


Lecture Notes in Computer Science 6316
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Kostas Daniilidis Petros Maragos
Nikos Paragios (Eds.)

Computer Vision –
ECCV 2010

11th European Conference on Computer Vision
Heraklion, Crete, Greece, September 5-11, 2010
Proceedings, Part VI

13



Volume Editors

Kostas Daniilidis
GRASP Laboratory
University of Pennsylvania
3330 Walnut Street, Philadelphia, PA 19104, USA
E-mail: kostas@cis.upenn.edu

Petros Maragos
National Technical University of Athens
School of Electrical and Computer Engineering
15773 Athens, Greece
E-mail: maragos@cs.ntua.gr

Nikos Paragios
Ecole Centrale de Paris
Department of Applied Mathematics
Grande Voie des Vignes, 92295 Chatenay-Malabry, France
E-mail: nikos.paragios@ecp.fr

Library of Congress Control Number: 2010933243

CR Subject Classification (1998): I.2.10, I.3, I.5, I.4, F.2.2, I.3.5

LNCS Sublibrary: SL 6 – Image Processing, Computer Vision, Pattern Recognition,
and Graphics

ISSN 0302-9743
ISBN-10 3-642-15566-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-15566-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180



Preface

The 2010 edition of the European Conference on Computer Vision was held in 
Heraklion, Crete. The call for papers attracted an absolute record of 1,174 
submissions. We describe here the selection of the accepted papers: 

Thirty-eight area chairs were selected coming from Europe (18), USA and 
Canada (16), and Asia (4). Their selection was based on the following 
criteria: (1) Researchers who had served at least two times as Area Chairs 
within the past two years at major vision conferences were excluded; (2) 
Researchers who served as Area Chairs at the 2010 Computer Vision and 
Pattern Recognition were also excluded (exception: ECCV 2012 Program 
Chairs); (3) Minimization of overlap introduced by Area Chairs being former 
student and advisors; (4) 20% of the Area Chairs had never served before in 
a major conference; (5) The Area Chair selection process made all possible 
efforts to achieve a reasonable geographic distribution between countries, 
thematic areas and trends in computer vision. 

Each Area Chair was assigned by the Program Chairs between 28–32 papers. 
Based on paper content, the Area Chair recommended up to seven potential 
reviewers per paper. Such assignment was made using all reviewers in the 
database including the conflicting ones. The Program Chairs manually 
entered the missing conflict domains of approximately 300 reviewers. Based 
on the recommendation of the Area Chairs, three reviewers were selected per 
paper (with at least one being of the top three suggestions), with 99.7% being 
the recommendations of the Area Chairs. When this was not possible, senior 
reviewers were assigned to these papers by the Program Chairs, with the 
consent of the Area Chairs. Upon completion of this process there were 653 
active reviewers in the system. 

Each reviewer got a maximum load of eight reviews––in a few cases we had 
nine papers when re-assignments were made manually because of hidden 
conflicts. Upon the completion of the reviews deadline, 38 reviews were 
missing. The Program Chairs proceeded with fast re-assignment of these 
papers to senior reviewers. Prior to the deadline of submitting the rebuttal by 
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  the authors, all papers had three reviews. The distribution of the reviews was 
the following: 100 papers with an average score of weak accept and higher, 
125 papers with an average score toward weak accept, 425 papers with an 
average score around borderline. 

For papers with strong consensus among reviewers, we introduced a 
procedure to handle potential overwriting of the recommendation by the Area 
Chair. In particular for all papers with weak accept and higher or with weak 
reject and lower, the Area Chair should have sought for an additional 
reviewer prior to the Area Chair meeting. The decision of the paper could 
have been changed if the additional reviewer was supporting the 
recommendation of the Area Chair, and the Area Chair was able to convince 
his/her group of Area Chairs of that decision. 

The discussion phase between the Area Chair and the reviewers was initiated 
once the review became available. The Area Chairs had to provide their 
identity to the reviewers. The discussion remained open until the Area Chair 
meeting that was held in Paris, June 5–6. Each Area Chair was paired to a 
buddy and the decisions for all papers were made jointly, or when needed 
using the opinion of other Area Chairs. The pairing was done considering 
conflicts, thematic proximity, and when possible geographic diversity. The 
Area Chairs were responsible for taking decisions on their papers. Prior to 
the Area Chair meeting, 92% of the consolidation reports and the decision 
suggestions had been made by the Area Chairs. These recommendations were 
used as a basis for the final decisions. 

Orals were discussed in groups of Area Chairs. Four groups were formed, 
with no direct conflict between paper conflicts and the participating Area 
Chairs. The Area Chair recommending a paper had to present the paper to the 
whole group and explain why such a contribution is worth being published as 
an oral. In most of the cases consensus was reached in the group, while in the 
cases where discrepancies existed between the Area Chairs’ views, the 
decision was taken according to the majority of opinions. 

The final outcome of the Area Chair meeting, was 38 papers accepted for an 
oral presentation and 284 for poster. The percentage ratios of submissions/ 
acceptance per area are the following: 
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Thematic area # submitted % over 
submitted

# accepted % over 
accepted

% acceptance 
in area

Object and Scene Recognition 192 16.4% 66 20.3% 34.4%

Segmentation and Grouping 129 11.0% 28 8.6% 21.7%

Face, Gesture, Biometrics 125 10.6% 32 9.8% 25.6%

Motion and Tracking 119 10.1% 27 8.3% 22.7%

Statistical Models and Visual
Learning

101 8.6% 30 9.2% 29.7%

Matching, Registration, Alignment 90 7.7% 21 6.5% 23.3%

Computational Imaging 74 6.3% 24 7.4% 32.4%

Multi-view Geometry 67 5.7% 24 7.4% 35.8%

Image Features 66 5.6% 17 5.2% 25.8%

Video and Event Characterization 62 5.3% 14 4.3% 22.6%

Shape Representation and 
Recognition

48 4.1% 19 5.8% 39.6%

Stereo 38 3.2% 4 1.2% 10.5%

Reflectance, Illumination, Color 37 3.2% 14 4.3% 37.8%

Medical Image Analysis 26 2.2% 5 1.5% 19.2%

We received 14 complaints/reconsideration requests. All of them were sent to the 
Area Chairs who handled the papers. Based on the reviewers’ arguments and the 
reaction of the Area Chair, three papers were accepted––as posters––on top of 
the 322 at the Area Chair meeting, bringing the total number of accepted papers 
to 325 or 27.6%. The selection rate for the 38 orals was 3.2%.The acceptance 
rate for the papers submitted by the group of Area Chairs was 39%.  

Award nominations were proposed by the Area and Program Chairs based on 
the reviews and the consolidation report. An external award committee was 
formed  comprising David Fleet, Luc Van Gool, Bernt Schiele, Alan Yuille, 
Ramin Zabih. Additional reviews were considered for the nominated papers 
and the decision on the paper awards was made by the award committee. We 
thank the Area Chairs, Reviewers, Award Committee Members, and the 
General Chairs for their hard work and we gratefully acknowledge Microsoft 
Research for accommodating the ECCV needs by generously providing the 
CMT Conference Management Toolkit. We hope you enjoy the proceedings. 

September 2010 Kostas Daniilidis  
Petros Maragos  
Nikos Paragios 
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Abstract. This paper presents an exhaustive and efficient constraint

propagation approach to exploiting pairwise constraints for spectral clus-

tering. Since traditional label propagation techniques cannot be readily

generalized to propagate pairwise constraints, we tackle the constraint

propagation problem inversely by decomposing it to a set of indepen-

dent label propagation subproblems which are further solved in quadratic

time using semi-supervised learning based on k-nearest neighbors graphs.

Since this time complexity is proportional to the number of all possible

pairwise constraints, our approach gives a computationally efficient so-

lution for exhaustively propagating pairwise constraint throughout the

entire dataset. The resulting exhaustive set of propagated pairwise con-

straints are then used to adjust the weight (or similarity) matrix for

spectral clustering. It is worth noting that this paper first clearly shows

how pairwise constraints are propagated independently and then accu-

mulated into a conciliatory closed-form solution. Experimental results on

real-life datasets demonstrate that our approach to constrained spectral

clustering outperforms the state-of-the-art techniques.

1 Introduction

Cluster analysis is largely driven by the quest for more robust clustering algo-
rithms capable of detecting clusters with diverse shapes and densities. It is worth
noting that data clustering is an ill-posed problem when the associated objective
function is not well defined, which leads to fundamental limitations of generic
clustering algorithms. Multiple clustering solutions may seem to be equally plau-
sible due to an inherent arbitrariness in the notion of a cluster. Therefore, any
additional supervisory information must be exploited in order to reduce this de-
generacy of possible solutions and improve the quality of clustering. The labels
of data are potential sources of such supervisory information which has been
widely used. In this paper, we consider a commonly adopted and weaker type
of supervisory information, called pairwise constraints which specify whether a
pair of data belongs to the same cluster or not.

There exist two types of pairwise constraints, known as must-link constraints
and cannot-link constraints, respectively. We can readily derive such pairwise
constraints from the labels of data, where a pair of data with the same label

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part VI, LNCS 6316, pp. 1–14, 2010.
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Fig. 1. The must-link and cannot-link constraints derived from the annotations of im-

ages. Since we focus on recognizing the objects of interests in images, these constraints

are formed without considering the backgrounds such as tree, grass, and field.

denotes must-link constraint and cannot-link constraint otherwise. It should be
noted, however, that the inverse may not be true, i.e. in general we cannot infer
the labels of data from pairwise constraints, particularly for multi-class data.
This implies that pairwise constraints are inherently weaker but more general
than the labels of data. Moreover, pairwise constraints can also be automatically
derived from domain knowledge [1,2] or through machine learning. For example,
we can obtain pairwise constraints from the annotations of the images shown
in Fig. 1. Since we focus on recognizing the objects of interests (e.g. horse and
zebra) in images, the pairwise constraints can be formed without considering the
backgrounds such as tree, grass, and field. In practice, the objects of interest can
be roughly distinguished from the backgrounds according to the ranking scores
of annotations learnt automatically by an image search engine.

Pairwise constraints have been widely used for constrained clustering [1,2,3,4,5],
and it has been reported that the use of appropriate pairwise constraints can of-
ten lead to the improved quality of clustering. In this paper, we focus on the ex-
ploitation of pairwise constraints for spectral clustering [6,7,8,9] which constructs
a new low-dimensional data representation for clustering using the leading eigen-
vectors of the similarity matrix. Since pairwise constraints specify whether a pair of
data belongs to the same cluster, they provide a source of information about the
data relationships, which can be readily used to adjust the similarities between
the data for spectral clustering. In fact, the idea of exploiting pairwise constraints
for spectral clustering has been studied previously. For example, [10] trivially ad-
justed the similarities between the data to 1 and 0 for must-link and cannot-link
constraints, respectively. This method only adjusts the similarities between con-
strained data. In contrast, [11] propagated pairwise constraints to other similar-
ities between unconstrained data using Gaussian process. However, as noted in
[11], this method makes certain assumptions for constraint propagation specially
with respect to two-class problems, although the heuristic approach for multi-class
problems is also discussed. Furthermore, such constraint propagation is formulated
as a semi-definite programming (SDP) problem in [12]. Although the method is
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not limited to two-class problems, it incurs extremely large computational cost for
solving the SDP problem. In [13], the constraint propagation is also formulated as
a constrained optimization problem, but only must-link constraints can be used
for optimization.

To overcome these problems, we propose an exhaustive and efficient constraint
propagation approach to exploiting pairwise constraints for spectral clustering,
which is not limited to two-class problems or using only must-link constraints.
Specifically, since traditional label propagation techniques [14,15,16] cannot be
readily generalized to propagate pairwise constraints, we tackle the constraint
propagation problem inversely by decomposing it to a set of independent label
propagation subproblems. Furthermore, we show that through semi-supervised
learning based on k-nearest neighbors graphs, the set of label propagation sub-
problems can be solved in quadratic time O(kN2) with respect to the data size
N (k � N). Since this time complexity is proportional to the total number of
all possible pairwise constraints (i.e. N(N − 1)/2), our constraint propagation
approach can be considered computationally efficient. It is worth noting that our
approach incurs much less computational cost than [12], given that SDP-based
constraint propagation has a time complexity of O(N4).

The resulting exhaustive set of propagated pairwise constraints can be ex-
ploited for spectral clustering through adjusting the similarity matrix with this
information. The experimental results on image and UCI datasets demonstrate
that our approach outperforms the state-of-the-art techniques. It is worth not-
ing that our approach can be seen as a very general constraint propagation
technique, which has the following advantages:

(1) This is the first constraint propagation approach that clearly shows how
pairwise constraints are propagated independently and then accumulated
into a conciliatory closed-form solution.

(2) Our approach is not limited to two-class problems or using only must-link
constraints. More importantly, our approach allows soft constraints, i.e., the
pairwise constraints can be associated with confidence scores like [17,18].

(3) The exhaustive set of pairwise constraints obtained by our approach can also
potentially be used to improve the performance of other machine learning
techniques by adjusting the similarity matrix.

The remainder of this paper is organized as follows. In Section 2, we propose an
exhaustive and efficient constraint propagation approach. In Section 3, we exploit
the exhaustive set of propagated pairwise constraints for spectral clustering.
In Section 4, our approach is evaluated on image and UCI datasets. Finally,
Section 5 gives the conclusions drawn from experimental results.

2 Exhaustive and Efficient Constraint Propagation

Given a dataset X = {x1, ..., xN}, we denote a set of must-link constraints as
M = {(xi, xj) : zi = zj} and a set of cannot-link constraints as C = {(xi, xj) :
zi �= zj}, where zi is the label of data xi. Our goal is to exploit the two types of
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Fig. 2. The vertical and horizontal propagation of pairwise constraints. Each arrow

denotes the direction of constraint propagation. The solid arrow means that the pair-

wise constraint is provided initially, while the dashed arrow means that the pairwise

constraint is newly generated during constraint propagation.

pairwise constraints for spectral clustering on the dataset X . As we have men-
tioned, the pairwise constraints can be used to adjust the similarities between
data so that spectral clustering can be performed with the adjusted similarity
matrix. In previous work [10], only the similarities between the constrained data
are adjusted, and thus the pairwise constraints exert very limited effect on the
subsequent spectral clustering. In the following, we propose an exhaustive and
efficient constraint propagation technique that spreads the effect of pairwise con-
straints throughout the entire dataset, thereby enabling the pairwise constraints
to exert a stronger influence on the subsequent spectral clustering.

A main obstacle of constraint propagation lies in that the cannot-link con-
straints are not transitive. In this paper, however, we succeed in propagating
both must-link and cannot-link constraints. We first represent these two types
of pairwise constraints using a single matrix Z = {Zij}N×N :

Zij =

⎧
⎪⎨

⎪⎩

+1, (xi, xj) ∈M;
−1, (xi, xj) ∈ C;
0, otherwise.

(1)

Here, we have |Zij | ≤ 1 for soft constraints [17,18]. Since we can directly obtain the
pairwise constraints from the above matrix Z, the pairwise constraints have been
represented usingZwithout loss of information. We make further observations onZ
column by column. It can be observed that the j-th columnZ.j actually provides the
initial configuration of a two-class semi-supervised learning problem with respect
to xj , where the “positive class” contains the data that must appear together with
xj and the “negative class” contains the data that cannot appear together with xj .
More concretely, xi can be initially regarded as coming from the positive (or nega-
tive) class ifZij > 0 (or< 0), but if xi andxj are not constrained (i.e.Zij = 0) thus
xi is initially unlabeled. This configuration of a two-class semi-supervised learning
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is also suitable for soft constraints. The semi-supervised learning problem with re-
spect to xj can be solved by the label propagation technique [14]. Since the other
columns of Z can be handled similarly, we can decompose the constraint propaga-
tion problem into N independent label propagation subproblems which can then
be solved in parallel. The vertical propagation of pairwise constraints is illustrated
in Fig. 2.

However, it is also possible that a column contains no pairwise constraints (for
example, see the second column in Fig. 2). That is, the entries of this column may
all be zeros, and for such cases, no constraint propagation will occur along this
column. We deal with this problem through horizontal constraint propagation
(see Fig. 2), which is performed after the vertical constraint propagation. The
horizontal propagation can be done similar to the vertical propagation discussed
above. The only difference is that we now consider Z row by row, instead of
column-wise. More significantly, through combining the vertical and horizontal
constraint propagation, we succeed in propagating the pairwise constraints to
any pair of data. That is, the semi-supervised learning for constraint propagation
could not break down if one type of constraints is missing for some data.

The two sets of constraint propagation subproblems can be solved efficiently
through semi-supervised learning based on k-nearest neighbors graphs. Let F =
{F = {Fij}N×N : |Fij | ≤ 1}. In fact, each matrix F ∈ F denotes a set of pairwise
constraints with the associated confidence scores. That is, Fij > 0 is equivalent
to (xi, xj) ∈ M while Fij < 0 is equivalent to (xi, xj) ∈ C, with |Fij | being the
confidence score (i.e. probability) of (xi, xj) ∈ M or (xi, xj) ∈ C. Particularly,
Z ∈ F , where Z collects the initial pairwise constraints. Given the affinity (or
similarity) matrix A for the dataset X , our algorithm for constraint propagation
is summarized as follows:

(1) Form the weight matrix W of a graph by Wij = A(xi,xj)√
A(xi,xi)

√
A(xj,xj)

if xj

(j �= i) is among the k-nearest neighbors (k-NN) of xi andWij = 0 otherwise.
Set W = (W +WT )/2 to ensure that W is symmetric.

(2) Construct the matrix L̄ = D−1/2WD−1/2, where D is a diagonal matrix
with its (i, i)-element equal to the sum of the i-th row of W .

(3) Iterate Fv(t+ 1) = αL̄Fv(t) + (1− α)Z for vertical constraint propagation
until convergence, where Fv(t) ∈ F and α is a parameter in the range (0, 1).

(4) Iterate Fh(t+1) = αFh(t)L̄+(1−α)F ∗
v for horizontal constraint propagation

until convergence, where Fh(t) ∈ F and F ∗
v is the limit of {Fv(t)}.

(5) Output F ∗ = F ∗
h as the final representation of the pairwise constraints,

where F ∗
h is the limit of {Fh(t)}.

Below we give a convergence analysis of the above constraint propagation al-
gorithm. Since the vertical constraint propagation in Step (3) can be regarded
as label propagation, its convergence has been shown in [14]. More concretely,
similar to [14], we can obtain F ∗

v = (1− α)(I − αL̄)−1Z as the limit of {Fv(t)}.
As for the horizontal constraint propagation, we have

FT
h (t+ 1) = αL̄TFT

h (t) + (1− α)F ∗
v

T

= αL̄FT
h (t) + (1− α)F ∗

v
T . (2)
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Fig. 3. The illustration of our constraint propagation: (a) four pairwise constraints and

ideal clustering of the data; (b) final constraints propagated from only two must-link

constraints; (c) final constraints propagated from only two cannot-link constraints; (d)

final constraints propagated from four pairwise constraints. Here, must-link constraints

are denoted by solid red lines, while cannot-link constraints are denoted by dashed blue

lines. Moreover, we only show the propagated constraints with predicted confidence

scores > 0.1 in Figs. 3(b)-3(d).

That is, the horizontal propagation in Step (4) can be transformed to a verti-
cal propagation which converges to F ∗

h
T = (1 − α)(I − αL̄)−1F ∗

v
T . Hence, our

constraint propagation algorithm has the following closed-form solution:

F ∗ = F ∗
h = (1− α)F ∗

v (I − αL̄T )−1

= (1− α)2(I − αL̄)−1Z(I − αL̄)−1, (3)

which actually accumulates the evidence to reconcile the contradictory propa-
gated constraints for certain pairs of data. As a toy example, the propagated
constraints given by the above equation are explicitly shown in Fig.3. We can
find that the propagated constraints obtained by our approach are consistent
with the ideal clustering of the data.

Finally, we give a complexity analysis of our constraint propagation algorithm.
Through semi-supervised learning based on k-nearest neighbors graphs (k � N),
both vertical and horizontal constraint propagation can be performed in quadratic
timeO(kN2). Since this time complexity is proportional to the total number of all
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possible pairwise constraints (i.e. N(N − 1)/2), our algorithm can be considered
computationally efficient. Moreover, our algorithm incurs significantly less com-
putational cost than [12], given that constraint propagation based on semi-definite
programming has a time complexity of O(N4).

3 Fully Constrained Spectral Clustering

It should be noted that the output F ∗ of our constraint propagation algorithm
represents an exhaustive set of pairwise constraints with the associated confi-
dence scores |F ∗|. Our goal is to obtain a data partition that is fully consistent
with F ∗. Here, we exploit F ∗ for spectral clustering by adjusting the weight
matrix W as follows:

W̃ij =

{
1− (1− F ∗

ij)(1−Wij), F ∗
ij ≥ 0;

(1 + F ∗
ij)Wij , F ∗

ij < 0.
(4)

In the following, W̃ will be used for constrained spectral clustering. Here, we need
to first prove that this matrix can be regarded as a weight matrix by showing
that W̃ has the following nice properties.

Proposition 1. (i) W̃ is nonnegative and symmetric; (ii) W̃ij ≥ Wij (or <
Wij) if F ∗

ij ≥ 0 (or < 0).

Proof. The above proposition is proven as follows:

(i) The symmetry of both W and F ∗ ensures that W̃ is symmetric. Since 0 ≤
Wij ≤ 1 and |F ∗

ij | ≤ 1, we also have: W̃ij = 1 − (1 − F ∗
ij)(1 − Wij) ≥

1− (1−Wij) ≥ 0 if F ∗
ij ≥ 0 and W̃ij = (1 + F ∗

ij)Wij ≥ 0 if F ∗
ij < 0. That is,

we always have W̃ij ≥ 0. Hence, W̃ is nonnegative and symmetric.
(ii) According to (4), we can consider W̃ij as a monotonically increasing function

of F ∗
ij . Since W̃ij = Wij when F ∗

ij = 0, we thus have: W̃ij ≥Wij (or < Wij)
if F ∗

ij ≥ 0 (or < 0).

This proves that W̃ can be used as a weight matrix for spectral clustering. More
importantly, according to Proposition 1, the new weight matrix W̃ is derived
from the original weight matrix W by increasing Wij for the must-link con-
straints with F ∗

ij > 0 and decreasing Wij for the cannot-link constraints with
F ∗

ij < 0. This is entirely consistent with our original motivation of exploiting
pairwise constraints for spectral clustering.

After we have incorporated the exhaustive set of pairwise constraints ob-
tained by our constraint propagation into a new weight matrix W̃ , we then per-
form spectral clustering with this weight matrix. The corresponding algorithm
is summarized as follows:

(1) Find K largest nontrivial eigenvectors v1, ...,vK of D̃−1/2W̃ D̃−1/2, where
D̃ is a diagonal matrix with its (i, i)-element equal to the sum of the i-th
row of the weight matrix W̃ .
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Fig. 4. The results of constrained clustering on the toy data using four pairwise con-

straints given by Fig. 3(a): (a) spectral learning [10]; (b) our approach. The clustering

obtained by our approach is consistent with the ideal clustering of the data.

(2) Form E = [v1, ...,vK ], and normalize each row of E to have unit length.
Here, the i-th row Ei. is the low-dimensional feature vector for data xi.

(3) Perform k-means clustering on the new feature vectors Ei.(i = 1, ..., N) to
obtain K clusters.

The clustering results on the toy data (see Fig. 3(a)) by the above algorithm are
shown in Fig. 4(b). We can find that the clustering obtained by our approach is
consistent with the ideal clustering of the data, while this is not true for spectral
learning [10] without using constraint propagation (see Fig. 4(a)). In the follow-
ing, since the pairwise constraints used for constrained spectral clustering (CSC)
is obtained by our exhaustive and efficient constraint propagation (E2CP), the
above associated clustering algorithm is denoted as E2CSC (or E2CP directly)
to distinguish it from other CSC algorithms.

4 Experimental Results

In this section, we conduct extensive experiments on real-life data to evaluate
the proposed constrained spectral clustering algorithm. We first describe the
experimental setup, including the clustering evaluation measure and the param-
eter selection. Moreover, we compare our algorithm with other closely related
methods on two image datasets and four UCI datasets, respectively.

4.1 Experimental Setup

For comparison, we present the results of affinity propagation (AP) [11], spectral
learning (SL) [10] and semi-supervised kernel k-means (SSKK) [4], which are
three closely related constrained clustering algorithms. SL and SSKK adjust only
the similarities between the constrained data, while AP and our E2CP propagate
the pairwise constraints throughout the entire dataset. Here, it should be noted
that AP cannot directly address multi-class problems and we have to take into
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Fig. 5. Sample images from 15 categories of the Corel dataset

account the heuristic approach discussed in [11]. We also report the baseline
results of normalized cuts (NCuts) [8], which is effectively a spectral clustering
algorithm but without using pairwise constraints.

We evaluate the clustering results with the adjusted Rand (AR) index [19,20,21],
which has been widely used for the evaluation of clustering algorithms. The AR
index measures the pairwise agreement between the computed clustering and the
ground truth clustering, and takes a value in the range [-1,1]. A higher AR index
indicates that a higher percentage of data pairs in the obtained clustering have the
same relationship (musk-link or cannot-link) as in the ground truth clustering. In
the following, each experiment is randomly run 25 times, and the average AR index
is obtained as the final clustering evaluation measure.

We set α = 0.8 and k = 20 for our E2CP algorithm. The k-NN graph con-
structed for our constraint propagation is also used for the subsequent spectral
clustering. To ensure a fair comparison, we adopt the same k-NN graph for the
other algorithms. Here, we construct the graph with different kernels for image
and UCI datasets. That is, the spatial Markov kernel [15] is defined on the im-
age datasets to exploit the spatial information, while the Gaussian kernel is used
for the UCI datasets as in [11]. For each dataset, different numbers of pairwise
constraints are randomly generated using the ground-truth cluster labels.

4.2 Results on Image Datasets

We select two different image datasets. The first one contains 8 scene categories
from MIT [22], including four man-made scenes and four natural scenes. The
total number of images is 2,688. The size of each image in this Scene dataset is
256×256 pixels. The second dataset contains images from a Corel collection. We
select 15 categories (see Fig. 5), and each of the categories contains 100 images.
In total, this selected set has 1,500 images. The size of each image in this dataset
is 384× 256 or 256× 384 pixels.
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Fig. 6. The clustering results on the two image datasets by different clustering algo-

rithms with a varying number of pairwise constraints

For these two image datasets, we choose two different feature sets which are in-
troduced in [23] and [15], respectively. That is, as in [23], the SIFT descriptors are
used for the Scene dataset, while, similar to [15], the joint color and Gabor features
are used for the Corel dataset. These features are chosen to ensure a fair compari-
son with the state-of-the-art techniques. More concretely, for the Scene dataset, we
extract SIFT descriptors of 16×16 pixel blocks computed over a regular grid with
spacing of 8 pixels. As for the Corel dataset, we divide each image into blocks of
16×16 pixels and then extract a joint color/texture feature vector from each block.
Here, the texture features are represented as the means and standard deviations
of the coefficients of a bank of Gabor filters (with 3 scales and 4 orientations), and
the color features are the mean values of HSV color components. Finally, for each
image dataset, we perform k-means clustering on the extracted feature vectors to
form a vocabulary of 400 visual keywords. Based on this visual vocabulary, we then
define a spatial Markov kernel [15] as the weight matrix for graph construction.

In the experiments, we provide the clustering algorithms with a varying num-
ber of pairwise constraints. The clustering results are shown in Fig. 6. We can find
that our E2CP generally performs the best among the five clustering methods.
The effectiveness of our exhaustive constraint propagation approach to exploit-
ing pairwise constraints for spectral clustering is verified by the fact that our
E2CP consistently obtains better results. In contrast, SL and SSKK perform un-
satisfactorily, and, in some cases, their performance has been degraded to those
of NCuts. This may be due to that by merely adjusting the similarities only
between the constrained images, these approaches have not fully utilized the
additional supervisory or prior information inherent in the constrained images,
and hence can not discover the complex manifolds hidden in the challenging im-
age datasets. Although AP can also propagate pairwise constraints throughout
the entire dataset like our E2CP, the heuristic approach discussed in [11] may
not address multi-class problems for the challenging image datasets, which leads
to unsatisfactory results. Moreover, another important observation is that the
improvement in the clustering performance by our E2CP with respect to NCuts
becomes more obvious when more pairwise constraints are provided, while this
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Fig. 7. Distance matrices of the low-dimensional data representations for the two image

datasets obtained by NCuts, SL, AP, and E2CP, respectively. For illustration purpose,

the data are arranged such that images within a cluster appear consecutively. The

darker is a pixel, the smaller is the distance.

is not the case for AP, SL or SSKK. In other words, the pairwise constraints has
been exploited more exhaustively and effectively by our E2CP.

To make it clearer how our E2CP exploits the pairwise constraints for spectral
clustering, we show the distance matrices of the low-dimensional data representa-
tions obtained by NCuts, SL, AP, and E2CP in Fig. 7. We can find that the block
structure of the distance matrices of the data representations obtained by our
E2CP on the two image datasets is significantly more obvious, as compared to
those of the data representations obtained by NCuts, SL, and AP. This means
that after being adjusted by our E2CP, each cluster associated with the new
data representation becomes more compact and different clusters become more
separated. Hence, we can conclude that our E2CP does lead to better spectral
clustering through our exhaustive constraint propagation.

The pairwise constraints used here are actually very sparse. For example, the
largest number of pairwise constraints (i.e. 2,400) used for constrained clustering
are generated with only 2.6% of the images in the Scene dataset. Here, images
from the same cluster form the must-link constraints while images from different
clusters form the cannot-link constraints. Through our exhaustive constraint
propagation, we obtain 3,611,328 pairwise constraints with nonzero confidence
scores from this sparse set of pairwise constraints. That is, we have successfully
propagated 2,400 pairwise constraints throughout the entire dataset.

It is noteworthy that the running time of our E2CP is comparable to that of
the constrained clustering algorithms without using constraint propagation (e.g.
SL and NCuts). Moreover, as for the two constraint propagation approaches, our
E2CP runs faster than AP, particularly for multi-class problems. For example,
the time taken by E2CP, AP, SL, SSKK, and NCuts on the Scene dataset is 20,
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42, 15, 17, and 12 seconds, respectively. We run all the five algorithms (Matlab
code) on a PC with 2.33 GHz CPU and 2GB RAM.

4.3 Results on UCI Datasets

We further conduct experiments on four UCI datasets, which are described in
Table 1. The UCI data are widely used to evaluate clustering and classification
algorithms in machine learning. Here, as in [11], the Gaussian kernel is defined on
each UCI dataset for computing the weight matrix during graph construction.
The experimental setup on the UCI datasets is similar to that for the image
datasets. The clustering results are shown in Fig. 8.

30 60 90 120 150 180 210 240
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

# pairwise constraints

A
R

Wine

 

 

E2CP AP SL SSKK NCuts

(a)

30 60 90 120 150 180 210 240
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

# pairwise constraints

A
R

Ionosphere

 

 

E2CP AP SL SSKK NCuts

(b)

30 60 90 120 150 180 210 240
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

# pairwise constraints

A
R

Soybean

 

 

E2CP AP SL SSKK NCuts

(c)

60 120 180 240 300 360 420 480
0.26

0.34

0.42

0.5

0.58

0.66

0.74

0.82

0.9

# pairwise constraints

A
R

WDBC

 

 

E2CP AP SL SSKK NCuts

(d)

Fig. 8. The clustering results on the four UCI datasets by different clustering algo-

rithms with a varying number of pairwise constraints

Table 1. Four UCI datasets used in the experiment. The features are first normalized

to the range [-1, 1] for all the datasets.

Datasets Wine Ionosphere Soybean WDBC

# samples 178 351 47 569

# features 13 34 35 30

# clusters 3 2 4 2
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Again, we can find that our E2CP performs the best in most cases. Moreover,
the other three constrained clustering approaches (i.e. AP, SL, and SSKK) are
shown to have generally benefited from the pairwise constraints as compared
to NCuts. This observation is different from that on the image datasets. As
we have mentioned, this may be due to that, considering the complexity of the
image datasets, a more exhaustive propagation (like our E2CP) of the pairwise
constraints is needed in order to fully utilize the inherent supervisory information
provided by the constraints. Our experimental results also demonstrated that an
exhaustive propagation of the pairwise constraints in the UCI data through our
E2CP leads to improved clustering performance over the other three constrained
clustering approaches (i.e. AP, SL, and SSKK).

5 Conclusions

We have proposed an exhaustive and efficient constraint propagation approach
to exploiting pairwise constraints for spectral clustering. The challenging con-
straint propagation problem for both the must-link and cannot-link constraints
is decomposed into a set of independent label propagation subproblems, which
can then be solved efficiently and in parallel through semi-supervised learning
based on k-nearest neighbors graphs. The resulting exhaustive set of propagated
pairwise constraints with associated confidence scores are further used to ad-
just the weight matrix for spectral clustering. It is worth noting that this paper
first clearly shows how pairwise constraints are propagated independently and
then accumulated into a conciliatory closed-form solution. Experimental results
on image and UCI datasets demonstrate clearly that by exhaustively propagat-
ing the pairwise constraints throughout the entire dataset, our approach is able
to fully utilize the additional supervisory or prior information inherent in the
constrained data for spectral clustering and then achieve superior performance
compared to the state-of-the-art techniques. For future work, our approach will
also be used to improve the performance of other graph-based methods by ex-
haustively exploiting the pairwise constraints.
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Abstract. We propose a new generative model, and a new image simi-

larity kernel based on a linked hierarchy of probabilistic segmentations.

The model is used to efficiently segment multiple images into a consistent

set of image regions. The segmentations are provided at several levels of

granularity and links among them are automatically provided. Model

training and inference in it is faster than most local feature extraction

algorithms, and yet the provided image segmentation, and the segment

matching among images provide a rich backdrop for image recognition,

segmentation and registration tasks.

1 Introduction

It is well understood that image registration, segmentation and recognition are
related tasks [17,23,18,3], and yet, the engineering paradigm suggests the decom-
position of the general vision problem into components, first to be considered
(and even applied) in isolation, and then, sometimes, combined as modules.

In some cases, the modular approach is highly successful. For example, algo-
rithms for registration of multiple images of a static scene have recently matured
to the point where they can be directly used in a variety of applications (e.g.,
photosynth.net). The registration algorithms typically do not attempt to solve
the recognition or the segmentation problems, and are not readily applicable
to registering images of different scenes or objects so that they can be used as
modules in recognition algorithms. Still, the feature extraction stage, e.g. SIFT,
in these technologies has found its way to object recognition research, but not
as a tool for image registration. Under the assumption that registration of im-
ages of similar (but not identical) objects would be hard, the image features are
compared as if they do not have a spatial configuration, i.e., as bags of visual
words (BOW) [1] randomly scattered across the image.

The initial success of BOW models was extended when the researchers at-
tempted to encode at least some spatial information in the models, even if the
required spatial reasoning would be short of full image registration. Such mod-
els are often computationally expensive. For example, [2] forms vocabularies
from pairs of nearby features called “doublets” or “bigamy”. Besides taking co-
occurrences into account this approach benefits from some geometric invariance,
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but it is expensive even when feature pairs are considered, and the cost grows
exponentially for higher order statistics. In [4] a codebook of local appearances
is learned in way that allows reasoning about which local structures may ap-
pear on objects of a particular class. However, this process has to be supervised
by human-specified object positions and segmentations. Generative part-based
models like [6,23] are in principle learnable from unsegmented images, but are
computationally expensive as they solve combinatorial search problems. Among
the more computationally efficient approaches, the spatial pyramid method [7]
stands out. The images are recursively subdivided into rectangular blocks, in
a fixed, image-independent way, and the bag-of-words models are applied sep-
arately in these blocks. Image similarity is then defined based on the feature
histogram intersections. This representation is combined with a kernel-based
pyramid matching scheme [8], which efficiently computes approximate global ge-
ometric correspondence between sets of features in two images. Having defined
an image kernel, or a similarity measure for two images, a variety of off-the-shelf
learning algorithms can be used for classification (e.g., the nearest neighbor
method, which simply labels the unlabeled test image with the label of the most
similar labeled image). While the spatial pyramid indirectly registers images for
computation of such a kernel, this registration is limited by the use of a fixed
block-partition scheme for all images.

In this paper, we propose a related approach to defining image similarities,
which can guide object recognition, but also segmentation and registration tasks.
The similarities between two different images are broken down to different re-
gions, but these regions are not rigidly defined by a pyramid kernel, nor do they
require combinatorial matching between images as in [11]. Instead, they are com-
puted using a novel hierarchical model based on the probabilistic index map/stel
models [10,9,5,18], which consider the segmentation task as a joint segmentation
of an image collection, rather than individual images, thus avoiding a costly
combinatorial matching of segments across images. Our new hierarchical stel
model (HSM) also contains multiple levels of segmentation granularity, linked
across the hierarchy, and provides a rich backdrop for image segmentation, reg-
istration and recognition tasks, as any new image can be segmented in various
class-specific ways under under this set of generative models. In particular, we
propose a similarity kernel based on the entire stel hierarchy across all classes
and granularity levels, and we demonstrate that the computation of this kernel
for two test images implicitly matches not only image segments, but even the ob-
ject parts at a much finer granularity than that evident in a segmentation under
any class model. Not only that such use of HSM leads to high recognition rates,
but it also provides surprisingly accurate unsupervised image segmentation, and
unusually informative registration of entirely different images.

2 The Basic Probabilistic Index Map/Stel Model

The basic probabilistic index map, PIM [10], or as it is also called, structure ele-
ment (stel) model, assumes that each pixel measurement xi, with its 2-D coordi-
nate i, has an associated discrete variable si, which takes a label from the interval
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[1, S]. Such a labeling splits the image into S stels so that s-th stel is a collection of
pixel coordinates i, which may be scattered across the image, or grouped together
into coherent blobs, and for which the index si is set to the desired stel label s, i.e.,
Ω(s) = {i|si = s}. Fig. 1A shows some examples of stels: Ω(s = 2) represents the
sea, Ω(s = 3) the schooner. The stel assignments are almost exclusively consid-
ered in a probabilistic fashion. In the simplest case, the distribution over possible
assignments of image coordinates to stels is modeled by a set of location-specific
distributions Pi(si) that describe which image coordinates are more likely to be-
long to particular stels a priori. Such a probabilistic index maps ties the stel parti-
tions in different images of the same type. The posterior stel distributionQ(si) de-
scribes how this prior belief about class-specific image partition gets altered given
the pixel measurements in a particular image (see Fig. 1A). The image evidence
that the model detects is the image self-similarity within a stel: the pixels with the
same stel label s are expected to follow a tight distribution over image measure-
ments, defined by parametersΛs. Each distribution Λs can be modeled, for exam-
ple, as a Gaussian Λs = (μs, σs) (in Fig.1 we only show the means μs) or in other
more complex ways [18,9]. The collection {Λs} of all stel parameters, organized by
the stel index, is referred to as a palette. The palette for two different images of
the same class can be completely different. Instead of local appearance similarity,
the model insists on consistent segmentation through the stel prior. For example
stelΩ(3) in all images of pedestrians may capture the lower part of the background
andΩ(1) the torso of the pedestrian in the foreground (Fig. 3). Differences in local
appearance of these parts are explained away as differences in the palettes associ-
ated with the images. Moreover, the stel prior is easily learned from a collection of
images starting from a noninformative initialization, which allows for efficient seg-
mentation of new images in a fashion consistent with the joint segmentation of the
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training images. Another view of this model is that captures correlated changes of
pixels, as in [24], but in a much more computationally efficient way.

This basic model is easily enriched with transformation variables [18,9] which
alleviate the requirement for rough pre-alignment of images. However, even the
basic model has a remarkable ability to deal with somewhat misaligned images
without the help of extra variables. For example, Fig. 1C-bottom illustrates the
basic PIM model of the sunflower category, in which the images undergo sig-
nificant transformations (scale, translations, multiple instances). Without help
with accounting for these transformations explicitly, the prior P ({si}) is soft af-
ter learning, but strong enough to tie the segmentations together into consistent
stels. Of course, this robustness to image transformation is limited. In case of
very fine image segmentations with large number of stels, and/or very large im-
age transformations, and/or a sparse training set, the part correspondence may
be highly unreliable. Adding transformation variables could help in such cases,
but in this paper we advocate an even more efficient approach that follows a
traditional computer vision concept: coarse-to-fine hierarchies.

3 Hierarchical Stel Model (HSM)

Modeling transformation variables is inherently expensive in any model. The
cost of dealing with image translation is of the order N logN , where N is the
number of pixels, but if we also need to take care of scale, rotation, or even
affine transformations, the expense may accumulate quickly. In this paper, our
goal is to extend the natural ability of stel models to capture all but the largest
transformations. If for instance, the model is not sensitive to the transformations
present in the fairly well-aligned Caltech database, then the extra transformation
variables only need to model coarse translation in large images (relative to the
object size), and capture scale at several coarse levels.

To achieve such an increased invariance to image transformation, we consider
stel models at multiple levels of granularity so that the more refined models are
linked to the coarser models. This modification confers two advantages to the
stel models:

– If the alignment at some level of granularity is failing, the coarser levels may
still be useful.

– The higher quality of the alignment of stels at a coarse granularity will guide
the alignment at a finer granularity, making these more useful.

Hierarchical stel model captures a hierarchy of stel partitions at L different gran-
ularity levels indexed by �: Ω�(s) = {i|s�,i = s}. The index label s can be chosen
from sets of different cardinality for stels at different levels of hierarchy. For ex-
ample, in Fig. 1C we show two levels of hierarchical stel model with two stels in
level � = 1 and five in level � = 2. The stel partitions are linked hierarchically
by distributions P (s�,i = a|s�+1,i = b) = f �

a,b which are not spatially varying.
In Fig. 1C this linking conditional distributions are defined by a 5 × 2 table of
conditional probabilities f1

a,b, but only a few strongest weights are illustrated by
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arrows. The image {xi} is linked to each of these stel assignments directly, as if
it was generated L times1 (Fig. 1B).

Given the prior P �+1({si}) for level � + 1 in the same form as in the basic
site-specific PIM/stel model of the previous section, the prior for the level below
satisfies:

P �
i (s�,i = a) =

∑

b

P �+1
i (s�+1,i = b) · f �

a,b. (1)

In this way, each successive level provides a coarser set of stels, created by (prob-
abilistic) grouping of stels from the previous level according to f �

a,b; only at the
finest granularity the stel prior is location-specific, as in the previous section,

P ({sL,i}Ni=1) =
∏

i

Pi(sL,i). (2)

As before, the conditional links between the image observation and the stel as-
signment at P (xi|s�,i = s) depend only on the s-th palette entry at the hierarchy
level �, and not on the pixel coordinate, thus allowing the palette to affect the
appearance of all the stel’s pixels in concert. For added flexibility, the palette
entries capture a mixture of colors. Image colors in the dataset are clustered
around 32 color centers, and the real-valued pixel intensities are replaced by
discrete indices to these centers in all our experiments. Each palette entry Λ�,s

is thus a histogram consisting of 32 probabilities {u�,s(k)}, and

P (xi = k|s�,i = s) = u�,s(k). (3)

The joint probability over all variables in the model is

P =
∏

i

P (sL,i)
L−1∏

�=0

f �
s�,i,s�+1,i

L∏

�=0

p(xi|s�,i) (4)

where level � = 0 trivially reduces to a bag of words representation as the stel
variables across the image are constant s0,i = 1. Following the same strategy as
[10] we can easily write the free energy F =

∑
Q log Q

P for this graphical model
assuming a factorized posterior Q =

∏
�,iQ(s�,i), take appropriate derivatives,

and derive the following inference rules for minimizing the free energy for a single
image given the prior over stel hierarchy:

Q(s�,i = s) ∝ P (s�,i = s) · u�,s(xi) u�,s(k) ∝
∑

i

Q(s�,i = s) · [xi = k], (5)

where [] is an indicator function. The above updates are image-specific; each
image has in fact its own palette of histograms which allows images with very
different colors to be segmented following the same stel prior (Fig. 1C).
1 The motivation for multiple generation of xi from multiple levels of hierarchy comes

from the observation that modeling multiple paths from hidden variables to the

data, or, for that matter, among hidden variables in the higher levels, alleviates

local minima problems in learning [19].
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Given a collection of images indexed by t, and the posterior distributions
Q(st

�) computed as above, the hierarchical stel distribution is updated as

f �
a,b ∝

∑

t,i

Q(st
�+1,i = b) ·Q(st

�,i = a) P (sL,i = s) ∝
∑

t

Q(st
L,i = s). (6)

These updates are iterated and the model is learned in an unsupervised way
form a collection of images. As the result, all images are consistently segmented
into stels at multiple levels of hierarchy. As the palettes are image-specific in
the model, the images can have completely different colors and still be consis-
tently segmented. The hierarchical representation of stels reduces the errors in
segmentation, and provides a rich information about part correspondence for
image comparison, and, therefore, recognition.

4 Hierarchical Stel Kernel (HSK)

The HSM can be trained for many different image classes indexed by c. A pair
of images (whether they are in one of the training sets for the stel models or
not) can be segmented into stels under any of the resulting models Pc({s�,i})
by iterating the two equations (5). The pair of resulting posterior distributions
Qc(sA

�,i), Qc(sB
�,i) for each combination of class c and granularity level � provides

a coarse correspondence for regions in the two images (Fig. 2).
This rich information can be used in numerous ways, but we limit our analysis

and experiments here to one of the simplest approaches, inspired by the spatial
pyramid match kernel [7], which propose course-to-fine spatial feature matching
schema based on comparing histograms of image features in different parts of
the image and weighting and accumulating evidence of feature sharing. As in
[7], we compute image features in images and represent them using the same
codebook of 300 visual words. But, instead of partitioning each image image
using the same set of rectangular blocks of different sizes, we use the image-
specific segmentations induced by HSM models. Then similarity in image features
in two different images is considered important if these features tend to be within
the same posterior stel under many models.

Specifically, the feature indices k ∈ [1, 300] are assigned to locations on a
grid that covers every fifth pixel along both image dimensions. In a given im-
age, within the s-th stel under the model of class c, at a hierarchy level � an
unnormalized histogram of image features hc,�,s(k) is computed as

hc,�,s(k) =
∑

i

Qc(s�,i) · ni,k (7)

where ni,k is equal to 1 if a feature of index k is present at location i, 0 otherwise.
Given two images A and B, their histogram similarities within the corresponding
stels are defined by the histogram intersection kernel [8] defined as

K(A,B) = min
k

(hA
c,�,s(k), hB

c,�,s(k)), (8)
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l = 1 l = 2
leopard

l = 1 l = 2
cougar

l = 2
crab

l = 2
elephant

l = 2
schooner

l = 2
butterfly

l = 2
joshua tree

Fig. 2. Segmentations of two images from the Joshua tree category under various stel

models trained on Caltech 101 images. The prior stel distributions are illustrated on

top. The stels are assigned different colors (blue, light blue, yellow and red), to illustrate

the mode of each posterior stel assignment, which is based both on the prior and on

the image evidence. Although none of the individual segmentations under the leopard,

cougar, butterfly, crab, elephant, and schooner models fits these models very well, the

two images are for the most part consistently segmented under these models: If the

different stel assignments a pixel gets under these different models are considered a

discrete multi-dimensional label, and if these multi-dimensional labels of all pixels are

projected through a random matrix onto 3D colors, so that the similar consistent labels

across models and levels of hierarchy result in a similar color, then the two joshua tree

images end up colored as shown in the rectangular box. This illustrates that the tree

bark has consistent stel assignment in two images more often than not, and similar

correspondence among other parts of the two scenes are visible. In contrast, a single

segmentation, even under the model trained on Joshua tree images (the last column),

does not provide a refined part correspondence.

because this provides computational advantages. To compute a single measure
of similarity for two images under all stels of level �, we sum all the similarities,
weighting more the matches obtained in finer segments:

KHSK
c (A,B) =

L∑

l=0

1
2L−�

·
∑

s

min
k

(hA
c,�,s(k), hB

c,�,s(k)), (9)

In multi class classification tasks, we define the hierarchical stel kernel (HSK) as
the sum of the kernels for individual classes KHSK =

∑
cK

HSK
c . There are two

reasons for this operation. First, when image similarities are computed for classi-
fication tasks, one or both images may not be labeled as belonging to a particular
class, and so considering all classes simultaneously is needed. Second, even if one
of the images belongs to a known class (an exemplar used in classification, for
instance) and the other’s class is to be predicted, multiple segmentations of the
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images under different class models provides useful additional alignment infor-
mation (Fig. 2). When insufficient data is used for training stel models (e.g., 15
training images for Caltech101), the segmentation under any given class may
be noisy, and so pulling multiple segmentations may help. Natural images share
similar structure: Consider for example portraits of dogs and humans, or struc-
ture of different classes of natural scenes, where the background is broken into
horizontal stripes in images of schooners and cars alike. Thus, using many stel
tessellations under many classes reinforces proper alignment of image parts.

Furthermore, as Fig. 5B illustrates, the alignment becomes finer than under
any single model, even than the finest level of stel hierarchy under the model
for the correct class. To illustrate this, we note that because the posterior Q(s)
tends to be peaky, i.e. close to 0 or 1 for most pixels, for any class we have

KHSK
c (A,B) ≈

L∑

l=0

1

2L−�
·
∑

i,j

min
k

(nA
k,i, n

B
k,j)×

( ∑

s

min
A,B

(Q(sA
�,i = s),Q(sB

�,j = s)
)

=
∑

i,j

Fi,j ×Mi,j (10)

where Mi,j =
∑L

�=0
1

2L−�

( ∑
s minA,B(Q(sA

�,i = s), Q(sB
�,j = s)

)
represents the

level of expected similarity between the i-th pixel in image A and j-th pixel in
image B based simply on how often the stel labels for these two pixels are shared
across the hierarchy, and Fi,j = mink(nA

k,i, n
B
k,j) represents feature similarities

(i.e., matches) between the coordinate i in one image and coordinate j in the
other, independently of any segmentation. Finally we can write

KHSK =
∑

i,j

Fi,j ×
∑

c

M c
i,j . (11)

Here we have that Fi,j > 0 if in locations i and j the same feature index is present.
This feature match is more rewarded through weight

∑
cM

c
i,j if i and j share the

same stels across different models and granularity levels. Figure 5 illustrates these
two components,Fi,j and

∑
cM

c
i,j , of the similarity kernel on the pixel level. First,

in Fig. 5A we show how combining three arbitrary classes creates enough context
not only to find the corresponding segment for pixel i in the first image, but to ac-
tually refine this matching across pixels j in the second. For the selected i, marked
by a square,

∑
cM

c
i,j is represented as an image over coordinates j in the second

image. In the second image, as well as in match maps
∑

cM
c
i,j , the cross represents

the pixel j = i so that the misalignment of the two faces is evident. While the infer-
ence under the face class may be sufficient to roughly match large regions among
the images, the stel segmentations based on three classes’ segmentations narrow
down the correspondence of the marked pixel (right eye) to the eye regions of the
face in the second image and a spurious match in the background which happened
to have a similar color to the facial region. For easier visualization we illustrated
only three select stels from the three classes. In Fig. 5B for this example, and several
more, we show what happens when all stels and all classes are used as in the equa-
tions above. For two facial images, the supplemental video shows correspondence
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Fig. 3. Pedestrian classification. Left: ROC plots comparing HSM/HSK and other

approaches. Right: the learned HSM parameters.

of various pixels in the same manner (The pixel in the first image is marked by a
cursor, and the mapping in the second image is shown as a heat map).

Finally in Fig. 5C, we show jointly the mapping of three pixels i1, i2, i3 in the
first image by placing the appropriate match mapsM in the R, G, and B channels
of the image. As the result, when the entire stel hierarchy under all classes is
used to evaluate

∑
M , the regions around the eyes, and especially around the

right eye in the second image are colored red, while the regions in the lower
part of the face, especially lips, are colored green, and the background elements
are colored blue, indicating that the entire stel model hierarchy can localize the
face parts beyond the granularity of any single model and any single level of
hierarchy. For comparison, M obtained for the face class only and butterfly class
only are shown. To illustrate in the same manner the spatial pyramid kernel [7],
we compute similar decomposition into the expected matching of pixels based
on block image segmentation, and the feature matching of pixels. The complete
kernel under both HSM and the spatial pyramid is the sum over all pixels of the
product Mi,j · Fi,j and so these products are also illustrated in the figure.

Inference and learning complexity in stel models is linear in the number of
image coordinates, stels and classes. The total computation time is consider-
ably faster than SIFT feature computation. Furthermore, the quality of image
matching does not decay much if we use only 30 out of 101 classes.

5 Experiments

We evaluated our approach on Caltech28, Calteh101 and Daimler pedestrian
datasets. We compared with the classification results provided by the datasets’
creators and with the other feature organization paradigms, namely Bag of words
(BW), Stel organization (SO) and Spatial Pyramids (SPK), as well as other
state-of-the art methods. We considered both classification and unsupervised
segmentation tasks. We used support vector machines as discriminative classi-
fiers, feeding the kernels as input.
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5.1 Pedestrian Classification: Daimler Dataset

We evaluated our method on pedestrian classification using the procedure of [12].
We trained a hierarchical stel model with S1 = 2 and S2 = 4 on the training set
for each class (See Fig. 3 for an illustration). Having trained HSM on the training
data, stel inference can be performed on test images, so that pairwise similarities
(the kernel matrix) can be computed for all pairs of images (training and test).
For the feature code book, we used the dictionary of Haar wavelets [13]. Given
input images of size 18 x 36 and their posterior distributions Q(st

1) and Q(st
2), we

compute wt
l convolving the image xt with wavelets of scales 4 x 4 (l=1) and 8 x 8

(l=2). We only encoded the magnitude in the feature vectors. As described above,
image features and stel segmentations are used to compute the kernel matrix and
this matrix is fed to a standard SVM classification algorithm. The ROC plots are
shown in Fig. 3. As expected, results improve as we go from L = 0 (AUC, Area un-
der the curve, 0.954) to a multi-level setup (L > 0). We repeated the classification
only keeping into account the foreground wavelet coefficients. When L=1 the ac-
curacy is significantly improved by considering only the foreground, but for L=2
it does not, as the hierarchical stel kernel already reaches impressive performance
without emphasizing foreground in classification. Though matching at the highest
pyramid level seems to account for most of the improvement (AUC 0.9751), using
all the levels together confers a statistically significant benefit (AUC 0.9854). The
ROC plot on the right of figure 3 compares HSK with several recent approaches
including [12] which reviews standard pedestrian classification algorithm and fea-
tures, [15] which uses a hybrid generative-discriminative approach based on PIM
[10], and [14] which employs spatial pyramids kernel on a multi-level version of
the HOG descriptor [16].

5.2 Unsupervised Segmentation and Supervised Recognition of
Caltech 28 Images

Caltech 28 [17] is composed of 28 classes of objects among the subset of Caltech
101 categories that contain more than 60 images. The chosen categories con-
tain objects with thin regions (e.g. flamingo, lotus), peripheral structures (e.g.
cup), objects that are not centered (e.g. leopards, dalmatians, Joshua trees).
None of the chosen classes contains background artifacts that make them easily
identifiable. For each class, we randomly selected 30 images for training and 30
images for testing. To serve as discrete features to match, we extracted SIFT
features from 15x15 pixel windows computed over a grid with spacing of 5 pixels.
These features were mapped to W=300 codewords as discussed in Section 4. We
trained a hierarchical model for each class using S1 = 3 and S2 = 5 and then

Table 1. Classification accuracies on Caltech 28

HSK L=1 HSK L=1 HSK L=2 [9] SPK [7] BW [17]

S1 = 3 S1 = 5 S1 = 3, S2 = 5 - L=2 - -

73,15% 74,57% 78,10% 65,12% 65,43% 56,01% 69%
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Fig. 4. Classification results for the Caltech experiments. On the left we report the

segmentation accuracy for each class of Caltech 28 obtained by [17] (yellow bars) and

by HSM (blue dots with confidence level). On the right, we compare recognition rates on

Caltech 101 images with related spatial-reasoning methods using similar local features.

performed inference on the test images. We calculated the kernel between all
pairs of images as discussed in Section 4 and the used a standard SVM that uses
the class labels and kernels to determine the missing class labels of images in
the test set. We compared the results of several set ups of HSK and with: i) the
bag of words classifier BW, ii) the spatial pyramid kernel (SPK, [7]), and iii) a
classifier based on the single level stel partition (SO, S=5, [9]). All the methods
are compared using the same core-kernel (histogram intersection) and the same
feature dictionary. First, we compared these related methods repeating the clas-
sification 10 times with a randomly chosen training-testing partition. Then we
performed t-tests and found:

BW <<1·10−3
SPK <<3·10−3

HSK >>5·10−4
SO >>4·10−3

BW 2 (12)

Where >>p stands for greater with statistical significance with p-value equal to
p. HSK’s advantage here is due to the segmentations provided by HSM, which
explain away a lot of object transformations (see Fig.1C, bottom) and capture
meaningful object partitions. Mean classification accuracies are summarized in
table 1. As a further test on Caltech 28 we tackled image segmentation, simply
using the posterior stel segmentation induced by the coarsest level of HSM (S1 =
2). Each class of images is fit independently as described in Section 3. After
training, the posterior stel distributions are used as image segmentations. We
compared our results with [17], which provides the manual labeling of pixels.
In figure 4 we compare the segmentation accuracy over different classes. The
overall test accuracy of our unsupervised method is 79,8%, outperforming the
supervised method of [17] with test accuracy of 69%.

2 SO and SPK have been found statistically equal.
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Fig. 5. Image correspondences implicitly captured by the hierarchical stel kernel. In

A and B, the pairs of images are shown with the pixel of interest in the first image

labeled by a square. In B, for each pair, the stel-based match matrix M, which is only

based on color stel models, is shown as averaged under 1,3,5, and 102 classes randomly

selected from Caltech 101. Below each M matrix we show it multiplied with the target

image. C illustrates the correspondence of multiple points for two image pairs.
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5.3 Recognition Rates on Caltech 101

Our final set of experiment is on the Caltech 101 dataset. For the sake of com-
parison, our experimental setup is similar to [7]. Namely, we randomly select 30
images from each category: 15 of them are used for training and the rest are
used for testing. We compare our method to only those recognition approaches
that do not combine several other modalities. Results are reported in figure 4
The successfully recognized classes include the ones with rotation artifacts, and
the natural scenes (like joshua tree and okapi), where segmentation is difficult.
The least successful classes are animals, similarly to [7]. This is likely not due to
problems of segmentation, but discretized feature representation [20]. Since our
goal is mainly to compare our representation with SPK we report the results we
have obtained using the SPK authors’s implementation of the feature extraction
and quantization. Note that due to a random selection of images, we did not
recreate the exact classification result of SPK, but our HSK similarity measure
outperforms both our implementation of the SPK and the best published SPK
result.

6 Conclusions

We propose a new generative model, and a new image similarity kernel based on a
linked hierarchy of stel segmentation. The goal of our experiments was primarily
to demonstrate the spatial reasoning that can be achieved with our method,
and which goes beyond block comparisons, and even beyond segment matching
and closer to registration of very different images. Therefore we compared our
method using the same discretized features as in the literature describing efficient
spatial reasoning approaches. However, we expect that the better local feature
modeling may improve classification performance, as for example, [20] proposes.
Still, even with current discretized features, the hierarchical stel models can be
used efficiently and with high accuracy in segmentation and classification tasks.
We expect that our image representation will find its applications in multikernel
approaches but may also find other applications due to its ability to combine
image recognition, segmentation, and registration. For example [21,22] are based
on SPK and could be easily used with our method.
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Abstract. Multiple-instance learning (MIL) allows for training classifiers

from ambiguously labeled data. In computer vision, this learning paradigm

has been recently used in many applications such as object classification,

detectionand tracking.Thispaperpresents anovelmultiple-instance learn-

ing algorithm for randomized trees called MIForests. Randomized trees are

fast, inherently parallel and multi-class and are thus increasingly popular

in computer vision. MIForest combine the advantages of these classifiers

with the flexibility of multiple instance learning. In order to leverage the

randomized trees for MIL, we define the hidden class labels inside target

bags as random variables. These random variables are optimized by train-

ing random forests and using a fast iterative homotopy method for solving

the non-convex optimization problem. Additionally, most previously pro-

posed MIL approaches operate in batch or off-line mode and thus assume

access to the entire training set. This limits their applicability in scenarios

where the data arrives sequentially and in dynamic environments.We show

that MIForests are not limited to off-line problems and present an on-line

extension of our approach. In the experiments, we evaluate MIForests on

standard visual MIL benchmark datasets where we achieve state-of-the-

art results while being faster than previous approaches and being able to

inherently solve multi-class problems. The on-line version of MIForests is

evaluated on visual object tracking where we outperform the state-of-the-

art method based on boosting.

1 Introduction

In recent years, visual object classification and detection has made significant
progress. Besides novel methods for image representations, one important factor
was the development and application of advanced machine learning methods.
Traditional supervised learning algorithms require labeled training data where
each instance (i.e., data sample or feature vector) has a given label. In prac-
tice, the labels are usually provided by a human labeler. However, especially for
positive classes it is often hard to label the samples so that they can be best
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exploited by the learning algorithm. For example, in case of object detection
bounding boxes are usually cropped around the target object and provided as
positive training samples. The decision where exactly to crop the object and at
which size is up to the human labeler and it is often not clear if those patches
are best suited for the learner. Additionally, it would also ease the labeling ef-
fort if the exact object location had not to be marked. By contrast, it would
be desired to provide the learner only a rough position of the target object and
leave it on its own how to incorporate the information in order to deliver best
classification results. For standard supervised learning techniques it is hard to
resolve such ambiguously labeled data. In contrast, multiple-instance learning
(MIL) [1,2] naturally can perform this task. In particular, in multiple-instance
learning, training samples are provided in form of bags, where each bag con-
sists of several instances. Labels are only provided for the bags and not for the
instances. The labels of instances in positive bags are unknown whereas all in-
stances in negative bags can be considered as being negative. For positive bags,
the only constraint is that at least one of the instances is positive. Recently, mul-
tiple instance learning has enjoyed increasing popularity, especially in computer
vision, because in practice data is often provided in a similar manner. Applying
MIL in the above example, the rough object position would correspond to a bag
and patches inside the bag to instances. During training, MIL would find those
patches that lead to best classification results and leave out the others.

While multiple-instance learning has been used in many applications such
as text-categorization [3], drug activity recognition [2] or computer security
problems [4], especially computer vision is one of the most important domains
where multiple instance-learning algorithms have been recently applied. For in-
stance, many authors applied MIL to image retrieval [5,6] or image categorization
tasks [7]. Another computer vision application where multiple-instance learning
can be used is to tackle the alignment problem when training appearance-based
detectors based on boosting [8], speed-up classifier cascades [9] or even action
recognition [10] and semantic segmentation [11]. In case of object tracking, it is
mostly hard to decide which patches to use for updating the adaptive appearance
model. If the tracker location is not precise, errors may accumulate which finally
leads to drifting. Recently, Babenko et al. [12] demonstrated that using MIL for
tracking leads to much more stable results. For most of these vision tasks SVM
variants or boosting have been used.

In this paper, we present a novel multiple-instance learning algorithm based
on random forests (RF) [13]1. The motivation for developing such an algorithm
has several reasons: RFs have demonstrated to be better or at least comparable
to other state-of-the-art methods in both classification [13] and clustering [14].
Caruana et al. [15] showed that RFs outperform most state-of-the-art learn-
ers on high dimensional data problems. Especially, the speed in both training
and evaluation is one of their main appealing properties. Additionally, RFs can
easily be parallelized, which makes them interesting for multi-core and GPU

1 Note that we consider “random forests” and “randomized trees” to be the same and

use the term interchangeably throughout the paper.
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implementations [16]. RFs are inherently multi-class, therefore it is not nec-
essary to build several binary classifiers for solving multi-class problems. Fi-
nally, compared to boosting and other ensemble methods, RFs are more robust
against label noise [13]. These advantages of random forests have also led to
increased interest in the computer vision domain. For instance, recently Gall
and Lempinsky [17] presented an efficient object detection framework based on
random forests. Shotton et al. [18] presented a real-time algorithm for seman-
tic segmentation based on randomized trees. Bosch and Zisserman used RFs
for object categorization [19]. Randomized trees have also successfully applied
to visual tracking, either in batch mode using keypoints [20] or on-line using
tracking-by-detection [21].

The main contribution of this work is an algorithm that extends random
forests to multiple-instance learning. We thus call the method MIForests. MI-
Forests bring the advantages of random forests to multiple-instance learning,
where usually different methods have been applied. In turn, extending random
forests in order to allow for multiple-instance learning allows vision tasks where
RFs are typically applied to benefit from the flexibility of MIL. MIForests are
very similar to conventional random forests. However, since the training data
is provided in form of bags, during learning the real class labels of instances
inside bags are unknown. In order to find the hidden class labels, we consider
them as random variables defined over a space of probability distributions. We
disambiguate the instance labels by iteratively searching for distributions that
minimize the overall learning objective. Since this is a non-convex optimization
problem, we adopt an approach based on deterministic annealing, which provides
a fast solution and thus preserves the speed of random forests during training.
The evaluation speed of MIForests is identical to standard random forests.

Although there have been proposed numerous approaches to the MIL problem,
most of them operate in off-line or batch mode. Off-line methods assume having
access to the entire training data which eases optimization and typically yields
good classifiers. In practice, however, learners often have limited access to the
problem domain due to dynamic environments or streaming data sources. In
computer vision, this is e.g. the case in robot navigation or object tracking. For
such problems off-line learning does not work anymore and on-line methods have
to be applied. In this paper, we take this into account and show how MIForests
can be extended to on-line learning.

In the experimental section, we compare MIForests with other popular MIL
algorithms both on benchmark data sets and on multi-class image classification
problems, where we show that MIForests can achieve state-of-the-art results
without splitting multi-class problems into several binary classifiers. We evaluate
the on-line extension of MIForests on object tracking and compare it to the state-
of-the-art methods.

In Section 2, we present a brief overview on previous multiple-instance learn-
ing methods and RFs. In Section 3, we derive our new multiple-instance learning
algorithm for random forests and present an on-line extension. Experimental re-
sults on standard visual MIL datasets, comparisons to other MIL approaches and
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tracking results of our approach are presented in Section 4. Finally, in Section 5,
we give some conclusions and ideas for future work.

2 Related Work

In traditional supervised learning training data is provided in form of {(x1, y1)
. . . (xn, yn)}, where xi is an instance and, in the binary case, yi ∈ {−1,+1}
the corresponding label. In multiple instance learning training samples are given
in bags Bi, i = 1, . . . , n, where each bag may consist of an arbitrary number of
instances Bi = {x1

i , x
2
i , . . . , x

ni

i }. Negative bags B−
i consist of only negative in-

stances. Ambiguity is introduced into learning by the constraint that for positive
bags B+

i , it is only guaranteed that there exist at least one positive instance (also
called witness of the bag). There is no information about other instances in the
bag. In fact, they might not even belong to the negative class. The task is to learn
either a bag classifier f : B → {−1, 1} or an instance classifier f : R

d → {−1, 1}.
However, bag classification can be obtained automatically from instance classifi-
cation, e.g., by using the max operator pi = max

j
{pij} over posterior probability

estimates pij for the j-th instance of the i-th bag.
There exists a vast amount of literature and many different approaches on

how to solve the MIL problem. Here, we briefly review some of the most popular
ones. The most näıve approach is to simply ignore the MIL setting and train
a supervised classifier on all instances with the bag label. Blum and Kalai [22],
for instance, showed that one can achieve reasonable results when training an
instance classifier that is robust to class label noise. As we will show later in
the experimental part, RFs are also promising candidates for such a näıve ap-
proach. Many MIL methods work by adapting supervised learners to the MIL
constraints, mostly using SVM-type learners. For example, Andrews et al. [3]
proposed two different types of SVM-MIL approaches mi-SVM and MI-SVM.
They differ basically on their assumptions, i.e., the first method tries to identify
the labels of all instances in a bag while the latter one finds only the witness
and ignores all others. Another SVM-based approach MICA [23] tries to find
the witness using linear programming. There also exist some boosting-based
methods, e.g., [8]. Wang and Zucker [24] trained a nearest neighbor algorithm
using Hausdorff distance. Other popular approaches are based on the diverse-
density assumption, for example [25,26], which more directly tries to address the
MIL problem via finding a more appropriate feature representation for bags. In
MILES, Chen et al. [7,27] trained a supervised SVM on data mapped into a new
feature space based on bag similarities. There exist also approaches for training
decision trees in a MIL fashion, e.g., [28].

2.1 Random Forests

Random Forests (RFs) were originally proposed by Amit et al. [29], extended by
Breiman [13] and consist of ensembles of M independent decision trees fm(x) :
X → Y = {1, . . . ,K}. For a forest F = {f1, · · · , fM} the predictive confidence
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can be defined as Fk(x) = 1
M

∑M
m=1 pm(k|x), where pm(k|x) is the estimated den-

sity of class labels of the leaf of them-th tree, where sample x resides. A decision is
made by simply taking the maximum over all individual probabilities of the trees
for a class k with C(x) = arg max

k∈Y
Fk(x). [13] showed that the generalization error

of random forests is upper bounded by GE ≤ ρ̄ 1−s2

s2 , where ρ̄ is the mean corre-
lation between pairs of trees in the forest and s is the strength of the ensemble
(i.e., the expected value of the margin over the entire distribution). In order to
decrease the correlation of the trees, each tree is provided with a slightly different
subset of training data by subsampling with replacement from the entire training
set, a.k.a bagging. Trees are trained recursively, where each split node randomly
selects binary tests from the feature vector and selects the best according to an
impurity measurement such as the entropy H(I) = −∑K

i=1 p
j
i log(pj

i ), where pj
i

is the label density of class i in node j. The recursive training continues until a
maximum depth is reached or no further information gain is possible.

3 Multiple-Instance Random Forests

In the following, we introduce a novel multiple instance learning algorithm us-
ing randomized trees called MIForests. MIForests deliver multi-class instance
classifiers in form of F (x) : X → Y = {1, . . . ,K}. Hence, during learning for
each bag there is guaranteed that it has at least one instance from the target
class but it may also consist of instances of some or all other classes {1, . . . ,K}.
This makes MIForests different to most previous MIL algorithms that only yield
binary classifiers and require to handle a multi-class problem by a sequence of
binary ones. One obvious way to design RFs capable of solving MIL tasks is to
adopt MIL versions for single decision trees [28]. However, strategies developed
for common decision trees are hard to apply for RFs due to the random split na-
ture of their trees. For example, improper regularization of trees of a RF on the
node level can decrease the diversity ρ̄ among trees and thus increase the overall
generalization error [13]. Thus, in order to perform multiple instance learning
with random forests one has to find an optimization strategy that preserves the
diversity among the trees.

We formulate multiple instance learning as an optimization procedure where
the labels of the instances become the optimization variables. Therefore, the
algorithm tries to uncover the true labels of the instances in an iterative manner.
Given such labels, one can train a supervised classifier which then can be used
to classify both instances and bags. Let Bi, i = 1, . . . , n denote the i-th bag in
the training set with label yi. Each bag consists of ni instances: {x1

i , . . . ,x
ni

i }.
We write the objective function to optimize as

({yj
i }∗, F ∗) =arg min

{yj
i },F (·)

n∑

i=1

ni∑

j=1

�(Fyj
i
(xj

i )) (1)

s.t. ∀i :
ni∑

j=1

I(yi = arg max
k∈Y

Fk(xj
i )) ≥ 1.



34 C. Leistner, A. Saffari, and H. Bischof

The objective in this optimization procedure is to minimize a loss function �(·)
which is defined over the entire set of instances by considering the condition
that at least one instance in each bag has to be from the target class. Note that
I(·) is an indicator function and Fk(x) is the confidence of the classifier for the
k-th class, i.e., Fk(x) = p(k|x) − 1

K . Often the loss function depends on the
classification margin of an instance. In the case of Random Forests, the margin
can be written as [13]

m(x, y) = p(y|x)−max
k∈Y
k �=y

p(k|x) = Fy(x) −max
k∈Y
k �=y

Fk(x). (2)

Note that for a correct classification m(x, y) > 0 should hold. Overall, it can easy
be seen that Eq. (1) is a non-convex optimization problem because a random
forest has to be trained and simultaneously a suitable set of labels yj

i has to be
found. Due to the integer values of the labels yj

i , this problem is a type of integer
programming and is usually difficult to solve. In order to solve this non-convex
optimization problem without loosing too much of the training speed of random
forests, we use a fast iterative optimization procedure based on deterministic
annealing (DA).

3.1 Optimization

DA [30] is a homotopy method which is able to fast minimize non-convex combi-
natorial optimization problems. The main idea is to extend a difficult optimiza-
tion problem with an easier one by adding a convex entropy term and solve this
first. In particular, one tries to minimize the entropy H of the distribution p in
form of

p∗ = arg min
p∈P

Ep(F(y))− TH(p), (3)

where P is a space of probability distributions and F(y) is our objective function.
The optimization problem is than gradually deformed to its original form using
a cooling parameter T, i.e., T0 > T1 > . . . > T∞ = 0. Due to its speed and
simplicity, DA-based optimization has been applied to many problems, among
them also multiple-instance learning though in context with SVMs, i.e., see [31].
Furthermore, due to the induced randomness in deterministic annealing, it fits
to the nature of randomized trees and was recently also used for solving semi-
supervised learning problems [32]. For further details on DA we refer the reader
to [30].

In order to optimize our MIL objective function (Eq. (1)), we propose the
following iterative strategy: In the first iteration, we train a näıve RF that ignores
the MIL constraint and uses the corresponding bag labels for instances inside
that bag. Then, after the first iteration, we treat the instance labels in target
bags as binary variables. These random variables are defined over a space of
probability distributions P . We now search a distribution p̂ ∈ P for each bag
which solves our optimization problem in Eq. (1). Based on p̂ each tree randomly
selects the instance labels for training. Hence, based on the optimization of p̂
we try to identify the real but hidden labels of instances.
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We reformulate the objective function given in Eq. (1) so that it is suitable
for DA optimization

LDA(F, p̂) =
n∑

i=1

ni∑

j=1

K∑

k=1

p̂(k|xj
i )�(Fk(xj

i )) + T
n∑

i=1

H(p̂i), (4)

where T is the temperature parameter and

H(p̂i) = −
ni∑

j=1

K∑

k=1

p̂(k|xj
i ) log(p̂(k|xj

i )) (5)

is the entropy over the predicted distribution inside a bag. It can be seen that the
parameter T steers the importance between the original objective function and
the entropy. If T is high, the entropy dominates the loss function and the problem
can be easier solved due to the convexity. If T = 0 the original loss dominates
(Eq. (1)). Hence, DA first solves the easy task of entropy minimization and
then by continuously decreasing T from high values to zero gradually solves the
original optimization problem, i.e., finding the real but hidden instance labels y
and simultaneously training an instance classifier.

In more detail, for a given temperature level, the learning problem can be
written as

(F ∗, p̂∗) =arg min
p̂,F (·)

LDA(F, p̂) (6)

s.t. ∀i :
ni∑

j=1

I(yi = arg max
k∈Y

Fk(xj
i )) ≥ 1.

We split this optimization problem up into a two-step convex optimization prob-
lem analog to an alternating coordinate descent approach. In the first step, the
objective function F is optimized by fixing the distribution p̂ and optimizing
the learning model. In the second step, the distribution p∗ over the bags accord-
ing to the current entropy level is adjusted. Note that both individual steps are
convex optimization problems. For a given distribution over the bag samples, we
randomly choose a label according to p̂. We repeat this process independently
for every tree f in the forest. Hence, in the limit, we will exactly maintain the
same distribution over the unlabeled samples as given by p̂. Let {ŷij} be the
randomly drawn labels according to the distribution p̂ for m-th tree. The opti-
mization problem for the m-th tree becomes

f∗
m =arg min

f

n∑

i=1

ni∑

j=1

�(fŷj
i
(xj

i )) (7)

s.t. ∀i :
ni∑

j=1

I(yi = arg max
k∈Y

fk(xj
i )) ≥ 1.



36 C. Leistner, A. Saffari, and H. Bischof

Algorithm 1. MIForests
Require: Bags {Bi}
Require: The size of the forest: M
Require: A starting heat parameter T0

Require: An ending parameter Tmin

Require: A cooling function c(T, m)

1: Set: ∀i : ŷj
i = yi

2: Train the RF: F ← trainRF({ŷj
i }).

3: Init epochs: m = 0.

4: while Tm+1 ≥ Tmin do
5: Get the temperature: Tm+1 ← c(Tm, m).

6: Set m← m + 1.

7: ∀xj
i ∈ Bi, k ∈ Y : Compute p∗(k|xj

i )

8: for t from 1 to M do
9: ∀xj

i ∈ Bi : Select random label, ŷj
i according to p∗(·|xj

i )

10: Set the label for instance with highest p∗(·|xj
i ) equal to bag label

11: Re-train the tree:

12: fm ← trainTree({ŷj
i }).

13: end for
14: end while
15: Output the forest F .

Since the margin maximizing loss function is convex, this loss function is also
convex. In order to not violate the MIL constraint, after having randomly se-
lected instance labels for a bag, we always set the instance with the highest
probability according to p̂ equal to the bag label. At this stage we train all the
trees in the forest by the formulation given above.

After we trained the random forest, we enter the second stage where we find
the optimal distribution according to

p̂∗ =arg min
p̂

n∑

i=1

ni∑

j=1

K∑

k=1

p̂(k|xj
i )�(Fk(xj

i )) + T

n∑

i=1

H(p̂i). (8)

The optimal distribution is found by taking the derivative w.r.t p and setting it
to zero. We depict all detailed steps of the method in Algorithm 1.

3.2 On-Line MIForests

MIForests as introduced above are trained off-line using a two-step optimization
procedure as given in Eq. (4), where in one step the objective function F is
optimized and in the second step the distribution p̂ over the bags, respectively.
In order to modify the algorithm so that it is suitable for on-line learning, i.e.,
the bags Bi arrive sequentially, one has to change both optimization steps to
operate in on-line mode. In the following, we show how to train the randomized
trees on-line in order to optimize F and also how p̂ can be optimized on-line to
disambiguate the class labels inside positive bags.
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Bagging, necessary to build the tree ensemble, can be easily done on-line by
modeling the sequentially arriving samples with a Poisson distribution initialized
with a constant value λ [33]. On-line learning of the decision trees is less trivial
due to their recursive split nature. However, as we recently showed [21] the
pure recursive training of the trees can be circumvented by using a tree-growing
procedure similar to evolving-trees [34]. In more detail, the algorithm starts
with trees consisting only of root nodes and randomly selected node tests fi and
thresholds θi. Each node estimates an impurity measure based on the Gini index
(Gi =

∑K
i=1 p

j
i (1 − pj

i )) on-line, where pj
i is the label density of class i in node

K. Then, after each on-line update the possible information gain ΔG during a
potential node split is measured. If ΔG exceeds a given threshold β, the node
becomes a split node; i.e., it is not updated any more and generates two child
leaf nodes. The growing proceeds until a maximum depth is reached. Even when
the tree has grown to its full size, all leaf nodes are further on-line updated. The
method is simple to implement and has shown to converge fast to its off-line
counterpart. For further details we refer the reader to [21].

Besides on-line training of the randomized trees, we also have to perform the
deterministic annealing on-line. This means we have to estimate p̂ on-line by
examining the sequentially arriving samples. Therefore, if a new bag Bi arrives,
we initialize a new distribution p̂i over its instances using the current confidence
output of Ft. Then, we iteratively apply the optimization of Ft and p̂i only
for the current bag Bi following the same two-step procedure and annealing
schedule as in the off-line case (Eq. (7),Eq. (8)). Afterwards, Bi is discarded and
the training proceeds with the next bag Bi+1. We skip the algorithm box due
to lack of space.

4 Experiments

The purpose of this section is to evaluate the proposed algorithms on standard
MIL machine learning benchmark datasets and to demonstrate their perfor-
mance on typical computer vision problems such as object tracking. Note that,
in general, we abstain from any data set or feature engineering procedures, since
the main purpose is to compare the different learning methods.

4.1 Benchmark Datasets

We first evaluate our proposed MIForests on popular benchmark datasets used in
most studies of multiple-instance learning algorithms, i.e., the Musk1 and Musk2
drug activity datasets proposed by Dietterich [2] and the Tiger, Elephant and
Fox image datasets proposed by Andrews et al. [3]2. For sanity check we also
tested common random forests [13], i.e., ignoring the MIL constraint. For all
learners we used 50 trees with a maximum depth of 20. As cooling schedule we
used a simple exponential function in form of Tt = e−t·C , where t is the current

2
Sample C++ code is available at http://www.ymer.org/amir/software/milforests
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Table 1. Results and comparisons in terms of percent classification accuracy on pop-

ular MIL benchmark datasets. We report the average over 5 runs. Best methods with

the error margin are marked in bold face.

Method Elephant Fox Tiger Musk1 Musk2

RandomForest [13] 74 60 77 85 78

MIForest 84 64 82 85 82

MI-Kernel [3] 84 60 84 88 89
MI-SVM [36] 81 59 84 78 84

mi-SVM [36] 82 58 79 87 84

MILES [7] 81 62 80 88 83

SIL-SVM 85 53 77 88 87
AW-SVM [31] 82 64 83 86 84

AL-SVM [31] 79 63 78 86 83

EM-DD [26] 78 56 72 85 85

MILBoost-NOR [8] 73 58 56 71 61

iteration and the constant C = 1
2 . We determined these settings empirically and

kept them fixed over all experiments.
As can be observed, the performance of the individual approaches varies

highly depending on the data set. The experiments show that MIForests achieve
state-of-the-art performance and are even outperforming several SVM-based ap-
proaches and those based on boosting. Especially for the vision problems, we
are always among the best. Also the näıve RF approach yields surprisingly good
performance, especially on Fox and Musk1 ; however, it cannot take pace with
the performance of its MIForest counterpart. One explanation for this might
be that RFs are less susceptible to noise compared to other learning methods,
which is necessary for the näıve approach [22]. Compared to its most similar
SVM variant (AL-SVM), MIForest outperforms it on two datasets, draws on
one and performs worse on two. Finally, it has to be mentioned that especially
for [31] and [35] better results can be achieved by incorporating prior knowl-
edge into the learners, e.g., how many “real” positives exist inside bags; which
however also holds for MIForests.

4.2 Corel Dataset

Here, we evaluate our proposed methods on the Corel-1000 and Corel-2000 im-
age dataset for region-based image classification. The data set consists of 2000
images with 20 different categories. Each image corresponds to a bag consisting
of instances obtained via oversegmentation. It is thus a typical MIL problem. In
order to allow for fair comparison we used the same data settings and features
as proposed by Chen et al. [7]. For the results we used the same settings as
in our previous experiments. In contrast to most other approaches, we did not
train 20 1-vs.-all classifiers, but trained one multi-class forest, which is usually a
more difficult task. We compare MIForests with MILES, the original algorithm
proposed on this data set [7]. Since MILES is a binary algorithm we trained
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Table 2. Results and comparisons on the COREL image categorization benchmark.

Additionally, we depict the training times in seconds.

Method Corel-1000 Corel-2000 1000 Images 2000 Images

MIForest 59 66 4.6 22.0

MILES 58 67 180 960

20 1-vs.-all MILES classifiers and depict the results in Table 2. As can be seen,
MIForests achieve competitive results for multi-class scenarios, however, being
much faster. We measured the average time on a standard Core Duo machine
with 2.4 Ghz.

4.3 Object Tracking

A recent dominating trend in tracking called “tracking by detection” has shown
to deliver excellent results at real-time speeds. In these methods, usually an
appearance-based classifier is trained with a marked object at the first frame
versus its local background [37]. The object is then tracked by performing re-
detection in the succeeding frames. In order to handle rapid appearance and
illumination changes, recent works, e.g., [38], use on-line self-updating of the
classifiers. However, during this process it is not clear where to select the posi-
tive and negative updates necessary for self-updating. If the samples are selected
wrongly, slight errors can accumulate over time (a.k.a label jitter) and cause
drifting. Recently, Babenko et al. [12] demonstrated that label jitter can be han-
dled by formulating the update process using an on-line MIL boosting algorithm.
Using MIL, the allowed positive update area around the current tracker can be
increased and the classifier resolves the ambiguities by itself, yielding more robust
tracking results. See [12] for a more detailed discussion about the usefulness of
MIL for tracking. In the following, we demonstrate that on-line MIForests can
also give excellent tracking results, outperforming the state-of-the-art tracker
based on boosting.

We focus on tracking arbitrary objects; so there is no prior knowledge about
the object class available except its initial position. We use eight publicly avail-
able sequences including variations in illumination, pose, scale, rotation and ap-
pearance, and partial occlusions. The sequences Sylvester and David are taken
from [39] and Face Occlusion 1 is taken from [40], respectively. Face occlusion
2, Girl, Tiger1,Tiger2 and Coke are taken from [12]. All video frames are gray
scale and of size 320 × 240. To show the real accuracy of the compared track-
ing methods, we use the overlap-criterion of the VOC Challenge [41], which is
defined as Aoverlap = RT ∩RGT /RT ∪RGT , where RT is the tracking rectangle
and RGT the groundtruth. Since we are interested in the alignment accuracy of
our tracker and the tracked object, rather than just computing the raw distance
we measure the accuracy of a tracker by computing the average detection score
for the entire video. Note that values between 0.5 and 0.7 are usually acceptable
results, values larger than 0.7 can be considered as almost perfect.
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The main purpose of the tracking experiments is the comparison of the influ-
ence of the different on-line learning methods. Hence, we use simple Haar-like
features for representation, did not implement any rotation or scale search and
avoid any other engineering methods, although these things would definitely im-
prove the overall results. For MIForests, we used 50 trees with depth 10 and the
same annealing schedule as in the ML experiments. Overall, we generate 500
features randomly. As [12] for all boosting methods, we used 50 selectors with
each 250 weak classifiers which results in a featurepool of size 12500.

In Table 3 we depict detailed results for all tracking sequences compared to
MILBoost [12], SemiBoost (OSB) [42], on-line AdaBoost (OAB)[38] and on-line
random forests (ORF) [21]. As can be seen, MIForests perform best on seven
tracking sequences. Remarkably, we are able to outperform MILBoost, which
is currently known to be amongst the best tracking methods, on 6 out of 8
sequences, draw on 1 and are slightly worse on 1. The resulting tracking videos
can be found in the supplementary material.

Table 3. Tracking results on the benchmark sequences measured as average detection

window and ground truth overlap over 5 runs per sequence. Best performing method

is marked in bold face.

Method sylv david faceocc2 tiger1 tiger2 coke faceocc1 girl

MIForest 0.59 0.72 0.77 0.55 0.53 0.35 0.77 0.71
MILBoost 0.60 0.57 0.65 0.49 0.53 0.33 0.60 0.53

OSB 0.46 0.31 0.63 0.17 0.08 0.08 0.71 0.69

OAB 0.50 0.32 0.64 0.27 0.25 0.25 0.47 0.38

ORF 0.53 0.69 0.72 0.38 0.43 0.35 0.71 0.70

5 Conclusion

In this paper, we presented a new multiple-instance learning method based on ran-
domized trees (MILForest). We define the labels of instances inside positive bags
as random variables and use a deterministic-annealing style procedure in order to
find the true but hidden labels of the samples. In order to account for the increasing
number of data and leverage the usage of our method in streaming data scenarios,
we also showed how to extend MILForests for on-line learning. We demonstrated
that MILForests are competitive to other methods on standard visual MIL bench-
mark datasets while being faster and inherently multi-class. We demonstrated the
usability of the on-line extension on the task of visual object tracking where we
outperformed state-of-the-art methods. In future work, we plan to test our algo-
rithm on other vision applications such as object detection and categorization.
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Abstract. Manifolds are widely used to model non-linearity arising in

a range of computer vision applications. This paper treats statistics on

manifolds and the loss of accuracy occurring when linearizing the mani-

fold prior to performing statistical operations. Using recent advances in

manifold computations, we present a comparison between the non-linear

analog of Principal Component Analysis, Principal Geodesic Analysis,

in its linearized form and its exact counterpart that uses true intrinsic

distances. We give examples of datasets for which the linearized version

provides good approximations and for which it does not. Indicators for

the differences between the two versions are then developed and applied

to two examples of manifold valued data: outlines of vertebrae from a

study of vertebral fractures and spacial coordinates of human skeleton

end-effectors acquired using a stereo camera and tracking software.
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1 Introduction

This paper treats the effect of linearization when using the non-linear analog of
Principal Component Analysis, Principal Geodesic Analysis (PGA, [1]), to esti-
mate the variability in sets of manifold valued data. Until recently, PGA has been
performed by linearizing the manifold, which distorts intrinsic distances, but with
the introduction of more powerful computational tools [2], PGA can now be com-
puted with true intrinsic distances. We show how simple and fast indicators allow
us to approximate the differences between linearized PGA and exact PGA with
true intrinsic distances and evaluate the effect of the linearization.

As a test case for the indicators, we perform a comparison between two man-
ifold valued datasets: outlines of vertebrae from a study of vertebral fractures,
and human skeleton end-effectors in spatial coordinates recorded using a stereo
camera and tracking software. We will show that linearized PGA provides a rea-
sonable approximation in only one of the experiments and that the indicators
allow us to predict this before doing the time-intensive computation of exact
PGA with intrinsic distances.
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1.1 Motivation

A wide variety of problems in computer vision possess non-linear structure and
are therefore naturally modeled using Riemannian geometry. In diffusion tensor
imaging [3,4,5], for image segmentation [6] and registration [7], shape spaces [8],
and human motion modeling [9,10], Riemannian manifolds have been used to
enforce consistency in data, provide dimensionality reduction, and define more
accurate metrics. The wide applicability of manifolds in modeling problems has
created the need for statistical tools for manifold data.

Generalizing linear statistical operations to manifolds [1,11,12,13] provides
examples of the theoretical and computational problems arising when departing
from familiar Euclidean spaces. The tools developed when pursuing this have
been used successfully for a range of computer vision applications, and the area
is the subject of active research [2,13]. Depending on the level of approximation
used in the computations, manifold statistics can be hard to carry out in practice
because operations such as finding distances and performing optimization do not
admit the closed-form solutions often found in Euclidean spaces [1].

One way of doing manifold statistics is projecting the set of manifold valued
data points to the tangent space of a mean point of the manifold. The vector
space structure of the tangent space brings back convenient Euclidean statis-
tics, but the distortion of the distances between the data points inherent in the
linearization may however lead to sub-optimal solutions to the statistical prob-
lems. In contrast to this, some statistical operations can be carried out with true
intrinsic manifold distances giving a true picture of the data [2,13]. This, how-
ever, often comes at the cost of increased computational complexity and requires
conditions on the locality of data.

Because of the trade-offs between convenient linearization and exact modeling,
we seek for ways to evaluate the extent of the distortion between the linearized
data and true manifold data; we are interested in determining if performing
statistics with intrinsic distances offers significant advantages over the linearized
approach. Such knowledge has the potential of saving substantial computation
time and to improve results of statistical operations.

1.2 Related Work

The mathematical aspects of manifolds are covered extensively in the literature
with [14,15] providing good references. Numerical and computational aspects of
interest in a general setting are considered in the theoretical papers [16,17] while
more specific shape related applications are proposed in [18,19,20].

Both the mathematical community, e.g. [11], and more applied fields, com-
puter vision in particular [1,12], have worked with different aspect of statistics
on manifolds. A recent wave of interest by statisticians [21,13] has created new
methods with strong links to tools developed in computer vision [13].

The manifold generalization of linear PCA, PGA, was first introduced in [22],
but it was formulated in the form most widely used in [1]. It has subsequently
been used for several applications. To mention a few, the authors in [1,4] study
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variations of medial atoms, [23] uses a variation of PGA for facial classifica-
tion, [24] presents examples on motion capture data, and [20] applies PGA to
vertebrae outlines. The algorithm presented in [1] for computing PGA with lin-
earization has been most widely used. In contrast to this, [24] computes PGA as
defined in [22] without approximations, but only for a specific manifold, the Lie
group SO(3). By using ODE formulations of geodesics and taking derivatives, [2]
provides algorithms for computing PGA without approximations on wide classes
of manifolds.

Geodesic PCA (GPCA, [13,21]) is in many respects close to PGA but opti-
mizes for the placement of the center point and minimizes projection residuals
along geodesics instead of maximizing variance in geodesic subspaces. GPCA
uses no linear approximation, but it is currently only computed on spaces where
explicit formulas for geodesics exist and on quotients of such spaces.

1.3 Content and Outline

In the next section, we discuss the benefits of using manifolds in modeling,
manifold valued statistics, and linearization. Then, in section 3, we consider in
detail the specific case of Principal Geodesic Analysis and use synthetic examples
to explain the differences between linearized PGA and exact PGA with true
intrinsic distances. We progress to developing indicators of these differences,
and, in section 4, we compare linearized and intrinsic PGA on real-life examples
of manifold valued datasets and analyze the power of the indicators. The paper
thus contributes by

(1) developing simple and fast indicators of the difference between linearized
PGA and exact PGA that show the effect of linearization,

(2) giving examples of the differences between linearized PGA and exact PGA
on real-life datasets from computer vision,

(3) and showing the power of the indicators when applied to the datasets.

2 Manifolds and Manifold Valued Statistics

The interest in manifolds as modeling tools arises from the non-linearity apparent
in a variety of problems. We will in the following exemplify this by considering
the pose of a human skeleton captured by e.g. a tracking system or motion
capture equipment. Consider the position of a moving hand while the elbow and
the rest of the body stay fixed. The hand cannot move freely as the length of the
lower arm restricts it movement. Linear vector space structure is not present; if
we multiply the position of the hand by a scalar, the length of the arm would in
general change in order to accommodate the new hand position. Even switching
to an angular representation of the pose of the elbow joint will not help; angles
have inherent periodicity, which is not compatible with vector space structure.

Though the space of possible hand positions is not linear, it has the structure
of a manifold since it possesses the property that it locally can be approximated
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by a vector space. Furthermore, we can, in a natural way, equip it with a Rieman-
nian metric [14], which allows us to make precise notions of length of curves on
the space and intrinsic acceleration. This in turns defines the Riemannian man-
ifold equivalent of straight lines: geodesics. The length of geodesics connecting
points defines a distance metric on the manifold.

2.1 Benefits from Modeling Using Manifolds

The main advantages of introducing manifolds in modeling are as follows: con-
sistency in representation, dimensionality reduction, and accuracy in measure-
ments. Consistency ensures the modeled object satisfies the requirements making
up the manifold; when moving the position of the hand on the manifold, we are
certain the length of the lower arm is kept constant. Such requirements reduce
the number of degrees of freedom and hence provide dimensionality reduction.
Consistency and dimensionality reduction are therefore closely linked.

Accuracy is connected to the distance measure defined by the Riemannian
metric. A reasonable measure of the distance between two positions of the hand
will be the length of the shortest curve arising when moving the hand between
the positions. Such a curve will, in this example, be a circular arc, and, in the
manifold model, the distance will be the length of the arc. In the vector space
model, however, the distance will be the length of the straight line connecting the
hand positions and, hence, will not reflect the length of an allowed movement of
the hand. The manifold model therefore gives a more accurate distance measure.

2.2 Linearizing the Manifold

By linearizing the manifold to the tangent space of a mean point, we can in many
applications ensure consistency, but not accuracy, in statistical operations. Let
M be a manifold and {x1, . . . , xN} a dataset consisting of points on the manifold.
An intrinsic mean [11] is defined as a solution to the optimization problem

μ = argminq

N∑

i=1

d(xi, q)2 (1)

with d(xi, q) denoting the manifold distance between the ith data point and the
mean candidate q.

Each point p of a manifold has a connected linear space called the tangent
space and denoted TpM . The dimension of TpM is equal to the dimension of the
manifold, which, as in the vector space case, specifies the number of degrees of
freedom. Vectors in the tangent space are often mapped back to the manifold
using the exponential map, Expp, which maps straight lines trough the origin of
TpM to geodesics on M passing p.

If we consider the tangent space of an intrinsic mean, TμM , we can represent
xi by vectors wi in TμM such that Expμwi = xi.1 The map that sends xi ∈ M
1 See Figure 1 for an example of a 2-dimensional manifold with sampled elements of

the tangent space of the mean and corresponding points on the manifold.
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to wi ∈ TμM is called the logarithm map and denoted Logμ. The vector space
structure of TμM allows us to use standard statistical tools on {w1, . . . , wN}.
We could for example infer some distribution in TμM , sample a vector v from
it, and project the result back to a point p on the manifold so that p = Expμv.
It is important to note that consistency is ensured in doing this; p will be on the
manifold and hence satisfy the encoded requirements. Turning to the example
of hand positions, we have found a consistent way of sampling hand positions
without violating the fixed length of the lower arm.

The above procedure can be seen as a way of linearizing the manifold around
the intrinsic mean μ because the tangent space TμM provides a first order ap-
proximation of the manifold around μ. Yet, distances between vectors in TμM
do not always reflect the manifold distances between the corresponding points
on the manifold: distances between wi and the origin of TμM equal the distances
d(xi, μ), but the inter-point distances d(xi, xj) are not in general equal to the
tangent space distances‖wi −wj‖. Accuracy may therefore be lost as a result of
the approximation. In short, linearization preserves consistency but may destroy
accuracy.

3 Principal Geodesic Analysis

Principal Component Analysis (PCA) is widely used to model the variability of
datasets of vector space valued data and provide linear dimensionality reduction.
PCA gives a sequence of linear subspaces maximizing the variance of the projection
of the data or, equivalently, minimizing the reconstruction errors. The kth subspace
is spanned by an orthogonal basis {v1, . . . , vk} of principal components vi.

PCA is dependent on the vector space structure and hence cannot be performed
on manifold valued datasets. Principal Geodesic Analysis was developed to over-
come this limitation. PGA centers its operations at a point μ ∈M with μ usually
being an intrinsic mean of the dataset {x1, . . . , xN}, and finds geodesic subspaces,
which are images S = ExpμV of linear subspaces V of the tangent space TμM .
A projection operator πS is defined by letting πS(x) be a point in S closest to x.
The kth geodesic subspace Sk is then given as Expμ(Vk), Vk = span {v1, . . . , vk},
where the principal directions vi are given recursively by

vi = argmax‖v‖=1,v∈V ⊥
i−1

1
N

N∑

j=1

d(μ, πSv (xj))2 ,

Sv = Expμ(span (Vi−1, v)) .

(2)

The term being maximized is the sample variance, the expected value of the
squared distance to μ. PGA therefore extends PCA by finding geodesic subspaces
in which variance is maximized.

Since the projection πSk
(x) is hard to compute, PGA is traditionally approx-

imated by linearizing the manifold. The data x1, . . . , xN are projected to TμM
using Logμ, and regular PCA is performed on wi = Logμxi. Equation (2) then
becomes
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vi ≈ argmax‖v‖=1,v∈V ⊥
i−1

1
N

N∑

j=1

(

〈wj , v〉2 +
k−1∑

l=1

〈
wj , v

l
〉2

)

. (3)

We can define a normal distribution N in TμM using the result of the PCA
procedure, and, in doing so, we have performed the procedure described in sec-
tion 2.2. We will refer to PGA with the approximation as linearized PGA. PGA
as defined by (2) without the approximation will be referred to as exact PGA.
Advances in manifold computations allow exact PGA to be computed on the Lie
group SO(3) [24] and, more recently, on wide classes of manifolds [2].

Replacing maximization of the sample variances d(μ, πSv (xj))2 by minimiza-
tion of the squared reconstruction errors d(xj , πSv (xj))2, we obtain another man-
ifold extension of PCA and thus an alternate definition of PGA:

vi = argmin‖v‖=1,v∈V ⊥
i−1

1
N

N∑

j=1

d(xj , πSv (xj))2 . (4)

In contrast to vector space PCA, the two definitions are not equivalent. It can be
shown that, in some cases, solutions to (2) will approach parts of the manifold
where the cost function is non differentiable, a problem we have not encountered
when solving for (4). We are currently working on a paper giving a theoretical
treatment of this phenomenon and other differences between the definitions. The
latter formulation is chosen for Geodesic PCA to avoid similar instabilities of
variance maximization [13]. In correspondence with this, we will use (4) in the
rest of the paper, but we stress that this choice is made only to avoid instabilities
in (2) and that all computations presented can be performed using the former
definition with only minor changes to the optimization algorithms [2].

3.1 Linearized PGA vs. Exact PGA

Computing the projection map πS is particularly time-intensive causing the com-
putation of exact PGA to last substantially longer than linearized PGA. To give
an example, computing linearized PGA for one of the datasets later in this pa-
per takes 5 seconds with a parallelized Matlab implementation, and computing
exact PGA for the same example requires approximately 10 minutes. This time
penalty makes it is worth considering the actual gain of computing exact PGA.
We will in this section give examples of low dimensional manifolds on which it
is possible visually to identify the differences between the methods.

We consider surfaces embedded in R
3 and defined by the equation

Sc = {(x, y, z)|cx2 + y2 + z2 = 1} (5)

for different values of the scalar c. For c > 0, Sc is an ellipsoid and equal to the
sphere S

2 in the case c = 1. The surface S0 is a cylinder and, for c < 0, Sc is an
hyperboloid. Consider the point p = (0, 0, 1) and note that p ∈ Sc for all c. The
curvature of Sc at p is equal to c. Note that in particular for the cylinder case
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Fig. 1. TpS−2 with sampled points and first principal components (blue exact PGA,

green linearized PGA) (left) and S−2 with projected points and first principal compo-

nents (blue exact PGA (2), green linearized PGA) (right)

the curvature is zero; the cylinder locally has the geometry of the plane R
2 even

though it informally seems to curve.
We evenly distribute 20 points along two straight lines through the origin of

the tangent space TpSc, project the points from TpSc to the surface Sc, and per-
form linearized and exact PGA. Since linearized PCA amounts to Euclidean PCA
in TpSc, the first principal component divides the angle between the lines for all
c. In contrast to this, the corresponding residuals and the first principal compo-
nent found using exact PGA are dependent on c. Table 1 shows the angle between
the principal components found using the different methods, the average squared
residuals and differences between squared residuals for different values of c. Let
us give a brief explanation of the result. The symmetry of the sphere and the
dataset causes the effect of curvature to even out in the spherical case S1. The
cylinder S0 has local geometry equal to R

2 which causes the equality between
the methods in the c = 0 case. The hyperboloids with c < 0 are non-symmetric
causing a decrease in residuals as the first principal component approaches the
hyperbolic axis. This effect increases with curvature causing the the first princi-
pal component to align with this axis for large negative values of c.

It is tempting to think that increasing absolute curvature causes increasing
differences between the methods. Yet, redoing the experiment with the lines ro-
tated by π/4 making them symmetric around the x and y axes will produce
vanishing differences. Curvature in itself, therefore, does not necessarily imply

Table 1. Differences between methods for selected values of c

c: 1 0.5 0 -0.5 -1 -1.5 -2 -3 -4 -5
angle (◦): 0.0 0.1 0.0 3.4 14.9 22.2 24.8 27.2 28.3 28.8
lin. sq. res.: 0.251 0.315 0.405 0.458 0.489 0.508 0.520 0.534 0.539 0.541
exact sq. res.: 0.251 0.315 0.405 0.458 0.478 0.482 0.485 0.489 0.491 0.492
diff (%): 0.0 0.0 0.0 0.1 2.3 5.1 6.7 8.4 8.9 9.0
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large differences, and the actual differences are hence dependent on both curva-
ture and the dataset.

3.2 The Difference Indicators

The projection πS is in (3) approximated using the orthogonal projection in the
tangent space TμM . We let τS denote the difference in residuals arising when
using the two projections and aim at approximating τS to give an estimate of the
gain in precision obtained by using true projections. The subspaces optimizing
(4) and (3) will in general differ due to the different projection methods and the
fact that residuals are approximated by tangent space distances in (3). We let ρ
denote the difference in residuals between the projection of the data to the two
subspaces, and we aim at approximating ρ to indicate the gain in accuracy when
computing exact PGA.

We start by giving precise definitions for τS and ρ before deriving the indica-
tors τ̃S and σ of their values. The term indicators is used to emphasize expected
correlation between the values of e.g. τS and the indicator τ̃S but with no direct
expression for the correlation.

Assume v1, . . . , vk−1 are principal components and let v ∈ TμM be such that
v1, . . . , vk−1, v constitues an orthonormal basis. Let the geodesic subspace Sv

be given by Expμspan {v1, . . . , vk−1, v}, and let wj = Logμxj for each element
of the dataset {x1, . . . , xN}. We denote by π̂Sv (xj) the point on the manifold
corresponding to the orthogonal tangent space projection of wj , i.e.

π̂S(xj) = Expμ

(

〈wj , v〉 v +
k−1∑

l=1

〈
wj , v

l
〉
vl

)

, (6)

and define the average projection difference

τS =
1
N

N∑

j=1

(
d(xj , π̂Sv(xj))2 − d(xj , πSv (xj))2

)
. (7)

Let now v be an exact PGA principal geodesic component computed using (4)
and let v̂ be a linearized PGA principal component computed using (3). We let
Sv and Sv̂ denote the geodesic subspaces corresponding to v and v̂. The average
residual difference is then given by

ρ =
1
N

N∑

j=1

(
d(xj , πSv̂

(xj))2 − d(xj , πSv(xj))2
)
. (8)

Note that both τS and ρ are positive since πSv minimizes residuals and v mini-
mizes (4).

3.3 The Projection Difference

Since πSv (xj) is the point in Sv closest to xj , the differences expressed in each
term of (7) measure the difference between f(π̂Sv (xj)) and f(yj) with yj ∈ Sv
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minimizing the map f(y) = d(xj , y)2. The gradient ∇yf vanishes in such a
minimum leading us to approximate the difference by the norm of the gradient
at π̂Sv (xj). The gradient is readily evaluated since it is given by the component
of −2Logπ̂Sv (xj)(xj) in the tangent space of Sv [11]. We use this to approximate
τS by

τSv ≈ τ̃Sv =
2
N

N∑

j=1

‖∇π̂Sv (xj)f‖ (9)

and note that each term of the sum, and therefore the entire indicator τ̃Sv , is
inexpensive to compute.

3.4 The Residual Difference

We now heuristically derive an indicator σ that is correlated with ρ. The cor-
relation will be confirmed later by the experiments. Assume for a moment that
distances in the tangent space TμM approximate the true manifold distances
well. The residual sums 1

N

∑N
j=1 d(xj , πSv̂

(xj))2 and 1
N

∑N
j=1 d(xj , πSv(xj))2 will

then be close to identical since v is chosen to minimize the latter sum, and v̂
is chosen to minimize the sum of tangent space residuals. The difference ρ will
therefore be close to zero. Conversely, assume that distances in the tangent space
differ greatly from the true manifold distances. On constant curvature spaces like
the sphere S1, these distance differences will generally be uniformly distributed
causing the linearized principal component v̂ to be close to v and ρ therefore
close to zero. On the contrary, the distance differences will vary on spaces with
non-constant curvature like S−1 where v̂ in general is far from v causing ρ to
be large. We therefore expect ρ to be correlated with the standard deviation σ
of the differences between the tangent space residual approximations and the
actual orthogonal projection residuals,

σ =

√
√
√
√ 1
N

N∑

j=1

(
‖wj − Logμ(π̂Sv̂

)‖ − d(xj , π̂Sv̂
(xj))− μ

)2

, (10)

with μ the mean value of the scalars ‖wj −Logμ(π̂Sv̂
)‖− d(xj , π̂Sv̂

(xj)). We use
σ, which again is fast to compute, to indicate the size of ρ.

4 Experiments

We present experiments on the synthetic data of section 3.1 and on two real-life
datasets for two purposes: the experiments will show examples where computing
exact PGA results in increased accuracy as well as examples where linearized
PGA performs well, and the power of the indicators developed in section 3 will
be explored.

When investigating the correlation between the indicator τ̃Sv̂
and the projec-

tion difference τSv̂
, we let v̂ be the first principal component computed using

linearized PGA. In addition, we compare the residual difference ρ with the in-
dicator σ.
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4.1 Synthetic Data

We test the indicators on the manifolds Sc with the synthetic data described in
section 3.1. Figure 2 shows τS as a function of the indicator τ̃Sv̂

and ρ as a func-
tion of the indicator σ for each value of c. For both graphs, we see correlation
between the indicators and actual differences. For c = 1 and c = 0.5, σ is rela-
tively high compared to ρ stressing that the indicators only give approximations
and that, if full precision is required, exact PGA should be computed.
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Fig. 2. Synthethic data: Projection difference τSv̂ as a function of the indicator τ̃Sv̂

with the broken line fitted to the points (left) and residual difference ρ as a function

of the indicator σ with the broken line fitted to the points (right)

4.2 Vertebrae Outlines

In this experiment, we consider outlines of vertebrae obtained in a study of verte-
bral fractures. The dataset of 36 lateral X-rays have been manually annotated by
medical experts to identify the outline of the vertebra of each image. To remove
variability in the number and placement of points, a resampling is performed
to ensured constant inter-point distances. With this equidistance property in
mind, the authors in [20] define a submanifold of R

2n on which the outlines
naturally reside. We give a brief review of the setup but refer to the paper for
details. The equidistance constraint is encoded using a map F : R

2n → R
n−2

with components

F i(P1, ..., Pn) = di+2,i+1 − di+1,i, i = 1, .., n− 2 (11)

with n the number of points and di,j = (xi − xj)2 + (yi − yj)2 the squared
distances between points Pi and Pj . The constraint is satisfied for a vertebra
outline c = {P1, . . . , Pn} if F (c) = 0. An additional constraint is added to
remove scaling effects by ensuring the outline reside on the unit sphere. The
preimage An = F−1(0) is then a submanifold of R

2n, the space of equidistant
vertebra outlines. We choose 8 random outlines from the dataset and perform
linearized PGA and exact PGA. The experiment consists of 20 such selections,
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Fig. 3. Manually annotated vertebrae outline (left) and resampled outline (right)
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Fig. 4. Vertebrae outlines: Projection difference τSv̂ as a function of the indicator τ̃Sv̂

(left) and residual difference ρ as a function of the indicator σ (right)

and, for each selection, the entities τSv̂
, τ̃Sv̂

, ρ and σ are computed and plotted
in Figure 4. Though we visually see correlation between the indicators and their
respective associated values in the figures, not only are the correlations low, as
the indicators and their values have significantly different orders of magnitude,
but in reality, both the indicators and the associated values are in the order of
the computation tolerance, i.e close to zero from a numerical point of view. As
small indicators should imply small values, we can conclude that the indicators
works as required and that, for the example of vertebra outlines, doing statistics
on the manifold An is helpful in keeping the data consistent, i.e. the equidistance
constraint satisfied, but provides little added accuracy.

4.3 Human Poses

In this experiment, we consider human poses obtained using tracking software.
A consumer stereo camera2 is placed in front of a test person, and the tracking
2 http://www.ptgrey.com/products/bumblebee2/
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Fig. 5. Camera output superimposed with tracking result (left) and a tracked pose

with 11 end-effectors marked by thick dots (right)
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Fig. 6. Human poses: Projection difference τSv̂ as a function of the indicator τ̃Sv̂ (left)

and residual difference ρ as a function of the indicator σ (right)

software described in [10] is invoked in order to track the pose of the persons up-
per body. The recorded poses are represented by the human body end-effectors;
the end-points of each bone of the skeleton. The placement of each end-effector
is given spatial coordinates so that an entire pose with k end-effectors can be
considered a point in R

3k. To simplify the representation, only the end-effectors
of a subset of the skeleton are included, and, when two bones meet at a joint,
their end-points are considered one end-effector. Figure 5 shows a human pose
with 11 end-effectors marked by thick dots.

The fact that bones do not change length in short time spans gives rise to a
constraint for each bone; the distance between the pair of end-effectors must be
constant. We incorporate this into a pose model with b bones by restricting the
allowed poses to the preimage F−1(0) of the map F : R

3k → R
b given by

F i(x) = ‖ei1 − ei2‖2 − l2i , (12)

where ei1 and ei2 denote the spatial coordinates of the end-effectors and li the
constant length of the ith bone. In this way, the set of allowed poses constitute
a 3k − b-dimensional implicitly represented manifold.
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We record 26 poses using the tracking setup, and, amongst those, we make
20 random choices of 8 poses and perform linearized PGA and exact PGA. For
each experiment, τSv̂

, τ̃Sv̂
, ρ, and σ are computed and plotted in Figure 6. The

indicators provide a good picture of the projection and residual differences, which
are significantly greater than for the vertebra experiment. The indicators and
the corresponding true values are now at the same order of magnitude, and the
correlation between the indicators and the values they correspond to is therefore
significant. The maximal increase in average squared residuals is 1.53 percent
with individual squared point residuals changing up to 30.7 percent.

5 Conclusion

In this paper, we have explored the differences between exact PGA and its widely
used simplification, linearized PGA. We have developed simple indicators of the
loss of accuracy when using the linearized PGA instead of exact PGA. As shown
on real-life examples of manifold valued datasets, these indicators provide mean-
ingful insight into the accuracy of the linearized method. The experiments, in
addition, show that linearization is in some cases a good and fast approximation,
but exact PGA offers better accuracy for other applications.

We are currently working on deriving formal arguments for the correlation
between σ and ρ. In the future, we plan to apply the developed indicators to the
many uses of PGA, which have previously been computed using the linearized
approach, to test whether exact PGA can provide significant increases in ac-
curacy and hence more precise modeling. In order to make better decisions on
whether to use linearized or exact PGA, it will be useful to find thresholds for
the values of τ̃Sv̂

and σ dependent on the sought for precision. Future research
will hopefully lead to such thresholds.
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Abstract. In this work we propose a hierarchical approach for labeling

semantic objects and regions in scenes. Our approach is reminiscent of

early vision literature in that we use a decomposition of the image in

order to encode relational and spatial information. In contrast to much

existing work on structured prediction for scene understanding, we by-

pass a global probabilistic model and instead directly train a hierarchical

inference procedure inspired by the message passing mechanics of some

approximate inference procedures in graphical models. This approach

mitigates both the theoretical and empirical difficulties of learning proba-

bilistic models when exact inference is intractable. In particular, we draw

from recent work in machine learning and break the complex inference

process into a hierarchical series of simple machine learning subproblems.

Each subproblem in the hierarchy is designed to capture the image and

contextual statistics in the scene. This hierarchy spans coarse-to-fine re-

gions and explicitly models the mixtures of semantic labels that may be

present due to imperfect segmentation. To avoid cascading of errors and

overfitting, we train the learning problems in sequence to ensure robust-

ness to likely errors earlier in the inference sequence and leverage the

stacking approach developed by Cohen et al.

1 Introduction

The challenging problem of segmenting and labeling an image into semantically
coherent regions can be naturally modeled as a hierarchical process to interpret
the scene [23]. Typically, a graphical model is used where each node represents
the labels present in some region of the image with dependencies that tie to-
gether multiple regions [3,6]. The nodes at the bottom of the hierarchy provide
low-level discriminative information, while nodes higher up resolve ambiguities
using global information. While these representations seem intuitive, learning
the optimal components of the model is practically intractable due to complex
dependencies. Furthermore, even with simplified representations exact inference
remains intractable [13] and prohibits learning these models. Although training
with exact inference is infeasible, a natural alternative is to use approximate in-
ference. However, as we discuss in the next section, these approximations during
learning can lead to undesirable behavior [16]. Therefore, we move away from a
representation for which training is intractable and toward an approach which
relies on effective components that are simple to train.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part VI, LNCS 6316, pp. 57–70, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. A synthetic example of our hierarchical labeling process. Given an image and its

hierarchical decomposition of regions, we sequentially predict the proportion of labels

present (drawn in the dashed boxes) using image features and previous predictions.

In this work, we model low-level information combined with higher-order rea-
soning using a hierarchical representation. Our approach is similar to previous
structured models with the key difference that we no longer attempt the in-
tractable task of finding the mode of the joint posterior distribution using a
generic approximate inference algorithm. Instead we simplify the problem into
a series of subproblems that are specifically trained to perform well for our task.
That is, we train these subproblems to model the relations present in the image
so that the overall prediction is correct. One major advantage of this approach
is that test-time structured prediction is simply a sequence of predictions. Our
contribution is a novel hierarchical algorithm for labeling semantic regions.

An idealized example of our approach is depicted in Fig. 1. We represent the
inference process as a series of predictions along the hierarchy from coarse to
fine. Given an image, we first create a hierarchy of regions that range from very
large regions in the image (including the image itself as one region at the top)
down to small regions (e.g., superpixels) at the bottom. We do not rely on each
region to contain one label; instead we explicitly model the label proportions
in each region. Starting with the entire image, we train a classifier1 to predict
the proportions of labels in the image. As we further discuss in Sect. 3, these
predictions are passed to the child level and are used to train another classifier

1 In this work, we refer to a classifier as an algorithm that predicts a distribution over

labels, instead of a single label.



Stacked Hierarchical Labeling 59

Fig. 2. Hierarchy analysis for two images. From left to right: input image with ground

truth overlaid, the segmentation maps for L2 (second level), L4, L6, L8, and most likely

label for each region in L8.

over the child subregions. The procedure is repeated until the leaves are reached.
Since we model label proportions over regions: we are robust to imperfect seg-
mentation, we can use features defined over large regions, and we do not make
hard commitments during inference.

Figure 2 illustrates four levels from the hierarchy on two images from the
Stanford Background Dataset (SBD) [8]. Ideally the leaves in the hierarchy are
regions that contain only one label, but as Fig. 2 also illustrates, this assumption
is not always true, especially for more complex scenes. With our hierarchical ap-
proach, we demonstrate state-of-the-art performance on SBD and MSRC-21 [26]
with the added benefit of drastically simpler computations over global methods.

2 Background

2.1 Motivation

Random field models in vision have proven to be an effective tool and are also at-
tractive due to their convex nature (assuming no latent states) [19]. Furthermore,
although exact inference is NP-hard over these models, there has been much
recent progress towards efficient approximate inference techniques [12,14]. How-
ever, correctly optimizing these convex models requires exact inference during
learning. Unfortunately, when exact inference cannot be performed, converging
to the optimum is no longer guaranteed [16]. For example, Kulesza and Pereira
[16] demonstrate a case where learning with bounded approximate inference can
prevent the learning procedure from ever reaching a feasible zero empirical risk
solution. Similarly in another example, they show that learning with loopy belief
propagation can diverge.

As we are forced to use approximate inference during learning, the learned
model (e.g., parameters) is tightly tied to the chosen inference procedure in both
theory [29] and in practice [17]. However, learning the best model for the chosen
inference procedure is often still difficult. Due to this fundamental limitation
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when training with approximate inference techniques, we move away from the
global probabilistic interpretation used in hierarchical random field formulations,
such as [18]. Instead, in a manner inspired by inference procedures over graphical
models, we propose a novel method using iterative classifiers that are trained to
encode interactions between levels but correspond to no explicit joint probability
distribution.

2.2 Related Work

Our hierarchical formulation resembles early directed graphical models from
Bouman and Shapiro [3] and Feng et al. [6] for scene analysis. Whereas these
approaches rely on tree-based interactions to enable tractable learning, we no
longer train a graphical model and are not restricted in the types of contextual
cues that we can use. Instead we focus on maximizing what we ultimately care
about: predicting correct labelings. This idea is analogous to the difficult and
non-convex problem of maximizing the marginals [11]. The notion of training
the inference algorithm to make correct predictions is also similar to Barbu [2]
for image denoising, in which a model is trained knowing that an inaccurate, but
fast, inference algorithm will be used. In our approach we break up the complex
structured prediction problem into a series of simpler classification problems, in-
spired by recent works in machine learning focused on sequence prediction [4,5].
In the vision setting, this notion of a series of classification problems is similar
to Auto-context [27], in which pixel classifiers are trained in series using the
previous classifier’s predictions with pairwise information to model contextual
cues. In our work, we go beyond typical site-wise representations that require
entities to contain one label. Because we model label proportions, we can use
features defined over large regions to better represent the context, rather than
an aggregation of site-wise labels. Furthermore, the hierarchy provides spatial
support context between levels and naturally propagates long-range interactions
that may be hard to capture with pairwise interactions. We build on the for-
ward sequential learning approach used and analyzed in [28,10,25] to prevent
cascading errors and leverage the sequential stacking idea to minimize cascaded
overfitting [30,4,15].

3 Stacked Hierarchical Labeling

3.1 Overview

Given an image and its hierarchical region representation, we train a series of
classifiers, from coarse to fine, to predict the label proportions in each region in
the level. After a level has been trained, the predicted labels are passed to the
child regions to be used as features that model contextual relationships. Figure 3
illustrates (on test data) how the probabilities for the respective labels increase
and become more precise along three levels in the lower half of the hierarchy. Our
approach is robust to the quality of the segmentation at each level as we explicitly
model that regions may contain multiple labels. Therefore, depending on how
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Fig. 3. Refinement in label predictions down the hierarchy. Row 1: Test image (with

ground truth overlaid) and predictions for three levels in the hierarchy. Rows 2-4: The

respective level’s label probability maps, where white indicates high probability.

the hierarchy is constructed, our algorithm will learn how regions for different
labels are split between levels. We create the hierarchy using the technique from
Arbelaez et al. [1,22].

The next subsections describe each component of the training procedure. We
first introduce the notations and describe the basic classifier used at each level
(Sect. 3.2). We then describe how predictions from a parent region are incorpo-
rated as features (Sect. 3.3) and how classifiers are trained across levels in the
hierarchy to finalize the procedure (Sect. 3.4).

3.2 Modeling Heterogeneous Regions

We denote by K the set of possible labels, L the number of levels in the hierarchy,
T the set of training images, II the image data for image I, RI its set of regions
in the hierarchy, and RI,� the set of regions at level �. For each region r ∈ RI ,
we define Yr to be the random variable that represents the label of the region.
For each level �, we train a probabilistic classifier to match the empirical label
distribution of r ∈ RI,� across all training images. For its simplicity, we use a
generalized maximum entropy classifier qφ�

, where φ� : R
d → R is a function

that defines the distribution:

qφ�
(Yr = a|II) =

exp(φ�(fI(r, a)))
∑

k∈K exp(φ�(fI(r, a)))
, (1)
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Algorithm 1. train maxent

Inputs: Dataset of region features with true distributions D = {(fI(r, k), pI,r,k)}I,r,k

where pI,r,k = pI(Yr = k), Step size αt, Number of iterations T .

φ = 0

for t = 1 . . . T do
A = ∅
for (fI(r, k), pI,r,k) ∈ D do

if βI(r, k) �= 0 then
A← A∪ {(fI(r, k), βI(r, k))}

end if
end for
ht = train multi class regressor(A)

φ← φ + αtht // (or, line-search instead of constant αt)

end for
Return: MaxEnt classifier φ

and fI : RI × L → R
d are the feature functions that extract (label-specific)

features describing the region from image data II , such a texture and color (see
Appendix). In the following subsection, we discuss how predictions from parent
regions are appended to this vector to model context.

At each level, we match the distributions by minimizing the cross entropy of
the empirical label distributions p and the classifier q, which reduces to:

φ∗� = arg max
φ�

∑

I∈T

∑

r∈RI,�

∑

k∈K
pI(Yr = k) log qφ�

(Yr = k|II). (2)

This is a standard maximum log-likelihood estimation where the samples are
weighted by pI(Yr = k), i.e., the number of pixels labeled k in the region di-
vided by its area. The optimization may be performed through standard convex
optimization (e.g., gradient ascent) and provides competitive performance in our
experiments; however, we found using a non-linear model further improves per-
formance. We train a non-linear model in a boosting manner through Euclidean
functional gradient ascent [24]; the following describes the optimization but it is
not specific to our hierarchical procedure.

The functional gradient of the inner term in (2) is βI(r, k)δfI (r,k), where

βI(r, k) = pI(Yr = k)− qφ�
(Yr = k|II), (3)

and δx is the Dirac delta function centered at feature value x. As a form of
boosting, we train a new function h to match the functional gradient residu-
als and add it to φ. The residuals indicate how to update the function when
evaluated at the respective feature locations so that the predicted and ground
truth distributions match. We repeat this procedure until convergence and then
return φ =

∑
t αtht, where αt is the step size. We refer to [24] for more details.

The training algorithm is given in Algorithm 1. In our experiments we train a
separate Random Forest for each class as the multi-class regressor h.
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Cspatial Cglobal

Fig. 4. Illustration of the context features described in Sect. 3.3. Gray indicates the

pixels that are being used to compute the feature.

Partial Labelings. Ideally all pixels in the training set are assigned a label;
however, most datasets contain many images with unlabeled pixels (such as
MSRC-21). We assume that if a class is labeled in the image, then all instances of
that class are labeled in that image. In the case a region r is partially labeled, we
propose for the classifier to match the proportions of the classes actually present
(K̂r) and to not penalize the predictions made for the classes not present (K̄r), as
the unlabeled pixels may actually contain classes from K. We do this by treating
(2) as a negative loss function and by only penalizing the terms with labels in K̂r

and ignoring the remaining labels, i.e., setting pI(Yr = a) = 0, ∀a ∈ K̄r discards
losses over the labels not present.

3.3 Context Features

In addition to the image features computed at each level, we need to define the
information that is passed from one classifier to the next. It is this information
that ties together the individual classifiers trained at each level to yield the global
image interpretation generator. Intuitively, using the label distribution predicted
by the parent’s classifier will make training the child’s level distribution predic-
tor an easier problem. At each level, we receive probabilities from the parent
level regions. Since this information is of variable length per image, specifically
|RI,�−1| × |K|, we need to summarize it into a fixed-length vector that can be
used as input to a generic classifier. For each region in R�, we define three types
of contextual features that are computed using the predictions from the regions
in R�−1. For the first, each region simply uses its parent region’s label predic-
tions (Cparent ∈ R

|K|). The next two are illustrated in Fig. 4. The second is the
weighted average of the neighboring region’s probabilities. The weights are the
areas of the region’s dilated mask that overlaps with the respective neighbors. In
order to describe spatial layout, we compute the averages above and below the
region separately (Cspatial ∈ R

2|K|). The third is the weighted average (by size)
of the probabilities across all regions in the parent level (Cglobal ∈ R

|K|); this
feature is duplicated for all regions in the current level. These context features
are then appended to the respective region’s fI image-based feature vector.

3.4 Hierarchical Stacking

The MaxEnt classifier described in Sect. 3.2 is the basic component used at each
level in the hierarchy. Collectively training the classifiers is prone to two problems
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Fig. 5. Example of test-time error recovery. Left: test image with ground truth overlaid.

Top: segmentation maps for L5, L6, L7. Bottom: most likely label per region.

of cascading errors. First, if we train each level’s classifier independently using
the parent regions’ ground truth, we will have cascading errors at test-time due
each classifier being trained with perfect contextual information. Therefore, we
have to train the hierarchical procedure in the same way it is executed at test-
time: in sequence, using the predictions from the previous level. After predicting
the label distributions for each region in a level, we pass this information to
the child level, similar to what is done during inference over a graphical model.
Similar to other hierarchical methods [18], we pass these predicted per-class
probabilities for each region as a vector from which the children construct the
context features as described above. Ideally, high levels in the hierarchy can
represent the type of environment which “primes” the lower levels with a smaller
set of labels to consider. Second, now using predictions from the same data used
for training is prone to a cascade of errors due to overfitting as subsequent levels
will rely heavily on still optimistically correct context. While parent predictions
are important, we also want to learn how to recover from mistakes that will be
made at test time by trading off between the parent probabilities and image
features. To achieve this robust training, we use the idea of stacking [30,4] when
training the classifier. Figure 7 illustrates how stacking addresses the overfitting
behavior on the MSRC-21 dataset.

Stacking trains a sequence of classifiers where the outputs of one classifier are
treated as additional features and are used to train another classifier. In order to
avoid overfitting, the outputs are predicted on data that was not used to train the
classifier. Obtaining held-out predictions is achieved in a manner similar to cross-
validation where the training data is split into multiple subsets that multiple clas-
sifiers train on. Because the predictions are made on unseen data, the procedure
simulates the test-time behavior and ideally learns how to correct earlier mistakes.
An example of this correcting behavior during test-time is illustrated in Fig. 5. In
L5, the person is part of a very large region for which label building is most confi-
dent. In L6, the person is segmented out from its large parent region; however, the
most likely label for this region incorrectly follows from the parent’s label (build-
ing). In L7, the region recovers from this error and is correctly labeled foreground.
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Fig. 6. Predictions between levels during learning/inference for image A

We now describe the stacking procedure in detail (Fig. 6). For each image
I ∈ T , we receive the predictions for each parent region in RI,�−1; we denote
this |RI,�−1| × |K| set of predictions per image I as bI,�−1. Using bI,�−1, we
compute the context features (Sect. 3.3) for each region in RI,� and append
them to its image features fI . We then generate held-out predictions for all
regions at level � (across all training images) by training temporary classifiers on
subsets of regions and predicting on the held-out regions. That is, to generate the
predictions for regionsRA,� in image A, we train a classifier φ̃A,� over the regions
∪I∈T \ARI,� and then classify the held-out regions RA,� to generate predictions
b̃A,�. This process is repeated |T | times to generate predictions across all images2.
This stacking procedure is done solely during training to generate predictions to
compute the context features. Therefore, we train a final classifier φ̃� across all
regions at level � to be used at test time. The main idea is that the temporary
classifiers simulate the behavior φ̃� will have on the unseen test data. Since these
classifiers use predictions from the parent level, we refer to them as inter-level
classifiers.

One potential problem occurs when a large region at level � − 1 is split into
many small regions at level �. In that case, the context feature Cspatial for most
of the offspring regions is uninformative because it uses the predictions only from
the one parent region without capturing any context. To address this problem,
we apply a second round of stacking. In that second round, a new classifier is
learned and new predictions bI,� are generated by using the same procedure as
described above, with the one critical difference that Cspatial is computed by
using the predictions at level � generated from the classifier learned in the first
round, b̃I,�, rather than by using the predictions from the previous level, bI,�−1.
In addition, we also append each region’s respective prediction from the first
round, b̃I,�. The resulting set of predictions bI,� from this intra-level stacking
are then passed to the next level and classifier φ� is saved for test-time. The
two-stage process is then repeated for the next level. In practice, we do not do
the second stage at the top level.

3.5 Inference

Given a test image I and its hierarchy of regions, inference proceeds in the same
cascading manner. At level �, we receive the parent level probabilities bI,�−1 to
2 In practice, we hold out 10% of the training images instead of just one.
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(a) (b) (c)

Fig. 7. Confusion matrices on MSRC-21 dataset. Performance on training set without

stacking (a), and performance on testing set without (b) and with (c) stacking.

create the context features and then use the inter-level classifier φ̃� to predict
b̃I,�. Next, we use bI,�−1 and b̃I,� to create the same context features from the
second stage and then predict bI,� with the intra-level classifier φ�. Therefore,
performing inference over the hierarchy requires 2L− 1 predictions (since there
are no intra-level predictions for the first level).

4 Experiments

We evaluate our algorithm on the MSRC-21 and Stanford Background datasets
and demonstrate that we can achieve high performance predictions as with other
structured models, even though we never explicitly model global configurations.
In both experiments we use the same set of standard image features, mostly
computed from the STAIR Vision Library [9], and the same set of learning
parameters used to train the hierarchy; see the Appendix for specific details.

4.1 MSRC-21

The MSRC-21 dataset [26] contains a variety of outdoor environments with 21
possible classes; we use the standard evaluation split from [26]. Although not
ideal for our hierarchical regions, we use the image-based region features from
the flat CRF model of [7] and demonstrate favorable quantitative performance
compared to this and other similar recent work. As illustrated in Table 1, we
compare with related models that are structured [31,20], use hierarchical re-
gions [21], and sequentially trained (over sites) [27]; “Hier.” is our hierarchical
approach and “Leaf” is a site-wise classifier trained only over the leaf regions
without any context. Although the hierarchical CRF model of [20] demonstrates
superior performance, it should be noted that their pixel-wise classifier can ob-
tain an overall accuracy of 80%, which suggests the use of much more discrimi-
native features. In Fig. 8, we quantify the hierarchy’s refinement in labeling by
plotting, at each level, the accuracies if we assign the regions’ pixels their most
probable label.
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Table 1. Performances on the MSRC-21 dataset. Overall is the total number of pixels

correct and Average is the mean across the columns. ∗Averaged over 5 different splits.
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[7]∗ 77 64 72 95 81 66 71 93 74 70 70 69 72 68 55 23 83 40 77 60 50 50 14
[31] 75 65 77 93 70 58 64 92 57 70 61 69 67 74 70 47 80 53 73 53 56 47 40
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Leaf 74 60 72 96 85 74 70 91 63 58 65 59 69 58 32 22 84 25 83 55 33 54 4
Hier. 78 71 63 93 88 84 65 89 69 78 74 81 84 80 51 55 84 80 69 47 59 71 24

Fig. 8. Accuracies when assigning regions, at each level, their most probable label

4.2 Stanford Background Dataset

We also evaluate our approach on the recent dataset from [8]. This dataset
contains densely labeled images containing eight semantic labels. All results were
averaged over five random trials, using the splits described in [8].

Table 2 contains the performances of two structured models and our hier-
archical approach. We achieve comparable performance with the global energy
model used in [8] while never explicitly modeling the global configurations. Hold-
ing segmentation and image feature extraction time constant, our hierarchical
inference typically takes 12 s/image (10 s of which is spent on computing the
contextual features), whereas the global energy approach can widely vary from
30 s to 10 min to converge. In Fig. 8, we see a similar label refinement.

4.3 Confident Predictions

Another benefit of our approach over MAP inference techniques (e.g., graph-
cuts) is that we never make hard decisions and always predict a distribution of
labels. Therefore, when eventually assigning a label to a region, we can extract a
notion of confidence in the labeling. We define a labeling as confident when the
most likely label is 0.2 higher than the runner-up, and otherwise uncertain. For
example, in Fig. 9, the cars are confident in the labeling, but the trees in front
of the building are uncertain. On MSRC-21, our confident predictions constitute
79% of the data and achieve an overall accuracy of 89%, while the uncertain
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Table 2. Performances on the Stanford Background Dataset
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[8] Pixel CRF 74.3 66.6 93.9 67.1 90.3 83.3 55.4 71.4 9.3 62.2

[8] Region Energy 76.4 65.5 92.6 61.4 89.6 82.4 47.9 82.4 13.8 53.7

Leaf 72.8 58.0 89.7 58.3 85.8 69.8 15.8 78.1 1.5 64.9

Hierarchy 76.9 66.2 91.6 66.3 86.7 83.0 59.8 78.4 5.0 63.5

Fig. 9. The ambiguity in ground truth label (top, middle) is correctly modeled in our

predictions (bottom row), resulting in a labeling for the building that is uncertain

accuracy is 37%. On SBD, our confident predictions constitute 87% of the data
and achieve an overall accuracy of 82%, while the uncertain accuracy is 40%.
These numbers indicate that we make most errors when the labeling is uncertain.

5 Conclusion

We propose an alternative to the graphical model formulation for structured
prediction in computer vision. Our approach is based on training a sequence of
simple subproblems that are designed to use context, bypassing the difficulties
of training typical structured models. Specifically, we designed an algorithm to
train these subproblems in a hierarchical procedure that a) captures the context
over large regions b) explicitly models that regions contain mixed labels and
c) is trained to follow the same procedure during test-time. Our experiments
demonstrate this simple approach is able to capture context and make high
performance predictions without a probabilistic model over global configurations.
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A Image Features

For the top-level in the hierarchy, we use Gist3 computed from 64x64 rescaled
images at 2 scales with 8 and 4 orientations, Pyramid Histogram of Oriented
Gradients4 with 2 levels, 8 histogram bins and 4 orientations, and a color his-
togram over CIELab colorspace with 10 bins over L and 20 bins over a and b
along with the mean and std. per channel. For the remaining levels in the hier-
archy, we primarily use the region appearance features from [7,9]. These features
consist of filters, color and bounding box statistics, location, and the weighted
average of neighboring regions’ features. In addition, we also count the number
of vertices on the convex hull enclosing each region and use a hierarchy-based
descriptor to model relative relocation. This descriptor consists of the orienta-
tion ([−π, π]) and length of the vector extending from the centroid of the parent
to the child, normalized by the diagonal of the parent’s bounding box.

B Hierarchy

The hierarchy is created by thresholding the scale value from 256 at an interval
of -30. During functional gradient boosting, the step size is αt = 1.5√

t
for each

level while we increase the number of iterations T at each level to handle the
increasing amount of data as regions were split: 10, 12, 15, 17, 20, 20, 25, 30. The
Random Forest5 regressor consisted of 10 trees and each tree required at least
15 samples to split a node. We found the entire process is resilient to changes in
these parameters.
3 http://lear.inrialpes.fr/software
4 http://www.robots.ox.ac.uk/˜vgg/research/caltech/phog.html
5 http://code.google.com/p/randomforest-matlab/
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Abstract. The existing Fast Marching methods which are used to solve the
Eikonal equation use a locally continuous model to estimate the accumulated
cost, but a discontinuous (discretized) model for the traveling cost around each
grid point. Because the accumulated cost and the traveling (local) cost are treated
differently, the estimate of the accumulated cost at any point will vary based on
the direction of the arriving front. Instead we propose to estimate the traveling
cost at each grid point based on a locally continuous model, where we will inter-
polate the traveling cost along the direction of the propagating front. We further
choose an interpolation scheme that is not biased by the direction of the front.
Thus making the fast marching process truly isotropic. We show the significance
of removing the directional bias in the computation of the cost in certain appli-
cations of fast marching method. We also compare the accuracy and computation
times of our proposed methods with the existing state of the art fast marching
techniques to demonstrate the superiority of our method.

Keywords: Fast Marching Methods, Isotropic Fast Marching, Segmentation,
Tracking, FMM, Eikonal Equation, minimal cost path.

1 Introduction

A large number of computer vision applications such as segmentation, tracking, opti-
mal path planning etc. use the minimal cost path approach. The Fast Marching Method
which is widely used to solve the minimal path problem was first introduced by
Sethian [1,10] and Tsitsiklis [11]. Cohen and Kimmel [4,5] later noticed that the mini-
mal cost problem satisfies the Eikonal equation,

‖∇u‖ = τ. (1)

For the Eikonal equation 1 defined on a Cartesian Grid, τ(x) would be the traveling
cost at a given grid point and u(x), the accumulated cost. Since we solve the Eikonal
equation numerically on Cartesian Grids, it is impossible to find the exact solution.
Some modifications have been suggested in [6,7] to improve the accuracy of the Fast
Marching method. Authors in [6,8,9,11] also suggest using an 8-connected neighbor
scheme to improve accuracy. All these techniques use a locally continuous model to
estimate the accumulated cost, but assume the traveling cost to be constant (discretized)
around each grid point. Only [6] interpolates τ by shifting it to the center of the grid
with a nearest neighbor interpolation, but it still assumes a discretized shifted grid for
τ . In this paper we propose to use a locally continuous model to estimate τ as well.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part VI, LNCS 6316, pp. 71–83, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Overlap in the influence areas of τB and τC

For the geometry shown in Figure 1, the Fast Marching Method uses linear approxi-
mation to compute the accumulated cost at the point C, but it uses a constant traveling
cost τC for each of the four grid cells containing the point C. The influence area of the
cost function given at a grid point will include all the four quadrants around it. Thus,
there is an overlap in the areas of influence of the grid points B and C. This means
the value of uC will vary depending on the direction from which the front is arriving.
Ideally, for isotropic fast marching, the accumulated cost should be independent of the
direction of the arriving front. For the image shown in Figure 2, we use the traveling
cost, τ(x) = I(x), where I(x) is the intensity at each pixel. The accumulated cost in
traveling from point A to B should be equal to the cost in traveling from B to A. But,
due to the dependence on the direction of marching, there will be a difference in the ac-
cumulated costs. Figure 2 compares the minimal path obtained using back propagation
from end point B to the source point A with the minimal path obtained by reversing
the direction of front propagation. The difference in the two paths highlights the error
caused by the directional dependence of the Fast Marching method.

In this paper we propose two methods to overcome the above-mentioned shortcom-
ings. The first method uses a linear/bilinear model locally to estimate τ along the di-
rection of the propagating front within each grid cell. Here we use a continuous model
to estimate τ and also take the direction of arrival into consideration. We also discuss
how the scheme can be made truly isotropic by removing any bias due to the march-
ing direction. We call this method the Interpolated Fast Marching Method and it is
discussed in detail in Section 2. In the second method we calculate u on an upsam-
pled grid. In upsampling the grid, τ in the neighborhood of each grid point becomes
constant, which eliminates the need to estimate τ using a continuous model. We will
use the value of τ from the direction of arriving front. The upsampled version of the 4
and 8-connected neighbor schemes are discussed in Section 3. Finally, in Section 4 we
describe a few numerical experiments conducted to highlight the significance of mak-
ing the fast marching method independent of direction and we test the accuracy of the
proposed methods.
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Fig. 2. Image with random noise

2 Interpolated Fast Marching Method

For interpolated Fast Marching scheme we will assume τ to be continuous around each
grid point and use linear/bilinear interpolation to estimate the value of the local traveling
cost within each grid cell. Here we will derive the equations for the linear and bilinear
Interpolated Fast Marching schemes. To estimate the traveling cost in a grid cell, the bi-
linear scheme will use the value of τ from all the grid points for a given quadrant. Since
only 2 neighbors are used in each quadrant to calculate u in a 4-connected neighbor
scheme, we only discuss the 8-connected neighbor scheme with bilinear interpolation.

