no guarantee that all domain requirements are met.

A top-down process starts from a domain analysis and then constructs the
design pattern. This means that the design is driven starting from functional re-
quirements towards solution alternatives. Top-down development processes rep-
resents the best solution when the domain has not yet been sufficiently explored
[3]. However, this type of processes discourages many pattern developers since it
is time-consuming and it lacks strategies for the domain requirements analysis.

Raminhos [17] and Caeiro [5] describe steps to follow when a developer wants
to builde a domain-specific pattern. Raminhos [17] focuses on the definition of a
systematic process to guide developers to fill an analysis pattern template. This
template is proposed as a combination of the common features of existing tem-
plates. This process is depicted as an UML activity diagram where each activity
helps filling in one entry of the template. Caeiro [5] focuses on e-learning domain
and decomposes the top-down patterns design process on two steps. According
to this process, the designer starts with the determination of e-learning basic
activities. In the next step, it is necessary to define the control flow between
the different activities. For each activity, it is necessary to describe the actors
involved, the environment and the way in which the actors are going to interact.

In fact, these processes do not provide an efficient assistance for patterns de-
velopment. In addition, they do not clearly identify nor they guide the developer
in finding the pattern fundamental and variable elements. We believe that it is
necessary to define a process that allows to distinguish between pattern fixed
and variable parts, similarly to processes proposed for bottom-up framework
development [20][8] [3].

2.2 Frameworks evelopment rocesses

Frameworks represent other forms of reusable assets for vertical reuse. They rep-
resent an extension to object-oriented designs, that help reuse at a level of ab-
straction higher than classes and patterns. In fact, an object-oriented framework
represents a software architecture that captures several applications’ behaviours
in a specific domain. It is composed of a set of concrete and abstract classes with
their relations. In general, several patterns may be used to structure and to doc-
ument a particular framework. Therefore, the unification rules [8] [3] defined to
generate a framework class diagram can be adapted to create a domain-specific
pattern.

D P

D P

A Process to Derive Domain-Specific Patterns 477

Fontoura et al. [8] propose a development process by considering a set of ap-
plications as viewpoints of the domain, i.e., each application represents a different
perspective of the framework domain. The process defines a set of informal uni-
fication rules that describes how the viewpoints can be combined to compose a
framework. However, the resulting framework consists of an OMT class diagram
and does not specify the interactions between its objects. Furthermore, this pro-
cess assumes that all the semantic inconsistencies between the viewpoints have
been solved. Thus, it does not treat semantic problems (e.g. equivalent terms,
variable terms, and so on).

The bottom-up development framework process, proposed by [3], generates a
framework design by defining formal unification rules that identify automatically
the commonalities and differences between a set of application designs based on
UML. The process is composed of three main steps. The first step extracts the
domain specifications and potential uses of the framework through unification of
the use case diagrams of different applications in the domain. The second step
models the framework static features through unification of the class diagrams
of the given applications. The last step extracts the dynamic framework features
through the unification of sequence diagrams. The above three unification steps
use a set of unification rules based on semantic comparison criteria. Neverthe-
less, it is impossible to be sure that the resulting framework fulfils all domain
constraints and requirements; this depends on the application designs used from
the beginning of the unification process.

In the following section, we propose a domain-specific pattern design process
that combines the bottom-up and top-down approaches in order to facilitate the
pattern developers’ work and to specify patterns with a better quality. In fact,
the process uses three primary steps: (i) the analysis of domain functionalities
and requirements, (ii) the generation of patterns from the unification of a set of
applications and (iii) the validation of the resulting patterns.

3 The evelopment rocess for omain- pecific atterns

The development process generates a domain-specific pattern represented with
the UML profile we have proposed[19]. The objective of this section is two-fold.
Firstly, it describes the stereotypes defined in the proposed UML profile [19]
that guides a designer in instantiating a pattern to derive a specific application.
Secondly, it proposes a process that guides the development of domain-specific
patterns. This process adopts, a bottom- up approach on one hand; since it
generates a pattern from a given set of applications and it completes the approach
with a domain requirements analysis that aims to validate the pattern, on the
other hand.

3.1 UML rofile for Domain- pecific esign atterns

The proposed profile extends UML 2.2 [14] with new concepts related to domain
specific design patterns. The main motivations behind these extensions are to

D P D S P

P S D P

478 S. Rekhis et al.

which belongs to the domain analysis, identifies the most important function-
alities of the domain, i.e. domain sub-problems. The second step collects the
requirements, invariants and constraints that have to be fulfilled by the different
functionalities. The third phase goes through the decomposition of the different
applications according to the already identified functionalities. The fourth step
consists in a unification of a set of application designs in order to capture the
information involved in the domain. The last step checks if all the requirements
and constraints are fulfilled by the pattern, in order to validate it. This step is
crucial since the pattern will be reused in developing further applications of the
same domain. A brief description of these phases is given below:

– Identification of domain functionalities :
After finding out the boundaries of the domain and providing examples of
the applications, the first step is to decompose the domain into several sub-
problems in order to decrease its complexity. Each sub-problem has one main
functional goal to achieve the domain functionality (e.g., data acquisition and
data control are functionalities of the real-time domain). The most impor-
tant functionalities related to a domain are identified through the collection
of information from experts and stakeholders. The different viewpoints of
experts and stakeholders must be compared in order to consider only the
similar needs corresponding to the domain functionalities.

– Identification of requirements :
This step is performed by the patterns designer. It requires many efforts since
it implies a top-down process allowing the refinement of the functionalities
belonging to the domain. In fact, each previously identified functionality
is decomposed iteratively into functions until reaching a level at which the
functions become elementary. This refinement allows the identification of do-
main concepts related to each functionality as well as the associated domain
constraints and invariants. For example, the sensor and measure represent
two concepts belonging to the real-time domain.

– Decomposition of applications :
The already identified domain concepts help the designer to decompose the
applications examples. That is, the designer has to find the relations between
the classes of the application and the domain concepts related to each func-
tionality, in order to determine the application fragments. In fact, a good
decomposition results in application fragments having significant purposes.

– Fragments unification of applications :
In order to unify the different application fragments and to derive the do-
main specific pattern, a set of rules are used. In fact, the unification rules
are an adaptation of those proposed by Ben Abdallah et al. [3] for frame-
works development. Thus, we propose to fuse the common classes to all the
applications and to derive the fundamental elements of the pattern. We add
then the appropriate classes to the applications as variable elements.

The unification rules use semantic correspondence criteria to compare class
names, attributes and operations.

The class name comparison criteria express the linguistic relationships among
class names and consist in the following three relations:

480 S. Rekhis et al.

Fig. 1. The development process for the domain-specific patterns

A Process to Derive Domain-Specific Patterns 481

• N equiv(CA1j ,...,CAnj) means that the names of the classes are either
identical or Synonym.
Note that the class C in the fragmentj of application Ai is represented
by CAij and the fragmentj is the part of application model relative to
functionalityj .

• N var(CA1j ,...,CAnj) means that the names of the classes are a variation
of a concept, e.g. mobile-sensor, passive-sensor, active-sensor.

• N dist(CA1j ,...,CAnj) means that none of the above relations holds.
The attributes comparison criteria use the following three relationships to
compare the attribute names and types:
• Att equiv(CA1j ,..., CAnj) means that the classes have either identical

or synonym attribute names with the same types.
• Att int(CA1j ,..., CAnj) means that the classes CA1j ,..., CAnj have com-

mon attributes.
• Att dist(CA1j ,..., CAnj) means that none of the above relations holds.

The operation comparison criteria use three relations (Op equiv(CA1j ,...,CAnj),
Op int(CA1j ,...,CAnj), Op dist(CA1j ,...,CAnj)) to compare the operation
names and signatures (returned types and parameter types). These relations
are defined in a way similar to the attribute comparison relations.
The design of a domain-specific pattern class diagram is guided by the fol-
lowing unification rules:

R1. If a class is present in all the applications with equivalent attributes i.e.
Att equiv(CA1j ,..., CAnj) and methods i.e. Op equiv(CA1j ,...,CAnj),
then it is added to the pattern as a fundamental class with a highlighted
border.

R2. If a class is present in several applications, then it is added to the
pattern as an optional class if the domain coverage ratio (Rdc) is superior
or equal to 2/3 [3]:

Rdc(C) =
Number of occurrences of C in applications fragments

Number of applications
Otherwise, if the class is present in few applications (i.e. Rdc < 2/3),
then it is too application-specific. Thus, if it is added to the pattern,
it may complicate unnecessarily the pattern comprehension. Then this
class will be added by the designer in a pattern instantiation.

R3. If a set of classes belonging to all the applications share equivalent
attributes and/or methods i.e. Att int(CA1j ,..., CAnj) and/or
Op int(CA1j ,...,CAnj), then there are four cases:
Case 1: if N var(CA1j ,...,CAnj), then an abstract class that have com-
mon attributes and methods is added to the pattern as a fundamental
class. Moreover, a set of sub-classes inheriting from the abstract class
and containing the attributes and methods that are specific to only one
application are added to the pattern.
Case 2: if N equiv(CA1j ,...,CAnj), then a fundamental class is added to
the pattern with common attributes and methods considered as funda-
mental elements, and the distinct attributes and/or methods generated
as optional elements if they are pertinent for the pattern domain.

482 S. Rekhis et al.

Case 3: if N dist(CA1j ,...,CAnj), then a fundamental class is added to
the pattern if the classes (CA1j ,...,CAnj) play the same role related to
one domain concept considered in the requirements identification step.
Otherwise, these classes are too application specific and they are not
relevant to the pattern.
Case 4: if it exists distinct attributes and/or methods that are not per-
tinent for the pattern domain, then a fundamental class is added to the
pattern with minimal number of attributes and/or methods and it is
stereotyped �extensible� in order to indicate that the class can be
extended when reusing the pattern.

R4. If a method exists in all the applications with the same name but with
different signatures, then it will have a corresponding method in the
pattern with an undefined signature and it is stereotyped �variable�.

R5. If two or more classes are transferred in the pattern, then all their
relations (aggregation, inheritance, association) will be maintained in
the pattern.

Note that the resulting domain-specific design pattern is based on our UML
profile appropriate to domain pattern specification [19].

– Pattern validation:
After the applications unification phase, the resulting domain-specific pat-
tern is validated in two steps. First, the obtained domain-specific pattern is
instantiated and confronted with the original application fragments. Second,
the completeness of the pattern is verified by checking if all domain function-
ality requirements and constraints are fulfilled by the obtained pattern. In
fact, the domain-specific pattern development process is iterative and it will
not stop until all the requirements are taken into account by the pattern.

4 A Case Study: The Real-Time Sensor Pattern Development

To evaluate the proposed process and to illustrate the unification rules of the
class diagram, we propose to develop a pattern appropriate for the real-time
(RT) domain. The most important motivations of this choice is to reduce the
complexity of RT applications design. In fact, RT applications must be able to
meet RT constraints, i.e. they have to guarantee that each action (transaction)
meets its deadline, and that data are used during their validity interval. Thus,
it is necessary to give a great importance to RT applications design.

Note that all RT applications share a common behaviour: they monitor and
control the values acquired from the environment through a set of components
that work together to achieve a common objective. By examining these appli-
cations, we distinguish three principal RT functionalities: the RT data acquisi-
tion through sensors, their control and their RT use. We focus in this paper on
modelling the acquisition functionality through the definition of the RT sensor
pattern. The primitive requirements of this functionality are identified through
a refinement process. Thereby, the RT data acquisition sub-problem is decom-
posed into three elementary functions: (i) the sensor observes the environment;

A Process to Derive Domain-Specific Patterns 483

(ii) it detects a physical phenomenon (temperature, pressure, speed, etc.) and
(iii) transmits the acquired measure periodically to the computer unit. A set of
domain concepts such as sensor, measure, and so on are identified during the
refinement step. These concepts facilitate the applications decomposition. That
is, the RT applications fragments related to data acquisition functionality are
defined through the identification of the classes that play the roles of Sensor,
Measure and Observed Element as well as the associated entities.

In the applications fragments unification, we began by choosing three RT
applications: an air traffic control system [12], the COMPASS system [1], which
is a freeway traffic management system, and an industrial regulation system,
which allows the control of the water levels in tanks [18]. Afterward, we con-
struct a dictionary that defines the semantic relations (equivalence, variation,...)
between nouns of classes, attributes and methods. The dictionary is used by the
unification rules to obtain the RT sensor pattern.

4.1 Description of RT Applications

In this section, we describe, briefly, the three RT applications examples:

4.1.1 The COMPASS System: The freeway traffic management systems
have become an important ask intended to improve safety and provide a better
level of service to motorists. In the following, we describe an example of a freeway
traffic management system: COMPASS [1]. We focus precisely on modeling the
compass data acquisition subsystem as illustrated in figure 2.

The current traffic state is obtained from the essential sources: inductance
loop detectors and supervision cameras. In fact, vehicle detector stations use
inductance loops to measure speeds and lengths of vehicles, traffic density,i.e.
number of vehicles in a road segment and occupancy information. These pro-
cessed data are then transmitted periodically to the Central Computer System.
Whereas the supervision cameras are used to confirm the reception od data
through the vehicle detector stations and to provide information on local condi-
tions which affect the traffic flow. The computer system uses the acquired data
stored in a real-time database to monitor traffic and to identify traffic incidents.

For each measure taken from the environment of this system and stored
in the database, the designer must specify the value, the timestamp and the
validity interval to verify the temporal consistency of the collected traffic data.
For example, the value of the vehicle speed measure is temporally consistent
as long as it is no more than twenty seconds. In addition, the designer must
specify the minimum and maximum thresholds of each taken measure in order
to determine the abnormal values for which COMPASS system may detect an
incident.

As illustrated in Figure 2, vehicle speed, vehicle length, traffic volume and
occupancy constitute instances of the Measure class. Moreover, the Vehicle and
the RoadSegment classes represent the physical elements that are supervised by
the passive sensors. The speed and length measures are relative to the Vehicle

484 S. Rekhis et al.

t

class. Whereas the traffic density and occupancy measures are relative to the
RoadSegment class.

Fig. 2. The data acquisition design of a freeway traffic management system

4.1.2 Air Traffic Control System: The aim of the air traffic control is to
avoid collisions and to organize the flow of traffic. It consists of a large col-
lection of data describing the aircrafts, their flight plans, and data that reflect
the current state of the controlled environment [12]. This includes flight infor-
mation, such as aircraft identification, speed, altitude, origin, destination, route
and clearances. In fact, each aircraft has three basic measures which are speed,
altitude and location and one derived measure which is aircraft path. The basic
measures are periodically updated to reflect the state of an Aircraft. The derived
measure is calculated based on altitude and location values, in order to verify if
the aircraft deviates from a predetermined path. Note that, altitude, speed, loca-
tion and path constitute instances of Measure class. All these measures values are
published periodically by sensors supervising the aircrafts controlled elements.

We present in figure 3 a fragment of an air traffic control application relative
to the data acquisition functionality.

4.1.3 Industrial Control System:The purpose of the water level control
of an industrial regulation system is to monitor and to control the water levels
in tanks, ensuring that the actual water level of tank i is always between Low-
level and High-level. [18]. If some of the tanks do not satisfy their boundary
constraints, then the system tries to resolve the problem internally, for example,

A Process to Derive Domain-Specific Patterns 485

Fig. 3. The data acquisition design of an air traffic control system

by rebooting the system. However, if the problem cannot be resolved internally,
then the system requires a special treatment of an external exception handler.

The actual levels of the different tanks are measured periodically by boundary
sticks sensors. Each acquired measure is characterized by a timestamp, a validity
duration that represents the time interval during which the measure is considered
valid and a minimum value and a maximum value of the water level in the tank.
When the water height in the tank reaches its low (or high) desirable limit, then
the filling (or emptying) faucet is activated to inject water into the tank (or to
drain water from the tank).

Figure 4 illustrates the data acquisition functionality of the water level control
system. It indicates that this application controls one type of elements (tanks)
and monitors one type of measure, which is the water height in tanks, through
the boundary sticks passive sensors.

4.2 RT ensor attern onstruction

The RT sensor pattern class diagram is shown in Figure 5. It is obtained by
applying the unification rules as indicated in the following:

– N var (Measure A1, Measure A2, Water height A3), Att equiv (Measure A1,
Measure A2, Water height A3) and Op equiv (Measure A1, Measure A2,
Water height A3). The rule R2 is applied in this case and a fundamental
class Measure is added to the sensor pattern.

– N var (InductanceLoop sensorA1, Active sensorA2, BoundaryStick sensorA3),
Att int (InductanceLoop sensorA1, Active sensorA2, BoundaryStick sensorA3)
and Op dist (InductanceLoop sensorA1, Active sensorA2, BoundaryStick sen-
sorA3). The rule R3 is applied and a set of inheriting classes from the

S P C

486 S. Rekhis et al.

Fig. 4. The data acquisition design of a water level control system

mon attributes and it is stereotyped �extensible�. The methods (set-
Value and getValue) belong respectively to the sub-classes Active Sensor
and passive sensor.

– N dist (RoadSegmentA1, VehicleA1, AircraftA2, TankA3) and Att int (Road-
SegmentA1, VehicleA1, AircraftA2, TankA3). The rule R3 (cf. case 3) is ap-
plied and a fundamental class is added to the pattern because the classes
(RoadSegmentA1, VehicleA1, AircraftA2, TankA3) have the same role which
is observedElement in all the applications examples. The name of the funda-
mental class is relative to the role played by the corresponding applications
classes.

– The rule R5 is applied to transfer the relations between classes in the pattern.

The obtained sensor pattern is valid since all the applications fragments are
found after a pattern instantiation. Moreover, additional constraints and require-
ments, obtained from the requirements identification phase are added to the pat-
tern. In fact, RT applications must use fresh data (timestamp + validity duration
of a measure ≤ current time). Since the measure update depends on the use of
sensor, the validity duration must exceed the periodicity of sensor acquisition
data [16]. An OCL constraint is associated to the Measure class to define this
condition.

In addition to the need of fresh data, RT applications have to use precise data
in order to reflect the continuous change of the external environment. However, it
seems difficult for the transactions to both meet their deadlines and to keep the
database consistent. For this reason, the concept of data quality is introduced in
[2] to indicate that data stored in RT databases may have some deviation from

A Process to Derive Domain-Specific Patterns 487

stract Sensor class are added to the pattern. The Sensor class has the com-ab

functional property which specifies the upper bound of the error. It allows the
system to handle the unpredictable workload of the database since an update
transaction Tj is discarded if the deviation between the current data value and
the updated value by Tj is less or equal than MDE. This attribute is of the same
type as the value attribute.

Fig. 5. Real time sensor pattern class diagram

5 Conclusion

The definition of reusable assets, such as patterns, components and frameworks,
is usually performed by studying examples of existing systems and models for the
domain. This approach, which is purely bottom-up, gives a view of the domain
that is limited to what has been developed in the past. In order to meet this
lack, the research areas of architectures and domain analysis advocate a top-down
approach to achieve systematic reuse. Practice shows that a combination of both
these approaches is often desired or needed. For this reason, this paper proposed
an integrated pattern definition process that supports both the top-down and
bottom-up approaches. It is distinguished from existing methods in two ways:
1) it is based on UML-profile language that visually distinguishes between the
fundamental and variable elements of a pattern, and 2) it defines the different
steps that must be taken to obtain a domain-specific design pattern as well as a
precise set of unification rules that identifies the commonalities and differences
between applications in the domain. The process was illustrated through the
design of a sensor pattern for the real-time domain.

Our future work includes the definition of a process for pattern reuse and the
development of a tool supporting a graphical representation of domain-specific
design patterns and validating the application models against the relevant pat-
terns models.

488 S. Rekhis et al.

their values in the real world. Thereby, we propose to add the Maximum Data
Error (MDE) attribute to the Measure class. This attribute represents a non

References

A Process to Derive Domain-Specific Patterns 489

1. COMPASS website,

http://www.mto.gov.on.ca/english/traveller/compass/main.htm

2. Amirijoo, M., Hansson, J., Son, S.H.: Specification and Management of QoS

in Real-Time Databases Supporting Imprecise Computations. IEEE Transaction

Knowledge and Data Engineering 55(3), 304–319 (2006)

3. Ben-Abdallah, H., Bouassida, N., Gargouri, F., Hamadou, A.B.: A uml based

framework design method. Journal of Object Technology 3(8), 97–120 (2004)

4. Bouassida, N., Ben-Abdallah, H.: Extending UML to guide design pattern reuse.

In: AICCSA, pp. 1131–1138. IEEE, Los Alamitos (2006)

5. Caeiro, M., Llamas, M.,Anido, L.: E- learning patterns: an approach to facilitate

the design of e-learning materials. In: 7th IberoAmerican Congress on Computers

in Education (2004)

6. Couturier, V.: Patterns d’analyse pour l’ingénierie des systèmes d’information

coopératifs. L’OBJET 11(4), 141–175 (2005)

7. Dı́az, P., Aedo, I., Rosson, M.B.: Visual representation of web design patterns for

end-users. In: AVI, pp. 408–411 (2008)

8. Fontoura, M., Crespo, S., de Lucena, C.J.P., Alencar, P.S.C., Cowan, D.D.: Using

viewpoints to derive object-oriented frameworks: a case study in the web-based

education domain. Journal of Systems and Software 54(3), 239–257 (2000)

9. France, R.B., Kim, D.K., Ghosh, S., Song, E.: A UML-Based pattern specification

technique. IEEE Trans. Softw. Eng. 30(3), 193–206 (2004)

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)

11. Kim, D.: The role-based meta-modeling language for specifying design patterns,

pp. 183–205. Idea Group Inc., USA (2007)

12. Locke, D.: Applications and system characteristics. In: Real-Time Database Sys-

tems: Architecture and Techniques, pp. 17–26. Kluwer Academic Publishers, Dor-

drecht (2001)

13. Montero, S., Dı́az, P., Aedo, I.: A semantic representation for domain-specific pat-

terns. In: Wiil, U.K. (ed.) MIS 2004. LNCS, vol. 3511, pp. 129–140. Springer,

Heidelberg (2005)

14. OMG: Unified Modeling Language: Superstructure Version 2.2, formal 2009-02-02

(February 2009)

15. Port, D.: Derivation of domain specific design patterns. In: USC-CSE Annual Re-

search Review and Technology Week Presentations and Binder Materials (1998)

16. Ramamritham, K., Son, S.H., DiPippo, L.C.: Real-Time Databases and Data Ser-

vices. Real-Time Systems 28(2-3), 179–215 (2004)

17. Raminhos, R., Pantoquilho, M., Araújo, J., Moreira, A.: A systematic analysis pat-

terns specification. In: Manolopoulos, Y., Filipe, J., Constantopoulos, P., Cordeiro,

J. (eds.) ICEIS, vol. (3), pp. 453–456 (2006)

18. Reinhartz-Berger, I., Sturm, A.: Utilizing domain models for application design

and validation. Information & Software Technology 51(8), 1275–1289 (2009)

19. Rekhis, S., Bouassida, N., Bouaziz, R., Sadeg, B.: A UML profile for domain specific

patterns: application to real-time. In: DE@CAISE 2010: the Domain Engineering

Workshop of the 22nd International Conference on Advanced Information Systems

Engineering (2010)

20. Schmid, H.A.: Systematic framework design by generalization. ACM Com-

mun. 40(10), 48–51 (1997)

A Sample Advisor for

Approximate Query Processing

Philipp Rösch1 and Wolfgang Lehner2

1 SAP Research Center Dresden, Germany

philipp.roesch@sap.com
2 Database Technology Group, Technische Universität Dresden, Germany

wolfgang.lehner@tu-dresden.de

Abstract. The rapid growth of current data warehouse systems makes

random sampling a crucial component of modern data management sys-

tems. Although there is a large body of work on database sampling, the

problem of automatic sample selection remained (almost) unaddressed.

In this paper, we tackle the problem with a sample advisor. We propose

a cost model to evaluate a sample for a given query. Based on this, our

sample advisor determines the optimal set of samples for a given set

of queries specified by an expert. We further propose an extension to

utilize recorded workload information. In this case, the sample advisor

takes the set of queries and a given memory bound into account for the

computation of a sample advice. Additionally, we consider the merge of

samples in case of overlapping sample advice and present both an exact

and a heuristic solution. Within our evaluation, we analyze the proper-

ties of the cost model and compare the proposed algorithms. We further

demonstrate the effectiveness and the efficiency of the heuristic solutions

with a variety of experiments.

1 Introduction

Recent studies have revealed a rapid growth in current data warehouse databases
regarding both the size and the number of queries. Additionally, more and more
queries are of explorative nature where users browse through the data and search
for interesting regions. [1]

In order to make the data exploration reasonably applicable, short response
times are essential. However, the observed rapid growth conflicts with the need
for short response times. A common solution for this problem is the use ran-
dom samples. Initially, samples were mostly used for query optimization. In
the last 10 years, however, the focus of database sampling has shifted more
and more towards approximate query processing. Especially, precomputed and
materialized samples provide large potentials due to their efficiency and their
wide range of application. Several sampling schemes have been proposed that
are optimized for different query types, like aggregation [2,3], group-by [4,5] or
foreign-key joins [6,7]. While those sampling schemes provide great solutions for

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 490–504, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Sample Advisor for Approximate Query Processing 491

single (groups of) queries, the more general problem of automatic sample selec-
tion for a specific mixture of queries or even an entire workload of a database is
still an open issue.

In this paper, we address the problem of finding a set of samples for pre-
computation and materialization. We focus on simple random samples as those
samples are easy to use and to maintain. Moreover, they can be used for a broad
range of queries. Our solution is a sample advisor that suggests a set of samples
for a set of queries specified by an expert (referred to as expertise-based sample
configuration). The sample advisor is based on a novel cost model to evaluate
a sample for a given query. This cost model allows us to give advice on a sam-
ple for an individual query. We further propose an extension to utilize recorded
workload information (referred to as workload-based sample configuration). In
this scenario, the sample advisor selects from all the pieces of sample advices
those that minimize the runtime of the workload and fit into a given memory
bound. A second strategy of this workload-based sample advisor additionally
considers the merge of samples in case of overlapping sample advice.

In summary, we make the following contributions:

– We propose a cost model for the evaluation of a sample for a given query.
With this cost model, we can give a piece of sample advice for an individual
query (Section 2.1).

– Based on the cost model, we show how to compute an expertise-based sample
configuration (Section 2.2).

– We further propose two strategies (with and without merging sample advice)
to find a good workload-based sample configuration. For both strategies, we
present an exact and a heuristic solution (Section 3).

– With a variety of experiments, we analyze the properties of the cost model
and compare the proposed algorithms. We further demonstrate the effective-
ness and the efficiency of the heuristic solutions (Section 4).

In Section 5, we discuss related work, and finally, we summarize the paper in
Section 6.

2 Sample Advisor

Our major focus is the recommendation of an expertise-based sample configura-
tion. We now define what a sample for an individual query should look like. In
more detail, since we focus on simple random samples, we show how to find a
proper sample size for a given query.

2.1 A Cost Model for Sample Selection

The sample selection problem is related to the physical design problem for in-
dexes or materialized views. However, in the case of samples, we have to face up
to a new dimension: As the result of a sample-based query is only an approx-
imation, we additionally have to take a certain error into account. This error

492 P. Rösch and W. Lehner

can be an incompleteness—like for missing groups—or an inexactness—like for
estimates of aggregates—and directly depends on the size of the sample.

Now, for the cost model, we have to discuss what makes up a good sample.
Obviously, with a sample we want to achieve large decreases in the response
times, and the memory cost should be low. These two goals ask for small sample
sizes. At the same time, the estimates should be close to the actual values, and the
results should be preferably complete. Clearly, these goals ask for large sample
sizes. Hence, there is a conflict between the goals which has to be reflected by
the cost model.

As a basis, we take the cost function of the DB2 Design Advisor [8] (bold
part) and extend it by the approximation-related parts identified in this paper
(italic part). The resulting cost model is:

weight =
decrease in response time · completeness

memory cost · estimation error
. (1)

As can be seen, we append completeness (that we want to have) to the numerator
and estimation error (that we don’t like to have) to the denominator.

We now analyze the individual properties in more detail. Let N be the car-
dinality of the base data R, with R = {t1, t2, . . . , tN}. Further, let n be the
cardinality of the sample S. Now, the sampling fraction f can be expressed as
f = n/N . Moreover, let L denote the length of a tuple in the base data, while l
is the length of a tuple in the sample.

Decrease in Response Time. For estimating the decrease in the response
time, we make use of the simplified assumption that both the exact and the ap-
proximate query use table scans. Indeed, this assumption often holds in practice
for the complex queries focused on in this paper. With this assumption the de-
crease in the response time Δt is proportional to N−n, and the relative decrease
Δtrel(n) can be expressed as:

Δtrel(n) = 1 − n

N
= 1 − f . (2)

Note that this function is independent from the dataset. It linearly decreases
with increasing sample size.

Completeness. Let G be the set of groups defined by the query of interest.
Then, gi ∈ G, i = 1...|G|, denotes an individual group and |gi| denotes its size.
Now, the probability p that at least one tuple of a group gi is included into a
sample of size n is given by:

p(gi, n) = 1 − (N − |gi|)!
(N − |gi| − n)!

(N − n)!
N !

. (3)

With this probability, the expected number of groups in the sample is

x(n) =
|G|∑
i=1

p(gi, n) . (4)

A Sample Advisor for Approximate Query Processing 493

The completeness of an approximate query is the fraction of groups in the base
data that are also in the sample:

c(n) =
x(n)
|G| . (5)

For selections, the completeness of the approximate result simply evaluates to f .

Memory Cost. The memory cost of a sample is made up of the number and
the length of the tuples in the sample—as samples should be small, only required
attributes are included into the sample. Hence, the absolute memory cost mabs

is given by mabs(n) = n · l. As for the decrease in response time, we can use the
relative memory cost, which is given by:

mrel(n) =
n · l

N · L . (6)

Estimation Error. Let a1, . . . , al be the attributes that are aggregated in
the query of interest. We now show how to compute estimation error for the
AVG aggregate; the computation for the SUM aggregate is similar. For COUNT
aggregates, the computation has to be adapted accordingly. We do not consider
MIN or MAX as for these aggregation functions no estimation error can be
computed.

Let RSDj be the relative standard deviation of attribute aj . Now, we can
easily compute the relative standard error

RSEμ̂j (n) = RSDj

√
1
n
− 1

N
(7)

which allows us to compare the error over multiple attributes. The overall esti-
mation error over all the aggregation attributes is given by

RSEμ̂(n) =
1
l

l∑
j=1

RSEμ̂j (n) . (8)

For queries with Group-By operations, the RSE is first computed for each group
and then averaged over all groups. This can be done very efficiently in a single
table scan by incrementally maintaining the size as well as the sum and the sum
of squares of the aggregation attributes of each group [5].

Summing Up. We now put the pieces together. With the individual equations
given above, the weight w(n) of a sample of size n is computed by:

w(n) =
Δtrel(n) · c(n)

mrel(n) · RSE(n)
. (9)

Note, this weight function is free of parameters (aside from the sample size)
which was a main goal of our solution; we hold that parameters mainly confuse

494 P. Rösch and W. Lehner

the user. The weight of a sample represents its effectiveness. It reflects the quality
of the result and the time saving as well as the price to pay.

This weight computation, however, has one shortcoming: The maxima of dif-
ferent samples differ both in amplitude and position, which makes comparisons
of weights impractical. As a solution, we propose the following normalization:

w̄(n) =
w (a · n)

a
(10)

with a = max(w(n)). This normalization is based on the observation that high
deviations of the data—and thus, large estimation errors—result in low weights.
However, in order to provide good estimates, we need large samples for data
with high deviations.

Based on the proposed weight function, we next introduce our sample advisor.

2.2 Expertise-Based Sample Configuration

In an expertise-based sample configuration, our sample advisor computes for
each of the query given by the expert a piece of sample advice. Such a piece of
sample advice comprises the base data R, the attributes A to be included into
the sample and the sample size n, thus SA = (R, A, n). The first two values
can easily be derived from the query; the last one is determined with the weight
of a sample given above. Hence, in order to compute the sample advice for a
given query q, we first set R to the base data of q and A to the set of attributes
referenced by q. Then, we determine the sample size with the following two steps:

1. Scan the base data of the query once and compute for each group the relative
standard deviation and the size.

2. Iterate over different sample sizes and compute the weight. Remember the
sample size with the largest weight.

The effort of the first step depends on the cardinality of the base data, and
thus, is fixed. The effort of the second step, however, depends on the number
of regarded sample sizes. As the weight function has a single maximum it can
efficiently be found by algorithms like hill climbing or binary search.

The optimal expertise-based sample configuration SCE now consist of all the
samples specified by the pieces of sample advice of the expert-given queries.

3 Extension: Workload-Based Sample Configuration

Besides relying on an expert one common approach is to utilize recorded work-
load information. Clearly, in such a case we cannot materialize the samples for
all the queries. We thus propose the following extension of our sample advisor.
Note that this extension does not result in an optimal solution but shows how
the approach proposed above can easily be adapted to workload-based scenarios.

Let the workload W be a (multi-)set of queries with W = {q1, . . . , qk}. Be-
fore we compute the workload-based sample configuration SCW , we preprocess

A Sample Advisor for Approximate Query Processing 495

the workload by eliminating all but aggregation queries so that the workload
only consists of queries relevant for approximate query processing. Further, the
multiset of queries is transformed to a set by replacing the queries by (query,
counter) pairs and merging duplicate queries. During this merge, predicates of
the queries are ignored. 1 Hence, we get WAQP = {(q1, c1), . . . , (ql, cl)}.

With a memory constraint M , we get the following two steps:

1. Compute the optimal sample for each query of WAQP . The result is a can-
didate set with pieces of sample advice C = {SA1, . . . , SAk} .

2. Compute the optimal sample configuration SCW of size M based on the
candidate set C from the first step.

Obviously, with the first step we utilize our weight function and the computation
of the expertise-based sample configuration. For the second step, we need a
measure to compare different configurations. As a desirable sample configuration
is characterized by a preferably low overall runtime of the workload, we use this
overall runtime as our measure and try to minimize it.

As before, we assume table scans, and since we are not interested in actual
response times, we simply use r = n · l as the response time for approximate
queries and r = N ·L for all queries with no sample in SCW as they have to be
answered with the base data. Now, the measure F of a sample configuration is:

F(SC) =
∑

qi∈WAQP

ri . (11)

The goal of the second step is to find the sample configuration that fits into M
and minimizes F . Obviously, the exact solution is an instance of the knapsack
problem, which is known to be NP-hard.

Optimal Solution. To find the optimal solution (based on C), we consider all
subsets C′ of the candidate set C that fit into M and compute F . The final
sample configuration is the subset with the minimal measure F .

Greedy Solution. The basic idea of the greedy approach is to successively
add the most valuable candidates to the sample configuration until the mem-
ory bound is hit. We first order the candidate set C by the following score in
descending order:

score(SAi) = ci · Ni · Li

ni · li . (12)

This score is composed of the query counter to account for the frequency of
the sample usage—the more often a sample is used the more profitable gets its
materialization—and the inverse of the relative memory cost. The second part of
the score makes samples with smaller sampling fractions to be considered more
valuable. This is motivated by the fact that those samples have low storage
requirements and offer large response time benefits.
1 We do not consider predicates as samples should be very general. Otherwise, samples

would get something like materialized views.

496 P. Rösch and W. Lehner

Table 1. Sample advice candidates

Sample advice Base data Attributes Sample size Memory Score

SA1 R1 {A1, A2} 4 8 62.5
SA2 R1 {A3, A4, A5} 5 15 33.3
SA3 R1 {A2, A3, A4} 7 21 23.8
SA4 R2 {A1, A3} 2 4 22.5

Next, we start with an empty sample configuration SCW and successively add
the candidates to SCW in the given order until the next candidate does not fit
into M . At this point, we allow to skip individual candidates in order to add
those that still fit into M even if their score is lower.

