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Preface

The 2010 edition of the European Conference on Computer Vision was held in

Heraklion, Crete. The call for papers attracted an absolute record of 1,174

submissions. We describe here the selection of the accepted papers:

Thirty-eight area chairs were selected coming from Europe (18), USA and
Canada (16), and Asia (4). Their selection was based on the following
criteria: (1) Researchers who had served at least two times as Area Chairs
within the past two years at major vision conferences were excluded; (2)
Researchers who served as Area Chairs at the 2010 Computer Vision and
Pattern Recognition were also excluded (exception: ECCV 2012 Program
Chairs); (3) Minimization of overlap introduced by Area Chairs being former
student and advisors; (4) 20% of the Area Chairs had never served before in
a major conference; (5) The Area Chair selection process made all possible
efforts to achieve a reasonable geographic distribution between countries,
thematic areas and trends in computer vision.

Each Area Chair was assigned by the Program Chairs between 28-32 papers.
Based on paper content, the Area Chair recommended up to seven potential
reviewers per paper. Such assignment was made using all reviewers in the
database including the conflicting ones. The Program Chairs manually
entered the missing conflict domains of approximately 300 reviewers. Based
on the recommendation of the Area Chairs, three reviewers were selected per
paper (with at least one being of the top three suggestions), with 99.7% being
the recommendations of the Area Chairs. When this was not possible, senior
reviewers were assigned to these papers by the Program Chairs, with the
consent of the Area Chairs. Upon completion of this process there were 653
active reviewers in the system.

Each reviewer got a maximum load of eight reviews—in a few cases we had
nine papers when re-assignments were made manually because of hidden
conflicts. Upon the completion of the reviews deadline, 38 reviews were
missing. The Program Chairs proceeded with fast re-assignment of these
papers to senior reviewers. Prior to the deadline of submitting the rebuttal by
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the authors, all papers had three reviews. The distribution of the reviews was
the following: 100 papers with an average score of weak accept and higher,
125 papers with an average score toward weak accept, 425 papers with an
average score around borderline.

For papers with strong consensus among reviewers, we introduced a
procedure to handle potential overwriting of the recommendation by the Area
Chair. In particular for all papers with weak accept and higher or with weak
reject and lower, the Area Chair should have sought for an additional
reviewer prior to the Area Chair meeting. The decision of the paper could
have been changed if the additional reviewer was supporting the
recommendation of the Area Chair, and the Area Chair was able to convince
his/her group of Area Chairs of that decision.

The discussion phase between the Area Chair and the reviewers was initiated
once the review became available. The Area Chairs had to provide their
identity to the reviewers. The discussion remained open until the Area Chair
meeting that was held in Paris, June 5-6. Each Area Chair was paired to a
buddy and the decisions for all papers were made jointly, or when needed
using the opinion of other Area Chairs. The pairing was done considering
conflicts, thematic proximity, and when possible geographic diversity. The
Area Chairs were responsible for taking decisions on their papers. Prior to
the Area Chair meeting, 92% of the consolidation reports and the decision
suggestions had been made by the Area Chairs. These recommendations were
used as a basis for the final decisions.

Orals were discussed in groups of Area Chairs. Four groups were formed,
with no direct conflict between paper conflicts and the participating Area
Chairs. The Area Chair recommending a paper had to present the paper to the
whole group and explain why such a contribution is worth being published as
an oral. In most of the cases consensus was reached in the group, while in the
cases where discrepancies existed between the Area Chairs’ views, the
decision was taken according to the majority of opinions.

The final outcome of the Area Chair meeting, was 38 papers accepted for an
oral presentation and 284 for poster. The percentage ratios of submissions/
acceptance per area are the following:
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Thematic area # submitted % over # accepted % over % acceptance
submitted accepted in area
Object and Scene Recognition 192 16.4% 66 20.3% 34.4%
Segmentation and Grouping 129 11.0% 28 8.6% 21.7%
Face, Gesture, Biometrics 125 10.6% 32 9.8% 25.6%
Motion and Tracking 119 10.1% 27 8.3% 22.7%
Statistical Models and Visual 101 8.6% 30 9.2% 29.7%

Learning
Matching, Registration, Alignment 90 7.7% 21 6.5% 23.3%
Computational Imaging 74 6.3% 24 7.4% 32.4%
Multi-view Geometry 67 5.7% 24 7.4% 35.8%
Image Features 66 5.6% 17 5.2% 25.8%
Video and Event Characterization 62 5.3% 14 4.3% 22.6%
Shape Representation and 48 41% 19 5.8% 39.6%
Recognition

Stereo 38 3.2% 4 1.2% 10.5%
Reflectance, lllumination, Color 37 3.2% 14 4.3% 37.8%
Medical Image Analysis 26 2.2% 5 1.5% 19.2%

® We received 14 complaints/reconsideration requests. All of them were sent to the
Area Chairs who handled the papers. Based on the reviewers’” arguments and the
reaction of the Area Chair, three papers were accepted—as posters—on top of
the 322 at the Area Chair meeting, bringing the total number of accepted papers
to 325 or 27.6%. The selection rate for the 38 orals was 3.2% .The acceptance
rate for the papers submitted by the group of Area Chairs was 39%.

® Award nominations were proposed by the Area and Program Chairs based on
the reviews and the consolidation report. An external award committee was
formed comprising David Fleet, Luc Van Gool, Bernt Schiele, Alan Yuille,
Ramin Zabih. Additional reviews were considered for the nominated papers
and the decision on the paper awards was made by the award committee. We
thank the Area Chairs, Reviewers, Award Committee Members, and the
General Chairs for their hard work and we gratefully acknowledge Microsoft
Research for accommodating the ECCV needs by generously providing the
CMT Conference Management Toolkit. We hope you enjoy the proceedings.

September 2010 Kostas Daniilidis
Petros Maragos
Nikos Paragios
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Constrained Spectral Clustering via Exhaustive
and Efficient Constraint Propagation

Zhiwu Lu and Horace H.S. Ip

Department of Computer Science, City University of Hong Kong, Hong Kong
AIMtech Centre, City University of Hong Kong, Hong Kong
lzhiwu2@student.cityu.edu.hk, cship@cityu.edu.hk

Abstract. This paper presents an exhaustive and efficient constraint
propagation approach to exploiting pairwise constraints for spectral clus-
tering. Since traditional label propagation techniques cannot be readily
generalized to propagate pairwise constraints, we tackle the constraint
propagation problem inversely by decomposing it to a set of indepen-
dent label propagation subproblems which are further solved in quadratic
time using semi-supervised learning based on k-nearest neighbors graphs.
Since this time complexity is proportional to the number of all possible
pairwise constraints, our approach gives a computationally efficient so-
lution for exhaustively propagating pairwise constraint throughout the
entire dataset. The resulting exhaustive set of propagated pairwise con-
straints are then used to adjust the weight (or similarity) matrix for
spectral clustering. It is worth noting that this paper first clearly shows
how pairwise constraints are propagated independently and then accu-
mulated into a conciliatory closed-form solution. Experimental results on
real-life datasets demonstrate that our approach to constrained spectral
clustering outperforms the state-of-the-art techniques.

1 Introduction

Cluster analysis is largely driven by the quest for more robust clustering algo-
rithms capable of detecting clusters with diverse shapes and densities. It is worth
noting that data clustering is an ill-posed problem when the associated objective
function is not well defined, which leads to fundamental limitations of generic
clustering algorithms. Multiple clustering solutions may seem to be equally plau-
sible due to an inherent arbitrariness in the notion of a cluster. Therefore, any
additional supervisory information must be exploited in order to reduce this de-
generacy of possible solutions and improve the quality of clustering. The labels
of data are potential sources of such supervisory information which has been
widely used. In this paper, we consider a commonly adopted and weaker type
of supervisory information, called pairwise constraints which specify whether a
pair of data belongs to the same cluster or not.

There exist two types of pairwise constraints, known as must-link constraints
and cannot-link constraints, respectively. We can readily derive such pairwise
constraints from the labels of data, where a pair of data with the same label

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part VI, LNCS 6316, pp. 12010A
© Springer-Verlag Berlin Heidelberg 2010
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horse, foal, flower, grass  zebra, herd, field, tree horse, foal, grass, tree

Must-link: (a, ¢) Cannot-link: (a, b) (b, ¢)

Fig. 1. The must-link and cannot-link constraints derived from the annotations of im-
ages. Since we focus on recognizing the objects of interests in images, these constraints
are formed without considering the backgrounds such as tree, grass, and field.

denotes must-link constraint and cannot-link constraint otherwise. It should be
noted, however, that the inverse may not be true, i.e. in general we cannot infer
the labels of data from pairwise constraints, particularly for multi-class data.
This implies that pairwise constraints are inherently weaker but more general
than the labels of data. Moreover, pairwise constraints can also be automatically
derived from domain knowledge [1l2] or through machine learning. For example,
we can obtain pairwise constraints from the annotations of the images shown
in Fig. [[l Since we focus on recognizing the objects of interests (e.g. horse and
zebra) in images, the pairwise constraints can be formed without considering the
backgrounds such as tree, grass, and field. In practice, the objects of interest can
be roughly distinguished from the backgrounds according to the ranking scores
of annotations learnt automatically by an image search engine.

Pairwise constraints have been widely used for constrained clustering [TI2131415],
and it has been reported that the use of appropriate pairwise constraints can of-
ten lead to the improved quality of clustering. In this paper, we focus on the ex-
ploitation of pairwise constraints for spectral clustering [6I7I89] which constructs
a new low-dimensional data representation for clustering using the leading eigen-
vectors of the similarity matrix. Since pairwise constraints specify whether a pair of
data belongs to the same cluster, they provide a source of information about the
data relationships, which can be readily used to adjust the similarities between
the data for spectral clustering. In fact, the idea of exploiting pairwise constraints
for spectral clustering has been studied previously. For example, [I0] trivially ad-
justed the similarities between the data to 1 and 0 for must-link and cannot-link
constraints, respectively. This method only adjusts the similarities between con-
strained data. In contrast, [I1] propagated pairwise constraints to other similar-
ities between unconstrained data using Gaussian process. However, as noted in
[11], this method makes certain assumptions for constraint propagation specially
with respect to two-class problems, although the heuristic approach for multi-class
problems is also discussed. Furthermore, such constraint propagation is formulated
as a semi-definite programming (SDP) problem in [12]. Although the method is
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not limited to two-class problems, it incurs extremely large computational cost for
solving the SDP problem. In [I3], the constraint propagation is also formulated as
a constrained optimization problem, but only must-link constraints can be used
for optimization.

To overcome these problems, we propose an exhaustive and efficient constraint
propagation approach to exploiting pairwise constraints for spectral clustering,
which is not limited to two-class problems or using only must-link constraints.
Specifically, since traditional label propagation techniques [I4/15/T6] cannot be
readily generalized to propagate pairwise constraints, we tackle the constraint
propagation problem inversely by decomposing it to a set of independent label
propagation subproblems. Furthermore, we show that through semi-supervised
learning based on k-nearest neighbors graphs, the set of label propagation sub-
problems can be solved in quadratic time O(kN?) with respect to the data size
N (k < N). Since this time complexity is proportional to the total number of
all possible pairwise constraints (i.e. N(N — 1)/2), our constraint propagation
approach can be considered computationally efficient. It is worth noting that our
approach incurs much less computational cost than [12], given that SDP-based
constraint propagation has a time complexity of O(N?).