2.1 Linear Interpolation

4-Connected Neighbors Scheme. Consider a front arriving at the grid point C from
the quadrant AB and intersecting AB at E as shown in Figure 3(a). We will use the

linear interpolation of the local traveling cost along the path
→
EC to compute uC . Thus

the accumulated cost at C will be,

(a) 4-Connected Neighbors
Scheme

(b) 8-Connected Neighbors
Scheme

(c) Isotropic triangulation of a
Grid Cell

Fig. 3. Triangulation of Grid cells
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uC = min
0≤t≤1

{
uB(1− t) + uAt+

∫ 1

0

τ(p)
√

t2 + (1− t)2dp
}
. (2)

Substituting, τ(p) = τC + (τA− τC)p(1− t) + (τB − τC)pt, 0 ≤ p ≤ 1, in (2) we get,

uC = min
0≤t≤1

{
uB(1− t) + uAt+

√

t2 + (1− t)2
(
τA + τC

2
+
τB − τA

2
t

)}
. (3)

We get the necessary optimality condition to obtain the minimum of uC by solving
duC

dt = 0, which yields,

uA − uB +
√

t2 + (1− t)2
(
τB − τA

2
t

)

+
2t− 1

√

t2 + (1− t)2
(
τA + τC

2
+
τB − τA

2
t

)

= 0.
(4)

8-Connected Neighbors Scheme. The geometry for 8-connected neighbors is shown

in Figure 3(b). Using linear interpolation to estimate the local traveling cost along
→
EC,

the accumulated cost, uC , will be,

uC = min
0≤t≤1

{
uB(1− t) + uAt+

∫ 1

0

τ(p)
√

1 + t2dp
}
. (5)

Substituting, τ(p) = τC + (τB − τC)p+ (τA − τB)pt, 0 ≤ p ≤ 1, in (5) we get,

uC = min
0≤t≤1

{
uAt+ uB(1− t) +

√
1 + t2

(
τB + τC

2
+
τA − τB

2
t

)}
. (6)

Again the minimizer of uC can be obtained by solving duC

dt = 0. Thus we have,

uA − uB +
√

1 + t2
(
τA − τB

2

)

+
t√

1 + t2

(
τB + τC

2
+
τA − τB

2
t

)

= 0. (7)

Isotropic Linear Interpolation Scheme. Figure 3(a) and 3(b) show the triangulation
of a grid cell for the 4 and 8 neighbor schemes respectively. Depending on the front
direction one of the quadrant/octant will be chosen to estimate the accumulated cost.
But this will induce a directional bias. To overcome this directional bias, we will have
to consider all possible triangulations shown in Figure 3(c). In effect the accumulated
cost across a grid cell must be the minimum of the solutions obtained using the 4 and 8
neighbor schemes. This would make the scheme completely unbiased to direction and
we call this scheme the Iso-Linear scheme.
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2.2 Bilinear Interpolation

8-Connected Neighbors Scheme. The bilinear interpolation to estimate the local trav-

eling cost along
→
EC is given by,

τ(p) = τA(p)(pt) + τB(p)(1− pt) + τC(1− p)(1 − pt) + τD(1− p)(pt).
It is inherently independent of any directional bias within a grid cell. Substituting, this
value of τ(p) for 0 ≤ p ≤ 1, in (5) we get,

uC = min
0≤t≤1

{
uAt+ uB(1− t) +

√
1 + t2

(
τB + τC

2
+
τA − τB

3
t+

τD − τC
6

t

)}
.

(8)
We will again solve duC

dt = 0, which yields,

uA − uB +
√

1 + t2
(
τA − τB

3
+
τD − τC

6

)

+
t√

1 + t2

(
τB + τC

2
+
τA − τB

3
t+

τD − τC
6

t

)

= 0.
(9)

Algebraic manipulations on (4), (7) and (9) will yield quartic equations. We used the
Ferrari and Newton methods to solve these quartic equations. We compared the solu-
tions from both techniques and found that they generate equally accurate solutions. Since
Newton’s method has a quadratic convergence, three iterations were sufficient for con-
vergence. Fixing the number of iterations in each update step also ensures that we have
the same computation complexity in each update. This makes the technique suitable to
implement on hardware. The solution to Newton’s method has fewer (logical and mathe-
matical) operations in comparison to finding the Ferrari (analytic) solution; hence using
Newton’s method is computationally efficient. We compare the computation times of
the two methods on a 500x500 grid in the Table 1. Here we call the 4 and 8-connected
neighbor linear Interpolated Fast Marching schemes, Linear-4 and Linear-8 respectively
and the 8-connected neighbor bilinear Interpolated Fast Marching scheme, Bilinear-8.
The computation times were measured on a laptop with a 1.73 GHz Processor.

Table 1. Comparison of computation times

Linear-4 Linear-8 Bilinear-8
Analytic (Ferrari) 1.51s 2.83s 3.23s
Newton’s Method 0.51s 0.52s 0.65s

2.3 Marching Forward Loop

We will still follow the main loop as explained in the basic Fast Marching method [10].
But, when a trial point is accepted in the min heap structure we will compute the
value of u from both the quadrants/octants which include the newly accepted point and
replace the newly calculated u with the minimum of the two solutions and the existing
value of u (if the point is marked as trial).
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(a) 4-Connected Neighbors
Scheme

(b) 8-Connected Neighbors
Scheme

(c) Isotropic Fast Marching
Scheme

Fig. 4. B is the newly accepted grid point and uC is to be computed

Consider the example in Figure 4(a) where B is the newly accepted point and the
accumulated cost at neighborC is to be computed. As opposed to the basic fast march-
ing technique, uC does not solely depend on uA,uB,uE and the local traveling cost,
τC , but it also depends on the costs at all the other 8-connected neighbors. Thus, using
the quadrant containing the minimum of uA and uE will not necessarily guarantee the
minimum solution to (3). Hence we have to consider both the quadrants that containB.
If the front also arrives at C from the other two quadrants, they will be considered when
the corresponding neighbors become accepted. The same argument can be extended to
the 8-connected neighbor case shown in Figure 4(b). Here we only need to calculate uC

from the two octants containing AB and FB once point B is accepted. For the front
arriving at point C as shown in Figure 2(c), we will consider the possibilities of the
front arriving from AB,BD and DA.

We depart from the traditional Fast Marching method only in the update procedure
for the accumulated cost, but follow the same main (outer) loop. Thus the parallel al-
gorithm explained in Bronstein et al.[2], can be extended for the implementation on
hardware.

3 Upsampled Fast Marching Method

Figure 5 shows that there is no overlap in the influence areas of τ on the upsampled
grid. Here the solid circles are the grid points from the original grid. Since the traveling
cost is constant in each grid cell, there is no directional bias in the calculation of u. We
will compute u on the upsampled grid and then downsample the output on the original
grid.

3.1 4-Connected Neighbors Scheme

In the upsampled grid, τ is constant in each quadrant around a grid point. Again the
constant traveling cost within each grid cell makes this scheme isotropic. Depending on
the direction of the front we will choose the value of τ in calculating u. For example, if
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Fig. 5. No overlap in the influence areas of τA, τB , τCand τD

the front arrives atE from the north-west then we would use τA (Figure 5). At the point
G we would use τA for a front arriving from the west and τB for a front arriving from
the east. We would use τA to calculate uA irrespective of the direction of the arriving
front. Since the value of τ is constant along the direction of the front at a sub-pixel
level, it is not necessary to assume a locally continuous model in interpolating τ . Thus,
the accumulated cost at E with the front arriving from the north-west would be,

uE = min
0≤t≤0.5

{
uF t+ uG(0.5− t) + τA

√

t2 + (0.5− t)2
}

(10)

This minimization leads to the closed form solution,

uE =

{
(uF +uG+

√
δ)

2 if δ ≥ 0
min(uF , uG) + τA

2 otherwise

where, δ = τ2
A

2 − (uF − uG)2.

3.2 8-Connected Neighbors Scheme

As in the case with 4-connected neighbors, τ is constant in each octant around a grid
point in the upsampled grid. We note that there will be exactly one point in each octant
that corresponds to a point in the original grid. We will use the corresponding value of
τ to compute u.

By following the procedure described in Section 2.3, we calculate u only from the
two octants that contain the newly accepted point. If F is the newly accepted point, we
will calculate uE in the octants containing FA and FD (Figure 5). The solution will
be the minimum of the two values obtained. Thus, for a front arriving from north-west,
the accumulated cost at E will be,

uE = min
0≤t≤0.5

{
uAt+ uF (0.5− t) + τA

√
0.5 + t2

}
(11)

giving the closed form solution,
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uE =

⎧
⎪⎨

⎪⎩

uF + τA

2 if uF ≤ uA

uA +
√

2 τA

2 if τA ≤ 2
√

2(uF − uA)

uF +
√

τ2
A−4(uF −uA)2

2 otherwise

4 Numerical Experiments

We conducted a few experiments to compare the proposed methods to the basic Fast
Marching Method (FMM) [10], Tsitsiklis scheme [11], Shifted-Grid Fast Marching
(SGFM) [6] and Multi-stencil Fast Marching (MSFM) [7]. We also compare the upsam-
pled 4 and 8-connected neighbor Fast Marching schemes with the upsampled version
of the SGFM scheme (upSG).

(a) Cardiac Data (b) Random noise

Fig. 6. Test Images

In the first experiment we pick a random point, marked by the ‘x’ in the images
shown in Figure 6, and compute u at every point of the image. We then compute the
total cost in propagating a front from each point of the image back to the point marked
by the ‘x’. We take the average of the difference (error) across the entire image. The
numerical values are listed in the Table 2, under the column labeled Average Back
Propagation Error (ABPE). We used the cost function, τ(x) = 1

1+|∇I|2 for the cardiac
image and τ(x) = I(x) for the random noise image.

In Figure 7 we present the results of segmenting the left ventricles in a 2D cardiac
slice. To segment the image we pick a point on the boundary of the object and compute
the saddle points as described in [5]. From each saddle point we then obtain two mini-
mal paths back to the initial point; these paths will give the segmentation of the object.
The minimal paths were obtained using a sub-pixel level back propagation scheme. We
then choose the saddle point which minimizes the Chan-Vese [3] energy of the obtained
segmentation. Images in Figure 7 show the overlay of segmentation curves initialized
with 2 different user given points on the boundary. We see that the segmentation curves
are not consistent and they depend on the initialization. This is mainly due to the differ-
ence in the marching direction in each case and weak image features at certain locations.
We highlight certain regions in these images to compare the segmentation obtained from
the different methods.
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(a) FMM (b) Tsitsiklis

(c) SGFM (d) Iso-Linear

Fig. 7. A comparison of segmentation

In the images shown in Figure 8, we compare the minimal paths obtained in trav-
eling from point ‘0’ to points ‘1’,‘2’ and ‘3’ with the corresponding paths obtained
by reversing the direction. We see that using interpolated FMM gives consistent paths,
even in the absence of any strong image feature. The results are in accordance to the
Average Back Propagation Errors listed in Table 2. The ABPE for the Tsitsiklis scheme
is the highest and accordingly the paths obtained with the Tsitsiklis scheme show a
lot of variation. Although the SGFM shows lower average error there are variations in
the obtained minimal paths. This is because the interpolation of the cost function in
SGFM is equivalent to image smoothing for the τ (τ(x) = I(x)) used in this exam-
ple. This decreases the corresponding average error, but it also decreases the difference
in the geodesic distances of the various paths. Thus with the change in the marching
direction, the back propagation takes different paths between two given points.

In the next example we compare the accuracy of the various techniques for two cost
functions on a 50x50 grid,

τ1(x, y) = 1/20
√

(sin x
20cos

y
20 )2 + (cos x

20sin
y
20 )2,

τ2(x, y) = 1/10
√

(sin x
20cos

y
10 )2 + (cos x

20sin
y
10 )2.
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(a) FMM (b) Tsitsiklis

(c) SGFM (d) Iso-Linear

Fig. 8. A comparison of tracking

(a) Iso-contour: u1 (b) Iso-contour: u2

Fig. 9. Iso-contours

The iso-contours of uanalytic are shown in Figure 9. The geodesics from the center
(26, 26) of the grid will be straight lines for τ1 and curved for τ2. Since, we have the
analytic solution for these cost functions, we can compare the L1, L2 and L∞ norms
for each method.
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Table 2. Error norms for τ1 and τ2, Average Back Propagation Errors and Computation times

τ1 τ2 ABPE Time
L1 L2 L∞ L1 L2 L∞ I1 I2 (s)

FMM 2.46x10−2 6.73x10−4 0.0380 4.37x10−2 2.07x10−3 0.1060 0.0725 0.3901 0.27
Tsitsiklis 2.14x10−2 4.89x10−4 0.0281 3.81x10−2 1.57x10−3 0.0825 0.1007 0.4348 0.26
MSFM 2.36x10−2 6.07x10−4 0.0349 4.23x10−2 1.94x10−3 0.1007 0.0825 0.3572 0.29
SGFM 2.33x10−3 6.32x10−6 0.0051 1.25x10−2 2.14x10−4 0.0580 0.0022 0.0277 0.33
Linear4 1.10x10−2 1.71x10−4 0.0285 1.69x10−2 4.01x10−4 0.0875 0.0122 0.1036 0.51
Linear8 2.25x10−3 6.82x10−6 0.0046 4.46x10−3 3.43x10−5 0.0596 0.0028 0.0355 0.52

IsoLinear 2.25x10−3 6.82x10−6 0.0046 4.03x10−3 3.11x10−5 0.0596 0.0109 0.0911 0.91
Bilinear8 2.74x10−3 9.42x10−6 0.0052 5.01x10−3 4.10x10−5 0.0607 0.0028 0.0101 0.65

Up4 1.79x10−3 7.60x10−6 0.0101 3.14x10−3 2.89x10−5 0.0655 0.0451 0.1919 1.37
Up8 2.99x10−4 1.96x10−7 0.0014 1.54x10−3 7.81x10−6 0.0289 0.0011 0.0221 1.42

UpSG 1.96x10−3 4.15x10−6 0.0035 1.20x10−2 1.94x10−4 0.0566 0.0015 0.0141 1.42

(a) FMM (b) SGFM

(c) Iso-Linear (d) Upsampled-8

Fig. 10. Iso-contours of errors for τ2
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L1 = mean(|u− uanalytic|),
L2 = mean(|u− uanalytic|2),
L∞ = max(|u− uanalytic|).

The numerical errors in using cost functions τ1 and τ2 are listed in Table 2. Notice that
the error norms show significant improvement for the proposed methods, especially in
the case with curved geodesics (τ2). The iso-contours of the errors for τ2 while using
FMM, SGFM, Iso-Linear and up8 are shown in Figure 10.

We also enlist the computation times for each of these methods on a 500x500 grid
in the last column of Table 2. All computation times were measured on a laptop with a
1.73 GHz Processor.

5 Conclusion

In this paper we present techniques to make the fast marching method independent of
the marching direction and thus improve the accuracy of the Fast Marching Method.
One approach interpolates the local traveling cost along the front and the other com-
putes u on an upsampled grid. We also showed that combining the 8 and 4-connected
neighbor schemes further reduces the inaccuracy by considering all possible directions
of the arrival of the front. We have compared both our approaches to the existing Fast
Marching techniques and we have shown a significant improvement over them. Al-
though both our approaches have higher computation times, they can be implemented
efficiently on hardware and they are practical solutions to eliminate the inaccuracies of
existing techniques.
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Abstract. We describe a clustering approach with the emphasis on de-

tecting coherent structures in a complex dataset, and illustrate its effec-

tiveness with computer vision applications. By complex data, we mean

that the attribute variations among the data are too extensive such that

clustering based on a single feature representation/descriptor is insuffi-

cient to faithfully divide the data into meaningful groups. The proposed

method thus assumes the data are represented with various feature rep-

resentations, and aims to uncover the underlying cluster structure. To

that end, we associate each cluster with a boosting classifier derived from

multiple kernel learning, and apply the cluster-specific classifier to feature

selection across various descriptors to best separate data of the cluster

from the rest. Specifically, we integrate the multiple, correlative training

tasks of the cluster-specific classifiers into the clustering procedure, and

cast them as a joint constrained optimization problem. Through the op-

timization iterations, the cluster structure is gradually revealed by these

classifiers, while their discriminant power to capture similar data would

be progressively improved owing to better data labeling.

1 Introduction

Clustering is a technique to partition the data into groups so that similar (or
coherent) objects and their properties can be readily identified and exploited.
While such a goal is explicit and clear, the notion of similarity is often not well
defined, partly due to the lack of a universally applicable similarity measure.
As a result, previous research efforts on developing clustering algorithms mostly
focus on dealing with different scenarios or specific applications. In the field
of vision research, performing data clustering is essential in addressing various
tasks such as object categorization [1,2] or image segmentation [3,4]. Despite the
great applicability, a fundamental difficulty hindering the advance of clustering
techniques is that the intrinsic cluster structure is not evidently revealed in the
feature representation of complex data. Namely, the resulting similarities among
data points do not faithfully reflect their true relationships.

We are thus motivated to consider establishing a clustering framework with
the flexibility of allowing the data to be characterized by multiple descriptors.
The generalization aims to bridge the gap between the resulting data similari-
ties and their underlying relationships. Take, for example, the images shown in

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part VI, LNCS 6316, pp. 84–97, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Images from three different categories: sunset, bicycle and jaguar

Fig. 1. Without any ambiguities, one can easily divide them into three clusters.
Nevertheless, say, in an object recognition system, color related features are re-
quired to separate the images in category sunset from the others. Analogously,
shape and texture based features are respectively needed for describing cate-
gories bicycle and jaguar. This example not only illustrates the importance of
using multiple features but also points out that the optimal features for ensuring
each cluster coherent often vary from cluster to cluster.

The other concept critical to our approach is unsupervised feature selection. It
is challenging due to the absence of data labels to guide the relevance search, e.g.,
[5,6]. To take account of the use of multiple descriptors for clustering, our formu-
lation generalizes unsupervised feature selection to its cluster/group-dependent
and cross feature space extensions. To that end, each cluster is associated with
a classifier learned with multiple kernels to give a good separation between data
inside and outside the cluster, and data are dynamically assigned to appropri-
ate clusters through the progressive learning processes of these cluster-specific
classifiers. Iteratively, the learned classifiers are expected to facilitate the reveal-
ing of the intrinsic cluster structure, while the progressively improved clustering
results would provide more reliable data labels in learning the classifiers.

Specifically, we integrate the multiple, correlative training processes of the
cluster-specific classifiers into the clustering procedure, and realize the unified
formulation by 1) proposing a general constrained optimization problem that
can accommodate both fully unlabeled and partially labeled datasets; and 2)
implementing multiple kernel learning [7] in a boosting way to construct the
cluster-specific classifiers. Prior knowledge can thus be conveniently exploited
in choosing a proper set of visual features of diverse forms to more precisely
depict the data. Indeed our approach provides a new perspective of applying
multiple kernel learning, which typically addresses supervised applications, to
both unsupervised and semisupervised ones. Such a generalization is novel in
the field. Different from other existing clustering techniques, our method can
not only achieve better clustering results but also have access to the information
regarding the commonly shared features in each cluster.

2 Related Work

Techniques on clustering can vary considerably in many aspects, including as-
suming particular principles for data grouping, making different assumptions
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about cluster shapes or structures, and using various optimization techniques
for problem solving. Such variations however do not devalue the importance of
clustering being a fundamental tool for unsupervised learning. Instead, cluster-
ing methods such as k-means, spectral clustering [3,8], mean shift [4] or affinity
propagation [9] are constantly applied in more effectively solving a broad range
of computer vision problems.

Although most clustering algorithms are developed with theoretic support,
their performances still depend critically on the feature representation of data.
Previous approaches, e.g., [5,6], concerning the limitation have thus suggested
to perform clustering and feature selection simultaneously such that relevant
features are emphasized. Due to the inherent difficulty of unsupervised feature
selection, methods of this category often proceed in an iterative manner, namely,
the steps of feature selection and clustering are carried out alternately.

Feature selection can also be done cluster-wise, say, by imposing the Gaus-
sian mixture models on the data distribution, or by learning a distance function
for each cluster via re-weighting feature dimensions such as the formulations
described in [10,11]. However, these methods typically assume that the under-
lying data are in a single feature space and in form of vectors. The restriction
may reduce the overall effectiveness when the data of interest can be more pre-
cisely characterized by considering multiple descriptors and diverse forms, e.g.,
bag-of-features [12,13] or pyramids [14,15].

Xu et al. [16] instead consider the large margin principle for measuring how
good a data partitioning is. Their method first maps the data into the kernel-
induced space, and seeks the data labeling (clustering) with which the maximum
margin can be obtained by applying SVMs to the then labeled data. Subse-
quently, Zhao et al. [17] introduce a cutting-plane algorithm to generalize the
framework of maximum margin clustering from binary-class to multi-class.

The technique of cluster ensembles by Strehl and Ghosh [18] is most relevant
to our approach. It provides a useful mechanism for combining multiple cluster-
ing results. The ensemble partitioning is optimized such that it shares as much
information with each of the elementary ones as possible. Fred and Jain [19]
introduce the concept of evidence accumulation to merge various clusterings to
a single one via a voting scheme. These methods generally achieve better clus-
tering performances. Implicitly, they also provide a way for clustering data with
multiple feature representations: One could generate an elementary clustering
result for each data representation, and combine them into an ensemble one.
However, the obtained partitioning is optimized in a global fashion, neglecting
that the optimal features are often cluster-dependent.

Finally, it is possible to overcome the unsupervised nature of clustering by
incorporating a small amount of labeled data in the procedure so that satisfac-
tory results can be achieved, especially in complex tasks. For example, Xing et
al. [20] impose side information for metric learning to facilitate clustering, while
Tuzel et al. [2] utilize pairwise constraints to perform semisupervised clustering
in a kernel-induced feature space.
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3 Problem Definition

We formalize and justify the proposed clustering technique in this section. Prior
to that, we need to specify the notations adopted in the formulation.

3.1 Notations

Given a dataset D = {xi}Ni=1, our goal is to partition D into C clusters. We shall
use a partition matrix, Y = [yic] ∈ {0, 1}N×C, to represent the clustering result,
where yic = 1 indicates that xi belongs to the cth cluster, otherwise yic = 0.
Besides, let yi,: and y:,c denote the ith row and cth column of Y respectively.

To tackle complex clustering tasks, we consider the use of multiple descriptors
to more precisely characterize the data. These descriptors may result in diverse
forms of feature representations, such as vectors [21], bags of features [22], or
pyramids [14]. To avoid directly working with these varieties, we adopt a strategy
similar to that in [15,23], where kernel matrices are used to provide a uniform
representation for data under various descriptors. Specifically, suppose M kinds
of descriptors are employed to depict each sample, i.e., xi = {xi,m ∈ Xm}Mm=1.
For each descriptor m, a non-negative distance function dm : Xm × Xm → R is
associated. The corresponding kernel matrix Km and kernel function km can be
established by

Km(i, j) = km(xi,xj) = exp (−γmd
2
m(xi,m,xj,m)), (1)

where γm is a positive constant. By applying the procedure to each descriptor,
a kernel bank Ω of size M is obtained, i.e., Ω = {Km}Mm=1. The kernel bank will
serve as the information bottleneck in the sense that data access is restricted
to referencing only the M kernels. This way our method can conveniently work
with various descriptors without worrying about their diversities.

3.2 Formulation

The idea of improving clustering performances for complex data is motivated
by the observation that the optimal features for grouping are often cluster-
dependent. Our formulation associates each cluster with a classifier to best inter-
pret the relationships among data and the cluster. Specifically, a cluster-specific
classifier is designed to divide the data so that its members would share cer-
tain common features, which are generally distinct from the rest. Furthermore,
the goodness of the clustering quality about a resulting cluster can be explicitly
measured by the induced loss (namely, the degree of difficulty) in learning the
specific classifier. It follows that the proposed clustering seeks an optimal data
partitioning with the minimal total loss in jointly learning all the C cluster-
specific classifiers.

As one may notice that our discussion so far would lead to a cause-and-effect
dilemma: While the data labels are required in learning the cluster-specific clas-
sifiers, they in turn can only be determined through the clustering results implied
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by these classifiers. We resolve this difficulty by incorporating the learning pro-
cesses of the cluster-specific classifiers into the clustering procedure, and cast
the task as the following constrained optimization problem:

min
Y,{fc}C

c=1

C∑

c=1

Loss(fc, {xi, yic}Ni=1) (2)

subject to Y ∈ {0, 1}N×C, (3)
yi,:eC = 1, for i = 1, 2, ..., N, (4)
� ≤ e�Ny:,c ≤ u, for c = 1, 2, ..., C, (5)
yi,: = yj,:, if (i, j) ∈ S, (6)
yi,: �= yj,:, if (i, j) ∈ S′, (7)

where {fc}Cc=1 are the cluster-specific classifiers. eC and eN are column vectors,
whose elements are all one, of dimensions C and N respectively.

We now give justifications for the above constrained optimization problem.
Our discussions focus first on the part of constraints. With (3) and (4), Y is
guaranteed to be a valid partition matrix. Since in practical applications most
clusters are rarely of extreme sizes, we impose the desired upper bound u and
lower bound � of the cluster size in (5). The remaining constraints (6) and (7)
are optional so that our method can be extended to address semisupervised
learning. In that case, (6) and (7) would provide a set of pairwise instance-level
constraints, each of which specifies either a pair of data points must reside in
the same cluster or not. S in (6) and S′ in (7) are respectively used to denote
the collections of these must-links and cannot-links.

Assuming that all the constraints are satisfied, the formulation would look for
optimal data partitioning Y ∗ such that, according to (2), the total induced loss
of all the cluster-specific classifiers is minimized. That is, the proposed clustering
approach would prefer that data residing in each cluster are well separated from
the rest by the cluster-specific classifier (and hence yields a small loss), which is
derived by coupling a discriminant function with an optimal feature selection to
achieve the desired property. This implies that most of the data in an arbitrary
cluster c would share some coherent characteristics implicitly defined by the
optimal feature selection in forming f∗

c . The proposed optimization elegantly
connects the unsupervised clustering procedure with the supervised learning
of the specific classifiers. By jointly addressing the two tasks, our method can
uncover a reasonable cluster structure even for a complex dataset.

4 Optimization Procedure

To deal with the cause-and-effect factor in (2), we consider an iterative strategy
to solve the constrained optimization problem. At each iteration, the cluster-
specific classifiers {fc}Cc=1 and the partition matrix Y are alternately optimized.
More specifically, {fc} are first optimized while Y is fixed, and then their roles are
switched. The iterations are repeated until the loss cannot be further reduced.
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4.1 On Learning Cluster-Specific Classifiers

Notice that in the constrained optimization problem (2) the cluster-specific clas-
sifiers {fc} only appear in the objective function, and there is no correlation
among them once Y is fixed. Thus, these classifiers can be optimized indepen-
dently by minimizing their corresponding loss function. That is, fc can be derived
by considering only the binary labeled data {xi, yic}Ni=1.

Our choice of selecting a suitable supervised learning methodology for con-
structing the classifiers is based on two key requirements stemming from the
properties related to the classifiers and the iterative training process. First, the
cluster-specific classifiers should be generated by using information from mul-
tiple kernels, i.e., via multiple kernel learning [7]. Second, the degree of data
fitting in the classifiers can be conveniently controlled. The latter requirement
arises due to the expected phenomenon that the data labels {yic}Ni=1 would be
noisy during the earlier iterations, and then progressively become more accurate
through the iterative optimization. By addressing this effect, we can significantly
alleviate the possibility of overfitting or underfitting in learning the classifiers.
Having taken the two into account, we consider each fc a boosting classifier. In
what follows, we describe the two main elements in learning such classifiers.

The Pool of Weak Learners. We adopt a similar strategy proposed in [24].
To begin with, the discriminant power of each kernel is transferred into a set of
weak learners, called dyadic hypercuts [25]. We then construct the pool of weak
learners by including the dyadic hypercuts generated from all the kernels in Ω.
The procedure naturally enables a boosting algorithm to learn classifiers that
inherit the discriminant power from the multiple kernels.

A dyadic hypercut h is specified by three parameters: a positive sample xp,
a negative sample xn, and a kernel function km. (Note that the positive and
negative samples here depend on labels {yic}Ni=1.) The model for prediction is

h(x) = a · sign(km(xp,x)− km(xn,x)− θ) + b, (8)

where a and b are real values, and θ is used for thresholding. The size of the
set of weak learners is |H| = N+ ×N− ×M , where N+ (N−) is the number of
positive (negative) training data, and M is the number of kernels.

Loss Function for Boostig. Among the many choices of loss function for learn-
ing boosting classifiers, we have implemented two of the most popular ones, i.e.,
ExpLoss and LogLoss [26,27], to test our method. In our experiments, LogLoss
leads to better performances, and is thus adopted. It follows that in (2) we have

Loss(fc, {xi, yic}Ni=1) =
N∑

i=1

ln (1 + exp (−ỹicfc(xi))), (9)

where ỹic = 2yic−1 is to convert a binary label yic ∈ {0, 1} in partition matrices
to ỹic ∈ {−1, 1} for boosting models. With the pool of weak learners generated
from the kernel bank Ω and the loss function (9), all cluster-specific classifiers
{fc} can be learned one by one via LogitBoost [27].
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4.2 On Assigning Data into Clusters

Once the cluster-specific classifiers are fixed, we illustrate that how the partition
matrix Y in (2) can be optimized by binary integer programming (BIP) [28]. For
the ease of our discussion, the canonical form of a BIP problem is given below

min
z

d�z (10)

subject to Az ≤ b and Aeqz = beq, (11)
zi ∈ {0, 1}. (12)

It suffices to show the proposed constrained optimization can be transformed to
the above form. To rewrite the objective function (2) as the inner product (10),
we let z ≡ vec(Y ) = [y11 · · · y1C · · · yic · · · yNC ]�, the vectorization of partition
matrix Y and set the column vector d = [dic] as

dic = ln (1 + exp (−fc(xi))) +
C∑

c′=1 & c′ �=c

ln (1 + exp (fc′ (xi))). (13)

The definitions of d and z would lead to

d�z = d�vec(Y ) =
C∑

c=1

N∑

i=1

ln (1 + exp (−ỹicfc(xi))). (14)

Indeed the derivation of (14) is based on (4). For each sample xi, there is one
and only one element whose value is 1 in the vector yi,: = [yi1 · · · yiC ]. And no
matter which element equals to 1, we have

C∑

c=1

dicyic =
C∑

c=1

ln (1 + exp (−ỹicfc(xi))). (15)

Now, summing over all the data on the both sides of (15) gives (14). We are left
to express the constraints (3)–(7) into (11) and (12). Since the derivations related
to (3)–(6) are straightforward, we focus on the reduction of constraint (7). To
represent yi,: �= yj,:, we consider additional auxiliary variables, p ∈ {0, 1}C×1

and q ∈ {0, 1}C×1, and the following three constraints

yi,: − yj,: = p− q, p + q ≤ eC , and e�Cp + e�Cq = 2. (16)

It can be verified that yi,: �= yj,: if and only if the constraints in (16), which
are all conformed to (11), hold. Thus, our discussion justifies that when {fc} are
fixed, the constrained optimization problem (2) can be effectively solved by BIP
to obtain a new data partitioning Y .

4.3 Implementation Details

In solving the constrained optimization, we begin by providing an initial Y de-
rived by randomly splitting the data into clusters of similar sizes. As it turns out
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the proposed optimization procedure is robust against different initializations,
and converges fast. (Further details will be discussed in the next section.)

It is useful to progressively adjust the data fitting power in learning the clas-
sifiers, since the reliability of the data labeling is expected to improve through
the iterations. Specifically, say, at iteration t, we set the number of weak learners
in fc as base + t*step size, where the value of step size is decided by the
tradeoff between the convergence speed and the risk of overfitting. In all our
experiments, we have base = 5 and step size = 2. Also note that the boost-
ing classifiers tend to perfectly classify the training data, and underestimate the
LogLoss (9). This can be resolved by leave-one-out estimation: The induced loss
of sample xi in (9) is evaluated by the classifier learned with the rest of the data.
(For computational issue, we implement ten-fold cross-validation.)

Being a special case of integer programming, BIP is still NP-hard. A practical
implementation of an appropriate methodology such as branch-and-bound or
cutting plane would require a feasible initialization to reduce BIP into a series
of linear programs, and thus speed up the underlying optimization process. In
our case, we design a greedy scheme to find an initial set of data labels. We
first assume an upper bound on the cluster size. Then, among those undecided
samples we identify the next possible sample labeling such that the assignment
yields the smallest loss and would not cause the size of the target cluster to exceed
the upper bound. The process is repeated until the data labeling is completed.
Given the initialization, we apply MOSEK [29] to efficiently solving the BIP
problems. For example, it takes less than one second when (N,C) = (600, 20).

5 Experimental Results

We carry out two sets of experiments: visual object categorization and face image
grouping. The image data used in the experiments are complex and display
rich variations caused by various factors. They nevertheless provide a good test
bed to demonstrate the importance of using multiple feature representations. In
the first experiment, we compare our approach with state-of-the-art clustering
algorithms and discuss the convergence issue. In the second experiment, we show
the advantages of our approach in the aspects of performing cluster-dependent,
cross-space feature selection and incorporating partially labeled data.

5.1 Visual Object Categorization

Dataset. The Caltech-101 dataset [30], collected by Fei-Fei et al., is used in our
experiments of object categorization. Following the setting in [1], we select the
same twenty object categories from the Caltech-101 dataset, and randomly pick
30 images from each category to form a set of 600 images. The large and diverse
intraclass variations make clustering over the dataset very challenging.

Descriptors, Distances and Kernels. We consider five different image de-
scriptors and their corresponding distance function. Via (1), they yield the fol-
lowing kernels (denoted below in bold and in abbreviation):
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Table 1. The performances in form of [ACC (%) / NMI] by different clustering meth-

ods. Top: each kernel is considered individually. Bottom: all kernels are used jointly.

kernel k-means Affinity Prop. Spectral Clus. Ours
GB 68.0 / 0.732 52.5 / 0.578 69.5 / 0.704 75.0 / 0.742

SIFT 62.5 / 0.680 59.8 / 0.638 62.5 / 0.668 69.6 / 0.706
SS 65.7 / 0.659 55.7 / 0.574 63.3 / 0.655 62.1 / 0.639
C2 37.8 / 0.417 47.5 / 0.517 57.7 / 0.585 51.2 / 0.550

PHOG 53.3 / 0.547 43.3 / 0.464 61.0 / 0.624 55.2 / 0.569

kernels CE + k-means CE + Affinity Prop. CE + Spectral Clus. Ours
All 73.8 / 0.737 63.3 / 0.654 77.3 / 0.758 85.7 / 0.833

– GB. For a given image, we randomly sample 400 edge pixels, and character-
ize them by the geometric blur descriptor [12]. With these image features, we
adopt the distance function suggested in equation (2) of the work by Zhang
et al. [22] to obtain the kernel.

– SIFT. The kernel is analogously constructed as is the kernel GB, except
that the features are described with the SIFT descriptor [13].

– SS. We consider the self-similarity descriptor [31] over an evenly sampled
grid of each image, and use k-means clustering to generate visual words from
the resulting local features of all images. Then the kernel is built by matching
spatial pyramids, which are introduced in [14].

– C2. Mutch and Lowe [21] have proposed a set of features that emulate the
visual system mechanism. We adopt these biologically inspired features to
depict images and construct an RBF kernel.

– PHOG. We also use the PHOG descriptor [15] to capture image features.
Together with the χ2 distance, the kernel is established.

Quantitative Results. In all the experiments, we set the number of clusters
to the number of classes in ground truth, and evaluate clustering performances
with the two criteria: clustering accuracy (ACC) [6], and normalized mutual
information (NMI) [18]. The output ranges of the two criteria are both [0, 1].
The larger the values, the better the clustering results are. Our approach starts
from a random initialization of data partitioning Y . We run our algorithm 20
times with different random partitionings, and report the average performance.
Besides, we respectively set � and u in (5) as �0.8k1� and 	1.2k2
, where k1 and
k2 are the minimal and the maximal cluster sizes in the dataset respectively.

We first evaluate our method in the cases that each descriptor is used indi-
vidually, and compare it with three popular clustering methodologies: k-means,
affinity propagation [9], and spectral clustering [8]. The implementations for the
three techniques are as follows. k-means works on data in Euclidean space, so we
use multidimensional scaling [32] to recover the feature vectors of data from their
pairwise distances. Affinity propagation detects representative exemplars (clus-
ters) by considering similarities among data. We set the pairwise similarities as
the negative distances. Spectral clustering and our approach both take a kernel
matrix as input. The outcomes by the four clustering algorithms are shown in
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Fig. 2. With different initializations, the clustering accuracy (left) and normalized

mutual information (right) of the proposed approach along the iterative optimization

Table 1 (top). In this setting, the proposed method outperforms k-means and
affinity propagation, and is competitive with spectral clustering.

When multiple kernels are used simultaneously, we compare the proposed
framework with cluster ensembles (CE) [18]. In particular, our implementation of
cluster ensembles is to combine the five separately generated clustering results by
one of the following three techniques: k-means, affinity propagation and spectral
clustering. We report the results in Table 1 (bottom). First of all, our approach
achieves significant improvements of 10.7% (= 85.7% − 75.0%) in ACC and
0.091 (= 0.833 − 0.742) in NMI over the best results obtained with a single
kernel. It suggests that these kernels tend to complement one another, and our
method can exploit this property to yield better clustering results. Furthermore,
unlike that cluster ensembles relies on merging multiple clustering results in a
global fashion, our approach performs cluster-dependent feature selection over
multiple descriptors to recover the cluster structure. The quantitative results
show that our method can make the most of multiple kernels, and improves the
performances from 77.3% to 85.7% in ACC and from 0.758 to 0.833 in NMI.

Pertaining to the convergence issue, we evaluate our algorithm with 23 differ-
ent initializations, including 20 random data partitionings and three meaningful
clustering results by applying k-means, affinity propagation and spectral cluster-
ing to kernel GB, respectively. The clustering performances through the iterative
optimization procedure are plotted in Fig. 2. It can be observed that the pro-
posed optimization algorithm is efficient and robust: It converges within a few
iterations and yields similar performances with diverse initializations.

5.2 Face Image Grouping

Dataset. The CMU PIE database [33] is used in our experiments of face image
grouping. It comprises face images of 68 subjects. To evaluate our method for
cluster-dependent feature selection, we divide the 68 people into four equal-size
disjoint groups, each of which contains face images from 17 subjects reflecting a
certain kind of variations. See Fig. 3 for an overview.

Specifically, for each subject in the first group, we consider only the images
of the frontal pose (C27) taken in varying lighting conditions (those under the
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(a) (b)

(c) (d)

Fig. 3. Four kinds of intraclass variations caused by (a) different lighting conditions,

(b) in-plane rotations, (c) partial occlusions, and (d) out-of-plane rotations

(a) (b)

φ ψψ′

Fig. 4. (a) Images obtained by applying the delighting algorithm [34] to the five images

in Fig. 3a. (b) Each image is divided into 96 regions. The distance between the two

images is obtained when circularly shifting causes ψ′ to be the new starting radial axis.

directory “lights”). For subjects in the second and third groups, the images
with near frontal poses (C05, C07, C09, C27, C29) under the directory
“expression” are used. While each image from the second group is rotated
by a randomly sampled angle within [−45◦, 45◦], each from the third group is
instead occluded by a non-face patch, whose area is about ten percent of the face
region. Finally, for subjects in the fourth group, the images with out-of-plane ro-
tations are selected under the directory “expression” and with the poses (C05,
C11, C27, C29, C37). All images are cropped and resized to 51× 51 pixels.

Descriptors, Distances and Kernels. With the dataset, we adopt and design
a set of visual features, and establish the following four kernels.

– DeLight. The data representation is obtained from the delighting algorithm
[34], and the corresponding distance function is set as 1−cosθ, where θ is the
angle between a pair of samples under the representation. Some delighting
results are shown in Fig. 4a. It can be seen that variations caused by different
lighting conditions are significantly alleviated under the representation.

– LBP. As is illustrated in Fig. 4b, we divide each image into 96 = 24 × 4
regions, and use a rotation-invariant local binary pattern (LBP) operator [35]
(with operator setting LBP riu2

8,1 ) to detect 10 distinct binary patterns. Thus
an image can be represented by a 960-dimensional vector, where each dimen-
sion records the number of occurrences that a specific pattern is detected in
the corresponding region. To achieve rotation invariant, the distance between
two such vectors, say, xi and xj , is the minimal one among the 24 values
computed from the distance function 1−sum(min(xi,xj))/sum(max(xi,xj))
by circularly shifting the starting radial axis for xj . Clearly, the base kernel
is constructed to deal with variations resulting from rotations.
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Table 2. The performances of cluster ensembles and our approach in different settings

dataset (number of classes)method kernel(s)
All (68) Lighting (17) Rotation (17) Occlusion (17) Profile (17)

DeLight 40.2 / 0.628 91.4 / 0.974 21.0 / 0.435 25.5 / 0.508 23.0 / 0.487
LBP 47.3 / 0.672 71.1 / 0.886 59.9 / 0.744 30.0 / 0.500 28.2 / 0.512Ours

RsLTS 39.3 / 0.647 35.4 / 0.518 32.9 / 0.495 61.4 / 0.757 27.6 / 0.492
RsL2 31.6 / 0.628 50.9 / 0.685 27.6 / 0.464 19.5 / 0.352 28.4 / 0.509

CE All 55.4 / 0.746 92.6 / 0.975 43.8 / 0.657 55.4 / 0.695 29.8 / 0.535
Ours All 61.9 / 0.822 93.6 / 0.985 57.8 / 0.730 64.8 / 0.781 31.6 / 0.554
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Fig. 5. The performances of cluster ensembles and our approach w.r.t. different

amounts of must-links and cannot-links per subject and different settings of kernel(s)

– RsL2. Each sample is represented by its pixel intensities in raster scan order.
Euclidean (L2) distance is used to correlate two images.

– RsLTS. The same as RsL2 except that the distance function is now based
on the least trimmed squares (LTS) with 20% outliers allowed. The kernel is
designed to take account of the partial occlusions in face images.

Quantitative Results. We report the performances of applying our approach
to the four kernels one by one in the third column of Table 2 (top). Besides,
we also record the performances with respect to each of the four groups in the
last four columns of the same table. (Each group is named according to the
type of its intraclass variation.) Note that each result in the last four columns is
computed by considering only the data in the corresponding group. No additional
clustering is performed. As expected, each of the four kernels generally yields
good performances in dealing with a specific kind of intraclass variations. For
example, the kernel DeLight achieves a satisfactory result for subjects in the
Lighting group, while LBP and RsLTS yield acceptable outcomes in Rotation
and Occlusion groups respectively. However, none of them is good enough for
dealing with the whole dataset. Still the results reveal that if we could choose
proper features for each subject, it would lead to substantial improvements.

To verify the point, we apply the proposed clustering technique to the four
kernels simultaneously, and compare it with cluster ensembles, which is used to
merge the four clustering results derived by implementing our approach with
single kernel. In Table 2 (bottom), it shows that using multiple kernels in our
approach can achieve remarkable improvements over the best result obtained
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from using a single kernel (i.e. LBP), and also significantly outperforms the
foregoing setting for cluster ensembles.

Indeed performing clustering with this dataset is hard, due to the large sub-
ject number and the extensive intraclass variations. We thus randomly generate
one must-link and one cannot-link for each subject, and denote the setting of
semisupervised clustering as 1M1C. Analogously, we also have 0M0C (i.e. unsuper-
vised), 2M2C and 3M3C. Combining different amounts of pairwise constraints and
different settings of kernel(s), the performances with respect to ACC and NMI
of our approach are shown in Fig. 5. It is clear that by introducing only a few
constraints, our approach can achieve considerable gains in performance.

6 Conclusion

We have presented an effective approach to clustering complex data that con-
siders cluster-dependent feature selection and multiple feature representations.
Specifically, we incorporate the supervised training processes of cluster-specific
classifiers into the unsupervised clustering procedure, cast them as a joint op-
timization problem, and develop an efficient technique to accomplish it. The
proposed method is comprehensively evaluated with two challenging vision ap-
plications, coupled with a number of feature representations for the data. The
promising experimental results further demonstrate its usefulness. In addition,
our formulation provides a new way of extending the multiple kernel learning
framework, which is typically used in tackling supervised-learning problems, to
address unsupervised and semisupervised applications. This aspect of general-
ization introduces a new frontier of applying multiple kernel learning to handling
the ever-increasingly complex vision tasks.
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able comments. This work is supported in part by grant 97-2221-E-001-019-MY3.
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Abstract. Recent progress in per-pixel object class labeling of natural

images can be attributed to the use of multiple types of image features

and sound statistical learning approaches. Within the latter, Conditional

Random Fields (CRF) are prominently used for their ability to repre-

sent interactions between random variables. Despite their popularity in

computer vision, parameter learning for CRFs has remained difficult,

popular approaches being cross-validation and piecewise training.
In this work, we propose a simple yet expressive tree-structured CRF

based on a recent hierarchical image segmentation method. Our model

combines and weights multiple image features within a hierarchical rep-

resentation and allows simple and efficient globally-optimal learning of

≈ 105 parameters. The tractability of our model allows us to pose and

answer some of the open questions regarding parameter learning apply-

ing to CRF-based approaches. The key findings for learning CRF models

are, from the obvious to the surprising, i) multiple image features always

help, ii) the limiting dimension with respect to current models is the

amount of training data, iii) piecewise training is competitive, iv) current

methods for max-margin training fail for models with many parameters.

1 Introduction

Computer vision increasingly addresses high-level vision tasks such as scene un-
derstanding, object class image segmentation, and class-level object recognition.
Two drivers of this development have been the abundance of digital images and
the use of statistical machine learning models. Yet, it remains unclear what
classes of models are suited best to these tasks. Random field models [1,2] have
found many applications due to their ability to concisely express dependencies
between multiple random variables, making them attractive for many high-level
vision tasks. Parameter learning in these rich models is essential to find from
a large set of possible candidates the model instance that best explains the ob-
served data and generalizes to unseen data. Despite the importance of parameter
learning, current applications of random fields in computer vision sidestep many
issues, making assumptions that are intuitive, but largely heuristic. The reason
for this gap between principled modeling and use of heuristics is the intractability
of many random field models, which makes it necessary use approximations.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part VI, LNCS 6316, pp. 98–111, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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To shed light on the currently used practices we take the task of object class
image segmentation and propose a simple, yet expressive hierarchical multi-scale
CRF model in which parameter learning can be analyzed in isolation.

In our model, parameter learning is tractable, allowing us to experimentally
address the following open questions regarding conditional random fields for
object class image segmentation: 1. What is the effect of combining multiple
image features on the resulting model performance? 2. How does the size of the
training set and the accuracy of optimizing the training objective influence the
resulting performance? 3. Is it better to learn the models part-by-part (piecewise)
or jointly? 4. Does maximum margin training offer an advantage over maximum
likelihood estimation?

Outline. We first describe random fields in Section 2. In Section 3 we discuss the
current computer vision literature on parameter learning in CRFs. Our novel
model is introduced in Section 4 and we report experiments in Section 5.

2 Learning Random Fields

In this section we review basic results about random field models, factor de-
sign and define the problems that need to be solved to perform prediction and
parameter learning.

2.1 Random Field Models and Factor Graphs

Discrete random field models, also known as Markov networks, are a popular
model to describe interacting variables [2]. In particular we will focus on condi-
tional random fields (CRF) [3,4]. For a set Y = {Y1, . . . , YV } of random variables,
each taking values in a label set Y = {1, . . . , C}, a set of observation variables
X = {X1, . . . , XW }, and a parameter vector w ∈ R

D, a conditional random field
specifies a probability distribution as

p(Y = y|X = x,w) =
1

Z(x,w)
exp(−E(y; x,w)), (1)

where E(y; x,w) is an energy function and Z(x,w) =
∑

y∈YV exp(−E(y; x,w))
is a normalizing constant known as partition function [1]. The energy function
is specified in terms of log-potential functions, also known as log-factors. Let
F ⊆ 2V ×2W be a set of subsets of the variables. Then F specifies a factorization
of (1), or equivalently an additive decomposition of the energy function as

E(y; x,w) =
∑

F∈F
EF (yF ; xF ,w), (2)

where yF and xF denote the restrictions of Y andX to the elements appearing in
F , respectively. The energy function EF operates only on the variables appearing
in the set F .
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The factorization is often given implicitly by means of an undirected graphical
model [1]. For all practical purposes, it is more convenient to directly specify F
used in (2) in terms of a factor graph [5]. For each element F ∈ F , a factor
graph contains a factor node (drawn as �), which is connected to all variable
nodes (drawn as©) that are members of F . The factor graph compactly defines
F in (2). An example is shown in Figure 2 (page 103).

In order to fully specify the random field model, the form of the individ-
ual terms EF (yF ; xF ,w) in the summation (2) has to be defined. Each term
corresponds to one factor F in the factor graph and specifies the local inter-
actions between a small set of random variables. In practice the different fac-
tors have one of a few different roles such as incorporating observations into
the model or enforcing a consistent labeling of the variables. Therefore, clique
templates [4] (also known as parameter tying) are used, replicating parame-
ters across groups of factors with the same purpose. We let T = {1, . . . , |T |}
denote a small set of different factor purposes and split the parameter vec-
tor as w = (w�

1 , . . . ,w
�
|T |)

�, then the energy of each factor can be written

as Et(F )
F (yF ; xF ,wt(F )), where t(F ) is the type of the factor. As an additional

notation, let μF ∈ {0, 1}Y
F

be a set of binary indicator variables indexed by
yF ∈ YF and let μF (yF ) ∈ {0, 1} be one if YF = yF , zero otherwise. Let the
scalar θF,yF

(xF ,wt(F )) = E
t(F )
F (yF ; xF ,wt(F )) be the evaluated energy when

YF = yF . By suitably concatenating all μF , θF we can rewrite the energy (2) as
the inner product 〈θ(x,w),μ〉. Because this form is linear, the distribution (1)
is an exponential family distribution [1] with sufficient statistics μ and so called
canonical parameters θ(x,w).

What is left to do is to give the form of the feature function θF (xF ,wt(F ))
for all factor types t(F ) ∈ T . As we will see below an important require-
ment for efficient parameter learning is that the energy function is linear
in w. The energy function E

t(f)
F related to one factor F is already a lin-

ear function in the output of the feature function θF : XF × R
Dt(F ) →

R
YF

. Therefore, the energy will only be linear in w if we make the fea-
ture function also a linear function in its second argument w. To this end,
we will write θF (xF ,wt(F )) = H

t(F )
F (xF )wt(F ), where H

t(F )
F (xF ) is a lin-

ear map from R
Dt(F ) onto R

YF

, mapping the parameters wt(F ) to ener-
gies. Due to the identity E

t(F )
F (yF ; xF ,wt(F )) = 〈θF (xF ,wt(F )), μF (yF )〉 =

〈Ht(F )
F (xF )wt(F ), μF (yF )〉 = 〈wt(F ), φ(xF ,yF )〉 we can make explicit the lin-

earity in both wt(F ) and μF (yF ), where φ(xF ,yF ) = μF (yF )Ht(F )
F (xF ) is also

known as joint feature map in the CRF literature. Why is this important? Lin-
earity in w leads to convex learning problems (so that local optimality implies
global optimality); linearity in μ leads to an exponential family distribution.

2.2 Inference Problems

The random field model is now fully specified and we can consider inference and
learning tasks. The two tasks of our interest are the test-time prediction task,
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labeling an image with a likely segmentation, and the parameter learning task
in which we have fully annotated training data and want to estimate a good
parameter vector w. In computer vision, predictions are most often made by
solving an energy minimization problem as follows.

Problem 1 (MAP-MRF Labeling Problem). Given an observation x and a pa-
rameter vector w, find the y ∈ YV that maximizes the aposteriori probability
p(y|x,w), that is, solve

y∗ = argmax
y∈YV

p(y|x,w) = argmin
y∈YV

E(y; x,w).

For general factor graphs this problem is NP-hard [2].
To address the parameter learning problem we use the principle of maximum

likelihood to find a point estimate for w. We now define the estimation problem
but in Section 5.4 make connections to maximum-margin procedures.

Problem 2 (Regularized CML Estimation (CMLE)). Given a set of N fully ob-
served independent and identically distributed (iid) instances {(xn,yn)}n=1,...,N

and given a prior p(w) over R
D, find w∗ ∈ R

D with maximum regularized con-
ditional likelihood, that is, solve

w∗ = argmax
w∈RD

p(w)
N∏

n=1

p(yn|xn,w)

= argmax
w∈RD

[
1
N

log p(w)− 1
N

N∑

n=1

(E(yn; xn,w) + logZ(xn,w))

]

. (3)

From the fact that E(yn; xn,w) is a linear function in w it follows [2, section
20.3.2] that the log-likelihood (3) is a concave differentiable function in w and
therefore w∗ can be found using gradient descent. In the case that log p(w) is
strictly concave in w, (3) has a unique maximizer. Despite this, it is hard to
solve Problem 2 for general factor graphs. The reason is that evaluating (3) for
a given w requires computing the partition function Z(xn,w) for each sample,
a task involving summation of an exponential number of terms.

In our model presented in Section 4 we therefore consider tree-structured factor
graphs. These are by definition acyclic and the partition function can be com-
puted efficiently by rearranging the exponential number of terms as a recursion
along the tree. This algorithm for computing logZ(xn,w) and ∇w logZ(xn,w)
is known as sum-product algorithm [5]. Likewise, for tree-structured factor graphs
we can efficiently solve the MAP-MRF problem by the max-product algorithm.

3 Literature Review

Literature on CRF-based object class segmentation. CRF-based approaches to
object class image segmentation can be distinguished by what kind of factors
they use (unary, pairwise, higher-order factors), the model capacity, that is, how
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many free parameters they have, how the model structure is defined (pixel grid,
superpixels, etc.) and how the parameter learning is performed.

Regarding the representation, the main lines are pixel- or pixel-blocks based
approaches [6,7,8,9,10,11], superpixel-based representations [12,13,14], super-
pixel hierarchies [15,16], and hybrid (both pixels and superpixels) representa-
tions [17,18,19].

For parameter learning, most works cited before use a form of piecewise train-
ing or cross validation on one to five hand-chosen parameters. Models in which
joint parameter learning is performed are rare and often use an approximation,
such as loopy BP in [14,11], pseudolikelihood in [9], and contrastive divergence
in [10]. Pincipled max-margin learning is performed in [6,12,19].

Literature on comparing learning methods for CRFs. Because we address the ef-
fect of different parameter learning methods, let us summarize existing compar-
isons of parameter learning methods. Kumar et al. [20] compare a large number
of approximate CRF learning methods on a synthetic binary low-level vision task
with four parameters. Similar experiments on the same dataset have been done
by Korc and Förstner [21]. The excellent study of Parise and Welling [22] com-
pares learning methods for generative binary non-vision MRF models with fixed,
non-replicated structure. Finley and Joachims [23] compare learning methods for
intractable MRF models advocating max-margin learning on relaxations.

Importance of tree-based models. Many early models for low-level vision were
based on tree-structured generative MRFs (for an extensive survey see [24]),
where the structure of the tree is fixed and simple, such as a quad-tree on a 2D
grid. The use of tree-structured models for high-level vision tasks is much less
common. One reason is that we now have efficient algorithms for MAP infer-
ence for certain potential functions for graphs of arbitrary structure. This offers
more modeling freedom on the graph structure while restricting the potential
function class. But recently there seems to be reconsideration of tree-based hi-
erarchical models for high-level vision tasks where the tree structure is adapted
to the image content [15,16,25]. Infact, even the more complex hybrid models
listed above [17,18,19] base their multi-scale structure on a hierarchical tree of
superpixels. Whereas obviously tree-based models are a restricted model class,
the ability to learn arbitrary potential functions and the adapted nature of the
tree structure to the image content offer drastic improvements over the early
tree-based models considered before [24].

Lim et al. [25] is closest to our approach: a segmentation hierarchy is used as
a multi-scale model for object class image segmentation. For each image region
a linear classifier is learned, using features derived from the hierarchy. The main
drawbacks of the otherwise sensible approach are the lack of pairwise interactions
between image regions and the use of an adhoc test-time prediction function.

4 Model

We now define a tree-structured model for object class image segmentation.
The model is naturally multi-scale and adapted to the image content. Due to
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Fig. 1. Illustration of a hierarchical UCM

segmentation. The hierarchy ranges from

a superpixel partitioning at the leaf level

to the entire image at the root. Each

node’s image region is shaded in green.

(Figure best viewed in color.)

Yi

Yj

Yk Yl

Ym Yn
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Xo

Xl

Xm Xn

Fig. 2. Tree-structured factor graph CRF

induced by the hierarchical segmentation.

Each shaded segment r in Figure 1 has an

observation variable Xr (drawn shaded)

and a class variable Yr. Factors (drawn

as �) encode interactions.

its tree structure, test-time image labeling as well as joint parameter learning
are tractable. The tractability allows us to answer for the first time important
questions regarding modeling choices, such as: What is the required image gran-
ularity for object class image segmentation? How to parametrize and learn the
factors? What limits the current model performance? Is joint parameter learning
superior to piecewise training?

The model is based on the recent ultrametric contour maps (UCM) hierar-
chical segmentation method of Arbeláez [26]. We use the UCM segmentation to
define a tree structured factor graph. The factors are then suitably parametrized
such that parameter estimation from training data can be performed. This idea
is illustrated in Figures 1 and 2. In Figure 1 we illustrate the output of the UCM
method: a segmentation tree that recursively partitions the image into regions.
The leaves of the segmentation tree form a superpixel segmentation of the image,
whereas interior nodes represent larger image regions. Ideally object instances –
such as the car in the Figure 1 – are eventually represented by a single interior
node. We use the structure of the segmentation tree to define a factor graph as
shown in Figure 2. The shaded nodes correspond to image information observed
for each image region, whereas the white nodes represent the class variables
to be predicted, one for each region. The factor nodes (drawn as �) link both
observation and class variables, as well as pairs of class variables.

Because the hierarchical model structure is based on the UCM segmenta-
tion, it is naturally adapted to the image content. Moreover, it is a multi-scale
representation of the image [26]. Our factor-graph can concisely represent a
probability distribution over all possible labelings.

In next three subsections we discuss the choice of superpixel granularity, how
to parametrize factors and how to perform training and prediction.
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Fig. 3. Upper bound on the achiev-

able VOC 2009 segmentation accuracy

as a function of the preserved UCM

edge strength. The left axis (solid,

blue) shows the accuracy, the right axis

(dashed, green) shows the mean num-

ber of superpixels per image. For each

curve one unit standard deviations over

the 749 training images is shown.

Fig. 4. Visualization of the superpixels of

the hierarchical segmentation. Shown are

examples from the VOC 2009 segmenta-

tion set, with the chosen edge pruning pa-

rameter of 40, leading to an average of

≈ 100 superpixels and ≈ 200 tree nodes

per image.

4.1 Experiment: How Many Superpixels?

When using a fixed precomputed representation of the image such as superpixels,
it is fair to ask how much representational power is lost in the process: because
we associate one discrete random variable with each superpixel, an error on this
representational level cannot be corrected later.

To determine this trade-off, we produce UCM segmentations using the code
of Arbeláez [26] for the 749 images in the PASCAL VOC 2009 segmentation
challenge [27]. By thresholding the obtained UCM maps at increasing values we
obtain a set of successively coarser hierarchical segmentations. For each threshold
we evaluate the maximum achievable accuracy if we could label all leaves of the
segmentation tree knowing the ground truth pixel labeling.

The results are shown in Figure 3. Even with a relatively small average num-
ber of superpixels the segmentation accuracy is above 70%. While this number
appears to be low, it can be put into perspective by recognizing that the cur-
rently best state-of-the-art segmentation models applied to the VOC 2009 data
set – including non-CRF approaches and methods trained on substantially more
training data – achieve 25− 36% using the same evaluation measure [27]. Gould
et al. [13] carried out a similar experiment on the MSRC and Sowerby data sets,
and their results agree with our observations. For the following experiments we
choose a pruning edge strength of 40, yielding an average of ≈ 100 superpixels
per image and a maximum achievable accuracy of ≈ 90%. For this choice, Fig-
ure 4 shows typical example segmentations for the VOC 2009 images. For each
image shown, the achievable accuracy is between 89.7% and 90.3%.
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YiXi

exp(−E1
{Xi,Yi}(yi; xi,w1))

Fig. 5. Unary energy

E1
{Xi,Yi}(yi; xi, w1)

Yi

Yj

exp(−E2
{Yi,Yj}(yi, yj;w2))

Fig. 6. Pairwise data-independent en-

ergy E2
{Yi,Yj}(yi, yj ; w2)

4.2 Features and Factors

We now describe how to parametrize the factors used in our model, starting with
the unary observation factors.

Unary observation factors. The most important factors, the unary observation
factors, describe the interaction between the image content and the variables
of interest. We use multiple image features representing appearance statistics
based on shape, color and texture to span a rich feature space describing an
image region. As shown in Figure 5 and described in Section 2.1, the unary
energy takes the following general form

E1
{Xi,Yi}(yi;xi,w1) = 〈θ1{Xi}(xi,w1),μ{Yi}〉 = 〈H1

{Xi}(xi)w1,μ{Yi}〉.
Within this form, we define H1

{Xi}(xi) as the concatenation of multiple image fea-
tures. In particular, we define H1

{Xi}(xi) = (fSIFT(xi), fQHOG(xi), fQPHOG(xi),
fSTF(xi))�, where each fa is an image feature related to the image region as-
sociated with Xi. As image features fa : X → R

Da we use the following:
a ∈ A = {SIFT,QHOG,QPHOG, STF}, where SIFT are normalized bag-of-
words histograms of quantized scale-invariant feature points (DSIFT = 512). The
QHOG features are soft-quantized histogram of oriented gradient vectors of the
image content within a bounding box of the image region Xi (DQHOG = 512).
Similarly, the QPHOG features are soft-quantized pyramid of histogram of ori-
ented gradient features of the black-and-white mask describing the image region
Xi (DQPHOG = 512). The STF features are normalized histograms of semantic
texton forest responses within the image regions [28] (DSTF = 2024). For the
above features w1 ∈ R

D×Y , where D =
∑

a∈ADa = 3560, such that w1 in total
has C ·D elements. The SIFT and STF features model general image statistics
in the region Xi, whereas the QHOG and QPHOG features are responses to a
template of shapes and appearances obtained by clustering the training data. If
the hierarchical segmentation contains a region that describes an object instance,
we hope to obtain a high response in these features. More details regarding the
features used are available in the supplementary materials.

Data-independent pairwise factor. The pairwise factor shown in Figure 6 models
the interaction of labels (Yi, Yj), where i and j form a children-parent pair in
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the hierarchical segmentation. If for example, yi is labeled with a class, then yj

is likely to be labeled with the same class. We consider two possible energies of
the form shown in Figure 6, the first one having the commonly used form

E2,P
{Yi,Yi}(yi, yj ; w2,P ) = 〈w2,P ,μ{Yi,Yj}〉,

where we set H2,P
∅ to the identity operator, such that w2,P ∈ R

Y×Y is a sim-
ple table of energy values for each possible configuration (yi, yj). This setting
contains the generalized Potts model for pairwise interactions as a special case.
Note that unlike in random fields defined on a pixel grid we do not assume reg-
ular/submodular/attractive energies and also do not require symmetry of the
matrix w2,P . This is important because the role of child and parent variable is
known; for instance, a children-parent region labeling of (“car′′, “background′′)
is more likely to occur than (“background′′, “car′′). We consider a second type
of energy as a baseline: the constant energy, making all variables Yi ∈ Y inde-
pendent. We define it as parameter-less energy E2,constant

{Yi,Yi} (yi, yj) = 0.

4.3 Training and Testing

Training. For solving Problem 2 we use the LBFGS method from the minFunc
package of Mark Schmidt1 and for the inference we use libDAI [29]. In the
experiments we state the number of LBFGS iterations used.

For each instance in the training set, we set as ground truth label y ∈ YV not
the discrete labeling vector but the actual distribution μV ∈ [0, 1]Y

V

of pixel
labels within each image region. This faithfully represents the actual ground
truth information and reduces to the discrete label case if all pixels within a
region have the same label.

For the prior distribution over the parameters w1, w2, and w3 we choose a
multivariate Normal distribution, such that p(w1;σ) = N (0, σ2I), p(w2; τ) =
N (0, τ2I), and p(w3; τ) = N (0, τ2I). This leads to two hyper-parameters (σ, τ)
to be selected by model selection.

Test-time prediction. For a given test image x and trained model w∗ we find
the MAP labeling y∗ = argminy∈YV E(y; x,w∗). In y∗ we have one label per
hierarchical image region, whereas the original task is to label each pixel with
a unique label. It could therefore be the case that two region labels contradict
each other in their pixel assignments. We could enforce consistency by assigning
infinite energies to children-parent labelings of the form (yc, yp) where yc 
=
yp and yp 
= “background”. However, inconsistent labelings are absent in the
training data and hence the model parameters are already chosen such that
inconsistent labelings are unlikely. Experiments confirm this: on holdout data
less than 0.7% of all children-parent links are inconsistently labeled. Therefore,
for making test-time predictions we label each pixel with the label of its largest
region that is not assigned a background label. In case no such region exist, the
background label is assigned.
1 http://people.cs.ubc.ca/~schmidtm/Software/minFunc.html

http://people.cs.ubc.ca/~schmidtm/Software/minFunc.html
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Unary features seg-val Train time D

SIFT 6.13% 22h01m 11,193

QHOG 8.40% 19h30m 11,193

QPHOG 7.35% 36h03m 11,193

STF 6.76% 39h36m 42,945

QHOG,QPHOG 10.92% 24h35m 21,945

SIFT,QHOG,QPHOG 14.54% 26h17m 32,697

all features 15.04% 41h39m 75,201

Fig. 7. The result of feature combination at the

unary factors
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5 Experiments

Throughout the experiments section we use the PASCAL VOC 2009 dataset [27].
The segmentation challenge contains 1499 annotated images (749 training, 750
validation), labeling each pixel with either “background” or one of 20 object
classes, such as car, person, bottle, etc. The dataset is widely accepted to be
difficult and realistic. We report the official PASCAL VOC2009 segmentation
challenge performance measure [27] which is the average over 20 object classes
of the intersection/union metric. Except for the final challenge evaluation, all
models are trained on the segmentation train set (749 images) and we report
the performance on the segmentation val set (750 images).

5.1 Quantifying the Effect of Feature Combination

For high level vision tasks such as object recognition, image classification and
segmentation it is now well accepted that the combination of multiple image
features is essential for obtaining good performance [30]. On the other hand, the
use of multiple image features leads to models with many parameters and thus
a possibly higher estimation error or overfitting.

We verify our model by evaluating the performance of individual features
versus their combination. We do not perform model selection and fix σ = 1000,
τ = 1000. We train using 700 LBFGS iterations on the segmentation train set
and report the performance on the segmentation val set.

Table 7 reports the results. As expected, combining multiple features is essen-
tial to obtain reasonable performance levels. Combining the three SIFT, QHOG,
and QPHOG features doubles the performance of each individual one.

Moreover, we find that adding any reasonable image feature never decreased
the performance. This shows that our model can combine multiple image fea-
tures in a robust way, and a high dimensionality D of the parameter space does
not lead to overfitting. We submitted a model trained using all features on the
segmentation trainval dataset to the VOC2009 challenge. Some good and er-
roneous segmentations of this model are shown in Figure 9. A discussion of the
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Table 1. VOC 2009 segmentation accuracy on validation set for the best performing

unary-only model, the best piecewise-trained model, and the jointly-trained model

Model seg-val Training time

Unary only, 9.98% 2h15m

Piecewise, Potts 14.50% (2h15)+10h28m

Joint 14.54% 26h17m

challenge results and how other CRF-based approaches fared can be found in
the supplementary materials.

5.2 Training Set Size and Learning Tradeoff

For any machine learning model, there exists a tradeoff between the expressivity
of the model, the scalability to large training sets and the feasibility of optimiza-
tion [31]. This experiment determines what the limiting dimension of our model
is: the model class, the training set size or the training procedure. We train using
the SIFT, QHOG and QPHOG features as we vary the training set size and the
LBFGS iterations.2 We evaluate each model on the validation set.

The results are shown in Figure 8. Up to about 600 LBFGS iterations the
performance increases with more iterations. This is true for all training set sizes,
but eventually the performance levels off when enough iterations are used. Uni-
formly the performance increases when more training samples are used. This
indicates that the model has enough expressive power to achieve high accuracy
but is currently limited by the small amount of annotated training data.

5.3 Piecewise versus Joint Parameter Learning

Piecewise training [32] is a two-step procedure where in the first step the factor
graph is decomposed into disjoint subgraphs and each subgraph is trained indi-
vidually. In the second step the learned weights are fixed and the factors joining
the subgraphs are jointly trained. Piecewise training is an effective approxima-
tion and has been extensively used. Despite this, it has so far not been studied
how much is lost compared to joint training of the model.

To quantify what is lost we use CMLE training with 700 iterations on the
SIFT, QHOG and QPHOG features. We first produce a model without pairwise
potentials (Unary only) by selecting σ ∈ {10, 100, 1000} for best performance
on the validation set. The learned parameters are fixed and the pairwise energy
E2,P is used to retrain, selecting τ ∈ {10, 100, 1000} for best performance on the
validation set (Piecewise, Potts). The canonical competitor to this piecewise-
trained model is a jointly trained model (Joint), with σ, τ = 1000 fixed.

2 The training set size is within {125, 250, 375, 500, 625, 749}, the training iterations

within {100, 200, . . . , 1000, 1250, 1500}.
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Fig. 9. VOC test predictions. Top: success, bottom row: typical failures (background

labeled, wrong label, clutter, entire image labeled).

The results are shown in Table 1. The training time is reduced, but it is sur-
prising that the loss due to piecewise training of the unary energies is negligible.

5.4 Maximum Likelihood versus Max-Margin

So far we have estimated the parameters of our models using the principle of max-
imum likelihood. An alternative method to estimate w from training data is the
maximum margin principle [33], recently applied to learn structured prediction
models in computer vision [34,6,12,19] using the structured SVM formulation.

We use the standard margin-rescaling structured SVM formulation [33], which
we describe in the supplementary materials. The use of the structured SVM
entails the choice of a semi-metric Δ(yn,y) and the parameter Csvm. For Δ :
YV × YV → R+ we choose the same function as [12], weighting the regions by
their relative sizes, something that is not possible in standard CMLE training.

We evaluate the structured SVM against CMLE with 500 LBFGS iterations.
For the structured SVM we use the popular cutting plane training procedure [33],
solved using the Mosek QP solver. We evaluate Csvm ∈ {10−5, 10−4, . . . , 1}
for the structured SVM model and (σ, τ) ∈ {100, 1000} × {1, 10, 100, 1000} for
CMLE and report the best achieved performance on the validation set using the
SIFT,QHOG,QPHOG features and the data-independent pairwise Potts factor.
For larger values of Csvm the cutting-plane training procedure failed; we describe
this in detail in the supplementary materials.

The results shown in Table 2 show that the CMLE training procedure requires
less time and outperforms the structured SVM model consistently. It is unclear
and remains to be examined whether this is due to the failure of the structured
SVM optimization procedure for large values of Csvm or because of an inferior
estimator.

Table 2. Results of maximum likelihood training and structured support vector ma-

chine training. See main text for details.

Accuracy CMLE Training time CMLE Accuracy SVM Training time SVM

Potts 13.65% 24h11m 13.21% 165h10m
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6 Conclusions and Future Work

We draw the following conclusions for the class of tree-structured/hierarchical
CRF based approaches to object class image segmentation:

– Current CRF models are limited by the amount of training data and available
image features; more of both consistently leads to better performance,

– Piecewise training of unary observation factors is competitive with joint
training and reduces the required training time considerably,

– Max-margin training is not well-tested within computer vision; current meth-
ods are slow and unstable in case of many parameters.

This work provides recommendations for the tractable, tree-structured case on
a popular high-level vision task. In the future we plan to provide a larger study
examining whether our conclusions extend to general intractable CRF models
learned using approximate inference. Additionally, we would like to examine
other high-level data-driven vision tasks.
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Abstract. In this paper, we constrain faces to points on a manifold

within the parameter space of a linear statistical model. The manifold

is the subspace of faces which have maximally likely distinctiveness and

different points correspond to unique identities. We show how the tools

of differential geometry can be used to replace linear operations such as

warping and averaging with operations on the surface of this manifold.

We use the manifold to develop a new method for fitting a statistical

face shape model to data, which is both robust (avoids overfitting) and

overcomes model dominance (is not susceptible to local minima close to

the mean face). Our method outperforms a generic non-linear optimiser

when fitting a dense 3D morphable face model to data.

1 Introduction

Linear statistical models have been used to model variation in 2D [5] and 3D
[3] shape, appearance and texture. These models are generative in nature, in
the sense that instances similar to those used to train the model can be com-
puted from a low dimensional parameter vector. Faces have proven a particularly
suitable class to model using such approaches.

Perhaps the best known statistical face model is the Active Appearance Model
(AAM) [5] which combines a linear model of 2D shape and 2D appearance.
Rather than model appearance, the 3D Morphable Model of Blanz and Vetter
[3] models the shape and texture which give rise to appearance via a model of
image formation. Xiao et al.[17] have used a 3D model in conjunction with a 2D
appearance model to enforce geometric constraints on the 2D shape generated.

Applying these models to face processing tasks requires a means to fit the
model to observed data. This data may take many forms, such as the appear-
ance of a face in one [3,5,17] or more [1,6] images, a noisy and incomplete 3D
scan [2] or the location of a sparse set of feature points in an image [8]. Of-
ten this fitting process is underconstrained, prone to converge on local minima
and computationally expensive. For these reasons, there is strong motivation
for developing additional constraints to reduce the search space of the fitting
process.

The most common method for learning such models from data, Principal
Components Analysis (PCA), is based on the assumption that faces form a
Gaussian cloud in a high dimensional space. The principal axes of this cloud
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are estimated from a training sample, allowing any face to be approximated in
terms of a small number of parameters.

Psychological results [16,11] have shown that this parameter space has an
interesting perceptually-motivated interpretation: identity relates to direction in
parameter space while distinctiveness is related to vector length (or equivalently
distance from the mean). The reason for this is that increasing the length of a
parameter vector simply exaggerates its differences from the average linearly, in
other words its features, whereas rotating a parameter vector changes the mix of
features present in the face. This is the justification for using angular difference
in face space as a measure of dissimilarity for face recognition.

This decomposition also allows a useful probabilistic interpretation. Under
the Gaussian assumption, each model parameter is independent and distributed
according to a Gaussian distribution. This means that all faces lie on or near
the surface of a hyper-ellipsoid in parameter space, with the probability density
over the parameter vector lengths following a chi-square distribution. In other
words, distinctiveness is subject to a statistical prior with the distinctiveness of
most samples clustered around the expected length.

1.1 Contribution

In this paper, we use these observations to motivate a representation for faces
which decomposes face appearance into identity and distinctiveness subspaces.
We focus on statistical models of 3D face shape, though all of our results are
equally applicable for any parametric face representation. We use ideas from
differential geometry to develop tools which operate in the identity subspace,
i.e. which retain constant distinctiveness. We provide empirical justification for
constraining samples to have fixed distinctiveness, determined by the expected
vector length.

We propose a new algorithm for fitting a statistical face model to data. Many
such methods have been proposed, the details being dependent on the precise
nature of the model and data. However, this inevitably involves a non-linear
optimisation over the model parameters.

Examples include Cootes’s [5] original algorithm for fitting AAMs to images
which assumes that the relationship between error and optimal additive pa-
rameter updates is constant. Matthews and Baker’s [9] inverse compositional
algorithm avoided this assumption allowing faster and more robust convergence.
In the domain of fitting 3D morphable models to single 2D images, Blanz and
Vetter’s [3] approach was to use a stochastic optimisation process in an analysis-
by-synthesis framework in the hope of finding a global minimum. Careful initial-
isation and regularisation is required to obtain stable performance. Romdhani
et al.[14] proposed an alternative approach which used additional features such
as edges and specularities as part of the error term. The hope was to obtain a
globally convex objective function, allowing local optimisation methods to ar-
rive at the global optimum. All these approaches must trade off satisfaction of
a model-based prior against quality of fit. To ensure robust performance, these
approaches must favour the prior, resulting in model dominance.
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Our approach operates via gradient descent on the manifold of equal distinc-
tiveness. In other words, we solve for identity and assume distinctiveness takes
its expected value. We show how the method naturally lends itself to a coarse-to-
fine optimisation strategy and how the result avoids overfitting or local minima
in which generic non-linear optimisers become stuck.

2 Statistical Modelling

Consider a sample of 3-dimensional face meshes which are in dense correspon-
dence (i.e. the same point on every face has the same vertex index). The ith shape
is represented by a vector of p vertices si = (x1, y1, z1, . . . , xp, yp, zp) ∈ R

3p.
Given m such shape vectors, we use principal components analysis to obtain
an orthogonal coordinate system spanned by the m eigenvectors Pi. Any shape
vector s may now be represented as a linear combination of the average shape
and the model eigenvectors:

s = s̄ +
m∑

i=1

ciPi, (1)

where c = [c1 . . . cm]T is a vector of parameters. We stack the eigenvectors to
form a matrix P, such that we may write: s = s̄ + Pc. The PCA eigenvalues λi

provide a measure of how much of the variance of the training data is captured
by each eigenvector. We may choose to retain n < m model dimensions, such
that a certain percentage of the cumulative variance is captured. We discuss the
effect of the number of model dimensions and empirically evaluate their stability
in Section 2.2.

Our interest in this paper is to explore how shape samples drawn from a pop-
ulation distribute themselves in parameter space and how we can use this knowl-
edge to constrain operations. We define the vector b = [c1/

√
λ1 . . . cn/

√
λn]T as

the variance-normalised parameter vector. This vector is distributed according
to a multivariate Gaussian with zero mean and unit variance, i.e. b ∼ N (0, In).
This is the prior constraint typically used in the model fitting process to en-
sure that solutions remain plausible. It is maximised by a zero vector, which
corresponds to the mean sample.

However, another interpretation based on the parameter vector length is pos-
sible. The squared norm of b corresponds to the square of the Mahalanobis
distance of c from the mean:

‖b‖2 = D2
M (c) =

n∑

i=1

(
ci√
λi

)2

. (2)

Since we assume each parameter follows a Gaussian distribution, the parenthe-
sised terms are independent, normally distributed random variables with zero
mean and unit variance. The sum of the square of such variables follows a chi-
square distribution with n degrees of freedom, i.e. ‖b‖2 ∼ χ2

n. This distribution
has expected value n and variance 2n.
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These two apparently contradictory distributions suggest that the mean face
is the most probable sample but has a highly improbable vector length. For
example, a model with 100 dimensions would have an expected vector length of
100 and over 99% of parameter vectors would have lengths between 70 and 130.
The probability of a vector length less than 50 is negligibly small.

2.1 Identity as Direction

From the discussion above, it is clear that valid members of the class will oc-
cupy a subset of parameter space. These points will lie close to the surface of a
hyperellipsoid, the diameters of which are determined by the eigenvalues of the
data and the variance of the distance of samples from the manifold determined
by the number of model dimensions. It is worth noting that as the number of
dimensions increases, so the variance increases and the distance of samples from
the manifold increases. Hence, the validity of assuming points lie on the surface
of the hyperellipsoidal manifold breaks down as the number of model dimensions
increases. Nevertheless, psychological results show us that the dimensionality of
face space is relatively small (Meytlis and Sirovich [10] suggest 100 dimensions
is sufficient, even using a crude eigenface model).

The analysis of data on a hyperellipsoidal manifold is extremely complex.
Therefore, without loss of generality, we transform the manifold to a hyper-
sphere by scaling each dimension by its corresponding standard deviation. By
constraining faces to lie on the surface of this manifold, we maintain equal
distinctiveness and ensure that only faces with the most probable distinctive-
ness can be generated. For the remainder of this paper, we therefore represent
parameter vectors with squared Mahalanobis length n as unit vectors in R

n:

x = 1√
n

[
c1√
λ1

. . . cn√
λn

]T
.

b

-b

x = Expb(v)

v'
v = Logb(x)

Fig. 1. Computing log and exponential

maps using a stereographic projection

for the S1 manifold

A unit vector in n-dimensional space
x ∈ R

n, may be considered as a point ly-
ing on the hyperspherical manifold x ∈
Sn−1. The two are related by x = Φ(x)
where Φ : Sn−1 �→ R

n is an embedding.
If v ∈ TbS

n−1 is a vector in the tangent
space to Sn−1 at a base point b ∈ Sn−1,
the exponential map, denoted Expb of v is
the point on Sn−1 along the geodesic in
the direction of v at distance ‖v‖ from b.
The inverse of the exponential map is the
log map, denoted Logb.

The geodesic distance (i.e. angular
difference) between two points on the
unit hypersphere x1, x2 ∈ Sn−1 can
be expressed in terms of the log map, i.e. d(x1, x2) = ‖Logx1

(x2)‖ =
arccos (Φ(x1) · Φ(x2)).

We propose a novel implementation of the exponential and log maps for a unit
hypersphere which is both simple and efficient. We do so using a stereographic
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projection. The log map of a point x at basepoint b is calculated as follows.
We define the tangent vector v′ ∈ TbS

n−1 as the stereographic projection of x
from −b to the tangent space to Sn−1 at b. This tangent vector has the correct
direction but incorrect magnitude. To obtain the log map of x, we rescale v′

giving v, such that ‖v‖ = d(b, x). The exponential map is computed by reversing
this process, i.e. by applying an inverse stereographic projection to the rescaled
tangent vector. Figure 1 clarifies the geometry involved for the S1 case.

In practice, we represent points on both the hyperspherical manifold and the
tangent space as vectors embedded in R

n. Hence, our proposed implementation
of the log map of x at base point b is computed as:

ΦT (Logb(x)) = b +
θ(v′ − b)
‖v′ − b‖ , (3)

where b = Φ(b) and x = Φ(x) are both unit vectors in R
n,

v′ =
2(b + x)

‖b + x‖ cosα
− b, α = arccos

(
4 + ‖b + x‖2 − ‖x− b‖2

4‖b + x‖
)

, (4)

and θ = arccos(b · x).
The result is a point in the tangent space TbS

n−1 embedded in R
n according

to an arbitrary embedding ΦT : TbS
n−1 �→ R

n. A similar expression can be
derived for the exponential map. These expressions hold for unit vectors in any
number of dimensions. In the remaining sections, we use the log and exponential
map to derive useful operations on the manifold.

2.2 Empirical Evaluation: χ2 Prediction

Before we consider applications of processing data on the manifold described
above, we provide some empirical assessment of how well the theoretically pre-
dicted manifold adheres to real world data. In order for all plausible data samples
to lie on or near the manifold, the assumption of parameter vector lengths fol-
lowing the chi-squared distribution must hold. In turn, the distribution of faces
along each eigenvector must follow a Gaussian distribution. In practice, these
eigenvectors are estimated from a sparse sample of a high dimensional space. In
the case of a dense 3D face shape model, observations typically consist of tens
of thousands of vertices while the training set typically comprises only hundreds
of samples.

Clearly, the validity of the estimated manifold depends on the quality of the
estimated eigenvectors and therefore the size and diversity of the training set.
We empirically evaluate how well unseen data adheres to our assumptions. This
allows us to determine how many model dimensions can be safely retained.

Our empirical test is conducted as follows. From a pool of 100 face meshes [15],
we randomly select 75. We build a PCA model and project each of the remaining
25 out-of-sample data onto the model eigenvectors. We repeat this process 80
times, giving a total of 2000 out-of-sample parameter vectors. We analyse the
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Fig. 2. Predicted versus observed mean (left) and variance (right) of out-of-sample

parameter vector lengths

mean and variance of the squared-Mahalanobis length of these vectors and mea-
sure how well they agree with the predicted chi-square distribution. We would
expect the mean and variance to grow linearly with the number of model di-
mensions retained. As can be seen in Figure 2, the observed mean lengths are
close to, but smaller than, the theoretical prediction. On the other hand, the
variance is only close to the predicted value for up to approximately 20 dimen-
sions. Beyond this, the variance increases rapidly meaning many points will lie
a significant distance from the manifold surface. We believe this is an effect of
the sparsity of the training data. A much larger training set would allow this
effect to be studied further. Nevertheless, we can see that for a modest number
of dimensions, real world data does follow the statistical prediction reasonably
well.

2.3 Empirical Evaluation: Manifold Approximation

The second empirical evaluation necessary to justify our approach, is to assess
the error induced by forcing all samples to lie on the manifold, i.e. enforcing
a hard constraint on vector length. Given an out-of-sample face, s, the opti-
mal parameter vector (in a least squares sense) is given by c∗ = PT (s − s).
Substituting c∗ back into (1), we can obtain smod, the shape which minimises
‖smod − s‖2. However, this shape is not constrained by the model prior and is
almost always an overfit to the data. We compare this optimal model-based re-
construction to the shape, sman, obtained by projecting c∗ to the closest point
on the hyperspherical manifold:

cman =
√
n

DM (c∗)
c∗. (5)

Over the 10 out-of-sample faces in the BFM [12] the mean Euclidian error of
smod for a n = 99 parameter model was 1.128mm. By projecting to the Sn−1

hypersphere, the mean Euclidian error of sman increased to 1.89mm. The optimal
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choice of n− 1 dimensional subspace (with respect to Euclidian error) would be
to simply retain the first n − 1 eigenvectors of the PCA model. For our data,
this gives a mean Euclidian error of only 1.133mm. However, the purpose of
our choice of manifold is to enforce plausibility. This is reflected in the fact that
error in the surface normals of the approximated faces (which in turn determines
appearance), reduces when projecting to the manifold. For our data, the mean
angular error drops from 5.92◦ for smod to 5.48◦ for sman. In other words, by
constraining faces to be more plausible, we reduce appearance error.

3 Plausibility-Preserving Warps and Averages

Warping between faces or, more generally, computing weighted combinations of
two or more faces has applications in animation and in the production of stimuli
for psychological experiments [11]. The most obvious way to warp between two
shapes that are in dense correspondence is to linearly warp each vertex from
its position in one shape to its position in the other. Equivalently, this can be
approximated by linearly warping between the two vectors of PCA parameters.
However, in either case the intermediate faces will not correspond to plausible
faces. Since the manifold of maximally probable distinctiveness is curved, any
linear warp will include faces that do not lie on the manifold, with the least
plausible face occurring halfway along the warp.

Fig. 3. Warping between face and antiface on the

S2 manifold. Linear warp is shown in red, one of

the possible geodesic warps is shown in blue.

Face-antiface warps provide
a particularly interesting spe-
cial case. An antiface is the
antipodal point of a source
face on the manifold. Percep-
tually, antifaces appear “op-
posite” in some sense to the
original face. The vector con-
necting a face to its antiface in
parameter space passes through
the mean. A linear warp be-
tween a face and antiface is
therefore well-defined but will
include implausible faces for the
duration of the warp. There is
a further problem with such lin-
ear warps. Psychological studies
have shown that there is a per-
ceptual discontinuity as the face
trajectory crosses the mean [11].
In other words, as identity flips from face to antiface, the perceptual effect of a
small movement through face space is exaggerated.

Instead, we propose warps which take place across the surface of the manifold,
following the geodesic curve between the two source faces. Another way to view
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these warps is as a rotation of a unit vector in R
n. All intermediate faces in

this case have equal distinctiveness and are equally plausible. In the case of
antifaces, there is no single geodesic warp connecting face to antiface. In fact,
there are an infinite number of valid warps, all of length π. Any such warp will
smoothly vary identity from the source face to its antiface, via a series of faces
with uniform distinctiveness. One way to conceptualise this is that we can set
off from a point on the hyperspherical manifold in any direction and reach the
antiface after travelling a distance π.

An interesting result of this observation is that we can choose any intermediate
face as a target which will be visited on the warp from face to antiface. This
gives us a way to specify one of the infinite face-antiface warps and may also
have interesting applications in generating stimuli for psychological studies. This
idea is demonstrated in Figure 3 for the S2 manifold, which shows the difference
between a plausibility-preserving and linear warp.

For a source face xsrc and intermediate target face xtar, we can define a
unit vector in the tangent space, v ∈ TxsrcS

n−1, from xsrc in the direction of
xtar: v = Logxsrc

(xtar)

d(xsrc,xtar) . A geodesic warp from xsrc to xtar is therefore given by
following this vector by a distance specified by the warping parameter w:

xwar = Expxsrc

(

w
Logxsrc

(xtar)
d(xsrc, xtar)

)

. (6)
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Fig. 4. Vector length or ‘plausibility’ is plotted

throughout a warp between a face and antiface

(see Figure 5)

When w = 0 we obtain the
source face, i.e. xwar = xsrc,
and when w = d(xsrc, xtar)
we obtain the target face, i.e.
xwar = xtar. If we set w = π
we obtain the antiface to xsrc.
Intermediate faces are obtained
when w ∈ (0, π).

We show an example warp
from face to antiface via an in-
termediate target face in Fig-
ure 5 using the 199 parameter
BFM [12]. Note that the effect
is of smooth variation of iden-
tity, with each of the intermedi-
ate faces containing significant
detail. We contrast this with a
linear warp through the mean face which results in implausibly smooth interme-
diate faces and no transition through intermediate identities. In Figure 4 we plot
the parameter vector lengths for the linear and plausibility-preserving warps.

3.1 Averages

Given u > 2 source faces, x1, . . . , xu ∈ Sn−1, we wish to compute a plausible
average face which captures characteristics of each of the source faces. The linear
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Source:

Linear Warp

Target:

Plausibility-
preserving
warp

Antiface:

Fig. 5. Linear versus plausibility-preserving warp from face to antiface

or Euclidian mean of the parameter vectors minimises the sum of square error in
R

n from the average to each of the source faces. This is the extrinsic mean and
will not lie on the manifold. The result is that the face is implausibly smooth
and lacking in features. We propose the use of the intrinsic or Karcher mean. For
u = 2, this can be found using the warping equation given above with w = 0.5.
For u > 2, this is the point xμ ∈ Sn−1 which minimises the total squared geodesic
distance to each of the source faces:

xμ = arg min
x∈Sn−1

u∑

i=1

d(x, xi)2. (7)

This point cannot be found analytically, so we solve it as an iterative optimisation
using the gradient descent method of Pennec [13]. We initialise our estimate as
one of the source data points, i.e. x(0)

μ = x1. The estimated intrinsic mean is
then iteratively updated as follows:

x(j+1)
μ = Exp

x
(j)
μ

(
1
u

u∑

i=1

Log
x
(j)
μ

(xi)

)

. (8)

This process converges rapidly, typically within 5 iterations. In Figure 6 we
compare our plausibility-preserving averages with linear averaging of the 74 di-
mensional parameter vectors obtained using the USF data [15]. Notice that each
of the Euclidian averages appears unrealistically smooth, whereas the averages
computed on the manifold clearly show the presence of distinct features present
in the source faces (for example, the broader nostrils of face 1 are visible in the
first three averages but not the fourth).

4 Model Fitting on the Manifold of Plausible Faces

The most powerful application of the identity manifold is to use it for the purpose
of constraining the process of fitting a model to data. Suppose the function
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Fig. 6. Linear versus plausibility-preserving averages

ε : Sn−1 �→ R is an objective function which evaluates the quality of fit of a face
represented by a point on the plausibility manifold to some observed data. This
function could take any form, for example the difference between predicted and
observed appearance in an analysis-by-synthesis framework or the error between
a sparse set of feature points. We pose model fitting as finding the point on the
manifold which minimises this error, i.e.:

x∗ = arg min
x∈Sn−1

ε(x). (9)

In doing so, we ensure that plausibility is enforced as a hard constraint. Note
also that the optimisation is more heavily constrained since the dimensionality
of the hypersphere is 1 less than the parameter space.

4.1 Local Optimisation

We can perform gradient descent on the surface of the manifold to find a local
minimum in the error function. The fact that our manifold is hyperspherical has
some interesting implications for such an approach. We must first compute the
gradient of the objective function in terms of a vector on the tangent plane:
∇ε(x) ∈ TxS

n−1. To do so, we compute the gradient in terms of a vector in R
n

and project the result to the tangent plane as follows:

∇ε(x) = Logx

(

Φ−1

(
x− g
‖x− g‖

))

, (10)
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where x = [x1 . . . xn]T = Φ(x). The gradient g = [∂x1ε(x) . . . ∂xnε(x)]T is
approximated by using finite differences to calculate the partial derivatives:

∂xiε(x) ≈ ε(x′i)− ε(x)
ε

, (11)

where x′i = Φ−1([x1 . . . xi + ε . . . xn]).
With a means to compute the gradient, we can iteratively minimise the ob-

jective function by adapting the gradient descent algorithm to operate on the
surface of a manifold:

x(t+1) = Expx(t)

(
−γ∇ε(x(t))

)
, (12)

where γ is the step size. Note that as γ varies, the point Expx (−γ∇ε(x)) ∈ Sn−1

traces out a great circle about the hypersphere. This is the search space for the
one-dimensional line search at each iteration of gradient descent.

4.2 Coarse-to-Fine Model Fitting

The difficulty with our approach is choosing an unbiased initialisation. Exist-
ing methods for fitting statistical models to data typically commence from an
initialisation of the mean (i.e. zero parameter vector), e.g. [3,5]. However, this
point lies far from the plausibility manifold and is therefore unsuitable in our
case.

We tackle this problem and also reduce susceptibility to becoming trapped in
local minima by proposing a coarse-to-fine algorithm which iteratively increases
the number of model dimensions considered in the optimisation.

Consider in the simplest case a 1-dimensional model. Only two points strictly
satisfy the plausibility constraint in this case and the problem therefore reduces
to a binary decision:

x(1) =

{
[ 1 ] if ε(Φ−1([ 1 ])) < ε(Φ−1([ −1 ]))
[ −1 ] otherwise

, (13)

We use this result to initialise the solution in two dimensions, initially setting
the second parameter to zero: x(n)

init =
[
x(n−1) | 0

]
. We then perform gradient

descent, which in the two parameter case means optimising a single angular
parameter. We continue this process, incrementally adding dimensions to the
optimisation, each time setting the new parameter to zero and then performing
gradient descent on the new manifold using this as an initialisation. Hence,
the result of a local optimisation in n dimensions is used as the initialisation for
optimisation in n+1 dimensions ensuring that the solution is already constrained
to the right region of the manifold.

The nature of the hyperspherical manifold can be used to inform the step size
used in the gradient descent optimisation. We assume that the result in n dimen-
sions has restricted the solution to the correct hemisphere of the hypersphere.
Travelling in the direction of the negative gradient reduces the error. To travel
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in this direction whilst remaining in the same hemisphere means the maximum
arc distance that can be moved is π

2 . Hence, the result in n dimensions is given
by x(n) = h(d∗), where

h(d) = Exp
Φ−1(x

(n)
init)

⎛

⎝d
−∇ε

(
Φ−1(x(n)

init)
)

∥
∥
∥∇ε

(
Φ−1(x(n)

init)
)∥
∥
∥

⎞

⎠ . (14)

The arc distance d determines how far we travel along the great circle implied
by the gradient of the objective function. Since we wish to constrain our solution
to the same hemisphere, d must lie in the interval (0, π

2 ) and we hence find d∗

using golden section search [7] to solve: d∗ = arg min
d

h(d), 0 < d < π
2 . Multiple

iterations of gradient descent can be used each time a dimension is added to the
optimisation. In our results we use four iterations per dimension.

4.3 Model Fitting Example

For our experimental evaluation, we use the algorithm described above to fit our
3D morphable shape model to unseen data. We choose as an objective function
the angular error between surface normals at each vertex of the model. This
is an interesting choice of objective function for two reasons. First, the search
landscape of the objective function is littered with local minima. Second, the
fitted result is likely to have lower perceptual error than a least squares fit
directly to the vertices. Whilst such a least squares fit gives minimal geometric
error, the result is often a gross over-fit which does not resemble the input face.
Minimising the surface normal error is a non-linear problem which is related to
minimising appearance error, as undertaken by analysis-by-synthesis of image
data [3].

From an input face shape, represented by p vertices, we compute surface
normals at each vertex by averaging face normals of faces adjacent to the vertex.
If Ni is the surface normal at vertex i, our objective function is the sum of
squared angular errors between input and model surface normals:

ε(x) =
p∑

i=1

(
arccos(ni(Φ(x)) ·Ni)

)2
, (15)

where ni([x1 . . . xn]) is the surface normal of the ith vertex of the shape given
by: s + Pc, where the parameter is vector is computed by transforming the unit
vector back to the hyperellipse: c =

√
n
[
x1

√
λ1 . . . xn

√
λn

]T
.

We compare our manifold optimisation with direct optimisation of (15) using
a generic optimiser based on the BFGS Quasi-Newton method with a cubic line
search [4]. Note that the generic optimiser converges close to the mean if all
parameters are optimised simultaneously. We therefore take the same coarse-
to-fine approach as for the manifold fitting, whereby we iteratively increase the
number of dimensions considered in the optimisation.
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Fig. 7. Model fitting result: (a) input unseen face; (b) least squares fit to vertices;

(c) parameter vector of (b) rescaled to manifold; (d) BFGS optimisation; (e) manifold

optimisation. All the results are for a n = 99 parameter model.

In Figure 7 we show results on the BFM [12] data. Column (a) shows input
faces which are not in the morphable model training set. A simple linear least
squares fit of the model to the vertices of the unseen faces yields the result in
column (b). Whilst this result is optimal in terms of the Euclidian error between
input and reconstructed vertices, the result is an overfit and, in particular, the
face in row 2 is clearly implausible. Rescaling the parameter vector obtained
by least squares to the closest point on the manifold yields the result shown in
column (c). While this face is now plausible, it lacks any of the distinguishing
features of the input faces. Column (d) shows the result of using a generic non-
linear optimiser to solve (15). Because of local minima close to the mean, these
faces are implausibly smooth. Finally, our manifold fitting result is shown in
column (e). Note that this result represents a trade off between over and under-
fitting. The mean angular error of the surface normals for the out-of-sample
faces in the BFM using (d) is 7.23◦, while using the proposed method the error
is 5.33◦. Our result outperformed the generic non-linear optimiser for all of the
BFM faces.

5 Conclusions

We have shown how a number of useful operations can be performed on the
manifold of equally distinctive faces. This provides a new way to constrain op-
erations involving the parameters of a statistical model. In particular, we have
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shown how to constrain the process of fitting a model to data and how a coarse-
to-fine strategy avoids local minima. Matlab implementations are available at
(http://www.cs.york.ac.uk/~wsmith/ECCV2010.html). In future work, we in-
tend to apply our model fitting strategy to more demanding objective functions
and to experiment with other sources of data besides faces.
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Abstract. Multi-label problems arise frequently in image and video an-

notations, and many other related applications such as multi-topic text

categorization, music classification, etc. Like other computer vision tasks,

multi-label image and video annotations also suffer from the difficulty of

high dimensionality because images often have a large number of features.

Linear discriminant analysis (LDA) is a well-known method for dimen-

sionality reduction. However, the classical Linear Discriminant Analysis

(LDA) only works for single-label multi-class classifications and cannot

be directly applied to multi-label multi-class classifications. It is desirable

to naturally generalize the classical LDA to multi-label formulations. At

the same time, multi-label data present a new opportunity to improve

classification accuracy through label correlations, which are absent in

single-label data. In this work, we propose a novel Multi-label Linear

Discriminant Analysis (MLDA) method to take advantage of label cor-

relations and explore the powerful classification capability of the classical

LDA to deal with multi-label multi-class problems. Extensive experimen-

tal evaluations on five public multi-label data sets demonstrate excellent

performance of our method.

Keywords: Multi-label classification, Multi-label linear discriminant

analysis, Image annotation.

1 Introduction

Image and video annotation has been an active research topic in recent years
due to its potentially large impact on both image/video understanding and
web/database image/video retrieval. In a typical image annotation problem,
each picture is usually associated with several different conceptual classes. For
example, the picture in Figure 1(a) is annotated with “building”, “outdoor”,
and “urban”, and similarly other pictures in Figure 1 are also associated with
more than one semantic concepts. In machine learning, such problems that re-
quire each data point to be assigned to multiple different categories are called
as multi-label classification problem. In contrast, in traditional single-label clas-
sification, also known as single-label multi-class classification, each data point
belongs to only one category. Multi-label multi-class classification is more gen-
eral than single-label multi-class classification, and recently has stimulated a
slew of multi-label learning algorithms [16,5,7,10,3,9,17,4,15].

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part VI, LNCS 6316, pp. 126–139, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(a) building, out-

door, urban

(b) face, person, en-

tertainment

(c) building, out-

door, urban

(d) TV screen, per-

son, studio

Fig. 1. Sample images from TRECVID 2005 data set. Each image is annotated with

several different semantic words (listed under each images). When they are used as

test images during cross-validations, our new proposed MLDA methods can correctly

predict all of them. But other previous methods can only predict the first or second

labels of each image. They cannot predict ‘urban’ in (a), ‘entertainment’ in (b), ‘urban’

in (c), ‘person’ and ‘studio’ in (d).

An important difference between single-label classification and multi-label
classification lies in that, classes in the former are assumed mutually exclusive,
while those in the latter are typically interdependent from one another. That is,
in multi-label classification, class memberships can be inferred from one another
through label correlations, which provide an important opportunity to improve
classification accuracy. As a result, a multi-label classification method should
make use of label correlations for improved classification performance.

High dimensionality of typical image data makes dimensionality reduction an
important step to achieve efficient and effective image annotation. Among vari-
ous dimensionality reduction methods in statistical learning, Linear Discriminant
Analysis (LDA) is well known and widely used due to its powerful classifica-
tion capability. However, LDA by nature is devised for single-label classification,
therefore it can not be directly used in image annotation. The main difficulty to
apply the classical LDA in multi-label classification is how to measure the inter
and intra class scatters, which are clearly defined in single-label classification but
become obscure in multi-label case. Because a data point with multiple labels
belongs to different classes at the same time, how much it should contribute
to the between-class and within-class scatters remains unclear. Therefore, it is
desirable to generalize the classical LDA to deal with multi-label classification
problem, and meanwhile, incorporate mutual correlations among labels.

In this paper, we propose a novel Multi-label Linear Discriminant Analysis
(MLDA) method to explore the powerful classification capability of LDA in
multi-label tasks and take advantage of label correlations. We first review the
classical LDA and point out the computation ambiguity when using traditional
single-label definitions of the scatter matrices in multi-label classification. After
that, we introduce the details of our proposed MLDA method with empirical
validations.
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2 Difficulties of Classical LDA in Multi-Label
Classification

Given a data set with n samples {xi,yi}ni=1 and K classes, where xi ∈ R
p and

yi ∈ {0, 1}K. yi(k) = 1 if xi belongs to the k-th class, and 0 otherwise. Let input
data be partitioned into K groups as {πk}Kk=1, where πk denotes the sample set
of the k-th class with nk data points. We write X = [x1, . . . ,xn] and

Y = [y1, . . . ,yn]T =
[
y(1), . . . ,y(K)

]
, (1)

where y(k) ∈ {0, 1}n is the class-wise label indication vector for the k-th class.

2.1 Review of Classical LDA

Classical LDA seeks a linear transformation G = R
p×r that maps xi in the high

p-dimensional space to a vector qi ∈ R
r in a lower r(< p)-dimensional space

by qi = GT xi. In classical LDA, the between-class, within-class, and total-class
scatter matrices are defined as follows [2]:

Sb =
K∑

k=1

nk (mk −m) (mk −m)T
, (2)

Sw =
K∑

k=1

∑

xi∈πk

(xi −mk) (xi −mk)T
, (3)

St =
n∑

i=1

(xi −m) (xi −m)T
, (4)

where mk = 1
nk

∑
xi∈πk

xi is the class mean (class centroid) of the k-th class,
m = 1

n

∑n
i=1 xi is the global mean (global centroid), and St = Sb + Sw. The

optimal G is chosen such that the between-class distance is maximize whilst the
within-class distance is minimized in the low-dimensional projected space, which
leads to the standard LDA optimization objective [2] as follows:

arg max
G

J = tr
(
GTSbG

GTSwG

)

. (5)

2.2 Ambiguity Caused by Data with Multiple Labels in Classical
LDA

Classical LDA for single-label classification is summarized in Eqs. (2–5), where
the scatter matrices, Sw, Sb, and St, are well-defined as per the spatial dis-
tribution of data points as in Figure 2(a). However, in multi-label case, these
definitions become obscure, because decision regions overlap among one another
and decision boundaries turn out ambiguous as in Figure 2(b). Besides the data
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Class 1 Class 2

Class 3

(a) Single-label data.

a

b
c

Class 1
Class 2

Class 3

(b) Multi-label data.

Fig. 2. (a) In single-label classification, every data point distinctly belongs to only

one class. (b) In multi-label classification, some data points may belong to multiple

classes, denoted as ovals and triangles, which cause the ambiguity in scatter matrices

calculations.

points belonging to only one class denoted by squares, some data points could
also belong to multiple classes, as denoted by ovals for those belonging to two
classes and triangles for those belonging to all three classes. How much a data
point with multiple labels should contribute to the data scatters is not defined,
therefore the scatter matrices defined in Eqs. (2–4) can not be computed.

3 Multi-label Linear Discriminant Analysis (MLDA)

Classical LDA deals with single-label problems, where data partitions are mutu-
ally exclusive, i.e., πi ∩ πj = ∅ if i �= j, and

∑K
k=1 nk = n. This, however, is no

longer held in multi-label case. In this section, we propose a novel Multi-label
Linear Discriminant Analysis (MLDA) method to explore the powerful classifica-
tion capability of classical LDA in multi-label classification tasks. We first solve
the ambiguity problem revealed in Section 2, and then leverage label correlations
to enhance classification performance. Our method is a natural generalization of
classical LDA.

3.1 Class-Wise Scatter Matrices

The ambiguity when using traditional single-label definitions of scatter matrices
in multi-label classification prevents us from directly applying classical LDA to
solve multi-label problems. Therefore, instead of defining the scatter matrices
from data point perspective as in Eqs. (2–4), we propose to compute them by
class-wise, such that the structural variances of training data are represented
more lucidly and the scatter matrices are easier to be constructed. Moreover,
the ambiguity, how much a data point with multiple labels should contribute to
the scatter matrices, is avoided, and label correlations can be incorporated. The
class-wise between-class scatter matrix is defined as:

Sb =
K∑

k=1

S
(k)
b , S

(k)
b =

(
n∑

i=1

Yik

)

(mk −m)(mk −m)T , (6)
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the class-wise within-class scatter matrix Sw is defined as:

Sw =
K∑

k=1

S(k)
w , S(k)

w =
n∑

i=1

Yik (xi −mk) (xi −mk)T
, (7)

and the class-wise total-class scatter matrix St is defined as:

St =
K∑

k=1

S
(k)
t , S

(k)
t =

n∑

i=1

Yik(xi −m)(xi −m)T , (8)

where mk is the mean of class k and m is the multi-label global mean, which are
defined as follows:

mk =
∑n

i=1 Yikxi
∑n

i=1 Yik
, m =

∑K
k=1

∑n
i=1 Yikxi

∑K
k=1

∑n
i=1 Yik

. (9)

Theorem 1. When applied into single-label classification, the multi-label scatter
matrices, Sb, Sw, and St, defined in Eqs. (6–8), are reduced to their correspond-
ing counterparts in classical LDA as defined in Eqs. (2–4).

From the above definitions, the Theorem 1 can be easily obtained. Most im-
portantly, in classical LDA, St = Sb + Sw, which is still held in multi-label
classifications.

Theorem 2. For multi-label class-wise scatter matrices, S(k)
b , S(k)

w , and S(k)
t as

defined in Eqs. (6–8), the following relationship is held:

S
(k)
t = S

(k)
b + S(k)

w . (10)

Therefore, St = Sb + Sw.

Proof. According to Eq. (9), we have
∑n

i=1 Yikmk =
∑n

i=1 Yikxi. Thus,

n∑

i=1

YikmkmT
k =

n∑

i=1

YikmkxT
i and

n∑

i=1

YikmkmT
k =

n∑

i=1

YikximT
k . (11)

From Eqs. (6–8) and using Eq. (11), we have:

S
(k)
t =

n∑

i=1

Yikxix
T
i +

n∑

i=1

YikmmT −
n∑

i=1

Yikmkm
T −

n∑

i=1

YikmmT
k = S

(k)
b + S(k)

w (12)

�

3.2 Multi-label Correlations

Multi-label data provide a new opportunity to improve classification accuracy
through label correlations, which are absent in single-label data. Typically, the
label correlation between two classes is formulated as following [15]:

Ckl = cos(y(k),y(l)) =
〈y(k),y(l)〉
‖y(k)‖ ‖y(l)‖ . (13)
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Thus, C ∈ R
K×K is a symmetric matrix. Apparently, C = I for single-label

data. Namely, no label correlations can be utilized in single-label classification.
In multi-label classification, a data point may belong to several different

classes simultaneously, hence the data points assigned to two different classes
may overlap. Statistically, the bigger the overlap is, the more closely the two
classes are related. Namely, class memberships in multi-label classification be
inferred from one another through label correlations. Specifically, the correlated
labels assignments are computed as:

Y c = Y C. (14)

Several existing multi-label classification algorithms used label correlations to
boost classification performance [16,1,3,15]. Using TRECVID 2005 data set with
LSCOM-Lite annotation scheme [11], label correlations defined in Eq. (13) are
illustrated in Figure 3. The high correlation value between “person” and “face”
shows that they are highly correlated, which perfectly agree with the common
sense in real life for the simplest fact that everybody has a face. Similar observa-
tions, such as “outdoor” and “sky”, “waterscape-waterfront” and “boat-ship”,
“road” and “car”, etc., can also be seen in Figure 3, which concretely confirm
the correctness of the formulation of label correlations defined in Eq. (13) from
semantic perspective.
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Fig. 3. Correlations between all pairs of 39 keywords in LSCOM-Lite on TRECVID

2005 data set

We replace Y by Y C in Eqs. (6–9) in calculation of class-wise scatter matrices
to incorporate label correlations. Theorems 1 still holds, because in single-label
classification C = I thereby Y C = Y . Theorems 2 also holds, because we intro-
duce C in both sides of equations.
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3.3 Over-Counting Correction

Our further analysis on the class-wise scatter matrices in Eqs. (6–8) shows that
the data points with multiple labels are over-counted in the scatter matrices
calculations. For example, because data point a in Figure 2(b) has two labels for
class 1 and class 2, it is used in both S(1)

b and S(2)
b . Because Sb = S

(1)
b +S(2)

b +S(3)
b ,

data point a is used twice in the between-class scatter matrix Sb. Similarly, data
point c is used three times in both Sb and Sw. In general, data point xi with
multiple labels is used

∑K
k=1 yi (k) times in the scatter matrices, which are over-

counted compared to data points associated with only one single label.
We correct the over-counting problem by introducing the normalized matrix

Z = [z1, . . . , zn]T ∈ R
n×K :

zi = yiC/‖yi‖�1, (15)

where ‖ · ‖�1 is the �1-norm of a vector. A similar normalization could be as
following:

zi = yiC/‖yiC‖�1, (16)

such that
∑K

k=1 zi (k) = 1 and every data point has same importance in scatter
matrices calculation. However, this is not reasonable for multi-label data when
label correlations are considered, because a data point with multiple labels is gen-
erally believed to convey more information than that with only one single label.
For example, in image annotation for natural scene pictures, a picture annotated
with labels “Antarctica + penguin” is likely to contain more information than
another one annotated with only label “Antarctic”. Note that,

∑K
k=1 zi (k) ≥ 1

when the correlated normalized weight in Eq. (15) is used, i.e., the more labels
a data point are associated with, the more important it is. Therefore, instead of
using Eq. (16), in this work, we use the normalization in Eq. (15) to deal with
the over-counting problem in multi-label data.

By replacing Y by Z in Eqs. (6–9), we have the final MLDA scatter matrices.
Again, Theorems 1 and 2 can be similarly proved.

3.4 MLDA for Multi-label Classification

Now we write the scatter matrices in a more compact matrix form and summarize
our MLDA method. First, let

X̃ = X −meT , (17)

where e = [1, . . . , 1]T . Eq. (17) centers input data in multi-label sense, which is
different from data centering in classical LDA for single-label classification where
X̃ = X

(
I − eeT/n

)
.

We define W = diag(w1, . . . , wK), where wk =
∑n

i=1 Zik is the weight of the
k-th class in data scatters. Obviously, in single-label classification, wk = nk is
the number of data points in the k-th class. Thus,

Sb = X̃ZW−1ZT X̃T . (18)
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Let L = diag (l1, . . . , ln), where li =
∑K

i=1 Zik. Clearly, in single-label classifi-
cation, L = I, because each data point only belongs to one class. Thus,

St = X̃LX̃T . (19)

Finally, the optimization objective of our proposed MLDA method is defined in
a similar way to classical LDA using trace of matrix ratio as following:

arg max
G

tr
(
GTSbG

GTSwG

)

. (20)

In real life applications, the number of features of a data set is often greater
than that of training samples, thus Sw could be singular. As a result, in our
implementation, we solve the eigenvalue problem S+

wSbvk = λkvk, where S+
w

is the pseudo-inverse of Sw. G is thus constructed by taking the eigenvectors
corresponding to the r largest eigenvalues, and the classification can be carried
out on the projected data.

4 Connections to Related Works

We review several most recent related multi-label classification methods which
also use dimensionality reduction. First of all, many of these algorithms involve
XY Y TXT by certain forms in their optimization objectives, we thereby examine
it in some details.

First, because Xy(k) =
∑

xi∈πk
Yikxi = wkmk, the following is held:

XY Y TXT =
∑K

k=1 w
2
kmkmT

k . (21)

When the input data are properly centered as in Eq. (17), the between-class
scatter matrix can be written as Sb =

∑K
k=1 wkmkmT

k , thus XY Y TXT is a
coarse approximation of Sb. They are equivalent only if every class has same
number of data points, i.e. ni = nj , ∀i, j.

Second, but more important, they treat the classes in a multi-label data set
as independent, thereby label correlations, C, is not employed, though they are
very important to enhance classification performance.

MLSI. Yu et al . [16] extended unsupervised latent semantic indexing (LSI) to
make use of supervision information, called Multi-label informed Latent Seman-
tic Indexing (MLSI) method using (in our notation)

arg max
G

tr
(
GT

(
(1− β)XXTXXT + βXY Y TXT

)
G

)

s.t. GTXXTG = I. (22)

The first term is the original LSI objective. The second term is the supervised
regularizer, which implicitly approximates Sb with deficiencies as analyzed above.

MDDM. Zhang et al . [17] proposed Multi-label Dimensionality reduction via
Dependence Maximization (MDDM) method to identify a lower-dimensional
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subspace by maximizing the dependence between the original features and asso-
ciated class labels through (in our notation)

max
G

tr
(
GTXHY Y THXTG

)
, (23)

where H = I−eeT /n is the centering matrix in single-label sense such that XH
has zero mean. However, the correct data centering in multi-label classification
should be as in Eq. (17) and is different from XH . Ignoring H , Eq. (23) is same
as Eq. (21), which simulates Sb without taking advantage of its full potentials.

MLLS. Ji et al . [3] suggested Multi-Label Least Square (MLLS) method to
extract a common structure (subspace) shared among multiple labels. The op-
timization objective is (in our notation):

max
G

tr
(
GT (I − αM)−1 (

M−1XY Y TXTM−1
)
G

)

M =
1
n
XXT + (α+ β)I. (24)

Eq. (24) still fundamentally relies on XY Y TXT to use label information, though
more complicated.

We will compare the proposed MLDA method with these related algorithms
in next evaluation section.

We notice another two recent works in [8] and [4] have close titles with our
paper. However, the former attempts to solve multi-label classification implicitly
through QR-decomposition in the null space of Sw, which is far more complicated
than our method. Most importantly, label correlations are not considered in
this work. The latter incorporates discriminative dimensionality reduction into
Support Vector Machine (SVM), and thereby fundamentally different from the
proposed MLDA method. In summary, our MLDA method present a generic
framework for solving multi-label problems, which naturally incorporates label
correlations inherent in multi-label data.

5 Experimental Results

To evaluate the performance of multi-label classification methods, we use both
basic image features (such as pixel values and moments of colors) and SIFT
features in image classifications. We validate the proposed MLDA methods using
the following standard multi-label data sets for image annotation.

TRECVID 20051 data set contains 61901 images and labeled with 39 con-
cepts (labels). As most previous works, we randomly sample the data such that
each concept has at least 100 images.

MSRC2 data set is provided by the computer vision group at Microsoft Re-
search Cambridge, which has 591 images annotated by 22 classes.
1 http://www-nlpir.nist.gov/projects/trecvid
2 http://research.microsoft.com/en-us/projects/objectclassrecognition/default.htm
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Fig. 4. Visualization on 2D plane for the data points from the two classes in music

emotion data set, in original space and projected space by MLDA, respectively

For these two image data sets, we divide each image into 64 blocks by a
8 × 8 grid and compute the first and second moments (mean and variance) of
each color band to obtain a 384-dimensional vector as features. For MSRC data,
we also employ SIFT features to measure similarities between images. We use
MSRC (SIFT) to refer this data.

Mediamill [12] data set includes 43907 sub-shots with 101 classes, where
each image is characterized by a 120-dimensional vector. Eliminating the classes
containing less than 1000 samples, we have 27 classes. We randomly select 2609
sub-shots such that each class has at least 100 labeled data points.

In order to justify the generic applicability of our method, we also evaluate
all methods on two following data sets from different applications.

Music emotion [13] data set comprises 593 songs with 6 emotions (labels).
The dimensionality of the data points is 72.

Yahoo data set described in [14] came from the “yahoo.com” domain. Each
web page is described as a 37187-dimensional feature vector. We use the “science”
topic because it has maximum number of labels, which contains 6345 web pages
with 22 labels.

5.1 Discriminative Capability of MLDA

We first evaluate the discriminative capability of the proposed MLDA method. We
randomly pick up two classes from music emotion data set, “amazed-surprised”
and “quiet-still”, and visualize the data points from these two classes in the origi-
nal space (p = 72) on 2D plane using the first two principal component coordinates
as shown in Figure 4(a). It is obvious that the data points are mingled together and
it is difficult to find a linear decision boundary with high classification accuracy.
We then run MLDA on the whole data set with all six labels, and transform the
data points into the obtained projection subspace (l = K−1 = 5), in which we vi-
sualize the same data points on 2D plane as shown in Figure 4(b). Apparently, the
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Table 1. Performance evaluations of six compared methods by 5-fold cross validations

Data Evaluation metrics
Compared methods

LDA-C1 SVM MLSI MDDM MLLS MLDA

TREC05

Macro

average

Precision 0.282 0.269 0.247 0.366 0.248 0.420

F1 score 0.190 0.286 0.275 0.370 0.276 0.399

Micro

average

Precision 0.274 0.252 0.234 0.352 0.241 0.418

F1 score 0.408 0.399 0.293 0.491 0.295 0.528

MSRC

Macro

average

Precision 0.291 0.274 0.252 0.370 0.255 0.431
F1 score 0.201 0.295 0.287 0.392 0.290 0.410

Micro

average

Precision 0.288 0.262 0.253 0.363 0.255 0.420
F1 score 0.415 0.406 0.301 0.504 0.302 0.533

MediaMill

Macro

average

Precision 0.337 0.302 0.207 0.385 0.206 0.410
F1 score 0.349 0.322 0301 0.418 0.311 0.430

Micro

average

Precision 0.335 0.297 0.207 0.382 0.205 0.388
F1 score 0.518 0.398 0.341 0.440 0.340 0.443

Music

emotion

Macro

average

Precision 0.507 0.434 0.329 0.509 0.311 0.614
F1 score 0.453 0.418 0.323 0.506 0.471 0.618

Micro

average

Precision 0.504 0.501 0.328 0.507 0.308 0.613
F1 score 0.477 0.441 0.339 0.518 0.475 0.626

Yahoo

(Science)

Macro

average

Precision 0.458 0.414 0.396 0.463 0.421 0.501
F1 score 0.227 0.302 0.296 0.481 0.443 0.498

Micro

average

Precision 0.447 0.416 0.395 0.458 0.420 0.499
F1 score 0.226 0.218 0.209 0.484 0.519 0.544

MSRC

(SIFT)

Macro

average

Precision 0.415 0.408 0.428 0.520 0.424 0.612
F1 score 0.367 0.358 0.381 0.471 0.376 0.531

Micro

average

Precision 0.408 0.403 0.412 0.515 0.407 0.597
F1 score 0.612 0.611 0.620 0.671 0.617 0.698

data points are clearly separated according to their class membership now, which
demonstrates that the projection subspace produced by MLDA is indeed more
discriminative. In addition, MLDA significantly reduces the data dimensionality
(from 72 to 5), such that the computational complexity of the subsequent classi-
fication is largely reduced.

5.2 Classification Performance

We use standard 5-fold cross validation to evaluate the classification performance
of the proposed MLDA method, and compare the results to the three related multi-
label classification methods, MLSI, MDDM, and MLLS discussed in Section 4.K-
Nearest Neighbor (KNN) classifier (K = 1 in this work) is used for classification
after dimensionality reduction by MLSI, MDDM, and MLDA methods. We also
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testedK = 3, 5 and the results are similar to K = 1. Because of the limited space,
we only show the results of K = 1. Euclidean distance is used to decide neighbor-
hood inKNN.KNN is conducted one class at a time, where a binary classification
is conducted for each class. Note that, we chooseKNN because it is the most widely
used classification method following standard LDA. Because multi-label problem
is already addressed in the dimensionality reduction step in MLSI, MDDM and
our method, the subsequent classification method, such as KNN in our evalua-
tions, do not need to take care of multi-label issue any longer. MLLS has its own
classification mechanism. Following the standard way, we select l = K − 1 as the
dimensionality of the projected subspace. For MLSI, the parameter β is set as 0.5
as recommended in [16]. For MDDM, we use the same linear kernel as in the ex-
perimental evaluation in [17]. For MLLS, we use the codes posted at the authors’
web site [3], which fine tunes the parameters based on F1 scores.

LDA-C1. We report the classification performance of classical LDA as a ref-
erence. Because classical LDA is inherently a single-label classification method,
we do both dimensionality reduction and classification one class at a time. For
every class, the classification is done as a binary classification problem, which
thereby implicitly treats all the classes isolated.

Support Vector Machine (SVM). We use SVM classification results as a
baseline. Similar to LDA-C1, we run SVM one class at a time, and for every class
the classification is done as a binary classification problem. SVM is implemented
by LIBSVM3 (Matlab version).

The conventional classification performance metrics in statistical learning,
precision and F1 score, are used to evaluate the compared methods. Precision
and F1 score are computed for every class following the standard definition for
a binary classification problem. To address multi-label classification, class-wise
macro average and micro average are used to assess the overall performance
across multiple labels [6]. In multi-label classification, the macro average is the
mean of the values of a standard class-wise metric over all the labels, thus at-
tributing equal weights to every class. The micro average is obtained from the
summation of contingency matrices for all binary classifiers. The micro average
metric gives equal weight to all classifications, which can be seen as a weighted
average that emphasizes more on the accuracy of categories with more positive
samples.

Table 1 presents the classification performance comparisons by 5-fold cross
validation, which show that the proposed MLDA method generally outperforms
all other methods, sometimes significantly. We achieve about 10% improvement
on average over all the data sets. To be more specific, Figure 1 shows four
images from TRECVID 2005. Only the proposed MLDA method can correctly
annotate all images. All other methods only predict part of the labels. These
results quantitatively demonstrate the effectiveness of our method, and justify
the utility of the class-wise scatter matrices and label correlations.

3 http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
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Fig. 5. An example image from MSRC data (Top). The label “car” can only be cor-

rectly annotated by our MLDA method, because “car” has high correlations with

“building” and “road” (appearing in the image). The bottom panel visualizes the label

correlation matrix.

5.3 Label Transfer via Label Correlations

A more careful examination on the classification results in Section 5.2 shows
that, for the sample image shown in the top panel of Figure 5 from MSRC data
set, the label “car” can only be correctly annotated by the proposed MLDA
method, while two other labels, “building” and “road”, generally can be correctly
annotated by most of the compared methods. By scrutinizing label correlations
of MSRC data set, defined by Eq. (13) and illustrated in the bottom panel
of Figure 5, we can see that “car” is highly correlated with both “building”
and “road”. Therefore, label “car” is transferred to the sample image from its
annotated labels through label correlations, which concretely corroborates the
usefulness of label correlations to boost multi-label classification performance.

6 Conclusions

In this work, we proposed a novel Multi-label Linear Discriminant Analysis
(MLDA) method to naturally generalize classical LDA for multi-label classi-
fication. We reformulated the scatter matrices from class perspective, such that
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the new class-wise scatter matrices solved the computation ambiguity to use tra-
ditional single-label definitions of scatter matrices in multi-label classification,
and incorporated label correlations from multi-label data. We examined three
closely related multi-label classification methods and showed the advantages of
our method theoretically. Encouraging results in extensive experimental evalua-
tions supported our proposed methods and theoretical analysis empirically.
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Abstract. We address the problem of learning good features for under-

standing video data. We introduce a model that learns latent represen-

tations of image sequences from pairs of successive images. The convolu-

tional architecture of our model allows it to scale to realistic image sizes

whilst using a compact parametrization. In experiments on the NORB

dataset, we show our model extracts latent “flow fields” which correspond

to the transformation between the pair of input frames. We also use our

model to extract low-level motion features in a multi-stage architecture

for action recognition, demonstrating competitive performance on both

the KTH and Hollywood2 datasets.

Keywords: unsupervised learning, restricted Boltzmann machines, con-

volutional nets, optical flow, video analysis, activity recognition.

1 Introduction

While the dominant methodology for visual recognition from images and video
relies on hand-crafted features, there has been a growing interest in methods
that learn low-level and mid-level features, either in supervised [1], unsuper-
vised [2,3,4], or semi-supervised settings [5]. In recent years, feature-learning
methods have focused on learning multiple layers of feature hierarchies to ex-
tract increasingly abstract representations at each stage. This has been generally
done by composing modules of the same architecture such as Restricted Boltz-
mann Machines (RBM) [2], autoencoders [3], or various forms of encoder-decoder
networks [4,6,7] each of which are trained unsupervised and therefore can take
advantage of large amounts of unlabeled image data. The resulting “deep ar-
chitectures” are then globally trained discriminatively, with the idea that the
first phase of unsupervised feature learning has provided an initialization that
is much more salient for high-level tasks than the usual random initialization.

Most of the above methods do not exploit the pictorial nature of the input, and
have been applied to relatively small image patches (typically less than 64× 64
pixels), because they do not scale well with the size of the input. This can be
addressed by using a convolutional architecture [1], which exploits the fact that
salient motifs can appear anywhere in the image. This idea has been recently used
in the context of RBMs [8,9]. By employing successive stages of weight-sharing

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part VI, LNCS 6316, pp. 140–153, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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and feature-pooling, deep convolutional architectures can achieve stable latent
representations at each layer, that preserve locality, provide invariance to small
variations of the input, and drastically reduce the number of free parameters.

To date, most of the work on unsupervised feature extraction has focused
on static images but little attention has been given to learning about the way
that images from videos change over time. The few works that address the prob-
lem (e.g. [10,6]) are trained on isolated patches (not convolutionally), and suffer
from the same limitations as static methods. In this paper, we propose a model
that can extract motion-sensitive features from pairs of images (i.e. neighbour-
ing frames of video). The features can capture both static and dynamic content.
Our model is trained convolutionally which enables it to work on high-resolution
images. We first apply it to synthetic data and show that it learns to represent
flow-like features when the type of transformations are restricted. We then use it
to extract useful features for human activity recognition in a multi-stage archi-
tecture that achieves state-of-the-art performance on the KTH actions dataset.
Results are also shown on the challenging Hollywood2 action recognition dataset.

2 Related Work

Our work extends the Gated RBM (GRBM) model proposed by Memisevic and
Hinton [10]. The GRBM is able to extract distributed, domain-specific represen-
tations of image patch transformations. Due to its tensor parameterization, it is
not practical to apply this model to patches larger than about (N = 32)×32 since
the number of parameters grows as O(N4). Therefore, it has only been applied
to low-resolution synthetic images of shifting pixels or PCA-reduced samples of
low-resolution video. While the model has been shown to improve digit classi-
fication by learning the types of transformations to which the classifier should
remain invariant, we are not aware of is application to a discriminative task on
real video. Memisevic and Hinton have recently proposed a factored form of the
GRBM [11] that drastically reduces the number of free parameters by replac-
ing the three-way weight tensor with three low-rank matrices. In the present
work, we take an alternative convolutional approach to scaling up the model,
which achieves the additional benefit of translation invariance. Sutskever and
Hinton [12] proposed a type of temporal RBM for video. Using synthetic videos
of bouncing balls, they trained a model which was then able to generate similar
videos, but did not apply their work to discriminative tasks. The signal from the
past only provides a type of “temporal bias” to the hidden variables, which is
fundamentally different from our third-order RBM, where past inputs modulate
the interactions between the current input and the latent feature representation.

Building on the rapidly growing literature on sparse over-complete decomposi-
tions of image patches [13], Cadieu and Olshausen [6] have proposed a two-layer
probabilistic model that learns complex motion features from video. In contrast
to our model, they explicitly separate static amplitude and dynamic phase at
the first layer. The second layer then learns high-order dependencies among the
phase variables. Dean et al. [14] have recently proposed learning spatio-temporal
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descriptors by recursively applying the feature-sign sparse coding algorithm [15]
to 3D patches of videos extracted at detected interest points. Like our work,
their descriptors are adaptive, but their method is trained at the patch level.

State-of-the-art methods for activity recognition use engineered motion and
texture descriptors extracted around interest points detected by spatio-temporal
corner detectors. The descriptors are then vector-quantized, pooled over time and
space into a “bag”, and fed to an SVM classifier. Among the best performing
methods are 1) Laptev et al.’s spatio-temporal interest points (STIP) [16] used
in conjunction with the “HOG/HOF” descriptor that computes histograms of
spatial gradients and optic flow accumulated in local space-time neighbourhoods
[17]; 2) Dollar et al.’s “Cuboids” approach [18] used in conjunction with several
different descriptor types; and 3) Willems et al.’s approach [19] which uses the
determinant of the Hessian as a saliency measure and computes a weighted sum
of Haar wavelet responses within local rectangular sub-volumes.

In contrast to these approaches, we perform a type of implicit, rather than
explicit interest point detection and focus on learning descriptors rather than
hand-crafting them. We also bypass the quantization step in favor of several
additional layers of feature extraction that provide a distributed representation
of each video. Jhuang et al. [20] propose an approach similar in spirit to ours,
using multiple levels of feature detectors at increasing spatio-temporal scale.
However, like [17,18,19], they forgo learning until the very last stage: low and
mid-level features are engineered.

3 Unsupervised Learning of Spatio-temporal Features

We first describe a related approach, the gated Restricted Boltzmann Machine,
which models image patches but does not scale to realistic-sized images or video.
We then describe our convolutional model.

3.1 The Gated Restricted Boltzmann Machine (GRBM)

The gated Restricted Boltzmann Machine [10] differs from other conditional
RBM architectures (e.g. [21,12]) in that its inputs change the effective weights
of the model instead of simply adjusting the effective biases of visible or latent
variables (see Figure 1(left)). This is achieved by defining an energy function
that captures third-order interactions among three types of binary stochastic
variables: inputs, x, outputs, y, and latents, z:

E (y, z; x) = −
∑

ijk

Wijkxiyjzk −
∑

k

bkzk −
∑

j

cjyj (1)

where Wijk are the components of a parameter tensor, W, which is learned. To
model affine and not just linear dependencies, biases b and c are included.

When learning from video, x and y are image patches (expressed as vectors)
at identical spatial locations in sequential frames, and z is a latent representation
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Fig. 1. Left: A gated RBM. Right: A convolutional gated RBM using probabilistic

max-pooling.

of the transformation between x and y. The energy of any joint configuration
{y, z; x} is converted to a conditional probability by normalizing:

p(y, z|x) = exp (−E(y, z; x)) /Z(x) (2)

where the “partition function”, Z(x) =
∑

y,z exp (−E(y, z; x)) is intractable to
compute exactly since it involves a sum over all possible configurations of the
output and latent variables. However, we do not need to compute this quantity
to perform either inference or learning. Given an input-output pair of image
patches, {x,y}, it follows from Eq. 1 and 2 that

p(zk = 1|x,y) = σ(
∑

ij

Wijkxiyj + bk) (3)

where σ(z) = 1/(1 + exp(−z)) is the logistic.
Maximizing the marginal conditional likelihood, p(y|x), over parameters θ =

{W,b, c} is difficult for all but the smallest models due to the intractability of
computing Z. Learning, however, still works well if we approximately follow the
gradient of another function called the contrastive divergence (CD) [22].

3.2 The Convolutional Gated Restricted Boltzmann Machine
(convGRBM)

GRBMs represent the input and output as a vector, and thus ignore the pictorial
structure of images. Weights that encode a particular local transformation must
be re-learned to detect that same transformation at multiple locations. We now
describe a form of GRBM that shares weights at all locations in an image.
Inference is performed efficiently through convolution, so we refer to the model as
a convolutional GRBM (convGRBM). The model is illustrated in Figure 1(right).
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In our description of the GRBM, we suggested that x and y were time-adjacent
patches from video, but they could have been any arbitrary vectors. Here, we as-
sume that x is aNx×Nx binary image and y is aNy×Ny binary image. We assume
square, binary images to simplify the presentation but provide details of using real-
valued images in the supplemental material. In the GRBM we hadK binary latent
variables. Now we haveK Nz ×Nz binary latent feature maps (z = {zk}Kk=1). Let
m and n be spatial indices to each 2D feature map, such that a single feature is de-
scribed as zk

m,n. The indices m and n not only index a particular 2D feature, but
they also define 1) an Ny

w × Ny
w local region in y from which this feature receives

input, and 2) aNx
w×Nx

w region of x which modulates the interaction between allK
features at locationm,n and theNy

w ×Ny
w local region in y. Alternatively, we can

think of each of theK features at indexm,n as contributing a local log-linear patch
model between theNx

w×Nx
w pixels in x and theNy

w×Ny
w pixels in y where the lo-

cation of these local regions is specified bym,n. The number of local autoregressive
models that can be “blended” is exponential in the number of feature maps.

For the remainder of our discussion, we will make two assumptions: 1) the
input and output images are the same dimensions, Nx = Ny (this holds true for
neighbouring frames in video); and 2) the filter dimensions in the input and the
output are the same, Nx

w = Ny
w. These assumptions are not necessary, but they

greatly simplify bookkeeping and therefore the presentation that follows.
The convGRBM has the following energy function:

E (y, z; x) =−
K∑

k=1

Nz∑

m,n=1

Ny
w∑

r,s=1

zk
m,nγ(x)k

r,s,m,nym+r−1,n+s−1

−
K∑

k=1

bk

Nz∑

m,n=1

zk
m,n − c

Ny∑

i,j=1

yi,j (4)

where we use a per-map bias, bk, for the latent variables and single output bias,
c. Eq. 4 is similar to the energy function of a convolutional RBM [8], except
that what was previously a filter weight with 3 indices: r, s, k has been replaced
by a conditional filter weight, γ(x)k

r,s,m,n =
∑Nx

w
u,v W

k
r,s,u,vxm+u−1,n+v−1, with 5

indices. The additional indices m,n denote the local region in x which modulates
the filter. Note that while m,n index the entire feature map, u, v and r, s index
within the local regions of x and y, respectively.

As in the GRBM, the probability of jointly observing y and z given x is given
by Eq. 2. The conditional distributions for z|y,x and y|z,x naturally follow:

p(zk
m,n = 1|x,y) = σ(

Ny
w∑

r,s=1

γ(x)k
r,s,m,nym+r−1,n+s−1 + bk) (5)

p(yi,j = 1|x, z) = σ(
K∑

k=1

Ny
w∑

r,s=1

γ̂(x)k
r′,s′,i+r−1,j+s−1ẑ

k
i+r−1,j+s−1 + c) (6)

where r′ = Ny
w − r + 1 and s′ = Ny

w − s + 1 represent a “flipping” of the
filter indices (i.e. correlation rather than convolution), and ẑ is the result of
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zero-padding z such that its first Ny
w − 1 rows and columns are zero. Note that

in Eq. 5 an output unit yi,j makes a bottom-up contribution to several elements
(m,n) in all K feature maps. Therefore, in top-down reconstruction (Eq. 6) we
must ensure that each output unit receives input from all feature map elements
to which it has contributed, through the same conditional filter weight that was
used bottom-up. To account for border effects, it is convenient to define γ̂(x) as
a zero-padded version of γ(x) whose dimensions are Ny

w ×Ny
w ×Ny ×Ny ×K.

As with convolutional RBMs, we can express both inference (Eq. 5) and re-
construction (Eq. 6) in terms of convolution operations (see the supplemental
material for details). While inference in a convolutional RBM requires a single
2D convolution of the data with the filters, inference in the convGRBM requires
a 2D convolution of the output and data for each element of the condition-
ing window: i.e. Nx

w ×Nx
w convolutions. The same holds true for reconstruction

(replacing data with feature maps). Note, however, that a fully-connected (i.e.
non-convolutional) GRBM requires Nx × Nx more operations during inference
than a standard RBM. Restricting connections to be local clearly makes a huge
difference in efficiency, especially when the ratio of pixels to filter size is high.

Probabilistic Max Pooling. Most object recognition systems use a pooling
operation that combines nearby values in input or feature space through a max,
average or histogram operator. This provides the system with some invariance to
small local distortions and reduces the computational burden. Traditional pool-
ing layers, however, are designed for feed-forward architectures like convolutional
nets and do not support generative models such as RBMs that include top-down
feedback. Lee et al. [8] thus introduced probabilistic max-pooling in the context
of convolutional RBMs. We adopt their approach, and summarize it here.

Recall that we haveK feature maps connected to the visible input and output.
We introduce a layer on top of the feature maps, called the pooling layer, which
also has K maps, each connected 1-1 to a feature map. However, the maps of
the pooling layer are reduced in spatial resolution by a constant factor C in
each dimension (e.g. 2 or 4). More precisely, each feature map zk is partitioned
into non-overlapping C×C blocks, and each block is connected to exactly one
binary unit, pk

α, in the pooling layer (i.e. Np = Nz/C). Here, we have adopted
the notation of [8] where α indexes the pooling units and also define a block
formally as Bα � {(m,n) : zm,n belongs to the block α}.

The connection between pooling unit pα and the features in block Bα is con-
strained such that at most one of the features in a block is on, and if any of the
features in block Bα is on, then pα must be on, otherwise pα is off. This leads
to a modified, constrained, energy function:

E (y, z; x) = −
K∑

k=1

∑

α

∑

(m,n)∈Bα

Ny
w∑

r,s=1

zk
m,nγ(x)k

r,s,m,nym+r−1,n+s−1

−
K∑

k=1

bk

Nz∑

m,n=1

zk
m,n − c

Ny∑

i,j=1

yi,j subject to:
∑

(m,n)∈Bα

zk
m,n ≤ 1, ∀k, α. (7)
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Changing the energy function results in a change to the inference procedure.
Note that each unit in feature map k receives the following bottom-up signal
from the input and output:

I(zk
m,n) �

Ny
w∑

r,s=1

γ(x)k
r,s,m,nym+r−1,n+s−1 + bk. (8)

Due to the factorial form of Eq. 7, we can sample each of the blocks independently
as a multinomial function of their inputs:

p(zk
m,n = 1|x,y) = Ω−1exp

(
I(zk

m,n)
)
, p(pk

α = 0|x,y) = Ω−1 (9)

where the normalization constant is Ω = 1 +
∑

(m′,n′)∈Bα
exp

(
I(zk

m′,n′ )
)
.

4 Experiments on Synthetic Data: NORB

One way to evaluate third-order RBMs is by experimenting in a domain where
optical flow is controlled and regular (e.g. the “shifting pixels” experiments of
[10]). In this section, we describe a domain for experimentation that is of in-
creased complexity yet still controlled. The “Small NORB” dataset [23] has 5
object categories (humans, airplanes, cards, trucks, animals), and 5 different ob-
ject instances for each training and test. Each object instance has 18 azimuths,
9 camera-elevations, and 6 illuminations, for a total of 24300 training samples
and 24300 test samples. Traditionally NORB has been used to evaluate object
recognition. Since our goal is to extract useful “transformation” features from
pairs of images we use the dataset differently than intended.

The azimuth, elevation, and illumination changes in the NORB dataset are at
fixed intervals and corresponding labels for each image are available. Therefore,
we created synthetic “videos” where an object underwent forward or reverse
transformation in one of the dimensions while the others were held fixed. Before
generating the videos, we downsampled each image to 32×32 pixels, and pre-
processed it using local contrast normalization (LCN) as described in [24]. The
LCN operation involves a 9×9 smoothing filter, so each resulting image is 24×24.