Example 1. Consider 2 relations R1 and R2 with N1 = 100 and N2 = 30 as well
as L1 = 5 and L2 = 3; for simplification, we say that the length of each attribute
is 1 throughout the paper. With the candidates given in Table 1, let further
C = Cordered = {SA1, SA2, SA3, SA4} be the (already ordered) candidate set.
This table also shows the memory consumption—as defined by n · l—and the
scores of the candidates given that ci = 1 for all qi ∈ WAQP Now, let M = 40.
We successively add the elements of Cordered to the initially empty SCW . After
having added SA2, the memory consumption of SCW is 23. Now, SA3 does not
fit into M while SA4 does. Consequently, we skip SA3 and add SA4. The final
sample configuration is SCW = {SA1, SA2, SA4}. The measure F of this sample
configuration is F(SC) = 8 + 15 + 500 + 4 = 527. ��

3.1 Merging Pieces of Sample Advice

Besides the ’simple’ selection of samples, we propose a second strategy that
additionally considers the possibility of merging multiple pieces of sample advice.
This idea is based on the following observation: In typical OLAP scenarios, many
queries have the same base data—especially if the predicates are disregarded—
and the referenced attributes often overlap. Hence, up to now there are samples
in SCW with the same base data and overlapping attribute sets. In order to
effectively use the available memory, we consider to merge those samples. Then,
the queries of both samples can be answered by the single merged sample; the
redundancy in SCW decreases.

Prerequisites for merging two pieces of sample advice SAi and SAj are the
same base data Ri = Rj as well as overlapping attributes: Ai ∩ Aj �= ∅. The
merged piece of sample advice SAi+j = (Ri+j , Ai+j , ni+j) is computed by:

– Ri+j = Ri = Rj ,
– Ai+j = Ai ∪ Aj , and
– ni+j = max {ni, nj} .

When merging two pieces of sample advice, we take the maximum sample size
for the following two reasons: First, decreasing n results in (considerably) higher

A Sample Advisor for Approximate Query Processing 497

errors (estimation error and missing tuples) and second, increasing n has less
impact on w̄ than decreasing it.

However, aside from the prerequisites, one has to verify whether or not a
merge is beneficial. Clearly, a query qi of sample advice SAi must read Ai+j \Ai

additional attributes and ni+j − ni additional tuples when using the sample of
SAi+j instead of the sample of SAi. Having F in mind, a merge is only beneficial
if the overall runtime of the workload decreases, and thus, if the merge frees
enough memory to add an additional sample to SCW .

Optimal Solution. For the optimal solution, we consider all possible merges.
For each considered merge, we replace the respective pieces of sample advice by
the merged piece of sample advice and proceed as in the strategy without merge.
Obviously, this procedure is very expensive.

Greedy Solution. With the greedy approach here, we initially proceed as in
the greedy approach without merge: We order the candidate set C by the score
value and start by adding the pieces of sample advice into an initially empty
sample configuration SCW . However, when reaching a piece of sample advice
that does not fit into the memory bound M , we now try to merge individual
pieces of sample advice so that the current sample advice fits into M . If there
is no merge for the current sample advice, we skip this piece of sample advice
and proceed with the next one until all candidates are considered or the memory
bound is hit.

Greedy Merge of Sample Advice. Recall that the goal of merging sample advice
is to free enough memory to add the current piece of sample advice SAi to the
sample configuration SCW . With the greedy approach, we proceed as follows:
We consider all possible merges of the sample advice currently in SCW ∪ SAi.
From these merges, we choose the most beneficial one, i.e., the merge that frees
the most memory. In the case of equal memory consumptions, we additionally
consider the overall runtime F(CS). If the available memory is still too low, we
again look for the most beneficial merge, but this time, we replace the two pieces
of sample advice chosen to merge with the merged piece of sample advice. We
repeat this procedure until either enough memory is freed or no more beneficial
merges are possible. In the former case, we perform the merges, in the latter
case, we skip the current piece of sample advice. In the greedy merge process,
the repeated procedure of finding the most beneficial merge can be done very
efficiently—all we need are the sample sizes, the tuple lengths and the overlap
of the merge candidates.

Example 2. Consider again the setting of Example 1. We start by adding SA1

and SA2 to the initially empty sample configuration SCW . Next, SA3 is con-
sidered. SA3 does not fit into M and thus, we try to find a merge. Since the
attribute sets of SA1 and SA2 are disjoint, we do not merge these pieces of sam-
ple advice. SA3, however, meets the condition to be merged with either SA1 or
SA2 and we determine the more beneficial merge. For both SA1+3 and SA2+3,
we have mabs = 28 and thus, we also have to consider the overall runtime. With

498 P. Rösch and W. Lehner

SA1+3, the overall runtime of q1, q2, and q3 sums up to r = 28 + 15 + 28 = 71,
while with SA2+3, the overall runtime is only r = 8 + 28 + 28 = 64. Thus, we
prefer SA2+3 and we have SCW = {SA1, SA2+3} with a memory consumption
of 36. In the next step, we add SA4 to SCW , and our final sample config-
uration is SCW = {SA1, SA2+3, SA4}. For this sample configuration, we get
F(SC) = 8 + 28 + 28 + 4 = 68, which is significantly lower—and thus, better—
than F(SC) = 527 of the greedy approach without merging sample advice. ��

4 Experiments

We ran a variety of experiments to analyze the cost model and to compare
the strategies for the construction of workload-based sample configurations.2

We compared the strategy without merging samples (NoMerge) with the strat-
egy that considers the merge of samples (Merge). We further evaluated the ef-
fectiveness and the efficiency of the heuristic algorithms (NoMergeGreedy and
MergeGreedy). We experimented with well-defined synthetic datasets in order to
discover the impact of certain “data formations” on the weight function and the
resulting sample configuration. Finally, we ran experiments on a large real-world
dataset consisting of retail data.

Note that the considered algorithms are deterministic with respect to the
resulting sample configuration. Hence, our measure F for the comparison of the
proposed algorithms can be computed analytically.

4.1 Experimental Setup

We implemented the sample advisor on top of DB2 using Java 1.6. The exper-
iments were conducted on an Athlon AMD XP 3000+ system running Linux
with 2GB of main memory.

Cost Model. For the evaluation of our cost model, we generated a small syn-
thetic dataset R with N = 1, 000 tuples and L = 10 attributes. The specific
properties of this dataset are given in Table 2. Unless stated otherwise, the
parameters take the value given in the last column (Default value).

Sample Configuration. For the evaluation of the workload-based sample con-
figurations, we used two different datasets:

– A very small synthetic dataset with N = 100 tuples and L = 15 attributes.
For this dataset, we used a workload of 5 carefully chosen queries.

– A large real-world dataset of retail data. The fact table of this dataset con-
sists of 13, 223, 779 tuples with L = 15 attributes (5 attributes are used for
grouping and 8 for aggregation). Additionally, we chose 2 of the dimension
tables which also consist of a few aggregation attributes. The workload of
this dataset consists of 15 typical OLAP queries.

2 We did not evaluate the expertise-based sample configuration as its computation is

trivial once the cost model is given.

A Sample Advisor for Approximate Query Processing 499

Table 2. Parameters for the experiments

Parameter Range of values Default value

Number of groups 50 − 200 100

Skew of group sizes 0 − 1.4 0.86
Average RSD 5 − 50 15

4.2 Analysis of the Cost Model

In the first part of our experiments, we analyzed the proposed cost model. We
varied several parameters of the base data and computed the weight for samples
of different sizes, each with l = 4 attributes.

Number of Groups. In the first experiment, we varied the number of groups
from 50 to 200. Figure 1a shows the impact of the number of groups on the
optimal sample size: For 50 groups, we get 5 tuples as optimal sample size, for
200 groups this values increases to 38. The reason is: more groups mean smaller
groups which in turn are more likely to be missing in a sample. Thus, the optimal
sample size increases with increasing number of groups.

Skew of Group Sizes. Next, we varied the skew of the group sizes. We chose
a Zipfian distribution with z values ranging from z = 0 (uniform) to z = 1.4
(highly skewed). Here, the value of z = 0.86 results in a 90-10 distribution.
The result is shown in Figure 1b. As can be seen, larger skews result in larger
optimal sample sizes. Again, the reason is that smaller groups are more likely to
be missing: The more skewed the group sizes, the more small groups in the base
data. Hence, the larger the skew, the larger the optimal sample size.

Relative Standard Deviation of Aggregation Values. Finally, we var-
ied the relative standard deviation of the base data. Inspired by our real-world
dataset, we chose values from RSD = 5 to RSD = 50. As the RSD directly
influences the estimation error (see (7)), larger RSDs result in larger estimation
errors and thus, in larger optimal sample sizes. This is also shown in Figure 1c.

Summary. The results of the experiments show that the proposed cost model
reflects the characteristics of the underlying data. Further, the advised sample
sizes between about 0.5% and 5% look reasonable.

4.3 Sample Configuration

In the second part of our experiments, we compared the strategies and the al-
gorithms for the computation of the sample configuration.

Synthetic Dataset. As stated above, we first evaluated our algorithms on a
small dataset and we carefully selected 5 queries. With our cost model, we got
the 5 pieces of sample advice illustrated in Figure 2 with the following scores:

Sample advice SA1 SA2 SA3 SA4 SA5

Score 2035.7 2000 1900 1000 1000

500 P. Rösch and W. Lehner

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Sample size

W
ei

g
h
t

50 groups
100 groups
200 groups

(a) Number of groups

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Sample size

W
ei

g
h
t

z=0.0
z=0.86
z=1.4

(b) Skew of group sizes

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Sample size

W
ei

g
h
t

RSD=5
RSD=15
RSD=50

(c) Rel. standard deviation

Fig. 1. Sample weight for various settings

Next, we computed the sample configuration with all four algorithms:
NoMerge, NoMergeGreedy, Merge, and MergeGreedy. We varied the memory
bound from M = 0 to M = 79 attribute values (for M = 79, all samples fit
into the memory bound) and computed F , i.e., the runtime of the 5 queries in
terms of number of read attribute values. As can be seen in Figure 3a, there
are some memory bounds where the merge of samples considerably decreases F ,
e.g., for M = 53, the merge decreases F from 45, 620 to 18, 552 by a factor of
about 2.5. The impact of the strategy and the greedy proceeding can be seen in
the close-up on F for M = 20 to M = 45, see Figure 3b: For M = 25, the sam-
ple configurations of NoMerge and NoMergeGreedy consist of only SA2 while
Merge and MergeGreedy can significantly reduce F by merging SA2 and SA3.
For M = 28, the sample configuration of MergeGreedy switches from SA2+3 to
SA1 and thus, it even performs worse than for M = 27. This is a drawback
of the greedy proceeding. Furthermore, for M = 30 NoMerge selects SA2 and
SA3 and thus, results in a better sample configuration than MergeGreedy that
still selects SA1. These results show that for our carefully chosen queries, the
effectiveness of MergeGreedy (temporarily) may decrease for increasing memory
bounds, and that NoMerge may be more effective than MergeGreedy. All in all,
Merge always results in the best configuration, while NoMergeGreedy always
results in the worst.

A Sample Advisor for Approximate Query Processing 501

Fig. 2. Sample advice for the synthetic dataset

0 20 40 60 80

0
4
0
0
0
0

8
0
0
0
0

1
2
0
0
0
0

Memory bound

N
u
m

b
er

 o
f

re
a
d
 v

a
lu

es

NoMergeGreedy
NoMerge
MergeGreedy
Merge

(a) Full range

20 25 30 35 40 456
0
0
0
0

8
0
0
0
0

1
0
0
0
0
0

Memory bound

N
u
m

b
er

 o
f

re
a
d
 v

a
lu

es
NoMergeGreedy
NoMerge
MergeGreedy
Merge

(b) Details

Fig. 3. Sample configurations for different memory bounds

Real-World Dataset. Our next experiments were conducted on our large real-
world dataset. The effectiveness of the different algorithms is given in Figures 4a
and 4b. Note that in order to make the results easier to interpret, we used rel-
ative memory bounds in the plots. Again, we computed F for different memory
bounds, see Figure 4a. Our results show that it is beneficial to merge sam-
ple advice. Further, they clearly demonstrate the effectiveness of the greedy
algorithms. To make the benefit of merging sample advice even clearer, Fig-
ure 4b depicts the improvement achieved by merging sample advice. As can
be seen, the improvement quickly reaches 100%, i.e., the number of attribute
values that have to be read halves due to the merges. All in all, for a broad
range of memory bounds it is very beneficial to consider merges of sample
advice.

In a final experiment, we compared the efficiency of our algorithms. We varied
the number of candidates from |C| = 1 to |C| = 15 and computed the sample
configuration with all of our algorithms. Figure 5 illustrates the time to compute
the sample configurations. These values are averaged over 50 runs, and we used
a relative memory bound of 6%. The plot clearly shows the benefit of the greedy

502 P. Rösch and W. Lehner

0
1

2
3

4
5

Memory bound

N
u
m

b
er

 o
f

re
a
d
 v

a
lu

es
 (

1
0

9
)

0% 2% 4% 6% 8% 10% 12%

NoMergeGreedy
NoMerge
MergeGreedy
Merge

(a) Sample configurations for different

memory bounds

Memory bound

Im
p
ro

v
em

en
t

0% 2% 4% 6% 8% 10% 12%

0
%

2
0
0
%

4
0
0
%

Optimal
Greedy

(b) Improvement achieved by merging

sample advice

Fig. 4. Real-world dataset

Number of candidates

T
im

e
[m

s]

1 3 5 7 9 11 13 15

0
.0

1
1

1
0
0

1
0
k

1
M

Merge
NoMerge
MergeGreedy
NoMergeGreedy

Fig. 5. Runtimes of the algorithms

proceeding: While the effort of the optimal solutions quickly gets high and ex-
ponentially increases with the number of candidates, the effort for the greedy
solutions is significantly lower. For NoMergeGreedy, the effort is logarithmic due
to the ordering of the candidates, and for MergeGreedy, the effort is quadratic
due to the greedy merge. In an additional run, we measured the times for the
greedy algorithms for |C| = 75 candidates. Here, the computation of the sample
configuration still took less than a millisecond for NoMergeGreedy and about 1.3
seconds for MergeGreedy.

Summary. Our results on synthetic and real-world datasets show that the merge
of sample advice is beneficial. It significantly reduces the runtime of the given
workload. Additionally, the greedy algorithms are very efficient and effective—
they often result in the same sample configurations as the exhaustive approaches
while requiring only a fraction of the time to compute the configuration.

A Sample Advisor for Approximate Query Processing 503

5 Related Work

In this section, we briefly review related work in the field of automatic sample
selection for approximate query processing in databases which is barely studied.
Some initial ideas in this field are those of [9] and [10]. The strategy of the
technique shown in [9] is to select from all possible synopses those that influence
the query plan or the execution costs. However, the problem of a memory bound
and hence, the partition of the available space is not regarded. The solution
in [10] proposes a technique for the selection of synopses as well as for the
partitioning of the available memory. However, all the considerations build on
spline-based synopses, so that the solutions cannot easily be translated into
samples. Moreover, the focus of both solutions is the selectivity estimation where
the approximation error bears another meaning as it is not directly passed to
the user.

The problem is also related to the physical design problem for indexes [11]
and materialized views [12]. Most of these solutions use a what-if interface [13]
and ask the optimizer for the benefit. However, optimizer calls are expensive and
estimated costs may be far off [14]. Moreover, the extension of the what-if inter-
face in order to estimate both the cost and the error introduced by approximate
query processing might be a complex task. The alternative solution is to define
an explicit cost model as done by the approaches in [12,8]. Our weight function
was inspired by that of [8] but had to be extended for both the estimation error
and the incompleteness.

6 Summary

In this paper, we proposed a sample advisor for the approximate answering of
analytical queries. This sample advisor is based on a novel cost model for the
sample selection. We proposed a weight function that enables us to give sample
advice for any individual query. Building on that, we regarded two different
scenarios: (i) an expertise-based sample configuration for individually specified
queries, and (ii) a workload-based sample configuration for a recorded workload
regarding a given memory bound. For the computation of the workload-based
sample configuration, we presented two strategies: The first strategy selects from
the available sample advice those pieces of advice that minimize the runtime
of the workload. The second strategy provides a more sophisticated solution
by merging pieces of sample advice, which may significantly reduce the overall
runtime of the given workload. For both strategies, we presented and evaluated
an exact and a heuristic algorithm. Our experiments have shown that the merge
of samples is almost always beneficial and provides large runtime savings for
the given workload. Furthermore, our greedy algorithms significantly reduce the
computation cost with only low impact on the effectiveness.

Acknowledgment. We thank Torsten Weber for his inspiring ideas.

504 P. Rösch and W. Lehner

References

1. Winter, R.: Scaling the Data Warehouse. Intelligent Enterprise (2008),

http://www.intelligententerprise.com/

showArticle.jhtml?articleID=211100262

2. Chaudhuri, S., Das, G., Datar, M., Narasayya, R.M.V.: Overcoming Limitations

of Sampling for Aggregation Queries. In: ICDE, pp. 534–544 (2001)

3. Rösch, P., Gemulla, R., Lehner, W.: Designing Random Sample Synopses with

Outliers. In: ICDE, pp. 1400–1402 (2008)

4. Acharya, S., Gibbons, P., Poosala, V.: Congressional Samples for Approximate

Answering of Group-By Queries. In: SIGMOD, pp. 487–498 (2000)

5. Rösch, P., Lehner, W.: Sample Synopses for Approximate Answering of Group-By

Queries. In: EDBT, pp. 403–414 (2009)

6. Acharya, S., Gibbons, P.B., Poosala, V., Ramaswamy, S.: Join Synopses for Ap-

proximate Query Answering. In: SIGMOD, pp. 275–286 (1999)

7. Gemulla, R., Rösch, P., Lehner, W.: Linked Bernoulli Synopses: Sampling Along

Foreign-Keys. In: SSDBM, pp. 6–23 (2008)

8. Zilio, D.C., Zuzarte, C., Lohman, G.M., Pirahesh, H., Gryz, J., Alton, E., Liang,

D., Valentin, G.: Recommending Materialized Views and Indexes with IBM DB2

Design Advisor. In: ICAC, pp. 180–188 (2004)

9. Chaudhuri, S., Narasayya, V.: Automating Statistics Management for Query Op-

timizers. IEEE Trans. on Knowl. and Data Eng. 13(1), 7–20 (2001)

10. König, A.C., Weikum, G.: A Framework for the Physical Design Problem for Data

Synopses. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm,

K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 627–645. Springer, Heidel-

berg (2002)

11. Chaudhuri, S., Narasayya, V.R.: An Efficient Cost-Driven Index Selection Tool for

Microsoft SQL Server. In: VLDB, pp. 146–155 (1997)

12. Gupta, H., Mumick, I.S.: Selection of Views to Materialize in a Data Warehouse.

IEEE Trans. on Knowl. and Data Eng. 17(1), 24–43 (2005)

13. Chaudhuri, S., Motwani, R., Narasayya, V.: Random Sampling for Histogram Con-

struction: How much is enough? In: SIGMOD, pp. 436–447 (1998)

14. Gebaly, K.E., Aboulnaga, A.: Robustness in Automatic Physical Database Design.

In: EDBT, pp. 145–156 (2008)

http://www.intelligententerprise.com/showArticle.jhtml?articleID=211100262
http://www.intelligententerprise.com/showArticle.jhtml?articleID=211100262

Estimation of the Maximum Domination Value

in Multi-dimensional Data Sets

Eleftherios Tiakas, Apostolos N. Papadopoulos, and Yannis Manolopoulos

Department of Informatics, Aristotle University, 54124 Thessaloniki, Greece

{tiakas,papadopo,manolopo}@csd.auth.gr

Abstract. The last years there is an increasing interest for query pro-

cessing techniques that take into consideration the dominance relation-

ship between objects to select the most promising ones, based on user

preferences. Skyline and top-k dominating queries are examples of such

techniques. A skyline query computes the objects that are not domi-

nated, whereas a top-k dominating query returns the k objects with

the highest domination score. To enable query optimization, it is impor-

tant to estimate the expected number of skyline objects as well as the

maximum domination value of an object. In this paper, we provide an

estimation for the maximum domination value for data sets with statis-

tical independence between their attributes. We provide three different

methodologies for estimating and calculating the maximum domination

value, and we test their performance and accuracy. Among the proposed

estimation methods, our method Estimation with Roots outperforms all

others and returns the most accurate results.

1 Introduction

Top-k and skyline queries are two alternatives to pose preferences in query pro-
cessing. In a top-k query a ranking function is required to associate a score to
each object. The answer to the query is the set of k objects with the best score.
A skyline query does not require a ranking function, and the result is based on
preferences (minimization or maximization) posed in each attribute. The result
is composed of all objects that are not dominated. For the rest of the work we
deal with multidimensional points, where each dimension corresponds to an at-
tribute. Formally, a multidimensional point pi = (xi1 , xi2 , ..., xid

) ∈ D dominates
another point pj = (xj1 , xj2 , ..., xjd

) ∈ D (pi ≺ pj) when: ∀a ∈ {1, ..., d} : xia ≤
xja ∧ ∃b ∈ {1, ..., d} : xib

< xjb
, where d is the number of dimensions. A top-k

dominating query may be seen as a combination of a top-k and a skyline query.
More specifically, a top-k dominating query returns the k objects with the high-
est domination scores. The domination value of an object p, denoted as dom(p),
equals the number of objects that p dominates [12, 13].

The maximum domination value is the number of objects dominated by the
top-1 (best) object. More formally, let us assign to each item t of the data set D
a score, m(t), which equals the number of items that t dominates: m(t) = |{q ∈

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 505–519, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

506 E. Tiakas, A.N. Papadopoulos, and Y. Manolopoulos

A B C D E F G H I J
Distance to beach (m) 1000 400 600 1200 300 50 100 250 500 450
Price (euros) 60 80 90 15 65 100 50 20 40 30

B

G

D

E

I

A

H

J

C
F

Distance to beach (m)

Pr
ic

e
(e

ur
os

)

Fig. 1. The hotel data set

D : q ≺ t}|. Then, if p is the object with the maximum domination value we
have: p = argmaxt{m(t), t ∈ D}.

An example is illustrated in Figure 1. A tourist wants to select the best
hotel according to the attributes distance to the beach and price per night. The
domination values of all hotels A, B, C, D, E, F, G, H, I, J are 0, 1, 0, 0, 2, 0, 4,
6, 2, 3 respectively, thus the hotel with the max domination value is H . This
hotel is the best possible selection, whereas the next two best choices are hotels
G and J .

In this work, we focus on estimating the maximum domination value in a
multi-dimensional data under the uniformity and independence assumptions.
Estimating the maximum domination value contributes in: (i) optimizing top-k
dominating and skyline algorithms, (ii) estimating the cost of top-k dominating
and skyline queries, (iii) developing pruning strategies for these queries and
algorithms. Moreover, we show that the maximum domination value is closely
related to the cardinality of the skyline set.

The rest of the article is organized as follows. Section 2 briefly describes related
work in the area. Section 3 studies in detail different estimation methods, whereas
Section 4 contains performance evaluation results. Finally, Section 5 concludes
the work.

2 Related Work

As we will show in the sequel, the maximum domination value is related to
the skyline cardinality which has been studied recently. There are two different
approaches for the skyline cardinality estimation problem: (i) the parametric
methods, and (ii) the non-parametric methods. Parametric methods use only
main parameters of the data set, like its cardinality N and its dimensionality
d. Bentley et al. [1] established that the skyline cardinality is O((ln N)d−1).
Buchta [3] proved another asymptotic bound of the skyline cardinality, which is:

Estimation of the Maximum Domination Value 507

Θ
(

(ln N)d−1

(d−1)!

)
. Bentley et al. [1] and Godfrey [6,7], under the assumptions of at-

tribute value independence and that all attributes in a dimension are unique and
totally ordered, established that the skyline cardinality can be estimated with
harmonics: ŝd,N = Hd−1,N . Godfrey [6,7] established that for sufficient large N ,
ŝd,N = Hd−1,N ≈ (ln N)d−1

(d−1)! . Lu et al. [10] established specific parametric formu-
lae to estimate the skyline cardinality over uniformly and arbitrary distributed
data, keeping the independence assumption between dimensions.

Non-parametric methods use a sampling process in the data set to capture
its characteristics and estimate the skyline cardinality. Chaudhuri et al. [4] relax
the assumptions of statistical independence and attribute value uniqueness, and
they use uniform random sampling in order to address correlations in the data.
They assume that the skyline cardinality follows the rule: s = A logB N for
some constants A, B (which is an even more generalized formula of (ln N)d−1

(d−1)!),
and using log sampling they calculate the A, B values. Therefore, this method
can be seen as a hybrid method (both parametric and non-parametric). Zhang et
al. [14] use a kernel-based non-parametric approach that it does not rely on any
assumptions about data set properties. Using sampling over the data set they
derive the appropriate kernels to efficiently estimate the skyline cardinality in
any kind of data distribution.

Both directions sometimes produce significant estimation errors. Moreover,
in non-parametric methods there is a tradeoff between the estimation accuracy
and the sampling preprocessing cost over the data. In this paper, we focus on
estimating the maximum domination value using only parametric methods. To
the best of our knowledge, this is the first work studying the estimation of the
maximum domination value and its relationship with the skyline cardinality.

3 Estimation Methods

In this section we present specific methods to estimate the maximum domina-
tion value of a data set. We first explain how this maximum domination value is
strongly connected with the skyline cardinality of the data set. Next, we present
two estimation methods inspired from [6, 7, 10], and finally we propose a novel
method that is much simpler, more efficient and more accurate than its opponents.

For each presented estimation method, the main task is to produce a formula
that includes only the main data set parameters, which are: the number of items
of the data set (cardinality N), and the number of the existing attributes (di-
mensionality d). In this respect, several properties and results are derived for the
maximum domination value and the item having this value. For the remaining
part of this study we adopt the following assumptions:

– All attribute values in a single dimension are distinct (domain assumption).
– The dimensions are statistically independent, i.e., there are no pair-wise or

group correlations nor anti-correlations (independence assumption).

Let pi, i ∈ {1, ..., N} be the N items of the data set, and (xi1 , xi2 ,..., xid
) their

corresponding attributes in the d selected dimensions. Under our assumptions, no

508 E. Tiakas, A.N. Papadopoulos, and Y. Manolopoulos

two items share a value over any dimension, thus the items can be totally ordered
on any dimension. Therefore, it is not necessary to consider the actual attribute
values of the items, but we can conceptually replace these values by their rank
position along any dimension. Thus, let (ri1 , ri2 ,..., rid

) be the corresponding
final distinct rank positions of item pi in the selected dimensions (where rij

∈ {1, ..., N}). Without loss of generality, we assume that over the attribute
values in a dimension minimum is best. Then, the item with rank position 1 will
have the smallest value on that dimension, whereas the item with rank position
N will have the largest one.

3.1 Maximum Domination Value and Skyline Cardinality

Here we study how the maximum domination value is related to the skyline
cardinality of the data set. Figure 2 reveals this relationship. Let p be the item
of the data set with the maximum domination value. A first important property
is that p is definitely a skyline point. This was first proved in [2] for any monotone
ranking function over the data set, and also shown in [12,13] for the top-1 item
in top-k dominating queries. Moreover, p dominates most of the items lying in
the marked area. This area is called the domination area of p. No other point
dominates more items than p does. Let dom be the exact domination value of
p, which is the number of all items that lie in its domination area (i.e., the
maximum domination value of the data set). On the other hand, the skyline
items are the items that lie in the dotted line. Let s be the number of the skyline
items (i.e., the skyline cardinality). As p does not dominate any item contained in
the skyline, its domination value satisfies the relation: dom ≤ N −s. Therefore,
a simple overestimation of the maximum domination value is d̂om = N − s, and
can be computed when the skyline cardinality s is already known (or it has been
efficiently estimated d̂om = N − ŝ). The error rate of this estimation depends
only on the items that lie neither in the skyline nor in the domination area of p,
like item q for example. These items are called outliers. Moreover, as the data

O

 q

y

x

 p

Fig. 2. Maximum domination value and skyline items

Estimation of the Maximum Domination Value 509

set cardinality N increases, the number of outliers becomes significantly smaller
than N , and the estimation becomes more accurate. On the contrary, as the
data set dimensionality d increases, the number of outliers also increases, and
the estimation becomes less accurate.

3.2 Estimation with Harmonics

Here, we present an estimation approach using harmonic numbers and their
properties, inspired from [6, 7]. The analysis reveals the intrinsic similarities
between the maximum domination value and the skyline cardinality, and shows
that d̂om = N − ŝ. Let domd,N be the random variable which measures the
number of items dominated by the top-1 item (the maximum domination value).
We denote as d̂omd,N the expected value of domd,N .

Theorem 1. In any data set under the domain and independence assumptions,
the expected value d̂omd,N satisfies the following recurrence:

d̂omd,N =
1
N

d̂omd−1,N + d̂omd,N−1

for d > 1, N > 0, where d̂om1,N = N − 1 and d̂omd,1 = 0.

Proof. If d = 1, then we have only one dimension and the item with rank po-
sition 1 is the top-1 item that dominates all other N − 1 items. Thus it holds
that d̂om1,N = N − 1. If N = 1, then we have only one item and none item to
dominate. Thus, d̂omd,1 = 0. In case that d > 1 and N > 1, there is an item
with rank position 1 on dimension 1. This item has the maximum domination
value as it dominates all other items on that dimension. The probability that
this item will remain a top-1 item is the probability that no other item has a
greater domination value in any other dimension (2, ..., d), given the indepen-
dence assumption. However, d̂omd−1,N is the maximum domination value out
of these d − 1 dimensions. Thus, as any item has equal probability to be placed
in rank position 1 on dimension 1, we have 1

N d̂omd−1,N to be the probability
that this item has the maximum domination value. Since, the first ranked item
on dimension 1 cannot be dominated by any other item, the maximum domina-
tion value is determined by the remaining N − 1 items which is estimated by
d̂omd,N−1. Therefore, we have: d̂omd,N = 1

N d̂omd−1,N + d̂omd,N−1 ��

The recurrence for d̂omd,N is strongly related to the harmonic numbers:

– The harmonic of a positive integer n is defined as: Hn =
∑n

i=1
1
i .

– The k-th order harmonic [11] of a positive integer n for integers k > 0 is
defined as: Hk,n =

∑n
i=1

Hk−1,i

i , where H0,n = 1, ∀n > 0 and Hk,0 = 0, ∀k >
0. Note also that: H1,n = Hn, ∀n > 0.

510 E. Tiakas, A.N. Papadopoulos, and Y. Manolopoulos

In order to retrieve the fundamental relation of d̂omd,N with the harmonic num-
bers, we compute d̂om2,N and using mathematical induction we derive the final
formula. For the d̂om2,N value we have:

d̂om2,N =
1
N

d̂om1,N + d̂om2,N−1 =
N − 1

N
+ d̂om2,N−1 =

=
N − 1

N
+

1
N − 1

d̂om1,N−1 + d̂om2,N−2 =
N − 1

N
+

N − 2
N − 1

+ ... +
1
2

=

= 1 − 1
N

+ 1 − 1
N − 1

+ ... + 1 − 1
2

= N − 1 −
(

N∑
i=1

1
i
− 1

)
= N − HN

Now, let us assume that the following equation holds for a specific k, (i.e.,
d̂omk,N = N −Hk−1,N). We will prove that the previous equation holds also for
the next natural number k + 1. We have:

d̂omk+1,N =
1
N

d̂omk,N + d̂omk+1,N−1 =

=
1
N

d̂omk,N +
1

N − 1
d̂omk,N−1 +

1
N − 2

d̂omk,N−2 + ... =

=
N∑

i=1

1
i
d̂omk,i =

N∑
i=1

1
i

(i − Hk−1,i) = N −
N∑

i=1

Hk−1,i

i
= N − Hk,N

Therefore, for any d > 1, N > 0 it holds that:

d̂omd,N = N − Hd−1,N (1)

Equation 1 generates some important properties for the maximum domination
value:

– d̂omd,N is strongly related to the skyline cardinality of the data set. As
shown in [6, 7], if ŝd,N is the expected value of the skyline cardinality, then
it holds that: ŝd,N = Hd−1,N . Therefore, we have:

d̂omd,N = N − ŝd,N (2)

In particular, d̂omd,N and ŝd,N share the same recurrence equation of The-
orem 1 but with different initial conditions.

– as proved in [11], it holds that limd−→∞ Hd,N = N . Therefore, we have:

lim
d−→∞

d̂omd,N = N − lim
d−→∞

Hd−1,N ⇔ lim
d−→∞

d̂omd,N = 0 (3)

Equation 3 is a validation of the fact that as the dimensionality d increases,
the maximum domination value (and consequently all the following domina-
tion values) decreases until reaching zero. In particular, the dimensionality d
beyond which all domination values become equal to zero, is a small number.
We call that dimension the eliminating dimension, and denote it as d0.

Estimation of the Maximum Domination Value 511

In the sequel, we focus in the computation of d̂omd,N . Since it holds that
d̂omd,N = N − Hd−1,N , the main task is the efficient computation of the har-
monic term Hd−1,N . There are three different methods to follow for this task:

Recursive Calculation. The calculation of Hd−1,N can be achieved by running
a recursive algorithm that follows the direct definition formula:

Hk,n =
n∑

i=1

Hk−1,i

i

where H0,n = 1 and k > 0. We can also use a look up table at run-time, however,
these recurrence computations are expensive. The algorithmic time complexity
is exponential: O(Nd−1). As shown later in the experimental results section, the
calculation time is not acceptable even for small dimensionality values .

Bound Approximation. This method was proposed in [6, 7] and is based on
asymptotic bounds ofHk,N .Bentley et al. [1] established that: ŝd,N isO((ln N)d−1).
Bentley et al. [1] and Godfrey [6,7] established that: ŝd,N = Hd−1,N , thus: Hd−1,N

is O((ln N)d−1). Buchta [3] and Godfrey [6,7] improved this asymptotic bound as
follows:

Hd−1,N ≈ Θ

(
(ln N)d−1

(d − 1)!

)
Therefore, we can instantly estimate d̂omd,N using the following formula: (for
an appropriate real number λ):

d̂omd,N ≈ N − λ

(
(ln N)d−1

(d − 1)!

)
(4)

This is not a concrete estimation and generates a significant error rate. More-
over, by varying the dimensionality range it will be shown that this estimation
is not even a monotone function and changes its monotonicity after halving the
eliminating dimension (i.e., for any d > d0

2). Therefore, it provides wrong theo-
retical results.

Generating Functions Approximation. This method was also proposed in
[6,7] and is based on Knuth’s generalization via generating functions [9,8], which
established that:

Hk,N =
∑

c1,c2,...,ck

k∏
i=1

Hci

i,N

ici · ci!
, c1, c2, ..., ck ≥ 0 ∧ c1+2c2+ ...+kck = k (5)

where Hi,N is the i-th hyper-harmonic of N and is defined as: Hi,N =
∑N

j=1
1
ji

(H1,N = H1,N = HN).
Note that c1, c2, ..., ck are positive (or zero) integer numbers, whereas the

number of terms of the sum in Equation 5 stems from all possible combinations

512 E. Tiakas, A.N. Papadopoulos, and Y. Manolopoulos

of c1, c2, ..., ck that satisfy the equation c1 + 2c2 + ... + kck = k. This number is
℘(k) and expresses the number of all possible ways to partition k as a sum of
positive integers. Therefore, Hk,N can be expressed as a polynomial of ℘(k) terms
which contain the first k hyper-harmonics Hi,N , (i = 1, ..., k). For example:

H2,N =
1
2
H2

1,N +
1
2
H2,N H3,N =

1
6
H3

1,N +
1
2
H1,NH2,N +

1
3
H3,N

This approximation of Hk,N is remarkably accurate. In particular, with this
method we reach almost exactly the theoretical values of Hk,N when computed
with the recursive approach. This will be also evaluated in the experimental
results section. For any given dimension d, the time cost to compute the d re-
quired hyper-harmonics is O(dN). Then, having the previous formulae, we can
immediate calculate Hd,N . The only requirement is to generate the appropriate
formula for the dimension d with the ℘(d) terms. Godfrey [6, 7] mentioned that
this number of terms (℘(d)) grows quickly, and, thus, it is not viable to compute
the required formula this way, and suggests not using this approximation for
large values of d. However, motivated by the accuracy of this approximation of
Hk,N , we developed a dynamic-programming algorithm that efficiently produces
these equations. Due to lack of space we do not elaborate further. Therefore, we
can almost instantly estimate d̂omd,N with hyper-harmonics using the previous
approximation formula:

d̂omd,N ≈ N −
∑

c1,c2,...,cd−1

d−1∏
i=1

Hci

i,N

ici · ci!
(6)

by taking special care to all possible floating point overflow values, and by using
the derived equations which recorded through the automation.