The resulting exhaustive set of propagated pairwise constraints can be ex-
ploited for spectral clustering through adjusting the similarity matrix with this
information. The experimental results on image and UCI datasets demonstrate
that our approach outperforms the state-of-the-art techniques. It is worth not-
ing that our approach can be seen as a very general constraint propagation
technique, which has the following advantages:

(1) This is the first constraint propagation approach that clearly shows how
pairwise constraints are propagated independently and then accumulated
into a conciliatory closed-form solution.

(2) Our approach is not limited to two-class problems or using only must-link
constraints. More importantly, our approach allows soft constraints, i.e., the
pairwise constraints can be associated with confidence scores like [I7II8].

(3) The exhaustive set of pairwise constraints obtained by our approach can also
potentially be used to improve the performance of other machine learning
techniques by adjusting the similarity matrix.

The remainder of this paper is organized as follows. In Section 2] we propose an
exhaustive and efficient constraint propagation approach. In Section[3], we exploit
the exhaustive set of propagated pairwise constraints for spectral clustering.
In Section @ our approach is evaluated on image and UCI datasets. Finally,
Section [ gives the conclusions drawn from experimental results.

2 Exhaustive and Efficient Constraint Propagation

Given a dataset X = {z1,...,xn}, we denote a set of must-link constraints as
M = {(z;,2z;) : z; = z;} and a set of cannot-link constraints as C = {(z;,z;) :
z; # 2}, where z; is the label of data x;. Our goal is to exploit the two types of
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Fig. 2. The vertical and horizontal propagation of pairwise constraints. Each arrow
denotes the direction of constraint propagation. The solid arrow means that the pair-
wise constraint is provided initially, while the dashed arrow means that the pairwise
constraint is newly generated during constraint propagation.

pairwise constraints for spectral clustering on the dataset X. As we have men-
tioned, the pairwise constraints can be used to adjust the similarities between
data so that spectral clustering can be performed with the adjusted similarity
matrix. In previous work [I0], only the similarities between the constrained data
are adjusted, and thus the pairwise constraints exert very limited effect on the
subsequent spectral clustering. In the following, we propose an exhaustive and
efficient constraint propagation technique that spreads the effect of pairwise con-
straints throughout the entire dataset, thereby enabling the pairwise constraints
to exert a stronger influence on the subsequent spectral clustering.

A main obstacle of constraint propagation lies in that the cannot-link con-
straints are not transitive. In this paper, however, we succeed in propagating
both must-link and cannot-link constraints. We first represent these two types
of pairwise constraints using a single matrix Z = {Z;; } yxn:

+1, (ZL’i,ZL'j) S M;

0, otherwise.

Here, we have | Z;;| < 1 for soft constraints [L7II8]. Since we can directly obtain the
pairwise constraints from the above matrix Z, the pairwise constraints have been
represented using Z without loss of information. We make further observations on Z
column by column. It can be observed that the j-th column Z ; actually provides the
initial configuration of a two-class semi-supervised learning problem with respect
to z;, where the “positive class” contains the data that must appear together with
x; and the “negative class” contains the data that cannot appear together with x;.
More concretely, ; can be initially regarded as coming from the positive (or nega-
tive) classif Z;; > 0 (or < 0), but if z; and x; are not constrained (i.e. Z;; = 0) thus
x; is initially unlabeled. This configuration of a two-class semi-supervised learning
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is also suitable for soft constraints. The semi-supervised learning problem with re-
spect to x; can be solved by the label propagation technique [14]. Since the other
columns of Z can be handled similarly, we can decompose the constraint propaga-
tion problem into N independent label propagation subproblems which can then
be solved in parallel. The vertical propagation of pairwise constraints is illustrated
in Fig.

However, it is also possible that a column contains no pairwise constraints (for
example, see the second column in Fig.[2)). That is, the entries of this column may
all be zeros, and for such cases, no constraint propagation will occur along this
column. We deal with this problem through horizontal constraint propagation
(see Fig. ), which is performed after the vertical constraint propagation. The
horizontal propagation can be done similar to the vertical propagation discussed
above. The only difference is that we now consider Z row by row, instead of
column-wise. More significantly, through combining the vertical and horizontal
constraint propagation, we succeed in propagating the pairwise constraints to
any pair of data. That is, the semi-supervised learning for constraint propagation
could not break down if one type of constraints is missing for some data.

The two sets of constraint propagation subproblems can be solved efficiently
through semi-supervised learning based on k-nearest neighbors graphs. Let F =
{F ={Fij}nxn : |Fij| <1}, Infact, each matrix F' € F denotes a set of pairwise
constraints with the associated confidence scores. That is, Fj; > 0 is equivalent
to (x;,2;) € M while F;; < 0 is equivalent to (z;,2;) € C, with |F};| being the
confidence score (i.e. probability) of (x;,z;) € M or (x;,x;) € C. Particularly,
Z € F, where Z collects the initial pairwise constraints. Given the affinity (or
similarity) matrix A for the dataset X, our algorithm for constraint propagation
is summarized as follows:

. . _ A(zi,25) .

(1) Form the weight matrix W of a graph by W;; = \/A(aci,xi)\/i\(a:j,xj) if z;
(j # 1) is among the k-nearest neighbors (k-NN) of z; and W;; = 0 otherwise.
Set W = (W + WT)/2 to ensure that W is symmetric.

(2) Construct the matrix £ = D~Y2WD~'/2 where D is a diagonal matrix
with its (7,4)-element equal to the sum of the i-th row of W.

(3) Tterate F,(t + 1) = aLF,(t) + (1 — a)Z for vertical constraint propagation
until convergence, where F,(t) € F and « is a parameter in the range (0, 1).

(4) Tterate F,(t+1) = aFy,(t)L+(1—a)E for horizontal constraint propagation
until convergence, where Fj,(t) € F and F; is the limit of {F,(t)}.

(5) Output F* = F} as the final representation of the pairwise constraints,
where F}' is the limit of {F}(t)}.

Below we give a convergence analysis of the above constraint propagation al-
gorithm. Since the vertical constraint propagation in Step (3) can be regarded
as label propagation, its convergence has been shown in [I4]. More concretely,
similar to [14], we can obtain F = (1 — a)(I — aL)~'Z as the limit of {F,(t)}.
As for the horizontal constraint propagation, we have

Fl(t+1)=alTF(t)+ (1 - a)F; T
= alFF(t)+ (1 —a)FT. (2)
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Fig. 3. The illustration of our constraint propagation: (a) four pairwise constraints and
ideal clustering of the data; (b) final constraints propagated from only two must-link
constraints; (c) final constraints propagated from only two cannot-link constraints; (d)
final constraints propagated from four pairwise constraints. Here, must-link constraints
are denoted by solid red lines, while cannot-link constraints are denoted by dashed blue
lines. Moreover, we only show the propagated constraints with predicted confidence

scores > 0.1 in Figs. [3(b){3(d)

That is, the horizontal propagation in Step (4) can be transformed to a verti-
cal propagation which converges to Ff;T =1-a){ - a[,)*quj‘T. Hence, our
constraint propagation algorithm has the following closed-form solution:

Fr=F=(1-a)F;(I-al")™!
=(1-a)?(I-al) ' Z(I-al)", 3)

which actually accumulates the evidence to reconcile the contradictory propa-
gated constraints for certain pairs of data. As a toy example, the propagated
constraints given by the above equation are explicitly shown in FiglQl We can
find that the propagated constraints obtained by our approach are consistent
with the ideal clustering of the data.

Finally, we give a complexity analysis of our constraint propagation algorithm.
Through semi-supervised learning based on k-nearest neighbors graphs (k < N),
both vertical and horizontal constraint propagation can be performed in quadratic
time O(kN?). Since this time complexity is proportional to the total number of all
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possible pairwise constraints (i.e. N(N — 1)/2), our algorithm can be considered
computationally efficient. Moreover, our algorithm incurs significantly less com-
putational cost than [12], given that constraint propagation based on semi-definite
programming has a time complexity of O(N*%).

3 Fully Constrained Spectral Clustering

It should be noted that the output F* of our constraint propagation algorithm
represents an exhaustive set of pairwise constraints with the associated confi-
dence scores |F*|. Our goal is to obtain a data partition that is fully consistent
with F*. Here, we exploit F'* for spectral clustering by adjusting the weight
matrix W as follows:

(1+F;§)WZJ, Fr <0.
In the following, W will be used for constrained spectral clustering. Here, we need
to first prove that this matrix can be regarded as a weight matrix by showing
that W has the following nice properties.

Proposition 1. (i) W is nonnegative and symmetric; (i) Wi; > Wi; (or <
Wij) ZfF:; >0 (OT’ < 0)

Proof. The above proposition is proven as follows:

(i) The symmetry of both W and F* ensures that W is symmetric. Since 0 <
Wij < 1 and [Fj5| < 1, we also have: W;; = 1 — (1 — F5)(1 — Wy;) >
1—(1—Wi;) > 0if Fj; > 0and Wy; = (1+ F};)Wi; > 0 if F}; < 0. That is,
we always have Wij > 0. Hence, W is nonnegative and symmetric.

(ii) According to (4), we can consider Wij as a monotonically increasing function
of F. Since Wij = Wi; when F; = 0, we thus have: Wij > Wij (or < Wij)
if F% >0 (or <0).

This proves that W can be used as a weight matrix for spectral clustering. More
importantly, according to Proposition [l the new weight matrix W is derived
from the original weight matrix W by increasing W;; for the must-link con-
straints with £, > 0 and decreasing W;; for the cannot-link constraints with
F7; < 0. This is entirely consistent with our original motivation of exploiting
pairwise constraints for spectral clustering.

After we have incorporated the exhaustive set of pairwise constraints ob-
tained by our constraint propagation into a new weight matrix W, we then per-
form spectral clustering with this weight matrix. The corresponding algorithm
is summarized as follows:

(1) Find K largest nontrivial eigenvectors v, ..., vx of D*1/2WD*1/2, where
D is a diagonal matrix with its (7,4)-element equal to the sum of the i-th
row of the weight matrix W.
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Fig. 4. The results of constrained clustering on the toy data using four pairwise con-
straints given by Fig. (a) spectral learning [10]; (b) our approach. The clustering
obtained by our approach is consistent with the ideal clustering of the data.

(2) Form E = [vy,...,vk], and normalize each row of E to have unit length.
Here, the i-th row FE; is the low-dimensional feature vector for data x;.

(3) Perform k-means clustering on the new feature vectors E; (i = 1,..., N) to
obtain K clusters.

The clustering results on the toy data (see Fig. by the above algorithm are
shown in Fig. We can find that the clustering obtained by our approach is
consistent with the ideal clustering of the data, while this is not true for spectral
learning [10] without using constraint propagation (see Fig. . In the follow-
ing, since the pairwise constraints used for constrained spectral clustering (CSC)
is obtained by our exhaustive and efficient constraint propagation (E2CP), the
above associated clustering algorithm is denoted as E2CSC (or E?CP directly)
to distinguish it from other CSC algorithms.