We then trained a convGRBM with real-valued outputs and 20 binary feature
maps. The filter dimensions were Nx

w = Ny
w = 9. The model trained on all

azimuth changes of ±20◦, and all camera elevation changes of ±10◦. It was
trained for 30 complete passes through the training set, using standard CD(1)
learning. Figure 2 shows the result of performing 10 “image analogies”. Each
analogy is represented by a group of six small greyscale images and one larger
“optical flow’ image. To perform an analogy, the model is presented with a pair
of images each from an object instance it has never seen before, and asked to
apply the same inferred transformation to a random target image, also which it
has never seen before. We can also visualize the “flow” implicit in the hidden
units and conditional on the pair, by drawing, for each input pixel, an arrow to
the output pixel to which it is most strongly connected according to the learned
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Fig. 2. Analogies. Each group of six greyscale images from left to right, top to bot-

tom represent: input image; output image; model’s reconstruction of output; random

target image; ground truth of random target (i.e. by searching for the example that

corresponds to the transformation between image and output); inferred transformation

applied to targets. Examples 1-6 show changes in azimuth; 7-10 show changes in camera

elevation. A representation of inferred “max” flow fields is shown for each example.

filters, W (marginalized over the binary feature maps). Much information is
potentially lost in this representation [10]: the transformation encoded by the
feature maps can be much richer than what is expressed by optical flow alone.

5 Experiments on Human Activity Recognition

Recognition of human activity from video is a challenging problem that has re-
ceived an increasing amount of attention from the computer vision community in
recent years. The ability to parse high-level visual information has wide-ranging
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Fig. 3. An overview of our multi-stage architecture for human activity recognition. See

text for a description of each stage.

applications that include surveillance and security, the aid of people with special
needs and the understanding and interpretation of non-verbal communication.

We approach the problem with a multi-stage architecture (see Figure 3) that
combines convolutional and fully-connected layers. At the lowest layer, a con-
volutional GRBM extracts features from every successive pair of frames. We
observe that most features are motion-sensitive, but others capture static in-
formation. This is particularly useful in providing context in more challenging
datasets [25] and will aid in applying our method to other tasks, such as scene
recognition from video. A subset of the feature maps inferred from the KTH
actions dataset are shown in Figure 4. The features are extremely diverse: many
capture limb movement, others capture edge content, and one seems particu-
larly apt at segmenting person from background (we note that the background
is generally uniformly textured in KTH).

To capture mid-level spatio-temporal cues, we apply a traditional (i.e. feed-
forward) convolutional layer that uses 3D spatio-temporal filters. A connectivity
table indicates which of the 3D convolutional layer output maps are connected
to each convGRBM pooling map. Our convolutional layer is a 3D extension of
the architecture advocated by Jarrett et al. [7]: filtering, followed by a tanh
nonlinearity, followed by absolute value rectification, followed by a local con-
trast normalization layer, followed by average pooling and subsampling. Both
the abs(·) and tanh(·) are performed element-wise, so their extension to 3D is
straightforward. The LCN and pooling/subsampling layers each employ a filter-
ing operation, which we perform in 3D instead of 2D.

The output of the second convolutional layer is a series of 3D feature maps. To
cope with variable-length sequences, we perform an additional max pooling in
the temporal dimension. This ensures that the mid-level features can be reduced
to a vector of consistent size. This representation is followed by one or more
fully-connected layers (we use 1 or 2 in our experiments). The topmost layer is a
softmax (multinomial) layer corresponding to discrete activity labels, and inter-
mediate layers use a tanh nonlinearity. The convGRBM is trained unsupervised
using CD, while the upper layers are trained by backpropagation. We do not
backpropagate through the first layer following unsupervised training, though
this could be done to make the low-level features more discriminative.

5.1 KTH Actions Dataset

The KTH actions dataset [26] is the most commonly used dataset in evaluating
human action recognition. It consists of 25 subjects performing six actions: walk-
ing, jogging, running, boxing, hand waving, and hand clapping under 4 scenarios
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(outdoors, outdoors with scale variation, outdoors with different clothes and in-
doors). Each sequence is further divided into shorter “clips” for a total of 2391
sequences. We use the original evaluation methodology: assigning 8 subjects to
a training set, 8 to a validation set, and the remaining 9 subjects to a test set so
that our results are directly comparable to the recent survey by Wang et al. [27].

Preprocessing. We maintained the original frame rate (25fps) and spatial res-
olution 160×120 in all of our experiments. All videos then underwent 3D local
contrast normalization (an extension of [24]).

Unsupervised Learning. We trained a convGRBM with Nz = 32 feature
maps and a pooling factor of C = 4. Filter sizes were Nx

x = Ny
x = 16. We chose

16 as it was a number amenable to GPU-based computing, and it was close to
the minimal patch size (18×18) suggested by Wang et al. [27]. We have not
tried other patch sizes. Weights were updated in “mini-batches” of 128 pairs of
subsequent frames (the order of pairs was randomly permuted as to balance the
mini-batches). We made 30 complete passes over all videos in the training set.

Supervised Learning. We trained a convolutional net with 128 9×9×9 filters
(randomly initialized) on top of the features extracted by the convGRBM. Each
feature map of the convolutional net received input from 4 randomly chosen
pooling maps from the first layer. Architectural choices were motivated by a
desire to extract mid-level spatio-temporal features; the local connectivity used
is standard practice [1]. The nonlinearities we used were identical to those in [7]
with the exception of extending contrast normalization and downsampling to 3D:
LCN was performed using a 9×9×9 smoothing filter, followed by 4×4×4 average
downsampling. We also tried a more traditional network architecture which did
not use absolute value rectification and LCN. We found that it slightly decreased
accuracy (by about 1%; less drastic than reported in [7] for static object recogni-
tion). The pooling layer was then subjected to a further max-pooling over time,
the output was vectorized and connected to one or two fully-connected layers.
All layers (except the convGRBM) used online backpropagation1. We made 30
complete passes through the training set.

Table 1 compares our approach to the prior art using dense sampling (i.e. no
interest-point detection) and K-means quantization. We report mean accuracy
over all six actions. Our method, to the best of our knowledge, gives the best
mean accuracy on KTH amongst methods that do not use interest-point de-
tection. The currently best performing method [17] uses the STIP interest-point
detector and HOG/HOF or HOF descriptors (91.8 and 92.1%, respectively). Due
to the high ratio of background pixels to subject pixels in KTH, and the limited
number of actions (that don’t require context information), interest-point meth-
ods tend to perform extremely well on KTH. Evidence already indicates that
dense-sampling outperforms interest-points on more challenging datasets [27].

1 The choice of using online learning here was simply a matter of convenience due to

variable sequence lengths. Since the convGRBM is trained on pairs of frames (rather

than whole sequences) it is easier to train in mini-batches.



150 G.W. Taylor et al.

Table 1. KTH action dataset: classification performance using dense sampling. Integers

preceding a module indicate the number of feature maps in that module. Superscripts

indicate filter sizes or downsampling ratio (chosen by context). convGRBM is our

proposed method, trained unsupervised. FCSG is a standard convolutional layer: a

set of convolution filters (C) followed by a sigmoid/tanh nonlinearity (S), and gain

coefficients (G). R/N/PA is abs rectification, followed by local contrast normalization,

followed by average pooling. The number of fully-connected layers are either 1 which

corresponds to logistic regression (log reg) or 2, which corresponds to a multi-layer

perceptron (mlp).

Prior Art Accuracy Convolutional architectures Accuracy

HOG3D-KM-SVM 85.3 32convGRBM16×16-128F9×9×9
CSG -R/N/P4×4×4

A -log reg 88.9

HOG/HOF-KM-SVM 86.1 32convGRBM16×16-128F9×9×9
CSG -R/N/P4×4×4

A -mlp 90.0

HOG-KM-SVM 79.0 32F16×16×2
CSG -R/N/P4×4×4

A -128F9×9×9
CSG -R/N/P4×4×4

A -log reg 79.4

HOF-KM-SVM 88.0 32F16×16×2
CSG -R/N/P4×4×4

A -128F9×9×9
CSG -R/N/P4×4×4

A -mlp 79.5

To demonstrate the advantage of low-level feature extraction with convGRBMs,
we have replaced the first layer with a standard 3D convolutional layer (32F16×16×2

CSG

- see Table 1). By using filters of size 16×16×2 and a 4×4×4 pooling layer, we
have matched the architecture of the convGRBM as best as possible to perform
this comparison. The entire network is trained by backpropagation. We note that
this fully feed-forward approach performs considerably worse.

5.2 Hollywood2 Dataset
Table 2. Hollywood2 dataset: average pre-

cision (AP) using dense sampling

Method AP
Prior Art [27]:
HOG3D+KM+SVM 45.3
HOG/HOF+KM+SVM 47.4
HOG+KM+SVM 39.4
HOF+KM+SVM 45.5
convGRBM+SC+SVM 46.6

The Hollywood2 dataset [25] consists
of a collection of video clips con-
taining 12 classes of human action
extracted from 69 movies. It totals ap-
proximately 20.1 hours of video and
contains approximately 150 samples
per action. It provides a more real-
istic and challenging environment for
human action recognition by contain-
ing varying spatial resolution, camera
zoom, scene cuts and compression ar-
tifacts.

Performance is evaluated as suggested by Marszalek et al. [25]: by computing
the average precision (AP) for each of the action classes and reporting mean AP
over all actions. Following [27], we downsampled the spatial resolution of every
video clip (which varies between clips) by a factor of 2. Videos were then zero-
padded to have a constant spatial resolution. We did no temporal downsampling.
All videos then underwent 3D local contrast normalization.

Similar to the KTH dataset, we trained a convGRBM with Nz = 32 feature
maps and a pooling factor of C = 4. Filter sizes were Nx

x = Ny
x = 16. The

convGRBM was trained for 50 complete passes over all videos in the training
dataset and used a sparsity regularization term in the CD updates [28] that
encouraged the hidden units to have a mean activation of 0.1.



Convolutional Learning of Spatio-temporal Features 151

Fig. 4. Feature maps inferred from the KTH actions dataset. A subset of 6 (4×4

max-pooled) feature maps (of 32 total) inferred from sequences of the same subject

performing different activities: boxing (rows 1-6), hand-clapping (rows 7-12) and walk-

ing (rows 13-18). Rows correspond to features, columns correspond to frames. We show

person 1, scenario 1 and sequence 1. We display real-valued probabilities of activation

rather than stochastic choices. We also downsample the frame rate by a factor of 4 for

display. From the hand-clapping example, we see that features 1 and 3 are sensitive

to motion in opposite directions (note how features 1 and 3 localize opposite hands),

feature 4 seems to be sensitive to edges, and feature 6 learns to segment the subject

from the background. Remaining activities are shown in the supplemental material.
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Instead of applying a convolutional network to extract mid-level features, we
sampled the feature maps of the convGRBM with a stride of 8 pixels in each
direction, and formed local temporal groups of 10 frames. We then used the
method described in [29] to learn a dictionary of 4000 basis vectors, and encode
the temporal groups as sparse linear coefficients of the bases. Each video then
yielded a varying number of sparse vectors (given different lengths) so we applied
max-pooling over the temporal dimension. A SVM (with RBF kernel) was then
trained (per-activity) on the top-level representation. Since Hollywood2 videos
may contain more than one activity, this approach allowed us to avoid training
a separate 3D convolutional net per-activity.

We achieve a mean AP of 46.6% using dense sampling, learned convGRBM
low-level features and sparse coding with 4000 elements. To the best of our
knowledge, the only superior published result is 47.4% which uses dense sampling
with HOG/HOF features and quantization [27]. However, our result outperforms
other popular methods such as Cuboids (45.0%) and Willems et al. (38.2%)
(published in [27]). We also expect that an approach that combined our learned
features with HOG/HOF descriptors could perform well.

6 Conclusion

Gated RBMs extract latent representations that are useful for video understand-
ing tasks. However, they do not scale well to realistic resolutions and must learn
separate feature detectors at all locations in a frame. In the spirit of recent work
exploring convolutional deep architectures, we have introduced the convolutional
gated RBM. We showed that it learned to represent optical flow and performed
image analogies in a controlled, synthetic environment. In a more challenging set-
ting, human activity recognition, it extracted useful motion-sensitive features,
as well as segmentation and edge-detection operators that allowed it to perform
competitively against the state-of-the-art as part of a multi-stage architecture.
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research.
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Abstract. The aim of this paper is to learn driving behaviour by associ-

ating the actions recorded from a human driver with pre-attentive visual

input, implemented using holistic image features (GIST). All images are

labelled according to a number of driving–relevant contextual classes (eg,

road type, junction) and the driver’s actions (eg, braking, accelerating,

steering) are recorded. The association between visual context and the

driving data is learnt by Boosting decision stumps, that serve as input

dimension selectors. Moreover, we propose a novel formulation of GIST

features that lead to an improved performance for action prediction. The

areas of the visual scenes that contribute to activation or inhibition of

the predictors is shown by drawing activation maps for all learnt actions.

We show good performance not only for detecting driving–relevant con-

textual labels, but also for predicting the driver’s actions. The classifier’s

false positives and the associated activation maps can be used to focus

attention and further learning on the uncommon and difficult situations.

1 Introduction

The objective of this manuscript is to learn the relationship between behaviour
and visual stimulus in the context of driving. This is an extremely complex task
due to variability in both the visual domain as well as the actions performed by
the driver. Such actions are arguably dependant upon high level reasoning and
context. However, we demonstrate that pre-attentive vision based upon simple
holistic descriptors can account for the majority (∼ 80%) of a driver’s actions
using minimal training (< 1%).

The act of driving require little active attention for an experienced driver,
allowing extended driving periods of several hours while at the same time having
a conversation, thinking about an itinerary, etc. Indeed, this fact is a source of
hazard, as an inattentive driver is less likely to react to unexpected emergencies.
This article studies how pre-attentive visual perception can be used to learn
aspects of driving behaviour by observing a human driver, releasing attention
for other tasks such as tracking, traffics sign recognition, planning, etc. The
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learning is performed by recording the driver’s actions (eg, braking, steering) at
each frame together with a coarse labelling of each frame according to a set of
driving contextual categories (eg, motorway, junction, pedestrian crossing). We
choose to use holistic image features (so-called GIST) as a functional equivalent
to pre-attentive vision in humans. GIST are a class of visual descriptors that
encode a global representation of a visual scene’s content, as opposed to local
image features. This holistic aspect, together with the low resolution it requires,
is consistent with the visual signal processed by the periphery of the retina in
the absence of (relevant) gaze fixation. This is in stark contrast with feature–
based methods that rely on high resolution extraction of sparse descriptors, and
therefore belong to attentive vision.

Holistic representations of visual scenes have received a lot of attention dur-
ing the last decade [1,2,3,4]. The rationale behind the use of holistic image de-
scriptors for visual context description is that they are insensitive to the small
variations that abound in complex scenes and hamper classification based on
local features. This is especially critical in urban scenes, where the amount of
visual information and variability is enormous. The original version of the GIST
was proposed by Oliva & Torralba, who compared two descriptors based on the
Fourier transform of image intensity [1]. The first one was based on the Fourier
transform computed on the whole image (DST); the second is based on a win-
dowed Fourier transform (WDST), localised on a coarse 8 × 8 grid. The latter
was shown to contain more information than the first, and was used to define
a set of perceptual properties (roughness, ruggedness, etc.) that allow for scene
classification. In later publications by the same authors, the Fourier transform
was replaced with steerable [2,5], or Gabor wavelets [3], computed over varying
scale and orientation and averaged over grids of varying sizes. The dimension
of the feature vector was in some case reduced using PCA [6,3]. Renninger &
Malik studied how human subjects could identify visual scenes even after very
brief exposures (< 70ms), and proposed a GIST–like model as an explanation of
those results [6]. Douze et al. compared GIST descriptors with bag-of-words ap-
proaches for image search, using the INRIA ‘Holidays’ and ‘Copydays’ datasets,
and found that GIST descriptors yield lower performances than state of the
art bag-of-word approaches, yet with a considerably lower computational and
memory cost [4]. Siagan & Itti, used similar descriptors for the identification of
indoor and outdoor scenes in a mobile robotics context [3,7]. Their implementa-
tion differs insofar as they use different filter banks, including centre-surround
colour sensitive filters, and the resulting feature vectors were post-processed us-
ing PCA and ICA. Ackerman & Itti used spectral image information for steering
a robotic platform on a path following scenario on two simple tracks [8]; in con-
trast, we consider a large database of real urban scenes. Kastner et al. [9] use
a GIST variant for road type context detection, limited to the three categories
‘highway’, ‘country road’ and ‘inner city’; their main contribution was the hier-
archical principal component classification (HPCC).

In contrast, in this article we attempt to detect 13 contextual labels of varying
difficulty pertaining to scene environment, road type, junction type along with
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Fig. 1. Overview of the pre-attentive driving behaviour learning framework

some other attributes. Moreover, we learn relations between the visual context
and five of the driver’s actions: the activation of each of the three pedals, plus
steering. We then show how these classifiers can be reversed to provide activation
maps that determine the salient visual information that influences each action.
The framework we propose is illustrated in Fig. 1: images are first resized and
the contrast is normalized, then they are convolved with a filter bank, and the
response is averaged over a grid; this forms the GIST descriptor. Then, two
experts are learnt from these descriptors: the first one learns to detect contextual
categories using hand labelled training samples; the second learns to predict the
driver’s actions. In this graph, the red dotted arrows represent information that
is only provided at the training stage.

2 Methods

In this section we describe the learning framework illustrated in Fig 1: first, in
section 2.1 we describe the GIST descriptor used, and propose a novel formu-
lation of the descriptor; second, in section 2.2 we briefly discuss the learning
algorithm.

2.1 Holistic Image Descriptors (GIST)

GIST are holistic image descriptor that encode a whole visual scene in one feature
vector, generated by a coarse scale local filtering of a low resolution version of
the image. The exact implementation varies in the literature, and the exact
type of filters used does not seem to bear a major effect on the performance for
context detection. In this work, we start by downscaling the images to 128×128
and normalizing the contrast, before filtering the resulting image with a bank of
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Fig. 2. Illustration of the grid averaging process. The left hand side shows the standard

GIST grids, for sizes ranging from 1 × 1 to 8 × 8. The middle shows the effective cells

for 2 × 2 grid with overlap: the green, red and blue square represent three overlap-

ping squares. On the right, the graph shows an horizontal slice of this last grid, with

overlapping Gaussians.

Gabor filters tuned to 8 different orientations and 4 scales; this results in p = 32
jets. The data size is then reduced by averaging the jets over a coarse grid
laid over the image. Here again, the size of the grid used vary in the literature
(we investigate the effect of this parameter in section 3.3); Oliva and Torralba
reported a better performance of 4 × 4 versus 1 × 1 grids for context detection
[1]. In this article we consider grids of size 1×1, 2×2, 4×4 and 8×8, separately
and in combination (see Fig. 2).

One issue with this classical implementation is that the GIST vector can be
very sensitive to small shifts of the features that lie close to the grid’s boundaries.
We propose an alternative sampling procedure based on overlapping smoothed
cells. In this approach, adjacent rows of cells are overlapping by 50%, leading
to an effective number of 144 cells for a 8× 8 grid (see Fig. 2). Each cell’s data
vector H = (h1, · · · , hp) is computed by averaging each jet Fk, k ∈ {1, · · · , p}
according to a Gaussian kernel of variance one quarter of the grid cell’s width:

hk(x0, y0, s) = Q
∑

x,y

Fk(x, y) exp

[

−
(
x− x0

s/4

)2

+
(
y − y0
s/4

)2
]

, (1)

where (x0, y0) is the centre of the grid cell, s is the cell width in pixels and Q is a
normalization constant. The overlapping grid cells and the Gaussian smoothing
are used to reduce the GIST vector sensitivity to small displacements at the
grid’s boundaries, and is shown to significantly improve performance on action
prediction.

We will dispense with the additional PCA and/or ICA post-processing that
is commonplace in the GIST literature (eg, [3]). Although reducing the feature
dimension can be useful for some processes, we will rely on the boosted classifier
to reduce dimensionality selectively through feature selection for each target
category.

2.2 Classification

We use Boosting for learning both contextual labels and actions, as it has been
shown to be successful for input selection and recognition [10,11]. We use a
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variant called GentleBoost, that has been shown to be more robust to noisy
datasets [12]. Boosting is based on combining the weighted responses of a pop-
ulation of simple classifiers (called ‘weak learners’) into one robust classifier.
The weak learners li = (di, τi, si) we used are simple decision stumps, each one
applying a threshold τ on one of the feature vector’s dimension d

R(l,v) =
{

+s if vd > τ
−s otherwise , (2)

where, s = {−1,+1} encodes the sign of the threshold that is applied. For each
round of boosting i, the input dimension that best separates positive and nega-
tive examples is chosen, and the weights are updated. The classifier is therefore
described by L = {(l1, w1), . . . (li, wi), . . . , (lN , wN )}, and the response is given
by:

R(L,v) =
N∑

i=1

wi · R(li,v). (3)

As the number of weak learners is lower than the number of input dimensions,
the learning process is effectively performing feature selection from the high
dimensional input, and the weight of each weak learner provides a cue of the
relative importance of each input towards the decision. In the following, and un-
less stated otherwise, the classifier was always trained using 1,000 samples from
the dataset (0.7%), with half of the training set containing positive examples,
and half negative examples. This positive/negative ratio was enforced to ensure
that a sufficient number of positive examples were shown to the classifier, even
for infrequent categories. Unless otherwise stated, the classifiers are evaluated
on the rest of the dataset (ie, > 99% of the data).

2.3 Activation

In order to focus attention and direct higher level processes to relevant areas of
the image, we need to evaluate which parts of the visual scene the predictors are
tuned to, and whether they contribute to the activation or the inhibition of the
action. We experimented with different ways to formalise what the predictors
are responding to, and settled on reprojecting the Gaussian smoothing kernel
in section 2.1 for each weak learner, weighted by this learner’s weight. Thus the
activation map is given by the mixture of Gaussians:

A(v) =
|L|∑

i

(wi · R(li,v) ·G(li)) , (4)

for all weak learners li. In this equation G(l) is the Gaussian kernel centred at
the GIST grid cell li is associated with, with a variance of one fourth of the cell’s
width. The resulting map provides, for all images, an illustration of which image
areas activate or inhibit each action.

Figure 9 shows the activation maps for each action for several example scenes,
where the image is overlaid by green for excitation and red for inhibition.
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3 Results

We evaluated the learning on a sequence taken from an instrumented car. The se-
quence contains 158,668 images for a total of about 3 hours of data, encompassing
a variety of driving situations and settings. The dataset is illustrated in Fig. 3. The
driver’s actions were recorded from the car for each frame in the sequence.

Fig. 3. Some example images taken from the 158,668 in the sequence

3.1 Learning Context Classes

Context information was provided in the form of a coarse labelling of each frame
in the sequence pertaining to 13 classes. The number of frames labelled for each
class is recorded in Table 1. The context classes are separated in four categories:
environment, road, junction and attributes.

Table 1. Context labels associated to all images in the sequence (total: 158,668 frames)

Index Category Label Count

1 environment non-urban 47,923

2 environment inner-urban 82,424

3 environment outer-urban 28,321

4 road single lane 31,269

5 road two lanes 86,879

6 road motorway 38,880

7 junction roundabout 2,007

8 junction crossroads 17,366

9 junction T-junction 7,895

10 junction pedestrian crossings 29,865

11 attributes traffic lights 21,799

12 attributes road markers 6,462

13 attributes road signs 3,387

We trained an ensemble of Boosted decision stumps for each context class,
using 100 rounds of Boosting on 1,000 frames chosen randomly; the performance
was then evaluated on the rest of the dataset (more than 150,000 frames). Fig. 4
shows receiver operating characteristic (ROC) curves for all context classes,
grouped by category. The confusion matrix is drawn in Fig. 4(e).
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Fig. 4. (a–d) ROC curves for the detection of different type of contextual information

(see Table 1); (e) confusion matrix. All plots are for a combination of all overlapping

grids for 100 rounds of Boosting, averaged over 10 runs.

All classes are detected with good performance (note that all detectors are
processed independently, without enforcing mutual exclusivity). The detection
of the environment classes performs especially well, and the best performance
is reached for distinction between ‘inner urban’ and ‘non urban’. The lower
detection performance for ‘outer urban’ is likely to be due to the somewhat
fuzzier definition of the class; this is confirmed by the higher confusion value
between ‘non urban’ and ‘outer urban’. This high performance is consistent
with published results in the literature. These categories are obviously global
context categories and high performance validates other researchers’ findings
that GIST–type descriptors perform well for context recognition.

However, the performance is surprisingly high for other (more difficult) cat-
egories which make less use of global context. For the road category, confusion
values are high between the ‘single lane’ and ‘inner urban’ classes, and the ‘mo-
torway’ and ‘non urban’ classes, which are naturally consistent with expectations.
The detectors for junction and attributes show a good performance for all classes
(the very high performance on the ‘roundabout’ class may be due to the relatively
low number of examples in the database). The confusion matrix shows a large con-
fusion between all junction and attributes classes, and the ‘inner city’ class. This
is consistent with the reality of traffic settings, and it should be noted that traffic
lights (for example) are fundamentally local visual events, and therefore what is
detected in this case is the visual context in which they are likely to occur, which
is indeed a town centre intersection.
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3.2 Learning Driving Actions

In a second experiment, we learnt to predict driver’s actions from the gist fea-
tures. The actions we considered are the pressing of one of the three pedals
(Accelerator, Brake and Clutch) and the action of steering left or right. The
actions were discretised, and therefore the amplitude of each action was disre-
garded for this experiment. Note that observation of the data revealed that the
actions of pressing the clutch or the brake were binary actions anyway.

The classifier used was GentleBoost with decision stumps as weak learners; it
was trained for 100 rounds with 1,000 randomly selected data points (less than
1% of the dataset).
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Fig. 5. Performance of the action prediction: (a) ROC analysis, and (b) confusion ma-

trix. The results are for 100 rounds of boosting on the combined grids GIST descriptors;

the training is done with 1,000 random frames, and tested with the rest of the dataset.

The action prediction performance is recorded in Fig. 5: the ‘clutch’ and
’brake’ actions are predicted well (with 80% true positives for 10% false neg-
atives); the two predictions also share a strong confusion value. This effect is
driven by the large number of cases where the driver brings the car to a stop,
pressing concurrently both brake and clutch. The performance when predicting
the accelerator pedal and steering left or right is lower (80% false positives for
30% false negatives) but still good considering the large variability in the data.
There is positive confusion values between steering and acceleration, which is
consistent with good driving technique. The positive confusion between left and
right steering is likely to come from the intersection situations, where steering
left or right is equally plausible from visual information only.

Fig 6 illustrates the quality of the action prediction on a short subsequence:
the graph show curves for each action, for the driver and for the learnt response
potential and final decision, respectively from top to bottom. The classifier was
trained for 100 rounds on 1,000 frames taken randomly out of the 158,668. The
classifier’s response was smoothed using a 5–points moving average to remove the
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(a) one image

7.3 7.31 7.32 7.33 7.34 7.35 7.36 7.37 7.38 7.39 7.4

x 10
4

−10

−5

0

5

10

15

20

frame

re
sp

on
se

Estimated and recorded actions

Clutch Brake Accelerator Left Right

learner’s
action

driver’s
action

learner’s
response

(b) actions

Fig. 6. Illustration of the driver’s and the system’s elicited actions, on a short sub-

sequence (1,000 frames). (a) first image in the sequence; (b) from top to bottom: the

driver’s action, the system’s elicited actions, and the system’s raw response. The pre-

dictor’s response was smoothed using a 5–points moving average.
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Fig. 7. Analysis of the effect of the GIST grid size on performance for (a) context

detection and (b) action prediction

isolated outliers. The prediction for ‘Brake’, ‘Clutch’ and ‘Accelerator’ (acceler-
ator pedal) is of very good quality for the whole sub-sequence. The prediction
for steering ‘Left’ or ’Right’ is not as reliable, but follows nonetheless the same
patterns as the driver’s.

3.3 Evaluation of the System’s Parameters

We evaluated the influence of the GIST grid size and of the number of Boosting
rounds on the detectors’ performance, the results are displayed as ROC curves
in Fig. 7 and 8. These ROC curves show the average performance over all classes
and over 10 successive trainings of the detectors, each time with 1,000 randomly
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selected samples, and evaluated on the rest of the dataset. Figs. 7 show the
performance for different GIST grids: 1×1, 2×2, 4×4, 8×8, and combinations
of them all with and without overlapping. Each curve was obtained for 100
rounds of boosting. The best performance was obtained for using 8× 8 grid and
no additional performance was gained when using jointly a combination of all
grids. The performance remained very good when using a 4×4 grid but dropped
when using coarser histograms. When using overlapping smoothed grids, the
performance for the context detection task was not improved compared to the
8 × 8 grid (Fig 7(a)); on the other hand, the performance for action prediction
was significantly improved (Fig. 7(b)). This is likely to be due to less reliance
upon global context and localised higher variability in the aspects of visual scenes
relevant for predicting actions; eg, the position and the shape of the vehicle being
followed can change to large extent. The non-overlapping grid used in classical
GIST implementations make the feature vector sensitive to changes at the grid’s
boundaries, whereas an overlapping grid is less affected.

Fig. 8 shows the performance obtained for varying the number of rounds
of Boosting, using an overlapping smoothed grid. No significant improvement
was obtained by rising from 300 to 500 rounds, and 100 rounds yielded good
performance. The performance for a single round of boosting was given as a
baseline for a single decision stump’s performance. Similar results were obtained
when using other grids.
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Fig. 8. Analysis of the effect of the number of rounds of Boosting on performance for

(a) context detection and (b) action prediction

3.4 Predictors’ Activation

In order to get a better insight in what rules the system learns from the driver,
we use the classifier inversion described in section 2.3 to identify what parts of
the visual scenes activate the different action predictors. In Fig 9, the activation
maps for three different situations are shown, for all actions. On those maps,
the original image is overlaid with green on the excitatory areas and red on the
inhibitory areas.
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Clutch

Brake

Accelerator

Steering left

Steering right

Fig. 9. Activation maps on selected frames for each action predicted by the system;

green shows activation and red inhibition. Areas of empty road activate acceleration and

steering towards them, while inhibiting braking and pressing the clutch. Conversely,

other vehicles on the road inhibit acceleration and steering towards them, while exciting

braking, pressing the clutch and steering away from them—see text.
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We expect the clutch pedal to be depressed when reducing speed to a minimum
or when the car stops. On the left image, we can see that the clutch is activated by
the presence of another car immediately in front. On the middle image the car is
further away, and the same image area, now empty of cars, inhibits the ‘clutch’
predictor; a similar inhibition pattern is visible in the right image where the
road ahead is free. The second row shows consistent activation patterns for the
‘brake’ action: on the left, the empty road in front inhibits the predictor whereas
the pedestrian crossing area activates it. On the middle, the presence of a car
immediately in front leads to a strong excitation, whereas on the right an empty
space yields a strong inhibition. As expected, the ‘accelerator’ activation is the
opposite of the ‘brake’: activated by empty spaces and inhibited by other vehicles
in front. The activation maps for steering actions are somewhat more difficult
to interpret, as expected from the lower prediction performance. The ‘left’ and
‘right’ actions appear to be activated by obstacles and to promote veering away
from them (see left images). They also seem to react to the vehicle’s position in
its lane, as evidenced by the sharp inhibition of steering generated on the central
white line (see the bottom–right image).

4 Discussion

In this article we attempt to model driving behaviour by learning the relationship
between a human driver’s actions and holistic image descriptors. Supervision
comes in two forms: first, a coarse labelling of the images in terms of a variety
of driving–relevant contextual categories; second, a frame per frame record of
the driver’s actions when faced with this situation. We use GIST features as
an equivalent to human pre-attentive vision, for encoding the visual input, and
attempt to learn, for all images, both the associated labels and the driver’s
actions.

The GIST descriptor is a generic approach for holistic image features, and
has several free parameters. Experimenting with different type of grids for the
GIST descriptor, we found that the best performance was obtained for a 8 × 8
grid. Moreover, the small difference in performance between 8 × 8 and 4 × 4
grids make in unlikely for finer grids to increase performance notably, for a
high computational cost. Instead, we proposed an overlapping grid smoothed
using Gaussian functions, that lead to a significant performance improvement
for action prediction (see Fig. 7(b)).

We found that the optimal performance is reached with a relatively low num-
ber of rounds of Boosting for both context detection and action prediction (100
rounds); this is a large dimension reduction compared to the original feature
vector (6,496 for the combined overlapping grids). Therefore, the relatively high
dimensionality of the original feature vector is not an issue after the training
stage as each classifier only uses a small carefully selected proportion of it. Those
dimensions and their respective contribution to the classifier’s response can be
reprojected in the image domain as discussed in section 2.3, and produces the
activation maps shown in Fig. 9.
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The high performance of pre-attentive vision for detecting the environment
class (‘non urban’, ‘outer urban’, or ‘inner urban’) is consistent with previous
results in the literature. Very good performance was also obtained when detecting
more complex aspects of the driving context such as T–junctions, pedestrian
crossings, or even traffic lights (see Fig. 4).This shows that holistic features
do carry a large amount of visual information relevant for interpreting driving
scenarios. Moreover, the success in detecting what are essentially local events
(eg, traffic lights) shows the high contextual prior that permeates most driving
visual scenes: the presence of an intersection in an urban setting, for example,
is a strong predictor for the presence of a traffic light, or road markings.

The performance with which the driver’s actions can be predicted from holis-
tic image features, is a more unexpected result (see Figs. 5 and 6). Indeed, the
system does not have insight into the driver’s intentions and lacks any formal
knowledge of the highway code. The fact that the driver’s actions can be pre-
dicted at all, only from transient holistic image features, illustrates the intuition
that most of a driver’s actions are completely determined by the context in which
he is, and only a small fraction is determined by intention, attentive vision and
high–level reasoning. These cases are of special importance for learning an at-
tentional model of the driver’s behaviour: we expect the false positives to be the
instances in the dataset where the driver’s pre-attentive actions were inhibited
by higher–level considerations. If we consider the case of crossing traffic at an
intersection, pre-attentive vision may learn to slow down before the intersection,
but the driver will then need to actively assess whether the way is free or if he
needs to stop. The activation maps shown in Fig. 9 provides us with a useful
indication of which parts of the scene are relevant for taking a decision; together
with the driver’s gaze, they provide a way to focus the attention of a higher
level feature–based learning on the most promising parts of the visual scene.
Therefore, the learning of a more complex model can be bootstrapped by the
activation maps at false positives and the driver’s gaze can be combined to learn
the attentive components of driving. In this context, the pre-attentive model
serves as a filter to focus attentional learning towards the rare instances where
it is required, and the aspects of the scenes that may be of importance.

5 Conclusion

Holistic image descriptors have received a lot of attention in the recent year, both
from the computer vision and the psychology communities, as a good model for
fast, pre-attentive vision, and a good feature for scene identification. We used
such GIST features for learning driving behaviour from a human driver, and
obtained very good results both for the detection of visual context labels and
for the prediction of the driver’s actions. The fairly high performance of the
action prediction illustrates the fact that only a small proportion of the driving
actions require formal understanding of the driver’s intentions or the highway
code. This is a vivid illustration of the strong priors at work during normal
driving behaviour, and of how much information pre-attentive perception can



Learning Pre-attentive Driving Behaviour from Holistic Visual Features 167

carry, as 80% of a driver’s actions can be predicted. Such a performance allows
to focus attention on learning the more complex rules that underlie the 10–20%
of problematic cases.
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References

1. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of

the spatial envelope. International Journal of Computer Vision 42, 145–175 (2001)

2. Torralba, A.: Contextual priming for object detection. International Journal of

Computer Vision 53, 169–191 (2003)

3. Siagian, C., Itti, L.: Rapid biologically-inspired scene classification using features

shared with visual attention. IEEE Transactions on Pattern Analysis and Machine

Intelligence 29, 300–312 (2007)

4. Douze, M., Jégou, H., Sandhwalia, H., Amsaleg, L., Schmid, C.: Evaluation of gist

descriptors for web-scale image search. In: CIVR 2009: Proceedings of the ACM

International Conference on Image and Video Retrieval (2009)

5. Torralba, A., Oliva, A., Castelhano, M., Henderson, J.: Contextual guidance of at-

tention in natural scenes: The role of global features on object search. Psychological

Review 113, 766–786 (2006)

6. Renninger, L., Malik, J.: When is scene identification just texture recognition?

Vision Research 44, 2301–2311 (2004)

7. Siagian, C., Itti, L.: Biologically inspired mobile robot vision localization. IEEE

Transactions on Robotics 25, 861–873 (2009)

8. Ackerman, C., Itti, L.: Robot steering with spectral image information. IEEE

Transactions in Robotics 21, 247–251 (2005)

9. Kastner, R., Schneider, F., Michalke, T., Fritsch, J., Goerick, C.: Image–based

classification of driving scenes by a hierarchical principal component classification

(HPCC). In: IEEE Intelligent Vehicles Symposium, pp. 341–346 (2009)

10. Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and

an application to boosting. Journal of Computer and System Sciences 55, 119–139

(1997)

11. Viola, P., Jones, M.: Robust real–time object detection. International Journal of

Computer Vision 57, 137–154 (2001)

12. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical

view of boosting. The Annals of Statistics 28, 337–407 (2000)



Detecting People Using Mutually Consistent
Poselet Activations�

Lubomir Bourdev1,2, Subhransu Maji1, Thomas Brox1, and Jitendra Malik1

1 University of California at Berkeley
2 Adobe Systems, Inc., San Jose, CA

{lbourdev,smaji,brox,malik}@eecs.berkeley.edu

Abstract. Bourdev and Malik (ICCV 09) introduced a new notion of

parts, poselets, constructed to be tightly clustered both in the configu-

ration space of keypoints, as well as in the appearance space of image

patches. In this paper we develop a new algorithm for detecting people

using poselets. Unlike that work which used 3D annotations of keypoints,

we use only 2D annotations which are much easier for naive human an-

notators. The main algorithmic contribution is in how we use the pattern

of poselet activations. Individual poselet activations are noisy, but con-

sidering the spatial context of each can provide vital disambiguating

information, just as object detection can be improved by considering the

detection scores of nearby objects in the scene. This can be done by

training a two-layer feed-forward network with weights set using a max

margin technique. The refined poselet activations are then clustered into

mutually consistent hypotheses where consistency is based on empiri-

cally determined spatial keypoint distributions. Finally, bounding boxes

are predicted for each person hypothesis and shape masks are aligned to

edges in the image to provide a segmentation. To the best of our knowl-

edge, the resulting system is the current best performer on the task of

people detection and segmentation with an average precision of 47.8%

and 40.5% respectively on PASCAL VOC 2009.

1 Introduction

Detecting people in images is hard because of the variation in visual appearance
caused by changes in clothing, pose, articulation and occlusion. It is widely
accepted that a representation based on parts is necessary to tackle the challenge
of detecting people in images. But how shall we define parts?

Historically, the most common choice has been to use basic anatomical struc-
tures such as torso, left upper arm, left lower arm, and in a probabilistic frame-
work such as pictorial structures [1], these become nodes in a graphical model and
the conditional independence assumption inherent in the tree structure make in-
ference tractable. Other approaches that look for good scoring parts in the right
spatial relationships may be found in [2,3,4,5,6].
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While these parts are quite natural in constructing kinematic models of a
moving person, they are not necessarily the most salient features for visual
recognition. A limb, modeled as a pair of parallel line segments, is quite dif-
ficult to detect reliably; there are false positives all over an image. In contrast,
a visual conjunction such as “half of a frontal face and a left shoulder” may
be a perfectly good discriminative visual pattern. This is perhaps the reason
why the best performing approaches on people detection tend not to be based
on first detecting anatomical parts. Leading this trend was work on pedestrian
detection [7,8] using a multi-scale sliding window paradigm; other examples of
such “appearance-based” techniques include [9,10,11,4]. Currently the best per-
forming system on the task of people detection is by Felzenszwalb et al. [12] who
generalized the approach to allow an intermediate layer of “parts” that can now
be shifted with respect to each other, rendering the overall model deformable.
The templates for these parts emerge as part of the overall discriminative train-
ing. The latest version, dubbed Latent SVM by the authors, has an additional
mixture model on top permitting a rudimentary treatment of aspect.

Bourdev and Malik [14] introduced a new notion of parts as poselets, where
the key idea is to define parts that are tightly clustered both in configuration
space (as might be parameterized by the locations of various joints), and in ap-
pearance space (as might be parameterized by pixel values in an image patch).
Finding such parts requires extra annotation, and [14] introduced a new dataset,
H3D, consisting of images of people annotated with 3D keypoints making use
of Taylor’s algorithm [15]. The poselets themselves are created by a search pro-
cedure. A patch is randomly chosen in the image of a randomly picked person
(the seed of the poselet), and other examples are found by searching in images of
other people for a patch where the configuration of keypoints is similar to that
in the seed (see figures 1, 6, and 7 in [14]). Given a set of examples of a pose-
let, which are, by construction, tightly clustered in configuration space, HOG
features [7] are computed for each of the associated image patches. These are
positive examples for training a linear Support Vector Machine. At test time, a
multi-scale sliding window paradigm is used to find strong activations of the dif-
ferent poselet filters. These are combined by voting using a Max Margin Hough
Transform for the torso/bounding box of a person.

In this paper, we present a better way to define and use poselets. We start
with a critique of the approach in [14]:

The use of 3D keypoint annotations: While these carry more information
than 2D annotations, they come at a cost in terms of annotation expense. The
H3D annotation environment requires some degree of skill, and about 1-2 min-
utes per image. If we only mark keypoints in 2D, the task becomes much sim-
pler and portable to unskilled labor of the type available on Amazon Mechanical
Turk. While individual annotations become less informative, the ability to col-
lect many more for a given amount of time and money is a great advantage.
Additionally this makes the poselet idea applicable to other object categories
where lifting to 3D using the Taylor algorithm is not even possible.
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The use of Hough Transform voting: While such techniques have been used
in computer vision from early days, and are natural baselines before trying more
complex approaches, they provide less flexibility than one might like. Essentially
this is a star model [16], in the graphical model sense, with part positions being
referred to a center (a torso in [14]). However there may be no common target
that all parts predict reliably. Each poselet makes good predictions only about
local structure – a feet poselet does not know if the person is sitting or standing,
and a face poselet cannot know if the person is occluded by, say, a table. Instead,
we should look at pairwise consistency of poselets. A left shoulder poselet and a
frontal face poselet may be uncertain in their prediction of the visible bounds,
but they are certain on where the shoulders are, which makes it easier to tell if
they refer to the same person.

In the following sections we propose solutions to these limitations which sig-
nificantly increase performance.

2 Overview of Our Approach

The first step is to train poselets using only 2D keypoint annotations. Ignoring
3D information becomes possible by a new distance function for comparing 2D
keypoint configurations. This simplification of annotation allowed us to augment
the training set of [14] by annotation of the people category of PASCAL VOC
2009 training and validation images. The larger amount of training data leads
to better initial poselet detectors. The experiments in this paper are based on
training 500 such detectors, and we select from these, in a greedy fashion, the 100
or 200 best performing poselets that maximize coverage of the different examples
in the training set.

At test time, a multi-scale sliding window paradigm is used to find strong ac-
tivations of the different poselet filters. In the overview figure for our algorithm,
the results of this stage are shown as Fig. 1.1. We need to cluster these activa-
tions together if they correspond to the same hypothesized person in the image,
predict a score for this person hypothesis, as well as an associated figure/ground
segmentation and a bounding box.

The key insight here is that if two poselet activations are consistent, they will
make similar predictions of the keypoints of the person, because two consistent
true positive activations detect parts of the same person.

At training time, we can measure the empirical keypoint distributions (Fig. 2)
associated with true activations of various poselet types, and at test time, we
measure consistency between two poselet activations i and j using the sym-
metrized KL-divergence of their empirical keypoint distributions N k

i and N k
j :

DSKL(N k
i ,N k

j ) = DKL(N k
i ||N k

j ) +DKL(N k
j ||N k

i ) (1)

di,j =
1
K

∑

k

DSKL(N k
i ,N k

j ) (2)
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1. q-scores. Different colors illustrate different
poselet detectors firing in the image. The blob
size illustrates the score of the independent
poselet classifier.

2. Q-scores (Section 4). Evidence from consistent
poselet activations leads to a reranking based on
mutual activation (Q-scores). Weaker activations
consistent with others gain importance, whereas
inconsistent ones get damped.

3. Clustering (Section 5). Activations are
merged in a greedy manner starting with the
strongest activation. Merging is based on
pairwise consistency.

4. Bounding boxes (Section 6) and segmen-
tations (Section 7). We predict the visible
bounds and the contour of the person using the
poselets within the cluster.

Fig. 1. Schematic overview with manually marked activations to illustrate the method

we propose in this paper
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Fig. 2. Empirical keypoint distribution: locations of the shoulders (left), shoulder and

ear (middle), and shoulders and hips (right) over true positive poselet activations

Since we represent these keypoint distributions as 2D Gaussians, DSLK has a
closed-form solution, and the summation is over all the K common keypoints in
the two annotations.

The step from Fig. 1.1 to Fig. 1.2 illustrates an additional layer in the detector
that uses the context of other poselet activations. This can be regarded as a feed-
forward network, where the first layer generates poselet activations whose scores
are independent (we call them q-scores) and the second layer combines all these
to result in context-improved rescoring Q-scores. Alternatively, the q to Q stage
can also be regarded as a star model applied to each poselet activation. The number
of poselet activations stays the same, but the score of each activation is changed.

The activations are then clustered together to form people detections; cf.
Fig. 1.3. We use a saliency based agglomerative clustering with pairwise distances
based on consistency of the empirical keypoint distributions predicted by each
poselet. Activations that have low score and are not consistent enough to be
merged with one of the existing clusters get removed.

Fig. 1.4 illustrates the final step of predicting bounding boxes from the poselets
in each cluster. Alternatively, we can predict segmentations from the clustered
poselets.

3 Training and Selecting Poselets

We used the H3D training set (750 annotations), the PASCAL VOC 09 train-
ing set (2819 annotations for which we added keypoints), and 240 annotations
we added manually from Flickr. We doubled this set by mirroring the images
horizontally. Our training algorithm consists of the following steps:

1. Collecting patches. We select 500 random windows from the training set
(seed windows), sampling with uniform distribution over scale and position while
keeping a fixed aspect ratio of 1.5. For each seed window we extract patches
from other training examples that have similar local keypoint configuration.
Following [14], we compute a similarity transform that aligns the keypoints of



Detecting People Using Mutually Consistent Poselet Activations 173

each annotated image of a person with the keypoint configuration within the
seed window and we discard any annotations whose residual error is too high.
In the absence of 3D annotation, we propose the following distance metric:

D(P1, P2) = Dproc(P1, P2) + λDvis(P1, P2), (3)

whereDproc is the Procrustes distance between the common keypoints in the seed
and destination patch and Dvis is a visibility distance, set to the intersection over
union of the keypoints present in both patches. Dvis has the effect of ensuring
that the two configurations have a similar aspect, which is an important cue
when 3D information is not available. Note that we allow rotations as part of
the similarity transformation during alignment, which helps augment the useful
part of the training set for a poselet.

2. Classifier training. We construct HOG features [7] from the collected
patches and from random negative example patches and we train linear SVM
classifiers. One important difference from [14] is that instead of using all patches
as training examples we only use the nearest 250 training examples. Given the
size of our training set, this ensures that all the training patches are sufficiently
close to the “seed” patch. Otherwise, what may happen is that, e.g., as we collect
more examples for a profile face detector, we will eventually start including ex-
amples of frontal faces, and they will end up dominating the classifier. Following
standard practice, we bootstrap the initially trained SVMs by scanning over im-
ages that contain no people, collecting hard false positives and retraining. This
process culminates in 500 trained poselet classifiers.

3. Finding true and false positives. We do a scanning pass over our training
set and collect the top 2N activations of each poselet, where N is the number
of annotated people. We assign labels (true positive, false positive, unknown) to
each poselet activation. To assign a label we use the bounds of the patches we ex-
tracted in step 1. We partition the bounds into two classes: the top-rank patches
(the training patches) are treated as ground truth; the lower-rank patches are
treated as secondary ground truth. Any activation that has intersection over
union overlap of more than 0.35 with a ground truth is assigned a true positive
label. If the overlap with a secondary ground truth is less than 0.1 or none, it is
assigned a false positive label. All other cases remain unlabeled.

4. Collecting information on each poselet.

(a) We fit a logistic over the positive and negative activations and the associated
scores to convert SVM scores into probabilities qi.

(b) We set a threshold for the SVM score that ensures 90% of the positive
and unlabeled examples are above the threshold. This allows each poselet’s
detection rate to match the frequency of the pattern it has learned to detect.

(c) We fit a model for the keypoint predictions conditioned on each poselet by
observing the keypoint distributions of the true positive activations of each
poselet type. An example is shown in Fig. 2. We model the distributions
using a 2D Gaussian associated with each keypoint.
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(d) We fit the prediction of the visible bounds of the human relative to the
poselet in a similar way using the true positive activations. We find the
mean and variance of xmin, ymin, xmax, ymax of the visible bounding box.

5. Poselet selection. The 500 poselet detectors trained in the previous stages
are based on randomly selected seed windows, and as a consequence some of these
will be redundant and others will correspond to rare patterns. This suggests that
we could select a smaller subset that could provide nearly equivalent or even bet-
ter performance to the whole set (analogous to feature selection for classifiers). We
treat this as a “set cover” problem, and solve it using a greedy strategy. For ev-
ery positive example in the training set, we determine which poselets “cover” it,
in the sense that the poselet has an above threshold activation which overlaps it
sufficiently (step 3 above). We first pick the poselet that covers the most examples,
then incrementally add poselets that cover the most not yet covered examples. Once
there is no poselet that can cover any previously uncovered example, we select the
poselet that covers the most examples covered by only one previous poselet, etc.

4 Exploiting Context among Poselets

When examining poselet activations, it becomes clear that they are far from
perfect. This is but to be expected; the low level signal captured by HOG fea-
tures is often ambiguous. Sometimes there is just not enough training data, but
sometimes there are also “near-metamers”; patterns that can be distinguished
by a human observer using additional context, but are almost indistinguish-
able given the HOG signal inside the image patch. For example, a back-facing
head-and-torso pattern is similar in appearance to a front-facing one, and thus
a back-facing poselet will often fire on front-facing people as well; see Fig. 3.
Another example is a left leg, which in isolation looks very similar to a right leg.

One can resolve these ambiguities by exploiting context – the signal within a
patch may be weak, but there is strong signal outside the patch or at a different

Fig. 3. The top 10 activations of a poselet trained to find back-facing people. Top row:
Sorted by q-score. Bottom row: Sorted by Q-score. The correct and false activations

have a green or red bounding box, respectively. The Q-scores are computed using the

context of other activations, e.g. frontal faces, to disambiguate front-facing from back-

facing people. Without context we make 6 mistakes (top) whereas using context we

make only two mistakes (bottom).
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Fig. 4. ROC curves for activations of three poselets computed on our test set. Red

continuous lines use q score and green dashed lines use Q score.

resolution. We use the pattern of neighboring poselet activations for disambigua-
tion. For example if a frontal face poselet fires strongly, we can infer that we are
more likely to have a front-facing head-and-shoulder pattern, rather than a back-
facing one. The oval shape of a wheel sometimes triggers a face detector, but we
can suppress the detection if there is no torso underneath.

We refer to the score of a poselet activation based only on its classifier as q-
score and one that uses other nearby activations as Q-score. For each activation
i we construct a context feature vector Fi of size the number of poselet types.
The pth entry of Fi is the maximum q-score qj over all activations j of poselet
p that are consistent with activation i (or zero if none). We train a linear SVM
on the context feature vectors of activations in the training set using their true
and false positive labels. We then train a logistic to convert the SVM score into
a probability Qi. The result is what we call Q-score.

We treat two activations i and j as consistent if the symmetrized KL diver-
gence, as defined in (2), di,j < τ . We set τ as the threshold that best separates
distances among consistent activations from distances among inconsistent acti-
vations on the training set. For all pairs of labeled activations on the training set
we can determine whether they are consistent or not - namely, two activations
are consistent if they are both true positives and share the same annotation.

Fig. 3 shows examples of the top activations of our back-facing pedestrian sorted
by q-score and below them the corresponding top activations sorted by Q-score.
Fig. 4 shows typical ROC cuves with q-scores vs Q-scores for the same poselet.
Clearly, the mutual context among activations helps to obtain a better ranking. It
is worth noting that Q-scores are assigned to the same activations as the q-scores.
While the ranking is changed, the localization of the activation stays the same.

5 Clustering Poselet Activations

Our earlier approach in [14] is build upon the Max Margin Hough Transform
from [17] in order to group poselet activations to consistent people detections.
This comes with the assumption that the object has a stable central part and the
relative position of all other parts has very small variance – an assumption that
is not satisfied for articulated objects, such as people. We propose an alternative
clustering algorithm:
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Fig. 5. Examples of poselet activations during clustering. The activation bounding

boxes and the predictions of the hips and shoulders are shown. Left: We start with the

highest probability activation, which for this image is a left shoulder. Center: Example

of two compatible activations which will be placed in the same cluster. Right: Example

of incompatible activations which will end up in separate clusters.

1. Initialize the set of clusters that correspond to person detection hypotheses
M = {∅}.

2. Successively take the poselet activation ai with the highest score Qi:
(a) Find the closest cluster mj = argminmj∈M d(ai,mj), where the distance

d from ai to cluster mj is estimated using average linkage.
(b) If d(ai,mj) < τ then mj ← merge(mj , ai), i.e. we merge i into an

existing cluster. Otherwise, if |M | < t then M ← {M ∪ ai}, i.e. we form
a new cluster.

In the end the poselet activations are grouped into clusters each corresponding to
a person detection hypothesis. In addition some poselets with low scores that are
inconsistent with any clusters are marked as false positives and are discarded.
The parameter t is a tradeoff between speed and false positive rate. We set
t = 100, i.e. we collect at most 100 person hypotheses from each image.

This algorithm is a form of greedy clustering starting with the highest- proba-
bility poselet activations. Compared to other schemes such as spectral clustering
or agglomerative clustering, the proposed algorithm has computational advan-
tages because it processes the most salient information first. The algorithm runs
in linear time. We do not spend compute cycles measuring distances between
low scoring detections, and the algorithm can be terminated at any time with
a good list of the most-salient-so-far hypothesis M . Furthermore, by starting
with the highest probability detections we are less likely to be mislead by false
positives. Fig. 5 shows examples of merging compatible activations (center) and
forming a new cluster (right).

6 Locating and Scoring People Hypotheses

Given a cluster of poselet activations, we can predict the location of the torso, as
well as a visible bounding box. We can also compute a scoreS, which is a measure of
how likely the cluster corresponds to a person as opposed to being a false positive.
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1. Torso prediction. The human torso is a more stable region to predict than
the visible bounding box. Thus, before applying non-maximum suppression, we
first predict torsos and derive visible bounds from these predictions. The torso
can be predicted from the poselet activations within a cluster. If we use context,
we also include all compatible activations that might not be in the cluster. We
predict the locations of the hips and shoulders as the average prediction of each
poselet activation, weighted by the score of the activation. These four keypoints
define the torso of the person, which we parameterize using (x,y) location, length
and angle. We use a fixed aspect ratio of 1.5.

2. Non-maximum suppression. We use agglomerative clustering to merge
clusters whose intersection-over-union of torso bounds is greater than 0.6.

3. Visible bounds prediction. For each activation in the merged clusters we
compute its prediction for the expected visible bounds xmin, ymin, xmax and
ymax and the associated variances. We then perform mean shift for each of the
four estimates independently and pick the dominant mode. Mean shift allows
us to take into account the variance of the prediction, which is important. A
frontal face poselet, for example, has a very reliable prediction for ymin, but is
very unreliable for ymax since sometimes the legs of the person may be occluded.

4. Improving the predicted bounds. The above generative bounding box
prediction is not very accurate and we enhance it using a linear regression similar
to [12]. Specifically we transform [xminyminxmaxymax] with a 4x4 regression
matrix T . To train T , we perform steps 1, 2, and 3 on the training set, we match
the bounds predictions to the ground truths using intersection over union overlap
of 0.45 and collect the true positives. We then fit T using the predicted bounds
and the associated ground truth bounds.

5. Computing the score of a poselet cluster. We follow [14] to predict
the score S of the poselet cluster, i.e., we train a linear discriminative classifier
with positivity constraints on its weights to predict the scores based on the
activations within the cluster. We can use q-scores or Q-scores here, and we will
show a comparison in Section 8. For our positive examples we use detections on
the training set whose bounds intersection over union overlap is over 0.5. For
negative examples we use detections that do not intersect the truth or whose
overlap is less than 0.1. Our feature vector has the dimensionality of the number
of poselet types. The feature value for each poselet type is the maximum of all
activations of that poselet type within the cluster.

7 Object Segmentation by Contour Alignment

While prediction of bounding boxes is a reasonable proxy for the object detection
problem, the final localization task is actually the segmentation of the detected
object. From training examples with segmentation masks available we can derive
a figure/ground predictor for each poselet. We use a simple shape model for each
poselet by just averaging the masks of all examples in the training images after
keypoint alignment.
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At test time, we can derive a shape prior for the object by integrating the
mask predictions φi : R

2 → [0, 1] of all poselet activations i = 1, ..., n assigned
to one cluster. Rather than just averaging the masks, we weight them by the
activation scores Qi

pin(x, y) =
∑n

i=1Qiχi(x, y)φi(x, y)
∑n

i=1 χi(x, y)
, (4)

where χi : R
2 → {0, 1} denotes the indicator function for the poselet’s support

in the image. As we are interested in a binary segmentation, the soft masks are
thresholded at θm = 0.07. This value has been optimized for the PASCAL VOC
09 validation set.

The above procedure yields an a priori decision on which pixels belong to an
object given the detection of certain poselets. It so far ignores further indication
from the image. In order to get a more precise localization of object boundaries
we align them to contours in the image. We use the state-of-the-art boundary
predictor from [18] to obtain an edge map f : R

2 → [0, 1] of the image. Moreover,
we extract the silhouette g : R

2 → {0, 1} of the predicted binary mask. We then
estimate the deformation field (u, v) : R

2 → R that minimizes

E(u, v) =
∫

R2
|f(x, y)− g(x+ u, y + v)|+ α (|∇u|2 + |∇v|2) dxdy. (5)

The parameter α = 50 determines the amount of flexibility granted to the de-
formation field. We use a coarse-to-fine numerical scheme known from optical
flow estimation to compute the minimizer of (5) [19]. Warping the initial binary
mask with the optimum deformation field (u, v) yields a mask that is aligned
with boundaries in the image.

For segmenting the whole image, we paste the aligned binary masks from all
clusters into the image domain, ignoring clusters with an overall score S ≤ 12.
Since we run the segmentation for only one category, the ordering of the single
detections has no effect.

8 Experiments

Table 1 investigates the effect of the amount of poselets showing results using
10, 40, 100, and 200 selected poselets. Clearly, more poselets first help improving
the detection performance, but the improvement saturates between 100 and 200
poselets. Table 1 also shows the positive effect of exploiting mutual context
between poselet activations. The AP with Q-scores is consistently larger.

As an important baseline comparison to our previous detection in [14], we
evaluated our new detector, using 200 poselets, on the task of detecting human
torsos on the H3D test set. The ROC curves are shown in Fig. 6. The new ROC
curve outperforms the one from [14] over the entire range. In [14] we required
256 poselets and we also scanned the horizontally flipped version of the image,
which has the effect of doubling the poselets to 512.
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Fig. 6. Performance on the human torso detection task on the H3D test set

Table 1. AP on PASCAL VOC 2007 test set for various numbers of poselets using

q-scores or Q-scores as described in Section 4

Num. poselets q-scores Q-scores

10 36.9% 37.8%

40 43.7% 44.3%

100 45.3% 45.6%

200 45.7% 46.9%

Table 2. Our performance on PASCAL VOC compared to the currently best results

reported for the detection and segmentation tasks on the person category. The seg-

mentation results were produced with 200 poselets.

Detection Segmentation

100 poselets 200 poselets [12] [13] masks only alignment [20]

VOC 2007 45.6% 46.9% 36.8% 43.2%

VOC 2008 54.1% 52.6% 43.1% 41.9% 43.1% 41.3%

VOC 2009 47.8% 46.9% 43.8% 39.4% 40.5% 38.9%

Finally we provide results on the person category of the recent PASCAL VOC
challenges. As reported in Table 2, we have the best results reported to date, both
in the detection and the segmentation challenge. Our results are reported for the
competitions 4 and 6 because our method requires 2D keypoint annotations.

Table 2 also shows the impact of aligning the mask predictions to boundaries
in the image. It is relatively small in quantity, as the performance is mainly due
to the detector. The visual effect is much larger, as segmentations align well with
true object boundaries. Some example detections and segmentations are shown
in Fig. 7 and Fig. 8.
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Fig. 7. Detection examples. The person’s bounding box is shown in red. The highest

probability poselet activation is shown in a cyan bounding box and a figure/ground

outline. Below each image we show three training examples from the activated poselet.

Fig. 8. Segmentation examples. The top middle example shows a typical limitation in

case of occlusion by other objects.

9 Conclusion

It is possible to view the poselets approach in a natural sequence of increasing
complexity from (1) Dalal and Triggs’ [7] single holistic model to (2) Felzenszwalb
et al.’s [12] parametric part model on to (3) poselets. In [12], certain fixed choices
are made: one root filter, six part filters, two components. The poselet framework
can be thought of as being in the spirit of nonparametric statistics – models with
greater flexibility which, as more training data becomes available, are expected
to have superior performance. These performance improvements do not come at
an inordinate expense in terms of running time. On a 3GHz Macbook Pro our
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Matlab implementation with 40 poselets runs in about 27 seconds per image,
where a large part of the time is spent for HOG computation. We conclude by
noting that the approach described in this paper for detecting people is equally
applicable to other object categories. This is the subject of ongoing research.
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Abstract. Pedestrian detection is an important problem in computer

vision due to its importance for applications such as visual surveillance,

robotics, and automotive safety. This paper pushes the state-of-the-art

of pedestrian detection in two ways. First, we propose a simple yet highly

effective novel feature based on binocular disparity, outperforming previ-

ously proposed stereo features. Second, we show that the combination of

different classifiers often improves performance even when classifiers are

based on the same feature or feature combination. These two extensions

result in significantly improved performance over the state-of-the-art on

two challenging datasets.

1 Introduction

Pedestrian detection has been an active research area and significant progress
has been reported over the years. An important lesson from previous research is
that combining complementary cues is vital to improve state-of-the-art perfor-
mance. Gavrila&Munder [1] and Ess et al. [2] combine appearance with stereo
cues to detect pedestrians from moving vehicles, with the stereo components
as modules for candidate generation and post-verification. Dalal et al. [3] and
Wojek et al. [4] combine appearance and motion features in a sliding window
framework, significantly improving performance. Despite impressive advances
reported in the literature, state-of-the-art detectors seldom satisfy application
requirements and leave ample room for improvement.

This paper advances pedestrian detection in two ways: first, we contribute a
novel feature for pedestrian detection in stereo images, which we use in com-
bination with standard appearance and motion cues. Despite its simplicity, the
new feature yields significant improvements in detection performance. Second,
we explore the potential of classifier combination for pedestrian detection. While
the combination of different features [1,2,3,4] has been key to recent progress, the
combination of different classifiers for the same feature has not been explored in
the context of pedestrian detection to the best of our knowledge. The benefit of
both contributions is analyzed and discussed in detail using two different recent
pedestrian datasets.
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2 Related Work

Early work on pedestrian detection by Papageorgiou and Poggio [5] and Viola
et al. [6] used wavelet features. Viola et al. used a cascade of boosted classifiers,
while Papageorgiou and Poggio use an SVM with a quadratic kernel. In [6] tem-
poral information is included by taking intensity differences to adjacent frames
(shifted to multiple directions).

Many techniques have been published since then, greatly improving perfor-
mance – the datasets used to evaluate the early works are essentially solved
now. Enzweiler&Gavrila [7] and Dollár et al. [8] recently published surveys on
monocular pedestrian detection. For datasets with strong pose variations, such
as sport scenes, articulated models like [9] provide best performance. For “stan-
dard” pedestrians, which are in an upright pose (as they are when standing or
walking), monolithic global descriptors applied in a sliding window framework
are still state of the art [8,4].

A pedestrian detector usually consists of candidate generation, followed by
feature extraction for the candidate windows, classification of the feature vector,
and then non-maximum suppression to prevent multiple detections on a single
pedestrian. The most popular method of generating candidate windows is the
sliding-window framework, where the scale/position space is sampled with fixed
strides. Other work (e.g. [1]) utilizes some method of region-of-interest generation
in order to reduce the number of candidate windows and filter out negative
samples at an early stage.

The dominant appearance features are variants of the HOG descriptor [10,11,12]
and different flavors of generalized Haar wavelets [6,8]. To encode motion informa-
tion, [6] encodes wavelets on temporal intensity differences. [10,13] encode differ-
ences of optical flow into local histograms, similar to HOG.

Stereo information is commonly used in separate modules of pedestrian detec-
tion and tracking systems [1,2]. [1] use stereo information in two ways: first, they
identify regions of interests in the disparity maps; after the pedestrian detection
step, hypotheses are verified by cross correlation between the two images – if
there is no object at the estimated disparity level, the correlation measure is low
and the hypothesis is rejected. In the model used by [2], the disparity map is
used for ground plane estimation, to ensure that detections have a reasonable size
(using a prior on human height), and to verify that a pedestrian detection has
consistent depth. Rohrbach et al. [14] use the depth field generated by a dense
stereo matcher as input for the HOG descriptor to build HOG-like histograms on
the depth gradient. Rapus et al. [15] utilize a low-resolution 3D camera (time-of-
flight principle), and extract multiple features, including gradients and Fourier
coefficients, from intensity and depth to detect pedestrians.

The most wide-spread classifiers are statistical learning techniques to sepa-
rate positive and negative instances in the feature space. Popular algorithms
are support vector machines [16,10,17,18] and variants of boosting [6,19,20,4].
Duin&Tax [21] perform experiments regarding the combination of multiple clas-
sifiers on a digit recognition dataset. They found that, while combining comple-
mentary features provides the largest gain, combining different classifiers trained
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Fig. 1. Sample images from the new auxiliary training set. The last image is from the

negative set.

on the same features can also help. We show that this also holds in the pedestrian
detection setting.

3 Datasets

We use two different challenging datasets for our tests. Both databases have
been recorded from a moving car in scenarios with many pedestrians: ETH-
Loewenplatz [2,22,23] and TUD-Brussels [4]. Since we want to build a detector
that utilizes both motion and stereo information, we are constrained in our
choice of training data. We use two datasets: TUD-MotionPairs [4] and a new,
auxiliary dataset to train the stereo-based component of our detector.

ETH-Loewenplatz. Our first test set consists of a video sequence of 800 con-
secutive stereo frames taken from a moving car, with annotations every 4 frames.
In total it contains 2631 annotations, however we scan only for pedestrians bigger
or equal to 48 pixels in size, which leaves us with 1431 annotations for evaluation.

TUD-Brussels. The second test set has 508 annotated frames recorded from a
moving car. It originally had 1326 pedestrian annotations, but there were some
small pedestrians missing. We supplemented those, resulting in a total of 1498
pedestrian annotations, with 1235 of them at least 48 pixels high. The dataset
allows for optic flow estimation, but there is no published stereo information.
However the authors kindly provided us with stereo pairs for this dataset.

TUD-MotionPairs. This dataset is used for training and contains 1776 pedes-
trian annotations in 1092 images, including the following frame for each anno-
tated frame (to compute optical flow). The images are recorded in a pedestrian
zone from a handheld camera, with pedestrians seen from multiple viewpoints.
192 image pairs without pedestrians, partly taken from a handheld camera and
partly from a moving car, serve as negative set.

Auxiliary Training set. As TUD-MotionPairs does not contain stereo infor-
mation, we have created a new dataset to train our stereo classifiers. The new
dataset contains 2570 annotations in 824 frames in the positive set, with stereo
and motion information available. However, most of the pedestrians in this set
are small (2033 of them are smaller than the detection window,resulting in sub-
optimal quality). The negative set contains 321 frames, again with motion and
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stereo information. The images have a resolution of 640x480 pixels and were
recorded from a moving car. Sample images are shown in Figure 1.

4 Baseline Features and Classifiers

The set of features and classifiers we use as baselines includes HOG [10] and
HOF [3] as features, and SVMs and MPLBoost [24,25] as classifiers. The same
features and classifiers were used recently in [4].

HOG. Dalal&Triggs proposed using histograms of oriented gradients in [10]. In
HOG, every pixel votes for its gradient orientation into a grid of histograms using
trilinear (spatial and orientation) interpolation. Local normalization is employed
to make the feature robust against changes in illumination. Interpolation and
histogramming makes the feature robust with regard to small changes in pose.

HOF. Histograms of Flow were introduced in [3] to encode motion information
from optical flow. We use a reduced variant of the original IMHcd scheme with
2x2 blocks. Our version is on par with the original HOF in terms of performance.
Flow fields are estimated with the publicly available optical flow implementation
by Werlberger et al. [26].

SVM. Support Vector Machines are currently the standard for binary classi-
fication in computer vision. Linear SVMs learn a hyperplane that optimally
separates negative and positive samples in high-dimensional feature space. Ker-
nel SVMs are also possible, however their high computation time makes them
intractable for sliding-window detection with high-dimensional feature vectors.
An exception to this are histogram intersection kernels (HIKSVMs), for which
an approximation can be evaluated in constant time [27].

MPLBoost. MPLBoost is an extension to AdaBoost[6], where K strong clas-
sifiers are learnt jointly, with each strong classifier focusing on a subset of the
feature space. The final confidence is the maximum over the K classifiers, so
only one of them needs to correctly identify a positive sample. Unless noted
otherwise, we use K = 4 strong classifiers.

For training, negative samples are first randomly drawn from the negative
training set to create an initial classifier. With this classifier the negative training
images are scanned for hard negatives that get misclassified. These are added to
the negative set and the classifier is retrained. We repeat this bootstrapping step
twice to ensure that the result is minimally influenced by the random choice of
the initial negative set.

The feature/classifier components we are using throughout the paper were pre-
viously studied in our paper [4]. Due to optimizations and changes in training
procedure, there are some differences. Figure 5(b) compares the implementa-
tions. The three dotted lines compare the “old” HOG-detector (red dotted line)
and HOG+Haar-detector (green dotted line) with our HOG-implementation
(blue dotted line). Similarly the “new” HOG+HOF-feature (blue solid line) per-
forms similar to or better than the previous HOG+HOF+Haar-feature (green
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(a) LinSVM (b) MPLBoost (c) LinSVM+MPLBoost

(d) LinSVM (e) MPLBoost (f) LinSVM+MPLBoost

Fig. 2. MPLBoost and SVMs perform well but tend to have different false positives

(a,b,d,e – red boxes correspond to false positives). By combining both classifiers the

false positive rate can be reduced (c,f).

solid line) and HOG+HOF-feature (red solid line). Note that we do not use Haar
features as in [4] we found them not to be beneficial in all cases.

5 Combination of Classifiers

It is well-established that utilizing a combination of complementary cues signif-
icantly boosts detection performance. E.g. Gavrila et al. [1] use shape, texture,
and stereo cues to build a detection system while Wojek et al. [4] use multiple
features (including appearance and motion information) to boost detection per-
formance. Rohrbach et al. [14] fuse classifiers separately trained on intensity and
depth. In these cases, the complementarity of the classifiers results from the cues
being from different sources (such as stereo and motion information) or from the
sources being encoded into different features. However, those are not the only
sources of complementary information.

In [4], we noticed that MPLBoost and SVMs, while both giving good perfor-
mance, tend to produce different false positives using the same feature set. For
true positives, different classifiers are likely to give a positive answer, while for
false positives the classifiers do not necessarily agree. See figure 2 for examples
where LinSVM and MPLBoost (for the feature set HOG+HOF) produce differ-
ent false positives (2(a,d) and (b,e) respectively). This gives a strong hint that by
combining SVM and an MPLBoost classifiers, one can reduce the false positive
rate. See figure 2(c,f) where such a combination eliminated false positives. This
combination is described in the following.
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(d) ETH-Loewenplatz

Fig. 3. Results using classifier combination on TUD-Brussels and ETH-Loewenplatz
with HOG+HOF and HOG alone as features. The single-component detectors are on

par with the best published ones on TUD-Brussels from [4] (figure 5(b)), combining

multiple classifiers yields a noticeable improvement.

Starting from the above observation, this paper explores the possibility to
combine classifiers not only for different features but also for the same feature.
The combination of classifiers for the same features is especially interesting as
it is “cheap”: Feature extraction is computationally expensive and often the
bottleneck in today’s systems. When combining classifiers on the same feature
space, the feature vector has to be computed only once.

Classifiers are already combined at the training stage, which influences the
bootstrapping phase: a window gets registered as a hard sample if it’s hard for
the combined classifier, enabling the classifiers to focus on data that is prob-
lematic for the final detector. This results in slightly better performance than
training them separately. The combinations that we study in this section are
linear SVM+MPLBoost and HIKSVM+MPLBoost, both trained on the same
feature space, HOG+HOF. Combining a linear SVM with an HIKSVM did not
show any improvement and thus is not reported here.
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As noted before, one can expect classifier combination to improve classification
if the combined classifiers have complementary characteristics. A (confidence-
rated) classifier is a mapping from the feature vector space to a score. For an
imperfect (but better than chance) classifier, the probability density functions
(pdf s) of the positive and negative classes are overlapping. Under the reasonable
assumption that the mean of the positive pdf is higher than the mean of the
negative pdf, we can – without loss of generality – rescale the mapping so that
the means of the positive and negative pdfs are at +1 and -1, respectively.
Classification errors (caused by the overlap of the pdfs) can then be expected
to decrease when the variance decreases. The variance σ2

x+y of a weighted sum
αx + βy of classifiers x and y (α + β = 1) for a given class is σ2

x+y = α2σ2
x +

2αβσ2
xy + β2σ2

y with σ2
xy being the covariance. If this is lower than σ2

x and σ2
y ,

the combination can be expected to be beneficial.
Results are shown in figure 3 for the two test sets. For comparison, results for

individual classifiers are shown as well. For TUD-Brussels and the feature com-
bination HOG+HOF (Fig. 3(a)) the two combined classifiers (blue and green
curves) clearly improve performance over the individual classifiers (red, cyan,
violet curves). For ETH-Loewenplatz (Fig. 3(b)) the improvement of the combi-
nations (blue, green curves) over the individual classifiers is also visible.

At 0.1 false positives per image the best combined classifier for HOG+HOF
(Linear SVM + MPLBoost) has 4.2% more recall than the best single component
classifier on TUD-Brussels, and 3.7% more recall on ETH-Loewenplatz. Using
only HOG as feature, a smaller improvement can be observed over the best
individual classifier for TUD-Brussels (see Fig. 3(c)) while on ETH-Loewenplatz
the improvement is substantial at higher false positive rates: 5% improvement
at 0.2 fppi (see Fig. 3(d)).

The results reported so far have been obtained by averaging classifier scores
as a confidence measure of the combined classifier. This gives both components
equal weight. To see if performance improves when the weights are learned in-
stead, we employ a linear SVM as a top-level classifier with the lower level classi-
fier confidences as inputs. Here, 5-fold cross validation on the training set is used
to train the top-level classifier without overfitting: we train on 80% of the train-
ing data and evaluate the component classifiers on the remaining 20%, with the
cross-validation scores being the feature vectors for the top-level classifier. The fi-
nal component classifiers are then trained using the whole training set. However,
there is no significant improvement over equal weights, which is not surprising, as
the classifiers work about equally well. As training takes significantly longer with
this approach (≈ 6 times), we do not use it in the rest of the paper. In the context
of combining SVM kernels, [28] found that if the kernels are comparable in perfor-
mance, averaging works well, while learning the combination is important when
there are uninformative components, which agrees with our experience.

6 Utilizing Stereo Information

In the previous section, we showed that different classifiers on the same feature
set can be combined to form a better classifier. However, the combination of
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different kinds of features promises a greater possible gain in information and
consequently also in performance. One prominent source of information that is
complementary to appearance and motion is binocular vision. Using a stereo
image pair, we can extract disparity and depth information, which turns out to
improve performance considerably.

HOS-feature. As a first stereo feature, we use a HOG/HOF-like feature. In [14],
Rohrbach et al. computed the HOG descriptor on the depth field, which is inversely
proportional to the disparity field, because its gradients are – in theory – invariant
to the position of the pedestrian in the world. The gradients in the disparity image
are not invariant (they are nonlinearly scaled). However, HOG is designed to pro-
vide invariance against scale changes in “intensity” (in this case, disparity). This
becomes problematic only for very small disparities, where the nonlinearity are no-
ticeable. On the other hand, using the depth also has its problems: since Z ∝ 1

d ,
small errors in disparity result in large errors of the depth map; moreover, pixels
with disparity 0 have infinite depth and require special handling when building the
descriptor, otherwise a single pixel can cause an infinite entry in the histogram. If
we directly compute gradients on the disparity map, no special handling is required.

We have experimented with standard HOG descriptors (encoding small-range
gradients in depth or disparity) and also with a variant of HOF on the disparity
field, where we treat the disparity field like a vector field with the disparity as
the x-coordinate and the y coordinate set to 0. The only relevant orientation bins
here are the left and right bins: For every pixel, it is encoded if the pixels that are
8 pixels (in the L∞ norm) away in horizontal, vertical or diagonal direction have a
smaller or greater distance to the camera, weighted by the difference. This scheme
in principle encodes less information than the full HOG descriptor, however stereo
algorithms are not that accurate on a small scale, so long-range differences are
more stable. Experimentally we did not observe any significant difference between
the performance of this encoding and the encoding proposed by [14]. Therefore, in
the following we use the HOF-like descriptor on the disparity field (termed HOS
in the following) with a linear SVM as the classifier.

Disparity statistics (DispStat) feature. The disparity field has an interest-
ing invariant property: in the pinhole camera model, the disparity d at a given
point is d = fB

Z ∝ 1
Z with the focal length f , the baseline B, and the depth Z.

The observed height h of an object of height H is h = fH
Z ∝ 1

Z
This means that the ratio of disparity and observed height is inversely propor-

tional to the 3D object height; for objects of fixed size that ratio is constant. The
heights of pedestrians are not identical, but very similar for most pedestrians.
We can therefore, during sliding window search, divide the disparity values by
the appropriate scale level determined by the layer of the image pyramid – e.g.
for a reference height of 96 pixels and a scaled detection window of 64 pixels, dis-
parities will be multiplied by 1.5. The scaled disparities of positive (pedestrian)
samples will then follow a narrow distribution.1

1 If the camera setup is different between the training and test images, the ratio

between height and disparity has to be adapted accordingly.
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(a) Positive class
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(b) Cell 35
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(c) Cell 31

(d) Sample instance
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(e) Cell 51
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(f) Cell 122

Fig. 4. Visualization of the Disparity Statistics feature. (a) is a color map of the median

of the feature values over all positive samples (symmetric because training images get

mirrored), (d) of an example training instance. Warmer color corresponds to bigger

disparity/nearer points. Clearly, the feature is able to encode information like the

pedestrian standing on the ground plane and the area around the upper body being

more likely to be behind the pedestrian.

This observation enables us to design a very simple and surprisingly effective
feature. We divide the detection window into 8x8 pixel cells (the same as the
HOG cell size, for computational efficiency). For each cell, the mean of the scaled
disparities is computed. The concatenation of all 8×16 mean values from the
64×128 pixel window is the feature vector. For this feature, we use MPLBoost
as classifier with K = 2 (more clusters did not help) and 100 boosting rounds.

Figure 4 visualizes the feature. In figure 4(a), the cell-wise median of all posi-
tive training samples is shown, 4(d) shows one particular positive training sam-
ple. One can immediately see different pieces of information captured by the
new descriptor: the surrounding background is typically further away than the
person, and the person usually stands on an approximately horizontal ground
plane. In figure 4(b,c,e,f) statistics from example cells are shown along with
weak classifier boundaries from the MPLBoost classifier. Displayed are the rela-
tive per-class frequencies of the disparity values. For the positive class, all 5140
training instances (including mirrored samples) are plotted, to plot the negative
class 5 images were sampled densely, with the same parameters as in the sliding
window search, resulting in 721900 samples (training of course uses all 321 im-
ages of the negative set). The dashed red line shows the weak classifier threshold,
with arrows to the right signaling a lower bound, and arrows to the left an upper
bound. Note that they are weak classifiers – they are only required to work better
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Fig. 5. (a) TUD-MotionPairs (TUD-MP) is a better training set than the auxiliary

training set (Aux.) for appearance and motion information, however it contains no

stereo information. Even combining TUD-MotionPairs with the auxiliary training set

results in inferior performance for our detector when using appearance and motion as

cues. In (b), one can see that our components are as least as good as the ones shown

in [4].

than chance, so it does not matter if they miss-classify a portion of the training
set. Even though the distributions overlap, making learning a non-trivial task, it
is obvious that the class distributions are different and something can be learned
from this data.

In figure 4(b) and (e), the disparity range for the upper body is evaluated by
the weak classifiers, meaning the classifiers learn the size of a pedestrian (since
the observed height is fixed – the height of the bounding box under evaluation
– the scaled disparity relates inversely proportional to a height in 3D).

In 4(c), one weak classifier learned that the area to the right of the pedes-
trian usually is not closer to the camera than the pedestrian itself (note that
the maximum of the distribution is at a lower disparity than the maxima of
the distributions for (b) and (e)). However, the distribution here is not as nar-
row, because it is not uncommon that pedestrians stand next to other objects
in a similar depth range. Figure 4(f) visualizes a weak classifier testing that the
pedestrian stands on a ground plane, meaning that the cell under the pedes-
trian is closer to the camera than the pedestrian itself. Note that learning the
pedestrian size and the ground plane assumption is completely data-driven.

Combining classifiers for different cues. Finding a dataset to train a de-
tector using depth, motion, and appearance is not trivial: The public designated
training sets we are aware of don’t have both stereo and motion information
available. Our new training set, the auxiliary training set, has this, however it
is not as good as TUD-MotionPairs for appearance and motion, as can be seen
in figure 5(a). The detector using HOG+HOF with a linear SVM has over 15%
less recall when trained on this set (compare blue and red curves). Even joining
the datasets for training results in inferior performance (violet curve).
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Fig. 6. Results using stereo information on TUD-Brussels and ETH-Loewenplatz

To address this problem, we train different components on different datasets,
and combine the components with an additional classifier stacked on top, which
operates on the outputs of the components. In this section, we take the best
combined classifier for appearance and motion (linear SVM + MPLBoost on
HOG+HOF trained on TUD-MotionPairs) as one component. To combine the
appearance/motion with the stereo components, a linear SVM is trained on top
of the component outputs to provide the final score. The top-level SVM and the
stereo-based classifiers are trained jointly using 5-fold cross validation on the
auxiliary training set. To generate dense disparity maps, we used the algorithm
of Zach et al. [29].

Results. As can be seen in figure 6, our new feature/classifier combination
improves performance significantly. Best results from figure 3 are reproduced
for reference: the dotted blue lines are the best performing individual classifier
(HOG+HOF); the solid blue lines are the best performing combined classifier. On
TUD-Brussels (Fig. 6(a)), the new disparity statistics feature combined with our
HOG+HOF-classifier (red curve) performs as good as the HOS feature combined
with HOG+HOF (green curve), resulting in an improvement of 6.4% recall at
0.1 fppi over the detector using HOG+HOF alone (blue curve). Combining both
stereo features (cyan curve), the improvement is 12.6% over the HOG+HOF
detector (solid blue curve), and more than 18% better than HOG+HOF with
a linear SVM (dashed blue curve), which in turn is slightly better than the
best reported result in the literature for this dataset [4] (c.f. figure 5(b)). The
improvements are consistent over a wide range of false positive rates.

On ETH-Loewenplatz (Fig. 6(b)), adding HOS (green curve) results in an
improvement of 6.6% at 0.1 fppi over HOG+HOF (blue curve). Using DispStat
in addition to HOG+HOF (red curve) results in a higher improvement than
HOS resulting in 11% improvement at 0.1 fppi. Further combining DispStat
with HOS (cyan curve) in addition to HOG+HOF improves recall by another
2%. These results clearly show that DispStat is the stronger feature than HOS
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Fig. 7. Sample results using stereo information

for this dataset. Compared to the best single-classifier detector with HOG+HOF
as features (dashed blue), the overall improvement is 15%.

Comparing to state-of-the-art performance by [23] (they use a complete sys-
tem integrating stereo, ground-plane estimation and tracking) our combined de-
tector outperforms their best performance. In their evaluation scheme (pedestri-
ans larger than 60 pixels) we outperform their system by about 5% at 0.1 fppi.
This clearly underlines the power of the contributions of this paper to improve
the state-of-the-art in pedestrian detection.

Figure 7 show sample results using stereo information. In every pair, the upper
image shows the HOG+HOF detector with HIKSVM+MPLBoost, the lower the
full detector including HOS and the DispStat feature. Both detectors are shown
at the point where they reach 70% recall, so differences are to be seen in the
amount of false positives. The stereo features are especially good at eliminating
false positives at the wrong scale, or not standing on the ground plane. “Typical”
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false positives, like car wheels (top left) and body parts (top right, bottom left)
are easily filtered out, as well as detections having moving pedestrian as “legs”
(bottom left). False positives on objects that are similar in 3d to a pedestrian are
still an issue, for example the trash can with a traffic sign in the middle image
in the lower row. Since the disparity field suffers from artifacts and missing
information at the image border, some pedestrians (e.g. at the left border of the
upper left image pair) are missed, however it detects others that the monocular
detector misses (as both are tuned to get 70% recall). Also note that in the lower
left image the HOG+HOF detector overestimates the size of the pedestrian at
the right image border, causing a false positive and a missed detection, while
the detector using stereo features correctly estimates the size and position of the
pedestrian.

7 Conclusion

This paper consists of two contributions for pedestrian detection. First, we show
that combining different classifiers trained on the same feature space can per-
form better than using a single classifier. Second, we introduce a new feature,
called DispStat, for stereo, enabling the classifier to learn scene geometry in-
formation (like pedestrian height and the ground plane assumption) completely
data-driven, without any prior knowledge. Combining those two contributions,
we outperform the best published result on TUD-Brussels by over 12%, in com-
bination with an adaptation of HOG for disparity fields similar to [14], this
increases to over 18%. We verified these results on a second challenging dataset,
ETH-Loewenplatz, where the performance of DispStat is even better, outper-
forming the HOS feature.

Acknowledgments. The authors thank Christopher Zach for providing his im-
plementation of [29] and Christian Wojek for code and valuable discussion.
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Abstract. Many works address the problem of object detection by

means of machine learning with boosted classifiers. They exploit slid-

ing window search, spanning the whole image: the patches, at all possi-

ble positions and sizes, are sent to the classifier. Several methods have

been proposed to speed up the search (adding complementary features

or using specialized hardware). In this paper we propose a statistical-

based search approach for object detection which uses a Monte Carlo

sampling approach for estimating the likelihood density function with

Gaussian kernels. The estimation relies on a multi-stage strategy where

the proposal distribution is progressively refined by taking into account

the feedback of the classifier (i.e. its response). For videos, this approach

is plugged in a Bayesian-recursive framework which exploits the tempo-

ral coherency of the pedestrians. Several tests on both still images and

videos on common datasets are provided in order to demonstrate the

relevant speedup and the increased localization accuracy with respect to

sliding window strategy using a pedestrian classifier based on covariance

descriptors and a cascade of Logitboost classifiers.

Keywords: fast pedestrian detection, fast object detection, boosting

classifiers, stochastic object detection, statistical object detection, Monte

Carlo sampling, multi stage object detection.

1 Introduction and Related Works

Object detection and recognition in images and videos are problems that have
been strongly addressed in computer vision in the past years. Some object classes
(such as faces, pedestrians, vehicles, characters) received special attention by
the research community, since their peculiarities can be “easily” modeled with
machine learning techniques and classifiers can be efficiently exploited.

These classifiers are applied on image patches (or “windows”) of a given size
and in case the object is searched on a whole image, a sliding window search (e.g.
[1,2,3]) is normally proposed. The algorithm passes to the window-based classifier
all possible windows of an image; the approach has the drawback of brute force
methods, that is the high computational load due to the number of windows
to check, that grows quadratically in each dimension to span over (typically
� Giovanni Gualdi and Rita Cucchiara are with DII; Andrea Prati is with DISMI.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part VI, LNCS 6316, pp. 196–209, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Multi-stage Sampling with Boosting Cascades for Pedestrian Detection 197

three, i.e. image coordinates and scale) [4]. Obviously, this computational load
grows up if the search is performed on all the frames of a video. Consequently,
several works focus on the reduction of the computational burden, following three
main streams: (a) pruning the set of sliding windows by exploiting other cues
(e.g. motion [5], depth [6], geometry and perspective [7], or whatever cue that
is different from the appearance cue used by the detector itself); (b) speeding
up with hardware-optimized implementations (such as GPUs [8]); (c) efficiently
exploring the sub-window space through optimal solution algorithms [4,9].

In this paper, we address a new search paradigm to overcome the problem
of the sliding window search in a general-purpose manner that does not conflict
with all the other aforementioned optimizations (either hardware or software).
The proposed method exploits a Monte Carlo sampling to provide an incremen-
tal estimation of a likelihood function and our innovative contribution is the use
of the response/confidence of the classifier to build such likelihood function. In
practice, this response is employed to increasingly draw samples on the areas
where the objects are potentially present and avoiding to waste search time over
other regions. Although we focus on cascade of boosting classifiers, where the
classification is achieved by passing through the stages of the cascade, the pro-
posal could be extended to any classifier that provides a classification confidence.

Mimicking the search of human vision, also [10,11] tackle the problem of op-
timized object detection. [10] explores the maximization of information gain:
although it obtains speed-ups that are comparable to ours, two limitations
are suffered: a slight degradation of performances w.r.t. sliding window de-
tection (instead we obtain higher accuracy) and single-target detection (con-
versely our method is intrinsically multi-target). [11] proposes a deterministic
(grid-distributed), multi-stage (coarse-to-fine) detection: successful detections at
coarse resolutions yield to refined searches at finer resolutions. We also propose
a multi-stage approach; however [11] binarizes the response of the classifier at
each stage, while we propose to exploit its continuity, in order to be able to find
true detections even when at earlier stages no successful detections are found.

When dealing with videos, the retrieved likelihood function is then plugged
into a Bayesian recursive context, through a particle filter. Although this tech-
nique is often exploited for object tracking [12,13,14], our proposal does not aim
to that achievement, rather it exploits the recursive framework to exploit the
temporal coherency of the objects in order to further increase efficiency and ac-
curacy of object detection. When the target distribution is multi-modal (due to
ambiguity, clutter or presence of multiple targets), the particle filters suffer of the
problem of sample depletion, and there are several extensions to handle multi-
target tracking [15,16,17] or multi-modal posteriors, such as the mixture particle
filter [18], where the different targets correspond to the modes of the mixture
pdf. This approach has been refined in the boosted particle filter [17], where a
cascaded Adaboost is used to guide the particle filter. The proposal distribution
is a mixture model that incorporates information from both the Adaboost and
the dynamical model of the tracked objects. Differently from other methods, we
do not generate new particle filters together with the entrance of new objects in
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the scene: indeed this approach can quickly degrade the performance due to the
increase of the number of targets. On the opposite, our proposal is capable to
handle a variable number of objects thanks to a quasi-random sampling proce-
dure and a measurement model that is shared among the objects of interest.

Although our proposal is independent on the adopted classifier, on the em-
ployed features and on the target class, in this paper we focus on pedestrian de-
tection where many accurate classifiers have been proposed and benchmarked.
Dealing with pedestrian classification, a wide range of features has been pro-
posed; among them, Haar wavelets [19], Histogram of Gradients (HoG) [2], a
combination of the two [20], Shapelet [21], Covariance descriptors [3], etc.. Over
these features, the most typical classifiers are SVMs (typically linear or histogram
intersection kernels SVMs [22]) or the boosting algorithms (e.g. AdaBoost [1],
LogitBoost [23], MPL Boost [24]) assembled in rejection cascades: this archi-
tecture benefits of the property to use a very reduced portion of the rejection
cascade when classifying those patches whose appearance strongly differs from
the trained model, reducing therefore the computational load. Conversely, the
number of stages to pass through increases in a way that is proportional to
the appearance similarity of the patch with the target model. An example of
such classifier, that we adopt in the present work, is the covariance-descriptor
LogitBoost pedestrian classifier proposed by Tuzel et al.[3].

Summarizing, the contribution of our work is two-fold. Firstly, by exploiting
a known implementation of a boosting cascade classifier, we propose a new ob-
ject detection approach (in particular, pedestrians) that challenges the typical
sliding windows approach: we claim that, by exploiting the only features used
by the classifier itself, it is possible to drive a more efficient exploration of the
state space of an image. Secondly, we demonstrate that the data obtained by
such method can be easily plugged into a Bayesian-recursive filter, in order to
exploit the temporal coherency of the moving objects (pedestrians) in videos to
improve detection in very cluttered environments. Results demonstrate a signif-
icant speedup together with a higher precision in the object localization.

Moreover, with regards to the literature (especially work in [13] that proposes
a multi-stage sampling for object tracking) we proposed the following innova-
tions: (i) we perform detection of multiple objects through a single likelihood
model; (ii) we handle object entrances and exits; (iii) a new measurement for
likelihood is proposed; (iv) a variable number of particles and variable covari-
ances avoid “over-focusing” on true detections; (v) the likelihood is computed
exploiting a portion of the samples instead of the whole set.

2 Pedestrian Detection Using a Cascade of LogitBoosts

For pedestrian detection, in [3] the authors proposed the use of a cascade classifier
with a cue given by the covariance matrix of a 8-dimensional set of features F
(defined over each pixel of I):

F =
[

x, y, |Ix| , |Iy| ,
√
I2
x + I2

y , |Ixx| , |Iyy| , arctan
|Iy |
|Ix|

]T

(1)
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where x and y are the pixel coordinates, Ix,Iy and Ixx,Iyy are respectively the
first and the second-order derivatives of the image. Then, for any (rectangular)
patch of I, the covariance matrix of the set of features F can be computed
and used as “covariance descriptor” in the classifier. This descriptor lies on a
Riemannian manifold, and in order to apply any classifier in a successful manner,
it should be mapped over an Euclidean space. Without digging into details, a
detection over a single patch involves the mapping of several covariance matrices
(approx. 350) onto the Euclidean space via the inverse of the exponential map [3]:
logμ(Y ) = μ

1
2 log

(
μ− 1

2Y μ
1
2

)
μ

1
2 . This operator maps a covariance matrix from

the Riemannian manifold to the Euclidean space of symmetric matrices, defined
as the space tangent to the Riemannian manifold in μ, that is the weighted
mean of the covariance matrix of the positive training samples. The mapping
computation requires at least one SVD of an 8x8 matrix, and since such operation
is computationally demanding, it is necessary to optimize the detection process.

To this aim, Tuzel et al.adopt a cascade of boosting classifiers and specifically,
a set of LogitBoost classifiers based on logistic regressors in a rejection cascade
manner. One of the advantages of such structure is computational: given the
task of pedestrian detection on real world images and defined the set of windows
(or bounding boxes) to test, only a small portion of them will run through the
whole set of the LogitBoost classifiers; in fact, most of the patches are typically
very dissimilar to the trained pedestrian model and will be rejected at the earlier
stages of the cascade, reducing therefore the overall load of detection process.

Given a window w, defined by the 3-dimensional vector (wx, wy, ws) (being
respectively coordinates of the window center and window scale w.r.t. a given
size; we assume constant aspect ratio), we introduce the detection response R as

R(w) =
P (w)
M

(2)

where P is the index of the last cascade which provides a positive classification
for w and M is the total number of cascades. Given the structure of rejection
cascades, the higher the degree of response R(w) is, the further w reached the
end of the cascade, the more similar it is to the pedestrian model (up to the
extreme of R = 1, that means successful classification). Tests over large sets of
images in standard benchmarks show that the cascade of LogitBoost classifiers
with covariance descriptors rejects most of the negative samples (80% of negative
patches) within the first 1

5 of the cascade (i.e. R(w) < 0.2 for 80% of generic
negative patches).

Pedestrian detection at frame level is usually performed with a sliding window
approach, i.e. a complete scanning of the “Sliding Windows Set” (SWS), that
contains the windows at all possible window states (wx, wy, ws). The cardinality
of the SWS depends on the size of the image, on the range of scales to check
and on the degree of coarseness for the scattering of the windows: regarding this
latter parameter, to obtain a successful detection process, the SWS must be rich
enough so that at least one window targets each pedestrian in the image. To be
more precise, every classifier has a degree of sensitivity to small translations and
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Fig. 1. Region of support for the cascade of LogitBoost classifiers trained on INRIA

pedestrian dataset, averaged over a total 62 pedestrian patches; (a) a positive patch

(pedestrian is 48x144); (b-d) response of the classifier: (b) fixed ws (equal to 48x144),

sliding wx, wy ; (c) fixed wx (equal to x of patch center), sliding ws, wy ; (d) fixed wy

(equal to y of patch center), sliding wx, ws; (e) 3D plot of the response in (b).

scale variations, i.e. the response of the classifier in the close neighborhood (both
in position and scale) of the window encompassing a pedestrian, remains positive
(“region of support” of a positive detection). Having a sufficiently wide region of
support allows to uniformly prune the SWS, up to the point of having at least
one window targeting the region of support of each pedestrian in the frame. Vice
versa, a too wide region of support could generate de-localized detections [4].

On this regard, an important advantage of the covariance descriptors is its
relatively low degree of sensitivity to small translations and scale variations, i.e.
its region of support over the positive detections was demonstrated to be higher
with respect to many other descriptors (especially w.r.t. HoG). Its size depends
on the training data, and the cascade of LogitBoost classifiers trained on the
INRIA pedestrian dataset [3] shows a radius of such region of approximately
15% of the window size and 20% in the window scale (Fig. 1).

3 Multi-stage Sampling-Based Detection

The covariance-based pedestrian detector of [3] quantizes uniformly the state
space with sliding windows, incurring in the two-fold problem of large waste in
computational time searching over areas where pedestrians are not present and
need of a redundant SWS to find every pedestrian in the scene.

Our objective is to provide a non-uniform quantization and to model the de-
tection as an estimation of the states given the observations; we aim at estimating
the modes of the continuous density function p (X|Z), where X = (wx, wy , ws) is
the state and Z corresponds to the image. In section 3.1 we introduce an approx-
imation of the likelihood function, progressively improved through a multi-stage
sampling-based process. Such procedure has the advantage to provide a global
view of the landscape of the likelihood function and, at the same time, to support
efficient sample placement. The likelihood allows pedestrian detection within the
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single image. In section 3.2 we deal with pedestrian detection in videos, plugging
the likelihood approximation method into a Bayesian-recursive filter.

3.1 Multi-stage Kernel-Based Density Estimation on a Single Image

Let’s not consider any a prior information in the image (such as motion, geom-
etry, depth, etc.) in order to provide a general solution. Consequently, the state
pdf can be assumed proportional to the measurement likelihood function, i.e.
p (X|Z) ∝ p (Z|X).

The measurement likelihood function is estimated by iteratively refining it
through m stages based on the observations. Algorithm 1 shows the complete
procedure. The initial distribution q0 (X) is set to a uniform distribution on
the state space and it is sampled, extracting the first S1 set of N1 samples
(see line 1 of Algorithm 1 and yellow points in the exemplar image of Fig.
2). Each sample s represents a state (wx, wy, ws) in the domain of the windows.
Scattering samples according to a uniform distribution is somehow similar to the
sliding window strategy, though the samples are not equally distributed and their
locations are not deterministically defined: indeed, the N1 samples could also
be grid-distributed without affecting the bottom line of the proposed method;
instead, the key point here is N1 be significantly lower than the cardinality of
a typical SWS (see experiments in Section 4). The rationale is that part of
these samples will fall in the basin of attraction of each region of support of
the pedestrians in the image and will provide an initial rough estimation of
the measurement function. Being driven by the previous measurements, at any
stage i, the distribution qi is progressively refined, to perform new sampling.
This growing confidence over the proposal makes it possible to decrease, from
stage to stage, the number of Ni to sample (see Fig. 2), differently from [13],
where Ni is constant over stages.

The N1 samples drawn from q0 (X) (line 6) will be used to provide a first
approximation of the measurement density function p1, through a Kernel Density
Estimation (KDE) approach with Gaussian kernel, generating a mixture of N1

Gaussians: for each j-th component, mean, covariance and weight are defined as
follows: the mean μ

(j)
i is set to the sample value s(j)i =

(
w

(j)
x,i , w

(j)
y,i , w

(j)
s,i

)
; the

covariance matrix Σ
(j)
i is set to a covariance Σi (line 8), which, at any given

stage i, is constant for all samples. The work in [13] proposed to determine the
Σ for each sample as a function of its k-nearest neighbors; this strategy yielded
fairly unstable covariance estimations when applied to our context: indeed, given
the low number of samples used in our method, k is to be kept pretty low
(to maintain a significance over the covariance estimation), and this makes the
estimation quite dependent on the specific randomized sample extraction. We
preferred to assign an initial Σ1 proportional to the size of the region of support
of the classifier, and decrease the Σi of the following stages: this has the effect
of incrementally narrowing the samples scattering, obtaining a more and more
focused search over the state space.
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Algorithm 1. Measurement Step
1: Set q0 (X) = U (X)

2: Set S = ∅
3: for i = 1 to m do
4: begin
5: Draw Ni samples from qi−1 (X):

6: Si =

{
s
(j)
i |s(j)

i ∼ qi−1 (X) , j = 1, . . . , Ni

}

7: Assign a Gaussian kernel to each sample:

8: μ
(j)
i = s

(j)
i ; Σ

(j)
i = Σi

9: Compute the measurement on each sample s
(j)
i :

10: l
(j)
i = Rλi

(
μ

(j)
i

)
with Rλi ∈ [0, 1]

11: Obtain the measurement density function at step i:

12: pi (Z|X) =
∑

π
(j)
i �=0

π
(j)
i · N

(
μ

(j)
i , Σ

(j)
i

)

13: where: π
(j)
i =

l
(j)
i

Ni∑

k=1
l
(k)
i

14: Compute the new proposal distribution:

15: qi (X) = (1− αi) qi−1 (X) + αi
pi(Z |X )∫

pi(Z |X )dX

16: Retain only the samples with measurement value 1:

17: S̃i =

{
s
(j)
i ∈ Si|R

(
μ

(j)
i

)
= 1, j = 1, . . . , Ni

}

18: S = S
⋃

S̃i

19: end
20: Run variable-bandwidth meanshift (Non-Maximal-Suppression) over S. Obtain the

set of modes M1

21: Prune the modes inM1 that do not represent reliable detection (see text). Obtain

the new set of modes M2

22: Assign a Gaussian Kernel to each modes ω(j) ∈ M2 and compute the final likeli-

hood function:

23: p (Z|X) ∝ ∑

∀ω(j)∈M2

N
(
ω(j), Σ

)

Finally, the response R of the classifier (eq. 2) is exploited, in a novel way,
to determine the weight π(j)

i of the j-th component. The intention is that those
samples falling close to the center of any region of support (i.e., close to the
mode/peak of the distribution) might receive higher weight with respect to the
others, so that the proposal distribution qi, that is partly determined by pi, will
drive the sampling of the next stage more toward portion of the state space where
the classifier yielded high responses. Conversely, sampling must not be wasted
over areas with low response of the classifier. In other words, these weights must
act as attractors which guide the samples toward the peaks. This is accomplished
by connecting the weights π(j)

i to the response R of the pedestrian detector in
the sample location μ(j)

i (line 10).
The exponent λi used to compute the measurement is positive and increases

at every stage: at early stages, λi ∈ (0; 1), therefore the response of the samples
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Fig. 2. Distribution of samples across the stages: m = 5 and

(2000, 1288, 829, 534, 349) = 5000 samples. Stage order is yellow, black, magenta,

green and blue. White circles represent the samples triggering a successful pedestrian

classification.

is quite flattened, in order to treat fairly equally all range of not null responses;
at later stages λi grows beyond 1, so that only the best responses will be held
in account, while the others will be nullified. This behavior is clearly shown
in Fig. 2 where the samples at subsequent stages (even if less numerous) are
concentrated in the peaks of the distribution (i.e. where the response of the
pedestrian detector is higher).

The Gaussian mixture of line 12 in Algorithm 1 is used as a partial estimation
pi (Z|X) of the likelihood function. This estimation is linearly combined with the
previous proposal distribution qi−1 (X) to obtain the new proposal distribution
(line 15), where αi is called adaptation rate.

The process is iterated for m stages and at the end of each stage only the
samples of Si that triggered a successful human detection (i.e. R = 1) are re-
tained (line 17) and added to the final set of samples S (line 18). The samples
retained in S are shown with white circles in Fig. 2. The number m of iterations
can be fixed or adjusted according with a suitable convergence measure.

The non-maximal suppression is accomplished using a variable-bandwidthmean-
shift suited to work on Gaussian mixtures [13], that provides a mixture of Gaussians
representing in a compact way the final modes of the distribution. All those modes
that contain less than τ1 detections, or that contain less than τ1/2 strong detections
are suppressed. Given the classification confidences provided by each LogitBoost
classifiers of the cascade, a detection is considered strong if the minimum confidence
is higher than a threshold τ2. Numerical values are given in Sec. 4. The survived
modes are considered successful detections and the derived mixture corresponds
to the final likelihood function p (Z|X) (line 23).
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(a) Priori (b) Predicted (c) Resampling (d) Measurements

(e) Likelihood (f) Posterior (g) Detections

Fig. 3. Multi-stage sampling in the context of Bayesian recursive filtering. In (c) the

yellow dots represents the quasi-random sampling. The coloring is consistent with Fig.

2. The man on the upper-right corner is out of the influence of the predicted pdf,

but the uniform component of eq. 5 allows some samples to fall within the region of

support of that person and to act as attractors for the samples in the next stages. In

(d), red dots represents successful detections, cyan dots are successful detections with

high detection confidence.

3.2 Kernel-Based Bayesian Filtering on Videos

We extend here the previous method to the context of videos, by propagating
the modes in a Bayesian-recursive filter. Differently from tracking approaches,
the conditional density among frames (observations in time) is not used here
to solve data association. Instead, the recursive nature of particle filtering ex-
ploits temporal coherence of pedestrians only to further improve detection. In
the sequential Bayesian filtering framework, the conditional density of the state
variable given the measurements is propagated through prediction and update
stages as:

p (Xt|Z1:t−1) =
∫

p (Xt|Xt−1) p (Xt−1|Z1:t−1) dXt−1 (3)

p (Xt|Z1:t) =
p (Zt|Xt) p (Xt|Z1:t−1)

∫
p (Zt|Xt) p (Xt|Z1:t−1) dXt

(4)

The priori p (Xt−1|Z1:t−1) is propagated from the posteriori at the previous
frame and for the first frame p (X0|Z0) no prior assumptions are made and
uniform distribution is employed. The predicted pdf is obtained (eq. 3) as the
product of the priori with the motion model and then marginalizing on Xt−1.
Since in complex scenes correct motion model is unknow [25], we applied a zero-
order function with Gaussian noise of fixed covariance.

Fig. 3 depicts the different steps of this procedure. The priori is convolved with
white noise which has the only effect of increasing its covariance (producing the
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Table 1. Benchmark

# images img size # peds peds size avg peds/img

Tests on
Images

INRIA [2] 288 333x531-

1280x960

582 80-800px 2.02

Graz02 [27] 310 640x480 620 55-410px 2.00

Tests on
CWS
Videos

Video 1 148
800x600 @

1 fps

340

55-350px

2.30

Video 2 114 398 3.49

Video 3 68 83 1.22

predicted pdf - Fig. 3(b)). Differently from the case of single images, where q0 is
uniform, in videos, at each time t (i.e. frame), q0 (Xt) is obtained by applying a
quasi-random sampling [26] to the predicted distribution p:

q0 (Xt) = β · p (Xt|Z1:t−1) + (1− β) · U (Xt) (5)

where β decides the amount of random sampling. The random sampling is crucial
to detect new pedestrians entering the scene (Fig. 3(c)). Given q0, the procedure
described in the previous section is used to iteratively estimate the likelihood
p (Zt|Xt) (Fig. 3(e)). Any newly detected likelihood mode is confirmed as a
new-entry pedestrian detection. The quasi-random sampling is applied only to
the proposal distribution q0 (the proposal of the first stage of the multi-stage
sampling). The likelihood and the predicted are multiplied to obtain (unless a
normalization factor) the posterior pdf (see eq. 4).

4 Experimental Results

We performed extensive experimentation of the proposed multi-stage boosting
method (MSBoost or MSB hereinafter) both on images and videos with fairly
high resolution (rarely less than 640x480, up to 1280x960): in these conditions
the sliding window (SW) can be very demanding, and the benefit of MSBoost is
highlighted. Additionally, we are also considering a large range of scales since the
considered images contain people of quite diverse sizes. Finally, tests on videos
were carried out considering no other information than appearance (neither mo-
tion nor scene geometry). Experimental results are obtained on the benchmark
reported in Table 1. In order to compare with the state of the art we used pub-
licly available datasets which also provide ground-truth annotations. In the case
of images, we have used the Graz02 dataset [27] and the well-known INRIA
dataset [2]. Regarding the videos, we used 3 video clips taken from construction
working sites (CWS), that contain on average 19 entrances/exits per video.

The accuracy of pedestrian detection is measured at object level in terms
of the matching of the bounding box found by the detector (BBdt) with the
bounding box in the ground truth (BBgt). A matching is found using the measure
defined in the PASCAL object detection challenges [28] which states that the
ratio between the area of overlap of BBdt with BBgt and the area of merge of
the two BBs must be greater than a given threshold T , that is typically set to
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50%; however, in some experiments we test the detection at lower and higher
values of T , in order to better evaluate the localization accuracy of the detection
of MSBoost w.r.t. SW. Throughout all tests, multiple detections of the same
ground-truthed person, as well as a single detection matching multiple ground-
truthed people, are affecting the performance in terms of recall and precision.

Regarding our approach, most of the tests has been performed using a to-
tal number of 5000 particles, divided over the m = 5 stages as follows: Ni =
NP · eγ·(i−1), where NP = 2000 represents the initial number of particles (i.e.,
N1), whereas γ is a constant factor (equal to 0.44 in our tests) which ensures
that the number of particles diminishes over the stages in an exponential way.
A similar approach is followed also for λi and Σi, which are the exponent for
the measurement and the covariance for the Gaussian kernels, respectively. The
starting values are 0.1 and diag(7, 14, 0.125) (obtained considering the region of
support, and with normalized scales) and the exponential constant are 1 and
-0.66, respectively. Finally, the thresholds for the non-maximal suppression (see
end of Section 3.1) have been set to τ1 = 4.0 and τ2 = 4.0. The first test on single
images (INRIA dataset) aims at showing that MSBoost yields higher accuracy
than SW in the detection localization; we measure detection performances vary-
ing the threshold T of the PASCAL challenge: the higher is T , the higher is the
precision in detection accuracy required on the detector. In these tests MSBoost
employs 15000 particles, while the SW uses a fixed position stride (10.9% of win-
dow size), employing on average 101400 (6.8 times more) windows per image,
with peaks of 364000 (24.2 times more). Results are shown in Fig. 4. Fig. 4(a)
highlights the trend of MR vs FPPI at different T : as expected, regardless of the
detection paradigm, the higher is T , the higher is the MR. However, at any T ,
MSBoost shows lower MR than sliding window: moreover, as shown in Fig. 4(b),
at increasing T , MSBoost decreases its performance in a lower degree w.r.t. SW;
in other words, the detection localization of the former is higher and is achieved
through the information gain obtained through the multi-stage sampling.

In the second test on single images (Graz02) we compared MSBoost vs SW
at different number of windows. The scale stride is set to 1.2, the number of
particles employed in MSBoost is 5000, while the number of windows in SW
is 5000, 10000, 15000, 20000, 30000 and 50000 (corresponding respectively to a
position stride of 15.6%, 10.9%, 9.8%, 8.2%, 7.1% and 5% of window size). The
non-maximal suppression for SW is performed with mean shift and τ2 = 2. Tab.
2(a) shows the results achieved in terms of False Positives Per Image (FPPI)
and Miss Rate (MR) as suggested in [29]. MSBoost with 5000 particles achieves
a FPPI comparable to SW with 15000 windows, yielding an 8% lower MR.

Regarding the experiments on videos, we firstly aim at validating the use-
fulness of the Bayesian-recursive approach; we compared the FPPI and MR
obtained on Video 1, by using the SW with 10000 windows, a non-recursive ap-
proach (Section 3.1 on each single frame) with 2500 particles and the Bayesian-
recursive (Section 3.2) with varying number of particles (5000, 2500 and 1250);
see Tab. 2(b). The Bayesian-recursive approach with 1250 particles yields sim-
ilar FPPI and better MR w.r.t. non-recursive with 2500 particles. Moreover, it
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Fig. 4. Results on INRIA dataset at different values of T , the threshold on the bounding

box matching. Number in brackets represent the MR at FPPI=1.

Table 2. Summary of results

(a) On Graz02 dataset

FPPI MR

SW (5000) 0.39 0.76

SW (10000) 0.66 0.57

SW (15000) 0.73 0.51

SW (20000) 1.08 0.46

SW (30000) 1.30 0.40

SW (50000) 1.66 0.37

MSB (5000) 0.74 0.43

(b) On Video 1

FPPI MR

SW (10000) 0.54 0.54

MSB (2500) 0.29 0.34

MSB rec (1250) 0.30 0.29

MSB rec (2500) 0.45 0.14

MSB rec (5000) 0.56 0.13

MSB rec (5000, 0.56 0.16

no-exp decay)

(c) On Videos 1,2,3

FPPI MR

Video 1 0.56 0.13

Video 2 0.98 0.55

Video 3 0.42 0.78

obtains overall better performance than SW with 10000 windows. Eventually, we
also evaluated the usefulness of the exponential decay of particles, as disabling
it slightly reduces the performances. Then, to further validate our approach we
tested Bayesian-recursive MSBoost on two other videos from the CWS dataset
which contain several heavy occlusions of the pedestrians (see Table 1). Results
are summarized in Tab. 2(c).

Regarding the computational load, when dealing with cascades of strong clas-
sifiers, the time cannot be considered simply proportional to the number of
employed windows or samples. In fact, in traditional classifiers the classification
time for each window is constant while in cascaded classifiers the time is reduced
if the input is rejected at an intermediate level of the cascade. In this sense, the
information gain across the multiple stages of the MSBoost produces samples
that are increasingly closer to the positive classification and therefore the aver-
age number of strong classifiers that are successfully passed increases, raising the
computation time: this is testified by the average R of MSBoost that is higher
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than the one of SW (0.26 and 0.08 respectively). Nevertheless, MSBoost ends up
being definitely faster because: (a) the time to prepare the integral image and
the tensors for each patch (that is a fixed time for each window, regardless of
its appearance or of the use of MSBoost or SW), is on average 8.92 times the
average classification time of a random negative patch; (b) merging overhead
and classification time, the per-particle computational load of MSBoost is 1.9
times higher than the per-window computational load of SW; (c) the experimen-
tal results demonstrate that MSBoost achieves higher detection accuracy with a
number of particles that is from 3 to 10 times lower than the number of windows
employed with SW. Thus, the measured computation time for MSBoost is from
1.8 to 5.4 times lower than for SW. This increase of performance is almost in-
dependent on the number of objects to be detected. On average MSBoost takes
about 1 second to perform 5000 detections using a C++ implementation on a
dual-core off-the-shelf PC, also by exploiting the intrinsic parallelization of the
algorithm. The complete approach can process about 0.75 frames per second
(fps) with 5000 particles, which can be proportionally increased by reducing the
number of particles (e.g., it becomes about 3 fps with 1250 particles which give
good results on Video 1 of CWS).

5 Conclusions

The work introduces a novel method to avoid the brute force strategy of slid-
ing window for (pedestrian) detection in both images and videos; the proposed
method works within the domain of appearance used by the classifier itself, ex-
ploiting the response of the boosting cascade to drive an efficient spanning of the
state space and using a multi-stage sampling based strategy. The derived mea-
surement function can be plugged in a kernel-based Bayesian filtering to exploit
temporal coherence of pedestrian in videos. Experimental results show a gain in
computational load maintaining same accuracy of sliding window approach.
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Abstract. Reliably extracting information from aerial imagery is a difficult prob-
lem with many practical applications. One specific case of this problem is the task
of automatically detecting roads. This task is a difficult vision problem because
of occlusions, shadows, and a wide variety of non-road objects. Despite 30 years
of work on automatic road detection, no automatic or semi-automatic road detec-
tion system is currently on the market and no published method has been shown
to work reliably on large datasets of urban imagery. We propose detecting roads
using a neural network with millions of trainable weights which looks at a much
larger context than was used in previous attempts at learning the task. The net-
work is trained on massive amounts of data using a consumer GPU. We demon-
strate that predictive performance can be substantially improved by initializing
the feature detectors using recently developed unsupervised learning methods as
well as by taking advantage of the local spatial coherence of the output labels. We
show that our method works reliably on two challenging urban datasets that are
an order of magnitude larger than what was used to evaluate previous approaches.

1 Introduction

Having up-to-date road maps is crucial for providing many important services. For
example, a city requires accurate road maps for routing emergency vehicles, while a
GPS-based navigation system needs the same information in order to provide the best
directions to its users. Since new roads are constructed frequently keeping road maps
up-to-date is an important problem.

At present, road maps are constructed and updated by hand based on high-resolution
aerial imagery. Since very large areas need to be considered, the updating process
is costly and time consuming. For this reason automatic detection of roads in high-
resolution aerial imagery has attracted a lot of attention in the remote sensing commu-
nity. Nevertheless, despite over 30 years of effort [1], at the time of writing there was
no commercial automatic or semi-automatic road detection system on the market [2,3]
and, to the best of our knowledge, no published method has been shown to work reliably
on large datasets of high-resolution urban imagery.

Much of the published work on automatic road detection follows an ad-hoc multi-
stage approach [1,4,5]. This generally involves establishing some a priori criteria for
the appearance of roads and engineering a system that detects objects that satisfy the
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established criteria. For example, roads are often characterized as high-contrast regions
with low curvature and constant width, with a typical detection strategy involving edge
detection, followed by edge grouping and pruning. While some of these approaches
have exhibited good performance on a few sample images, the way in which they com-
bine multiple components often results in the need to tune multiple thresholds and such
methods have not been shown to work on large real-world datasets.

In this paper we follow a different approach, where the system learns to detect roads
from expert-labelled data. Learning approaches are particularly well-suited to the road
detection task because it is a rare example of a problem where expert-labelled data is
abundant. It is easy to obtain hundreds of square kilometers of high-resolution aerial
images and aligned road maps. In fact, most universities have libraries dedicated solely
to geographic data of this kind.

Learning-based approaches to road detection are not new – several attempts at pre-
dicting whether a given pixel is road or not road given features extracted from some
context around it have been made [6,7,8,9]. While showing some promise, these ap-
proaches have also failed to scale up to large challenging datasets. We believe that pre-
vious learning-based approaches to road detection have not worked well because they
suffer from three main problems. First, very little training data is used, likely because
ground truth for training and testing is typically obtained by manually labelling each
pixel of an aerial image as road or non-road making it infeasible to use a lot of train-
ing data. Second, either a very small context is used to extract the features, or only a
few features are extracted from the context. Finally, predictions for each pixel are made
independently, ignoring the strong dependencies between the road/non-road labels for
nearby pixels.

We propose a large-scale learning approach to road detection that addresses all three
problems as follows:

– We use synthetic road/non-road labels that we generate from readily available vec-
tor road maps. This allows us to generate much larger labelled datasets than the
ones that have been used in the past.1

– By using neural networks implemented on a graphics processor as our predictors
we are able to efficiently learn a large number of features and use a large context
for making predictions.

– We introduce a post-processing procedure that uses the dependencies present in
nearby map pixels to significantly improve the predictions of our neural network.

Our proposed approach is the first to be shown to work well on large amounts of such
challenging data. In fact, we perform an evaluation on two challenging urban datasets
covering an area that is an order of magnitude larger than what was used to evaluate any
previous approach. We also show that a previous learning based approach works well
on some parts of the datasets but very poorly on others. Finally, we show that all three
of our proposed enhancements are important to obtaining good detection results.

1 Dollar et al. [10] proposed a similar approach to generating ground truth data but still used
very little training data.
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2 Problem Formulation

Let S be a satellite/aerial image and let M be a corresponding road map image. We
defineM(i, j) to be 1 whenever location (i, j) in the satellite image S corresponds to a
road pixel and 0 otherwise. The goal of this paper is to learn p(M(i, j)|S) from data.

In a high-resolution aerial image, a single pixel can represent a square patch of land
that is anywhere between several meters and tens of centimeters wide. At the same time
one is typically interested in detecting roads in a large area such as an entire town or
city. Hence, one is generally faced with the problem of making predictions for millions
if not billions of map pixels based on an equally large number of satellite image pixels.
For these reasons, the probability that M(i, j) = 1 has typically been modeled as a
function of some relatively small subset of S that contains location (i, j) instead of the
entire image S [7,10]. In this paper we model

p(N(M(i, j), wm)|N(S(i, j), ws)), (1)

whereN(I(i, j), w) denotes aw×w patch of image I centered at location (i, j). Hence,
we learn to make predictions for a wm ×wm map patch given a ws ×ws satellite image
patch centered at the same location, where wm < ws. This allows us to reduce the
required computation by both limiting the context used to make the predictions and by
reusing the computations performed to extract features from the context.

2.1 Data

While high-resolution aerial imagery is easy to obtain, per pixel road/non-road labels
are generally not available because most road maps come in a vector format that only
specifies the centreline of each road and provides no information about road widths.
This means that in order to obtain per-pixel labels one must either label images by hand
or generate approximate labels from vector data. The hand labelling approach results in
the most accurate labels, but is tedious and expensive. In this paper we concentrate on
using approximate labels.

Our procedure for generating per-pixel labels for a given satellite image S is as fol-
lows. We start with a vector road map consisting of road centreline locations for a region
that includes the area depicted in S. We rasterize the road map to obtain a mask C for
the satellite image S. In other words, C(i, j) is 1 if location (i, j) in satellite image S
belongs to a road centreline and 0 otherwise.

We then use the mask C to define the ground truth map M as

M(i, j) = e−
d(i,j)2

σ2 , (2)

where d(i, j) is the Euclidean distance between location (i, j) and the nearest nonzero
pixel in the mask C, and σ is a smoothing parameter that depends on the scale of the
aerial images being used. M(i, j) can be interpreted as the probability that location
(i, j) belongs to a road given that it is d(i, j) pixels away from the nearest centreline
pixel. This soft weighting scheme accounts for uncertainty in road widths and centreline
locations. In our experiment σ was set such that the distance equivalent to 2σ+1 pixels
roughly corresponds to the width of a typical two-lane road.



Learning to Detect Roads in High-Resolution Aerial Images 213

(a) (b)

Fig. 1. The rooftop of an apartment building. a) Without context. b) With context.

3 Learning to Detect Roads

Our goal is to learn a model of (1) from data. We use neural networks because of their
ability to scale to massive amounts of data as well as the ease with which they can be
implemented on parallel hardware such as a GPU. We model (1) as

f(φ(N(S(i, j), ws))), (3)

where φ is feature extractor/pre-processorand f is a neural network with a single hidden
layer and logistic sigmoid hidden and output units. To be precise,

f(x) = σ(WT
2 σ(WT

1 x + b1) + b2), (4)

where σ(x) is the elementwise logistic sigmoid function, W’s are weight matrices and
b’s are bias vectors. We now describe the pre-processing function φ, followed by the
training procedure for f .

3.1 Pre-processing

It has been pointed out that it is insufficient to use only local image intensity information
for detecting roads [7]. We illustrate this point with Figure 1. The aerial image patch
depicted in sub-figure 1(a) resembles a patch of road, but with more context, as shown
in sub-figure 1(b), it is clearly the roof of an apartment building. Hence, it is important
to incorporate as much context as possible into the inputs to the predictor.

The primary aim of the pre-processing procedure is to reduce the dimensionality
of the input data in order to allow the use of a large context for making predictions.
We apply Principal Component Analysis to ws × ws RGB aerial image patches and
retain the top ws · ws principal components. The function φ is then defined as the
projection of ws × ws RGB image patches onto the top ws · ws principal components.
This transformation reduces the dimensionality of the data by two thirds while retaining
most of the important structure. We have experimented with using alternative colour
spaces, such as HSV, but did not find a substantial difference in performance.

It is possible to augment the input representation with other features, such as edge
or texture features, but we do not do so in this paper. We have experimented with using
edge information in addition to image intensity information, but this did not improve
performance. This is likely due to our use of an unsupervised learning procedure for
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Fig. 2. Some of the filters learned by the unsupervised pretraining procedure

initializing, or pretraining, the neural network. In the next section we will describe
how this procedure discovers edge features independently by learning a model of aerial
image patches.

3.2 Training Procedure

At training time we are presented with N map and aerial image patch pairs. Let m(n)

and s(n) be vectors representing the nth map and aerial image patches respectively, and
let m̂(n) denote the predicted map patch for the nth training case. We train the neural
network by minimizing the total cross entropy between ground truth and predicted map
patches given by

−
N∑

n=1

w2
m∑

i=1

(
m

(n)
i log m̂(n)

i + (1 −m
(n)
i ) log(1 − m̂

(n)
i )
)
, (5)

where we use subscripts to index vector components. We used stochastic gradient de-
scent with momentum as the optimizer.

Unsupervised Pretraining. Traditionally neural networks have been initialized with
small random weights. However, it has recently been shown that using an unsupervised
learning procedure to initialize the weights can significantly improve the performance
of neural networks [11,12]. Using such an initialization procedure has been referred to
as pretraining.

We pretrain the neural network f using the procedure of Hinton and Salakhutdinov
[11], which makes use of Restricted Boltzmann Machines (RBMs). An RBM is a type
of undirected graphical model that defines a joint probability distribution over a vector
of observed variables v and a vector of latent variables h. Since our neural network has
real-valued inputs and logistic hidden units, in order to apply RBM-based pretraining,
we use an RBM with Gaussian visible and binary hidden units. The joint probability
distribution over v and h defined by an RBM with Gaussian visible and binary hidden
units is

p(v, h) = e−E(v,h)/Z,

where Z is a normalizing constant and the energyE(v, h) is defined as

E(v, h) =
∑

i

v2
i −

⎛

⎝
∑

i

civi +
∑

k

bkhk +
∑

i,k

wikvihk

⎞

⎠ . (6)

While maximum likelihood learning in RBMs is generally intractable, efficient approx-
imate learning can be performed by approximately minimizing a different objective
function known as Contrastive Divergence [13].
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We train an RBM on the PCA representations of aerial image patches by approxi-
mately minimizing Contrastive Divergence using stochastic gradient descent with mo-
mentum. In order to encourage a sparse model of aerial images, i.e. one where only
a few components of h are nonzero, we fix the hidden unit biases bk to a large neg-
ative value2, as proposed by Norouzi et al. [14]. This encourages the hidden units to
be off unless they get a large input from the visible units. Once the RBM was trained,
we initialized the weight matrix W1 and bias vector b1 from Equation 4 with the RBM
weights w and b. We found that encouraging sparseness sped up learning and improved
generalization.

Some selected filters learned by the pretraining procedure are shown in Figure 2.
The vast majority of the filters learned to ignore colour, but the few filters that were
colour sensitive were low-frequency, opposing red-green or blue-yellow filters. Many
of the colour-neutral filters are oriented, high-frequency edge filters. We believe this
is why augmenting the inputs with edge information did not improve road detection
performance.

Adding Rotations. When training the neural network f we found that it is useful
to rotate each training case by a random angle each time it is processed. Since many
cities have large areas where the road network forms a grid, training on data without
rotations will result in a model that is better at detecting roads at certain orientations.
By randomly rotating the training cases the resulting models do not favor roads in any
particular orientation.

4 Incorporating Structure

Figure 3(a) shows predictions for a small map patch made by our neural network.
There are two obvious problems with these predictions – there are both gaps in the
predicted roads and disconnected blotches of road pixels. Given our prior knowledge
about the structure of road networks it would be safe to conclude that the blotches in
Figure 3(a) are false positives while the gaps are false negatives. Previous learning-
based approaches to road detection along with the method described in Section 3 make
such mistakes because they make predictions independently for all pixels.

In order to take advantage of the structure present in nearby road/non-road labels we
introduce a post-processing step. The goal is to improve the prediction for a given map
pixel using nearby predictions. We treat this as a supervised learning problem and train
a neural network to predict a wm ×wm map patch from a wc ×wc patch of predictions.
To be precise, let M̂ be the predictions of neural network f for map image M . Then let
fp be a neural network of the same functional form as f that predicts N(M(i, j), wm)
based on N(M̂(i, j), wc). The prediction of fp for map image M is then denoted
by M̂p.

The neural network fp is trained using stochastic gradient descent to minimize cross
entropy between the ground truth map patches and the predictions as given by Equa-
tion (5). We do not use pretraining when training fp, as this did not improve performance.

2 In this paper, we set bk to -4.
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(a) (b)

Fig. 3. (a) Predictions before post-processing. (b) Predictions after post-processing.

As with training of the neural network f , we randomly rotate each training case before
it is processed in order to remove a bias towards roads in some orientations.

The post-processing procedure is similar to the approach employed by Jain and Se-
ung [15] for natural image denoising. They train a convolutional neural network to
predict small noise-free patches of natural images given larger patches that had noise
added to them. Since our post-processing procedure repeatedly applies a local filter at
fixed intervals over a larger image, it can be seen as a type of convolutional neural net-
work where the convolution is followed by subsampling. Jain and Seung show that this
kind of neural network architecture can be seen as performing approximate inference
in a special kind of Markov Random Field model [15]. Jain and Seung also show that
this approach outperforms approaches based on Markov Random Fields on the image
denoising task.

Figure 3(b) shows the result of applying the post-processing procedure to the predic-
tions from figure 3(a). The process clearly removes disconnected blotches, fills in the
gaps in the roads, and generally improves the quality of the predictions. While we do
not do so in this paper, the post-processing procedure can be applied repeatedly, with
each application receiving the predictions made by the previous application as input.
This process propagates confident predictions along the predicted road network.

5 Experiments

We performed experiments on two datasets consisting of urban aerial imagery at a res-
olution of 1.2 meters per pixel. We will refer to the datasets as URBAN1 and URBAN2.
Dataset URBAN1 covers a large metropolitan area with both urban and suburban re-
gions. It consist of a training set that covers roughly 500 square kilometers, a separate
test set of 50 square kilometers, and a separate small validation set that was used for
model selection. Dataset URBAN2 is only used for testing and consists of 28 square
kilometers of aerial imagery of a city different from the one covered in URBAN1. When
generating the ground truth pixel labels as described in Section 2.1, the smoothing pa-
rameters σ was set to 2 pixels. This makes the area within one standard deviation of
a pixel roughly 20 feet in diameter, which is approximately the width of a typical two
lane road.
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We made predictions for 16 × 16 map patches from 64 × 64 colour RGB aerial
image patches, which corresponds to wm = 16 and ws = 64. The neural network f
had 4096 input units, 12288 hidden units, and 256 output units. For the post-processing
procedure, we set wc to 64 and used 4096 hidden units in the neural net fp. Hence fp

had 4096 input units, 4096 hidden units, and 256 output units3. All inputs to the neural
networks were shifted and rescaled to have mean 0 and standard deviation 1.

Although our method is not overly sensitive to the parameter values, we present them
here for completeness. We used stochastic gradient descent with minibatches of size 64
and momentum of 0.9 for training the neural networks. We used a learning rate of
0.0005 and L2 weight decay of 0.0002. When training Restricted Boltzmann Machines
we used the contrastive divergence approximation to the gradient [13]. Once again, we
used stochastic gradient descent with minibatches of size 64 and momentum of 0.9. We
used a learning rate of 0.001 and L2 weight decay of 0.0002. We made between 10 and
20 passes through the training set when training the neural networks and RBMs.

Since the models we have just described all have millions of parameters and the
training set for dataset URBAN1 consists of over 1.2 million training cases, training
our models would normally take months on a single core CPU or weeks on a multi-
core machine. We were able to train our best model in less than 3 days on a consumer
GPU. This included pretraining and training of neural network f and training of the
post-processing neural network fp. Since the training procedures for neural networks
and RBMs are easily expressed in terms of elementary matrix operations, porting them
to the GPU was trivial. In both cases, we obtained speedups of more than an order of
magnitude over the same algorithms running on a modern four-core CPU4. In order to
implement the required algorithms on the GPU, we first created a GPU-based matrix
library for Python. The CUDAMat library as well as our implementations of neural
networks and RBMs are now available as open-source software [16].

5.1 Metrics

The most common metrics for evaluating road detection systems are correctness and
completeness [17]. The completeness of a set of predictions is the fraction of true roads
that were correctly detected, while the correctness is the fraction of predicted roads that
are true roads. Since the road centreline locations that we used to generate ground truth
are often noisy we compute relaxed completeness and correctness scores. Namely, in
our experiments completeness represents the fraction of true road pixels that are within
ρ pixels of a predicted road pixel, while correctness measures the fraction of predicted
road pixels that are within ρ pixels of a true road pixel. Relaxing the completeness and
correctness measures in this manner is common practice when evaluating road detection
systems [17]. In this paper we set ρ to 3 pixels.

5.2 Results

Since our models provide us with road/non-road probabilities for map pixels, we need to
select a threshold to make concrete predictions. For this reason we evaluate our models

3 Multiples of 64 were used because using arrays with dimensions that are multiples of 64 can
help reduce the number of idle cores on the GPU.

4 CPU implementations used parallel linear algebra routines and MATLAB.
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(a) Results for URBAN1 (b) Results for URBAN2

Fig. 4. Completeness/correctness curves on URBAN1 and URBAN2

using completeness/correctness curves. Figure 4 shows completeness/correctness curves
for the four models we evaluated on both datasets.

To compare to previous approaches, we evaluate a model, labelled OTHER, that uses
a smaller context of size 24 and does not use rotated training data, pretraining, or post-
processing. This approach has been used in several road detection systems [6,7,9], but
with far less training data. The model OTHER is also an example of the kind of road
detection system that can be trained on a modern CPU in the time it takes us to train
our best model on a GPU.

We compare OTHER to three new models that used a context size of 64 and were
trained as described above. The model ROTATE did not utilize pretraining or post-
processing and is meant to show the performance of using a large context with rotated
training data. The model PRETRAIN is a pretrained version of ROTATE. Finally, the
model POSTPROC is the model PRETRAIN followed by our post-processing procedure.

The large difference in the performance of the model OTHER on the two datasets can
be explained by the structure of their road networks. Many cities have large areas where
the road network consists of a grid at some orientation, resulting in roads having two
dominant orientations. Indeed, large parts of the cities in URBAN1 and URBAN2 consist
of grids, however, the orientation of the grids is different between the two datasets.
Since the model OTHER is trained on patches of URBAN1 without randomly rotating
them, the model strongly favors roads in orientations similar to those in URBAN1. Since
the dominant orientations of roads in URBAN2 are different, the performance of OTHER

on URBAN2 is much worse than on URBAN1. This gap in performance shows that any
approach that learns to detect roads from patches without incorporating rotations into
the data or rotation invariance into the model is likely to work very poorly unless it is
trained and tested on very similar conditions. This effect also highlights the importance
of evaluating road detection systems on large datasets with a wide variety of road types
and orientations.

Since the remaining three models randomly rotate each training case before process-
ing it, our models exhibit similar performance on URBAN1 and URBAN2, suggesting
that they are robust to significant variations between training and testing data. The
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(a) (b)

(c) (d)

Fig. 5. a) and c) Visualization of the predictions made by OTHER. b) and d) Visualizations of the
predictions made by POSTPROC. See the electronic version for colour. True positives are shown
in green, false positives are shown in red, false negatives are shown in blue, and the background
colour is used for true negatives. We used the threshold that corresponds to the break-even point
on the completeness/correctness curves.

results also show that unsupervised pretraining significantly improves road detection
performance. If we compare the models by their break-even points, i.e. the points on
the curves where completeness equals correctness, then unsupervised pretraining im-
proves both completeness and correctness by about 0.05 on both datasets. The post-
processing procedure further improves completeness and correctness on both datasets
by approximately another 0.02.
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(a) (b)

Fig. 6. Failure modes of the model POSTPROC. See the electronic version for colour.

Figure 5 presents a qualitative comparison between the typical predictions of the
models OTHER and POSTPROC on the URBAN1 test set. Figure 5(a) shows that while
OTHER is able to detect two-lane suburban roads quite well, the model often has prob-
lems with bigger roads. Figure 5(b) shows that the model POSTPROC is able to deal
with wider roads. Figures 5(c) and 5(d) show the predictions of OTHER and POSTPROC

respectively for an area that includes a highway interchange. The model OTHER clearly
has trouble detecting the highway while POSTPROC does not.

To get a better understanding of the kinds mistakes our best model makes, POSTPROC

consider Figure 6. It shows predictions made by the POSTPROC model on two regions
taken from the URBAN1 test set. Figure 6(a) shows some typical examples of false
positive detections. Most of the false positives are in fact paved regions that cars drive
on. Since only named streets tend to be included in road maps, things like alleys and
parking lots are not included and hence end up being labelled as false positives, if
detected.

Figure 6(b) shows some examples of typical false negative detections, which tend to
be caused by rare road types or conditions. For example, while our model is able to deal
with shadows and occlusions caused by small objects, such as trees, it is unable to deal
with shadows and occlusions caused by large buildings. One possible way of dealing
with such problems is modifying the post-processing procedure to receive predictions
as well as a satellite image patch of the same area as input. This should allow the post-
processor to learn to fill in such gaps based on appearance.

We stress that our evaluation was performed on challenging urban data and covered
an area roughly an order of magnitude larger than the areas used to evaluate previous
work on road detection. We believe that our approach is the first to be shown to work
reliably on real-world data on a large scale.
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6 Related Work

Most of the prior work on road detection, starting with the initial work of Bajcsy and
Tavakoli [1], follows an ad-hoc approach. A popular approach involves first extracting
edges or other primitives and then applying grouping and pruning techniques to obtain
the final road network. Laptev et al. [5] use scale space theory to extract a coarse road
network and then apply a ribbon snake model to refine the road network, while Mena
and Malpica [18] use segmentation followed by skeleton extraction. Another common
strategy involves tracking roads from either expert-provided or automatically extracted
starting points [19,4].

One of the earliest attempts to learn to detect roads in aerial imagery is due to
Boggess [7]. A neural network was used to predict road/non-road labels for a pixel
given a small (5× 5 pixels) aerial image context. Not surprisingly such a small context
is not sufficient for detecting roads in a wide variety of settings. Subsequent attempts to
use neural networks for road detection [6,9] did not achieve significant improvements
over the results of Boggess as they also relied on a small context (9× 9 pixels being the
largest) for prediction and used very little training data.

Dollar et al. [10] presented some results on road detection for their general approach
to learning object boundaries. They extract tens of thousands of predefined features
(such as Haar filter responses) from a large context around each pixel and use a proba-
bilistic boosting tree to make predictions. However, they only offer a proof-of-concept
qualitative evaluation on three small images. While our approach shares many of the
same characteristics, the key difference is that we learn the features and exploit the
dependencies among the labels.

There is a vast literature on methods for exploiting dependencies among pixel labels
to which our post-processing procedure is related. He et al. [20] applied Conditional
Random Fields (CRFs) to the image labelling problem after extending them to the im-
age domain. In the road detection literature, active contour models are often used to
incorporate prior knowledge about the structure of road networks for improved detec-
tion results [5,21]. Porway et al. [22] used a grammar to model relationships between
objects such as cars, trees, and roofs for the purpose of parsing aerial images. As we
have already mentioned, our post-processing step is similar to the approach of Jain
and Seung [15] to image denoising. One advantage of this type of approach over using
MRFs and CRFs with unrestricted potentials is that it avoids the need for performing
approximate inference by directly learning a mapping.

7 Future Directions

The Gaussian-binary RBM that was used to initialize the feature-detecting layer of the
neural network is not a very good generative model of images because it assumes that
the pixels are independent given the features. A better generative model would include
an explicit representation of the covariance structure of the image. This has been shown
to improve discriminative performance for an object recognition task.

Most of the “errors” in the current system are due to the ambiguous nature of the
labelling task. Our system often finds real roads that are simply not large enough to be
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labelled as roads by an expert. The use of vector maps that lack road width information
also means that our system is penalized for correctly finding road pixels in wide roads
such as highways. In addition to hurting the test performance, errors of this type hurt the
training because the network is trying to fit inconsistent labels. A better way to handle
ambiguous labels during training is to view the labels extracted from the map as noisy
versions of an underlying set of true labels. This allows the neural network to override
labels that are clearly incorrect during training. On an object recognition task, explicitly
modeling the label noise greatly improves performance when a substantial proportion
of the labels are incorrect.