3.3 Estimation with Multiple Summations

In this section we present an estimation approach using a specific formula with
multiple summations inspired from the study of [10]. For compatibility reasons
we will keep all previous notations and variables.

Y. Lu et al. [10] introduced an estimation approach of the skyline cardinality
that relaxes the domain assumption of our basic model. The statistical indepen-
dence assumption still remains, but now the data can have duplicate attribute
values. Their study is based in probabilistic methods, and it uses the value car-
dinality of each dimension. Their first main result is the following:

ŝd,N = N ·
c1∑

t1=1

c2∑
t2=1

...

cd∑
td=1

(
d∏

i=1

1
ci

)⎛⎝1 −
d∏

j=1

tj
cj

⎞⎠N−1

(7)

where N ≥ 1, d ≥ 1, and cj is the value cardinality of the j-th dimension.

Estimation of the Maximum Domination Value 513

They also generalized this result in case of having the probability functions
fj(x) of the data over each dimension, but always keeping the independence
assumption:

ŝd,N = N ·
c1∑

t1=1

c2∑
t2=1

...

cd∑
td=1

f1(t1)f2(t2)...fd(td)

⎛⎝1 −
d∏

j=1

tj∑
x=1

fj(x)

⎞⎠N−1

(8)

However, in both cases, the computational complexity is O(c1 · c2 · ... · cd), which
is not acceptable even if in few dimensions the value cardinality is high (close to
N). They also tried to relax this complexity cost by introducing high and low
cardinality criteria, but this cost remains high, and this is why their experimental
results are restricted to small dimensionality and cardinality variations (d =
1, 2, 3 and N ≤ 1000). We will see in our experimental results that even if we
have high cardinality in 3 dimensions and up to 1000 items the estimation time
is not acceptable.

Although the method of [10] works efficiently only in small cardinalities and
dimensionalities, it would be very interesting to apply this method in our model
and study its accuracy. Therefore, under the domain assumption of our model,
all value cardinalities cj will be equal to N and Equation 7 gives:

ŝd,N = N ·
N∑

t1=1

N∑
t2=1

...

N∑
td=1

(
1

Nd

)(
1 − t1t2...td

Nd

)N−1

Thus, using the property of the estimated maximum domination value of Equa-
tion 2, the final estimation formula is:

d̂omd,N ≈ N − 1
Nd−1

·
N∑

t1=1

N∑
t2=1

...

N∑
td=1

(
1 − t1t2...td

Nd

)N−1

(9)

which has an exponential computational complexity (O(Nd)).
In our experimental results we will see that Equation 9 returns values re-

markably close to the harmonic Hd−1,N values. In addition, by increasing N ,
the returned values converge to Hd−1,N , thus it must be related somehow with
the k-th order harmonics. This strong relation remains unproven. Finally, as the
two methods return almost the same estimations, their accuracy is similar.

3.4 Estimation with Roots

In this section we present a novel estimation approach using a simple formula,
which provides more accurate estimation results.

Let p be the item with the maximum domination value, and (rp1 , rp2 , ..., rpd
)

be its corresponding final rank positions in the total ordering along any dimen-
sion. Let also a be the maximum rank position of p through all dimensions (i.e.,
a = max{rp1 , rp2 , ..., rpd

}). Then, a splits the total ordering of the items in two
parts as in Figure 3: (i) the (a)-area, and (ii) the (N − a)-area.

514 E. Tiakas, A.N. Papadopoulos, and Y. Manolopoulos

i1

i2

id

……………………………………………………………………………...

 q

 a area (N-a) area

 r p

 q p r

p q r

Fig. 3. Total ordering of items by rank positions

Now, any item q that all its rank positions lie in the (a)-area, will be an outlier
or a skyline item. Note that the opposite does not hold, thus not any skyline or
outlier item lie in the (a)-area. The probability Pa that an item pi lies in the
(a)-area is:

Pa = P (ri1 ≤ a ∧ ri2 ≤ a ∧ ... ∧ rid
≤ a)

Now, due to the independence assumption we have:

Pa = P (ri1 ≤ a) · P (ri2 ≤ a) · ... · P (rim ≤ a) =
a

N
· a

N
· ... · a

N
=

ad

Nd
=
(a

N

)d

Moreover, any item r that all its rank positions lie in the (N − a)-area, will
definitely be dominated by p. Thus r lies in the domination area of p. Note
that the opposite does not hold, thus not any item of the domination area of p,
lies also in the (N − a)-area). The probability PN−a that an item pi lies in the
(N − a)-area is:

PN−a = P (ri1 > a ∧ ri2 > a ∧ ... ∧ rid
> a)

Due to the independence assumption we have:

PN−a = P (ri1 > a)·...·P (rid
> a) =

N − a

N
·...·N − a

N
=

(N − a)d

Nd
=
(
1 − a

N

)d

Therefore, the number of items lying in the (a)-area (Ca), and in the (N−a)-area
(CN−a) will be:

Ca = �N · Pa� = �N
(a

N

)d

� and CN−a = �N · PN−a� = �N
(
1 − a

N

)d

�

respectively. However, as it holds that all items lying in the (N − a)-area are
dominated by p, we have dom(p) ≥ CN−a, or equivalently:

dom(p) ≥ �N · PN−a� ⇔ dom(p) ≥ �N
(
1 − a

N

)d

� (10)

which describes a tight lower bound for the domination value of p.

Estimation of the Maximum Domination Value 515

Additionally, as p definitely lies in the (a)-area, at least one item must be
inside that area, thus it must hold that Ca ≥ 1, or equivalently:

�N · Pa� ≥ 1 ⇔ �N
(a

N

)d

� ≥ 1 (11)

To efficiently estimate the maximum domination value, we have to maximize
the lower bound of Inequality 10 under the a variable, respecting the condition
of Inequality 11 for the a variable. Therefore, let us define the function f(a) =
N
(
1 − a

N

)d that expresses the lower bound values, where a ∈ [0, N]. It has
f(0) = N, f(N) = 0 and the following relation derives:

f ′(a) = −d
(
1 − a

N

)d−1

We have f ′(a) < 0, ∀a ∈ (0, N), thus f is a monotone descending function in
[0,N], and returns values also in [0,N]. Moreover, the condition of Inequality 11
gives: (a

N

)d

≥ 1
N

⇔ a

N
≥ d

√
1
N

⇔ a ≥ N
d

√
1
N

Thus, f must be restricted in [N d

√
1
N , N]. Due to the descending monotonicity

of f , it takes its maximum value when amax = N d

√
1
N . Therefore, we have:

f(amax) = N
(
1 − amax

N

)d

= N

(
1 − d

√
1
N

)d

=
(

d
√

N − 1
)d

and the final estimation of the maximum domination value is:

d̂omd,N ≈
(

d
√

N − 1
)d

(12)

Generalization of the Root Method. To get even more accurate estima-
tions, we can generalize the root method by allowing the a variable to take

values slightly smaller than N d

√
1
N . This left shift of the a variable breaks the

condition of Inequality 11, but allows the possibility of taking into account items
that are not lying in the (a), (N − a)-areas and are dominated by p increasing
its domination value. We further studied this estimation improvement making
exhaustive experimental tests with different a values, and we conclude that the
estimation is very accurate when:

ashifted = N d

√
1

N
√

N

Then f takes the value:

f(ashifted) = N
(
1 − ashifted

N

)d

= N

(
1 − d

√
1

N
√

N

)d

=
1√
N

(
d

√
N
√

N − 1
)d

516 E. Tiakas, A.N. Papadopoulos, and Y. Manolopoulos

This hidden square root factor enhances the estimation accuracy and provides
the most accurate results for the maximum domination value. Thus, the final
proposed estimation formula is:

d̂omd,N ≈ 1√
N

(
d

√
N
√

N − 1
)d

(13)

4 Performance Evaluation

To test the estimation accuracy, we perform several experiments using indepen-
dent data sets of N = 100, 1K, 10K, 100K, 1M items and varying the dimen-
sionality d from 1 to values beyond the eliminating dimension d0. We record the
exact (average of 10 same type data sets) and the estimated maximum domi-
nation values. For brevity, we present only a small set of representative results,
which depict the most significant aspects. All experiments have been conducted
on a Pentium 4 with 3GHz Quad Core Extreme CPU, 4GB of RAM, using Win-
dows XP. All methods have been implemented in C++. Table 1 summarizes the
methods compared.

Figure 4 depicts the maximum domination value estimation results for all
estimation methods, varying the cardinality and the dimensionality of the data
sets. Table 2 presents the detailed estimation values of the corresponding graph
for N=1K and d = 1, ..., 10, for further inspection. We have not recorded the
values where the computational time is more than 10 minutes. Figure 5 presents

Table 1. Summary of methods evaluated

Notation Interpretation

RealAvg Real Averaged Values (No Estimation)

HarmRecc Estimation with Harmonics (Recursive Calculation)

HarmBound Estimation with Harmonics (Bound Approximation)

HarmGenF Estimation with Harmonics (Generating Functions Approximation)

CombSums Estimation with Multiple Summations

Roots Estimation with Roots (Simple)

RootsGen Estimation with Roots (Generalized with the square root)

Table 2. Maximum domination value estimation for N = 1K

d RealAvg HarmRecc HarmBound HarmGenF CombSums Roots RootsGen
1 999.0 999.000 999.000 999.000 999.418 999.000 999.968
2 955.6 992.515 993.092 992.515 993.431 937.754 988.785
3 875.2 971.162 976.141 971.166 - 729.000 908.100
4 623.1 923.542 945.064 923.556 - 456.931 732.128
5 434.4 - 905.128 842.585 - 235.430 510.298
6 294.2 - 868.930 730.456 - 102.204 308.870
7 190.3 - 849.100 598.636 - 38.198 164.043
8 110.7 - 851.089 463.172 - 12.510 77.312
9 73.2 - 871.420 338.813 - 3.642 32.674
10 33.1 - 901.311 235.082 - 0.954 12.498

Estimation of the Maximum Domination Value 517

MAX domination value estim

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1

d

ation (N=100)

6 17 18 19 20

RealAvg
HarmRecc
HarmBound
HarmGenF
RootsGen
CombSums
Roots

MAX domination value estima

0
100
200
300
400
500
600
700
800
900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d

tion (N=1000)

16 17 18 19 20

RealAvg
HarmRecc
HarmBound
HarmGenF
RootsGen
CombSums
Roots

MAX domination value estima

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1 2 3 4 5 6 7 8 9 101112131415161

d

tion (N=10000)

71819202122

RealAvg
HarmRecc
HarmBound
HarmGenF
RootsGen
CombSums
Roots

MAX domination value estimati

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

d

on (N=100000)

17 18 19 20 21 22 23 24 25 26 27 28

RealAvg
HarmRecc
HarmBound
HarmGenF
RootsGen
CombSums
Roots

MAX domination value estimati

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1000000

1 2 3 4 5 6 7 8 9 1011 121314 1516 171

d

on (N=1000000)

819 2021 2223 242526 2728 2930

RealAvg
HarmRecc
HarmBound
HarmGenF
RootsGen
CombSums
Roots

Fig. 4. Maximum domination value estimation for N=100, 1K, 10K, 100K, 1M

the estimation error of the 4 methods that return values into the full range for
N=1M, for further inspection. Based on the previous results we observe the
following:

– The HarmRecc method, due to the exponential computation complexity,
returns values in short time only for small dimensionality and cardinality
values. Moreover, after 3 dimensions the estimation error is significant.

– The HarmBound method returns estimation results instantly, but it is the
most inaccurate method for estimation.

– The HarmGenF method computes its results very efficiently. It produces
almost exactly the theoretical values of Hk,N when computed recursively.
Therefore, it returns the same estimation results with the HarmRecc method.
However, we observe that as we increase the cardinality of the data set, the
estimation error increases and becomes significant in almost all the dimen-
sionality range.

518 E. Tiakas, A.N. Papadopoulos, and Y. Manolopoulos

Estimation Error (N=

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9

d

1000000)

10 11 12 13 14 15

HarmBound
HarmGenF
Roots
RootsGen

Fig. 5. Estimation error for N=1M

– The CombSums method fails to return values even in small dimensionality
and cardinality selections, due to its exponential computational complexity
(we can see only 4 values when N=100 and 2 values when N=1000). In
addition, the returned values are remarkably close to those of HarmGenF
and HarmRecc. By increasing the cardinality, the values converge to the
harmonic values of the previous methods, thus it must be related somehow
with the k-th order harmonics. However, again the estimation error increases
and becomes significant in the whole dimensionality range.

– The Roots method returns estimation results more efficiently than all the
previous methods. By increasing the cardinality, the estimation becomes
more accurate, due to the fact that the number of the outliers becomes sig-
nificantly smaller than N . On the contrary, as the dimensionality increases,
the number of outliers increases as well, and the estimation becomes less ac-
curate. However, when we further move into the dimensionality range and we
approach the eliminating dimension, the estimation becomes again accurate.

– The RootsGen method is the most efficient way to get estimation results and
outperforms all previous methods. It manages to approximate the maximum
domination value with the smallest estimation error in the whole dimension-
ality and cardinality range.

5 Conclusions

This paper studies parametric methods for estimating the maximum domina-
tion value in multi-dimensional data sets, under the assumption of statistical
independence between dimensions and the assumption that there are no dupli-
cate attribute values in a dimension. The experimental results confirm that our
proposed estimation method outperforms all other methods and achieves the
highest estimation accuracy. Future work may include: (i) further study of the
eliminating dimension d0, providing an estimation formula for its calculation, (ii)
the study the estimation of the skyline cardinality under the Roots method and
its variants and (iii) the study of the maximum domination value estimation and
the eliminating dimension in arbitrary data sets, by relaxing the assumptions of
uniformity, independence and distinct values that used in this work.

Estimation of the Maximum Domination Value 519

References

1. Bentley, J.L., Kung, H.T., Schkolnick, M., Thompson, C.D.: On the Average Num-

ber of Maxima Set of Vectors and Applications. Journal of the ACM 25(4), 536–543

(1978)

2. Borzsonyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: Proceedings

17th International Conference on Data Engineering (ICDE), Heidelberg, Germany,

pp. 421–430 (2001)

3. Buchta, C.: On the average number of maxima in a set of vectors. Information

Processing Letters 33, 63–65 (1989)

4. Chaudhuri, S., Dalvi, N., Kaushik, R.: Robust Cardinality and Cost Estimation

for the Skyline Operator. In: Proceedings 22nd International Conference on Data

Engineering (ICDE), Atlanta, GA (2006)

5. Huang, J.: Tuning the Cardinality of Skyline. In: Ishikawa, Y., He, J., Xu, G., Shi,

Y., Huang, G., Pang, C., Zhang, Q., Wang, G. (eds.) APWeb 2008 Workshops.

LNCS, vol. 4977, pp. 220–231. Springer, Heidelberg (2008)

6. Godfrey, P.: Cardinality Estimation of Skyline Queries: Harmonics in Data, Tech-

nical Report CS-2002-03, York University (2002)

7. Godfrey, P.: Skyline Cardinality for Relational Processing. In: Proceedings 3rd

International Symposium of Foundations of Information and Knowledge Systems

(FoIKS), pp. 78–97. Wilhelminenburg Castle, Austria (2004)

8. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics. Addison-

Wesley, Reading (1989)

9. Knuth, D.E.: Fundamental Algorithms: The Art of Computer Programming.

Addison-Wesley, Reading (1973)

10. Lu, Y., Zhao, J., Chen, L., Cui, B., Yang, D.: Effective Skyline Cardinality Esti-

mation on Data Streams. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA

2008. LNCS, vol. 5181, pp. 241–254. Springer, Heidelberg (2008)

11. Roman, S.: The harmonic logarithms and the binomial formula. Journal of Com-

binatorial Theory, Series A 63, 143–163 (1993)

12. Yiu, M.L., Mamoulis, N.: Efficient Processing of Top-k Dominating Queries on

Multi-Dimensional Data. In: Proceedings 33rd International Conference on Very

Large Data Bases (VLDB), Vienna, Austria, pp. 483–494 (2007)

13. Yiu, M.L., Mamoulis, N.: Multi-Dimensional Top-k Dominating Queries. The

VLDB Journal 18(3), 695–718 (2009)

14. Zhang, Z., Yang, Y., Cai, R., Papadias, D., Tung, A.: Kernel-Based Skyline Cardi-

nality Estimation. In: Proceedings ACM International Conference on Management

of Data (SIGMOD), pp. 509–522 (2009)

The Objects Interaction Graticule for Cardinal
Direction Querying in Moving Objects Data Warehouses

Ganesh Viswanathan and Markus Schneider�

Department of Computer & Information Science & Engineering
University of Florida

Gainesville, FL 32611, USA
{gv1,mschneid}@cise.ufl.edu

Abstract. Cardinal directions have turned out to be very important qualitative
spatial relations due to their numerous applications in spatial wayfinding, GIS,
qualitative spatial reasoning and in domains such as cognitive sciences, AI and
robotics. They are frequently used as selection criteria in spatial queries. Moving
objects data warehouses can help to analyze complex multidimensional data of a
spatio-temporal nature and to provide decision support. However, currently there
is no available method to query for cardinal directions between spatio-temporal
objects in data warehouses. In this paper, we introduce the concept of a mov-
ing objects data warehouse (MODW) for storing and querying multidimensional
spatio-temporal data. Further, we also present a novel two-phase approach to
model and query for cardinal directions between moving objects by using the
MODW framework. First, we apply a tiling strategy that determines the zone be-
longing to the nine cardinal directions of each spatial object at a particular time
and then intersects them. This leads to a collection of grids over time called the
Objects Interaction Graticule (OIG). For each grid cell, the information about the
spatial objects that intersect it is stored in an Objects Interaction Matrix. In the
second phase, an interpretation method is applied to these matrices to determine
the cardinal direction between the moving objects. These results are integrated
into MDX queries using directional predicates.

1 Introduction

For more than a decade, data warehouses have been at the forefront of information
technology applications as a way for organizations to effectively use information for
business planning and decision making. The data warehouse contains data that gives in-
formation about a particular, decision-making subject instead of about an organization’s
ongoing operations (subject-oriented). Data is gathered into the data warehouse from a
variety of sources and then merged into a coherent whole (integrated). All the data in
a data warehouse can be identified with a particular time period (time-variant). Data is
periodically added in a data warehouse but is hardly ever removed (non-volatile). This
enables the manager to gain a consistent picture of the business. Thus, the data ware-
house is a large, subject-oriented, integrated, time-variant and non-volatile collection

� This work was partially supported by the National Aeronautics and Space Administration
(NASA) under the grant number NASA-AIST-08-0081.

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 520–532, 2010.
© Springer-Verlag Berlin Heidelberg 2010

The Objects Interaction Graticule for Cardinal Direction Querying 521

of data in support of management’s decision making process [1,2]. Online Analytical
Processing (OLAP) is the technology that helps perform complex analyses over the
information stored in the data warehouse. Data warehouses and OLAP enable organi-
zations to gather overall trends and discover new avenues for growth.

With the emergence of new applications in areas such as geo-spatial, sensor, mul-
timedia and genome research, there is an explosion of complex, spatio-temporal data
that needs to be properly managed and analyzed. This data is often complex (with hi-
erarchical, multidimensional nature) and has spatio-temporal characteristics. A good
framework to store, query and mine such datasets involves next-gen moving objects
data warehouses that bring the best tools for data management to support complex,
spatio-temporal datasets. The moving objects data warehouse (MODW) can be defined
as a large, subject-oriented, integrated, time-variant, non-volatile collection of analyti-
cal, spatio-temporal data that is used to support the strategic decision-making process
for an enterprise. Moving objects data warehouses help to analyze complex multidimen-
sional geo-spatial data exhibiting temporal variations, and provide enterprise decision
support.

Qualitative relations between spatial objects include cardinal direction relations,
topological relations and approximate relations. Of these cardinal directions have turned
out to be very important due to their application in spatial wayfinding, qualitative spa-
tial reasoning and in domains such as cognitive sciences, robotics, and GIS. In spatial
databases and GIS they are frequently used as selection criteria in spatial queries. How-
ever, currently there is no available method to model and query for cardinal directions
between moving objects (with a spatio-temporal variation).

An early approach to modeling data warehouses with support for several built-in
datatypes is presented in [3]. We described a novel system to model cardinal directions
between spatial regions in databases using the Object Interaction Matrix (OIM) model
in [4]. This model solves the problems found in existing direction relation models like
the unequal treatment of the two spatial objects as arguments of a cardinal direction
relation, the use of too coarse approximations of the two spatial operand objects in
terms of single representative points or MBRs, the lacking property of converseness
of the cardinal directions computed, the partial restriction and limited applicability to
simple spatial objects only, and the computation of incorrect results in some cases. The
basis of the model was a bounded grid called the objects interaction grid which helps
to capture the information about the spatial objects that intersect each of its cells. Then,
we used a matrix to and applied an interpretation method to determine the cardinal
direction between spatial objects.

In this paper, we present a novel Objects Interaction Graticule system for model-
ing cardinal directions between moving objects and querying for such relations. We
also introduce a moving objects data warehouse framework to help achieve this task.
Our method improves upon the OIM model by adding support for moving objects and
provides an innovative approach to model cardinal direction relations inside data ware-
houses. In a first phase, we apply a multi-grid tiling strategy to determine the zone
belonging to the the nine cardinal directions of each spatial object at a particular time
and then intersects them. This leads to a collection of grids over time called the Objects
Interaction Graticule. For each grid cell the information about the spatial objects that

522 G. Viswanathan and M. Schneider

intersect it is stored in an Objects Interaction Matrix. In the second phase, an interpre-
tation method is applied to these matrices to determine the cardinal direction between
the moving objects. These results are integrated into MDX queries using directional
predicates.

In the next section, we provide a survey of existing techniques to model cardinal
directions in general, and discuss their applicability to data warehouses and for mod-
eling direction relations between moving objects. In Section 3, we introduce our mov-
ing objects data warehouse framework and the Objects Interaction Graticule Model for
modeling cardinal direction relations between moving objects. The Tiling Phase of the
model (explained in Section 4) helps to generate the OIM matrix; its Interpretation is
achieved in Section 5. Section 6 provides direction predicates and MDX queries [5] that
illustrate cardinal direction querying using our model. Finally, Section 7 concludes the
paper and provides some directions for future research.

2 Related Work

A good survey of existing approaches for modeling cardinal directions between region
objects without temporal variation is provided in [4]. The models proposed to capture
cardinal direction relations between simple spatial objects (like point, line, and region
objects) as instances of spatial data types [6] can be classified into tiling-based mod-
els and minimum bounding rectangle-based (MBR-based) models, some examples of
which are shown in Figure 1.

Tiling-based models use partitioning lines that subdivide the plane into tiles. They
can be further classified into projection-based models and cone-shaped models, both of
which assign different roles to the two spatial objects involved. The projection-based
models define direction relations by using partitioning lines parallel to the coordinate
axes. The Direction-Relation Matrix model [7,8] helps capture the influence of the ob-
jects’ shapes as shown in Figure 1c. However, this model only applies to spatial objects
with non-temporal variations. It also leads to imprecise results with intertwined ob-
jects. We introduced an improved modeling strategy for cardinal directions between re-
gion objects in [4]. The cone-shaped models define direction relations by using angular
zones. The MBR-based model [9] approximates objects using minimum bounding rect-
angles and brings the sides of these MBRs into relation with each other using Allen’s
interval relations [10].

N

W E

S

NW

SW SE

NE
B

A

B

A

NORTH

SOUTH

EASTWEST

NW N NE

EW

SW S SE

B

B

A

SE

E

NENW

W

SW S

N

sameLocation
B

BA

(a) (b) (c) (d)

Fig. 1. Projection-based (a) and cone-shaped (b) models, and the Direction-Relation Matrix
model with A as reference object (c) and with B as reference object (d)

The Objects Interaction Graticule for Cardinal Direction Querying 523

The data warehouse helps to store and query over large, multidimensional datasets
and is hence a good choice for storing and querying spatio-temporal data. We presented
a conceptual, user-centric approach to data warehouse design called the B igC ube model
in [3]. Several other models have also been proposed to conceptually model a data
warehouse using a cube metaphor as surveyed and extended in [11,12]. Moving objects,
their formal data type characterizations and operations have been introduced in [13,14].
However there is the lack of a model for qualitative direction relations between moving
objects in all existing works. This paper provides a clear solution to this problem by
first describing the basics of the MODW framework in Section 3 and then introducing
the OIG model for gathering direction relations between moving objects in Section 4.

3 Moving Objects Data Warehouses and the Objects Interaction
Graticule (OIG) Approach for Modeling Cardinal Directions

The idea behind moving objects data warehouses (MODW) is to provide a system ca-
pable of representing moving entities in data warehouses and be able to ask queries
about them. Moving entities could be moving points such as people, animals, all kinds
of vehicles such as cars, trucks, air planes, ships, etc., where usually only the time-
dependent position in space is relevant, not the extent. However, moving entities with
an extent, e.g., hurricanes, fires, oil spills, epidemic diseases, etc., could be character-
ized as moving regions. Such entities with a continuous, spatio-temporal variation (in
position, extent or shape) are called moving objects. With a focus on cardinal direction
relations, moving regions are more interesting because of the change in the relationship
between their evolving extents over time. In this paper, we focus on simple (single-
component, hole-free) moving regions and provide a novel approach to gather direction
relations between such objects over time, using a data warehousing framework. The
moving objects data warehouse is defined by a conceptual cube with moving objects
in the data dimensions (containing members) defining the structure of the cube, and its
cells containing measure values that quantify real-world facts. The measures and mem-
bers are instances of moving object data types [13]. The B igC ube [3] is an example
of a conceptual, user-centric data warehouse model that can be extended for MODW

A

B

t1

A

A

t2t1
A

B

t1 t2

A

B

(a) (b) (c)

Fig. 2. Possible configurations between two objects: spatial variation (a), spatio-temporal varia-
tion in one object (b), spatio-temporal variation in both objects (c).

524 G. Viswanathan and M. Schneider

TILING PHASE

Generation of
Objects Interaction Graticule

Generation of
Objects Interaction Matrix

INTERPRETATION PHASE

Interpretation Function

Location Function

dir(,)
dir(,)

dir(,)

dir(,)
dir(,)

dir(,)

dir(mbr(union(,)),At1 Bt1At1

mbr(union(,)))Bt2At2Bt1

At2

Bt2

At1 Bt1
At2

Bt2At1

Bt2

At2 Bt1
At1 At2
Bt1 Bt2

mdir(, , ,)At1 Bt1 At2 Bt2

Fig. 3. Overview of the two phases of the Objects Interaction Graticule (OIG) model

design. In this paper, our OIG model lies at the conceptual level and the predicates pro-
vide the means to implement the model using any logical approach [15]. However, we
shall provide MDX queries to help illustrate the versatility of the model in querying for
direction relations between moving objects.

The goal of the OIG model is to enable a data warehouse user to query for cardinal
directions between moving region objects. To achieve this goal, we need to take the
various possible moving objects’ configurations into account and model for direction
relations in all of the cases to arrive at the overall direction relation. This is because
the direction relation between two moving objects, between two queried time instances,
can be arrived at only by considering all the direction relations between them during
their lifetimes. The possible configurations between moving objects that we need to
consider include the following. First, two objects could be at different spatial locations
at the same instant of time (dual object, spatial variation) as shown in Figure 2(a).
Second, an object could be at two different spatial locations at two different instances
of time (single object, spatio-temporal variation) as shown in Figure 2(b). Third, two
objects could be at two different spatial locations at two different time instances (dual
object, spatio-temporal variation) as shown in Figure 2(c). The dotted lines between
the configuration of objects across time represents the flux in the intersection of the
coordinate systems used in the space-time continuum. We include this in our model to
be able to capture the locations of objects across the time extents. However, the dashed
lines indicate the part not bounded by the objects interaction graticule (OIG). The OIG
is a closed, bounded region and the dotted lines do not signify any holes in the spatio-
temporal variation of the moving objects.

Figure 3 shows the two-phase strategy of our model for calculating the cardinal di-
rection relations between two objects A and B at time instances t1 and t2. We assume
that A and B (in the general case) are non-empty values of the complex spatial-temporal
data type mregion [13]. For computing the direction relation between two moving ob-
jects’ snapshots, we need to consider all possible direction relations between the var-
ious combination of objects in the interacting system. First, we consider the scenario
at each snapshot t1 and t2, and also the case when t1 = t2. For these, we default to the
OIM approach for directions between objects without temporal variation and gather
the direction relations between them. This is given by dir(At1 ,Bt1) and dir(At2 ,Bt2).
The second case arises if t1 �= t2. Then five more direction relations can be computed
as shown in Figure 3. This includes four combinations for the two objects at t1 and t2,
given by dir(At1 ,Bt2), dir(At2 ,Bt1), dir(At1 ,At2) and dir(Bt1 ,Bt2). Plus, we also relate

The Objects Interaction Graticule for Cardinal Direction Querying 525

the entire system (both objects) at each of the different time instances used to deter-
mine the query result. This is given by dir(mbr(union(At1 ,Bt1)),mbr(union(At2 ,Bt2))).
Using all these direction relations, we can now compute the moving direction relations
between the two regions over time.

Notice that, for clarity, we have used the notation At instead of A(t) to refer to the
temporal development of the moving region A (A is actually defined by a continuous
function A : time → region). We will use this notation through the rest of the paper. The
tiling phase in Section 4 details our novel tiling strategy that produces the objects in-
teraction graticule and shows how they are represented by objects interaction matrices.
The interpretation phase in Section 5 leverages the objects interaction matrix to derive
the directional relationship between two moving region objects.

4 The Tiling Phase: Representing Interactions of Objects with the
Objects Interaction Graticule and Matrix

In this section, we describe the tiling phase of the model. The general idea of our tiling
strategy is to superimpose a graticule called objects interaction graticule (OIG) on a
configuration of two moving spatial objects (regions). Such a graticule is determined
by four vertical and four horizontal partitioning lines of each object at available time
instances. The four vertical (four horizontal) partitioning lines of an object are given
as infinite extensions of the two vertical (two horizontal) segments of the object’s min-
imum bounding rectangle at each of the two time instances. The partitioning lines of
both objects create a partition of the Euclidean plane consisting of multiple mutually
exclusive, directional tiles or zones.

In the most general case, all partitioning lines are different from each other, and
we obtain an overlay partition with central, bounded tiles and peripheral, unbounded
tiles (indicated by the dashed segments in Figure 4 (a)). The unbounded tiles do not

OIG(At1 ,Bt1 ,At2 ,Bt2) =

A

B

t1

t2A

B

t1

t2

OIM(At1 ,Bt2) =
(

1 0 2
)

OIM(At2 ,Bt1) =

⎛⎝ 2 0 0
0 0 0
0 0 1

⎞⎠
OIM(mbr(union(At1 ,Bt1)),

mbr(union(At2 ,Bt2))) =

(
1 0 2
0 0 2

)

OIM(At1 ,At2) =

⎛⎝ 1 0 0
0 0 0
0 0 1

⎞⎠
OIM(Bt1 ,Bt2) =

⎛⎝ 0 0 2
0 0 0
2 0 0

⎞⎠
(a) (b)

Fig. 4. The objects interaction graticule OIG(A,B) for the two region objects A and B in Figures 1c
and 1d (a) and the derived objects interaction matrices (OIM) for OIG components described in
Definition 3

526 G. Viswanathan and M. Schneider

contain any objects and therefore, we exclude them and obtain a graticule space that is
a bounded proper subset of R2, as Definition 1 states.

Definition 1. Let R= (At1 ,Bt1 ,At2 ,Bt2),R ∈ region with At1 �= ∅∧Bt1 �= ∅∧At2 �= ∅∧
Bt2 �= ∅, and let minr

x = min{x |(x,y) ∈ r}, maxr
x = max{x |(x,y) ∈ r},

minr
y = min{y |(x,y) ∈ r}, and maxr

y = max{y |(x,y) ∈ r} for r ∈ {At1 ,Bt1 ,At2 ,Bt2}.
The objects interaction graticule space (OIGS) of At1 ,Bt1 ,At2 and Bt2 is given as:

OIGS(R) = {(x,y) ∈ R2 | min(minAt1
x ,minBt1

x ,minAt2
x ,minBt2

x) ≤ x ≤
max(maxAt1

x ,maxBt1
x ,maxAt2

x ,maxBt2
x) ∧ min(minAt1

y ,minBt1
y ,

minAt2
y ,minBt2

y) ≤ y ≤ max(maxAt1
y ,maxBt1

y ,maxAt2
y ,maxBt2

y)}

Definition 2 determines the bounded graticule formed as a part of the partitioning lines
and superimposed on OIGS(At1 ,Bt1 ,At2 ,Bt2).

Definition 2. Let seg be a function that constructs a segment between any two given
points p,q ∈ R2, i.e., seg(p,q) = {t | t = (1 − λ)p + λq,0 ≤ λ ≤ 1}. Let
Hr = {seg((minr

x,minr
y), (maxr

x,minr
y)),seg((minr

x,maxr
y),(maxr

x,maxr
y))} and

Vr = {seg((minr
x,minr

y),(minr
x,maxr

y)),seg((maxr
x,minr

y),(maxr
x, maxr

y))} for r ∈{At1 ,Bt1 ,
At2 ,Bt2}. We call the elements of HAt1 , HBt1 , HAt2 , HBt2 , VAt1 , VBt1 , VAt2 and VBt2 objects
interaction graticule segments. Then, the objects interaction graticule (OIG) for A and
B is given as:

OIG(At1 ,Bt1 ,At2 ,Bt2) = HAt1 ∪VAt1 ∪HBt1 ∪VBt1 ∪HAt2 ∪VAt2 ∪HBt2 ∪VBt2 .

In the OIG of an object, there are two constituent object interaction coordinate systems
(OICS) for each temporal state of the moving objects. These are defined as follows:

OICoordS(At1 ,Bt1) = HAt1 ∪VAt1 ∪HBt1 ∪VBt1 , and
OICoordS(At2 ,Bt2) = HAt2 ∪VAt2 ∪HBt2 ∪VBt2 .

The definition of OIG comprises the description of all graticules that can arise. In the
most general case, if t1 = t2 and HAt1 ∩ HBt1 = ∅ and VAt1 ∩VBt1 = ∅, we obtain a
bounded 3×3-graticule similar to that for a non-temporal variation in the objects con-
figurations. Special cases arise if HAt1 ∩HBt1 �= ∅ and/or VAt1 ∩VBt1 �= ∅. Then equal
graticule segments coincide in the union of all graticule segments. As a result, depend-
ing on the relative position of two objects to each other, the objects interaction graticule
can be of different sizes. However, due to the non-empty property of a region object,
not all graticule segments can coincide. This means that at least two horizontal graticule
segments and at least two vertical graticule segments must be maintained. Definition 3
gives a formal characterization for the OIG.

Definition 3. An objects interaction graticule OIG(At1 ,Bt1 ,At2 ,Bt2) consists of two ob-
jects interaction coordinate systems, at t1 and t2, each of size m×n, with m,n∈ {1,2,3},
if |HA ∩HB| = 3−m and |VA ∩VB| = 3− n. Further, it also consists of four Objects
Interaction Grids for each of the spatio-temporal combinations of the two moving ob-
jects and a fifth for the overall system. Together, these are called the objects interaction
graticule components.

The Objects Interaction Graticule for Cardinal Direction Querying 527

The objects interaction graticule partitions the objects interaction graticule space into
objects interaction graticule tiles (zones, cells). Definition 4 provides their definition for
each of the time instances uniquely, using the objects interaction coordinate systems.