4 Experimental Results

In this section, we conduct extensive experiments on real-life data to evaluate
the proposed constrained spectral clustering algorithm. We first describe the
experimental setup, including the clustering evaluation measure and the param-
eter selection. Moreover, we compare our algorithm with other closely related
methods on two image datasets and four UCI datasets, respectively.

4.1 Experimental Setup

For comparison, we present the results of affinity propagation (AP) [I1], spectral
learning (SL) [10] and semi-supervised kernel k-means (SSKK) [], which are
three closely related constrained clustering algorithms. SL and SSKK adjust only
the similarities between the constrained data, while AP and our E2CP propagate
the pairwise constraints throughout the entire dataset. Here, it should be noted
that AP cannot directly address multi-class problems and we have to take into
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steam trains racing car pumpkins Rockies fields

Fig. 5. Sample images from 15 categories of the Corel dataset

account the heuristic approach discussed in [I1]. We also report the baseline
results of normalized cuts (NCuts) [8], which is effectively a spectral clustering
algorithm but without using pairwise constraints.

We evaluate the clustering results with the adjusted Rand (AR) index [T9J20121],
which has been widely used for the evaluation of clustering algorithms. The AR
index measures the pairwise agreement between the computed clustering and the
ground truth clustering, and takes a value in the range [-1,1]. A higher AR index
indicates that a higher percentage of data pairs in the obtained clustering have the
same relationship (musk-link or cannot-link) as in the ground truth clustering. In
the following, each experiment is randomly run 25 times, and the average AR index
is obtained as the final clustering evaluation measure.

We set a = 0.8 and k = 20 for our E2CP algorithm. The k-NN graph con-
structed for our constraint propagation is also used for the subsequent spectral
clustering. To ensure a fair comparison, we adopt the same k-NN graph for the
other algorithms. Here, we construct the graph with different kernels for image
and UCI datasets. That is, the spatial Markov kernel [15] is defined on the im-
age datasets to exploit the spatial information, while the Gaussian kernel is used
for the UCI datasets as in [LI]. For each dataset, different numbers of pairwise
constraints are randomly generated using the ground-truth cluster labels.

4.2 Results on Image Datasets

We select two different image datasets. The first one contains 8 scene categories
from MIT [22], including four man-made scenes and four natural scenes. The
total number of images is 2,688. The size of each image in this Scene dataset is
256 x 256 pixels. The second dataset contains images from a Corel collection. We
select 15 categories (see Fig. [, and each of the categories contains 100 images.
In total, this selected set has 1,500 images. The size of each image in this dataset
is 384 x 256 or 256 x 384 pixels.
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Fig. 6. The clustering results on the two image datasets by different clustering algo-
rithms with a varying number of pairwise constraints

For these two image datasets, we choose two different feature sets which are in-
troduced in [23] and [15], respectively. That is, as in [23], the SIFT descriptors are
used for the Scene dataset, while, similar to [15], the joint color and Gabor features
are used for the Corel dataset. These features are chosen to ensure a fair compari-
son with the state-of-the-art techniques. More concretely, for the Scene dataset, we
extract SIFT descriptors of 16 x 16 pixel blocks computed over a regular grid with
spacing of 8 pixels. As for the Corel dataset, we divide each image into blocks of
16 x 16 pixels and then extract a joint color/texture feature vector from each block.
Here, the texture features are represented as the means and standard deviations
of the coefficients of a bank of Gabor filters (with 3 scales and 4 orientations), and
the color features are the mean values of HSV color components. Finally, for each
image dataset, we perform k-means clustering on the extracted feature vectors to
form a vocabulary of 400 visual keywords. Based on this visual vocabulary, we then
define a spatial Markov kernel [T5] as the weight matrix for graph construction.

In the experiments, we provide the clustering algorithms with a varying num-
ber of pairwise constraints. The clustering results are shown in Fig.[60l We can find
that our E2CP generally performs the best among the five clustering methods.
The effectiveness of our exhaustive constraint propagation approach to exploit-
ing pairwise constraints for spectral clustering is verified by the fact that our
E2CP consistently obtains better results. In contrast, SL and SSKK perform un-
satisfactorily, and, in some cases, their performance has been degraded to those
of NCuts. This may be due to that by merely adjusting the similarities only
between the constrained images, these approaches have not fully utilized the
additional supervisory or prior information inherent in the constrained images,
and hence can not discover the complex manifolds hidden in the challenging im-
age datasets. Although AP can also propagate pairwise constraints throughout
the entire dataset like our E?CP, the heuristic approach discussed in [I1] may
not address multi-class problems for the challenging image datasets, which leads
to unsatisfactory results. Moreover, another important observation is that the
improvement in the clustering performance by our E2CP with respect to NCuts
becomes more obvious when more pairwise constraints are provided, while this
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E’CP

Scene

Corel

Fig. 7. Distance matrices of the low-dimensional data representations for the two image
datasets obtained by NCuts, SL, AP, and E2CP, respectively. For illustration purpose,
the data are arranged such that images within a cluster appear consecutively. The
darker is a pixel, the smaller is the distance.

is not the case for AP, SL or SSKK. In other words, the pairwise constraints has
been exploited more exhaustively and effectively by our E2CP.

To make it clearer how our E2CP exploits the pairwise constraints for spectral
clustering, we show the distance matrices of the low-dimensional data representa-
tions obtained by NCuts, SL, AP, and E2CP in Fig.[7l We can find that the block
structure of the distance matrices of the data representations obtained by our
E2CP on the two image datasets is significantly more obvious, as compared to
those of the data representations obtained by NCuts, SL, and AP. This means
that after being adjusted by our E2CP, each cluster associated with the new
data representation becomes more compact and different clusters become more
separated. Hence, we can conclude that our E2CP does lead to better spectral
clustering through our exhaustive constraint propagation.

The pairwise constraints used here are actually very sparse. For example, the
largest number of pairwise constraints (i.e. 2,400) used for constrained clustering
are generated with only 2.6% of the images in the Scene dataset. Here, images
from the same cluster form the must-link constraints while images from different
clusters form the cannot-link constraints. Through our exhaustive constraint
propagation, we obtain 3,611,328 pairwise constraints with nonzero confidence
scores from this sparse set of pairwise constraints. That is, we have successfully
propagated 2,400 pairwise constraints throughout the entire dataset.

It is noteworthy that the running time of our E2CP is comparable to that of
the constrained clustering algorithms without using constraint propagation (e.g.
SL and NCuts). Moreover, as for the two constraint propagation approaches, our
E2CP runs faster than AP, particularly for multi-class problems. For example,
the time taken by E2CP, AP, SL, SSKK, and NCuts on the Scene dataset is 20,
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42,15, 17, and 12 seconds, respectively. We run all the five algorithms (Matlab
code) on a PC with 2.33 GHz CPU and 2GB RAM.

4.3 Results on UCI Datasets

We further conduct experiments on four UCI datasets, which are described in
Table[dl The UCI data are widely used to evaluate clustering and classification
algorithms in machine learning. Here, as in [11], the Gaussian kernel is defined on
each UCI dataset for computing the weight matrix during graph construction.
The experimental setup on the UCI datasets is similar to that for the image
datasets. The clustering results are shown in Fig.

Wine lonosphere

—8— g2cp —#A— AP —%— SL —— SSKK NCuts —8— g2cp —#A— AP —%— SL —— SSKK NCuts

. . . . . . | . . . . . .
0.15
60 90 120 150 180 210 240 30 60 90 120 150 180 210 240
# pairwise constraints # pairwise constraints

(a) (b)
Soybean WDBC
1 T T T T T T 0. T T T T T T
—&— g2cp —d— AP —%— SL —8— SSKK N —&— 2cp —— AP —%— SL —8— SSKK NCuts

082 h

60 90 120 150 180 210 240 60 120 180 240 300 360 420 480
# pairwise constraints # pairwise constraints

(c) (d)

Fig. 8. The clustering results on the four UCI datasets by different clustering algo-
rithms with a varying number of pairwise constraints

Table 1. Four UCI datasets used in the experiment. The features are first normalized
to the range [-1, 1] for all the datasets.

Datasets Wine Tonosphere Soybean WDBC
# samples 178 351 47 569
# features 13 34 35 30

# clusters 3 2 4 2
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Again, we can find that our E2CP performs the best in most cases. Moreover,
the other three constrained clustering approaches (i.e. AP, SL, and SSKK) are
shown to have generally benefited from the pairwise constraints as compared
to NCuts. This observation is different from that on the image datasets. As
we have mentioned, this may be due to that, considering the complexity of the
image datasets, a more exhaustive propagation (like our E?CP) of the pairwise
constraints is needed in order to fully utilize the inherent supervisory information
provided by the constraints. Our experimental results also demonstrated that an
exhaustive propagation of the pairwise constraints in the UCI data through our
E2CP leads to improved clustering performance over the other three constrained
clustering approaches (i.e. AP, SL, and SSKK).

5 Conclusions

We have proposed an exhaustive and efficient constraint propagation approach
to exploiting pairwise constraints for spectral clustering. The challenging con-
straint propagation problem for both the must-link and cannot-link constraints
is decomposed into a set of independent label propagation subproblems, which
can then be solved efficiently and in parallel through semi-supervised learning
based on k-nearest neighbors graphs. The resulting exhaustive set of propagated
pairwise constraints with associated confidence scores are further used to ad-
just the weight matrix for spectral clustering. It is worth noting that this paper
first clearly shows how pairwise constraints are propagated independently and
then accumulated into a conciliatory closed-form solution. Experimental results
on image and UCI datasets demonstrate clearly that by exhaustively propagat-
ing the pairwise constraints throughout the entire dataset, our approach is able
to fully utilize the additional supervisory or prior information inherent in the
constrained data for spectral clustering and then achieve superior performance
compared to the state-of-the-art techniques. For future work, our approach will
also be used to improve the performance of other graph-based methods by ex-
haustively exploiting the pairwise constraints.
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Abstract. We propose a new generative model, and a new image simi-
larity kernel based on a linked hierarchy of probabilistic segmentations.
The model is used to efficiently segment multiple images into a consistent
set of image regions. The segmentations are provided at several levels of
granularity and links among them are automatically provided. Model
training and inference in it is faster than most local feature extraction
algorithms, and yet the provided image segmentation, and the segment
matching among images provide a rich backdrop for image recognition,
segmentation and registration tasks.

1 Introduction

It is well understood that image registration, segmentation and recognition are
related tasks [I723|I8)I3], and yet, the engineering paradigm suggests the decom-
position of the general vision problem into components, first to be considered
(and even applied) in isolation, and then, sometimes, combined as modules.

In some cases, the modular approach is highly successful. For example, algo-
rithms for registration of multiple images of a static scene have recently matured
to the point where they can be directly used in a variety of applications (e.g.,
photosynth.net). The registration algorithms typically do not attempt to solve
the recognition or the segmentation problems, and are not readily applicable
to registering images of different scenes or objects so that they can be used as
modules in recognition algorithms. Still, the feature extraction stage, e.g. SIFT,
in these technologies has found its way to object recognition research, but not
as a tool for image registration. Under the assumption that registration of im-
ages of similar (but not identical) objects would be hard, the image features are
compared as if they do not have a spatial configuration, i.e., as bags of visual
words (BOW) [1] randomly scattered across the image.