8 Conclusions

We have presented an approach for automatically detecting roads in aerial imagery us-
ing neural networks. By using synthetic road/non-road labels and a consumer GPU
board we were able to efficiently train much larger neural networks on much more data
than was feasible before. We also showed how unsupervised pretraining and supervised
post-processing substantially improves the performance of our road detector. The re-
sulting road detection system works reliably on two large datasets of challenging urban
data. To the best of our knowledge, no other published road detection system has been
shown to work well on challenging urban data on such a scale.
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20. He, X., Zemel, R.S., Carreira-Perpiñán, M.Á.: Multiscale conditional random fields for im-
age labeling. In: CVPR 2004: Proceedings of the 2004 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pp. 695–702 (2004)

21. Peng, T., Jermyn, I., Prinet, V., Zerubia, J.: An extended phase field higher-order active con-
tour model for networks and its application to road network extraction from vhr satellite im-
ages. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304,
pp. 509–520. Springer, Heidelberg (2008)

22. Porway, J., Wang, K., Yao, B., Zhu, S.C.: A hierarchical and contextual model for aerial im-
age understanding. In: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (2008)



Thinking Inside the Box: Using Appearance
Models and Context Based on Room Geometry

Varsha Hedau1, Derek Hoiem2, and David Forsyth2

1 Department of Electrical and Computer Engineering
2 Department of Computer Science,

University of Illinois at Urbana Champaign

{vhedau2,dhoiem,daf}@uiuc.edu

Abstract. In this paper we show that a geometric representation of an

object occurring in indoor scenes, along with rich scene structure can

be used to produce a detector for that object in a single image. Us-

ing perspective cues from the global scene geometry, we first develop a

3D based object detector. This detector is competitive with an image

based detector built using state-of-the-art methods; however, combining

the two produces a notably improved detector, because it unifies con-

textual and geometric information. We then use a probabilistic model

that explicitly uses constraints imposed by spatial layout – the locations

of walls and floor in the image – to refine the 3D object estimates. We

use an existing approach to compute spatial layout [1], and use con-

straints such as objects are supported by floor and can not stick through

the walls. The resulting detector (a) has significantly improved accuracy

when compared to the state-of-the-art 2D detectors and (b) gives a 3D

interpretation of the location of the object, derived from a 2D image. We

evaluate the detector on beds, for which we give extensive quantitative

results derived from images of real scenes.

1 Introduction

We spend much of our lives in a box. We eat, work, and sleep in areas that are
limited by orthogonal planes, populated with carefully arranged furniture. Yet,
despite their importance and rich structure, such environments are highly chal-
lenging for current recognition methods, largely because the near-field objects
do not conform to orthographic projective assumptions.

In this paper, we propose an approach to think inside the box, building tightly
constrained models of appearance and interactions of objects in a way that
reflects the dominant structure of the indoor scene. Our assumption is that
the objects are aligned with the dominant directions of the scene. This allows
us to integrate global scene orientation cues in an object appearance model,
which considerably simplifies the otherwise challenging view invariant object
detection. Using the perspective inside the room, we recover an approximate
3D localization of an object, which further facilitates incorporating even richer
spatial interactions between objects and room’s global geometry.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part VI, LNCS 6316, pp. 224–237, 2010.
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Fig. 1. We “think inside the box” to detect objects, which are modeled as axis aligned

cuboids (shown in yellow) with the scene. The scene is represented as a box layout

from Hedau et al. [1] (shown in red). By using the surrounding scene perspective

to help model appearance, we can improve detection and localize the object in 3D.

Furthermore, we show that supplying more information about the spatial interactions

with the scene layout produces better detection.

We build on our earlier work [1] to obtain estimates of the room layout, which
is modeled by a 3D oriented ‘box’ and a pixel labeling of major surfaces. Our
focus is to use that layout information to improve object recognition in two key
ways. First, we adapt the 2D sliding window detector strategy to a 3D domain,
searching for parts in frontal-rectified features and stitching them together with
a sliding 3D cuboid. Second, we model the relations of the objects with respect to
the room, encoding soft constraints of size, visibility, and likely position within
the room. In experiments on bed recognition for indoor scenes, we demonstrate
that both of these innovations yield significant improvements.

1.1 Related Work

Our work builds on a wide range of techniques from literature on object recog-
nition, 3D scene modeling, and contextual reasoning. In object recognition, the
idea of sliding window detection with statistical templates has long been a main-
stay [2,3,4,5] due to its simplicity and effectiveness for many categories. Within
this framework, Dalal and Triggs [6] demonstrate that spatially local histograms
of gradient (HOG) are effective features for pedestrian detection. More recently,
Felzenszwalb et al. [7] extend this model to allow deformable latent parts, each
modeled by its own HOG-based statistical template detector. We extend these
ideas to 3D. Our object models are cuboids, composed of 3D planar parts whose
orientations are defined with respect to the dominant orientations of the room.
Like recent work [6,7], we detect these parts using HOG-based detectors, but
our gradient images are frontally rectified such that rectangles in 3D become
rectangles in the rectified image. This modification makes our detector invari-
ant to viewpoint and is necessary for the near field case of indoor scenes, where
object orientation changes rapidly with its location in the image. Similar to 2D
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sliding window detectors, we search for the objects by scanning a 3D cuboid at
increments of ground plane position and scale.

Several recent works (e.g. [8,9]) also explore 3D-based object models, typi-
cally modeling objects as a collection of affine-transformed parts that have some
spatial relation to each other or to the object center. These methods require
complicated processes to align parts across views and instances and to build
categorical spatial models. Because we annotate the corners of objects in train-
ing, our training and inference processes are very simple but effective. We have
found our 3D-based features to be complementary to existing 2D models and
show that a combination outperforms either alone.

Our work also adds to numerous efforts in image-based 3D scene estima-
tion [10,11,12,13,14] and contextual reasoning [15]. Many previous approaches
such as [16,17,18] use context in form of rough geometric constraints such as rela-
tive location and depth estimates, to improve object recognition in 2D. Our goal
is to recover full 3D spatial extent of an object coherent with the surroundings,
which requires stricter and richer constraints. The planar parts of our object
cuboids are oriented 3D rectangles, which were shown to be useful for structure
modeling in [19,20]. We build on our indoor spatial layout method [1], which es-
timates the principal orthogonal vanishing points, a 3D box layout, and a pixel
labeling of the room surfaces. We use this method to obtain the orientation and
our initial estimate of room layout.

Our probabilistic contextual reasoning most closely resembles works by Hoiem
et al. [21] and Leibe et al. [22]. Like Hoiem et al. [21], we softly enforce size con-
sistency through probabilistic inference. However, our 3D object models allow
us to avoid making assumptions of roughly level cameras and orthographic pro-
jection, which is crucial for estimating object size in the near-field. Leibe et
al. [22] detect and track objects from a moving video while constraining the
objects to lie within the recovered street corridor. Because our scene estimates
are recovered from a single image, we marginalize over the layouts while softly
constraining that objects should lie within the room. Additionally, we model the
spatial position of objects with respect to the walls.

1.2 Overview of Our Approach

Fig. 2 shows the overview of our approach. We start by detecting vanishing points
corresponding to 3 orthogonal directions of the world using the vanishing point
method from [1]. This gives us the orientation of object cuboids. By assuming
that objects rest on floor we generate object candidates at several scales and
translations by sliding a cuboid on floor planes at several different heights below
camera. Fig. 2(c) shows some sample candidates obtained by our approach. Ob-
ject cuboid is represented in terms of its planar sides or ‘faces’. We detect objects
by searching for their axis aligned faces using rectified gradient features as shown
in Fig. 2(d). Fig. 2(e) shows several detected horizontal and vertical cuboid faces
parallel to the room orientation. These responses are combined together to score
the object cuboids which are further refined probabilistically by using the object
and scene layout interaction. Fig. 2(f) shows the detected object.
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Fig. 2. Our algorithm takes original image and estimates the vanishing points of the

three orthogonal directions of the world using method of [1]. This fixes the orientation of

objects. We then generate many object candidates by sliding a cuboid in 3D. A sample

of candidates are shown with different colors in (c). We detect cuboids by searching

for their axis aligned ‘faces’ using rectified gradient features(shown in (d)). Some face

samples with high response in each of the three orientation are shown in (e) with red,

green and yellow. Bed cuboid detected by this procedure is further refined with the

constraints provided by box layout of scene (shown in red) using a simple probabilistic

model. The highest scoring bed cuboid is shown in yellow.

2 Detecting Objects

Classical sliding window approaches provide 2D localization of objects and can-
not be easily used to predict 3D location and extent. Treating the objects as 2D
planar cardboards has a disadvantage of knowing very little about their spatial
interaction with the background. Indoor scenes are highly structured, and this
information can be used to obtain a reasonable 3D localization of an object,
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which is our target in this paper. By assuming that the faces of object cuboids
are parallel to the walls, the orientation of objects can be obtained from the
rooms orientation given by vanishing points. Following this we build a searching
strategy by sliding a cuboid in 3D to obtain object hypotheses and looking for
consistent projected gradients in the image to score these hypotheses effectively.

We model objects as cuboid shaped boxes resting on floor in 3D. Most of the
objects in indoor settings can be approximated by cuboid-like structure, e.g.,
beds and other furniture. Also, in a typical setting, the objects are parallel to
room walls. Towards detecting objects in indoor scenes, we thus first estimate
vanishing points corresponding to the three orthogonal directions of the room,
which also serve as the vanishing points for the objects. These vanishing points
fix the object orientation with respect to the camera. To estimate its translation,
we generate object hypotheses constrained according to the vanishing points. For
each of these hypotheses, we extract specialized features using perspective cues,
and score them using a function learned from training images. In this paper we
evaluate our method on beds, but, in principle our modeling procedure can also
be extended to other similar objects such as chairs, cupboards, and tables.

2.1 Generating Object Hypotheses

To estimate the orientation of object cuboids in the image, we first estimate the
vanishing points corresponding to the three orthogonal directions of the room.
We use the method of Hedau et al. [1] for vanishing point estimation, which
builds upon the method of [23]. The method detects long straight lines in the
image. The lines corresponding to principal orthogonal directions in 3D should
intersect at the corresponding vanishing points. The method thus accumulates
votes for intersection points of these lines based on angular distance between
the lines and the points. A triplet of points that gathers maximum votes and
satisfies the orthogonality constraints gives three vanishing points. To speed up
the search for this triplet, the space of points is quantized with variable bin size
increasing as one goes away from the center of the image. Using the vanishing
points one can estimate the rotation of the camera with respect to the room
(and objects), as well as camera intrinsic parameters [23]. We next describe how
we generate object hypotheses using the information of vanishing points.

Given the vanishing points corresponding to the three orthogonal directions
of the room, {vpi}3i=1, assuming a camera with zero skew and square pixels,
one can estimate the camera intrinsic matrix K and its rotation with respect
to the room, R. Let us consider the coordinate system centered at the camera
optical center whose axes are along the room directions: x-axis along the room
width (left to right), y-axis along room height (bottom to top), and z-axis along
room depth (towards the camera). For a point X in this coordinate system, its
homogeneous coordinate projection in image plane x can be computed using the
following projection relation.

cx = KRX (1)
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We make the following assumptions about the objects:

1. The object planes are parallel to the walls. It is possible to search angles that
are not parallel to any wall, but we keep to the three principal directions in
this work.

2. The object base touches the floor. This is true for most furniture in a room.
Given a reference base corner point X of the object in 3D, the other k corner
points {Xi}ki=1 can be computed for given dimensions of the object cuboid.

To generate object hypotheses, we first fix the camera height hc to an arbitrary
value. Any object base corner point lying on the floor X, should thus satisfy
X

T
n+ hc = 0, where n = (0, 1, 0) is the normal to the floor plane. We use this

constraint to fix the reference base corner point of the object; the other corners
are computed using object dimensions. The projections of these corners in the
image can be computed using equation (1). We generate these object hypotheses
for different discrete values of camera heights and object dimensions. For our
experiments in Sec. 4 we vary camera height from 2.5 ft. to 8.5 ft. with 1 foot
increments and use the aspect ratios of 2.5 × 6 × 5 and 2.5× 7 × 6 ft. for beds
in 3D. Note that the extent of floor plane for a camera height is bounded by the
horizon line, the vanishing line joining the horizontal vanishing points. We use
this constraint to limit the number of generated hypotheses. We typically get
4K to 30K object hypotheses per image.

2.2 Scoring Object Hypotheses

Part based approaches to modeling objects have shown good results. We model
an object cuboid c as a collection of its faces, i.e., c = {fi}Fi=1, where F is the
number of faces. Given the configuration of the object, some faces are occluded,
hence we attach a face visibility variable v = {vi}Fi=1. Since the perspective
distortion of each face is known, we extract features from each face after cor-
recting for this distortion, denoted by G = {gi}Fi=1 (see features described next).
We independently score each face using a linear function on respective features,
s(fi) = wt

igi, where wi is weight vector learned from linear SVM. To deal with
variations in object dimensions and for better localization, we allow the individ-
ual faces to deform slightly. For this, we modify the score of each face by the best
scoring face in the neighboring object hypotheses fj ∈ N (fi). The final score of
an object hypothesis c is thus given by

scr(c) =
∑

i vi maxfj∈N (fi) s(fj)
∑

i vi
(2)

Features. Standard histogram of oriented gradients (HOG) features implicitly
assume that the 2D image projection is the natural coordinate frame in which to
view objects. Our method supposes that a 3D coordinate frame oriented with the
room is better. We bin the gradients of image with respect to the direction of each
pair of vanishing points. We use 6 orientation bins in our experiments. Fig. 2 (D)
shows gradients binned in directions of each pair of vanishing points. Efficient
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Fig. 3. Computing rectified HOG. We construct the orientation histograms with re-

spect to the surrounding scene orientation (vanishing points directions). Fig. 2(D)

shows gradients binned in direction of each pair of vanishing points. We further rectify

these gradient images by using a transformation induced by indexing pixels in original

image by the angles they subtend at the vanishing points. Note that gradient images are

rectified and the original images are shown here only for simplicity. Such a rectification

allows efficient computation of HOG in rectangular regions via integral images.

computation of HOG features is possible in rectangular windows however the
projection of oriented rectangles in 3D are not rectangular in images. For this
reason we compute histogram of gradients for a face in rectified coordinates
corresponding to its vanishing points where it is frontal. Each face is divided
into 5 × 5 cells and local normalization is done as described in [7]. Fig. 3(A,B)
illustrates this rectification for a face with vanishing points vp1, vp2 and the
corresponding HOG features are shown in Fig. 3(C). For simplicity we show
the rectification on the original image however in principle gradient images, Fig.
2(D) are rectified. For computing face score HOG features computed with respect
to the vanishing points of that face are used. Apart from HOG features we also
use the line based features which is count of number of line pixels consistent
with the orientation and average object label confidence, obtained from surface
label estimates of [1] for each face.

Integrating the scores of a 2D Detector. There has been noticeable progress
in 2D recognition approaches. We show how our cuboid detector can easily benefit
from the state of art 2D methods [7]. Towards this we add the score of detector [7]
in the bounding box of the cuboid to the cuboids score. Sec. 4 shows that we obtain
a improved detector by incorporating the information from 2D detector.
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Fig. 4. Joint model of objects and the spatial layout. Objects are independant given

layout and camera, leading to simple inference. Several spatial constraints such as

objects can not penetrate walls and tend to occur at certain distances from wall can be

encoded via this model (read text for more details). We show that incorporating such

constraints leads to significant improvement in detecting objects.

3 Modeling the Interaction between Objects and Spatial
Layout

Objects live in the scene and thus have to follow certain constraints due to the
structure of the scene. These constraints can be used to help improve object
detection. Towards this we propose to explicitly model the spatial interactions
of objects with scene in a simple probabilistic framework. For scene structure we
use our previous work, [1]. This work describes spatial layout of scene in terms
of (a) a box layout that defines extent of walls, floor and ceiling, and (b) surface
layout that gives pixel labeling of different surfaces as walls, floor, ceiling and
objects. We have obtained the the spatial layout estimates on our images using
the trained models from [1]. The choice of this spatial layout representation is
intuitive for reasoning about spatial interaction between objects and the scene.

The box layout provides extent of walls and floor. The objects inside the box
can not cross the boundaries of the walls. Also some objects tend to appear in
certain spatial configurations with respect to the box. For instance, beds inside
the rooms tend to be close to the walls. Thus knowing the extent of walls and
floor provide important information about the placement of objects. Similarly
an estimate of location of different objects inside the image can be used to refine
the extents of wall floor boundaries.

Towards joint reasoning of objects and layout we propose a simple generative
model, shown in Fig. 4. Here, {Oi}Ni=1, Oi ∈ {0, 1} are the object variables, Oi

is whether a particular object is present or not, N is the number of objects, L is
the box layout of the scene, C is the camera height and I is the image evidence.
We consider all the detections left after doing a soft non-max suppression on the
output of our cuboid detector (Sec. 2). The non-max suppression step greedily
selects the highest the scoring detections while rejecting the ones that overlap
more than a certain threshold with the existing selected detections. We use the
thresold of 0.85 in our experiments. In this paper we have used beds as objects,
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however our framework is general enough to be applicable to other objects as
well. The joint distribution over of objects, layout and camera can be written as

P (O1, . . . , ON , L, C|I) = P (C)P (L|C, I)
N∏

i=1

P (Oi|L,C, I) (3)

Here, P (C) is the prior on camera height, assumed to be a Gaussian with mean
μ = 5.5 ft. (about eye level) and standard deviation σ = 3 ft. P (L|C, I) is
the layout likelihood conditioned on the camera which is estimated using layout
scores obtained from the layout detector of [1] and features such as box layout
height and depth given the camera height. P (Oi|L,C, I) is the object likelihood
conditioned on the layout and camera modeled as a logistic function given by,

P (Oi|L,C, I) = 1/(1 + exp(−wTφ(Oi, L, C))) (4)

where φ(Oi, L, C) is the feature set, consisting of (1) Scores from our object de-
tector (described in Sec. 2); (2) Inferred object height given the camera height
and horizon; and (3) Object-layout interaction features (described next). Ob-
jects are assumed to be independent given layout and the camera after non-max
suppression, which leads to simple inference. We compute object marginals over
a discrete set of sample values for camera heights and box layout. In our exper-
iments we marginalize over top 100 layouts returned by the method of [1].

3.1 Interaction Features

We propose the object and layout interaction features which model 3D spatial
constraints. This is possible due the 3D localization of objects provided by our
object detector and the 3D extent of walls, floor obtained from [1]. As interac-
tion features we use (a) overlap between object’s footprint and the floor as an
indicator of the extent of object sticking outside the floor i.e. into the walls; (b)
distance between object and the walls which is computed as distance between
the object and the nearest wall boundary, capturing the tendency of objects to
occur at fairly consistent positions with respect to the layout.

Each of the above conditional likelihood is trained using logistic regression.
The outputs of logistic regression are well calibrated probabilites. Inference is
exact and straightforward on the above model.

Table 1. Average Precision (AP) for beds. Our 3D Cuboid detector is comparable with

the state-of-art 2D object template detection method of Felzenszwalb et al. [7]. The

combination of two detectors results in improvement in performance over each. The

precise 3D extent of object provided by our cuboid detector facilitates incorporation

of richer scene context which improves object detection significantly further.

Method 1.Cuboid detector 2. Felzenszwalb et al. 1+2 1+2+scene layout

Average Precision 0.513 0.542 0.596 0.628
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4 Experiments

We evaluate our object detector and the joint layout model for beds on a dataset
of 310 images of indoor scenes collected from Flickr and LabelMe [24]. We have
labeled ground truth corners of beds in these images. We split this set randomly
into 180 training and 130 test images.

Cuboid face detectors are trained using only bed images. We train one com-
mon detector for all the vertical faces of a cuboid and one for horizontal face.
Faces that have overlap less than 50% with the ground truth are used as neg-
ative samples for the detector. We train the face detector using a linear SVM.
For a face we allow some deformation by choosing its score as the maximum
amongst all the faces having more than 75% overlap with it. Fig. 7 shows the
precision-recall curves for our bed detector. Precision is the number of correct
detections, and recall is the number of objects that are retrieved. We compare

Fig. 5. Examples of high scoring detection selected from the first 100 top ranked de-

tections of our algorithm on the test set images. First four rows show true positives,

ground truth positive that are detected as positive and last row shows examples of

false positives negatives that are detected as positives. Many false positives such as the

the dining table and the sofa are due to high response of our detector to the strong

oriented gradients in these areas.
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Fig. 6. Examples of improved object detections by joint modeling of objects and the

scene layout. First row shows the best ranked box layout of scene obtained from Hedau

et al. [1]. Second row shows the highest scoring beds by our cuboid detector in each

image. Third row shows the highest scoring best detection obtained from our joint

model. Note that first row shows only the best box layout for an image ranked by

the box layout detector of [1], the bed detection is however obtained using marginal

estimates of objects over discrete sample set of multiple high scoring box layouts.

Notice how the joint model captures the tendency of beds occurring close to wall and

the camera height prior prunes out the the detections with wrong scale estimates

our detector with the state of art 2D detector of Felzenszwalb et al. [7], which
we train on our dataset. We use evaluation criteria similar to VOC Challenge.
Precision recall curves are obtained for bounding box of the detected cuboids in
order to compare with our baseline [7], which outputs bounding boxes. Average
precision(AP) is computed over the entire test set. Our cuboid detector for beds
has AP of 0.513 vs. 0.542 for the well-engineered 2D detector of [7].

To evaluate the additional information that is captured by our cuboid detector
as compared to the 2D detector of [7] we combine the detection scores of this
detector with our cuboid detector scores. For this we simply add to our score,
the score of this detector in the bounding box of the cuboid. We obtain an
improvement of 0.05 AP over [7] and 0.08 AP on our original cuboid detector
(see Table 1). This suggests that 2D and cuboid detectors each have information
to contribute to the other. We also show precision-recall curves in Fig. 7(b)
computed using overlaps of the projected convex hull of the cuboids. Note that
this is a stricter localization criterion as it also requires the object faces to
overlap. We get similar improvement in performance by adding the score of 2D
detector to our cuboid detector.

In Fig. 5 we show selected high ranked true positives (first four rows) and false
positives (last row) of our cuboid detector. The cuboid detector often accurately
localizes the bed in the images. It confuses other objects that have strong oriented
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Fig. 7. Precision-Recall curves for bed cuboid detector trained on our dataset of indoor

images, (computed as bounding box overlap in (a)). We compare our method (blue

curve) with the state of art 2D object template detection method of Felzenszwalb

et al. [7] (black curve). Better performance is achieved by combining the scores of

2D detector with our cuboids suggesting some amount of complementary information

provided by each. Cuboid detector is further improved by using the interactions with

scene layout via a joint model (green curve). In (b), we show the precision-recall curves

computed using overlap of convex hull of cuboids. Here we achieve results similar to

(a). Note that this is a stricter criterion for evaluating localization. We can not compute

this measure for [7] since its output is a bounding box.

gradients on them as beds (5th row, 3rd and 4th column). As seen Fig. 5, the
detector is robust to cropping (3rd row, 1st col.), occlusion (4th row, 2nd col.),
and clutter (4th row, 4th col.).

Finally we evaluate the performance of our joint object layout model. We
achieve an AP of 0.628 from marginal estimates of objects obtained from our joint
model. Fig. 6 shows several examples of improved object detections obtained by
joint reasoning of the box layout, camera and the object cuboid. Notice how the
interaction features of object and box layout helps to push the beds closer to the
walls. The camera height prior helps in pruning out the detects with unlikely
dimensions in 3D.

5 Conclusion

We have developed a detector to locate objects of a specific geometry in an
indoor scene, while using object geometry, scene geometry, and their mutual
arrangement. Using just a single image, the detector computes object localiza-
tion in 3D that includes its location, orientation and extent, which is a lot more
information when compared to 2D object detectors. The 2D localization perfor-
mance of the detector is comparable to the state-of-the-art. When we combine
our detector with a state-of-the-art 2D detector, there is a significant boost in
performance, which indicates that the geometric constraints are highly informa-
tive.Furthermore, the visual results indicate that the detector can localize the
object nicely, upto the level of its individual parts.
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Such a 3D object detector can be used for generating a complete 3D layout
of an image, which can in-turn aid graphics applications such as free space esti-
mation, 3D walkthroughs, and image editing. In this paper, have demonstrated
the concept of a sliding cuboid detector for a single object category, i.e., beds.
However, in principle, the algorithm and the techniques discussed in this pa-
per can also be extended to other objects such chair, sofa, table, dresser etc.
Each of these objects can be modeled as a cuboid or as a cuboid with attached
back rest, for instance chair and sofa. Likewise, our contextual framework could
be extended to include other objects and people, with the goal of producing a
complete, coherent parse of an image.
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Abstract. Occlusions and articulated poses make human detection much

more difficult than common more rigid object detection like face or car. In

this paper, a Structural Filter (SF) approach to human detection is pre-

sented in order to deal with occlusions and articulated poses. A three-level

hierarchical object structure consisting ofwords, sentences andparagraphs

in analog to text grammar is proposed and correspondingly each level is as-

sociated to a kind of SF, that is, Word Structural Filter (WSF), Sentences

Structural Filter (SSF) and Paragraph Structural Filter (PSF). A SF is a

set of detectors which is able to infer what structures a test window pos-

sesses, and specifically WSF is composed of all detectors for words, SSF

is composed of all detectors for sentences, and so as PSF. WSF works on

the most basic units of an object. SSF deals with meaningful sub struc-

tures of an object. Visible parts of human in crowded scene can be head-

shoulder, left-part, right-part, upper-body or whole-body, and articulated

human change a lot in pose especially in doing sports. Visible parts and

different poses are the appearance statuses of detected humans handled by

PSF. The three levels of SFs, WSF, SSF and PSF, are integrated in an em-

bedded structure to form a powerful classifier, named as Integrated Struc-

tural Filter (ISF). Detection experiments on pedestrian in highly crowded

scenes and articulated human show the effectiveness and efficiency of our

approach.

1 Introduction

Human detection has attracted much attention and significant progresses have
been achieved in [1][2][3][4][5][6][7][8][9][10][11][12]. However, highly accurate and
real time human detection is still far from reality. There are mainly two difficul-
ties for human detection: 1) Humans are highly articulated objects which change
a lot in view, pose, size, position, etc. 2) Lots of things, including all around,
may cause occlusions, like accessories (backpacks, briefcases, bags, etc.), or other
persons. Especially in crowded scenes, humans always obscure each other.

Various algorithms are proposed for object detection to deal with occlusions
or articulated poses. Deformable part model based on HOG features combined
with a latent SVM was proposed in [2] for object detection, in which a root
filter and several parts models are learned for each object category that can

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part VI, LNCS 6316, pp. 238–251, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Some combined results of Structural Filter approach to detect occluded pedes-

trian and articulated human

detect objects with some pose changes. A generic approach based on pictorial
structure model was proposed in [7] to estimate human poses where a classifier
is learned for each part and it infers locations of each part by a graph model.
“Bags-of-words” method is widely applied to category [13] and detection [4][14]
in computer vision. The approach in [14] is able to represent objects sparsely.
Implicit Shape Model was proposed in [4] to detect pedestrians in crowed scenes
in a bottom up way by a collection of visual words.

Holistic detectors are often limited when some parts are missing and it is even
impractical to learn a holistic detector for objects with very large deformations.
Therefore some approaches turn to parts/components to handle occlusions. Mul-
tiple occluded humans in [3] were detected by a Bayesian combination of part
detectors where three types of body parts, head-shoulder, torsos and legs, are
used. This approach was extended in [6] where a part hierarchy of an object
class is defined and each part is a sub-region of its parent. There are also some
component based methods to detect object through integrating part detectors
by matching isomorphic graphs [15]. This kind of approach is more robust to
occlusions where holistic object detectors will fail. But a critical issue here is
how to integrate part detectors because parts tend to be less discriminative and
part detectors are prone to producing more false positives. Some approaches rely
on geometrical constraints of parts to handle false positives. But parts are easily
missed due to occlusions, which often makes the constraints invalid.

Inspired by previous works in [3][6][15], in considering the relations among
local regions, we propose a novel way to integrate part detectors, named as
Structural Filter (SF) for object detection. Our aim is to handle occluded and
articulated human detection in one framework and some combined results are
shown in Fig. 1. A SF is a set of detectors which is able to infer what struc-
tures a test window possesses, where the structures could be words, sentences or
paragraphs, corresponding to Word Structural Filter (WSF), Sentence Structural
Filter (SSF) and Paragraph Structural Filer (PSF) respectively. A test window
is positive if at least one detector in PSF provides a positive decision at last.
We carry out some experiments on partially occluded pedestrian detection and
articulated (multi-pose) human detection to demonstrate the effectiveness and
efficiency of our approach.

The rest of this paper is organized as follows. The following section gives
related work; Section 3 and Section 4 presents hierarchical structures of objects
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and Structural Filter separately; some experiments are carried out on pedestrian
detection in crowded scenes and multi-pose human detection in section 5; and
the discussion and the conclusion are given in the last two section.

2 Related Work

The first thing for human detection with occlusions and articulated poses is to
model humans. Various models have been proposed to represent humans such
as pictorial structure model [8], star model [7], multiple tree model [9], non-tree
model [10] and part hierarchy model [6].

Pictorial structure [8] was proposed to represent humans by a joint configura-
tion of parts in which an articulated model with 14 joints and 15 body parts was
used and classifiers for each part using simple image features (first and second
Gaussian derivatives) were learned. More discriminative detector for each part
was proposed based on star model in [7]. In order to capture additional depen-
dencies between body parts, multiple tree models was used in [9] to alleviate
the limitations of a single tree-structured model. Non-tree model was proposed
in [10] to enforce any type of constraints. These four typical models are proposed
for pose estimation problem.

A part hierarchy model was proposed in [6] for detection and segmentation
of partially occluded objects, in which parts are placed in specific locations
and each part is a sub-region of its parent. Placing parts in specific locations
is a convenient method for detection problem and provides the potential for
sharing weak features. Detector ensemble [15] was proposed for face detection
in heavy occlusions where sub-structures are applied to make each part more
discriminative.

Following the works in [3][6][15], we build up a hierarchical structure of human
and propose a Structure Filter approach to integrate part detectors to handle
occlusions and articulated poses in one framework. The proposed hierarchical
structure contains three levels, words, sentences and paragraphs, which combines
the strengths of the approaches in [3][6][15]. The main differences are: 1) Parts
are totally independent in [3] and each part is a sub-region of its parent in [6].
While in our method, words are basic units of objects. Sentences, consisting of
words, are common sub structures of objects. Paragraphs are also composed of
words and cover a set of sentences. Paragraphs correspond to the appearance
statuses of detected objects, for example visible parts or particular poses in
human detection. 2) Sub structures are also mentioned in [15] where a detector
is learned for each sub structure and a detector ensemble which consists of a
set of sub-structures gives a positive decision if at least one sub-structure is
positive. While in our method, in addition to the two level structures, words
and sentences, which are similar to [15], we add a paragraph level structure to
learn a more robust detector to handle occlusions and articulated poses. 3) In
our framework, a word is a general concept, which is a component of an object
in a specific position and it can be a part, a component or a block. Furthermore,
we propose a Structural Filter (SF) approach to integrate part detectors.
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Fig. 3. SSF works interdependently. The

red/blue blocks are two sentences shown

in (a)/(b). Suppose a test window pos-

sesses the red structure but not the blue

one, then the test result is that word
“1” and word “3” are possessed as shown

in (c).

Our contributions are summarized in three folds:
1) A three-level hierarchical object structure consisting of words, sentences

and paragraphs in analog to text grammar is proposed for object detection.
2) A Structural Filter approach is proposed to integrate part detectors.
3) The proposed Structural Filter approach is a more general framework for

object (rigid/non rigid) detection based on words (/parts/regions).

3 Three-Level Object Structure

3.1 Three-Level Object Structure

Words. A word is a component of an object in a specific block. In fact, the
instance of word can be a part, a component or a block (of an area), which is
similar as in [3][6][15]. Fig. 2 illustrates the difference of our word from general
semantic part. It is worth mentioning that: 1) For humans, semantic “part” like
head, leg, torso etc. may appear in different blocks due to no-rigid movement;
2) One block may contain several different parts of an object. In this paper,
location is used as the first priority. One block may contain several parts for the
Structural Filter approach to handle.

Sentences are sub-structures of an object which consist of words. A word is
relatively less discriminative. Some of the words form a sub-structure which will
be more discriminative as in [15]. Fig. 3 shows how SSF works interdependently.

Paragraphs corresponding to the appearance statuses of detected objects,
are composed of words and cover a subset of sentences. Objects may show dif-
ferent statuses in different scenes. For example, parts of a pedestrian may be
invisible in crowded scenes. The statuses of detected pedestrians can be head-
shoulder, left-part, right-part, upper-body or whole-body.

3.2 Problem Formulation

Suppose an object O consists of NW words which are denoted as a set W =
{w1, w2, ..., wNW }. The sentences are S = {s1, s2, ..., sNS} where NS is the total
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Fig. 4. Hierarchical structures of pedestrian and articulated human. (See Section 3.3

for details.)

number and each element si(1 ≤ i ≤ NS) is a subset of W . Similarly, paragraphs
are represented as a set P = {p1, p2, ..., pNP } where NP is the number of the
appearance statuses of detected objects and pi(1 ≤ i ≤ NP ) cover a set of
S. Sentences are common sub-structures of an object which make words more
discriminative and are used for inferences of paragraphs.

Each structure φ, either at word level, or sentence level or paragraph level,
is associated with a detector with the detection rate d(φ) and the false positive
rate f(φ). Our problem is to use a Structural Filter (SF) approach to integrate
all these detectors. Each structure φ also has a missing tolerance parameter of
parts, denoted as σφ, for integration.

3.3 Hierarchical Structures of Pedestrian and Articulated Human

As in [3][6], the simplest way to achieve words is to partition the sample space
into some blocks according to heuristic knowledge. Hierarchical structures of
pedestrian and articulated human are shown in Fig. 4 (a) and (b): 1st row
shows a sample space of pedestrian or articulated human; 2nd/3rd/4th row shows
words/sentences/paragraphs designed by prior knowledge; and 5th row shows
typical examples. The arrows between words and sentences show that sentences
consist of words. Similarly, the arrows between sentences and paragraphs show
that paragraphs cover a set of sentences.

Hierarchical structures of pedestrian. Pedestrians are relatively in strong
cohesiveness. So we just evenly partition the sample space into six words shown in
Fig. 4 (a). To deal with occlusions, we have defined five paragraphs of pedestrians,
head-shoulder, upper-body, left-body, right-body and whole-body.
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Fig. 5. Two typical methods to organize detectors, set method in (a) and tree method

in (b)

Hierarchical structures of articulated human. Articulated (multi-pose)
humans are more flexible than pedestrians. As a detection problem, all poses of
humans as a whole are too difficult to deal with. We pay attention to a subset of
poses where humans stand up on ground like walk, run etc. Mainly taking into
account the varieties of heads and feet, we partition articulated human sample
space into 10 words and define 8 paragraphs as shown in Fig. 4 (b).

4 Structural Filter Approach

4.1 The Definition of Structural Filters

A Structural Filter (SF) is a set of detectors which is able to infer what structures
a test window possesses. Word Structural Filter (WSF) is composed of all the
detectors for words, Sentence Structural Filter (SSF) is composed of all detectors
for sentences, and so as Paragraph Structural Filer (PSF).

4.2 Three Level SFs: WSF/SSF/PSF

We adopt Real Adaboost [16] and Associated Pairing Comparison Features
(APCFs) [1] to learn a cascade detector [17] for each structure (word, sentence
or paragraph). APCF describes invariance of color and gradient of an object to
some extent and it contains two essential elements, Pairing Comparison of Color
(PCC) and Pairing Comparison of Gradient (PCG). A PCC is a Boolean color
comparison of two granules and a PCG is a Boolean gradient comparison of two
granules in which a granule is a square window patch. See [1] for details.

There are typically two methods to organize detectors in each SF of differ-
ent levels: 1) The set method, where detectors are organized as a set and give
decisions separately as shown in Fig. 5 (a). With the set method, all detectors
involved are processed. 2) The tree method, where detectors are organized as
a tree as shown in Fig. 5 (b). With the tree method, child nodes will be pro-
cessed only if their parent node gives a negative decision. The tree method is
much faster than the set method in decision making since only parts of its de-
tectors are used. The tree method also provides the possibilities of sharing of
weak features. For example, if the whole-body is visible, there is no need to test
on head-shoulder detector or other detectors.
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WSF and SSF tend to describe parts of objects. Each detector in WSF or
SSF gives a decision independently. So detectors in WSF or SSF are organized
as a set method. Organizing detectors in PSF as a tree method or a set method
depends on the object to be detected. Fig. 4 (a) shows 5 paragraphs of pedestrian
where left-part, right-part and upper-body are sub-regions of whole-body and
head-shoulder is a sub-region of upper-body, so detectors in PSF for pedestrians
are organized with a tree method. Fig. 4 (b) shows 8 paragraphs of articulated
human where there is no any paragraph which is a sub-region of another one.
So detectors in PSF for articulated human are organized with a set method.

4.3 Integrated Structural Filter

To construct a final human detector, the three level SFs, WSF, SSF and PSF,
are integrated together to form a powerful classifier, which is called Integrated
Structural Filter (ISF). The integration can be represented as sequences of
WSF, SSF and PSF, for example, WSF=⇒SSF=⇒PSF, PSF=⇒SSF=⇒WSF
or PSF=⇒WSF=⇒PSF=⇒SSF=⇒PSF. Each SF (WSF, SSF or PSF) in a se-
quence is called a stage.

Structural Filter inference is the inference by one stage of ISF, which can
be summarized as three steps:

Step 1. Suppose that η is currently the stage to be dealt with, where η is one
of WSF, SSF and PSF. Let Ω denote the set containing all passed words before
the processing of η. Note that at the very beginning, Ω contains all words.

Step 2. A detector in η will be carried out if |ω| ≤ σφ, in which φ is the struc-
ture associated to this structure, σφ is the missing tolerance and ω = {w|w ∈
φ,w �∈ Ω}. If this detector gives a positive decision, then push the structure φ
into the passed structure set κ. Note that: 1) If the detectors in η are organized
as set method, all detectors will be considered. 2) Else the detectors in η are
organized as tree method. If the root detector gives positive decision, then its
child detectors will be ignored and otherwise they will be considered.

Step 3. After the processing of η , update the passed word set Ω = {α|α ∈
φ, φ ∈ κ}.

After each stage, we can obtain the passed word set. Actually we concern
about the final decision of a test object’s appearance statuses, so the last stage
is always PSF and the statuses of a test object can be easily inferred by the
passed structure set of the last stage.

Integration of SFs. Two simple methods for the integration are: 1) Bottom-
Up method, which may be implemented by WSF=⇒SSF=⇒PSF, is similar to
sub-structure in [15]. Bottom-Up method can depict parts of objects well, and
is particularly efficient to deal with occlusion and share weak features. But it
needs more time to discard negatives. 2) Top-Down method, which may be im-
plemented by containing only one stage, PSF, gives the last decision directly.
Top-Down method can discard negatives fast. But it is not easy to share fea-
tures in Top-Down method.

In order to take advantages of both Bottom-Up method and Top-Down method,
three level SFs, WSF, SSF and PSF, are integrated in an embedded structure
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Fig. 6. An example of ISF. (See Section 4.3 for details.)

through five stages, PSF=⇒WSF=⇒PSF=⇒SSF=⇒PSF, to form an ISF for both
pedestrian detection and articulated human detection. Here the three PSFs are
different sets of detectors in different stages. PSF in the 1st stage is to discard neg-
atives quickly. PSF in the 3rd stage is to integrate the detection results of WSF
and to provide passed words for SSF. PSF in the 5th stage gives the final decision,
positive or negative. Missing tolerances of words are applied when two consecu-
tive stages of SFs are integrated. A detector in a SF will be involved only if missing
words are within tolerance. A testing sample is positive if at least one detector in
PSF gives a positive decision at last. The learning algorithm for ISF is sum-
marized in Table 1.

An example of ISF is shown in Fig. 6. An illustrative “object” is shown in
(a) which consists of six words. The missing tolerance for each word, sentence
and paragraph is assumed to be zero. (h) (i) and (j) show WSF, SSF and PSF
respectively, where detectors in WSF and SSF are organized by set mothod and
PSF are organized by tree method. A test window (b) is processed by ISF with
the flow shown in (c)-(g). For example, WSF (W1, W2, W3, W4, W5, W6) are
applied from (c) to (d) where the used detectors are W1, W2, W3, W4, W5
and W6. Red/Blue means that a detector gives positive/negative decision.

Table 1. Learning algorithm for ISF

Input: Word set W; Sentence set S; Paragraph set P; Sample set R = {(xi, yi)|xi ∈ χ, yi =
±1} where χ is instance space; Five stages of ISF, PSF=⇒WSF=⇒PSF=⇒SSF=⇒PSF.
Initialize: Each detector in each stage of ISF is NULL.
For each stage ψ in ISF (ψ is WSF, SSF or PSF)

* The structure set for ψ is denoted as ζ (ζ is W, S or P)
* For each structure φ in ζ

– Select R
′

(R
′ ⊆ R). Enumerate each sample x ∈ R. The passed word set Ω of x is

inferred by all the previous stages. If missing words are within tolerance, add x into R
′
.

– Learn detector ρφ on sample set R
′

by algorithm in [1] and add ρφ to ψ.
Output: The learned ISF.
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(a)

(b)

(c)

Fig. 7. Positives for pedestrian detection and articulated human detection. Images in

(a) and (b) are from INRIA dataset and our collected dataset respectively. Both (a)

and (b) are for pedestrian detection. (c) shows positives of articulated human.

The final decision is that the test window (b) is positive and its structure is the
structure associated to P2 which is shown in (j).

5 Experiment

Experiments are done for partially occluded pedestrian detection and articu-
lated human detection in cluttered backgrounds. We compare our ISF, which
contains five stages, PSF=⇒WSF=⇒PSF=⇒SSF=⇒PSF with other state-of-
the-art algorithms. In our experiments, the missing tolerance of words is set to 0
for PSF=⇒WSF and PSF=⇒SSF for both pedestrian detection and articulated
human detection, while for WSF=⇒PSF and SSF=⇒PSF it is set to 1 for pedes-
trian detection and to 2 for articulated human detection. During the training
for cascade classifiers, the detection rate is set to 0.998 and false positive rate
is set to 0.33 for each layer of the detector associated to each structure, word,
or sentence or paragraph, which guarantees that the ISF achieves high detec-
tion rate and low false positive rate. All experiments are conducted on an Intel
Core(TM)2 2.33GHz PC with 2G memory.

5.1 Occluded Pedestrian Detection

INRIA [5] dataset is a popular public dataset for pedestrian detection. The
database has 2416 64×128 people images for training and 1126 64×128 for test-
ing. They are downscaled to 24×58 in our experiment. Some positives are shown
in Fig. 7 (a). We compare ISF with other state-of-the-art algorithms by False Pos-
itive Per Window (FPPW). The ROC curve is given in Fig. 8, in which the x-axis
is False Positives Per Window (FPPW), that is, FalsePos/(TrueNeg+FalsePos);
and the y-axis is the detection rate, that is, TruePos/(FalseNeg+TruePos) or
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1-missing rate. The result achieved by ISF improves the whole body detector [1]
about 5% at FPPW=10−6 which is comparable to the results achieved in [18][19].

ETHZ [20] dataset consists of four video sequences (640× 480 pixels at 15
frames/second), one for training and three for testing and only the three testing
ones are used in our experiment. We collect 18474 positive samples of 24 × 58
for learning a robust ISF, which contains 9594 front/rear, 4440 left profile and
4440 right profile samples. Some positives are shown in Fig. 7 (b). We compare
ISF with the methods in [20] and [18] by False Positive Per Image (FPPI) which
is a better criterion for evaluating detector performance pointed out in [21]. In
order to show the efficiency and effectiveness of ISF, we also train one stage PSF
which is a Top-Down method mentioned in Section 4.3 on the same positive set.

When the intersection between a detection response and a ground-truth box is
larger than 50% of their union, we consider it to be a successful detection. Only
one detection per annotation is counted as correct. We obtain the ROC curves
and some results shown in Fig. 9. Our ISF achieves better results than [20] and
[18] on the first two sequences (Seq.#1 and Seq.#2), but the method in [18]
achieves better results than ours on the third sequence (Seq.#3). The main
reason is perhaps due to significant light changes in Seq.#3 for which our used
features (APCFs) are somewhat sensitive. After the comparison of ISF and PSF,
we can find that ISF achieves more accurate results with less false positives than
PSF in general. The average cost time of ISF on ETHZ dataset is about 1.4s
but that of PSF is about 2.6s. So ISF is much faster than PSF.

Furthermore, there are two things should be mentioned: One is that we do not
use any additional cues like depth maps, ground-plane estimation, and occlusion
reasoning, which are used in [20]. The other one is that there are some problems
existed in ETHZ dataset which may affect the evaluation result as shown in
Fig. 10. Some shadows of pedestrian are regarded as non-positives which are
very hard for any pedestrian detector to identify and some pedestrians no longer
exist in a scene are still labeled as positives.

More experiment results on USC SET B [3], Dataset S1 of PETS2009 [22]
and our own collected dataset are given in Fig. 12.

5.2 Articulated Human Detection

We have labeled 11482 positive samples of 58 × 66 for articulated human de-
tection. Typical positives are shown in Fig. 7 (c). Since currently there is no
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Fig. 9. Evaluation of ISF on ETHZ dataset

Shadows NoHuman

Fig. 10. Some groundtruths of ETHZ (in the 1st and 3rd columns) and our results (in

the 2nd and 4th columns)

public available dataset for articulated human detection, we have labeled 170
images of 816×612 size with 874 humans for evaluation. Most of them are doing
sports (playing football or basketball), so their poses differ a lot and are complex
enough.

To compare with ISF, we have also trained PSF. The ROC curve and some
results are shown in Fig. 11. This figure shows that ISF achieves more accurate
results with less false positives than PSF. The average cost time of ISF is 1.8s
and that of PSF is 9.2s. ISF is much faster than PSF.

6 Discussion

Feature sharing. One holistic detector is rather limited to handle occlusions of
pedestrians. It is also difficult or impractical to train a usable holistic detector
for articulated human due to the diversity. In our experiment, we show that our
proposed SF approach is faster and more accurate than the approaches in which
part detectors or specific poses detectors are fused simply. The intrinsic reason
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Whole-Body Head-Shoulder Left-Body Right-Body Combined ResultsUpper-Body

Fig. 12. Results of pedestrian detection on USC SET B(1st line), our own collected

dataset (2nd line) and Dataset S1 of PETS 2009 (3rd line)

lies on feature sharing. To explicitly define feature sharing, we first suppose two
regions A and B, and region C is the shared area of A and B. Feature sharing
means that A and B share the weak features in C. In our designed hierarchical
object structures, a significant advantage of words, sentences and paragraphs is
that they provide the potential to share weak features. For example, the weak
features in head-shoulder can be shared with upper-body and whole-body.
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Take the detectors learned for pedestrian detection as an example. There are
13417 weak features in PSF without any feature sharing, while there are 10714
weak features in ISF with feature sharing. Mainly due to the number of features
in ISF is less than that in PSF, our ISF is faster than PSF. Feature sharing is
of great benefit to our SF indeed. The experiment in the previous section also
proves that ISF is more accurate than PSF, which in other words means that
our SF approach has explored more discriminative features.

Relation with discriminative models (DM) and generative models
(GM). We have proposed hierarchical structures and SF for object detection.
In one hand, the detectors are learned by Boosting algorithm. From this point,
our model is of DM. Detectors of different parts or poses in a traditional DM
are independent but they are related to each other in our model. In another
hand, the proposed hierarchical structures formulate one kind of object. From
this point, our model is of GM. In fact, we have fused the DM of parts and GM
of body structure in our approach.

7 Conclusion

In this paper, we present a SF approach to human detection. The three level
SFs are WFS, SSF and PSF which correspond to a hierarchical structure of
object, words, sentences and paragraphs. The approach can deal with occlusions
and non rigid object detection. In a sense, it is a general framework for object
(rigid/non rigid) detection based on words (/parts/regions). Experiment results
on pedestrian detection in highly crowded scenes and articulated human detec-
tion demonstrate its effectiveness and efficiency.

There are some further works to be done to improve our SF approach. Cur-
rently words and sentences of an object are manually designed according to
heuristic knowledge. It is hard to generalize this method for more complex ob-
jects therefore automatically learning of words and sentences is expected in the
future.

Although the approach is proposed for human detection, we argue that it can
be easily extended to other object detection problem, and also to multiple object
categorization problems.
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Abstract. In this paper, we propose a method for detecting humans in

imagery taken from a UAV. This is a challenging problem due to small

number of pixels on target, which makes it more difficult to distinguish

people from background clutter, and results in much larger searchspace.

We propose a method for human detection based on a number of geo-

metric constraints obtained from the metadata. Specifically, we obtain

the orientation of groundplane normal, the orientation of shadows cast

by humans in the scene, and the relationship between human heights

and the size of their corresponding shadows. In cases when metadata is

not available we propose a method for automatically estimating shadow

orientation from image data. We utilize the above information in a geom-

etry based shadow, and human blob detector, which provides an initial

estimation for locations of humans in the scene. These candidate loca-

tions are then classified as either human or clutter using a combination

of wavelet features, and a Support Vector Machine. Our method works

on a single frame, and unlike motion detection based methods, it by-

passes the global motion compensation process, and allows for detection

of stationary and slow moving humans, while avoiding the search across

the entire image, which makes it more accurate and very fast. We show

impressive results on sequences from the VIVID dataset and our own

data, and provide comparative analysis.

1 Introduction

In recent years improvements in electronics and sensors have allowed for devel-
opment and deployment of Unmanned Aerial Vehicles (UAVs) on greater and
greater scale, in a wide variety of applications, including surveillance, military,
security, and distaster relief operations. The large amount of video data obtained
from these platforms, requires automated video analysis tools, whose capabilities
must include object detection, tracking, classification and finally scene and event
analysis. While a number of methods and systems exist for detecting and track-
ing vehicles in UAV video (e.g. [1] [2]), the same cannot be said about human
detection.

State of the art human detection methods such as [3] [4] [5] [6] [7], are de-
signed to deal with datasets containing imagery taken from the ground, either
in surveillance or consumer imagery scenario. People in that type of imagery are

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part VI, LNCS 6316, pp. 252–265, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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fairly large (e.g. 128x64 in the case of INRIA dataset). Also the camera in such
scenarios is generally oriented with the ground plane. In our case, the humans
are much smaller as seen in Figure 1. On average they are about 24x14 pixels
in size, and have no visible parts, this makes part detection methods such as [4]
and [6] inapplicable. Bag of feature models such as [5] also have great difficulty
due to a very small number of interest points that can be found. Another issue
is that since the camera is mounted on a moving aerial platform, the imaged
size and visible distinguishing features of a person can be reduced even further
when the camera is at a high elevation angle. Also, the moving aerial platform
introduces a large number of possible orientations at which a human can appear
in the scene. Due to lack of good distinguishing features of the human body in
aerial imagery, a brute force image search generates many false detections, and
is also quite slow. Hence, previous two works that specifically deal with aerial
imagery ([8] and [9]), opt to constrain the search with preliminary processing.

A very popular approach is to constrain the search using motion as in [10], or
Xiao et. al. [8]. They assume that only moving objects are of interest, and adopt
a standard aerial surveillance pipeline. First, they compensate for global camera
motion, then they detect moving objects, and finally classify each moving object
as either a person or vehicle using the combination of histograms of oriented
gradients (HOG) and a support vector machine proposed in [3]. The problem
with the motion constraint, is that since people are viewed from far away, their
motion is very subtle and difficult for the system to pick up. Of course, if people
are stationary, then the system cannot detect them at all. If there are shadows
present in the scene, then a number of additional problems arise. It is difficult
to localize the human, since its shadow is part of the moving blob, which also
makes the blobs more similar to each other making it more difficult to track
them. See Figure 8 for examples of these failures.

Miller et. al. avoid the moving object assumption [9], by assuming that at least
one Harris corner feature point will be detected on the human in each frame.
This generates a large number of candidates which are then suppressed through
tracking of the Harris corners in global reference frame. Each corner is then
classified using a OT-MACH filter. If a track contains more human classifications
than 20% of total track length, all points within track are labelled as human.
The problem with the above approach is the large number of potential human
candidates; they report 200 for a 320x240 image, and the need for a sophisticated
tracker to filter them out.

We propose a very different approach. In particular we constrain the search by
assuming that humans are upright shadow casting objects. We utilize directed
low level computer vision techniques based on a set of geometric scene constraints
derived from the metadata of the UAV platform. Specifically, we utilize the
projection of the ground plane normal to find blobs normal to the ground plane,
these give us an initial set of potential human candidates. Similarly we utilize the
projection of shadow orientation to obtain a set of potential shadow candidates.
We then obtain a refined set of human candidates, which are pairs of shadow
and normal blobs that are of correct geometric configuration, and relative size.
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Fig. 1. On the left, are frames from some of the sequences, also examples of humans.

The humans are only around 24x14 pixels in size, and are difficult to distinguish from

the background. On the right, still image shadow detection using techniques from [11],

pixels belonging to humans, and large parts of background were incorrectly labelled as

gradient that belongs to shadow.

This is once again done based on projected directions, as well as the ratio of
assumed projected human height and projected shadow length.

Once the refined set of candidates has been obtained, we extract wavelet
features from each human candidate, and classify it as either human or clutter
using a Support Vector Machine (SVM). Note that the main idea behind our
geometric constraints is to improve the performance of any detection method
by avoiding full frame search. Hence other models, features, and classification
schemes suitable for aerial imagery can be used. Additionally, our method can be
used to alleviate object localization problems associated with motion detection
in presence of strong shadow.

The advantage of our constraints is that they do not require motion detection,
registration, and tracking, which are time consuming, and can have their own
problems. Additionally our method does not suffer degraded performance in
presence of strong shadows. A slight disadvantage is that to get the full benefit,
a strong shadow is necessary. However the initial set of candidates which we
generate without using the shadow still performs better than brute force full-
frame search (see section 4).

In absence of metadata, a static image shadow detector can be used to find
the shadows in the image. For this purpose we extend the geometry detection
method to work as a novel shadow detection method described in section 3.3.
We found that standard shadow detection methods such as [11] and [12] perform
poorly on real data (see Figure 1). The methods are based on obtaining illumi-
nation invariant (shadow-less) images, and comparing edges between these and
original images. Since the humans and their shadows look similar in our data,
the illumination invariant images would remove parts of shadows, humans and
strong background gradients.

The main contribution of this paper is a novel method constraining human
detection in aerial video, as well as a shadow detection method. In future work
we will extend it to other object types. Our use of shadow is somewhat coun-
terintuitive, since instead of treating it as a nuisance, we actually use it to help
with the detection.
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2 Ground-Plane Normal and Shadow Constraints

2.1 Metadata

The imagery obtained from the UAV has the following metadata associated
with most of the frames. It has a set of aircraft parameters latitude, longitude,
altitude, which define the position of the aircraft in the world, as well as pitch,
yaw, roll which define the orientation of the aircraft within the world. Metadata
also contains a set of camera parameters scan, elevation, twist which define the
rotation of the camera with respect to the aircraft, as well as focal length, and
time. We use this information to derive a set of world constraints, and then
project them into the original image.

2.2 World Constraints

The Shadow is generally considered to be a nuisance in object detection, and
surveillance scenarios. However, in the case of aerial human detection, the shadow
information augments the lack of visual information from the object itself, es-
pecially in the cases where the aerial camera is close to being directly overhead.
We employ three world constraints.

– The person is standing upright perpendicular to the ground plane.
– The person is casting a shadow.
– There is a geometric relationship between person’s height and the length of

their shadow. See Figure 2.

Given latitude, longitude, and time, we use the algorithm described in [13], to
obtain the position of the sun relative to the observer on the ground. It is defined
by the azimuth angle α (from the north direction), and the zenith angle γ (from
the vertical direction). Assuming that the height of the person in the world
is k we find the length of the shadow as l = k

tan(γ−90) , where γ is the zenith
angle of the sun. Using the azimuth angle α we find the groundplane projection
of the vector pointing to the sun, and scale it with the length of the shadow
S = 〈l cos(α), l sin(α), 0〉.

2.3 Image Constraints

Before we can use our world constraints for human detection, we have to trans-
form them from the world coordinates to the image coordinates. To do this we
use the metadata to obtain the projective homography transformation that re-
lates image coordinates to the ground plane coordinates. For an excellent review
of the concepts used in this section see [14].

We start by converting the spherical latitude and longitude coordinates of the
aircraft to the planar Universal Transverse Mercator coordinates of our world
Xw = east, and Yw = north. Next, we construct a sensor model that transforms
any image point p′ = (xi, yi) to the corresponding world point p = (Xw, Yw, Zw).
We do this by constructing the following sensor transform.

Π1 = T a
ZwT e

XwT n
Y wRy

ZwRp
XwRr

Y wRs
ZaRe

XaRt
Y a, (1)
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Fig. 2. Left, the sensor model Π1 maps points in camera coordinates into world co-

ordinates (since the transformation between image and camera coordinates is trivial

we do not show it in the image).X corresponds to East direction, Y to North, Z to

vertical direction. Vector S is pointing from an observer towards the sun along the

ground. It is defined in terms of α - azimuth angle between northern direction and the

sun. Zenith angle γ is between vertical direction and the sun. The height of a human

is k, and the length of the shadow is l. We place the image plane into the world, and

raytrace through it to find the world coordinates of the image points (we project from

the image plane to the ground plane). We compute a homography H1 between image

points and their corresponding world coordinates on groundplane. Right, illustrates

how we obtain the projection of the groundplane normal in the original image. Using

a lowered sensor model Π2 we obtain another homography H2, which maps points in

camera coordinates to a plane above the ground plane. Mapping a world point pc1

using H1, and H2, gives two image points p′
c1, and p′

c2. Vector from p′
c1 to p′

c2 is the

projection of the normal vector.

where T a
Zw, T e

Xw, and T n
Y w are translations for aircraft position in the world

- altitude, east, and north respectively. Ry
Zw, Rp

Xw, and Rr
Y w are rotations for

the aircraft - yaw, pitch and roll respectively. Rs
Za, Re

Xa and Rt
Y a are rotation

transforms for camera - scan, elevation, and tilt, respectively.
We transform 2D image coordinates p′ = (xi, yi) into 3D camera coordinates

p̂′ = (xi, yi,−f), where f is the focal length of the camera. Next, we apply the
sensor transform from equation 1, and raytrace to the ground plane (see Figure
2 (a)).

p = RayTrace(Π1p̂
′). (2)

Ray tracing requires geometric information about the environment, such as the
world height at each point, this can be obtained from the digital elevation map
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of the area - DEM. In our case, we assume the scene to be planar, and project
the points to the ground plane at zero altitude Zw = 0.

For any set of image points p′ = (xi, yi), raytraycing gives a corresponding
set of ground plane point p = (Xw, Yw, 0). Since we are assuming only one
plane in the scene we only need correspondences of four image corners. We then
compute a homography, H1, between the two sets of points, such that p = H1p′.
Homography,H1, will orthorectify the original frame, and align it with the North
Direction. Orthorectification removes perspective distortion from the image and
allows the measurement of world angles in the image. We use the inverse of the
homography H−1

1 to project the shadow vector defined in world coordinates into
the image coordinates. (see Figure 4 (a)).

S′ = SH−1
1 . (3)

Now, we obtain the projected ground plane normal (refer to Figure 2 (b)). We
generate a second sensor model, where we lower the camera along the normal
direction Zw, by k, which is the assumed to be a person’s height.

Π2 = (T a
Zw − [I |k])T e

XwT n
Y wRy

ZwRp
XwRr

Y wRs
ZaRe

XaRt
Y a. (4)

Using the above sensor model Π2 we obtain a second homography H2 using the
same process that was used for obtaining H1. We now have two homographies,
H1 maps the points from the image to the ground plane, and H2 maps the
points from the image to a virtual plane parallel to the ground plane that is
exactly k units above the ground plane. We select the center point of the image
p′

c1 = (xc, yc), and obtain its ground plane coordinates pc1 = H1p′
c. Then we

map it back to the original image using H2, p′
c2 = H−1

2 pc. The projected normal
is then given by

Z′ = p′c2 − p′c1. (5)

We compute the ratio between the projected shadow length and the projected
person height as

η =
|S′|
|Z′| . (6)

3 Human Detection

3.1 Constraining the Search

In order to avoid the search over the entire frame, the first step in our human
detection process is to constrain the search space of potential human candidates.
We define the search space as a set of blobs oriented in direction of shadow,
and direction of normal. To do so we utilize the image projection of the world
constraints derived in the previous section - the projected orientation of the
normal to the ground plane Z′, the projected orientation of the shadow S′, and
the ratio between the projected person height, and projected shadow length η.
See Figure 3.
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Fig. 3. This figure illustrates the pipeline of applying image constraints to obtain an

initial set of human candidates

Given a frame I, we compute gradient oriented in the direction of the shadow
by applying a 2D Gaussian derivative filter,

G(x, y) = cos(θ)2xe−
x2+y2

σ2 + sin(θ)2ye−
x2+y2

σ2 , (7)

θ is the angle between the vector of interest and the x axis,and take its absolute
value. To further suppress gradient not oriented in the direction of the shadow
vector we perform structural erosion along a line in the direction of the shadow
orientation:

|∇IS′ | = erode(∇I,S′). (8)

We obtain |∇IZ′ | using the same process. Next, we smooth the resulting gradient
images with an elliptical averaging filter whose major axis is oriented along the
direction of interest:

IB
S′ = |∇IS′ | ∗GS′ , (9)

where BS′ is an elliptical averaging filter, whose major axis is oriented along the
shadow vector direction, this fills in the blobs. We obtain IB

Z′ using GZ′ . Next,
we apply an adaptive threshold to each pixel to obtain shadow and normal blob
maps.

MS′ =
{

1 if IB
S′ > t ·mean(IG

S′)
0 otherwise, (10)

See Figure 4 for resulting blob maps overlayed on the original image. We obtain
MZ′ using the same method. From the binary blob maps we obtain a set of
shadow and object candidate blobs using connected components. Notice that
a number of false shadow and object blobs were initially detected, and later
removed.

3.2 Exploiting Object Shadow Relationship

The initial application of the constraints does not take into account the relation-
ship between the object candidates and their shadows, and hence generates many
false positives. Our next step is to relate the shadow and human blob maps, and
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(a) (b) (c)

s′Z′
2.284

Fig. 4. (a) shows shadow blob map MS′ (shown in red), and normal blob map MZ′

(shown in green), overlayed on the original image. Notice there are false detections at

the bottom of the image. Yellow arrow is the projected sun vector S′, the projected

normal vector z′ is shown in green, and the ratio between the projected normal and

shadow lengths is 2.284 (b) shows example candidates being refined. A valid configu-

ration of human and shadow blobs (top) results in an intersection of the rays, and is

kept as a human candidate. An invalid configuration of blobs (bottom) results in the

divergence of the rays, and is removed from the set of human candidates. (c) shows

refined blob maps after each normal blob was related to its corresponding shadow blob.

to remove shadow-human configurations that do not satisfy the image geometry
which we derived from the metadata. We search every shadow blob, and try to
pair it up with a potential object blob, if the shadow blob fails to match any
object blobs, it is removed. If an object blob never gets assigned to a shadow
blob it is also removed.

Given a shadow blob, M i
S′ , we search in an area around the blob for a potential

object blob M j
Z′ . We allow one shadow blob to match to multiple normal blobs,

but not vice versa,since the second case is not very likely to be observed. The
search area is determined by major axis lengths of M i

S′ and M j
Z′ . For any object

candidate blob, M j
Z′ that falls within the search area, we ensure that it is in the

proper geometric configuration relative to the shadow blob (see Figure 4 (b))
as follows. We make two line segments li, and lj, each defined by two points as
follows li = {ci, ci+QS′}, and lj = {cj, cj−QZ′}. Where ci, and cj are centroids
of shadow and object candidate blobs respectively, and Q is a large number. If
the two line segments intersect, then the two blobs exhibit correct object shadow
configuration.

We also check to see if the lengths of the major axes of M i
S′ and M j

Z′ conform
to the projected ratio constraint η. If they do then we accept the configuration.

Depending on the orientation of the camera in the scene, it is possible for
the person and shadow gradients to have the same orientation. In that case the
shadow and object candidate blobs will merge, the amount of merging depends
on the similarity of orientations S′ and Z′. Hence, we accept the shadow object
pair if



260 V. Reilly, B. Solmaz, and M. Shah

M i
S′ ∩M j

Z′

M i
S′ ∪M j

Z′
> q(1 − abs(S′ · Z′)), (11)

where q was determined empirically. For these cases the centroid of the person
candidate blob is not on the person. Therefore for these cases we perform local-
ization, where we obtain a new centroid by moving along the shadow vector S′,
as follows

c̃ = c+
m

2
(1− 1

η
)

S′

‖S′‖ , (12)

where m is the length of the major axis of shadow blob M i
S′ .

3.3 Constraints without Metadata

Having all of the metadata, quickly provides a set of strict constraints for a
variety of camera angles, and time of day. However, there may be cases when
the metadata is either unavailable, or worse, is incorrect. In such cases it is
acceptable to sacrifice some of the generality, and computation time to obtain
a looser set of constraints that still perform well. Assuming that humans are
vertical in the image, and ignoring the ratio between the size of humans and
their shadows, we can still exploit the orientation of the shadow in the image, as
well as the relationship between humans and their shadows, as described below.

We find the orientation of the shadow in the image in the following manner. We
quantize the search space of shadow angle θ between 0◦ and 360◦, in increments
of d (we used 5 in our experiments). Keeping the normal orientation fixed, and
ignoring shadow to normal ratio, we find all human candidates in image I for
every orientation θ using technique described in sections 3.1 & 3.2 (see Figure
5). We track the candidates across different θ. Similar angles θ will detect the
same human candidates. Therefore, each human candidate Ci has a set Θi for
which it was detected, and a set Oi which is a binary vector, where each element
corresponds to whether the shadow and human blobs overlapped. Then, the set
of orientations for which it was detected due to overlap is Θo

i , and the set of
orientations for which it was detected without overlap is Θō

i (see Figure 5). We
remove any candidate which has been detected over less than p orientations, since
a human is always detected as a candidate if shadow and normal orientations
are similar, and the resulting blobs overlap according to equation 11 (as in 5 (b)
& (f)). Here p depends on quantization, we found that it should encompass at
least 70◦.

If there are two or more humans casting shadows on planes parallel to the
ground plane (poles will work for the task as well), their orientations will be
consistent. We find the optimal shadow orientation θ̂ by treating each Θō

i as a
sequence and then finding the longest common consecutive subsequence β among
all Θō. Subsequence β must span at least 20◦ but no more than 40◦. Finally,
the optimal orientation θ̂ = mean(β). If we cannot find such a subsequence
then there are either no shadows, or the orientation of the shadow is the same
as the orientation of the normal, so we set θ̂ to our assumed normal. Figure 5
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Fig. 5. (The flow chart shows our method for finding optimal shadow orientation for

a given image in the absence of metadata. Top row shows human candidate responses

obtained for different shadow orientations. A human candidate is then described by a

vector of orientations for which it was detected, and a binary overlap vector. Optimal

orientation θ̂ is the average of longest common consecutive non-overlapping subse-

quence of orientations among all human candidates. The image on the rights shows

refined human candidate blobs for an automatically estimated shadow orientation of

35◦, without metadata. Corresponding metadata derived value of θ for this frame is

46.7◦. Blobs that were detected using metadata can be seen in fig. 4.

shows an example frame for which human candidates, were detected using the
automatically estimated shadow orientation. There is a 10◦ difference between
estimated orientation, and orientation derived from the metadata. This is the
same frame as in Figure 4, qualitative examination of the shadow blobs, seems
to indicate that the estimated orientation is more accurate than the one derived
from the metadata, however the computation time of obtaining it is much larger.
In practice this issue can be dealt with in the following manner. The angle can
be estimated in the initial frame, and in subsequent frames it can be predicted
and updated using a Kalman filter.

3.4 Object Candidate Classification

Wavelets have been shown to be useful in extracting distinguishing features from
imagery. So in the final step of our method, we classify each object candidate as
either a human or non-human using a combination of wavelet features and SVM
(Figure 6). We chose wavelet features over HOG because we obtained higher
classification rate on a validation set. We suspect that this is due to the fact
that in the case of HOG, the small size of chips does not allow for the use of
optimal overlapping grid parameters reported in [3], giving too coarse sampling.
We apply Daubechies 2 wavelet filter to each chip, where the low-pass, and
high-pass filters for a 1-D signal are defined as

φ1(x) =
√

2
3∑

k=0

ckφ0(2x− k), ψ1(x) =
√

2
3∑

k=0

(−1)k+1c3−kφ0(2x− k), (13)
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Fig. 6. Object candidate classification pipeline. Four wavelet filters (LL, LH, HL, HH)

produce scaled version of original image, as well as gradient like features in horizontal

vertical and diagonal directions. The resulting outputs are vectorized, normalized, and

concatenated to form a feature vector. These feature vectors are classified using SVM.
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√
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), are the Daubechies 2 wavelet

coefficients, and φ0 is either row or column of original image, and . In the case
of the 2D image, the 1D filters are first applied along x, and then y directions.
This gives to four outputs LL, LH , HL, HH . Where LL is a scaled version of
the original image, and LH , HL, and HH , correspond to gradient like features
along horizontal, vertical and diagonal directions. We used only one level, since
adding more did not improve the performance. We vectorize the resulting out-
puts, normalize their values to be in the [0, 1] range, and concatenate them into
a single feature vector. We train a Support Vector Machine [15] on the result-
ing feature set using the RBF kernel. We use 2099 positive and 2217 negative
examples w × h: 14× 24 pixels in size.

During the detection stage, we compute the centroid of the remaining object
candidate blobs M i

Z′ , extract a w×h chip around each centroid, extract wavelet
features, and classify the resulting vector using SVM. If focal length data is avail-
able then the chip size could be selected automatically based on the magnitude,
and orientation of the projected normal |Z′|. Note, that this would amount to
the use of absolute scale information, which would require a minor change in the
geometry portion of the method to account for the effect of perspective distor-
tion. The change amounts to computation of multiple shadow, and normal vector
magnitudes for different regions of the image. However, since the sequences in
the VIVID 3 dataset do not have correct focal length information, the size of
the people in the images is approximately the same, and there is generally little
perspective distortion in aerial video, we selected the w × h to be equal to the
size of chips in the training set.

4 Results

We performed both qualitative and quantitative evaluation of the algorithm. Qual-
itative evaluation is shown on sequences from VIVID3 and 4 as well as some of
our own data. The data contains both stationary and moving vehicles and peo-
ple, as well as various clutter in the case of VIVID4. Vehicles cast a shadow, and
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Fig. 7. SVM confidence ROC curves for sequences 1 (dashed-dotted), 2 (dashed), and

3 (solid). Our Geometry based method with shadow, object-shadow relationship re-

finement, and centroid localization is shown in red. Yellow curves are for our geometry

based method without the use of object-shadow relationship refinement, or centroid

localization. A standard full frame detector (HOG) is shown in blue. Green shows re-

sults obtained from classifying blobs obtained through registration, motion, detection,

and tracking, similar to [8]. Black curves are for our modified implementation of [9],

which uses Harris corner tracks.
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Fig. 8. (a) (b) and (c) compare motion detection (top row), and our geometry based

method (bottom row). (a) Human is stationary and was not detected by the motion

detector. (b) Moving blob includes shadow, the centroid of blob is not on the person.

(c) Two moving blobs were merged by the tracker because of shadow overlap, centroid

is not on either person. By contrast our method correctly detected and localized the

human candidate (green). (d) and (e) compare geometry constrained human detection,

and full frame HOG detection. Human candidates that were discarded by the wavelet

classifier as clutter are shown in magenta, candidates that were classified as human are

shown in black. Unconstrained full frame detection (e) generates many false positives.
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are usually detected as candidates, these are currently filtered out in the classi-
fication stage, however we plan to extend the geometry method for vehicle de-
tection as well. For quantitative evaluation we evaluated our detection methods
on three sequences from the DARPA VIVID3 dataset of 640x480 resolution, and
compared the detection against manually obtained groundtruth. We removed the
frames where people congregated into groups. We used the following evaluation
criteriaRecall vs False Positives Per Frame (FPPF). Recall is defined as TP

TP+FN ,
where FN is number of false negatives, TP is the number of true positives in the
frame. To evaluate the accuracy of the geometry based human candidate detector
method, we require the centroid of the object candidate blob to be within w pixels
of the centroid blob, where w is 15. We did not use the PASCAL measure of 50%
bounding box overlap, since in our dataset the humans are much smaller, and make
up a smaller percentage of the scene. In INRIA set inroduced in [3], an individual
human makes up 6% of the image, in our case the human makes up about 0.1%.
Under these circumstances small localization errors, result in large area overlap dif-
ference, hence we feel that the centroid distance measure is more meaningful for
aerial data. Figure 7 compares ROC curves for our geometry based method with
and without the use of object-shadow relationship refinement, and centroid local-
ization, conventional full frame detection method (we used HOG detection binaries
provided by the authors), and standard motion detection pipeline of registration,
detection, and tracking. Figure 8 shows qualitative detection results. Conventional
full frame detection is not only time consuming, (our MATLAB implementation
takes several hours per 640x480 frame), but it also generates many false positives.
By contrast preprocessing the image using geometric constraints to obtain human
candidates, is not only much faster (6 seconds per frame), but gives far better re-
sults. Geometric constraints with the use of shadow based refinement, and centroid
localization provide the best performance. However even without these additional
steps, the geometric constraint based only on the projection of the normal still
give superior results to full frame, as well as motion constrained detection. Mo-
tion based detection suffers from problems discussed in section 1, and shown in
Figure 8. Which is why the green ROC curves in Figure 7 are very short. We im-
plemented a part of [9] method, where instead of using the OT-Mach filter, we used
our wavelet SVM combination for classification. These ROC curves are shown in
black. We suspect that the poor performance is caused by poor tracking results.
They simply used a greedy approach based on euclidian distance between the cor-
ners without any motion model. Therefore if a track contains corners belonging to
both people and background, the 20% track length classification heuristic would
introduce many false positives.

5 Conclusions

We proposed a novel method for detecting pedestrians in UAV surveillance im-
agery. This is a difficult problem due to very small size of humans in the image,
and a large number of possible orientations. Our method takes advantage of the
metadata information provided by the UAV platform to derive a series of geomet-
ric constraints, and to project them into the imagery. In cases when metadata is
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not available we proposed a method for estimating the constraints directly form
image data. The constraints are then used to obtain candidate out of plane ob-
jects which are then classified as either human or non-human. We evaluated the
method on challenging data from the VIVID 3 dataset, and obtained results su-
perior to both full frame search, motion constrained detection, and Harris tracks
constrained detection [9].
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Abstract. We address the problem of large scale place-of-interest recog-

nition in cell phone images of urban scenarios. Here, we go beyond what

has been shown in earlier approaches by exploiting the nowadays often

available 3D building information (e.g. from extruded floor plans) and

massive street-view like image data for database creation. Exploiting van-

ishing points in query images and thus fully removing 3D rotation from

the recognition problem allows then to simplify the feature invariance to

a pure homothetic problem, which we show leaves more discriminative

power in feature descriptors than classical SIFT. We rerank visual word

based document queries using a fast stratified homothetic verification

that is tailored for repetitive patterns like window grids on facades and

in most cases boosts the correct document to top positions if it was in

the short list. Since we exploit 3D building information, the approach

finally outputs the camera pose in real world coordinates ready for aug-

menting the cell phone image with virtual 3D information. The whole

system is demonstrated to outperform traditional approaches on city

scale experiments for different sources of street-view like image data and

a challenging set of cell phone images.

1 Introduction

In recent years, due to the ubiquitousness of cell phones and cameras, the demand
for real-time localization and augmentation of virtual (3D) information arose and
several systems have been proposed to solve the location recognition problem
[3,1,2,6,8,9,10] or the closely related image retrieval problem [4,5,16,17,18]. A
commonly used scheme that we also follow extracts local features (e.g. [12,11])
from a collection of reference images, vector-quantizes the feature descriptors to
visual words and stores images as documents of these words in a database. Then
for a query image techniques from web text search are applied to find the closest
documents in the database, followed by a reranking of the result list based on
geometric considerations.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part VI, LNCS 6316, pp. 266–279, 2010.
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We specifically look at the problem of place-of-interest recognition and camera
pose estimation in urban scenarios, where we want to see how far we can get
with visual information only. However, in contrast to general object recognition
or image retrieval scenarios that cannot assume much about geometry and image
content, we propose a tailored solution to the localization problem from cell
phone images in a city. Here, often

– massive amounts of calibrated street level data are available for training1

– rough 3D city models exist2

– facades are planar and structures are vertically and horizontally aligned
– the camera’s focal length is known approximately
– repetitive architectural elements appear that make 1-to-1 matching difficult

By projecting the offline training views to the surfaces, we can completely fac-
torize out rotation from the recognition problem (in photometric matching and
geometric verification). This enables the storage of gravity-aligned orthophotos
(facade parts) in the database as opposed to densely sampling the space of all
possible viewing poses. Query images can be transformed accordingly by finding
the vertical and horizontal vanishing points of the given building. For recognition,
matching and verification this reduces the problem to finding purely homothetic
transformations, i.e. a scale and 2D offset on the building’s surface. We show
that this increases the discriminative power as compared to previous approaches
on the one hand and allows to replace the computationally expensive RANSAC
verification with a stratified homothetic parameter estimation, i.e. we perform
three subsequent 1D estimates for distance, horizontal and vertical offset with
respect to the building surface. Here the algorithm was designed in a way that
e.g. window-to-window matches support the correct distance estimate through
their scale ratio even if the match is from a different window instance on the
facade’s window grid. After having obtained the distance from the facade, hori-
zontal and vertical offsets can be computed in the same way and we observe that
using this reranking strategy is very effective in boosting the correct document
to the first positions of the tested short list. As a side effect, we obtain the 6
DOF camera pose in absolute coordinates.

The key novel contributions are the orthophoto representation in the data-
base allowing also for a more discriminative feature descriptor (upright SIFT),
the homothetic verification scheme for repetitive structures and the exploitation
of 3D building geometry so as to provide an absolute camera pose. In the next
section we will relate the approach to previous work, before we go into details of
the overall system and demonstrate its performance on different sources of cell
phone and street level data.

1 Nowadays several sources for image data taken from vehicles exist, e.g. Google’s

“Street View” or Microsoft’s “Streetside”. We use Earthmine’s “3D street level im-

agery” for database creation and Navteq’s “Enhanced 3D City Models” for testing.
2 In this contribution we use extruded building outlines from Sanborn data, for more

info see http://www.sanborn.com/products/citysets.asp
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2 Previous Work

Location recognition at the city scale is closely related to image search and
large scale object recognition for which a huge amount of previous work exist. A
commonly used approach builds on top of the bag-of-features approach of [4] and
the scalable vocabulary trees (SVT) of [5]. In the image retrieval scenario, usually
the camera intrinsics and object geometry are unknown. It can therefore be
difficult to find strong geometrical constraints for filtering the initial visual-word
based results, although recent approaches look at (locally) consistent orientations
and feature shapes [16,17,18] and exploit that pictures are usually not taken
upside down. Location recognition approaches [9,8,6] usually know the intrinsic
parameters of the camera, but do not exploit dense 3D models of the scene since
these are difficult to obtain for larger environments.

The closest earlier works to ours are probably by Robertson and Cipolla [3],
Wu et al. [2] and Schindler et al. [1]. The first one uses vanishing points, but
works purely in 2D with local patch matching on a relatively small set of images
(<100) and does not obtain 6 DOF pose in the city coordinate system since 3D
information is missing. The concept of rectifying features according to vanishing
points has been presented recently in [10], where the authors focused on single
images. Exploiting 3D geometry has been proposed in [13] and [14], however these
approaches require depth information for both images to be matched. Building
on top of that, [2] uses 3D information from local reconstructions of streets of
houses for database creation, but can only handle query images taken at fronto-
parallel perspective relative to the building and cannot cope with out-of-plane
rotations. In the field of systems using image data only [1] presented a large
scale recognition system with impressive results also based upon a vocabulary
tree. However, only 2D image data is used and in our experiments we show that
in urban scenarios with mainly building facades 3D rotation invariant matching
and recognition outperforms 2D methods. Another difference is that both of the
two latter methods need RANSAC for geometric verification which can become
inefficient with repetitive urban structures and high fractions of mismatches. In
contrast we provide a simple stratified voting scheme for verification.

While the trend in the last years went towards building bigger and bigger
databases and generating even synthetic views to sample the space of all pos-
sible points of view [6], we go into a different direction and represent only the
building facades (upright orthophotos). An interesting effect of the technique is
that it enables the usage of upright features, for which the feature orientation is
obtained from vertical building axes, avoiding multiple descriptors for the same
keypoint, avoiding potential bias of standard SIFT descriptors towards the bins
of canonical orientations and allows distinguishing local structures differing by
rotation. It has already been observed in face recognition [15] that exploiting the
knowledge of aligned patches and reducing the invariance requirements can in-
crease the recognition performance. Already for the SURF detector [11], rotation
invariance could be disabled, however this was mainly motivated by performance
reasons, while we show that leveraging rotation information helps recognition.
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3 Offline Creation of the Recognition System

Data Acquisition and Selection. For creating the database we exploit two
sources of information (see Figure 1):

– Calibrated image data: Panoramic images captured by a vehicle driving sys-
tematically through the streets. For each of these images camera position
and orientation is known from GPS and sensor data.

– 2D Building floorplans as available from land registration or fire insurance
companies as well as building heights. The 2D maps can be extruded to
piecewise planar 3D models approximating the buildings (see Figure 1) and
each of these buildings is assigned a place-of-interest ID.

For the dataset of San Francisco, panoramic images have been taken roughly
every 10 meters and 14896 places of interest have been covered.

Sparse Representation of all Places-of-Interest of a City. Up to noise,
resolution and model inaccuracies all panoramic images that see the same parts
of a facade should give rise to the same descriptors, so there is a huge redundancy
in the captured panoramic images. While it might be beneficial to fuse multiple
views of the same features, we leave the optimal redundant sampling of the
facades from multiple overlapping panoramas for future work. Instead we use the
following strategy to obtain a close to minimal representation of the buildings:

Fig. 1. Left: Panoramic image near the San Francisco Ferry Building grabbed by Ve-

hicle. Right: Extruded building outline of Ferry Building.

Fig. 2. Bird’s eye view of Ferry Building. Portions of the panoramic images that are

used to sparsely cover all facades of the POI are highlighted.
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Fig. 3. Left: Building geometry projected into an image. Right: Two orhtophotos

genarated from this image with overlaid geometry. The axes show the known scale

in meters.

For each POI, we find the panoramic images within 50m distance to the building
outline and extract perspective images with a 60◦ field of view every 20◦. We
prune those that look away from the POI or see it at a very oblique angle. The
others are selected or rejected so as to represent all the POI surface subject to
minimal overlap and maximal orthophoto resolution, when projecting the view
onto the facade (see Figure 2). We obtain 58601 perspective images on the San
Francisco dataset.

Geometric Rectification. Using the building height information we extrude
the building outlines to 3D. We then project the reference images onto these 3D
surfaces and render synthetic orthoviews. Since the scene geometry is roughly
known for each of the calibrated panoramas, the image data can be projected
onto the approximate geometry (see Figure 3). For each of the planar facade parts
we generate orthophotos and use GPU-SIFT3 to extract DoG keypoints and
SIFT descriptors. Generally, for descriptor computation, previous approaches
estimate keypoint orientations from the local gradient histogram. Rotating the
local patch however in a way that the dominant peak is in the zero degree
direction potentially makes the descriptors less discriminative, since all of them
might have now significant mass in the zero degree descriptor bins and purely
rotated local patches can no longer be distinguished. Instead, we project the
gravity direction onto the facade and align the keypoints with this direction
(upright SIFT). Effectively, by computing a gravity-compatible orthophoto, we
remove all effects of 3D rotation and perspective from the image data4. Matching
such features reduces the 6 DOF perspective recognition problem to a homothetic
problem involving only scale and offset ambiguities in the 2D plane.

Scalable Vocabulary Tree Indexing. Based upon the extracted descriptors
we use hierarchical k-means clustering to learn a vector quantization and build
a visual vocabulary. We choose a random subset of 16M descriptors from the
whole set of about 130M. We build a tree with the following parameters: split
3 C. Wu: “SiftGPU” (Version 0.5.360) http://cs.unc.edu/ccwu/siftgpu
4 Apart from image resolution issues due to interpolation.
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factor k = 10, depth d = 6 which leads to one million leaf nodes. We then index
the bags of features using an inverted file system (IFS) for fast retrieval.

4 Recognition of Places of Interest

Removing 3D Rotation Effects from Query Image. The incoming query
image is assumed to come from a calibrated camera for which we expect to roughly
know whether it was held more in landscape or in portrait orientation, so that
we can correctly assign vanishing points to real-world directions. We detect line
segments in the image using a method based on [19], estimate vanishing points
as intersections of these lines, followed by a subsequent refinement step. Since the
camera calibration is known, we can backproject the presumed vanishing points to
rays in 3D space, which should be orthogonal. Every pair of points that does not
fulfill this orthogonality constraint is no longer considered for rectification.

In case there are still multiple pairs of vanishing points left, we try to reduce
the number of candidate pairs further. We estimate the importance of a plane
by taking into account the number of lines on it and the closeness of lines cor-
responding to different vanishing points. We stretch the lines by 15% on both
ends and then count the number of intersecting lines. For the plane with the
highest number and all those within 95% of it, we generate an orthoview while
discarding all the other planes.

Fig. 4. Top row. Left: Query image with detected line segments. Middle and right:

Lines belonging to the same vanishing point have been given the same color. Each

image shows only the lines corresponding to one pair of orthogonal vanishing points.

Bottom row: Two rectifications of the query image according to the two chosen pairs

of vanishing points.
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Fig. 5. Our voting scheme is illustrated using two images of Academy of Art University.

Red circles indicate the scale of features, red lines are the raw correspondences and

green lines are the final inliers. In the X Translation plot, note the secondary local

maxima occurring at a 6m interval. They correspond to the repeating window structure.

In the Y Translation plot, there is only one local maximum, since there is no vertical

repetition. Also note that all but one scale inlier support the right y-offset, even though

some of them vote for the wrong x-offset.

The vertical of the rectified images (see Figure 4) becomes the vanishing
point (interpreted as a ray) which is closest to the known gravity vector. On
these images, we then compute upright SIFT features which are used to query
the vocabulary tree. The top 50 candidates are further examined by geometric
verification.

Geometric Verification Voting Scheme. So far, ranking only used frequen-
cies of visual words for POI identification. As usual, geometrical verification of
the feature configurations can be used to improve the ranking. Unlike previous
approaches, who usually perform RANSAC, we leverage the fact that we are
solving a homothetic problem.

Since we are matching orthophotos, we may observe differences in scale and
offset that translate to the camera distance and position with respect to the
facade. First we observe that for all true correspondences {(Sfacade,j , Squery,j)}
the scale ratios ρi := σquery,i/σfacade,i should be equal up to some tolerance.
When swapping the roles of the images, the same argument applies for the
inverse ratios, since the problem is symmetric. Consequently, we transfer it to
the logarithmic domain, and require the differences of logarithmic scale ratios
to agree up to a threshold log t that depends on the expected scale estimation
uncertainty of the SIFT detector:

| log ρi − log ρj| ≤ log t . (1)

In order to determine the scale ratio with the most support, we use a technique
inspired by kernel density estimation [20]: every scale ratio contributes a Gaus-
sian probability density function with mean log ρi and standard deviation log t.
We then consider the sum of all these contributions and find its maximum (more
precisely, the argmax). All the datapoints within a certain distance (e.g. 2 log t)
are considered inliers.
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Using the estimated scale ratio, we transform the feature coordinates of both
images to a common scale. Since we know the true scale of the database image,
we can have all the coordinates expressed in meters. Truly matching feature
points now differ only by a global translation. The x and y components of this
translation are estimated independently. We define the coordinate differences
ξi := xquery,i − xfacade,i and νi := yquery,i − yfacade,i. As before, true correspon-
dences should exhibit a consistent coordinate difference:

|ξi − ξj | ≤ d and |νi − νj | ≤ d . (2)

Since all of the coordinates are expressed in terms of a known unit, we can again
derive in a principled way a reasonable value for translation tolerance d, com-
pletely independently of image resolutions. We vote for x- and y-displacement
separately using the same scheme as before (without transforming to log-space).
The intersection of the two resulting inlier sets constitutes the final inlier set of
the geometric verification (see Figure 5) and its cardinality is used to generate
a new ranking of all the candidates under consideration.

This scheme has several advantages over previous approaches: RANSAC on
top of an essential matrix, affine or projective transformation estimates 5, 6 or
8 parameters respectively. In contrast, our approach only needs to determine
three degrees of freedom total, which means that the search space is smaller.
On top of that, each degree of freedom is estimated separately further reducing
the search space, which increases reliability and efficiency. In fact, we can afford
exhaustively testing every hypothesis rather than sampling just some of them.

Every feature correspondence provides three constraints (scale, x- and y-
coordinate). Thus, a single correspondence is enough to generate a complete
hypothesis. Earlier, RANSAC-based approaches usually ignore scale and require
outlier-free subsets of 5, 3 or 4 correspondences respectively. In order to hit
such a set reliably, one needs to draw a number of samples which is essentially
exponential in the number of required correspondences.

Finally, even wrong correspondences can still contain partial information about
the solution. For instance, if one window in an image gets matched to the wrong
window in the other image, this correspondence will likely vote for the right scale
ratio and possibly for one correct coordinate.

Pose Estimation from 2D-2D Correspondences. Since we used vanishing
points to rectify the original query image, we obtain the camera orientation with
respect to the facade directly from the vanishing points. Since the rectified image
plane is parallel to the facade, the only remaining parameters are those obtained
in the previous section: Since we know the facade texture in meters the scale
ratio can directly be used to compute a (perpendicular) distance posz of the
camera from the facade. Assuming the camera is calibrated with focal length 1
pixel and principal point at zero, then

posz = resfacade · σfacade/σquery, (3)

where resfacade represents the resolution of the orthophoto in pixel/meter. The
cell phone’s posx-offset (parallel to the facade) can directly be computed from
the feature position
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posx = resfacade · (xfacade − σfacade/σquery · xquery), (4)

and posy in an analogous way. The local camera orientation with respect to the
wall is simply the inverse vanishing point rotation. Finally, the relative coordi-
nates with respect to the facade can be converted to absolute world coordinates
using the facade’s pose in the world.

5 Experiments

Upright SIFT versus Traditional SIFT. In order to test whether the SIFT
descriptor’s discriminative power improves if we do not rotate it into the dom-
inant gradient orientation a simple experiment has been run (see Figure 6) on
the image sequences for descriptor evaluation provided by [7]. Here we warp
all 5 images of such a sequence to the first image, so that orientations are the
same for corresponding SIFT keypoints.5 Features at the same position ±50%
feature size, same scale ±20% and same orientation ±30◦ are assumed to be a
geometrical ground truth correspondence, other features are assumed to be not
in correspondence. By comparing every descriptor of image 1 to every descrip-
tor in the other images we generate the precision-recall diagram for the three
sequences bark, wall and graffiti (see Figure 6) as has been done in [7]. In all
of these sequences upright produces a significantly higher precision for a given
recall fraction of the geometrical ground truth matches. A possible explanation
is that when rotating the SIFT descriptor to the dominant orientation some
gradient orientation histogram entries are more likely to obtain responses than
others (e.g. those of the dominant orientation). This makes it more difficult to
distinguish local regions that mostly differ by a rotation whereas this is possible
using upright SIFT.

Vanishing Point Detection. For 31034 Earthmine images, we ran the vanish-
ing point detection algorithm. In order to measure the error, we computed the
angles between the directions that were found and the horizontals/verticals of
known building surfaces. The distribution of these angles is shown in Figure 7.
75% of the time, the vanishing points are estimated correctly up to 2 degrees,
the median error is 0.9◦.

Recognition. Different variants of recognition pipelines are compared:

– Affine. This is our reference implementation. The SVT and IFS are trained
and built on the raw survey images. As feature descriptor we use standard
SIFT. For geometric verification we use the affine model.

– Masked. Same as before, except that for survey images we use geometric
models to discard all features that do not lie on a building. This variant uses
the same regions of the original images as the following variants. Its interest
lies in testing how discarding background features affects recognition.

5 For this experiment, we used A. Vedaldi and B. Fulkerson’s vlfeat (v0.94 available

from http://vlfeat.org) for detector and descriptor in this experiment.
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Fig. 6. Upright-SIFT vs. traditional SIFT with orientation estimation: All 5 images of

the wall, graffiti and bark sequences [7] are warped to the first image of their sequence

before DoG keypoints are extracted. We now compare the descriptiveness of upright-

SIFT (with zero-orientation) and standard SIFT which estimates orientation from the

local gradient histogram [12]. For a given precision (fraction of correct matches within

all obtained matches) we get a higher recall rate (fraction of correct matches with

respect to the set of geometrical ground truth correspondences.
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Fig. 7. Left: Histogram of orientation errors from vanishing points in degrees (blue)

and cumulative curve (red), histogram scaled to the range [0, 1]. Right: Some rectified

cell phone images.

– Rectified. Survey images are rectified using known 3D models of the build-
ings and query images are rectified using estimated vanishing points. The fea-
ture descriptor is still standard SIFT. Geometric verification is our proposed
3-degrees-of-freedom plane alignment using stratified histogram voting.

– Upright. Survey and query images are rectified as before, but in addition
we use upright SIFT. Geometric verification is again 3DOF plane alignment.

We evaluated each of these four implementations on three different query sets:

– Earthmine. This dataset consists of 31,034 Earthmine images that were
not selected for the training set. However, they stem from the same day and
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have been taken under the same conditions as the training set so that they
must be considered as very easy. The images were automatically chosen such
that they point towards a building. Whether or not this building is partially
or completely occluded by vegetation was not a factor.

– Navteq. This dataset consists of 182 images, sampled at angles of 70◦ to
120◦ degrees (with respect to driving direction) and 0◦ to 20◦ (tilt) from
panoramic image data from Navteq, where panoramic images have been
chosen such that buildings could be seen reasonably well. This data has
been taken more than one year later than the Earthmine training data and
with different equipment.

– Cellphone. This dataset consists of 1180 images taken by various people
with different camera phones (Nokia N95, N97, N900, N86) having between 5
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Fig. 8. Left column: Frequency of correct building being among top n candidates.

Middle column: Precision-vs.-recall curve based on the number of inliers for accepting

a candidate answer. Right column: Sample query images. Top row: Earthmine. Middle

row: Navteq. Bottom row: Cellphone.
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and 8 megapixel resolution. These images are from pedestrians’ perspective
partially under extreme angles and constitute the most challenging dataset.

We examined how frequently a correct building is returned as one of the top n
candidates for n ranging from 1 to 50. This information was recorded for both
the ranking before and after geometric verification and for all combinations of
implementations and query sets. The results are shown in Figure 8. Since we
are targeting augmented reality applications, we are mainly interested in the
percentages for the top ranked image. These numbers are summarized in Table 1.

Table 1. Frequency of the top-ranked image being correct. For each dataset the best

percentage has been highlighted.

Affine Masked Rectified Upright

Earthmine 84.3% 83.0% 82.6% 85.0%

Navteq 33.9% 26.3% 25.2% 35.7%

Cellphone 30.2% 23.2% 25.2% 32.1%

We observe that the performance is generally better on the Earthmine query
set than on the other two, which is to be expected since these images come from
the same source as the database images.

We notice that Affine generally outperforms Masked. The difference between
the two is that the database for the former contains features from both buildings
and surroundings, while the latter uses only features from buildings. This indi-
cates that features from the surroundings help recognition rather than distract.
This is probably the main reason why the pre-verification curves of the other
two methods are lower than Affine. They suffer from the same disadvantage as
Masked : having ignored the features from the surroundings.

With respect to the pre-verification curves, Rectified does slightly worse than
Masked. On the other hand, the post-verification curve for Rectified is flatter.
This means that rectifying the images may hurt performance in the SVT part,
but it allows for a stronger geometric verification (3DOF homothetic vs. affine).

It also paves the way for using upright SIFT. As already stated before, upright
SIFT is more discriminative because it can distinguish image patches that differ
only by a rotation. We see that already the pre-verification curve for our proposed
method (Upright) is higher than for Masked and Rectified. Combined with the
strong 3DOF verification, it outperforms the other methods on all three datasets
with respect to the top-ranked candidate (see Table 1). On top of that, this
advantage gets bigger on the more challenging datasets.

We have seen that Affine has the highest pre-verification curve due to the
inclusion of background features. Even though Upright is the better overall sys-
tem, combining the advantages of both methods might yield even better results.
We plan to address this in future work.

We also examined the precision-recall trade-off. The number of inliers for the
top candidate is compared to a threshold. If the number is below, the system
returns “no-answer”, otherwise it returns the top candidate. By setting this
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threshold to lower values, one achieves a higher recall (how often a query gets
a correct answer), but also lower precision (how often an answer is actually
correct). By choosing a higher threshold these spurious matches can be reduced
at the cost of losing some correct matches as well.

For all three query sets Masked and Rectified share a similar precision-recall
curve with a better precision than Affine, but a worse recall. For the Earthmine
and Cellphone datasets, Upright is clearly the better choice, while for Navteq it
depends on how one wants to trade precision for recall.

6 Conclusion

We presented an approach for recognizing places of interest in cell phone images.
By exploiting approximate 3D city models it was possible to convert street level
data to an orthophoto-like representation of the facades of the city. In this rep-
resentation also the gravity direction is known which enabled the use of upright
SIFT features which have been proven more discriminative than classical SIFT
on the standard feature descriptor test sets as well as in the location recogni-
tion pipeline. The given system can be seen as 3D rotation invariant matching
and allowed for estimating homothetic transformations between a rectified cell
phone image and a building facade, where the parameters scale and 2D offset of
the homothetic transformation can be estimated separately. This allows for an
efficient 1D voting scheme related to kernel density estimation and the resulting
reranking has been shown to be very effective in boosting the true image to a
top position in the reranked list.
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Abstract. Cascading techniques are commonly used to speed-up the

scan of an image for object detection. However, cascades of detectors

are slow to train due to the high number of detectors and corresponding

thresholds to learn. Furthermore, they do not use any prior knowledge

about the scene structure to decide where to focus the search. To han-

dle these problems, we propose a new way to scan an image, where we

couple a recursive coarse-to-fine refinement together with spatial con-

straints of the object location. For doing that we split an image into a

set of uniformly distributed neighborhood regions, and for each of these

we apply a local greedy search over feature resolutions. The neighbor-

hood is defined as a scanning region that only one object can occupy.

Therefore the best hypothesis is obtained as the location with maximum

score and no thresholds are needed. We present an implementation of

our method using a pyramid of HOG features and we evaluate it on two

standard databases, VOC2007 and INRIA dataset. Results show that the

Recursive Coarse-to-Fine Localization (RCFL) achieves a 12x speed-up

compared to standard sliding windows. Compared with a cascade of mul-

tiple resolutions approach our method has slightly better performance in

speed and Average-Precision. Furthermore, in contrast to cascading ap-

proach, the speed-up is independent of image conditions, the number of

detected objects and clutter.

Keywords: Object Detection, Machine Learning, SVM.

1 Introduction

Many improvements and enhancements have been developed on object detection.
However, the state of the art for detection is still far from the level necessary
for real applications in terms of both speed and accuracy [1]. These two as-
pects are highly correlated: the newest and best performing methods for object
detection, where multiple features [2,3,4], multiple and non-linear kernels [5,3]
or deformable models [6] are employed, rely on high computational power. All
these approaches are based on the concept of moving a classifier around over
all possible scales and positions, scanning the image and searching for maximal
detection responses, which is commonly called Sliding Windows (SW). However,
standard SW is based on a brute-force approach.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part VI, LNCS 6316, pp. 280–293, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Techniques to avoid the complete image scans have been proposed in the lit-
erature. In [7,8] the authors avoid a dense scan of the image by localizing the
object as maximal response in a transformed space of local feature voting. Un-
fortunately this approach considers every feature independently from the rest,
thus rendering it too sensitive to background clutter. Lampert et al. [9] proposed
an interesting solution based on a branch-and-bound search over intervals repre-
senting bounding box positions and dimensions. However, the method depends
on the existence and quality of the bound.

Other methods are able to speed-up SW scanning. A common approach is
to decompose the base classifier into a cascade of rejecting classifiers, where
the first one is fast but not very effective and the last is very accurate but
computationally expensive. The first real-time classifier based on this strategy
was proposed in [10], where a pedestrian is localized searching the best match in
a hierarchy of human silhouette models. Cascades of classifiers are often based
on Adaboost [11,12], where at each level of the cascade a new strong classifier
is created by adding more and more weak classifiers. The main drawbacks of
Adaboost cascades are the complexity of training, which can last for days on a
standard PC due to the high number of detectors to be built, the selection of
features and the learning of rejection thresholds for each cascade level.

For this reason, especially when dealing with large databases of images such
as VOC2007 [13] or the INRIA person dataset [14], fast training methods are
essential. Following this trend, the use of cascades based on SVMs with a hi-
erarchy of features of increasing discriminative power [15] or with a hierarchy
of kernels from linear to quasi-linear and non linear [3,5] has been proposed.
These approaches, however, require computing all possible windows in the im-
age, not use neither prior knowledge nor spatial constraints to guide the search,
and require complex hierarchies of detectors.

In order to overcome the limitations mentioned above we present a method
based on a single detector built on a multiresolution pyramid of dense features
that benefits from spatial constraints to reduce the search space. In the search
process, the image is divided into possible locations or neighborhoods, each one
containing at most one object instance. Subsequently, for each location, a recur-
sive coarse-to-fine localization refinement is applied based on the response of the
detector at each resolution. The cost of a local search is thus reduced from linear
(i.e. proportional to the number of possible locations) to logarithmic time.

Our method extends other contributions to object detection which also apply
some kind of multiresolution strategy. The authors in [15] propose a cascade of
detectors at different resolutions to speed up the sliding windows scan. Due to
the use of multiple and separate detectors, they do not employ multiple resolu-
tion features in the same classifier, which reduces their discriminative power. In
[16] the authors introduced a human detector based on the joint use of multi-
resolution gradient features. In this method the multi-resolution pyramid is used
for better discriminative power but not for improving the search speed and ob-
ject localization as in ours. The authors in [6] propose a 2-level dyadic pyramid
for the object model: the first for the whole object and the second for parts. As
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(a) (b) (c)

Fig. 1. Sliding window components: (a) Pyramid of images Is: computed by repeated

smoothing and sub-sampling of the original image. (b) Pyramid of features Hs: from

every scale of the pyramid of images, the corresponding matrix of features is extracted.

(c) Object model M : a h × w matrix of f -dimensional weight vectors.

in our method, no further feature computation is necessary because the same
features are used for both multi-scale and multiresolution. But, in contrast to
our method, they do not exploit local search to speed-up the scan process. Re-
cently, the same authors propose in [17] a cascade algorithm for their detector.
The method is similar to ours in the sense that it decomposes a single classifier
into partial scores and uses these to prune hypotheses. However, their pruning
method is based on thresholding object parts, while ours is based on recursive
object localization refinements and so no threshold is necessary.

Our work uses features at different resolutions in the same classifier and ex-
ploits a greedy localization refinement to speed-up the image scan. Our imple-
mentation of the Recursive Coarse-To-Fine Localization (RCFL) based on HOGs
does require no thresholds and runs twelve times faster than standard SW. In
contrast to cascade approaches, the speed up is constant and independent of (i)
the quality of the detector, (ii) the complexity of the image and (iii) the number
of objects in the image.

2 The Image Scanning Approach

In this section we first describe the standard SW as a vectorial convolution
between an object model and image features. Next, this formulation is extended
to describe RCFL.

2.1 Sliding Windows

In SW, as described in [14], an object model is scanned over a pyramid of features
representing an image. The pyramid of features is a set of matrices Hs(x, y) (see
Fig. 1 (b)), where each element is an f -dimensional feature vector. Each matrix
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Hs is built from a smoothed and sub-sampled version Is(x, y) of the original
image at a certain scale s, as shown in Fig. 1 (a). The object model for a linear
classifier is an h × w matrix M(x, y), where each element is an f -dimensional
weight vector, as shown in Fig. 1 (c). The scale sampling of the pyramid of
features is established by a parameter λ defining the number of levels in an
octave, that is the number of levels we need to go down in the pyramid to get
twice the feature resolution of the previous one.

The response Ds, or score, of the object model centered at position (x, y) and
scale s is defined as:

Ds(x, y) =
∑

x̂,ŷ

M(x̂, ŷ) ·Hs(x̂+ x− w/2, ŷ + y − h/2), (1)

where x̂ ∈ {0, 1, . . . , w − 1}, ŷ ∈ {0, 1, . . . , h− 1}. Note that the symbol (− · −)
represents the scalar product because each element Ms andHs are f -dimensional
vectors. In this way, Ds is a pyramid of matrices of the same size as Hs, but
where each element is a scalar that represents the response of the object model
in the corresponding position and scale. Each element of Ds(x, y) is converted
to the corresponding image bounding box center Bs(x, y):

Bs(x, y) = (2
s
λ kx, 2

s
λ ky) (2)

≡ k2
s
λ (x, y), (3)

where k is the size of the feature at level s = 0 in pixels. For the sake of simplicity,
in the following we will use the notation of Eq. (3), i.e. coordinate-wise scalar
multiplications, as equivalent to notation in Eq. (2). Therefore, Eq. (3) describes
SW in terms of image coordinates, which is more natural.

The same conversion of Eq. (2) is also applied for the bounding box size
(w, h). In this way, we obtain all the necessary information to associate each
score Ds(x, y) with the corresponding image bounding box. Applying a Non-
Maximum-Suppression (NMS) like in [18], we obtain the bounding box of the
final detection.

2.2 Recursive Coarse-to-Fine Localization

In RCFL the object is searched in space but at different resolutions, from coarse
to fine. The final score of the detector is now the sum of partial scores, one for
each resolution. For this reason, the object model is a dyadic pyramid composed
of l levels, where each level d is a matrix Md of weight vectors. An example of a
3-level pyramid model for the class person in shown in Fig. 2, while an example
of recursive localization refinement is shown in Fig. 3.

The computation of the partial score Rd
s for a resolution level d of the object

model pyramid at a position (x, y) and scale s of the pyramid of features is then:

Rd
s(x, y) =

∑

x̂d,ŷd

Md(x̂d, ŷd) ·Hs+λd(x̂d + (x− w

2
)2d, ŷd + (y − h

2
)2d), (4)
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Fig. 2. HOG pyramid model M for the class person with w = 3, h = 6 and l = 3.

The low resolution features (d = 0) give a general coarse representation of the human

silhouette, while the high resolution (d = 2) focuses more on details.

where x̂d ∈ {0, 1, . . . , w2d − 1}, ŷd ∈ {0, 1, . . . , h2d − 1}. When d = 0 this is
exactly Eq. (1). When the resolution level d is greater than 0, it is necessary to
move-down λd levels in the feature pyramid to reach the corresponding resolution
level. For each Hs+d, the search space is split into adjacent neighborhoods Δδ:

Δδ(x, y) = {(x̂, ŷ)|x̂ = x+ dx, ŷ = y + dy}, (5)

where dx, dy ∈ {−δ,−δ+1, . . . , δ−1, δ} and δ is the radius of the neighborhood.
The neighborhood represents all the locations where an object can be found.
While in SW the number of hypotheses corresponds to the number of possible
locations of the object, in RCFL the number of hypotheses corresponds to the
number of neighborhoods. We define Π0

s for each (x, y) and scale s as the location
that maximizes the partial score R0

s over the neighborhood Δδ :

Π0
s (x, y) = arg max

(x̂,ŷ)∈Δδ(x,y)

R0
s(x̂, ŷ). (6)

Notice that (x, y) is the location of the center of the neighborhood at the coarse
resolution at scale s, while Π0

s is the location of the object estimated by M0.
Since we optimize the score of R0,s over the neighborhood Δδ, it is not necessary
to compute each (x, y). To select the correct sub-sampling of (x, y) is necessary
that all locations be scanned at least once, which implies a sampling of (δ̂x, δ̂y)
with δ̂ ≤ δ. The optimal position at levels d > 0 is recursively defined as a
refinement of the position at d− 1:

Πd
s (x, y) = arg max

(x̂,ŷ)∈Δ1(2Πd−1
s (x,y))

Rd
s(x̂, ŷ). (7)

For d > 0 the neighborhood is fixed to Δ1 because between the level d and d+ 1
the feature resolution doubles and setting the maximum displacement to 1 allows
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(a) (b) (c)

Fig. 3. Example of RCFL for detection. In (a), at a certain position (x, y) and scale s
(red box) of the pyramid of features H , the best location Π0

s (x, y) (green box) for the

low resolution model of the object M0 is searched in the local neighborhood Δδ(x, y).

In (b), the same procedure is repeated for the next resolution level s + λd, using as

center of the neighborhood the best location computed at low resolution Π0
s (x, y).

The process is recursively repeated for all feature resolution levels. In (c), the location

obtained at the finest resolution Π2
s (x, y) is the location of the final detection and can

be converted to pixels using Eq.(9).

refinement of the object model location at the new resolution. Recall our nota-
tional convention for coordinate-wise scalar multiplication, so that 2Πd−1

s (x, y)
represents a doubling of the coordinates for the object estimate at resolution
d − 1. Knowing the optimal position of the object model at each level d, we
calculate the total score Ds(x, y) as:

Ds(x, y) =
∑

d̂

Rd̂
s(Π d̂

s (x, y)), (8)

where d̂ = {0, 1, . . . , l − 1}. The computation of the bounding box of each score
Ds(x, y) is similar to the standard sliding windows. However, now (x, y) repre-
sents the location of the detection at the coarsest level. To obtain the location
at the finest level it is necessary to convert the coordinates at Π l−1

s . The center
of the bounding box B, for the position (x, y) and scale s is thus:

Bs(x, y) = k2
s+λ(l−1)

λ Π l−1
s (x, y). (9)

The final detection is computed like in normal SW by applying NMS.

3 Learning

Given a set of input data {x1, , xn} and the associated labels {y1, , yn}, we find
a parameter vector w of a function y that minimizes the regularized empirical
risk:

1
2
||w||2 + C

n∑

i=1

max(0, 1− yiy). (10)
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In our problem the input data xi is a set of multiple resolution features (extracted
from the pyramid Hs defined in previous section) associated to an image region,
while the output data yi is a binary label indicating whether the object is present
in the region. The estimated output y depends on the relative position of each
feature level with respect to the previous level. We introduce a structured latent
variable h that is a vector of tuples (xd, yd) representing the relative position of
a certain level d with respect to the previous d − 1. Using latent variables allows
us to obtain a better alignment of the object model with training data, which is
useful to improve detector performance as shown in [6]. The estimated output is:

y = max
h
〈w, f(x, h)〉, (11)

where f(x, h) is a function that maps the input features x to the corresponding
latent variable h. In our case:

〈w, f(x, h)〉 =
∑

d

Rd
s(x+ xd, y + yd). (12)

From Eq. (4) we see that w corresponds to the flattened version of M , our
object model. Instead of computing the current maximum of f we compute the
coarse-to-fine refinement approximation of this, which is Eq.(8):

max
h
〈w, f(x, h)〉 ≈ Ds(x̂, ŷ), (13)

where x̂, ŷ, s corresponds to object location and scale at the lowest resolution. In
contrast to normal SVM optimization, y is no longer linear in w, therefore the
empirical risk is no longer convex, and standard optimization techniques can not
be used. Howeverf is still convex in w since it is a maximum of linear functions.
Thus, the empirical risk is is convex for yi = −1 but concave for yi = 1. In order
to optimize this function we use a stochastic gradient descent, where learning
is divided into two iterative steps: the optimization of w with h fixed for the
positive examples and the estimation of the best h using the computed w [6].

Another problem of the learning is the number of negatives examples. While
positive examples are costly to obtain and thus their number is always quite limited,
the number of negative examples can be very high and can be obtained from images
not containing the object to detect. This very high number of negative examples
can help to boost performance, but it can make the learning process prohibitive in
terms of time and memory. To solve this we use a cutting plane technique consisting
of an iterative algorithm that first estimatesw using a subset of the full training set
and then selects the most violated constraints that will be added to the training set
of the next estimation of w. This allows much faster learning and assures that the
algorithm converges to the solution obtained with the full set of examples.

4 Discussion

RCFL scans the image in two ways at the same time. On one hand, it scans the
image spatially, searching as a standard SW for the object. On the other hand,
it scans the image in the resolution space, from coarse to fine. The number of
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hypotheses to scan is established at the coarsest level of the pyramid model as
a set of neighborhood regions uniformly distributed over the image. Subsequent
levels of the pyramid object model refine the hypotheses to the location with
highest score inside each neighborhood.

In contrast to previous methods based on cascades [19,20,15,11], there is only
one classifier to train. The only assumption required for the validity of the model
is that the object has an appearance that can be modeled in a top-down manner.
That is, global views of an object contain most of the relevant information needed
to support reliable recognition [21], although specific details may be helpful for
further refinement.

In cascade approaches, for each sliding window location the score of the clas-
sifier is used to evaluate whether to discard the location or continue to the next
classifier of the cascade. This means that the score provided by a small number of
features has to be precise enough to take a difficult choice that will greatly affect
overall detector performance. Therefore, to obtain reliable decisions, the detec-
tor has to be conservative, discarding only a fraction of hypotheses. In contrast,
our method does not require a binary decision about continuing in the search,
but a localization decision about where to focus the search. This is much easier
to take, because it is just about finding a local maxima in a small neighborhood
of hypotheses. This is what allows RCFL to perform as fast as cascades without
sacrificing accuracy and without any rejection threshold, as shown hereafter.

5 Implementation Details

Our aim is to evaluate the performance of the RCFL framework in terms of
speed and performance. For this reason we implemented a RCFL based on HOG
features, which are widely used in SW-based object detection [14,5]. However,
the proposed framework is not limited to only HOG so it can be applied to any
(and multiple) features.

Features. We used the HOG feature implementation proposed in [18]. The fea-
tures for each square region are 31-dimensional: 9 contrast insensitive features,
18 contrast sensitive features and 4 representing the overall gradient of four
neighbor regions. In contrast to the standard HOG proposed in [14], these fea-
tures are not composed of 50% overlapping blocks, which saves memory space
and simplifies the representation.

Object model definition. The object model has few parameters to tune. We
set only the parameters of the lowest resolution object representation. All the
rest follow from the use of a dyadic pyramid representation. The number of HOG
features for the object representation is a trade-off between better discrimination
(high number of HOGs) and the capability to detect small objects (low number
of HOGs). The aspect ratio of the object model is chosen based on the mean
aspect ratio of the training bounding boxes.

Positive examples. We convert an image containing positive examples into a
pyramid of features (as described in section 2) and then search over space and
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scale for the best fit between the object model bounding box and the training
example bounding box using the overlap ratio as defined in [13]. If the overlap o
is greater than 0.5, the example is taken as a positive sample and added to Tp,
otherwise it is discarded.

Negative examples. Negatives examples Tn are extracted from images not
containing the object class. As for the positives, the image is converted to a
pyramid of features. The examples are initially drawn using a uniform distri-
bution over both space and scale. Subsequently, they are selected based on the
cutting plane technique explained before.

SVM training. Positive Tp and negative Tn pyramids of features are flattened
to vectors and used to train a linear SVM using libSVM [22]. The result of this is
a weighted sum of support vectors. Since the kernel is lineal, these are summed
up into a single vector of weights w. This is then converted back to the dyadic
pyramid representation, resulting in our object model M .

6 Experiments

We evaluate our RCFL detector on two different and complementary databases:
VOC2007 1 and the INRIA person dataset 2. We use VOC2007 as reference to
evaluate our method on 20 different object classes and to obtain the most general
detector configuration. Then, we test our method on the INRIA dataset, where
many state-of-the-art methods are evaluated in terms of accuracy and speed.

6.1 Neighborhood Radius, Resolution Levels and Speed-Up Factor

The neighborhood radius δ and resolution levels l are the two most important pa-
rameters that influence the final performance of the detector. While for resolution
levels greater than zero δ is forced to be 1 to ensure coherence of representation
of the model over resolutions, for the zero level δ is free and greatly affects the
speed-accuracy trade-off. Using a neighborhood of radius δ for level zero corre-
sponds to scanning q = (2δ + 1)2 locations at the first level and subsequently 9
locations for the next levels. So, a model of l levels requires q + 9l evaluations
instead of q4l as in standard SW working at the finest level. However, the cost of
scanning a location is proportional to the object model resolution which doubles
at each level of the pyramid model. So, the ratio between the cost of brute-force
search and the recursive localization approach is:

g(l, q) =
q4l−1

∑
d

9
4d + q

4l−1

(14)

where d = {0, 1, . . . , l−2}. The computational cost of RCFL, compared to stan-
dard SW, is reduced proportionally to the number of levels of the object model l
1 http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/
2 http://pascal.inrialpes.fr/data/human/
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Table 1. Average-Precision computed on positive examples of train+validation of the

VOC2007 database for different number of levels of resolution

plane bike bird boat bottle bus car cat chair cow table

l=1 22.4 39.2 10.5 3.6 17.4 37.5 36.8 23.4 15.5 20.8 33.6

l=2 28.3 43.3 11.5 4.5 29.0 45.7 39.3 28.8 16.0 27.4 36.3

l=3 28.0 37.3 9.6 3.6 22.1 45.8 36.7 26.6 14.8 35.2 31.6

dog horse mbike person plant sheep sofa train tv mean speed

l=1 19.2 45.4 36.5 23.6 16.2 19.3 33.3 26.5 44.7 26.3 1.0

l=2 24.7 42.9 38.0 22.1 16.3 27.7 34.1 31.3 47.7 29.7 3.2

l=3 26.7 43.9 37.7 21.5 15.1 27.2 30.6 28.2 46.0 28.1 12.2

and the neighborhood locations q. In experiments l is bounded by the resolutions
available in images of the object and the memory space needed for the training.
For the choice of δ we have to consider that a neighborhood must contain a
unique hypothesis for an object. Therefore, to correctly localize partially over-
lapping bounding boxes it is necessary that, within a neighborhood, all possible
detections overlap each other enough to be grouped together by NMS.

We computed the distribution of overlapping instances in the VOC2007
database for all classes and evaluated that a maximum overlapping of 0.2 assures
fusing 99% of the object instances correctly. Limiting the minimum resolution
for the lower resolution model to 15 HOG cells assures a minimum overlapping
of 0.2 by setting δ ≤ 1.

6.2 Levels of Resolutions

We also must establish how many levels of feature resolution are best for our
problem. For this, we evaluate the RCFL method against all classes of the PAS-
CAL VOC2007 database. Because we are interested only on the relative perfor-
mance of different configurations, we used only positive examples. In order to
make the comparison fair, we choose the number of features for the maximum
resolution level to be the same for all configurations.

Detection results are reported in Table 1. Mean values show that the best per-
formance in terms of average-precision is the configuration with 2 resolution levels.
However, the speed-up of this configuration is only 3.2 times. Moving to 3 resolu-
tion levels the performance is still good, but the speed-up is increased to 12.2 times.
This makes this configuration an optimal trade-off between performance and speed
and it will be the configuration used also in all the following experiments.

6.3 Comparison with Cascades

Although interesting methods implementing cascades based on HOG have been
developed in recent years [11,15,17], all the methods use different HOG implemen-
tation, different parameter configurations and different learning strategies. We im-
plemented our own cascade detector and to allow a best comparison we keep the
same configuration based on three levels of feature resolution. The cascade is sim-
ilar to [15], but we improve the learning strategy by joining all features from dif-
ferent levels into a single SVM optimization, exactly the same used for RCFL and
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Fig. 4. Example of scan over resolutions with three methods: left column RCFL, central

column Exact, right column Cascade. In the cascade the threshold is too high and

prunes good hypothesis loosing the second cyclist. In RCFL both detections are made

because the algorithm requires that hypotheses over all space are kept.

explained in section 3. Using same learning and features assures that changes in
accuracy or speed are totally due to the method, not to implementation details nor
different learning strategies. To select the optimal thresholds we used the method
proposed in [17].

We compare the two methods also with a brute force approach in all classes of
VOC2007. In this experiment we train the detectors only with the training set,
while the validation set is used for threshold learning. The threshold value is set
so the resulting precision-recall curve of the cascade detector should reach the
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Table 2. Average-Precision computed on positive examples of train of the VOC2007

database. Exact shows the results of a brute force method; Cascade represents the

result of a cascade method with thresholds chosen for obtaining the same performance

as exact up to precision equals recall; thresholds are computed using the validation set

of VOC2007; Speed is the average speed-up per class achieved for Cascade; RCFL is

our method using three resolution levels.

plane bike bird boat bottle bus car cat chair cow table

Exact 24.1 41.3 11.3 3.9 20.8 36.8 35.4 25.5 16.0 19.4 21.2

Cascade 24.1 38.7 12.9 3.9 19.9 37.3 35.7 25.9 16.0 19.3 21.2

Speed 9.3 9.8 9.3 9.9 3.9 18.1 13.8 17.3 9.5 12.1 6.4

RCFL 23.6 39.4 12.9 2.7 19.7 39.2 34.5 25.9 17.0 21.6 23.1

dog horse mbike person plant sheep sofa train tv mean speed

Exact 23.0 42.9 39.8 24.9 14.6 14.3 33.0 22.8 37.4 25.4 1.0

Cascade 23.0 40.2 41.5 24.9 14.6 15.1 33.2 23.0 42.2 25.6 10.9

Speed 3.3 17.6 20.1 3.6 6.4 19.0 15.0 9.8 2.8

RCFL 24.1 42.0 41.1 25.3 14.2 15.8 29.6 22.5 41.0 25.8 12.2

precision-equals-recall point without any pruning. Results are reported in Table
2. For the cascade we also report per-class speed-up, while the final speed-up is
the average of all classes. It is interesting to notice that both speed-up methods,
not only improve speed, but also in some case average-precision. This is due to
the pruning of false positives. Notice that even without any threshold expressly
tuned for it, RCFL obtain an average performance slightly better than the cas-
cade and more important, the speed-up is constant, while for cascades it can
vary a lot and it is unpredictable. This demonstrates that recursive localization
is a suitable strategy for pruning hypotheses because (i) it obtains same or bet-
ter performance than cascades in most of the classes (ii) it assures that speed
does not depend on object class or image which is very important for real-time
applications (iii) no threshold computation is necessary.

Fig. 4 show the pipeline of the pruning strategy of RCFL and Cascade of the class
person for a certain scale. Although both strategies use exactly the same observa-
tions (central column), in this example Cascade is not able to detect an obect due
to a too low partial score in the second level. RCFL is not affected by this problem
because no thresholds are used for the pruning which is done in a spatial manner.

6.4 INRIA Pedestrian Dataset

The INRIA database is the standard benchmark for human detection [14]. Eval-
uation is done on a per-image basis. This is equivalent to a precision recall curve,
but for certain tasks it is preferred because it gives an absolute measure of the
average number of false positives to expect per-image (FPPI).

A comparison of RCFL with other methods is shown in Fig. 5 (a). The config-
uration of the detector is the same as in previous experiments with 3 resolution
levels. RCFL reduces the standard HOG miss-rate by 3 points at 100 FPPI, by
10 points at 10−1 FPPI and by 14 points at 10−2 FPPI. Globally, two methods
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(a)

Method Features Classifier M-RTime

HikSvm[16] HOG-like HIK SVN 0.24 140.0

Shapelet[23] Gradients AdaBoost 0.50 60.0

FtrMine[12] Haar AdaBoost 0.34 45.0

MultiFtr[4] HOG+HaarAdaBoost0.16 18.9

HOG[14] HOG lin. SVN 0.23 13.3

LatSvm[6] HOG lat. SVM 0.17 6.3

Haar[19] Haar AdaBoost 0.48 7.0

RCFL HOG lin. SVM 0.20 1.2

(b)

Fig. 5. (a) False Positive Per-Image in the INRIA database. All curves but RCFL HOG

are drawn using the data provided by [1]. (b) Comparison of different pedestrian detec-

tors [1]. M-R represents the miss-rate at 100 false positive per-image. Time represents

the seconds to compute an image of 640 × 480 pixels. RCFL reduces the miss-rate of

the HOG detector performing much faster than any other method.

perform better than RCFL. However, MultiFtr uses multiple and complementary
features to improve the HOG results while LatSvm learns the object deforma-
tions using latent SVM.

Table 5 (b) summarizes the main characteristics of each method. HOG RCFL
performs better than all comparable methods, but with a higher speed. Our
method takes 1.2 seconds to process an image: around 1 second is used for
feature computation and only 0.2 for the scan. In contrast to most methods,
where the most significant part of the time is used for scanning, with RCFL this
scanning time is reduced to a small fraction.

7 Conclusions

In this paper we introduced a new method to speed-up object detection. The
method join prior information about the search of object hypotheses with a
coarse-to-fine localization to optimally distribute the computation necessary to
detect objects. Compared to cascades approaches, our method obtains similar
detection performance, assures a constant speed-up independent of object class
and image conditions and do not need any threshold to prune hypotheses. Finally,
the great generality of the idea behind RCFL allows it to be applied to most
of current object detector methods: from deformable models [6] to bag of words
pyramids [5], but also multiple features [3].
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Abstract. The so-called bag-of-features (BoF) representation for im-

ages is by now well-established in the context of large scale image and

video retrieval. The BoF framework typically ranks database image ac-

cording to a metric on the global histograms of the query and database

images, respectively. Ranking based on global histograms has the advan-

tage of being scalable with respect to the number of database images,

but at the cost of reduced retrieval precision when the object of interest

is small. Additionally, computationally intensive post-processing (such

as RANSAC) is typically required to locate the object of interest in the

retrieved images. To address these shortcomings, we propose a general-

ization of the global BoF framework to support scalable local matching.

Specifically, we propose an efficient and accurate algorithm to accom-

plish local histogram matching and object localization simultaneously.

The generalization is to represent each database image as a family of

histograms that depend functionally on a bounding rectangle. Integral

with the image retrieval process, we identify bounding rectangles whose

histograms optimize query relevance, and rank the images accordingly.

Through this localization scheme, we impose a weak spatial consistency

constraint with low computational overhead. We validate our approach

on two public image retrieval benchmarks: the University of Kentucky

data set and the Oxford Building data set. Experiments show that our

approach significantly improves on BoF-based retrieval, without requir-

ing computationally expensive post-processing.

1 Introduction

We address the problem of retrieving images containing an object of interest,
specified by a visual query, from a large image database. We are interested not
only in ranking the database images but also locating the relevant objects in the
top matching images.

Perhaps the most common and effective approach to large-scale image re-
trieval is the bag-of-features (BoF) framework (see, for example [15, 11, 13, 2]).
The BoF representation for an image is a global histogram of visual word occur-
rences where each “visual word” is a quantized local feature descriptor. The set
of all possible visual words, or visual vocabulary, is learnt via various cluster-
ing algorithms, such as k -means [15, 2], hierarchical k -means (HKM) [11], and
approximate k -means (AKM) [13].

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part VI, LNCS 6316, pp. 294–308, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. An example of small object retrieval. Left: a query image with a region of in-

terest. Right: the top 8 retrieved images using our approach and the baseline Global

BoF approach. Red rectangle represents the query object of interest, and Green rectan-

gles represent the returned object bounding boxes using our approach. In contrast, the

baseline method cannot return bounding boxes and need additional totally different

criterion (e.g. RANSAC) to localize objects.

Large vocabularies, typically containing a million or more visual words, tend
to be more discriminative therefore more effective in locating specific objects.
The large vocabulary size results in sparse histograms for particular images which
can be efficiently represented and searched using inverted files [15].

Since the BoF representation contains no spatial information, post-processing
to verify the spatial consistency of the retrieved images tends to improve retrieval
accuracy provided the underlying spatial model is appropriate. Approaches to spa-
tial verification include spatial neighborhood counting [15], as well as RANSAC-
based spatial matching [13].

Retrieval based on the global BoF representation, although being very scal-
able, has the shortcoming that objects become difficult to retrieve as the amount
of surrounding clutter in an image increases. That is, small objects are hard
to find using a global histogram representation. Post-processing based spatial
verification partially addresses this, but with an added computational cost that
effectively limits the total number of images to be considered for post-processing.
We propose a generalization of the global BoF framework to support scalable
local matching without post-processing. By local matching, we mean matching
the query to a locally bounded BoF, as opposed to a global BoF, which limits
the effect of clutter, and also localizes the object. The generalization is to repre-
sent each database image as a family of histograms that depend functionally on a
bounding rectangle. Integral with the image retrieval process, we identify bound-
ing rectangles whose consequent local histograms optimize query relevance, and
rank the images accordingly.
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Ideally, we aim to localize the best region (namely, the one that has the
maximum similarity to the query) in all the database images. As a simplification,
we constrain our problem to the set of all possible subrectangles. Each image is
therefore represented as a BoF histogram parameterized by a subrectangle. We
can certainly go beyond rectangles through a post refinement process as in [19].

In order to maintain scalability, we use a spatial quantization-based index-
ing mechanism to compute sparse feature energies (norms) offline, and compute
similarities over a coarse grid of rectangles to the query online. Integral images,
enabled by a binary approximation of the BoF model, allow the localized sim-
ilarities to be computed efficiently, and a full BoF comparison is done for the
final ranking. In this way, we are able to match a query BoF against a broad set
of sub-rectangle BoFs for each of the database images.

An example of the effectiveness of our algorithm for small object retrieval
is shown in Fig. 1, where our approach returns more consistent results than
traditional global BoF methods, and can localize objects simultaneously.

2 Related Work

Most common approaches to object localization in the BoF retrieval framework
include neighborhood counting [15], and RANSAC-based methods [5,13]. Neigh-
borhood counting uses the total number of neighboring word correspondences to
rerank images. It is largely dependent on the size of the neighborhood and can-
not capture spatial relationship in wider configurations. The RANSAC-based
approaches can capture wider spatial consistency but are typically limited to
near planar objects in order to avoid an overly complex spatial model, and are
applied only to top hundreds of images [13, 2] due to RANSAC’s computation
complexity. During re-ranking, RANSAC-based verification computes similari-
ties as the number of inliers, which is very different from the ranking criterion
used in the first-phase BoF retrieval process (i.e. BoF similarity).

There have been approaches grouping pairs of or multiple local features in a
larger spatial neighborhood as a new ‘feature’, e.g. the geometric min-Hash [1],
bundling features [17], and multi-samples [18], to increase feature discriminative
power. These approaches capture visual word co-ocurrence information in an
early stage of retrieval, but still need an additional post-processing to localize
objects in the top retrieved images.

BoF matching can also be formulated as a voting framework [2], where each
matching pair of features between query and database will generate a vote (score)
to be accumulated to query-to-database image distances. A fast weak geometric
consistency scheme is introduced in [2] by voting for rotation angles and log-
scale ratios during the first-phase retrieval process, but this model does not
provide localization capability and cannot be easily extended to localize objects
in arbitrarily rotated images.

We propose a local BoF model to simultaneously rank images and localize
relevant objects under arbitrary rotations, significantly different viewpoints, and
in the presence of clutter. By localized BoF matching, the model encodes weak
spatial constraints implicitly during the retrieval process to improve the ranking
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accuracy and localize objects simultaneously. The model is fully integrated with
an inverted file-based search to support large-scale object search and localization.

The localization process uses a simple greedy optimization method due to the
potentially large scale nature of our problem. Although it is not guaranteed to
find the global optimum, we have found through experiment that the retrieval
accuracy of our approach is nearly identical to the result obtained by exhaustive
search, as can be seen in Table 1. Also, our optimization method could be re-
placed with branch-and-bound [7] to guarantee a global optimum, but we found
the added computational expense to be unnecessary.

Our approach is closely related to [6] in formulating the problem as a combina-
tion of image retrieval and object localization. Lampert [6] applied the branch-
and-bound search to problems of subimage retrieval in large image and video
sets, but the approach differs from our method in that it does not leverage the
fast inverted file for localization. In this way our method is more scalable than [6].

In the context of a complete retrieval systems, our method can be regarded
either as an improved BoF matching for the first-phase retrieval process [11], or
as an improved weak spatial verification alternative to RANSAC-based schemes.
Our contributions are three-fold:

1. A computationally efficient local BoF model for re-ranking database images
and localizing objects in a large number images.

2. A local spatial pyramid model for combining the local BoF model and the
spatial pyramid-based representation.

3. An efficient, integrated system for local BoF model and inverted file index
for large scale object retrieval.

3 Local BoF Retrieval

3.1 Global BoF Model

The BoF representation begins with detection of local image features and ex-
traction of each of the features as high dimensional descriptors f ∈ Rn. Each
of the descriptors is quantized according to a quantization function, C : Rn →
{1, 2, 3, . . . , V }, to generate a set of “visual words” representing the image. The
global BoF representation for an image is the normalized histogram of visual
words, typically using either the L1 or the L2 norm, with components weighted
by term frequency-inverse document frequency (TF-IDF). (Term frequency (TF)
τ(i) is defined as the number of occurrences of word i in an image, and the in-
verse document frequency (IDF) αi is defined as αi = log N

Ni
, where N is the

total number of images and Ni is the number of images containing the word i.)
Let q denote the BoF for a query image and d denote the BoF for a database

image. The relevance of d to query q is the distance, D(q, d) = ‖q − d‖pp, where
p ∈ {1, 2} [11, 13, 2]. For search, the database images are ranked in ascending
order of the distance to the query.

Since the BoF becomes very sparse when the vocabulary is large, the distance
D can be evaluated efficiently by considering only the non-zero elements of q
and d. For the L2 norm, the simplification is as follows [15]:
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D(q, d) = ‖q − d‖22 = 2− 2
∑

i|qi �=0∧di �=0

qidi. (1)

We define the L2 norm-based BoF similarity as:

S(q, d) :=
∑

i|qi �=0∧di �=0

qidi. (2)

In case of L1 norm, the simplification is as follows (see [11] for the derivation):

D(q, d) = ‖q − d‖11 = 2−
∑

i|qi �=0∧di �=0

(qi + di − |qi − di|) . (3)

We define the L1 norm-based BoF similarity as:

S(q, d) :=
∑

i|qi �=0∧di �=0

(qi + di − |qi − di|) . (4)

In any case, the search relevance of a database image Id to a query image Iq is
the BoF similarity, S(Iq , Id) = S(q, d).

3.2 Local BoF Model

We can extend the global BoF model (denoted Global BoF) to a local model (Lo-
cal BoF) by introducing a parameterization on the database BoF representation
d. Specifically, let the Local BOF representation be a function d(R) of a rect-
angle R ∈ R, where R is parameterized by its bounding top/bottom/left/right
image coordinates (t, b, l, r). R denotes the set of all subrectangles in an image.
That is, for any database image, and for any subrectangle of the image, d(R) is
the normalized histogram of visual words occurring inside the subrectangle.

We define the image similarity as the global maximum of BoF similarity over
the set of all possible subrectangles for the image.

S(Iq , Id) = max
R∈R

S(q, d(R)), (5)

R∗(Id) = arg max
R∈R

S(q, d(R)), (6)

where S(q, d(R)) is the localized object similarity, and R∗(Id) is the detected
bounding box for image Id. Note that R∗ is not unique in general. We take a
smallest one among the set of rectangles of equal similarity value.

We can solve the above problem by brute force simply by evaluating the sim-
ilarity for all possible rectangles in all images as in the sliding window approach
to object detection. We can also reduce the number of rectangles to consider
by utilizing the branch-and-bound approach [7, 6]. However, by exploiting the
sparsity of BoF vectors and the inverted file index storage representation, we
can achieve the goal even more efficiently.

The approach is to fit the similarity equations (Eq. 2 and 4) into an integral
image computation framework. Integral images have been widely used in the



A Local Bag-of-Features Model for Large-Scale Object Retrieval 299

object detection literature, e.g. Vedaldi et al. [16] used the integral image idea to
improve the efficiency of object category detection significantly. Specifically, by
converting from sum-over-word index to sum-over-feature form, and also factor
the BoF normalization term out of the summation. We analyze L1 and L2 cases
separately here. Let q̃ and d̃ denote the (unnormalized) TF-IDF weighted BoF
histograms. Consequently, q = q̃/‖q̃‖ and d = d̃/‖d̃‖.

L2 Case. Eq. 2 can be rewritten as follows:

S(q, d) =
∑

i|q̃i �=0∧d̃i �=0

q̃id̃i

‖q̃‖‖d̃‖ =
1

‖q̃‖‖d̃‖
∑

i|q̃i �=0∧d̃i �=0

q̃id̃i. (7)

Similarly, the localized similarity S(q, d(R)) can be written as follows:

S(q, d(R)) =
1

‖q̃‖‖d̃(R)‖
∑

i|q̃i �=0∧d̃i(R) �=0

q̃id̃i(R). (8)

Since ‖q̃‖ is constant,

S(q, d(R)) ∝ 1
‖d̃(R)‖

∑

f |q̃C(f) �=0∧f∈R

q̃C(f)αC(f), (9)

where f denotes a feature in image Id, and f ∈ R means the feature f is located
inside the region R. αi is the IDF weight for word i.

From Eq. 9, we can see that the similarity is represented as the sum over votes
from individual feature points in database images. For an arbitrary subrectangle,
it is now straightforward to use the inverted file to accumulate the summation
term in Eq. 9 for non-zero query words, and use an integral image to rapidly
evaluate the term for an arbitrary subrectangle. The integral image Gq,d(x, y) of
the summation term for query q and image d can be written as:

Gq,d(x, y) =
∑

f |q̃C(f) �=0∧f∈(0,y,0,x)

q̃C(f)αC(f). (10)

Under the binary TF histogram assumption, Gq,d(x, y) simplifies to the form:

Gq,d(x, y) =
∑

f |q̃C(f) �=0∧f∈(0,y,0,x)

α2
C(f)

τd(C(f))
, (11)

where τd(C(f)) is the TF of word C(f) in Id, which distributes the contribution
of multiple features f corresponding to the same visual word uniformly so that
to ensure the binary assumption of the global TF histogram of Id.

But in order to evaluate the full similarity in Eq. 9 we need an approximation
for ‖d̃(R)‖ since the L2 norm does not accumulate linearly. For very large vocab-
ularies, the L2 norm of a BoF vector can be approximated as the square root of



300 Z. Lin and J. Brandt

the L1 norm [2]. (This follows from the observation that for large vocabularies,
almost all TF histogram entries are either 1 or 0.) Hence, we replace the L2

norm, ‖d̃(R)‖2, with the L1 norm, ‖d̃(R)‖1, which can be computed efficiently
for any subrectangle using an integral image. And, the integral image Hd(x, y)
of |d̃(R)|1 can be written as:

Hd(x, y) =
∑

f |f∈(0,y,0,x)

αC(f)

τd(C(f))
. (12)

L1 Case. Eq. 4 can be rewritten as follows:

S(q, d) =
∑

i|q̃i �=0∧d̃i �=0

(
q̃i
|q̃| +

d̃i

|d̃| −
∣
∣
∣
∣
∣

q̃i
|q̃| −

d̃i

|d̃|

∣
∣
∣
∣
∣

)

. (13)

Similarly, the localized similarity S(q, d(R)) can be written as follows:

S(q, d(R)) =
∑

i|q̃i �=0∧d̃i(R) �=0

αi

(
τq(i)
|q̃| +

τd(R)(i)

|d̃(R)| −
∣
∣
∣
∣
τq(i)
|q̃| −

τd(R)(i)

|d̃(R)|

∣
∣
∣
∣

)

, (14)

where τq(i) and τd(R)(i) are the TFs of word i for q and d(R), respectively, and
αi is the IDF weight.

We can again exploit the fact that for large vocabularies, most TF histogram
entries are 0 or 1, and therefore we can approximate the BoF with its binary
counterpart, where all non-zero entries are replaced by the IDF weights similar
to the binary assumptions used in [4, 1]. Under this assumption, τq(i) = 1 and
τd(R)(i) = 1 for all i such that q̃i �= 0 ∧ d̃i �= 0. Breaking Eq. 14 into two cases,
|q̃| >= |d̃(R)| and |q̃| < |d̃(R)|, will remove the absolute sign and the results of
the two cases can be combined by using the max operator:

S(q, d(R)) =
2

max(|q̃|, |d̃(R)|)
∑

i|q̃i �=0∧d̃i(R) �=0

αi, (15)

or, dropping the constant,

S(q, d(R)) ∝ 1
max(|q̃|, |d̃(R)|)

∑

f |q̃C(f) �=0∧f∈R

αC(f). (16)

The above simplification results in factoring out of norms and a summation over
features f , which is exactly what needed for integral image-based framework.
Specifically, the norm |q̃| is fixed with respect to R, while |d̃(R)| and the sum-
mation term can be computed efficiently for all R using the integral images.
Similar to the L2 case, the integral image Gq,d(x, y) of the summation term for
query q and image d can be written as:

Gq,d(x, y) =
∑

f |q̃C(f) �=0∧f∈(0,y,0,x)

αC(f)

τd(C(f))
, (17)
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where τd denotes the TF histogram as in the L2 case. The L1 norm |d̃(R)| is
computed efficiently using the integral image Hd(x, y) in Eq. 12.