Definition 4. Given At1 ,Bt1 ,At2 ,Bt2 ∈ region with At1 �= ∅∧Bt1 �= ∅∧At2 �= ∅∧Bt2 �=
∅, OIGS(At1 ,Bt1 ,At2 ,Bt2), and OIG(At1 ,Bt1 ,At2 ,Bt2), we define cH = |HA∪HB|= |HA|+
|HB| − |HA ∩ HB| and cV correspondingly at a time instant. Let HAB = HA ∪ HB =
{h1, . . . ,hcH} such that (i) ∀1 ≤ i ≤ cH : hi = seg((x1

i ,yi),(x2
i ,yi)) with x1

i < x2
i , and

(ii) ∀1 ≤ i < j ≤ cH : hi < h j (we say that hi < h j :⇔ y j < yi). Further, let VAB =
VA∪VB = {v1, . . . ,vcV } such that (i) ∀1 ≤ i≤ cV : vi = seg((xi,y1

i),(xi,y2
i)) with y1

i < y2
i ,

and (ii) ∀1 ≤ i < j ≤ cV : vi < v j (we say that vi < v j :⇔ xi < x j).
Next, we define four auxiliary predicates that check the position of a point (x,y) with

respect to a graticule segment:

below((x,y),hi) ⇔ x1
i ≤ x ≤ x2

i ∧ y ≤ yi

above((x,y),hi) ⇔ x1
i ≤ x ≤ x2

i ∧ y ≥ yi

right of ((x,y),vi) ⇔ y1
i ≤ y ≤ y2

i ∧ x ≥ xi

left of ((x,y),vi) ⇔ y1
i ≤ y ≤ y2

i ∧ x ≤ xi

An objects interaction graticule tile ti, j with 1 ≤ i < cH and 1 ≤ j < cV is then defined
for a particular time instant as

ti, j = {(x,y) ∈ OIGS(A,B) |below((x,y),hi) ∧ above((x,y),hi+1) ∧
right of ((x,y),v j) ∧ left of ((x,y),v j+1)}

The definition indicates that all tiles are bounded and that two adjacent tiles share their
common boundary. Let OIGT(A,B) be the set of all tiles ti, j imposed by OIG(A,B) on
OIGS(A,B). An m×n-graticule contains m ·n bounded tiles.

By applying our tiling strategy, an objects interaction graticule can be generated for
any two region objects A and B. It provides us with the valuable information which
region object intersects which tile across the temporal variations. With each time event
t1 and t2, Definition 5 provides us with a definition of the interaction of A and B with a
tile.

Definition 5. Given A,B ∈ region with A �= ∅ and B �= ∅ and OIGT(A,B), let ι be a
function that encodes the interaction of A and B with a tile ti, j , and checks whether no
region, A only, B only, or both regions intersect a tile. We define this function as

ι(A,B,ti, j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if A◦ ∩ t◦i, j = ∅ ∧ B◦ ∩ t◦i, j = ∅

1 if A◦ ∩ t◦i, j �= ∅ ∧ B◦ ∩ t◦i, j = ∅

2 if A◦ ∩ t◦i, j = ∅ ∧ B◦ ∩ t◦i, j �= ∅

3 if A◦ ∩ t◦i, j �= ∅ ∧ B◦ ∩ t◦i, j �= ∅

We use the mbr and union functions for computing the minimum bounding rectangle
and the spatial union of two objects, respectively. To support both objects interaction co-
ordinate systems we extend ι to accept mbr(union(At1 ,Bt1)) and mbr(union(At2 ,Bt2)) as
operands. The operator ◦ denotes the point-set topological interior operator and yields

528 G. Viswanathan and M. Schneider

a region without its boundary. For each graticule cell ti, j in the ith row and jth column
of an m×n-graticule with 1 ≤ i ≤ m and 1 ≤ j ≤ n, we store the coded information in
an objects interaction matrix (OIM) in cell OIM(A,B)i,j.

OIM(A,B) =

⎛⎝ ι(A,B,t1,1) ι(A,B, t1,2) ι(A,B, t1,3)
ι(A,B,t2,1) ι(A,B, t2,2) ι(A,B, t2,3)
ι(A,B,t3,1) ι(A,B, t3,2) ι(A,B, t3,3)

⎞⎠
5 The Interpretation Phase: Assigning Semantics to the Objects

Interaction Matrix

The second phase of the OIG model is the interpretation phase. This phase takes an
objects interaction matrix (OIM)obtained as the result of the tiling phase as input and
uses it to generate a set of cardinal directions as output. This is achieved by separately
identifying the locations of both objects in the objects interaction matrix and by pair-
wise interpreting these locations in terms of cardinal directions. The union of all these
cardinal directions is the result. This phase is similar to the Interpretation Phase of the
OIM model [4].

We use an interpretation function to determine the basic cardinal direction between
any two object components on the basis of their (i, j)-locations in the objects interac-
tion matrix. The composite cardinal relation between A and B is then the union of all
determined relations.

In a first step, we define a function loc (see Definition 6) that acts on one of the
region objects A or B and their OIM and determines all locations of components of
each object in the matrix for both temporal extents individually. Let Im,n = {(i, j) |1 ≤
i ≤ m,1 ≤ j ≤ n}. We use an index pair (i, j) ∈ Im,n to represent the location of the
element Mi, j ∈ {0,1,2,3} and thus the location of an object component from A or B in
an m×n objects interaction matrix.

Definition 6. Let M be the m×n-objects interaction matrix of two region objects A and
B. Then the function loc is defined as:

loc(A,M) = {(i, j) |1 ≤ i ≤ m,1 ≤ j ≤ n,Mi, j = 1 ∨ Mi, j = 3}
loc(B,M) = {(i, j) |1 ≤ i ≤ m,1 ≤ j ≤ n,Mi, j = 2 ∨ Mi, j = 3}

In a second step, we define an interpretation function ψ to determine the cardinal di-
rection between any two object components of A and B on the basis of their locations
in the objects interaction matrix. We use a popular model with the nine basic cardinal
directions: north (N), northwest (NW), west (W), southwest (SW), south (S), south-
east (SE), east (E), northeast (NE), and origin (O) to symbolize the possible cardi-
nal directions between object components. A different set of basic cardinal directions
would lead to a different interpretation function and hence to a different interpretation
of index pairs. Definition 7 provides the interpretation function ψ with the signature
ψ : Im,n × Im,n → CD.

Definition 7. Given (i, j),(i′, j′)∈ Im,n, the interpretation function ψ on the basis of the
set CD = {N,NW,W,SW, S,SE,E,NE,O} of basic cardinal directions is defined as

The Objects Interaction Graticule for Cardinal Direction Querying 529

ψ((i, j),(i′, j′)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N if i < i′ ∧ j = j′

NW if i < i′ ∧ j < j′

W if i = i′ ∧ j < j′

SW if i > i′ ∧ j < j′

S if i > i′ ∧ j = j′

SE if i > i′ ∧ j > j′

E if i = i′ ∧ j > j′

NE if i < i′ ∧ j > j′

O if i = i′ ∧ j = j′

The main difference compared to the OIM approach however is in the following third
and final step. We temporally lift the dir cardinal direction relation function to include
objects over their temporal extents. Here, we specify the cardinal direction
function named mdir (moving-direction) which determines the composite moving car-
dinal direction for two moving region objects A and B. This function has the signature
mdir : regiont1 ×regiont2 → 2CD and yields a set of basic cardinal directions as its result.
In order to compute the function dir, we first generalize the signature of our interpreta-
tion function ψ to ψ : 2Im,n × 2Im,n → 2CD such that for any two sets X ,Y ⊆ Im,n holds:
ψ(X ,Y) = {ψ((i, j),(i′, j′)) |(i, j) ∈ X ,(i′, j′) ∈Y}. We are now able to specify the car-
dinal direction function mdir in Definition 8.

Definition 8. Let A,B ∈ region and dir(A,B) = ψ(loc(A,OIM(A,B)),
loc(B,OIM(A,B))). Then the cardinal direction function mdir is defined as

mdir(At1 ,Bt1 ,At2 ,Bt2) = dir(At1 ,Bt1)∪dir(At2 ,Bt2)∪dir((At1 ,Bt1),(At2 ,Bt2))∪
dir(At1 ,Bt2)∪dir(At2 ,Bt1)∪dir(At1 ,At2)∪dir(Bt1 ,Bt2)

We apply this definition to our example in Figure 4. With loc(At1 ,OIM(At1,Bt1))
= {(1,1)} and loc(Bt1 ,OIM(At1 ,Bt1)) = {(3,3)}, and so on, we obtain

mdir(At1 ,Bt1 ,At2 ,Bt2) = {ψ((1,1),(3,3)),ψ((3,1),(1,3)),ψ({(1,1)},
{(1,3),(2,3)}),ψ((1,1),(1,3)),ψ((3,1),(1,2)),
ψ((1,1),(3,1)),ψ((3,1),(1,3))}

= {NW,SW,W,SE}
Finally we can say regarding Figure 4 that “Object A is partly northwest, partly south-
west, partly west, and partly southeast of object B over the period from time t1 to t2”.
Each of the individual directions between the moving objects for the three possible con-
figurations described in Section 3 can also be provided by using the results from each
application of dir, that is used to finally arrive at the moving direction relations (given
by mdir).

6 Directional Predicates for OLAP Querying in Moving Object
Data Warehouses

Based on the OIG model and the interpretation mechanism described in the previous
sections, we can identify the cardinal directions between any given two moving region

530 G. Viswanathan and M. Schneider

objects. To integrate the cardinal directions into moving object data warehouses as se-
lection and join conditions in spatial queries, binary directional predicates need to be
formally defined. For example, a query like “Find all hurricanes that affect states which
lie strictly to the north of Florida” requires a directional predicate like strict north as a
selection condition of a spatial join.

The mdir function, which produces the final moving cardinal directions between
two complex region objects A and B across temporal variation, yields a subset of the
set CD = {N,NW,W,SW, S,SE,E,NE,O} of basic cardinal directions. As a result, a
total number of 29 = 512 cardinal directions can be identified. Therefore, at most 512
directional predicates can be defined to provide an exclusive and complete coverage of
all possible directional relationships. We can assume that users will not be interested
in such a large, overwhelming collection of detailed predicates since they will find it
difficult to distinguish, remember and handle them. Instead we provide a mechanism
for the user to define and maintain several levels of predicates for querying. As a first
step, in Definition 9, we propose nine existential directional predicates that ensure the
existence of a particular basic cardinal direction between parts of two region objects A
and B.

Definition 9. Let R = (At1 ,Bt1 ,At2 ,Bt2),R ∈ region. Then the existential directional
predicate for north is defined as:

exists north(R) ≡ (N ∈ mdir(R))

Eight further existential direction predicates for S, E, W, O, NE, SE, NW, and SW are
also defined correspondingly. Later, by using ¬, ∨ and ∧ operators, the user will be able
to define any set of composite derived directional predicates from this set for their own
applications.

We shall provide two examples for these. The first set of predicates is designed to
handle similarly oriented directional predicates between two regions. Similarly ori-
ented means that several cardinal directions facing the same general orientation belong
to the same group. Definition 10 shows an example of northern by using the existential
predicates.

Definition 10. Let R = (At1 ,Bt1 ,At2 ,Bt2),R ∈ region. Then northern is defined as:

northern(R) = exists north(R)∨ exists northwest(R)∨ exists northeast(R)

The other similarly oriented directional predicates southern, eastern, and western are
defined in a similar way.

The second set of predicates is designed to handle strict directional predicates be-
tween two region objects. Strict means that two region objects are in exactly one basic
cardinal direction to each other. Definition 11 shows an example of strict north by using
the existential predicates.

Definition 11. Let R = (At1 ,Bt1 ,At2 ,Bt2),R ∈ region. Then strict north is defined as:

strict north(R) = exists north(R)∧¬exists south(R)∧¬exists west(R)∧
¬exists east(R)∧¬exists northwest(R)∧ ¬exists northeast(R)∧
¬exists southwest(R)∧¬exists southeast(R)∧¬exists origin(R)

The Objects Interaction Graticule for Cardinal Direction Querying 531

The other strict directional predicates strict south, strict east, strict west,
strict origin, strict northeast, strict northwest, strict southeast, strict southwest,
strict northern, strict southern, strict eastern, and strict western are defined in a simi-
lar way.

We can now employ these predicates in MDX queries in the moving objects data
warehouse. For example, assuming we are given a sample WeatherEvents cube (analo-
gous to a spreadsheet table) with hurricane names (ordered in categories according to
their intensity) from several years and containing geographic information, we can pose
the following query:

Determine the names of hurricanes, ordered in categories according to their intensity,
which had a path moving towards the east from their point of origin, and affected states
strictly in the northern part of Florida, during the period from 2005 to 2009.

The corresponding MDX query is as follows:

SELECT { [Date].[2005] : [Date].[2009] } ON ROWS,

{ NON EMPTY Filter({[Measures].[Hurricanes].[Category].MEMBERS},

exists_east([Measures].[Hurricanes].CurrentMember,

[Measures].[Hurricanes])) } ON COLUMNS,

{ [Geography].[Country].[State]} ON PAGES,

FROM Cube_WeatherEvents

WHERE (strict_northern([Geography].[Country].[State].MEMBERS,

[Geography].[Country].[USA].[FL]))

A sample result of this query is shown below.

2005 2006 2007 2008 2009

Georgia
Cat-2 Kevin Bronco Tracy Nobel
Cat-3 Cindy Alberto Barry Fay Ida
Cat-4 Katrina Alberto Ida

North Carolina
Cat-2 Cindy Alberto Hought Jives
Cat-3 Katrina Ernesto Sabley Hanna Vorice

7 Conclusion and Future Work

In this paper, we introduce the concept of a moving objects data warehouse (MODW)
for storing and querying multidimensional, spatial-temporal data. We also present a
novel approach called the Objects Interaction Graticule (OIG) model to determine the
cardinal directions between moving, simple (single-component, hole-free) region ob-
jects. We also show how directional predicates can be derived from the cardinal direc-
tions and use them in MDX queries.

In the future, we plan to extend our approach to include complex moving points, lines
and other mixed combinations of moving object data types. Further work includes an
efficient implementation of the moving objects data warehouse, and the design of spa-
tial reasoning techniques for direction relations using the objects interaction graticule
model.

532 G. Viswanathan and M. Schneider

References

1. Inmon, W.: Building the Data Warehouse. John Wiley & Sons, New York (2005)
2. Kimball, R., Ross, M.: The Data Warehousing Toolkit. John Wiley& Sons, New York (1996)
3. Viswanathan, G., Schneider, M.: BigCube: A Metamodel for Managing Multidimensional

Data. In: Proceedings of the 19th International Conference on Software Engineering and
Data Engineering (SEDE), pp. 237–242 (2010)

4. Chen, T., Schneider, M., Viswanathan, G., Yuan, W.: The Objects Interaction Matrix for
Modeling Cardinal Directions in Spatial Databases. In: Proceedings of the 15th Interna-
tional Conference on Database Systems for Advanced Applications (DASFAA), pp. 218–232
(2010)

5. Microsoft Corporation: Multidimensional Expressions (MDX) Reference,
http://msdn.microsoft.com/en-us/library/ms145506.aspx

(ccessed: June 6, 2010)
6. Schneider, M.: Spatial Data Types for Database Systems - Finite Resolution Geometry for

Geographic Information Systems. In: Schneider, M. (ed.) Spatial Data Types for Database
Systems. LNCS, vol. 1288. Springer, Heidelberg (1997)

7. Goyal, R., Egenhofer, M.: Cardinal Directions between Extended Spatial Objects (2000)
(unpublished manuscript)

8. Skiadopoulos, S., Koubarakis, M.: Composing Cardinal Direction Relations. Artificial Intel-
ligence 152(2), 143–171 (2004)

9. Papadias, D., Egenhofer, M.: Algorithms for Hierarchical Spatial Reasoning. GeoInformat-
ica 1(3), 251–273 (1997)

10. Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Journal of the Association for
Computing Machinery 26(11), 832–843 (1983)

11. Pedersen, T., Jensen, C., Dyreson, C.: A Foundation for Capturing and Querying Complex
Multidimensional Data. Information Systems 26(5), 383–423 (2001)

12. Malinowski, E., Zimanyi, E.: Spatial Hierarchies and Topological Relationships in the Spatial
MultiDimER Model. In: Jackson, M., Nelson, D., Stirk, S. (eds.) BNCOD 2005. LNCS,
vol. 3567, pp. 17–28. Springer, Heidelberg (2005)

13. Guting, R., Bohlen, M., Erwig, M., Jensen, C., Lorentzos, N., Schneider, M., Vazirgian-
nis, M.: A foundation for representing and querying moving objects. ACM Transactions on
Database Systems (TODS) 25(1), 42 (2000)

14. Lema, C., Antonio, J., Forlizzi, L., Guting, R., Nardelli, E., Schneider, M.: Algorithms for
Moving Objects Databases. The Computer Journal 46(6), 680 (2003)

15. Vassiliadis, P., Sellis, T.: A Survey of Logical Models for OLAP Databases. SIGMOD
Record 28(4), 64–69 (1999)

http://msdn.microsoft.com/en-us/library/ms145506.aspx

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 533–542, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Opening the Knowledge Tombs - Web Based Text Mining
as Approach for Re-evaluation of Machine Learning

Rules

Milan Zorman1,2, Sandi Pohorec1, and Boštjan Brumen1

1 University of Maribor, Faculty of Electrical Engineering and Computer Science,
Smetanova ulica 17,

2000 Maribor, Slovenia
2 Centre for Interdisciplinary and Multidisciplinary Research and Studies of the University

of Maribor, Krekova ulica 2,
2000 Maribor, Slovenia

{milan.zorman,sandi.pohorec,brumen}@uni-mb.si

Abstract. Growth of internet usage and content provides us with large amounts
of free text information, which could be used to extend our data mining capa-
bilities and to collect specialist knowledge from different reliable sources.

In this paper we explore the possibility for a reuse of ‘old’ data mining re-
sults, which seemed to be well exploited at the time of their formation, but are
now laying stored in so called knowledge tombs. By using the web based text
mined knowledge we are going to verify knowledge, gathered in the knowledge
tombs.

We focused on re-evaluation of rules, coming from symbolic machine learn-
ing (ML) approaches, like decision trees, rough sets, association rules and en-
semble approaches.

The knowledge source for ML rule evaluation is the web based text mined
knowledge, aimed to complement and sometimes replace the domain expert in
the early stages.

Keywords: knowledge tombs, data mining, re-evaluation, rules, supervised
machine learning.

1 Introduction

In this paper we explore the possibility to begin a reuse of ‘old’ data mining results,
which seemed to be well exploited at the time of their formation, but are now nothing
else than knowledge tombs.

Although the data mining community collectively uses and attacks the data tombs
created by different institutions and individuals, it also creates vast amounts of poten-
tial knowledge, which, considering the available capabilities, may seemed to be well
used and exploited at the time of the research.

But is that still true after 5, 10, 15 or 20 years? What seemed to be well exploited
basis, may now represent a valuable ore for further data and knowledge mining.

534 M. Zorman, S. Pohorec, and B. Brumen

Just ask yourself or the first data mining researcher you run into, how many chunks
of information/rules/decision trees/... you/he produced in the last decade. The answers
will easily reach over a few ten or hundred thousand. By leaving them on your hard
drives, you are slowly creating new knowledge tombs, with little prospects to be re-
opened again.

But how can we re-evaluate knowledge from knowledge tombs? Evaluation of
knowledge in the form of rules was mainly a manual job, usually limited to domain
experts included in the initial study or research. Human factors, like limited availabil-
ity, subjectivity, mood, etc., often influenced the evaluation and increased the possi-
bility of missed opportunities.

Growth of internet usage and content in the last 10 years (according to some sources
is world average from 400% on [1, 2]) provides us with large amounts of free, un-
structured text information, which could be used to extend our data mining capabilities
and to collect specialist knowledge from different more or less reliable sources.

And internet sources are the answer - using the web based text mined knowledge to
verify knowledge, gathered in the knowledge tombs is approach we will present in
this paper.

2 Knowledge Tombs and Forms of Rules for Re-evaluation

At the beginning, let us define the knowledge tombs.
Researchers and users of the artificial intelligence approaches, usually produce dif-

ferent sorts of knowledge, extracted from various data sources. After a quite intensive
period of time, when all the evaluations and usage of the knowledge is done, that
knowledge is stored in some sort of electronic form and with some ‘luck’ never to be
used again.

Luckily, the times change and with the advancement of technology, expert knowl-
edge is becoming more and more easily accessible through the information highway –
the internet. In this paper we are going to address the most common form of internet
knowledge, the free, natural language texts and present ways to mine it for knowl-
edge, which will be used for re-evaluation.

Which knowledge tombs are we going to open? Typically, all white box, ‘rule pro-
ducing’ machine learning and data mining approaches are the ones that produce
knowledge in a form, appropriate for re-evaluation with our method.

In the following subsections, we are going to present the most typical representa-
tives of the symbolic and ensemble approaches and their knowledge representations.
The latter is crucial for us, because we need to know exactly what type of knowledge
can be found in knowledge tombs.

2.1 Symbolic Machine Learning Approaches

Symbolic machine learning approaches try to capture knowledge in as symbolic a form
as possible to provide a very natural and intuitive way of interpretation. Typically,
decision trees, association rules, rough sets, and ensemble approaches are used for
knowledge extraction. Ensemble methods usually perform better in comparison with
single methods regarding classification accuracy, but they produce larger amounts of
rules, which makes them the target group for our knowledge re-evaluation approach.

 Opening the Knowledge Tombs - Web Based Text Mining as Approach 535

2.1.1 Decision Trees
Decision trees[3] are one of the most typical symbolic machine learning approaches,
which have been present on the machine learning scene since the mid-1980s, when
Quinlan presented his ID3 algorithm.[4] Decision trees take the form of a hierarchi-
cally-bound set of decision rules that have a common node, called a root. The rest of
the tree consists of attribute (tests) nodes and decision (leaf) nodes labelled with a
class or decision. Each path from a root node to any decision node represents a rule
in a decision tree. Because of the very simple representation of accumulated knowl-
edge they also give us the explanation of the decision that is essential in medical
applications.

Top-down decision tree induction is a commonly used method. Building starts with
an empty tree. Afterwards, a ‘divide and conquer’ algorithm is applied to the entire
training set, where the most appropriate attribute is selected. Selection is based on a
purity measure that determines the quality of the attribute split and represents a vital
part of the method’s background knowledge. A typical purity measure is some sort of
derivative of an entropy function. Another very useful advantage of decision trees is
the fact that they do not use all available attributes from the training set, but only
those that are necessary for building a tree. Reducing the number of attributes (also
called horizontal reduction) has very valuable consequences, since it provides infor-
mation about which attributes are sufficient for a description of the problem and
which are redundant.

The knowledge accumulated in the decision tree is represented in the form of a tree
of rules, which can be easily transformed into a set of rules and also into a set of used
attributes.

What we are interested in, are the rules, which can be easily obtained from the de-
cision tree – each path from the root of the tree to a decision node, gives us one rule.

2.1.2 Association Rules
The association rule approach searches for frequently occurring and, therefore, inter-
esting relationships and correlation relationships among attributes in a large set of
data items.[5] Association rules show attribute-value conditions that occur together
frequently in a given dataset. Association rules provide information in the form of ‘if-
then’ statements. The rules are computed from the data and are of a probabilistic na-
ture. The ‘if’ part of the rule is called the antecedent, while the ‘then’ part is called the
consequent. The antecedent and consequent are sets of items that may not have any
items in common. Each association rule also has two numbers that express the degree
of uncertainty about the rule.

The first number is called the support and is the number of transactions that include
all items in the antecedent and consequent parts of the rule. The second number is
called the confidence of the rule and is the ratio between the number of transactions
that include all items in the consequent, as well as the antecedent and the number of
transactions that include all items in the antecedent.

Extracted knowledge of association rules is presented in the form of rules.[5] The
difference between this method and the other presented approaches is in the conse-
quent, where decision trees and rough sets use only one consequent attribute for all
rules they produce on one data set.

536 M. Zorman, S. Pohorec, and B. Brumen

2.1.3 Rough Sets
Rough sets are a symbolic machine learning approach based on classic set theory,
which were introduced by Pawlak et al.[6] in 1995. They are often compared with
other techniques, especially to statistical analysis and other machine learning meth-
ods. It is claimed that rough sets perform better on small data sets and on sets where
data distribution significantly differs from uniform distribution.[6] In many cases,
detailed data is not required to make decisions as approximate or rough data would be
sufficient. Rough sets use reducts, a sufficient subset of attributes, to generate a rule
set covering objects from the training set. Reducts are sets of attributes that are actu-
ally a subset of the entire set of attributes available in the training set. The rules that
are obtained from the rough set approach can be either certain or uncertain. Certain
rules are used in cases where there is background in consistent training objects. In
contrast, uncertain rules are produced in cases where the training objects are inconsis-
tent with each other. The latter situation usually presents a big hindrance for other
machine learning approaches.

The main application areas of the rough set approach are attribute reduction, rule
generation, classification and prediction.[6] Both rules and the set of attributes (reduct)
are explicitly expressed, so there is no additional effort needed to extract the rules.

2.1.4 Ensemble Methods
Hybrid approaches in machine learning rest on the assumption that only the synergis-
tic combination of different models can unleash their full power. The intuitive concept
of ensemble approaches is that no single classifier can claim to be uniformly superior
to any other, and that the integration of several single approaches will enhance the
performance of the final classification.

To overcome some of disadvantages and limitations of a single method, it is some-
times enough to use different models of the same machine learning approach; e.g.
using many different decision trees, neural networks or rough sets for the same train-
ing set.[7] In other cases, the approach relies on combining different machine learning
or general problem solving methods. Typically, any machine learning methods can be
combined in the form of an ensemble, but if symbolic machine learning methods are
used, the condition about the possibilities of interpretation and explanation are satis-
fied. The two most popular ensemble techniques are called bagging[7] and boost-
ing.[8] In simple terms, multiple classifiers are being combined into a voting body
that is capable of making decisions with higher accuracy than any single classifier
included in the voting body.

Bagging uses random selection of training objects with replacement from the
original data set, to form a subset of objects, used for induction.[7] If random selec-
tion is used together with replacement, there is a possibility that in the training subset
some training objects from original data set occur more than once and some do not
occur at all. The drawback of bagging is its random selection, where luck is relied
upon to select an appropriate subset of training objects. By counting the votes, the
class with the most votes can be assigned to the unseen object. Bagging always im-
proves classification accuracy of any included single classifier.

Boosting uses the idea behind bagging and extends it further. Boosting tries to over-
come the problem of random selection in bagging by assigning weights to the training
objects and looking back to see how successful the previously induced classifier was.[8]
This makes this approach incremental. If a training object was classified incorrectly, its

 Opening the Knowledge Tombs - Web Based Text Mining as Approach 537

weight was increased, and if it was classified correctly, its weight was decreased.
Weights play the main role in selecting training objects for the next iteration of classifier
induction, since the focus is on training objects that have higher weights and are, there-
fore, harder to classify correctly. The final classifier consists of earlier classifiers that
are better on ‘easier’ training objects with lower weights and latter classifiers, which are
more specialized in classifying ‘harder’ cases with higher weights.

Since both bagging and boosting can be used on wide variety of basic machine learn-
ing methods, we are going to limit ourselves only to symbolic white box approaches,
where the rules are at hand or can be easily extracted from each member of the ensemble.

2.2 Web Based Text Mining

Text mining is a relatively new research area with first attempts going back approxi-
mately 15 years. In that time some authors tackled the problem of extracting company
names from a free text. The amount of electronic texts and potential knowledge grew
over all expectation since the beginning of internet. It is also known that most of the
knowledge found on the internet is unrelated and unstructured. But even on that field
a big step forward was made in the recent years – systems for textual information
extraction became a key tool for news aggregators, internet people searchers, thesau-
rus generators, indexing tools, identification of proteins, etc. That kind of systems are
not ‘smarter’ than people, but have two great advantages: they are consistent and
much faster than people.

Most of the systems work as unilingual version, but the real challenge represent
multilingual and language invariant approaches. Most multilingual approaches
have language recognition preprocessors. There are some parallels between mining
different languages and specific knowledge domains (using the same language) like
medicine, biomedicine, and military.

We believe, that the using the knowledge from different internet sources can take
some burden off the shoulders of domain experts and enable faster knowledge
acquisition.

In general, we can describe the text mining with the workflow in Fig. 1. Since text
mining is a natural language processing, it can be accessed from the same levels as
the natural language analysis [9]:

─ Prosody analyses rhythm and intonation. Difficult to formalize, important for
poetry, religious chants, children wordplay and babbling of infants.

─ Phonology examines sounds that are combined to form language. Important for
speech recognition and generation.

─ Morphology examines word components (morphemes) including rules for word
formation (for example: prefixes and suffixes which modify word meaning).
Morphology determines the role of a word in a sentence by its tense, number
and part-of-speech (POS).

─ Syntax analysis studies the rules that are required for the forming of valid
sentences.

─ Semantics studies the meaning of words and sentences and the means of con-
veying the meaning.

─ Pragmatics studies ways of language use and the effects the language has on
the listeners.

In our work we will be focusing on the morphology, syntax and semantic levels.

538 M. Zorman, S. Pohorec, and B. Brumen

Fig. 1. Natural language analysis process

When considering means to acquire knowledge from natural language sources the
analysis is a three step process: syntactic analysis, meaning analysis (semantic in-
terpretation; generally in two phases) and the forming of the final structure that
represents the meaning of the text.

In the following section we will continue with a somewhat simplified example of
knowledge extraction from natural language texts. The example will be based on
natural language passages and how to extract formalised data from them. The two
main steps in the process are the following:

1. Acquisition of the natural language resources and pre-processing.
2. Knowledge extraction and formalization.

2.2.1 Acquisition of the Natural Language Resources and Pre-processing
The acquisition process is the process in which we define the source of data and
means to acquire it. It can be as simple as gathering the documents to a central storage
point or it can be the implementation of a web crawler that will investigate the target
web sites and transfer the data to the central storage point.

The essential steps in the preprocessing are two. The first is the transformation of the
documents to plain text and the second is the tokenization. While the former is an en-
tirely technical issue that can be successfully solved without significant effort, the latter
requires much thorough approach and is far from trivial. The tokenisation is essential for
the passage and sentence level semantic analysis. However some semantic information
is required for the successful resolution of the meaning of punctuation (for instance
whether a period ends a sentence or just an abbreviation). The simple implementation
where the period is assumed to end a sentence proved to achieve a successful tokeniza-
tion rate of just under 90% on the Penn Treebank corpora. Unfortunately that is not
enough, and a higher success rate is required because of an error in tokenisation, which
is usually magnified by several orders in the analysis phase.

2.2.2 Knowledge Extraction and Formalisation
The first step in knowledge extraction is the part-of-speech (POS) analysis. It can be
performed with the use of existing POS taggers, although it is highly language depend-
ant. In the example we are presenting we will assume that the source documents have
been gathered, transformed to plaintext and tokenised to individual sentences. The sen-
tences to be used for semantic analysis can be classified by statistical metrics. Let us
assume that a sentence has been identified. The sentence is stated as:

“Eating as little as a quarter of an ounce of chocolate each day may lower your
risk of experiencing heart attack or stroke!”.

The POS analysis provides the tags listed in Table 1.

 Opening the Knowledge Tombs - Web Based Text Mining as Approach 539

Table 1. POS tags of a news sentence

Word Tag Word Tag Word Tag

Eating VBG as RB little JJ

as IN a DT quarter NN

of IN an DT ounce NN

of IN chocolate NN each DT

day NN may MD lower VB

your PRP$ risk NN of IN

experiencing VBG a DT heart NN

attack NN or CC stroke VB

Abbreviations: IN - Preposition or subordinating conjunction, JJ - Adjective, MD -
Modal, NN - Noun, singular or mass, PRP$ - Possessive pronoun, RB - Adverb, VB -

Verb, base form, VBG - Verb, gerund or present participle

Semantic interpretation uses both the knowledge about word meanings (within the

domain) and linguistic structure. The analysis produces a representation of the mean-
ing of the sentences in an internal format. This can be visualised as in Fig. 2.

Fig. 2. Internal representation of the meaning of the sentence

540 M. Zorman, S. Pohorec, and B. Brumen

The process of the analysis is described in the following. The sentence is separated
into two distinct categories: cause (IF) and effect (THEN). Both are associated with
the object. In the figure the application used knowledge that ounce is a unit of
amount, day is a unit of time and that a person normally eats chocolate not the other
way around. So combining this knowledge produced the resulting representation of
knowledge in the sentence. The agent (the one that influences) is chocolate, the object
(the recipient of the action) is the word your and the action (agent to object) is eating.
Combining that to eat is associated with the domain concept of amount and that ounce
is a unit of amount the application can effectively reason that the meaning of the
cause part (Fig. 2 segment A) of the sentence is: object that eats a 0.25 ounce of
chocolate in a period of one day. The effect side (Fig. 2 segment C) has the meaning
of: the object experiences the influence of reduced possibility of a disease of type
heart attack/stroke. This internal representation is then generalized with the addition
of known concepts. The object yours is a possessive pronoun and is therefore mapped
to a person which is marked as “patient„ in the domain.

The amount of quarter of an ounce is mapped to the primary unit for amount in the
domain, (grams) with the use of a conversion factor. So ¼ of an ounce becomes
7.08738078 grams. The resulting semantic net (Fig. 2) with the additional information
is the final interpretation of the domain specific world knowledge learned from this
sentence.

The form shown in Fig. 2 is the form that can be used for the formalisation of
knowledge. The formalisation is the process of storing the knowledge in a formal,
machine readable form that can be used as the need arises by various types of intelli-
gent systems. A common formalisation approach is the transformation to rules. For
the example we have been following a rule would be in the following form:

RULE chocolate consumption influence
IF typeof (object) IS patient
AND typeof (action) IS eat
AND action::target IS chocolate
AND quantityof (action) IS 7g
AND timespan (action) IS 24h

THEN typeof(consequence) IS influence
AND consequence::target IS disease
AND typeof(disease) IS heart attack/stroke
AND relationship (consequence,

consequence::target) IS reduced risk

This is the final formalization of acquired knowledge. In this form the knowledge is
fully machine readable, providing there are inferring rules that define how to evaluate
the value entities (typeof, quantityof,…). This format can be stored and used as need
arises.

 Opening the Knowledge Tombs - Web Based Text Mining as Approach 541

What about the rules, we want to re-evaluate? Even they must be checked and put
into context. To do that, we have to process the descriptions of the underlying data-
base, which usually contain the descriptions of the problem domain and the attributes
used in the database and (consequently) in the rules produced by the machine learning
method. This process is a simpler version of the process, described above, since the
rules are already in the formal, machine readable structured form.

2.2.3 Re-evaluation of the Rules and Search for New Knowledge
Finally we come to the part, where we can start to compare the rules, which are in the
same formal form, but come from different data sources.

Our goal is to find support for machine learning rules, which we brought from our
knowledge tomb in the text we mined from our natural language resource and is now
also in a form, suitable for comparison. We will be looking for the highest match
between the cause(s) and effect(s) between individual representatives from both sets
of rules.

After a series of automatic procedures, there is again time, to involve a human op-
erator, a domain expert, who will examine machine learning rules with the top ranked
support, found on the web. His task is to extract new and potentially new knowledge
by examining the machine learning rules and by standing rules with text sources, from
which they were derived.

Explanations in the natural language are there to encourage thinking from different
perspectives and hopefully provide a reasonable explanation and help at revealing
new or unconscious knowledge. It is up to expert’s expertise to recognize, expose and
reason about the possible new knowledge, but now with higher level of support, than
years ago, when the knowledge tomb was created.

3 Discussion and Conclusions

Knowledge mining from databases of solved cases with machine learning methods is
nothing new in community involved with artificial intelligence. Used approaches are
very different, but most of them have a common point –machine learning approaches
and their outcomes. Results of such approaches are in general sets of rules with some
additional information, which are capable to generalize knowledge from database of
solved cases or to determine associations between attributes in the data base.