The initial success of BOW models was extended when the researchers at-
tempted to encode at least some spatial information in the models, even if the
required spatial reasoning would be short of full image registration. Such mod-
els are often computationally expensive. For example, [2] forms vocabularies
from pairs of nearby features called “doublets” or “bigamy”. Besides taking co-
occurrences into account this approach benefits from some geometric invariance,

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part VI, LNCS 6316, pp. 15010.
© Springer-Verlag Berlin Heidelberg 2010
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but it is expensive even when feature pairs are considered, and the cost grows
exponentially for higher order statistics. In [4] a codebook of local appearances
is learned in way that allows reasoning about which local structures may ap-
pear on objects of a particular class. However, this process has to be supervised
by human-specified object positions and segmentations. Generative part-based
models like [6I23] are in principle learnable from unsegmented images, but are
computationally expensive as they solve combinatorial search problems. Among
the more computationally efficient approaches, the spatial pyramid method [7]
stands out. The images are recursively subdivided into rectangular blocks, in
a fixed, image-independent way, and the bag-of-words models are applied sep-
arately in these blocks. Image similarity is then defined based on the feature
histogram intersections. This representation is combined with a kernel-based
pyramid matching scheme [8], which efficiently computes approximate global ge-
ometric correspondence between sets of features in two images. Having defined
an image kernel, or a similarity measure for two images, a variety of off-the-shelf
learning algorithms can be used for classification (e.g., the nearest neighbor
method, which simply labels the unlabeled test image with the label of the most
similar labeled image). While the spatial pyramid indirectly registers images for
computation of such a kernel, this registration is limited by the use of a fixed
block-partition scheme for all images.

In this paper, we propose a related approach to defining image similarities,
which can guide object recognition, but also segmentation and registration tasks.
The similarities between two different images are broken down to different re-
gions, but these regions are not rigidly defined by a pyramid kernel, nor do they
require combinatorial matching between images as in [I1]. Instead, they are com-
puted using a novel hierarchical model based on the probabilistic index map/stel
models [TOJ9I5IT8], which consider the segmentation task as a joint segmentation
of an image collection, rather than individual images, thus avoiding a costly
combinatorial matching of segments across images. Our new hierarchical stel
model (HSM) also contains multiple levels of segmentation granularity, linked
across the hierarchy, and provides a rich backdrop for image segmentation, reg-
istration and recognition tasks, as any new image can be segmented in various
class-specific ways under under this set of generative models. In particular, we
propose a similarity kernel based on the entire stel hierarchy across all classes
and granularity levels, and we demonstrate that the computation of this kernel
for two test images implicitly matches not only image segments, but even the ob-
ject parts at a much finer granularity than that evident in a segmentation under
any class model. Not only that such use of HSM leads to high recognition rates,
but it also provides surprisingly accurate unsupervised image segmentation, and
unusually informative registration of entirely different images.

2 The Basic Probabilistic Index Map/Stel Model

The basic probabilistic index map, PIM [I0], or as it is also called, structure ele-
ment (stel) model, assumes that each pixel measurement x;, with its 2-D coordi-
nate 7, has an associated discrete variable s;, which takes a label from the interval
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Fig. 1. PIM and Hierarchical stel model (HSM) illustration

[1,S]. Such a labeling splits the image into .S stels so that s-th stel is a collection of
pixel coordinates 7, which may be scattered across the image, or grouped together
into coherent blobs, and for which the index s; is set to the desired stel label s, i.e.,
2(s) = {i|s; = s}. Fig.[MA shows some examples of stels: {2(s = 2) represents the
sea, £2(s = 3) the schooner. The stel assignments are almost exclusively consid-
ered in a probabilistic fashion. In the simplest case, the distribution over possible
assignments of image coordinates to stels is modeled by a set of location-specific
distributions P;(s;) that describe which image coordinates are more likely to be-
long to particular stels a priori. Such a probabilistic index maps ties the stel parti-
tions in different images of the same type. The posterior stel distribution Q(s;) de-
scribes how this prior belief about class-specific image partition gets altered given
the pixel measurements in a particular image (see Fig.[[A). The image evidence
that the model detects is the image self-similarity within a stel: the pixels with the
same stel label s are expected to follow a tight distribution over image measure-
ments, defined by parameters A,. Each distribution A4 can be modeled, for exam-
ple, as a Gaussian A; = (us, 0s) (in Figlllwe only show the means ps) or in other
more complex ways [I89]. The collection {A,} of all stel parameters, organized by
the stel index, is referred to as a palette. The palette for two different images of
the same class can be completely different. Instead of local appearance similarity,
the model insists on consistent segmentation through the stel prior. For example
stel £2(3) in all images of pedestrians may capture the lower part of the background
and 2(1) the torso of the pedestrian in the foreground (Fig. 3). Differences in local
appearance of these parts are explained away as differences in the palettes associ-
ated with the images. Moreover, the stel prior is easily learned from a collection of
images starting from a noninformative initialization, which allows for efficient seg-
mentation of new images in a fashion consistent with the joint segmentation of the
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training images. Another view of this model is that captures correlated changes of
pixels, as in [24], but in a much more computationally efficient way.

This basic model is easily enriched with transformation variables [I8/9] which
alleviate the requirement for rough pre-alignment of images. However, even the
basic model has a remarkable ability to deal with somewhat misaligned images
without the help of extra variables. For example, Fig. [IC-bottom illustrates the
basic PIM model of the sunflower category, in which the images undergo sig-
nificant transformations (scale, translations, multiple instances). Without help
with accounting for these transformations explicitly, the prior P({s;}) is soft af-
ter learning, but strong enough to tie the segmentations together into consistent
stels. Of course, this robustness to image transformation is limited. In case of
very fine image segmentations with large number of stels, and/or very large im-
age transformations, and/or a sparse training set, the part correspondence may
be highly unreliable. Adding transformation variables could help in such cases,
but in this paper we advocate an even more efficient approach that follows a
traditional computer vision concept: coarse-to-fine hierarchies.

3 Hierarchical Stel Model (HSM)

Modeling transformation variables is inherently expensive in any model. The
cost of dealing with image translation is of the order N log N, where N is the
number of pixels, but if we also need to take care of scale, rotation, or even
affine transformations, the expense may accumulate quickly. In this paper, our
goal is to extend the natural ability of stel models to capture all but the largest
transformations. If for instance, the model is not sensitive to the transformations
present in the fairly well-aligned Caltech database, then the extra transformation
variables only need to model coarse translation in large images (relative to the
object size), and capture scale at several coarse levels.

To achieve such an increased invariance to image transformation, we consider
stel models at multiple levels of granularity so that the more refined models are
linked to the coarser models. This modification confers two advantages to the
stel models:

— If the alignment at some level of granularity is failing, the coarser levels may
still be useful.

— The higher quality of the alignment of stels at a coarse granularity will guide
the alignment at a finer granularity, making these more useful.

Hierarchical stel model captures a hierarchy of stel partitions at L different gran-
ularity levels indexed by £: 2¢(s) = {i|ss; = s}. The index label s can be chosen
from sets of different cardinality for stels at different levels of hierarchy. For ex-
ample, in Fig. [[IC we show two levels of hierarchical stel model with two stels in
level £ = 1 and five in level ¢ = 2. The stel partitions are linked hierarchically
by distributions P(s¢; = a|s¢+1,; = b) = ff,b which are not spatially varying.
In Fig. dIC this linking conditional distributions are defined by a 5 x 2 table of
conditional probabilities fib, but only a few strongest weights are illustrated by



Object Recognition with Hierarchical Stel Models 19

arrows. The image {z;} is linked to each of these stel assignments directly, as if
it was generated L timed] (Fig. IB).

Given the prior P**1({s;}) for level £ + 1 in the same form as in the basic
site-specific PIM /stel model of the previous section, the prior for the level below

satisfies:
Pf(sei=a)="Y P (0410 =1) foy (1)
b

In this way, each successive level provides a coarser set of stels, created by (prob-
abilistic) grouping of stels from the previous level according to ff’b; only at the
finest granularity the stel prior is location-specific, as in the previous section,

P({sp,itie,) = HH(SL,z')~ (2)

As before, the conditional links between the image observation and the stel as-
signment at P(x;|s¢; = s) depend only on the s-th palette entry at the hierarchy
level ¢, and not on the pixel coordinate, thus allowing the palette to affect the
appearance of all the stel’s pixels in concert. For added flexibility, the palette
entries capture a mixture of colors. Image colors in the dataset are clustered
around 32 color centers, and the real-valued pixel intensities are replaced by
discrete indices to these centers in all our experiments. Each palette entry A s
is thus a histogram consisting of 32 probabilities {ug s(k)}, and

P(z; =kl|se; = s) = up,s(k). (3)

The joint probability over all variables in the model is

L—1 L
P=11PGa) [ s senr. [] plailses) (4)
7 £=0 =0

where level ¢ = 0 trivially reduces to a bag of words representation as the stel
variables across the image are constant sg; = 1. Following the same strategy as
[10] we can easily write the free energy F = > Q log g for this graphical model
assuming a factorized posterior Q = Hf,i Q(se,i), take appropriate derivatives,
and derive the following inference rules for minimizing the free energy for a single
image given the prior over stel hierarchy:

Q(se,i =5) < P(spi = s) - ups(wi)  wps(k) o Z Q(sei =) [ri=k], (5)

where [] is an indicator function. The above updates are image-specific; each
image has in fact its own palette of histograms which allows images with very
different colors to be segmented following the same stel prior (Fig. 1C).

! The motivation for multiple generation of z; from multiple levels of hierarchy comes
from the observation that modeling multiple paths from hidden variables to the
data, or, for that matter, among hidden variables in the higher levels, alleviates
local minima problems in learning [19].
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Given a collection of images indexed by ¢, and the posterior distributions
Q(s}) computed as above, the hierarchical stel distribution is updated as

fun > 2 Qlstars =0) Qs =) Plora=s) x> Qlsh (6)

These updates are iterated and the model is learned in an unsupervised way
form a collection of images. As the result, all images are consistently segmented
into stels at multiple levels of hierarchy. As the palettes are image-specific in
the model, the images can have completely different colors and still be consis-
tently segmented. The hierarchical representation of stels reduces the errors in
segmentation, and provides a rich information about part correspondence for
image comparison, and, therefore, recognition.

4 Hierarchical Stel Kernel (HSK)

The HSM can be trained for many different image classes indexed by c. A pair
of images (whether they are in one of the training sets for the stel models or
not) can be segmented into stels under any of the resulting models P.({s¢;})
by iterating the two equations (Bl). The pair of resulting posterior distributions
Q. (522»)7 Qc(sfi) for each combination of class ¢ and granularity level ¢ provides
a coarse correspondence for regions in the two images (Fig. 2I).

This rich information can be used in numerous ways, but we limit our analysis
and experiments here to one of the simplest approaches, inspired by the spatial
pyramid match kernel [7], which propose course-to-fine spatial feature matching
schema based on comparing histograms of image features in different parts of
the image and weighting and accumulating evidence of feature sharing. As in
[7], we compute image features in images and represent them using the same
codebook of 300 visual words. But, instead of partitioning each image image
using the same set of rectangular blocks of different sizes, we use the image-
specific segmentations induced by HSM models. Then similarity in image features
in two different images is considered important if these features tend to be within
the same posterior stel under many models.