Although the binary TF histogram assumption does not take advantage of
the full histogram information during the retrieval process, we can rerank the
retrieved images according to their exact histograms based on Eq. 14, rather
than the binarized approximation.

Another important detail in forming the integral images is to spatially dis-
tribute multiple instances of a particular word while not violating the binariza-
tion assumption. We have found that if we uniformly distribute the whole vote
αi to different instances, i.e.. if there are K instances of word i, each instance
gets a vote of αi/K, we do not introduce a spatial bias by arbitrarily selecting a
particular word instance, while respecting the binarization assumption. This is
accomplished by the presence of τd(C(f)) in Eq. 11, 12 and 17.

In contrast to generic object category detection where slight shifts and scalings
of the window greatly affect the classification scores due to feature misalignment,
in our problem, a coarse grid can be used without affecting accuracy. We have
found that a 80×80 or 160×160 grid is sufficient for queries larger than 200×200
pixels. If the grid is 80× 80, and the image size is 480× 640, memory or storage
requirement for 1 million images is only 96MB which is negligible compared to
the size of the vocabulary and inverted file. In this case, the integral images Gq,d

and Hd are defined on the grid, instead of at all pixels.

3.3 Optimization

Given integral images of norms and similarities between query and database im-
ages, we need an efficient optimization scheme for Eq. 5. Here, we simply use a
greedy search (see Algorithm 1). In each iteration, we sequentially optimize in-
dividual coordinate in the order of (t, b, l, r), and stop the iteration process when
the returned bounding rectangle in the current iteration is the same as in the
previous iteration or the maximum iteration limit is reached. From experiments,
we found that our approach finds global optima in about 66% of the cases and
the process generally converges in less than 3 iterations as shown in Fig. 4.

3.4 Local BoF Algorithm

We follow the same general image retrieval framework as described, for example,
in [15, 13, 11]. For training and indexing, we (1) extract local interest regions
and descriptors for all database images, (2) construct the visual vocabulary
by clustering, (3) quantize all descriptors into visual words, and (4) construct
an inverted file, indexed on the visual words, and including feature geometry
with the index. During the testing stage, we (1) extract interest regions and
descriptors in query image, (2) compute distances (or similarities) between query
and all database images using the inverted file, (3) apply our Local BoF-based
search to localize and rerank the top K results.

The Local BoF retrieval algorithm is briefly described in Algorithm 2. We
assume a feature quantizer is given and all features are indexed based on the
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Algorithm 1. Greedy Query Localization: (nx, ny) is the grid width and height.
M is the maximum iterations. S(u, v, w, z) =: S(q, d(R)), R = (u, v, w, z).

(t, b, l, r)← (0, ny − 1, 0, nx − 1)

for i = 1 to M do
t′ ← arg maxj=0,...,b−1 S(j, b, l, r) and b′ ← arg maxj=t′+1,...,ny−1 S(t′, j, l, r)
l′ ← arg maxj=0,...,r−1 S(t′, b′, j, r) and r′ ← arg maxj=l′+1,...,nx−1 S(t′, b′, l′, j)
if (t, b, l, r) = (t′, b′, l′, r′) then

break
end if
(t, b, l, r)← (t′, b′, l′, r′)

end for
return R∗ ← (t, b, l, r) and S ← S(t, b, l, r)

Algorithm 2. Local BoF Retrieval
/*—————Offline—————*/

Quantize local descriptors and construct the inverted file.

for each database image {Ii}i=1,2...N do
Compute Hdi using Eq. 12.

end for
/*—————Online—————*/

Given the query BoF q, use the Global BoF method to rank the images.

for all top-K images {ITj }j=1,...,K on the ranked list do
Compute Gq,dTj

based on Eq. 11 or Eq. 17.

Compute R∗(ITj ) and S(Iq, ITj ) using Algorithm 1.

end for
for all top-K images IT1 , . . . , ITk on the ranked list do

Given R∗(ITj ), recompute S(Iq, ITj ) using the non-binarized BoF.

end for
Rerank the top K images based on S(Iq, ITj ).

return R∗(ITj ) and the reranked image list.

quantizer, and the indices are organized into an inverted file. Offline, we compute
integral norm images over the coarse uniform grid for both binary and full BoFs.
Online, we first compute the BoF for the query region, sort the images based on
the standard BoF algorithm, and then perform the local BoF optimization to
estimate the optimal rectangle, compute similarities, and rank images.

3.5 Local Spatial Pyramid Model (LSPM)

Inspired by Lazebnik et al. [8], we can extend the Local BoF model by impos-
ing a weak spatial consistency constraint using a local spatial pyramid model.
Specifically, we decompose the query region into different spatial quantization
levels P ×P (P = 1, 2...). In each pyramid level, we compute the similarity vote
for each grid cell in this spatial quantization and average them, and average the
similarities at all pyramid levels to obtain the pyramid-based Local BoF similar-
ity. For data sets such as the Oxford Building data set, where objects are mostly
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upright in the images, more levels of the spatial pyramid are more discriminative
and hence result in better average precision. In our experiments we found that
P = 2 is a good tradeoff between accuracy and complexity.

4 Results

We test the approach on two image retrieval data sets: the University of Kentucky
data set(Ukbench)1 [11], and the Oxford Building (5K) data set (Oxbuild)2 [13].
Ukbench contains 10200 images of 2550 objects where each object has exactly
four images. The evaluation metric is the average number of correct top-4 images
for all 10200 queries. Oxbuild contains 5062 images of Flickr images and 55
standard test queries of 11 landmarks. The performance is evaluated as the
mean average precision (mAP) score. We implemented our own retrieval system
consisting of affine invariant region detection [10], SIFT [9] description, and
hierarchical quantization methods, but for fair comparison to other approaches,
our results here are based on the same features as [13] and [11] which are publicly
available at the data set URLs. We used a fixed grid size (grid spacing meaning
the size of one grid cell) of 80 × 80 pixels and performed reranking for top K
images (where K=400 for Oxbuild and K=20 for Ukbench) in all experiments
except the ones in Sec. 4.4, where the effects of these parameters are tested.

4.1 Results on Oxbuild

Since our method is aimed at improving retrieval on smaller queries, we have
evaluated its performance as a function of query region size. For Oxbuild, we
perform two types of ‘query resize’ experiments: (1) performance w.r.t. the resize
ratio to the original query rectangle, i.e. test mAP values by varying the standard
55 query rectangles by fixing their center points and scales them uniformly by
a set of constant factors ranging from 0 to 1; (2) performance w.r.t. the area
(pixel size) of query subrectangle, i.e. test mAP values by choosing fixed-size
query subretangles (the same number of pixels for all queries) with the same
center and aspect ratio to the original query rectangles. Note that we resize
query rectangles instead of the underlying query images. Fig. 2 (top) shows
the comparison results of those two experiments for the L1 case. As can be
seen from the figure, both versions of our approach consistently outperform the
Global BoF approach, improving mAP on average by 12.7% across all query
resize ratios and 13.6% across all absolute query subrectangle sizes (pixels). In
general, LSPM (level 2) showed better performance than Local BoF for larger
scales due to its better discriminative power. For smaller queries, the advantage
of using LSPM is not obvious due to the sparseness of the query features. More
interestingly, the smaller the absolute query size, the more benefit is observed
using our localized algorithms as shown in Fig. 2 (top-right).

1 http://www.vis.uky.edu/~stewe/ukbench/
2 http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/index.html

http://www.vis.uky.edu/~stewe/ukbench/
http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/index.html


304 Z. Lin and J. Brandt

0 0.2 0.4 0.6 0.8 1
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Query resize ratio

m
A

P

 

 

Global BoF
Local BoF
LSPM

50k 100k 150k 200k 250k 300k
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Query size (pixel)

m
A

P

 

 

Global BoF
Local BoF
LSPM

0 0.2 0.4 0.6 0.8 1

0.35

0.4

0.45

0.5

0.55

0.6

Query resize ratio

m
A

P

 

 

Global BoF
Local BoF
LSPM

50k 100k 150k 200k 250k 300k
0.45

0.5

0.55

0.6

0.65

0.7

Query size (pixel)
m

A
P

 

 

Global BoF
Local BoF
LSPM

Fig. 2. Performance evaluation on Oxbuild for different approaches (Global BoF, Local

BoF and LSPM) w.r.t. the query size. Top-Left: comparison w.r.t. the query size in

ratios to the original query regions (the L1 case). Top-Right: comparison w.r.t. the

query size in pixels (the L1 case). Bottom-Left: comparison w.r.t. the query size in

ratios to the original query regions (the L2 case). Bottom-Right: comparison w.r.t. the

query size in pixels (the L2 case).

Fig. 2 (bottom) shows the same experiments for the L2 case. We can observe
similar consistent improvement of our approach over the baseline but the im-
provement is less than the L1 case, i.e. on average by 4.2% across all query resize
ratios and 3.8% across all absolute query sizes (pixels). This is probably because
the assumption that the L2 norm becomes similar to the square root of the L1

norm is less accurate due to the repeatitive structures in the data set.
In comparison to previous approaches, mAP of our approach of using the

original 55 queries is 0.647 which is significantly better than the L1 Global BoF
(0.582) and L2 BoF (0.618). And, our local BoF obtained almost identical result
to the Global BoF with RANSAC-based reranking [13]. Note that our approach
is significantly faster than RANSAC-based verification, and can be applied to
thousands of the database images in less than 50ms during retrieval time (see
Fig. 5 (right)). Another advantage of our approach is that it is not limited to
rigid, mostly planar objects as in the RANSAC-based approach.

4.2 Results on UKbench

We performed the same query-size experiments for Ukbench. We resized each
of the original query regions (entire image regions) by fixing its center to the
center of the original image since there are no query regions are given. Since the
vocabulary tree structure is not provided, we use our own HKM algorithm and
the SIFT features (provided on the data set web page) to build a hierarchical
vocabulary of 6 levels with the branching factor 10, and obtained the top-4 score
of 3.29 which is the same as the best result of [11].
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Fig. 3. Performance evaluation on Ukbench: average top-4 w.r.t. the query size. Left:

the L1 case. Right: the L2 case.

Fig. 3 shows the results of the standard Global BoF and our Local BoF ap-
proaches. The improvement of our approach over the Global BoF is most sig-
nificant for smaller queries, i.e. in general the smaller the query the more im-
provement we achieved. Specifically, the absolute improvement of the top-4 rate
is 0.19 for the L1 case and 0.21 for the L2 case which are significant considering
the strict true positive criterion used for the data set. For larger queries, our
approach achieved relatively smaller improvement in retrieval because most of
the images in this data set are close-up shots of objects. Comparing the L1 and
L2 cases, the improvement for L2 is more consistent over all query sizes.

4.3 Analysis of the Optimization Approach

We evaluated the number of greedy iterations needed for convergence during
the local BoF search process using Oxbuild. As shown in Fig. 4 (left), retrieval
performance improves with increasing iterations, but the improvement slows
significantly after 2 iterations. Surprisingly all of the optimization for 22000 test
images over 55 queries coverage in less than 4 iterations. For about 95% images,
the process converges in only 2 iterations. Fig. 4 (right) validates proximity of
our solutions to the global optimum when changing the area overlap ratio γ3 to
the globally optimum rectangle. Note that in about 66% of cases out of 22000
total localization tasks, our approach achieved the exact global optimum.

As shown in Table 1, we also compared the retrieval performance of our
greedy-based approach and the globally optimum-based approach (branch-and-
bound or brute-force search) with respect to the different query resize ratio β.
Evidently, the greedy approach results in no significant degradation in mAP.

4.4 Analysis of the Algorithm Parameters

We first analyze the effect of changing the grid size (grid spacing) from 20× 20
to 320× 320, for a range of query sizes, using Oxbuild. From Fig. 5 (left) we can
observe that the retrieval performance of the LSPM tends to be increasing and
3 The area overlap ratio γ(R1, R2) between two rectangles R1 and R2 is defined as:

γ =
A(R1

⋂
R2)

A(R1
⋃

R2)
, where A(Q) is the area of region Q.
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when changing the area overlap ratio threshold θ.

Table 1. Performance (mAP) comparison of our greedy solution and global optimum

localization-based approaches on Oxbuild

mAP β = 0.252 β = 0.52 β = 0.752 β = 1.02

Greedy solution 0.322 0.476 0.591 0.647

Global optimum 0.329 0.481 0.591 0.644

leveling off with smaller grid sizes. While for larger grid sizes, the degradation
in accuracy is more significant for small-size queries. This is reasonable because
more precise localization can be achieved using smaller grids, and when the query
size is smaller or similar to the grid size, LSPM becomes too sparse.

We also evaluated the performance by varying K, the number of top images
to rerank, for a range of query sizes, using the same data set. Fig. 5 (middle)
shows the mAP of the Local BoF and the LSPM w.r.t. K and query size. It is
interesting to find that all curves level off with increasing reranking images. We
can also observe a consistent mAP improvement of our approaches when moving
from K = 25 to K = 800, i.e. the LSPM improves by 9.7% and the Local BoF
improves by 8.4% on average. This figure indicates that the method is robust to
K. Also, for most query sizes, the LSPM outperformed the Local BoF by about
2% on average but the LSPM resulted in a lower mAP than the local BoF for
the smallest query due to the relatively coarser grid size (80× 80).

4.5 Complexity and Scalability

Our approach only needs to store feature locations (x, y) (1 byte per feature
coordinate) as the geometric information in the inverted file and does not re-
quire storing affine geometry parameters. Indexing 1 million images, averaging
500 features per image, requires about 1GB. In addition to the inverted file, our
method requires storing L1 or L2 norm integrals of all database image BoFs. If
each image has 48 grids, storing each integral requires 100 bytes. For 1 million
images, this only amounts to 100MB, which is insignificant compared to the size
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Fig. 5. Analysis of parameters using Oxbuild. Left: mAP w.r.t. the grid size (grid

spacing in pixels) using the LSPM, ‘QS=n’ means the query region size is n×n pixels.

Middle: mAP w.r.t. the number of reranked images, ‘LBOF’ stands for Local BoF and

‘QS=n’ means the query size is n× n pixels. Right: the query time comparison w.r.t.

the number of reranked images.

of the inverted file. At retrieval time, our Local BoF is only slightly slower than
the Global BoF approach when the optimization was run for the top 400 images,
see Fig. 5 (right), and is only twice as slow when run on the top 1000 images.
Typically the average query (or retrieval) time (ignoring the query feature ex-
traction) for reranking the top 3200 images is less than 30ms compared to around
5ms for the global BoF approach. From the Local BoF curve, we can predict that
our approach can spatially verify, rerank, and localize objects for 100k images
in less than 1 second which is significantly faster than RANSAC-based spatial
verification for the same number of reranking images. The speed is mainly due to
the combination of a coarse grid, the integral image-based computation enabled
by binary BoF approximation and greedy optimization.4

5 Conclusions

We have presented a local BoF model and its optimization method for efficient
object retrieval. Our new contributions include (1) the generalization of the
Global BoF to spatially localized models, Local BoF and LSPM, for reranking
images and localizing objects in a unified framework, (2) the integration of the
localized models with an inverted file index for efficient object retrieval in large
image sets. Efficiency was achieved by introducing the binary BoF approxima-
tion. We have demonstrated consistent improvement over the baseline BoF on
the average retrieval precision using our method. We have also shown that the
method is much faster than alternative methods such as RANSAC.

Our local BoF framework is a general module that can be combined easily
with numerous already published techniques including (1) different local features
and their sample combinations [18], (2) varying quantization methods, such as
HKM [11], AKM [13], Soft AKM [14], (3) specific cues, such as query expan-
sion [13], (4) RANSAC [13], (5) gravity vector assumptions [13, 12], and (6)
compression-based schemes, such as [12, 3]. We expect that combination with
4 All the reported times are measured on a 3GHz machine with 16GB RAM.
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such techniques will further improve object retrieval accuracy for large sets of
images using the Local BoF framework.
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Velocity-Dependent Shutter Sequences for
Motion Deblurring

Scott McCloskey

Honeywell ACS Labs, Golden Valley, MN, USA
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Abstract. We address the problem of high-quality image capture of

fast-moving objects in moderate light environments. In such cases, the

use of a traditional shutter is known to yield non-invertible motion blur

due to the loss of certain spatial frequencies. We extend the flutter shut-

ter method of Raskar et al. to fast-moving objects by first demonstrating

that no coded exposure sequence yields an invertible point spread func-

tion for all velocities. Based on this, we argue that the shutter sequence

must be dependent on object velocity, and propose a method for com-

puting such velocity-dependent sequences. We demonstrate improved im-

age quality from velocity-dependent sequences on fast-moving objects, as

compared to sequences found using the existing sampling method.

1 Introduction

In challenging photographic situations, where ambient illumination is low or sub-
ject/camera motion is high, blur is a significant image quality problem for both
consumer photographic and computer vision applications. Both optical and mo-
tion blur have been studied in the literature, and the limits of de-blurring are well
understood. With respect to motion blur, it is well-known that the use of a tra-
ditional open/closed shutter results in motion blur that is non-invertible. That
is, the use of a traditional shutter precludes the recovery of a sharp image infor-
mation at certain spatial frequencies, and images processed by de-convolution
will contain significant reconstruction artifacts. In order to address this short-
coming, recent work in computational photography has advocated the use of
non-traditional capture methods to ensure invertibility of blur in the captured
images. The use of coded exposure has demonstrated an ability to produce im-
ages with good contrast at all spatial frequencies without significant artifacts.

The fundamental idea of the flutter shutter approach is to open and close
the shutter several times during image capture in order to produce an image
with invertible motion blur. The motion blur is considered to be invertible if the
associated modulation transfer function (MTF - the Fourier magnitude of the
point spread function [PSF]) is greater than zero for all spatial frequencies. For
such blurs, the deconvolution process is well-posed and the sharp image can be
recovered from the blurred camera image, as illustrated in Fig. 1.

Though the shutter’s fluttering pattern is one determinant, the effective PSF
also depends on the motion of the object As with other current work with mo-
tion blur, we assume that the object follows a linear trajectory with constant

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part VI, LNCS 6316, pp. 309–322, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. We employ an off-the-shelf camera to capture coded exposure imagery of high-

speed motion using velocity-dependent shutter sequences. The coded exposure image

(top right) is then de-blurred to give a sharp image (bottom right) without artifacts.

(unknown) velocity, and that either blur is uniform or that blurred regions have
been segmented in advance. Under these assumptions, a given flutter pattern can
generate any of a family of PSFs, depending on the object’s velocity and motion
direction. Though this dependency has been mentioned in [1], we contribute the
first analytic characterization of the relationship, and demonstrate that no flut-
tering pattern can generate a family consisting entirely of invertible PSFs. We
therefore argue that fluttering patterns must be designed and selected for a par-
ticular velocity. We provide theoretical motivation for our algorithm to generate
velocity-dependent fluttering patterns, which is shown to improve image quality
on reconstructions of fast-moving objects. We also consider (previously ignored)
read-out noise due to the use of an electronic shutter.

2 Related Work

Numerous methods in the category of blind deconvolution [2] have been pre-
sented to mitigate the effects of motion or optical blur in images. Though these
methods may be successful relative to certain aesthetic objectives, they are fun-
damentally limited by the blurred input images. The image of an object moving
along a straight line with constant velocity is equivalent to a sharply-focused
image convolved with a 1D rectangular point spread function. The magnitude of
the Fourier transform of such a PSF (known as the Modulation Transfer Func-
tion or MTF) is small at middle and high spatial frequencies, and goes to zero
at several frequencies. As a result, contrast of a motion-blurred object will be
significantly muted at the middle and high spatial frequencies, and there will be
no contrast at a number of lost frequencies (the frequencies at which the MTF
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vanishes). These spatial frequencies are lost when captured through a traditional
shutter, and post-processing the image cannot recover them and may instead in-
troduce artifacts. Such images can, however, be processed by learning methods
that use outside information (priors, etc.) to produce visually pleasing images
[3,4]. While successful in that regard, hallucinating image content is inappropri-
ate for many applications, e.g. forensics, that require the recovery of the true
scene.

Given the incremental improvements of camera sensitivity, researchers have
begun to use computational photographic methods to achieve fundamental new
gains. Hasinoff and Kutulakos [5,6] propose light-efficient photography as a faster
way of capturing images with large depth of field from multiple images. Telleen
et al. [7] combine multiple, poorly-exposed images from a hand-held camera to
produce low-noise images of stable image regions. Ben-Ezra and Nayar [8] use
a hybrid camera to simultaneously acquire high-resolution/low frame rate and
low-resolution/high frame rate videos; the point spread function estimated from
the low resolution video is used to deblur the high resolution video. Synthetic
apertures [9] have been shown capable of acquiring both scene radiance and
depth in a single image; scene depth can subsequently be used to deblur optically-
defocused regions of the scene, increasing depth of field. Levin et al. [10] acquire
and process uniformly motion-blurred images with an invertible PSF by moving
the camera during exposure, assuming a priori knowledge of the motion direction.

We extend the fluttering shutter method of Raskar, et al. [11] and do not
require a priori knowledge of the motion direction. The flutter shutter approach
chooses a shutter timing pattern with the intent of optimally preserving image
content at all spatial frequencies, and preserving those frequencies at a nearly
uniform level of contrast. Because the effective PSF is zero-padded, the MURA
pattern [12] is not necessarily optimal. Raskar’s shutter timing pattern is found
by dividing the acquisition time into several chops of uniform duration, and by
assigning a label of open or closed shutter to each of the chops subject to a
constraint on the total exposure. Representing the timing pattern as a binary
sequence (with 1s and 0s corresponding to open and closed shutter chops, respec-
tively), the search for an optimal sequence is carried out by random sampling and
a fitness function computed on the Fourier magnitude of the binary sequence,
which is assumed to be the effective MTF. Agrawal and Xu [13] present a method
to determine chop sequences that are optimal with respect to both invertibility
and ease of blur estimation via alpha matting, but continue to conflate the PSF
and the chop sequence. As we demonstrate in the next section, the equivalence
of the binary chop sequence and the PSF only holds at a particular velocity and,
at all other velocities, the invertibility of the effective PSF cannot be guaranteed.

3 Velocity Dependence

The fundamental notion behind the fluttering shutter concept is that the
open/close sequence of the shutter should be chosen to give a PSF that passes
all spatial frequencies with nearly uniform levels of contrast. In addition to the
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Fig. 2. For a particular fluttering sequence, the effective PSF/MTF depends on sub-

ject velocity. (Top Left) The effective MTFs of motion through a particular fluttering

shutter for object velocities of 3 pixels per ms (black), 4p/ms (green), and 6p/ms (red).

(Top Right) Reference image of stationary target. (Lower Images) Coded exposure im-

ages [top] of a dot moving left to right and de-blurred images [bottom]. Though the

reconstructed image quality is good for object speeds of 3p/ms (bottom left), there

are lost frequencies at 6p/ms (bottom right) and the reconstruction has noticeable

artifacts.

binary chop sequence S(t), t ∈ {0, 1, ...N−1}1, the fluttering pattern is specified
by the duration tchop of each chop. As such, the exposure time of the flutter
shutter image is tchop

∑
S(t) and the total acquisition time (the time from the

start of the first open chop to the end of the last) is Ntchop. By convention, the
fluttering pattern is chosen to have an acquisition time no greater than twice
the exposure time, i.e. no fewer than half of the S(t) are open shutter chops.
In order to implement an arbitrary chop sequence on a particular camera, it is
necessary for the camera to support open and closed shutter periods as short as
tchop, a constraint that we discuss further in Section 4.

Though the fluttering sequence is one determinant, the effective PSF of motion
blur also depends on the object’s velocity on the image sensor. Though the
velocity on the image sensor depends both on the object’s real-world velocity and
its distance from the camera, it is the image velocity that determines the PSF.
Because of the PSF’s dependence on velocity, a particular fluttering sequence

1 By convention, the chop sequence begins and ends with a 1 representing open shutter

chops, i.e. S(0) = S(N − 1) = 1.
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defines a family of PSFs, as illustrated in Fig. 2. A notable member of this
family, which we refer to as the ‘nominal‘ PSF, is effective when the object
moves over a range of N pixels during the course of exposure with a fluttering
sequence composed of N chops. In this case the effective PSF (call it BN ) is
equal to a scaled version of the chop sequence S,

BN (t) =
S(t)
∑
S(t)

, for t = 0, 1, ...N − 1. (1)

In this case, which has been considered in [11,13], the Fourier transform B̂N of
the PSF BN will be the same as that of the chop sequence S (up to a scale
factor). Presuming that S was chosen to preserve all frequencies, this nominal
PSF is invertible and the sharp image can be recovered.

In the general case, however, the PSF is a stretched version of the chop se-
quence and may not be invertible. In fact, no chop sequence can generate a
family consisting of invertible PSFs for all velocities. In particular, if the object
moves over 2N pixels during the course of exposure, the effective PSF will be

B2N =
1

2
∑
S(t)

∗ [S(0) S(0) S(1) S(1)...S(N − 1) S(N − 1)] , (2)

where * represents an element-wise multiplication of the sequence. As we will
now demonstrate, B2N suffers lost frequencies that cannot be recovered post-hoc.

Lemma 1. Let S be an arbitrary chop sequence of length N . The effective PSF
B2N for an object that moves over 2N pixels during exposure will have a lost
frequency at k = N

2 .

Proof. Let A = 1
2
∑

S(t) .

B̂2N (k) = A

N−1∑

t=0

S(t)
(
e−i 2π

N k(2t+1) + e−i 2π
N k2t

)

= A

N−1∑

t=0

S(t)e−i 2π
N kt

(
e−i 2π

N k(t+1) + e−i 2π
N kt

)

B̂2N (N
2 ) = A

N−1∑

t=0

S(t)e−iπt
(
e−iπ(t+1) + e−iπt

)

= A

N−1∑

t=0

S(t)e−iπt0 = 0��

(3)

It can similarly be shown that PSFs of the general form

BκN =
1

κ
∑
S(t)

∗
⎡

⎣S(0)...S(0)
︸ ︷︷ ︸

κ times

, ... S(N − 1)...S(N − 1)
︸ ︷︷ ︸

κ times

⎤

⎦ , (4)

will have κ−1 lost frequencies. As well, it can be shown that for any object that
moves over more than 2N pixels, the MTF will have at least one zero in the
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Fig. 3. Use of an electronic shutter for coded exposure imposes read-out noise propor-

tional to the number of open shutter periods. (Left) Plots shows root mean squared

error (RMSE) due to read-out noise in the captured image (blue), and the de-blurred

image (red). For all captures, the exposure time is fixed at 30ms. (Top right) Re-

constructed patch derived from an image captured with a physical shutter (taken from

[11]). (Bottom right) Reconstructed image patch derived from an image with simulated

read-out noise corresponding to 13 open chop periods, i.e. representing the electronic

shutter implementation of the sequence given in [11].

range 0 ≤ k ≤ N
2 . The implication of this result is that the invertibility of coded

exposure blur depends on the velocity; one cannot expect a flutter sequence
designed for motion over N pixels to perform well when the velocity produces
an effective motion of 2N pixels. We demonstrate the image quality implications
of this in the Fig. 2 and the experiments of Section 6.

In order to capture images with invertible motion blur, the shutter’s flutter-
ing pattern must be selected according to the object velocity. The use of an
inappropriate fluttering pattern may cause artifacts in the processed images,
as illustrated in Fig. 2. As such, it is necessary to compute different fluttering
patterns for specific velocities. On naive way to ensure invertibility of blur is to
shorten the duration tchop of each chop to compensate for higher than expected
velocity. There are two problems with this approach, namely that (1) the expo-
sure time would be reduced (and noise increased) and (2) the camera hardware
may not support the shortened chop duration. Before describing our method to
determine velocity-dependant fluttering patterns for each exposure time, we first
discuss hardware limitations on the fluttering sequence.

4 Hardware Considerations

Though the original flutter shutter work [11] was demonstrated with a custom-
made camera, more recent work [13] (including our own) has employed off-the-shelf
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cameras from Point Gray Research. Several of their cameras support flutter shut-
ter image acquisition through an external trigger and multiple-exposure capture
mode. This mode captures a single image whose exposure is accumulated over a
pre-set number of pulses of variable duration. Because the camera lacks a physical
shutter, the CCD sensor is cleared at the beginning of each pulse and at the end
of a pulse the charge is added to the accumulated exposure. This transfer imposes
read-out noise at the end of each open shutter period of a flutter shutter capture,
a fact that has not been noted elsewhere. The noise level in the coded exposure
image is proportional to the number of open shutter periods, as shown by the blue
line in Fig. 3. Because de-convolving the flutter shutter PSF from the captured im-
age amplifies noise, images de-blurred from those captured with more open shutter
periods will have still more noise, as shown by the red line. The two images in Fig.
3 illustrate the difference in reconstructed image quality between a physical shut-
ter implementation (top) and electronic shutter implementation (bottom) of the
sequence given in [11]. In order to avoid such noise-related degradation, we bias
our shutter finding method to favour sequences with fewer open shutter periods,
as described in the next section.

A second result of the lack of a physical shutter is that there are constraints
on both the minimum open shutter pulse length and the minimum time between
pulses. These constraints depend on the image format and frame rate; for the
Flea R©2 camera used in our experiments, the 800-by-600 pixel grayscale image
mode at 15Hz is the least restrictive, requiring pulse lengths of at least 1μs and
at least 1.21ms between pulses. This second constraint is quite restrictive in
light of the use of randomly-sampled binary chop sequences. In the event that
the chop sequence contains the subsequence 101, this means that tchop cannot
fall below 1.21ms, meaning that (for example) the minimum acquisition time
of the 52 tap sequence given in [11] is 62ms and the minimum exposure time
is 31ms. In the event that the image velocity of an object is 4 pixels per ms (a
velocity that we consider in our experiments), the effective PSF would be 248
pixels long. Because of edge effects in the de-convolution, less than half of our
800-by-600 images could be recovered in this scenario.

5 Shutter Finding Method

Though it is possible to employ rejection sampling to find sequences without a
101 subsequence, this strategy would be extremely inefficient, as the frequency of
random binary strings without a 101 subsequence decreases exponentially with
the sequence length. For 32 element chop sequences, more than 98% of all se-
quences have a 101 substring, and for 52 element sequences the proportion is
more than 99.9%. Use of rejection sampling, therefore, would add a factor of
50 to 1000 to the time required to find a suitable sequence. Instead of attempt-
ing to find a good sequence by sampling random sequences and rejecting those
that can’t be implemented, our method constructs a near optimal sequence that
respects given hardware constraints.

We attempt to find an optimal PSF with respect to reconstructed image
quality. In previous work [11], the minimum contrast in the MTF and variance
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of the MTF are mentioned as optimization criteria. We add a third criteria,
mean contrast in the MTF and, when targeting a camera with an electronic
shutter, a fourth term (number of open shutter periods) to limit read-out noise.
Numerically, the fitness of a given PSF is a weighted sum of these terms,

F (B) = w1 mink(|B̂(k)|) + w2 vark(|B̂(k)|) + w3 meank(|B̂(k)|) + w4 C, (5)

where C represents the number of open shutter pulses.
In order to find reasonable values for these weights, we have simulated all

PSFs for N = 16 and measured the RMSE of the reconstructed image in the
presence of Gaussian noise (including a noise component proportional to C). By
computing these errors for 5 random images from the Corel dataset, we find
the optimal weights in the least-squares sense, and set w1 = 0.1, w2 = −0.2,
w3 = 3.4, and w4 = −0.1.

Because Lemma 1 tells us that no single sequence can be expected to produce
a good coded exposure image for all velocities, our method determines a unique
flutter sequence for each combination of subject velocity and total required expo-
sure time. Sequences can be completely specified by the open shutter segments,
each segment having a duration and start time. The segments are constrained
to be non-overlapping, have durations and spacings that respect hardware con-
straints, and have a total open shutter duration that equals the required exposure
time. Our method builds a flutter pattern by first determining the segment du-
rations and then determining each segment’s start time. As we will show, the
choice of segment durations (without start times) gives an upper bound to the
contrast at all spatial frequencies; it determines the envelope of the MTF.

Lemma 2. Let B be an arbitrary PSF of length N , let B1, B2, ...BC represent
N -length PSFs such that B(t) =

∑C
c=1B

c(t), and let
←−
B1,
←−
B2, ...

←−
BC represent

shifted versions of the Bc such that its first non-zero entry appears at t = 0 (see
Fig. 4). The sum of the MTFs of the

←−
Bc is an upper bound of the MTF of B.

Proof.

‖B̂(k)‖ = ‖
N−1∑

t=0

B(t)e−i 2π
N kt‖ = ‖

N−1∑

t=0

C∑

c=1

Bc(t)e−i 2π
N kt‖

≤
C∑

c=1

‖
N−1∑

t=0

Bc(t)e−i 2π
N kt‖

=
C∑

c=1

‖B̂c(k)‖ =
C∑

c=1

‖←̂−Bc(k)‖ ≡ 
‖B̂(k)‖���

(6)

We denote this final quantity 
‖B̂‖� for future reference. This insight allows us
to significantly limit the search space of potential flutter sequences, investigating
only those composed of chop durations that might result in an invertible PSF.

Our algorithm produces a shutter sequence given the required exposure, sub-
ject velocity (given in pixels per ms), and hardware constraints on the shortest
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Fig. 4. PSF B (top row), its decomposition into chops (rows 2-4), and the shifted

versions of these chops (rows 5-7). Lemma 2 shows that the MTF of B is bounded at

each spatial frequency by the sum of the MTFs of the shifted chops.

chop duration cchop and shortest period between open shutter periods cgap. We
find an optimal shutter sequence by first ranking each combination of open shut-
ter durations and then by exploring arrangements of these in priority order, as
in Algorithm 1. The search is terminated either when the fitness of the current
best shutter sequence is greater than that of the envelope of the next combina-
tion of open shutter chop durations or when an optional timeout is reached. We
describe the steps in greater detail in the remainder of this section.

Our method first determines all partitions of the required exposure time into
sets of valid open shutter chop durations. We take tchop to be the larger of either
the minimum integration constraint or the value 1

v , where v is the object’s image
velocity expressed in pixels per ms. The set of potential open chop lengths is
taken to be all integer multiples of this shortest duration, and we compute all
partitions of the exposure time into open shutter chops from this set. For each
such partition, we compute the MTF envelope 
‖B̂‖� and measure the fitness of
that envelope. This gives a ranking of each partition based on the potential fitness
of a PSF corresponding to a shutter timing with that set of chop durations.

In the order of this ranking, we consider each partition and attempt to find the
matching set of open shutter chop start times that produces the best PSF. We
do this (in the BestSequenceOfPartition function) by starting with a random set
of start times, such that the open shutter chops do not overlap and the required
time between them is maintained. We then pursue a hill climbing strategy of
computing several deformations of the current start times, selecting the one
with the best fitness, and iterating. We repeat this process for several random
sets of start times, and keep the sequence corresponding to the overall best PSF.

The ranked list of partitions is traversed until the fitness of the envelope
corresponding to the next best partition is less than the fitness of the current
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Input: Exposure time T , velocity V , constraints cgap and cchop

Output: Shutter sequence S and tchop

tchop = max(1/V, min(cchop, cgap));

numOpenChops = T/tchop;

find all partitions of numOpenChops;

sort partitions by decreasing �‖B̂‖�;
S = zeros(1, 2*numOpenChops);

foreach partition P do

Compute �‖B̂‖� for P ;

if �‖B̂‖� ≤ Fitness(S) then
break;

end

Ŝ = BestSequenceOfPartition(P , V );

if Fitness(S,V ) ≤ Fitness(Ŝ,V ) then

S = Ŝ;

end

end
Algorithm 1. Overall shutter finding method

best PSF. Additionally, a time limit can be incorporated to produce a result
within a budgeted amount of computation. At the completion of this process,
the timing sequence with the highest PSF fitness is stored for use when the given
object velocity and exposure time are required.

For our experiments, we have used this method to produce fluttering pat-
terns for a wide range of combinations of subject velocity and required exposure
time. These fluttering patterns are pre-computed and stored on the computer
controlling the camera.

6 Experiments

In order to validate the claim that our velocity-dependant fluttering sequences
provide increased image quality relative to the existing sampling method, we
have carried out a number of experiments on real moving objects. Our coded
exposure images are processed using the example code from [11] to produce a
sharp image of the moving object. Because of the issues described in Sec. 4,
we cannot use the 52 chop sequence given in [11] for comparison. Instead, we
employ Raskar’s sampling method to determine new fluttering patterns with
tchop ≥ 1.25ms, the shortest chop length allowable by the camera. For relatively
short exposure times, the search space of potential binary sequences is small,
and can be searched exhaustively. For a 4ms exposure time, for instance, using
tchop = 1.33ms requires three open chops and the search space has only 26 = 128
elements, of which the optimal sequence is 1101. We use this to capture an image
of an object moving at 4 pixels per ms, and present the de-blurred results in Fig.
5 (left column).

Because the object moves through more than one pixel per tchop, the extent
of the PSF is greater than the sequence’s nominal PSF of [0.33 0.33 0 0.33],
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Fig. 5. Comparing de-blurred results to the existing method. (Top row) De-blurred

flutter shutter image using the sampling and de-blurring methods of [11]. (Centre
row) The same image, de-blurred using the effective PSF. (Bottom row) De-blurred

flutter shutter image, acquired using a fluttering sequence determined by our method.

Images in the left column are 4ms exposures of an object moving at 4 pixels per

ms; image in the bottom row has 32 pixels of blur. Images in the right column (with

annotated insets) are 8ms exposures of an object moving at 4 pixels per ms; image in

the bottom row has 60 pixels of blur.
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Fig. 6. (Top) Flutter shutter image captured of a car driving down a residential street,

with 43 pixels of blur. (Bottom) Reconstructed image, in which details on the car are

preserved; note that the static background has artifacts from the deconvolution. In this

case, the street’s speed limit serves as a strong prior on object velocity, obviating the

need for explicit pre-capture velocity estimation. Exposure time is 20ms with velocity of

1.1 pixel per ms; shutter sequence is 1001001001100110001000111100011111111, with

tchop = 1ms.

and there are thus two choices for de-blurring. The approach taken in [11] is to
re-sample the image to a smaller one in which the nominal PSF is the effective
PSF. The nominal PSF is then de-convolved from this image, and the result is
re-sampled in order to produce an image of the same size as the input. In this
case, where the effective PSF is more than 4 times the length of the nominal
PSF, the de-blurred image (top row of Fig. 5) has soft edges due to the final
up-sampling by a factor of 4. In order to avoid this re-sampling step, we could
instead de-convolve the effective PSF from the input image directly, as shown
in Fig. 5 (middle row). As predicted by Lemma 1, however, this effective PSF is
non-invertible and the resulting image has noticeable artifacts.

The de-blurred result of our shutter sequence is shown in Fig. 5 (bottom row),
and avoids the artifacts due to lost frequencies while still preserving sharp edges
in the scene. The shutter sequence used to capture the coded exposure image
was 100000011111111000000010000011100000111, with tchop = 0.25ms.

Fig. 5 (right column) shows a capture with an 8ms exposure time and ob-
ject velocity of 4 pixels per ms. The fluttering pattern determined by sampling
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is 110110000101 with tchop = 1.33ms, and our computed shutter sequence is
111100001111100000111110000111110000100001111 with tchop = 0.33ms. As be-
fore, the de-blurred image resulting from our shutter sequence maintains high-
frequency information without significant lost frequency artifacts, whereas the
fluttering pattern derived from sampling gives either soft edges or significant re-
construction artifacts, depending on the de-blurring approach. All three images
in this column show artifacts at occlusion edges, similar to the images of [11].

Though we have argued for, and demonstrated the benefits of, velocity-
dependant shutter sequences for motion capture, we have not presented a pre-
capture velocity estimation method for shutter selection. While such a method
would be helpful, it is not necessary in all situations. Fig. 6 shows, for example,
the captured and de-blurred images of a car driving down a residential street. In
this case, the street’s posted speed limit serves as a strong prior on a vehicle’s
velocity, obviating the need for explicit motion estimation before image capture.
It is unlikely that any vehicle will travel at twice the posted speed limit, meaning
that the lost frequencies predicted by Lemma 1 are an unlikely problem. One
can imagine, however, that a shutter sequence providing optimal reconstructions
of a residential street will perform poorly on a highway.

7 Conclusions and Future Work

We have presented a method for determining velocity-dependant shutter se-
quences to capture coded exposure imagery of fast-moving objects. We have
demonstrated that these shutter sequences produce higher quality de-blurred
imagery than those determined by the existing random sampling method. This
algorithm is motivated by the (heretofore unnoted) observation that a partic-
ular shutter sequence gives rise to a family of PSFs, with the effective PSF
determined by the object’s velocity. We contribute an analytic proof that no
shutter sequence can be devised that produces a family of invertible PSFs and
that, in particular, a shutter sequence will produce non-invertible blur when the
velocity is more than twice a nominal velocity. Our method for determining the
optimal shutter sequence for a given combination of exposure time and object
velocity is based on a priority search over the space of potential sequences, and
features a termination condition that ensures optimality. We have also noted,
measured, and incorporated a term in our optimisation to account for the fact
that implementations of the flutter shutter based on electronic shutters incur
read-out noise proportional to the number of open shutter periods.

Throughout these experiments, we have used manual estimation of the object
velocity in order to select the appropriate fluttering sequence. In order to apply
our method in unconstrained settings, this step should be performed automati-
cally before initiating image capture. Though this step is non-trivial, we expect
that the large body of literature on tracking and motion estimation will yield a
workable approach, given two facts. First, real-world moving objects have inertia
which precludes sudden changes of direction and velocity. Second, we note that
all cameras already have meters that estimate a quantity (illumination) that po-
tentially changes much quicker than velocity. It should also be noted that many
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cameras/lenses already have sensors that provide real-time motion estimates for
optical image stabilisation, and that accurate velocity estimation obviates the
need for explicit blur estimation from the image, as the shutter pattern and
estimated velocity combined determine the extent of the PSF.
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Abstract. This paper introduces a new procedure to handle color in

single image super resolution (SR). Most existing SR techniques focus

primarily on enforcing image priors or synthesizing image details; less

attention is paid to the final color assignment. As a result, many ex-

isting SR techniques exhibit some form of color aberration in the final

upsampled image. In this paper, we outline a procedure based on image

colorization and back-projection to perform color assignment guided by

the super-resolution luminance channel. We have found that our proce-

dure produces better results both quantitatively and qualitatively than

existing approaches. In addition, our approach is generic and can be

incorporated into any existing SR techniques.

Keywords: Super resolution, colorization, image upsampling.

1 Introduction and Related Work

Image super resolution (SR) refers to techniques that estimate a high-resolution
(HR) image from a single low-resolution (LR) image input. Strategies to address
the image SR problem are typically categorized into three broad methods: interpo-
lation based methods, reconstruction based methods, and learning based methods.

Interpolation based techniques (e.g., [1,2,3,4]) have their roots in sampling the-
ory and interpolate the HR image directly from the LR input. While these
approaches tend to blur high frequency details resulting in noticeable aliasing arti-
facts along edges, they remain popular due to their computational simplicity. Re-
construction based approaches (e.g., [5,6,7,8,9,10,11,12,13]) estimate an HR image
by enforcing priors in the upsampling process. Such priors are commonly incorpo-
rated into a back-projection framework to reduce artifacts around edges while con-
straining the estimated HR image against the LR input. Learning based techniques
estimate high frequency details from a training set of HR images that encode the
relationship between HR and LR images (e.g., [14,15,16,17,18,19,20,21]). These
approaches synthesize missing details based on similarities between the input LR
image and the examples in the training set based on patch similarities. Hybrid ap-
proaches that combine elements of reconstruction and learning based methods have
also been proposed (e.g., [22,23]).

While these existing SR techniques have successfully demonstrated ways to en-
hance image quality through priors or detail hallucination – how to handle color
in the SR process has received far less attention. Instead, two simple approaches

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part VI, LNCS 6316, pp. 323–336, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(a)

(b) (c) (d)

Fig. 1. (a) LR chrominance input. Results using bicubic interpolation of the UV chan-

nels (b), using joint-bilateral upsampling [25] (c), and our result (d). Color differ-

ence maps (bottom) are computed based on the CIEDE2000 color difference formula

([26,27]).

are commonly used to assign color. The first approach is to perform color assign-
ment using simple upsampling of the chrominance values. This approach, used ex-
tensively in both reconstruction-based and learning-based SR (e.g. [12,13,19,24]),
first transforms the input image from RGB to another color space, most notably
YUV. Super resolution is applied only to the luminance channel, Y . The chromi-
nance channels, U and V , are then upsampled using interpolation methods (e.g.
bilinear, bicubic) and the final RGB is computed by recombining the new SR lu-
minance image with the interpolated chrominance to RGB. The second approach,
used primarily in learning-based techniques (e.g. [14,15,16]), is to use the full RGB
channels in patch matching for detail synthesis, thus directly computing an RGB
output.

These two existing approaches for SR color assignment have drawbacks. The
basis for the UV-upsampling approach is that the human visual system is more
sensitive to intensities than color and can therefore tolerate the color inaccura-
cies in this type of approximation. However, color artifacts along the edges, are
still observable, especially under large magnification factors as shown in Fig. 1.
Performing better upsampling of the chrominance, by weighted average [28] or
joint-bilateral filtering [25], can reduce these artifacts as shown in Fig. 1(c), but
not to the same extent as our algorithm (Fig. 1(d)). In addition, techniques such
as joint-bilateral upsampling requires parameter-tuning to adjust the Gaussian
window size and parameters of the bi-lateral filter’s spatial and range compo-
nents to obtain optimal results.
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(a)

(b) (c) (d)

Fig. 2. (a) LR chrominance input, (b) ground truth image (top) and training images

(bottom), (c) result using learning based SR [16], (d) our result. Color difference maps

are computed based on the CIEDE2000 color difference formula ([26,27]).

For learning-based techniques, the quality of the final color assignment de-
pends heavily on the similarity between the training data and the input image.
The techniques that perform full RGB learning can exhibit various color artifacts
when suitable patches cannot be found in the the training data. Approaches that
apply learning-based on the luminance channel in tandem with UV-upsampling
can still exhibit errors when the estimated SR luminance images contains con-
trast shifts due to training set mismatches. Since back-projection is often not
used in learning-based techniques, this error in the SR luminance image can lead
to color shifts in the final RGB assignment. Fig. 2 shows examples of the color
problems often found in learning-based approaches.

In this paper, we propose a new approach to reconstruct colors when perform-
ing single image super resolution. As with chrominance upsampling, our approach
applies super resolution only to the luminance channel. Unique to our approach,
however, is the use of image colorization [29,30] to assign the chrominance values.
To do this, we first compute a chrominance map that adjusts the spatial locations
of the chrominance samples supplied by the LR input image. The chrominance
map is then used to colorize the final result based on the SR luminance channel.
When applying our approach to learning-based SR techniques, we also introduce
a back-projection step to first normalize the luminance channel before image col-
orization. We show that this back-projection procedure has little adverse impact
on the synthesized details. Our approach not only shows improvements both vi-
sually and quantitatively, but is straight-forward to implement and requires no



326 S. Liu et al.

Fig. 3. The pipeline of our algorithm. (a) LR input image. (b) The chrominance com-

ponent of input image. (c) Initial chrominance map produced by expanding (b) with

the desired scale without any interpolation. (d) Adjusted chrominance map. (e) The

luminance component of input image. (f) Upsampled image using any SR algorithm.

(g) Upsampled image produced by adding the back-projection constraint (if neces-

sary). (h) Final color SR image obtained by combining the color map (d) and the SR

luminance image (g) using colorization.

parameter tuning. Moreover, our approach is generic and can be used with any
existing SR technique.

The remainder of this paper discusses our SR color assignment procedure
and demonstrates results on several examples using both reconstruction and
learning-based techniques. The paper is concluded with a short discussion and
summary.

2 Colorization Framework for Super Resolution

The pipeline of our approach is summarized in Fig. 3. Given a LR color im-
age (Fig.3 (a)), our goal is to produce a SR color image (Fig.3 (h)). To achieve
this goal, the input LR image is first decomposed into the luminance channel
YL and the chrominance channels UL and VL . For simplicity, we use only the U
channel to represent chrominance since the operations on the U and V channels
are identical. For the luminance, the HR luminance channel YH is constructed
from YL by using any preferred SR algorithm. To assign the RGB colors to the
final SR image IH , we use the colorization framework introduced by Levin et
al. [29]. For the colorization, we introduce a method to generate chrominance
samples which act as the seeds for propagating color to the neighboring pix-
els. The chrominance samples are obtained from the low resolution input, UL,
however the spatial arrangement of these chrominance values are generated au-
tomatically from the relationships between intensities in YL and YH .
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Before we explain the colorization scheme, we note that we apply back-
projection for computing YH from YL when the selected SR algorithm does not
already include the back-projection procedure. We explain the reason for this
first, before describing the colorization procedure.

2.1 Luminance Back-Projection

Enforcing the reconstruction constraint is a standard method which is used
in many reconstruction based algorithms [9,10,11,12,13]. The difference among
these various approaches is the prior imposed on the SR image. In our framework,
the reconstruction constraint is enforced by minimizing the back-projection error
of the reconstructed HR image YH against the LR image YL without introducing
extra priors. This can be expressed as as:

YH = arg min
YH

‖YL − (YH ⊗ h) ↓ ‖2, (1)

where ↓ is the downsampling operator and ⊗ represents convolution with filter
h with proportional to the magnification factor.

Assuming the term YL − (YH ⊗ h) ↓ follows a Gaussian distribution, this
objective equation can be cast as a least squares minimization problem with an
optimal solution YH obtained by the iterative gradient descent method [5].

The reason to incorporate the reconstruction constraint is that the desired
output should have the similar intensity values as the input image. As discussed
in Section 1, learning-based techniques often suffer from luminance shifts due to
training example mismatches. Conventional wisdom is that back-projection may
remove hallucinated details, however, we found that adding this procedure had
little effect on the synthesized details. Fig. 4 shows an example of the gradient
histogram of the original YSR as more iterations of back-projection are applied.
We can see that the gradient profiles exhibit virtually no change, while the
color errors measured using the CIEDE200 metric against the ground truth
are significantly reduced. This is not too surprising given that the estimated
luminance image is downsampled in the back-projection process described in
Eq. (1). Thus, back-projection is correcting luminance mismatches on the low-
pass filtered image, allowing the fine details to remain. For SR techniques that
already includes back-projection, this step can be omitted.

3 Colorization Scheme

The core of our approach lies in using image colorization to propagate the chromi-
nance values from the LR input in order to add color to the upsampled SR
luminance image. In [29], a gray-scale image is colorized by propagating chromi-
nance values which are assigned via scribbles drawn on the image by the user.
In our approach, the initial chrominance assignment comes from the LR image.
The positions of these assignments are adjusted to better fit the HR luminance
channel. We first review the image colorization and then describe our procedure
to build the chrominance map.
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0 iteration 2 iterations 4 iterations 8 iterations 16 iterations 32 iterations

Fig. 4. Illustration of the benefits of back-projection. Estimated HR images (top), their

CIEDE2000 color difference maps (middle), and gradient magnitude profiles (bottom)

are shown at different iterations based on Eq. (1).

3.1 Image Colorization

Image colorization [29] computes a color image from a luminance image and a
set of sparse chrominance constraints. The unassigned chrominance values are
interpolated based on the assumption that neighboring pixels r and s should
have similar chrominance values if their intensities are similar. Thus, the goal
is to minimize the difference between the chrominance UH(r) at pixel r and the
weighted average of the chrominance at neighboring pixels:

E =
∑

r
(UH(r)−

∑

s∈N(r)

wrsUH(s)) (2)

where wrs is a weighting function that sums to unity. The weight wrs should be
large when YH(r) is similar to YH(s), and small when the two luminance values
are different. This can be achieved with the affinity function [29]:

wrs ∝ e−(YH(r)−YH (s))2/2σ2
r (3)

where σr is the variance of the intensities in a 3×3 window around r. The
final chrominance image is obtained by minimizing Eq. 2 based on the input
luminance image and chrominance constraints. The final RGB image is computed
by recombining the luminance and the estimated chrominance.

3.2 Chrominance Map Generation

To perform image colorization, chrominance values must be assigned to a set
of pixels, or seed points, from which the color is propagated. In [29], scribbles
from the user-input are used as the initial assignment of color. In this paper,
the chrominance from the LR image is used for the initial color assignment. For
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(a) (b)

Fig. 5. (a) The effect of the chrominance seed position on the final colorization result

are shown. The arrows indicate the chrominance propagation based on the intensity

affinity based on the seed location. (b) Our aim is to adjust the seed point to be located

at a position in the HR luminance result that is more similar the LR image luminance.

This will produce a better colorization result.

example, for an 8× upsampling, a pixel in the LR image can be mapped to
any of the pixels in the corresponding 8 × 8 block of corresponding HR pixels.
The key in our colorization scheme lies in the positioning of the seed points
in the upsampled image since blindly assigning the chrominance value to the
middle of the patch may not produce the best result and can likely result in
undesired color bleeding. This is illustrated in Fig. 5(a), where the we see that
the estimated chrominance values are sensitive to the position of the seed point
(i.e. hard constraint), especially on the edges.

Our strategy is to place the chrominance value in a position in the upsampled
patch where the luminance value of the computed SR (YH) is closest to the
original LR pixel’s intensity (YL) as shown in Fig. 5(b). This approach, however,
can be sensitive to noise and we therefore introduce a simple Markov Random
Field (MRF) formulation to regularize the search direction for assigning the seed
point. The idea is that the neighboring seed points are likely to share the same
search direction in the HR image. Fig. 6 outlines the approach using an example
with 8× upsampling.

The search directions are discretized into four regions (Fig. 6 (a)) which serve
as the four labels of the MRF, i.e. lx ∈ {0, 1, 2, 3}. Let x be a pixel coordinate
in the LR image and X be the upsampled coordinate of the point x. Let Ni(X)
be the neighborhood of X in the direction i, where i ∈ {0, 1, 2, 3}. A standard
MRF formulation is derived as:

E = Ed + λEs, (4)

where Ed is the data cost of assigning a label to each point x and Es is the
smoothness term representing the cost of assigning different labels to adjacent
pixels. The term λ serves as the typical balancing weight between the data cost
and the smoothness cost. Each cost is computed as follows :
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Fig. 6. The MRF example: (a) Discretized search directions. (b) Data cost computation

in each search direction. (c) Smoothness constraint to regularize results. The MRF

smoothness prior regularizes the search direction to be similar to the search directions

of neighboring LR pixels.

Ed(lx = i) = min
Z∈Ni(X)

|YL(x) − YH(Z)| , (5)

and
Es(lp, lq) = f(lp, lq) · g(Ypq), (6)

where f(lp, lq) = 0 if lp = lq and f(lp, lq) = 1 otherwise. The term g(ξ) =
1

ξ+1 with Ypq = ‖YL(p) − YL(q)‖2, where p and q are neighboring pixels. This
weighting term encourages pixels with similar LR luminance intensity values to
share the same directional label. The MRF labels are assigned using the belief
propagation (BP) algorithm [31].

After computing the search direction using the MRF regularization, the chromi-
nance value from the LR image is placed on the pixel with the most similar lumi-
nance value in the regularized search direction. Fig. 7 shows an example of the re-
sults obtained before and after applying the chrominance map adjustment. Bleed-
ing is present without the adjustment, however, the results is much closer to the
ground truth with the adjustment.

4 Experimental Results

Here we show results of our colorization scheme on 4 representative images shown
in Fig. 8. For brevity, we only show the error maps and selected zoomed regions.
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(a) (b) (c) (d)

Fig. 7. (a) Initial color map US . (b) Color map UH . (c) Colorization result using (a).

(d) Colorization result using (b). Color map (b) produce better results without leakage

at boundaries since the chrominance points are well located.

Fig. 8. (Top) Images used for our experiments. (Bottom) Images used as the training

examples for the learning-based SR.

Full resolution images of our results, together with additional examples, are
available online. For the color difference measure, we use the CIEDE2000 met-
ric [26,27] together with a “hot” color-map. The mean color errors, ΔE, for all
pixels as defined by the CIEDE2000 metric are provided.

The first two results are shown in Fig. 9 and Fig. 10. The images have been
upsampled using 4× magnification using the recent reconstruction based SR
algorithm in [13]. The results were produced with executable code available on
the author’s project webpage. Our colorization results are compared with the de
facto UV-upsampling technique (also used in [13]). As can be seen, the overall
error maps for our results are better. For the zoomed regions, we can see that
artifacts about edges are less noticeable using our technique.
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(a) (b) (c) (d)

Fig. 9. Example 1 (Ballon): 4× reconstruction-based upsampling has been applied to

the “ballon” image. UV-upsampling (a,c) is compared with our result (b,d).

(a) (b) (c) (d)

Fig. 10. Example 2 (Pinwheel): 4× reconstruction-based upsampling has been applied

to the “pinwheel” image. UV-upsampling (a,c) is compared with our result (b,d).
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(a) (b) (c) (d)

Fig. 11. Example 3 (Parrot): 4× learning-based upsampling (a,c) has been applied to

the the “parrot” image. Full RGB SR is compared with our result (b,d).

(a) (b) (c) (d)

Fig. 12. Example 4 (Flowers): Example 2 (Parrot): 4× learning-based upsampling (a,c)

has been applied to the the “parrot” image. Full RGB SR is compared with our re-

sult (b,d).
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(a) (b) (c)

Fig. 13. Example showing the benefits of back-projection. (a) learning-based result;

(b) our approach without back-projection; (c) our approach with back-projection.

The next two results are shown in Fig. 11 and Fig. 12. Fig. 8 (bottom) shows
the training images used for the learning examples, which are the the same im-
ages used in the [16]. We use our own implementation of the full RGB learning
method using the one-pass algorithm described in [16]. For our results, we first
apply back-projection on the SR luminance channel before performing the col-
orization step. Learning-based techniques exhibit more random types of color
artifacts, however, our approach is still able to improve the results as shown in
the errors maps and zoomed regions.

The final example demonstrates the benefits of the optional back-projection
procedure when the SR luminance image exhibits significant intensity shifting.
In this example, only two of the training images are used to produce the SR
image. Fig. 13(a) shows the result and the associated error. Fig. 13(b) shows our
results obtained by only applying the colorization step and Fig. 13(c) shows the
results when back-projection is used followed by our colorization method. We
can see the error is significantly reduced when the back-projection procedure is
incorporated.

5 Discussion and Summary

The focus of this paper is on assigning the final color values in the super resolu-
tion pipeline, and not how to perform SR itself. Therefore, our results are affected
by the quality of the SR technique used, which is evident in the learning-based
examples which tend to produce a higher overall error. However, even in these
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examples, our approach is able to offer a better final color assignment when com-
pared with the ground truth. For reconstruction-based approaches, our overall
edges appear sharper compared to basic UV-upsampling. We note that our ap-
proach inherits the limitations of image colorization. In particular, color bleeding
may occur in regions with different chrominance but similar luminance values.
However, the reasonably dense chrominance sampling from the LR image helps
to keep such artifacts localized.

While we introduce an MRF regularization to aid in the chrominance map
assignment, poor assignment of chrominance values can obviously result in un-
desired artifacts. Our quantitative measurements suggest our current approach
is reasonable. We envision that better results could be obtained in the future
with more sophisticated strategies for the chrominance placement.

In summary, we have introduced a new approach for assigning colors to SR im-
ages based on image colorization. Our approach advocates using back-projection
with learning-based techniques and describes a method to adjust the chromi-
nance values before performing image colorization. Our approach is generic and
can be used with any existing SR algorithms.
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Abstract. Since 1960s, aperture patterns have been studied extensively

and a variety of coded apertures have been proposed for various applica-

tions, including extended depth of field, defocus deblurring, depth from

defocus, light field acquisition, etc. Researches have shown that optimal

aperture patterns can be quite different due to different applications,

imaging conditions, or scene contents. In addition, many coded aperture

techniques require aperture patterns to be temporally changed during

capturing. As a result, it is often necessary to have a programmable
aperture camera whose aperture pattern can be dynamically changed as

needed in order to capture more useful information.

In this paper, we propose a programmable aperture camera using

a Liquid Crystal on Silicon (LCoS) device. This design affords a high

brightness contrast and high resolution aperture with a relatively low

light loss, and enables one change the pattern at a reasonably high frame

rate. We build a prototype camera and evaluate its features and draw-

backs comprehensively by experiments. We also demonstrate two coded

aperture applications in light field acquisition and defocus deblurring.

1 Introduction

In the past decades, coded aperture techniques have been studied extensively in
optics, computer vision and computer graphics, and a variety of coded aperture
techniques have been proposed for various applications. The optimal aperture pat-
terns can be quite different from one application to another. For defocus deblur-
ring, coded apertures are optimized to be broad-band in the Fourier domain [1]
[2]. For depth from defocus, coded apertures are optimized to have more zero-
crossing frequencies [3] [4]. For multiplexing light field acquisition, an optimal set
of aperture patterns are solved for the best signal-to-noise ratio (SNR) after de-
multiplexing [5]. Aperture can also be coded in the temporal dimension for motion
deblurring [6]. Coded aperture methods have also been used in many other appli-
cations, including lensless imaging [7] [8], natural matting [9], etc. Figure 1 shows
a collection of some coded apertures that were proposed in the past.

There are many situations where the aperture pattern should be dynami-
cally updated as needed. First, from the aspect of information capturing, ideally
aperture pattern should be adaptive to scene contents. For example, the pattern
should be optimized for defocus deblurring if the scene has a large depth, and

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part VI, LNCS 6316, pp. 337–350, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. A variety of coded aperture patterns proposed for various applications

it should be optimized for motion deblurring if the scene has many objects in
motion. Secondly, aperture pattern should be adaptive to the specific application
purpose. For example, people have shown that a coded aperture optimized for
defocus deblurring is often a bad choice for depth from defocus [4]; and multi-
plexing light field acquisition technique requires different aperture codings for
different target angular resolutions. Thirdly, the pattern should be adaptive to
the imaging condition. For example, the optimal aperture pattern for defocus
deblurring is different at different image noise levels as shown in [2]. In addition,
some coded aperture techniques need to capture multiple images with different
aperture patterns (e.g., [6] [4] and [5]). In all these situations, people need a
programmable aperture camera whose aperture pattern can be updated at a
reasonable speed.

In literature, people has used transmissive liquid crystal displays (LCD) to
control aperture patterns [8] [5]. However, the LCD implementation has severe
drawbacks. The electronic elements on LCD pixels occlude lights and lead to
a low light efficiency. These occluders also cause strong and complicated defo-
cus and diffraction artifacts. These artifacts can be very strong and eliminate
the benefits of aperture codings. Consider the popular applications of coded
aperture (e.g., defocus deblurring, depth from defocus), we argue that a good
programmable aperture is necessary to have the following features:

1. Easy mount. For different applications or scenes, people may use different
lenses and sensors. Therefore, it is important to build a programmable aper-
ture that can be easily mounted to different lenses and sensors.

2. High light efficiency. The loss of light leads to decreased SNR. As shown in [2]
[10], a high light efficiency is the key to achieve high performance in defocus
deblurring, depth from defocus, multiplexing light field acquisition, etc.

3. Reasonable frame rate. Some coded aperture techniques capture multiple
images of a scene using different aperture patterns [4] [5]. For dynamic scenes,
these techniques require multiple images to be captured within a reasonable
short time in order to reduce motion blur, and at the same time, the aperture
pattern must also be updated at the same frame rate and be synchronized
with the sensor exposure.
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Relay lenses

Polarizing beam splitter

Point Gray Flea2G
      CCD Sensor

C-Mount

C-Mount

Primary lens

(a) Our prototype programmable aperture camera 

Primary Lens

      Virtual 
Image Plane

LCoS

   Polarizing 
Beam SplitterImage Sensor

Relay Lens

Aperture

(b) The optical diagram of the prototype camera 

SXGA-3DM LCoS

Fig. 2. Programmable aperture camera using an LCoS device. (a) Our prototype LCoS

programmable aperture camera. In the left-top corner is the Nikon F/1.4 25mm C-

mount lens that is used in our experiments. On the right is an LCoS device. (b) The

optical diagram of the proposed LCoS programmable aperture camera.

4. High brightness contrast. Most optimized aperture patterns in literature have
high brightness contrast - many of them are binary patterns. We may fail to
display optimized patterns without a high brightness contrast.

To meet these requirements, we propose in this paper a programmable aperture
camera by using a Liquid Crystal on Silicon (LCoS) device as shown in Figure 2.
LCoS is a reflective liquid crystal device that has a high fill factor (92%) and high
reflectivity(60%). Compared with transmissive LCD, an LCoS device usually
suffers much less from light loss and diffraction. Figure 2 shows the structure
of our proposed programmable aperture camera. The use of LCoS device in
our prototype camera enables us to dynamically change aperture patterns as
needed at a high resolution (1280 × 1024 pixels), a high frame rate (5 kHz
maximum), and a high brightness contrast. By using the relay optics, we can
mount any C-Mount or Nikkon F-Mount lens to our programmable aperture
camera. Remarkably, our implementation used only off-the-shelf elements and
people may reproduce or even improve the design for their own applications.

A detailed description and analysis to our proposed system will be given in
Section 3. The features and limitations of the present prototype camera are
evaluated via experiments in Section 4. The proposed coded aperture camera
can be a platform to implement many coded aperture techniques. As examples,
in Section 5, we demonstrate the use of our prototype camera in two applications:
multiplexing light field acquisition [5] and defocus deblurring [1] [2].

2 Related Work

Coded aperture technique was first introduced in the field of high energy astron-
omy in 1960s as a novel way of improving SNR for lensless imaging of x-ray and
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γ-ray sources [11]. It is also in the 1960s that researchers in optics began develop-
ing unconventional apertures to capture high frequencies with less attenuation.
In the following decades, many different aperture patterns were proposed (e.g.,
[12] [13] [14] [15] [7]).

Coded aperture research resurfaces in computer vision and graphics in recent
years. People optimize coded aperture patterns to be broad-band in the Fourier
domain in order that more information can be preserved during defocus for the
later deblurring [1] [2]. Levin et al. [3] optimizes a single coded aperture to have
more zero-crossing in the Fourier domain so that the depth information can
be better encoded in a defocused image. Zhou et al. [4] show that by using the
optimized coded aperture pair, they will be able to simultaneously recover a high
quality focused image and a high quality depth map from a pair of defocused
images. In the work [5], Liang et al. proposed to take a bunch of images using
different coded aperture patterns in order to capture the light field.

Coded apertures have also been used for many other applications. Zomet
and Nayar propose a lensless imaging technique by using an LCD aperture [16].
Raskar et al. uses a coded flutter shutter aperture for motion deblurring [6].

Coded aperture camera can be implemented in several ways. One popular
coded aperture implementation is to disassemble the lens and insert a mask,
which can be made of a printed film or even a cutted paper board [1] [3] [2].
The major disadvantages of this method are that one has to disassemble the
lens, and that the pattern cannot be easily changed once the mask is inserted.
Note that most commercial lenses cannot be easily disassembled without serious
damages. People have also used some mechanical ways to modify apertures.
Aggarwal and Ahuja propose to split the aperture by using a half mirror for
high dynamic range imaging [17]. Green et al. build a complicated mechanical
system and relay optics to split a circular aperture into three parts of different
shapes [18].

To dynamically change aperture patterns during capturing, people has pro-
posed to use transmissive liquid crystal display (LCD) devices as in the work
[16] [5]. One problem with the LCD implementation is that the electronic el-
ements sit in the LCD pixels not only block a significant portion of incoming
light but also cause significant diffractions. Some custom LCDs are designed to
have a higher light efficiency. However, these LCDs usually either have much
low resolution (e.g., 5x5 pixels in [5]) or are prohibitively expensive. In this pa-
per, we propose to use a reflective liquid crystal on silicon (LCoS) device [19],
which has much higher light efficiency and suffers less from diffraction. LCoS
has been used before in computer vision for high dynamic range imaging [20].
Another similar device that could be used to modulate apertures is the digital
micro-mirror device (DMD). Nayar and Branzoi use a DMD device to control the
irradiance to each sensor pixel for various applications, including high dynamic
range and feature detection [21]. However, each DMD pixel only has two states
and therefore DMD devices can only be used to implement binary patterns.
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3 Optical Design and Implementation

We propose to implement a programmable aperture camera by using a liquid
crystal on silicon (LCoS) device as an aperture. LCoS is a reflective micro-display
technique typically used in projection televisions. An LCoS device can change
the polarization direction of rays that are reflected by each pixel. Compared with
the typical transmissive LCD technique, it usually produces higher brightness
contrast and higher resolution. Furthermore, LCoS suffers much less from light
loss and diffraction than LCD does. This is because the electronic components
sitting on each pixel of LCD device block lights and cause significant diffraction,
and on the contrary, an LCoS device has all the electronic components behind
the reflective surface and therefore provides much higher fill factors.

One of our major design goals is to make the primary lens separable from the
programmable aperture in order that people can directly attach any compatible
lenses without disassembling the lens. To achieve this, we propose to integrate
an LCoS device into relay optics.

As shown in Figure 2, our proposed system consists of a primary lens, two relay
lenses, one polarizing beam splitter, an LCoS device, and an image sensor. Only off-
the-shelf elements are used in our prototype camera implementation. We choose
a Forth dimension display SXGA-3DM LCoS micro-display. Table 1 shows the
specifications of this LCoS device. We use two aspherical doublet lenses of 50mm
focal length (Edmund Optics, part #49665) for the relay optics, a cube polariz-
ing beam splitter (Edmund Optics, part #49002), and a Point Grey Flea2 camera
(1/3′′ CCD, 1280x960 pixels at 25fps). The camera shutter is synchronized with
the LCoS device by using an output trigger (25 Hz1) of the LCoS driver.

People have a plenty of freedom in choosing primary lenses for this system.
The primary lens and the image sensor are attached to the optics via the standard
C-mount. Therefore, a variety of C-mount cameras and lenses can be directly
used with this prototype system. SLR lenses (e.g., Nikkon F-mount lenses) can
also be used via a proper lens adopter. In our experiments, we use a Nikon 25mm
F/1.4 C-mount lens.

We can see from Figure 2 (b) that an incoming light from a scene is first
collected by the primary lens and focused at the virtual image plane. A cone of
light from each pixel of the virtual image plane is then forwarded by the first relay
lens to the polarizing beam splitter. The beam splitter separates the light into S-
polarized and P-polarized (perpendicular to each other) lights by reflection and
transmission, respectively. The reflected S-polarized light is further reflected by
LCoS. The LCoS device can rotate the polarization direction at every pixel by
arbitary degrees. For example, if the pixel on LCoS is set to 255 (8bit depth),
the polarization of the light is rotated by 90 degree and becomes P-polarized,
and then the light will pass through the splitter and reach to the sensor. If the
pixel on LCoS is set to 0, the polarization will not be changed by LCoS and the
reflected light will be blocked by the splitter.

1 Note that the LCoS can be modulated at 5 kHz maximum. We use 25Hz in order that

it can be synchronized with the sensor.
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Primary Lens Virtual Image Plane
Relay Lens

LCoS

Sensor Device

Aperture
Polarization Filter

Fig. 3. An equivalent optical diagram to that in Figure 2 (b). The virtual image plane

and the sensor plane are conjugated by the relay lens. The LCoS is the aperture stop

of the system.

Consider the LCoS device as a mirror, the diagram in Figure 2 (b) can be
easily shown equivalent to that in Figure 3. The proposed optics can be better
understood from Figure 3. The sensor is located at the focal plane of the second
relay lens, therefore the sensor plane is conjugate to the virtual image plane
whose distance to the first relay lens is the focal length of the first relay lens.
The LcoS device is relatively smaller than other stops in this optical system and
works as the aperture stop.

4 Optical Analysis and Experimental Evaluation

Effective F-Number. Since the LCoS device works as the aperture stop in the
proposed system, F-number (f/#) of the primary lens is no longer the effective
f/# of the camera. The actual f/# of the system is decided by focal length
of the relay lens fr and physical size of LCoS. For a circular aperture, f/# is
usually defined as the ratio of focal length to the aperture diameter. For the
rectangle nature of the LCoS, we use 2

√
uv/π as the diameter, where (u, v) is

the dimension of LCoS. Therefore have:

f/# =
2
fr

√
uv

π
. (1)

According to Equation 1, the effective f/# of the prototype can be computed
as f/2.84, while the f/# of the primary lens is f/1.4.

Field of View. Figure 3 shows that the relay system copies the virtual image
to sensor plane by a magnification ratio of 1 : 1. Therefore, the field of view
(FOV) of the proposed camera is the same as if the sensor were placed at the
virtual image plane. The FOV can be estimated by using the sensor size and the
effective focal length of the primary lens:

FOV ≈ 2 arctan
d

2fp
, (2)
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Table 1. Specification of LCoS device

Resolution 1280×1024 pixels

Reflective depth 8 bits

Pixel fill factor >92%

Reflectivity 60%

Contrast ratio 400:1

Physical dimension 17.43×13.95 mm

Switching pattern 40 µs

Aperture intensity on LCoS

A
verage intensity of im

age

y = 0.6761x + 0.7797
R  = 0.99715

0

50

100

150

200

0 50 100 150 200 250

Fig. 4. The aperture transmittance is lin-

ear to the LCoS intensity

where d is a diagonal size of the sensor and fp is the effective focal length of the
primary lens.

Our prototype camera uses a 25mm lens and therefore the camera FOV can
be computed as 13.69o according to Equation 2. Of course, we can change the
FOV by using a primary lens with a different focal length.

Light Efficiency. Light efficiency is one of the most important index in a
coded aperture camera. Ideally, the light efficiency of our prototype camera is
calculated by:

27.6% = 50%(polarization2)× 92%(fillfactor)× 60%(reflectivity). (3)

We notice that many other optical elements in the camera (e.g., a beam splitter,
two relay lenses, and an LCoS device) may also attenuate the intensity of cap-
tured images. To measure the light efficiency accurately, we captured two images
of a uniformly white plane. One image was captured using our prototype camera,
and another image was captured without the LCoS aperture (the same sensor
and the same lens with f/# set to 2.8). The ratio of the averaged brightness of
these two captured images is computed as 41.54:202.0, which indicates the light
efficiency of the system. The light efficiency of our system is about 21%.

The theoretical light efficiency of a transmissive LCD3 can also be calculated
using a similar formula:

7.4% = 50%(polarization)× 55%(fillfactor)× 27%(transmittance). (4)

The light efficiency of our LCoS implementation is at least three times higher
than that of the LCD implementation.
2 A polarized beam splitter splits incoming lights based on their polarizations. Al-

though the light interacts with the splitter twice, the light efficiency of beam splitter

is still 50%. This is because 100% light will pass through the splitter at the second

interaction when its polarization is aligned to that of the splitter.
3 Note that the fill factor or transmittance of the LCD can be slightly different due to dif-

ferent implementations (e.g., physical sizes and resolutions). We assume a typical LCD

with a similar physical size and resolution to the LCoS used in our implementation.
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Vignetting. From the two images captured with and without the LCoS aper-
ture, we can compute the vignetting curves of the prototype camera and a normal
camera. The horizontal vignetting curves of our prototype camera and a nor-
mal camera are shown in Figure 5 in red and blue solid lines, respectively. The
corresponding dashed lines show the vertical vignetting curves.

Transmission Fidelity. Another important quality index of a coded aperture
implementation is the transmission fidelity – the consistence between the actual
transmittance of coded aperture and the input intensity of the LCoS device.
To evaluate the transmission fidelity, we captured images of uniformly white
plane using circular apertures of different intensities. Figure 4 shows the line of
the average intensity of captured images with respect to the input intensities
of the circular aperture (implemented using LCoS device). This plot confirms
that the aperture intensity is linear to the actual light transmittance rate. Also,
by a linear regression, we can calculate the maximum contrast ratio is 221:1.
Although this contrast is not as high as in Table 1, it has been high enough for
most coded aperture applications.

Distortion. Another problem that has been caused by the use of doublets in
the relay optics is image distortion. The geometric distortion is calibrated by
using the Matlab camera calibration toolbox as shown in Figure 6. The circle
indicates a center of distortion and the arrows represent displacements of the
pixel introduced by the lens distortion. These calibrated camera parameters will
be used to compensate the geometric distortions in the captured images.

PSF Evaluation. Lens aberration and diffraction may distort the actual PSFs.
To assess the PSF quality of the prototype camera, we display a coded aperture
and then calibrate the camera PSFs at 5 depths and 5 different view angles.
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Fig. 7. Evaluating the PSFs of the prototype camera. (a) The coded aperture pattern

used in the evaluation. This pattern is picked without specific intentions. (b) The

calibrated PSFs at five depths ranging from 2m to 4m, and five field angles ranging

from −5o to 5o. We can see that the scale of PSFs varies with both depth and field

angle (due to field curvature), while the shape of PSFs appears similar. (c) The shape

dissimilarity between the input pattern and each PSF is computed according to two

metrics: L2 distance at the top, and K-L divergence at the bottom (as used in the work

[22]).

Table 2. Specification of the prototype camera

Image resolution 1280×960 pixels

Frame rate 25 fps

Minimum F-number 2.84

FOV(diagonal) 13.76o (25 mm Nikkon C-mount)

Actual aperture contrast 221:1

Light transmittance 20.56%

Without specific intentions, we use the aperture pattern as shown in Figure 7
(a) in this evaluation. Figure (b) shows how PSFs varies with depth and field
angle. We can see that the scale of PSF is related to the field angle. This is
because the use of doublets in the relay optics leads to a field curvature.

We can see that the shapes of most PSFs are still very similar. To measure
the similarity between these PSFs and the input aperture pattern, we normalize
the scale of each PSF and compute its L2 distance to the input pattern. A
distance map is shown in the top of Figure 7 (c). We can see that according to
the L2 distance, the PSF shape deviation decreases as the blur size increases. It
is known that L2 distance is not a good metric to measure the PSF similarities
in defocus deblurring. To measure the dissimilarity between two PSFs, we use
the Wiener reconstruction error when an image is blurred with one PSF and
then deconvolved with another PSF. This reconstruction error turns out to be a
variant of K-L divergence as shown in the work [22]. We plot this dissimilarity
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map in the bottom of Figure 7 (c). We can see that all the dissimilarity values
are small and decrease as the blur size increases.

The specifications of the prototype programmable aperture camera are shown
in Table 2 as a summary.

5 Evaluation by Applications

5.1 Programmable Aperture for Light Field Acquisition

We first use our prototype programmable aperture camera to re-implement the
multiplexing light field acquisition method, which is first proposed by Liang et
al. [5]. A 4D light field is often represented as l(u, v, x, y) [23], where (u, v) is
the coordinates on the aperture plane and (x, y) is the coordinates in the image
plane.

For a light field acquisition technique using coded aperture, the spatial res-
olution in the (x, y) space is simply determined by the sensor resolution and
the angular resolution in the (u, v) space is determined the resolution of coded
apertures. Bando et al. [9] use a 2x2 color coded aperture to capture light fields
and then use the information to do layer estimation and matting. Liang et al. [5]
propose a multiplexing technique to capture light fields up to 7×7 angular reso-
lution. For any m×n angular resolution light field acquisition, the multiplexing
method requires m× n images captured using m× n different coded apertures.

With our prototype programmable aperture camera, it is easy to capture light
fields with various angular resolutions. We use S-matrix for the multiplexing
coding (see [24] for a deep discussion on the multiplexing coding). Figure 8 (top)
shows four of the 31 aperture patterns4 that we generate from an S-Matrix.
Since the aperture pattern of the prototype camera can be updated at a video
frame rate (25 fps), it only takes 1.2 seconds to capture all of the images. If we
could increase the camera frame rate further or lower the aperture resolution, the
programmable aperture camera could be able to capture light fields of moving
objects.

From the 31 captured images, we recover the light field of resolution 1280×
960 × 31 (7×5 (u,v) resolution excluding the four corners). Figure 9 shows the
images for different viewpoints (u, v) and their close-ups. From the close-ups,
we can see the disparities of the text clearly. With the recovered light field,
people will be able to do further post-processing including depth estimation and
refocusing as shown in [5] and [9].

5.2 Programmable Aperture for Defocus Deblurring

Another important limit of most existing coded aperture implementations is that
the actual shape of the produced PSF often deviates from the input pattern
due to lens aberration and diffraction. Note that the effects of lens aberration
and diffraction can be quite different in different lenses. For the complexity
4 This is because the code length of S-matrix must be 2n − 1.
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Fig. 8. Four multiplexing aperture codings and the corresponding captured images.

Upper row shows four of the 31 aperture patterns that we generate from an S-Matrix.

Bottom row shows the four corresponding captured images.

of the modern lenses, it is difficult to take these effects into account during
pattern optimization. The effects of these imperfections on the optimality of the
apertures are often overlooked in the literature.

With a programmable aperture camera, we will be able to evaluate the in-
put aperture pattern by analyzing the captured images, and then improve the
aperture patterns dynamically for a better performance. In this experiment, we
apply this idea to the coded aperture technique for defocus deblurring.

Zhou and Nayar [2] propose a comprehensive criterion of aperture evaluation
for defocus deblurring, which takes image noise level, the prior structure of nat-
ural images, and deblurring algorithm into account. They have also shown that
the optimality of an aperture pattern can be different at different noise levels
and scene settings. For a PSF k, its score at a noise level σ is measured as:

R(K|σ) = Σ
σ2

|K|2 + σ2/|F0|2 , (5)

where K is the Fourier transform of the PSF k, and F0 is the Fourier transform
of the ground truth focused image. This definition can be re-arranged as

R(K|σ) = Σ
σ2 · |F0|2

|K|2 · |F0|2 + σ2
≈ Σ σ2 · A

|F |2 + σ2
∝ Σ A

|F |2 + σ2
, (6)

where A is the average power spectrum of natural images as defined in the work
[2], and F is the Fourier transform of the captured image. Therefore, given a
captured defocused image F , the equation 6 can be used to directly predict
the quality of deblurring without calibrating the PSF and actually performing
deblurring, while all the effects of aberrations and diffraction have been taken
into account. Obviously, for the best deblurring quality, we should choose the
aperture pattern which yields the lowest R value.
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(u, v) = (2, 3) (u, v) = (4, 3)

(u, v) = (6, 3) Close-up images

Fig. 9. The reconstructed 4D light field. Images from three different view points (u, v)

are generated from the reconstructed 4D light field, and their close-ups are shown in

the right-bottom corner. From the close-up images, we can see the disparities of the

text.

In our experiment, we capture a set of defocused images of an IEEE resolution
chart (shown in the first row of Figure 10) by using the aperture patterns shown
in Figure 1. We compute the R value from each captured image and find that
the lowest R value is achieved by using the pattern shown in Figure 10 (e). This
indicates that this pattern is the best among all these candidate patterns in the
present imaging condition and scene settings.

Note that this prediction is made directly from the observed defocused im-
ages without PSF calibration or deblurring. The computation only involves few
basic arithmetic operations and one Fourier transform, and therefore can be
done at real time. For comparison, the second row of Figure 10 shows the de-
blurring results of several different aperture patterns. These results confirm that
the pattern in (e) is the best for defocus deblurring in this particular image
condition.
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Fig. 10. Pattern selection for defocus deblurring by using the programmable aperture

camera. We capture a set of defocused images of an IEEE resolution chart using the

patterns shown in Figure 1, and evaluate their qualities using Equation 6. The pattern

shown in Column (e) is found to be the best according to our proposed criterion. To

verify this prediction, we calibrate the PSFs in all the captured images, do deblurring,

and show deblurring results (the second and third rows). We can see that the deblurring

result in Column (e) is the best, which is consistent with the prediction.

6 Conclusion and Perspectives

In this paper, we propose to build a programmable aperture camera using an
LCoS device which enables us to implement aperture patterns of high brightness
contrast, light efficient and resolution at a video frame rate. Another important
feature of this design is that any C-Mount or F-Mount lenses can be easily at-
tached to the proposed camera without being disassembled. These features make
our design applicable to a variety of coded aperture techniques. We demonstrate
the use of our proposed programmable aperture camera in two applications:
multiplexing light field acquisition and pattern selection for defocus deblurring.

We are aware that our prototype camera has many imperfections. For ex-
ample, using two doublets to relay the lights has led to severe lens aberration,
vignetting, and field curvature; and the light efficiency of the prototype camera
is lower than that in design. How to optimize the optical design to minimize
these imperfections will be our future work.
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Abstract. A novel algorithmic approach for optimal contrast enhance-

ment is proposed. A measure of expected contrast and a sister measure of

tone subtlety are defined for gray level transform functions. These defini-

tions allow us to depart from the current practice of histogram equaliza-

tion and formulate contrast enhancement as a problem of maximizing the

expected contrast measure subject to a limit on tone distortion and possi-

bly other constraints that suppress artifacts. The resulting contrast-tone

optimization problem can be solved efficiently by linear programming.

The proposed constrained optimization framework for contrast enhance-

ment is general, and the user can add and fine tune the constraints to

achieve desired visual effects. Experimental results demonstrate clearly

superior performance of the new technique over histogram equalization.

1 Introduction

The contrast of a raw image can be far less than ideal, due to various causes such
as poor illumination conditions, low quality inexpensive imaging sensors, user
operation errors, media deterioration (e.g., old faded prints and films), etc. For
better and easier human interpretation of images and higher perceptual quality,
contrast enhancement becomes necessary and it has been an active research topic
since early days of computer vision and digital image processing.

Contrast enhancement techniques can be classified into two approaches:
context-sensitive or point-wise enhancers and context-free or point enhancers.
In context-sensitive approach the contrast is defined in terms of the rate of
change in intensity between neighboring pixels. The contrast is increased by di-
rectly altering the local waveform on a pixel by pixel basis. For instance, edge
enhancement and high-boost filtering belong to the context-sensitive approach.
Although intuitively appealing, the context-sensitive techniques are prone to ar-
tifacts such as ringing and magnified noises, and they cannot preserve the rank
consistency of the altered intensity levels. The context-free contrast enhancement
approach, on the other hand, does not adjust the local waveform on a pixel by
pixel basis. Instead, the class of context-free contrast enhancement techniques
adopt a statistical approach. They manipulate the histogram of the input image
to separate the gray levels of higher probability further apart from the neigh-
boring gray levels. In other words, the context-free techniques aim to increase
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c© Springer-Verlag Berlin Heidelberg 2010
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the average difference between any two altered input gray levels. Compared with
its context-sensitive counterpart, the context-free approach does not suffer from
the ringing artifacts and it preserves the relative ordering of altered gray levels.
This paper is mainly concerned with a rigorous problem formulation for context-
free contrast enhancement, and accordingly it develops a general optimization
framework to solve the problem.

Despite more than half a century of research on contrast enhancement, most
published techniques are largely ad hoc. Due to the lack of a rigorous analytical
approach to contrast enhancement, histogram equalization seems to be a widely
accepted synonym for contrast enhancement in the literature and in textbooks of
computer vision and image processing. The justification of histogram equalization
as a contrast enhancement technique is heuristic, catering to an intuition. Low
contrast corresponds to a biased histogram and thus can be rectified by reallocat-
ing underused dynamic range of the output device to more probable pixel values.
Although this intuition is backed up by empirical observations in many cases, the
relationship between histogram and contrast has not been precisely quantified.

There is no mathematical basis for the uniformity or near uniformity of the
processed histogram to be an objective of contrast enhancement in general sense.
On the contrary, histogram equalization can be detrimental to image interpre-
tation if carried out mechanically without care. In lack of proper constraints
histogram equalization can over shoot the gradient amplitude in some narrow
intensity range(s) and flatten subtle smooth shades in other ranges. It can bring
unacceptable distortions to image statistics such as average intensity, energy,
and covariances, generating unnatural and incoherent 2D waveforms. To alle-
viate these shortcomings, a number of different techniques were proposed to
modify the histogram equalization algorithm [1,2, 3, 4, 5, 6]. Very recently, Arici
et al. proposed a histogram modification technique that first finds a histogram
h in between the original input histogram hi and the uniform histogram u and
then performs histogram equalization of h. The intermediate histogram h is de-
termined by minimizing a weighted distance ‖h− hi‖+ λ‖h− u‖. By choosing
the Lagrangian multiplier λ the user can indirectly control undesirable side ef-
fects of histogram equalization. This latest paper also gave a good synopses of
existing contrast enhancement techniques. We refer the reader to [7] for a survey
of previous works, instead of reparaphrasing them here.

In our view, directly processing histograms to achieve contrast enhancement is
an ill-rooted approach. The histogram is an awkward, obscure proxy for contrast.
The popularity of histogram equalization as a context-free contrast enhancement
technique is apparently because no mathematical definition of context-free con-
trast has ever been given in the literature. This paper fills the aforementioned
long-standing void by defining a measure of expected context-free contrast of a
transfer function, with this contrast measure being one if the input image is left
unchanged. Furthermore, to account for the distortion of subtle tones caused
by contrast enhancement, which is inevitable in most cases, a counter measure
of tone subtlety is also introduced. The notions of expected contrast and tone
subtlety give rise to a new perceptual image quality measure called contrast-tone
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ratio. The new measure sets an ideal objective for the enhancement of perceptual
image quality, which seeks to achieve high contrast and subtle tone reproduction
at the same time. But using the contrast-tone ratio as an objective function for
maximization is computationally difficult because the function is highly non-
linear. Instead, we formulate contrast enhancement as a problem of maximizing
the expected contrast subject to limits on tone distortion. Such a contrast-tone
optimization problem can be converted to one of linear programming, and hence
it can be solved efficiently in practice.

In addition, our linear programming technique offers a greater and more pre-
cise control of visual effects than existing techniques of contrast enhancement.
Common side effects of contrast enhancement, such as contours, shift of average
intensity, over exaggerated gradient, etc., can be effectively suppressed by im-
posing appropriate constraints in the linear programming framework. In the new
framework, Gamma correction can be unified with contrast-tone optimization.
The new technique can map L input gray levels to an arbitrary number �L of
output gray levels, allowing �L to be equal, less or greater than L. It is therefore
suited to output conventional images on high dynamic range displays or high dy-
namic range images on conventional displays with perceptual quality optimized
for device characteristics and image contents.

Analogously to global and local histogram equalization, the new contrast en-
hancement framework allows the use of either global or local statistics when
optimizing the contrast. However, in order to make our technical developments
in what follows concrete and focused, we will only discuss the problem of con-
trast enhancement over an entire image instead of adapting to local statistics of
different subimages. All the results and observations can be readily extended to
locally adaptive contrast enhancement.

The remainder of the paper is organized as follows. In the next section we
introduce some new definitions related to the intuitive notions of contrast and
tone, and they lead to a new image quality measure called contrast-tone ratio.
In section 3, we pose the maximization of the contrast-tone ratio as a prob-
lem of constrained optimization and develop a linear programming approach to
solve it. In section 4 we discuss how to fine tune output images according to
application requirements or users’ preferences within the proposed contrast-tone
optimization framework. Experimental results are reported in section 5, and
they demonstrate the versatility and superior visual quality of the new contrast
enhancement technique.

2 Contrast, Tone, and a New Perceptual Quality Measure

Contrast enhancement involves a remapping of input gray levels to output gray
levels. In fact, such a remapping is required when displaying a digital image of
L gray levels on a monitor of �L gray levels, L �= �L. This remapping is carried
out by an integer-to-integer transfer function

T : {0, 1, · · · , L− 1} → {0, 1, · · · , �L− 1} (1)
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The nature of the physical problem stipulates that the transfer function T be
monotonically non-decreasing, because T should never reverse the order of in-
tensities.1 In other words, we must have T (j) ≥ T (i) if j > i. Therefore, any
transfer function satisfying the monotonicity has the form

T (i) =
∑

0≤j≤i

sj , 0 ≤ i < L

sj ∈ {0, 1, · · · , �L− 1}
∑

0≤j<L

sj < �L.

(2)

The last inequality ensures the output dynamic range not exceeded by T (i).
In (2), which is a general definition of the transfer function T , sj is the in-

crement in output intensity versus a unit step up in input level j. Therefore, sj

can be interpreted as context-free contrast at level j, which is the rate of change
in output intensity without considering the pixel context. Note that a transfer
function is completely determined by the vector s = (s0, s1, · · · , sL−1), namely
the set of contrasts at all L input gray levels.

Having associated the transfer function T with context-free contrasts sj ’s at
different levels, we induce from (2) a natural definition of expected (context-free)
contrast of T for an image I:

C(s) =
∑

0≤j<L

pjsj (3)

where pj is the probability that a pixel in I has input gray level j.
The above defined expected contrast quantifies the colloquial meaning of con-

trast. To verify this let us examine some special cases.

Proposition 1. The maximum expected contract C(s) is achieved by sk = �L−1
such that pk = max{pi|0 ≤ i < L}, and sj = 0, j �= k.

Proof: Assume for a contradiction that sj = n > 0, j �= k, would achieve higher
expected contrast. Due to the constraint

∑
0≤j<L sj < �L, sk equals at most �L −

1− n. But pjn+ pk(�L− 1− n) ≤ pk(�L− 1), refuting the previous assumption.

Proposition 1 agrees with our perception that the highest contrast is achieved
when the transfer function is a single step (thresholding) function that converts
the input image from gray scale to binary. The binary threshold is set at level k
such that pk = max{pi|0 ≤ i < L} for maximum expected contrast.

The lowest (zero) expected contrast is trivially achieved by a constant transfer
function T (i), namely si = 0 for all 0 ≤ i < L. Again, this agrees with our
intuition of zero contrast.

In many applications it makes sense to preserve the average intensity while
maximizing the expected contrast. In such cases, the average-preserving max-
imum expected contrast is achieved by sk = �L − 1, sj = 0, j �= k, such that
1 This restriction may be relaxed in locally adaptive contrast enhancement. But in

each locality the monotonicity should still be imposed.
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∑
0≤j<k pj ≈

∑
k≤j<L pj. Namely, T (i) is the binary thresholding function at

the average gray level.
If L = �L (i.e., when the input and output dynamic ranges are the same), the

identity transfer function T (i) = i, namely, si = 1, 0 ≤ i < L, achieves expected
contrast C(1) = 1 regardless the gray level distribution of the input image.
Therefore, the unit expected contrast means a neutral expected (context-free)
contrast level without any enhancement. The notion of neutral contrast can be
generalized to the cases when L �= �L. We call τ = �L/L the tone scale. In general,
the transfer function

T (i) =
⌊

�L− 1
L− 1

i+ 0.5
⌋

, 0 ≤ i < L (4)

or equivalently si = τ , 0 ≤ i < L, achieves the neutral contrast C(τ1) = τ . We
note the following simple and yet important property of context-free contrast.

Proposition 2. Themax min{s0, s1, · · · , sL−1} is achieved if andonly ifC(τ1) =
τ , or si = τ , 0 ≤ i < L.

Proposition 2 states that the simple linear transfer function, i.e., doing nothing in
the traditional sense of contrast enhancement, actually maximizes the minimum
of context-free contrasts si of different levels 0 ≤ i < L, and the neutral contrast
C(τ1) = τ is largest possible when satisfying this maxmin criterion.

In terms of visual effects, smooth tone reproduction demands the transfer
function to meet the maxmin criterion of proposition 1. This is because tone
continuity requires small increment between adjacent gray levels to avoid con-
tours or banding effects. Given a transfer function T (i), define the tone subtlety
of T (i) as

Φ(s) = max
1≤i≤�L

{
T−1(i)− T−1(i− 1)

}

T−1(i) = min{j : T (j) = i}
(5)

In the definition we account for the fact that the transfer function T (i) is not
a one-to-one mapping in general. The smaller the value of Φ(s) the smoother
the tone reproduced by T (i). It is immediate from the definition that the best
achievable tone subtlety is τ = mins Φ(s). But since the dynamic range �L of the
output device is finite, the two visual quality criteria of high contrast and tone
continuity are in mutual conflict. Therefore, the mitigation of such an inherent
conflict is a critical issue in designing contrast enhancement algorithms, which
is seemingly overlooked in the existing literature on the subject.

Following the discussions above, a new perceptual image quality measure
presents itself, which we call the contrast-tone ratio (CTR)

CTR =
C(s)
Φ(s)

(6)

For the linear transfer function (4), CTR = 1 regardless of the intensity his-
togram of input image I. Also, if the input histogram is uniform then the high-
est possible CTR is 1, meaning that no further enhancement is possible. For a
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general input histogram, we are interested in finding the transfer function T (i)
that maximizes CTR, or achieves sharpness of high frequency details and tone
subtlety of smooth shades at the same time.

3 Contrast-Tone Optimization by Linear Programming

In the proceeding section we formally defined the expected contrast C(s) of a
transfer function T (i) on an image I. It also shown that the expected contrast
is a good, meaningful measure of the overall contrast of an image. With the ex-
pected contrast C(s) as a measurement of overall contrast one would attempt to
perform contrast enhancement by finding the ”optimal” transfer function T (i),
among all permissible ones, that maximizes C. But this single-minded approach
would likely produce over-exaggerated, unnatural visual effects, as revealed by
Proposition 1. The resulting T (i) degenerates a continuous-tone image to a bi-
nary image. This maximizes the contrast of a particular gray level but completely
ignores accurate tone reproduction.

In order to find a correct approach of improving visual quality it is helpful
to model contrast enhancement as a problem of optimal resource allocation in
competition with tone subtlety. The achievable expected contrast C(s) and tone
subtlety Φ(s) are physically confined by the output dynamic range �L of the dis-
play. In (3) the optimization variables s0, s1, · · · , sL−1 represent an allocation
of �L available output intensity levels, each competing for a larger piece of dy-
namic range. While contrast enhancement necessarily invokes a competition for
dynamic range (an insufficient resource), a highly skewed allocation of �L output
levels to L input levels can deprive some input gray levels of necessary repre-
sentations. This causes unwanted side effects, such as flattened subtle shades,
unnatural contour bands, shifted average intensity, and etc. Such artifacts were
noticed by other researchers as drawbacks of the original histogram equalization
algorithm, and they proposed a number of ad hoc. techniques to alleviate these
artifacts while sticking to the baseline of histogram equalization.

As argued in the end of the proceeding section, a more principled solution
of the problem is to maximize the contrast-tone ratio. Unfortunately, C(s)/Φ(s)
is highly non-linear in s. Instead of having C(s)/Φ(s) directly as the objective
function, we develop a linear programming algorithm that maximizes C(s) with
linear constraints induced by Φ(s). Specifically, let us pose and examine the
following constrained optimization problem:

max
s

∑

0≤j<L

pjsj

subject to (a)
∑

0≤j<L

sj < �L;

(b) sj ≥ 0, 0 ≤ j < L;

(c)
∑

j≤i<j+φ

si ≥ 1, 0 ≤ j < L− φ.

(7)
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In (7), constraint (a) is to confine the output intensity level to the available dy-
namic range; Constraints (b) ensure that the transfer function T (i) be monoton-
ically non-decreasing; Constraints (c) specify the coarsest level of tone subtlety
Φ(s) allowed, where φ is an upper bound Φ(s) ≤ φ. The objective function and
all the constraints are linear in s.

Computationally, the original optimization problem of (7) is one of integer
programming. This is because the transfer function T (i) is an integer-to-integer
mapping, i.e., all components of s are integers. But integer programming is NP-
hard. To make the problem tractable we relax the integer constraints on s and
convert (7) to a linear programming problem. By the relaxation any solver of
linear programming can be used to solve the real version of (7). The resulting
real-valued solution s = (s0, s1, · · · , sL−1) can be easily converted to an integer-
valued transfer function:

T (i) =

⎢
⎢
⎢
⎣
∑

0≤j≤i

sj + 0.5

⎥
⎥
⎥
⎦ , 0 ≤ i < L (8)

For all practical considerations the proposed relaxation solution does not mate-
rially compromise the optimality. As a beneficial side effect, the linear program-
ming relaxation simplifies constraint (c) in (7), and allows the contrast-tone
optimization problem to be stated as

max
s

∑

0≤j<L

pjsj

subject to
∑

0≤j<L

sj < �L;

sj ≥ 1/φ, 0 ≤ j < L.

(9)

4 Fine Tuning of Visual Effects

The proposed contrast-tone optimization framework is general and it can achieve
desired visual effects by adding proper constraints to (9). We demonstrate the
generality and flexibility of the proposed linear programming approach to image
enhancement by some examples among many possible applications.

The first example is the integration of Gamma correction into contrast-tone
optimization. The optimized transfer function T (s) can be made close to the
Gamma transfer function by adding to (9) the following constraint

∑

0≤i<L

∣
∣
∣
∣
∣
∣
(L− 1)−1

∑

0≤j≤i

sj − [i(L− 1)−1]γ

∣
∣
∣
∣
∣
∣
≤ Δ (10)

where γ is the Gamma parameter and Δ is the degree of closeness between the
resulting T (s) and the Gamma mapping [i(L− 1)−1]γ .

In applications when the enhancement process cannot change the average
intensity of the input image by certain amount Δμ, the user can impose this
restriction easily in (9) by adding another linear constraint
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∣
∣
∣
∣
∣
∣

L

�L

∑

0≤i<L

pi

∑

0≤j≤i

sj −
∑

0≤i<L

pii

∣
∣
∣
∣
∣
∣
≤ Δμ (11)

Besides the use of constraints in the linear programming framework, we can
incorporate context-based or semantics-based fidelity criteria directly into the
objective function of contrast-tone optimization. The expected contrast C(s) =∑
pjsj and the CTR depend only on the point statistics of the input image.

We can complement C(s) and CTR by weighing in the semantic or perceptual
importance of increasing the contrast at different gray levels by wj , 0 ≤ j < L. In
general, wj can be set up to reflect specific requirements of different applications.
In medical imaging, for example, the physician can read an image of L gray levels
on an �L-level monitor, �L < L, with a certain range of gray levels j ∈ [j0, j1] ⊂
[0, L) enhanced. Such a weighting function presents itself naturally if there is a
preknowledge that the interested anatomy or lesion falls into the intensity range
[j0, j1] for given imaging modality. In combining point statistics and domain
knowledge or/and user preference, we introduce a new objective function

max
s

⎧
⎨

⎩

∑

0≤j<L

pjsj + λ
∑

0≤j<L

wjsj

⎫
⎬

⎭
(12)

where the Lagrangian multiplier λ regulates the relative importance of the ex-
pected contrast and a user-prioritized contrast.

In summarizing all discussions above we finally present the following general
linear programming framework for visual quality enhancement.

max
s

∑

0≤j<L

(pj + λwj)sj

subject to
∑

0≤j<L

sj < �L;

sj ≥ 1/φ, 0 ≤ j < L;

∑

0≤i<L

∣
∣
∣
∣
∣
∣
(�L − 1)−1

∑

0≤j≤i

sj − [i(L− 1)−1]γ

∣
∣
∣
∣
∣
∣
≤ Δ

∣
∣
∣
∣
∣
∣

L

�L

∑

0≤i<L

pi

∑

0≤j≤i

sj −
∑

0≤i<L

pii

∣
∣
∣
∣
∣
∣
≤ Δμ.

(13)

5 Empirical Results

Fig. 1 through Fig. 4 present some sample images that are enhanced by the
proposed contrast-tone optimization technique in comparison with those pro-
duced by histogram equalization. In addition to visual inspection we compare
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the two methods by the new image quality measure CTR as well in Table 1. As
expected, in all cases the proposed technique achieves significantly higher CTR
than histogram equalization.

In image Beach (Fig. 1), the output of histogram equalization is too dark in
overall appearance because the original histogram is skewed toward the bright
range. But the proposed method enhances the original image without introducing
unacceptable distortion in average intensity. This is because of the constraint
that bounds the relative difference (< 20%) between the average intensities of
the input and output images. Fig. 2 shows an example when the user assigns
higher weights wj in (13) to gray levels j, j ∈ (a, b), where (a, b) = (100, 150) is a
range of interest (brain matters in the head image). Fig. 3 compares the results
of histogram equalization and the proposed method when they are applied to a
typical portrait image. In this example histogram equalization overexposes the
input image, causing an opposite side effect as in image Beach, whereas the
proposed method obtains high contrast, tone continuity and small distortion in
average intensity at the same time. In Fig. 4, the result of joint Gamma correction
and contrast-tone optimization by the new technique is shown, and compared
with those in difference stages of the separate Gamma correction and histogram
equalization process. The image quality of the former is clearly superior to that
of the latter.

(a) (b)

(c) (d)

Fig. 1. (a) the original, (b) the output of histogram equalization, (c) the output of the

proposed method, and (d) the transfer functions and the original histogram
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(a) (b)

(c) (d)

Fig. 2. (a) the original, (b) the output of histogram equalization, (c) the output of the

proposed method, and (d) the transfer functions and the original histogram

(a) (b) (c) (d)

Fig. 3. (a) the original, (b) the output of histogram equalization, (c) the output of the

proposed method, and (d) the transfer functions and the original histogram



A New Algorithmic Approach for Contrast Enhancement 361

(a) (b)

(c) (d)

Fig. 4. (a) the original image before Gamma correction, (b) after Gamma correction,

(c) Gamma correction followed by histogram equalization, and (d) joint Gamma cor-

rection and contrast-tone optimization by the proposed method

Table 1. Comparison in CTR between histogram equalization and the proposed

method

Image
Histogram equalization Proposed method

Expected Tone Expected Tone

contrast Subtlety CTR contrast subtlety CTR

Beach 2.81 25 0.11 1.41 2 0.71

Head 0.58 8 0.07 0.73 2 0.36

Portrait 2.11 51 0.04 1.60 6 0.27

The proposed approach is also compared with the well-known contrast-limited
adaptive histogram equalization (CLAHE) [8] in visual quality. CLAHE is con-
sidered to be one of the best contrast enhancement techniques, and it allevi-
ates many of the problems of histogram equalization, such as over- or under-
exposures, tone discontinuities, and etc. Fig. 5 is a side-by-side comparison of
the proposed method, CLAHE and HE. CLAHE is clearly superior to HE in
perceptual quality, as well recognized in the existing literature and among prac-
titioners, but it is somewhat inferior to the proposed method in overall image
quality, particularly in the balance of sharp details and subtle tones.
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(a) Original image (b) HE

(c) CLAHE (d) The proposed

Fig. 5. Comparison of different methods on image Rocks

6 Conclusion

A new, general image enhancement technique of optimal contrast-tone mapping is
proposed. The resulting problem can be solved efficiently by linear programming.
The solution can increase image contrast while preserving tone continuity, two
conflicting quality criteria that were not handled and balanced as well in the past.
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Abstract. Obscure glass is textured glass designed to separate spaces

and “obscure” visibility between the spaces. Such glass is used to provide

privacy while still allowing light to flow into a space, and is often found

in homes and offices. We propose and explore the challenge of “seeing

through” obscure glass, using both optical and digital techniques. In

some cases – such as when the textured surface is on the side of the

observer – we find that simple household substances and cameras with

small apertures enable a surprising level of visibility through the obscure

glass. In other cases, where optical techniques are not usable, we find

that we can model the action of obscure glass as convolution of spatially

varying kernels and reconstruct an image of the scene on the opposite

side of the obscure glass with surprising detail.

1 Introduction

Obscure glass is a class of window glass used to separate spaces while allow-
ing light and a limited amount of visual information to pass through. It is not
uncommon to find such glass embedded, for instance, in office and conference
room doors, in front doors of homes, in the exterior windows of bathrooms, and
in the windows of close-proximity homes. Obscure glass is typically transparent,
but has a surface texture that results in distorted and blurry images of a scene
when photographing through the glass. The intent is to provide some degree of
privacy, but how much privacy is actually provided?

In this paper, we explain the action of obscure glass and describe two comple-
mentary methods for seeing through it. First, we explore optical methods that
include tuning the camera configuration, and show that, surprisingly, when the
glass is textured only on the side facing the observer, household liquids may be
used to cancel much of the obscuring effect of the glass. Indeed, it is possible to
see through some visually impenetrable obscure glasses using a drop of honey
and an inexpensive, compact video device, such as an iPod nanoTM. Second, we
model the action of obscure glass as a spatially varying blur applied to a latent
image. We then develop a calibration technique to recover this blur (assuming
temporary access to both sides of the glass) which can be used to deblur a photo
of a scene taken through the obscure glass at a later time, thus recovering the
latent image of the scene.

Our contributions are threefold. First, to our knowledge, this is the first paper
to define and address the problem of seeing through obscure glass. Second, the

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part VI, LNCS 6316, pp. 364–378, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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optical methods, though building on related ideas in camera design and mea-
surement of refractive substances, are novel in their application to minimizing
optical degradation caused by obscure glass. Third, we have developed a new
technique for recovering spatially varying blur kernels from small numbers of
images by leveraging the sparsity of the kernel functions in this setting.

In the remainder of the paper, we review related work (Section 2), discuss
the characteristics of obscure glass (Section 3), explore optical and calibrated
deconvolution methods for seeing through it (Section 4), and conclude with
results and discussion (Sections 5 and 6).

2 Related Work

Refractive index matching. One of our approaches to seeing through obscure glass
is to reduce its distorting and blurring effect with a substance (nearly) matching
its index of refraction. The idea of matching index of refraction is well-known as
a tool for measuring the index of refraction of an irregularly shaped, transparent
solid by immersing it in liquids whose refractive indices are known or readily
measured [1]. This idea has also been applied to the problem of multi-view 3D
volumetric reconstruction of refractive objects by computed tomography [2,3].

Environment matting. We also attempt to undo the effects of obscure glass by
measuring the blurring and distorting properties of the glass. This measurement
step is known as “environment matting” [4]. The idea is to shoot photographs
through a refractive object, behind which is a changing background. In the origi-
nal formulation, the background was a monitor displaying horizontal and vertical
hierarchical stripe patterns, and per pixel filtering rectangles were recovered [4].
Follow-on work used different monitor patterns and filter representations: a sin-
gle, smooth color wash pattern to recover refractive distortion for smooth ob-
jects [5], many images of a Gaussian stripe sweeping in different directions to
recover multi-modal, oriented, Gaussian filters [5], and wavelet patterns to re-
cover per-pixel wavelet filters [6]. An alternative approach uses a single, large
background image that is moved around behind the refractive object, recover-
ing per pixel filters, typically for smooth objects [7]. Agarwal et al. [8] recover
distortion maps for refractive objects by analyzing their effect on the optical
flow of a video being played in the background. These methods generally require
many images or they impose restrictive assumptions on the blurring properties
of the glass. Many images is problematic in that access to both sides of the
glass may require a relatively quick capture process so as not to be excessively
intrusive. Peers and Dutre [9] reduce the number of images using wavelet noise
functions and a non-linear wavelet approximation; we employ similar patterns
but explicitly encourage sparsity in the kernels during recovery. Our work builds
most directly on environment matting, but it is also related to work on inverse
light transport [10,11].

Also relevant is work in computer vision on recovering the shape of refractive
surfaces. A nice survey can be found in [12]. Our approach is to recover blur
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kernels that can arise from fine (sub-pixel) texture, rather than recovering an
explicit shape profile. The work of Murase [13] is particularly relevant in that an
undistorted image is recovered as part of the shape estimation process, though
the setting is different, as it depends on time-varying water motion.

Non-blind deconvolution. Recovering a latent image with a given image transform
(blurring) matrix is known as non-blind image deconvolution. Recent research
has yielded promising results using a natural image statistics prior and multi-
scale techniques [14,15,16]. In this paper, we use a formulation similar to [15].

Security. The computer security community has several prior works studying
“information leakage” via optical emanations. Kuhn found that the images on a
CRT monitor can be reconstructed from reflections off a white wall [17]. Backes
et al. extended this work to reconstruct images using reflections off diverse sets
of objects, ranging from teapots to shirts [18,19]. Our work explores image re-
construction through refraction instead of reflections.

3 Characteristics of Obscure Glass

Obscure glass is plane glass with a surface texture – geometric perturbations –
on at least one side of the glass. Light rays incident on the glass generally reflect
and refract at the interface. The dominant visual effect when looking through
obscure glass arises from refraction of viewing rays. If the glass is relatively
smooth but wavy, the refraction results in a distorted image. If the glass has
a finer texture, viewing rays can be significantly “scrambled” by refraction at
the obscure glass surface, resulting in a blurred image of the scene.1 Fig. 1(c)
illustrates this effect and shows an image shot through an obscure glass sample;
note the distortion and blur in this example.

Obscure glass varies in design and optical properties. The most noticeable
variation is the geometric design of the surface texture, which can be locally
smooth or rough, and exhibit various larger scale patterns for aesthetic appeal.
Examples of obscure glass appear in Figs. 1 and 3-5. The surface perturbations
are usually applied to one side of the glass, though glass with perturbations on
both sides is not uncommon. When the texture is on one side, there is evidently
no fixed rule as to which side will face outward when decorating offices and
homes. Still, we note that for glass facing the outdoors, the flat side is often on
the (dirtier) outside for ease of cleaning. Similarly, the flat side of a shower room
door often faces toward the tub, for ease of cleaning mineral deposits, etc.

Finally, the refractive index of obscure glass, while nominally around 1.5-1.6,
can vary according to the composition of the glass; manufacturers use different
“recipes” for glass that results in this variation, sometimes using different recipes
for different glasses in their own product lines.

1 Taken to an extreme, the texture can be so rough as to completely scatter the rays,

yielding no useful image; this kind of glass is called “frosted glass.”
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. A target scene (a) is photographed through a piece of obscure glass (b). A wide

aperture (c) results in a blurry image, as the rays are broadly scattered. (The dotted

lines represent chief rays; the solid lines are drawn to suggest the spread of refraction.)

Narrowing the aperture (d) reduces the scatter, but severe distortion remains. Bringing

the camera closer to the glass (e) yields a less distorted image. Interestingly, this image

seems blurrier than the one in (d); this is because the distortion in (d) juxtaposes

the blurred pixels at random, creating the false impression of higher frequencies. After

applying a drop of liquid with refractive index close to that of the glass (pressed against

the glass with a microscope slide cover slip), a nearly clear shot can be taken (f).
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4 Seeing through Obscure Glass

In this section, we present two complementary approaches to the problem of try-
ing to resolve a clear image of a scene observed through obscure glass: an optical
approach to improve image clarity and a calibration approach for estimating and
deconvolving blur kernels.

4.1 Optical Approach

To improve the photographic quality when shooting through obscure glass, we
propose three optical strategies: small aperture, close camera placement, and
applying a substance to the glass to reduce the refractive effect of the near side
of the glass before imaging.

Small aperture. To reduce the blurring effect of obscure glass, the aperture
can be stopped down (reduced in diameter), in effect restricting the range of
scene points that will contribute to the light recorded at a point on the sensor.
Fig. 1(d) illustrates the effect of reducing the aperture.

It is well-known that most imperfections (defocus, spherical aberration, etc.)
in lens systems themselves can be reduced by stopping down the aperture. What
remains is geometric distortion. Lens manufacturers go to great lengths to correct
for most of these imperfections across a range of settings in advance, so that the
aperture need not be stopped down to take a clear image of the in-focus plane.
However, with obscure glass, even when we take a photo with a well-corrected
lens, the image is degraded because we have introduced a new optical element
– the obscure glass – that introduces potentially severe aberrations. Stopping
down the aperture reduces the blurring aberrations, but distortion remains.

Note that blurring occurs as long as the cone of rays from the scene arriving
at the aperture must pass through a locally “rough” region. The scale of the
roughness that matters is thus really a function of the size of that cone. An
undulating surface may seem smooth at millimeter scale, but if the aperture is
wide open so that the cone of rays passing through the surface is at centimeter
scale, then the result will be blur.

Camera placement. Stopping down the aperture will reduce image blur in-
troduced by obscure glass, but some amount of distortion will likely remain.
The reason for the distortion is that points on the sensor are recording narrow
cones of light arriving from very different parts of the obscure glass, which can
have very different (uncorrelated) surface orientations. To minimize the spread
of cones across the glass, we can simply place the aperture (more precisely, the
entrance pupil) as close to the glass as possible, as illustrated in Fig. 1(e).

It is worth noting that a variety of commonly available camera and lens solu-
tions may be applied at this point, e.g., an SLR with a conventional lens stopped
down as far as possible or with a specialty lens capable of very narrow apertures
(high F-numbers) [20]. Ideally, the optics and camera placement would be tuned,
if possible, to place the entrance pupil at the surface of the obscure glass. There
is, however, a surprisingly simple and effective alternative. Very small cameras
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are becoming increasingly available in cell phones, webcams, and pocket video
recorders. These cameras naturally have small apertures, and some of them can
be placed very close to obscure glass, separated from the surface by a few mil-
limeters or less. And, despite their small apertures, they have relatively low
F-numbers, which means they can take (sometimes modest resolution) photos
without requiring long exposures.

While placing the camera close to the glass can reduce the effect of distortion,
a limitation is the fact that the camera itself becomes more noticeable from the
opposite side of the glass, which makes the approach intrusive. However, this is
not a concern when observing, e.g., a computer screen or documents in an office
with no one inside. Further, a very small camera could be fairly unobstrusive;
the camera (by itself) inside an iPod nano is already suggestively small.

Refractive index matching. Even with a closely positioned camera with a
small aperture, if the surface has fine scale texture, then some amount of blurring
and distortion will remain. When the texture is on the near side of the glass,
then an unusual solution becomes possible. Recall Snell’s law of refraction:

ηin sin θin = ηout sin θout (1)

where θin and θout are the angles of the incident and refracted ray, respectively,
taken with respect to the surface normal, and ηin and ηout are the indices of re-
fraction on either side of the interface. The strength of refraction at the interface
is controlled by how far the refractive index ratio ηout/ηin is from unity. If we
could smoothly “plaster over” the texture with a clear substance that had the
exact same index of refraction as the glass, then the blurring, distorting effect
of that texture would disappear. Fig. 1(f) illustrates this idea.

Precisely matching the index of refraction of obscure glass is challenging for
several reasons. First, the index of refraction of glasses can vary depending on
their compositions. Second, many of the standard, laboratory liquids used to
cancel indices of refraction around 1.5 − 1.6 are toxic. Finally, many of these
liquids are very low viscosity; when applied to a vertical surface, they are difficult
to contain, tending to run down the glass.

Instead, we propose to use non-toxic, high viscosity, household substances.
For example, honey has proved to be very close in refractive index of glass and
works well in experiments. The match is not exact, but combined with closely
placed cameras with small apertures, visibility can improve significantly.

A critical limitation of this approach is the need for the textured surface to
be on the near side of the glass. Still, for surfaces with texture on two sides,
this approach can significantly reduce the degradation due to the obscure glass
(cutting it “in half”). Further, if it is possible to deposit a (long lasting, ideally
unnoticeable) substance on the far side of the glass in advance, then an optical
portal is created.

4.2 Deconvolution Approach

In this section, we formulate the action of obscure glass as convolution of spa-
tially varying kernels with a latent image and describe calibration methods for
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estimating these kernels and later recovering the latent image of an unknown
scene. We note that this calibration scenario is plausible when access to both
sides of the glass are available for a period of time, and then later, when only
one-sided access is available, a degraded image of the scene is taken.

Image formation process. The image recorded at the sensor is a weighted sum
of light rays scattering through the obscure glass and passing through the optical
system of the camera. In principle, we need to recover a light field weighting
function and latent light field within a small volume. To simplify the problem,
we assume that the scene has constant depth and diffuse materials, or more
loosely, minimal parallax and minimal view-dependent reflection with respect to
the scattering of rays through a small portion of the obscure glass.

These assumptions allow us to model the scene as a latent image L and the
formation of image I as a weighted sum of latent image pixels:

I = FL+N, (2)

where F is a degradation matrix whose rows correspond to spatially varying
kernels, and N is sensor noise.2 Note that F encodes both blur and distortion,
and that L is generally larger in dimensions than I, i.e., ML > MI where ML

and MI are the number of pixels in L and I, respectively. Further, we assume the
glass is not color tinted, and we do not model possible dispersion (wavelength
dependent refraction), so that, while I and L are color-valued, F is not. Our
goal is to recover F from measurements and then invert its effect to recover an
image of a scene L restricted to L’s overlap with I.

Recovering the degradation matrix F. We will recover F by recording a set
of images I = [I1, I2, I3 . . .] through obscure glass in front of a known, changing
background L = [L1,L2,L3 . . .]. The image formation problem then becomes:

I = FL+N , (3)

where N is sensor noise across the image set. Assuming independent and identi-
cally distributed Gaussian noise, the optimal F can be computed by minimizing:

E(F) = ‖FL − I‖22 (4)

F is in general an ML ×MI matrix; thus, in principle, ML images are needed
to estimate it, which could take a very long time to capture and process. By
optimizing camera parameters, as described in the previous section, we have
found that the filter support (and thus the number of free variables) in each row
of F can be reduced significantly, e.g., to 100× 100 for a 400× 400 image. Still,
an entirely brute force approach would require 10,000 images in this case.

To allow us to operate with fewer images (fewer observations than unknowns),
we assume the blur kernels of the obscure glass are sparse in the spatial domain;
i.e., we require most of the elements of each row of F to be zero. If the rows of
2 We neglect lighting reflections from the camera side of the glass to the camera, which

are minimized by placing the camera close to the glass.
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F were instead dense, then the blur caused by them would be so severe as to
make subsequent latent image recovery attempts essentially impossible. Thus,
our assumption requires working with obscure glass and imaging setups where
it actually is feasible to recover a useful image of the scene behind it.

We can encode a sparsity prior as a penalty on the L1-norm of F, giving:

E′(F) = ‖FL − I‖22 + γ‖F‖1, (5)

where γ is a weight to balance the data term and the prior term (set to 10−2 in all
of our experiments). Thus, the problem is transformed into energy minimization
with total variation regularization, solvable with existing techniques [15,21]. We
note that this minimization can be performed independently for each row of F;
i.e, the per pixel kernels can be estimated independently, and that each image
pair provides three measurements (one per color channel) per pixel.

The obscure glass will not amplify or negate light, thus the elements fi,j of F
must be in the range [0, 1]. Rather than impose these bounds directly, we take
a simple (sub-optimal) approach of performing the optimization, then clamping
all values fi,j to the range [0, 1]. Those values affected by the clamping step are
then held constant and the optimization and clamping are repeated once more.

To reduce the number of variables and accelerate kernel estimation, we take
a hierarchical approach that leverages the sparsity assumption. Specifically, we
start with downsampled images and estimate kernels at the coarsest level where
each kernel has at most 25 elements. After clamping, we then employ nearest
neighbor upsampling to initialize the kernels at the next finer level. Any kernel
variables at the finer level that are initialized to zero are held constant at zero.
This process is repeated for each level. This approach reduces the required num-
ber of input images for two reasons. First, at the coarser levels, the size of the
kernel is small enough to enable direct estimation with a small number of input
image pairs. Second, at the finer levels, a large proportion of the pixels tend to
be held constant at zero, thus reducing the number of unknowns, again requiring
fewer images. See Fig. 2 for a visualization of the kernels.

We note that our solution method is tuned for speed, not optimality. Ignoring
run time, we could explore slower methods that, e.g., exactly enforce constraints,
and attempt to find the global optimum per pixel.

Image reconstruction process. After recovering F, we can now take a pho-
tograph of an unknown scene observed from the same viewpoint through the
obscure glass and reconstruct the latent image L of the scene. The kernels in
the rows of F generally perform some blurring, and it is well known that direct
deconvolution of a blur filter (effectively inverting F) is highly sensitive to noise.

Recent deconvolution methods [14,15] have shown that regularizing priors
based on natural image gradient statistics can significantly improve results. We
follow the formulation of [15] which we summarize briefly here. In particular, we
solve for the L and auxiliary function μ that minimizes

E(L, μ) = ‖I − FL‖22 + λΦ(μ) + w‖μ−∇L‖22 (6)
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(a) (b)

Fig. 2. Each kernel is estimated in a multi-scale fashion, shown coarsest to finest (top

to bottom) in (a). In (b), we visualize a set of computed spatially varying kernels in a

local neighborhood.

where μ = (μx, μy) is encouraged to be similar to ∇L (the gradient of L) through
the third energy term, and

Φ(μ) =
∑

i,j

φ(μx(i, j)) + φ(μy(i, j)). (7)

The function φ() encodes the natural gradient prior. We refer the reader to [15]
for the exact form of the prior. The energy is minimized following the procedure
(and constant parameters) in that prior work, generally alternating between op-
timizing μ with fixed L and optimizing L with fixed μ. In [15], F corresponds
to a spatially invariant blur, and solving for L can be performed with the Fast
Fourier Transform. In our problem, the kernels are spatially varying, so we must
modify the algorithm; we solve for L using an iterative, least squares, conjugate
gradient solver, terminating when the �2-norm of the difference between consec-
utively computed L’s is less than a threshold, set to 10−3 in our experiments.

5 Results

In this section, we first show how the physical imaging configurations affect
the quality of the images captured through obscure glass. Then we show image
reconstruction results using the calibration-based approach.

5.1 Optical Experiments

As discussed in Section 4.1, narrow apertures and close placement to the obscure
glass gives the best imaging results. We experimented with four different camera
configurations, listed here in order of decreasing aperture size and distance from
the glass (due to physical limitations): a Nikon D90 SLR with an 18-105mm lens
(set to 18mm and F/22), the same SLR with the LOREO Lens in a Cap [20]
(35mm fixed focal length, F/64), an iPhone 3G camera, and an iPod nano video
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(a) (b) (c) (d)

Fig. 3. Images captured using different cameras placed as close as possible to the

obscure glass: (a) a Nikon SLR with 18-105mm lens, 18mm, F/22, (b) Nikon SLR with

Lens in a Cap (35mm, F/64), (c) an iPhone 3G, and (d) an iPod nano video camera

camera. Fig. 3 shows images captured with these optical devices through a chal-
lenging piece of obscure glass. The tiny aperture of the iPod nano and the ability
to place it closest to the glass leads to the clearest image. The nano’s resolution
is relatively low (640× 480), but sufficient relative to the blurring caused by the
glass in this example.

We also experimented with different substances to cancel the refractive prop-
erties of the glass as described in Section 4.1. Fig. 4 illustrates the results for
one piece of obscure glass using the Nikon SLR and the Lens in a Cap. The elas-
tomer used in [22] would have been particularly convenient; it is flexible enough
to fill in the crevices of the glass and does not leave a trace. Unfortunately, its
refractive index did not match the glass very well. Karo Syrup, Grade A clover
honey, and wintergreen oil performed better; we applied each to a microscope
slide cover slip and placed it against the obscure glass. In our tests with various
glasses, wintergreen oil was often the best match, but it has very low viscosity
and thus quickly runs out from under the cover slip, making it extremely diffi-
cult to use. Honey was the best compromise, as it tended to match the glasses
reasonably well and has very high viscosity, so would tend to stay in place long
enough to shoot photos and short videos. We refer the reader to the supplemen-
tary material for an example of combining small camera imaging (iPod nano)
through obscure glass with an applied substance.

5.2 Image Deconvolution Experiments

In this section, we show experimental results for calibrating spatially varying
kernels and recovering a latent image. To be as realistic as possible, we took the
following steps. First, the textured side of the glass was oriented away from the
viewer, thus was not susceptible to applying a refractive index matching sub-
stance. Next, images were taken of a controlled background – an LCD monitor –
placed roughly 30 cm behind the glass. Then, the camera was removed and then
replaced near the obscure glass, to simulate the effect of performing calibration
at one time and later having to reposition the camera to take a shot of a the
scene. The repositioning was done manually, and multiple shots were taken in
an attempt to collect an image similar in viewpoint to the original. In the ex-
periments, a handful of images works surprisingly well for the glass we tested.
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Images captured with different kinds of liquid substances added to the obscure

glass (a). Substances included: (b) no substance, (c) elastomer [22], (d) Karo Syrup,

(e) Grade A clover honey, (f) wintergreen oil.

Finally, the calibration background was photographed without the obscure glass,
and these images were aligned to the calibration images taken through the ob-
scure glass. Precise alignment of the calibration image sets was not necessary,
since the kernels being recovered can accommodate pixel offsets. The calibration
pattern was 150 different instances of Perlin noise [23] (a different pattern per
color channel, as well), which has both low and high frequency content. We used
the Nikon SLR, as it was easier to maintain constant exposure settings for it
than the iPhone 3G and iPod nano.3 Images were taken with the 18-150mm
lens at F/22 or the Lens in a Cap at F/64 using a tripod with exposures lasting
several seconds. We note that, regardless of the imaging set-up, there will exist
an obscure glass that introduces problematic degradations; our goal here is to
demonstrate how much clearer an image can become given those degradations.

Fig. 5 shows the results for latent image recovery using several different ob-
scure glasses. In each case, we show the best recovered image among the reposi-
tioned set, since these images were shot with the understanding that likely only
one would be at the right position. The top three rows demonstrate the ability
to recover latent images of non-planar scenes, with kernels restricted to 45× 45
in size. Where distortion was large at the boundaries, we did not have sufficient
calibration image coverage to recover the kernels, resulting in some artifacts.4

The second row exhibits some artifacts due to repositioning error.

3 The iPod nano had the added complication of recording compressed video, which

resulted in severe blocking artifacts when compressing the noise patterns.
4 We pad image boundaries of captured images using pixel replication as needed.
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Image reconstruction results with glass calibration. Column (a): three kinds of

obscure glasses. Column (b): images captured through glasses in column (a). Column

(c): reconstructed images with 45 × 45 kernels. Column (d) images captured through

the obscure glass in Fig. 1 (b). Column (e): reconstructed images with 45× 45 kernels.

Column (f): reconstructed images with 95 × 95 kernels.
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The bottom two rows correspond to a conference room scenario, where the
photographs are taken of two consecutively projected slides on a presentation
screen, as seen through obscure glass. This example illustrates the importance of
using sufficiently large kernels. Severe artifacts are apparent for 45× 45 kernels,
with much better results obtained for 95× 95 kernels.

We found that working with numbers of input images in the range of 100-
200 generally worked well; not surprisingly, going much lower than this range
degraded the results. Solving for larger kernel sizes was generally preferable, at
the expense of increased compute time. We also note that better results are
possible without camera or monitor repositioning; we intentionally made the
problem more challenging for the sake of realism.

Our kernel estimation procedure is fairly slow. For a 400×400 image, compute
time is 40 CPU-hours for 45 × 45 kernels and over 200 CPU-hours for 95 ×
95 kernels. The method is at least trivially parallelizable; we ran all of our
computations on a cluster of 150 CPUs in under 2 hours in the worst case. High
performance was obviously not our goal, though a notable area for future work.
Deconvolution, by contrast, requires only one minute per 400× 400 image.

6 Discussion and Future Work

We have posed the problem of trying to see through obscure glass, and developed
both optical and calibration-based software techniques to do so. In our experi-
ence, the most effective solution is to apply a refractive index matching substance
to the glass, essentially nullifying the effect of the glass when the match is exact.
The match is, however, not always exact; further, when the textured surface
is facing away from the viewer, it may not be feasible or desirable to leave a
substance on that surface in real-world scenarios. Thus, it becomes important
to undo the distorting and blurring effects of obscure glass. Our calibration ap-
proach is one way to accomplish this, and we have found it to be fairly effective
when the blur and distortion are not extreme relative to the resolving capabil-
ities of the optical setup. When the blur kernels are dense with large support,
then it becomes difficult or impossible to recover a meaningful image. Thus, for
privacy purposes, obscure glasses with dense blur kernels are preferable.

Our calibration-based approach is somewhat complex, requiring fairly careful
re-positioning of the camera to recover a reasonably clear image, especially im-
portant for complex glass surface geometry. This step could be improved, e.g.,
by bracing the camera physically against the frame of the glass in a controlled
manner. Another limitation of this approach is the required access to both sides
of the glass at some point in time. An area of future work is to perform this step
by taking a set of images of the natural scene on the other side and blindly re-
covering the latent images and the blur kernels. This scenario might be plausible
if, for instance, one is attempting to recover images from a monitor, television,
or projection screen on which slides or video are playing, providing a set of dis-
tinct images. Another future avenue would be to consider multiple viewpoints,
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moving the camera across the glass, and estimating the distorting and blurring
structure of the glass, e.g., a height field and index of refraction.
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Abstract. We address the continuous problem of assigning multiple

(unordered) labels with the minimum perimeter. The corresponding dis-

crete Potts model is typically addressed with a-expansion which can gen-

erate metrication artifacts. Existing convex continuous formulations of

the Potts model use TV-based functionals directly encoding perimeter

costs. Such formulations are analogous to ’min-cut’ problems on graphs.

We propose a novel convex formulation with a continous ’max-flow’ func-

tional. This approach is dual to the standard TV-based formulations of

the Potts model. Our continous max-flow approach has significant nu-

merical advantages; it avoids extra computational load in enforcing the

simplex constraints and naturally allows parallel computations over dif-

ferent labels. Numerical experiments show competitive performance in

terms of quality and significantly reduced number of iterations compared

to the previous state of the art convex methods for the continuous Potts

model.

1 Introduction

The multi-partitioning problem, or multi-labeling problem, was extensively in-
vestigated in image processing and computer vision [1]. It computes the optimal
labeling l ∈ l1, ..., ln of each graph node or image pixel. Looking for such optimal
labeling function with respect to some energy functional is an important mathe-
matical strategy to model a wide range of applications, e.g. image segmentation
[2,3], 3D reconstruction [4] etc. In this work, we focus on the Potts model that
does not favor any particular order of the labels. The Potts model is also referred
to as a piecewise constant labeling model which minimizes the total perimeter of
the one-label (constant) regions.

In a discrete setting, Potts model corresponds to a practically important spe-
cial case of a Markov Random Field (MRF) defined over a graph [5]. A typical
MRF energy sums unary potentials defined over graph nodes and pairwise po-
tentials defined over graph edges. When pixels can take only one of 2 labels, the

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part VI, LNCS 6316, pp. 379–392, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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resulting binary energy function can be efficiently and globally minimized by
graph cuts [6], provided that the pairwise potentials are submodular [7]. How-
ever, for more than two labels typical MRF optimization problems are NP hard,
so is Potts model. In particular, Potts model corresponds to a multi-terminal
graph cut problem where only provably good approximate solutions are guaran-
teed, for example, via α-expansion or α − β swap [2] and some LP relaxations
[8,9]. Another drawback of the discrete setting is that the results are often bi-
ased by the discrete grid causing metrication errors. Such visual artifacts can
be largely reduced by either adding more neighbour nodes [10,11] or apply-
ing high-order cliques [12]. However, extra computation and memory load are
introduced.

Parallel to these developments, variational methods have been proposed for
solving the same Potts model in the spatially continuous setting where a bounded
image domain is considered. In this regard, level set introduces the most direct
and natural way to encode the piecewise constant labeling function and its re-
lated computation provides an efficient way to resolve the optimal partitions
with a subgrid accuracy, see e.g. [13,14,15] and its variant of the piecewise con-
stant level set method (PCLSM) [16,17]. Unfortunately, these formulations are
nonconvex and computation often gets stuck in a local minima. Recently, convex
relaxation approaches were proposed, e.g. [3,18,19,20,21,22]. Compared to level
set methods, great advantages in numerics can be achieved, e.g. reliable algo-
rithms can be build up by standard convex optimization theories [23]. Since a
strict mathematical proof of the exactness of such convex relaxation approaches
to the nonconvex Potts model is still open and argued, its approximation re-
sult can only be accepted as suboptimal. One may claim the convex relaxation
method gives the solution which is closer to the exact global minimum than the
local minima by the level set formulation. Our experiment results confirmed this.

In this paper, we study and solve the Potts problem in the spatially con-
tinuous setting through its convex relaxed formulation, i.e. the convex relaxed
Potts model. In [18,22], such convex minimization problem is computed directly
through the minimization over the labeling functions, i.e. tackle the minimal
cut problem in a direct way, extra computation load is introduced to explore
the pointwise simplex constraint within each iteration. Bae et. al. [21] proposed
an equivalent dual model and its associated smoothing formulation based on the
maximum entropy regularization, which properly avoids the extra step to handle
simplex constraints and leads to a much simpler numerical scheme. To the best
of our knowledge, none of previous works investigates the potential max-flow for-
mulation which is dual to the concerning minimal cut. This is in contrast to the
discrete case, where the minimal cut of a graph is often studied and computed
over its dual maximal flow formulation, most efficient algorithms of graph-cuts
were designed and explained in a flow maximization manner [24]. We devote this
work to study the max-flow model associated to the convex relaxed Potts model.
We also propose a fast max-flow based algorithm for computing continuous min-
cuts. Experiments show that our max-flow algorithm is much more efficient than
the state of art of computational methods [18,22].
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Contributions. We summarize our main contributions in this paper as follows:
first, we propose the novel max-flow formulation to the minimal cut of the given
continuous image domain, i.e. the convex relaxed Potts problem. We show the
studied max-flow and min-cut models are equivalent and dual to each other,
hence the convex relaxed Potts problem can be solved through the proposed
max-flow formulation. Analysis of the max-flow problem also leads to a new
variational perspective of the corresponding minimal cut or continuous Potts
problem. In addition, we build up the new multiplier-based max-flow algorithm
upon the equivalent primal-dual model. It is numerically reliable and efficient. Its
convergence can be proved by classical optimization theories. Our experiments
show it is around 4 times faster than the previous methods [18,22]. Last but not
least, such algorithm has a natural parallel framework over labeling functions
and can, therefore, be easily implemented and accelerated on a parallel platform.

2 Convex Relaxed Potts Model and Previous Works

2.1 Convex Relaxed Potts Model

The Potts model originates from the statistical physics [25] and its spatially
continuous version tries to partition the continuous domain Ω into n disjoint
subdomains {Ωi}ni=1 by

min
{Ωi}n

i=1

n∑

i=1

∫

Ωi

ρ(li, x) dx+ λ

n∑

i=1

|∂Ωi| (1)

s.t. ∪n
i=1 Ωi = Ω , Ωk ∩Ωl = ∅ , ∀k �= l (2)

where |∂Ωi| measures the perimeter of each disjoint subdomain Ωi, i = 1 . . . n.
The function ρ(li, x), i = 1 . . . n, evaluates the performance of assigning the label
li to the specified position x. As a special case, the piecewise constant Mumford-
Shah functional can be encoded in terms of (1) with ρ(li, x) = |I(x)− li|p where
l1 . . . ln are the given grayvalue constants. Obviously, Potts model favors the
labeling with ’tight’ boundaries.

Let ui(x), i = 1 . . . n, denote the indicator function of the disjoint subdomain
Ωi, i.e.

ui(x) :=
{

1 , x ∈ Ωi

0 , x /∈ Ωi
, i = 1 . . . n .

The perimeter of each disjoint subdomain can be computed by

|∂Ωi| =
∫

Ω

|∇ui| dx , i = 1 . . . n . (3)

The Potts model (1) can then be rewritten as

min
ui(x)∈{0,1}

n∑

i=1

∫

Ω

{
ui(x)ρ(li, x) + λ |∇ui|

}
dx , s.t.

n∑

i=1

ui(x) = 1 , ∀x ∈ Ω

(4)



382 J. Yuan et al.

where the constraints to ui(x), i = 1 . . . n, just corresponds to the condition (2)
of subdomains Ωi, i = 1 . . . n.

Clearly, the Potts model (4) is nonconvex due to the binary configuration of
each function ui(x) ∈ {0, 1}. The convex relaxed Potts model [20,22,21] proposes
to relax such binary constraints to the convex interval [0, 1] and approximates
(4) by the reduced convex optimization problem:

min
u∈S

n∑

i=1

∫

Ω

ui(x) ρ(li, x) dx + α

n∑

i=1

∫

Ω

|∇ui| dx (5)

where S is the convex constrained set of u(x) := (u1(x), . . . , un(x)):

S = {u(x) | (u1(x), . . . , un(x)) ∈ 	+ , ∀x ∈ Ω } ,
	+ is the simplex set, i.e.

for ∀x ∈ Ω ,

n∑

i=1

ui(x) = 1 ; ui(x) ∈ [0, 1] , i = 1 . . . n .

The computation result of the convex relaxed Potts model (5) gives rise to a cut
of the continuous image domain Ω with multiple terminals. (5) is, therefore, also
called the continuous min-cut model in this paper. This is in comparison to its
equivalent max-flow formulation proposed in later sections.

2.2 Previous Works

In [18], Zach et al introduced an alternating optimization approach to solve (5)
in a numerically splitting way:

min
u,v∈S

n∑

i=1

∫

Ω

vi(x) ρ(li, x) dx +
1
2θ
‖u− v‖2 + α

n∑

i=1

∫

Ω

|∇ui| dx .

Obviously, when θ takes a value small enough, the above convex optimization
problem properly approximates the convex relaxed Potts model (5). Within each
iteration, two substeps are taken to tackle the total-variation term and explore
the pointwise simplex constraint S respectively.

In [22], a Douglas-Rachford splitting algorithm was proposed to solve a quite
similar problem as (5), where a variant of the total-variation term is considered:

∫

Ω

√

|∇u1(x)|2 + . . .+ |∇un(x)|2 dx .

As in [18], the proposed splitting procedure involves an outer loop with two
substeps, where the first substep solves a tv minimization problem iteratively
until convergence, while the second substep projects the current solution to the
convex set S. In [26] Nestorovs algorithm was applied to the problem, however
this algorithm does not solve the problem exactly, only within a suboptimality
bound.
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In [20,27], the authors introduced another relaxation based on a multi-layered
configuration, which was shown to be tighter. A more complex constraint on the
dual variable p is given to avoid multiple countings. In addition, a PDE-based
projection-descent scheme was applied to achieve the minimum.