It was usual practice that the generated set of rules was checked by a domain ex-
pert (for example a medical doctor), which used his knowledge and experience to
evaluate rules as senseless or sense, and the latter to known or potentially new. The
last type of knowledge is the most interesting for us, because by discovering new
knowledge we can find solutions to unsolved cases or find alternative solutions for
solved problems. It is our experience that new knowledge is very hard to find so we
decided to find a way to automatically support a part of knowledge evaluation.

Re-evaluation of ML rules is a process which increases the potential of already
generated, but disregarded rules and hopefully triggers the ‘Aha!’ effect which ac-
companies the transformation of a rule in to a new knowledge.

The described re-evaluation should not become only one-time event, but should
become a process which takes part on a regular basis.

542 M. Zorman, S. Pohorec, and B. Brumen

Faster and more consistent knowledge verification reduces the need for manual
domain expert work and shortens the cycle ‘searching for potential knowledge – veri-
fying potential knowledge – using new knowledge’.

Of course there are some concerns, which we are aware of and present a pit fall for
the re-evaluation process. With the increased amount of information, available on the
internet, there is also a vast number of sources we cannot trust and because of that, the
involvement of a domain expert in the final stage of knowledge re-evaluation remains
a necessity.

References

1. Internet Growth Statistics - Today’s road to e-Commerce and Global Trade (2010),
http://www.internetworldstats.com/emarketing.htm

2. Malik, O.: Big Growth for the Internet Ahead, Cisco Says (2010),
http://gigaom.com/2008/06/16/
big-growth-for-internet-to-continue-cisco-predicts/

3. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco
(1993)

4. Quinlan, J.R.: Induction of decision trees. Machine Learning, 81–106 (1986)
5. Piatetsky-Shapiro, G.: Discovery, analysis, and presentation of strong rules. In: Piatetsky-

Shapiro, G., Frawley, W.J. (eds.) Knowledge Discovery in Databases, pp. 229–248. AAAI/
MIT Press, Cambridge (1991)

6. Pawlak, Z., Grzymala-Busse, J., Slowinski, R., et al.: Rough sets. Communications of the
ACM 38, 89–95 (1995)

7. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)
8. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Machine Learn-

ing: Proceedings of the Thirteenth International Conference, pp. 148–156. Morgan Kauff-
man, San Francisco (1996)

9. Luger, G.F.: Artificial intelligence, Structure and Strategies for Complex Problem Solving,
5th edn. Pearson Education Limited, USA (2005)

Faceoff: Surrogate vs. Natural Keys�

Slavica Aleksic1, Milan Celikovic1, Sebastian Link2,
Ivan Lukovic1, and Pavle Mogin2,��

1 University of Novi Sad, Serbia
2 Victoria University of Wellington, New Zealand

pmogin@ecs.vuw.ac.nz

Abstract. The natural and surrogate key architectures are two compet-

ing approaches to specifying keys in relational databases. We analyze the

performance of these approaches with respect to the update complexity

and the query data and expression complexity. Our results provide new

insights into the advantages and disadvantages of both approaches.

1 Introduction

Keys are a class of database constraints that is fundamental to any data model
and of a great importance to data modeling and most data processing tasks. In
practice, there are two competing approaches to specifying keys: the natural and
the surrogate key approach. A natural key is an attribute subset of the underlying
relation scheme. The existence of a natural key is known to database users. The
major perceived disadvantage of natural keys is their susceptibility to changes in
both value and structure. The use of natural primary keys is often discouraged
in industry. Nevertheless, natural keys ought to be specified whenever they rep-
resent business rules of the underlying application domain. In the surrogate key
architecture, each relation scheme has a surrogate attribute as its primary key,
and surrogate primary keys are propagated to other relation schemas as foreign
keys. A surrogate key is a single attribute whose values are (i) numeric, (ii) sys-
tem generated, and (iii) used to identify tuples of a relation. Its existence and
values are invisible to users. A perceived advantage of using surrogate primary
keys is their immutability, a consequence of their separation from business logic.
Codd proposed the use of the surrogate key database architecture, but did not
consider its impact on the database performance [1]. During 2009 the authors
conducted a survey of database design and implementation practices in indus-
try, where a prevailing number of respondents claimed to use a surrogate key
architecture [3]. To the authors best knowledge no comprehensive comparison
of both key architectures is available in the literature. It is therefore the main
objective of this article to estimate the consequences of either implementation
choice on the complexity of updates and queries.
� This research was supported by Victoria University of Wellington, Wellington, New

Zealand Research Grant 85575.
�� Corresponding author.

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 543–546, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

544 S. Aleksic et al.

2 Performance Estimates

As an illustrative showcase we investigate the performance differences of the
natural and surrogate key architectures that both correspond to the chain of ER
relationship types [4] in Figure 1. For this purpose, the ER diagram is mapped
to two relational database schemes S and S′, respectively [3]. The schema S is
based on natural, while the schema S′ is based on surrogate keys. For i = 1, . . . , 4,
we denote the natural primary key of Ei by nki. To guarantee the uniqueness
of tuples, the relationship relation schemes R′

1, R′
2 and R′

3 in S′ require an
additional candidate key, composed of propagated surrogates.

M

M
M
E1

R1
M

M
E3

R2

M

R3

E2

E4

Fig. 1. A Higher-Order Entity-Relationship Diagram

Update complexity. We consider the effects of inserts, deletes, and modi-
fications made to entity and relationship relations separately, since updates of
relationship relations have a considerably greater impact on the overall database
performance. Our analysis [3] shows that inserts and deletions in relations over
the entity type Ei are performed more efficiently. Contrary to that, modifications
of natural key values should be cascaded through relationship relations and that
may lead to a poor performance. A natural key modification in a relation over en-
tity type E′

i does not propagate. Updates of relations over Ri are accomplished by
issuing solely SQL INSERT, DELETE, and UPDATE commands. Updates of sur-
rogate key relationship relations require the retrieval of appropriate surrogate key
values before issuing SQL update commands. To make the last claim more obvi-
ous, we consider updates of relations over R′

3. Before issuing an update command,
a program controlling updates, has to execute the following two queries:

SELECT sk6 FROM E′
1 NATURAL JOIN E′

2 NATURAL JOIN R′
1 NATURAL JOIN

E′
3 NATURAL JOIN R′

2 WHERE nk1 = a1 AND nk2 = a2 AND nk3 = a3;

and

SELECT sk4 FROM E′
4 WHERE nk4 = a4;

where ai (i = 1, . . . , 4) are natural key values. The two queries above are needed
since surrogates are invisible to users and they have to define their updates in
terms of natural keys. The two queries have to be issued irrespective of the kind
of the update command. Due to the need to retrieve surrogate key values using

Faceoff: Surrogate vs. Natural Keys 545

queries and to update an additional B-tree, it may be predicted that updates of
relationship relations in surrogate key databases take longer to execute.

Query complexity. In this section, we analyze the following queries:

Q1 Retrieve values of a non-unique attribute A3 of R3 for a conditional expres-
sion on the value k1 of the natural key nk1.

Q2 Retrieve values of the natural key nk1 for a conjunctive conditional expres-
sion on the non-unique attribute B from the entity relation E1 and Ai from
relationship relations Rj , for j = 1, 2, 3.

We assume that the query data complexity results primarily from the number
of joins, and secondarily from the number of disk blocks. A detailed discussion
of performance estimates of a larger number of queries may be found in [3].
Following the natural key architecture, query Q1 maps into the SQL expression:

SELECT A3 FROM R3 WHERE nk1 = k1;

and following the surrogate key architecture into

SELECT A3 FROM R′
3 NATURAL JOIN R′

2 NATURAL JOIN R′
1 NATURAL JOIN

E′
1 WHERE nk1 = k1; .

The value of the natural key nk1 is available in the natural key database from
R3 directly, and only from the entity relation E′

1 in the surrogate key database.
Accordingly, the natural key database has a clear performance advantage over
the surrogate database.

The query Q2 maps into the SQL expressions:

SELECT nk1 FROM R3 NATURAL JOIN R2 NATURAL JOIN R1 NATURAL JOIN
E1 WHERE B = b AND A1 = a1 AND A2 = a2 AND A3 = a3;

for the natural key architecture, and into

SELECT nk1 FROM R′
3 NATURAL JOIN R′

2 NATURAL JOIN R′
1 NATURAL JOIN

E′
1 WHERE B = b AND A1 = a1 AND A2 = a2 AND A3 = a3;

for the surrogate key architecture. Both SQL expressions require the same num-
ber of joins. Here, we estimate that a smaller number of blocks favors the per-
formance with respect to the surrogate key architecture.

3 Experiments

To validate our previous findings we have implemented a natural key and a
surrogate key database on an ACPIx86 - based PC@1.6GHz with 2 GB RAM.
The operating system was the 32-bit Windows Vista Home Basic. The DBMS
was Oracle 10g. The relationship relations were populated in the following way:
R1 and R′

1 with 104 tuples, R2 and R′
2 with 105, and R3 and R′

3 with 106 tuples.
Performance testing was performed using Oracle SQL Developer.

546 S. Aleksic et al.

Table 1. Average database update and query times in seconds

Update Natural Key Surrogate Key Surrogate / Natural

Inserts 0.0753 0.4703 6.246

Deletes 0.0697 0.5116 7.636

Modification of nk 4.6412 0.0072 0.002

Query Q1 0.0493 0.2510 5.091

Query Q2 0.1294 0.0674 0.521

The first part of Table 1 contains average times of tuple inserts and deletes
in relations over R3 and R′

3, as well as the average time of the modification of
a natural key nk. The insert and delete average times closely follow our earlier
predictions. The surrogate key database significantly outperforms the natural key
database, when a modification of a natural key is considered. The last two rows
of Table 1 display the average times of executing queries defined in Section 2 and
agree with query performance estimates presented. There is no clear evidence
that any of the architectures noticeably outperforms the other.

4 Conclusion and Future Work

In this paper, we have compared the natural and surrogate key relational
database architectures. Utilizing mathematical reasoning and a performance
analysis in the Oracle 10g DBMS we have obtained the following major insights:

– The natural key architecture performs considerably better when updates to
relationship relations are considered.

– The modification of natural key values is a great disadvantage of the natural
key architecture.

– If deep hierarchies of higher-order relationship relations are present, then the
query performance of neither of the architectures is superior to the other.

In future work we plan to conduct experiments with DBMSs different from
Oracle, to extend classes of queries considered, to analyze the effect of the natural
key propagation in surrogate key relationship relation schemes, and to consider
different data models including XML [2].

References

1. Codd, E.F.: Extending the database relational model to capture more meaning.

ACM Trans. Database Syst. 4(4), 397–434 (1979)

2. Hartmann, S., Link, S.: Efficient reasoning about a robust XML key fragment. ACM

Trans. Database Syst. 34(2) (2009)

3. Link, S., Lukovic, I., Mogin, P.: Performance evaluation of natural key and surrogate

key database architectures. Technical Report ECSTR10-06, Victoria University of

Wellington, New Zealand (2010)

4. Thalheim, B.: Entity-Relationship modeling - foundations of database technology.

Springer, Heidelberg (2000)

An Optimal Relationship-Based Partitioning of

Large Datasets

Darko Capko, Aleksandar Erdeljan, Miroslav Popovic, and Goran Svenda

Faculty of Technical Sciences, Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia

dcapko@uns.ac.rs, erdeljan@uns.ac.rs, miroslav.popovic@rt-rk.com,

svenda@uns.ac.rs

Abstract. Modern adaptive applications utilize multiprocessor systems

for efficient processing of large datasets where initial and dynamic parti-

tioning of large datasets is necessary to obtain an optimal load balancing

among processors. We applied evolutionary algorithms (Genetic Algo-

rithm and Particle Swarm Optimization) for initial partitioning, and dif-

fusion (DR) and cut-and-paste (CP) algorithms for dynamic partitioning.

Modified versions of DR and CP algorithms are developed to improve

dynamic partitioning running in NUMA multiprocessor systems. The

proposed algorithms were applied on datasets describing large electricity

power distribution systems and experimental results prove reductions of

processor load imbalance and performance improvements.

Keywords: Graph partitioning, diffusion algorithms, NUMA.

1 Introduction

Today many applications use large datasets and utilize multiprocessor systems
in order to minimize overall response time when data is continually changed.
In such parallel computing environments, data parallelism is used as a form of
parallelization of computing across multiple processors. In our research we as-
sume that large datasets can be divided into smaller data subsets which will be
used by parallel tasks as independent data partitions. The aim is to optimally
divide data in order to minimize data relations across these subsets. Also, by
making partitions of the similar size the computation load of every processor in
the multiprocessor system might be balanced. In order to achieve this balance a
graph is created out of the datasets as vertices and their relations as edges, and
the optimization problem is set as a problem of graph partitioning. In this pa-
per we exploit NUMA (Non-Uniform Memory Architecture) where the memory
access time decreases when datasets inside a partition are positioned into the
same NUMA node.

In a typical parallel computing environment we are considering here, tasks
are producing results out of a group of data subsets including input values
U = {Ur, Uo}, where Ur denotes values that have influence on relations among
datasets, while the rest of the input values Uo affect only calculation results.
When Ur is changed some relations inside the subsets are affected, resulting in

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 547–550, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

548 D. Capko et al.

a possible slower task execution caused by the references to other datasets out
of its local memory. Relocating data between NUMA nodes could bring better
performances, although it might introduce an unbalanced system. Therefore, an
optimal partitioning of the datasets is required and it is applied in two com-
plementary ways: 1) initially - before starting the system, and 2) dynamically -
while the system works (on-line).

2 Problem Definition

In our discussion we study a system that continually processes large datasets
in terms of periodical or trigger based executions of various functions. Let Q
denotes large datasets and e elements it contains. If two elements ei and ej are
in relation N(ei, ej) we assume that the processing function ξ will use them
together (only relations meaningful to ξ are considered). This also means that
the elements are connected and they are called neighbors. The relation between
neighbors that depends on an input value u ∈ Ur could be temporarily inactive
and we call it potential connection Pot(ei, ej, u). In other words, when a potential
connection is activated two elements become neighbors

(∀ei, ej ∈ Q)Pot(ei, ej, u = active) ⇔ N(ei, ej) (1)

or vice versa. The set of mutually connected elements is called region R

(∀ei ∈ R)N(ei, ej) ⇔ ej ∈ Rk, k ∈ {1, 2, . . . , n} (2)

which is the smallest data unit that can be processed by ξ. All regions create
a calculation domain D (D = R1 ∪ R2 ∪ . . . ∪ Rn) and function Yi = ξ(Ri) is
applied to each region Ri to produce output result set Y = Y1 ∪ Y2 ∪ . . . ∪ Yn.

In a multiprocessor environment function ξ can be applied to individual re-
gions in parallel, and if the number of regions is bigger than the number of
processors, regions are grouped into m partitions Pi and distributed to m pro-
cessors. The regions could change over time because the connections among the
elements depend on the input datasets (1). When a potential connection be-
tween the elements from the different regions is activated, the two regions have
to be merged, and vice versa, it is expected that deactivated potential connection
could cause a splitting of the region. We use graphs to present Q datasets and
leverage k-way graph partitioning that has been successfully applied to many
areas. The resulting domain D is described as a weighted undirected graph, G
= (V,E) made of vertices (V) and edges (E). A vertex represents region Ri with
weight wi as time needed to execute ξ(Ri). Graph edges represent potential con-
nections between elements from the different regions. Two regions p, q may have
many potential connections Potp,q and we present them using a single edge the
weight of which is equal to the total number of such connections.

Further, in order to define optimization criteria, for a partition k we need to
define partition weight Wk =

∑
j∈Pk

wj as the sum of contained regions weights,
and function φk as:

φk =
∑

p,q∈Pk

Pot(p, q) (3)

An Optimal Relationship-Based Partitioning of Large Datasets 549

where regions p and q are in Pk. At the beginning it is necessary to group the
regions into a defined number of partitions (np), so that these partitions are
approximately of same weights, but never greater than the maximal partition
weight M = 1+ε

np

∑
Wk, where Wk is partition weight and ε ∈ [0, (np − 1)/np] is

the tolerance. The optimization criterion should obtain the maximum connection
inside a partition:

F = max
∑

k

φk (4)

where function φk is given by (3), and all partition weights are constrained
Wk ≤ M, ∀k ∈ {1, 2, . . . , np} .

3 Algorithms and Experimental Results

For initial partitioning we applied evolutionary computation techniques Genetic
Algorithm (GA) [1] and Particle Swarm Optimization (PSO) [2] to find out the
best approximate solutions for the optimization problem. Then some potential
connections were activated making an unbalanced system. Four algorithms for
dynamic partitioning: diffusion (DR) [4] and cut-and-paste algorithm (CP) [3]
with their modifications were applied and compared.

Modified Diffusion Repartitioning (MDR) algorithm considers two hierarchical
levels, and it is suitable for NUMA. At the first level DR is applied to balance
the sum of partition weights for all NUMA nodes, while at the second level the
balance among partitions associated with a NUMA node is made. After NUMA
nodes are balanced, DR algorithm is applied to rearrange partitions in each node.

Modified Cut-and-Paste Repartitioning (MCP) algorithm also uses two level
partitioning. At the first level the CP algorithm is applied only to those partitions
that are placed on a different NUMA node, while at the second level the CP
algorithm is applied only to regions that are associated with the NUMA node.

We tested the initial and the dynamic partitioning algorithms on large data-
sets used in power distribution utilities, for CIM connectivity/topology models
[5]. Results of tests presented in Figure 1 were made on two models: it206 (with
1787939 elements transformed into a graph with 206 vertices used for tests T1
and T2) and bg5x (5980390 elements/315 vertices model used for tests T3 and
T4). In tests T1 and T3 new connections were made between regions that belong
to different NUMA nodes, while tests T2 and T4 considered connections in the
same NUMA node. Experiments were carried out on the NUMA platform with
2 nodes with 4 cores per node (CPU AMD Opteron 2.4GHz, 8GB RAM per
core).

MDR obtains better results than the other algorithms because of a smaller
total migration size and good results for function F, although it executes slower
than other algorithms. On the other hand, MCP is the fastest algorithm that
obtains very good results in terms of data migration, however it is not as good
for function F optimization as MCP is. Considering that connections between
partitions are potential connections, this criterion is less significant to us.

550 D. Capko et al.

Fig. 1. Normalized optimization criteria F, total migration size and execution time

obtained by DR, CP, MDR and MCP algorithms on tested graphs

4 Conclusion

GA and PSO are both successfully applied for initial partitioning and DR and CP
algorithms for dynamic partitioning as well. We developed modified algorithms
MDR and MCP to exploit NUMA for dynamic partitioning and they have shown
better performances than original algorithms. We recommend MCP for dynamic
partitioning in real-time systems as the fastest algorithm.

References

[1] Bui, T.N., Moon, B.R.: Genetic Algorithm and Graph Partitioning. IEEE Trans-

action of Computers 45(7), 841–855 (1996)

[2] Laskari, E., Parsopoulos, K., Vrahatis, M.: Particle swarm optimization for integer

programming. In: Proceedings of the IEEE Congress on Evolutionary Computation,

Honolulu, Hawaii USA, vol. 2, pp. 1582–1587 (2002)

[3] Schloegel, K., Karypis, G., Kumar, V.: Multilevel diffusion schemes for reparti-

tioning of adaptive meshes. Journal of Parallel and Distributed Computing 47(2),

109–124 (1997)

[4] Schloegel, K., Karypis, G., Kumar, V.: Wavefront diffusion and LMSR: Algorithms

for dynamic repartitioning of adaptive meshes, Technical Report TR 98-034, Dept.

of Computer Science and Engineering, University of Minnesota (1998)

[5] IEC 61970 Energy management system application program interface (EMS-API)

- Part 301: Common Information Model (CIM) Base”, IEC, Edition 2.0 (2007)

Design and Semantics of a Query Language for
Multidimensional Data

Ingo Claßen

Hochschule für Technik und Wirtschaft Berlin
ingo.classen@htw-berlin.de

Abstract. This paper introduces a new language for analysis of mul-
tidimensional data. Its design is discussed and a reference to a formal
semantics is given.

1 Introduction

Multidimensional structures play an important role for the analysis of informa-
tion within data warehouse systems (see, e.g., [MZ09, KR02]). Special language
concepts have been developed to support this kind of analysis, see, e.g., [GL97],
[PRP02], [CT97], [LW96] and a concrete language called MDX (multidimensional
expressions) [SC09, SHWC05] has been adopted by many vendors of OLAP tools.
The latter seems to have no rigid definition of its semantics.

The aim of this paper is to present the design of a new language (called
DimQL, dimensional query language) that relies on central ideas of MDX and
that has a formal semantics. The main goal of the design was the ability to specify
complex queries in an easy and natural way such that the language can be used
on the conceptual level. The underlying semantics assures that specifications can
be interpreted without being bound to a concrete implementation technology.

2 Language Design

This section explains the basic ideas behind the design of DimQL. We assume
to have a multidimensional database of a video store containing dimensions like
Store, Product, Customer, Time, attributes like City, SGroup, MGroup, Band, Month,
Year, measures like Return, Quantity and members of attributes as given in the
following tables.

Attribute Members
City Boston, New York

SGroup Crime, SciFi, Life, Technic
MGroup Fiction, Non Fiction

Attribute Members
Band Junior, Adult, Senior
Month 2007Jan, . . ., 2009Dec
Year 2007, 2008, 2009

Crime and SciFi are subgroups of main group Fiction whereas Life and Technic

are subgroups of Non Fiction. Attribute Band is meant to describe age bands.

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 551–554, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

552 I. Claßen

2.1 Basic Queries

We start with the following DimQL query that delivers a two-dimensional report
of aggregated values for all years and all main groups.

apply Rent(mg, y, Measures[Return]) over
mg <- MGroup[*], y <- Year[*]

The two axes of the report are specified by mg <- MGroup[*] and y <- Year[*].
Expressions like MGroup[*] are called member expressions and in this example,
we get the list of all main groups. Rent(mg, y, Measures[Return]) is to be inter-
preted as a cell function that extracts return values from the underlying cube
wrt. mg and y which are bound to main groups and years, respectively.

In the following example, a different cell function Rent(mg, y, Band[Junior],

Measures[Return]) is used.

apply Rent(mg, y, Band[Junior], Measures[Return]) over
mg <- MGroup[*], y <- Year[*]

In this case, the cells of our report do not contain aggregated values for years and
main groups but only aggregations for values that belong to age band Junior.
The member expression Band[Junior] delivers the Junior member of attribute
Band.

If we like to see returns wrt. years, main groups, and cities, three axes can be
used.

apply Rent(mg, y, c, Measures[Return]) over
mg <- MGroup[*], y <- Year[*], c <- City[*]

To show the resulting report, a three-dimensional representation is needed. A
two-dimensional form of the same content can be achieved as follows.

apply Rent(mg, y, c, Measures[Return]) over
mg <- MGroup[*],
y, c <- Year[*].cj(City[*])

Here the cross-join member operator cj has been used and the left-hand side
must now consist of two variables.

Up to now all axis members have been derived from instance sets of attributes.
In the following example return and quantity of video rentals per year are to be
shown.

apply Rent(m, y) over m <- Measures[Rent], y <- Year[*]

In the resulting report, measure names take the same role as main groups in
our first DimQL query. Especially, there is a variable m for measure names. The
member expression Measures[Rent] delivers all measures defined in cube Rent.

2.2 Member Expressions

To map complex requirements to queries, powerful mechanisms to form member
expressions are needed. The idea behind DimQL to achieve this, is operator
chaining. In general, a member expression is of the form

Design and Semantics of a Query Language for Multidimensional Data 553

mspec.op1(...).op2(...)opn(...)

where mspec is a member specification, i.e., a basic expression like MGroup[*] and
op(...) is the application of a member operator. The whole expression can be
regarded as a pipeline where each operator gets a set of members as input and
delivers an output set of members.

Assume, we want to concentrate our attention on years where a minimum
return of $1,000,000 has been made.

Year[*].filter(y -> Rent(y, Measures[Return]) >= 1000000)

This member expression delivers the wanted members by filtering the set of
all year instances by predicate Rent(y, Measures[Return]) >= 1000000. In this
expression variable y is bound to all years and for each binding the predicate
is evaluated. Note that a cell function is applied within the predicate. Filtering
City Year combinations can be done in the same way.

City[*].cj(Year[*]).filter(c,y -> Rent(c, y, Measures[Return]) >= 100000)

In this case the input to filter consists of City Year pairs.

2.3 Cell Function Expressions

The examples so far only have applied cell functions that directly correspond to
measures of a given cube but DimQL is not confined to them. It provides means
to construct cell functions, as can be seen in the following example where the
report delivers some kind of return per quantity.

apply Rent(mg, y, Measures[Return])/Rent(mg, y, Measures[Quantity]) over
mg <- MGroup[*], y <- Year[*]

Common operators like multiplication and division can be used to combine cell
functions.

A second way for the construction of cell functions is by use of aggregation
operators like sum and avg. In the following example, a report is produced that,
for all age bands and all measures of cube Rent, calculates the average value of
that measure wrt. subgroups Crime and SciFi.

apply SGroup[Crime, SciFi].avg(Rent(m, b)) over
m <- Measures[Rent], b <- Band[*]

2.4 Calculated Members

In the following example, we find a cell function declaration Total that is defined
by cell function expression Rent(mg, Measures[Return]). Moreover, there is a
calculated member Total of type Year.

with
Total(mg: MGroup) = Rent(mg, Measures[Return])

apply Rent(mg, y, Measures[Return]) over
mg <- MGroup[*], y <- Year[*, Total]

554 I. Claßen

The cells within the report can be calculated in the same way as explained in
our first DimQL query, except for intersection points with calculated members.
Intersection point Total, Fiction, e.g., leads to the application of Total(Fiction)
that in turn leads to Rent(Fiction, Measures[Return]) thus delivering the total
over all years for subgroup Fiction.

3 Semantics

The semantics of DimQL queries are intended to be reports. Therefore, a formal
treatment of this idea leads to the following function.

�_� : DimQL ↪→ Report

Here, DimQL is the syntactical domain according to the starting nonterminal of
the grammar and Report is the domain of reports. The definition of the semantics
can found in [Cla10].

References

[Cla10] Claßen, I.: Towards a semantical foundation of DimQL. Hochschule für
Technik und Wirtschaft, Berlin (2010),
http://opus.kobv.de/htw/volltexte/2010/41/

[CT97] Cabibbo, L., Torlone, R.: Querying multidimensional databases. In: 6th
International Workshop on Database Programming Languages, pp. 319–
335 (1997)

[GL97] Gyssens, M., Lakshmanan, L.V.S.: A foundation for multi-dimensional
databases. In: VLDB, pp. 106–115 (1997)

[KR02] Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete
Guide to Dimensional Modeling. John Wiley & Sons, Inc., New York
(2002)

[LW96] Li, C., Wang, X.S.: A data model for supporting on-line analytical pro-
cessing. In: CIKM, pp. 81–88 (1996)

[MZ09] Malinowski, E., Zimnyi, E.: Advanced Data Warehouse Design: From
Conventional to Spatial and Temporal Applications, Data-Centric
Systems and Applications, Incorporated 2nd corrected printing edn.
Springer, Heidelberg (2009)

[PRP02] Pedersen, D., Riis, K., Pedersen, T.B.: A powerful and SQL-compatible
data model and query language for OLAP. In: Australasian Database
Conference (2002)

[SC09] Smith, B.C., Clay, C.R.: Microsoft SQL Server 2008 MDX Step by Step.
Microsoft Press (2009)

[SHWC05] Spofford, G., Harinath, S., Webb, C., Civardi, F.: MDX Solutions. John
Wiley & Sons, Inc., New York (2005)

http://opus.kobv.de/htw/volltexte/2010/41/

An Approach to Defining Scope in Software

Product Lines for the Telecommunication
Domain

Radovan Cvetković1 and Sinǐsa Nešković2

1 Telekom Srbija a.d., Technical Affairs Division,

Bulevar umetnosti 16a, 11000 Belgrade, Serbia

radovan.cvetkovic@telekom.rs
2 University of Belgrade, Faculty of Organizational Sciences,

“Branislav Lazarevic” Laboratory for Information Systems,

Jove Ilica 154, 11000 Belgrade, Serbia

sinisa.neskovic@fon.bg.ac.rs

Abstract. The Next Generation Operations Systems and Software

(NGOSS) is a solution framework for the development of Operations

Support System/Business Support Systems (OSS/BSS) in telecom com-

panies. This paper presents an approach to OSS/BSS building which is

based on a specific combination of Software Product Lines Engineering

(SPLE) and NGOSS. The focus of this paper is the first phase in SPLE

which deals with the identification and scoping of software product fam-

ilies required to build an OSS/BSS. We present a generic architecture

of required product families as well as a methodological procedure for

their identification and scoping. Both are based on Enhanced Telecom

Operation Map (eTOM), a process framework defined within NGOSS.

Keywords: Software Product Lines, Software Family, NGOSS, eTOM,

OSS/BSS.

1 Introduction

The Operations Support System/Business Support Systems (OSS/BSS) repre-
sents a very complex information system which integrates business and technical
subsystems of a telecommunication (telecom) company into a functionally co-
herent whole. TeleManagement Forum, an international telecom industry associ-
ation, has developed a solution framework for the efficient building of OSS/BSS,
which is called Next Generation Operations Systems and Software (NGOSS)
[1]. Essentially, NGOSS represents a reference enterprise architecture framework
for the telecom domain consisting of a set of reference models, methods and
guidelines for OSS/BSS development. The Enhanced Telecom Operation Map
(eTOM) is a business process reference model within NGOSS which identifies and
categorizes all business activities that a telecom service provider will use. The
eTOM framework supports two different perspectives of process groupings: 1)
Horizontal process groupings represent a view of functionally related processes,

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 555–558, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

556 R. Cvetković and S. Nešković

which represent core business functions within the telecom business domain,
and which are used as basic units in the automation of end-to-end processes;
2) Vertical process groupings represent a view of end-to-end processes within
the business which effectively support customer needs in a total. These verti-
cal end-to-end process groupings are essentially crosscutting overlays onto the
hierarchical top level horizontal groupings.

Due to NGOSS complexity, a high level abstraction of its reference models and
informal development methods and guidelines, a fruitful utilization of NGOSS is
very hard to achieve in practice. This paper presents an approach to OSS/BSS
development based on a specific combination of Software Product-Line Engineer-
ing (SPLE) principles and NGOSS. SPLE is a method which creates software
product lines as development platforms for (largely automated) production of
a family of software products [2], [3]. The main idea is to employ SPLE and
exploit NGOSS for the development of a range of software product lines which
are collectively capable of producing an OSS/BSS tailored to the specific needs
of a particular telecom company, similarly to the idea expressed in [4]. The focus
of this paper is the first phase in SPLE which deals with the identification and
scoping of software product families.

The rest of the paper is organized as follows. In Section 2 we introduce a
generic architecture of software product families required to build an OSS/BSS.
A methodological procedure for their identification and scoping is given in Sec-
tion 3. The paper concludes with the paper’s main contributions and a discussion
related to our future work.

2 Generic Architecture of Software Product Families

A proposed generic architecture of product families in the telecom domain is
given in Fig. 1 as a metamodel in the form of an UML class diagram. De-
rived from the eTOM framework, the metamodel identifies the types of product
families, represented as UML classes in the diagram, as well as their mutual
relationships, represented as UML associations.

OSS/BSS class represents a type of product family whose instances are fam-
ilies used to produce individual OSS/BSS systems tailored to specific needs of a
particular telecom company. Due to their complexity, OSS/BSS family members
are not built as monolithic software applications, but as complex software sys-
tems composed of members from other product families supporting particular
telecom domain aspects.

These families are structured following eTOM into two distinct types: Busi-
ness Domain for family types which support core telecom business functions
(eTOM horizontal processes), and End-to-End process for family types sup-
porting eTOM vertical processes. Information about which particular families
of Business Domain and End-to-End Process families constitute a particular
OSS/BSS family member is captured by Has Domains and Has Processes ag-
gregations. Similarly, which Business Domain families are used by a particular
End-to-End Process family is captured by the Uses aggregation. It is important

An Approach to Defining Scope in Software Product Lines 557

Fig. 1. Metamodel of Architecture of Software Product Families for the Telecom

Domain

to observe that both Business Domain and End-to-End Process family types
can be further specialized (subtyped) into family types supporting particular
subdomains (illustrated in Fig. 1). Subtyping in this context means that each
subtyped family type supports an additional functionality to its parent family
type.

Since each family requires a separate product line for the production of its
members, the generic architecture must be concretized (with classes and their
instances) before the development of production lines is possible.

3 Identification and Scoping of Software Product Families

The concretization of the generic architecture is done through the identification
and scoping of products families, defined as a separate process distinguished from
the traditional Domain Engineering and Application Engineering processes [2].

Identification and scoping of software product families, given in Fig. 2 as an
UML Activity Diagram, consists of the following activities:

– eTOM to Feature Models Transformation produces a set of feature
models which are more convenient for further analysis

– Software Product Families Type Identification uses eTOM feature
models to produce Software Product Family Types Specification. (i.e. it spec-
ifies classes in the metamodel of the generic architecture)

– Software Product Families Identification activity results with Software
product family specification (i.e. it identifies instances of classes in the meta-
model of the generic architecture)

– Software Product Families Scope Definition activity defines the high
level scope for product families (i.e. defines commonalities of the identified
product families)

– Software Product Families Variability Definition activity identifies
the differences between members of the family and defines this variability

558 R. Cvetković and S. Nešković

Fig. 2. Identification and Scoping Process

4 Conclusion

The presented approach augments traditional SPLE with: 1) the generic archi-
tecture of software product families for the telecom domain; 2) the method for
the identification and scoping of product families.

The future work is related to the design and implementation of product lines
for building these defined product families. The main challenge here is related
to the realization of such an extremely complex software architecture consisting
of a large number of mutually related product lines.

References

1. Reilly, J.P., Creaner, M.J.: NGOSS distilled: The Essential Guide to Next Genera-

tion Telecoms Management. TM Forum, UK (2005)

2. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering Foun-

dations, Principles and Techniques. Springer, Heidelberg (2005)

3. van Ommering, R.: Software Reuse in Product Populations. IEEE Trans. Software

Eng. 31(7) (2005)

4. Bosch, J.: Using Software Product Families: Towards Compositionality. In: Dwyer,

M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 1–10. Springer, Heidelberg

(2007)

Stones Falling in Water: When and How to

Restructure a View–Based Relational Database�

Eladio Domı́nguez1, Jorge Lloret1, Ángel L. Rubio2, and Maŕıa A. Zapata1

1 Dpto. de Informática e Ingenieŕıa de Sistemasm,

Facultad de Ciencias. Edificio de Matemáticas,

Universidad de Zaragoza. 50009 Zaragoza, Spain

{noesis,jlloret,mazapata}@unizar.es
2 Dpto. de Matemáticas y Computación. Edificio Vives,

Universidad de La Rioja, 26004 Logroño, Spain

arubio@unirioja.es

Abstract. Nowadays, one of the most important problems of software

engineering continues to be the maintenance of both databases and ap-

plications. It is clear that any method that can reduce the impact that

database modifications produce on application programs is valuable for

software engineering processes. We have proposed such a method, by

means of a database evolution architecture (MeDEA) that makes use of

database views. By using views, changes in the structure of the database

schema can be delayed until absolutely necessary. However, some con-

ditions oblige modifications to be made. In this paper we present an

approach to detect when the restructuring process must be realized and

how to carry out this restructuring process.

1 Introduction

The use of views can reduce the impact that database modifications produce
on application programs, since changes in the database are delayed until abso-
lutely necessary. However, it can happen that these changes ultimately become
mandatory because of the problem of updatability of views. In the present paper,
we describe an approach that, on the one hand detects when such changes are
compulsory, and, on the other hand, indicates how to perform database main-
tenance using the tools and facilities provided by an extension of the MeDEA
architecture [2,3]. The overall contribution means that database engineers are
provided with an infrastructure that allows them to perform semi-automated
evolution and maintenance tasks in such a way that the structure and extension
of the database is altered only when absolutely necessary. This situation allows
applications using these modified databases to continue functioning unchanged
for a longer time period.
� This work has been partially supported by the Ministry of Science and Innovation,

project TIN2009-13584, by the Ministry of Industry, Tourism and Commerce, project

LISBioBank (TSI-020302-2008-8) and by the Government of Aragon, project LIS

(PI108/08).