Specifically, the feature indices k € [1,300] are assigned to locations on a
grid that covers every fifth pixel along both image dimensions. In a given im-
age, within the s-th stel under the model of class ¢, at a hierarchy level £ an
unnormalized histogram of image features h. ¢ s(k) is computed as

CZS ZQ 5(1 c Nk (7)

where n; i is equal to 1 if a feature of index k is present at location ¢, 0 otherwise.
Given two images A and B, their histogram similarities within the corresponding
stels are defined by the histogram intersection kernel [§] defined as

K (A, B) = min(hZ, o (k), hele o (K)), (8)
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Fig. 2. Segmentations of two images from the Joshua tree category under various stel
models trained on Caltech 101 images. The prior stel distributions are illustrated on
top. The stels are assigned different colors (blue, light blue, yellow and red), to illustrate
the mode of each posterior stel assignment, which is based both on the prior and on
the image evidence. Although none of the individual segmentations under the leopard,
cougar, butterfly, crab, elephant, and schooner models fits these models very well, the
two images are for the most part consistently segmented under these models: If the
different stel assignments a pixel gets under these different models are considered a
discrete multi-dimensional label, and if these multi-dimensional labels of all pixels are
projected through a random matrix onto 3D colors, so that the similar consistent labels
across models and levels of hierarchy result in a similar color, then the two joshua tree
images end up colored as shown in the rectangular box. This illustrates that the tree
bark has consistent stel assignment in two images more often than not, and similar
correspondence among other parts of the two scenes are visible. In contrast, a single
segmentation, even under the model trained on Joshua tree images (the last column),
does not provide a refined part correspondence.

because this provides computational advantages. To compute a single measure
of similarity for two images under all stels of level £, we sum all the similarities,
weighting more the matches obtained in finer segments:

KHSKAB ZQL ¢ Zmln c/e )hCZQ(k))’ (9)

In multi class classification tasks, we define the hierarchical stel kernel (HSK) as
the sum of the kernels for individual classes KTSK =5~ KHSK There are two
reasons for this operation. First, when image similarities are computed for classi-
fication tasks, one or both images may not be labeled as belonging to a particular
class, and so considering all classes simultaneously is needed. Second, even if one
of the images belongs to a known class (an exemplar used in classification, for
instance) and the other’s class is to be predicted, multiple segmentations of the
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images under different class models provides useful additional alignment infor-
mation (Fig.[2). When insufficient data is used for training stel models (e.g., 15
training images for Caltech101), the segmentation under any given class may
be noisy, and so pulling multiple segmentations may help. Natural images share
similar structure: Consider for example portraits of dogs and humans, or struc-
ture of different classes of natural scenes, where the background is broken into
horizontal stripes in images of schooners and cars alike. Thus, using many stel
tessellations under many classes reinforces proper alignment of image parts.
Furthermore, as Fig. illustrates, the alignment becomes finer than under
any single model, even than the finest level of stel hierarchy under the model
for the correct class. To illustrate this, we note that because the posterior Q(s)
tends to be peaky, i.e. close to 0 or 1 for most pixels, for any class we have

KHK (A B) ZQL ‘ me nitanig) x (3] min(Q(si = ),Q(st; = 9))

= Z F; j x M ; (10)

where M, ; = Zz%:o g (X, minA’B(Q(sf"i = s),Q(sEj = s)) represents the
level of expected similarity between the i-th pixel in image A and j-th pixel in
image B based simply on how often the stel labels for these two pixels are shared
across the hierarchy, and F; ; = mink(n,ﬁ i,nﬁ j) represents feature similarities
(i.e., matches) between the coordinate ¢ in one image and coordinate j in the
other, independently of any segmentation. Finally we can write

KHSK — ZF” X Z (11)

Here we have that F; ; > 0if in locations ¢ and j the same feature index is present.
This feature match is more rewarded through weight > _ M ; if i and j share the
same stels across different modelb and granularity levels. Figure[Blillustrates these
two components, F; j and ) M¢ _j» of the similarity kernel on the pixel level. First,
in Fig. BIA we show how combining three arbitrary classes creates enough context
not only to find the corresponding segment for pixel 7 in the first image, but to ac-
tually refine this matching across pixels j in the second. For the selected ¢, marked
by a square, ) M¢ ; is represented as an image over coordinates j in the second
image. In the becond image, as well as in match maps ) M¢ ";» the cross represents
the pixel j = i so that the misalignment of the two faces is evident. While the infer-
ence under the face class may be sufficient to roughly match large regions among
the images, the stel segmentations based on three classes’ segmentations narrow
down the correspondence of the marked pixel (right eye) to the eye regions of the
face in the second image and a spurious match in the background which happened
to have a similar color to the facial region. For easier visualization we illustrated
only three select stels from the three classes. In Fig.[BB for this example, and several
more, we show what happens when all stels and all classes are used as in the equa-
tions above. For two facial images, the supplemental video shows correspondence
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Fig. 3. Pedestrian classification. Left: ROC plots comparing HSM/HSK and other
approaches. Right: the learned HSM parameters.

of various pixels in the same manner (The pixel in the first image is marked by a
cursor, and the mapping in the second image is shown as a heat map).

Finally in Fig. BIC, we show jointly the mapping of three pixels i1, i, i3 in the
first image by placing the appropriate match maps M in the R, G, and B channels
of the image. As the result, when the entire stel hierarchy under all classes is
used to evaluate > M | the regions around the eyes, and especially around the
right eye in the second image are colored red, while the regions in the lower
part of the face, especially lips, are colored green, and the background elements
are colored blue, indicating that the entire stel model hierarchy can localize the
face parts beyond the granularity of any single model and any single level of
hierarchy. For comparison, M obtained for the face class only and butterfly class
only are shown. To illustrate in the same manner the spatial pyramid kernel [7],
we compute similar decomposition into the expected matching of pixels based
on block image segmentation, and the feature matching of pixels. The complete
kernel under both HSM and the spatial pyramid is the sum over all pixels of the
product M; ; - F; ; and so these products are also illustrated in the figure.

Inference and learning complexity in stel models is linear in the number of
image coordinates, stels and classes. The total computation time is consider-
ably faster than SIFT feature computation. Furthermore, the quality of image
matching does not decay much if we use only 30 out of 101 classes.

5 Experiments

We evaluated our approach on Caltech28, Calteh101 and Daimler pedestrian
datasets. We compared with the classification results provided by the datasets’
creators and with the other feature organization paradigms, namely Bag of words
(BW), Stel organization (SO) and Spatial Pyramids (SPK), as well as other
state-of-the art methods. We considered both classification and unsupervised
segmentation tasks. We used support vector machines as discriminative classi-
fiers, feeding the kernels as input.
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5.1 Pedestrian Classification: Daimler Dataset

We evaluated our method on pedestrian classification using the procedure of [12].
We trained a hierarchical stel model with S; = 2 and S = 4 on the training set
for each class (See Fig. Blfor an illustration). Having trained HSM on the training
data, stel inference can be performed on test images, so that pairwise similarities
(the kernel matrix) can be computed for all pairs of images (training and test).
For the feature code book, we used the dictionary of Haar wavelets [13]. Given
input images of size 18 x 36 and their posterior distributions Q(s}) and Q(s}), we
compute w} convolving the image ' with wavelets of scales 4 x 4 (1=1) and 8 x 8
(I=2). We only encoded the magnitude in the feature vectors. As described above,
image features and stel segmentations are used to compute the kernel matrix and
this matrix is fed to a standard SVM classification algorithm. The ROC plots are
shown in Fig.[Bl As expected, results improve as we go from L = 0 (AUC, Area un-
der the curve, 0.954) to a multi-level setup (L > 0). We repeated the classification
only keeping into account the foreground wavelet coefficients. When L=1 the ac-
curacy is significantly improved by considering only the foreground, but for L=2
it does not, as the hierarchical stel kernel already reaches impressive performance
without emphasizing foreground in classification. Though matching at the highest
pyramid level seems to account for most of the improvement (AUC 0.9751), using
all the levels together confers a statistically significant benefit (AUC 0.9854). The
ROC plot on the right of figure Bl compares HSK with several recent approaches
including [12] which reviews standard pedestrian classification algorithm and fea-
tures, [15] which uses a hybrid generative-discriminative approach based on PIM
[10], and [I4] which employs spatial pyramids kernel on a multi-level version of
the HOG descriptor [16].

5.2 Unsupervised Segmentation and Supervised Recognition of
Caltech 28 Images

Caltech 28 [I7] is composed of 28 classes of objects among the subset of Caltech
101 categories that contain more than 60 images. The chosen categories con-
tain objects with thin regions (e.g. flamingo, lotus), peripheral structures (e.g.
cup), objects that are not centered (e.g. leopards, dalmatians, Joshua trees).
None of the chosen classes contains background artifacts that make them easily
identifiable. For each class, we randomly selected 30 images for training and 30
images for testing. To serve as discrete features to match, we extracted SIFT
features from 15x15 pixel windows computed over a grid with spacing of 5 pixels.
These features were mapped to W=300 codewords as discussed in Section 4. We
trained a hierarchical model for each class using S; = 3 and S; = 5 and then

Table 1. Classification accuracies on Caltech 28
HSK L=1 HSK L=1 HSK L=2 ] SPK[] BW 17

S1=3 S1=5 S1=3, S2=5 - L=2 - -
73,15%  74,57% 78,10% 65,12%  65,43%  56,01% 69%
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Fig. 4. Classification results for the Caltech experiments. On the left we report the
segmentation accuracy for each class of Caltech 28 obtained by [I7] (yellow bars) and
by HSM (blue dots with confidence level). On the right, we compare recognition rates on
Caltech 101 images with related spatial-reasoning methods using similar local features.

performed inference on the test images. We calculated the kernel between all
pairs of images as discussed in Section 4 and the used a standard SVM that uses
the class labels and kernels to determine the missing class labels of images in
the test set. We compared the results of several set ups of HSK and with: ¢) the
bag of words classifier BW, i) the spatial pyramid kernel (SPK, [7]), and iii) a
classifier based on the single level stel partition (SO, S=5, [9]). All the methods
are compared using the same core-kernel (histogram intersection) and the same
feature dictionary. First, we compared these related methods repeating the clas-
sification 10 times with a randomly chosen training-testing partition. Then we
performed t-tests and found:

BW <<'107° §PK <« <3107 HOK >55107" g0 554107 ppfl  (12)

Where >>P stands for greater with statistical significance with p-value equal to
p. HSK’s advantage here is due to the segmentations provided by HSM, which
explain away a lot of object transformations (see FiglliC, bottom) and capture
meaningful object partitions. Mean classification accuracies are summarized in
table [l As a further test on Caltech 28 we tackled image segmentation, simply
using the posterior stel segmentation induced by the coarsest level of HSM (S7 =
2). Each class of images is fit independently as described in Section 3. After
training, the posterior stel distributions are used as image segmentations. We
compared our results with [I7], which provides the manual labeling of pixels.
In figure @ we compare the segmentation accuracy over different classes. The
overall test accuracy of our unsupervised method is 79,8%, outperforming the
supervised method of [I7] with test accuracy of 69%.