In contrast to [18,22,20,27], [21] did not try to tackle the labeling function
of the continuous min-cut problem (5) directly, but solved its equivalent dual
formulation:

max
pi∈Cα

∫

Ω

{
min ( ρ(l1, x) + div p1 . . . ρ(ln, x) + div pn )

}
dx . (6)

where div pi, i = 1 . . . n, correspond to the total-variation terms under the dual
perspective and the convex set Cα is defined as

Cα = {p | ‖p‖∞ ≤ α , pn|∂Ω = 0 } . (7)

Once the optimal functions p∗i (x), i = 1 . . . n, were resolved, the labeling func-
tions ui(x), i = 1 . . . n, can be simply recovered by

u∗k(x) =
{

1 if k = arg mini=1...n ρ(li, x) + div p∗i (x)
0 otherwise . (8)

provided the above argmin is unique. It was further shown by [21] that the nons-
mooth dual formulation (6) can be properly approximated by the maximization
of a smooth energy function, i.e.

max
pi∈Cλ

−s
∫

Ω

{
log

n∑

i=1

exp(
−fi − div pi

s
)
}
dx . (9)

Such a smooth dual model (9) approaches (6) with a maximum entropy regu-
larizer and can be solved efficiently by a simple and reliable algorithmic scheme
due to its smoothness and convexity.

In this paper, we propose a new continuous max-flow formulation which is
equivalent to the continuous min-cut model (5), actually dual to each other. In
theory, it provides a new variational perspective to investigate the continuous
min-cut with multiple terminals or labels. In numerics, its great advantages over
previous works are: it avoids pointwise projections onto the simplex constraint
S within each outer loop as [18,22]; in comparison to [21,26], it exactly solves (6)
without any smoothing procedure; it is globally optimized based on an efficient
and reliable multiplier-based max-flow algorithm, in contrast to the PDE-descent
method [20,27] whose convergence may suffer from uncareful stepsizes resulting
in suboptimums; experiments show a faster convergence rate, about 4 times,
than [18,22].

3 Continuous Max-Flow Model

In this section, we introduce the novel continuous max-flow formulation to the
continuous min-cut problem (5) with n labels.
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(a) (b)

Fig. 1. (a) Continuous settings of max-flow with two labels; (b) Continuous configu-

ration of max-flow with n labels

3.1 Continuous Max-Flow Model

Continuous Max-Flow Model with 2 Labels. Before we introduce the con-
tinuous max-flow model with n labels, we first introduce the recent study of the
continuous max-flow model with 2 labels proposed by the authors [28] which is
dual to the continuous s-t cut. This is directly analoguous to the graph-based
max-flow and s-t cut: given the continuous image domain Ω, we assume there
are two terminals, the source s and the sink t, see figure (a) of Fig. 1. We assume
that for each image position x ∈ Ω, there are three concerning flows: the source
flow ps(x) ∈ R directed from the source s to x, the sink flow pt(x) ∈ R directed
from x to the sink t and the spatial flow field p(x) ∈ R

2. The three flow fields
are constrained by capacities

ps(x) ≤ Cs(x) , pt(x) ≤ Ct(x) , |p(x)| ≤ C(x) ; ∀x ∈ Ω . (10)

In addition, for ∀x ∈ Ω, all flows are conserved, i.e.

pt − ps + div p = 0 , ∀x ∈ Ω . (11)

Therefore, we formulate the corresponding max-flow problem by maximizing the
total flow from the source:

max
ps,pt,p

∫

Ω

ps dx (12)

subject to flow constraints (10) and (11).
Yuan et al [28] proved that such a continuous max-flow formulation (12) is

equivalent to the continuous s-t min-cut problem [3,29] as follows:

min
u(x)∈[0,1]

∫

Ω

(1− u)Cs dx+
∫

Ω

uCt dx+
∫

Ω

C(x) |∇u| dx . (13)

Actually, (13) just gives the dual model to (12) and the labeling function u(x) is
the multiplier to the flow conservation condition (11). Furthermore, an efficient
and reliable max-flow based algorithm can be built up through (12).
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Continuous Max-Flow Model with n Labels. Motivated by the above ob-
servations, we give a continuous configuration of the max-flow model with n
labels, see figure (b) of Fig. 1:

1. n copies Ωi, i = 1 . . . n, of the image domain Ω are given in parallel;
2. For each position x ∈ Ω, the source flow ps(x) tries to stream from the

source s to x at each copy Ωi, i = 1 . . . n, of Ω. The source flow field is the
same for each Ωi, i = 1 . . . n, i.e. ps(x) is unique;

3. For each position x ∈ Ω, the sink flow pi(x), i = 1 . . . n, is directed from x
at the i-th copy Ωi to the sink t. The n sink flow fields pi(x), i = 1 . . . n,
may be different;

4. The spatial flow fields qi(x), i = 1 . . . n, are defined within each copy Ωi,
i = 1 . . . n. They may also be different from each other.

For such a contiuous setting, we give the constrained conditions for flows pi(x)
and qi(x), at x ∈ Ω, as follows

|qi(x)| ≤ Ci(x) , pi(x) ≤ ρ(	i, x) , i = 1 . . . n ; (14)

(
div qi − ps + pi

)
(x) = 0 , i = 1, . . . , n . (15)

Note: there is no constraint for the source flow ps(x).
We, then, formulate the respective continuous max-flow model, over all the

flow fields ps(x), p(x) := (p1(x), . . . , pn(x)) and q(x) := (q1(x), . . . , qn(x)), as

max
ps,p,q

{
P (ps, p, q) :=

∫

Ω

ps dx
}

(16)

subject to (14) and (15).
In the following section, we introduce the equivalent models of the continuous

max-flow formulation (16). We show its equivalent dual model just gives the
continuous min-cut model (5) provided C(x) = α.

Comments. It is easy to notice that when the source flow ps(x) tries to pass
the same position x at each Ωi, i = 1 . . . n, in view of the flow conservation
condition (15), we have

ps(x) = div qi(x) + pi(x) , i = 1 . . . n .

Observe the righthand of the above formulation and the configuration shown
in Fig. 1, ps(x) is constrained and should be given within a feasible set, i.e.
consistent to all n flow configurations of div qi(x) + pi(x), i = 1 . . . n, at x.
Consider the flow capacity constraint of pi(x) (14), it is easy to conclude that

ps(x) = min(div q1(x) + ρ(l1, x), . . . ,div qn(x) + ρ(ln, x)) , ∀x ∈ Ω . (17)

Therefore, the maximum of
∫

Ω ps dx suggests

max
|qi(x)|≤Ci(x)

∫

Ω

{
min(ρ(l1, x) + div q1, . . . , ρ(ln, x) + div qn)

}
dx , (18)

which discovers the dual model (6) of [21] when Ci(x) = α are constant.
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We can consider each image copy Ωi, i = 1 . . . n, together with the constrained
sink flow field pi(x) and the spatial flow field qi(x) given in (14), as a ’filter’ Fi

whose capacity at x ∈ Ω is constrained by div qi(x) + pi(x). Then one can
explain the max-flow model (16) such that all the filters Fi, i = 1, . . . , n, are
layered one by one and the source flow ps(x) tries to pass such a stack of ’filters’
in one time. It is obvious that ps(x) is bottlenecked by the minimum capacity of
div qi(x)+pi(x), i = 1 . . . n. In such a filter configuration, (16) aims to maximize
the total flow passing this ’filter’ set.

3.2 Equivalent Primal-Dual Formulation

We introduce the multiplier functions ui(x), i = 1 . . . n, to the flow balance
condition (15). Therefore, we have the equivalent primal-dual model of (16)

max
ps,p,q

min
u

{
E(ps, p, q;u) :=

∫

Ω

ps dx +
n∑

i=1

∫

Ω

ui(div qi − ps + pi) dx
}

(19)

s.t. pi(x) ≤ ρ(	i, x) , |qi(x)| ≤ Ci(x) ; i = 1 . . . n

where u(x) := (u1(x), . . . , un(x)).
Rearranging the energy function E(ps, p, q;u) of (19), we have

E(ps, p, q;u) =
∫

Ω

{
(1−

n∑

i=1

ui) ps +
n∑

i=1

ui pi +
n∑

i=1

ui div qi
}
dx (20)

For the primal-dual model (19), the conditions of the minimax theorem (see e.g.,
[30] Chapter 6, Proposition 2.4) are all satisfied. That is, the constraints of flows
are convex, and the energy function is linear in both the multiplier u and the
flow functions ps, p and q, hence convex l.s.c. for fixed u and concave u.s.c. for
fixed ps, p and q. This confirms the existence of at least one saddle point, see
[30,31]. It also follows that the min and max operators of the primal-dual model
(19) can be interchanged, i.e.

max
ps,p,q

{
min

u
E(ps, p, q;u)

}
= min

u

{
max
ps,p,q

E(ps, p, q;u)
}
. (21)

3.3 Equivalent Dual Formulation

Now we investigate the optimization of (19) by the min-max order as the right-
hand side of (21), i.e. first maximize E(ps, p, q;u) over the flow functions ps, p
and q then minimize over the multiplier function u. We show that this leads to
the equivalent dual model of the continuous max-flow formulation (16), i.e.

min
u

{
D(u) :=

n∑

i=1

(
∫

Ω

ui(x) ρ(	i, x) dx +
∫

Ω

Ci(x) |∇ui| dx
)}

(22)

s.t.
n∑

i=1

ui(x) = 1 , ui(x) ≥ 0 .
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Optimization of Flow Functions p, q and ps. In order to optimize the flow
function p(x) in (20), let us consider the following maximization problem

f(q) = max
p≤C

p · q . (23)

where p, q and C are scalars. When q < 0, p can be chosen to be a negative infinity
value in order to maximize the value p · q, i.e. f(q) = +∞. In consequence, we
must have q ≥ 0 so as to make the function f(q) meaningful. Observe now that

{
if q = 0 , then p ≤ C and f(q) reaches the maximum 0
if q > 0 , then p = C and f(q) reaches the maximum q · C . (24)

By virtue of (24), we can equally express f(q) by

f(q) = q · C , q ≥ 0 . (25)

Apply (23) to the maximization of E(ps, p, q;u) of (20) over the sink flows pi(x),
i = 1 . . . n, we have

max
pi(x)≤ρ(li,x)

∫

Ω

uipi dx =
∫

Ω

ui(x)ρ(li, x) dx , ui(x) ≥ 0 , i = 1, . . . , n . (26)

For the maximization over the spatial flow functions qi(x), i = 1, . . . , n, it is
well-known [32] that

max
|qi(x)|≤Ci(x)

∫

Ω

ui div qi dx =
∫

Ω

Ci(x) |∇ui| dx . (27)

Furthermore, observe the source flow function ps(x) is unconstrained, the max-
imization of (20) over ps simply leads to

1−
n∑

i=1

ui(x) = 0 , ∀x ∈ Ω . (28)

By the results of (28), (26) and (27), it is easy to conclude that the maximization
of the primal-dual model (20) over flow functions ps, p and q gives its equivalent
dual model (22), hence we have

Proposition 1. The continuous max-flow model (16), the primal-dual model
(19) and the dual model (22) are equivalent to each other.

In this work, we focus on the case when Ci(x) = α, ∀x ∈ Ω and i = 1, . . . , n.
Obviously, we have

Proposition 2. When Ci(x) = α, ∀x ∈ Ω and i = 1 . . . n, the dual model (22)
equals the continuous min-cut model (5).
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3.4 Variational Perspective of Flows and Cuts

Through the above analytical results, we can also give a variational perspective
of flows and cuts, which recovers conceptions and terminologies used in the graph
setting.

Consider the maximization problem (23), for any fixed q, let some optimal
p∗ maximize q · p over p ≤ C. By means of variations, if such p∗ < C strictly,
its variation directly leads to q = 0 since the variation δp can be both negative
and positive. On the other hand, for p∗ = C, its variation under the constraint
p ≤ C gives δp < 0, then we must have q > 0. In terms of graph-cut, p∗ < C
means p does not reach its maximum C, i.e. ’unsaturated’; then it leads to q = 0
which means the so-called ’cut’.

In the same manner, for the maximization of pi(x), i = 1 . . . n, it is easy to
see that when the flow pi(x) < ρ(li, x) at x ∈ Ω, i.e. ’unsaturated’, we must have
ui(x) = 0, i.e. ui(x)pi(x) = 0, which means that at the position x, the flow pi(x)
has no contribution to the energy function and the flow pi(x), from x ∈ Ωi to
the sink t, can be ’cut’ off from the energy function of (19). On the other hand,
in view of (8), the indicator function ui(x) = 0 definitely means the position x
is not labeled as li.

4 Multiplier-Based Max-Flow Algorithm

Observe that the energy function of the primal-dual model (19) just gives the
Lagrangian function of (16) where ui(x), i = 1 . . . n, are the corresponding mul-
tiplier functions. We introduce our multiplier-based max-flow algorithm, which
is based on the augmented lagrangian method [23]. We define the augmented
Lagrangian function

Lc(ps, p, q, u) =
∫

Ω

ps dx +
n∑

i=1

〈ui, div qi − ps + pi〉 − c

2

n∑

i=1

‖div qi − ps + pi‖2

where c > 0. Each iteration of the algorithm can then be generalized as follows:

– Optimize spatial flows qi, i = 1 . . . n, by fixing other variables:

qk+1
i := arg max

‖qi‖∞≤α
− c

2

∥
∥div qi + pk

i − pk
s − uk

i /c
∥
∥2

, (29)

which can be solved by Chambolle’s projection algorithm [33].
– Optimize sink flows pi, i = 1...n, by fixing other variables

pk+1
i := arg max

pi(x)≤ρ(�i,x)
− c

2

∥
∥pi + div qk+1

i − pk
s − uk

i /c
∥
∥2

, (30)

which can be computed at each x ∈ Ω in a closed form.
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– Optimize the source flow ps and update multipliers ui, i = 1 . . . n

pk+1
s := arg max

ps

∫

Ω

ps dx− c

2

n∑

i=1

∥
∥ps − (pk+1

i + div qk+1
i ) + uk

i /c
∥
∥2

, (31)

uk+1
i =uk

i − c (div qk+1
i − pk+1

s + pk+1
i ) . (32)

Both can be obtained in a closed form.

Consider the above numerical steps, it is easy to see that the two flows qi and pi,
i = 1 . . . n, computed by (29) and (30) can be handled independently for each
label i. Hence, (29) and (30) can be implemented in a parallel way. Once such
two steps are finished, the source flow ps(x) and the labeling functions ui(x),
i = 1 . . . n, are updated. Obviously, such parallelism naturally originates the
configuration shown in Fig. 1.

5 Experiments

In this section, we show some experiments to validate the proposed max-flow
model and its resulted algorithm. The quality of the relaxation (5) has been
evaluated extensively in [18,22,21] where it has been shown to be competitive to
several state of the art methods from discrete optimization like alpha expansion
and alpha beta-swap [2] for approximately minimizing the Pott’s energy. In ad-
dition the variational model comes with the important advantage of rotational
invariance, which means that metrication errors are avoided. We will therefore
not elaborate too much on the quality of the solutions in this paper. Exam-
ples are given in Figure (2), where we have used the Mumford-Shah data term
ρ(	i, x) = |I(x) − 	i|2, i = 1, ..., n. As we see, equally good solutions as alpha
expansion are produced, but without the metrication artifacts.

In contrast to the minimization approach of Zach et. al. [18], the proposed
algorithm can be proved to converge by classical optimization theories. The
Douglas-Rachford splitting approach given in [22] can also be proved to con-
verge (in the discrete setting), but we experienced that our approach was more
efficient than both these approaches. The inner problem has the same complexity
for all approaches, since it is dominated by the process of iteratively solve a tv
minimization problem. However, in contrast to [18,22] our approach avoids iter-
ative projections to the convex set S and consequently require much less outer
iterations. Convergence is reached for a wide range of the outer ”step size” c.
To measure converge, we find a good estimate of the final energy E∗ by solv-
ing the problem with 10000 outer iterations. The energy precision at iteration
k is then measured by ε = Ek−E∗

E∗ . For the three images (see Fig. 2), different
precision ε are taken and the total number of iterations to reach convergence
is evaluated, see Tab 1: clearly, our method is about 4 times faster than the
Douglas-Rachford-splitting [22], the approach in [18] is even slower and failed to
reach such a low precision.
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Fig. 2. Each row (from left to right): the input image, result by Alpha expansion

with 8 neighbors, result by the proposed max-flow approach. For the experiment in 1st

row (inpainting in gray area), α = 0.03 and n = 3; 2nd row, α = 0.04 and n = 4, 3rd

row, α = 0.047 and n = 10; 4th row, α = 0.02 and n = 8.

Table 1. Comparisons between algorithms: Zach et al [18], Lellmann [22] and the

proposed max-flow algorithm: for the three images (see Fig. 2), different precision ε are

taken and the total number of iterations to reach convergence is evaluated

Brain ε ≤ 10−5 Flower ε ≤ 10−4 Bear ε ≤ 10−4

Zach et al [18] fail to reach such a precision

Lellmann et al [22] 421 iter. 580 iter. 535 iter.

Proposed algorithm 88 iter. 147 iter. 133 iter.
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6 Conclusions

In this paper, we introduce and study the novel continuous max-flow model which
is dual to the continuous min-cut problem, i.e. the convex relaxed Potts model.
We also propose a variational perspective of flows and cuts in the continuous
configuration, which recovers and well explains connections of flows and cuts.
Moreover, in comparison to previous efforts which are trying to compute the
optimal labeling functions in a direct way, we propose the new multiplier-based
max-flow algorithm. Main advantages of such max-flow algorithm are: it avoids
extra computation load to explore the simplex constraint, each flow is adjusted
in a simple way and its numerical scheme contains a natural parallel framework,
which can be easily accelarated. Numerical experiments show it outperforms
state of art approaches in terms of quality and efficiency.
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30. Ekeland, I., Téman, R.: Convex analysis and variational problems. Society for

Industrial and Applied Mathematics, Philadelphia (1999)

31. Fan, K.: Minimax theorems. Proc. Nat. Acad. Sci. U. S. A. 39, 42–47 (1953)

32. Giusti, E.: Minimal surfaces and functions of bounded variation. Australian Na-

tional University, Canberra (1977)

33. Chambolle, A.: An algorithm for total variation minimization and applications.

Journal of Mathematical Imaging and Vision 20, 89–97 (2004)



Hybrid Compressive Sampling via a New Total
Variation TVL1�

Xianbiao Shu and Narendra Ahuja

University of Illinois at Urbana-Champaign, Urbana, IL61801, USA,
{xshu2,n-ahuja}@illinois.edu

Abstract. Compressive sampling (CS) is aimed at acquiring a signal or image
from data which is deemed insufficient by Nyquist/Shannon sampling theorem.
Its main idea is to recover a signal from limited measurements by exploring the
prior knowledge that the signal is sparse or compressible in some domain. In
this paper, we propose a CS approach using a new total-variation measure TVL1,
or equivalently TV�1 , which enforces the sparsity and the directional continuity
in the gradient domain. Our TV�1 based CS is characterized by the following
attributes. First, by minimizing the �1-norm of partial gradients, it can achieve
greater accuracy than the widely-used TV�1�2 based CS. Second, it, named hy-
brid CS, combines low-resolution sampling (LRS) and random sampling (RS),
which is motivated by our induction that these two sampling methods are com-
plementary. Finally, our theoretical and experimental results demonstrate that our
hybrid CS using TV�1 yields sharper and more accurate images.

1 Introduction

Digital images or signals are conventionally acquired by Nyquist/Shannon sampling.
That requires, to incur no loss, the underlying analog signal must be sampled at Nyquist
rate which is at least twice its highest analog frequency. The resulting raw digital data is
too large to sense, transmit and store in many applications. One solution to this problem
is the well-known image compression methodology, such as the JPEG2000 [20] com-
pression standard, which represents a digital image by a smaller number of dominant
components and relaxes the storage and transmission requirements. However, sensing
a large image is still challenging.

Recently, compressive sensing [7] or particularly compressive sampling, has been
introduced to address this problem more efficiently. CS exploits the redundancy present
in the image at the time of sampling itself. Instead of sensing all the pixels that define
the complete image, compressive sampling acquires a linear combination of randomly
selected pixels and recovers the full image from these samples [16,17,3,22,8]. Instead
of first sampling and then compressing, this imaging model avoids sampling of the
redundant aspects of the data in the first place.

Compressive sampling assumes that an image, vectorized as I of size L, can be
represented as I = Ψu in some space, where u has K non-zero elements (called K-
sparsity). Instead of sensing u directly in the Ψ domain, it may be easier to efficiently
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sample I in a different subspace defined by Φ. Then, sensing acquires a small number
of projections of I onto this subspace such that b = ΦI, where Φ ∈ C

M×L(K <
M < L) is a sampling matrix. Given the measurements b, CS recovers theK dominant
components constituting u. This translates into the problem of estimating the sparsest
u satisfying the measurement vector b:

min
u
‖u‖0 s. t. Au = ΦΨu = b (1)

However, �0-norm minimization is an NP-complete problem [15]. Fortunately, it has
been proven that the intractable �0-problem is equivalent to the convex minimization
of ‖u‖1, if the sampling matrix A = ΦΨ obeys uniform uncertainty principle (UUP),
introduced in [2] and refined in [4]. According to the definition in [4], a measurement
matrixA ∈ R

M×L is said to obey UUP with an oversampling factor λ, if the inequality

1
2
· M
L
‖f‖22 ≤ ‖Af‖22 ≤

3
2
· M
L
‖f‖22 (2)

holds for allK−sparse signals f , whereK ≤M/(αλ) and α > 0 is a sufficiently large
constant. According to [2], random sampling matrix and Fourier sampling matrix both
obey UUP with λ = log(L/K) and λ = log6(L/K) respectively. They are capable of
recovering u (with an overwhelming probability) from b of size M ≥ αK log(L/K)
and M ≥ αK log6(L/K) respectively.

In addition to the sparsity in the Ψ -transform domain (wavelets [3,17], curvelets [10]
et al.), compressive sampling often uses Total variation (TV) [18] to exploit the sparsity
in finite difference domain. In some applications [10,13,12,24], Ψ -transform sparsity
and TV are enforced together to improve the recovery accuracy as follows:

min
u

TV(Ψu) + β‖u‖1 s. t. ‖ΦΨu− b‖22 ≤ σ2 (3)

Where β trades TV with Ψ -transform sparsity and σ2 is the noise variance.
In this paper, we concentrate on how to evaluate and improve TV based compres-

sive sampling. The most widely-used form of TV in CS [16,17,3,13,24] including
Single-Pixel Camera (SPC) [8] is TV�1�2 , which computes the summation of the mag-
nitudes of gradients (SMG) across the image: TV�1�2(I) =

∑
i

√
(DhI)2i + (DvI)2i

where Dh and Dv are horizontal and vertical gradient operators. This TV measure
has the following shortcomings: (1) The field of gradient magnitudes is not as sparse
as partial gradients fields; (2) TV�1�2 is prone to causing blurring across sharp edges,
since SMG prefers to suppress large partial gradients; (3) SMG is a nonlinear opera-
tor, which makes it difficult to minimize TV�1�2 efficiently. To seek a more efficient
decoding algorithm, [14] uses an invertible operator Ω, which we call TV′

�1
, given by

ΩI = ‖DhI‖1 + ‖DvI‖1. However, TV′
�1

seeks the intensity continuity horizontally
and vertically, but fails to enforce the intensity continuity diagonally. Thus, to overcome
these shortcomings of TV�1�2 and TV′

�1
, a new TV measure is needed.

In CS, random sampling is generally assumed to be near-optimal in reducing the
sampled data for unstructured images [7,2]. [16,17,3] combine low-frequency sampling
and random sampling, on intuitive grounds alone, without formal justification. In this
paper, we present a hybrid CS method using a new TV measure with the following two
contributions:
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1. We propose a new TV measure TV�1 , which recovers piecewise smooth images
with all possible sharp edges by exploiting the sparsity and continuity in the gradi-
ent domain. In addition, the UUP condition shows our TV�1 achieves higher accu-
racy and requires fewer measurements for the same quality of reconstruction than
previous TV�1�2 .

2. We present a theoretical analysis on hybrid sampling, which shows that low resolu-
tion sampling (LRS) and random sampling (RS) indeed complement each other for
most natural images, and gives the criteria for the best combination of LRS and RS.

This paper is organized as follows. Section 2 describes our TV�1 based hybrid CS.
Section 3 discusses implementation of our method. Section 4 presents experimental
results. Section 5 gives concluding remarks.

2 Proposed TV Based Hybrid CS

Total variation TV�1�2 is a widely-used measure for enforcing intensity continuity and
recovering a piecewise smooth image in CS [16,17,3,13,24]. In this paper, we propose a
new TV measure TV�1 , which exploits the continuity and sparsity in the partial gradient
domain. In comparison with TV�1�2 , our TV�1 is able to recover sharper images with
greater accuracy. Our TV�1 based CS problem can be formulated as follows.

min
I

TV�1(I) s. t. ΦI = b and Φ′I = d (4)

where Φ is random sampling (RS) matrix or Fourier sampling matrix for large-scale
images, and Φ′ is low-resolution sampling (LRS) matrix, which acquires LR data d.
To compare our TV�1 with TV�1�2 directly, we do not combine our TV�1 with any
Ψ -transform sparsity, even if their combination might improve the recovery accuracy.

2.1 A New TV Measure

In this section, we present a new TV measure TV�1 . For intensity continuity in Fig. 1(a),
the pixel Ii,j is desired to be of similar value to its four neighbors in smooth regions.

Fig. 1. (a) For intensity continuity, or gradient sparsity, we enforce each pixel, e.g. Ii,j , to be
continuous with its 4 neighbors. (b) For gradient continuity, we enforce each partial gradient, e.g.
Gxi,j marked as a red line, to be of similar value to its 6 neighbors marked as blue lines.
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Similarly, partial gradients Gxi,j = Ii+1,j − Ii,j and Gyi,j = Ii,j+1 − Ii,j can be
continuous along all directions except their own directions, where they are desired to
be discontinuous to obtain a sharp edge. Take Gxi,j (Fig. 1(b)) for example, our TV�1

will not enforce its continuity along the horizontal axis, but will do so along all other
directions, as in Fig. 1(b)). For notational simplicity, we consider the continuity of par-
tial gradients in a 2 × 2 neighborhood (Ii,j , Ii+1,j+1, Ii+1,j , Ii,j+1). The continuity

constraints depend on the direction
−→
D associated with the edge, if it exists in the neigh-

borhood. For different cases of
−→
D , the continuity constraints are:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

‖Gxxi,j‖1 = ‖Gxi,j −Gxi,j+1‖1 = 0 if
−→
D is vertical.

‖Gyyi,j‖1 = ‖Gyi,j −Gyi+1,j‖1 = 0 if
−→
D is horizontal.

‖Gxyi,j‖1 = ‖Gxi,j +Gyi+1,j‖1 = 0 if
−→
D is left-lower.

‖Gyxi,j‖1 = ‖Gyi,j −Gxi,j‖1 = 0 if
−→
D is right-lower.

Thus, we enforce the directional continuity of Gx and Gy by minimizing the �1-
norm of Gxy,Gyx,Gxx and Gyy. Gxxi,j is the derivative of Gxi,j along the ver-
tical axis and Gyyi,j is the derivative of Gyi,j along the horizontal axis. Actually,
‖Gxxi,j‖1 = ‖Ii+1,j+1 + Ii,j − Ii+1,j − Ii,j+1‖1 = ‖Gyyi,j‖1. By including the in-
tensity continuity constraints in Fig. 1(a), we define our TV measure TV�1 as follows:

TV�1(I) = ‖Gx‖1 + ‖Gy‖1 + γ(‖Gxy‖1 + ‖Gyx‖1 + 2‖Gxx‖1) (5)

where γ trades the intensity continuity with the gradient continuity. Gx,Gy,Gxy
and Gyx are respectively horizontal, vertical, and two diagonal partial gradients in
Fig. 1(b). Given our goal is to recover the sparsest gradients, ‖Gxxi,j‖1 = ‖Gyyi,j‖1 =
0 implies zero partial gradients along one of four directions in the 2× 2 neighborhood,
or equivalently Gxi,j = 0, Gyi,j = 0, Gxyi,j = 0 or Gyxi,j = 0. In this case, min-
imizing ||Gxx||1 is redundant under the condition of minimal ||Gx||1 + ||Gy||1 +
||Gxy||1 + ||Gyx||1. Thus, our TV�1 can be simplified.

TV�1(I) = ‖Gx‖1 + ‖Gy‖1 + γ(‖Gxy‖1 + ‖Gyx‖1) (6)

This simplified TV�1 , enforces the sparsity and directional continuity in the gra-
dient domain by seeking the γ-weighted sparsity of partial gradient fields G =
[Gx;Gy;Gxy;Gyx].

In comparison with previous TV measures (TV�1�2 and TV′
�1

), our TV�1 based CS
can recover any piecewise smooth image with all possible sharp edges (horizontal, ver-
tical or diagonal), where the tuning parameter γ plays a crucial role in determining its
preference. In general, TV-based CS seeks the image that has the minimal TV value and
is closest to the measurements. The widely-used measure TV�1�2 minimizes the sum of
magnitudes of gradients (SMG) and penalizes larger partial gradients. Thus TV�1�2 is
prone to recovering a blurred image (Fig. 2(b)). TV′

�1
, or equivalently a special case

TV�1,γ=0, is prone to recovering an image of sharp horizontal and vertical edges in
Fig. 2(c) by enforcing ‖Gx‖1+‖Gy‖1. However, these two images (Fig. 2(b)(c)) cause
larger �1-norm of Gyx. TV�1,γ=1 equally penalizes the �1-norm of each elements in
the four partial gradient fields G, whether large or small. So, TV�1,γ=1 is prone to re-
covering the sharp image of diagonal edges (Fig. 2(d)), since it has small TV�1,γ=1 and
is closest to the original image (Fig. 2(a)).
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Fig. 2. Comparison of TV measures (the intensities of white, dark-blue and light-blue pixels are
1, 0 and 0.5). (a) Original sharp corner, (b) blurred image recovered by minimizing TV�1�2 ,
(c) straight edge image recovered by minimizing TV�′

1
, (d) diagonal corner image recovered by

minimizing TV�1,γ=1.

Table 1. The sparsity of a 256× 256 LENA image in the field of gradient magnitudes and the
four partial gradient fields. The partial gradient fields has similar sparsity, which is much smaller
than that of the gradient magnitude field.

√
Gx2 + Gy2 Gx Gy Gxy Gyx

40652 28111 27767 28760 28633

2.2 UUP Condition for TV�1 Based CS

In this section, we present the UUP condition for TV based compressive sampling.
According to this UUP condition, we compare our TV�1 and previous TV�1�2 in terms
of the number of measurements for lossless recovery. An image I can be represented
as a linear combination of each partial gradient field plus some constant values, i.e.,
I = ΨxGx + Ix = ΨyGy + Iy = ΨxyGxy + Ixy = ΨyxGyx + Iyx, where constant
vectors Ix, Iy, Ixy and Iyx are equal to some rearrangements of the first row pixels
as well as the first and last column pixels. For instance, Ix is a repetition of the first
column pixels. According to (4), b = ΦI = ΦΨxGx + ΦIx = ΦΨyGy + ΦIy =
ΦΨxyGxy + ΦIxy = ΦΨyxGyx + ΦIyx. Suppose γ = 1 and no LRS for simplicity,
our TV�1 based CS problem (4) is reformulated as:

min
G
‖G‖1 s. t. AG = [bx;by;bxy;byx] (7)

where the partial gradient fields G = [G1;G2;G3;G4] = [Gx;Gy;Gxy;Gyx], the
sampling matrix A = diag(A1, A2, A3, A4) = diag(ΦΨx, ΦΨy, ΦΨxy, ΦΨyx), and the
sampled data [bx;by;bxy;byx] = [b− ΦIx;b− ΦIy;b− ΦIxy;b− ΦIyx].

If replacing the objective function with
√

Gx2 + Gy2, we induce the TV�1�2 based
CS problem. The major difference between these two TV is TV�1�2 enforces the sparsity
in the gradient magnitude fields and TV�1 enforces that of partial gradients.

Now, we compare the sparsity (denote its maximal value as K1) in each partial gra-
dient field and that (denoted as K2) in the gradient magnitude field. For most natu-
ral images, it is generally true that K1 ≤ K2, as shown in Table 2. In the gradient
magnitude field

√
Gx2 + Gy2, K2 is equal to the size of pixels having non-zero
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Gx or Gy. Thus, K2 is larger than both the sparsity of Gx and that of Gy. At

each pixel, the gradient magnitude is equal to
√
Gx2

i,j +Gy2
i,j , the diagonal gradients

Gxyi,j = Gxi,j + Gyi+1,j and Gyxi,j = Gyi,j − Gxi,j . So, the sparsity of diago-
nal gradients Gxy or Gyx is smaller than K2, which equals the size of pixels having
non-zero Gx or Gy. Thus, we prove that K1 ≤ K2 for any image.

According to (7), each individual sampling matrix Ai, i = 1, 2, 3, 4, corresponds to
a partial gradient field Gi (sizeN2×1, image size:N×N ). For each random sampling
matrix Ai ∈ R

M×N2
, 1 ≤ i ≤ 4 to obey the UUP condition (2), the inequality

1
2
· M
N2
‖Gi‖22 ≤ ‖AiGi‖22 ≤

3
2
· M
N2
‖Gi‖22 (8)

must hold for any partial gradient Gi whose sparsity satisfies K1 ≤
M/(α log(N2/M)). In other words, each Ai ∈ R

M×N2
obeys the UUP condition,

provided that M ≥ αK1 log(N2/K1). In our TV�1 based CS (7), we need to induce
the UUP condition of the big matrix A which involves all four gradient fields G. By
summing the 4 components in (8), we obtain the inequality for the matrix A:

1
2
· M
N2

∑

i

‖Gi‖22 ≤
∑

i ‖AiGi‖22 ≤
3
2
· M
N2

∑

i

‖Gi‖22
1
2
· M
N2
‖G‖22 ≤ ‖AG‖22 ≤ 3

2
· M
N2
‖G‖22 (9)

Obviously, the combined sampling matrix A obeys the UUP condition, given that each
sampling matrix Ai, i = 1, 2, 3, 4 obeys the UUP condition, or given the condition
M ≥ αK1 log(N2/K1). Suppose the gradient magnitude is sampled randomly, we
can induce that the number of measurements required by previous TV�1�2 based CS is
M ≥ αK2 log(N2/K2).

Therefore, our TV�1 based compressive sampling requires fewer samples than
TV�1�2 for the same quality of reconstruction. In other words, based on the same num-
ber of measurements, our TV�1 based CS will recover an image of higher quality.

2.3 Optimal Hybrid Sampling

For most natural images, our hybrid sampling (4) consisting of low-resolution sampling
(LRS) and random sampling (RS) requires fewer measurements than random sampling
alone for the same quality of reconstruction. In this section, we will give a theoretical
analysis on the optimal hybrid sampling and its minimal number of measurements for
lossless reconstruction.

Both low resolution sampling (LRS) and random sampling (RS) aim at reducing
the size of sampled data non-adaptively. The major difference is that LRS measures the
low-frequency information with averaging filter (block size: n×n, frequencyF = 1/n)
while RS senses the combination of randomly-selected data.

To demonstrate how RS and LRS complement each other in our TV�1 based CS, we
develop a hierarchical gradient transform (HGT), similar to Wavelet transform. HGT
consists of an average basis Ψ ′′ at the coarsest level and a series of difference bases
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(a) (b) (c) (d)

Fig. 3. (a)Hierarchical gradient transform (HGT), (b) a Bernoulli random matrix, magnitude of
HGT of (c) a Ball image and (d) the Bernoulli random matrix

Ψ ′ at finer levels (Fig. 3(a)). Consider a 2 × 2 block at the finest level, all the partial
gradients inside this block are highly correlated. Thus, our HGT represents these partial
gradients by three partial gradients at the left-upper pixel. Similarly, we can de-correlate
the partial gradients in larger scale 2× 2 blocks at coarser levels, as shown in Fig. 3(a).
Thus, given an image, HGT outputs a series of hierarchical gradients G′ and some
average responses.

For a piecewise smooth image, G′ has denser non-zero elements at coarser levels
(Fig. 3(c)) while Bernoulli random sampling (RS) senses G′ almost uniformly in the
HGT domain (Fig. 3(d)). Thus, sole RS is not efficient and hybrid sampling is desired.
In hybrid sampling (4), given LR samples d at coarser levels, we measure G′ on the
rest finer levels (denoted by G′

d) by random sampling (RS). Since G′
d is quite sparse,

hybrid sampling sacrifices some low-resolution samples d for dramatically reducing the
number of RS measurements b.

An N × N image I can be represented as linear combinations of LR samples d on
coarser scales andK ′

d-sparsity G′
d associated with d, I = Ψ ′G′

d +Ψ ′′d. For the sake of
simplicity, we approximate our TV�1 minimization by enforcing the sparsest G′

d, and
reformulate (4) as follows:

min
G′

d

‖G′
d‖1 s. t. A′G′

d = ΦΨ ′G′
d = b− ΦΨ ′′d (10)

whereA′ is the sampling matrix. The minimal number of measurements for the lossless
reconstruction is αK ′

d log(N2/K ′
d), where α is a constant.

Proposition 1. The hybrid sampling approach consisting low-resolution sampling
(F = 1/n) andM random projections is capable of recovering the original image (size
N ×N ), if the sampling matrix A′ obeys UUP [2] for the unknown K ′

d-sparsity coeffi-
cients G′

d at the finer levels of HGT. Consequently, for lossless reconstruction, the min-
imal number of measurementsMmin equals (N/n)2 +αK ′

d log((N2− (N/n)2)/K ′
d),

where α is a constant.

The optimal hybrid sampling depends on selection of LRS, which is defined by its
frequency (F = 1/n) and other parameters, such as d and K ′

d. By varying LRS and its
corresponding RS, we can seek the optimal hybrid sampling with the smallest number
of measurements (M̂min = (N/n̂)2 + αK̂ ′

d log((N2 − (N/n̂)2)/K̂ ′
d)), where 1/n̂ is

the frequency of the optimal LRS.
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3 Implementation Issues

3.1 Practical Hybrid Sampling

One problem with random sampling is its inefficiency for large-scale images. The no-
table CS application of random sampling is Single Pixel Camera (SPC)[22,8], which is
advantageous over the conventional pixel-array camera in reducing sampling rate (ratio
of sample size and data size, denoted asR). It sequentially acquires random linear mea-
surements of scene brightness by a digital micro-mirror (DMD) and thus its sensing rate
is limited. To date, DMD can provide at most 32000 random patterns/second. Suppose
we need to capture an image of size 1024× 768 at R = 10%, then the sensing process
takes 1024× 768× 0.1/32000 = 2.46 seconds. Our hybrid sampling can increase the
frame rate (RS) by incorporating some LR samples and even reduce the total sampled
data from RS and LR, for the same quality of reconstruction.

Another problem with random sampling is its high computational cost. For instance,
to recover a 1024× 768 image at R = 10%, we need more than 7 gigabytes of memory
just to store the Bernoulli random matrix. To reduce the cost of time and memory, many
efforts have been made to develop structural sampling methods (Fourier transform[12],
scrambled Fourier[1], Hadarmard transform[9], Noiselet[6,3]). A typical application of
structural sampling is Magnetic Resonance Imaging (MRI)[12] using Fourier sampling.

3.2 Sparsity Decoding

In this section, we present our approach to recover the image from the limited measure-
ments by decoding the sparse gradient G. There is a number of algorithms available
for decoding, including Orthogonal Matching Pursuit (OMP)[23], Basis Pursuit(BP)[5]
listed in SparseLab Toolbox[21], second-order cone programming (SOCP) imple-
mented in �1-Magic[11], and iterative shrinkage/thresholding (IST)[24].

For decoding, we aim to solve (4) and recover the image I and its sparse partial
gradients G. We employ a primal-dual interior-point optimization routine called PDCO
[19]. Since random sampling is computationally costly, we need to replace it by Fourier
sampling for sensing large-scale images. Given the partial Fourier data b, we use the
IST method [24] to solve (4) to recover the image I.

4 Experimental Results

In this section, we present some experimental results to compare our hybrid compres-
sive sampling using TV�1 , with the widely-used TV�1�2 based CS method. We present
results for both qualitative (visual) and quantitative evaluations.

4.1 Selection of Parameter γ

As shown in (6), our TV�1 seeks the γ-weighted gradient sparsity and recovers images
with sharp edges. For a sharp image containing 40% diagonal edges, our TV�1 can
achieve much higher accuracy than TV�1�2and its accuracy depends on selection of γ
(Fig. 4(a)). As shown in Fig. 4(b), in comparison with other TV measure, our TV�1
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(a) (b)

Fig. 4. Comparison of TV measures. (a) The recovery accuracy of a sharp image in which 40% of
edges are diagonal. (b) The required sampling rates on different images, for the recovery accuracy
(PSNR) to be large than 40dB.

(γ = 1) requires fewer samples at images containing many diagonal edges and more
samples at images containing few diagonal edges, for the same recovery accuracy. That
means, the value of the optimal γ should be proportional to the percentage of diagonal
edges in the image. This result is consistent with the claim that our TV�1 can recovery
all possible sharper edges (vertical, horizontal or diagonal) in Sect. 2.1. In our following
experiments, the optimal γ is selected as 0.2 ≤ γ ≤ 1.

4.2 Hybrid Compressive Sampling via Our TV�1

To show the advantage of our TV�1 over TV�1�2 , we choose small piecewise smooth
images, e.g., ECCV image in Fig. 5 and Ball image in Fig. 6, due to the expensive spar-
sity decoding. As shown in Fig. 5, our TV�1 based CS is able to reconstruct the sharp
ECCV image almost perfectly while TV�1�2 causes serious artifacts at R = 25%. Our
TV�1 is still advantageous over previous TV�1�2 at varying sampling rates (Fig. 5(c)).
As shown in Fig. 6, Ball image is almost a real image, except that we remove some
noise in the gray region. Given the same sampled data, our TV�1 acquires an image
(Fig. 6(b)) whose Peak-Signal-Noise-Ratio (PSNR) is 3.0dB higher than that recovered
by previous TV�1�2 (Fig. 6(a)).

(a) (b)
(c)

Fig. 5. Recovered ECCV images (upper) and error maps (lower) by (a)TV�1�2 (PSNR=32.88dB)
and (b) TV�1 (PSNR=48.17dB) at the sampling rate R = 25% (LRS:6.25% and RS:18.75% ). (c)
Comparison of TV measures on ECCV image sensed by our hybrid sampling with LRS (F = 1/4).
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(a) (b)

Fig. 6. Given random sampling (41%) and LR sampling (F = 1/3) on Ball image (upper-
right), images recovered by (a) TV�1�2 (PSNR=29.8dB) with its error map, and (b) TV�1

(PSNR=32.8dB) with its error map. Given the fixed total hybrid sampling rate (R = 60%),
we show the recovery accuracy of TV�1 and TV�1�2 at varying LR sampling rates (lower-right).

Table 2. The estimated and real minimal number of required measurements on the Ball image
(N=32), for each hybrid sampling methods associated with different LRS (block size: n× n)

n× n LRS K′
1 Esti.Mmin at α = 1.2 RealMmin for PSNR≥ 40 dB

No LRS 576 0 + 576α= 691 717
4× 4 512 64 + 512α = 678 680
3× 3 440 121 + 440α = 649 653
2× 2 368 256 + 368α = 698 665
2× 1 250 512 + 235α = 794 756

For most natural images, low-resolution sampling (LRS)and random sampling (RS)
can complement each other. For instance, the recovery accuracy of our TV�1 is im-
proved by combining RS with LRS (F = 1/3) on Ball image (Fig. 6). As shown in
Fig. 6, both our TV�1 and previous TV�1�2 achieve the optimal accuracy at the LRS
(F = 1/3), given the total sampling rate R = 60%.

According to Proposition 1, we can determine the optimal hybrid sampling that re-
quires the fewest samplesMmin. Now, we want to verify Proposition 1 by some experi-
mental results. SinceK ′

1 is comparable to N2− (N/n)2, we approximate the estimated
Mmin by (N/n)2 +αK ′

1. Table 4.2 shows one successful case (α = 1.2), in which our
estimated Mmin is close to the real Mmin required to achieve the accuracy (PSNR =
40dB). At α = 1.2, hybrid sampling with LRS (F = 1/3) requires the smallest Mmin

and thus is optimal, which is consistent with the accuracy chart in Fig. 6.
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4.3 Evaluation of Our TV�1 by Fourier Sampling

Now, we evaluate ourTV�1 based CS on two real MR images (Chest and Bone) by Fourier
sampling ([12]). Given 14% Fourier samples, our TV�1 can recover a Chest image I1
(Fig. 7(c)), whose PSNR is 1.3dB higher than that I2 (Fig. 7(b)) by TV�1�2 . Figure 7(g)
shows the difference map Id = I1− I2, which is close to the second derivatives of Chest
image (Fig. 7(a)). Similarly, the region boundary (Fig. 7(f)) in Bone image recovered
from our TV�1 is obviously sharper than that in Fig. 7(e), which is also demostrated
by their difference map (Fig. 7(h)). Thus, our TV�1 is prone to enforcing sparse partial
gradients in piecewise smooth images. Besides, our TV�1 achieves higher accuracy at
varying sampling rates than TV�1�2 in recovering these images, as shown in Fig. 7(i).

(a) (b) (c)

(d) (e) (f)

(g) (h)

(i)

Fig. 7. Comparison of TV measures by Fourier sampling. (a) Original Chest image sensed at
R = 14%, images recovered by (b) TV�1�2 (PSNR= 26.0dB) and (c) TV�1 (PSNR=27.3dB). (d)
Original Bone image sensed at R = 9.34%, images recovered by (e) TV�1�2 (PSNR=27.1dB)
and (f) TV�1 (PSNR=27.6dB). (g) Difference of (c)and (b). (h) Difference of (f)and (e). (i) Ac-
curacy vs. sampling rate on Chest image.

5 Conclusion

In this paper, we propose a hybrid compressive sampling method using a new TV mea-
sure TV�1 , for recovering a piecewise smooth image containing all possible sharper
edges from limited measurements. We induce a UUP condition for TV based compres-
sive sampling, which shows that our TV�1 requires fewer measurements than widely
used TV�1�2 for the same quality reconstruction. In addition, some theoretical analysis
is presented to show the advantage of hybrid sampling over random sampling for most
natural images and how to seek the optimal hybrid sampling. Finally, our TV�1 based
hybrid CS achieves better performance in experimental results.
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Abstract. Traditionally, “Structured Light” has been used to recover

surface topology and estimate depth maps. A more recent development

is the use of “Structured Light” in surpassing the fundamental limit on

spatial resolution imposed by diffraction. But, its use in surpassing the

diffraction limit remains confined to microscopy, due to issues that arise

in macroscopic1 imaging: perspective foreshortening, aliasing and need

for calibration. Also, no formal attempt has been made to unify the above

embodiments, despite their common reliance on “Structured Light”.

An original contribution of this work is the use of “Structured Light”

in surpassing the diffraction limit of macroscopic imaging systems. Other

contributions include
• unifying the “Structured Light” embodiments in a single framework

• realizing OSR and depth-estimation in a single un-calibrated setup

when the image planes of the imaging & illumination system are parallel.

Potential applications include bar code scanning and surveillance.

Keywords: Structured Light, Structured Illumination, Diffraction, Op-

tical Super-Resolution, Super-Resolution,DepthEstimation,PROCAMS.

1 Introduction

The term ”Structured Light” refers to periodic light patterns such as the light
emerging from sunlit ”venetian blinds”, or the physical projection of a periodic
pattern printed on a transparency. It provides a means to impose an artificial
pattern of known spatial frequency, upon a scene.

The earliest attempts at using “Structured Light” in optics[1–3] were focussed
on the accurate measurement of surface topology. The idea is to project a si-
nusoidal illumination pattern onto the target surface, at a known angle. The
reflected image viewed from a different position (and or angle) reveals lateral
displacements and frequency changes (Fig.[1(a)]) that are related to topological
variations. The same principle governs “Structured Light” Depth Estimation in
computer vision[4–6]. Excellent overviews of the topic are presented in[7–11].

1 We use the term macroscopic imaging to refer to imaging systems that exhibit sig-

nificant perspective distortion, and demagnification (images of objects are smaller

than their true size).

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part VI, LNCS 6316, pp. 405–419, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Recently, “Structured Light” has been used in microscopy, [12–16] to recover
spatial frequencies that are lost to diffraction-induced-blurring[17]. The technol-
ogy is referred to as “Optical Super Resolution” (OSR), and relies on the ability
to shift spatial frequencies outside the passband of the imaging system into the
passband. It owes its success to the seminal work of Lukosz & Marchand in 1963
[18], who proposed a method for shifting spatial frequencies, by modulating the
amplitude of a periodic pattern with scene information.

Despite advances in “Structured Light”-microscopy, realizing OSR in macro-
scopic imaging, remains an open problem. The challenge lies in realizing am-
plitude modulation, while overcoming the distortion in the illuminating pattern
as viewed by the imaging system (Fig.[1(a)]) . The distortion arises due to the
displacement between the center-of-perspective (COP) of the imaging & illu-
mination systems. It has been observed that the distortion can be overcome by
coinciding the COP ’s using a beam splitter[19], or collocating them such that
the periodic pattern is aligned with the epipolar lines[20] (Fig.[1(b)]). But, it re-
mains to be proven that such arrangements can shift spatial frequencies outside
the passband of a macroscopic imaging system, into the passband.

The above issue is addressed in Section.(3), with the aid of the model pro-
posed in Section.(2). The model also provides a unified treatment of “Structured
Light” imaging, when the image planes of the camera & projector are parallel.
This allows us to explore the possibility of realizing OSR and depth-estimation
(Section.(4)) in a single setup. Experiments in Section.(5) and the supplementary
material, confirm our findings.

(a) The phase of the pattern is distorted

due to bending at depth

discontinuities.

(b) The pattern appears undistorted and

superimposed onto image of the scene.

Fig. 1. A camera observing a 3D scene illuminated by a sinusoidal light pattern, in a

canonical stereo setup with vertical epipolar lines

2 Structured Light Imaging in a Parallel Stereo Setup

In this section, we develop a mathematical model for the relationship between
the intensity of a projector pixel and its corresponding camera pixel, when the
optical axes of the projector and camera are parallel, as shown in Fig.[2(a)].
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(X, Y,Z) coordinates of a scene point in the world coordinate system

( coordinate convention is shown in Fig.[2(a)] )

Bold uppercase letters points in the world coordinate system

Roman lowercase letters pixel coordinates in the camera & projector image planes,

and scalars in general

Serif lowercase letters signals & images

CALLIGRAPHIC letters Fourier Transform of signals

Suppose

–
−−−→
OcOp � [bx, by, bz]T is the baseline between the camera and the projector,
whose center-of-perspective (COP) are at Oc and Op respectively

– The projector and camera image planes are located at distances Zp, Zc be-
hind the respective COP ’s

– sp, sc represent the size of a projector & camera pixel respectively in mm
pixel

– Mp ×Np , Mc ×Nc (rows × columns) represent the size of the projector &
camera images in pixels

– xc yc , xp yp represent the camera & projector image coordinates respectively.

Assumptions

– The camera point spread function (psf ) h(x, y) does not change appreciably
within the projector depth of field

– The images captured by the camera are strictly diffraction limited, and free
of aliasing (optical cutoff frequency < detector Nyquist frequency)

At the outset, we assume the illumination pattern is a raised sine pattern with
2D spatial frequency (ξ0, η0) cycles

image
. This assumption will be relaxed to accom-

modate arbitrary periodic patterns in Section.(2.4).
Suppose that the intensity of the (x′, y′)th projector pixel is given by

sθ(x
′, y′

) =
A

2
+

A

2
sin

(

2π

(
ξ0

Np
x′

+
η0

Mp
y′
)

+ θ

)
0 ≤ x′ < Np

0 ≤ y′ < Mp
(1)

The term A in Eq.[1] represents a scalar constant, and θ represents the phase of
the sinusoidal pattern. The 2D spatial frequency (ξ0, η0) in Eq.[1] is deliberately
expressed in the image independent unit cycles

image
, as it directly correlates with

the bin index in the 2D-DFT (Discrete Fourier Transform) of sθ(x′, y′).

2.1 Geometric Relationship between a Scene Point and Its
Corresponding Projector and Camera Pixels

Suppose (x′, y′) and (x, y) are the pixel projections of the scene point (XQ, YQ,
ZQ) onto the projector and camera image planes, as illustrated in Fig.[2(b)].
Simple geometry reveals2 that

2 The expressions for x, x′ follow from the geometry of the similar triangles correspond-

ing to the red, green angles in Fig.[2(a)]. The expressions for y, y′ can be derived

along similar lines.
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Fig. 2. Parallel Stereo Camera + Projector Setup

XYZ : World Coordinate System, Oc/Op: lens center of Camera/Projector

(xc, yc)/(xp, yp) : Camera/Projector Image Planes in pixel units

(bX , bY , bZ) : displacement between the Camera & Projector lens centers

(cx, cy) / (c′x, c′y) : principal point of Camera/Projector

(XQ, YQ, ZQ) → (x, y)
x − cx

Zc

= − 1

sc

XQ

ZQ

,
y − cy

Zc

= − 1

sc

YQ

ZQ

(2)

(XQ, YQ, ZQ) → (x′, y′)
x′ − c′

x

Zp

= − 1

sp

(
XQ − bX

ZQ − bZ

)

,
y′ − c′

y

Zp

= − 1

sp

(
YQ − bY

ZQ − bZ

)

(3)

(x, y) → (x′, y′)
x′ =

(
ZQ

ZQ−bZ

)
Zp
sp

sc
Zc

(x − cx) +
Zp
sp

(
bX

ZQ−bZ

)
+ c′

x

y′ =
(

ZQ
ZQ−bZ

)
Zp
sp

sc
Zc

(y − cy) +
Zp
sp

(
bY

ZQ−bZ

)
+ c′

y

(4)

2.2 Effect of Projector Defocus on the Illumination Pattern

In an effort to produce bright images with large field of view, projectors are
designed to have large apertures. The downside is that they have a shallow
depth of field, which compels us to accommodate the depth dependent blurring
(Fig.[3]) of the projected “Structured Light” pattern.

Using Eq.[4] in Eq.[1], we can express the incident intensity at the scene point
(XQ, YQ, ZQ) due to the illumination sθ(x′, y′), in the camera coordinates (x, y)
as follows

pθ(XQ, YQ, ZQ) = A0,0,ZQ
+++

A
ξ0,η0,ZQ

sin

⎛

⎝2π

⎛

⎝

(
ZQ

ZQ−bZ

)
Zp
Zc

scNc
spNp

ξ0
Nc

(x − cx) +
ξ0
Np

c′
x +

Zp
sp

ξ0
Np

(
bX

ZQ−bZ

)
+++

(
ZQ

ZQ−bZ

)
Zp
Zc

scMc
spMp

η0
Mc

(y − cy) +
η0
Mp

c′
y +

Zp
sp

η0
Mp

(
bY

ZQ−bZ

)

⎞

⎠ + θ

⎞

⎠

(5)

The real scalars A0,0,ZQ
, A

ξ0,η0,ZQ
represent the effect of defocus MTF on the

spatial frequencies (0, 0) , (ξ0, η0) at depth ZQ.
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Zp

Z0
Zfront

Zback

projector image plane

out-of-focus plane

in-focus plane

out-of-focus plane 1

Zfront
+

1

Zp
>

1

F
1

Z0
+

1

Zp
=

1

F
1

Zback
+

1

Zp
<

1

F

F is the focal length

Fig. 3. The effect of projector defocus on a square pattern is a depth dependent blurring

of each frequency component in the square pattern

In the ensuing discussion, we drop the reference to the subscript Q when
referring to the world coordinates of the scene point (XQ, YQ, ZQ).

2.3 Imaging in a Parallel Stereo Setup, under Sinusoidal
Illumination

The intensity iθ(x, y) of the (x, y)th camera pixel, can be expressed as the sum

iθ(x, y) = {αZ r(x, y) pθ(X, Y, Z)} ⊗ h(x, y)
︸ ︷︷ ︸

image under structured light

+++ {r(x, y) a(x, y)} ⊗ h(x, y)
︸ ︷︷ ︸

image under ambient light

,
0 ≤ x < Nc

0 ≤ y < Mc
(6)

– iθ(x, y) : intensity of (x, y)th camera pixel
– pθ(X,Y, Z) : incident intensity at (X,Y, Z) due to “Structured Light”
– a(x, y) : ambient illumination
– r(x, y) : detected intensity ÷ incident intensity (dependent on reflectance)
– h(x, y) : space-invariant psf of the imaging system
– αZ : normalization term that depends on the relative magnification between

the camera and projector, in the horizontal and vertical directions.

Substituting Eq.[5] in Eq.[6], we arrive at the expression for the camera image,
under the sinusoidal illumination sθ(x

′, y′) = A
2

+ A
2

sin
(
2π
(

ξ0
Np

x′ +
η0
Mp

y′
)

+ θ
)

iθ(x, y) =
{

r(x, y) αZA
Z,ξ0,η0

sin (ϕ(x, y) + θ) +++ r(x, y)[αZ A
Z,0,0 + a(x, y)]

}
⊗ h(x, y) (7)

ϕ(x, y) �
⎛

⎝
2πμZ

(
μh

ξ0
Nc

(x − cx) + μv
η0
Mc

(y − cy)
)

+ 2π
ξ0
Np

c′
x + 2π

η0
Mp

c′
y

+2π
Zp
sp

(
ξ0
Np

bX
Z−bZ

+
η0
Mp

bY
Z−bZ

)

⎞

⎠ (8)

Please refer to Table.[1] for a definition of the terms in Eq.[7] and Eq.[8].
It is apparent from Eq.[7] that the illumination pattern experiences a depth-

dependent distortion in the amplitude, frequency and phase. The methods for
depth recovery discussed in this paper exploit this distortion, while the OSR
method discussed in this paper tries to avoid the distortion.
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Table 1. Definition of the parameters listed in the expression for the image captured

by a camera under sinusoidal illumination (Eq.[7])

user defined parameters

ξ0, η0 spatial frequency of illumination pattern in
cycles

image

θ phase of the illumination pattern

fixed parameters fixed for each camera pixel (x, y)

Mc ×Nc (rows × columns) size of camera image

μh =
Zp

Zc

scNc
spNp

horizontal magnification

μv =
Zp

Zc

scMc
spMp

vertical magnification

(cx, cy) principal point of the camera

(c′x, c′y) principal point of the projector

ψ0 = 2π
(

ξ0
Np

c′x +
η0
Mp

c′y
)

phase accumulated by the principal point of the projector

scene dependent parameters vary for each camera pixel (x, y)

AZ,ξ,η projector MTF at depth Z, and spatial frequency (ξ, η)

μZ = Z
Z−bZ

depth dependent magnification

ψZ = 2π
Zp

sp

(
ξ0
Np

bX
Z−bZ

+
η0
Mp

bY
Z−bZ

)
phase due to parallax

αZ = μ2
Z μh μv normalization term

2.4 Imaging in a Parallel Stereo Setup, under Periodic Illumination

The expression for iθ(x, y) derived in Section.(2.3) can be extended to accom-
modate periodic illumination patterns, by utilizing the Fourier series expansion
of periodic signals. The resulting expression is used to reformulate the findings
of Zhang & Nayar[19] in Section.(4.2).

For the sake of simplicity, we restrict our attention to odd-symmetric periodic
illumination patterns (such as square waves[4], sawtooth waves[9]) with average
value A

2 , i.e.,

sθ(x′, y′) =
A

2
+

A

2

∞∑

k=1

bk sin

(

2πk

(
ξ0

Np

x′ +
η0

Mp

y′
)

+ kθ

)

,
bk : Fourier series coefficients
bk = 4

πk mod(k, 2) square wave
bk = − 2

πk sawtooth wave
(9)

Following the analysis of Section.(2.2), Section.(2.3) we find that the intensity
of the (x, y)th camera pixel, under the illumination of Eq.[9], is given by

iθ(x, y) =

⎛

⎝

{ ∞∑

k=1

αZ r(x, y) AZ,kξ0,kη0
sin (k ϕ(x, y) + k θ)

}

⊗ h(x, y)

+++
{
r(x, y)[αZ AZ,0,0 + a(x, y)]

}⊗ h(x, y)

⎞

⎠ (10)

where ϕ(x, y) is defined in Eq.[8], and {A
Z,kξ0,kη0

}∞k=0 are real scalars that rep-
resent the effect of projector defocus on the spatial frequencies {(kξ0, kη0)}∞k=0,
at depth Z.

With the aid of the proposed model for imaging under “Structured Light”,
we now examine OSR and depth estimation in detail.
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3 Optical Super-Resolution Using Structured Light

The principle underlying “Structured Light”-OSR is amplitude-modulation. The
idea is to shift object spatial frequencies outside the passband of the imaging
system into the passband, by modulating the amplitude of a periodic pattern
with scene information(Fig.[1(b)]). This is realized by projecting a series of phase
shifted sinusoidal patterns onto the scene, as in the case of microscopy[13]. But,
unlike microscopy, the difference in viewpoint between the camera & projector
affects our ability to realize strict amplitude modulation, since it induces a depth
dependent frequency & phase distortion in the observed sinusoidal pattern.

With the aid of the model proposed in Section.(2.3), we now show that the
camera image represents a strictly amplitude modulated signal, when the scene
dependent magnification μZ and phase ψZ , are invariant to depth.

Suppose the camera images
{
iθ(x, y) : θ = 0, π

2
, π, 3π

2

}
in a parallel stereo setup

(Eq.[7]) are digitally recombined to obtain the following images

raw(x, y) : bandlimited image of scene obtained under ambient + uniform projector illumination

raw(x, y) � 1

4

(
i π
2
(x, y) + i 3π

2
(x, y) + i0(x, y) + iπ(x, y)

)
=
{[

αZ AZ,0,0 + a(x, y)
]
r(x, y)

}⊗ h(x, y)

m±
(x, y) : exponentially modulated images of scene obtained under sinusoidal illumination (11)

m±
(x, y) � 1

2

(
i π
2
(x, y) − i 3π

2
(x, y)

)
±

√−1

2
( i0(x, y) − iπ(x, y) )

=

{
αZ AZ,ξ0,η0

r(x, y) e
±j
(
2π μZ

(
μh

ξ0
Nc

(x−cx)+μv
η0
Mc

(y−cy)
)
+ψ0+ψZ

)}
⊗ h(x, y)

(12)

In the special case that μZ , ψZ are invariant to scene depth (μZ = μ, ψZ =
ψ, αZ = μ2μhμv = α), we find that the expression for the modulated images
m±(x, y), reduces to strict amplitude modulation as shown below

m±
(x, y) =

⎛

⎜
⎜
⎝α AZ,ξ0,η0

r(x, y) e±jϕ0

︸ ︷︷ ︸
complex apmlitude

e
±j
(
2π μ

(
μh

ξ0
Nc

x+μv
η0
Mc

y
))

︸ ︷︷ ︸
modulating carrier

⎞

⎟
⎟
⎠ ⊗ h(x, y)

︸ ︷︷ ︸
low pass filter

(13)

ϕ0 = ψ0 + ψ − 2πμ

(

μh
ξ0

Nc
cx + μv

η0

Mc
cy

)

(14)

Using the modulation property of the Fourier Transform[21], we identify the
intermediate images shown below

phase compensation
︷ ︸︸ ︷

e∓jϕ0

carrier demodulation
︷ ︸︸ ︷

e
∓j
(
2π μ

(
μh

ξ0
Nc

x+μv
η0
Mc

y
))

m±
(x, y)

=

(
αAZ,ξ0,η0

r(x, y)

)
⊗
{

h(x, y) e
∓j
(
2π μ

(
μh

ξ0
Nc

x+μv
η0
Mc

y
))}

︸ ︷︷ ︸
band pass filter centered at(±μhξ0,±μvη0)

(15)
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It is evident from Eq.[15] that the intermediate images contain spatial frequencies
that exceed the bandwidth of the optical transfer function3 H(ξ, η). This key
insight permits us to realize “Structured Light”-OSR for macroscopic imaging
systems.

The super-resolved result is obtained as the sum of the images

raw(x, y)+

phase compensation + demodulation in Fig.[4(a)]︷ ︸︸ ︷
e−jϕ0e

−j
(
2π μ

(
μh

ξ0
Nc

x+μv
η0
Mc

y
))

m+
(x, y) +

phase compenation + demodulation in Fig.[4(a)]︷ ︸︸ ︷
ejϕ0e

j
(
2π μ

(
μh

ξ0
Nc

x+μv
η0
Mc

y
))

m−
(x, y)

= raw(x, y) +

{
αAZ,ξ0,η0

r(x, y)

}
⊗
{

2 h(x, y) cos

(
2π μ

(
μh

ξ0

Nc
x + μv

η0

Mc
y

))}
︸ ︷︷ ︸

band pass image in Fig.[4(a)] (16)

Fig.[5(a)] illustrates the proposed “Structured Light”-OSR workflow.

When are αZ , μZ , ψZ invariant to scene geometry ?
Using the expressions for αZ , μZ , ψZ (Table.[1]), we can prove that the only
choice of baseline, and illumination pattern orientation that guarantees invari-
ance with respect to 3D scene geometry, is given by

bZ = 0 ⇒ μZ = 1, αZ = μhμv
ξ0
Np

bX +
η0
Mp

bY = 0⇒ ψZ = 0
(17)

Eq.[17] suggests that the epipoles in the camera and projector image planes are
at infinity, and the illuminating pattern is aligned with the epipolar lines in each
image. Examples of parallel stereo setups that satisfy Eq.[17] are listed below
���������Setup

Constraints
Scene Setup , Pattern OSR direction

Horizontally Collocated no constraints bY = bZ = 0, η0 = 0 �
Vertically Collocated no constraints bX = bZ = 0, ξ0 = 0 ↔
Arbitrarily Collocated no constraints Eq.[17] tan−1

(
ξ0
Np

Mp

η0

)

Coincident no constraints bX = bY = bZ = 0

any (ξ0, η0)

tan−1
(

ξ0
Np

Mp

η0

)

Non-Collocated planar facet parallel

to camera & projector

image planes

no constraints tan−1
(

ξ0
Np

Mp

η0

)

Key components in proposed SI-OSR workflow of Fig.[5(a)]

1. Identifying the demodulating frequency
In Eq.[13], the magnitude spectrum of the term αA

Z,ξ0,η0
r(x, y) , corre-

sponding to scene information, peaks at DC. Subsequent to modulation,
the DC component of the scene information shifts to the carrier frequency
(μμhξ0, μμvη0). We exploit this fact to identify the carrier frequency as
the abscissa & ordinate of the largest value in the magnitude spectrum of
m+(x, y). For additional details, please refer to the supplementary material.

3 Fourier Transform of the point-spread-function h(x, y) of the imaging system.
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2. Identifying the complex constant e±jϕ0 for phase compensation
Since the DC component of the scene information is a real number, it must
have zero phase before & after demodulation. We rely on this fact, to obtain
an estimate of ϕ0 from the phase of the DC value of the demodulated image,

as ϕ̂0 = mean

[

e
−j
(
2π μ

(
μh

ξ0
Nc

x+μv
η0
Mc

y
))

m+(x, y)

]

3. Aliasing Management
The objective of demodulation is to restore the modulated spatial frequen-
cies back to their rightful position. This is realized by shifting the modulated
spectra, by the respective carrier frequencies (±μμhξ0,±μμvη0). Unfortu-
nately, the circular nature of the frequency shift in the Discrete Fourier
Transform[21], may cause some of the demodulated frequencies to wrap
around the Nyquist frequency 1

2sc
. The purpose of Aliasing Management is

to avoid aliasing the demodulated spatial frequencies. Our approach to Alias-
ing Management involves an increase in the size of the modulated images
m±(x, y) by (μμhξ0, μμvη0) pixels in each direction. The increase is realized
using sinc-interpolation : zero-padding the fourier spectrum followed by the
Inverse Fourier Transform.

So far we have established that a collocated/coincident parallel stereo setup is
sufficient to realize “Structured Light”-OSR. In an effort to jointly accomplish
OSR and depth-estimation in a single setup, we now identify methods for recov-
ering depth in a collocated/coincident parallel stereo setup.

4 Estimating Depth Using Structured Light

4.1 Un-calibrated Depth Estimation in a Collocated Setup

The following method belongs to the class of “Structured Light” methods called
Phase Measurement Profilometry (PMP)[3, 22], which recover surface topol-
ogy from the phase distortion induced by depth variation in a collocated stereo
setup. The case of parallel stereo is of particular interest since it allows for un-
calibrated depth estimation, as explained below. The workflow is summarized in
Fig.[5(b)].

Plugging bZ = 0 in Eq.[7], yields the following expression for the camera image
under sinusoidal illumination, in a collocated parallel stereo setup,

iθ(x, y) =
{

r(x, y) μhμvA
Z,ξ0,η0

sin [ϕ(x, y) + θ]
}

+++
{

r(x, y)
[
μhμvA

Z,0,0 + a(x, y)
]}

(18)

ϕ(x, y) �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

linear phase due to carrier
︷ ︸︸ ︷

2π

(

μh

ξ0

Nc

x + μv
η0

Mc

y

)

+

ψZ : scene−dependent phase

︷ ︸︸ ︷

2π
Zp

sp

(
ξ0

Np

bX

Z
+

η0

Mp

bY

Z

)

+ 2π
ξ0

Np

c′
x + 2π

η0

Mp

c′
y − 2πμh

ξ0

Nc

cx − 2πμv
η0

Mc

cy

︸ ︷︷ ︸
ϕ0 : constant phase

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(19)

The effect of camera blur h(x, y) in the expression for iθ(x, y) is disregarded,
given our interest in identifying a “qualitative depth map”. Careful examination
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of Eq.[18] reveals that the first term represents a phase-modulated image with
carrier frequency (μhξ0, μvη0) cycles

image
, and depth-dependent phase variation (ψZ).

The objective of PMP is to recover the depth Z from the phase ϕ(x, y). To
this end, we recombine the camera images

{
iθ(x, y) : θ = 0, π

2 , π,
3π
2

}
to obtain

the following modulated image

m+
(x, y) =

1

2

(
i π
2
(x, y) − i 3π

2
(x, y)

)
+

√−1

2
( i0(x, y) − iπ(x, y) ) (20)

= μhμvAZ,ξ0,η0
r(x, y) e

j2π
(

μh
ξ0
Nc

x+μv
η0
Mc

y
)

︸ ︷︷ ︸
modulating carrier

ejϕ0︸︷︷︸
complex constant

ejψZ︸ ︷︷ ︸
scene−dependent phase

(21)

where ψZ = 2π
Zp

sp

(
ξ0

Np

bX

Z
+

η0

Mp

bY

Z

)
, ϕ0 = 2π

(
−μh

ξ0

Nc
cx − μv

η0

Mc
cy +

ξ0

Np
c′x +

η0

Mp
c′y

)
(22)

The process of depth-estimation begins with the identification of the carrier
frequency (μh ξ0, μvη0), and the complex constant e±jϕ0 . We rely on a strategy
similar to that described in Section.(3), for this purpose. Additional details are
available in the supplementary material.

i 3π
2

(x, y)
iπ(x, y)

iπ
2
(x, y)

i0(x, y)

m±(x, y) =

⎧
⎨

⎩

1
2( iπ

2
(x, y) − i 3π

2
(x, y) )

±√−1
2 ( i0(x, y) − iπ(x, y) )

⎫
⎬

⎭
raw(x, y) = 1

4

{
3π
2

,π∑

θ=0, π
2

iθ(x, y)

}

Aliasing Management Aliasing Management

Carrier Demodulation +
Phase Compensation

bandpass image with
super-resolved edges

(histogram equalized for display)

q(x, y)

(a) Un-calibrated “Structured Light” OSR
(images are from actual experiments)

i 3π
2

(x, y)

iπ(x, y)
iπ
2

(x, y)
i0(x, y)

i 3π
2

(x, y)

iπ(x, y)
iπ
2

(x, y)
i0(x, y)

m+(x, y) =

⎧
⎨

⎩

1
2 ( iπ

2
(x, y) − i 3π

2
(x, y) )

+√−1
2 ( i0(x, y) − iπ(x, y) )

⎫
⎬

⎭
m+(x, y) =

⎧
⎨

⎩

1
2 ( iπ

2
(x, y) − i 3π

2
(x, y) )

+√−1
2 ( i0(x, y) − iπ(x, y) )

⎫
⎬

⎭

Carrier Demodulation
+

Phase Compensation

Carrier Demodulation
+

Phase Compensation

� �

�q(x, y)
Phase Map

�q(x, y)
Wrapped Phase Map

Joint Phase Unwrapping

Qualitative Depth Map
(darker objects are nearer)

q(x, y) q(x, y)

(b) Un-calibrated “Structured Light”

Depth Estimation

(images are from actual experiments)

Fig. 4. Workflow for un-calibrated OSR and depth estimation using “Structured

Light”. ( Zoom into the images at 1200% for a better view )
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A qualitative depth map of the scene can be recovered from the instantaneous
phase of the image q(x, y)defined below

q(x, y) � e−jϕ0
︸ ︷︷ ︸

phase compensation

e
−j2π

(
μh

ξ0
Nc

x+μv
η0
Mc

y
)

m+
(x, y)

︸ ︷︷ ︸
demodulation

(23)

Z ∝ 1

unwrap (�{q(x, y)}) , �{q(x, y)} = tan−1

(
imag (q(x, y))

real (q(x, y))

)

(24)

Although our analysis suggests that four images are sufficient to recover the
depth map, four or more additional images with different modulating frequency
maybe required to unwrap �{q(x, y)} unambiguously[23]. This should explain
the presence of two set of images in the workflow of Fig.[5(b)].

A known limitation of this method is that depth information may not be
available at every pixel, due to cast shadows. This can be overcome by coin-
ciding the “center of perspective” of the camera and projector using a beam
splitter (bX = bY = bZ = 0). But, we know from Section.(3) that the illu-
mination pattern is not subject to depth dependent distortion, in a coincident
camera+projector setup. Although this is desirable from the standpoint of OSR,
it is not desirable from the standpoint of depth estimation. In [19], Zhang &
Nayar presented a clever solution to the problem.

We now attempt to reformulate their findings using the model proposed in
Section.(2.4), and suggest possible extensions. This effort highlights the scope of
the model.

4.2 Calibrated Depth Estimation in a Coincident Setup

The following method due to Zhang[19], relies on the depth-dependent blurring
induced by the limited depth of field of the projector, to recover the depth map
of a scene. The setup involves a camera observing the scene under a temporally
varying illumination sθ(x′, y′, t), produced by a projector that is coincident with
the camera. The coincident geometry( bX = bY = bZ = 0 ) results in zero
disparity (x = μhx

′, y = μvy
′) and guarantees that depth information is available

for each camera pixel.
The temporally varying illumination pattern sθ(x′, y′, t) is obtained by shifting

a vertical periodic pattern (η0 = 0) with a wide range of frequencies, i.e.,

sθ(x
′, y′, t) =

A

2
+

A

2

∞∑

k=1

bk sin

(

2πk

(
ξ0

Np
(x′ − t)

)

+ kθ

)

(25)

Substituting x′ = x′−t in Eq.[4], and bX = bY = bZ = 0, η0 = 0 into the analysis
of Section.(2.4), yields4 the following expression for the temporal intensity of the
(x, y)th camera pixel

4 (bX = bY = bZ = 0)⇒ αZ = μhμv , μZ = 1, ψZ = 0.
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iθ(x, y, t) =
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
∞∑

k=1

amplitude along t
︷ ︸︸ ︷

r(x, y) μhμv A
Z,kξ0,kη0

sin

⎛

⎜
⎜
⎜
⎜
⎝

2π

frequency
︷ ︸︸ ︷
(

k
ξ0

Np

)

t −

fixed phase offset along t
︷ ︸︸ ︷

2πk

(

μh

ξ0

Nc

(x − cx) +
ξ0

Np

c′
x

)

+ kθ

⎞

⎟
⎟
⎟
⎟
⎠

+++ r(x, y) [μhμv A
Z,0,0 + a(x, y)]

︸ ︷︷ ︸
DC value along t

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(26)

Careful examination of the expression for iθ(x, y, t) reveals that it is the infinite
sum of blurred sinusoids, whose fourier coefficients {A

Z,kξ0,kη0
}∞k=0 depend on

depth Z. In order to ensure that the scalars {A
Z,kξ0,kη0

}∞k=0 decrease monoton-
ically with depth, the projector is focused on the farthest object in the scene.
Zhang & Nayar observed that the ratio

A
Z,2ξ0,2η0

A
Z,ξ0,η0

is sufficient to recover high

quality depth maps. A tilted planar target with known depth variation is used
to create a lookup table mapping the above ratio to the scene depth Z. This
lookup table is used in conjunction with the Discrete Fourier Series coefficients
of iθ(x, y, t), to recover the depth map of a scene.

With a little effort it can be shown that Eq.[26] also applies to a vertically
collocated setup (bX = 0), and a vertical illumination pattern (η0 = 0). This
insight suggests that Zhang & Nayar’s method also applies to collocated setups,
barring cast shadows.

5 Experimental Results

The experimental setup described in Fig.[??] is used to validate the proposed
model for image formation under “Structured Light”. In particular, we verify the
ability to realize un-calibrated OSR & depth-estimation in a vertically collocated
camera+projector setup.

The entrance apertures of the projector and camera are visually aligned, to
realize vertical collocation. Also, the projector is focused on a plane just behind
the scene volume. Lastly, the aperture of the camera is stopped down to ensure
that
- the imaging system is limited by diffraction and not by aliasing
- the camera psf does not change appreciably within the projector depth of field

The results of the experiment are shown in Fig.[6]. A visual comparison of
Fig.[6(a)] & Fig.[6(c)] reveals clear improvement in spatial resolution due to
modulation by a horizontal periodic pattern. The improvement is apparent in
the bar-code pattern and the USAF Resolution target. The increase in spatial
resolution is accompanied by an increase in the camera Nyquist frequency, be-
cause of aliasing-management.

A qualitative depth map of the scene (Fig.[6(f)]) is obtained by analyzing the
phase distortion experienced by vertically periodic illumination patterns. The
depth map correctly identifies the shape of the cylindrical poster tube, and the
tilted cardboard carton.
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(a) “Structured Light” OSR
(images are from actual experiments)

(b) “Structured Light” Depth Estimation

(images are from actual experiments)

Fig. 5. Workflow for un-calibrated OSR and depth estimation using “Structured

Light”. ( Zoom into the images at 1200% for a better view )

Additional experimental evidence is available in the flow diagram of Fig.[5],
and the supplementary material.

6 Summary

Depth-estimation and Optical Super-Resolution are popular applications for
“Structured Light” in computer vision and optics. Till date, they have been
treated as separate problems, with no known method for surpassing the diffrac-
tion limit of a macroscopic imaging system. The mathematical framework for
imaging under “Structured Light” proposed in Section.(2),
– reveals a method for realizing OSR in macroscopic imaging systems
– unifies the two “Structured Light” embodiments, when the image planes of

the imaging and illuminating systems are parallel
– reveals a variety of setups for jointly realizing OSR and depth-estimation.

Select cases are summarized below

Setup OSR Depth Estimation

Horizontally Collocated bY = bZ = 0 ξ0 = 0 , un-calibrated η0 = 0 , un-calibrated

Vertically Collocated bX = bZ = 0 η0 = 0 , un-calibrated ξ0 = 0 , un-calibrated

Coincident bX = bY = bZ = 0 un-calibrated calibrated
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(a) raw(x, y) : Diffraction

limited image , 1495 × 999,

Nyquist freq.= 227.27 cycles
mm

(b) i0(x, y) : camera image

under structured light

(ξ0, η0) = (350, 0) cycles
image

(c) Optically Super-resolved

image, 2009 × 1343,

Nyquist freq.= 305.45 cycles
mm

(d) i0(x, y) : camera image

under structured light

when (ξ0, η0) = (0, 6)

(e) i0(x, y) : camera image

under structured light

(ξ0, η0) = (0, 105) cycles
image

(f) Qualitative depth map

Fig. 6. Experimentally realizing “Structured Light”-OSR and depth estimation in a

vertically collocated camera+projector setup with parallel image planes. ( Zoom into

the images at 300% for a better view ).

We are currently examining methods to reduce the number of illuminating pat-
terns, and extend the proposed mathematical model to crossed optical axes ge-
ometry. The insight gained from Eq.[17] suggests that it should be possible to
realize OSR in a collocated setup (bZ = 0) with crossed optical axes, when the
projected pattern appears undistorted from the camera viewpoint.
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Abstract. Automatic face sketch synthesis has important applications

in law enforcement and digital entertainment. Although great progress

has been made in recent years, previous methods only work under well

controlled conditions and often fail when there are variations of lighting

and pose. In this paper, we propose a robust algorithm for synthesizing

a face sketch from a face photo taken under a different lighting condi-

tion and in a different pose than the training set. It synthesizes local

sketch patches using a multiscale Markov Random Field (MRF) model.

The robustness to lighting and pose variations is achieved in three steps.

Firstly, shape priors specific to facial components are introduced to re-

duce artifacts and distortions caused by variations of lighting and pose.

Secondly, new patch descriptors and metrics which are more robust to

lighting variations are used to find candidates of sketch patches given

a photo patch. Lastly, a smoothing term measuring both intensity com-

patibility and gradient compatibility is used to match neighboring sketch

patches on the MRF network more effectively. The proposed approach

significantly improves the performance of the state-of-the-art method.

Its effectiveness is shown through experiments on the CUHK face sketch

database and celebrity photos collected from the web.

1 Introduction

Automatic face sketch synthesis has drawn a great deal of attention in recent
years [1][2][3][4][5] due to its applications in law enforcement and digital enter-
tainment. For example, in law enforcement, it is useful to develop a system to
search photos from police mug-shot databases using a sketch drawing when the
photo of a suspect is not available. By transferring face photos to sketches, inter-
modality face recognition is made possible [2]. In the movie industry, artists can
save a great amount of time on drawing cartoon faces with the assistance of an
automatic sketch synthesis system. Such a system also provides an easy tool for
people to personalize their identities in the digital world, such as through the
MSN avatar.

Computer-based face sketch synthesis is different from line drawing generation
[7][8]. Line drawings without texture are less expressive than sketches with both
contours and shading textures. Popular sketch synthesis methods are mostly

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part VI, LNCS 6316, pp. 420–433, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(a) (b) (c) (d)

Fig. 1. Examples of synthesized sketches from web face photos. (a) Test photos; (b)

Sketches synthesized by [5]; (c) Sketches synthesized by [5] with luminance remapping

[6]; (d) Sketches synthesized by our method. Note that luminance remapping refers

to zero-mean unit-variance normalization of the luminance channel of all photos in

our implementation. This simple technique was found to be better than non-smooth

mappings in image style transformation, such as histogram matching/equalization [6].

The results are best viewed on screen.

example-based, which generates a sketch with rich textures from an input face
photo based on a set of training face photo-sketch pairs [1][3][4][5]. These ap-
proaches can synthesize sketches of different styles by choosing training sets of
different styles. Tang and Wang [1] proposed to apply the eigentransform globally
to synthesize a sketch from a photo. However, such a global linear model does not
work well if the hair region is included, as the hair styles vary significantly among
different people. To overcome this limitation, Liu et al. [3] proposed patch-based
reconstruction. The drawback of this approach is that the patches are synthe-
sized independently, ignoring their spatial relationships, such that some face
structures cannot be well synthesized. In addition, face sketch synthesis through
linear combinations of training sketch patches causes the blurring effect.

Following this line of work, a state-of-the-art approach using a multiscale
Markov random field (MRF) model has been proposed recently [5] and achieved
good performance under well controlled conditions (i.e. the testing face photo
has to be taken in the frontal pose and under a similar lighting condition as the
training set). This approach has some attractive features: (1) it can well syn-
thesize complicated face structures, such as hair, which are difficult for previous
methods [1]; (2) it significantly reduces artifacts, such as the blurring and alias-
ing effects, which commonly exist in the results of previous methods [1][3]. In
spite of the great improvement compared with previous methods, this approach
often fails if the testing face photo is taken in a different pose or under a dif-
ferent lighting condition (even if the lighting change is not dramatic) than the
training set. Some examples are shown in Fig. 1. Due to the variations of lighting
and pose, on the synthesized sketches by [5] some face structures are lost, some
dark regions are synthesized as hair, and there are a great deal of distortions
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MRF Optimization

Input Photo

Training Set:

Photo-Sketch 

Pairs

Preprocessing
Output Sketch

Local Evidence

Photo to Sketch 

Patch Matching

Photo to Photo 

Patch Matching

Neighboring Compatibility

Intensity 

Compatibility

Gradient 

Compatibility

Prior Information

Shape Prior

Fig. 2. Illustration of our framework

and artifacts. This is also a serious problem not addressed by other approaches
[1][3][4]. It limits their applications to real-world problems.

In face recognition studies, some preprocessing techniques such as histogram
equalization, and features such as Local Binary Patterns (LBP) [9], were used to
effectively recognize face photos under lighting variations. In the area of nonpho-
torealistic rendering, luminance remapping was introduced to normalize lighting
variations [6]. However, experiments show that simply borrowing these tech-
niques is not effective in face sketch synthesis. See examples in Fig. 1.

In this paper, we address this challenge: given a limited set of photo-sketch
pairs with frontal faces and normal lighting conditions, how to synthesize face
sketches for photos with faces in different poses (in the range of [−45o+45o]) and
under different lighting conditions. We adopt the multiscale MRF model whose
effectiveness has been shown in face sketch synthesis [5] and many low-level vision
problems [10]. In order to achieve the robustness to variations of lighting and
pose, some important improvements are made in the design of the MRF model
as summarized in Fig. 2. Firstly, a new term of shape priors specific to face
components are introduced in our MRF model. It effectively reduces distortions
and artifacts and restores lost structures as shown in Fig. 1. Secondly, patch
descriptors and metrics which are more robust to lighting variations are used
to find candidates of sketch patches given a photo patch. In addition to photo-
to-photo patch matching, which was commonly used in previous approaches
[3][5], our “local evidence” term also includes photo-to-sketch patch matching,
which improves the matching accuracy with the existence of lighting and pose
variations. Lastly, a smoothing term involving both intensity compatibility and
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gradient compatibility is used to match neighboring sketch patches on the MRF
network more effectively.

The effectiveness of our approach is evaluated on the CUHK face sketch
database which includes face photos with different lightings and poses. We also
test on face photos of Chinese celebrities downloaded from the web. The exper-
imental results show that our approach significantly improves the performance
of face sketch synthesis compared with the state-of-the-art method [5] when the
testing photo includes lighting or pose variations.

2 Lighting and Pose Robust Face Sketch Synthesis

In this section, we present our algorithm for face sketch synthesis. For ease of
understanding, we use the single-scale MRF model in the presentation, instead
of the two-scale MRF model in our implementation1.

2.1 Overview of the Method

A graphical illustration of the MRF model is shown in Fig. 3. A test photo is
divided into N overlapping patches with equal spacing. Then a MRF network
is built. Each test photo patch xp

i is a node on the network. Our goal is to
estimate the status yi = (yp

i , y
s
i ), which is a pair of photo patch and sketch

patch found in the training set, for each xp
i . Photos and sketches in the training

set are geometrically aligned. yp
i is a photo patch and ys

i is its corresponding
sketch patch. If patches i and j are neighbors on the test photo, nodes yi and yj

are connected by an edge, which enforces a compatibility constraint. The sketch
of the test photo is synthesized by stitching the estimated sketch patches {ys

i }.
Based on the MRF model, our energy function is defined in the following form,

E({yi}Ni=1) =
N∑

i=1

EL(xp
i , yi) +

N∑

i=1

EPi(yi) +
∑

(i,j)∈Ξ

EC(ys
i , y

s
j ), (1)

where Ξ is the set of pairs of neighboring patches, EL(xp
i , yi) is the local evidence

function (Subsection 2.2), EPi(yi) is the shape prior function (Subsection 2.3),
and EC(ys

i , y
s
j ) is the neighboring compatibility function (Subsection 2.4). The

shape prior function is specific to face components, which means that different
location indicated by i has different EPi. The above MRF optimization problem
can be solved by belief propagation [10] [11].

A MRF model was also used in [5], however, with several major differences
with ours. It has no shape prior function which is effective in sketch synthesis. Its
local evidence function only computes the sum of the squared differences (SSD)
between xp

i and yp
i and is sensitive to lighting variations. Our local evidence

function uses new patch descriptors which are more robust to lighting variations.

1 We do find that the two-scale MRF model performs better. The details of multiscale

MRF can be found in [5]. However, it is not the focus of this paper.
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Fig. 3. Illustration of the MRF model for face sketch synthesis

Our method includes not only photo-to-photo patch matching (between xp
i and

yp
i ) but also photo-to-sketch patch matching (between xp

i and ys
i ) to improve

the robustness. The neighboring compatibility function in [5] is to minimize SSD
between neighboring estimated sketch patches (ys

i and ys
j ) in their overlapping

region, while ours also minimizes the difference of gradient distributions. Details
will be explained in the following subsections.

2.2 Local Evidence

The goal of the local evidence function is to find a sketch patch ys
i in the training

set best matching the photo patch xp
i in test. However, since photos and sketches

are in different modalities, it is unreliable to directly match them. So the training
photo patch yp

i corresponding to a training sketch patch ys
i is involved. It is

assumed that if yp
i is similar to xp

i , it is likely for ys
i to be a good estimation of

the sketch patch to be synthesized. We propose to match a testing photo patch
with training photo patches and also with training sketch patches simultaneously,
i.e. we define the local evidence function as the weighted sum of squared intra-
modality distance d2

L1 and squared inter-modality distance d2
L2,

EL(xp
i , yi) = d2

L1(xp
i , y

p
i ) + λL2d

2
L2(xp

i , y
s
i ), (2)

where λL2 is the weight to balance different terms in the energy function E and
it is chosen as 2 in our experiments.

Photo-to-Photo Patch Matching. A straightforward choice of EL is the
Euclidean distance between xp

i and yp
i as used in [5]. However, it does not perform

well when the lighting condition varies. Noticing that most of the sketch contours
correspond to edges in the photo, we use a difference-of-Gaussians (DoG) filter to
process each photo, i.e. convolving each photo with the difference of two Gaussian
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(a) (b) (c) (a) (b) (c)

Fig. 4. Compare the results with/without DoG filtering under a normal lighting

condition. (a) Test photos which are under the same lighting as the training set.

(b)Synthesized sketch by the method in [5] without DoG filtering. (c) Synthesized

sketches by our method with DoG filtering. To evaluate the effectiveness of DoG fil-

tering, other parts, such as shape priors and photo-to-sketch patch matching, in our

framework are not used in these examples.
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−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

Pixel value in the original photo (normalized)

P
ro

po
rt

io
n

 

 

Photo A
Photo B

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

Pixel value in the DoG filtered photo (normalized)

P
ro

po
rt

io
n

 

 

Photo A
Photo B

(a) (b)

Fig. 5. Examples of DoG filtering with (σ0, σ1) = (0, 4). Photo A is from the training

set taken under the normal lighting condition, and Photo B is from the testing set

taken under a different lighting condition. The pixel values of DoG filtered photos are

scaled to [0, 1] for visualization. (a) Histograms of pixel values of the two photos after

luminance remapping. They do not match well. (b) Histograms of pixel values of the

two photos after DoG filtering and normalization. They match well.

kernels with standard deviations σ0 and σ1, and normalize all pixel values to
zero-mean and unit-variance. In our experiments, we find that (σ0, σ1) = (0, 4)
or (1, 4) performs the best. DoG filtering has two advantages. First, it can detect
and enhance the edges, and thus the synthesized sketch has better facial details.
As shown in Fig. 4, even for normal lighting, the DoG filtering can improve
facial details. Second, subtracting low-frequency component reduces the effect
of lighting variations, e.g. shading effects. The example in Fig. 6 shows that
DoG filtering improves synthesized facial details, especially on the nose and the
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(a) (b) (c) (d) (e) (f)

Fig. 6. Sequential illustration of the roles of each part in our framework. (a) Test photo

under a different lighting condition than the training set; (b) Sketch by the method

in [5] with luminance remapping as preprocessing [6]; (c) Sketch by our method with

P2P+IC; (d) Sketch by our method with P2P+P2S+IC; (e) Sketch by our method with

P2P+P2S+prior+IC; (f) Sketch by our method with P2P+P2S+prior+IC+GC. P2P,

P2S, prior, IC and GC represent photo-to-photo patch matching, photo-to-sketch patch

matching, shape priors, intensity compatibility and gradient compatibility, respectively.

The results are best viewed on screen.

eyebrows, when there are lighting variations. Luminance remapping [6], which
normalizes the distribution of pixel values in an image to zero-mean and unit-
variance, is commonly used for lighting normalization. However, its improvement
is limited in this application. An example is shown in Fig. 5. After luminance
remapping, the distributions of pixel values in two photos taken under different
lighting conditions still do not match. On the contrary, their distributions after
DoG filtering match well. In some cases, photo-to-photo patch matching is not
enough and the mismatching problem, such as the hair and profile regions shown
in Fig. 6 (c), still exists. Thus, photo-to-sketch patch matching is introduced.

Photo-to-Sketch Patch Matching. The intra-modality distance between
photo patches does not always work for selecting a good sketch patch. Simi-
lar photo patches under the Euclidean distance may correspond to very different
sketch patches. Interestingly, people have the ability to directly match photos
with sketches. Inspired by this, we propose to use inter-modality distance be-
tween testing photo patches and training sketch patches to enhance the selection
ability. As the visual appearances of photo and sketch patches are different, it
is difficult to directly match them. However, there exists some similarity of gra-
dient orientations between a photo and its sketch. We choose to use the dense
SIFT descriptor [12] from the family of histogram-of-orientations descriptors.
Our strategy is to assign each patch a dense SIFT descriptor, and use the Eu-
clidean distance between SIFT descriptors of photo patches and sketch patches
as the inter-modality distance. To capture structures in large scales, we extract
the descriptors in larger regions than patches. For each patch, we extract a region
of size 36× 36 centered at the center of the patch (the size of patch is 10× 10),
and divide it into 4 × 4 spatial bins of the same size. 8 orientations bins are
evenly spaced over 0◦-360◦. The vote of a pixel to the histogram is weighted by
its gradient magnitude and a Gaussian window with parameter σ = 6 centered
at the center of the patch. So the descriptor is 128 dimensional. The descriptor
is normalized by its L2 − norm, clipped by a threshold 0.2 and renormalized
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as reported in [12]. The synthesis result with photo-to-sketch patch matching is
shown in Fig. 6 (d). It restores the hair and partial profile lost in Fig. 6 (c).

2.3 Shape Prior

Face images are a special class of images with well regularized structures. Thus
shape priors on different face components can be used to effectively improve the
synthesis performance. The loss of some face structures, especially the face pro-
file, is a common problem for the patch-based sketch synthesis methods without
referring to global structures. When this happens, the contours of some face
components are replaced by blank regions. This problem becomes much more
serious when there are variations of lighting and pose. See examples in Fig. 1.
However, it can be effectively alleviated by using the prior information on differ-
ent face components to guide the selection of sketch patches. In our approach,
a state-of-the-art face alignment algorithm [13] is first utilized to detect some
predefined landmarks on both the training sketches and the testing photo. The
chosen landmarks locate in regions where loss of structures often happens, es-
pecially on the face profile. Shape priors are imposed to these regions but not
in other regions. If a landmark f falls into patch i on the test photo, a prior
distribution is computed via kernel density estimation,

EPi(yi) = λP ln

[
1√

2πNt

Nt∑

k=1

exp

(

− (β(ys
i )− βk,f )2

h2
f

)]

. (3)

Nt is the number of sketches in the training set. β(ys
i ) is some statistic on the

sketch patch ys
i . βk,f is the statistic on a sketch patch centered at landmark f

in sketch image k. hf is the bandwidth of landmark f and is set as three times
of the standard deviation of {βk,f}. The weight λP = 0.01 is to normalize the
metric scale of the shape prior term and the performance of our algorithm is
robust to λP in a fairly large range.

We test several kinds of patch statistics, such as mean gradient magnitude,
variance of pixel values, proportion of edge pixels, and find that mean gradient
magnitude performs the best and it is chosen as β(·). It can well solve the problem
of losing structures, as shown in Fig. 6 (e).

2.4 Neighboring Compatibility

The goal of the neighboring compatibility function is to make the neighboring
estimated sketch patches smooth and thus to reduce the artifacts on the synthe-
sized sketch. In our model it is defined as

EC(yi, yj) = λICd
2
IC(ys

i , y
s
j ) + λGCd

2
GC(ys

i , y
s
j ), (4)

where the intensity compatibility term d2
IC is the SSD in the overlapping region

between two neighboring sketch patches ys
i and ys

j , and the gradient compat-
ibility term d2

GC is the squared Euclidean distance between the dense SIFT
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descriptors of ys
i and ys

j . The intensity compatibility term is for the smooth-
ness of the output sketch. However, only using this term tends to lose some face
structures since two blank regions in neighbors have high intensity compatibility.
Thus, we further add the gradient compatibility constraint, which requires that
the neighboring patches have similar gradient orientations. The use of gradient
compatibility can further alleviate the structural loss, an example of which is
given in Fig.s 6 (e) and (f) (the region in the red box). We set the weights
λIC = 1 and λGC = 0.1.

2.5 Implementation Details

All the photos and sketches are translated, rotated, and scaled such that the two
eye centers of all the face images are at fixed position. We crop the images to
250× 200 and the two eye center positions are (75, 125) and (125, 125). All color
images are converted to grayscale images for sketch synthesis.

– Preprocessing on Test Photos. Empirically, when lighting is near frontal,
our algorithm can work well without the preprocessing step. However, for
side light, we need to use Contrast Limited Adaptive Histogram Equaliza-
tion (CLAHE) [14] for preprocessing.2 We use the setting that the desired
histogram shape is Rayleigh distribution (parameter α = 0.7).

– Candidate Selection. In order to save computational cost, a step of candi-
date selection as suggested in [10] is used before optimizing the MRF model.
For each test photo patch xp

i , top K (K = 20) photo-sketch pairs with the
smallest energy of EL(xp

i , yi) + EPi(yi) are selected from the training set
as candidates. In order to take the advantage of face structures, candidates
are searched within a 25 × 25 local region around patch i instead of in the
entire images. The final estimation yi on node i is selected as one of the K
candiates through joint optimization of all the nodes on the MRF network.

– Two-scale MRF. We use two-scale MRF with the same setting as in [5].
Patch sizes at the two layers are 10 × 10 and 20 × 20, respectively. MAP
estimate is used in the belief propagation algorithm [10].

– Stitching Sketch Patches. To avoid blurring effect, we use a minimum
error boundary cut between two overlapping patches on their overlapped
pixels as what is usually done for texture synthesis [15].

3 Experimental Results

We conduct experiments on the CUHK database [5] commonly used in face
sketch synthesis research, and a set of celebrity face photos from the web. In all
the experiments, 88 persons from the CUHK database are selected for training,
and each person has a face photo in a frontal pose under a normal lighting con-
dition, and a sketch drawn by an artist while viewing this photo. In the first
2 CLAHE improves the method in [5] little and deteriorates its performance in some

cases. So we choose to report their results without the preprocessing.
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(a) (b) (c) (d)

Fig. 7. Representative results on the baseline set. (a) Test photo; (b) Sketch drawn by

the artist while viewing the normal lighting photo; (c) Sketch by the method in [5]; (d)

Sketch by our method. The results are best viewed on screen.

experiment, 100 other persons are selected for testing. We have three data sets:
the baseline set, the lighting variation set, and the pose variation set. The base-
line set includes 100 face photos taken in a frontal pose under the same lighting
condition as the training set. The lighting variation data set includes three pho-
tos with faces in a frontal pose with three different lightings (dark frontal/dark
left/dark right) for each person. And the pose variation set includes two pho-
tos with faces in left and right poses (with 45 degrees) under a normal lighting
condition for each person. In the second experiment, some face photos of Chi-
nese celebrities with uncontrolled lighting conditions and poses are downloaded
from the web.3 All photos are with a neutral expression. Parameters are fixed
throughout the experiments. It takes about 2 minutes to synthesize a sketch
running our MATLAB implementation on a computer with 3.20 GHz CPU. Due
to the paper length, only a limited number of examples are shown in this paper.

3.1 Lighting and Pose Variations

We first investigate the effect of lighting and pose variations separately on the
CUHK database. A preliminary test is on the baseline set. Our algorithm per-
forms as well as the method in [5]. On some photos, our algorithm can produce
even better face sketches as shown in Fig. 7. To give a quantitative evaluation of
the performance, we test the rank-1 and rank-10 recognition rates when a query
sketch synthesized from a test photo is used to match the sketches drawn by
the artist. The results are shown in Table 1.4 Our algorithm slightly beats the
previous method by 3%.
3 The CUHK database cannot be used as a training set for photos of people from

other ethnic groups, partially due to the human perception.
4 Recognition rates cannot completely reflect the viual quality of synthesized sketches.

It is used as an indirect measurement to evaluate the performance of sketch synthesis

since no other proper quantitative evaluation methods are available.
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Table 1. Rank-1 (Rank-10) recognition rates using whitened PCA [16]. The whitened

PCA model is trained on the 100 sketches drawn by the artist while viewing the baseline

set. It performs better than standard PCA without whitening on all the tasks. The

reduced number of dimension is 99, and it is the best for all the tasks.

Testing set [5] [5] with LBP [5] with HE [5] with LR Ours

Baseline 96% (100%) - - - 99% (100%)

Front Light 58% (87%) 58% (87%) 70% (95%) 75% (96%) 84% (96%)

Side Lights 23.5% (56%) 25.5% (75.5%) 38% (80.5%) 41.5% (78.5%) 71% (87.5%)

Lighting. Although the previous method performs well on the normal lighting
set, their performance degrades dramatically when the lighting changes. Our
method performs consistently well under different lighting conditions. To make a
fair comparison, we also report the results of [5] with several popular illumination
normalization methods, including histogram equalization (HE) and luminance
remapping (LR) [6], and with LBP [9], an illumination invariant feature.

On the recognition rate, our method beats all the others, as shown in Table 1.
The method in [5] performs very poorly without any preprocessing. LR and HE
improve the method in [5], but LBP improves little. LR performs better than HE
and LBP. As hair and background are included in face photos, previous illumi-
nation normalization methods, such as HE, do not perform well. By converting a
patch to its LBP feature, information to distinguish different components, which
is important for sketch synthesis, may be lost and thus mismatching often oc-
curs. In addition, we find that dark side lighting conditions are more difficult
than dark frontal lighting, and under dark side lightings, our method beats all
the others by a large amount on the rank-1 recognition rate.

On the visual quality, LR improves the method in [5], but as shown in Fig.s 8
and 9, the facial details and profile are still much worse than those given by our
method. Under dark frontal lighting, their results usually have incorrect blank
regions and noisy details. Under dark side lightings, the preprocessing helps only
a little as it processes the photos globally. See the failed results shown in Fig. 9.

Pose. To test the robustness of our method to pose variations, we use the pose
set with the similar lighting condition as the training set. As shown in Fig. 10,
our method performs better than the method in [5].5 With pose variations, the
major problem of the results by [5] is to lose some structures especially on the
profile. This problem can be efficiently alleviated by the shape priors, photo-to-
sketch patch matching and gradient compatibility designed in our model.

3.2 Celebrity Faces from the Web

The robustness of our method is further tested on a challenging set of face
photos of Chinese celebrities with uncontrolled lighting and pose variations from
5 As we do not have the sketches drawn by the artist for different poses, the recognition

rates are not tested.
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(a) (b) (c) (d) (e)

Fig. 8. Representative results on photos under the dark frontal lighting. (a) Test photo;

(b) Sketch drawn by the artist while viewing a normal lighting photo; (c) Sketch by

the method in [5]; (d) Sketch by the method in [5] with luminance remapping [6]; (e)

Sketch by our method. The results are best viewed on screen.

(a) (b) (c) (d) (e)

Fig. 9. Representative results of photos under dark side lightings. The notations (a)–(e)

are the same as Fig. 8. The results are best viewed on screen.
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(a) (b) (c) (a) (b) (c)

Fig. 10. Representative results of photos with pose variations. (a) Photo; (b) Sketch

by the method in [5]; (c) Sketch by our method. The results are best viewed on screen.

(a) (b) (c) (a) (b) (c)

Fig. 11. Results of Chinese celebrity photos. (a) Photo; (b) Sketch by the method in [5]

with luminance remapping [6]; (c) Sketch by our method. The results are best viewed

on screen.

the web. They even have a variety of backgrounds. As shown in Fig. 11, the
method in [5] usually produces noisy facial details and distortions, due to the
uncontrolled lightings and the large variations of pose and face shape. However,
our method performs reasonably well.

4 Conclusion

We proposed a robust algorithm to synthesize face sketches from photos with
different lighting and poses. We introduce shape priors, robust patch matching,
and new compatibility terms to improve the robustness of our method. Our
method is formulated using the multiscale MRF. It significantly outperforms the
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state-of-the-art approach. In the future work, we would like to further investigate
face sketch synthesis with expression variations.
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Abstract. A fundamental task in artificial intelligence and computer

vision is to build machines that can behave like a human in recogniz-

ing a broad range of visual concepts. This paper aims to investigate

and develop intelligent systems for learning the concept of female facial
beauty and producing human-like predictors. Artists and social scientists

have long been fascinated by the notion of facial beauty, but study by

computer scientists has only begun in the last few years. Our work is no-

tably different from and goes beyond previous works in several aspects:

1) we focus on fully-automatic learning approaches that do not require

costly manual annotation of landmark facial features but simply take

the raw pixels as inputs; 2) our study is based on a collection of data

that is an order of magnitude larger than that of any previous study;

3) we imposed no restrictions in terms of pose, lighting, background,

expression, age, and ethnicity on the face images used for training and

testing. These factors significantly increased the difficulty of the learning

task. We show that a biologically-inspired model with multiple layers

of trainable feature extractors can produce results that are much more

human-like than the previously used eigenface approach. Finally, we de-

velop a novel visualization method to interpret the learned model and

revealed the existence of several beautiful features that go beyond the

current averageness and symmetry hypotheses.

1 Introduction

The notion of beauty has been an ill defined abstract concept for most of human
history. Serious discussion of beauty has traditionally been the purview of artists
and philosophers. It was not until the latter half of the twentieth century that
the concept of facial beauty was explored by social scientists [1] and not until
very recently that it was studied by computer scientists [2]. In this paper we
explore a method of both quantifying and predicting female facial beauty using a
hierarchical feed-forward model and discuss the relationship between our method
and existing methods.
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The social science approach to this problem can be characterized by the search
for easily measurable and semantically meaningful features that are correlated
with a human perception of beauty. In 1991, Alley and Cunningham showed
that averaging many aligned face images together produced an attractive face,
but that many attractive faces were not at all average [3]. In 1994 Grammer and
Thornhill showed that facial symmetry can be related to facial attractiveness [4].
Since that time, the need for more complex feature representations has shifted
research in this area to computer scientists.

Most computer science approaches to this problem can be described as geo-
metric or landmark feature methods. A landmark feature is a manually selected
point on a human face that usually has some semantic meaning such as right
corner of mouth or center of left eye. The distances between these points and the
ratios between these distances are then extracted and used for classification using
some machine learning algorithm. While there are some methods of extracting
this information automatically [5] most previous work relies on a very accurate
set of dense manual labels, which are not currently available. Furthermore most
previous methods are evaluated on relatively small datasets with different evalu-
ation and ground truth methodologies. In 2001 Aarabi et al. built a classification
system based on 8 landmark ratios and evaluated the method on a dataset of
80 images rated on a scale of 1-4 [2]. In 2005 Eisenthal et al. assembled an en-
semble of features that included landmark distances and ratios, an indicator of
facial symmetry, skin smoothness, hair color, and the coefficients of an eigenface
decomposition [6]. Their method was evaluated on two datasets of 92 images
each with ratings 1-7. Kagian et al. later improved upon their method using an
improved feature selection method [7].

Most recently Guo and Sim have explored the related problem of automatic
makeup application [8], which uses an example to transfer a style of makeup to
a new face.

While all of the above methods produce respectable results for their respec-
tive data, they share a common set of flaws. Their datasets are very small and
usually restricted to a very small and meticulously prepared subset of the popu-
lation (e.g. uniform ethnicity, age, expression, pose and/or lighting conditions).
The images are studio-quality photos taken by professional photographers. As
another limitation, all these methods are not fully-automatic recognition sys-
tems, because they rely heavily on the accurate manual localization of landmark
features and often ignore the image itself once they are collected.

We have attempted to solve the problem with fewer restrictions on the data
and a ground truth rating methodology that produces an accurate ranking of
the images in the data set. We have collected 2056 images of frontal female
faces aged 18-40 with few restrictions on ethnicity, lighting, pose, or expression.
Most of the face images are cropped from low-quality photos taken by cell-phone
cameras. The data size is 20 times larger the that of any previous study. Some
sorted examples can be found in figure 3, the ranking methodology is discussed
in section 2. Because of the heavy cost of labeling landmark features on such
a large data set, in this paper we solely focused on methodologies which do
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not require these features1. Furthermore, although landmark features and ratios
appear to be correlated with facial attractiveness, it is yet unclear to what extent
human brains really use these features to form their notion of facial beauty. In
this paper we test the hypothesis if a biologically-inspired learning architecture
can achieve a near human-level performance on this particular task using a
large data set with few restrictions. The learning machine is an instance of the
Hubel-Wiesel model [9] which simulates the structure and functionality of visual
cortex systems, and consists of multiple layers of trainable feature extractors. In
section 3 we discuss discuss the details of the approach to predict female facial
attractiveness. In section 4.2 we present the experimental results. Interestingly,
we develop a novel way to visualize and interpret the learned black-box model,
which reveals some meaningful features highly relevant to beauty prediction and
complementary to previous findings.

To summarize, we contribute to the field a method of quantifying and pre-
dicting female facial attractiveness using an automatically learned appearance
model (as opposed to a manual geometric model). A more realistic dataset has
been collected that is 20 times larger than any previously published work and has
far fewer restrictions. To the best of our knowledge, it is the first work to test if a
Hubel-Wiesel model can achieve a near human-level performance on the task of
scoring female facial attractiveness. We also provide a novel method of interpret-
ing the learned model and use it to present evidence for the existence of beautiful
features that go beyond the current averageness and symmetry hypotheses. We
believe that the work enriched the experiences of AI research toward building
generic intelligent systems.

2 Dataset and Ground Truth

In order to make a credible attack on this problem we require a large dataset
of high quality images labeled with a beauty score. As of the time of writing,
no such data are publicly available. However there does exist a popular website
HOTorNOT2 with millions of images and billions of ratings. Users who submit
their photo to this site waive their privacy expectations and agree to have their
likeness criticized. Unfortunately the ratings that are associated with images in
this dataset were collected from images of people as opposed to faces, and are
not valid for the problem we are addressing. We have run face detection software
on a subset of images from this website and produced a dataset of 2056 images
and collected ratings of our own from 30 labelers.

2.1 Absolute vs. Pairwise Ratings

There are several kinds of ratings that can be collected for this task. The most
popular are absolute ratings where a user is presented with a single image and
1 We also note that landmark feature methods fall outside the purview of computer

vision as the original images may be discarded once the features are marked and

ratings are collected.
2 http://www.hotornot.com/
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asked to give a score, typically between 1 and 10. Most previous work has used
some version of absolute ratings usually presented in the form of a Likert scale
[10] where the user is asked about the level of agreement with a statement. This
form of rating requires many users to rate each image such that a distribution
of ratings can be gathered and averaged to estimate the true score. This method
is less than ideal because each user will have a different system of rating images
and a user’s rating of one image may be affected by the rating given to the
previous image, among other things.

Another method used in [11] was to ask a user to sort a collection of images
according to some criteria. This method is likely to give reliable ratings but it
is challenging for users to sort a large dataset since this requires considering all
the data at once.

The final method is to present a user with pair of images and ask which is
more attractive. This method presents a user with a binary decision which we
have found can be made more quickly than an absolute rating. In section 2.3 we
show how to present an informative pair of images to a user in order to speed
up the process of ranking the images in a dataset. This is the method that we
have chosen to label our data.

2.2 Conversion to Global Absolute Score

Pairwise ratings are easy to collect, but in order to use them for building a
scoring system we need to convert the ratings into an absolute score for each
image.3 To convert the scores from pairwise to absolute, we minimize a cost
function defined such that as many of the pairwise preferences as possible are
enforced and the scores lie within a specified range. Let s = {s1, s2, . . . , sN} be
the set of all scores assigned to images 1 to N . We formulate the problem into
minimizing the cost function:

J(s) =
M∑

i=1

φ(s+i − s−i ) + λsT s (1)

where (s+i /s
−
i ) denotes the current scores of the ith comparison and φ(d) is some

cost function which penalizes images that have scores which disagree with one
of M pairwise preferences and λ is a regularization constant that controls the
range of final scores. We define φ(d) as an exponential cost function φ(d) = e−d.
However this function can be any monotonically increasing cost function such as
the hinge loss, which may be advisable in the presence of greater labeling noise.
A gradient descent approach is then used to minimize this cost function. This
iterative approach was chosen because as we receive new labels, we can quickly
update the scores without resolving the entire problem. Our implementation is
built on a web server which updates the scores in real time as new labels are
entered.
3 One could alternatively train a model using image pairs and a siamese architecture

such as in [12]. However a random cross validation split of the images would invalidate

around half of the pairwise preferences.
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We note that in our study we hypothesize that in a large sense people agree
on a consistent opinion on facial attractiveness, which is also the assumption
by most of the previous work. Each individual’s opinion can be varied due to
factors like culture, race, and education. In this paper we focus on learning the
common sense and leave further investigation on personal effects to future work.

2.3 Active Learning

When our system is initialized, all images have a zero score and image pairs
are presented to users at random. However as many comparisons are made and
the scores begin to disperse, the efficacy of this strategy decays. The reason for
this is due in part to labeling noise. If two images with very different scores are
compared it is likely that the image with the higher score will be selected. If this
is the case, we learn almost nothing from this comparison. However if the user
accidentally clicks on the wrong image, this can have a very disruptive effect on
the accuracy of the ranking.

Fig. 1. Simulation results for converting pairwise preferences to an absolute score

For this reason we use a relevance feedback approach to selecting image pairs
to present to the user. We first select an image at random with probability
inversely proportional to the number of ratings ri, it has received so far.

p(Ii) =
(ri + ε)−1

∑N
j=1(rj + ε)−1

(2)

We then select the next image with probability that decays with the distance to
first image score.

p(Ii|s1) =
exp (−(s1 − si)2/σ2)

∑N
j=1 exp (−(s1 − sj)2/σ2)

(3)
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Where σ2 is the current variance of s. This approach is similar to the tournament
sort algorithm and has significantly reduced the number of pairwise preferences
needed to achieve a desired correlation of 0.9 (15k vs. 20k). Figure 1 shows the
results of a simulation similar in size to our dataset. In this simulation 15% of
the preferences were marked incorrectly to reflect the inherent noise in collecting
preference data.

3 Learning Methods

Given a set of images and associated beauty scores, our task is to train a regres-
sion model that can predict those scores. We adopt a predictive function that
models the relationship between an input image I and the output score s, and
learn the model in the following way

min
w,θ

N∑

i=1

(si − yi)2 + λwT w, s. t. yi = w�Φ(Ii; θ) + b (4)

where Ii is the raw-pixel of the i-th image represented by size 128x128 in YCbCr
colorspace, w is a D-dimensional weight vector, b is a scalar bias term, λ is a
positive scalar fixed to be 0.01 in our experiments. As a main difference from the
previous work, here we use Φ(·) to directly operate on raw pixels I for extracting

Fig. 2. An overview of the organization of our multiscale model. The first convolution is

only performed on the luminance channel. Downsampled versions of the original image

are fed back into the model at lower levels. Arrows represent downsampling, lines

represent convolution and the boxes represent downsampling with the max operator.

Feature dimensions are listed on the left (height x width x channels).
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visual features, and its parameters θ are automatically learned from data with
no manual efforts. In our study we investigated the following special cases of the
model, whose differences are the definition of Φ(I; θ):

– Eigenface Approach: The method has been used for facial beauty prediction
by [6], perhaps the only attempt so far requiring no manual landmark fea-
tures. The method is as follows. We first run singular value decomposition
(SVD) on the input training data [I1, . . . , IN ] to obtain its rankD decomposi-
tion UΣV�, and then set θ = U as a set of linear filters to operate on images
so that Φ(Ii; θ) = U�Ii. We tried various D among {10, 20, 50, 100, 200} and
found that D = 100 gave the best performance.

– Single Layer Model: In contrast to Eigenface that uses global filters of re-
ceptive field 128 × 128, this model consists of 48 local 9 × 9 linear filters,
each followed by a non-linear logistic transformation. The filters convolute
over the whole image and produce 48 feature maps, which were then down
sampled by running max-operator within each non-overlapping 8× 8 region
and thus reduced to 48 smaller 15 × 15 feature maps. The results serve as
the outputs of Φ(Ii; θ).

– Two Layer Model: We further enrich the complexity of Φ(Ii; θ) by adding
one more layer of feature extraction. In more details, in the first layer the
model employs separate 16 9×9 filters on the luminance channel, and 8 5×5
filters on a down-sampled chrominance channel; in the second layer, 24 5×5
filters are connected to the output of the previous layer, followed by max
down-sampling by a factor of 4.

– Multiscale Model: The model is similar to the single-layer model, but with
3 additional convolution/downsampling layers. A diagram of this model can
be found in figure 2. This model has 2974 tunable parameters4.

In each of our models, every element of each filters is a learnable parameter (e.g.
if our first layer has 8 5x5 filters, then there will be 200 tunable parameters in
that layer). As we can see, these models represent a family of architectures with
gradually increased complexities: from linear to nonlinear, from single-layer to
multi-layer, from global to local, and from course to fine feature extractions. In
particular, the employed max operator makes the architecture more local- and
partially scale-invariant, which is particularly useful in our case to handle the
diversity of natural facial photos. The architectures can all be seen as a form of
convolutional neural network [13] [12] that realize the well-known Hubel-Wiesel
model [14] inspired by the structure and functionalities of the visual cortex.

These systems were trained using stochastic gradient descent with a quadratic
loss function. Optimal performance on the test set was usually found within a
few hundred iterations, models with fewer parameters tend to converge faster
both in iterations and computation time. We have tested many models with
varying detailed configurations, and found in general that the number and size
4 Note that this an order of magnitude less than the model trained for the task of face

verification in [12].
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of filters are not crucial but the number of layers are more important — Φ(Ii; θ)
containing 4 layers of feature extraction generally outperformed the counterparts
with fewer layers.

4 Empirical Study

4.1 Prediction Results

A full and complete comparison with previous work would be challenging both to
perform and interpret. Most of the previous methods that have been successful
rely on many manually marked landmark features, the distances between them,
the ratios between those distances, and other hand crafted features. Manually
labeling every image in our dataset by hand would be very costly so we will only
compare with methods which do not require landmark features. As of the time
of publication, the only such method is the eigenface approach used in [6].

We compare the four learning methods described in Section 3 based on the
2056 female face images and the absolute scores computed from pair-wise com-
parisons. For each method, we investigate its performance on faces with and
without face alignment. We perform alignment using the unsupervised method
proposed in [15]. This approach is advantageous because it requires no manual
annotation. In all the experiments, we fixed the training set to be 1028 randomly
chosen images and used the remaining 1028 images for test.

Pearson’s correlation coefficient is used to evaluate the alignment between the
machine generated score and the human absolute score on the test data. Table 1
shows a comparison between the four methods – eigenface, single layer, two layer
and multiscale models. We can see a significant improvement in the performance
with alignment for the eigenface approach and a slight improvement for the hi-
erarchal models. This discrepancy is likely due to the translation invariance that
is introduced by the local filtering and down sampling with the max operator
over multiple levels, as was first observed by [13]. Another observation is, with
more layers being used, the performance improves. We note that eigenface pro-
duced a correlation score 0.40 in [6] on 92 studio quality photos of females with
similar ages and the same ethnicity origins, but resulted very poor accuracy in
our experiments. This shows that the large variability of our data significantly
increased the difficulty of appearance-based approaches.

Table 1. Correlation score of different methods

Method Correlation Correlation

w/o alignment w/ alignment

Eigenface 0.134 0.180

Single Layer Model 0.403 0.417

Two Layer Model 0.405 0.438

Multiscale Model 0.425 0.458
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Though the Pearson’s correlation provides a quantitative evaluation on how
close the machine generated scores are to the human scores, it lacks of intuitive
sense about this closeness. In figure 4 we show a scatter plot of the actual and
predicted scores for the multiscale model on the aligned test images. This plot
shows both the correlation found with our method and the variability in our data.
One way to look at the results is that, if without knowing the labels of axes, it
is quite difficult to tell which dimension is by human and which by machine. We
highly suggest readers to try such a test5 on figure 4 with an enlarged display.

Figure 3 shows the top and bottom eight images according the humans and
the machine. Note that at the ground truth for our training was generated with
around 104 pairwise preferences, which is not sufficient to rank the data with
complete accuracy. However, the notion of complete accuracy is something that
can only be achieved for a single user, as no two people have the same exact
preferences.

Fig. 3. The top (a/b) and bottom (c/d) eight images from our dataset according to

human ratings (a/c) and machine predictions (b/d)

4.2 What Does the Model Learn?

With so much variability it is difficult to determine what features are being used
for prediction. In this section we discuss a method of identifying these features
to better understand the learned models. One of the classic criticisms of the hi-
erarchical model and neural networks in general, is the black box problem. That
5 Whether or not this constitutes a valid Turning test is left up to the reader.
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Fig. 4. A Scatter plot showing actual and predicted scores with the corresponding faces

is, what features are we using and why are they relevant? This is typically ad-
dressed by presenting the convolution filters and noting their similarity to edge
detectors (e.g. gabor filters). This was interesting the first time it was presented,
but by now everyone in the community knows that edges are important for al-
most every vision task. We attempt to address this issue using a logical extension
to the backpropagation algorithm.

Backpropagation, the most fundamental tasks in training a neural network,
is where the gradient of the final error function is propagated back through each
layer in a network so that the gradient of each weight can be calculated w.r.t. the
final error function. When a neural network is trained, the training input and
associated labels are fixed, and the weights are iteratively optimized to reduce
the error between the prediction and the true label.
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Fig. 5. Several faces (a) with their beauty derivative (b). These images are averaged

over 10 gradient descent iterations and scaled in the colorspace for visibility.

We propose the dual problem. Given a trained neural network, fix the weights,
set the gradient of the prediction to a fixed value and backpropagate the gradient
all the way through the network to the input image. This gives the derivative
of the image w.r.t. the concept the network was trained with. This information
is useful for several reasons. Most importantly, it indicates the regions of the
original image that are most relevant to the task at hand. Additionally, the sign
of the gradient indicates whether increasing the value of a particular pixel will
increase or decrease the network output, meaning we can perform a gradient
descent optimization on the original image.

Semantic Gradient Descent. A regularized cost function w.r.t. a desired
score (s(d)) and the corresponding gradient descent update can be written as:

J(It) = φ(st − s(d)) + λφ(It − I0) (5)

and

It+1 = It − ω

(
∂It
∂s

+ λ(It − I0)
)

(6)

In our implementation we use φ(x) = x2 and use different values of λ for the
luminance and chrominance color channels.

The Derivative of Beauty. The most pressing question is, What does the
derivative of beauty look like? Figure 5 shows several example images and their
respective gradients with respect to beauty for the multiscale model trained on
aligned images. This clearly shows that the most important feature in this model
is the darkness and color of the eyes.

The gradient descent approach can be used both to beautify and beastify the
original image. If we vary the regularization parameters and change the sign of
the derivative, we can visualize the image manifold induced by the optimization.
Figure 6 shows how specific features are modified as the regularization is relaxed.

This shows most important features being used to predict beauty and concurs
with some human observations about the data and beauty in general.
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Fig. 6. The manifold of beauty for two images. (a) From left (beast) to right (beauty)

we can see how the regularization term (λY /λC) controls the amount of modification.

Specific features from (a): Eyes (b) and Noses (c).

Fig. 7. The average face image (a), beautified images (b) and beastified images (c).

The x axis represents changes in the luminance channel, while the y axis represents

changes in the chrominance channels.

The first observation is that women often wear dark eye makeup to accentu-
ate their eyes. This makeup often has a dark blue or purple tint. We can see this
reflected on the extremes of figure 6 (c). In figure 6 (b), the eyes on the bottom
are dark blue/purple tint while the eyes on the top are bright with a yellow/green
tint.

The second observation is that large noses are generally not very attractive.
If we again look at the extremes of figure 6 (c) we can see that the edges around
the nose on the right side have been smoothed, while the same edges on the left
side have been accentuated.

The final observation is that a bright smile is attractive. Unfortunately the
large amount of variation in facial expressions and mouth position in our training
data leads to artifacts in these regions such as in the the extremes of figure 6.
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However when we apply these modifications to the average image in figure 7, we
can see a change in the perceived expression.

Beautiful Features. One of the early observations in the study of facial beauty
was that averaged faces are attractive [3]. This is known as the averageness hy-
pothesis. The average face from the dataset, presented in figure 7, has a score
of 0.026. The scores returned by the proposed model are all zero mean, indicat-
ing that the average face is only of average attractiveness. This would seem to
contradict the averageness hypothesis, however since the dataset presented here
was collected from a pool of user submitted photos, it does not represent a truly
random sampling of female faces (i.e. it may have a positive bias).

As of the time of publication, averageness, symmetry, and face geometry are
the only definable features that have been shown to be correlated with facial
attractiveness. This paper presents evidence that many of the cosmetic products
used by women to darken their eyes and hide lines and wrinkles are in fact
attractive features.

5 Conclusion

We have presented a method of both quantifying and predicting female facial
beauty using a hierarchical feed-forward model. Our method does not require
landmark features which makes it complimentary to the traditional geometric
approach [2] [16] [6] [7] [17] when the problem of accurately estimating landmark
feature locations is solved. The system has been evaluated on a more realistic
dataset that is an order of magnitude larger than any previously published re-
sults. It has been shown that in addition to achieving a statistically significant
level of correlation with human ratings, the features extracted have semantic
meaning. We believe that the work enriches the experience of AI research to-
ward building generic intelligent systems. Our future work is to improve the
prediction for this problem and to extend our work to cover the other half of the
human population.
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Abstract. By coding the input testing image as a sparse linear combi-

nation of the training samples via l1-norm minimization, sparse represen-

tation based classification (SRC) has been recently successfully used for

face recognition (FR). Particularly, by introducing an identity occlusion

dictionary to sparsely code the occluded portions in face images, SRC can

lead to robust FR results against occlusion. However, the large amount

of atoms in the occlusion dictionary makes the sparse coding computa-

tionally very expensive. In this paper, the image Gabor-features are used

for SRC. The use of Gabor kernels makes the occlusion dictionary com-

pressible, and a Gabor occlusion dictionary computing algorithm is then

presented. The number of atoms is significantly reduced in the computed

Gabor occlusion dictionary, which greatly reduces the computational cost

in coding the occluded face images while improving greatly the SRC ac-

curacy. Experiments on representative face databases with variations of

lighting, expression, pose and occlusion demonstrated the effectiveness

of the proposed Gabor-feature based SRC (GSRC) scheme.

1 Introduction

Automatic face recognition (FR) is one of the most visible and challenging re-
search topics in computer vision, machine learning and biometrics [1], [2], [3].
Although facial images have a high dimensionality, they usually lie on a lower
dimensional subspace or sub-manifold. Therefore, subspace learning and mani-
fold learning methods have been dominantly and successfully used in appearance
based FR [4], [5], [6], [7], [8], [9], [10], [11]. The classical Eigenface and Fisherface
[4], [5], [6] algorithms consider only the global scatter of training samples and
they fail to reveal the essential data structures nonlinearly embedded in high
dimensional space. The manifold learning methods have been proposed to over-
come this limitation [7], [8], and the representative manifold learning methods
include locality preserving projection (LPP) [9], local discriminant embedding
(LDE) [10], unsupervised discriminant projection (UDP) [11], etc.
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The success of manifold learning implies that the high dimensional face im-
ages can be sparsely represented or coded by the representative samples on the
manifold. Very recently, an interesting work was reported by Wright et al. [12],
where the sparse representation (SR) technique is employed for robust FR. In
Wright et al.’s pioneer work, the training face images are used as the dictionary
to code an input testing image as a sparse linear combination of them via l1-norm
minimization. The SR based classification (SRC) of face images is conducted by
evaluating which class of training samples could result in the minimum recon-
struction error of the input testing image with the sparse coding coefficients.
To make the l1-norm sparse coding computationally feasible, in general the di-
mensionality of the training and testing face images should be reduced. In other
words, a set of features could be extracted from the original image for SRC. In
the case of FR without occlusion, Wright et al. tested different types of features,
including Eigenface, Randomface and Fisherface, for SRC, and they claimed that
SRC is insensitive to feature types when the feature dimension is large enough.
To solve the problem of FR with occlusion or corruption, an occlusion dictio-
nary was introduced to code the occluded or corrupted components [12]. Since
the occluded face image can be viewed as a summation of non-occluded face
image and the occlusion error, with the sparsity constrain the non-occluded part
is expected to be sparsely coded by the training face dictionary only, while the
occlusion part is expected to be coded by the occlusion dictionary only. Conse-
quently, the classification can be performed based on the reconstruction errors
using the SR coefficients over the training face dictionary. Such a novel idea has
shown to be very effective in overcoming the problem of face occlusion.

Although the SRC based FR scheme proposed in [12] is very creative and effec-
tive, there are two issues to be further addressed. First, the features of Eigenface,
Randomface and Fisherface tested in [12] are all holistic features. Since in prac-
tice the number of training samples is often limited, such holistic features cannot
effectively handle the variations of illumination, expression, pose and local de-
formation. The claim made in [12] that feature extraction is not so important to
SRC actually holds only for holistic features. Second, the occlusion matrix pro-
posed in [12] is an orthogonal matrix, such as the identify matrix, Fourier bases
or Haar wavelet bases. However, the number of atoms required in the orthogonal
occlusion matrix is very high. For example, if the dimensionality of features used
in SRC is 3000, then a 3000× 3000 occlusion matrix is needed. Such a big oc-
clusion matrix makes the sparse coding process very computationally expensive,
and even prohibitive.

In this paper, we propose to solve the above two problems by adopting Gabor
local features into SRC. The Gabor filter was first introduced by David Gabor in
1946 [13], and was later shown as models of simple cell receptive fields [14]. The
Gabor filters, which could effectively extract the image local directional features
at multiple scales, have been successfully and prevalently used in FR [15], [16],
leading to state-of-the-art results. Since the Gabor features are extracted in lo-
cal regions, they are less sensitive to variations of illumination, expression and
pose than the holistic features such as Eigenface and Randomface. As in other
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Gabor-feature based FR works [15], [16], we will see that the Gabor-feature based
SRC (GSRC) improves much the FR accuracy over original SRC. More impor-
tantly, the use of Gabor filters in feature extraction makes it possible to obtain a
much more compact occlusion dictionary. A Gabor occlusion dictionary comput-
ing algorithm is then presented. Compared with the occlusion dictionary used
in original SRC, the number of atoms is significantly reduced (often with a ratio
40:1 ∼ 50:1 in our experiments) in the computed Gabor occlusion dictionary. It
can not only greatly reduce the computational cost in coding the occluded face
images, but also greatly improve the SRC accuracy. Our experiments on bench-
mark face databases clearly validate the performance of the proposed GSRC
method.

The rest of the paper is organized as follows. Section 2 briefly reviews SRC
and Gabor filters. Section 3 presents the proposed GSRC algorithm. Section 4
conducts experiments and Section 5 concludes the paper.

2 Related Work

2.1 Sparse Representation Based Classification for Face Recognition

Denote by Ai = [si,1, si,2, ..., si,ni ] ∈ R
m×ni the set of training samples of

the ith object class, where si,j , j = 1, 2, · · · , ni, is an m-dimensional vector
stretched by the jth sample of the ith class. For a test sample y0 ∈ R

m from
this class, intuitively, y0 could be well approximated by the linear combina-
tion of the samples within Ai, i.e. y0 =

∑ni

j=1 αi,jsi,j = Aiαi, where αi =
[αi,1, αi,2, ..., αi,ni ]T ∈ R

ni are the coefficients. Suppose we have K object classes,
and let A = [A1, A2, · · · , AK ] be the concatenation of the n training samples
from all the K classes, where n = n1 + n2 + · · ·+ nK , then the linear represen-
tation of y0 can be written in terms of all training samples as y0 = Aα, where
α = [α1; · · · ; αi; · · · ; αK ] = [0, · · · , 0, αi,1, αi,2, · · · , αi,ni , 0, · · · , 0]T [12].

In the case of occlusion or corruption, we can rewrite the test sample y as

y = y0 + e0 = Aα + e0 = [A, Ae]
[
α
αe

]
.= Bω (1)

where B = [A,Ae] ∈ R
m×(n+ne), and the clean face image y0 and the corruption

error e0 have sparse representations over the training sample dictionary A and
occlusion dictionary Ae ∈ R

m×ne , respectively. In [12], the occlusion dictionary
Ae was set as an orthogonal matrix, such as identity matrix, Fourier bases, Haar
wavelet bases, etc. The SRC algorithm [12] is summarized in Algorithm 1.

2.2 Gabor Filters

The Gabor filters (kernels) with orientation μ and scale ν are defined as [15]:

ψμ,ν (z) =
‖kμ,ν‖2
σ2

e(−‖kμ,ν‖2‖z‖2/2σ2)
[
eikμ,ν z − e−σ2/2

]
(6)
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Algorithm 1. The SRC algorithm in [12]
1: Normalize the columns of A (in the case of non-occlusion) or B (in the case of

occlusion) to have unit l2-norm.

2: Solve the l1-minimization problem:

α̂1 = arg min
α

{‖y0 − Aα‖22 + λ ‖α‖1
}

(2)

or

ω̂1 = arg min
ω

{‖y −Bω‖22 + λ ‖ω‖1
}

(3)

where ω̂1 = [α̂1; α̂e1], and λ is a positive scalar number that balances the recon-

structed error and coefficients’ sparsity.

3: Compute the residuals:

ri (y0) = ‖y0 − Aδi (α̂1)‖2 , for i = 1, · · · , k. (4)

or

ri (y) = ‖y − Aeα̂e1 −Aδi (α̂1)‖2 , for i = 1, · · · , k. (5)

where δi (·) : R
n → R

n is the characteristic function which selects the coefficients

associated with the ith class.

4: Output that identity(y0) = arg min ri (y0) or identify(y) = arg min ri (y).

where z = (x, y) denotes the pixel, and the wave vector kμ,ν is defined as kμ,ν =
kνe

iφμ with kv = kmax/fv and φμ = πμ/8. kmax is the maximum frequency, and
f is the spacing factor between kernels in the frequency domain. In addition, σ
determines the ratio of the Gaussian window width to wavelength.

The convolution of an image Img with a Gabor kernel ψμ,ν outputs Gμ,ν (z) =
Img (z) ∗ ψμ,ν (z), where “∗” denotes the convolution operator. The Gabor
filtering coefficient Gμ,ν (z) is a complex number, which can be rewritten as
Gμ,ν (z) = Mμ,ν (z) · exp (iθμ,ν (z)) with Mμ,ν (z) being the magnitude and
θμ,ν (z) being the phase. It is known that magnitude information contains the
variation of local energy in the image. In [15], the augmented Gabor feature vec-
tor χ is defined via uniform down-sampling, normalization and concatenation of
the Gabor filtering coefficients:

χ =
(
a

(ρ)t

0,0 a
(ρ)t

0,1 · · · a
(ρ)t

4,7

)t

(7)

where a
(ρ)
μ,ν is the concatenated column vector from down-sampled magnitude

matrix M (ρ)
μ,ν by a factor of ρ, and t is the transpose operator.

3 Gabor-Feature Based SRC with Gabor Occlusion
Dictionary

3.1 Gabor-Feature Based SRC (GSRC)

Images from the same face, taken at (nearly) the same pose but under vary-
ing illumination, often lie in a low-dimensional linear subspace known as the
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harmonic plane or illumination cone [17], [18]. This implies that if there are
only variations of illumination, SRC can work very well. However, SRC with the
holistic image features is less efficient when there are local deformations of face
images, such as certain amount of variations of expressions and pose.

The augmented Gabor face feature vector χ, which is a local feature de-
scriptor, can not only enhance the face feature but also tolerate to image local
deformation to some extent. So we propose to use χ to replace the holistic face
features in the SRC framework, and the Gabor-feature based SR without face
occlusion is

χ (y0) = X (A1) α1 +X (A2) α2 + · · ·+X (AK) αK = X (A) α (8)

whereX (A) = [X (A1)X (A2) · · ·X (AK)] andX (Ai) = [χ (si,1) , · · · ,χ (si,ni)].
With Eq. (8) and replacing y0 and A in Eq. (2) and Eq. (4) by χ (y0) and X (A)
respectively, the Gabor-feature based SRC (GSRC) can be achieved.

When the query face image is occluded, similar to original SRC, an occlusion
dictionary will be introduced in the GSRC to code the occlusion components,
and the SR in Eq. (8) is modified to:

χ (y) = [X (A) , X (Ae)]
[
α
αe

]
.= X (B) ω (9)

where X(Ae) is the Gabor-feature based occlusion dictionary, and αe is the
representation coefficient vector of the input Gabor feature vector χ (y) over
X(Ae). So in the case of occlusion, GSRC can be achieved by Algorithm 1
through replacing y, B, A and Ae in Eq. (3) and Eq. (5) by χ (y), X(B), X(A)
and X(Ae) respectively. Clearly, the remaining key problem is how to process
X(Ae) to make the GSRC more efficient.

3.2 Discussions on Occlusion Dictionary

SRC is successful in solving the problem of face occlusion by introducing an
occlusion dictionary Ae to code the occluded face components; however, one fa-
tal drawback of SRC is that the number of atoms in the occlusion dictionary
is very big. Specifically, the orthogonal occlusion dictionary, such as the iden-
tity matrix, was employed in [12] so that the number of atoms equals to the
dimensionality of the image feature vector. For example, if the feature vector
has a dimensionality of 3000, then the occlusion dictionary is of size 3000×3000.
Such a high dimensional dictionary makes the sparse coding very expensive, and
even computationally prohibitive. The empirical complexity of the commonly
used l1-regularized sparse coding methods (such as l1 ls [19], l1 magic [20],
PDCO-LSQR [21] and PDCO-CHOL [21]) to solve Eq. (2) is O (nε) with ε ≈ 2
[19]. So if the number of atoms (i.e. n) in the occlusion dictionary is too big, the
computational cost will be huge.

By using Gabor-feature based SR, the face image dictionary A and the oc-
clusion dictionary Ae in Eq. (1) will be transformed into the Gabor feature
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dictionary X(A) and the Gabor-feature based occlusion dictionary X(Ae) in
Eq. (9). Fortunately, X(Ae) is compressible, as can be illustrated by Fig. 1.

After the band-pass Gabor filtering of the face images, a uniform down-
sampling with a factor ρ is conducted to form the augmented Gabor feature
vector χ, as indicated by the red pixels in Fig. 1. The spatial down-sampling
is performed for all the Gabor filtering outputs along different orientations and
at different scales. Therefore, the number of (spatial) pixels in the augmented
Gabor feature vector χ is 1/ρ times that of the original face image; meanwhile,
at each position, e.g. P1 or P2 in Fig. 1, it contains a set of directional and
scale features extracted by Gabor filtering in the neighborhood (e.g. the circles
centered on P1 and P2). Certainly, the directional and scale features at the same
spatial location are in general correlated. In addition, there are often some over-
laps between the supports of Gabor filters, which makes the Gabor features at
neighboring positions also have some redundancies.

Fig. 1. The uniform down-sampling of Gabor feature extraction after Gabor filtering
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Fig. 2. The eigenvalues (left: all the eigenvalues, right:the first 60 eigenvalues) of Gabor

feature-based occlusion matrx

Considering that “occlusion” is a phenomenon of spatial domain, a spatial
down-sampling of the Gabor features with a factor of ρ implies that we can
use approximately 1/ρ times the occlusion bases to code the Gabor features
of the occluded face image. In other words, the Gabor-feature based occlusion
dictionary X(Ae) can be compressed because the Gabor features are redundant
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as we discussed above. To validate this conclusion, we suppose that the image
size is 50×50, and in the original SRC the occlusion dictionary is an identity
matrix Ae = I ∈ R

2500×2500. Then the Gabor-feature based occlusion matrix
X (Ae) ∈ R

2560×2500, where we set ρ=36, μ = {0, · · · , 7}, ν = {0, · · · , 4}. Fig. 2
shows the eigenvalues of X(Ae). Though all the basis vectors of identity matrix
I (i.e. Ae) have equal importance, only a few (i.e. 60, with energy proportion of
99.67 % ) eigenvectors of X(Ae) have significant eigenvalues, as shown in Fig. 2.
This implies that X(Ae) can be much more compactly represented by using only
a few atoms generated from X(Ae), often with a compression ratio slightly over
ρ:1. For example, in this experiment we have 2500/60=41.7 ≈ ρ=36. Next we
present an algorithm to compute a compact Gabor occlusion dictionary under
the framework of SRC.