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 559–562, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

560 E. Domnguez et al.

The rest of the paper is structured as follows. In the following section we
present the MeDEA architecture and in Section 3 we explain when and how the
database must be restructured. Finally, we outline further work.

2 The MeDEA Architecture

The contributions of this paper rely on the MeDEA architecture for database
evolution we proposed in [2,3]. MeDEA is a metamodel–based database evolu-
tion architecture which has four components: conceptual component, translation
component, logical component and extensional component (see Figure 1).

The way of working of MeDEA is as follows: given an EER schema in the
conceptual component, the translation algorithm is applied to it and creates 1)
a set of elementary translations in the translation component, 2) the relational
database schema and 3) the extensional database schema (see the top part of
Figure 1). When the data structure must be changed, the data designer issues
the appropriate evolution transformations to the conceptual component. These
changes are propagated to the rest of the components by applying a lazy and
logical mechanism. The key aspect of this algorithm is that the old logical and
extensional schemas remain unchanged, and the target schemas are not com-
pletely created but simulated. In general, when the conceptual evolution implies
the creation of new elements (tables, attributes,...) they are in fact created, but
the modification or elimination changes are simulated creating views. This fact
is depicted in the central part of Figure 1. It can be seen in this figure that,
after a forward evolution propagation process, the relational and extensional
schemas include the old schemas, together with the ‘Views’ piece representing
the views that simulate the modification and elimination changes and the ‘New’
piece representing the added schema elements.

EER
Schema1

Relational
Schema1

Translation
Base1

DBMS
Database1

EER
Schema2

Relational
Schema1

Translation
Base2.1

DBMS
Database1

New2.1

Views2.1

Relational
Schema2.2

Translation
Base2.2

Logical
Component

Extensional
Component

Translation
Component

Conceptual
Component

evolution

restructuration

New2.1

Views2.1

V
ie
w
s 2
.2

DBMS
Database2.2

V
ie
w
s 2
.2

Fig. 1. View–based Evolution Processes within an EER–DBMS setting

Stones Falling in Water: When and How to Restructure a View 561

Then, DML operations can be performed on the resultant extensional schema.
In this case, the well-known problem of view updatability arises, that is, DML
operations defined on a view cannot always be translated to the base tables [1,5],
so that the schemas must be restructured. In order to solve this situation, we
have identified when a database must be restructured in the presence of some
particular DML operations and, on the other hand how this restructuring process
can be carried out.

3 When and How to Restructure

Our first contribution is an answer to the following question: Under which con-
ditions is it possible to translate operations on views into operations on base
tables? This is the updatability problem whose question is to determine which
operations on views can be translated into operations on base tables. For deal-
ing with this question, we have decided to make the definition of updatability
independent of the particular DBMS chosen, so we have defined updatability
at the logical level. In this context, we have followed the solution of [5]. The
paper [5] offers ’a theory within the framework of the ER approach that charac-
terizes the conditions under which there exist mappings from view updates into
updates on the conceptual schema’. It includes a set of definitions and theorems
which determine, for entity type and relationship type views, whether they are
insertable, deletable or updatable.

Our solution has been to adapt the view updatability algorithm of [5] to our
particular context in which views are defined on the logical and on the exten-
sional schema, unlike [5], where views are defined on the E/R schema. This
adaptation can be handled because, in our evolution architecture, the concep-
tual and logical components are interconnected. So, we have defined a rule for
managing external DML operations that determines when the restructuring is
compulsory. The input of the rule is an external DML operation, defined on
a view, that conforms with the conceptual schema. Then, the rule applies the
adapted updatability algorithm to decide whether the operation is accepted. If
accepted, the operation is executed provided that the integrity constraints are
satisfied. If not, the extensional database must be restructured.

The second contribution is an algorithm that determines how the logical
schema is modified and how the SQL code is generated in order to restruc-
ture the extensional database. We have chosen a backward-forward propagation
strategy for this restructure algorithm because we can reuse the main elements
of our architecture and, particularly, the translation component.

The input of the restructure algorithm is the view on which the DML opera-
tion is defined and then two tasks are interspersed. First, the conceptual elements
related with the view are retrieved (backward propagation). Second, for each one
of these conceptual elements its translation to the logical and extensional levels
is modified (forward propagation). This translation is performed executing the
procedure considerApplyTranslRule several times, which translates a concep-
tual element performing one of the three following possibilities:

562 E. Domnguez et al.

1. A new translation rule is applied.
2. The same translation rule as before is reapplied but its effects will be different

from the effects when it was previously applied.
3. Nothing is changed (the same translation rule would be applied but it would

produce the same effect).

This restructuring process is depicted in the bottom part of Figure 1. The
backward-forward process is represented by means of bidirectional arrows and
the modifications performed in the schemas are represented changing the size of
the pieces involved , in particular the ’View’ piece is represented with a different
size and shape.

A noteworthy characteristic of our algorithm is that the restructuring tech-
nique we propose only makes the compulsory changes so that the desired opera-
tion can be executed on the new extensional schema. This idea can be metaphor-
ically compared with a stone falling in water. When a stone falls in water, the
effect is propagated towards the shore in the form of several concentric waves.
Similarly, the retranslation of a conceptual element is the stone which drops onto
the schemas and this change generates concentric waves that carry the minimal
changes towards other pieces of the schemas. For additional details, see [4].

4 Further Work

From here, several lines of work are opened up. Since we only use views at the
logical level, we could analyze the impact that the use of views at the conceptual
level would have on our overall proposal. Another distinct line, but related with
the above, would be to introduce a query language at the conceptual level so
that updatability problems could be addressed directly at this level.

References

1. Dayal, U., Bernstein, P.A.: On the Correct Translation of Update Operations on

Relational Views. ACM Transactions on Database Systems 7(3), 381–416 (1982)

2. Domı́nguez, E., Lloret, J., Rubio, A.L., Zapata, M.A.: MeDEA: A database evolution

architecture with traceability. Data & Knowledge Engin. 65(3), 419–441 (2008)

3. Domı́nguez, E., Lloret, J., Rubio, A.L., Zapata, M.A.: Model–Driven, View–Based

Evolution of Relational Databases. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.)

DEXA 2008. LNCS, vol. 5181, pp. 822–836. Springer, Heidelberg (2008)

4. Domı́nguez, E., Lloret, J., Rubio, A.L., Zapata, M.A.: Stones falling in water: When

and how to restructure a view–based relational database (2010) (extended version),

http://www.unizar.es/ccia/articulos.htm

5. Ling, T.W., Lee, M.L.: View Update in Entity-Relationship Approach. Data &

Knowledge Engin. 19(2), 135–169 (1996)

http://www.unizar.es/ccia/articulos.htm

Graph Object Oriented Database for Semantic Image
Retrieval

Eugen Ganea and Marius Brezovan

University of Craiova, Craiova,
Bd. Decebal 107, Romania

{ganea eugen,brezovan marius}@software.ucv.ro

Abstract. This paper presents a new method for image retrieval using a graph
object oriented database for processing the information extracted from the im-
age through the segmentation process and through the semantic interpretation of
this information. The object oriented database schema is structured as a classes
hierarchy based on graph data structure. A graph structure is used in all phases
of the image processing: image segmentation, image annotation, image indexing
and image retrieval. The experiments showed that the retrieval can be conducted
with good results and the method has a good time complexity.

Keywords: graph oriented object, object oriented database, image processing,
image retrieval.

1 Introduction

Image retrieval systems have been developed using a variety of technologies in various
disciplines of computer science. In this paper, we use the concepts of object-oriented
programming for object recognition applications. In the Object-Oriented Databases
(OODB), the relations is done by reference to an object identifier (OID) which is
the key of association of the records. In identifying an unknown object, object recogni-
tion system queries the database and checking the similarities based on characteristics,
between unknown object and each of objects from the database. We use a graph object-
oriented model for OODB representation based on a graph type data structure, where
the operations on database objects are translated into the transformation of the graph. In
addition the topological relations between the simple objects present in the image are
represented by a graph edges, while the objects are the graph nodes. The construction
of the graph model for image representation is based on a new utilization of pixels from
the image that are integrated into a network type graph. We used a hexagonal network
structure on the image pixels for representation of the graph G = (V, E) and we consid-
ered two edges of graph joining the pseudo-gravity centers of the hexagons belongs to
hexagonal network. For representing the output of the image segmentation process we
used the Attributed Relational Graph (ARG) [4]. The result of segmentation algorithm
is stored as a graph where the nodes represent the regions and the edges represent the
neighborhood relations: G = (V r, E r), where Vr is the set of vertices corresponding
regions detected and Er is the set of edges that describes the neighborhood relations.
The spatial relations between regions are divided into 3 categories: distance relations,

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 563–566, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

564 E. Ganea and M. Brezovan

direction relations and topological relations. For determining these types of relations we
choose for each region the following relevant geometric features: the pseudo-center of
gravity; the distance between two neighboring regions; the length of common boundary
of two regions and the angle which is formed by two regions. The structure of paper
is organized as follows: Section 2 describes the process of image annotation based on
ontologies; Section 3 presents the graph object oriented database structure; Section 4
describes our experimental results and Section 5 concludes the paper.

1.1 Related Work

In this section we briefly consider some of the related work that is most relevant to our
approach. A recent research [1] associate the labels with regions detected in the images
training set, which poses a major challenge for learning strategy. They use a novel graph
based semi-supervised learning approach to image annotation using multiple instances,
which extends the conventional semi-supervised learning to multi-instance setting by
introducing two level bag generator method. An explicit model named GraphDB is
presented in [2] and allows a simple modeling of graphs in an object oriented envi-
ronment. The model permits an explicit representation of graphs by defining object
classes whose instances can be viewed as nodes, edges and explicitly stored paths of
a graph. In this paper we use, as the core of the proposed management system, the
HyperGraphDB [3], which is a database based on hypergraph structure and was de-
velopment on BerkleyDB.

2 Image Annotation Based on Ontologies

In the image annotation process we use two types of ontologies: visual ontology which
refer to an intermediate level which connecting lower level features to high level con-
cept, and domain ontologies which refers to image content annotation. For annotate
the simple objects we used learning algorithms based on decision trees - Decision Tree
based Semantic Templates algorithm (DT-ST) [5]. DT-ST induction method for learn-
ing image semantics is different from classical algorithms that use semantic templates
for continuous values of features of the regions. A ST feature is provided by the rep-
resentative of a concept, the set of features extracted from the regions of the training
images. Built the decision tree to assign high-level concepts, which are attached to leaf
nodes of the tree, to lower level features, thus each useful concept of ontology will meet
at least one leaf node. In the system developed, each image is divided into a number of
areas which can attach semantic meaning, and each extracted region have as member,
an instance of class CFeatureV ector. For each concept we consider a vector with 7
components [H S V perimeter compactness eccentricity area], whose normalized
values are used to construct the decision tree; the obtained decision tree is translated
in a system of rules. The graph grammars were first used for image representation and
then its were used for the syntactic representation and analysis of images are defined
the spatial relationships between regions of an image. Grammar induction system for
a type graph, SubdueGL algorithm was developed based on Subdue [6] and uses a
breakthrough approach to sub-graphs. Using a growth process graph,SubdueGL gen-
erate candidate sub-structures can be used to compress the data set of the graph.

Graph Object Oriented Database for Semantic Image Retrieval 565

3 Graph Object Oriented Database

The semantic information correspond to concepts of domain ontology on the one hand
and to elements of visual ontology on the other hand. The visual concepts determined
automatically in the phase of post-processing of segmentation results are stored im-
plicitly in the ARG structure representing relations between regions of an image. Each
semantic object will have an attribute that points to the object region interpreted (OID).
The OID of semantic object is the same with the identifier of the corresponding synset
from WordNet [7]. In this way, we manage the uniqueness of OID attribute values and
we provide the link for an annotation with different concepts, but there is a relationship
between synonyms. Indexing problem is approached using graph theory, the relation-
ship is represented by indexing the index assign classes and forming a directed graph.
Based on the database scheme, was developed a new approach to the problem of index-
ing by exploiting graph structure type; this type uses an index nested/inherited. Using
facet index − propagation attached to each attribute indexes are grouped according
to the characteristics of each object processed region. For the index management of the
OODB we build a system of indexes based on the geometric and the semantic attributes
of the shapes. As a result of our tests we consider two groups of indexes; the first group
(geometric group) is used only for the training images in the off-line phase of system
utilization - learning phase, and the second group (semantic group) is used for all other
images in the online phase of system utilization - symbolic query phase. First the group
of indexes belongs to the attributes extracted after the image segmentation: the perime-
ter, the gravity center, compactness of shape, eccentricity of shape, the list of gravity
centers of hexagons from the contour and the syntactic characteristics of the boundary
shape. This approach drives at a good optimization of the retrieval process for linking
an image region to a synset. In this stage the OODB contains only the information cor-
responding to the ontology so the space taken by the system of indexes has not influence
concerning the storage performance. At the end of this phase the first group of indexes
is deleted. The query expressions written in symbolic language must be analyzed and
converted to an equivalent native query format. In this process the relationships between
the concepts of the ontology on one part and between concepts and classes on the other
part are used. For all the words present in the query expression we search the corre-
spondence with the synsets from the WordNet taxonomy and mark these synsets. In
the second step for each returned synset from the list after the first stage we determine
the corresponding class and we make an instance for the class through the call of the
constructor which receives the name of the synset. After the execution, a native query
is obtained in this mode, and we have a list of objects corresponding to the images with
semantic content according to the query expression.

4 Experiments

A prototype system was designed and implemented in Java, and HyperGraphDB.
We tested our system on Princeton Event dataset [8]. The retrieval process implies the
experiments for the retrieval process based on symbolic language queries. In this case
there were taken into consideration the pseudo-natural queries based on the concepts

566 E. Ganea and M. Brezovan

from ontology. We use the Princeton Event dataset which contains 8 sport activities.
For each category we consider 25 representatives images for the learning phase. In the
OODB ”sports.hgdb” are stored initially the information extracted by the segmentation
from the training images. Using the indexes as the perimeter, the pseudo-gravity center,
compactness of shape, eccentricity of shape and the list of gravity centers of hexagons
from the contour we allocate and store in the sports.hgdb all images corresponding to
the dataset. After the learning and storing phase the OODB is ready to be interrogated.
The pseudo-natural query considered is: red ball one hoop Using the data from the
ontology and the Wordnet information, this query is translated in equivalent object
oriented native query: CImage imageQuery = new CImage (”croquet with red
ball and one hoop”)

5 Conclusions

In this paper, we propose a method for image processing based on graph structure with
the aim of good retrievals. The process have three phases: (I) an image segmentation
based on graph structure; (II) an adaptive visual feature object-oriented representation
of image contents; and (III) a management of the ontologies uses for annotation. Using
these tree stages and an object-oriented wrapper for HyperGraphDB, the system al-
low two queries based on symbolic language. The future work implies the description
and the using of the graph grammar with the goal of searching and retrieving complex
images based on the complex query formulated in a symbolic language.

Acknowledgment. This research was supported by CNCSIS - UEFISCSU under a
grant PNII-IDEI 535/2008.

References

1. Hu, X., Qian, X.: A Novel Graph-based Image Annotation with Two Level Bag Generators.
In: International Conference on Computational Intelligence and Security, vol. 2, pp. 71–75
(2009)

2. Guting, R.H.: GraphDB: Modeling and Querying Graphs in Databases. In: Proceedings of
20th Int. Conf. on Very Large Data Bases, pp. 297–308 (1994)

3. HyperGraphDb, http://www.kobrix.com/hgdb.jsp (consulted 01/02/2010)
4. Hong, P., Huang, T.S.: Spatial pattern discovery by learning a probabilistic parametric rela-

tional graphs. Discrete Applied Mathematics 139, 113–135 (2004)
5. Liu, Y., Zhang, D., Lu, G., Tan, A.: Integrating Semantic Templates with Decision Tree for

Image Semantic Learning. In: Cham, T.-J., Cai, J., Dorai, C., Rajan, D., Chua, T.-S., Chia,
L.-T. (eds.) MMM 2007. LNCS, vol. 4352, pp. 185–195. Springer, Heidelberg (2006)

6. Holder, L.B.: Empirical Substructure Discovery. In: Proceedings of the Sixth International
Workshop on Machine Learning, pp. 133–136 (1989)

7. Miller, G.A.: Nouns in WordNet: a Lexical Inheritance System. International Journal of Lexi-
cography 4, 245–264 (1990)

8. Li, L.-J., Fei-Fei, L.: What, where and who? Classifying event by scene and object recognition.
In: IEEE International Conference in Computer Vision, ICCV (2007)

http://www.kobrix.com/hgdb.jsp

Natural Language Querying over Databases

Using Cascaded CRFs

Kishore Varma Indukuri, Srikumar Krishnamoorthy, and P. Radha Krishna

SETLabs, Infosys Technologies Limited, India

{Kishore Varma,Srikumar K,RadhaKrishna P}@infosys.com

Abstract. Retrieving information from relational databases using a

natural language query is a challenging task. Usually, the natural lan-

guage query is transformed into its approximate SQL or formal lan-

guages. However, this requires knowledge about database structures,

semantic relationships, natural language constructs and also handling

ambiguities due to overlapping column names and column values. We

present a machine learning based natural language search system to

query databases without any knowledge of Structure Query Language

(SQL) for underlying database. The proposed system - Cascaded Condi-

tional Random Field is an extension to Conditional Random Fields, an

undirected graph model. Unlike traditional Conditional Random Field

models, we offer efficient labelling schemes to realize enhanced quality

of search results. The system uses text indexing techniques as well as

database constraint relationships to identify hidden semantic relation-

ships present in the data. The presented system is implemented and

evaluated on two real-life datasets.

1 Introduction

The approaches taken to address such natural laguage queries can be broadly
classified as template based [2][6], rule-based [3][4], and machine learning [5]
based models. These systems aim to capture the patterns in the natural language
effectively to provide an efficient semantic search system. This paper provides
a machine learning algorithm which is a Cascaded CRFs based approach that
extends a traditional CRF model to label search terms efficiently using semantic
relationships present in underlying database structures. The presented system
also employs text indexing techniques to identify latent semantic relationships
and improve the quality of search results.

Inference and Scoring Using CRF’s

Names assigned to tables in a database may intentionally or unintentionally
coincide with those given to columns in the same table or other tables. Therefore,
many tools that work on lexicon look-up (mainly used in rule-based approaches)
fail to distinguish between the names (column or table names) with their table
contents (values). The proposed approach attempts to solve this problem with

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 567–570, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

568 K.V. Indukuri, S. Krishnamoorthy, and P.R. Krishna

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Precision Recall FMeasure

1:TATAS2B
2:TATAS2S

3:TGTGS2B
4:TGTGS2S

5:TJTJS2B
6:TJTJS2S

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

Fig. 1. Comparing results of entire

dataset with individual Geo and Job

Query datasets

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Range Query Logical Query Simple Queries

S
pe

ar
m

an
’s

 r
an

k
co

rr
el

at
io

n
co

ef
fic

ie
nt

JobQuery CRF Model
GeoQuery CRF Model
Combined CRF Model

Fig. 2. Spearman‘s rank correlation

coefficient obtained for top 10 search

results

Table 1. Results for combined dataset

with individual Geo and Job Query

datasets

CRF Name P R FM Train

(sec)

Test

(sec)

TATAS2B .889 .743 .810 214 7

TATAS2S .917 .763 .833 366 7

TGTGS2B .951 .817 .879 94 3

TGTGS2S .960 .817 .883 101 3

TJTJS2B .798 .634 .707 113 4

TJTJS2S .827 .723 .771 220 5

Table 2. Results for Cascaded CRF, Dy-

namic CRF with linear-chain clique template

for CrfS1

Type CRF Name P R FM Train

(sec)

Test

(sec)

DCRF TATAS2BM .885.688.775 1681 42

DCRF TATAS2BMS .887.684.773 2047 51

CCRF TATAS2B .897.632.741 228 7

CCRF TATAS2S .901.733.808 301 7

the use of machine learning algorithms. We use two CRFs applied sequentially
to the sequence of words in the user query. The first CRF (CrfS1) is trained to
label each of the instance with state labels to identify column names (ColName)
and column values (ColVal) from the user’s natural language query. The state
which is not ColName and ColVal is labelled with tag Other. The second CRF
(CrfS2) is trained to take as input the instance along with its label sequence
assigned using CrfS1 and predict the two nodes which can be connected using
a skip-edge and label them with Start and End tags. The skip-edge does not
impose any constraints on the order of the tags which it is connecting. i.e. Start
node can be either column name node or column value node. Those states which
are neither Start, nor End are tagged as Oth.

The scores that can be used for sorting the results based on relevance with the
users natural language query (x) is a product of accuracies obtained in linear-
chain (CrfS1), skip-chain (CrfS2) and the similarity of words in x labelled as
column names and column values with the actual database table column names
and values. The final term in the product penalizes the poor naming convention
followed while designing the database which makes differentiating column names,
table names and their values nearly impossible. If Pl(y|x), Ps(y|x) represent

Natural Language Querying over Databases Using Cascaded CRFs 569

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
cc

ur
ac

y
M

ea
su

re

Fraction of training data used

GeoQuery Dataset

Precision
Recall

FMeasure

Fig. 3. Effect of data size on Accuracy

with GeoQuery Dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
cc

ur
ac

y
M

ea
su

re

Fraction of training data used

JobQuery Dataset

Precision
Recall

FMeasure

Fig. 4. Effect of data size on Accuracy

with JobQuery Dataset

linear chain and skip chain conditional probabilities obtained for input state
sequence x. The combined accuracy P (y|x) of the Cascaded CRF model can be
written as P (y|x) = Pl(y|x) × Ps(y|x).

If IndexerScorei denotes the search result score obtained from an indexer for
a particular search hit, the altered score which includes credit for a match in
the functional relationship in that search hit is given as Scorei = WS1 + WS2 +
IndexerScorei. During offline indexing, for evaluation of the search application
developed over a database with the help of training data represented as set {x},
for each of the instance, xi in this training set, if x̂i represents bag of words
extracted as ColName and ColVal which includes terms labelled Start and End,
and if J(x̂, I) represents the similarity measure of the words in x̂ with the meta
information1, I from the database, the final accuracy of the application generated
using the CRF model built with training data over a particular database is:

accuracy =
∏

xi∈{x}
P (y|xi) × J(x̂i, I)∑

t∈I J(t, I)
(1)

From Equation 1, it can be inferred that as the similarity among various column
names and table names increases, the accuracy of overall scoring function for that
particular database decreases. The database with least value in the denominator
for the Equation 1 will yield maximum accurate (confident) results.

2 Experimental Results

Two commonly used real-life datasets JobQuery and GeoQuery datasets2[1] are
used for experimentation. The naming convention used according to alphabet
position is : first alphabet T for Training Data, second alphabet J/G/A for
JobQuery or GeoQuery or Both(All) respectively, third alphabet T for Testing

1 Meta-Information include names given to the table, columns.
2 Available from Machine Learning website of University of Texas.

570 K.V. Indukuri, S. Krishnamoorthy, and P.R. Krishna

Data, fourth alphabet J/G/A for JobQuery or GeoQuery or Both(All) respec-
tively, 5 and 6 alphabets S2 for Stage 2 (Labelling with Start, End and Oth tags)
and 10 , 11 and 12 alphabets take values B/S/M which mean Bigram Template/
Skip-Chain Template/ Mapping Template respectively. Several experiments were
conducted by varying the parameters like training dataset, testing dataset, la-
beling scheme / templates used etc. Each experiment is uniquely named using
the parameter naming convention details as outlined above.

The efficacy of the proposed Cascaded CRF approach is assessed using three
set of experiments: First set of experiments (Figure 1) compare skip chain CRF
with linear chain CRF. The CRF versions use ideally tagged training data for
CrfS2 in place of tagged data from CrfS1. The experiments are conducted for
each of the GeoQuery, JobQuery and combined datasets. For obtaining ideally
tagged data, we identify ColName and ColVal entities in the training data with
the help of formal language equivalent for the natural language query available
for each of the instance in the dataset. Second set of experiments (Table 2)
compare Cascaded CRF with DCRF. Experiments on Cascaded CRF and DCRF
are repeated with linear-chain and skip-chain clique templates for CrfS2 and
second layer of DCRF respectively. In order to show the effect on final ranking
of search results, we have compared the order of results generated by the system
with the order of results tagged manually for a defined set of natural language
queries. “Spearman’s rank correlation coefficient” for top 20 search query results
are shown in Figure 2. Third set of experiments (Figure 3 and Figure 4) provide
the sensitivity analysis of quality of results for varying training data instances.

References

1. Jayapandian, M., Jagadish, H.V.: Automated creation of a forms-based database

query interface. PVLDB 1(1), 695–709 (2008)

2. Mador-haim, S., Winter, Y., Braun, A.: Controlled language for geographical infor-

mation system queries. In: Proceedings of Fifth International Workshop on Inference

in Computational Semantics (2006)

3. Popescu, A.-M., Armanasu, A., Etzioni, O., Ko, D., Yates, A.: Modern natural

language interfaces to databases: composing statistical parsing with semantic

tractability. In: COLING 2004: Proceedings of the 20th International Conference on

Computational Linguistics, Morristown, NJ, USA, vol. 141. Association for Com-

putational Linguistics (2004)

4. Popescu, A.-M., Etzioni, O., Kautz, H.: Towards a theory of natural language in-

terfaces to databases. In: IUI 2003: Proceedings of the 8th International Conference

on Intelligent User Interfaces, pp. 149–157. ACM, New York (2003)

5. Sutton, C., McCallum, A., Rohanimanesh, K.: Dynamic conditional random fields:

Factorized probabilistic models for labeling and segmenting sequence data. J. Mach.

Learn. Res. 8, 693–723 (2007)

6. Thompson, C.W., Ross, K.M., Tennant, H.R., Saenz, R.M.: Building usable menu-

based natural language interfaces to databases. In: Schkolnick, M., Thanos, C. (eds.)

VLDB, pp. 43–55. Morgan Kaufmann, San Francisco (1983)

A Data Mining Design Framework - A Preview

Kai Jannaschk and Tsvetelin Polomski

Christian-Albrechts-University Kiel, Information Systems

Kiel, Germany

{kaja,tpo}@informatik.uni-kiel.de

Abstract. Data storages contain a lot of hidden information unknown

to their owners. There are many different types of data mining processes,

which aim to provide the means to expose this hidden information. But

existing data mining processes mainly illustrate the management process

and not really the discovery process. The user still has to decide, which

methods and algorithms to apply. Furthermore, correct interpretation

of the result can be challenging. In this paper we describe a framework

for a systematic knowledge discovery process, which is split into three

stages. We define the requirements, methods, and possible outcomes for

each stage.

Keywords: knowledge discovery, data mining, process design.

1 Introduction

Data mining is the non-trivial process of identifying valid, novel, poten-
tially useful, and ultimately understandable patterns from data.

Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth [2]

This definition of data mining describes only a part of a knowledge discovery
process. The community uses the terminology Knowledge Discovery and Data
mining (KDD) when they want to refer to the process as a whole. There is a
concrete data set, and we are searching for a data independent pattern. Patterns
express the knowledge behind the data.

2 A Data Mining Design Framework

A well known knowledge discovery process is the CRISP-DM process ([1]). It
is split into six phases. Two different groups of experts are collaborating. One
group are the domain experts, which have knowledge in the domain, and can
explain the discovered models. The other group are technical experts, who have
the knowledge in the usage of data mining techniques. The CRISP DM process
mainly illustrates the management process, and not really the discovery process.
The user knows the goal of the process. He doesn’t know, which requirements
the tasks have, and what he can do with the output.

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 571–574, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

572 K. Jannaschk and T. Polomski

There are many different data mining algorithms, each with different require-
ments for data quality, different goals, and of course different parameters. A
knowledge discovering user has to know all the algorithms, and to choose one
for his/her concrete problem.

We see not only in CRISP DM ([1]), that there are many different phases in
such a process. The process is iterative and the user makes decisions, choosing
the next steps in the process. In figure 1 we illustrate a framework, that contains
three levels of our understanding of a knowledge discovery process. Following we
describe each stage.

User Oriented Perspective

System Oriented Perspective

Data Oriented Perspective

Domain Knowledge

Information

Cognition

Model

Data

Methods

Techniques

Algorithms

Fig. 1. Data Mining Design Framework

2.1 User Oriented Perspective

The basis of this part of the process is the user knowledge, or domain knowledge.
We introduced a triangle to the information science as a relation between concept,
topic, and content ([3]). The concepts describe appearance and behavior of things
and relations in the real world. They declare a field of facts. We describe content
in a variety of ways. The topics describe the content, and the meaning of the
topics is defined by the concepts. So the same topic can be used in different
concepts with different meaning. Finally, the content provides the facts for the
concepts, and is described by the topics. The content represents aspects of the
real world. For [4] is it important, to realize the influence between the conceptual
background and the real things.

A supposition is an assumption, which can be proven by empirical or theoreti-
cal methods. It’s an observation in the content or a phenomenon in the concepts.
The aim in our process is to validate such a supposition. Is the knowledge about
the concepts for the content sufficient and valid? Or does the content fit the
concepts assigned to the given topic?

A scientific theory represents a supposition, or a group of related suppositions,
which has been confirmed through repeated experimental tests or methods. Ac-
cepted scientific theories become part of our understanding, and are the basis
for exploring less well-understood areas of knowledge. New discoveries are first
assumed to fit into the existing conceptual framework. Only when the new phe-
nomenon cannot be accommodated, scientists seriously question the concepts
and attempt to modify it.

Thus we characterize the knowledge, based on a scientific theory. We know,
that the concept space of the human race is incomplete ([4]). The human influ-
ence on the characteristics of knowledge is very high. The worth of the knowl-
edge is dependent of the necessity and the real prior knowledge of the
human.

A Data Mining Design Framework - A Preview 573

2.2 System Oriented Perspective

The second level represents the interface between the domain knowledge and
the starting point of the technical process. Based on the domain knowledge we
create a model. A model summarizes the concepts above. A model is a system of
assumptions based on some experimental facts sometimes containing adjustable
parameters. The topics are the properties of a model and the data. The set of
”right” properties depends on the point of view, or rather on the topics under
which the considered objects are being explored. The content is source of possible
data for the model. We consider each formation of symbols as data as long as
it represents information according to some convention. Thus, when speaking
about data, one has to consider both the symbols, representing the data, and the
meta-data, expressing the meaning of those symbols or their particular usage.
The aim is to validate suppositions of model and data by different techniques.
This validation will be done by different data, and will result in a superset of
the starting model, which contains new information.

2.3 Data Oriented Perspective

On the third level of our knowledge discovery process we use known algorithms
and methods for data analysis. At this point real data sets are being analyzed in
order to draw conclusions about the content. A high-level, global description of
a data set is given by a schema based on a set of attributes. The attributes are
derived from properties. The schema declares the kinds of relations that might
exist between the attributes, as well as additional meta information such as why,
when and by whom the data set was constructed.

A KDD process at this stage aims at the verification of suppositions on a
technical level. For a data set D and its schema S, a possible supposition H
might be e.g. that D contains artifacts not specified by S. A tuple Li := (S,D,H)
containing those three elements is the starting point of a process. Since each KDD
process is working on a set of tuples of this kind, we define the KDD process
elements as a set L := {(S,D,H)}. We assume, that the result of the process is
a set Lo of tuples (M, q), containing a model M with a quality q. The agents
{Ag} participating in the process describe functions on L and thus, an agent is
defined as Ag : L → L, l �→ l′. We differentiate between four types of agents,
each of them having its own specifics:

1. data preparation agents Agw: (S,D,H) �→ (S,D′,H), preparing the data set
for the following steps (e.g. outlier detection)

2. data exploration agents Age: (S,D,H) �→ (S,D,H′), creating suppositions
for validation (e.g. data visualization techniques)

3. descriptive agents Agd: (S,D,H) �→ (S′,D,H), working on the schema de-
scribing the data set (e.g. cluster analysis methods).

4. predictive agents Agp: (S,D,H) �→ (M, q), creating the models (e.g. a classi-
fication algorithm using the clustering result to construct a model predicting
the class association for new objects).

574 K. Jannaschk and T. Polomski

With the terms discussed so far, a KDD process is a tuple (Li, {sj}, Lo) where
{sj} is a set of steps, each of them being performed by an agent. Additionally,
a process has the following characteristics: 1. A process starts with one tuple
of L; 2. each tuple of L can be input for one or more agents; 3. the predictive
agents Agp are the last agents in a process branch; 4. data preparation agents
Agw can be employed anytime; 5. exploration agents Age can be used anytime
before descriptive Agd and predictive Agp agents.
We also have an explanation model Φ, showing the transformation of given input
into an outcome model. Thus, we define Φ as the function Φ : 2L × Li −→ Lo.
This way the user knows what kind of agents were used for constructing the
model.

Finally, the sketched frameworkcanbe regardedasa tuple (L, Li, Lo, {Ag}, Φ, C)
consisting of the already explained components, and additionally, of a controllerC,
recommending at each state a set of appropriate agents.The controller uses the pos-
sible models to reach a validation of the stated supposition.

3 Conclusion

Our framework provides three different levels of abstraction of knowledge and
can be applied with many different algorithms and methods for analyzing data.
The framework supports the user in interpreting the resulting knowledge.

We start out with the first level, the User Oriented Perspective, where the
knowledge of a user is the focus of the process. Methods for knowledge creation at
this stage are provided. On the second level, the System Oriented Perspective, we
present an interface between the domain knowledge of a user, and the technical
data analysis algorithms as a method for knowledge creation. In the third stage,
the Data Oriented Perspective, we define a process assisted by agents, working
on a set of elements. Each element contains a schema S describing a real data
set D, and a supposition H, which the user wants to validate. The result of this
process is a model M with a quality q. The path from input to result is described
by an explanation model Φ.

References

1. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C.,

Wirth, R.: CRISP-DM 1.0 Step-by-step data mining guide. In: SPSS, NCR, Daim-

lerChrysler (2000)

2. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From Data Mining to Knowledge

Discovery in Databases. AI Magazine 17, 37–54 (1996)

3. Kidawara, Y., Zettsu, K., Kiyoki, Y., Jannaschk, K., Thalheim, B., Linna, P.,

Jaakkola, H., Du, M.: Knowledge Modeling, Management and Utilization Towards

Next Generation Web. In: Information Modelling and Knowledge Bases XXI. IOS

Press, Amsterdam (2010)

4. Murphy, G.L.: The big book of concepts. MIT Press, Cambridge (2001)

On Support of Ordering in

Multidimensional Data Structures�

Filip Křižka, Michal Krátký, and Radim Bača

Department of Computer Science

VŠB-Technical University of Ostrava, Czech Republic

{filip.krizka,michal.kratky,radim.baca}@vsb.cz

Abstract. Multidimensional data structures are applied in many areas,

e.g. in data mining, indexing multimedia data and text documents, and

so on. There are some applications where the range query result must

be ordered. A typical case is the result with tuples sorted according to

values in one dimension defined by the ORDER BY clause of an SQL state-

ment. If we use a multidimensional data structure, the result set is sorted

after the range query is processed. Since the sort operation must often be

processed on tuples stored in the secondary storage, an external sorting

algorithm must be utilized. Therefore, this operation is time consuming

especially for a large result set. In this paper, we introduce a new data

structure, a variant of the R-tree, supporting a storage of ordered tuples.

Keyword: name multidimensional data structures, ordered tuples of

the range query result, R-tree, Ordered R-tree.