280 and SPK have been found statistically equal.
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Fig. 5. Image correspondences implicitly captured by the hierarchical stel kernel. In
A and B, the pairs of images are shown with the pixel of interest in the first image
labeled by a square. In B, for each pair, the stel-based match matrix M, which is only
based on color stel models, is shown as averaged under 1,3,5, and 102 classes randomly
selected from Caltech 101. Below each M matrix we show it multiplied with the target
image. C illustrates the correspondence of multiple points for two image pairs.
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5.3 Recognition Rates on Caltech 101

Our final set of experiment is on the Caltech 101 dataset. For the sake of com-
parison, our experimental setup is similar to [7]. Namely, we randomly select 30
images from each category: 15 of them are used for training and the rest are
used for testing. We compare our method to only those recognition approaches
that do not combine several other modalities. Results are reported in figure [
The successfully recognized classes include the ones with rotation artifacts, and
the natural scenes (like joshua tree and okapi), where segmentation is difficult.
The least successful classes are animals, similarly to [7]. This is likely not due to
problems of segmentation, but discretized feature representation [20]. Since our
goal is mainly to compare our representation with SPK we report the results we
have obtained using the SPK authors’s implementation of the feature extraction
and quantization. Note that due to a random selection of images, we did not
recreate the exact classification result of SPK, but our HSK similarity measure
outperforms both our implementation of the SPK and the best published SPK
result.

6 Conclusions

We propose a new generative model, and a new image similarity kernel based on a
linked hierarchy of stel segmentation. The goal of our experiments was primarily
to demonstrate the spatial reasoning that can be achieved with our method,
and which goes beyond block comparisons, and even beyond segment matching
and closer to registration of very different images. Therefore we compared our
method using the same discretized features as in the literature describing efficient
spatial reasoning approaches. However, we expect that the better local feature
modeling may improve classification performance, as for example, [20] proposes.
Still, even with current discretized features, the hierarchical stel models can be
used efficiently and with high accuracy in segmentation and classification tasks.
We expect that our image representation will find its applications in multikernel
approaches but may also find other applications due to its ability to combine
image recognition, segmentation, and registration. For example [2122] are based
on SPK and could be easily used with our method.
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Abstract. Multiple-instance learning (MIL) allows for training classifiers
from ambiguously labeled data. In computer vision, this learning paradigm
has been recently used in many applications such as object classification,
detection and tracking. This paper presents a novel multiple-instance learn-
ing algorithm for randomized trees called MIForests. Randomized trees are
fast, inherently parallel and multi-class and are thus increasingly popular
in computer vision. MIForest combine the advantages of these classifiers
with the flexibility of multiple instance learning. In order to leverage the
randomized trees for MIL, we define the hidden class labels inside target
bags as random variables. These random variables are optimized by train-
ing random forests and using a fast iterative homotopy method for solving
the non-convex optimization problem. Additionally, most previously pro-
posed MIL approaches operate in batch or off-line mode and thus assume
access to the entire training set. This limits their applicability in scenarios
where the data arrives sequentially and in dynamic environments. We show
that MIForests are not limited to off-line problems and present an on-line
extension of our approach. In the experiments, we evaluate MIForests on
standard visual MIL benchmark datasets where we achieve state-of-the-
art results while being faster than previous approaches and being able to
inherently solve multi-class problems. The on-line version of MIForests is
evaluated on visual object tracking where we outperform the state-of-the-
art method based on boosting.

1 Introduction

In recent years, visual object classification and detection has made significant
progress. Besides novel methods for image representations, one important factor
was the development and application of advanced machine learning methods.
Traditional supervised learning algorithms require labeled training data where
each instance (i.e., data sample or feature vector) has a given label. In prac-
tice, the labels are usually provided by a human labeler. However, especially for
positive classes it is often hard to label the samples so that they can be best
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exploited by the learning algorithm. For example, in case of object detection
bounding boxes are usually cropped around the target object and provided as
positive training samples. The decision where exactly to crop the object and at
which size is up to the human labeler and it is often not clear if those patches
are best suited for the learner. Additionally, it would also ease the labeling ef-
fort if the exact object location had not to be marked. By contrast, it would
be desired to provide the learner only a rough position of the target object and
leave it on its own how to incorporate the information in order to deliver best
classification results. For standard supervised learning techniques it is hard to
resolve such ambiguously labeled data. In contrast, multiple-instance learning
(MIL) [1I2] naturally can perform this task. In particular, in multiple-instance
learning, training samples are provided in form of bags, where each bag con-
sists of several instances. Labels are only provided for the bags and not for the
instances. The labels of instances in positive bags are unknown whereas all in-
stances in negative bags can be considered as being negative. For positive bags,
the only constraint is that at least one of the instances is positive. Recently, mul-
tiple instance learning has enjoyed increasing popularity, especially in computer
vision, because in practice data is often provided in a similar manner. Applying
MIL in the above example, the rough object position would correspond to a bag
and patches inside the bag to instances. During training, MIL would find those
patches that lead to best classification results and leave out the others.

While multiple-instance learning has been used in many applications such
as text-categorization [3], drug activity recognition [2] or computer security
problems [4], especially computer vision is one of the most important domains
where multiple instance-learning algorithms have been recently applied. For in-
stance, many authors applied MIL to image retrieval [5l6] or image categorization
tasks [7]. Another computer vision application where multiple-instance learning
can be used is to tackle the alignment problem when training appearance-based
detectors based on boosting [8], speed-up classifier cascades [9] or even action
recognition [I0] and semantic segmentation [I1]. In case of object tracking, it is
mostly hard to decide which patches to use for updating the adaptive appearance
model. If the tracker location is not precise, errors may accumulate which finally
leads to drifting. Recently, Babenko et al. [12] demonstrated that using MIL for
tracking leads to much more stable results. For most of these vision tasks SVM
variants or boosting have been used.

In this paper, we present a novel multiple-instance learning algorithm based
on random forests (RF) [13]. The motivation for developing such an algorithm
has several reasons: RFs have demonstrated to be better or at least comparable
to other state-of-the-art methods in both classification [I3] and clustering [14].
Caruana et al. [I5] showed that RFs outperform most state-of-the-art learn-
ers on high dimensional data problems. Especially, the speed in both training
and evaluation is one of their main appealing properties. Additionally, RFs can
easily be parallelized, which makes them interesting for multi-core and GPU

! Note that we consider “random forests” and “randomized trees” to be the same and
use the term interchangeably throughout the paper.
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implementations [I6]. RFs are inherently multi-class, therefore it is not nec-
essary to build several binary classifiers for solving multi-class problems. Fi-
nally, compared to boosting and other ensemble methods, RFs are more robust
against label noise [I3]. These advantages of random forests have also led to
increased interest in the computer vision domain. For instance, recently Gall
and Lempinsky [I7] presented an efficient object detection framework based on
random forests. Shotton et al. [I8] presented a real-time algorithm for seman-
tic segmentation based on randomized trees. Bosch and Zisserman used RFs
for object categorization [19]. Randomized trees have also successfully applied
to visual tracking, either in batch mode using keypoints [20] or on-line using
tracking-by-detection [21].

The main contribution of this work is an algorithm that extends random
forests to multiple-instance learning. We thus call the method MIForests. MI-
Forests bring the advantages of random forests to multiple-instance learning,
where usually different methods have been applied. In turn, extending random
forests in order to allow for multiple-instance learning allows vision tasks where
RF's are typically applied to benefit from the flexibility of MIL. MIForests are
very similar to conventional random forests. However, since the training data
is provided in form of bags, during learning the real class labels of instances
inside bags are unknown. In order to find the hidden class labels, we consider
them as random variables defined over a space of probability distributions. We
disambiguate the instance labels by iteratively searching for distributions that
minimize the overall learning objective. Since this is a non-convex optimization
problem, we adopt an approach based on deterministic annealing, which provides
a fast solution and thus preserves the speed of random forests during training.
The evaluation speed of MIForests is identical to standard random forests.

Although there have been proposed numerous approaches to the MIL problem,
most of them operate in off-line or batch mode. Off-line methods assume having
access to the entire training data which eases optimization and typically yields
good classifiers. In practice, however, learners often have limited access to the
problem domain due to dynamic environments or streaming data sources. In
computer vision, this is e.g. the case in robot navigation or object tracking. For
such problems off-line learning does not work anymore and on-line methods have
to be applied. In this paper, we take this into account and show how MIForests
can be extended to on-line learning.

In the experimental section, we compare MIForests with other popular MIL
algorithms both on benchmark data sets and on multi-class image classification
problems, where we show that MIForests can achieve state-of-the-art results
without splitting multi-class problems into several binary classifiers. We evaluate
the on-line extension of MIForests on object tracking and compare it to the state-
of-the-art methods.

In Section [2] we present a brief overview on previous multiple-instance learn-
ing methods and RFs. In Section 3] we derive our new multiple-instance learning
algorithm for random forests and present an on-line extension. Experimental re-
sults on standard visual MIL datasets, comparisons to other MIL approaches and
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tracking results of our approach are presented in Section [l Finally, in Section [l
we give some conclusions and ideas for future work.

2 Related Work

In traditional supervised learning training data is provided in form of {(x1,y1)

. (Xn,yn)}, where x; is an instance and, in the binary case, y; € {-1,+1}
the corresponding label. In multiple instance learning training samples are given
in bags B;,i = 1,...,n, where each bag may consist of an arbitrary number of
instances B; = {z},2?,...,z[" }. Negative bags B; consist of only negative in-
stances. Ambiguity is introduced into learning by the constraint that for positive
bags B;" , it is only guaranteed that there exist at least one positive instance (also
called witness of the bag). There is no information about other instances in the
bag. In fact, they might not even belong to the negative class. The task is to learn
either a bag classifier f : B — {—1,1} or an instance classifier f: R — {—1,1}.
However, bag classification can be obtained automatically from instance classifi-
cation, e.g., by using the max operator p; = mjax{pij} over posterior probability

estimates p;; for the j-th instance of the i-th bag.

There exists a vast amount of literature and many different approaches on
how to solve the MIL problem. Here, we briefly review some of the most popular
ones. The most naive approach is to simply ignore the MIL setting and train
a supervised classifier on all instances with the bag label. Blum and Kalai [22],
for instance, showed that one can achieve reasonable results when training an
instance classifier that is robust to class label noise. As we will show later in
the experimental part, RFs are also promising candidates for such a naive ap-
proach. Many MIL methods work by adapting supervised learners to the MIL
constraints, mostly using SVM-type learners. For example, Andrews et al. [3]
proposed two different types of SVM-MIL approaches mi-SVM and MI-SVM.
They differ basically on their assumptions, i.e., the first method tries to identify
the labels of all instances in a bag while the latter one finds only the witness
and ignores all others. Another SVM-based approach MICA [23] tries to find
the witness using linear programming. There also exist some boosting-based
methods, e.g., [8]. Wang and Zucker [24] trained a nearest neighbor algorithm
using Hausdorff distance. Other popular approaches are based on the diverse-
density assumption, for example [25]26], which more directly tries to address the
MIL problem via finding a more appropriate feature representation for bags. In
MILES, Chen et al. [727] trained a supervised SVM on data mapped into a new
feature space based on bag similarities. There exist also approaches for training
decision trees in a MIL fashion, e.g., [28].