3.3 Gabor Occlusion Dictionary Computing

Now that X(Ae) is compressible, we propose to compute a compact occlusion
dictionary from it with the sparsity constraint required by sparse coding. We call
this compact occlusion dictionary the Gabor occlusion dictionary and denote it
as Γ . Then we could replace X(Ae) by Γ in the GSRC based FR.

For the convenience of expression, we denote by Z = X(Ae) = [z1, · · · , zne ] ∈
R

mρ×ne the uncompressed Gabor-feature based occlusion matrix, with each col-
umn zi being the augmented Gabor-feature vector generated from each atom
of the original occlusion dictionary Ae. The compact occlusion dictionary to
be computed is denoted by Γ = [d1,d2, ...,dp] ∈ R

mρ×p, where p can be set
as slightly less than ne/ρ in practice. It is required that each occlusion basis
dj , j = 1, 2, · · · , p, is a unit column vector, i.e. dT

j dj = 1. Since we want to
replace Z by Γ , it is expected that the original dictionary Z can be well rep-
resented by Γ , while the representation being as sparse as possible. With such
consideration, our objective function in determining Γ is defined as:

JΓ,Λ = arg min
Γ,Λ

{
‖Z − ΓΛ‖2F + ζ ‖Λ‖1

}
s.t. dT

j dj = 1, ∀j (10)

where Λ is the representation matrix of Z over dictionary Γ , and ζ is a positive
scalar that balances the F -norm term and the l1-norm term.

Eq. (10) is a joint optimization problem of the occlusion dictionary Γ and the
representation matrix Λ. Like in many multi-variable optimization problems, we
solve Eq. (10) by optimizing Γ and Λ alternatively. The optimization procedures
are described in the following Algorithm 2.

It is straightforward that the proposed Gabor occlusion dictionary computing
algorithm converges because in each iteration JΓ,Λ will decrease, as illustrated
in Fig. 3. Consequently, in GSRC we use Γ to replace the X(Ae) in Eq. (9).
Finally, the sparse coding problem in GSRC with face occlusion is

yΓ = BΓ ωΓ , where yΓ = χ (y) , BΓ = [X (A) , Γ ] , ωΓ = [α; αΓ ] (18)

Since the number of atoms in Γ is significantly reduced, the number of variables
to be solved in ωΓ is much decreased, and thus the computational cost in solving
Eq. (18) is greatly reduced compared with the original SRC.
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Algorithm 2. Algorithm of Gabor occlusion dictionary computing
1: Initialize Γ .

We initialize each column of Γ (i.e. each occlusion basis) as a random vector

with unit l2-norm.

2: Fix Γ and solve Λ.

By fixing Γ , the objective function in Eq. (10) is reduced to

JΛ = arg min
Λ

{‖Z − ΓΛ‖2F + ζ ‖Λ‖1
}

(11)

The minimization of Eq. (11) can be achieved by some standard convex optimiza-

tion technique. In this paper, we use the algorithm in [19].

3: Fix Λ and update Γ .

Now the objective function is reduced to

JΓ = arg min
Γ

{‖Z − ΓΛ‖2F
}

s.t. dT
j dj = 1, ∀j (12)

We can write matrix Λ as Λ =
[
β1; β2; · · · ; βp

]
, where βj , j = 1, 2, · · · , p, is the

row vector of Λ. We update dj one by one. When updating dj , all the other columns

of Γ , i.e. dl, l �= j, are fixed. Then JΓ in Eq. (12) is converted into

Jdj = arg min
dj

∥
∥
∥
∥
∥
∥
Z −

∑

l�=j

dlβl − djβj

∥
∥
∥
∥
∥
∥

2

F

s.t. dT
j dj = 1 (13)

Let Y = Z −∑

l�=j

dlβl, Eq. (13) can be written as

Jdj = arg min
dj

∥
∥Y − djβj

∥
∥2

F
s.t. dT

j dj = 1 (14)

Using Langrage multiplier, Jdj is equivalent to

Jdj ,γ = arg min
dj

tr
(
−Y βT

j dT
j − dj · βjY

T
+ dj · (βjβ

T
j − γ)dT

j + γ
)

(15)

where γ is a scalar variable. Differentiating Jdj ,γ with respect to dj , and let it be

0, we have

dj = Y βT
j

(
βjβ

T
j − γ

)−1

(16)

Since
(
βjβ

T
j − γ

)
is a scalar and γ is a variable, the solution of Eq. (16) under

constrain dT
j dj = 1 is

dj = Y βT
j

/∥
∥
∥Y βT

j

∥
∥
∥

2
(17)

Using the above procedures, we can update all the vectors dj , and hence the

whole set Γ is updated.

4: Go back to step 2 until the values of JΓ,Λ in adjacent iterations are close enough,

or the maximum number of iterations is reached. Finally, output Γ .
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Fig. 3. Illustration of the convergence of Algorithm 2. A Gabor occlusion dictionary

with 100 atoms is computed from the original Gabor-feature based occlusion matrix

with 4980 columns. The compression ratio is nearly 50:1.

4 Experimental Results

In this section, we perform experiments on benchmark face databases to demon-
strate the improvement of GSRC over SRC. To evaluate more comprehensively
the performance of GSRC, in section 4.1 we first test FR without occlusion, and
then in section 4.2 we demonstrate the robustness and efficiency of GSRC in FR
with block occlusion. Finally in section 4.3 we test FR against disguise occlusion.
In our implementation of Gabor filters, the parameters are set as Kmax = π/2,
f =
√

2, σ = π, μ = {0, · · · , 7}, ν = {0, · · · , 4} by our experimental experiences
and fixed for all the experiments below. Here we should also note that the reg-
ularization parameters in sparse coding are also tuned by experience (Actually,
how to adaptively set the regularizatin parameters is still an open problem).
In addition, all the face images are cropped and aligned by using the location
of eyes, which is provided by the face databases. The code of our method is
available at http://www4.comp.polyu.edu.hk/~cslzhang/code.htm.

4.1 Face Recognition without Occlusion

We evaluated the performance of the proposed algorithm on three representative
facial image databases: Extended Yale B [22], [18], AR [23] and FERET [24].
In both the original SRC and the proposed GSRC, we used PCA to reduce the
feature dimension. The dictionary size is set according to the image variability
and the size of database. Some discussions on the dictionary size with respect
to image variability are given using FERET database.

1) Extended Yale B Database: As the experiment on Extended Yale B database
[22], [18] in [12], for each subject, we randomly selected half of the images for
training (i.e. 32 images per subject), and used the other half for testing. The
images are normalized to 192×168, and the dimension of the augmented Ga-
bor feature vector of each image is 19760. PCA is then applied to reduce their
dimensionality for classification in SRC and GSRC. In our experiments, we set
λ=0.001 (refer to Eq. (2)) in GSRC. The results of SRC are from the original
paper [12]. Fig. 4(a) shows the recognition rates of GSRC versus feature dimen-
sion in comparison with those of SRC. It can be seen that GSRC is much better

http://www4.comp.polyu.edu.hk/~cslzhang/code.htm
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Fig. 4. Recognition rates by SRC and GSRC versus feature dimension on (a) Extended

Yale B and (b) AR database

than SRC in all the dimensions. On this database, the maximal recognition rate
of GSRC is 99.17%, while that of SRC is 96.77%.

2) AR database: As [12], we chose a subset (only with illumination changes
and expressions) of AR dataset [23] consisting of 50 male subjects and 50 female
subjects. For each subject, the seven images from Session 1 were used for training,
with other seven images from Session 2 for testing. The size of original face image
is 165×120, and the Gabor-feature vector is of dimension 12000. We set λ=0.001
in GSRC. The results of SRC are from the original paper [12]. The comparison
of GSRC and SRC is shown in Fig. 4(b). Again we can see that GSRC performs
much better than SRC under all the dimensions. On this database, the maximal
recognition rate of GSRC and SRC are 97.14% and 91.19%, respectively.

The improvement brought by GSRC on AR database is bigger than that on
Extended Yale B database. This is because in Extended Yale B, mostly there
are only illumination variations between training images and testing images, and
dictionary size (i.e. 32 atoms per subject) is big. Thus the original SRC works
very well on it. However, the training and testing samples of the AR database
have much more variations of expression, time and illumination, and dictionary
size (i.e. 7 atoms per subject) is much smaller. Therefore, the local feature based
GSRC is much more robust than global feature based SRC in this case.

3) FERET pose database: Here we used the pose subset of the FERET
database [24], which includes 1400 images from 198 subjects (about 7 each).
This subset is composed of the images marked with ’ba’, ’bd ’, ’be’, ’bf ’, ’bg’, ’bj ’,
and ’bk ’. In our experiment, each image has the size of 80×80. Some sample
images of one person are shown in the Fig. 5(a).

Five tests with different pose angles were performed. In test 1 (pose angle
is zero degree), images marked with ’ba’ and ’bj ’ were used as training set,
and images marked with ’bk ’ were used as testing set. In all the other four
tests, we used images marked with ’ba’, ’bj ’ and ’bk ’ as gallery, and used the
images with ’bg’, ’bf ’, ’be’ and ’bd ’ as probes. Fig. 5(b) compares GSRC (λ=0.005
for best results) with SRC (λ=0.05 for best results) for different poses. The
feature dimension in both methods is 350. Obviously, we can see that GSRC has
much higher recognition rates than SRC. Especially, when the pose variation is
moderate (0o and ±15o), GSRC’s recognition rates are 98.5%, 89.5% and 96%,
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Fig. 5. Samples and results on the FERET pose database. (a). Samples of one subject.

(b). Recognition rates of SRC and GSRC versus pose variation.

respectively, about 20% higher than those of the SRC algorithm (83.5%, 57.5%
and 70.5%, respectively). The results also show that good performance can be
achieved with a small dictionary size when image variability is small (i.e. test
1). Meanwhile, with the same dictionary size, the performance drops as image
variability increases (i.e. test 2 ∼ 5). It is undeniable that GSRC’s performance
also degrades much as pose variation becomes large (e.g. ±25o). Nevertheless,
GSRC can much improve the robustness to moderate pose variation.

4.2 Recognition against Block Occlusion

In this sub-section, we test the robustness of GSRC to the block occlusion using a
subset of Extended Yale B face database. We chose Subsets 1 and 2 (717 images,
normal-to-moderate lighting conditions) for training, and Subset 3 (453 images,
more extreme lighting conditions) for testing. In accordance to the experiments
in [12], the images were resized to 96×84, and the occlusion dictionary Ae in
SRC is set to an identity matrix.

With the above settings, in SRC the size of matrix B in Eq. (1) is 8064×8781.
In the proposed GSRC, the dimension of augmented Gabor-feature vector is 8960
(ρ ≈ 40). The Gabor occlusion dictionary Γ is then computed using Algorithm
2. In the experiment, we compress the number of atoms in Γ to 200 (i.e. p=200,
with compression ratio about 40:1), and hence the size of dictionary BΓ in Eq.
(18) is 8960×917. Compared with the original SRC, the computational cost
is reduced from about O(η2) with η=8781 to about O(κ2) with κ=917. Here
the time consumption of Gabor feature extraction (about 0.26 second) could
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Fig. 6. An example of face recognition with block occlusion. (a). A 30% occluded test

face image y from Extended Yale B. (b). Uniformly down-sampled Gabor features χ (y)

of the test image. (c). Estimated residuals ri (y) , i = 1, 2, · · · , 38. (d). One sample of

the class to which the test image is classified.
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be negligible, compared with that of l1-norm minimization, which is about 90
seconds as reported in [12].

As in [12], we simulated various levels of contiguous occlusion, form 0% to
50%, by replacing a randomly located square block in each test image with
an irrelevant image, whose size is determined by the occlusion percentage. The
location of occlusion was randomly chosen for each test image and is unknown
to the computer. We tested the performance of GSRC with λ=0.0005, and Fig. 6
illustrates the classification process by using an example. Fig. 6(a) shows a test
image with 30% randomly located occlusion; Fig. 6(b) shows the argumented
Gabor features of the test image. The residuals of GSRC are plotted in Fig.
6(c), and a template image of the identified subject is shown in Fig. 6(d). The
detailed recognition rates of GSRC and SRC are listed in the Table 1, where the
results of SRC are from the original paper [12]. We see that GSRC can correctly
classify all the test images when the occlusion percentage is less than or equal
to 30%. When the occlusion percentage becomes larger, the advantage of GSRC
over SRC is getting higher. Especially, GSRC can still have a recognition rate of
87.4% when half of image is occluded, while SRC only achieves a rate of 65.3%.

Table 1. The recognition rates of GSRC and SRC under different levels of block

occlusion

Occlusion percentage 0% 10% 20% 30% 40% 50%

Recognition rate of GSRC 1 1 1 1 0.965 0.874
Recognition rate of SRC 1 1 0.998 0.985 0.903 0.653

Table 2. Recognition rates of GSRC and SRC on the AR database with disguise

occlusion (’-p’: partitioned, ’-sg’: sunglasses, and ’-sc’: scarves)

Algorithms GSRC SRC GSRC-p SRC-p

Recognition rate-sg 93.0% 87% 100% 97.5%

Recognition rate-sc 79% 59.5% 99% 93.5%

4.3 Recognition Against Disguise

A subset from the AR database consists of 1399 images from 100 subjects (14
samples each class except for a corrupted image w-027-14.bmp), 50 male and 50
female. 799 images (about 8 samples per subject) of non-occluded frontal views
with various facial expressions were used for training, while the others for testing.
The images are resized to 83×60. So in the original SRC, the size of matrix B in
Eq. (1) is 4980×5779. In the proposed GSRC, the dimension of Gabor-feature
vectors is 5200 (ρ ≈ 38), and 100 atoms (with compression ratio about 50:1)
are computed to form the Gabor occlusion dictionary by Algorithm 2. Thus the
size of dictionary BΓ in Eq. (18) is 5200×899, and the computational cost is
roughly reduced from about O(η2) with η=5779 to about O(κ2) with κ=899,
where Gabor feature extraction consumes very little time (about 0.19 second).
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We consider two separate test sets of 200 images (1 sample each session and
each subject, with neutral expression). The first one contains images of the
subjects wearing sunglasses, which occlude roughly 20% of the image. The second
one is composed of images of the subjects wearing a scarf, which occlude roughly
40% of the images. The results by GSRC (λ=0.0005) and SRC are listed in Table
2 (where the results of SRC are from the original paper [12]). We see that on
faces occluded by sunglasses, GSRC achieves a recognition rate of 93.0%, over
5% higher than that of SRC, while for occlusion by scarves, the proposed GSRC
achieves a recognition rate 79%, about 20% higher than that of SRC.

In [12], the authors partitioned image into blocks for face classification by
assuming the occlusion is connected. Such an SRC scheme is denoted by SRC-p.
Here, after partitioning the image into several blocks, we calculate the Gabor
features of each block and then use GSRC to classify each block image. The final
classification result is obtained by voting. We denote the GSRC with partitioning
as GSRC-p. In experiments, we partitioned the images into eight (4×2) blocks
of size 20×30. The Gabor-feature vector of each block is of dimension 800, and
the number of atoms in the computed Gabor occlusion dictionary Γ is set to 20.
Thus the dictionary B in SRC is of size 600×1379, while the dictionary BΓ in
GSRC is of size 800×819. The recognition rates of SRC-p and GSRC-p are also
listed in Table 2. We see that with partitioning, GSRC can lead to recognition
rates of 100% on sunglasses and 99% on scarves, also better than SRC.

5 Conclusion

In this paper, we proposed a Gabor-feature based SRC (GSRC) scheme, which
uses the image local Gabor features for SRC, and proposed an associated Ga-
bor occlusion dictionary computing algorithm to handle the occluded face im-
ages. Apart from the improved face recognition rate, one important advantage
of GSRC is its compact occlusion dictionary, which has much less atoms than
that of the original SRC scheme. This greatly reduces the computational cost
of sparse coding. We evaluated the proposed method on different conditions, in-
cluding variations of illumination, expression and pose, as well as block occlusion
and disguise. The experimental results clearly demonstrated that the proposed
GSRC has much better performance than SRC, leading to much higher recog-
nition rates while spending much less computational cost. This makes it much
more practicable to use than SRC in real world face recognition.
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Abstract. We propose a data-driven, unobtrusive and covert method

for automatic deception detection in interrogation interviews from visual

cues only. Using skin blob analysis together with Active Shape Modeling,

we continuously track and analyze the motion of the hands and head as

a subject is responding to interview questions, as well as their facial mi-

cro expressions, thus extracting motion profiles, which we aggregate over

each interview response. Our novelty lies in the representation of the mo-

tion profile distribution for each response. In particular, we use a kernel

density estimator with uniform bins in log feature space. This scheme

allows the representation of relatively over-controlled and relatively agi-

tated behaviors of interviewed subjects, thus aiding in the discrimination

of truthful and deceptive responses.

Keywords: face tracking, skin blob tracking, statistical shape models,

deception, nearest-neighbor, support vector machine.

1 Introduction

Wherever two people communicate, deception is a reality. It is present in our
everyday social and professional lives [1] and its detection can be beneficial, not
only to us individually but to our society as a whole. For example, accurate
deception detection can aid law enforcement officers in solving a crime. It can
also help border control agents to detect potentially dangerous individuals during
routine screening interviews [2].

Currently, the most successful and widespread system is the polygraph which
monitors uncontrolled changes in heart rate and electro-dermal response, as a
result of the subject’s arousal to deceit. Unfortunately, its widespread use does
not necessarily mean it is a perfect system. Firstly, in order for it to take the
necessary measurements, it needs to be continuously connected to the subject’s
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body. This means that the subject must be cooperative and in close proximity
to the device. Secondly, it requires accurate calibration at the beginning of every
session, so that a baseline of measurements can be established. Occasionally,
it may still fail to give accurate readings, despite the calibration step, if for
example, the subject’s heart rate increases for reasons unrelated to deception.

Furthermore, the polygraph is an overt system, which means that the subject
knows they are being monitored and also knows what measurements are being
made. As a result, they may devise techniques to trick the machine, such as
remaining calm, in an attempt to control their heart rate or being excited during
the calibration phase, so that any excitement due to deception that the polygraph
later registers, will mistakenly be regarded as a normal response.

Lastly, the polygraph requires a trained operator, whose skills and abilities
control both the likelihood of human error in the interview and the length of
the interview itself. Unlike computers, humans will get tired and will eventually
need a break. Therefore, what is needed is an automatic and covert system,
which can continuously and unobtrusively detect deception, without requiring
the subject’s cooperation.

In response to this need, researchers have long been trying to decode human
behavior, in an attempt to discover deceptive cues. These would aid them in
designing systems for automatic deception detection or for training others to
detect it [3]. Some deceptive behaviors fall into one of two groups: over-control
and agitation [1]. In an attempt to hide their deception, liars who are aware of
possible deceptive behavioral cues, may exert extra effort in hiding any behavior
[4,5] and particularly reducing movements of their hands, legs and head, while
they are being deceptive [6,7,8]. At the other extreme are liars who show signs
of agitated behavior triggered by nervousness and fear. As a result, their speech
tends to be faster and louder [7] or they may engage in undirected fidgeting [4].

Nevertheless, it is incorrect to assume that agitated or over-controlled behav-
ior is always a sign of deception. One should also consider the normal behavior of
a person, as well as the tone and context of the communication taking place. It
may be the case that some subjects have a tendency of behaving over-controlled
when interrogated by strangers. Others may seem agitated during an interroga-
tion because they had just returned from their morning jog. According to Bur-
goon’s Expectancy Violations Theory (EVT) [9], if in a communication there
is considerable deviation of the observed behavior from the expected behavior,
then this is a cause for suspicion. For example, an interrogator may become
suspicious of a suspect who is relaxed at the beginning of the interrogation but
becomes agitated as soon as they are questioned about a crime. Furthermore,
in their Interpersonal Deception Theory (IDT) [6,10], Buller and Burgoon state
that deception is a dynamic process, whereby liars adjust their behavior accord-
ing to how much they believe they are suspected of being deceitful. It is likely
that during their interaction, liars will unintentionally reveal some behavioral
cues as a result of their deception and suspicion [11].

Motivated by the importance of deception detection and the limitations of
the widely used polygraph, we propose a novel, automatic and covert approach
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for detecting deception in interview responses, using visual cues. In every frame
we track the movements of a subject’s hands and head relative to their body,
as well as some of their facial expressions and their 3D head pose. We aggre-
gate these movements and expressions over each response and extract what we
call motion profiles (see Sect. 3.3). In order to implicitly establish the baseline
truthful responses for a subject and discriminate them from their deceptive re-
sponses we formulate this problem as a Nearest Neighbor classification problem.
This formulation, together with our motion profiles, significantly outperforms
the method proposed in [11] for a similar interview scenario.

The rest of our paper is organized as follows. Section 2 describes previous
attempts in solving the problem of deception detection. Section 3 describes our
approach. More specifically, we describe the tracking components of our approach
in Sects. 3.1 and 3.2, and we describe our feature set in Sect. 3.3. We describe
our experimental results in Sect. 4, we discuss some future extensions of this
work in Sect. 5 and we end with some closing remarks in Sect. 6.

2 Previous Work

Having stressed the importance of automatic and covert deception detection in
the previous section, we now briefly discuss a few of the research attempts to
solve this problem. Some researchers look for physiological indicators which can
correlate to deception, in a similar fashion to the polygraph [5]. For example, the
authors of [12], build a thermodynamical model to monitor increases in blood
flow around the eyes of a subject. However, this method needs a controlled
environment and expensive non-standard equipment, thus hindering its broad
deployment. Since the method cannot track head movements, its accuracy suffers
if the subject’s head is moving or at an angle to the camera. Similarly, some
researchers, such as the authors of [13,14,15], use functional Magnetic Resonance
Imaging (fMRI) to monitor brain activity during interviews. However, methods
based on fMRI cannot be used in a covert scenario, they require specialized
equipment and a cooperative subject.

Other researchers move away from physiology and attempt to analyze behav-
ioral indicators, instead. Zhang et. al. [2] look at which facial Action Units are
activated in a particular facial expression, in order to determine whether it is
faked or real. Their method, however, is currently based on static images. Lu et.
al. [16] track hand and head skin blobs of subjects to classify their movement
signatures as over-controlled, relaxed or agitated. However, it is not convinc-
ing that the equation they used for state estimation generalizes to unseen data,
given they only tested it on five subjects. One may need to learn subject specific
models, since state thresholds can vary across the population. Tsechpenakis et.
al. [17] extend the work of [16], translating blob features into illustrator and
adaptor behaviors and combining these via a hierarchical Hidden Markov Model
[18] to decide if the subject is agitated, relaxed or over-controlled. In the work of
Meservy et. al. [11], the step of classifying behaviors [16,17] is bypassed and the
authors attempt to directly derive deceptive cues, using blob analysis as in [16].
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They segment the video data of interviews into responses and use summary data
of each segment, such as the velocity variances of blobs, to make predictions but
they do not achieve high accuracy.

We believe that relying on the parametric representation (mean and variance)
of the summary data used in [11,16,17], causes a lot of useful information about a
feature’s distribution to be lost and smooths out any abrupt motions and micro-
expressions that briefly occur, when a subject is being deceitful. Eckman and
Friesen call this leakage [19], while Buller et. al. call this non-strategic behavior
[20]. We propose to extract motion profiles, which differ from the movement
signatures of [16], in that ours are nonparametric representations of the distri-
butions of both blob and facial features. In this way, this richer representation
captures any such leakage that occurs during an interview response.

3 Method

As already discussed, the main idea of our approach is to extract motion profiles
of subjects within each response. These motion profiles consist of similar features
used in [11,16,17] and are described in Sect. 3.3. In order to extract the features
that make up the motion profiles, we use the skin blob tracker of [16] and the
Active Shape Model (ASM) tracker of [21]. Sections 3.1 and 3.2 briefly review
the skin blob and the ASM trackers respectively. The extracted features are then
represented using log-scale histograms, which we describe in Sect. 3.3.

3.1 Head and Hand Blob Tracking

Following the method in [16], we use color analysis, eigen shape decomposition
and Kalman filtering to track the position, size and orientation of the head
and hand blobs. Instead of a 3D Look-Up-Table (LUT), we build a 2D LUT
with Hue and Saturation color components, based on the Hue-Saturation-Value
(HSV) skin color distribution of the face and hands. The Value component of the
HSV representation is not used, so as to make the representation more robust
to illumination than the normalized Red-Green-Blue (RGB) color representa-
tion used in [16]. The LUT is built offline from skin color samples. The system
extracts face and hand like regions in each frame using the LUT and computes
candidate elliptical head and hand blobs. Subsequent eigen shape decomposition
and Kalman filtering, prunes the candidate blobs keeping only the most probable
ones taking into account the shape of the candidates and the previous position
of each of the blobs (see [16] for a more detailed description). A sample frame
illustrating the detected blobs and the skin color samples used in building the
color model is depicted in Fig. 1.

From the tracked positions of the blobs we compute derived features, as in
[11], which are designed to capture behavioral agitation and over control by
characterizing relative positioning of the hands, postural shifts and postural
openness of a subject. We divide frames into quadrant regions and these are
shown in Fig. 2.
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Fig. 1. Sample frame showing the tracked head (blob 0) and hands (blobs 1 and 2) of

an interviewee. The tracker records the (x,y) coordinates, area and axis lengths of each

detected blob. The skin color samples are shown in the upper right corner.

Fig. 2. Illustration of quadrant features. They are used to capture the positions of a

subject’s hands relative to their body.
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Fig. 3. Illustration of triangle area feature. It is used to quantify the degree of posture

openness of a subject.

Fig. 4. Illustration of distance features of each of the blobs to the triangle’s center



468 N. Michael et al.

Fig. 5. Illustration of angle features of the blobs relative to the triangle’s center

Imagining that the hand and head blobs form the vertices of a triangle, we can
use the area and centroid of this triangle to quantify the openness of a subject’s
posture and any postural shifts. These features are shown in Figs. 3, 4 and 5
(refer to [11] for a more detailed explanation of these features).

In order to account for differences in subject sizes and positioning, we also
look at changes in feature values. For example, we compute blob displacement
(Δxti , Δyti) at time ti, which is also proportional to velocity, using:

Δxti = xti − xti−1 , (1)
Δyti = yti − yti−1 , (2)

where (xti , yti) is its position at time ti.

3.2 Face Tracking

Face tracking is a challenging problem because the tracker needs to generalize
well to unseen faces and handle illumination changes. It should also cope with
occlusions (to some degree) and pose changes, such as head rotations, which
cause drastic changes in the shape of the face, causing it to lie on a non-linear
manifold.

Kanaujia et. al. [21] tackle the problem with an Active Shape Model (ASM),
which is a statistical model of facial shape variation. In the ASM framework,
a facial shape S is represented by N landmarks, each of which is characterized
by its (x, y) image coordinates, so that S = {x1, y1, . . . , xN , yN}. By applying
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Fig. 6. Sample frame showing tracking of the 79 facial landmarks. The circle in the

upper left corner depicts the estimated 3D vector of the head pose. Underneath it are

the estimated values of the pitch, yaw and tilt angles of the head.

Principal Component Analysis (PCA) on an aligned training set of facial shapes,
a subspace is learned which captures the major modes of shape variation by
projecting shapes along the eigenvectors of the shape covariance matrix with
the highest eigenvalues. In this way, an aligned shape X = Φ(S), where Φ is
the linear transformation that aligns a shape S to the mean shape X̄ of the
subspace, can be approximated as:

X ≈ X̄ + Pb , (3)

where P is the eigenvector matrix and b is a column vector of shape parameters
(encoding).

The authors of [21] additionally propose a piecewise approximation to the non-
linear shape manifold using overlapping linear subspaces. Basically this means
learning separate ASM models for each subspace and dynamically switching
subspaces as the pose of the tracked face changes through a rotation. Their
system is made to run in real time by incorporating a Sum of Squared Intensity
Differences (SSID) point tracker to track image patches across successive frames
assuming small displacements. Moreover, using a Bayesian Mixture of Experts
they are able to estimate the 3D pose of the head from the tracked landmarks
(refer to [21] for more details). Figure 6 shows a sample frame with the 79 tracked
landmarks, along with the predicted 3D head pose.
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Using this method we were able to track the head pose and the (x, y) posi-
tions of the landmarks in every frame of the video sequences we analyzed. The
tracked landmarks were used to compute derived features designed to capture
facial micro expressions and asymmetries. Namely these are: change in angle be-
tween the mouth’s corner points, change in angle between the mouth’s centroid
and each of its corner points, change in mouth area, displacement of inner and
outer left and right eyebrows. The left/right mouth corner points are computed
as the means of the three leftmost/rightmost mouth landmarks. The left/right
mouth corner angle is the angle formed by the leftmost/rightmost mouth land-
mark and the two landmarks on either side of it. Finally, the displacement of
the inner/outer eyebrow is computed using the mean displacement of the four
innermost/outermost eyebrow landmarks. From this displacement we subtract
the mean displacement of the six lower nose landmarks to account for head
displacements, assuming that the nose is the most stable face component.

3.3 Motion Profiles

In order to summarize the tracked motions and expressions of subjects we pro-
pose to extract motion profiles. These are similar to the movement signatures of
[16], however our motion profiles include facial expression information. In addi-
tion, our motion profiles are log-scaled in order to capture information important
to deception detection, namely, little or no movement, and extreme movement. In
each subject’s response the majority of frames involve a small amount of motion.
In other words, subjects rarely make extreme movements for the entire duration
of their response. Therefore we change the scale of our data representation in
order to properly space out the data to allow for discrimination.

All motion is histogrammed into five bins, with each bin having an expo-
nentially increasing size. Therefore, the first bin covers a very small range (cor-
responding to little or no motion) and the fifth bin covers the largest range
(corresponding to all extreme motions). This new representation of the data is
successful at isolating the over-controlled and agitation responses that Ekman
et. al. point to as being important indicators of deception [1]. In Fig. 7 we show
the size of each bin for hand motion averaged over all responses for two differ-
ent subjects. The graph on the left demonstrates a subject exhibiting agitated
deceptive behavior: when responses are deceptive, the no motion bin shows a
dip and the high motion bin shows a spike, relative to their truthful responses.
The graph on the right demonstrates over-controlled deceptive behavior: when
responses are deceptive, the no motion bin shows a spike and the high motion
bin shows a drop, again, relative to their truthful responses.

Let {xi,j}Fi=1 be the set of F features we extract from frame j as described in
Sects. 3.1 and 3.2. By grouping together features extracted from m consecutive
frames, we form a feature set of the form {{xi,j}Fi=1, . . . , {xi,j+m−1}Fi=1}, which
forms the basis of the motion profile over a response rq of m frames. For each
of the F feature channels, we compute a k–bin normalized log-scale histogram
of the feature values xi,j for j = 1, . . . ,m, resulting in F histograms having a
total of kF bins. We call xrq a motion profile because the histograms capture
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Fig. 7. Average hand motion shown for two different subjects. Graphs show 5 velocity

bins from “no motion” to “high motion”

the distribution of feature values within the response. For classification we use
a Nearest Neighbor classifier, whereby for a given test response, we assign it the
label of its nearest training neighbor.

4 Experiments and Results

A laboratory experiment was conducted during which interviewees, who repre-
sented diverse cultural backgrounds, responded to 13 one-word answer questions
and 13 longer questions posed by trained interviewers. Interviewees answered
some questions truthfully and some deceptively according to a predetermined
sequence. Half were randomly assigned to follow a truth-first sequence and half
were randomly assigned to begin with a deception-first sequence. During the in-
terview, three high-speed digital cameras recorded kinesic behavior: one recorded
full body profile view, one recorded full body frontal view and one recorded
frontal facial view only. After each block of three questions, interviewees rated
their truthfulness in answering each question on a 0 (not at all) to 10 (completely
truthful) scale. Interviews were typically 20 - 30 minutes long.

The recruitment efforts netted a multi-culturally diverse sample of 220 partic-
ipants. Demographically, the mean age for the total sample was 28.9 years (while
σ = 13.34), with 36% aged 21 and under, 48% aged 22 to 40, and 16% over 40
years of age. By gender, 55% were male and 45% were female. However, record-
ing difficulties allowed only 147 interviews to be analyzed to date. We focused
on the responses to the first 12 out of the 13 longer questions in each interview,
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Table 1. Data set composition showing number of deceptive and truthful responses

(six of each kind per subject) used for Leave One Out Cross Validation. Numbers based

on 147 subjects.

Deceptive Truthful Total

Total 882 882 1764

Table 2. Comparison of classification accuracy. Although the experimental design and

classification protocol of [11] was different, it was the most similar to ours in that it

dealt with classifying interview responses as deceptive or truthful.

Method Precision Recall Accuracy

Mock Theft Experiment [11] 59.2% 63.6% 60.0%

SVM 68.0% 70.1% 68.5%

Nearest Neighbor 81.7% 81.5% 81.6%

Table 3. Mean confusion matrix of Nearest Neighbor classifiers

NN Conf. Matrix Pred. Deceptive Pred. Truthful

True Deceptive 81.5% 18.5%

True Truthful 18.3% 81.8%

meaning that in total we had 1764 responses (half deceptive and half truthful).
The data set composition in terms of number of frames involving deceptive and
truthful responses is shown in Table 1.

Each video interview was analyzed and features were extracted from each
frame. The full body frontal view was analyzed by the blob tracker and the fa-
cial frontal view was analyzed by the ASM face tracker, while the profile view
was not used in our current analysis. We used 5 histogram bins per feature
channel with uniform log space width (specific to the current subject). In this
way, the first two bins were wide enough to capture the very small feature val-
ues corresponding to over-controlled behavior, while the width of each of the
remaining bins was successively increased to capture increasingly larger move-
ments corresponding to relaxed and agitated behaviors, respectively. We built
147 separate Nearest Neighbor models (one for each of the 147 subjects), us-
ing Leave One Out Cross Validation (LOOCV), where for each of the interview
responses, we hold one out to be used for testing and train the model on the
rest, reporting the average LOOCV performance over all 147 NN models. We
also tried an SVM classifier for each of these 147 subject-specific models with
an RBF kernel (scale and complexity parameters determined by cross validation
for each subject). Our motion profile NN models achieve an accuracy of 81.6%,
which is significantly better than the accuracy of the method in [11] for a similar
interview scenario, and ours is over a larger dataset, too. However, note that,
unlike our work, the authors of [11] attempt to build models that generalize over
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all subjects, and are, thus, doing LOOCV per subject. Instead, we build 147
subject-specific models, doing LOOCV per response per subject. It is, therefore,
clear that our subject-specific models perform better than a general model over
all subjects. We attribute this to the fact that different subjects may have differ-
ent deceptive behaviors and different baseline truthful behaviors, as opposed to
there being a universal deception cue or “threshold”, which holds for everyone
and discriminates truth from deception. All results are shown in Table 2, while
Table 3 shows the mean confusion matrix from all NN models.

Our proposed system as presented has the limitation that training data must
first be collected for a test subject so that the model can be trained. Acquiring
such training data might not be trivial in the situations where such a system can
be useful. Nevertheless, the proposed work can serve the purpose of providing
the foundation for understanding exactly what constitutes the peculiarities that
characterize the deceptive tactics of different individuals.

5 Future Work

In our current work we extended the feature vectors used in the previous work of
[11,16,17], who focused only on blob features, by augmenting features extracted
from the face, such as eyebrow displacements and mouth angle changes (see Sect.
3.2). In the future, we plan to inspect these facial features more closely and look
at texture changes around key parts of the face, such as the eyes, mouth and
nose. Such texture changes may be more information-rich than shape changes,
possibly serving as a better indicator of behavioral state.

Additionally, we have already started looking at interview data where the
subjects originate from many different cultures, since we are trying to discover
culture-specific patterns in deception tactics. Once this hurdle is passed, then col-
lecting training data will become easier because it need only be culture-specific
(at least), instead of subject-specific. In this way, the applicability of the pro-
posed method can be improved.

Moreover, our current method looks at motion profiles in a static context.
Surely, utilizing temporal information of how the motion profile varies within a
response could be beneficial, as shown in the proof of concept study of [17], so
our future work will attempt to augment this temporal dimension to the model.

Lastly, the problem can also be posed as a Multiple Instance Learning (MIL)
problem in which bags are the interview responses and their instances are all
motion profiles computed within them. This intuitive learning approach may
yield even more promising results.

6 Conclusion

We proposed a novel and fully automatic method for deception detection from
video input. Experimental results show that this approach has great potential
and contributes to understanding deception detection from visual input in gen-
eral. We achieved 81.6% classification accuracy, outperforming the 60.0%, which
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was previously achieved by [11] on a similar but smaller dataset and under sim-
ilar conditions, showing that subject-specific models work better than general
models. Consistent performance over many subjects and cross-validation indi-
cate that the model does not overfit the data. However, data from additional
psychological studies of deception would help to further confirm that the behav-
iors discriminated by our learning algorithms are the deceptive behaviors we are
attempting to isolate. Nevertheless, our results show a convincing proof of con-
cept and suggest a promising future for the identification of deceptive behavior
from video sequences.
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Abstract. The problem of face identification has received significant

attention over the years. For a given probe face, the goal of face identifi-

cation is to match this unknown face against a gallery of known people.

Due to the availability of large amounts of data acquired in a variety of

conditions, techniques that are both robust to uncontrolled acquisition

conditions and scalable to large gallery sizes, which may need to be in-

crementally built, are challenges. In this work we tackle both problems.

Initially, we propose a novel approach to robust face identification based

on Partial Least Squares (PLS) to perform multi-channel feature weight-

ing. Then, we extend the method to a tree-based discriminative structure

aiming at reducing the time required to evaluate novel probe samples.

The method is evaluated through experiments on FERET and FRGC

datasets. In most of the comparisons our method outperforms state-

of-art face identification techniques. Furthermore, our method presents

scalability to large datasets.

Keywords: Face Identification, Feature combination, Feature selection,

Partial Least Squares.

1 Introduction

The three primary face recognition tasks are verification, identification, and
watch list [1]. In verification, the task is to accept or deny the identity claimed
by a person. In identification, an image of an unknown person is matched to
a gallery of known people. In the watch list task, a face recognition system
must first detect if an individual is on the watch list. If the individual is on the
watch list, the system must then correctly identify the individual. The method
described in this paper addresses the identification task.

Previous research has shown that face recognition under well controlled ac-
quisition conditions is relatively mature and provides high recognition rates even
when a large number of subjects is in the gallery [2,3]. However, when images
are collected under uncontrolled conditions, such as uncontrolled lighting and
changes in facial expressions, the recognition rates decrease significantly.

Due to the large size of realistic galleries, not only the accuracy but also the
scalability of a face identification system needs to be considered. The main scala-
bility issues are the following. First, the number of subjects in the gallery can be

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part VI, LNCS 6316, pp. 476–489, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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quite large, so that common search techniques, such as brute force nearest neigh-
bor, employed to match probe faces do not scale well. Second, in applications
such as surveillance and human computer interaction, in which new subjects are
added incrementally, the necessity of rebuilding the gallery models every time a
new subject is added compromises the computational performance of the system.

We tackle both problems. In order to reduce the problems associated with
data collected under uncontrolled conditions, we consider a combination of low-
level feature descriptors based on different clues (such approaches have provided
significant improvements in object detection [4,5] and recognition [6]). Then, fea-
ture weighting is performed by Partial Least Squares (PLS), which handles very
high-dimensional data presenting multicollinearity and works well even when
very few samples are available [5,7,8,9]. Finally, a one-against-all classification
scheme is used to model the subjects in the gallery.

To make the method scalable to the gallery size, we modify the one-against-
all approach to use a tree-based structure. At each internal node of the tree,
a binary classifier based on PLS regression is used to guide the search for the
matching subject in the gallery. The use of this structure provides substantial
reduction in the number of comparisons when a probe sample is matched against
the gallery and also eliminates the need for rebuilding all PLS models when new
subjects are added to the gallery.

Our proposed face identification approach outperforms state-of-art techniques
in most of the comparisons considering standard face recognition datasets, par-
ticularly when the data is acquired under uncontrolled conditions, such as in
experiment 4 of the FRGC dataset. In addition, our approach can also handle
the problem of insufficient training data – results show high performance when
only a single sample per subject is available. Finally, due to the incorporation
of the tree-based structure, a significant number of comparisons can be saved
when compared to approaches based on brute force nearest neighbor search.

2 Related Work

Detailed discussion of face recognition and processing can be found in recent and
comprehensive surveys written by Tolba et al. [2] and Zhao et al. [3].

Most approaches to face recognition can be divided into two categories: holistic
matching methods and local matching methods [10]. Methods in the former
category use the whole face region to perform recognition and includes techniques
such as subspace discriminant analysis, SVM, and AdaBoost; these may not cope
well with the generalizability problem due to the unpredictable distribution of
real-world testing face images. Methods in the latter category first locate several
facial features and then classify the faces according to local statistics.

Local binary patterns (LBP) and Gabor filters are descriptors widely used in
face recognition. LBP is robust to illumination variations due to its invariance
to monotonic gray-scale changes and Gabor filters are also robust to illumina-
tion variations since they detect amplitude-invariant spatial frequencies of pixel
gray values [10]. There are several combinations or variations based on these
descriptors that have been used for face recognition [6,11,12,13].
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Most recently developed face recognition systems work well when images are
obtained under controlled conditions or when the test image is captured un-
der similar conditions to those for the training images. However, under varying
lighting or aging effects, their performance is still not satisfactory. To perform
recognition under fairly uncontrolled conditions Tan and Triggs [14] proposed a
preprocessing chain for illumination normalization. They used the local ternary
patterns and a Hausdorff-like distance measure. Holappa [15] used local binary
pattern texture features and proposed a filter optimization procedure for illumi-
nation normalization. Aggarwal [16] presented a physical model using Lambert’s
Law to generalize across varying situations. Shih [17] proposed a new color space
LC1C2 as a linear transformation of the RGB color space.

Another challenge is that most current face recognition algorithms perform
well when several training images are available per subject; however they are still
not adequate for scenarios where a single sample per subject is available. In real
world applications, one training sample per subject presents advantages such as
ease of collect galleries, low cost for storage and lower computational cost [18].
Thus, a robust face recognition system able to work with both single and several
samples per subject is desirable. In [19], Liu et al. proposed representing each
single (training, testing) image as a subspace spanned by synthesized shifted
images and designed a new subspace distance metric.

Regarding the scalability issues discussed previously, there is also previous
work focused on scaling recognition systems to large datasets. In [20] a technique
for combining rejection classifiers into a cascade is proposed to speed up the
nearest neighbor search for face identification. Guo and Zhang [21] proposed the
use of a constrained majority voting scheme for AdaBoost to reduce the number
of comparisons needed.

3 Proposed Method

In this section, we first present the feature extraction process and a brief review of
partial least squares regression. Then, the proposed face identification approach
is explained in two steps. Initially, we describe the one-against-all approach, then
we describe the tree-based structure, which improves scalability when the gallery
is large and reduces the computational cost of matching probe samples.

3.1 Feature Extraction

After cropping and resizing the faces, each sample is decomposed into overlap-
ping blocks and a set of low-level feature descriptors is extracted from each block.
The features used include information related to shape (histogram of oriented
gradients (HOG) [22]), texture (captured by local binary patterns (LBP) [13]),
and color information (captured by averaging the intensities of pixels in a block).

HOG captures edge or gradient structures that are characteristic of local
shape [22]. Since the histograms are computed for regions of a given size, HOG
is robust to some location variability of face parts. HOG is also invariant to
rotations smaller than the orientation bin size.
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Local binary patterns [13] have been successfully applied in texture classifica-
tion. LBP’s characterize the spatial structure of the local image texture and are
invariant under monotonic transformations of the pixel gray values. The LBP
operator labels the pixels of an image by thresholding the 3 × 3 neighborhood
of each pixel using the center value. A label is obtained by multiplication of the
thresholded values by the binomial factors 2p followed by their addition. The
256-bin histogram of the resulting labels is used as a feature descriptor.

Once the feature extraction process is performed for all blocks inside a cropped
face, features are concatenated creating a high-dimensional feature vector v. This
vector is used to describe the face.

3.2 Partial Least Squares Regression

Partial least squares is a method for modeling relations between sets of observed
variables by means of latent variables. PLS estimates new predictor variables,
latent variables, as linear combinations of the original variables summarized in a
matrix X of predictor variables (features) and a vector y of response variables.
Detailed descriptions of the PLS method can be found in [23,24].

Let X ⊂ R
m denote an m-dimensional feature space and let Y ⊂ R be a 1-

dimensional space of responses. Let the number of samples be n. PLS decomposes
matrix Xn×m ∈ X and vector yn×1 ∈ Y into

X = TP T + E

y = UqT + f

where T and U are n × p matrices containing p extracted latent vectors, the
(m × p) matrix P and the (1 × p) vector q represent the loadings and the
n ×m matrix E and the n × 1 vector f are the residuals. Using the nonlinear
iterative partial least squares (NIPALS) algorithm [7], a set of weight vectors is
constructed, stored in the matrix W = (w1, w2, . . . , wp), such that

[cov(ti, ui)]2 = max
|wi|=1

[cov(Xwi, y)]2 (1)

where ti is the i-th column of matrix T , ui the i-th column of matrix U and
cov(ti, ui) is the sample covariance between latent vectors ti and ui. After ex-
tracting the latent vectors ti and ui, the matrix X and vector y are deflated by
subtracting their rank-one approximations based on ti and ui. This process is
repeated until the desired number of latent vectors has been extracted.

Once the low dimensional representation of the data has been obtained by
NIPALS, the regression coefficients βm×1 can estimated by

β = W (P T W )−1T T y. (2)

The regression response, yv, for a feature vector v is obtained by

yv = y + βT v (3)

where y is the sample mean of y.
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Fig. 1. One-against-all face identification approach. (a) construction of the PLS re-

gression model for a subject in the gallery; (b) matching of a probe sample against the

subjects in the gallery. The best match for a given probe sample is the one associated

with the PLS model presenting the highest regression response.

Notice that even though the number of latent vectors used to create the low
dimensional representation of the data matrix X is p (possibly greater than
1), Equation 3 shows that only a single dot product of a feature vector with
the regression coefficients is needed to obtain the response of a PLS regression
model – and it is this response that is used to rank faces in a gallery. This
characteristic makes the use of PLS particularly fast for finding matches for
novel probe samples, in contrast to other methods where the number of dot
product evaluations depends on the number of eigenvectors considered, which is
quite large in general [25].

3.3 One-Against-All Approach

The procedure to learn models for subjects in the gallery g = {s1, s2, . . . , sn},
where si represents exemplars of each subject’s face, is illustrated in Figure 1(a)
and described in details as follows. Each si is composed of feature vectors ex-
tracted from cropped faces containing examples of the i-th subject.

We employ a one-against-all scheme to learn a PLS discriminatory model for
each subject in the gallery. Therefore, when the i-th subject is considered, the
remaining samples g \ si are used as counter-examples of the i-th subject. In
addition, if the face dataset provides a training set we also add those samples,
(excluding samples from the subject under consideration), as counter-examples
of the i-th subject. Experiments show that the addition of training samples as
counter-examples improves recognition rates.

When a one-against-all scheme is used with PLS, higher weights are attributed
to features located in regions containing discriminatory characteristics between
the subject under consideration and the remaining subjects.

Once the models have been estimated for all subjects in the gallery, the PLS
regression models are stored to be later used to evaluate the responses for a probe
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Fig. 2. Tree-based structure used to optimize the search for matches to a probe sample.

Each internal node contains a PLS regression model used to guide the search, as shown

in details for node n3, which has a PLS model constructed so that the response directs

the search either to node n6 or n7. In this example the first path to be traversed is

indicated by arrows (in this case, it leads to the correct match for this particular probe

sample). Alternative search paths are obtained by adding nodes that have not been

visited into a priority queue (in this example nodes n3 and n5 will be the starting

nodes for additional search paths). After pursuing a number of search paths leading

to different leaf nodes, the best match is chosen to be the one presenting the highest

response (in absolute value).

sample. Then, when a probe sample is presented, its feature vector is projected
onto each one of the PLS models. The model presenting the highest regression
response gives the best match for the probe sample, as illustrated in Figure 1(b).

3.4 Optimization Using a Tree-Based Structure

In terms of scalability, two drawbacks are present in the one-against-all scheme
described in the previous section. First, when a new subject is added to the
gallery, PLS models need to be rebuilt for all subjects. Second, to find the best
match to a probe sample, the feature vector representing this sample needs
to be projected onto all PLS models learned for the subjects in the gallery
(common problem faced by methods that estimate matching scores using brute
force nearest neighbor search [20]).

To reduce the need for projecting features onto all PLS models to find the
best match for a probe sample, we construct a binary tree in which each node,
nj , contains a subset of the gallery subjects tj ⊂ g, where g = {s1, s2, . . . , sn}
as defined previously. A splitting procedure is used to decide which elements of
tj will belong to the left and right children of nj, assigning at least one sample
to each child. Each internal node is associated with a PLS regression model,
used afterwards to guide the search when probe samples are analyzed. In order



482 W.R. Schwartz, H. Guo, and L.S. Davis

to build the regression model for a node, the subjects assigned to the left child
are defined to have response −1 and the subjects assigned to the right child are
defined to have response +1. The splitting procedure and the building of PLS
models are applied recursively in the tree until a node contains only a single
subject (leaf node).

The application of the described procedure for a gallery with n subjects results
in a tree containing n leaf nodes and n−1 PLS regression models located on the
internal nodes.

We consider two approaches to split subjects between the children nodes.
First, a procedure that uses PCA to create a low dimensional subspace (learned
using samples from a training set) and then the K-means algorithm clusters data
into two groups, each one is assigned to one child. The second approach chooses
random splits and divides the subjects equally into two groups. We evaluate
these splitting procedures in Section 4.3.

When a feature vector describing a probe sample is analyzed to find its best
matching subject in the gallery, a search starting from the root of the tree is
performed. At each internal node, the feature vector is projected onto the PLS
model and according to its response, the search continues either from the left
or from the right child. The search stops when a leaf node is reached. Figure 2
illustrates this procedure.

According to experimental results shown in Section 4.3, the traversal of a few
search paths is enough to obtain the best match for a probe sample. Starting
nodes for alternative search paths are stored in a priority queue. An internal
node nk is pushed into the priority queue when its sibling is chosen to be in
the current search path. The priority associated with nk is proportional to its
response returned by the PLS regression model at its parent. Finally, since each
search path leads to a leaf node, the best match for a given probe sample is
chosen to be the one presenting the highest response (in absolute value) among
the leaf nodes reached during the search.

The tree-based structure can also be used to avoid rebuilding all PLS models
when a new subject is added into the gallery. Assuming that a tree is built for
k subjects, the procedure to add a new subject sk+1 is described as follows.
Choose a leaf node ni, where ti = {sj}; set ni to be an internal node and create
two new leaf nodes to store sj and sk+1; then, build a PLS model for node ni

(now with ti = {sj , sk+1}). Finally, rebuild all PLS models in nodes having ni

as a descendant. Therefore, using this procedure, the number of PLS models
that needs to be rebuilt when a new subject is added no longer depends on the
number of subjects in the gallery, but only on the depth of node ni.

4 Experiments

In this section we evaluate several aspects of our proposed approach. Initially, we
show that the use of the low-level feature descriptors analyzed by PLS in a one-
against-all scheme, as described in Section 3.3, improves recognition rates over
previous approaches, particularly when the data is acquired under uncontrolled
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conditions. Then, we demonstrate that the tree-based approach introduced in
Section 3.4 obtains comparably high recognition rates with a significant reduc-
tion in the number of projections.

The method is evaluated on two standard datasets used for face recognition:
FERET and FRGC version 1. The main characteristics of the FERET dataset
are that it contains a large number of subjects in the gallery and the probe
sets exploit differences in illumination, facial expression variations, and aging
effects [26]. FRGC contains faces acquired under uncontrolled conditions [27].

All experiments were conducted on an Intel Core i7-860 processor, 2.8 GHz
with 4GB of RAM running Windows 7 operating system using a single processor
core. The method was implemented using C++ programming language.

4.1 Evaluation on the FERET Dataset

The frontal faces in the FERET database are divided into five sets: fa (1196
images, used as gallery set containing one image per person), fb (1195 images,
taken with different expressions), fc (194 images, taken under different lighting
conditions), dup1 (722 images, taken at a later date), and dup2 (234 images,
taken at least one year apart). Among these four standard probe sets, dup1
and dup2 are considered the most difficult since they are taken with time-gaps,
so some facial features have changed. The images are cropped and rescaled to
110× 110 pixels.

Experimental Setup. Since the FERET dataset is taken under varying illu-
mination conditions, we preprocessed the images for illumination normalization.
Among the best known illumination normalization methods are the self-quotient
image (SQI) [28], total variation models, and anisotropic smoothing [15]. SQI
is a retinex-based method which does not require training images and has rel-
atively low computational complexity; we use it due to its simplicity. Once the
images are normalized, we perform feature extraction. For HOG features we use
block sizes of 16 × 16 and 32 × 32 with strides of 4 and 8 pixels, respectively.
For LBP features we use block size of 32 × 32 with a stride of 16 pixels. The
mean features are computed from block size of 4×4 with stride of 2 pixels. This
results in feature vectors with 35, 680 dimensions.

To evaluate how the method performs using information extracted exclusively
from a single image per subject, in this experiment we do not add samples from
the training set as counter-examples. The training set is commonly used to build
a subspace to obtain a low dimensional representation of the features before
performing the match. This subspace provides additional information regarding
the domain of the problem.

Results and Comparisons. Figure 3(a) shows the cumulative match curves
obtained by the one-against-all approach for all FERET probe sets. We see that
our method is robust to facial expressions (fb), lighting (fc) and aging effect
(dup1, dup2). The computational time to learn the gallery models is 4519 s and
the average time to evaluate a pair of probe-gallery samples is 0.34 ms.
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Fig. 3. The cumulative match curve for the top 15 matches obtained by the one-

against-all approach based on PLS regression for FERET and FRGC datasets

Table 1 shows the rank-1 recognition rates of previously published algorithms
and ours on the FERET dataset. As shown in the table, the one-against-all
approach achieves similar results on fb and fc without using the training set.
Additionally, our results on the challenging dup1 and dup2 sets are over 80%.

Table 1. Recognition rates of the one-against-all proposed identification method com-

pared to algorithms for the FERET probe sets

Method fb fc dup1 dup2

Best result of [26] 95.0 82.0 59.0 52.0

using training set
LBP [13] 97.0 79.0 66.0 64.0

Tan [6] 98.0 98.0 90.0 85.0

not using training set

LGBPHS [11] 98.0 97.0 74.0 71.0

HGPP [12] 97.6 98.9 77.7 76.1

SIS [19] 91.0 90.0 68.0 68.0

Ours 95.7 99.0 80.3 80.3

4.2 Evaluation on the FRGC Dataset

We evaluate our method using three experiments of FRGC version 1 that con-
sider 2D images. Experiment 1 contains a single controlled probe image and
a gallery with one controlled still image per subject (183 training images, 152
gallery images, and 608 probe images). Experiment 2 considers identification of
a person given a gallery with four controlled still images per subject (732 train-
ing images, 608 gallery images, and 2432 probe images). Finally, experiment 4
considers a single uncontrolled probe image and a gallery with one controlled
still image per subject (366 training images, 152 gallery images, and 608 probe
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Table 2. Recognition rates of the one-against-all proposed identification method com-

pared to other algorithms for the FRGC probe sets

Method Exp.1 Exp.2 Exp.4

UMD [16] 94.2 99.3 -

LC1C2 [17] - - 75.0

Tan (from [15]) - - 58.1

Holappa [15] - - 63.7

Ours 97.5 99.4 78.2

images). We strictly followed the published protocols. The images are cropped
and rescaled to 275× 320 pixels.

Experimental Setup. FRGC images are larger than FERET; thus we have
chosen larger block sizes and strides to avoid computing too many features. For
HOG features we use block sizes of 32 × 32 with strides of 8 pixels. For LBP
features we use block size of 32 × 32 with strides of 24 pixels. And the mean
features are extracted from block sizes of 8 × 8 with a stride of 4 pixels. This
results in feature vectors with 86, 634 dimensions.

Experiment 4 in FRGC version 1 is considered the most challenging in this
dataset. Since it is hard to recognize uncontrolled faces directly from the gallery
set consisting of controlled images, we attempted to make additional use of the
training set to create some uncontrolled environment information using morphed
images. Morphing can generate images with reduced resemblance to the imaged
person or look-alikes of the imaged person [29]. The idea is to first compute a
mean face from the uncontrolled images in the training set. Then, we perform
triangulation-based morphing from the original gallery set to this mean face by
20%, 30%, 40%. This generates three synthesized images. Therefore, for each
subject in the gallery we now have four samples.

Results and Comparisons. Figure 3(b) shows the cumulative match curves
obtained by the one-against-all approach for the three probe sets of FRGC. In
addition, the computational time to learn gallery models is 410.28 s for experi-
ment 1, 1514.14 s for experiment 2, and 1114.39 s for experiment 4. The average
time to evaluate a pair of probe-gallery samples is 0.61 ms.

Table 2 shows the rank-1 recognition rates of different algorithms on the
FRGC probe sets. Our method outperforms others in every probe set considered,
especially on the most challenging experiment 4. This is, to the best of our
knowledge, the best performance reported in the literature.

4.3 Evaluation of the Tree-Based Structure

In this section we evaluate the tree-based structure described in Section 3.4.
First, we evaluate procedures used to split the set of subjects belonging to a node.
Second, we test heuristics used to reduce the search space. Third, we compare the
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Fig. 4. Evaluation of the tree-based approach. (a) comparison of the recognition rates

when random splits and PCA+K-Means approach are used; (b) evaluation of the heuris-

tic based on stopping the search after a maximum number of tree traversals is reached.

results obtained previously by the one-against-all approach to results obtained
when the tree-based structure is incorporated. Finally, we compare our method
to the approach proposed by Yuan et al. [20].

To evaluate the reduction in the number of comparisons, in this section the
x-axis of the plots no longer displays the rank; instead it shows either the per-
centage of projections performed by the tree-based approach when compared to
the one-against-all approach (e.g. Figure 4(a)) or the percentage of tree traver-
sals when compared to the number of subjects in the gallery (e.g. Figure 4(b)).
The y-axis displays the recognition rates for the rank-1 matches. We used probe
set fb from the FERET dataset to perform evaluations in this section.

Procedure to Split Nodes. Figure 4(a) shows that both splitting procedures
described in Section 3.4 obtain similar recognition rates when the same number
of projections is performed. The error bars (in Figure 4(a)) show the standard de-
viation of the recognition rates obtained using random splits. They are very low
and negligible when the percentage of projections increases. Due to the similarity
of the results, we have chosen to split the nodes randomly. The advantages of ap-
plying random splits are the lower computational cost to build the gallery models
and balanced trees are obtained. Balanced trees are important since the depth of
a leaf node is proportional to lg n, which is desirable to keep short search paths.

Heuristics to Reduce the Search Space. The first experiment evaluates the
recognition rate as a function of the maximum number of traversals allowed to
find the match subject to a probe sample; this is limited to a percentage of the
gallery size. Figure 4(b) shows the maximum recognition rates achievable for a
given percentage. We can see that as low as 15% of traversals are enough to
obtain recognition rates comparable to the results obtained by the one-against-
all approach (95.7% for the probe set considered in this experiment).

In the second experiment we consider the following heuristic. For the initial
few probe samples, all search paths are evaluated and the absolute values of the
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Fig. 5. Recognition rates as a function of the percentage of projections performed by

the tree-based approach when compared to the one-against-all approach

regression responses for the best matches are stored. The median of these values
is computed. Then, for the remaining probe samples, the search is stopped when
the regression response for a leaf node is higher than the estimated median value.
Our experiments show that this heuristic alone is able to reduce the number of
projections to 63% without any degradation in the recognition rates.

Results and Comparisons. Using the results obtained from the previous ex-
periments (random splits and adding both heuristics to reduce the search space),
we now compare the recognition rates obtained when the tree-based structure is
used to results obtained by the one-against-all approach. Then, we evaluate the
speed-up achieved by reducing the number of projections.

Figures 5(a) and 5(b) show identification results obtained for FERET and
FRGC datasets, respectively. Overall, we see that when the number of projec-
tions required by the one-against-all approach is reduced to 20% or 30%, there is
a negligible drop in the recognition rate shown in the previous sections. There-
fore, without decreasing the recognition rate, the use of the tree-based structure
provides a clear speed-up for performing the evaluation of the probe set. Accord-
ing to the plots, speed-ups of 4 times are achieved for FERET, and for FRGC
the speed-up is up to 10 times depending on the experiment being considered.

Finally, we compare our method to the cascade of rejection classifiers (CRC)
approach proposed by Yuan et al. [20]. Table 3 shows the speed-ups over the

Table 3. Comparison between our tree-based approach and the CRC approach

test set size as fraction of dataset 10% 21% 32% 43% 65%

CRC
speed-up 1.58 1.58 1.60 2.38 3.35

rank-1 error rate 19.5% 22.3% 24.3% 28.7% 42.0%

Ours
speed-up 3.68 3.64 3.73 3.72 3.80

rank-1 error rate 5.62% 5.08% 5.70% 5.54% 5.54%
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brute force nearest neighbor search and rank-1 error rates obtained by both
approaches. We apply the same protocol used in [20] for the FRGC dataset.
Higher speed-ups are obtained by our method and, differently from CRC, no
increase in the error rates is noticed when larger test set sizes are considered.

5 Conclusions

We have proposed a face identification method using a set of low-level feature
descriptors analyzed by PLS which presents the advantages of being both robust
and scalable. Experimental results have shown that the method works well for
single image per sample, in large galleries, and under different conditions.

The use of PLS regression makes the evaluation of probe-gallery samples very
fast due to the necessity of only a single dot product evaluation. Optimization
is further improved by incorporating the tree-based structure, which reduces
largely the number of projections when compared to the one-against-all ap-
proach, with negligible effect on recognition rates.
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Abstract. Emotion recognition from facial images is a very active re-

search topic in human computer interaction (HCI). However, most of

the previous approaches only focus on the frontal or nearly frontal view

facial images. In contrast to the frontal/nearly-frontal view images, emo-

tion recognition from non-frontal view or even arbitrary view facial im-

ages is much more difficult yet of more practical utility. To handle the

emotion recognition problem from arbitrary view facial images, in this

paper we propose a novel method based on the regional covariance matrix

(RCM) representation of facial images. We also develop a new discrimi-

nant analysis theory, aiming at reducing the dimensionality of the facial

feature vectors while preserving the most discriminative information, by

minimizing an estimated multiclass Bayes error derived under the Gaus-

sian mixture model (GMM). We further propose an efficient algorithm to

solve the optimal discriminant vectors of the proposed discriminant anal-

ysis method. We render thousands of multi-view 2D facial images from

the BU-3DFE database and conduct extensive experiments on the gener-

ated database to demonstrate the effectiveness of the proposed method.

It is worth noting that our method does not require face alignment or

facial landmark points localization, making it very attractive.

1 Introduction

The research on human’s emotion can be traced back to the Darwin’s pioneer
work in [1] and since then has attracted a lot of researchers to this area. Accord-
ing to Ekman et al. [2], there are six basic emotions that are universal to human
beings, namely, angry (AN), disgust (DI), fear (FE), happy (HA), sad (SA), and
surprise (SU), and these basic emotions can be recognized from human’s facial
expression. Nowadays, the recognition of these six basic emotions from human’s
facial expressions has become a very active research topic in human computer
interaction (HCI). During the past decades, various methods have been proposed
for emotion recognition. One may refer to [3][4][5][6] for a survey.

Although emotion recognition has been extensively explored in the past decades,
most of the previous approaches focus on the frontal or nearly frontal view facial

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part VI, LNCS 6316, pp. 490–503, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Emotion Recognition from Arbitrary View Facial Images 491

images. But actually emotion recognition from non-frontal view or even arbitrary
view facial images is of more practical utility. However, recognizing the non-frontal
view emotions is very difficult. To the best of our knowledge, only a few papers
address this issue [7][8][9][10][11][12][14]. In [12], Hu et al. investigated the facial
expression recognition problem on a set of images with five yaw views, i.e., 0o, 30o,
45o, 60o, and 90o, which are generated from the BU-3DFE database [13]. They used
the geometric features defined on the landmark points around the eyes, eye-brow
and mouth to represent the face images and then conducted the emotion recogni-
tion with various classifiers. Instead of using geometric features, Zheng et al. [14]
used sparse SIFT features [15] extracted at 83 landmark points to represent the
facial images. They also proposed a novel feature extraction method, based on an
upper bound of the multi-class Bayes error under the Gaussian assumption, to re-
duce the dimensionality of the feature vectors. However, a common limitation of
both methods is that the landmark points are known apriori from the original 3D
face models. This may severely limit their practical applications, where no 3D face
model is available. Moreover, the effectiveness of both methods is only evaluated
using facial images in limited views, i.e., five yaw views. In practice, one may en-
counter much more different views in emotion recognition. In addition, the assump-
tion of Gaussian distribution for each emotion category in [14] may not suffice for
the true distributions of the data.

In this paper, we address the emotion recognition problem from arbitrary
view facial images. To this end, we propose a novel facial image representation
method, which enables us to avoid the face alignment or facial feature localiza-
tion. The basic idea of the proposed image representation method is to use the
region covariance matrix (RCM) [16][17] of the facial region. More specifically,
we first detect the facial region from a given facial image [18], then extract a set
of dense SIFT feature vectors from each facial image. The concept of dense SIFT
feature vectors is illustrated in Fig.1, where the whole facial region is divided
into some patches, and at the center of each patch we extract a 128-dimensional
SIFT feature vector. The RCM of the facial region is then obtained by com-
puting the covariance of the SIFT vectors. However, it should be noted that,
as the dimensionality of the SIFT vectors is 128, the number of entries to be
estimated in RCM may be much larger than the number of SIFT feature vectors
extracted from each facial image. On the other hand, since the SIFT features are

Fig. 1. The whole facial region is divided into some patches, and each patch produces

a SIFT feature vector
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extracted from arbitrary view facial images, they may carry much information
that are irrelevant to the emotion recognition. Therefore, extracting the most
discriminative features from the raw SIFT feature vectors is advantageous and
necessary for improving the recognition performance.

Recall that in [14], Zheng et al. propose a discriminative feature extraction
method based on an estimated Bayes error using the Gaussian distributions.
However, when the samples, i.e., the SIFT feature vectors, are extracted from
arbitrary view facial images, only a single Gaussian may not be enough to ac-
curately model the distribution of the samples. To accurately model the dis-
tribution of each basic emotion class, in this paper we instead use mixtures of
Gaussians, rather than a single Gaussian. The Gaussian mixture model (GMM)
can be obtained via the expectation-maximization (EM) algorithm [19]. Under
the GMM model, we derive a new upper bound of the multi-class Bayes error.
Based on this upper bound, we develop a new discriminant analysis method,
hereafter called the Bayes discriminant analysis via GMM (BDA/GMM), to re-
duce the dimensionality of the SIFT feature vectors while preserving the most
discriminative information. Moreover, we also propose an efficient algorithm to
solve for the optimal discriminant vectors of BDA/GMM.

The rest of this paper is organized as follows. In section 2, we describe the
feature representation method. In section 3, we propose our BDA/GMM method.
In section 4, we present an efficient algorithm for BDA/GMM. In section 5, we
show the emotion classification. The experiments are presented in section 6.
Finally section 7 concludes our paper.

2 Feature Representation

2.1 SIFT Feature Descriptor

In [14], Zheng et al. extracted a set of SIFT features at 83 pre-defined landmark
points to describe a facial image. Then they concatenated the SIFT features to
represent the image and perform classification. Their experiments demonstrated
the effectiveness of SIFT features for emotion recognition. In practical applica-
tions, however, automatically locating the landmark points from arbitrary view
facial image is very challenging. To overcome this problem, we use the so-called
dense SIFT features description method illustrated in Fig.1 to describe the fa-
cial image, which does not need the face alignment and facial landmark points
localization. More specifically, we divide the whole facial region into a set of
patches. Then, we extract 128-dimensional SIFT features at the center of each
patch. These features are finally used for the calculation of RCM.

2.2 RCM for Facial Image Representation

RCM was originally proposed for image representation and had been successfully
applied to face detection, texture recognition, and pedestrian detection [16][17].
RCM can not only capture the statistical properties of the samples, but also
be invariant to the image translation, scale and rotation changes. On the other
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hand, for emotion recognition we may need to integrate the SIFT feature vectors
of each image to form a data point and then conduct the classification. Based
on the above analysis, we use RCM to represent each facial image in this paper.

However, it should be noted that the entry number of RCM is proportional
to the squared dimensionality of the SIFT feature vectors. For example, in this
paper the dimensionality of the raw SIFT feature vectors is 128, resulting in
(128×128+128)/2=8256 entries to be estimated in RCM. However, the number
of SIFT vectors we extract from each facial image is about 450, which is much less
than the number of parameters to be estimated in RCM. On the other hand, con-
sidering that the SIFT features are extracted from arbitrary view facial images,
they may contain much information irrelevant to the emotion recognition. So it
will be advantageous and necessary to reduce the dimensionality of the SIFT
feature vectors before using the RCM representation. In the next section, we
will propose a novel discriminant analysis theory aiming at reducing the dimen-
sionality of the facial feature vectors while preserving the most discriminative
information.

3 BDA/GMM: Bayes Discriminant Analysis via Gaussian
Mixture Model

In this section, we propose the BDA/GMM method for dimensionality reduction.
Let Xi = {xi,1,xi,2, · · · ,xi,Ni} ∈ IRd (i = 1, 2, · · · , c) denote the ith class data
set, where xi,j represents the j-th sample of the i-th class, Ni is the number of
samples in the i-th class, and c denotes the number of classes.

3.1 Gaussian Mixture Model

Let pi(x|x ∈ Xi) denote the class distribution function of Xi. Then the GMM
of pi(x|x ∈ Xi) can be expressed as follows:

pi(x|x ∈ Xi) =
Ki∑

r=1

πi,rN (x|mi,r,Σi,r), (1)

where each Gaussian density

N (x|mi,r ,Σi,r) =
1

(2π)
d
2 |Σi,r| 12

exp
{

−1
2

(x−mi,r)T Σ−1
i,r (x−mi,r)

}

,

is called a Gaussian mixture component, the parameters πi,r (0 ≤ πi,r ≤ 1
and

∑Ki

r=1 πi,r = 1) are called the mixing coefficients, and Ki is the number of
Gaussian mixture components. The parameters πi,r, mir, and Σi,r of the GMM
in (1) can be estimated via the EM algorithm [19].

3.2 An Upper Bound of Two-Class Bayes Error

Let pk(x|x ∈ Xk) and Pk be the class distribution density function and the prior
probability of the k-th class, respectively. Then the Bayes error between the i-th
class and the j-th class can be expressed as [21]:
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ε =
∫

min {Pipi(x|x ∈ Xi), Pjpj(x|x ∈ Xj)} dx. (2)

Let π̂k,q = Pkπk,q and Nk,q = N (x|mk,q ,Σk,q). Then from (1) we have

min {Pipi(x|x ∈ Xi), Pjpj(x|x ∈ Xj)}

= min

⎧
⎨

⎩

Ki∑

r=1

π̂i,rNi,r,

Kj∑

l=1

π̂j,lNj,l

⎫
⎬

⎭
≤
∑

r

min

⎧
⎨

⎩
π̂i,rNi,r,

Kj∑

l=1

π̂j,lNj,l

⎫
⎬

⎭

≤
∑

r

∑

l

min {π̂i,rNi,r, π̂j,lNj,l} ≤
∑

r

∑

l

√
π̂i,rπ̂j,lNi,rNj,l, (3)

where we have used the inequality min(a, b) ≤ √ab, ∀a, b ≥ 0 in the last inequal-
ity of (3). By substituting (3) into (2), we have the following upper bound of the
Bayes error [21]:

ε ≤ εij =
∑

r

∑

l

√
π̂i,rπ̂j,l exp

(
−Dr,l

i,j

)
, (4)

where

Dr,l
i,j =

1
8

(mi,r −mj,l)T (Σ̄r,l
i,j)−1(mi,r −mj,l) +

1
2

ln
|Σ̄r,l

i,j |
√|Σi,r||Σj,l|

, (5)

in which Σ̄r,l
i,j = 1

2 (Σi,r + Σj,l).
Project x onto a line in direction ω ∈ IRd, then the following theorem holds:

Theorem 1. Let pi(x|x ∈ Xi) expressed in (1) denote the distribution function
of the i-th class. Then the class distribution function p̃i(ωT x|x ∈ Xi) of the
projected samples ωT x is also a mixture of Gaussians:

p̃i(ωT x|x ∈ Xi) =
Ki∑

r=1

πi,rN (ωT x|ωT mi,r, ω
T Σi,rω). (6)

Proof: See supplementary materials. �

From Theorem 1, equation (5) becomes

D̃r,l
i,j =

1
8

[
ωT (mi,r −mj,l)

]2

ωT Σ̄r,l
i,jω

+
1
2

ln
ωT Σ̄r,l

i,jω
√

(ωT Σi,rω)(ωT Σj,lω)
, (7)

and the upper bound of the Bayes error in (4) becomes
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εij =
∑

r

∑

l

√
π̂i,rπ̂j,l

(
ωT Σ̄r,l

i,jω
√

(ωT Σi,rω)(ωTΣj,lω)

)− 1
2

exp

{

−1

8

[ωT (mi,r −mj,l)]
2

ωT Σ̄r,l
i,jω

}

.

(8)

To find a useful upper bound of εij , we introduce the following two lemmas:

Lemma 1. Let f(x) = (1 − x2)
1
4 (0 ≤ x ≤ 1). Then f̂(x) =

(
3
4

) 1
4
(

7
6 − 1

3x
)

(0 ≤ x ≤ 1) is the tightest linear upper bound of f(x) in the sense that the total
gap

∫ 1

0 [f̂(x)− f(x)]dx between them is minimum.

Proof: See supplementary materials. �
Lemma 2. Let h(x) = exp(−x) (0 ≤ x ≤ a). Then ĥ(x) = 1 − 1− exp(−a)

a
x

(0 ≤ x ≤ a) is the tightest linear upper bound of h(x).

Proof: h(x) is a convex function on the interval [0, a]. So the linear function
passing through its two ends, (0, h(0)) and (a, h(a)), is the tightest linear upper
bound of h(x). This function is ĥ(x). �
From Lemmas 1 and 2, we have:

(
ωT Σ̄r,l

i,jω
√

(ωT Σi,rω)(ωT Σj,lω)

)− 1
2

≤ A0 −A1

|ωTΔΣr,l
i,jω|

ωT Σ̄r,l
i,jω

, (9)

exp

{

−1
8

[ωT (mi,r −mj,l)]2

ωT Σ̄r,l
i,jω

}

≤ 1−Bij
[ωT (mi,r −mj,l)]2

ωT Σ̄r,l
i,jω

, (10)

where A0 =
(

3
4

) 1
4 7

6 , A1 =
(

3
4

) 1
4 1

3 , ΔΣr,l
i,j = Σi,r−Σj,l

2 , and Bij = 1−e−λij

8λij
, in

which λij = maxω
1
8

ωT Br,l
i,jω

ωT Σ̄r,l
i,jω

and Br,l
i,j = (mi −mj)(mi −mj)T . Applying (9)

and (10) to (8), we have

εij≤
∑

r

∑

l

√
π̂i,rπ̂j,l

{(

A0 −A1

|ωTΔΣr,l
i,jω|

ωT Σ̄r,l
i,jω

)

− Bij

[

min
ω

(

A0 −A1

|ωTΔΣr,l
i,jω|

ωT Σ̄r,l
i,jω

)]
[ωT (mi,r −mj,l)]2

ωT Σ̄r,l
i,jω

}

=
∑

r

∑

l

√
π̂i,rπ̂j,l

(

A0−A1

|ωTΔΣr,l
i,jω|

ωT Σ̄r,l
i,jω

−Bij(A0−A1)
[ωT (mi,r−mj,l)]2

ωT Σ̄r,l
i,jω

)

,(11)

where we have used the fact that 0 ≤ |ωT ΔΣijω|
ωT Σ̄ijω

≤ 1.



496 W. Zheng et al.

3.3 An Upper Bound of Multiclass Bayes Error

For the c classes problem, the Bayes error can be upper bounded as ε ≤
1
2

∑

i

∑
j �=i εij [20]. Then, from (11) we obtain that

ε ≤ A0

2

∑

i

∑

j �=i

∑

r

∑

l

√
π̂i,rπ̂j,l − A1

2

∑

i

∑

j �=i

∑

r

∑

l

√
π̂i,rπ̂j,l

∣
∣
∣ωT (ΔΣr,l

i,j)ω
∣
∣
∣

ωT Σ̄r,l
i,jω

−Bmin(A0 −A1)
2

∑

i

∑

j �=i

∑

r

∑

l

√
π̂i,r π̂j,l

[ωT (mi,r −mj,l)]2

ωT Σ̄r,l
i,jω

, (12)

where Bmin = mini,j {Bij} = 1−e−λmax

8λmax
and λmax = maxi,j{λij}. Recursively

applying the following inequality

a

b
+
c

d
≥ a+ c

b+ d
, ∀a, c ≥ 0; b, d > 0 (13)

to the error bound in (12), we have the following upper bound of the Bayes error:

ε≤ A0

2

∑

i

∑

j �=i

∑

r

∑

l

√
π̂i,rπ̂j,l − A1

2

∑
i

∑
j �=i

∑
r

∑
l(π̂i,rπ̂j,l)

3
2 |ωTΔΣr,l

i,jω|
∑

i

∑
j �=i

∑
r

∑
l π̂i,rπ̂j,lωT Σ̄r,l

i,jω

−Bmin(A0 −A1)
2

∑
i

∑
j �=i

∑
r

∑
l(π̂i,r π̂j,l)

3
2 [ωT (mi,r −mj,l)]2

∑
i

∑
j �=i

∑
r

∑
l π̂i,rπ̂j,lωT Σ̄r,l

i,jω
. (14)

3.4 Our BDA/GMM Method

As the exact value of the Bayes error is hard to evaluate, to minimize the Bayes
error, we may minimize its upper bound instead. From (14) we may maximize
the following function

J(ω) =

∑
i

∑
j �=i

∑
r

∑
l(π̂i,rπ̂j,l)

3
2 [ωT (mi,r −mj,l)]2

∑
i

∑
j �=i

∑
r

∑
l π̂i,rπ̂j,lωT Σ̄r,l

i,jω

+
A1

Bmin(A0 −A1)

∑
i

∑
j �=i

∑
r

∑
l(π̂i,r π̂j,l)

3
2 |ωTΔΣr,l

i,jω|
∑

i

∑
j �=i

∑
r

∑
l π̂i,r π̂j,lωT Σ̄r,l

i,jω
. (15)

Let
B =

∑

i

∑

j �=i

∑

r

∑

l

(π̂i,r π̂j,l)
3
2 (mi,r −mj,l)(mi,r −mj,l)T

and
Σ̄ =

∑

i

∑

j �=i

∑

r

∑

l

π̂i,rπ̂j,lΣ̄
r,l
i,j .
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Then we have the following discriminant criterion

J(ω, μ) =
ωT Bω
ωT Σ̄ω

+ μ

∑
i

∑
j �=i

∑
r

∑
l(π̂i,r π̂j,l)

3
2 |ωT (Σi,r −Σj,l)ω|

ωT Σ̄ω
, (16)

where 0 ≤ μ ≤ A1
Bmin(A0−A1) is a parameter to make the upper bound tighter,

whose optimal value can be found by cross validation. Based on the above
discriminant criterion J(ω, μ), we define the optimal discriminant vectors of
BDA/GMM as follows [14]:

ω1 = arg max
ω

J(ω, μ), and ωk = arg max
ωT Σ̄ωj=0,

j=1,··· ,k−1

J(ω, μ), (k > 1). (17)

4 An Efficient Algorithm for BDA/GMM

Let ω = Σ̄− 1
2α, Σ̂i,r = Σ̄− 1

2 Σi,rΣ̄− 1
2 , Σ̂j,l = Σ̄− 1

2 Σj,lΣ̄− 1
2 , and B̂ =

Σ̄− 1
2 BΣ̄− 1

2 . Then the optimization problem (17) becomes:

α1 = arg max
α

Ĵ(α, μ), and αk = arg max
αT Uk−1=0

Ĵ(α, μ), (18)

where
Uk−1 = [Σ̄−1α1, Σ̄−1α2, · · · , Σ̄−1αk−1] and

Ĵ(α, μ) =
αT B̂α
αTα

+ μ

∑
i

∑
j �=i

∑
r

∑
l(π̂i,r π̂j,l)

3
2 |αT (Σ̂i,r − Σ̂j,l)α|

αTα
.

Let K = max{Ki|i = 1, 2, · · · , c}, S = (S)c×c×K×K be a c×c×K×K sign tensor
whose elements (S)ijrl = sijrl ∈ {+1,−1}, and Ω = {S|(S)ijrl ∈ {+1,−1}}
denote the set of sign tensors. Further define

T(S, μ) = B̂ + μ
∑

i

∑

j �=i

∑

r

∑

l

(π̂i,r π̂j,l)
3
2 sijrl(Σ̂i,r − Σ̂j,l).

Then we have

Ĵ(α, μ) = max
S∈Ω

αT T(S, μ)α
αTα

. (19)

From (18) and (19), the optimal vectors αi in (18) can be expressed as

α1 = arg max
S∈Ω

max
α

αT T(S, μ)α
αTα

,

· · ·
αk = arg max

S∈Ω
max

αT Uk−1=0

αT T(S, μ)α
αTα

. (20)

Suppose that the sign tensor S is fixed, then the first vector α1 in (20) is the
eigenvector associated with the largest eigenvalue of T(S, μ). The principal



498 W. Zheng et al.

Algorithm 1. Solution method for ωi (i = 1, 2, · · · , k)

Input:

– GMM parameters mi,r (i = 1, · · · , c) and Σi,r, π̂i,r, and Ki. Parameter μ.

Initialization:

1. Compute matrices Σ̄ and B; Perform SVD of Σ̄: Σ̄ = UΛUT , compute Σ̄− 1
2 =

UΛ− 1
2 UT and Σ̄−1 = UΛ−1UT , Σ̂i,r = Σ̄− 1

2 Σi,rΣ̄
− 1

2 , B̂ = Σ̄− 1
2 BΣ̄− 1

2 ;

For i = 1, 2, · · · , k, Do

1. Set S← ones(c, c, K, K), where K = max{Ki|i = 1, · · · , c}, S1 ← S;

2. Solve the principal eigenvector of B̂αi = λαi via the power method;

3. Set (S1)ijlr ← sign(αi
T (Σ̂i,r − Σ̂j,l)αi);

4. While S �= S1, Do
(a) Set S← S1;

(b) Compute T(S, μ) = B̂ + μ
∑

i

∑
j �=i

∑
r

∑
l sijrl(πi,rπj,l)

3
2 (Σ̂i,r − Σ̂j,l) and

solve the principal eigenvector of T(S, μ)αi = λαi via the power method;

(c) Set (S1)ijlr ← sign(αi
T (Σ̂i,r − Σ̂j,l)αi);

5. If i = 1, qi ← αi, qi ← qi/‖qi‖, and Q1 ← qi;

else qi ← αi −Qi−1(Q
T
i−1αi), qi ← qi/‖qi‖, and Qi ← (Qi−1 qi);

6. Compute Σ̂p,q ← Σ̂p,q − (Σ̂p,qqi)q
T
i − qi(q

T
i Σ̂p,q) + qi(q

T
i Σ̂p,qqi)q

T
i (p =

1, · · · , c; q = 1, · · · , Kp );

7. Compute B̂← B̂− B̂qiq
T
i − qi(q

T
i B̂) + qi(q

T
i B̂qi)q

T
i

Output:

– ωi =
1

√
αT

i Σ̄−1αi

Σ̄− 1
2 αi, i = 1, 2, · · · , k.

eigenvector of a matrix can be efficiently computed via the power iteration ap-
proach [22]. Suppose that we have obtained the first k vectors α1, · · · , αk. Then
the (k + 1)-th vector αk+1 can be solved thanks to the following theorem [14]:

Theorem 2. Let QrRr be the QR decomposition of Ur, where R is an
r × r upper triangular matrix. Then αr+1 defined in (20) is the principal
eigenvector corresponding to the largest eigenvalue of the following matrix
(Id −QrQT

r )T(S, μ)(Id −QrQT
r ).

In [14], Zheng et al. proposed a greedy search approach to solve the subop-
timal solution to a similar optimization problem as (20), where each element
of S should be checked at least once in each iteration of finding the suboptimal
vectors. Consequently, the computation cost would increase drastically when the
number of Gaussian mixture components grows. To reduce the computational
cost, here we propose a much more efficient algorithm to find the suboptimal
solutions to (20). To this end, we introduce the following definition:

Definition 1: Let S1 and S2 be two sign tensors and α1 and α2 be the prin-
cipal eigenvectors of T(S1, μ) and T(S2, μ), respectively. If αT

2 T(S2, μ)α2 >
αT

1 T(S1, μ)α1, then we say that S2 is better than S1.
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According to Definition 1, solving the optimal solution in (20) boils down to
finding the best sign tensor S. Then we have the following theorem:

Theorem 3. Suppose that α(1) is the principal eigenvector of T(S1, μ) and S2

is defined as (S2)ijrl = sign(α(1)T
(Σ̂i,r − Σ̂j,l)α(1)). Then S2 is better than S1.

Proof: See supplementary materials. �
Thanks to Theorem 3, we are able to improve the sign tensor step by step. We
give the pseudo-code of solving k most discriminant vectors of our BDA/GMM
method in Algorithm 1.

5 Classification

Suppose that fp (p ∈ I) are the raw SIFT feature vectors extracted from an
image � using the method described in section 2, where I denotes the center
positions of the patches in �. Let W = [ω1, ω2, · · · , ωk] and gp = WT fp ∈ IRk

be the projected feature vectors of fp onto W. Let Mcov denote the covariance
matrix of the feature vectors {gp|p ∈ I}. Since Mcov is a symmetric matrix,
we concatenate the elements in the upper triangular part of Mcov into a vector
vcov. Then we have the final feature vector v = vcov/‖vcov‖ after normalizing
vcov. Now we can train a classifier, e.g., the support vector machine (SVM) [19],
Adaboost [23], or simply the linear classifier [21], using all the vectors v. For a
test facial image, we use the same method to obtain the corresponding vector
vtest, and then classify it using the trained classifier. In this paper, we choose
the linear classifier for our emotion recognition task.

6 Experiments

In this section, we conduct experiments to demonstrate the effectiveness of the pro-
posed method. Since no facial expression database with arbitrary view facial images
is available, we conduct our experiments on the facial images generated from the
BU-3DFE database [13]. More specifically, by projecting the 3D facial expression
models in the BU-3DFE database in various directions, we can generate a set of
2D facial images with various facial views. The BU-3DFE database consists of 3D
facial expression models of 100 subjects (56 female and 44 male). For each subject,
there are 6 basic emotions with 4 levels of intensities. In our experiments, we only
choose the 3D models with the highest level of intensity to generate 35 facial im-
ages corresponding to 35 projection directions, i.e., seven yaw angles (−45o,−30o,
−15o, 0o, +15o, +30o, and +45o) and five pitch angles (−30o,−15o, 0o, +15o, and
+30o). Consequently, we have 100 × 6 × 5 × 7 = 21000 facial images in total for
our experiments. Fig. 2 shows some examples of the generated face images.

We adopt a five-fold cross validation strategy [21] to conduct the experiments.
More specifically, we randomly divide the 100 subjects into five groups, each one
having 20 subjects. In each trail of the experiment, we choose one group as test
set and the other ones as training set. We conduct five trials of the experiment in
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Fig. 2. Some facial images rendered from the BU-3DFE database, covering the facial

images of six basic emotions, seven yaw angles, and five pitch angles

total such that each subject is used as test data once. For all the experiments, we
fit the GMM with 5 different numbers, i.e., 16, 32, 64, 128, and 256, of Gaussian
mixture components, and for each choice of the number of Gaussian mixture
components, we apply our BDA/GMM algorithm to reduce the dimensionality
of the SIFT feature vectors from 128 to 30. The parameter μ in the discriminant
criterion (16) is simply fixed at μ = 0.5 in all the experiments. Note that a better
choice of its value may result in better performance.

Table 1 summarizes the experimental results of the overall error rates as well
as the error rates of each emotion with different numbers of Gaussian mixture
components. Fig.3 shows the overall confusion matrix of recognizing the six basic
emotions, in which 256 Gaussian mixture components are used. From Table 1,
one can see that the lowest error rate is 31.72%, achieved when 128 Gaussian
mixture components are used. We can also see from Table 1 and Fig.3 that the
emotions easiest to be recognized are happy and surprise, and the remaining
emotions are more difficult.

Table 2 shows the overall error rates of the proposed method across various
facial views when 256 Gaussian mixture components are used. In Table 2, each
row of the table represents the overall error rates of different pitch angles (from
−30o to +30o), while each column represents the overall error rates of different
yaw angles (from −45o to +45o). From Table 2, one can clearly see that both yaw
angles and pitch angles can affect the emotion recognition performance, where
the best results are achieved when the facial images are frontal or near frontal.

As there are no other methods proposed for arbitrary view emotion recogni-
tion, we can only provide our own experimental results. Nevertheless, for com-
parison we also provide the results of two approaches. One is to use the linear
discriminant analysis (LDA) to replace our BDA/GMM method for reducing the
dimensionality of the SIFT feature vectors, and the other one is to replace the
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Table 1. The overall error rates (%) of the proposed method under different numbers

of Gaussian mixture components

mixture # 16 32 64 128 256

AN 43.51 43.46 42.37 43.23 42.60

DI 31.71 32.20 32.60 32.00 31.89

FE 45.06 44.60 46.49 45.17 44.89

HA 16.74 16.20 17.34 15.60 16.57

SA 44.31 43.80 41.11 41.03 42.09

SU 14.57 14.29 13.26 13.31 12.57

Ave 32.65 32.42 32.20 31.72 31.77

AN
DI

FE
HA

SA
SU

AN
DI

FE
HA

SA
SU

0

0.2

0.4

0.6

0.8

1

Output
Input

Fig. 3. The overall confusion matrix of the proposed method, where 256 Gaussian

mixture components are used

Table 2. Average error rates (%) of different emotions versus different views using our

method, where 256 Gaussian mixture components are used

−30o −15o 0o +15o +30o Ave

−45o 39.67 35.67 31.00 33.00 43.00 36.47

−30o 30.67 28.33 27.67 28.50 38.50 30.73

−15o 28.33 29.17 25.83 25.83 33.17 28.47

0o 30.83 27.83 25.17 25.67 31.83 28.27
+15o 32.33 29.33 26.33 28.50 32.00 29.70

+30o 32.33 29.33 29.33 32.67 35.50 31.83

+45o 40.17 33.50 31.33 35.83 43.67 36.90

Ave 33.48 30.45 28.10 30.00 36.81 31.77

Gaussian mixtures in our BDA/GMM method with single Gaussian, denoted
by BDA/Gaussian, to model each class (i.e., a view is a class) and then repeat
the rest procedures in our paper, where the remaining experimental settings in
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Fig. 4. Average error rate comparisons among LDA, BDA/Gaussian, and BDA/GMM

both approaches are the same as those for our BDA/GMM. Fig.4 presents the
overall error rates of the three methods. From Fig.4, one can clearly see that our
BDA/GMM method achieves much better results than the LDA.

7 Conclusions

In this paper we have proposed a new method to address the emotion recognition
problem from arbitrary view facial images. A major advantage of this method is
that it does not need face alignment or facial landmark points localization from
arbitrary view facial images, both of which are very challenging. As an important
part of our emotion recognition system, a novel discriminant analysis theory,
called the BDA/GMM, is also developed. This new discriminant analysis theory
is derived by minimizing a new upper bound of the Bayes error which is derived
using the Gaussian mixture model. The proposed method is tested on a lot of
facial images with various views, generated from 3D facial expression models in
the BU-3DFE database. The experimental results show that our method can
achieve a satisfactory recognition performance.

It is worth noting that, although having been proven to be an effective image
representation method, the RCM representation may also discard some useful
discriminant information, e.g., the class means of samples. Therefore, finding
a better image representation method may help to improve the performance of
emotion recognition. This will be one of our future work. We will also investigate
whether a more advanced classifier, e.g., SVM [19] and Adaboost [23], can greatly
improve the recognition performance.
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23. Rätsch G., Onoda T., Müller K.-R.: Soft margins for Adaboost. In: Machine Learn-

ing, pp. 1–35 (2000)



Face Liveness Detection from a Single Image
with Sparse Low Rank Bilinear Discriminative Model

Xiaoyang Tan, Yi Li, Jun Liu, and Lin Jiang

Dept. of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics, China

{x.tan,j.liu}@nuaa.edu.cn

Abstract. Spoofing with photograph or video is one of the most common manner
to circumvent a face recognition system. In this paper, we present a real-time and
non-intrusive method to address this based on individual images from a generic
webcamera. The task is formulated as a binary classification problem, in which,
however, the distribution of positive and negative are largely overlapping in the
input space, and a suitable representation space is hence of importance. Using
the Lambertian model, we propose two strategies to extract the essential infor-
mation about different surface properties of a live human face or a photograph,
in terms of latent samples. Based on these, we develop two new extensions to the
sparse logistic regression model which allow quick and accurate spoof detection.
Primary experiments on a large photo imposter database show that the proposed
method gives preferable detection performance compared to others.

1 Introduction

Biometric techniques, which rely on the inherited biometric traits taken from the user
himself for authentication, have gained wide range of applications recently [6]. Unfor-
tunately, once such biometric data is stolen or duplicated, the advantages of biometrics
become disadvantages immediately.

This situation is most commonly found in a face recognition system, where one or
some photos of a valid user can be easily obtained without even physically contacting
with him/her, say, through internet downloading or simply capturing them using a cam-
era. A 2D-image based facial recognition system can be easily spoofed by these simple
tricks and some poorly-designed systems have even been shown to be fooled by very
crude line drawings of a human face [12]. Actually, it is a very challenging task to guard
against spoofs based on a static image of a face (c.f ., Fig. 1), while most effort of the
current face recognition research has been paid on the ”image matching” part of the
system without caring whether the matched face is from a live human or not.

Current anti-spoofing methods against photograph or video of a valid user can be cate-
gorized based on different criterions, such as the kinds of biometric cues are used, whether
additional devices are used, and whether human interaction is needed. A good survey of
schemes against photograph spoof can be found in [8] [19]. The most commonly used
facial cues include the motion of the facial images such as the blinking of eyes, and the
small, involuntary movements of parts of face and head. In [19], an eyeblink-based anti-
spoofing method is proposed by integrating a structured prediction method. [10] presents

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part VI, LNCS 6316, pp. 504–517, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Do you know which image is captured from a photo? This illustrates the difficulty of
detecting photo spoof from a single static image. (Answer: all but the rightmost column are
photos.)

a optimal-flow based method to capture the subtle motion of face images. Although no
additional devices are required in these methods, they may encounter difficulties, for ex-
ample, when a short video of the valid user is displayed or simply shaking the photograph
before the camera. [7] gives an interesting example where eye-blinking and some extent
of mouth movements can be well simulated using just two photographs.

Other commonly used facial cues include the surface texture of the skin and the depth
information of the head. In [13], the Fourier analysis is used to capture the frequency
distribution of face images of a live human. [20] lists a number of measures that could
be used to characterize the optical qualities of skin from face of a live person. If specific
devices are available, near infrared images or thermal images can be considered [23].
The 3D information could also be used to provide additional protection against spoof
attempts with such devices as 3D cameras or multiple 2D cameras [2].

Besides facial cues, multi-modal information (e.g., voices or gesture etc.), various
challenge-response methods (e.g., asking the user to blink, smile or move head ) can
also be considered, but these methods need either extra devices or user involvement.
Another interesting research against photo spoof is to use a user-specific key to generate
a random matrix to distort the face template, so that a ”stolen” face image without the
key will be almost of no use [3]. This kind of method, however, mainly focus on the
security of biometric templates instead of face liveness detection.

Despite the success of the above methods in some cases, non-intrusive methods with-
out extra devices and human involvement are preferable in practice, since they could be
easily integrated into an existing face recognition system, where usually only a generic
webcam is equipped.

1.1 Motivations and Contributions of This Paper

Partly due to the previously mentioned drawbacks of the facial movement based meth-
ods, in this paper we focus on the methods which rely on a single static image to do
spoof detection. Such methods can also be directly applied to deal with video spoof or
be integrated with a video-based face liveness detection method for better performance.

The challenge here, is that the appearance of human face can change drastically due
to various illumination conditions and there are also many camera-related factors that
may influence the quality of images, which makes it hard to differentiate images from a
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live person from those from photos (c.f ., Fig. 1). Due to these, simply asking ”what’s in
the image (e.g., human skin)” tends to be unreliable. Another strategy is to use various
image processing techniques to extract features that highlight the difference between
images from live human faces and those from photographs. In [13], a Fourier analysis
based method is proposed, in which one third of components with high frequency are
heuristically chosen as such features. This method works well when the photo images
has low definition and small size.

In this paper, the anti-photo spoof problem is formulated as a binary classification
problem, thus the statistics from the whole set of images consisting both live human
faces and photographs can be fully exploited. This strategy, however, has its own dif-
ficulty in that the distributions of positive and negative are largely overlapping in the
input space, and a suitable representation space is of importance. Actually, a real hu-
man face is different from a face in a photo mainly in two ways: 1) a real face is a
3D object while a photo is 2D by itself; 2) the surface roughness of a real face and a
photo is different. These two factors, along with others (such as the definition of photo
print and the noise introduced by the camera), usually make different image quality of
a real face and a photo face under the same imaging condition (we further assume that
both are properly focused). Hence exploiting such information would help to enlarge
the intra-class variations between client class and imposter class.

For classification, we extended the standard sparse logistic regression classifier both
nonlinearly and spatially to improve its generalization capability under the our setting
(i.e., high dimensionality and small size samples). It is shown that the nonlinear sparse
logistic regression significantly improves the anti-photo spoof performance, while the
spatial extension leads to a sparse low rank bilinear logistic regression model, which
effectively control the complexity of models without manually specify the target rank
beforehand (e.g., in PCA).

To evaluate our method, we collected a publicly available large photograph-imposter
database containing over 50K photo images from 15 subjects. Preliminary experiments
on this database show that the proposed method gives good detection performance, with
advantages of realtime testing, non-intrusion and no extra hardware requirement.

The paper is organized as follows: in Section 2, we describe in detail the proposed
method. Section 3 describes the photograph imposter database and gives the experi-
mental results. Section 4 concludes this paper.

2 The Approach

We formulate the task of detecting photograph spoof as a binary classification problem.
However, a simple PCA analysis indicates that there exist large overlapping between
the distributions of positive and negative samples (not shown). This indicates that a
suitable representation space or measure for determining whether a image arise from a
live human is of importance. We do this based on the analysis of Lambertian model [18].

2.1 The Face Imaging Model

Suppose that we are given two images, It(x, y) and If (x, y), where It(x, y) is taken
from a live human while If (x, y) from an imposter, say, a photograph or a frame of a
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video clip displayed on a laptop, and (x, y) is the position of each pixel in the image
coordinate system. A useful question to ask is: what’s the difference between It(x, y)
and If (x, y) under the same illumination condition1? We examine this under the Lam-
bertian reflectance assumption, where the face surface is modeled as an ideal diffuse
reflectors, hence reflecting light according to Lambert’s cosine law [18]. In other words,
the intensity of a face image I(x, y) is described as

I(x, y) = fc(x, y)ρ(x, y)Alight cos θ, (1)

where fc(x, y) term depends on the underlying camera, Alight is the intensity of the
incoming light at a particular wavelength. The ρ(x, y) term is the reflectance coefficient,
which represents the diffuse reflectivity of the surface at that wavelength. The cos θ =
n · s is the angle between the surface normal n and the incoming light ray s.

First we assume that fc(x, y) is a constant. This is reasonable for many webcams.
Then the client image It(x, y) and imposter image If (x, y) can be respectively ex-
pressed as,

It(x, y) = ρt(x, y)Alight(nt · s), (2)

If (x, y) = ρf (x, y)Alight(nf · s). (3)

These equations say that if under the same lighting conditions (i.e., Alight, s terms
are fixed), the differences between the two images can be made evident by compar-
ing their surface properties, i.e., the surface reflectance property ρt\ρf , and the surface
normal nt\nf at that point. Intuitively this is feasible since the human skin and a pho-
tograph (or the Laptop which is replaying a video clip) are made of different materials
and the smoothness of their surfaces are different as well. For example, some previous
work [13] uses the high frequency components of the given image to identify possible
spoof. This method can be considered as a rough way to approximate the ρ value, but
the information from n is lost. For the sake of robustness under various conditions (e.g.,
against high-definition photograph spoof), exploiting full information from a given im-
age is essential. To do this, one can write the above equations as follows,

It(x, y) = ρt(x, y)A(nt · s) � ρt(x, y)μt(x, y) (4)

If (x, y) = ρf (x, y)A(nf · s) � ρf (x, y)μf (x, y) (5)

where we denote μ(x, y) = Alight(n · s), which is a function of the surface normal
n. Hence the information we are interested in are actually encoded in the functional
ρ(x, y) and μ(x, y). Although we usually cannot watch the behavior of these functionals
directly, we may estimate them if a series of m samples of xi

ρ = ρi(x, y) and xi
μ =

μi(x, y), i = 1, 2, . . . ,m, are available. We will call these samples ”latent samples”
since they are hidden by themselves, and we need a method to derive them.

2.2 Deriving Latent Samples

In this section we present two methods to derive the latent samples for our discrimina-
tive model.

1 This assumption will be largely relaxed later.
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Variational Retinex-based Method. To solve (4) or (5), one has to decompose a given
face image into reflectance part ρ(x, y) and illuminance part μ(x, y), which is exactly
what most illumination invariant face recognition method does. Note that, however, for
illumination invariant face recognition, once the albedo of a face image is obtained, the
illuminance part is usually discarded. But in our case, the illuminance part is useful
since it contains information about the surface normal (c.f . (4)). In particular, for a pho-
tograph, the surface normal is mostly constant hence the lighting factor s will actually
be dominant in various μf (x, y) images. While for a real face, both n and s will count
in μt(x, y). This nature of imaging variability turns out providing useful discriminative
information about whether a μ(x, y) image is from a 3D object or not.

Here we prefer a type of variational Retinex approach, in which the illuminance
μ(x, y) is first principally sought within the total variational framework and the albedo
ρ(x, y) is then estimated through Land’s Retinex formula [11]. Typical methods in this
line include the anisotropic smoothing method by Gross et al. [4] and Logarithmic Total
Variation (LTV) smoothing by Chen et al. [1]. In this work we take the Logarithmic
Total Variation (LTV) method for experiments, where a plausible illumination image
μ(x, y) is estimated by minimizing a functional combining smoothness and fidelity
terms:

μ = argmin
∫

image

‖∇μ‖1 + λ |I − μ| (6)

where λ is the data fidelity parameter (set to 0.5 in this work). Once the μ is obtained,
we estimate ρ through log(ρ(x, y)) = log(I(x, y)+1)− log(μ(x, y)+1) using Land’s
Retinex formula [11] (c.f ., (4)).

Fig. 2 gives some illustration of the ρ image and μ image decomposed in this manner,
from a client image and a imposter image, respectively. It can be observed that the
texture of μf image from a photo is less rich than μt from a real face as expected.

Difference of Gaussian (DoG)-based Method. Another method is based on the in-
tuitive idea that the image of a photograph taken through a webcam is essentially an
image of a real face but passes through the camera system twice and the printing system
once. This means that compared to an image of a real human, the imposter image tends
to be more seriously distorted by the imaging system and hence has lower image quality
(i.e., missing more high frequency details) under the same imaging conditions. We may
exploit this characteristic to distinguish an imposter image and a client image.

In particular, we do this by analyzing the 2D Fourier spectra similar to [13]. But in-
stead of using very high frequency band which maybe too noisy, we try to exploit the
difference of image variability in the high-middle band. This is done through Difference
of Gaussian (DoG) filtering which is essentially a bandpass filter and has successfully
been applied to remove lighting variations in face images [25]. To keep as much detail
as possible without introducing noise or aliasing, we take a quite narrow inner (smaller)
Gaussian (σ0 ≤ 1), while the outer one might have σ1 of 1-2 pixels to filter out mis-
leading low spatial frequency information. In other words, by using this preprocessing
procedure, when comparing two images, we can focus more on their major part of im-
age information without being confused by non-relevant information.

In this work, we use σ0 = 0.5 and σ1 = 1.0 by default. Fig. 2 gives some illustration
of two images (one client image and one imposter image) and their respective Fourier
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Fig. 2. Illustration of the latent samples derived for a client image (top row) and an imposter
image (bottom row): from left to right, 1) the raw image; 2) the μ image estimated with LTV; 3)
the ρ image estimated with LTV; 4) the centered Fourier spectra of the raw image; 4) the centered
Fourier spectra of the image filtered with DoG.

spectra with/without DoG filtering. It can be observed that the DoG filter cleans the
noise in the high frequency areas. In addition, the client image contains richer horizontal
components in the high frequency areas than the imposter image, while the two images’
respective distributions of components in various orientations are different in the middle
band. Hence compared to the previous LTV-based method, the appearance variations of
face images are emphasized here.

2.3 Classification

In the most simple case where the photos are taken under the same lighting condition
with real faces (i.e., sf = sf = s), we have μf (x, y)\μt(x, y) = (nf · s)\(nt · s).
One can see that it is the surface norms nt and nf that dominate the ratio. This implies
that one can try to first capture a real face for that specific lighting scenario then used it
as reference to reject possible photo spoofing under that scenario.

In more general case where the st and sf are different, one strategy is to first learnK
most common lighting settings where photo spoofing may happen from training sam-
ples, using such method as Singular Value Decomposition [28]. Denote these settings
as a lighting matrix S ∈ R3×K . One can use this S to reconstruct any μ ∈ RD image
such that ‖ μ − NSv ‖ is minimized, where N ∈ RD×3 is the surface normal matrix
to be estimated, v ∈ RK is the reconstruction coefficient. The object function can be
optimized by coordinate descent method. After this, the reconstruction coefficient v can
be used as input to a classifier.

But things become more complicated if we take the illumination distribution of each
photo itself into consideration. This lighting distribution is independent with the current
lighting setting, and according to Lambertian model, it should go into the albedo part
but (depending on the setting of λ ) the LTV decomposition (c.f ., (6)) often allow a
significant amount of fine scene texture to leak into μ, thus making the distribution of μ
become rather nonlinear. Therefore, in this work we learn a classifier directly through
the obtained latent training samples without further feature extraction. In particular we
adopted the sparse logistic regression model and extend it in two ways such that it may
better fit the problem at hand.
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Sparse Logistic Regression. Let x ∈ R
n denote a sample, and y ∈ {−1, 1} be the as-

sociated (binary) class label (we define imposter image as +1, client image -1). Logistic
regression model is given by:

Prob(y|x) =
1

1 + exp(−y(wT x + b))
, (7)

where Prob(y|x) is the conditional probability of class y = 1, given the sample x,
w ∈ R

n is the weight vector, and b ∈ R is the intercept. Suppose that we are given a set
of m training data {xi, yi}mi=1 (c.f ., Sec. 2.2), where xi ∈ R

n denotes the i-th sample
and yi ∈ {−1,+1} denotes the corresponding class label. The likelihood function
associated with these m samples is defined as

∏m
i=1 Prob(yi|xi). The negative of the

log-likelihood function is called the (empirical) logistic loss, and the average logistic
loss is defined as:

loss(w, b) = − 1
m

log
m∏

i=1

Prob(yi|xi)

=
1
m

m∑

i=1

log(1 + exp(−yi(wT xi + b))),

(8)

which is a smooth and convex function. We can determine w and b by minimizing
the average logistic loss: minw,b loss(w, b), leading to a smooth convex optimization
problem. The sparse logistic regression [9,14] add a �1-norm regularization to the loss
to avoid overfitting, i.e., minw,b loss(w, b) + λ‖w‖1. The major characteristic of this
is that it enforces a sparse solution which is desirable for our application. In addition,
there are quite a few efficient solvers for optimizing this problem, e.g., l1-log [9] and
SLEP [14]. In this paper, we propose to make use of the SLEP package [16], as it enjoys
the optimal convergence rate and works efficiently for large scale data.

Sparse Low Rank Bilinear Logistic Regression. To exploit the spatial property of
images, we can directly operate on the two-dimensional representation of images. The
goal is to learn a ”low-rank” projection matrix, or equivalently a ”low-rank” bilinear
function:

fL,R(X) = tr(LTXRT) = tr((LR)TX), (9)

where X ∈ R
r×c, L ∈ R

r×c, R ∈ R
c×c, and r and c denote the number of rows

and columns of the image X , respectively. Denote W = LR ∈ R
r×c, we can rewrite

(9) as fL,R(X) = tr(WTX) = 〈vec(W ), vec(X)〉, leading to the traditional one-
dimensional (concatenated) linear function.

However, directly learning (9) from a set of training samples can leads to overfitting,
especially when m, the number of training samples is less than p = r × c, the dimen-
sionality. One standard technique is to add some penalty to control the complexity of
the learned W = LR ∈ R

r×c. In this study, we impose the assumption that W is a
“low-rank” projection matrix. Given a set of training samples {Xi, yi}ni=1, one way to
compute W = LR is to optimize:

min
L,R

loss(L,R) + λ× rank(LR), (10)
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where loss(L,R) is a given loss function defined over the training samples, e.g., the
logistic loss (8). However, rank(LR) is nonconvex, and (10) is NP-hard. So instead we
propose to compute L and R via

min
L,R

loss(L,R) + λ1‖L‖2,1 + λ2‖R‖2,1. (11)

where ‖ · ‖2,1 is the �(2, 1)-norm of a matrix defined as the sum of the �2 length of
each column of this matrix. With appropriate parameters, (11) shall force a solution
where many rows of L and R are exactly zero, so that L and R are “low-rank”. As
rank(W ) ≤ max(rank(L), rank(R)), the obtained W = LR is also low-rank.

To optimize (11), we apply the block coordinate descent. That is to say, we first
fix R to obtain L via minL φR(L) + λ1‖L‖2,1, where φR(L) is a convex and smooth
function with regard to L under given R. Similarly, we compute R under given L via
minR ψL(R) + λ2‖R‖2,1. And this process is repeated until convergence. A common
practice is to terminate the program after the change of L and R (measured in the
Frobenius norm) in the adjacent iterations is below a small value (1e-6 in the paper).

This model has several new features: 1) In contrasted with the existing low rank
bilinear discriminative method (e.g., [21]), the rank needs not to be pre-specified, but
tuned via λ1 and λ2

2; 2) The “low-rank” projection matrix W is obtained the computa-
tionally efficient penalty ‖·‖2,1-norm without Singular Value Decomposition as needed
by the trace-norm or nuclear norm; 3) Recall fL,R(X) = tr(LTXRT), LT have many
columns that are exactly zero, thus being able to discarding certain columns in Xi’s.
Physically, this parameter matrix contains sets of learned discriminative filters for each
thin strip of the face image, thus encoding spatial information.

Nonlinear Model via Empirical Mapping. In a second extension to the sparse logistic
regression model, we make use of the explicit empirical mapping defined over the m
training samples to transform them into the features space via the kernel mapping φ :
x→ F , thus we have F = R

m. Let x̃ = φ(x), we define

x̃j = kernel(x,xj), j = 1, 2, . . . ,m, (12)

where kernel(·, ·) is a given kernel function, e.g., the Gaussian kernel (c.f . [5] for a
good account on this in the context of RBF network). With the transformed training
data {x̃i, yi}mi=1, we can apply the sparse logistic regression discussed before for con-
structing a sparse model.

One way to look at this model is that it can be thought of as a nonparametric prob-
abilistic model since its number of parameters grows with the sample size while its
complexity is controlled by the �1-norm prior. This characteristic is shared by many
sparse nonlinear discriminative models in literatures, such as probabilistic Support Vec-
tor Machine (pSVM, [22]), Relevance Vector Machine (RVM, [26]) and Import Vector
Machine (IVM, [29]). The major merit of our model, however, lies in its simplicity and
its flexibility to allow a straightforward application of any efficient solver dealing with

2 In the experiments, we follow a two-step procedure suggested in [17] to set the values of these
two parameters, where a small value (1e-6) is first set for both lambda’s then those coefficients
with small absolute values are removed off.



512 X. Tan et al.

Fig. 3. Illustration of the samples from the database. In each column (from top to bottom) sam-
ples are respectively from session 1, session 2 and session 3. In each row, the left pair are from
a live human and the right from a photo. Note that it contains various appearance changes com-
monly encountered by a face recognition system (e.g., sex, illumination, with/without glasses).
All original images in the database are color pictures with the same definition of 640×480 pixels.

usual sparse logistic regression problem, without any modification on them. Take the
SLEP used here for example, its computational complexity is O(m2)[15], compared to
O(m3) for pSVM, O((m + 1)3) for RVM and O(m2q2) for IVM (q is the number of
import points).

3 Experiments

3.1 Database

We constructed a publicly available photograph imposter database3 using a generic
cheap webcam bought from an electronic market. We collected this database in three
sessions with about 2 weeks interval between two sessions, and the place and illumina-
tion conditions of each session are different as well. Altogether 15 subjects (numbered
from 1 to 15)4 were invited to attend in this work. In each session, we captured the
images of both live subjects and their photographs. Some sample images from the three
sessions are given in Fig. 3.

In particular, for each subject in each session, we used the webcam to capture a series
of their face images (with frame rate 20fps and 500 images for each subject). During im-
age capturing, each subject was asked to look at the webcam frontally and with neutral
expression and no apparent movements such as eyeblink or head movement. In other
words, we try to make a live human look like a photo as much as possible (vice versa
for photograph). Some examples of the captured images are illustrated in Fig. 3 (left
column).

3 http://parnec.nuaa.edu.cn/xtan/data/NUAAImposterDB.html
4 Since the major goal of this work is to distinguish a real face from a photograph, rather than

differentiate different people as the case of usual face recognition, the requirement of large
number of subjects is less demanding compared to the richness of variations contained in the
datasets.



Face Liveness Detection from a Single Image 513

Fig. 4. Illustration of different photo-attacks (from left to right) : (1) move the photo horizontally,
vertically, back and front; (2) rotate the photo in depth along the vertical axis; (3) the same as (2)
but along the horizontal axis; (4) bend the photo inward and outward along the vertical axis; (5)
the same as (4) but along the horizontal axis

To collect photograph samples, we first took a high definition photo for each subject
using a usual Canon camera in a way that the face area should take at least 2/3 of the
whole area of the photograph. We then developed the photos in two ways. The first is
to use the traditional method to print them on a photographic paper with the common
size of 6.8cm×10.2cm (small) and 8.9cm×12.7cm (bigger), respectively. In the other
way, we print each photo on a 70g A4 paper using a usual color HP printer. Based on
these, three categories of the photo-attacks are simulated before the webcam, in a way
similar to [19], as shown in Fig. 4.

3.2 Settings and Performance Measure

To evaluate our methods, we first constructed a training set and a test set from the
photo imposter database, both of which contain a number of client images and imposter
images. The training set is constructed using the images from the first two sessions and
the test set from the third session. In particular, the training set contains 889 images
from the first session and 854 images from the second session and all the available
subjects in the two sessions are involved.Hence we got 1743 images from 9 subjects
as valid biometric trait. For the imposter images of the training set, we respectively
selected 855 and 893 images from the first and the second sessions of the photograph
set, hence we got 1748 imposter images in all. The test set contains 3362 images from
live humans selected from session 3 and 5761 images from photos selected from session
3 as well. Table 1 gives some statistics of this. Note that there is no overlapping between
the training set and the test set. In addition, some subjects in the test set are not appeared
in the training set,which increases the difficulty of the problem.

All the images then undergo the same geometric normalization prior to analysis: face
detected and cropped using our own Viola-Jones detector [27], rigid scaling and image
rotation to place the centers of the two eyes at fixed positions, using the eye coordinates
output from a eye localizer [24]; image cropping to 64× 64 pixels and conversion to 8
bit gray-scale images.
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Table 1. The number of images in the training set and test set

Session1 session2 session3 Total
Training Set
Client 889 854 0 1,743
Imposter 855 893 0 1,748

Total 1,744 1,747 0 3,491
Test Set
Client 0 0 3,362 3,362
Imposter 0 0 5,761 5,761

Total 0 0 9,123 9,123

3.3 Experimental Results

Fig. 5 (Left) compares the overall performance using sparse (linear) logistic regression
(SLR) with different types of input. This figure shows that the raw image (RAW) and
the μ image estimated with LTV [1] (LTVu) give much worse result than the other
three, i.e., ρ image (LTVp), DoG filtered image (DoG) and one third of the highest
frequency components in [13] (HF) (the fusion of LTVp and LTVu doesn’t make big
difference here and is not shown). This indicates that although the LTVu images are
useful as analyzed before, their discriminative capability can not be exploited using a
linear classifier.

On the other hand, the improved performance given by both LTVp and DoG shows
that these two representations helps to increase the separability of the sample space.
In addition, they both outperform HF in terms of AUC value5 (respectively 0.78, 0.75
and 0.69 for the three), showing that the highest frequency components are not stable
enough due to the influence of noise or aliasing in these areas. Due to the unsatisfying
performance of raw gray-scale image and being rarely directly used in practice, we
don’t pursue this method any more in the following experiments.

To examine the effectiveness of the proposed sparse low rank bilinear logistic re-
gression (SLRBLR), we conducted a series of experiment on the DoG images (we don’t
repeat the experiment on the LTV images due to their highly nonlinear distribution). We
also tested a specific case of (11) named SLRBLRr1, by setting L ∈ R

r×1, R ∈ R
c×1,

i.e., rank(W ) = 1. The results are shown in Fig. 5 (Right), which shows that the sparse
low rank bilinear models (with AUC value 0.92 for SLRBLR and 0.95 for SLRBLRr1)
significant improve the performance upon the standard sparse logistic regression model
(with AUC value 0.75).

Fig. 6 (Left) gives the results if we replace the linear classifier with a nonlinear one,
i.e., our sparse nonlinear logistic regression (SNLR). This shows big performance im-
provement upon previous. In particular, the performance of LTVu drastically improves
from 0.22 to 0.92 (in terms of AUC), which verify the effectiveness of nonlinear deci-
sion boundary. Actually, by combining the LTVp and LTVu, we get further performance
improvement (to 0.94). Compared to others, the ROC curve of the DoG image shows

5 AUC: Area Under the ROC Curve, the larger the better.
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Fig. 5. (Left) Detection performance with various input features using the sparse (linear) logistic
regression (SLR); (Right) Performance on the DoG images with various sparse linear discrimi-
native model
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Fig. 6. (Left) Detection performance with various input features using the sparse nonlinear logis-
tic regression. (Right) Comparison of detection rate (%) using various classification methods and
input features.

a very rapid rising tendency from the very beginning of the horizontal axis. Hence it is
considered the best option for use in practice among the methods compared here.

Fig. 6 (Right) shows the best overall classification accuracy of different types of input
image tested respectively using sparse linear logistic regression (SLR [14]), sparse non-
linear logistic regression (SNLR) and probabilistic support vector machine (SVM [22]).
We obtained this by evaluating the proportion of correctly labeled samples (either client
or imposter) among the whole 9,123 test set by properly thresholding the output of each
discriminative model. The figure shows that the components in the middle frequency
(DoG) outperforms those in the one-third of the highest frequency (HF) by removing
both the noise/alias in high frequency area and the misleading spatial information in
low frequency area. In contrast, the Fourier spectra analysis method in [13] gives a
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classification rate of 76.7% (not shown in the figure) - about 10% lower than that of
DoG. As for the image decomposition method, we see that both the albedo (LTVp) and
structure (LTVu) part contribute to the discriminative capability of the system, espe-
cially when a nonlinear model is used. Combining them slightly improves the perfor-
mance.

4 Conclusions

In this work, we present a novel method for liveness detection against photo spoofing
in face recognition. We investigate the different nature of imaging variability from a
live human or a photograph based on the analysis of Lambertian model, which leads
to a new strategy to exploit the information contained in the given image. We show
that some current illumination-invariant face recognition algorithm can be modified to
collect the needed latent samples, which allows us to learn a sparse nonlinear/bilinear
discriminative model to distinguish the inherent surface properties of a photograph and
a real human face. Experiments on a large photo imposter database show that the pro-
posed method gives promising photo spoof detection performance, with advantages of
realtime testing, non-intrusion and no extra hardware requirement.

Learning the surface properties of object through samples is an classical open prob-
lem in computer vision. Although there are lots of related work in the field of texture
analysis, their goal is different from ours. We believe that our work is the first one trying
to use the learning technique to distinguish whether a given static image is from a live
human or not. We are currently investigating the possibility to integrate various texture
descriptors to further improve the performance.
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Abstract. We address the problem of fine-grain head pose angle esti-

mation from a single 2D face image as a continuous regression problem.

Currently the state of the art, and a promising line of research, on head

pose estimation seems to be that of nonlinear manifold embedding tech-

niques, which learn an ”optimal” low-dimensional manifold that models

the nonlinear and continuous variation of face appearance with pose an-

gle. Furthermore, supervised manifold learning techniques attempt to

achieve this robustly in the presence of latent variables in the training

set (especially identity, illumination, and facial expression), by incorpo-

rating head pose angle information accompanying the training samples.

Most of these techniques are designed with the classification scenario in

mind, however, and are not directly applicable to the regression scenario

where continuous numeric values (pose angles), rather than class labels

(discrete poses), are available. In this paper, we propose to deal with the

regression case in a principled way. We present a taxonomy of methods

for incorporating continuous pose angle information into one or more

stages of the manifold learning process, and discuss its implementation

for Neighborhood Preserving Embedding (NPE) and Locality Preserving

Projection (LPP). Experiments are carried out on a face dataset contain-

ing significant identity and illumination variations, and the results show

that our regression-based approach far outperforms previous supervised

manifold learning methods for head pose estimation.

Keywords: head pose estimation, supervised learning, manifold learn-

ing, dimensionality reduction, nonlinear regression.

1 Introduction

Head pose estimation from a single 2D image is a basic and important task of
many face processing applications, viz. face recognition, face and person tracking,
and human-machine interfaces [1,2,3,4]. In face recognition systems, head pose
is a major source of (obviously unwanted) intra-person facial appearance vari-
ability, which can be removed by performing head pose estimation as a prepro-
cessing step to select only face images with similar head poses for face matching.
In human-computer interfaces, head pose provides a strong cue for determining
a person’s gaze direction and thereby inferring their focus of attention, intent,
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and behavior. Pose estimation can also be used as a front end processing module
for face tracking to bootstrap the tracker and re-initialize it when it drifts off.

Previous work on head pose estimation from 2D images can be divided across
several categories: coarse (discrete) vs. fine-grain (continuous), geometric-based
vs. appearance-based methods, holistic vs. local region based. The interested
reader is referred to the recent surveys for a comprehensive review [5,3].

Currently, the state of the art on head pose estimation, and a promising line
of research, seems to be in manifold embedding, a special class of dimensionality
reduction techniques that attempt to learn a low-dimensional manifold on which
the data lies [6,7,8]. A fundamental underlying assumption of this approach is
that face images with varying head pose are —geometrically speaking— points
that reside on or near a low-dimensional manifold embedded in the ambient high-
dimensional input space (image space), and whose intrinsic dimensionality is no
more than the number of degrees of freedom of head movement [3]. This (pose)
manifold models the nonlinear and continuous variations of face appearance
with pose angle, and if learned properly, can be used to accurately predict pose
angle from face images. But this manifold is highly nonlinear and complex and
learning it is no easy task, particularly in the presence of distracting variation
in the dataset, namely background clutter, natural variations (identity, facial
expression), and imaging variations (illumination, blur, noise, etc.) in the face
images.

As in any statistical learning problem, a necessary condition for accurate
learning to take place is to somehow suppress extraneous variables in the training
set while preserving variables of interest (the pose variable in our case). This is
a recurring problem in the face processing literature, and is generally handled
using one or a combination of the following two general approaches:

Image Preprocessing: preprocess the face images to extract and/or enhance
certain low-level features such as histogram equalization, edge enhancement,
Gabor wavelets, histogram of gradients (HOG), etc. This approach can work
well for suppressing certain imaging variations, misalignment errors, and
background variations.

Supervised Learning: use auxiliary information associated with the training
set to bias the learning process. This approach is widely used in classification
scenarios, with auxiliary information consisting of class labels of the variable
of interest (e.g. subject labels in the case of face recognition).

The focus of this paper is on developing manifold learning methods of the second
category in the context of head pose estimation. Previous research in this area
has, for the most part, viewed the problem as a classification problem wherein
the viewing sphere is (artificially) quantized into non-overlapping subintervals,
and head pose is represented by a set of discrete pose labels–rather than a
continuum of pose angles. This approach appears to be adequate for coarse pose
estimation (with some reservations) [9,10,11,12,13,14,15], and other classification
problems such as facial expression and face recognition [16,17,18,19,20]. It is,
however, fundamentally flawed when used for fine-grain pose estimation for two
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main reasons: (i) pose estimation discontinuities occur at class boundaries due
to the arbitrary nature of the pose classes, (ii) the numerical properties (scale,
well-ordering) of the underlying pose angles are lost; for example, the difference
between pose label 1 and pose label 2 is viewed no differently than between pose
labels 1 and 5.

To date relatively little work exists that attempts to solve head pose estima-
tion as a regression problem proper within a nonlinear manifold learning frame-
work [21,22,23]. In this paper we present a principled and detailed look into this
approach. Specifically, we propose a taxonomy of methods for using pose angles
associated with the training set in the various stages of the manifold learning
process. We demonstrate the proposed techniques on Neighborhood Preserving
Embedding (NPE) [24] and Locality Preserving Projection (LPP) [25,17], which
are linearized versions of the well-known manifold learning methods locally lin-
ear embedding (LLE) and Laplacian eigenmaps (LE), respectively. Experimental
results on the FacePix database [26] show that our regression-based approach
is robust to identity and illumination variations, and clearly outperforms recent
similar pose estimation methods such as [11,23,14].

The remainder of the paper is organized as follows. Section 2 gives an overview
of manifold embedding techniques using graph embedding as a general frame-
work. Section 3 presents our taxonomy of supervised manifold learning methods.
Section 4.4 gives experiments and results on the FacePix and AT&T datasets.
Finally, Section 5 concludes with a summary and directions for future work.

2 A General Framework for Manifold Learning

Manifold learning algorithms can in general be cast in terms of a graph em-
bedding problem based on a specific intrinsic graph that encodes certain desired
statistical or geometric properties of the dataset [27]. Specifically, given a dataset
of n points in p-dimensional space (denoted x1,x2, · · · ,xn), a manifold learning
algorithm basically executes a four-stage pipeline of the following form:

1. Neighborhood computation.
For each data point xi, determine its k closest points (called neighborhood),
where k is a design parameter and proximity/nearness is based on some
inter-point distance metric, Dij , such as Euclidean, geodesic, Mahalanobis,
cosine, etc. In our case, points are face images and hence inter-point distances
represent appearance dissimilarity between face images.

2. Neighborhood graph construction.
A weighted graph G is constructed whose vertices are the data points, edges
connect each point with its neighbors (as defined in the previous step), and
the weight of an edge, Wij , represents some measure of affinity or similarity
between two neighbor points. Intuitively, this graph encodes the intrinsic
local geometry of the manifold from which the data set is sampled.
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3. Computation of a low-dimensional graph embedding.
This seeks a set of n d-dimensional vectors, y1,y2, · · · ,yn, that preserves the
properties of graph G, in other words that preserves the intrinsic geometry of
the underlying manifold. This task reduces to the optimization of a quadratic
form under proper regularization constraints (typically scale normalization
to avoid the trivial solution), and has a closed-form solution consisting of the
smallest eigenvectors of B−1L, where B is a diagonal matrix such that Bii

is equal to the sum of the ith row of W and L = B−W is the Laplacian of
graph G.

4. Computation of an input-to-embedding mapping.
This seeks a mapping that transforms new (out-of-sample) points in the p-
dimensional input space to d-dimensional space, which can be solved as a
non-linear regression problem on the embedding vectors obtained in the pre-
vious step, for example using GRNN’s or support vector machines [23]. But
clearly this step is only required where prediction (rather than visualization)
is of interest.
Because non-linear regression in a high-dimensional space is itself tricky,
some techniques bypass it and instead constrain the mapping to be linear,
effectively combining the third and fourth stages into one computational
step. This amounts to finding the best d-dimensional linear subspace ap-
proximation for the nonlinear manifold. Examples of ”linearized” techniques
notably include Locality Preserving Projections (LPP) [25,17] which is an
extension of Laplacian Eigenmaps [28], and Neighborhood Preserving Em-
bedding (NPE) [24] and Locally Embedded Analysis (LEA) [11], both of
which are linearized variants of Locally Linear Embedding [29,6].

3 Our Taxonomy of Supervised Manifold Learning

In the context of classification, supervised manifold learning generally aims to
find a low-dimensional space that maximizes the separation of points from dif-
ferent classes while minimizing that of points within the same class (between-
and within- class scatter, respectively). However in the regression scenario, the
goal is rather to find directions (axes) that best predict the regression variable(s)
associated with the dataset, in our case, the head pose angles.

With the general four-stage manifold learning framework of Section 2 in mind,
we propose a taxonomy of methods that correspond to different ways of incor-
porating the pose angle information (denoted as z1, z2, · · · , zn) at the different
stages. Our taxonomy represents a more comprehensive treatment of the regres-
sion scenario than any previous work on head pose estimation [22,23].

3.1 Overview

A summary of the taxonomy follows below, and Table 1 compares the proposed
methods with previous work on supervised manifold learning, both in the context
of classification and regression scenario. Clearly, the latter remains mostly wide
open for contributions, which is the goal of this work.
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Stage 1: Option 1.1 Construct neighborhoods using as proximity metric the
similarity of z values, i.e. the neighborhood of a sample xi consists of
the k data samples whose z values are most similar to zi.

Option 1.2 Construct neighborhoods using as proximity metric the inter-
point distances adjusted according to the dissimilarity of respective z
values.

Stage 2: Option 2.1 Adjust the graph weights (matrix W) based on the sim-
ilarity of respective z values.

Stage 3: Option 3.1 Incorporate regression information as an additional term
in the objective function to be optimized.

Option 3.2 Incorporate regression information as additional constraints in
the function optimization.

Table 1. Previous supervised manifold learning techniques that are related to our

proposed taxonomy, in the classification (C) and regression (R) scenarios, used for

different applications (face recognition (FR), pose estimation (PE), face expression

recognition (FE), visualization (V), and other (O))

[19] [24] [11] [30] [20] [31] [10] [32] [23] [18] [13] [14] [15]

Scenario C C C C C C C C R C C C C

Application FE FR V,PE O FR O O O PE FR V PE FR

Related to 1.1 x x x x x

Related to 1.2 x x x x

Related to 2.1

Related to 3.1

Related to 3.2 x x x x

3.2 Supervised Stage 1

Ideally, in order for accurate manifold learning to occur, one needs to capture the
true neighborhood structure of the data set in the underlying manifold. However,
the actual neighborhood of a data sample in the ambient input space may be
contaminated with ”fake” neighbors due to the presence of noise, confounding
factors, and sparse sampling. The above taxonomy contains two different ways
of exploiting regression information to more robustly distinguish true neighbors
and filter out fake ones. Option 1.1 relies exclusively on this information while
Option 1.2 attempts to reconcile information from both the inter-point distances
and regression value similarities.

In principle, Option 1.2 can be implemented in infinitely many ways by using
different penalty functions spanning the entire gamut between the two extremes:
using only inter-point distances (the unsupervised option) and using only regres-
sion information (Option 1.1). For example in [23] Balasubramanian et al. have
suggested a family of functions of the form:
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D̃ij = f(|zi − zj |) ·Dij (1)

where D is the original inter-point distance matrix, D̃ is the adjusted distance
matrix, and f is some reciprocal increasing positive function. We currently use
the following reciprocal function: f(u) = α · u/(β − u) where α and β are scalar
parameters. The choice of a reciprocal function seems appropriate because it
ensures that the penalty increases at a faster rate at larger values of |zi − zj |.
An exponential function might also work for this same reason.

The relative merits of Option 1.1 and Option 1.2 in effect depend on the
sampling density and geometric structure of the underlying manifold. Also, using
the ε-ball approach rather than the k nearest neighbors approach may be more
helpful in some cases.

Both methods are closely related to previous supervised manifold learning
techniques developed for the classification scenario. Specifically, Option 1.1 is
akin to techniques that limit the neighborhood to points of the same class
[19,11,30,20]. Interestingly, Teoh et al. call this approach ”neighborhood dis-
criminant criterion” and argue that it is equivalent to the Fisher discriminant
criterion [20]. Option 1.2 is akin to methods that adjust the inter-point distances
by reducing those of same-class point pairs and/or penalizing those of point pairs
of different classes [31,10,32].

3.3 Supervised Stage 2

Recall that graph weights W represent the geometric structure of the local
neighborhood based on some inter-point distance measure. Furthermore, Wij

essentially determines the contribution of neighbor pair xi and xj in the com-
putation of the optimal embedding in Stage 3. But because neighborhoods may
be contaminated with ”fake” neighbors that distort the embedding, and just as
we have used regression information in Stage 1 to determine the neighborhoods
more robustly (Section 3.2), we can similarly use it to penalize (i.e. reduce)
the contribution of a neighbor pair by a factor proportional to the dissimilarity
between their respective regression values. In other words, the new (adjusted)
graph weights could of the form:

W̃ij = Wij · g(|zi − zj |) (2)

or it could also be of the form:

W̃ij = Wij + g(|zi − zj |) (3)

where g(u) is some positive decreasing function, such as a negative exponential
(Gaussian kernel) or a reciprocal. Interestingly, using the second (additive) form
is actually equivalent to adding a term to the objective function in Stage 3, hence
equivalent to Option 3.1 (Section 3.4).
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3.4 Supervised Stage 3

Recall that the objective function optimization represents preserving certain in-
trinsic geometric properties of the manifold. Hence we can incorporate regression
information at this stage by extending the objective function with an additive
term that represents some other geometric property to be preserved (Option
3.1). Alternatively, or simultaneously, we can incorporate this information in
the form of constraints that represent some condition or property that should
be avoided (Option 3.2).

Interestingly, Local Fisher Discriminant Analysis (LFDA) [12,13] and Local
Discriminant Analysis (LDE) [18] both represent possible implementations of
our Option 3.2 concept, though they are limited to the classification scenario. In
LFDA, the objective function and constraints consist of ”localized” versions of
within- and between- class scatter, respectively. LDE uses a very similar idea.
Also ”kernelized” variants of both these methods were implemented using the
kernel trick.

Note, however, that in order not to forego the convenience of solving the prob-
lem in closed-form as a generalized eigenvalue problem (Ay = λBy), both the
additional objective function term and the constraints need to be expressed as
a positive definite quadratic form (yTΓy where Γ is positive definite). Also, the
new constraints should replace (and ideally supersede) the original constraints of
the unsupervised method because there is no room for using both. We could use
a non quadratic objective function and more than one set of non-quadratic con-
straints, but at the price of giving up the convenience of a closed-form solution
for an iterative slower solution.

Below we discuss possible implementations of Option 3.1 in the context of
two specific manifold learning methods: Locally Linear Embedding (LLE) and
Laplacian Eigenmaps (LE). Extension to their linearized versions (NPE and
LPP) is trivial. Possible implementations of Option 3.2 is work in progress, but
suffice it to note here that a viable approach is to extend or generalize the LFDA
concept of using between-class scatter to the regression scenario.

Implementation for LLE. We modify the usual LLE objective function by
adding a second term [29,6] :

ΦLLE(y) =
∑

i

|yi −
∑

j

Ωijyj |2 + λ
1
2

∑

i,j

(yi − yj)2Λij (4)

where λ is a scalar constant and Ω is the nxn reconstruction weights matrix,
and Λ is a nxn matrix that represents some measure of similarity between the z
values of neighbor points. Clearly the intuition is to simultaneously (i) preserve
the local neighborhood structure, and (ii) keep neighbor points with more similar
pose angles closer. However note that how well this works out is closely tied to
the supervision methods of Stages 1 and 2 (Sections 3.2 and 3.3), since they
determine the neighborhood and the contribution weight of each neighbor pair.
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It is easy to show that Equation (4) reduces to :

ΦLLE(y) = yT My + λyT L̃y = yT (M + λL̃)y (5)

where M = (I−Ω)T (I−Ω) and L̃ is the Laplacian of the affinity graph induced
by Λ. Clearly the extension to linearized versions of LLE (such as NPE and
LEA) is trivial, as we have merely replaced M with M + λL̃.

We currently define similarity matrix Λ based on the heat kernel function as
follows, though in principle other decreasing functions of |zi − zj| would do:

Λij = { exp(− 1
2 |zi − zj |2/σ2) if xi and xj are neighbors and i �= j

0 otherwise (6)

where σ is a design parameter (the Gaussian kernel width).

Implementation for LE. We modify the usual LE objective function by adding
a second term [28] :

ΦLE(y) =
1
2

∑

i,j

(yi − yj)2Wij + λ
1
2

∑

i,j

(yi − yj)2Λij (7)

=
1
2

∑

i,j

(yi − yj)2(Wij + λ Λij) (8)

= yT (L + λ L̃)y (9)

where λ is a scalar constant and Λ and L̃ are as defined above in Section 3.4.
Again, the extension to linearized versions of LE (such as LPP) is trivial as we
have merely replaced L with L + λL̃.

3.5 Discussion

A common thread runs through all these methods we have proposed: to high-
light pose variations and suppress variations due to other (extraneous) factors.
Specifically, given the local neighborhood nature of nonlinear manifold learning,
we propose to achieve this by using the regression information to: (i) determine
the neighborhood (Stage 1), (ii) determine the contribution of each neighbor
pair (Stage 2), and (iii) define new or additional manifold structure preservation
properties (Stage 3). These methods are complementary to some extent (at least
not entirely redundant) and can certainly be used in tandem. However, the in-
ner workings of each method depends both on the dataset: how much variation
it contains and how sparsely sampled the pose angles are. Also, because these
methods are so closely related, it is not clear how the synergy between them will
affect performance when they are used together. Further analytical and empirical
work is needed to study this synergy.



526 C. BenAbdelkader

Fig. 1. Sample images from the FacePix database

4 Experiments and Results

4.1 The Data

Manifold learning and pose estimation are challenging tasks when the input face
images contain significant variation, such as from illumination and identity. We
test our proposed taxonomy on the FacePix database which contains face images
of 30 subjects with both pose and illumination variations, namely:

Variable pose, constant illumination: 181 images for each subject captured
with the yaw head pose angle varying at 1-degree increments in the range
[-90,90], and with constant ambient illumination.

Constant pose, variable illumination: 181 images for each subject captured
with the yaw illumination angle varying at 1-degree increments in the range
[-90,90], and with constant frontal pose. Furthermore, this is done with two
different illumination intensities: dark and light.

The pose and illumination angles associated with each image were annotated
using a precisely calibrated mechanism. Also, the face images are scaled and
aligned such that the eyes, nose, and mouth remain at fixed pixel positions in
each image [26,23]. A sample of these images is shown in Figure 1. For the
purpose of our experiments, we have applied some more preprocessing on these
images by cropping the middle 98x98 rectangle to remove some of the background
and shoulder areas, and then downsampling to a size of 25x25 pixels.

4.2 Methodology

We summarize our validation methodology in the following points:

– Use two different manifold learning algorithms: NPE [24], LPP [25].
– Use different supervision modes based on combining different implementa-

tion options for Stage 1 and Stage 3. We do not incorporate supervision into
Stage 2 because it is somewhat equivalent to Stage 3 (as noted earlier).
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– Use two different regression methods to estimate head pose angle from em-
bedded face images: support vector regression (SVR) with Gaussian RBF
kernel and smoothing cubic splines.

– Test on three subsets of the FacePix face images: (i) images with 1-degree
pose angle increments, (ii) images with 10-degree pose angle increments, and
(iii) subset (i) plus images with frontal pose and 1-degree illumination angle
increments.

– Use leave-one-out cross validation to estimate pose estimation error (whereby
images of 29 subjects are used for training and the images of the remaining
subject are used for testing).

4.3 Visualization

Figure 2 shows the 3-dimensional embedding of the face images of 20 subjects
from the FacePix dataset, based on four different manifold learning techniques
and combination of supervision methods Option 1.1 and Option 3.1. In general,
all methods yield a one-dimensional manifold (as expected) that is more or less
ordered by pose angle, at least visually speaking. The LLE and LE manifolds are
quite compact and smooth; NPE’s manifold is less smooth; and LPP’s manifold
is the least smooth. The fact that NPE and LPP’s embeddings are not as smooth
as those obtained by LLE and LE is not surprising, since they only seek a linear
subspace approximation of the embedding.