1 Introduction

Multidimensional data structures [8] have been widely applied in many data
management areas. Indexing spatial data is their natural application but there
are many applications in various domain areas. Multidimensional data structures
may be applied as index data structures supporting the storage of tuples in
relational or object-relational DBMS’s [2]. If the B-tree or the B+-tree are applied
for the support, we must create one tree for each attribute to be indexed. Another
alternative is to use the so-called compound-key including more attributes. In
this case, some queries are processed by an often inefficient sequential scan.
When we consider multidimensional data structures, one index is created for
all attributes to be indexed. In this case, random accesses may influence the
efficiency of query processing [5]. The efficiency of range query processing in the
B-tree is also influenced by this issue.

There are some applications where ordering of tuples in the result set is re-
quired. This order may be defined by ordering of values of one attribute. A com-
mon example is an SQL statement with the ORDER BY clause. We often define a
restriction of attribute values, which means the range query can be applied for

� Work is partially supported by Grant of GACR No. P202/10/0573.

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 575–578, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

576 F. Křižka, M. Krátký, and R.Bača

the processing of this query; however, we often require an ordering defined by
the ORDER BY clause. If we consider multidimensional data structures, there is
no support for the ordering; the result tuples must be sorted after the query is
processed. Since the number of sort operations and the number of tuples in the
result may be high, we must utilize an external sorting algorithm [4,10]. If large
result sets are sorted, this operation is time consuming.

When we consider multidimensional data structures without a support of
ordering, a lazy evaluation is not possible; the query must be processed in one
and result tuples must be inserted in a persistent data structure and sorted [6].
In the case of lazy query processing, a query is progressively processed and we
can not store all tuples of the result in an additional data structure.

In this article, we introduce a multidimensional data structure with a support
of ordering. A cost-based relational query optimizer can simply utilize this data
structure [2]. Since the R-tree is the most popular data structure we present
the support of ordering for the R-tree. Although it can be seen that there is
a relation between multidimensional data structures and ordering, we only find
data structures which enable the indexing of multidimensional data using an
order. Such data structures include UB-tree [1] which utilizes Z-ordering for
indexing of multidimensional data. When we apply B-tree or B+-tree, a range
query is processed by an often inefficient sequential scan.

2 Ordered R-Tree

In the R-tree [3], tuples are clustered in tree’s pages when MBRs (Minimal
Bounding Rectangles) are built. R-tree supports various types of queries, e.g.
point and range queries. A range query is processed by a depth-first search
algorithm. If the query rectangle intersects an MBR then the node related to
the MBR is retrieved and searched. In general, there is no order; therefore,
tuples of a result set are sorted in the same order in which these tuples were
inserted in leaf nodes and new MBRs have been inserted in inner nodes. When
we consider the previously depicted motivation, the ORDER BY clause, we want to
retrieve tuples under the well-known Lexicographical order of tuples. This order
is presented by the dashed line in Figure 1(a).

(a) (b)
Fig. 1. Examples of the (a) ordered result set (b) unordered

result set

Let us suppose the
MBRR in Figure 1(a)
including tuples T1–T4.
We use the order which
prefers values of the
first dimension before
values of the second di-
mension. A range query
containing MBR1 and
MBR2 returns the fol-
lowing ordered result
T1,T2,T3,T4.

On Support of Ordering in Multidimensional Data Structures 577

After the tuple T5 is inserted, MBR2 must be enlarged (see Figure 1(b)). In
this case, QL

MBR1 = (2, 3), QL
MBR2 = (2, 0). A range query containing both

MBRs returns the following unordered result T3,T5,T4,T1,T2, although tuples in
both MBR’s are ordered. It means, we can not utilize QL to the guarantee of
the order.

It is clear that the Lexicographical order is equivalent to C-ordering. Another
space filling curve [7], Z-curve, is utilized by the UB-tree [1]. There are two ways
how to develop a data structure supporting an order. The first way is to create
regions as intervals of the order used. The main problem of this way is that it is
necessary to develop an algorithm checking whether the MBR and the regions
are intersected. In [1,9] authors introduced this algorithm for the UB-tree and
Z-ordering. The similar algorithm must be implemented for each order used. The
second way is to use a known data structure and change the build algorithm to
guarantee the ordered result set.

To support the order we add a special tuple, so-called First Tuple (FT), to
each MBR of the R-tree. All nodes are then ordered according to their FT. First
tuples are utilized during the tree building. We use a persistent array to manage
first tuples.

3 Experimental Results

In our experiments1, we used the real collection of meteorological data includ-
ing 1,391,049 tuples of dimension 6 (see http://portal.chmi.cz/). All data
structures have been implemented in C++. We built 2 data structures: R∗-tree
and Ordered R-tree (see Table 1(a)), the page size 2,048B. Data structures have
been built by a common tuple-by-tuple way. Since the R-tree and the Ordered
R-tree create different regions, both build times are different for the same order
of the inserted tuples. In our experiments, we used 30 range queries with various
selectivities; the result set includes 0–548,725 tuples.

As usual, tests are processed with a cold cache (OS cache as well as cache
buffer of indices). For all tests we measure query processing time and Disk Ac-
cess Cost (DAC). Moreover, we measure the sorting time and DAC of the sort
operation. Since the range query is processed by random disk accesses, DAC is
equal to the number of disk accesses during the query processing [6]. We used
Merge sort [4] for sorting of the result set. For the measurement of the query
processing time, we repeat the tests 10× and calculate the average time.

DAC results are shown in Table 1(b). We see that the DAC for the Ordered
R-tree is 125% of DAC for the R∗-tree. Although DAC for the range query and
sort operation are not comparable due to the fact that it is simply possible
to reduce the number of disk accesses using a cache buffer in the case of the
sort operation, we see the DAC of the sort operation is enormous especially for
queries with a large result set.

1 The experiments were executed on an Intel� Core 2 Duo 2.4 Ghz, 512 kB L2 cache;

3GB RAM; Windows 7.

578 F. Křižka, M. Krátký, and R.Bača

Table 1. (a) R-trees statistics and (b) DAC for tested range queries

R∗-tree Ordered
R-tree

Tree Height 4 4
Build Time [s] 233 159
Inner Nodes 1,318 1,372
Leaf Nodes 27,826 29,663
Index Size [kB] 58,290 62,072
FT Index Size [kB] – 794

Query R∗-tree Ordered
Range Query Sort R-tree

Q1 2,279 17,408 1,545
Q5 201 205 221
Q8 7,600 31,795 5,372

.

.

.
Avg. 6,297 56,627.2 8,478

Consequently, the average query processing time for R∗-tree is 8.1 s (including
2.8 s for sorting), the average time for Ordered R∗-tree is 5.2 s.

4 Conclusion

In this article, we introduced a new data structure, a variant of the R-tree, sup-
porting a storage of ordered tuples. In this way, the range query result is ordered
without an application of any time consuming sort operation. Our experiments
show an improvement of this data structure in comparison with the R-tree. Or-
derer R-tree saves 35% of the query processing time compared to the R∗-tree.
The new data structure is particularly efficient in the case of large result sets or
in the case of lazy query processing when tuples are not immediately retrieved.
In our future work, we want to adopt this data structure for indexing XML data
where the lazy query processing of ordered tuples can be applied.

References

1. Bayer, R.: The Universal B-Tree for multidimensional indexing: General Con-

cepts. In: Masuda, T., Tsukamoto, M., Masunaga, Y. (eds.) WWCA 1997. LNCS,

vol. 1274. Springer, Heidelberg (1997)

2. Garcia-Molina, H., Ullman, J., Widom, J.: Database Systems: The Complete Book.

Prentice-Hall, Englewood Cliffs (2002)

3. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: Pro-

ceedings of ACM SIGMOD 1984, Boston, USA, pp. 47–57. ACM Press, New York

(1984)

4. Knuth, D.: The Art of Computer Programming, 2nd edn. Sorting and Searching,

vol. 3. Addison-Wesley, Reading (1998)

5. Lahdenmäki, T., Leach, M.: Relational Database Index Design and the Optimizers.

John Wiley and Sons, New Jersey (2005)

6. Lightstone, S.S., Teorey, T.J., Nadeau, T.: Physical Database Design: the Database

Professional’s Guide. Morgan Kaufmann, San Francisco (2007)

7. Sagan, H.: Space Filling Curves. Springer, Heidelberg (1994)

8. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan

Kaufmann, San Francisco (2006)

9. Skopal, T., Krátký, M., Snášel, V., Pokorný, J.: A New Range Query Algorithm

for the Universal B-trees. Information Systems 31(6), 489–511 (2006)

10. Vitter, J.S.: Algorithms and Data Structures for External Memory. Series on Foun-

dations and Trends in Theoretical Computer Science. Now Publisher (2008)

Construction of Messaging-Based Integration

Solutions Using Constraint Programming

Pavol Mederly and Pavol Návrat

Faculty of Informatics and Information Technologies, Slovak University of Technology,

Ilkovičova 3, 842 16 Bratislava 4, Slovak Republic

{mederly,navrat}@fiit.stuba.sk

Abstract. This paper presents a novel method of designing selected

aspects of messaging-based integration solutions. The method uses con-

straint programming to find appropriate communication channels, com-

ponents’ deployment parameters and integration services in order to cre-

ate a solution that meets specified functional and non-functional require-

ments. The method has been evaluated using a prototype implementation

and compared to authors’ earlier work that used action-based planning

techniques to reach similar goals.

Keywords: Enterprise Application Integration, Enterprise Integration

Patterns, Messaging, Constraint Programming.

1 Introduction

Application integration is one of the crucial issues in enterprise computing [1].
Despite the existence of powerful tools, development of integration solutions (i.e.
software systems that interconnect individual applications) is still an expensive
task requiring highly-skilled software developers. Although there are some works
trying to automate activities in the area of integration solutions’ implementation
(e.g. [5]) as well as abstract specification (e.g. [2]), we know of no attempts to
automate designing such solutions.

This paper presents a novel method for automatic design of messaging-based
integration solutions using constraint programming techniques. The method and
its evaluation are described in sections 2 and 3, respectively. Section 4 closes this
paper and gives some ideas on future work.

2 The Method for Automated Design of Integration
Solutions

One of the important approaches to design of integration solutions is messag-
ing. It allows individual applications to communicate by exchanging messages
in an asynchronous and platform-independent way. Such solutions are often
based on the Pipes and Filters architecture: they consist of processing compo-
nents called filters that are connected using channels (pipes). Some of the filters

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 579–582, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

580 P. Mederly and P. Návrat

correspond to applications that are being integrated, while others implement
auxiliary services needed for the integration to take place. The former are some-
times called business services, while the latter integration (or mediation) ones.

The method’s input is an integration problem: an abstract description of the
integration solution that is to be implemented. It consists of information on
business services that are to be incorporated into the solution, a logical flow of
messages among these services, and a set of non-functional requirements to be
met, namely:

– throughput and availability of the solution; as a part of the integration prob-
lem specification the throughput and reliability for each business service in
each of four deployment modes (see below) are provided;

– a list of services whose inputs and outputs should be monitored ;
– message ordering and duplicate messages avoidance, if it is necessary to

guarantee these features at some points in the solution;
– message formats (e.g. XML, JSON, etc.) supported by individual services.

The method then tries to meet these requirements by creating a suitable design
of the solution, namely by:

– deploying components appropriately – in the current version of the method
we distinguish between deployment in (1) single thread, (2) multiple threads,
(3) multiple processes and (4) multiple hosts;

– choosing suitable channels – we consider in-memory channels (cheap but
limited in functionality) and two kinds of message broker-based ones: point-
to-point (enabling distributed deployment of services) and publish-subscribe
channels (enabling easy monitoring), optionally with transactional behaviour;

– inserting appropriate integration services – e.g. Wire Tap (for monitoring),
Order Marker and Resequencer (for message ordering), Message Translator
(for format conversion), Message Filter (for duplicate elimination) [1].

The method works by translating the integration problem into a constraint sat-
isfaction problem (CSP) consisting of a set of variables and a set of constraints
imposed upon them. An example of a structure of a result of the translation –
for a part of the order processing scenario described in [3] – is shown in Fig. 1.

Fig. 1. An example of a structure of CSP corresponding to an integration problem

Construction of Messaging-Based Integration Solutions 581

Rectangles represent business services. Circles represent slots for integration
services that are to be found. The initial number of such slots is configurable;
the method adjusts it while looking for the solution. Question marks attached
to services and message flows point up to the following sets of CSP variables:

1. For each integration or business service there is a set of variables correspond-
ing to: (1) the type of the service (only for integration services), (2) mode
of deployment as described above, (3) whether this service takes part in a
messaging infrastructure transaction, and (4) cost of deploying this service
in a specified way.

2. For each message flow, i.e. a line connecting two services, there is a set
of variables indicating: (1) type of channel, (2) whether the flow is in the
original order, (3) whether messages have sequence numbers assigned, (4)
whether duplicate messages can be possibly present, (5) whether the flow is
monitored, and (6) the message format.

Constraints imposed upon CSP variables are used mainly to reflect requirements
and effects of individual services on the respective message flows. They are cre-
ated by applying predefined templates to all business and integration services.
For example, constraints related to message ordering look like this:

IF service.Type != RESEQUENCER AND service.Type != NONE THEN
(IF service.Deployment = SINGLE-THREAD THEN

service.output.Ordered = service.input.Ordered) AND
(IF service.Deployment != SINGLE-THREAD THEN

service.output.Ordered = FALSE).

3 Implementation and Evaluation

The method has been implemented as a research prototype, utilizing the JaCoP
solver. It has been evaluated using a set of integration problems taken from the
literature as well as from our real-life experience (see Table 1).

The Problem description column references the respective integration problem
as it is present in [4]. The Aspects column shows which of the design issues the
problem deals with, namely: monitoring (M), message formats (F), throughput
(T), availability (A), message ordering (O), and duplicate messages elimination
(D). The Business services and Int. comp. columns show the number of business
services and integration components used in the optimal solution, respectively.
The last three columns provide the CPU time needed to find the optimal solution,
to conclude that no better solution exists and to find a solution by our previous
method, where applicable [3,4].

4 Conclusion and Future Work

Research results presented here demonstrate that it is possible to use constraint
programming to automate the design of some aspects of integration solutions.

582 P. Mederly and P. Návrat

Table 1. Selected results of the evaluation of the method

Problem

description

Aspects Business

services

Int.

comp.

Optimal

solution

(sec)

All

solutions

(sec)

Planning

(sec)

1 Reseller (D) MFTA 5 10 0.17 0.44 0.43

2 Reseller (J) MFTAO 11 20 0.33 30.04 15.47

3 Reseller (J) MFTAOD 11 29 2.80 7,012.36 n/a

4 University (G) MFTA 11 20 0.20 1.87 55.00

Our aims for the future include covering other design aspects, e.g. mapping
logical data elements into messages and their parts, supporting diverse transport
protocols or deploying solution components into an integration infrastructure.
In order to achieve this goal we intend to combine AI planning and constraint
programming approaches; we also plan to give the developer a possibility to influ-
ence the solution-finding process. We are working on a code-generation module
as well.

Acknowledgments. This work was supported by the Scientific Grant Agency
of SR, grant No. VG1/0508/09 and it is a partial result of the Research & De-
velopment Operational Program for the project Support of Center of Excellence
for Smart Technologies, Systems and Services II, ITMS 25240120029, co-funded
by ERDF.

References

1. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and

Deploying Messaging Solutions. Pearson Education, Inc., Boston (2004)

2. Mayer, W., Thiagarajan, R.K., Stumptner, M.: Service Composition as Generative

Constraint Satisfaction. In: IEEE International Conference on Web Services, ICWS

2009, pp. 888–895. IEEE Computer Society, Los Alamitos (2009)

3. Mederly, P., Lekavý, M., Závodský, M., Návrat, P.: Construction of Messaging-Based

Enterprise Integration Solutions Using AI Planning. In: Preprint of the Proceedings

of the 4th IFIP TC2 Central and East European Conference on Software Engineering

Techniques, CEE-SET 2009, pp. 37–50. AGH University of Science and Technology,

Krakow (2009)

4. Mederly, P., Lekavý, M.: Report on Evaluation of the Method for Construction of

Messaging-Based Enterprise Integration Solutions Using AI Planning,

http://www.fiit.stuba.sk/~mederly/evaluation.html

5. Scheibler, T., Leymann, F.: A Framework for Executable Enterprise Application

Integration Patterns. In: Mertins, K., et al. (eds.) Enterprise Interoperability III,

pp. 485–497. Springer, London (2008)

http://www.fiit.stuba.sk/~mederly/evaluation.html

Criteria for Reducibility of Moving Objects

Closeness Problem

Elena Snegova�

Moscow State University

lenasnegova@gmail.com

Abstract. Consider two streams of moving objects inside the square

[0, 1]2. We assume that objects in each of streams move in prescribed

manner, but have random coordinate and random time of appearance.

One of the streams moves from South to North and we call it a stream

of queries, and another stream moves from West to East and we call it

a stream of objects. Moving objects closeness problem (MOC problem)

consists of enumeration for every new query those and only those objects

that will be not far than ρ from the query in Manhattan metrics at some

moment of time during the query’s or the objects’ movements inside the

square.1

In general case this problem is very hard to solve because of dynamic

situation and two-dimensional movements of objects and queries. But,

in some cases the MOC problem is equivalent to one-dimensional range

searching problem that can be solved effectively with logarithmic search,

insertion and deletion time and a linear memory size as functions of the

number of objects inside the square. In this paper we present and prove

criteria for reducibility of the MOC problem to one-dimensional range

searching problem.

1 Introduction

Traditional database management systems assume that every moving object has
its own independent velocity and direction of movement, i.e. objects move chaot-
ically. Our approach is to consider streams of objects and to assume conflicts
between streams, but not inside one stream.

In this paper we consider the case of prescribed object movement. The close
case was also considered in [1] by Attalah. The author proposed algorithms for
searching the closest and fastest points and for computing convex hull of points.

The information about the laws of motion of objects and queries let us define in
every specific case, if the MOC problem can be reduced to one-dimensional range
searching problem or not. In the next chapter we present criteria for reducibility.
� The author warmly thanks his supervisor, Prof. E.E. Gasanov, for problem statement

and invaluable help.
1 The distance in Manhattan Metrics can be interpreted in the following way: consider

moving squares (for example, airplanes) with ”radius”
ρ
2

as it is shown on Fig. 1.

In MOC problem for every moving squared query it is required to list all squared

objects that will overlap the query during its movement inside the square.

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 583–586, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

584 E. Snegova

��
��

�

��
��

�
��

��
�

��
��

� ��
��

�

��
��

�

��
��

�

��
��

���
��

�

S

N

EW

ρ
2

��

Fig. 1. The movement of objects and queries in MOC problem

There are a lot of storage methods appropriate for one-dimensional range
searching, for example [3,4,5,6,7,8]. For dynamic case the most suitable is the
method based on 2–3 tree structure [2]. The analytical estimates of corresponding
algorithm for searching, insertion and deletion time are much lower in compare
with Attalah’s estimates [1].

2 Basic Notions and Formulation of the Result

Let τmax be object movement time inside the square [−ρ, 1+ρ]×[−ρ, 1+ρ] and let
τq
max be query movement time inside the same square. Let f : [0, τmax] → [−ρ, 1+

ρ] be object law of motion and let fq : [0, τq
max] → [−ρ, 1 + ρ] be query law of

motion. (We consider the movement of objects and queries in a broader rectangle
than [0, 1]2, because in an answer to every query it is required to enumerate all
objects objects that will be not far than ρ from the query in Manhattan metrics
at some moment of time during the query’s or the objects’ movements inside
the square.) Assume f and fq are continuous increasing functions such that
f(0) = fq(0) = −ρ, f(τmax) = fq(τq

max) = 1 + ρ.
Suppose there is a countable set of objects on the plane. Then, every object

inside [−ρ, 1 + ρ] × [−ρ, 1 + ρ] at time t is a pair (f(t − ti), yi), where i ∈
N , yi ∈ [0, 1] is a coordinate of appearance on axis Y of object i, and the
moments of appearance ti form an increasing sequence of positive numbers.
Similarly, every moving query at time t is a pair (x, fq(t − tq)), where x ∈
[0, 1] is a query’s coordinate of appearance on axis X and tq ≥ 0 is a query’s
moment of appearance. The position of every object and every query depends
on the moment of appearance, coordinate of appearance and corresponding law
of motion. Then let us consider objects as pairs oi = (ti, yi) and queries as pairs
q = (tq, x).

Library V(tq) is a set of all objects inside [−ρ, 1 + ρ] × [0, 1] at the current
time tq, i.e. V(tq) = {(ti, yi) : tq ∈ [ti, ti + τmax], yi ∈ [0, 1]}. Sometimes, instead
of V(tq) we will use the notation V that implies the set of all objects inside
[−ρ, 1 + ρ] × [0, 1] at the current time. Let |V | be the number of objects in the
current library.

Criteria for Reducibility of Moving Objects Closeness Problem 585

Given the library V = V (tq), the answer for the query q = (tq, x) is the set
of objects from V , that will be in closeness with the query inside [−ρ, 1 + ρ] ×
[−ρ, 1+ρ], i.e. J(ρ, q, V) = {oi ∈ V | ∀ i ∃ t : |f(t−ti)−x|+|yi−fq(t−tq)| ≤ ρ}.

The triple (f, fq, ρ) is called the moving objects closeness problem (the MOC
problem).

One-dimensional range searching problem is a pair (I, Z), where library Z
is a finite subset of the set of real numbers R and a query set I is a set of
segments from R. Meaningfully one-dimensional range searching problem con-
sists in finding for any segment p from I those and only those points from Z
that belongs to the segment p, i.e. the answer for the query p ∈ I is the set
J(p, Z) = {z ∈ Z : z ∈ p}.

We say that the MOC problem (f, fq, ρ) can be reduced to one-dimensional
range searching problem iff there exists functions ϕ, ϕ1, ϕ2 : R × [0, 1] → R
such that for any library V = V (tq), any query q = (tq, x) and any object
o ∈ V the following is true o ∈ J(ρ, q, V) ⇔ ϕ(o) ∈ J([ϕ1(q), ϕ2(q)], Z), where
Z = {ϕ(o) : o ∈ V }.

Denote:
FL(x, y) = min

ξ∈[0,ρ]
[f−1

q (y + ξ − ρ) − f−1(x + ξ)],

FR(x, y) = max
ξ∈[−ρ,0]

[f−1
q (y + ξ + ρ) − f−1(x + ξ)].

Theorem 1. The moving objects closeness problem (f, fq, ρ) can be reduced to
one dimensional range searching problem iff there exist functions ψ, ψL, ψR :
[0, 1] → R such that

FL(x, y) = ψ(y) + ψL(x) ∀(x, y) : FL(x, y) ≤ 0, (1)

FR(x, y) = ψ(y) + ψR(x) ∀(x, y) : FR(x, y) ≤ 0. (2)

Four characteristics (the size of memory M , search time (without the answer
enumeration time) T , insertion time S and deletion time D) can be used for the
estimation of information processing algorithms. We measure time as a number
of elementary operations made during the correspondent procedure.

Functional complexity is a function of dependence of these characteristics
upon the number of objects in the library.

We say that h(n) = O(g(n)), if there exists constants C1 > 0, C2 > 0, and
constants C3, C4, such that for all n the following condition is satisfied:

C1g(n) + C3 ≤ h(n) ≤ C2g(n) + C4.

Corollary 1. Assume that for the triple (f, fq, ρ) there exist functions ψ, ψL, ψR :
[0, 1] → R such that conditions (1)and (2) are satisfied. Then there exists algorithm
A that solves the MOC problem (f, fq, ρ). For algorithm A complexities of search
(without answer enumeration time), insertion, deletions procedures and for size of
memory of algorithm A the following estimates are valid correspondingly:

TA(V) = O(log2 |V |),

586 E. Snegova

SA(V) = O(log2 |V |),
DA(V) = O(log2 |V |),

MA(V) = O(|V |),
where operations of addition, comparison of two numbers and operation of compu-
tation ψ, ψL, ψR of every point from [0, 1] are taken as elementary.

3 Example

Consider the case, when f ′(τ) ≤ f ′
q(τ ′) for all τ ∈ [0, τmax] and τ ′ ∈ [o, τq

max].
Then, FL(x, y) = f−1

q (y) − f−1(x + ρ) and FL(x, y) = f−1
q (y) − f−1(x − ρ). Ac-

cording to the criteria it means that the MOC problem (f, fq, ρ) with this prop-
erty can be reduced to one-dimensional range searching problem. It is possible
to show that according to the definition of the answer for the query an object
oi = (ti, yi) from V = V (tq) belongs to J(ρ, q, V) where q = (tq, x) iff ti − tq ∈
[FL(x, yi), FR(x, yi)] ⇔ ti − f−1

q (y) ∈ [tq − f−1(x + ρ), tq − f−1(x + ρ)]. Thus,
for one dimensional range searching problem [tq − f−1(x + ρ), tq − f−1(x + ρ)] is
a query and ti − f−1

q (y) is an element of the library at the moment tq.

References

1. Atallah, M.: Dynamic Computational Geometry. In: Proc. 24th Annu. IEEE Sympos.

Found. Comput. Sci. (1983)

2. Lapshov, I.S.: Dynamic databases with optimal in order time complexity. Discrete

Mathematics and Applications 18(4), 367–379 (2006)

3. Bentley, J.L., Friedman, J.H.: Data structure for range searching. Comput. Sur-

veys 11, 397–409 (1979)

4. Bolour, A.: Optimal Retrieval Algorithms for Small Regional Queries. SIAM J. Com-

put. 10, 721–741 (1981)

5. Bernard, C.: Filtering Search: A new approach to query-answering. SIAM J. Comput

(1986)

6. Fredman, M.L.: A lower bound of complexity of ortogonal range queries. J. ACM 28,

696–705 (1981)

7. Leuker, G.S.: A data structure for ortogonal range queries. In: Proceedings of 19th

Annual IEEE Sympothium on Foundations of Computer Science, pp. 28–34 (1978)

8. Willard, D.E.: Predicate-oriented database search algorithms. Ph.D. dissertation,

Harvard Univ., Cambridge, MA (1978)

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 587–590, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Platform Independent Database Replication Solution
Applied to Medical Information System

Tatjana Stankovic1, Srebrenko Pesic2, Dragan Jankovic1, and Petar Rajkovic1

1 Faculty of Electronic Engineering, Aleksandra Medvedeva 14, 18000 Nis, Serbia
{tatjana.stankovic,dragan.jankovic,

petar.rajkovic}@elfak.ni.ac.rs
2 Health Centre Nis, Vojvode Tankosica 15, 18000 Nis, Serbia

srebrenko.pesic@domzdravljanis.co.rs

Abstract. Medical Information System (MIS), as any other information system
(IS), can be based on centralized or distributed database management system. It
is much easier to implement and to administer centralized system, but the bene-
fits of distributed over centralized architecture in our case were crucial. How-
ever, database replication in distributed MIS represents a significant problem.
All well-known database replications are platform-dependent, and when it
comes to the possible platform migration, a huge problem of setting replication
on different platforms is born. This paper describes one platform independent -
information system dependent database replication solution, that can enable fast
replication even in low-band/low-speed internet connections.

Keywords: Database replication, replication conflicts, distributed DBMS.

1 Introduction

Modern society implies the existence of highly developed public health system with a
strong technical and organizational background. Main building blocks of mentioned
technical background are effective and reliable Medical Information Systems1 in
active use within healthcare facilities having high level of interoperability [1].

As any other complex and large IS, MIS can be either based on centralized or dis-
tributed database management system (DDBMS). According to the rules that Serbian
Ministry of Health defined [2], in our country both are allowed, as soon as the fact
that “the system must be available 24 hours a day, 365 days a year” is satisfied. Cen-
tralized system is more vulnerable then distributed in a sense of connectivity. Larger
health centres in Serbia are usually consisted of one central node and several tens of
remote nodes (small clinics). There are local clinics in schools, villages, etc. Network
connections between those clinics, in many cases, are not reliable; it is pretty much
possible to have some clinic disconnected for hours, even days.

DDBMS solves mentioned problems, but it demands very well planned database
replication. Setting and administering database replication on so many DBMSs costs

1 Research and MIS described in this paper are supported by the Ministry of Science and

technological Development of the Republic of Serbia (Project Nr TR13015).

588 T. Stankovic et al.

many expert-hours. Resolving database replication conflicts demands good planning,
and even then, practice can lead us to unresolved replication conflicts that end in a
dead queue, waiting for a human interaction. Besides, there is a standard proposed by
Republic of Serbia as follows: any MIS solution must ensure that technological plat-
form for the solution is independent on DBMS platform [2]. Known reliable replica-
tion solutions such are MS SQL Server Replication, Oracle replication, Slony-I, are
all platform-dependant. For reasons mentioned above we have developed one plat-
form independent – IS dependant database replication solution.

2 Information System Dependant Database Replication

The main idea in designing database platform independent replication scenarios and
systems was to plan replication and solve replication conflicts in advance, in the MIS
planning phase.

Our main intense was to keep all replication required data inside of DBMSs, but
not in a way as existing solutions usually do. For example, SQL Server adds new
unique field in every table involved in transactional replication from the publisher’s
side [3]. In our case, there are only 5 tables in every database that are directly respon-
sible for replication.

MIS deployed in a single healthcare facility can produce millions of records per ta-
ble yearly [4]. Fortunately, not every single DBMS needs to be balanced with all that
data, and in our replication, that balance is determined in advance by MIS.

The first priority was modelling dependences between DDBMS architecture and
healthcare facility organization structure, as is shown in Figure 1. Both structures are
presented as n-ary trees. The root of DDBMS n-ary tree is central server, which usu-
ally resides in central unit of healthcare facility.

Primary key replication conflicts are solved in advance by implementing offsets for
primary keys in every database [5]. UPDATE/DELETE replication conflicts are im-
possible, because MIS takes good care of data ownership [5].

Basic concept can be briefly described in following way: MIS logs every INSERT,
UPDATE or DELETE statement executed against database, together with some addi-
tional parameters (what is destination DBMS in n-ary tree for that specific informa-
tion, is information to be sent to all servers, etc). All loggings are done in the same
database. Segment of our database, responsible for replication, is shown in Figure 1.
When it comes to data synchronization, statements logged after the moment of last
performed synchronization are selected, packed in a text file, and sent to the other
replication side (simplified explanation). The statements are ordered by timestamp of
execution against primary database. Of course, not all statements are selected, but
only those that correspond to the predefined rules (table is or is not involved in repli-
cation between two servers is only one of many rules). On another replication side,
the file is unpacked, and the statements are executed against that database, inside of
one large transaction. According to predefined algorithm applied to every statement,
the statements are logged (or not logged) for further replication. The moment when
statements will be archived and removed from log table, depends on replications per-
formed earlier, and timestamp that corresponds to the statement.

 Platform Independent Database Replication Solution Applied to MIS 589

Fig. 1. 5 tables implemented in every DBMS, responsible for replication

3 Replication Agents

Replication procedure is done by two replication agents (client, called Rpull agent,
and server, called Rpush agent). They communicate over TCP/IP on a port that is
defined in advance between administrators [6], and log information about successfully
performed replications. Server agent can serve more than one client agent simultane-
ously (multithreading). The process is shown in Figure 2.

Fig. 2. Replication process workflow

590 T. Stankovic et al.

4 Conclusions and Remarks

MS SQL Server 2005 was database platform we have started to work with. MS SQL
Server Standard Edition supports all types of replication (snapshot, transactional,
merge, merge bidirectional), but MS SQL Server Express, which is non-commercial
and convenient for smaller remote clinics, has very limited scope of database replica-
tion [7]. Having a solution like presented in this paper may represent a progress to our
project. There is a possibility to use the combination of platform dependant replica-
tion - for objects like medical catalogues, that are replicated entirely over the whole
DBMS n-ary tree, and our platform-independent simple replication for those whose
setting is complicated (like shipments of medical materials and drugs, patient exami-
nation data, etc). The other item is related to data whose existence is not necessary in
all tree nodes, but only to specific ones, determined in advance. This means much less
data waste for wayside servers, and reliable replication in low-band/low-speed net-
work connections.

And at the end, this kind of replication can easily be applied to any IS beside MIS
we have developed, by taking several actions. First: 5 replication tables need to be
added to the database. Organization structure of the company must be designed as an
n-ary tree (which is the case in most companies). Data layer need to be modified by
implementing a bottom-level function that will determine logging of executed state-
ments. And finally, replication agents need to be set to the nodes for replication.

References

1. Wager, K.A., Wickham Lee, F., Glaser, J.P.: Managing Healthcare Information Systems - A
Practical Approach for Health Care Executives, 1st edn., May 5. Jossey-Bass, San Francisco
(2005), ISBN-10:078797468

2. Article 3, paragraph 3, Uredba o Programu rada, razvoja i organizacija integrisanog zdravst-
venog informacionog sistema “e-Health”, Sluzbeni glasnik RS, br. 55/09

3. Sujou, P.: Pro SQL Server 2005 Replication, Springer-Verlag New York, ISBN-13: 978-1-
59059-650-0, ISBN-10: 1-59059-650-1, United States of America 987654321

4. Pesic, N.S., Stankovic, N.T., Jankovic, S.D.: Benefits of Using OLAP Versus RDBMS for
Data Analyses in Health Care Information Systems. Electronics 13(2), 56–60 (2009)

5. Stankovic, N.T., Jankovic, S.D., Pesic, N.S.: Public Health Care Distributed DBMS with
Resolving Database Replication Conflicts in the Health Care Information System Project
Early Phase. In: 9th International Conference on Telecomunications in Modern Satellite,
Cable and Broadcasting Services - TELSIKS, IEEE Catalogue Number: CFP09488-PRT,
Nis, Serbia, vol. 2, pp. 487–490 (2009)

6. Stankovic, N.T., Stankovic, R.M., Jankovic, S.D.: Platform Independent-Information Sys-
tem Dependent Database Replication. In: 43th International Scientific Conference On In-
formation, Communication and Energy Systems and Technologies - ICEST, Nis, pp. 415–
418 (2008)

7. http://msdn.microsoft.com/en-us/library/ms165686.aspx

Indexing Temporal Data with Virtual Structure

Bela Stantic, Justin Terry, Rodney Topor, and Abdul Sattar

Institute for Integrated and Intelligent Systems
Griffith University, Brisbane, Australia

{B.Stantic,J.Terry,R.Topor,A.Sattar}@griffith.edu.au

Abstract. Temporal and spatio-temporal data are present in many modern ap-
plication systems, including monitoring moving objects. Such systems produce
enormous volume of data, and therefore efficient indexing method is crucial. In
this paper, we investigate and present a new concept based on virtual index struc-
ture, which can efficiently query such data. Concept is based on spatial represen-
tation of interval data and a recursive triangular decomposition of that space. The
empirical performance of presented concept is demonstrated to be superior to its
best known competitors.

1 Introduction

Modern database system, such as used for tracking moving objects, contain a signif-
icant amount of time dependent data [6]. Over the last two decades due to increased
number of spatio-temporal applications interest in the field of temporal databases has
increased significantly with contributions from many researchers [1], [8]. Because tem-
poral databases are in general append only, they are usually very large in size, thus effi-
cient access method is even more important in temporal databases than in conventional
databases [2]. A number of access methods for temporal data that utilise the relational
database systems built-in functionalities have been proposed, however, they have ei-
ther space complexity problem or are generally tailored to be efficient only for specific
query types. In [5] it has been shown that the RI-tree is superior to main competitors,
the Window-List, Oracle Tile Index (T-Index) and IST-technique. However, the RI-tree
need to tailor query transformation to the specific query types. It is our intention to
propose an efficient access method for temporal data with logarithmic access time and
guaranteed minimum space complexity that can answer a wide range of query types
with the same query algorithm.

In this paper we present and investigate the Triangular Decomposition Tree (TD-tree)
access method to index and query temporal data. In contrast to previously proposed
access methods for temporal data this method can efficiently answer a wide range of
query types, including point queries, intersection queries, and all nontrivial interval
relationships queries, using a single algorithm without dedicated query transformations.
It also can be built within commercial relational database system as it uses only built-
in functionalities within the SQL:1999 standard and therefore no modification to the
database kernel is required.