2.1 Random Forests

Random Forests (RFs) were originally proposed by Amit et al. [29], extended by
Breiman [13] and consist of ensembles of M independent decision trees fy,(x) :
X —- Y =A{1,...,K}. For a forest F = {f1,---, fm} the predictive confidence
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can be defined as Fj,(x) = Z%Zl Pm (k|X), where py, (k|x) is the estimated den-

sity of class labels of the leaf of the m-th tree, where sample x resides. A decision is

made by simply taking the maximum over all individual probabilities of the trees

for a class k with C'(x) = argmax Fj,(x). [13] showed that the generalization error
key

of random forests is upper bounded by GE < 51;252 , where p is the mean corre-
lation between pairs of trees in the forest and s is the strength of the ensemble
(i.e., the expected value of the margin over the entire distribution). In order to
decrease the correlation of the trees, each tree is provided with a slightly different
subset of training data by subsampling with replacement from the entire training
set, a.k.a bagging. Trees are trained recursively, where each split node randomly
selects binary tests from the feature vector and selects the best according to an
impurity measurement such as the entropy H(I) = — Zfil pl log(p!), where p!
is the label density of class ¢ in node j. The recursive training continues until a
maximum depth is reached or no further information gain is possible.

3 Multiple-Instance Random Forests

In the following, we introduce a novel multiple instance learning algorithm us-
ing randomized trees called MIForests. MIForests deliver multi-class instance
classifiers in form of F(x) : X — Y = {1,..., K}. Hence, during learning for
each bag there is guaranteed that it has at least one instance from the target
class but it may also consist of instances of some or all other classes {1,..., K}.
This makes MIForests different to most previous MIL algorithms that only yield
binary classifiers and require to handle a multi-class problem by a sequence of
binary ones. One obvious way to design RF's capable of solving MIL tasks is to
adopt MIL versions for single decision trees [28]. However, strategies developed
for common decision trees are hard to apply for RFs due to the random split na-
ture of their trees. For example, improper regularization of trees of a RF on the
node level can decrease the diversity p among trees and thus increase the overall
generalization error [I3]. Thus, in order to perform multiple instance learning
with random forests one has to find an optimization strategy that preserves the
diversity among the trees.

We formulate multiple instance learning as an optimization procedure where
the labels of the instances become the optimization variables. Therefore, the
algorithm tries to uncover the true labels of the instances in an iterative manner.
Given such labels, one can train a supervised classifier which then can be used
to classify both instances and bags. Let B;,i = 1,...,n denote the i-th bag in
the training set with label y;. Each bag consists of n; instances: {x},...,x[''}.
We write the objective function to optimize as

n  ng
(i}, F) =argmin 3 6(F,, (x) (1)
{WihF() i=1j=1 '

s.t. Vi : Z]I(yz = arg max Fk(xf)) > 1.
J=1 key
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The objective in this optimization procedure is to minimize a loss function £(-)
which is defined over the entire set of instances by considering the condition
that at least one instance in each bag has to be from the target class. Note that
I(:) is an indicator function and Fj(x) is the confidence of the classifier for the
k-th class, i.e., Fy(x) = p(k|x) — . Often the loss function depends on the
classification margin of an instance. In the case of Random Forests, the margin
can be written as [13]

m(x,y) = p(y|x) — max plklx) = Fy(x) — max Fy(x). (2)
k#y k#y

Note that for a correct classification m(x,y) > 0 should hold. Overall, it can easy
be seen that Eq. (dJ) is a non-convex optimization problem because a random
forest has to be trained and simultaneously a suitable set of labels ! has to be
found. Due to the integer values of the labels yf , this problem is a type of integer
programming and is usually difficult to solve. In order to solve this non-convex
optimization problem without loosing too much of the training speed of random
forests, we use a fast iterative optimization procedure based on deterministic
annealing (DA).

3.1 Optimization

DA [30] is a homotopy method which is able to fast minimize non-convex combi-
natorial optimization problems. The main idea is to extend a difficult optimiza-
tion problem with an easier one by adding a convex entropy term and solve this
first. In particular, one tries to minimize the entropy H of the distribution p in
form of

p = argminE, (F(y)) - TH(p), Q)

peEP

where P is a space of probability distributions and F(y) is our objective function.
The optimization problem is than gradually deformed to its original form using
a cooling parameter T, i.e., Ty > T > ... > Ty, = 0. Due to its speed and
simplicity, DA-based optimization has been applied to many problems, among
them also multiple-instance learning though in context with SVMs, i.e., see [31].
Furthermore, due to the induced randomness in deterministic annealing, it fits
to the nature of randomized trees and was recently also used for solving semi-
supervised learning problems [32]. For further details on DA we refer the reader
to [30].

In order to optimize our MIL objective function (Eq. (), we propose the
following iterative strategy: In the first iteration, we train a naive RF that ignores
the MIL constraint and uses the corresponding bag labels for instances inside
that bag. Then, after the first iteration, we treat the instance labels in target
bags as binary variables. These random variables are defined over a space of
probability distributions P. We now search a distribution p € P for each bag
which solves our optimization problem in Eq. (). Based on p each tree randomly
selects the instance labels for training. Hence, based on the optimization of p
we try to identify the real but hidden labels of instances.
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We reformulate the objective function given in Eq. () so that it is suitable
for DA optimization

n n; K
Loa(F,p) =D > p(kix)UF +TZH ()

i=1 j=1 k=1
where T is the temperature parameter and

K

—ZZ (k[x]) log(p(k[x])) (5)

j=1k=1

is the entropy over the predicted distribution inside a bag. It can be seen that the
parameter T steers the importance between the original objective function and
the entropy. If T"is high, the entropy dominates the loss function and the problem
can be easier solved due to the convexity. If T = 0 the original loss dominates
(Eq. ([@)). Hence, DA first solves the easy task of entropy minimization and
then by continuously decreasing 7" from high values to zero gradually solves the
original optimization problem, i.e., finding the real but hidden instance labels y
and simultaneously training an instance classifier.

In more detail, for a given temperature level, the learning problem can be
written as

(F",p") =argmin Lpa(F, D) (6)
B.F()

s.t. Vi : Z:H(yz = arg max Fk(xf)) > 1.
J=1 key

We split this optimization problem up into a two-step convex optimization prob-
lem analog to an alternating coordinate descent approach. In the first step, the
objective function F is optimized by fixing the distribution p and optimizing
the learning model. In the second step, the distribution p* over the bags accord-
ing to the current entropy level is adjusted. Note that both individual steps are
convex optimization problems. For a given distribution over the bag samples, we
randomly choose a label according to p. We repeat this process independently
for every tree f in the forest. Hence, in the limit, we will exactly maintain the
same distribution over the unlabeled samples as given by p. Let {g;;} be the
randomly drawn labels according to the distribution p for m-th tree. The opti-
mization problem for the m-th tree becomes

iy =arg min DD U xD) (7)

s.t. Vi : Z]I(yz = arg max fk(xf)) > 1.

=1 kEY
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Algorithm 1. MIForests

Require: Bags {B;}

Require: The size of the forest: M
Require: A starting heat parameter Ty
Require: An ending parameter Thyin
Require: A cooling function ¢(T,m)

1: Set: Vi: ¢! =vy;

2: Train the RF: F « trainRF({g/}).

3: Init epochs: m = 0.

4: while Ty,+1 > Thin do

5:  Get the temperature: Tmt1 «— (T, m).

6:  Set m—m+1. _

7. Vx! € B,k €Y : Compute p*(k|x])

8: for t from 1 to M do

9: Vx!) € B; : Select random label, ) according to p*(-|x})
10: Set the label for instance with highest p*(|xf) equal to bag label
11: Re-train the tree:
12: fm — trainTree({g7}).
13:  end for

14: end while
15: Output the forest F.

Since the margin maximizing loss function is convex, this loss function is also
convex. In order to not violate the MIL constraint, after having randomly se-
lected instance labels for a bag, we always set the instance with the highest
probability according to p equal to the bag label. At this stage we train all the
trees in the forest by the formulation given above.

After we trained the random forest, we enter the second stage where we find
the optimal distribution according to

p* =argmin » NN " p(kx)UFL(x]) + T Y H(p:). ®)
p =1

i=1 j=1 k=1

The optimal distribution is found by taking the derivative w.r.t p and setting it
to zero. We depict all detailed steps of the method in Algorithm [Tl

3.2 On-Line MIForests

MIForests as introduced above are trained off-line using a two-step optimization
procedure as given in Eq. ), where in one step the objective function F is
optimized and in the second step the distribution p over the bags, respectively.
In order to modify the algorithm so that it is suitable for on-line learning, i.e.,
the bags B; arrive sequentially, one has to change both optimization steps to
operate in on-line mode. In the following, we show how to train the randomized
trees on-line in order to optimize F and also how p can be optimized on-line to
disambiguate the class labels inside positive bags.
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Bagging, necessary to build the tree ensemble, can be easily done on-line by
modeling the sequentially arriving samples with a Poisson distribution initialized
with a constant value A [33]. On-line learning of the decision trees is less trivial
due to their recursive split nature. However, as we recently showed [21I] the
pure recursive training of the trees can be circumvented by using a tree-growing
procedure similar to evolving-trees [34]. In more detail, the algorithm starts
with trees consisting only of root nodes and randomly selected node tests f; and
thresholds ;. Each node estimates an impurity measure based on the Gini index
(G; = ZzK:1 pl(1 — pl)) on-line, where p! is the label density of class ¢ in node
K. Then, after each on-line update the possible information gain AG during a
potential node split is measured. If AG exceeds a given threshold 3, the node
becomes a split node; i.e., it is not updated any more and generates two child
leaf nodes. The growing proceeds until a maximum depth is reached. Even when
the tree has grown to its full size, all leaf nodes are further on-line updated. The
method is simple to implement and has shown to converge fast to its off-line
counterpart. For further details we refer the reader to [21].

Besides on-line training of the randomized trees, we also have to perform the
deterministic annealing on-line. This means we have to estimate p on-line by
examining the sequentially arriving samples. Therefore, if a new bag B; arrives,
we initialize a new distribution p; over its instances using the current confidence
output of F;. Then, we iteratively apply the optimization of F; and p; only
for the current bag B; following the same two-step procedure and annealing
schedule as in the off-line case (Eq. ([@),Eq. [)). Afterwards, B; is discarded and
the training proceeds with the next bag B;;1. We skip the algorithm box due
to lack of space.

4 Experiments

The purpose of this section is to evaluate the proposed algorithms on standard
MIL machine learning benchmark datasets and to demonstrate their perfor-
mance on typical computer vision problems such as object tracking. Note that,
in general, we abstain from any data set or feature engineering procedures, since
the main purpose is to compare the different learning methods.