To get a better sense of how pose angle varies varies along these pose mani-
folds, we analyze the identity and pose of the (Euclidean) neighbors of each data
point in the 3-dimensional embedding. Figure 3 shows that, as desired, overall
each data point is surrounded by points of the same pose rather than points of
the same identity. However, again, this trend is better exhibited in the LLE and
LE manifolds than those of NPE and LPP.

4.4 Pose Estimation Results

Table 2 and Table 3 show the pose angle estimation error results when using
Support Vector Regression and splines, respectively, for estimating pose from
the embedded face images, with d = 20 and k = 50. These results basically
compare the performance of different manifold learning methods with different
supervision modes. Clearly, the best performance is achieved with NPE and
with the last two supervision modes, wherein supervision is incorporated both in
Stages 1 and 3. The second supervision option for Stage 1 (i.e. Option 1.2) seems
to perform significantly better than the first one. Overall, NPE performs better
than LPP and spline regression better than support vector regression. Also,
interestingly performance for the dataset containing both illumination variation
and pose variation is not behind that of the dataset containing pose variation
only. Hence, based on these results and on Table 1, our proposed supervision
methods are superior to previous work such as [23,14].
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Table 2. Mean absolute deviation of the pose angle error (in degrees), using support

vector regression for pose estimation

1-deg Pose variation 10-deg Pose variation Pose+Illum. variation

NPE LPP NPE LPP NPE LPP

unsupervised,unsupervised 8.2 9.5 11.2 14.1 9.1 15.6

Option 1.1,unsupervised 6.0 8.1 10.6 12.5 8.3 10.1

Option 1.2,unsupervised 5.5 7.9 10.8 10.3 7.7 10.0

unsupervised,Option 3.1 5.2 6.8 7.3 7.9 5.3 7.7

Option 1.1,Option 3.1 4.4 5.2 5.0 6.7 4.3 5.5

Option 1.2,Option 3.1 4.5 5.0 5.1 6.7 4.7 4.9

Table 3. Mean absolute deviation of the pose angle error (in degrees), using smoothing

cubic splines for pose estimation

1-deg Pose variation 10-deg Pose variation Pose+Illum. variation

NPE LPP NPE LPP NPE LPP

unsupervised,unsupervised 5.2 8.2 9.6 12.1 8.6 13.4

Option 1.1,unsupervised 4.2 7.0 9.1 10.5 7.3 9.7

Option 1.2,unsupervised 4.3 6.6 8.0 9.2 7.0 8.2

unsupervised,Option 3.1 3.5 4.6 4.6 6.1 3.9 4.3

Option 1.1,Option 3.1 2.1 3.2 4.7 5.9 3.6 4.4

Option 1.2,Option 3.1 1.5 3.4 3.5 5.2 2.6 3.5

(a) (b) (c) (d)

Fig. 2. 3-dimensional embedding of face images of 20 subjects of the FacePix dataset,

using k = 25 and four different manifold learning techniques: (a) supervised LLE, (b)

supervised LE, (c) supervised NPE, (d) supervised LPP. The data points are color

coded differently for each subject label.
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(a)

(b)

(c) (d)

Fig. 3. Neighborhood analysis in 3-dimensional embedded space based on (a) super-

vised LLE, (b) supervised LE, (c) supervised NPE, (d) supervised LPP. Top figure

plots probability that kth NN is of same subject versus k, and bottom figure plots

absolute mean deviation of kth nearest neighbor’s pose angle versus k.
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5 Conclusions and Future Work

We have proposed a taxonomy of methods for solving pose estimation as a proper
(continuous) regression problem within the general nonlinear manifold learning
framework. The main novelty of our work lies in that, compared to previous work,
we take a more comprehensive approach to the way we exploit supervision in-
formation (pose angles) into the learning process. Experiments on a face dataset
containing significant identity and illumination variation have shown that our
methods significantly outperform related recent work such as [11,23,14]. How-
ever, there is undoubtedly great room for improvement, most notably:
– Further analytical and empirical work to characterize the relationships be-

tween the supervision methods of the different stages, particularly in relation
to pose estimation (regression) performance.

– Test on other manifold learning techniques such as Isomap [33].
– Extend to kernelized versions of NPE and LPP [27], as they only give the

best linear subspace approximation of the low-dimensional embedding.
– Apply some clever feature extraction and/or preprocessing techniques on

the face images (such as Gabor wavelets, histogram of gradients) to remove
unwanted variation, to simplify the manifold learning process.

– Test on benchmark datasets containing more pose+illumincation variations.
– Test on benchmark datasets containing more challenging variations (facial

expression, face alignment errors).
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Abstract. In this paper, we propose solutions on learning dynamic

Bayesian network (DBN) with domain knowledge for human activity

recognition. Different types of domain knowledge, in terms of first order

probabilistic logics (FOPLs), are exploited to guide the DBN learning

process. The FOPLs are transformed into two types of model priors:

structure prior and parameter constraints. We present a structure learn-

ing algorithm, constrained structural EM (CSEM), on learning the model

structures combining the training data with these priors. Our method

successfully alleviates the common problem of lack of sufficient training

data in activity recognition. The experimental results demonstrate sim-

ple logic knowledge can compensate effectively for the shortage of the

training data and therefore reduce our dependencies on training data.

1 Introduction

During recent years, probabilistic graphical models have received increasing at-
tention in computer vision research, such as image segmentation, object track-
ing and facial expression analysis. DBNs, which are designed to model temporal
events, are widely adopted for recognizing human activity. Most of the existing
DBN models for activity recognition are learned purely from training data, so
when the amount of training data is insufficient, the performance of these models
will decrease significantly. One solution to alleviate this problem is resorting to
various kinds of domain knowledge.

First order logic is an expressive language in representing the logic relations
in a domain and it is widely applied in many computer vision applications. Its
combination with Markov networks, the Markov logic networks (MLN), can deal
with rigorous logic reasoning while maintaining the capability of handling uncer-
tainty. However, the construction of MLN requires relatively complete knowledge
of the domain. If the knowledge is limited, it may lead to a highly biased model.

In our work, we first introduce a generic DBN model integrating multiple
features for activity recognition, and then present a framework to learn the DBN
model combining training data with domain knowledge. The domain knowledge
is represented by a set of ffigure first-order probabilistic logics, which can be
further transformed to the structure prior and qualitative parameter constraints
on the activity model. These prior combined with the training data are used to

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part VI, LNCS 6316, pp. 532–546, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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learn the DBN structure and parameters in a CSEM framework. With simple and
generic qualitative knowledge, we obtain more representative DBN structures
and accurate parameters that produce better activity recognition results.

2 Related Work

Various types of DBNs have been proposed for recognizing different activities in
the literature. Standard HMM [1][2] is employed for simple activity recognition,
but it is not suitable for modeling complex activities that have large state and
observation spaces. Different variants of HMM try to solve this problem through
factorizing the state or observation space. Parallel HMMs (PaHMMs) [3], cou-
pled HMM (CHMM) [4] and dynamic multiply-linked HMM(DML-HMM)[5] are
proposed to recognize group activities by factorizing the state spaces into several
temporal processes. PaHMMs ignore the interactions between different temporal
processes except a zero-order synchronization, CHMM model the interactions
among multiple objects through completely coupling the temporal processes,
while DML-HMM tries to discover the necessary coupling links between these
processes. In comparison, layered HMM [6], switching hidden semi-Markov mod-
els [7] and Hierarchical HMM [8] try to model activity at multiple levels, with the
upper layers encoding the transitions among the high-level states (such as the
constituent actions) and the bottom layer encoding the transitions among the
low-level states (such as action primitives). Xiang et al. [9] introduce the multiple
observation HMMs that factorize the observation space into several conditional
independent factors to recognize activity with large dimensional feature vectors.

As the HMM variants are still restricted by their specific model structure,
more general DBNs are also employed for activity modeling. Wu et al. [10]
present a DBN that combines RFID and video data to infer the activity and
object labels. Their model is essentially a layered HMM with multiple observa-
tions. Besides, Laxton et al. [11] define a hierarchical DBN leveraging temporal,
contextual and ordering constraints to recognize complex activities.

The model structures of the above approaches, except DML-HMM, are all
manually specified. For DML-HMM, only the coupling links are learned from
training data. Moreover, these approaches assume that all the activities share
the same model structure and sufficient training data are available to learn the
models. In contrast, we are able to learn DBN structure for each activity, even
when data are insufficient, with logic knowledge exploited from activity domain.

The first-order logics (FOLs) received increasing attention in computer vi-
sion due to its expressive power on interpreting knowledge in different domain.
Recent researchers [12][13] begin to investigate Markov logic networks (MLN)
[14], a combination of FOLs with Markov network, in activity recognition. While
MLN successfully integrates logic reasoning with data-driven inference in activ-
ity recognition, there are still several points to be considered: first, the MLN can
not represent naturally causal relationships between domain elements, which are
common in human activity; second, we can view the structure of the MLN as
completely specified by the prior knowledge, since the potentials corresponds to
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the logic groundlings. In case the logic knowledge is inaccurate, the constructed
MLN can not work well in activity recognition. In comparison, we choose to
represent the domain knowledge with first-order probabilistic logics, and com-
bine these knowledge with training data to learn both the DBN structures and
parameters, which can incorporate approximate and partial knowledge.

In knowledge-based learning field, Tong et al. [15] have investigated qualita-
tive constraints for BN parameter learning; however, the qualitative knowledge
are expressed heuristically and not exploited for structure learning. In our work,
with structure prior and parameter constraints obtained from domain knowl-
edge, we propose a constrained structural EM algorithm to learn DBN structure
combining incomplete training data these knowledge. Compared with the struc-
tural EM algorithm [16], the constrained structural EM algorithm is different
at two aspects: firstly, it can estimate more reliable parameters for the candi-
date structures under the guide of the constraints; secondly, with the structure
prior generated from the domain knowledge, we are able to employ the posterior
probability rather than marginal likelihood (BIC) score for model evaluation.

3 Modeling Activity with DBN

3.1 Image Features

The feature set we used for activity recognition consists of the position, speed,
shape and spatio-temporal features. For feature extraction, we first perform mo-
tion detection to detect the moving object and to extract its silhouette. Position
OY is then measured as the distance to a reference point1, speed OV is evaluated
as the change of the object center in pixels and the shape feature OS includes
four elements: aspect ratio of the bounding box of the moving object, filling ratio
(the area of the object silhouette with respect to the area of the bounding box)
and two first-order moments of the silhouette [9]. The spatio-temporal feature
OST we use is the histogram of optical flow in the spatio-temporal cube.

3.2 DBN Model for Activity Recognition

As we usually observe the activity through object position, shape, speed and
spatio-temporal features from the image sequence, the underlying states of these
measurements provide a good representation of the activity state space. We can
decompose the state Xt into a set of physical states corresponding to position
state Yt, shape state St, global speed state Vt and spatio-temporal state STt.
Accordingly, the measurement Ot consists of four observations: OYt, OSt, OVt

and OSTt. Figure 1 shows an example of our DBN model for activity modeling.
Besides nodes, there are two types of links in our model: intra-slice links and
inter-slice links. While intra-slice links capture the relationships between states,
and between states and their corresponding measurements. The inter-slice links
1 We use the starting position as the reference point for Weizmann dataset and the

car position as the reference point for the Parking lot dataset.
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Fig. 1. Example DBN model for activity recognition

capture the dynamic relationships between states at different times. Except for
the links between states and their observations, other links are learnt. Please
note the links in figure 1 are just for illustration and do not always represent the
true dependencies between the underlying states of different features. In next
section, we will discuss how to find these dependencies through DBN structure
learning. With the above modeling strategy, we can construct one DBN model
for each activity and perform activity recognition through finding the model
with the highest likelihood, which can be evaluated by the forward propagation
of dynamic junction tree algorithm[17].

4 Knowledge Representation in Human Activity

For many computer vision applications, there often exists some approximate
domain knowledge that governs the physics, kinematics, and dynamics of domain
objects. Such knowledge, if exploited, can help regularize the otherwise ill-posed
problems. In activity recognition, we can identify such knowledge in the form of
logic rules, which can be feature-related or activity-specific. The simple feature-
related low-level rules govern the formulation of most activities. Such rules are
activity independent and the same rules can be applied to different types of
activities. The activity-specific constraints, on the other hand, are related to the
object types, interactions and dynamics for specific activities. In this paper, since
the focus is single-level activity recognition, we mainly exploit the feature-related
rulesin the form of first-order probabilistic logics, and then try to incorporate
these knowledge in our activity model.

4.1 FOPL in Human Activity

First-order probabilistic logics is one type of knowledge representation language
preserving the expressive power of first-order logic while introducing the prob-
abilistic treatment of uncertainty. While several families of FOPLs have been
proposed in the literatures [18], we keep the formal syntax and semantics de-
fined by Halpern et al. [19].

The alphabet we used to represent the knowledge in human activity includes:

– Predicates: Is;
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– Constants: POS(position), SH(shape), SP(speed), ST(spatio-temporal re-
sponse), near (NR), far (FA), simple (SI), complex(CO), high(HI), low(LO);

– Function: Next;
– Connective symbols: ∨,∧, ∀,¬, |;
– Variable: t, AS (denotes one of the three constants: POS, SH and SP), s;
– Probability operator: Pr;
– Basic numeric operator: +, *, =, >;

With the defined alphabet, we can describe the domain elements with two sorts
of terms: the object term and numeric term. While the object term describes
the non-numeric basic elements (i.e. “t”, “shape”, “position”, “Next(t)”) of the
domain, the numeric term describes certain probabilities which are rational num-
bers in the interval [0 1] (i.e. Pr(Is(position, near, t))). Given these elements, we
can interpret the logics of the activity domain with a set of well-formed formula,
which, in our case, only consists of the relations between different probabilities.
The logics we exploit in human activity include:

- Smoothness Logic
This type of logic interprets the general knowledge about the smooth transi-
tions between the states of the activity, and it is applicable to all states of the
activities. Logic rule: the object is more likely to keep the previous state than
transit to other states.

Pr[Is(AS, s,Next(t)) | Is(AS, s, t)] ≥ Pr[Is(AS, s,Next(t)) | ¬Is(AS, s, t)]
Exemplar Instantiation: the speed of an object at a successive time is more
likely to be low if its current speed is low than if its current speed is high.

Pr[Is(SP,LO, Next(t)) | Is(SP,LO, t)] ≥ Pr[Is(SP,LO, Next(t)) | Is(SP,HI, t)]

This logic formula, in simplicity, can be transformed to a probabilistic con-
straint on the conditional probabilities of our activity model.

P (Vt+1 = L|Vt = L) ≥ P (Vt+1 = L|Vt = H)

Here L denotes the low speed state and H denotes the high speed state.
- Position-motion Logic

The position-motion logic encodes the logic relationship between the position
and moving speed of the subject.
Logic rule: The object is more likely to keep the same position state with low
speed than with high speed, and meanwhile it is more likely to change position
state with high speed than with low speed.

Pr[Is(POS, s,Next(t)) | Is(POS, s, t)] ∧ Is(SP, low, t)]
≥ Pr[Is(POS, s,Next(t)) | Is(POS, s, t) ∧ Is(SP, high, t)];
Pr[¬Is(POS, s,Next(t)) | Is(POS, s, t)] ∧ Is(SP, high, t)]
≥ Pr[¬Is(POS, s,Next(t)) | Is(POS, s, t) ∧ Is(SP, low, t)]
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Exemplar instantiation: With a high speed and near position in current frame,
an object is more probable to be in far position in next frame than with a low
speed and near position in current frame.

Pr[Is(POS, FR,Next(t)) | Is(POS,NR, t)] ∧ Is(SP,HI, t)]
≥ Pr[Is(POS, FR,Next(t)) | Is(POS,NR, t) ∧ Is(SP,LO, t)]

Similarly, we can transform this logic formula to a probabilistic constraint on
conditional probabilities of the activity model.

P (Yt+1 = F |Yt = N,Vt = H) ≥ P (Yt+1 = F |Yt = N,Vt = L)

Here N denote near position state; F : far position state.
- Shape-motion logic

There are also logic relationships between the shape and speed of the subject
Logic rule: Shape change is more likely to occur when speed is low.

Pr[¬Is(SH, s,Next(t)) | Is(SH, s, t)] ∧ Is(SP, low, t)]
≥ Pr[¬Is(SH, s,Next(t)) | Is(SH, s, t) ∧ Is(SP, high, t)]

Exemplar instantiation: It is more probable for an object to change from
simple shape to complex shape with a low speed than with a high speed.

Pr[¬Is(SH,CO,Next(t)) | Is(SH, SI, t)] ∧ Is(SP,LO, t)]
≥ Pr[¬Is(SH,CO,Next(t)) | Is(SH, SI, t) ∧ Is(SP,HI, t)]

This formula can similarly be transformed to a probabilistic constraints on
the activity model, which is:

P (St+1 = 1|St = 0, Vt+1 = L) ≥ P (St+1 = 1|St = 0, Vt+1 = H)

Here St = 1 denotes complex shape and St = 0 denotes simple shape.
- Spatio-temporal Logic The spatio-temporal logic encodes the relationship be-

tween the spatio-temporal state and the shape change.
Logic rule: It is more probable to have high spatio-temporal response if the
object undergoes shape change, than the object stays in the same shape.

Pr[¬Is(ST, high,Next(t)) | Is(SH, s, t)] ∧ ¬Is(SP, s,Next(t))]
≥ Pr[¬Is(ST, high,Next(t)) | Is(SH, s, t) ∧ Is(SP, s,Next(t))]

Exemplar instatiation: An object is more likely to have a high spatio-temporal
response if it has a simple shape in current frame and a complex shape at next
frame, than if its shape at current frame and next frame are both simple.

Pr[¬Is(ST,HI,Next(t)) | Is(SH, SI, t)] ∧ ¬Is(SP,CO,Next(t))]
≥ Pr[¬Is(ST,HI,Next(t)) | Is(SH, SI, t) ∧ Is(SP, SI,Next(t))]

The probabilistic constraints transformed from this logic formula is:

P (STt+1 = 1|St = 0, St+1 = 1) ≥ P (STt+1 = 1|St = 0, St+1 = 0)

Here STt = 1 is the high spatio-temporal response and STt = 0 is low spatio-
temporal response.
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4.2 Incorporate FOPL in Activity Model

The discussion above exploits different types of domain knowledge in the form
of FOPL, which can be transformed to a set of qualitative constraints on the
conditional probabilities of the activity model. Now we begin to investigate how
to incorporate these knowledge in our DBN model. Two types of model prior
can be generated from these logic knowledge.

Parameter Constraints. First, the domain knowledge, in terms of qualitative
constraints on the model conditional probabilities, can be used to regularize the
parameter learning for the activity model. However, they are not necessarily the
constraints on the parameters of the activity model. For example, the smoothness
logic for the position state finally involves the conditional probability P (Yt+1|Yt).
With the example model structure in figure 1, Yt is not the only parent of
Yt+1, which means P (Yt+1|Yt) is not a model parameter. Thus, we still need to
translate the constraints on state variables into the constraints on the model
parameters. For example, if we are expected to impose the following constraint
related to the conditional probability P (A|B),

P (A = k1|B = j1) ≥ P (A = k2|B = j2) (1)

There are three possible cases according to model structure,

– B is the only parent of A: we can directly impose this constraint as P (A|B)
is the model parameter;

– B is not the parent of A: we do not impose this constraint as this constraint will
become highly nonlinear if we represent the conditional probability P (A|B)
using the model parameters. In this case, the logic knowledge will be described
by the structure prior, which penalize the absence of the link from B to A by
the structure prior.

– B is, but not the only parent of A: Let C be the other parents of A, as
P (A|B) =

∑
C P (A|B,C)P (C|B), constraint in equation 1 becomes:

X

l

P (A = k1|B = j1, C = l)·P (C = l|B = j1) ≥
X

l

P (A = k2|B = j2, C = l)·P (C = l|B = j2)

where l is the configuration of C. Approximating P (C = l|B = j) by the
expected sufficient statistics nC=l,B=j/nB=j, the above equation becomes a
linear constraints on model parameter P (A|B,C).

With the above strategy, the qualitative constraints can be translated to a set of
linear constraints on the model parameters θ, denoted as gc(θ) = aT

c θ − bc ≤ 0,
where ac and bc are the coefficients for constraint c.

Structure Prior. The existing approaches combining logic knowledge with
Bayesian network often assume the existence of edge from the conditioning vari-
able to the dependent variable, which can be viewed as hard structural con-
straints. In our work, we alleviate this hard constraints to a soft structure prior,
which can then allow imperfect specification of the domain knowledge to certain
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degree. The structure prior, together with the training data, are used to learn
the model structure in a Bayesian manner as we will discuss in next section.

We set the prior probabilities of the candidate structures through measuring
their consistency with the logics, which is defined as:

P (S) = akδS,C (2)

where a is a normalization constant, k is a constant factor between 0 and 1
controlling the prior strength and δS,C is the total number of logic links that
are absent from structure S2. The intuition for defining this structure prior is to
penalize the model structures that are inconsistent with our domain knowledge.

5 Knowledge Based DBN Learning

In this section, we focus on incorporating the domain knowledge in the process
of learning the activity model. As the dependencies among the state variables
are not apparent, and different activities may have different state dependen-
cies, discovering the DBN structure is a key step for constructing the activity
model. In general, the objective of structure learning is searching for a network
that fits the best with the prior knowledge and the training data. A complete
structure learning scheme requires two components: a criterion to measure how
well a candidate structure fits with the prior knowledge and the data, and a
model searching strategy used to find the structure with the highest score by
the criterion.

5.1 Criterion for Model Selection

A widely used criterion for learning the DBN structure is the BIC score. Ac-
cording to [20], the BIC score BIC(S) can be considered as an approximation
of the log marginal likelihood logP (D|S) of the structure S using Laplacian
approximation.

When the prior of the candidate structures is readily available for our activity
model, we can learn the model structure in a Bayesian manner, which uses the
log posterior probability (LPP) as the criterion for model selection.3:

Q(S) = logP (S|D) = logP (D|S) + logP (S)− logP (D)

≈ L(θ̂S) + log(akδS,C )− d

2
logN − logP (D) (3)

here θS is the parameter for structure S , L(θ̂S) is the log likelihood of θ̂S , d is
the number of parameters in S, N is the number of samples from all sequences.
2 A logic link is defined as follows: if the logic constraint finally involves conditional

probability P (A|B), link B → A is a logic link.
3 Since log P (D) is a constant, we can ignore it for model comparison.
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5.2 Model Search

With incomplete training data, a widely adopted approach for DBN model search
is the structural EM (SEM) algorithm [16]. One bottleneck of the SEM algorithm
is that it requires a large amount of training sequences. Since the data is often
limited, but there exists very generic logic knowledge in terms of qualitative
constraints about the human activities, we propose the constrained structural
EM (CSEM) algorithm to learn the model structure combining the training data
with these constraints.

Before introducing the CSEM algorithm, we define the related notations as
follows4: θ denotes the parameter of a given DBN structure, L(θ) = logP (D|θ)
and EL(θ) = Ez[logP (D, z|θ)] is the log-likelihood and expected log-likelihood
of θ respectively, i is the node index, k is the state of node i, nijk is the expected
count of the cases in all the transition slices that node i has the state k with
parent configuration j.

Given these definitions, the procedure of the CSEM algorithm is summarized
in algorithm 1.

Algorithm 1. Constrained structural EM algorithm
For n = 0, 1, . . . until convergence

E-step

1. Estimate the parameter θn of the current model structure Sn with the qualitative

constraints;

2. Find all the local candidate structures of Sn through adding, removing or re-

versing one link from Sn (we only change the links between the state nodes and

do not reverse the temporal links);

3. “Complete” the data based on Sn and θn and compute the expected counts for

all candidate structures

4. For each candidate structure S, estimate the parameter θS through maximizing

the expected log likelihood EL(θS) subject to the constraints;

5. For each candidate structure S, compute the expected LPP score EQ(S)

EQ(S) = EL(θS) + log(akδS,C )− d

2
log N − log P (D)

M-step

1. Set Sn+1 to be the structure with the highest expected score;

In E-step 1, we employ the constrained EM (CEM) algorithm to estimate the
parameter θn for model structure Sn. The E-step of the CEM algorithm is the
same as the traditional EM algorithm, which first “complete” the data based
on the current parameter and then compute the expected counts {nijk}. The
M-step of the CEM algorithm finds the new parameters that maximizes EL(θ)
subject to the set of parameter constraints gc(θ) ≤ 0 that we discussed in section
4.2. We formulate this step as a constrained optimization problem:

4 Strictly the defined terms should depend on a given structure S. we ignore S in the

notation just for simplicity.
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max
θ

EL(θ) =
∑

i

∑

j

∑

k

nijk log θijk (4)

s.t.
∑

k

θijk = 1 ∀ i, j , gc(θ) ≤ 0 ∀ constraint c

In E-step 4, we need to estimate the parameter θ through maximizing the ex-
pected log-likelihood EL(θS) for each candidate structure S. Since the expected
counts {nijk} are available from E-step 3, we can also estimate θS through solv-
ing the optimization problem in equation 4.

With the CSEM algorithm, the logic knowledge can influence the expected
score EQ(S) of the candidate structures in two ways: first they control the
prior probabilities of the structures; secondly, they can regularize the parameter
estimation for each structure and then alter the expected log-likelihood score.
When the training data is limited, adding the structure prior or regularizing
the parameter estimation can help improve structure learning by avoiding some
local maxima caused by the noisy data in structure search process.

The CSEM algorithm is guaranteed to achieve a local optimum since it im-
proves the model score (Q(S)) at each step. The proof of convergence is similar
to the SEM algorithm with small difference on handling the structure prior.

5.3 Learning Activity-Dependent DBNs

People usually assume all the activities share the same model structure; the real
activities, however, do not have the same dependency among the basic states.
For example, the dependency between the shape and speed varies from activity
to activity. People usually keep similar shape in walking, so the dependency
between the speed and shape is weak. In comparison, this dependency is strong
for bending as people usually undergoes large shape variation during the bending
process. Thus, we learn both the model structure and parameter which capture
the dependency type and strength for each activity respectively.

6 Experiments

6.1 Weizmann Dataset

The weizmann dataset contains 10 different behaviors performed by 9 people.
There are total of 93 video sequences. In the experiments, we learn the DBN
models with different number of training sequences (1, 3, 5, 8). The knowledge
base used include 8 smoothness logic groundings, 4 position-motion logic ground-
ings, 4 shape-motion logic groundings and 4 spatio-temporal logic groundings.

Evaluation on Activity-Dependent Structure. Figure 2 compares the
activity recognition performance of activity-independent model and activity-
dependent model on Weizmann dataset. We can find that the activity-dependent
model outperforms activity-independent model almost in all cases (with 1 train-
ing sequences the performance is quite close). We also include the results for
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Fig. 2. Comparison of activity-independent DBN, activity-dependent DBN and HMM

on Weizmann dataset

HMM with exactly the same set of features. It is easy to get from figure 2 that
our DBN model outperforms the baseline HMM model significantly through ex-
plicitly modeling the dependencies among different features.

Evaluation on CSEM for Activity-Dependent Structure Learning. In
table 1, we report the recognition results of the knowledge-based CSEM algo-
rithm and the data-based SEM algorithm. With 5 and 8 training sequences,
the advantage of CSEM algorithm over SEM algorithm is not significant since
we have already obtained nearly perfect recognition result with SEM algorithm.
However, when data becomes scarce, the CSEM algorithm gradually shows its
superiority over SEM algorithm. In case of 1 training sequence, the activity-
dependent model learned with CSEM algorithm outperforms the model learnt
with SEM algorithm by 6.5% with same set of image features.

Comparison with Other Approaches. Since the results reported by the
state-of-art approaches on Weizmann dataset are evaluated using leave-one-out
cross validation, it is hard to compares our algorithm with them in the case
of insufficient data. Thus, we compare our result with these approaches using
8 training sequences for each activity. Table 2 shows the comparison of our
work with previous approaches. Our activity-dependent DBN models achieve
the state-of-art performance on Weizmann dataset.

6.2 KTH Dataset

The KTH dataset consists of 600 video clips with 6 human activities, each of
which is performed by 25 subjects in four different scenarios: outdoors, outdoors

Table 1. Recognition error of activity-dependent structures learned with CSEM and

SEM

# Training sequences 1 3 5 8

SEM 0.247 0.091 0.028 0.000

CSEM 0.182 0.067 0.019 0.000
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Table 2. Comparison with previous work on Weizmann dataset

Our method (SEM) 100%

Our method (CSEM) 100%

Fathi et al. [21] 100%

Jhuang et al. [22] 98.8%

Thurau et al. [23] 94.4%

Niebles et al. [24] 72.8%

with scale variation, outdoors with different clothes and indoors. The knowledge
base we used in evaluating our approach on this dataset is exactly the same
as on the Weizmann dataset. In the experiments, we vary the number of train-
ing sequence for each activity from 50 to 500 to study the effectiveness of the
knowledge-based learning on alleviating the dependency on the data.

Table 3 compares the knowledge-based CSEM algorithm with the standard
SEM algorithm in learning the activity model with different number of training
subjects. We can clearly see that, when the number of training subjects is large,
CSEM is only marginally better than SEM algorithm. However, when the num-
ber of training subjects becomes smaller, the knowledge we exploited gradually
play more important role in activity recognition. With the complement of the
logic knowledge, the CSEM algorithm can perform significantly (7.1%) better
than the SEM algorithm when the number of training subjects is small.

Table 3. Comparison of CSEM and SEM

# Training Subjects 4 8 12 16 20

EM 0.760 0.828 0.862 0.880 0.892

CSEM 0.831 0.863 0.904 0.921 0.925

We also compare our approach with the state-of-art approaches on this
dataset. Similar to the posted results in the literature, I use the data from 16
subjects for training. Table 4 shows that we can achieve comparable result to
the state-of-art approaches.

Table 4. Comparison with previous works on KTH dataset

Our method (SEM) 88.0%

Our method (CSEM) 92.1%

Yuan et al. [25] 93.3%

Laptev et al. [26] 91.8%

6.3 Parking Lot Dataset

We also apply our algorithm to the problem of recognizing human activities in
the parking lot. The dataset consists of 108 sequences for 7 activities: walking
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(WK), running (RN), leaving car (LC), entering car (EC), bending down (BD),
throwing (TR) and looking around (LA). These activities are performed by sev-
eral people with scale variation, view change and shadow interference. In the
experiment, we randomly split the original dataset into training set and testing
set. Different algorithms are compared using training set with 10, 20, 40, 80
sequences. Each size is tested 10 times and the average recognition error is used
for evaluation. We use the constraints set as those for the Weizmann dataset.

In figure 3, we compare the knowledge-based CSEM with data-based SEM
algorithms in learning both activity-dependent and activity-independent model
structures.

Fig. 3. Comparison of CSEM and SEM for learning activity-dependent and activity-

independent models

First, we look at the performance of the activity-dependent models learnt with
the CSEM algorithm and SEM algorithm. As the number of training sequences
decreases, the CSEM algorithm gradually shows its advantage over SEM, which
means our knowledge in terms of constraints play more and more important
roles on regularizing the structure learning as data size decreases.

From figure 3, we can also find that, with 20 or 10 training sequences, the
activity-dependent model obtains comparable results with activity-independent
model learnt using CSEM with the same data size, while it performs worse
if we learn the structure without constraints. Moreover, the activity-dependent
model with CSEM learning (method 1) requires only half training data to obtain
comparable result to activity-independent model with SEM learning (method 2)
when the data is insufficient. Specifically, with only 10 training sequence, the
recognition error of method 1 is 43.2%, while the recognition error of method 2
is 43.0% given 20 training sequence. With 20 training sequence, the recognition
error of method 1 is 35.5%; in comparison, the recognition error of method 2
is 35.2% given 40 sequences. Thus, we can see that exploiting the generic logic
knowledge in the activity can greatly alleviate the problem of insufficient data.

Table 5 reports the recognition result of the activity-dependent models learnt
with CSEM algorithm on 80 training sequences. Our algorithm can correctly
classify 78.6% of the testing sequences. The result is reasonable since the mis-
classifications occur between similar activities (i.e. walking and looking around),
or for the activities with poor observation (i.e. leaving car and entering car)
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Table 5. Confusion table of the activity recognition test on activity-dependent models

learnt with constraints

WK RN LC EC BD TR LA

WK .90 .06 .00 .00 .00 .00 .04

RN .08 .88 .00 .00 .00 .04 .00

LC .00 .00 .65 .25 .10 .00 .00

EC .00 .00 .35 .60 .00 .05 .00

BD .02 .00 .04 .00 .80 .08 .06

TR .00 .10 .00 .04 .12 .72 .02

LA .125 .025 .025 .00 .025 .05 .75

Overall Accuracy: 78.6%

7 Conclusion

In this paper, we focus on exploiting prior knowledge from human activity do-
main and investigating a constrained structure learning method to learn activity
model combining these prior knowledge with training data. Our contributions
include : first, we exploit various generic while effective domain knowledge in the
form of first-order probabilistic knowledge; second, after transforming the FO-
PLs to the structure prior and qualitative parameter constraints, we propose a
constrained DBN learning approach to combine domain knowledge with training
data. The experimental results demonstrate the effectiveness of our knowledge-
based learning scheme in reducing the dependence on training data and allevi-
ating the over-fitting problem when data is insufficient. It also shows promise
of the activity-dependent structures in improving activity recognition. Although
our learning framework is only tested on single-subject activity recognition, we
are planning to apply it to multi-subject and more complex activity recognition
in the future.
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Abstract. We introduce a novel approach to automatically learn intu-

itive and compact descriptors of human body motions for activity recog-

nition. Each action descriptor is produced, first, by applying Temporal

Laplacian Eigenmaps to view-dependent videos in order to produce a

stylistic invariant embedded manifold for each view separately. Then,

all view-dependent manifolds are automatically combined to discover a

unified representation which model in a single three dimensional space

an action independently from style and viewpoint. In addition, a bidi-

rectional nonlinear mapping function is incorporated to allow projecting

actions between original and embedded spaces. The proposed framework

is evaluated on a real and challenging dataset (IXMAS), which is com-

posed of a variety of actions seen from arbitrary viewpoints. Experimen-

tal results demonstrate robustness against style and view variation and

match the most accurate action recognition method.

Keywords: action manifold, activity recognition.

1 Introduction

Since video recording devices have become ubiquitous, the automated analysis
of human activity from a single video is now an essential area of research in
computer vision. Applications for such technology include video surveillance,
indexing of film archives, sports video analysis and human-computer interactions.

Variability in human shape, appearance, posture and individual style in per-
forming some motion makes the unified description of a given action difficult. In
addition, camera view, perspective and scene environment have a critical impact
on the aspect of recorded data. Consequently, the task of action recognition from
a single video is extremely challenging. In this paper, we propose a solution which
deals with this complexity within a single powerful framework. It allows accu-
rate action recognition from a single uncalibrated camera in a fully automatic
approach which exhibits high robustness to action style and view variation.

Previous work in this field falls into two categories: view-dependent and view-
independent approaches. View-dependent methods assume that all actions are
recorded from a fixed viewpoint [3,7,9,1]. The standard approach uses temporal
templates to represent an action by encoding the history of silhouette deforma-
tion over time [3]. Actions were also described in the space-time domain. Local
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space-time features were extracted from the volumetric space-time action shape
derived from sequence silhouettes by solving the Poisson equation [7]. Alter-
natively, the structure of local 3D patches was analysed by extending interest
points into the spatio-temporal domain [9]. Moreover, by taking into account
dynamics, action descriptors were defined in terms of chaotic invariant features
from joint tracking [1]. Although these approaches have proved very accurate,
the fact they rely on videos captured from a specific view limits their practicality
in real world scenarios.

As a consequence, many researchers focused on multiple camera systems to
achieve view-invariant action recognition. For instance, 2D temporal templates
were extended into 3D motion history volumes [27]. If point correspondences
between actions are assumed to be known, then either epipolar geometry [29]
or projective invariants of coplanar landmark points can be exploited [19]. The
main drawback of these methods is that, since they all require multiple cameras
setups, they can only be applied in a controlled environment.

More recently, research has tackled the task of action recognition from an
arbitrary view, i.e. from a single video, where multi camera data are used for
training. Typically, a database of exemplars from different views is created to
recognise actions based on the best matching score. Although silhouettes can
be used to represent an action, their intrinsic ambiguity leads to high density
sampling of the view space to obtain accurate results [18]. In contrast, richer
action descriptors based on 3D exemplars represented by visual hulls and hid-
den Markov model allow reducing significantly the size of action templates [25].
Consequently, matching between observation and exemplars has to be performed
in 2D by projecting visual hulls. Since such projection from high dimensional
space to low dimensional is multimodal, it impacts on the quality of the recog-
nition rate [25]. Junejo et al. [8] proposed to represent image sequences using
self-similarity based descriptors which are fairly stable under view variation and
characterises well the dynamics of the scene. However, this approach relies on
the rough localisation and tracking of people in the video [8]. In [28], a video
is represented by a combination of 3D visual hulls with spatio-temporal vol-
umes to build 4-dimensional action feature models. Alternatively, a video can
be described as a bag of spatio-temporal features called video-words (BOW) by
quantising extracted 3D points of interest [16]. Initially, a SVM was trained on
BOW to recognise actions [16], but this feature was also extended with a bag of
spin-images [15]. Although these schemes perform accurate action recognition,
the absence of continuous action model limits their applicability.

The methods most closely related to our approach model activities by re-
ducing dimensionality of each sequence to obtain view-invariant manifold rep-
resentations [21,6,5]. [21] used R-transform as a descriptor and Isomap [23] for
dimensionality reduction, whereas [5,6] chose implicit distance function represen-
tation and locally linear embedding [22]. In these approaches [21,5], generative
view-independent functions are designed to interpolate between intermediate
views. This generative function was also extended to handle stylistic variation of
data [6,5]. However, due to the limitations of the chosen dimensionality reduction
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methods, none of these approaches managed to produce consistent style invariant
representations, i.e. representations which are valid for a variety of individuals.
Consequently, the accuracy of their systems was limited. This problem was ad-
dressed be applying non-rigid transformation [17] to artificially unify manifold
representations of different people [21,6]. However, since such transformation af-
fects manifold geometry, they may no longer reflect relationships between points
in the high dimensional space. Alternatively, in [5] the topological structure of a
torus was artificially constrained on the manifold to explicitly deal with stylistic
variation instead of being learned from the data.

The main contribution of this paper is a new continuous view and style invari-
ant action descriptor in a form of an Action Manifold. The proposed descriptor
overcomes above limitations, since, not only, it is obtained automatically from
labelled training data, but it encapsulates both style and view in a coherent
torus-like two-dimensional manifold. The novel procedure used for generating
torus-like descriptors takes advantage of several advanced techniques which have
never been used in a view independent action recognition. They include Tempo-
ral Laplacian Eigenmaps [14] (TLE), Decomposable Generative Model [12] and
Poisson Equation [7]. In addition, the method used for determining repetition
neighbourhood in the TLE algorithm has been refined to handle for complex
and dynamic videos of human actions. Finally, our descriptors are validated in
a challenging real-life scenario of a view independent action recognition.

The structure of this paper is organised as follows. First, we describe our
framework. This includes the processes of view-dependent discovery, view-in-
dependent manifold construction and mapping and a brief description of the
dimensionality reduction algorithm. Secondly, the framework is validated quan-
titatively on a real dataset of human actions. Finally, conclusions and future
work are presented.

2 View and Style-Independent Action Manifold

An action can be implicitly defined by a set of videos of a variety of people
performing similar movements seen from different cameras. In our work, we aim
to produce a single compact and informative model, i.e. action manifold, which
represents an action independently from camera views and individuals’ styles.

In our framework, the set of videos defining an action includes a variety of
individuals, each of them captured on their own by a set of calibrated and
synchronised cameras. Moreover, for each action, a video is labelled as a good
representative; usually it is captured from a side view. We do not impose restric-
tions regarding video length variability for a given action and an individual may
perform an action several times.

Let Y denote the set of N videos defining an action performed by different
people and captured from different views. For a given view, action repetitions
and variability of people define action style. Therefore, Y can be defined as Y =
{Y sv}(s=1..Ns,v=1..Nv), where v denotes the view class index and s is the style
index. Each frame y of video is represented by D pixels: Y sv = {ysv

i }(i=1..T sv),



550 M. Lewandowski, D. Makris, and J.-C. Nebel

Fig. 1. Description of the action recognition framework for the ”point” action

ysv
i ∈ RD, where T sv is the number of frames in the sequence. Fig. 1 summarises

the processing pipeline used to produce a unified and compact action model,
X, of dimension d � D, defined by X = {Xsv}(s=1..Ns,v=1..Nv), where Xsv =
{xsv

i }(i=1..T sv) and xsv
i ∈ Rd.
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Our algorithm is divided into two parts. First, view-dependent analysis of
action data generates a style invariant action model for each view. This is per-
formed using Temporal Laplacian Eigenmaps, a dimension reduction algorithm
with excellent generalisation properties [14]. Then, these models are combined to
learn a single compact and view invariant generative model of the action using
generative decomposable model [12]. Fig. 1 provides an overview of our method.

2.1 View-Dependent Manifold

Pre-processing and Shape Representation. A frame ysv
i is generally de-

fined by grey scale or colour pixel values. This very high dimensional description
makes the process of learning an activity model from a frame sequence costly
and inaccurate. However, many studies [18,25,5,6,12] have revealed that a binary
representation of moving objects, i.e. silhouettes, are sufficient to capture the ac-
tivity described by a frame sequence. Consequently, we adopt this approach in
our framework.

We extract binary silhouettes ysv
i from each video by a standard background

subtraction technique which models each pixel as a Gaussian in RGB space
[27]. When videos consist of multiple instances of a given motion, temporal
segmentation is required to extract elementary motion segments Y sv [26,4].

All silhouettes are normalised to deal with translation and scale variations
by using the largest silhouette square bounding box available within the entire
action dataset. In order to improve the quality of the normalised silhouettes, two
morphological operations, i.e. bridge and open, and a median filter are applied.
Lengths of all sequences Y sv are also normalised to match the length of the
shortest sequence T ’ in the set Y using the standard bicubic spline interpolation
technique.

A sequence of binary silhouettes can be considered as a space-time shape sur-
rounded by a closed surface [7]. This allows representing each silhouette by a
local space-time saliency feature extracted from the solution of the Poisson equa-
tion of the corresponding volumetric surface, which takes into account the time
domain [7]. This representation assigns highest gradient values within fast mov-
ing limbs which are much more informative for identifying actions, whereas torso
has relatively smaller values inside (Fig. 1). As a consequence, such descriptor
is significantly more powerful than binary representation [7] and essential, as it
will be shown later, in the procedure allowing the selection of the TLE repetition
neighbourhoods.

Dimensionality Reduction. Even with the generation of the previously de-
scribed shape descriptor, the high dimension of Y remains unsuitable for anal-
ysis. Consequently, we propose to produce an informative and unified model of
the action using a nonlinear dimensionality reduction method. However, most
of these techniques [23,22,2,11] cannot handle large variations within a dataset
such as an action performed by different people. As a result, they tend to cap-
ture the intrinsic structure of each manifold separately without generalisation.
Consequently, the common embedded space shows separate and highly distorted
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manifolds. To deal with this fundamental issue, in this work we use the TLE
algorithm which shows excellent generalisation properties [14].

TLE is an unsupervised nonlinear method for dimensionality reduction des-
ignated for time series data. It aims to preserve the temporal structure of data
manifolds by introducing the concept of simultaneous exploitation of two types of
neighbourhood graphs, which express implicitly temporal dependencies between
data points. In our framework both graphs are constructed for the view Y v′

which was labelled as a good representative. Each graph is based on a different
definition of neighbour:

a. Adjacent temporal neighbours (A): the next and previous closest points in
the sequential order of input.

b. Repetition temporal neighbours (R): the points similar to input but ex-
tracted from the different repetitions of activity which may vary in style.
The number of R neighbours should match the number of styles Ns con-
tained in the training set Y v′.

The process of dimensionality reduction can be summarised briefly by the follow-
ing steps. First, view-dependent weights W v are assigned to the edges of graph
G′ ∈ {A,R} to construct graphs for all views Gv using the standard LE formu-
lation [2]. Then for each view the extended cost function is defined to combine
information from both graphs:

argminXv((Xv)TLv
AX

v + (Xv)TLv
RX

v) (1)

subject to (Xv)TDv
AX

v + (Xv)TDv
RX

v = I (2)

whereDv,G = diag{Dv,G
11 , Dv,G

22 , , Dv,G
T vT v} is a diagonal matrix with entriesDv,G

ii =
∑T v

j=1W
v,G
ij , andLv

G = Dv,G−W v,G is the Laplacian matrix. The minimum of the
objective function can be found by applying Lagrange multipliers to Eq. 1 sub-
ject to the constraint expressed by Eq. 2 and solving the generalised eigenvalue
problem:

(Lv
A + Lv

R)Xv = λ(Dv
A +Dv

R)Xv (3)

The embedded space Xv is spanned by the eigenvectors given by the d smallest
nonzero eigenvalues λ (d = 2). The output of this stage is a view-dependent and
style-independent one-dimensional action manifold Xv (Fig. 1 and 2b).

Selection of Repetition Temporal Neighbourhood. The size of the repe-
tition neighbourhood corresponds to the number of times an activity is repeated
in the training set. Although video lengths were normalised for each action, it
cannot be assumed that these videos are synchronous for two reasons. Firstly,
they may start on different posture and, secondly, due to style variations, there
may not be frame to frame correspondences between two action instances. Con-
sequently, the estimation of the size and location of the repetition neighbourhood
is essential. We automatically determine the optimal repetition neighbourhood
by adopting the action detection procedure proposed in [7]. This schema is used
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to find similar motion patterns in each sequence of the training set from which
R neighbours can be extracted (see lower part of Fig. 1).

First, the local space-time saliency shape descriptor defined in section 2.1
is extended with a local space-time saliency feature which is composed of 6
local space-time orientation attributes [7]. This allows indentifying regions with
vertical, horizontal, and temporal ”plates” and ”sticks” within body and define
orientation local features. Fig. 1 illustrates an example of ”plate” and ”stick”
local features for a good representative view. Blue, red, and green colour regions
correspond to temporal, horizontal, and vertical directions of local ”plates” and
”sticks” [7].

In the next step, a space-time cube is associated to each frame yv′
i in a sequence

Y v′ by sliding a warping window in time. The cube, i.e. the global space-time de-
scriptor, combines local shape and orientations features using weighted moments
of the form [7]:

moqr =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
w(px, py, t)g(px, py, t)po

xp
q
yt

rdpxdpydt (4)

where px,py are pixels coordinates, g(px, py, t) denotes the characteristic func-
tion of the space-time shape, w(px, py, t) is one of the seven possible weighting
functions which corresponds to local features. As suggested in [7], spatial and
time moments are considered up to order o+ q ≤ 2 and r ≤ 2 respectively. Each
space-time cube is centred around its space-time centroid and uniformaly scaled
to preserve spatial aspect ratio.

Secondly, we calculate the matrix M (Nv×Nv) of Euclidean distances between
all space-times cubes among all sequences for a particular view. To emphasise
continuity and temporal coherence of the underlying action between sequentially
adjacent points in time, we perform temporal windowing of matrix M by averag-
ing distances through time within boundaries of each sequence. This implicitly
leads to introducing a temporal history into each data point.

Finally, for each cube we look for the most similar motion pattern in each
different repetition of activity based on M. The centre point of each most similar
space-time cube becomes a repetition neighbour.

Because of possible substantial differences in speed and imperfect segmenta-
tion of action, the repetition neighbours may still not align coherently along time
what may result in distortions in the embedded space. To address this problem,
we incorporated a neighbourhood refinement procedure. In principle, we accept
only these R neighbours for given point P which are within specific range from
a corresponding point in each other sequence:

R′ = {P(i−1)∗T+1 − T ′ ≤ Rj ≤ PiT + T ′}, i = 2..Ns, j = 1..Ns (5)

where T ′ is defined as 10% of the normalised sequence length T. As it was
mentioned earlier, the entire procedure is performed only once per action for
the most discriminative view, because the temporal structure of an action is not
view-dependent.
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2.2 View-Independent Manifold

Generation of a View-Independent Topological Structure. Discovery of
a compact representation of any human activity requires modelling both the view
and body configuration jointly in a single space. Here we assume that human
motion is observed from different viewpoints along a view circle at fixed camera
height. Although such cylindrical setting appears limited, its robustness to view
elevation variations, up to 45 degrees as shown in experimental section, makes it
appropriate for many real life applications such as visual surveillance and sport
analysis [5]. it is important to note that this configuration is not critical to our
framework since it can easily be extended to a full view sphere-like model using
training videos captured from different camera heights.

In section 2.1 style invariant body configuration manifolds were discovered for
each view. Since the embedded spaces share the same topology regardless of the
view, see Fig. 1 and 2b, for a given posture there is a unique correspondence
on each of these manifolds. Consequently, the connection of those corresponding
points in the order of view angle values creates a closed one dimensional manifold
(topologically equivalent to a circle) which is the view-independent embedded
space of the posture. Therefore, we define the unified representation of an activity
as the combined space of the two sets of continuous one dimensional manifolds,
i.e. posture and view, which are placed orthogonally to each other.

The process of producing the unified manifold comprises two steps. First,
the view-dependent representations are combined: the embedded spaces Xv are
aligned with respect to a good representative Xv′ using Procrustes analysis
[24]. Since this is a rigid transformation of the spaces, the internal structure
of each manifold is not changed. Secondly, each embedded representation Xv is
aligned into a three-dimensional structure according to the view angle parameter
μv ∈ [0, 2π]. The outcome of this procedure reveals a torus-like structure which
encapsulates both style and view (Fig. 1 and 2c). We called this structure a view
and style-independent action manifold. This result is in line with previous work
[5], where the usage of a torus is justified as an ideal representation for modelling

Fig. 2. Training results for quasi periodic action ”check watch” (left) and non periodic

action ”sit down” (right): a) training videos; b) style-independent low dimensional

representation for each view; c) style and view-independent manifolds
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both the viewpoint and the body configuration of different activities. However,
while, in that work, the topological correspondence between data points Y and
an ideal torus is artificially enforced, in our approach, the torus-like represen-
tation reflects the temporal structure of the view-dependent data. Therefore, in
our approach all types of motions, i.e. periodic, quasi-periodic and non-periodic,
see Fig. 2, can be handled using the same framework.

2.3 Manifold Mapping

Mapping Function. In the previous section, view descriptors have been com-
bined to form a unique view-independent action manifold. Since TLE is a spectral
dimensionality reduction method, there is no mapping function between initial
and embedded spaces. However, the ability to project data points from one space
to the other is required for classification.

In order to provide a single projection function which allows dealing not only
with stylistic variations, but also view changes, a decomposable generative model
is learned [12]. This model aims at separating the intrinsic action configuration
from other factors such as the motion style and view. Following [12] approach,
the generative mapping function is modelled using three factors:

– Content C : a representation of the intrinsic body configuration which char-
acterises motion as a function of time. It is invariant to either person or
view.

– Style S : a time-invariant person parameter which describes the person ap-
pearance, shape and motion style.

– View point V : a time-invariant view parameter which characterises the view
point from which the performed action is captured.

In our framework, content is represented by a continuous manifold while style
and view are represented by the discrete classes present in the training data. For
the last two factors, intermediate states can be interpolated. As a result, we are
able to approximate view and style continuity. In addition, we assume that both
style and view factors are time-invariant, i.e. both parameters remain constant
during any instance of an action.

The procedure of fitting the decomposable generative model to the data con-
sists of two steps. First, a set of style and view-dependent functions is trained.
Then, all functions are combined into a single style and view-independent pro-
jection function.

Since mapping between the embedded manifold and the original space is
highly nonlinear, generalised Radial Basis Function network [12] is applied to
provide the nonlinear view-dependent mapping. It is expressed by Ns style-
dependent mapping functions:

ysv = Bsv ∗ Ψ(xsv) (6)

where B is a D × E matrix of mapping coefficients. The kernel vector ψ(�) is
defined by:

Ψ(xsv) = [Φ(‖ xsv − z1 ‖)..Φ(‖ xsv − zE ‖) 1 xsv]T (7)
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where Z = {zi}(i=1..E) is a set of distinctive representative points in each embed-
ded space and φ(�) is a radial basis function; here we use a thin plate spline. Bsv

is calculated by applying the Moore-Penrose pseudo-inverse on matrix ψ(Xsv)
and solving a linear system of equations: Bsv = Y sv ∗ ψ(Xsv)+ like in [12]. The
set Z is obtained by calculating a mean style and view manifold, which is then
transformed by a non-rigid point registration procedure, called Coherent Point
Drift [17], to better fit the data.

The final view-independent decomposable generative model is obtained by
multi-linear tensor analysis in the space of nonlinear mapping coefficients [12].
Each coefficient matrix Bsv is represented as the coefficient vector bsv of dimen-
sionality Ne = D ∗ E by column wise stacking (columns of the matrix are con-
catenated to form a vector). Afterwards, all coefficient vectors bsv are arranged
in an order three coefficient tensor B whose dimensionality is Ns×Nv×Ne. The
view and style orthogonal factors are decomposed from the assembled coefficient
tensor B using higher order singular value decomposition [10]:

B = C ×1 S ×2 V ×3 F = G×1 S ×2 V (8)

where S (Ns×Ns) is the mode-1 basis of B, which represents the orthogonal basis
for the style space. Similarly, V (Nv×Nv) is the mode-2 basis matrix which spans
the space of viewpoint parameters and F (Ne ×Ns ∗Nv) represents the mode-3
basis for the mapping coefficient space. C is a core tensor (Ns×Nv×Ne) which
governs the interactions between orthogonal factors represented in mode basis
matrices. Coefficient eigenmodes G is a new core tensor formed by G = C ×3 F
whose dimensionality is Ns ×Nv ×Ne. Mode-i is a tensor product as defined in
[10]. As the result, view-independent and style-independent projection function
is expressed by equation y = B ∗ Ψ(x).

Action Recognition. The task is performed by projecting a motion sequence
into each action descriptor using the generative decomposable model presented in
the previous section. Then, the dynamic time warping distance [20] is calculated
to measure similarity between actions.

Given a new instance of action Ỹ sv, its length is first normalised as described
in section 2.1. Then the embedded coordinates X̃sv of the new action are ob-
tained by least square solution of the following nonlinear system:

argminBΨ ‖ Ỹ sv − B̃svΨ(X̃sv) ‖ (9)

It’s minimum solution can be found by determining and optimising coefficient
matrix B̃sv given a learned model and then projecting data by solving a linear
system of equations using the Moore-Penrose pseudo-inverse :

Ψ(X̃sv) = (B̃sv)+ ∗ Ỹ sv (10)

Coordinates of X̃sv are provided by the last d rows of the matrix Ψ(X̃sv). In
order to determine the optimal coefficient matrix B̃sv, we adopt an iterative
procedure [12]. First, we calculate a mean view manifold Z over all aligned
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mean styles manifolds Zv to obtain a homeomorphic manifold [12]. Then, the
coefficient matrix is initialised by solving the following equation:

B̃sv = Ỹ sv ∗ Ψ(Z)+ (11)

Let’s b̃sv denote a vector obtained by column wise stacking of matrix B̃sv. Then
given a mapping model as described in the previous section and any style vector,
s̃, and any view vector ṽ, we can define a coefficient vector b̃sv by the tensor
product bs̃ṽ = G×1 s̃×2 ṽ.

Mapping coefficients b̃sv can be optimised to reflect style and view of a new
instance action Ỹ sv by minimising the following error:

argmins̃ṽ ‖ bs̃ṽ −G×1 s̃×2 ṽ ‖ (12)

where G is derived from learning (equation 8). Since tensor G represents the
intrinsic body configuration ’content’ of the considered action and manages in-
teractions between all factors, an accurate solution for style and view can only
be reach for the same action.

If the style vector, s̃ is known we can obtain a closed form solution for ṽ and
vice versa. This leads to an iterative procedure for estimating s̃ and ṽ simulta-
neously until equation 12 converges [12]. In practice, we follow Lee’s approach
where s̃ is initialised with a mean style estimate. Since the view classes are dis-
crete, we identify the closest view class and use it to estimate s̃. Finally, vector
b̃sv is unstacked to create matrix B̃sv; then the action Ỹ sv is embedded into the
low dimensional space using equation 10.

3 Experimental Results

3.1 Experimental Setup

The proposed framework was validated on the publicly available multi-view IX-
MAS dataset [27,25], which is considered as the benchmark for action recognition
methods. Since the ’throw action’ is not performed by all subjects, we excluded it
from our experiments. As a result, the chosen dataset is comprised of 12 actions,
performed 3 times by 12 different actors. Each of these 432 activity instances was
recorded simultaneously by 5 calibrated cameras, and a reconstructed 3D visual
hull is provided. In this dataset, actors’ positions and orientations are arbitrary
since no specific instruction was given during acquisition. As a consequence, the
action viewpoints are arbitrary and unknown.

To obtain a dense set of action descriptors regarding viewpoints for training,
we followed [21] approach where the animated visual hulls are projected onto 12
evenly spaced virtual cameras located around the vertical axis of the subject. In
line with other experiments made on this dataset [16,15,28], the top view was
discarded for testing.

Experiments are conducted using the leave-one-out strategy followed by
[28,8,25,21]. In each run, we select one actor for testing and all remaining sub-
jects for training. Two testing schemes were used: recognition using single view,
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and recognition using multiple views. In the recognition from multiple views,
a simple majority voting rule was applied [16,15]. Finally, performances were
compared to the other state of art methods. Unfortunately, results could not be
compared with [21], because, instead of evaluating their method with original
video data, they did it by using projections of the visual hulls.

3.2 Performances

Although different approaches may use slightly different experimental settings,
table 1 shows that our framework produces state of art performances. Accuracy
rates obtained for an experiment aiming at only 11 actions, i.e. the ’point’ action
was not considered, reveals that we outperform all methods targeting this task
[28,8,25] even if they considered a smaller set of subjects [8,25].

When all actions completed by all subjects are considered, i.e. 12, our frame-
work displays results which are significantly better than Liu [15] and match those
obtained by Liu [16]. Although performance alone cannot discriminate between
Liu’s and our method, we believe that our action models are superior. Indeed,
unlike Liu’s descriptors which are based on codebooks, ours consists of single
integrated continuous models. Consequently, our action manifolds can be ap-
plied to many applications beyond action recognition such as synthetic action
sequence generation, style recognition and camera view estimation.

Fig. 3 depicts the confusion matrix of recognition for the ’all-view’ experiment.
It reveals that our framework performed better when dealing with motions in-
volving the whole body, i.e. ”walk”, ”sit down”, ”get up”, ”turn around” and
”pick up”. Since temporal information is essential when dealing with highly dy-
namic motions and TLE aims at preserving temporal structure in each view,
action manifolds of those activities are more representative. The best recogni-
tion rates 74.8%, 80.3% are obtained for camera 2 and 4 respectively. This was
expected, since both views are the most similar among those used for training.
Moreover, when dealing with either different, i.e. camera 1, or even significantly
different views, i.e. camera 3, our framework still achieves reasonable recognition,
i.e. 71.7% and 65.9% respectively. Details about average accuracy per camera
can be found in supplementary material [13].

Table 1. Average recognition accuracy over all cameras (top view excluded) using

either single or multiple views for testing

% Subjects Actions
Average Accuracy

Single view All views

Weinland [25] 10 11 63.9 81.3

Yan [28] 12 11 64.0 78.0

Junejo [8] 10 11 74.1 -

Our 12 11 75.0 83.1

Liu [15] 12 13 71.7 78.5

Liu [16] 12 13 73.7 82.8

Our 12 12 73.2 83.1
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Fig. 3. Class-confusion matrix using multiple views. The average performance is 83.1%.

4 Conclusion

This paper introduces a novel human action recognition framework for arbi-
trary individuals and views. Its main contribution is a procedure for learning
discriminative and unified action descriptors, which reside in a low dimensional
space. These descriptors are constructed automatically by taking advantage of
the TLE algorithm and a generative decomposable model. Performance of the
proposed methodology has been evaluated using the IXMAS dataset and com-
petitive results have been demonstrated. In addition, since our procedure to
produce manifold based descriptor is general, it can be applied to many appli-
cations beyond action recognition such as visual surveillance or sport analysis.
We plan to investigate some of these directions in future work.
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Abstract. Given a collection of images containing a common object, we seek to
learn a model for the object without the use of bounding boxes or segmentation
masks. In linguistics, a single document provides no information about location
of the topics it contains. On the contrary, an image has a lot to tell us about
where foreground and background topics lie. Extensive literature on modelling
bottom-up saliency and pop-out aims at predicting eye fixations and allocation of
visual attention in a single image, prior to any recognition of content. Most salient
image parts are likely to capture image foreground. We propose a novel proba-
bilistic model, shape and figure-ground aware model (sFGmodel) that exploits
bottom-up image saliency to compute an informative prior on segment topic as-
signments. Our model exploits both figure-ground organization in each image
separately, as well as feature re-occurrence across the image collection. Since
we use image dependent topic prior, during model learning we optimize a condi-
tional likelihood of the image collection given the image bottom-up saliency in-
formation. Our discriminative framework can tolerate larger intraclass variability
of objects with fewer training data. We iterate between bottom-up figure-ground
image organization and model parameter learning by accumulating image statis-
tics from the entire image collection. The model learned influences later image
figure-ground labelling. We present results of our approach on diverse datasets
showing great improvement over generative probabilistic models that do not ex-
ploit image saliency, indicating the suitability of our model for weakly-supervised
visual organization.

1 Introduction
Given a collection of images containing a common object, we seek to learn a model for
detection and segmentation of the object without additional supervision. The absence
of figure-ground segmentation ahead of time makes this task challenging. However,
learning of object models with minimum amount of supervision is necessary for scaling
vision systems to large number of object categories.

Models for unsupervised learning rely on the figure consistency principle: fore-
ground features tend to re-occur and co-occur more consistently across images than
background features. This permits their separation from the background and incorpora-
tion into the model built for the common object. However, the task remains challenging
mainly for the following reasons:
1. Heavy clutter. The more cluttered the images, the harder to dig out the common

object.
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2. Persistent co-occurrence of foreground with its semantically related background.
Examples are car and road, giraffe and grass, swan and water. So, in practice, the
backgrounds in the image collection are not random. Rather they are highly corre-
lated with the common figure, making it difficult for a generative process to seg-
ment it from the background.

3. Large intraclass variation of many object categories due to articulation, deforma-
tion, change of view point. This violates the figure consistency principle.

We propose a novel approach that deals with the above challenges by coupling figure-
ground image segmentation and learning of the common object. To our knowledge,
this is the first work that exploits image saliency and figure-ground organization for
weakly-supervised learning of objects.

Shape aware figure ground model SpatialLTM

Fig. 1. The baseline model ([1]) does not discriminate between Giraffe and background due to
persistent co-occurrence of Giraffe and ground in the image collection and wide variation of
Giraffe shape. Wide intraclass variability is a common phenomenon in the visual domain. Our
model exploits figure-ground information and effectively learns to segment the object.

We set our problem as topic discovery in the image collection: we aim at assigning
image segments to visually coherent topics and learn the models for the common object
(single foreground topic) and its background (possibly multiple background topics). We
employ an iterative algorithm. Initially, we extract purely bottom-up figure-ground cues
from each image, represented as multiple soft figure-ground maps. We score these maps
using bottom-up image saliency. The map scores are not fixed, they change accord-
ing to feature re-occurrence: figure-ground maps that propose foreground found most
consistent across the image collection will iteratively get higher scores. At each itera-
tion, we sample the highest scoring map in each image and obtain a prior on segment
figure-ground labels. We perform a constrained probabilistic segment topic assignment
by assigning different topics to segments that have different figure-ground labels. We
accumulate image statistics and update the model parameters accordingly. Model up-
date influences the scores of figure-ground maps and thus the figure-ground segment
labels. Thus, figure-ground segmentation changes according to the model being built.

Our model has the following advantages:
– The object is naturally repulsed by its background and frequent co-occurrence of

object and its semantically related background is no longer a problem. Optimizing
segment topics given image saliency cues gives a discriminative flavor and offers
robustness towards purely generative models.

– Segment independence is not part of our assumptions. Bottom-up saliency and
figure-ground organization are operations that involve competition among segments
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in each image and thus segment independence does not hold (see also fig. 2). This
models the visual domain more accurately than most of the probabilistic models in
previous work.

– We are not restricted to a fixed figure-ground segmentation. Our input is a set of
soft figure-ground maps and is part of the learning process to choose the best one.
The loop from feature re-occurrence back to bottom-up image saliency cues deals
effectively with the presence of multiple foreground objects in each image.

The paper is organized as follows: We discuss related work in section 2. We present
our model in section 3. In section 3.2 we present our representation for figure-ground
image organization. Learning and inference in our model are presented in sections 4
and 5. Experimental results are in section 6. We conclude in section 7.

2 Related Work

There is extensive previous work on unsupervised or weakly-supervised learning of
object categories:

Topic models. ([2], [3]) Topic models from statistical text analysis (LDA [4], p-LSA
[5]) use unordered “bag of words“ representation of documents to automatically dis-
cover topics in large text corpora. In the visual domain, usually an image corresponds
to a document and a local patch descriptor to a visual ’word’. Much of previous work
is devoted in imposing spatial coherence between the visual words. Authors of [1] pro-
pose uniformity of topic assignments to the words belonging to the same superpixel.
Work of [6] uses multiple segmentations of images and models each segment as a doc-
ument. Segments well corresponding to topics are expected to have more peaked topic
distributions than wrong (leaking) segments. In [7] a fixed outline of the object is used
as extra input to guide learning.

Discriminative models. Part of previous work ([8], [9]) takes a discriminative approach
having a negative collection of images (not containing the common object) as addi-
tional input for detection of the common object. Works of [10], [11] and [12] model
weakly-supervised learning as multiple instance learning (MIL), using MILboosting
for object or part detection. Recently, authors of [13] used discriminative clustering to
assign figure-ground labels to image segments in the image collection such that figure
and ground classes are best separated. However, their formulation, does not take into
account image saliency of foreground.

In [14] a hierarchical model representation is built from a few training examples.
Plausible feature groupings are discovered iteratively based on the principles of suspi-
cious coincidence and competitive exclusion. Authors of [15] attempt to segment a pair
of images containing a common object. The problem is formulated as an MRF with
a global constraint about appearance histogram matching of the corresponding parts
from the two images. Authors of [16] learn a generative model for segmentation of a
collection of images combining appearence with object shape and pose.

Our model exploits an informative topic prior based on image figure-ground cues and
maximizes a conditional likelihood of the image collection given that prior. In this way,
it is more suitable for the problem of weakly-supervised learning than pure generative
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Fig. 2. Shading indicates observed variables and no shading indicates latent variables. Ni denotes
number of images (|I|), NS number of segments and Nw number of words. Top: Topic model
from [1]. θi is a multinomial distribution over topics for image Iiand λ is the parameter of a uni-
form Dirichlet prior over distributions θi, i = 1 · · · |I| . Bottom: Shape and figure-ground aware
model. The topic prior tightly depends on image figure-ground cues, as expressed by variable sal.
Given the observed w, information flows from feature re-occurrence as expressed by φ back to
the scores of figure-ground cues ρ, realizing the feedback loop from similarity across images to
image figure-ground labelling. See text for the rest of notation.

models. We can tolerate larger amount of intraclass variability with smaller amount of
training data. Shape is not provided as input but is recovered along the way. Discrimi-
nation is built within the image, by trying to discriminate the common object from its
background. We anticipate that figure-ground information would be useful in learning
most of the representations that appear in previous work, especially for objects with
large intra-class variability.

3 Shape and Figure-Ground Aware Model

Adopting the terminology of topic models we claim that in images topics are not created
equal. Extensive literature on bottom-up image saliency tells us that topics do not have
uniform prior distribution given an image: Foreground topics tend to occupy salient
image locations, while background topics less salient ones. Our model proposes a topic
prior tightly depending on bottom-up image figure-ground cues.

Let T = {t1, t2, · · · t|T |} be the topics in which to organize the image collection,
t1 denotes the single foreground topic and t2 · · · t|T | the background topics. Let si

k

be the kth segment of image Ii and Si be the set of segments of that image: Si =
{si

1, s
i
2, · · · si

|Si|}. Let zi
k denote the topic of si

k. Let W be the word codebook and

wi
kl be the lth word of si

k (see also section 3.1). Let φz be a multinomial distribution
over words given topic z and β be the parameter of a uniform Dirichlet prior over
φz, z = t1 · · · t|T |.

Let FGi
k to be the figure-ground label of segment si

k ∈ Si in image Ii:
FGi

k ∈ {0, 1}
FGi

k = 1 if the segment si
k belongs to the common object in I. Note that each image

may have multiple foreground objects. FG = 1 refers to the presence of the common
object (common figure) that is of interest to us. We abuse language and call it figure-
ground label for brevity.
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Let FGmapi
j be the jth soft figure-ground map as found by bottom-up figure-ground

image organization and letRi be the set of these maps in image Ii (see section 3.2):

FGmapi
j : Si −→ [0, 1], Ri = {FGmapi

j , j = 1 · · · |Ri|} (1)

FGmapi
jk represents the probability of segment si

k to be part of foreground given

FGmapi
j . According to our formulation, segments have different probabilities of fore-

ground given different maps.
We define salij to be the saliency score of map FGmapi

j as computed by image
saliency scoring (see section 3.2).

salij ∈ [0, 1] ,
∑Ri

j=1 salij = 1

Let sali be the saliency values of maps in image Ii.
We define ρi

j to be the trust score of map FGmapi
j :

ρi
j ∈ [0, 1] ,

∑Ri

j=1 ρ
i
j = 1

In contrast to the saliency score salij , the trust score of a map depends on both bottom-
up saliency of each image in isolation, as well as feature re-occurrence across images.
It realizes the feedback loop from feature re-occurrence in I back to image figure-
ground segmentation. Intuitively, the trust score of a map is high if it maps the segments
occupied by the common object to high foreground probabilities and the rest of the
segments to low foreground probabilities. Let ρi be trust scores of maps in image Ii.Let
FGsofti to be the map with the highest trust score in image Ii:

FGsofti = FGmapi
�, where � = arg maxj=1···|Ri|ρ

i
j (2)

LetM denote the shape of the common object represented by a mixture of K Gaus-
sian distributions over vectors of real values representing shape descriptors attached to
binary shape masks of the object. Let L be the dimension of our shape descriptor:

M = {ωl, μl, vl, 0 < ωl < 1,
∑K

l=1 ωl = 1, μl ∈ R
L, vl ∈ R, l = 1 · · ·K},

Naturally, the probability of a shape descriptor sc ∈ R
L given shape modelM is:

P (sc|M) =
K∑

l=1

ωl · exp(−||μl − sc||2
2v2

l

) (3)

Our input is a set of soft figure-ground maps along with a distribution of saliency
scores over them. During learning we alter the initial score distribution taking into ac-
count feature re-occurrence across images. Intuitively, we assign topics to segments
such that segments found to have different figure-ground labels by maps of high saliency
value are mapped to different topics and segments belonging to the same topic are most
similar.

Our model parameters are M and φ, w and sal are observed variables and FG, z,
ρ and FGsoft are latent variables. Learning of our model amounts to optimizing the
following conditional likelihood of the image collection:

max
M,φ

P (FG, z,w,ρ,FGsoft|sal, β) (4)
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= max
M,φ

|I|∏

i=1

P (ρi|sali,M) · P (FGsofti|ρi) ·
|Si|∏

k=1

P (zi
k|FGi

k) · P (FGi
k|FGsofti) ·

|W i
k|∏

l=1

P (wi
kl|zi

k, φ
zi

k)

We optimize a conditional likelihood of topic assignments given bottom-up saliency
information of the images in I. We call sali, i = 1 · · · |I| a prior, since saliency val-
ues are computed from each image in isolation, without taking into account the image
collection I and re-occurrence of features, that is without seeing all the data.

A byproduct of our model is the organization of backgrounds into visually coherent
groups. The performance of our model in learning the common object is not sensitive
to the total number of topics used, a single background topic would do. However, by
increasing the number of topics, we additionaly get meaningful models for background
clusters as in the topic model literature.

Our model exploits effectively the rich figure-ground information present in images
to guide the topic discovery process in our weakly-supervised framework.

3.1 Image Representation

We use image segments as our basic units. Each image is described by a set of overlap-
ping segments, obtained from multiscale segmentation. We used the multiscale normal-
ized cut code [17] and discretized the eigenvectors using different number of segments.
Within each image segment we find a number of interest points using the scale invari-
ant saliency detector [18]. Each interest point is described by a SIFT descriptor[19]. We
discretized the space of SIFT descriptors using unsupervised k-means clustering. Each
segment is further described by a texture word and color word, each resulting from
quantization of texton and color histograms using k-means. For ease of presentation we
will refer to the description of each image segment by a bag of visual words, without
discriminating among SIFT or color/texture words.

3.2 Figure-Ground Image Organization

Figure-ground labelling is a step of perceptual organization which assigns a contour
to one of the two abutting regions. There is experimental evidence that rich figure-
ground information is available in images much before any of their content is recog-
nized ([20], [21]). We assume saliency and figure-ground organization are related, that
is most salient image parts tend to belong to foreground (common object) while less
salient ones to background ([22]).

We note two important properties of figure-ground organization and image saliency
that violate image segment independence: 1) Competition among different image parts
for visual attention allocation (illustrated in the literature through normalization of
saliency scores across image locations). 2) Convexity, connectedness of foreground,
center-surround figure-ground competition. We take the above into account and choose
to represent bottom-up figure-ground information with a score distribution over mul-
tiple segment foreground probability maps (soft figure-ground maps) (see eq. 1). This
suits well our unsupervised learning framework: each one of these maps proposes im-
age figure-ground labelling and learning choses the correct one by altering their score
distribution.
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Segments sikrij FGmapij

color texture
expansion

Line segment map

Cycle tracing

Fig. 3. Ribbon extraction using cycle tracing. a) Fitting straight line segments to a contour map.
b) Extracting ribbons using cycle tracing, by piecing pairs of line segments in a graph partitioning
framework. Yellow indicates ribbon interior. c)Figure-ground map (FGmap) obtained from color
and texture expansion of the ribbon. White indicates high probability of foreground and black
low probability. d) Segmentation map. Ribbons prevent over-fragmentation and achieve scale
invariance. On the contrary, in segmentation we get very different image groupings for different
numbers of segments. Here for illustration purposes we show segmentation of the finest scale
(superpixels) although we used multiple segmentation scales.

Multiple Soft Figure-Ground Maps

Figure-ground organization is a mid-level process and mid-level grouping is required to
provide information about figure-ground labelling. Our approach involves the following
steps:

– We piece together over-fragmented segmentation boundaries to recover large (pos-
sible overlapping) foreground image structures. This can be done using multi-
ple segmentations or greedy segment extension based on continuity of segment
boundaries. We call these structures ribbons to distinguish them from segments and
indicate that they can be obtained from different (not necessarily segment based)
computational procedures. Later we present a globally optimal way for piecing seg-
ment boundaries for ribbon extraction using contour continuity.

– For each ribbon a segment foreground probability map is calculated: The interior
of the ribbon is sent to foreground and surrounding highly contrasting segments
to background. This is extended to a full segment foreground probability map by
classifying each of the remaining image segments as foreground or background
using color and texture features. Let ri

j denote the jth ribbon of image Ii and |Ri|
the number of ribbons in image Ii. The corresponding foreground probability map
FGmapi

j(see eq. 1) represents the probability of each segment si
k to be part of

foreground given ribbon ri
j . For each map FGmapi

j , j = 1 · · · |Ri| we define the
following sets of segments:

S
i
inj

= {s ∈ Si
s.t FGmap

i
j(s) > l1}, S

i
outj

= {s ∈ Si
s.t FGmap

i
j(s) < l2}

Si
dont-knowj

= {s ∈ Si s.t. s �∈ Si
inj

, s �∈ Si
outj

}

where Si is the set of segments of image Ii and l2 < 0.5 < l1 (we chose l1 = 0.6
and l2 = 0.4). So, naturally, each FGmapi

j constraints the figure-ground labelling
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of the segments of image Ii, sending Si
inj

to the foreground and Si
outj

to the back-
ground.

We define a shape mask maski
j : maski

j(p) =

{
1 if ∃ s ∈ S

ini
j

covering p

0 otherwise

describing the foreground FGmapi
j selects.

To each maski
j we attach a grid shape feature sci

j of dimensions 6 × 6 and with 6
angular bins in each spatial cell to describe its shape.

– Maps are scored using saliency cues (see eq. 5) and scores are normalized to create
a dictribution.We used 100− 150 figure-ground maps (FGmap) per image.

Cycle tracing for ribbon extraction. We present here a novel approach for ribbon
extraction which we used along with the multiple segmentation approach: We piece
together over-fragmented segmentation boundaries in a globally optimal way based on
good continuity of the boundary contour, generalizing the tool for cycle tracing for
contour extraction of [23]. More precisely, we threshold the output of Probability of
boundary detector [24] and fit line segments in a greedy way. We build a graph W
whose nodes correspond to pairs of roughly parallel line segments and edge weights
eij reflect the bending energy of the side contours from pair i into pair j. We have high
affinity between two pairs of line segments when the one naturally extends into the
other. We discretized the complex eigenvectors of the Laplacian of W corresponding
to complex eigenvalues with large norm. For discretization we used the shortest path
algorithm to recover the cycle enclosing the largest area in the embedding space. For
further details refer to [23]. Ribbons obtained this way provide scale (distance between
the two parallel contours) and orientation (orientation of the symmetry axis) helping
alignment and recognition of shape.

Image Saliency Scoring

Saliency is the property of some parts of the image popping out and being well separated
from their surrounding. Image saliency has been extensively studied in the literature
([25], [26],[27],[28]) and is related to properties such as local contrast, global exception
in the image, centrality of location.

We score our figure-ground maps using image saliency cues. In each image Ii we
define the saliency value salij of each FGmapi

j :

salij =
1
Z
· FGcontrast(FGmapi

j) ·Uniqueness(FGmapi
j) (5)

– FGContrast(FGmapi
j) measures feature dissimilarity between the figure and

ground that FGmapi
j defines: FGcontrast(FGmapi) = 1

Z DKL{f(p, p ∈ Si
inj

)||f(p, p ∈
Si

outj
)}

where DKL denotes KL-divergence and f(pixel-set) denotes feature distribution
with support in pixel-set. We used textons and quantized RGB intensity values as
our features.

– Uniqueness(FGmapi
j) measures dissimilarity between features of the figure of

FGmapi
j and the rest of the image Ii:

Uniqueness(FGmapi
j) = 1

Z ·
P

p∈Si
inj

P

l∈Ii dpl·DKL(fs(p)
p ,fil )

|p∈Si
inj

|
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Fig. 4. Learning a shape and figure-ground aware model. White indicates high probability of
foreground and black low probability. For each image we show the corresponding figure-ground
maps ordered by their ρ scores. Notice the changing of ρ scores of the maps of the left pair of
images. The presence of multiple foreground objects is not a problem in our model. A framework
with fixed saliency scores would not be flexible enough to deal with multiple foreground objects
present in images. For illustration purposes we use K = 1 for the shape modelM.

where s(p) is the superpixel containing pixel p and f i
l is the feature distribution of

superpixel containing pixel l. We take into account the distances dpl of pixels: high
similarity found in large distances is worse that high similarity in small distances
since it indicates concavity, a property of background.

In summary, in each image Ii our figure-ground representation is a set of segment fore-
ground probability maps FGmapi

j, j = 1 · · · |Ri|, i = 1 · · · |I|, with a distribution

sali of saliency scores over them.

4 Learning

We use a type of EM procedure to estimate the parameters of our model. We use Gibbs
sampling to get the expected conditional likelihood of latent given the observed vari-
ables at E step. iterout denotes the iteration counter for the EM algorithm and iterin
the iteration counter for Gibbs sampling. We initialize the model parametersM and φ
to the uniform distributions over the corresponding domains, that is: φti

w = 1
|W | , w ∈

W, i = 1 · · · |T | and vl =∞, l = 1 · · ·K.

E step: From model parameters to figure-ground constraints

Sampling of figure-ground trust scores ρ
Initial iteration (iterout = 1) : Initially, since φ andM are non informative
(uniform) we have: ρij = salij , j = 1 · · ·Ri, i = 1 · · · |I|, iterout = 1.
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Later iterations (iterout > 1) : Given the bag of words representation (φz , z
= t1 · · · t|T |) we compute for each image Ii a pixel foreground probability map Fmapi.
We assign to each image pixel p the mean foreground probability of the segments con-
taining it:

Fmap(p)i =
∑|Sp|

k=1 P (zi
k = t1|φ)

|Sp| =

∑|Sp|
k=1

∏|W i
k|

l=1 φt1
wi

kl

|Sp| (6)

where φt1
wi

kl

is the probability of word wi
kl given topic t1, p is a pixel of image Ii and

Sp is the set of segments containing it. We update the scores ρi
j of all the figure-ground

maps FGmapi
j in the image collection:

ρinew
j =

1
Z
· salij ·

1Fmapi ∩ 1maski
j

1Fmapi ∪ 1maski
j

· P (sci
j |M) (7)

j = 1 · · ·Ri, i = 1 · · · |I|, iterout > 1
where 1Fmapi = {p, Fmapi(p) > 1

2}, 1maski
j

= {p, maski
j(p) = 1} and P (sci

j |M)
is given by equation 3.

Intuitively, figure-ground maps with high bottom-up saliency values that propose
foreground agreeing withM and the corresponding Fmap get higher trust scores.

Determining FGsoft: For each image Ii we keep the highest scoring figure-ground
map applying a winner take all strategy. Different maps may be competing with each
other so averaging (marginalizing) them would not be meaningful. See equation 2.

Sampling segment figure-ground labels FG: P (FGi
k = 1|FGsofti) = FGsofti

k, k =
1 · · · |Si|, i = 1 · · · |I|
Sampling segment topics z: Denote by W the word vocabulary, by W (si

k) the words
of segment si

k, by nw
tl

the number of assignments of word w to topic tl, by ntl
the total

number of word assignments to topic tl and by n−si
k

the count of word assignments

excluding words belonging to the segment si
k.

We have: zsi
k

=

{
t1 if FGi

k = 1
∼ P ′

(z|z−si
k
,w) if FGi

k = 0
with :

P (zsi
k

= tl|z−sik
,w) ∝

∏

w∈W (si
k)

(
nw
−si

k,tl
+ β

n
(.)

−si
k,tl

+ |W | · β
) (8)

where ∼ denotes sample from distribution and P
′
(z|z−i,w) is the distribution over

background topics: we exclude topic t1 from T , computeP (z|z−i,w) for z = t2 · · · |T |
using equation 8 and normalize. We perform 500 iterations of figure-ground segment
labels updates and segment topic assignments over all segments of I in random order.
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M step : From figure-ground constraints to model parameters

Updating multinomial distributions of words given topics φz, z = t1 · · · t|T |: We up-
date φz , z = t1 · · · t|T | be counting word assignments to topics during all the iterations
of Gibbs sampling of the previous E step.

Updating shape model M: Let FGsoft be the set of highest scoring figure-ground
maps during the previousE step: FGsoft = {FGsofti, i = 1 · · · |I|}. We compute all
pair shape affinities between the corresponding shape features sck, k = 1 · · · |I|, ob-

taining affinity matrix A: Akl = exp(− ||sck−scl||2
2d2 ), k, l = 1 · · · |I| Since we do not

expect all shape masks to be correct, we aim at extracting compact clusters in this shape
feature set. We zero out pairwise affinities with values below a threshold as indicating
disagreement in shape. In the remaining shape affinity set, we order our features based
on the number of neighbors. Large number of neighbors indicates high probability of
exhibiting the common shape. Let scbest

k , k · · ·K denote the K shape context features
with the highest number of neighbors and nbest

k denote the corresponding number of
neighbors. Then:

M = {μl = scbest
l , vl = d, ωl = 1

Z · nbest
l , l = 1 · · ·K} , Z =

∑K
l=1 n

best
l

That is, the weights and centers of the mixtures are updated, while the variances are
kept fixed and equal to constant d (same for all datasets used).

5 Inference

We used two different kinds of inference to score the performance of our model at the
end of training and at test time:

– Inference using shape and figure-ground aware model (sFGmodel). We compute

the segmentation labelling for image Ii: labeli(p) =
(Fmapi(p)+FGmapi

best(p))

2
, p ∈ Ii

where: best = arg maxj=1···|Ri| salij ·P (sci
j |M) , FGmapi

best(p) =

∑ |Sp|
k=1 FGmapi

bestk

|Sp|
where Sp the set of segments containing pixel p. We threshold labeli to get binary
pixel labels.

– Inference using only the bag of words representation learnt from the shape and
figure-ground aware model(bagFGmodel). We compute the segmentation la-
belling for image Ii: labeli(p) = Fmapi(p), p ∈ Ii. We threshold labeli to get
binary pixel labels. In bagFGmodel figure-ground and shape information are
used for learning but only the bag of words representation φz, z = t1 · · · t|T | is
used to infer image labelling when scoring performance of our model.

6 Experiments

We use various datasets with different levels of difficulty to test our algorithm: Caltech
101:1) 81 images of Airplanes; MSRC: 2) 70 images of Cars, 3) 84 images of Cows;
ETH: 4) 48 images of Bottles, 5) 29 images of Swans, 6) 85 images of Giraffes; Weiz-
mannHorses:7) 80 images In the cases where the whole dataset is not included, images
were picked at random.
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Fig. 5. Precision-Recall curves for training and testing for 5 out of the 7 datasets. Our models,
sFG and bagFG, outperform all baseline methods.

In each dataset we randomly picked 2/3 of images for training and 1/3 for testing. In
the datasets where ground truth segmentation is not provided we labeled it by hand by
marking superpixels. We score the performance of our model using pixel precision and
recall. We do not use segmentation accuracy since many times the object of interest cap-
tures a small part in the image and thus an algorithm with very low precision and high
recall can get very high scores for segmentation accuracy by getting the background
correctly.

We compare against 3 baseline models: 1) Standard LDA model. We used code pro-
vide in Topic Modelling Toolbox([29]). 2) Cao et al 07 ([1]) (SpatialLTM model) . In
SpatialLTM words belonging to the same superpixel are assigned to the same topic.
(see also sections 2). 3) Russel et al 06 ([6]). Each segment is treated as a document and
segment based uniformity of words is exploited (see also section 2). We use the code
provided online.

For each baseline method, we use the same features and word vocabularies as our
model for a fair comparison. Since our baseline models do not discriminate between
the foreground and background topics, for each topic we compute the average precision
and choose the one with the highest value as the foreground topic. That is we compare
against the best scoring topic found by each baseline model. For LDA and Cao et al
07 it is obvious how to get a pixel probability map from the multinomial distributions
learned (see also eq. 6), which we threshold to compute our PR curves. For Russel et al
06 we sum the KL divergence scores of all segments to get a pixel score map which we
threshold to obtain similar curves. The model Russel et al 07 ([6]) aims at organizing
the segments of the training dataset into topics, and does not have a test component, so
this method is not used at test time.

We tested both versions of our model: sFGmodel and bagFGmodel. By using
the bagFGmodel we show how figure-ground information can improve learning of
even a simple representation. We believe it provides a fairer comparison with our base-
lines since same model representation is used to segment a new image.

The results show that using figure-ground information substantially improves the
performance of even a simple bag of words represenation. We notice that in some ob-
ject categories such as Giraffes or Airplanes, the best topic chosen by baseline methods,
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Training Giraffes Cars Cows Airplanes Horses Bottles Swans
Cao et al 07 0.124 0.460 0.738 0.436 0.651 0.274 0.488

Russell et al 06 0.100 0.672 0.479 0.181 0.404 0.323 0.287
LDA 0.157 0.358 0.595 0.268 0.428 0.297 0.420
sFG 0.774 0.757 0.925 0.668 0.809 0.692 0.487

bagFG 0.729 0.744 0.893 0.632 0.764 0.617 0.456
Testing

Cao et al 07 0.208 0.423 0.706 0.315 0.448 0.244 0.593
LDA 0.144 0.331 0.627 0.241 0.368 0.229 0.538
sFG 0.524 0.638 0.812 0.492 0.624 0.236 0.693

bagFG 0.508 0.702 0.879 0.544 0.710 0.239 0.706

Fig. 6. Average Precision at train and test time. The results show that image figure-ground infor-
mation is useful during training to learn the model, but at test time the representation learned is
enough, using saliency in the new image does not offer more in most of the cases.

did not find similar shape across images. In these categories, the bag of feature repre-
sentations is not strong enough to lead to clustering of the foreground features. In easier
datasets like Cows and Horses, we see the baseline topic models to have reasonable per-
formance. The shape and figure-ground aware model outperforms the baseline methods
in all datasets.

7 Conclusion

We presented a shape and figure-ground aware model for weakly-supervised detection
and segmentation of objects and their backgrounds. We show that by exploiting figure-
ground information in images, we learn to segment the foreground object in challenging
datasets. Our model uses a prior depending on image figure-ground cues and optimizes
a discriminative cost function, which suits well our task of weakly-supervised image
segmentation. We use a flexible representation of figure-ground, where figure-ground
cues are influenced by feature re-occurrence in the image collection. Our model can
tolerate multiple foreground objects in images and still be guided to the correct common
figure, it does not make unnatural assumptions and is suitable for a wide variety of
datasets. We will submit code for learning and inference for our model.
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Abstract. We address the problem of having insufficient labels in an interac-
tive image segmentation framework, for which most current methods would fail
without further user interaction. To minimize user interaction, we use the appear-
ance and boundary information synergistically. Specifically, we perform distribu-
tion propagation on the image graph constructed with color features to derive an
initial estimate of the segment labels. Following that, we include automatically
estimated segment distributions at “critical pixels” with uncertain labels to im-
prove the segmentation performance. Such estimation is realized by incorporat-
ing boundary information using a non-parametric Dirichlet process for modeling
diffusion signatures derived from the salient boundaries. Our main contribution
is fusion of image appearance with probabilistic modeling of boundary informa-
tion to segment the whole-object with a limited number of labeled pixels. Our
proposed framework is extensively tested on a standard dataset, and is shown to
achieve promising results both quantitatively and qualitatively.

1 Introduction

Image segmentation can be defined as the process of partitioning an image into regions
corresponding to potential objects and their backgrounds. Over the course of years, im-
age segmentation techniques without human interaction have not produced satisfactory
results. In fact, fully automated segmentation is known to be an ill-posed problem due
to the fact that there is (1) no clear definition of a correct segmentation; (2) no agreed-
upon objective measure that defines the goodness of a segment, albeit the quality of a
segment can be assessed [23] and that of a segmentation can be learned to some extent
[21]. In order to do a semantically meaningful segmentation, it is essential to take a
priori image information into account. This issue has been addressed in the literature as
interactive image segmentation, which has been successfully applied in numerous arti-
cles [15,19,6,13,12,16,22]. A popular approach for user interaction is through a set of
strokes or a trimap [24,5] providing known labels at certain pixels that are called seeds,
from which segment labels at other pixels are to be predicted.

Although interactive image segmentation has drawn much attention, little has been
done to study the problem of insufficient labels. For instance in Figure 1, in the case
there is no label for the duck’s beak, a typical interactive segmentation method would
fail to segment it as part of the duck. A partial solution to this problem is active la-
bel set augmentation, which instantiates active learning [25], a framework that allows

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part VI, LNCS 6316, pp. 575–588, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. When labeled pixels are insufficient, interactive image segmentation can perform badly.
Our approach automatically introduces labels at critical pixels. Left: labeled object and back-
ground pixels are shown as strokes, and the automatically added labels are inside the rectangle.
Right: the resulting object contour.

the learner to ask for informative labeled examples at certain costs. However, the lux-
ury of additional labeled information is not always available. Therefore in this paper,
we propose automatic label set augmentation to address the deficiencies in labeling.
In particular, some pixels which we refer to as critical pixels have uncertain segment
labels. The proposed scheme introduces labels at these critical pixels automatically to
help make better segmentation decisions.

Specifically, our work utilizes information available at salient boundaries [18]. In
other words, our method does not only merge pixels similar in appearance to the seed
pixels in order to form segments; it also introduces unlabeled pixels as seeds in an
automatic fashion based on nonlinear modeling of the compatibility between salient
boundaries and target segments which leverages a non-parametric classification tech-
nique [26]. Our implicit assumption is that pixels within the same object, although may
have distinct appearance features (e.g. colors), share similar spatial relations to salient
boundaries. Intuitively, such addition of labeled information is vital to whole-object seg-
mentation whose goal is to cut semantic objects from images with little user interaction.
While the proposed method does not conclude research on whole-object segmentation,
due to lack of high-level semantic knowledge, it provides a reasonable guess for pre-
viously unknown segment labels at critical pixels. Finally, the distribution propagation
framework [8,28], which we adopt to integrate appearance and boundary cues, can be
seen as an alternative to previously used graph based label propagation [31,13,12]. Be-
cause of the uncertain nature of added segment labels, the way of encoding the label
or its strength as a real number at each vertex becomes inadequate, whereas the dis-
tribution propagation framework serves as a natural mechanism to integrate additional
segment labels probabilistically.

Related Work. Our labeling method is most relevant to the segmentation framework
introduced in [13] and recently used in [12] as label propagation, where the segment
labels are encoded as a real-valued function at vertices. Label propagation for segmen-
tation is commonly considered in a transductive setting, where known segment labels at
some pixels are provided and labels at other pixels are to be estimated by minimizing a
certain cost function. Besides, choosing a threshold for determining the segment labels
is a difficult problem [31]. Generally, researchers adopt ad hoc techniques, e.g. class
mass normalization [31] or adaptive window selection [14], which do not necessarily
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generalize well. In contrast, rigorous comparison of probabilities is made possible by
using the distribution representation.

Recent years have seen much progress on estimating or utilizing salient bound-
aries [18,17,2,3], which are related to the main contribution of this paper. In two such
papers [2,3], the authors study image segmentation from boundaries. However, their
goal is either to over-segment images [3], or to extract semantically meaningful ob-
jects with sufficient labels [2]. Our work extends these methods by making the ob-
ject/background inference based on the boundary information through a non-parametric
learning framework and missing labels are directly handled. Among the few works ad-
dressing whole-object segmentation, an approach based on image matting is presented
in [27]. In principle, our diffusion process for generating boundary related features is
similar to matting. However, we only use boundary information in constructing fea-
ture vectors when appearance fails to provide sufficient evidence for object/background
discrimination, whereas in [27], the authors rely on image appearance for generating
mattes.

There are several papers on using priors for describing general shape or configuration
of an object [29,16,9], which segment out the object in a graph-cut setting. However,
the priors used limit their applicability to certain class of images to which the priors are
suited. Our work can be considered complementary to theirs in terms of the underlying
approach and the overall effects of segmentation, which involve automatically added
labels. To better present our work, we briefly introduce the six major steps with more
details to follow in their corresponding sections:

1. Distribution propagation using color features (Sec. 2).
2. Let the labeled set be L and the unlabeled set be U . Identify a subset A ⊂ U where

the estimated distribution is ambiguous, i.e., the difference between the probabil-
ities of being object and background is small. Also identify U∗ ⊂ U − A, which
represents the set of pixels where the estimated distribution is informative, i.e., the
probability difference is significant (Sec. 3);

3. Generate boundary probability map Ib indicating the probability of each pixel on a
boundary (Sec. 3.1);

4. Compute diffusion signature vectors, which are the feature vectors at each pixel,
from Ib (Sec. 3.1);

5. Modeling and classification using Dirichlet process multinomial logistic model, for
which the training and test sets consist of feature vectors corresponding to L ∪ U∗

and A respectively (Sec. 3.2);
6. Automatically generate segment distributions on A. Let the labeled set be L ∪ A,

and the unlabeled set be U − A. Then proceed with the distributions computed by
step (1) to derive new segment labels on U , after which the algorithm stops.

2 Distribution Propagation for Labeling

In a graph representing an image, we have a set of n vertices, each of which corre-
sponds to either a labeled or an unlabeled pixel, and a set of edges connecting neigh-
boring pixels. Edges are denoted as e1, e2, · · · , em, each of which is a binary set of
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Fig. 2. Illustration of distribution propagation on an image graph. Lines connecting pixels are
edges. Distributions, including known pi’s and estimated qi’s, are shown as histograms.

vertices. For representing the appearance, we consider the LUV color space due to
its perceptual uniformity [11]. The LUV values of a pixel result in a feature vec-
tor FS for each pixel S: FS = (LS , US , VS). We define the weight of an edge as:

w(e) = exp
(
−∑3

i=1
(Fi(v1)−Fi(v2))

2

2δ2
i

)
, where v1, v2 ∈ e, and F i(vj) is the ith

feature value at the pixel represented by vertex vj . We pose image segmentation as
propagating distributions at labeled vertices to unlabeled ones. Specifically, let us con-
sider a segmentation setting where the set Y represents l label types which correspond
to the objects and their backgrounds, Y = {1, 2, · · · , l}. A labeled vertex i ∈ L of
class k is assigned a known distribution pi(y), such that pi(k) = 1 and pi(y) = 0
for y �= k. The estimated distribution at an unlabeled vertex i ∈ U is defined as
a multinomial distribution qi(y), which can be described by an l-dimensional vector,
[qi(y = 1), qi(y = 2), · · · , qi(y = l)]T of non-negative elements summing to one. Such
a distribution can be used for classification of l classes with the maximum likelihood
principle, such that, the vertex is labeled as a member of class y∗ = arg maxy qi(y).

We estimate the distributions qi for unlabeled vertices based on the distributions
pi of labeled vertices and the neighborhood relations encoded by ei. Our main as-
sumption is that multinomial distributions qi should be similar to each other inside
each edge. The general setting of distribution propagation is illustrated in Figure 2,
where we have two classes (marked with different colors), the labeled distributions are
p1 and p12, and the estimated distributions are qi. We describe the discrepancy be-
tween two probability distributions p and q by the Kullback-Leibler (KL) divergence,
D(p, q) =

∑
y∈Y p(y) log p(y)

q(y) . We also define the exponential centroid distribution of
an edge ek to be:

qE
k (y) =

1
Zk

exp(
∑

i∈ek

hi,k log qi(y)), (1)

with Zk being a normalization constant, and hi,k = 1/|ek|, or 0.5 in our case. Next we
can formulate the optimization on the image graph as:

arg min
qi

n∑

i=1

riD(pi, qi) +
m∑

k=1

wk

∑

i∈ek

hi,kD(qE
k , qi), (2)
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where ri is 0 for an unlabeled vertex and a positive constant for a labeled vertex. Further,
we can relax (2) to the following with the optimal solution q∗i to be the same:

arg min
qi,ηk

n∑

i=1

riD(pi, qi) +
m∑

k=1

wk

∑

i∈ek

hi,kD(ηk, qi), (3)

since qE
k (y) is the minimizer η∗k for J(ηk) =

∑
i∈ek

hi,kD(ηk, qi) [1]. Note that the
function in (3) can be decomposed vertex-wise [28]. Based on this observation, and
∑

y∈Y qi(y) = 1, the following decomposed sub-problem for vertex i

argmin
qi

riD(pi, qi) +
∑

{k:i∈ek}
hi,kwkD(ηk, qi), (4)

is solved in closed form by:

qi(y) =
1

ri + di
(ripi(y) +

∑

{k:i∈ek}
hi,kwkηk(y)), (5)

where di =
∑

{k:i∈ek} hi,kwk is the vertex degree.
We take ri to be a large number, and thus for a labeled vertex, qi(y) = pi(y) mean-

ing that our method performs interpolation respecting the user supplied labels. It can be
shown that the function to optimize in (2) is convex with respect to all the qi(y) terms
[28], and thus a unique solution is guaranteed. This is a nice property for the proposed
framework, as after we add in the automatically generated distributions at the critical
pixels, it is unnecessary to start over from the initial uniform distributions at other unla-
beled vertices. Finally, the algorithm with guaranteed convergence is posed as iterations
over the two major steps: (1) compute the centers qE

k (y) for all k, and set ηk = qE
k ; (2)

solve the optimization sub-problem at each vertex i by updating qi(y) as in (5).

3 Incorporating Boundary Information

After distribution propagation on a graph corresponding to the image, we obtain re-
liable estimates of segment labels at pixels where there is minimal ambiguity based
on appearance features. For certain regions in the image, prior segment labeling may
be missing. We will refer to pixels in such regions as critical pixels. In general, criti-
cal pixels are inside segments whose corresponding vertices are disconnected from (or
weakly connected to) both kinds of labeled vertices. For single object segmentation, we
refer to the object and background as o1 and o2 respectively. Intuitively, the pixels with

ti = | log qi(o
1)

qi(o2) | < τ , where τ is a small positive number, are selected as critical pixels,
and thus A = {i : i ∈ U ∧ ti < τ}. Such intuition is formalized as a decision prob-
lem using the maximum a posteriori (MAP) rule. Specifically, the two classes are likely
correct (C1) and likely wrong (C0) predictions resulting from the distribution prop-
agation. Class C0 corresponds to critical pixels, which are equivalent to those pixels
with P (C0|t) > P (C1|t), where P (Cj |t) ∝ P (t|Cj)P (Cj). Such probabilities can be
computed from a set of images with ground truth segmentation, and thus the threshold
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Fig. 3. Joint probabilities P (strength,O) versus P (strength,N), where the two classes of
boundaries are object (O) and non-object (N). The relative greatness in them determines which
class is more likely. It follows that higher strength implies higher chance of being an object
boundary.

is set as τ = maxt{t : P (C0|t) > P (C1|t)}. Besides, in training the Dirichlet process
based model, we set U∗ = {i : i ∈ U ∧ ti > κ}, such that P (t > κ|C0) < 5%.

We will next discuss a non-parametric Bayesian approach to predict segment distri-
butions at critical pixels, which are then incorporated to the known set of labels. The
distribution representation gives a principled encoding of the added segment labels with
uncertainty. In regards to labeling weights, unlike original labels in which we have total
confidence, we set ri to be a small number for i ∈ A, such that the effect of occasional
erroneous labels can be offset by correct manual labels. After the label set augmenta-
tion, we resume, instead of restart, the distribution propagation to derive an updated
segmentation result with newly added segment label distributions.

3.1 Boundary Induced Diffusion Signatures

In order to facilitate the incorporation of salient boundaries, we adopt the boundary
probability described in [18]. Intuitively, the boundaries internal to semantic objects
are weaker in strength (i.e., the mean value of boundary probabilities) than the external
ones that outline objects. Such a claim is validated by empirical analysis on GrabCut
and LHI datasets [24,30] with object-level segmentation ground truth. In this analysis,
we observe that high strength in boundaries is strongly correlated with large probability
of being true object boundaries, as plotted in the left (GrabCut dataset) and right (LHI
dataset) panels of Figure 3 respectively.

As a result, the spatial location of a pixel with respect to the boundaries provides
useful cues for determining its segment label. To get a reliable representation of such
information, we first threshold and transform the probability map Ib to a set of bound-
ary fragmentsB = {Bi} by eliminating boundary pixels with small probability values,
where each boundary fragment Bi is identified with the set of pixels that it intersects.
An undirected boundary characteristic graph Gb is defined as: Gb = (V,E), where
the vertex set V = {vi} represents the set of pixels. The edge set E = E0 − E∗,
where E0 = {(vi, vj) : vi and vj are neighbors} is the full set of initial edges, and
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Boundaries

Fig. 4. Left: an image with four displayed boundary fragments together with red (+) and blue (-)
heat sources. Right: the corresponding dimensions of diffusion signatures.

E∗ = {(vi, vj) : ∃k s.t. vi ∈ Bk ∨ vj ∈ Bk} is the set of edges that must be discon-
nected to reflect boundary constraints. By doing so, the salient boundaries are trans-
formed to the characteristic graph Gb.

Diffusion signatures are feature vectors at vertices of Gb, and are derived using a
diffusion process on the graph. Specifically, the ith dimension of the diffusion sig-
nature vector corresponds to the ith boundary fragment, and we place labeling “heat
sources” on its both sides (left panel, Figure 4) to generate numerical descriptions. Let
f i : V → [−1,+1] be a function, S = {Sj} be the set of vertices corresponding
to labeling heat sources and U be the set of unlabeled vertices. Let λ be the mean
value of boundary probabilities at pixels inside Bi. We proceed by assigning +λ and
−λ as the values of function f i(Sj) on the two sides of the boundary fragment re-
spectively, such that f i(·) takes the opposite values on its two sides. In a vector form
f i
S = [f i(S1), f i(S2), · · · , f i(S|S|)]T . The stationary solution vector at unlabeled ver-

tices is computed as: f i
U = −Δ−1

U,UΔU,Sf i
S , where Δ·,· is a sub-Laplacian matrix of the

graph Gb using block matrix notation [13]. Thus, the ith dimension of diffusion signa-
ture at vertex v is defined as f i(v), which equals f i

U (v) if v ∈ U , or f i
S(v) if v ∈ S.

In a similar vein, the diffusion signature vector at v is [f1(v), f2(v), · · · , f |B|(v)]T .
Example diffusion signatures associated with some boundary fragments are displayed
on an image in the right panel of Figure 4, where red and blue refer to positive and
negative values respectively. Properties of diffusion signatures in a single dimension in-
clude (1) the farther the pixels are from the boundary in the diffusion sense, the smaller
the absolute values are; (2) the border at which {f i(v) > 0} and {f i(v) < 0} meets
corresponds to a natural extension of the original boundary.

3.2 Non-linear Modeling and Classification

Now we present how the distribution at an unlabeled pixel i ∈ A is estimated using
boundary information. The inputs to this process are the diffusion signatures derived
from salient boundaries. The classification method we adopt is akin to Dirichlet pro-
cess mixture models (DPMMs). Unlike Gaussian mixtures, they allow for automatic
determination of the number of clusters. Our method is a semi-supervised extension of
a recent DPMM based classification technique termed as Dirichlet process multinomial
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logistic model (DPMNL) [26]. We use semi-supervised learning to directly address the
problem of insufficient labeling in interactive image segmentation.

In this model, a cluster refers to a group of salient diffusion signatures correspond-
ing to structures in the image. A single cluster might contain both object and back-
ground pixels, which is accounted for by a multinomial logistic relation between the
input diffusion signatures x and an output class y. Specifically, each cluster in the mix-
ture model has parameters θ = (μ,Σ, α, β). The distribution of x within the cluster
follows a Gaussian model N (μ,Σ), where Σ is a diagonal matrix with elements σ2

i .
The distribution of y given x within the cluster follows a multinomial logistic model

P (y = j|x, α, β) = exp(αj+xT βj)∑
J
k=1 exp(αk+xT βk)

, where J is the number of segments and equals

2 for single object segmentation. In the left panel of Figure 5, we illustrate the graphical
model representation of DPMNL, which reveals the interdependencies among parame-
ters and variables. Specifically, the model parameters θ are drawn from a distributionG
that is drawn from a Dirichlet process D(G0, γ), where G0 is a base distribution over
model parameters and γ is a scale parameter with a gamma prior.G0’s parameters may
in turn depend on higher-level hyperparameters. However, we use fixed distributions
for simplicity and they led to good performance: μi ∼ N (0, 1), log(σ2

i ) ∼ N (0, 1),
αj ∼ N (0, 1), βj ∼ N (0, I), where i and j are for a feature dimension and a class re-
spectively, and I is an identity matrix. Without loss of generality, we graphically show
the effect of the model on a toy scenario in the right panel of Figure 5, where the two
classes are displayed as dots and squares.

We use the Markov chain Monte Carlo (MCMC) algorithm with auxiliary parameters
[20] for posterior sampling, which iterates over updating the data to cluster assignment
and the cluster parameters. Our problem is relatively small in scale with several thou-
sand training examples per image, and thus computational complexity of MCMC is
affordable. In the main iteration of MCMC, we use semi-supervised learning to make
use of the unlabeled pixels. Specifically,

E{P (yi|xi)} = P (yi = 1|xi)qi(1) + P (yi = 2|xi)qi(2), (6)

which is used in place of the conditionalP (yi|xi) of an unlabeled training example (i.e.,
i ∈ U∗). Inside this equation, qi(·) values are obtained by distribution propagation. By
doing so, the unlabeled examples are effectively used, instead of being discarded in the
training process as in [26].

Once we obtain post-convergenceparameters θt
i = (μt

i, Σ
t
i , α

t
i, β

t
i ), for t = 1, · · · , T

and i = 1, · · · , |L| + |U∗|, where T is the maximum index of iteration, they are used
to estimate the predictive distribution of the class label y∗ for a new input diffusion
signature vector x∗:

P (y∗ = j|x∗) =

∑T
t=1

∫
P (y∗ = j,x∗|θt

∗)P (θt
∗|θt, G0)dθt

∗
∑T

t=1

∫
P (x∗|θt∗)P (θt∗|θt, G0)dθt∗

, (7)

where the test example’s parameters θt
∗ are drawn from a distribution that is drawn from

a Dirichlet process D(G0, γ): θt∗ ∼ 1
n+γ

∑n
i=1 δ(θ

t
i) + γ

n+γG0, in which δ(·) is a dis-
tribution concentrated at a single point [4], and n = |L| + |U∗|. Therefore, equation
(7) allows for numerical computation according to the assumed and derived distribu-
tions. Note that the predictive distribution is not based on a single parameter estimate,
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Fig. 5. Left: graphical model representation of DPMNL, where n is the number of training ex-
amples. Right: an illustration of its effect on data with 3 clusters. Inside each cluster, a linear
decision boundary separates data from the 2 classes. The overall decision boundary is non-linear
and not shown here.

but is an average of the predictions using all possible values of the parameters, each
of which is weighted by the probability of the parameters having those values. In this
way, DPMNL avoids making hard decisions on assigning diffusion signatures to clus-
ters and thus provides flexibility in modeling the boundary information. Finally, each
test diffusion signature vector is assigned to a segment class with the highest predictive
probability, i.e., ŷ∗ = arg maxj P (y∗ = j|x∗) for the visualization of added labels.
However, for the segmentation task, we set pi(y = j) = P (y∗ = j|x∗) for i ∈ A to
accommodate the probabilistic nature of added labels.

4 Experiments

In order for quantitative evaluation, we perform experiments on the GrabCut dataset
[24], which is one of the few datasets providing both labeling trimaps and segment
ground truth. Labeled object, labeled background and unlabeled pixels are reflected in
the trimaps as white, dark gray and light gray respectively. In experiments, we stick to
original trimaps as provided in the dataset. We will report the performance on set-50
(the whole GrabCut dataset) and set-25 (a subset where there are a significant number
of added labels). While our method helps boost the performance on the whole set, as
can be seen, it enhances the performance on set-25 by a larger margin, which contains
difficult instances due to the lack of labels at numerous critical pixels.

Details of implementation. In implementing our framework, we use superpixels [23]
in place of pixels for computational efficiency, such that a superpixel, which roughly
contains 15 pixels, is assumed the smallest unit for labeling. In computing diffusion
signatures, boundary fragments are generated by thresholding a boundary probability
map [18] at its 60th percentile of non-zero values. The boundary fragments with junc-
tions are broken into smaller ones, so that they contain simple curves for generating
diffusion signatures. We also project the diffusion signatures onto the subspace learned
by principal component analysis (PCA) and retain the top half dimensions to have a
compact representation. Thus, the constituent dimensions of small variances resulting
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from boundaries with small strength are filtered out. In constructing the set A for auto-
matic label set augmentation as discussed in Section 3, with an empirical analysis of the
segmentation results on the GrabCut dataset using distribution propagation, τ is chosen
using an MAP procedure, such that τ = maxt{t : P (C0|t) > P (C1|t)} ≈ 0.004.
Finally, κ is chosen as 0.845, such that P (t > κ|C0) < 5%, i.e., a label in U∗ is very
unlikely to be wrong.

Methods for comparison. We have used label propagation (LP) and distribution prop-
agation (DP) as the underlying labeling methods. Together with them, we study several
approaches for label set augmentation as detailed next.

– LP-original: An implementation of the random walk approach [13], where the op-
timal label values at unlabeled vertices are derived by solving linear equations and
are thresholded to produce segment labels.

– DP-original: distribution propagation as introduced in Section 2, where in contrast
to the label value representation at each vertex, a distribution is used.

– DP-GMM: DP with added labels estimated using Gaussian mixture models learned
with EM [10]. A mixture model is trained for each segment class.

– DP-SVM: DP with added labels estimated using support vector machines with ra-
dial basis function kernels and probability outputs implemented in [7].

– DP-object: DP with added labels systematically being object, which produces con-
siderably better performance than randomly guessing on the GrabCut dataset.

– DP-DPMNL: DP with added labels estimated with DPMNL, which is the proposed
method.

– DP-DPMNL-AT: DP with added labels estimated with DPMNL; however, the
threshold for distribution propagation is set according to adaptive thresholding [14].

– LP-DPMNL: LP with the same added labels as above.

Evaluation. For quantitative evaluation of object-background segmentation on the
GrabCut dataset, we compute the error rate as the percentage of wrongly labeled pixels
in the original unlabeled region. In addition, we demonstrate the error rate of automatic
label set augmentation, which is the percentage of wrongly added labels at critical pix-
els. We note that while the added labels are not 100% accurate, distribution propagation
uses these additional labels in a soft and flexible way, so the overall enhancement is not
compromised by occasional erroneous labels.

The results are tabulated in Table 1, where seg-50/25 refers to the average error rate
of segmentation and aug-50/25 refers to the average error rate of label set augmentation.
Among all the compared methods, the proposed DP-DPMNL outperforms the others
without heuristic thresholding. It can be further seen that the distribution propagation
alone performs better than the label propagation, such as an error rate of 5.4% reported
for a recent method detailed in [12] which uses sophisticated Laplacians. All label set
augmentation methods that we use help to achieve better segmentation accuracy but at
different levels; DPMNL provides better results than the other three alternatives. In par-
ticular, we attribute the less competitive performance of SVMs to their inability in mod-
eling the cluster structures of diffusion signatures. Besides, DP-DPMNL outperforms
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LP-DPMNL, which justifies the choice of distribution propagation as the underlying
labeling mechanism.

A comparison with the published average error rates on the entire dataset using sev-
eral recent approaches also shows that our method performs the best. In particular,
our proposed method gives 3.58%, considerably better than error rates achieved in
previous works [5,13,12,11]. Together with adaptive thresholding [14], our proposed
method produces an error rate 3.08%, which is better than 3.3% that is generated using
s-Laplacian together with adaptive thresholding. Despite this fact, we stress that the
thresholding technique has heuristic nature. Thus, DP-DPMNL remains the proposed
method of this paper and is used to generate all the remaining results, even though
DP-DPMNL-AT can give better quantitative results given the GrabCut type of trimaps.

Table 1. Performance in terms of the average error rate in segmentation (seg) and that in label
set augmentation (aug) on the whole set of 50 images and a smaller set of 25 where there are a
significant number of missing labels. Compared are variations of our proposed method and recent
baselines in the literature. Our proposed method (DP-DPMNL) has shown the best results among
all, except for methods combined with adaptive thresholding [14].

Methods seg-50 aug-50 seg-25 aug-25
LP-original 5.92% − 7.03% −
DP-original 5.22% − 6.84% −
DP-GMM 4.68% 25.25% 5.33% 26.72%
DP-SVM 4.49% 22.08% 5.01% 22.87%
DP-object 5.04% 26.61% 5.66% 30.61%

DP-DPMNL 3.58% 11.08% 3.85% 15.35%
DP-DPMNL-AT 3.08% − 3.14% −

LP-DPMNL 4.82% − 5.63% −
GM-MRF [5] 7.9% − − −

Random walk [13] 5.4% − − −
s-Laplacian [12] 5.4% − − −

s-Laplacian-AT [12] 3.3% − − −
Hypergraph [11] 5.3% − − −

Sample segmentation results and automatically added labels by using DP-DPMNL
are shown in Figure 7 for qualitative evaluation.1 From top down, the four rows are
respectively: original trimaps, results from the baseline method (DP-original), automat-
ically added labels where red is for object and green is for background, and new results
using added labels. As can be observed, the proposed method provides smooth object
contours while preserving most details. Both missing object labels and background la-
bels can be added at their appropriate places. Besides, for one of the images hard to
DP-original due to insufficient labels, the evolution of the computed object contour is
visualized in Figure 6, before (iterations 0 to 10) and after (11 to 20) the label set aug-
mentation, where iteration 0 refers to the initial condition.

1 Additional qualitative segmentation results in the same format are shown in
http://www.cse.ohio-state.edu/˜dinglei/autogen.htm
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Iter. #0 Iter. #10 Added labels Iter. #20

Fig. 6. Contour evolution by our approach. Please refer to Figure 7 for the provided trimap that
contains insufficient labels.
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Fig. 7. Provided trimaps, baseline results, automatically added labels (red: object, green: back-
ground) and new segmentation results
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Fig. 8. Histogram of the change in error rates, or the error rate of using DP-DPMNL minus that
of using DP-original, on set-50. Improved cases are marked red, and the degraded are in black.

5 Discussion and Conclusions

Although user interaction has been widely used for segmentation, the insufficiency in
provided labeling seeds has drawn little attention. In this paper, we addressed this by ex-
ploiting the boundary information. Our experiments on the GrabCut dataset have shown
that automatically added labels helped the segmentation process at different success lev-
els. The histogram of change in segmentation error rates with label set augmentation is
shown in Figure 8. We note that the proposed method has dramatically reduced the error
rates in many cases. There is only one case where the added labels reduced the accu-
racy rate by more than 1% (which is 2.0%). This reduction in quantitative performance
was due to similarity between the object and its shadow which resulted in labeling the
shadow as the object. However, the result does not deteriorate qualitatively.2 Besides,
the automatically added labels can be prompted to the user to accept or reject in an
interactive environment, which is a functionality not previously offered.

To summarize, we have presented a framework using distribution propagation to
address interactive image segmentation. A key component of our framework is the au-
tomatic augmentation of labels at critical pixels via a Dirichlet process based non-linear
model. Extensive experiments have shown that the proposed framework performs com-
petitively in predicting critical missing labels and enhancing the overall segmentation
results. In particular, using a limited number of supplied labels, we have achieved both
qualitatively and quantitatively excellent results on the GrabCut dataset.
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Abstract. Most methods for the recognition of shape classes from 3D

datasets focus on classifying clean, often manually generated models.

However, 3D shapes obtained through acquisition techniques such as

Structure-from-Motion or LIDAR scanning are noisy, clutter and holes.

In that case global shape features—still dominating the 3D shape class

recognition literature—are less appropriate. Inspired by 2D methods,

recently researchers have started to work with local features. In keep-

ing with this strand, we propose a new robust 3D shape classification

method. It contains two main contributions. First, we extend a robust

2D feature descriptor, SURF, to be used in the context of 3D shapes.

Second, we show how 3D shape class recognition can be improved by

probabilistic Hough transform based methods, already popular in 2D.

Through our experiments on partial shape retrieval, we show the power

of the proposed 3D features. Their combination with the Hough trans-

form yields superior results for class recognition on standard datasets.

The potential for the applicability of such a method in classifying 3D

obtained from Structure-from-Motion methods is promising, as we show

in some initial experiments.

1 Introduction

A number of methods for 3D shape class recognition have been proposed already.
So far, the dominant line of work has been to use global features, i.e. features that
need the complete, isolated shape for their extraction. Examples are Fourier or
spherical harmonics [1,2], shape moments [2], shape histograms [3]. There are at

Fig. 1. Proposed approach classifies noisy 3D shapes obtained from SfM, scans etc.

The method is invariant to the texture and recognizes difficult objects such as plants.
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least three potential problems with these global approaches: (i) it is difficult to
handle partial shapes. For instance, when an artifact has been damaged, even the
most perfect scan will still only capture a part of what the original shape should
have been, (ii) many capturing scenarios contain irrelevant, neighbouring clutter
in addition to the relevant data coming from the object. Global methods mix the
two, jeopardizing class recognition. Some local, skeleton-based descriptions are
also known to suffer from these problems (e.g. [4]), (iii) several classes contain de-
formable shapes, some parts of which may be more deformable than other more
rigid parts. Global methods are also less successful at handling intra-class varia-
tions while remaining sufficiently discriminative to noise, clutter, articulated de-
formations and inter-class variations. In many 3D application based on retrieval,
classification and detection, all these three problems have to be addressed.

As work in 2D object class recognition has shown, the use of local rather than
global features is advantageous. 2D class detection methods deal with occlusions
and clutter quite successfully already. We therefore seek to apply these tech-
niques to the 3D case as well. So far, relatively few 3D categorisation methods
based on local features, like tensors [5], heat kernel signatures [6], integral shape
descriptors [7,8], and scale dependent features [9] have been proposed.

Ovsjanikov et al. [10] extended the standard bag-of-features (BOF) approach
of Sivic and Zisserman [19] by looking for the frequency of word pairs instead
of the single word, called spatially-sensitive bags of features. Toldo et al. [11]
described 3D shapes by splitting them into segments, which are then described
on the basis of their curvature characteristics. These descriptors are quantized
into a visual vocabulary. Finally, an SVM is learnt for the actual categorisation.
Methods that use other information than pure shape (e.g. [12,13]) are not con-
sidered here because we are interested in the still-common case where no other
information is available.

The afore-mentioned methods assume clean, pre-segmented shapes, i.e. with-
out them being attached to a 3D ‘background’. As such, these BOF approaches
could suffer from the problem that the information can get buried under clut-
ter, especially when the object of interest is small compared to this background.
In 3D this difference is magnified. For instance, a statue of a person in front
of a building may cover a large part of the 2D image scene, but will be tiny
compared to the size of the building in 3D, where all objects appear with their
actual, relative scales. In Hough transform based approaches, the process of
recognition is tied up with hypothesis verification (through object localization).
This means that it has higher discriminative power against clutter than BOF
based approaches.

This paper proposes an approach to 3D shape categorisation that can perform
better at the tasks described above. A 3D extension to SURF [14] serves as
our local descriptor described in § 2. This feature has proved quite effective
in 2D and can now be viably computed even in 3D. In contrast to a dense or
random coverage with spin images [15], a 3D interest point detector picks out a
repeatable and salient set of interest points. These descriptors are quantized and
used in a Hough approach, like Implicit Shape Model (ISM) [16], which keeps
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(a) (b) (c)

Fig. 2. Illustration of the detection of 3D SURF features. The shape (a) is voxelized

into the cube grid (side of length 256) (b). 3D SURF features are detected and back-

projected to the shape (c), where detected features are represented as spheres and with

the radius illustrating the feature scale.

the influence of each feature better localized than in a BOF approach as seen
in § 3. Our approach favorably compares to the state-of-the-art in 3D shape class
recognition and retrieval as seen in § 4, § 5.

2 Shape Representation as the Set of 3D SURF Features

For our problem of class recognition, we collected a set M of shapes separated
into two disjoint sets: (i) training data MT and (ii) query data MQ. The mth

3D shape is represented as {Vm, Fm}, where Vm is a collection of vertices and Fm is
a collection of polygons (specifically triangles) defined on these vertices.

In order to describe each shape m ∈ M as a set of local rotation and scale-
invariant interest points, we propose an extension of SURF to 3 dimensions.
It is important to note at this point, that this extension can also be seen as
a special case of the recently proposed Hessian-based spatio-temporal features
by Willems et al. [17], where temporal and spatial scale are identical. As such,
the theoretical results that were obtained from scale space theory still hold.
Furthermore, most of the implementation details can be reused, except the fact
that the search space has now shrunk from 5 to 4 dimensions (x, y, z, σ). For
more in-depth information on Hessian-based localization and scale selection in
3 dimensions, we refer the reader to [17].

The extraction of the 3D features is as follows. First, we voxelize a shape in a
volumetric 3D cube of size 2563 using the intersection of faces with the grid-bins
as shown in figure 2(b), after each shape is uniformly scaled to fit the cube while
accounting for a boundary of 40 at each side. The cube parameters were chosen
empirically. Next, we compute a saliency measure S for each grid-bin x and
several scales σ (over three octaves). We define S as the absolute value of the
determinant of the Hessian matrix H(x, σ) of Gaussian second-order derivatives
L(x, σ) computed by box filters,
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as proposed in [17]. This has as implication that, unlike in the case of SURF [14],
a positive value of S does not guarantee that all eigenvalues of H have identi-
cal signs. Consequently, not only blob-like signals are detected, but also saddle
points. Finally, Km unique features: dmk, k ∈ {1 . . .Km} are extracted from the
volume using non-maximal suppression (see [17] for more details).

In a second stage, a rotation and scale-invariant 3D SURF descriptor is com-
puted around each interest point. First, we compute the local frame of the fea-
ture. We therefore uniformly sample Haar-wavelet responses along all 3 axes
within a distance 3× σ from each feature. Next, each response is weighted with
a Gaussian centered at the interest point, in order to increase robustness to small
changes in position. Each weighted response is plotted in the space spanned by
the 3 axes. We sum the response vectors in all possible cones with an open-
ing angle of π/3 and define the direction of the longest resulting vector as the
dominant orientation. However, instead of exhaustively testing a large set of
cones uniformly sampled over a sphere, we approximate this step by putting a
cone around each response. After the dominant direction has been obtained, all
responses are projected along this direction after which the second orientation
is found using a sliding window [14]. The two obtained directions fully define
the local frame. Defining a N ×N ×N grid around the feature and computing
the actual descriptor, is implemented as a straight-forward extension of the 2D
version. At each grid cell, we store a 6-dimensional description vector of Haar
wavelet responses as in [17]. In the rest of the paper, we assume N = 3.

For the feature k of the shape m we maintain a tuple of associated information
as shown below:

dmk =
{

pmk
3×1

, σmk , smk
162×1

}
, (2)

where pmk represents the relative 3D position of the feature point to the shape’s
centre, σmk is the scale of the feature point and smk is 162-dimensional 3D SURF
descriptor vector1 of the feature vector dmk.

3 Implicit Shape Model for 3D Classification

In order to correctly classify query shapes, we need to assemble a model of each
class based on the local 3D SURF features, and define a ranking function to
relate a shape to each class. The Implicit Shape Model converts the SURF fea-
tures to a more restricted ‘visual vocabulary’ generated from training data. We
will discuss this in § 3.1. Based on the information acquired during training,
each visual word on a query shape then casts weighted votes for the location of
the shape center for a particular class, which will be seen in § 3.2. Depending

1 3 × 3 × 3 × 6 = 162.
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Fig. 3. Each row shows some partial 3D shapes from which features were computed

that belong to the same visual word. The feature center is represented as a red dot,

while the sphere represents the feature scale. Each shape is shown normalized with

respect to the scale of the feature.

on whether the query shape’s center is already known, the above information is
used for classification in two ways as outlined in § 3.3.

3.1 Visual Vocabulary Construction

To reduce the dimensionality of feature matching and limit the effects of noise, we
quantize the SURF features to a vocabulary of visual words, which we define as
the cluster centers of an approximate K-means algorithm (see Muja et al. [18]).
Following standard practice [19,20] in large-scale image searching, we set the
number of visual words (clusters) to 10% of the total number of features in
our training set. In practice, this yields a reasonable balance between mapping
similar shapes to the same visual word (Fig. 3) while ensuring that features that
are assigned the same word are indeed likely to correspond (Fig. 4).

3.2 Learning and Weighting Votes

Rather than storing a shape for each class, the ISM-based methods keep track
of where a visual word v would be located on a shape of class c relative to c’s
center ([16,21]). This information — the collection of visual words and offsets
from shape centers — is assembled from the training set, and stored along with
the visual words themselves. Word v is therefore associated with a list of votes,
each of those being generated from a feature (introduced in Eq. 2) and defined
by the feature’s class c, its vector to the shape center (x′, y′, z′), its scale σ′, and
the scale of the shape. Each word may therefore cast votes for multiple classes.
Words may also cast multiple votes for the same class, as in Fig. 5, because there
may be multiple features on a shape associated with the same visual word.

Suppose now that a query shape contains a feature at location [x, y, z]T with
scale σ that is assigned to visual word v. That feature will cast a vote, λ, for a
shape of class c centered at location
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Fig. 4. Examples of visual vocabulary based correspondences between 3D shapes

λ =
[
x− x′(σ/ σ′), y − y′(σ/ σ′), z − z′(σ/ σ′), σ/ σ′

]T
, (3)

with relative shape size σ/ σ′. If the query shape exactly matches a training
shape, the votes associated with that training shape will all be cast at the query
shape’s center, making a strong cluster of votes for the match. On the other
hand, the votes associated with a training shape from a different class will get
scattered around, because the spatial arrangement of features (and therefore
visual words) will be different, see Fig. 5.

Note that although a single assignment of features to the closest visual word is
natural, it is subject to noise when cluster centers are close together. Therefore,
during the training phase, each feature activates the closest word and every other
word within a distance τ , as in [16,20,22]. This ensures that similar visual words
that are located at the same position on a shape will all vote appropriately.

An issue is that different classes may have different numbers of features, and
not all features discriminate equally well between classes. We account for these
next discuss factors with a pair of weights,

(i) a statistical weight Wst as every vote should be invariant to the number of
training samples in the class,

(ii) a learned weight Wlrn weights every vote so it correctly votes for a class
centre across training shapes.

(i) The statistical weight Wst(ci, vj) weights all the votes cast by visual word
vj for class ci by

Wst(ci, vj) = 1
nvw(ci)

· 1
nvot(vj) ·

nvot(ci,vj)
nftr(ci)

∑

ck∈C

nvot(ck,vj)
nftr(ck)

, (4)

where the different numbers n are determined from the training set. For instance,
nvot(vj) is the total number of votes from visual word vj , nvot(ci, vj) is the
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Fig. 5. Example of the votes cast from four features on a cat shape instance. All

detected features are visualized as small black dots and votes are shown as lines starting

from the feature (marked blue). The votes from a toy ISM model were learned from

six shapes of the cat-class (visualized as green lines) and six shapes of flamingo-class

(red lines).

number of votes for class ci from vj , nvw(ci) is the number of visual words that
vote for class ci, nftr(ci) is the number of features from which ci was learned. C is
the set of all classes. The first term makes every class invariant to the number
of visual words in its training set, while the second normalizes for the number of
votes each visual word casts. The final term reflects the probability that vj votes
for class ci as opposed to some other class.

(ii) Additionally, motivated by Maji’s et al. [23] work, we normalize votes on
the basis of how often they vote for the correct training shape centers (during
training). We define λij as the vote cast by a particular instance of visual word
vj on a particular training shape of class ci; that is, λij records the distance of
the particular instance of visual word vj to the center of the training shape on
which it was found. We now apply this vote to every instance of visual word
vj on every training shape in class ci, and compute a Gaussian function of the
distance between the center position voted for and the actual center. This scheme
puts more emphasis on features with voted positions close to that actual center.

For every vote λij , our goal is to obtain one value summarizing the statistics
of distances to shape centers,

Wlrn(λij) = f

({

e−
da(λij)2

σ2

∣
∣
∣
∣
∣
a ∈ A

})

, (5)

where A is the set of all features associated with word vj on a shape of class ci
and da(λij) is the Euclidean distance as just defined. We use a standard deviation
of σ taken as 10% of the shape size, which defines the accepted amount of noise.
For the function f , we observed the best performance for the median.

The final weight is the combination of Wst and Wlrn,

W (λij) = Wst(vj , ci) ·Wlrn(λij). (6)
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Fig. 6. Overview of our 3D ISM class recognition. On the query shape, 3D SURF

features are detected, described and quantized into the visual vocabulary. Using the

previously trained 3D Implicit Shape Model, each visual word then generates a set

of votes for the position of the class center and the relative shape size. Finally, the

recognized class is found at the location with maximum density of these votes.

3.3 Determining a Query Shape’s Class

The class recognition decision for a given 3D query shape is determined by the
set of 5D votes (shape center, size of the shape and class), weighted by the
function W . However, we need a mechanism to cluster votes cast at nearby but
distinct locations. Depending on the type of query shape, we use one of two
approaches:

1. Cube Searching (CS): In the spirit of Leibe et al. [16], we discretize the
5D search space into bins; each vote contributes to all bins based on its
Gaussian-weighted distance to them. The recognized class and shape center
is given by the highest score. The principal advantage of this approach is
that it does not require a clean query shape — noisy or partial query input
is handled by explicitly searching for the optimal shape center as well as the
class.

2. Distance to Shape Center (DC): Unlike image queries, where the shape’s
center within the image is usually unknown, it is quite easy to compute the
centroid of a clean 3D shape, and use this as the shape center. Doing so can
simplify class recognition and improve its robustness by reducing the search
to the best class given this center. We do this by weighting each vote by
a Gaussian of its distance to the query shape’s center. Processing of such
complete 3D shapes is a popular task in the 3D literature [11,10]. Obviously,
the real object center coinciding with the shape center is not always valid
and we cannot use it for partial shapes or for the recognition of 3D scenes
(with additional clutter or noise).

4 Experiments and Applications

Our main target is to robustly classify 3D shapes. Having visually assessed the
3D SURF descriptors (§ 2) in Figs. (3,4), we evaluate it further for the difficult
task of partial shape retrieval in § 4.2. Since the task is retrieval, the features are
used in the BOF framework for this test. Supported by the good performance,
we further use 3D SURF features in conjunction with the probabilistic Hough
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voting method of § 3 (ISM) to demonstrate its power for class recognition and
for assessing the sensitivity to missing data on standard datasets. Our proposed
method outperforms the other approaches in these clean shape datasets. Finally,
we tackle classification of 3D scenes reconstructed from real life images. Such
scenes are challenging due to clutter, noise and holes. We show promising results
on such data in § 4.4.

4.1 Datasets

All the datasets (Fig. 9) used in our evaluations consists of clean and segmented
shapes and are defined at the outset.

(i) KUL dataset: simple dataset of 94 training shapes of 8 classes from the
Internet and 22 query shapes.

(ii) Princeton dataset: challenging dataset of 1.8K shapes (half training, half
testing), 7 classes taken from the Princeton Benchmark [24].

(iii) Tosca+Sumner dataset: dataset for retrieval/classification [25,26] of 474
shapes, 12 classes of which 66 random ones form a test set.

(iv) SHREC’09 datasets: 40 classes, 720 training and 20 partial query shapes
from the Partial Shape Retrieval Contest [27] with complete ground-truth.

4.2 3D SURF Features for Shape Retrieval

We have presented a novel method for local features extraction and descrip-
tion for 3D shapes. We investigate now the performance of our approach to the
state of the art descriptors.

As the task here is that of shape retrieval (as opposed to our classification
based method from § 3), we use 3D SURF features in the large-scale image re-
trieval approach of Sivic and Zisserman [19] based on BOF. First, 3D SURF
features of all shapes were quantized using the visual vocabulary as in § 3. Sec-
ond, we compute the BOF vectors. Third, using the BOF, every shape model
is represented as the normalized tf-idf vector [28] preferring the discriminative
visual words. Finally, the similarity between shapes is measured as the L1 dis-
tance between the normalized tf-idf vectors. L1 measure was shown to perform
better than the dot-product in image retrieval [19].

For the problem of partial shape retrieval 3D SURF is pitched against other
descriptors in the SHREC’09 Contest [27] for the dataset (iv) in § 4.1. Fig. 7(a)
presents our results together with results from the SHREC’09 Contest. Note that
3D SURF features outperform the rendered range-images -based SIFT descrip-
tors [27], in similar BOF frameworks.

Fig. 7(b,c) shows the retrieval performance on two additional datasets. As
the main result, we observed high sensitivity of all descriptors to to the dataset
type, i.e. SI [15] outperforms all methods in Tosca dataset, while it gives the
worst results on KUL dataset, but couldn’t be evaluated on SHREC’09 due to
computational constraints.
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Fig. 7. Comparison of different detectors/descriptors using the video google [19]

retrieval approach. The performance is measured as Precision-Recall curve.

(a) SHREC’09 Partial Shape Retrieval Contest [27] provided results which were com-

pared with our 3D SURF and other approaches. (b,c) Note that the performance highly

depends on the shape’s type as results very depend on dataset.
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We also observed (on shapes from 1.2K-65K faces and 670-33K vertices) that
our method is faster than other local descriptors. In average, 3D SURF takes
20.66s, HKS [6] 111.42s and SI [15] more than 15mins. The experiment was
performed on 4xQuad Core AMD Opteron, 1.25Ghz/core.
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4.3 3D SURFs in the ISM Framework for 3D Classification

Here we apply our method (ISM, § 3) for shape classification in these variations:

(a) ISM-CS: with the cube-searching method from § 3.3 (1).
(b) ISM-DC: with the assumption that the shape’s centre is known (see § 3.3 (2)).

The above versions of our method are compared against the following:

(i) BOF-knn: Encouraged by the good results of the 3D shape retrieval al-
gorithm in § 4.2, we use this as one competitor. The test query shape is
assigned to the most commonly occurring class of the best k-retrieved train-
ing shapes in a nearest-neighbor classification approach. Parameter k was
learnt to optimize classification of train shapes. The shapes are represented
by normalized tf-idf vectors and L1 is used as metric.

(ii) Toldo-BOF-SVM: This is our implementation of Toldo et al. [11], where
BOF vectors are computed on the training data MT . Then, the multi-class
SVM classifier ([29]) is learned on the BOF vectors to predict the class label
of the query shapesMQ. The kernel function is defined in terms of histogram
intersection as in [11].

First, we investigate the sensitivity of classification methods with respect to the
occlusions. Fig. 8 shows the performance of methods in the presence of occlusion
on KUL dataset (§ 4.1 (i)). ISM-DC gives the best results for complete models
and the performance of ISM-CS outperforms all methods with the more partial
queries.

Table 1 summarizes all results on standard datasets of 3D shapes. Here, we
measured the performance of classification methods on several datasets. Our
approach using the Hough voting gave the average performance (see the last
column in Table 1). The Princeton dataset (§ 4.1 (ii)) is the most challenging
and although all methods gave similar results, we outperform the others. This
dataset has very high variation amongst its 3D models i.e. the animal class
contains widely varying models of ’ant’ and ’fish’. For an SVM to learn a good
classifier, we need a good non-linear kernel which has learnt such differences
well. In such cases, non-parametric nearest-neighbor classifiers have a natural
advantage.

The SHREC’09 dataset (§ 4.1 (iv)), previously used for the retrieval of partial
queries, is now used for classification. ISM doesn’t perform well as this method
needs relatively large number of training examples [16,21] which is not satisfied
in this case.

We conclude that our ISM based method beats k-nn and SVM in most cases.

4.4 3D Shape Classification of Reconstructed Real Life Scenes

As a final note, it is interesting to investigate the relative roles 2D and 3D object
class detection could play in real-life. We carry out a small experiment to see
whether 3D detection would really offer an added value.

Given many images taken in uncontrolled conditions around a real object,
state-of-the-art methods such as the Arc3D web-service [30] can be used to
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Princeton:

Tosca+Sumner:

SHREC’09:

Fig. 9. Samples of query shapes from the state-of-the-art datasets

Table 1. Table summarizes all results of classification on state-of-the-art datasets.

Proposed approach beats k-nn and SVM in most cases.

Princeton Tosca+Sumner SHREC’09

method # TP # FP perfor. # TP # FP perfor. # TP # FP perfor. avg. perf.

ISM 529 378 58.3% 56 1 98% 8 14 40% 65.4%
BOF-knn 491 416 54.1% 56 1 98% 7 13 35% 62.4%
BOF-SVM 472 435 52.0% 41 16 72% 12 8 60% 61.3%
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Fig. 10. 3D class recognition from the set of images. For each sample: correctly recog-

nized class using 3D ISM, the number of correctly recognized objects in images using

the method of Felzenszwalb et al. [31] (the best for PASCAL’08), samples of detection

results are highlighted by squares, and the reconstructed shape by Arc3D [30].

extract a dense 3D model from the captured images. Such object models exhibit
varying amounts of noise, holes and clutter from the surroundings, as can be
seen from the examples (see Fig. 10). For each class on Fig. 10 we reuse the 3D
ISM models trained on datasets of the SHREC’09 (for bike and plant classes),
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Tosca+Sumner (for woman) and KUL (for cube and people). We also used 2D
Felzenszwalb detectors [31] trained on data from the PASCAL’08 datasets for
bikes, potted plants, and pedestrians. As shown in the Fig. 10, a small test was
run, where 3D reconstructions were produced from images for an instance of
each of the 6 objects. In each of these cases, the classification using 3D ISM was
successful, while SVM based method of Toldo et al. [11] failed in all cases. As
to the 2D detectors, the bike was found in 12 out of the 15 images, the potted
plant in none of the 81 images, and the person in 47 out of the hundred. This
would indicate that given a video images input, a single 3D detection into the
images could be more effective than 2D detections in separate images. But issues
concerning 2D vs. 3D detection need to be explored further.

5 Conclusion

In this paper, we introduced 3D SURF features in combination with the proba-
bilistic Hough voting framework for the purpose of 3D shape class recognition.
This work reaffirms the direction taken by recent research in 2D class detection,
but thereby deviates rather strongly from traditional 3D approaches, which are
often based on global features, and where only recently some first investigations
into local features combined with bag-of-features classification were made.

We have demonstrated through experiments, first the power of the features
(§ 4.2), followed by the combined power of the features and the classification
framework (§ 4.3). This method outperforms existing methods and both aspects
seem to play a role in that.

Acknowledgment. We are grateful for financial support from EC Integrated
Project 3D-Coform.
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