The TD-tree is a space partitioning access method. The basic idea is to manage the
temporal intervals by a virtual index structure that relies on a two-dimensional represen-
tation of intervals and a triangular decomposition method. The resulting virtual binary

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 591–594, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

592 B. Stantic et al.

tree stores a bounded number of intervals at each leaf and hence may be unbalanced.
As data is only stored in leaves, traversing the tree avoids disk accesses and tree depth
therefore does not affect performance. Using the interval representation, any query type
can be reduced to a spatial problem of finding those (triangular) leaves that intersect
with the spatial query region. The efficiency of the TD-tree is due to the virtual inter-
nal structure so there is no need for physical disk I/O’s, query algorithm that ensures
pruning, and efficient clustering of interval data. On top of the advantages related to the
usage of a single query algorithm for different query types and better space complex-
ity the empirical performance of the TD-tree is demonstrated to be superior to its best
known competitors.

2 The Triangular Decomposition Tree (TD-Tree)

The structure of our indexing method is based on the observation, that all data and
query intervals of interest represented in two dimensional space lie in the isosceles,
right-angle triangle with vertices at (0,0), (0,λ) and (λ ,λ), which lies above the line
E = S. We call this triangle the basic triangle Figure 1. This is due to nature of interval
space transformation and fact that is < ie.

Fig. 1. Interval representation in two-dimensional space

Given that our region of interest is a triangle, our proposal is to recursively decom-
pose the basic triangle into two smaller triangles, whenever triangle covers more than
the chosen number of interval objects defined by blocking factor b. In such a triangular
decomposition, each triangle is uniquely identified by its apex position (s,e), and its
direction d, the direction of the arrow from the midpoint of the triangle’s hypotenuse to
the apex.

Given a triangle in this decomposition, its apex and direction uniquely determine
the apex and direction of each of its two subtriangles. The position (s,e) of the apex of
each subtriangle C of a parent triangle P at any level l is possible to find out by knowing
only the position of the parent apex and its level. Because we can identify the apex and
direction of every node of a TD-tree, starting from basic triangle we do not need to
store the internal tree nodes. Thus, a TD-tree is a virtual tree. If a node has identifier φ ,
the lower and upper children of the node have identifiers φ0 and φ1 respectively. The

Indexing Temporal Data with Virtual Structure 593

length of the identifier is thus one greater than the depth of the node. Information about
leaf nodes themselves are stored in a separate directory, containing an identifier and
number of records per leaf. The root node stores the blocking factor b, λ , and current
maximum depth of the tree.

It can be shown that the every query corresponds to a rectangular region of the two-
dimensional interval space, defined by the top-left and bottom-right corners of this re-
gion. The task of query evaluation is to find all data intervals that occur within this
query region. The particular region chosen depends on whether we are performing an
intersection query, an overlaps query, a contains query, and so on, but in each case the
query evaluation algorithm is identical, this is an important property of our approach.

3 Experimental Evaluation

To show the practical relevance of our approach, we performed an extensive experi-
mental evaluation of the TD-tree and compared it to the RI-tree [5]. The RI-tree was
chosen, since it provides the same practically important properties as our approach. It
is easy to implement and integrate, it uses standard RDBMS methods which provides
scalability, update-ability, concurrency control and space efficiency. Furthermore it has
been shown [5] that the RI-tree is superior to main competitors so the performance re-
sults of the TD-tree can be transferred to these indexing techniques. In our experiment
we tested performance on intersection queries. However, because of the nature of our
query algorithm, which compares the data region with the rectangular query region,
results for intersection query applies to the other query types.

The Theory of Indexability [3] identifies I/O complexity cost, measured by the num-
ber of disk accesses, as one of the most important factors for measuring query perfor-
mance, which in conjunction with CPU usage is used to assess the performance of the
query process.

When making performance measurements of index structures it is important to con-
sider parameters such as space requirements, physical disk I/O, CPU usage, clustering,
updates, and locking. In our analysis we have concentrated on space requirements, phys-
ical disk reads, CPU usage and clustering of data. Because both the RI-tree and TD-tree
rely on the relational paradigm, updates and locking are handled well by the RDBMS
itself.

The TD-tree requires only one virtual index structure, which means only leaf nodes
have to be stored. The list of leaf nodes are stored in the directory table and its size
is very small comparing to the table itself. In our experiment the TD-tree directory for
one million interval objects required only 26 data blocks. While The RI-tree requires
two composite index structures lowerIndex (on node and Start - start of the interval)
and the upperIndex (on node and End - end of the interval). In our experiment the RI-
tree composite indexes for one million interval objects required 6708 data blocks (3354
each index).

The TD-tree enables efficient usage of clustering of the data by one dimension, i.e
region, as every region associate with block size. Clustering data improves the query
performance and reduces the number of physical I/O, clustering ensures higher number
of answers per physical disk I/O. In contrast, the RI-tree can not efficiently use cluster-
ing of data as it has to decide which dimension to use start or end. If it is clustered by

594 B. Stantic et al.

node it will not result in similar improvements, as in RI-tree node are fixed size and are
too large to provide effective clustering.

4 Conclusions

We described a new approach to efficiently manage vast volume of temporal and spatio-
temporal data within the commercial RDBMS. More specifically, in this paper we:

– Presented the triangular decomposition tree (TD-tree) concept that can efficiently
answer a wide range of query types with single algorithm;

– Experimentally evaluated the TD-tree by comparing its performance with the RI-
tree, and demonstrated its overall superior performance.

The TD-tree is a unique access method as it uses tree structure and at the same time has
some characteristics of hashing because it only stores data in leaf nodes. As a wide range
of query types of interest can be reduced to rectangular region, it is possible to answer
such queries using a single algorithm without requiring any query transformation. This
itself, and the fact that the TD-tree can be incorporated within commercial RDBMS
and utilised in a lot of spatio-temporal applications that manage vast volume of data,
makes the TD-tree superior to other methods currently used or proposed in literature.
Additionally, presented concept of regular decomposition and virtual internal structure
can be extended and applied to more dimensions to efficiently manage high dimensional
data.

References

1. Date, C., Darwen, H., Lorentzos, N.: Temporal Data and the Relational Model. Morgan
Kaufmann, San Francisco (2002)

2. Dyreson, C.E., Snodgrass, R.T., Freiman, M.: Efficiently Supporting Temporal Granularities
in a DBMS. Technical Report TR 95/07 (1995)

3. Hellerstein, J., Koutsupias, E., Papadimitriou, C.: On the Analysis of Indexing Schemes.
In: 16th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(1997)

4. Kriegel, H.-P., Potke, M., Seidl, T.: Object-relational indexing for general interval relation-
ships. In: Proc. 7th Int’l Symposium on Spatial and Temporal Databases, SSTD 2001 (2001)

5. Kriegel, H.-P., Potke, M., Seidl, T.: Managing intervals efficiently in object-relational
databases. In: Proceedings of the 26th International Conference on Very Large Databases,
pp. 407–418 (2000)

6. Marios, H., Kollios, G., Tsotras, V.J., Gunopulos, D.: Indexing Spatialtemporal Archives. The
VLDB Journal 15(2) (2006)

7. Ramaswamy, S.: Efficient Indexing for Constraint and Temporal Databases. In: Proceedings
of the 6th International Conference on Database Theory, pp. 419–431 (1997)

8. Snodgrass, R.T.: Developing Time-Oriented Database Applications in SQL. Morgan
Kaufmann, San Francisco (2000)

Detecting XML Functional Dependencies

through Formal Concept Analysis

Katalin Tunde Janosi-Rancz1, Viorica Varga2, and Timea Nagy2

1 Hungarian University of Transylvania, Tirgu Mures, Romania

tsuto@ms.sapientia.ro
2 Babeş-Bolyai University, Cluj-Napoca, Romania

ivarga@cs.ubbcluj.ro

Abstract. We propose a framework which analyses an XML document

constructing the Formal Context of the functional dependencies for the

XML data. The obtained Concept Lattice is a useful graphical represen-

tation of the analyzed XML document’s elements and their hierarchy.

The software also finds functional dependencies and keys in XML data.

1 Introduction

Formal Concept Analysis (FCA) [2] is a method for data analysis, knowledge
representation and information management that was successfully used in many
fields, in relational database theory too. Our work is based on the definitions of
the Generalized Tree Tuple, XML functional dependency (XFD) and XML key
notion presented by [6]. This paper proposes a framework to mine functional
dependencies from an XML database by reformulating the XML functional de-
pendency inference with an FCA viewpoint. We construct the formal context of
the functional dependencies for a tuple class or for the whole XML document.
Non-leaf and leaf level elements (or attributes) and corresponding values are
inserted in the formal context, then the concept lattice for this context is built
up. The obtained Conceptual Lattice is the basis for further analysis. The set
of implications resulted from this concept lattice will be equivalent to the set of
functional dependencies that hold in the XML database.1

2 Overview of the Approach

Our approach is carried out by a sequence of processing steps and it is supported
by a framework named FCAMineXFD. The examples of this paper are based on
XML tree tuple of Fig. 1.

2.1 Constructing the Formal Context, the Input to FCA

As a first step, we need to define the objects and attributes of interest and create
models of XML in terms of FCA context. Our software can analyze the whole
1 Partially supported by Grant CNRS Nr. 55/2008

B. Catania, M. Ivanović, and B. Thalheim (Eds.): ADBIS 2010, LNCS 6295, pp. 595–598, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

596 K.T. Janosi-Rancz, V. Varga, and T. Nagy

Fig. 1. Example tree tuple

XML document or a tuple class Cp given by the path p (see [6] for notations).
Tuple-based XML FD notion proposed in [6] suggests a natural technique for
XFD discovery. XML data can be converted into a fully unnested relation, a sin-
gle relational table, and apply existing FD discovery algorithms directly. Given
an XML document, which contains at the beginning the schema of the data, we
create generalized tree tuples from it. Each tree tuple in a tuple class has the
same structure, so it has the same number of elements. We use the flat repre-
sentation which converts the generalized tree tuples into a flat table. Each row
in the table corresponds to a tree tuple in the XML tree. In the flat table there
are non-leaf and leaf level elements (or attributes) introduced from the tree. For
non-leaf level nodes the associated keys are used as values.

Example 1. We construct the flat table for tuple class COrders. There are two
non-leaf nodes: Orders and OrderDetails. These appear as attributes Orders@key
and OrderDetails@key in the flat table.

Applying our experience in detecting functional dependencies in relational
databases (see [4]), we use the definitions introduced by Hereth in [3]. Hereth
gives the translation from the relational database into a power context family
and based on it he defines the formal context of functional dependencies.

In this step the formal context of functional dependencies for XML data is
built, mapping from metamodel entities to FCA objects and attributes.

Choice of FCA Attributes: PathEnd/ElementName. Due to space consider-
ations we will not specify the whole path to the element (or attribute) names,
only the end of the path. FCA attribute names are built from the end of the
path to the element: PathEnd and element name as follows: for non-leaf level
nodes the name of the attribute is constructed as: <ElementName>+”@key”
and its value will be the associated key value. In case of the leaves the element
names of the leaves of the tree tuple are considered.

Detecting XML Functional Dependencies 597

Fig. 2. Concept Lattice of functional dependencies’ Formal Context for tuple class

COrders

Choice of Objects: the objects are considered to be the tree tuple pairs, ac-
tually the tuple pairs of the flat table. The key values associated to non-leaf
elements and leaf element’s values are used in these tuple pairs.

Choice of Properties: the mapping between objects and attributes is defined
by a binary relation, this incidence relation of the context shows which attributes
of this tuple pairs have the same value.

2.2 Creating the Concept Lattice

Once the objects and attributes of the context are defined, we run the Concept
Explorer ([5]) engine to generate the concepts and create the concept lattice. For
tuple class COrders the corresponding concept lattice is shown in Fig. 2.

2.3 Processing the Output of FCA

A concept lattice consists of the set of concepts of a formal context and the
subconcept-superconcept relation between the concepts, see [2]. Every circle in
Fig. 2 represents a formal concept. An edge connects two concepts if one implies
the other directly. For example node labeled with Orders/CustomerID is on
upward path from node labeled by OrderDetails/OrderID, Orders/OrderID,
Orders/Orders@key, so concept with label OrderDetails/OrderID, Orders/
OrderID, Orders/Orders@key implies concept with label Orders/CustomerID.

598 K.T. Janosi-Rancz, V. Varga, and T. Nagy

2.4 Mining XFDs According to the Concept Hierarchy

In this step, we examine the candidate concepts resulting from the previous steps
and use them to explore XFDs. Once the lattice is constructed, we can interpret
each concept and generate the list of all functional dependencies.

The relationship between FDs in databases and implications in FCA was
pointed out in [2]: a FD X → Y holds in a relation r over R iff the implication
X → Y holds in the context (G, R, I) where G = {(t1, t2)|t1, t2 ∈ r, t1 �= t2} and
∀A ∈ R, (t1, t2)IA ⇔ t1[A] = t2[A].

This means that objects of the context are couples of tuples and each object
intent is the agree set of this couple. Thus, the implications in this lattice cor-
responds to functional dependencies in XML. Therefore, we say that FCA can
serve as a guideline for dependency mining.

Analyzing the Conceptual Lattice obtained for tuple class COrders (Fig. 2)
FCAMineXFD detects functional dependencies like:

〈COrders, ./OrderID, ./CustomerID〉, 〈COrders, ./Orders@key, ./CustomerID〉
〈COrders, ./OrderDetails/ProductID, ./OrderDetails/ProductName〉,
〈COrders, ./OrderDetails/ProductID, ./OrderDetails/CategoryID〉

2.5 Finding XML Keys

The implications found by FCAMineXFD contain some FDs with RHS as ./@key
values. These can be used to detect the keys in XML. In tuple class COrders we
have XML FD: 〈COrders, ./OrderID, ./@key〉, which implies that 〈COrders, ./
OrderID〉 is an XML key. Another XML FD is 〈COrders, ./OrderDetails/Order
ID, ./@key〉, so 〈COrders, ./OrderDetails/OrderID〉 is an XML key too.

References

1. Arenas, M., Libkin, L.: A normal form for XML documents. TODS 29(1), 195–232

(2004)

2. Ganter, B., Wille, R.: Formal Concept Analysis. In: Kuty�lowski, M., Wierzbicki, T.,

Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, Springer, Heidelberg (1999)

3. Hereth, J.: Relational Scaling and Databases. In: Priss, U., Corbett, D.R., Angelova,

G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp. 62–76. Springer, Heidelberg

(2002)

4. Janosi Rancz, K.T., Varga, V., Puskas, J.: A Software Tool for Data Analysis Based

on Formal Concept Analysis. Studia Babeş-Bolyai, Informatica 53(2), 67–78 (2008)

5. Yevtushenko, S.A.: System of data analysis “Concept Explorer”. In: Proceedings of

the 7th National Conference on Artificial Intelligence KII-2000, Russia, pp. 127–134

(2000) (in Russian)

6. Yu, C., Jagadish, H.V.: XML schema refinement through redundancy detection and

normalization. VLDB J. 17(2), 203–223 (2008)

Author Index

Aı̈t-Ameur, Yamine 247

Aldana-Montes, José F. 15

Aleksic, Slavica 543

Angiulli, Fabrizio 31

Antoniou, Grigoris 1

Augsten, Nikolaus 289

Bača, Radim 575

Baumann, Peter 278

Benczúr, András 336

Beneventano, Domenico 46

Bentayeb, Fadila 103

Bikakis, Antonis 1

Bimonte, Sandro 58

Bobed, Carlos 73

Bosc, Patrick 88

Bouassida, Nadia 475

Bouaziz, Rafik 475

Boukraâ, Doulkifli 103

Boussäıd, Omar 103

Brdjanin, Drazen 117

Brezovan, Marius 563

Brumen, Boštjan 533

Capko, Darko 547

Celikovic, Milan 543

Cellary, Wojciech 13

Cherfi, Samira Si-Said 406

Claßen, Ingo 551

Comyn-Wattiau, Isabelle 406

Cuzzocrea, Alfredo 132

Cvetković, Radovan 555

Darcy, Peter 149

Dervos, Dimitris A. 15

Dimovski, Aleksandar 164

Domı́nguez, Eladio 559

Duvallet, Claude 475

Erdeljan, Aleksandar 547

Feja, Sven 176

Gamper, Johann 392

Ganea, Eugen 563

Guizzardi, Giancarlo 190

Guizzardi, Renata S.S. 190

Gunjic, Dejan 117

Gunopulos, Dimitrios 132

Härder, Theo 435

Hegner, Stephen J. 204

Iftikhar, Nadeem 219

Ilarri, Sergio 73

Indukuri, Kishore Varma 567

Ion, Anca Loredana 234

Jankovic, Dragan 587

Jannaschk, Kai 571

Janosi-Rancz, Katalin Tunde 595

Jean, Stéphane 247

Jerbi, Houssem 262

Jin, Peiquan 435

Juba, Salahaldin 278

Kang, Myoung-Ah 58

Kazimianec, Michail 289

Kiss, Attila 336

Klein, Joachim 305

Kolahi, Solmaz 320

Kósa, Balázs 336

Krátký, Michal 575

Krishnamoorthy, Srikumar 567

Krishna, P. Radha 567

Křižka, Filip 575

Laiho, Martti 15

Lakshmanan, Laks V.S. 320

Laux, Fritz 15

Lehner, Wolfgang 490

Lepikhov, Andrey V. 351

Leszczyński, Pawe�l 363

Link, Sebastian 543

Ĺı̌ska, Miroslav 378

Lloret, Jorge 559

Lukovic, Ivan 543

Manolopoulos, Yannis 505

Marciuska, Sarunas 392

600 Author Index

Maric, Slavko 117

Masciari, Elio 31

Mbinkeu, R. Carlos Nana 46

Mederly, Pavol 579

Mehmood, Kashif 406

Mena, Eduardo 73

Mogin, Pavle 543

Nagy, Timea 595

Návrat, Pavol 378, 579

Nešković, Sinǐsa 555

Novikov, Boris 421

Ou, Yi 435

Papadopoulos, Apostolos N. 505

Papatheodorou, Constantinos 1

Pedersen, Torben Bach 219

Pesic, Srebrenko 587

Pierra, Guy 247

Pigul, Alice 421

Pivert, Olivier 88

Podgorelec, Vili 450

Pohorec, Sandi 463, 533

Polomski, Tsvetelin 571

Popovic, Miroslav 547

Rajkovic, Petar 587

Ravat, Franck 262

Rekhis, Saoussen 475

Rizzi, Stefano 23

Rösch, Philipp 490

Rubio, Ángel L. 559

Sadeg, Bruno 475

Sahpaski, Dragan 164

Sattar, Abdul 149, 591

Schneider, Markus 520

Schulz, Marcel 176

Smits, Grégory 88

Snegova, Elena 583

Sokolinsky, Leonid B. 351

Speck, Andreas 176

Stankovic, Tatjana 587

Stantic, Bela 149, 591

Stencel, Krzysztof 363

Svenda, Goran 547

Terry, Justin 591

Teste, Olivier 262

Tiakas, Eleftherios 505

Topor, Rodney 591

Udristoiu, Stefan 234

Varga, Viorica 595

Velinov, Goran 164

Verlič, Mateja 463

Viswanathan, Ganesh 520

Witt, Sören 176

Yarygina, Anna 421

Zapata, Maŕıa A. 559

Zorman, Milan 463, 533

Zurfluh, Gilles 262

	Title Page
	Preface
	Conference Organization
	Table of Contents
	Invited Papers
	Reasoning with Imperfect Context and Preference Information in Multi-context Systems
	Introduction
	Illustrative Scenario
	Context Representation Model
	Argumentation Semantics
	Distributed Algorithm for Query Evaluation
	Algorithm Description
	Properties of the Algorithm

	Related Work
	Conclusions
	References

	Paid Content a Way to Electronic Knowledge-Based Economy
	Reference

	DBTech EXT: Education and Hands-On Training for the Database Professional
	Introduction
	The DBTech EXT Project
	Virtual Laboratory Workshops (VLWs)
	Internet-Based Teaching and Training in Practice
	Conclusion
	References

	New Frontiers in Business Intelligence: Distribution and Personalization
	Introduction
	Motivating Scenario and Envisioned Architecture

	Distribution
	Personalization
	Conclusions
	References

	Research Papers
	Effectively Monitoring RFID Based Systems
	Introduction
	Related Work
	Preliminaries
	RFID Data Streams

	Statement of the Problem
	Template Definition and Functionalities
	The RFID-T Syntax

	A Case Study
	Conclusions
	References

	Quality–Driven Query Processing Techniques in the MOMIS Integration System
	Introduction
	The MOMIS Data Integration System
	Data Quality Dimensions in MOMIS
	Data Quality Aware Queries in the MOMIS
	Quality-Driven Query Processing

	Conclusions and Future Work
	References

	Towards a Model for the Multidimensional Analysis of Field Data
	Introduction
	Related Work
	Spatio-multidimensional Model for Field Data
	Geographic Data Model
	Spatio-multidimensional Model for Field Data

	Conclusion and Future Work
	References

	Exploiting the Semantics of Location Granules in Location-Dependent Queries
	Introduction
	The Importance of Adding Semantics
	Location-Dependent Query Processing with Location Granules
	Motivating Examples

	Semantic Location Granules
	Modeling Location Granules with Ontologies
	Base Ontology for Location Granules
	Extending the Base Ontology

	Extending the Semantics of Inside Queries
	Extending the GetGranules Operator with a Holds Function
	Extended Granule-Based Inside Constraints
	Reconsidering the Examples with Semantic Location Granules

	Related Work
	Conclusions and Future Work
	References

	On a Fuzzy Group-By and Its Use for Fuzzy Association Rule Mining
	Introduction
	Reminder about Fuzzy Sets and Fuzzy Queries
	Basic Notions about Fuzzy Sets
	About SQLf

	An Extended Group-By Clause
	Use of a Crisp Partition
	Use of a Fuzzy Partition

	Having Clause
	Inclusion Constraint
	Aggregate1 $θ$ Aggregate2
	Aggregate is ψ

	Use for Association Rule Mining
	Rules of the Type A Is Li →B Is L�
	Rules of the Type A Is L→B Is L�i

	About the Evaluation of a Fuzzy Group-By
	Related Work
	Extended Group-By
	Fuzzy OLAP
	Fuzzy Database Summarization Techniques
	Mining Association Rules with SQL

	Conclusion
	References

	OLAP Operators for Complex Object Data Cubes
	Introduction
	Context and Related Work
	Motivation and Contributions

	The Complex Object-Based Multidimensional Model
	Concepts and Definitions
	Example 1

	OLAP Operators
	The Cube Construction Operators
	Visualization Operators
	Aggregate Operators

	Implementation
	Conclusion
	References

	ADBdesign: An Approach to Automated Initial Conceptual Database Design Based on Business Activity Diagrams
	Introduction
	Detailed Business Activity Diagrams
	XMI Representation of UML Diagrams
	XMI Representation of Detailed Activity Diagram
	XMI Representation of Class Diagram

	Initial Conceptual Model Generator
	Requirements for Target Generator
	Implementation

	``Real-World" Example
	Related Work
	Conclusion and Future Work
	References

	Efficiently Computing and Querying Multidimensional OLAP Data Cubes over Probabilistic Relational Data
	Introduction
	Problem Formulation
	Related Work
	Computing Probabilistic OLAP Data Cubes
	Querying Probabilistic OLAP Data Cubes
	Conclusions and Future Work
	References

	Correcting Missing Data Anomalies with Clausal Defeasible Logic
	Introduction
	Background
	Radio Frequency Identification
	Non-monotonic Reasoning

	Related Work
	Methodology
	Motivation and Scenario
	System Architecture
	Database Structure
	Assumptions

	Experimental Evaluation
	Environment
	Experiments

	Results and Analysis
	Non-monotonic Reasoning Experiment
	Significance Experiment

	Conclusion
	References

	Horizontal Partitioning by Predicate Abstraction and Its Application to Data Warehouse Design
	Introduction
	Horizontal Partitioning by Predicate Abstraction
	Predicate Abstraction
	Predicate Selection
	Derived Horizontal Partitioning

	Data Warehouse Schema
	Optimization Problem
	The Optimization Problem
	The Optimization Procedure

	Experimental Results
	Conclusion
	References

	Checkable Graphical Business Process Representation
	Introduction
	ARIS for Enfinity Modeling Approach
	EPC Model Elements

	Related Work
	Business Process Modeling
	Temporal Logics Visualization Framework – TLVF
	Validation Errors

	Process and Rule Modeling
	BAM – Business Application Modeler
	BAM – Rule Editor

	Conclusion and Future Work
	References

	Applying the UFO Ontology to Design an Agent-Oriented Engineering Language
	Introduction
	Using Foundational Ontologies to Analyze, (re)Design and Combine Conceptual Modeling Languages
	ARKnowD Methodology: Combining Tropos and AORML
	Tropos
	AORML
	Using Tropos and AORML to Engineer KM Systems

	Ontology-Based Analysis and Design of ARKnowD
	UFO
	Applying UFO to Analyze Tropos
	Applying UFO to Analyze AORML
	Combining Tropos and AORML through Metamodel Transformation

	Working Example
	Final Considerations
	References

	A Model of Independence and Overlap for Transactions on Database Schemata
	Introduction
	Component-Based Independent Updates
	The Basic Components of a Relational Schema
	Conclusions and Further Directions
	References

	Using a Time Granularity Table for Gradual Granular Data Aggregation
	Introduction
	Motivation
	Handling Time Granularities
	The Timegranularity Table
	Gradual Granular Data Aggregation Example

	Aggregation Methods
	Evaluation
	Related Work
	Conclusion
	References

	Automation of the Medical Diagnosis Process Using Semantic Image Interpretation
	Introduction
	Visual Representation of Images
	Visual Semantic Indicators
	Determining Image Medical Diagnosis Using Semantic Pattern Rules
	Semantic Pattern Rule Generation
	Medical Image Annotation

	Experiments
	Conclusion
	References

	A Language for Ontology-Based Metamodeling Systems
	Introduction
	A Motivating Example
	Context of the Study: OBDBs
	Different Storage Structures for OBDBs
	Existing Languages for OBDBs

	OntoQL: Managing the Three Levels of MMS
	Data Model
	OntoQL Operators for This Data Model
	Exploitation of the Capability of the OntoQL Language

	Implementation and Cases Study
	Implementation of the OntoQL Engine
	Case Study: CO2 Capture and Storage

	Conclusion
	References

	A Framework for OLAP Content Personalization
	Introduction
	Context and Issues
	Motivating Example
	Aims and Contributions

	Personalized OLAP Data
	OLAP Data Modeling
	User Profiles Modeling

	OCP Framework
	Preferences Engineering
	Preference Selection
	Query Enhancement

	Experimental Results
	Related Works
	Conclusions
	References

	A Coverage Representation Model Based on Explicit Topology
	Introduction
	Previous Work
	Coverage Model
	Coverage Topological Constraints
	The Geometric Realization of the Coverage Model
	Geometrical Constraints of Coverages

	Coverage Model Benefits
	Coverage Model Operations
	Case Study
	Discussion and Future Work
	References

	Exact and Efficient Proximity Graph Computation
	Introduction
	Background
	Proximity Graph
	Proximity Graph Cleansing
	State-of-the-Art Proximity Graph Computation

	Problem Definition
	Efficient Proximity Graph Computation
	Initialization of String Profiles
	Computation of the Center Profile
	PG-DS Algorithm
	PG-SM Algorithm

	Experiments
	Related Work
	Conclusion and Future Work
	References

	Concurrency and Replica Control for Constraint-Based Database Caching
	Motivation
	Constraint-Based Database Caching
	Preliminary Considerations
	Update Propagation
	Concurrency Control
	Lazy Update Propagation
	Eager Update Propagation

	Summary and Future Work
	References

	Exploiting Conflict Structures in Inconsistent Databases
	Introduction
	Inconsistent Databases
	Repairs and Basic Conflicts

	Conflict-Aware Query Answering
	Answers with Consistent Derivation
	Possible Answers

	Generating Repairs Using Conflicts
	Detecting Conflicts
	Conclusions
	References

	Satisfiability and Containment Problem of Structural Recursions with Conditions
	Introduction
	Preliminaries
	Simple Structural Recursions
	Tree Data Graphs
	Semantics

	Structural Recursions with Conditions
	Operational Graphs
	Definition of Semantics

	Polyedge Reduction and the Equivalence of the Problems of Satisfiability and Containment
	The Satisfiability and Containment Problem of Pure Structural Recursions
	Satisfiability and Containment Problem of Structural Recursions
	References

	Query Evaluation Techniques for Cluster Database Systems
	Introduction
	Organization of Parallel Query Processing
	Data Placement and Load Balancing
	Data Fragmentation and Segmentation
	Data Replication
	Load Balancing Method

	Experiments
	Parameters of Computing Experiments
	Investigation of Load Balancing Parameters
	Scalability of Load Balancing Algorithm

	Conclusions
	References

	Consistent Caching of Data Objects in Database Driven Websites
	Introduction
	Motivating Example—A Community Forum Application
	Caching
	Existing Caching Algorithms
	Caching Objects vs. Caching Queries
	Data Consistency Problem

	The Dependency Graph
	Basic Assumptions
	Query Identification
	Dependency Graph Construction
	Forum Example
	The Algorithm

	Experiments
	Conclusion
	References

	An Ontology Driven Approach to Software Project Enactment with a Supplier
	Introduction
	Related Works
	Aims and Objectives

	Approach
	Moving SPEM into the Semantic Web
	Ontology Based Software Project Enactment

	Example with Formal Model
	Conclusions
	References

	Determining Objects within Isochrones in Spatial Network Databases
	Introduction
	Related Work
	Link-Based Approach
	Surface-Based Approach
	Experimental Evaluation
	Setup and Data
	Precision, Recall, and F-Measure
	Runtime

	Conclusion and Future Work
	References

	CM-Quality: A Pattern-Based Method and Tool for Conceptual Modeling Evaluation and Improvement
	Introduction
	Literature Review
	Proposed Approach and its Expected Contributions
	Identification and Validation of Quality Attributes
	Quality Pattern and Quality Oriented Development Process

	CM-Quality: An Automated Environment Implementing the Proposed Approach
	General Architecture
	Quality Definition in CM-Quality
	Quality Evaluation in CM-Quality

	Conclusion and Implications for Further Research
	References

	A Performance Analysis of Semantic Caching for Distributed Semi-structured Query Processing
	Introduction
	Related Work
	Targets, Goals, and Experimental Environment
	The Caching Engine
	Updates and Replacement
	The Metrics
	The Experimental Environment
	Cache Unit Descriptors
	The Data Sets

	Experimental Results
	Cascade Architecture
	Complex XQuery Views and Functions
	High Performance Database Engine in the Cache

	Conclusions
	References

	CFDC: A Flash-Aware Buffer Management Algorithm for Database Systems
	Introduction
	Performance Characteristics
	The Problem
	Contributions

	Related Work
	The CFDC Algorithm
	The Two-Region Scheme
	Priority Region
	Independence of Transaction Management
	Further Performance Considerations

	Performance Study
	Test Environment
	Measuring Spatial Locality
	Synthetic Trace
	Real-Life OLTP Traces

	Conclusions and Outlook
	References

	Expert-Assisted Classification Rules Extraction Algorithm
	Introduction
	Automatic Classification Rules Extraction Algorithm
	Multi-level Gradual Classification Model
	The Outline of AREX
	Evolutionary Algorithm $genTrees$ for the Construction of DTs
	System $proGenesys$ for Automatic Evolution of Rules
	Finding the Optimal Set of Rules

	A Case Study
	Results

	Conclusion
	References

	Information Extraction from Concise Passages of Natural Language Sources
	Introduction
	Domain and Data Understanding
	Natural Language Processing
	Word and Sentence Level Tokenization
	Part-of-Speech Tagging and Chunking
	Named Entity Recognition
	Sentence Level Syntactic Features

	Ontology Learning
	Conclusion
	References

	A Process to erive Domain-Specific Patterns: Application to the Real Time DomainD
	Introduction
	Related work
	Patterns Development Processes
	Frameworks Development Processes

	The Development Process for Domain-Specific Patterns
	UML Profile for Domain-Specific Design Patterns
	Pattern Development Process Description

	A Case Study: The Real-Time Sensor Pattern Development
	Description of RT Applications
	RT Sensor Pattern Construction

	Conclusion
	References

	A Sample Advisor for Approximate Query Processing
	Introduction
	Sample Advisor
	A Cost Model for Sample Selection
	Expertise-Based Sample Configuration

	Extension: Workload-Based Sample Configuration
	Merging Pieces of Sample Advice

	Experiments
	Experimental Setup
	Analysis of the Cost Model
	Sample Configuration

	Related Work
	Summary
	References

	Estimation of the Maximum Domination Value in Multi-dimensional Data Sets
	Introduction
	Related Work
	Estimation Methods
	Maximum Domination Value and Skyline Cardinality
	Estimation with Harmonics
	Estimation with Multiple Summations
	Estimation with Roots

	Performance Evaluation
	Conclusions
	References

	The Objects Interaction Graticule for Cardinal Direction Querying in Moving Objects DataWarehouses
	Introduction
	Related Work
	Moving Objects Data Warehouses and the Objects Interaction Graticule (OIG) Approach for Modeling Cardinal Directions
	The Tiling Phase: Representing Interactions of Objects with the Objects Interaction Graticule and Matrix
	The Interpretation Phase: Assigning Semantics to the Objects Interaction Matrix
	Directional Predicates for OLAP Querying in Moving Object Data Warehouses
	Conclusion and Future Work
	References

	Opening the Knowledge Tombs - Web Based Text Mining as Approach for Re-evaluation of Machine Learning Rules
	Introduction
	Knowledge Tombs and Forms of Rules for Re-evaluation
	Symbolic Machine Learning Approaches
	Web Based Text Mining

	Discussion and Conclusions
	References

	Challenges Papers
	Faceoff: Surrogate vs. Natural Keys
	Introduction
	Performance Estimates
	Experiments
	Conclusion and Future Work
	References

	An Optimal Relationship-Based Partitioning of Large Datasets
	Introduction
	Problem Definition
	Algorithms and Experimental Results
	Conclusion
	References

	Design and Semantics of a Query Language for Multidimensional Data
	Introduction
	Language Design
	Basic Queries
	Member Expressions
	Cell Function Expressions
	Calculated Members

	Semantics
	References

	An Approach to Defining Scope in Software Product Lines for the Telecommunication Domain
	Introduction
	Generic Architecture of Software Product Families
	Identification and Scoping of Software Product Families
	Conclusion
	References

	Stones Falling in Water: When and How to Restructure a View–Based Relational Database
	Introduction
	The MeDEA Architecture
	When and How to Restructure
	Further Work
	References

	Graph Object Oriented Database for Semantic Image Retrieval
	Introduction
	Related Work

	Image Annotation Based on Ontologies
	Graph Object Oriented Database
	Experiments
	Conclusions
	References

	Natural Language Querying over Databases Using Cascaded CRFs
	Introduction
	Experimental Results
	References

	A Data Mining Design Framework - A Preview
	Introduction
	A Data Mining Design Framework
	User Oriented Perspective
	System Oriented Perspective
	Data Oriented Perspective

	Conclusion
	References

	On Support of Ordering in Multidimensional Data Structures
	Introduction
	Ordered R-Tree
	Experimental Results
	Conclusion
	References

	Construction of Messaging-Based IntegrationSolutions Using Constraint Programming
	Introduction
	The Method for Automated Design of Integration Solutions
	Implementation and Evaluation
	Conclusion and Future Work
	References

	Criteria for Reducibility of Moving Objects Closeness Problem
	Introduction
	Basic Notions and Formulation of the Result
	Example
	References

	Platform Independent Database Replication Solution Applied to Medical Information System
	Introduction
	Information System Dependant Database Replication
	Replication Agents
	Conclusions and Remarks
	References

	Indexing Temporal Data with Virtual Structure
	Introduction
	The Triangular Decomposition Tree (TD-Tree)
	Experimental Evaluation
	Conclusions
	References

	Detecting XML Functional Dependencies through Formal Concept Analysis
	Introduction
	Overview of the Approach
	Constructing the Formal Context, the Input to FCA
	Creating the Concept Lattice
	Processing the Output of FCA
	Mining XFDs According to the Concept Hierarchy
	Finding XML Keys

	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