4.1 Benchmark Datasets

We first evaluate our proposed MIForests on popular benchmark datasets used in
most studies of multiple-instance learning algorithms, i.e., the Musk! and Musk2
drug activity datasets proposed by Dietterich [2] and the Tiger, Elephant and
Fox image datasets proposed by Andrews et al. [3] For sanity check we also
tested common random forests [I3], i.e., ignoring the MIL constraint. For all
learners we used 50 trees with a maximum depth of 20. As cooling schedule we
used a simple exponential function in form of T, = e+, where ¢ is the current

2 Sample C++ code is available at http://www.ymer.org/amir/software/milforests
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Table 1. Results and comparisons in terms of percent classification accuracy on pop-
ular MIL benchmark datasets. We report the average over 5 runs. Best methods with
the error margin are marked in bold face.

Method Elephant Fox Tiger Muskl Musk2
RandomForest [13] 74 60 77 85 78
MIForest 84 64 82 85 82
MI-Kernel [3] 84 60 84 88 89
MI-SVM [36] 81 59 84 78 84
mi-SVM [36] 82 58 79 87 84
MILES [7] 81 62 80 88 83
SIL-SVM 85 53 77 88 87
AW-SVM [31] 82 64 83 86 84
AL-SVM [31] 79 63 78 86 83
EM-DD [26] 78 56 72 85 85

MILBoost-NOR [g] 73 58 56 71 61

iteration and the constant C' = % We determined these settings empirically and
kept them fixed over all experiments.

As can be observed, the performance of the individual approaches varies
highly depending on the data set. The experiments show that MIForests achieve
state-of-the-art performance and are even outperforming several SVM-based ap-
proaches and those based on boosting. Especially for the vision problems, we
are always among the best. Also the naive RF approach yields surprisingly good
performance, especially on Foxr and Muskl; however, it cannot take pace with
the performance of its MIForest counterpart. One explanation for this might
be that RFs are less susceptible to noise compared to other learning methods,
which is necessary for the naive approach [22]. Compared to its most similar
SVM variant (AL-SVM), MIForest outperforms it on two datasets, draws on
one and performs worse on two. Finally, it has to be mentioned that especially
for [31] and [35] better results can be achieved by incorporating prior knowl-
edge into the learners, e.g., how many “real” positives exist inside bags; which
however also holds for MIForests.

4.2 Corel Dataset

Here, we evaluate our proposed methods on the Corel-1000 and Corel-2000 im-
age dataset for region-based image classification. The data set consists of 2000
images with 20 different categories. Each image corresponds to a bag consisting
of instances obtained via oversegmentation. It is thus a typical MIL problem. In
order to allow for fair comparison we used the same data settings and features
as proposed by Chen et al. [7]. For the results we used the same settings as
in our previous experiments. In contrast to most other approaches, we did not
train 20 1-vs.-all classifiers, but trained one multi-class forest, which is usually a
more difficult task. We compare MIForests with MILES, the original algorithm
proposed on this data set [7]. Since MILES is a binary algorithm we trained
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Table 2. Results and comparisons on the COREL image categorization benchmark.
Additionally, we depict the training times in seconds.

Method Corel-1000 Corel-2000 1000 Images 2000 Images

MIForest 59 66 4.6 22.0
MILES 58 67 180 960

20 1-vs.-all MILES classifiers and depict the results in Table 2l As can be seen,
MIForests achieve competitive results for multi-class scenarios, however, being
much faster. We measured the average time on a standard Core Duo machine
with 2.4 Ghz.

4.3 Object Tracking

A recent dominating trend in tracking called “tracking by detection” has shown
to deliver excellent results at real-time speeds. In these methods, usually an
appearance-based classifier is trained with a marked object at the first frame
versus its local background [37]. The object is then tracked by performing re-
detection in the succeeding frames. In order to handle rapid appearance and
illumination changes, recent works, e.g., [38], use on-line self-updating of the
classifiers. However, during this process it is not clear where to select the posi-
tive and negative updates necessary for self-updating. If the samples are selected
wrongly, slight errors can accumulate over time (a.k.a label jitter) and cause
drifting. Recently, Babenko et al. [12] demonstrated that label jitter can be han-
dled by formulating the update process using an on-line MIL boosting algorithm.
Using MIL, the allowed positive update area around the current tracker can be
increased and the classifier resolves the ambiguities by itself, yielding more robust
tracking results. See [12] for a more detailed discussion about the usefulness of
MIL for tracking. In the following, we demonstrate that on-line MIForests can
also give excellent tracking results, outperforming the state-of-the-art tracker
based on boosting.

We focus on tracking arbitrary objects; so there is no prior knowledge about
the object class available except its initial position. We use eight publicly avail-
able sequences including variations in illumination, pose, scale, rotation and ap-
pearance, and partial occlusions. The sequences Sylvester and David are taken
from [39] and Face Occlusion 1 is taken from [40], respectively. Face occlusion
2, Girl, Tiger1, Tiger2 and Coke are taken from [I2]. All video frames are gray
scale and of size 320 x 240. To show the real accuracy of the compared track-
ing methods, we use the overlap-criterion of the VOC Challenge [4I], which is
defined as Aoyeriap = Rr N Rar/Rr U Rer, where Ry is the tracking rectangle
and Rgr the groundtruth. Since we are interested in the alignment accuracy of
our tracker and the tracked object, rather than just computing the raw distance
we measure the accuracy of a tracker by computing the average detection score
for the entire video. Note that values between 0.5 and 0.7 are usually acceptable
results, values larger than 0.7 can be considered as almost perfect.
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The main purpose of the tracking experiments is the comparison of the influ-
ence of the different on-line learning methods. Hence, we use simple Haar-like
features for representation, did not implement any rotation or scale search and
avoid any other engineering methods, although these things would definitely im-
prove the overall results. For MIForests, we used 50 trees with depth 10 and the
same annealing schedule as in the ML experiments. Overall, we generate 500
features randomly. As [12] for all boosting methods, we used 50 selectors with
each 250 weak classifiers which results in a featurepool of size 12500.

In Table Bl we depict detailed results for all tracking sequences compared to
MILBoost [12], SemiBoost (OSB) [42], on-line AdaBoost (OAB)[38] and on-line
random forests (ORF) [2I]. As can be seen, MIForests perform best on seven
tracking sequences. Remarkably, we are able to outperform MILBoost, which
is currently known to be amongst the best tracking methods, on 6 out of 8
sequences, draw on 1 and are slightly worse on 1. The resulting tracking videos
can be found in the supplementary material.

Table 3. Tracking results on the benchmark sequences measured as average detection
window and ground truth overlap over 5 runs per sequence. Best performing method
is marked in bold face.

Method sylv david faceocc?2 tigerl tiger2 coke faceoccl girl

MIForest 0.59 0.72 0.77 0.55 0.53 0.35 0.77 0.71
MILBoost 0.60 0.57 0.65 049 0.53 0.33 0.60 0.53

OSB 046 031 063 0.17 0.08 0.08 0.71 0.69
OAB 0.50 0.32 064 027 025 025 047 038
ORF 0.53 0.69 072 0.38 043 0.35 0.71 0.70

5 Conclusion

In this paper, we presented a new multiple-instance learning method based on ran-
domized trees (MILForest). We define the labels of instances inside positive bags
as random variables and use a deterministic-annealing style procedure in order to
find the true but hidden labels of the samples. In order to account for the increasing
number of data and leverage the usage of our method in streaming data scenarios,
we also showed how to extend MILForests for on-line learning. We demonstrated
that MILForests are competitive to other methods on standard visual MIL bench-
mark datasets while being faster and inherently multi-class. We demonstrated the
usability of the on-line extension on the task of visual object tracking where we
outperformed state-of-the-art methods. In future work, we plan to test our algo-
rithm on other vision applications such as object detection and categorization.
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Abstract. Manifolds are widely used to model non-linearity arising in
a range of computer vision applications. This paper treats statistics on
manifolds and the loss of accuracy occurring when linearizing the mani-
fold prior to performing statistical operations. Using recent advances in
manifold computations, we present a comparison between the non-linear
analog of Principal Component Analysis, Principal Geodesic Analysis,
in its linearized form and its exact counterpart that uses true intrinsic
distances. We give examples of datasets for which the linearized version
provides good approximations and for which it does not. Indicators for
the differences between the two versions are then developed and applied
to two examples of manifold valued data: outlines of vertebrae from a
study of vertebral fractures and spacial coordinates of human skeleton
end-effectors acquired using a stereo camera and tracking software.

Keywords: manifolds, Riemannian metrics, linearization, manifold val-
ued statistics, Principal Geodesic Analysis (PGA), Geodesic PCA.

1 Introduction

This paper treats the effect of linearization when using the non-linear analog of
Principal Component Analysis, Principal Geodesic Analysis (PGA, [1]), to esti-
mate the variability in sets of manifold valued data. Until recently, PGA has been
performed by linearizing the manifold, which distorts intrinsic distances, but with
the introduction of more powerful computational tools [2], PGA can now be com-
puted with true intrinsic distances. We show how simple and fast indicators allow
us to approximate the differences between linearized PGA and exact PGA with
true intrinsic distances and evaluate the effect of the linearization.

As a test case for the indicators, we perform a comparison between two man-
ifold valued datasets: outlines of vertebrae from a study of vertebral fractures,
and human skeleton end-effectors in spatial coordinates recorded using a stereo
camera and tracking software. We will show that linearized PGA provides a rea-
sonable approximation in only one of the experiments and that the indicators
allow us to predict this before doing the time-intensive computation of exact
PGA with intrinsic distances.
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1.1 Motivation

A wide variety of problems in computer vision possess non-linear structure and
are therefore naturally modeled using Riemannian geometry. In diffusion tensor
imaging [3/4l5], for image segmentation [6] and registration [7], shape spaces [§],
and human motion modeling [9I10], Riemannian manifolds have been used to
enforce consistency in data, provide dimensionality reduction, and define more
accurate metrics. The wide applicability of manifolds in modeling problems has
created the need for statistical tools for manifold data.

Generalizing linear statistical operations to manifolds [TJTTIT2/13] provides
examples of the theoretical and computational problems arising when departing
from familiar Euclidean spaces. The tools developed when pursuing this have
been used successfully for a range of computer vision applications, and the area
is the subject of active research [2I13]. Depending on the level of approximation
used in the computations, manifold statistics can be hard to carry out in practice
because operations such as finding distances and performing optimization do not
admit the closed-form solutions often found in Euclidean spaces [I].

One way of doing manifold statistics is projecting the set of manifold valued
data points to the tangent space of a mean point of the manifold. The vector
space structure of the tangent space brings back convenient Euclidean statis-
tics, but the distortion of the distances between the data points inherent in the
linearization may however lead to sub-optimal solutions to the statistical prob-
lems. In contrast to this, some statistical operations can be carried out with true
intrinsic manifold distances giving a true picture of the data [2[13]. This, how-
ever, often comes at the cost of increased computational complexity and requires
conditions on the locality of data.

Because of the trade-offs between convenient linearization and exact modeling,
we seek for ways to evaluate the extent of the distortion between the linearized
data and true manifold data; we are interested in determining if performing
statistics with intrinsic distances offers significant advantages over the linearized
approach. Such knowledge has the potential of saving substantial computation
time and to improve results of statistical operations.

1.2 Related Work

The mathematical aspects of manifolds are covered extensively in the literature
with [I4/T5] providing good references. Numerical 