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Preface

The 2010 edition of the European Conference on Computer Vision was held in 
Heraklion, Crete. The call for papers attracted an absolute record of 1,174 
submissions. We describe here the selection of the accepted papers: 

Thirty-eight area chairs were selected coming from Europe (18), USA and 
Canada (16), and Asia (4). Their selection was based on the following 
criteria: (1) Researchers who had served at least two times as Area Chairs 
within the past two years at major vision conferences were excluded; (2) 
Researchers who served as Area Chairs at the 2010 Computer Vision and 
Pattern Recognition were also excluded (exception: ECCV 2012 Program 
Chairs); (3) Minimization of overlap introduced by Area Chairs being former 
student and advisors; (4) 20% of the Area Chairs had never served before in 
a major conference; (5) The Area Chair selection process made all possible 
efforts to achieve a reasonable geographic distribution between countries, 
thematic areas and trends in computer vision. 

Each Area Chair was assigned by the Program Chairs between 28–32 papers. 
Based on paper content, the Area Chair recommended up to seven potential 
reviewers per paper. Such assignment was made using all reviewers in the 
database including the conflicting ones. The Program Chairs manually 
entered the missing conflict domains of approximately 300 reviewers. Based 
on the recommendation of the Area Chairs, three reviewers were selected per 
paper (with at least one being of the top three suggestions), with 99.7% being 
the recommendations of the Area Chairs. When this was not possible, senior 
reviewers were assigned to these papers by the Program Chairs, with the 
consent of the Area Chairs. Upon completion of this process there were 653 
active reviewers in the system. 

Each reviewer got a maximum load of eight reviews––in a few cases we had 
nine papers when re-assignments were made manually because of hidden 
conflicts. Upon the completion of the reviews deadline, 38 reviews were 
missing. The Program Chairs proceeded with fast re-assignment of these 
papers to senior reviewers. Prior to the deadline of submitting the rebuttal by 
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  the authors, all papers had three reviews. The distribution of the reviews was 
the following: 100 papers with an average score of weak accept and higher, 
125 papers with an average score toward weak accept, 425 papers with an 
average score around borderline. 

For papers with strong consensus among reviewers, we introduced a 
procedure to handle potential overwriting of the recommendation by the Area 
Chair. In particular for all papers with weak accept and higher or with weak 
reject and lower, the Area Chair should have sought for an additional 
reviewer prior to the Area Chair meeting. The decision of the paper could 
have been changed if the additional reviewer was supporting the 
recommendation of the Area Chair, and the Area Chair was able to convince 
his/her group of Area Chairs of that decision. 

The discussion phase between the Area Chair and the reviewers was initiated 
once the review became available. The Area Chairs had to provide their 
identity to the reviewers. The discussion remained open until the Area Chair 
meeting that was held in Paris, June 5–6. Each Area Chair was paired to a 
buddy and the decisions for all papers were made jointly, or when needed 
using the opinion of other Area Chairs. The pairing was done considering 
conflicts, thematic proximity, and when possible geographic diversity. The 
Area Chairs were responsible for taking decisions on their papers. Prior to 
the Area Chair meeting, 92% of the consolidation reports and the decision 
suggestions had been made by the Area Chairs. These recommendations were 
used as a basis for the final decisions. 

Orals were discussed in groups of Area Chairs. Four groups were formed, 
with no direct conflict between paper conflicts and the participating Area 
Chairs. The Area Chair recommending a paper had to present the paper to the 
whole group and explain why such a contribution is worth being published as 
an oral. In most of the cases consensus was reached in the group, while in the 
cases where discrepancies existed between the Area Chairs’ views, the 
decision was taken according to the majority of opinions. 

The final outcome of the Area Chair meeting, was 38 papers accepted for an 
oral presentation and 284 for poster. The percentage ratios of submissions/ 
acceptance per area are the following: 
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Thematic area # submitted % over 
submitted

# accepted % over 
accepted

% acceptance 
in area

Object and Scene Recognition 192 16.4% 66 20.3% 34.4%

Segmentation and Grouping 129 11.0% 28 8.6% 21.7%

Face, Gesture, Biometrics 125 10.6% 32 9.8% 25.6%

Motion and Tracking 119 10.1% 27 8.3% 22.7%

Statistical Models and Visual
Learning

101 8.6% 30 9.2% 29.7%

Matching, Registration, Alignment 90 7.7% 21 6.5% 23.3%

Computational Imaging 74 6.3% 24 7.4% 32.4%

Multi-view Geometry 67 5.7% 24 7.4% 35.8%

Image Features 66 5.6% 17 5.2% 25.8%

Video and Event Characterization 62 5.3% 14 4.3% 22.6%

Shape Representation and 
Recognition

48 4.1% 19 5.8% 39.6%

Stereo 38 3.2% 4 1.2% 10.5%

Reflectance, Illumination, Color 37 3.2% 14 4.3% 37.8%

Medical Image Analysis 26 2.2% 5 1.5% 19.2%

We received 14 complaints/reconsideration requests. All of them were sent to the 
Area Chairs who handled the papers. Based on the reviewers’ arguments and the 
reaction of the Area Chair, three papers were accepted––as posters––on top of 
the 322 at the Area Chair meeting, bringing the total number of accepted papers 
to 325 or 27.6%. The selection rate for the 38 orals was 3.2%.The acceptance 
rate for the papers submitted by the group of Area Chairs was 39%.  

Award nominations were proposed by the Area and Program Chairs based on 
the reviews and the consolidation report. An external award committee was 
formed  comprising David Fleet, Luc Van Gool, Bernt Schiele, Alan Yuille, 
Ramin Zabih. Additional reviews were considered for the nominated papers 
and the decision on the paper awards was made by the award committee. We 
thank the Area Chairs, Reviewers, Award Committee Members, and the 
General Chairs for their hard work and we gratefully acknowledge Microsoft 
Research for accommodating the ECCV needs by generously providing the 
CMT Conference Management Toolkit. We hope you enjoy the proceedings. 

September 2010 Kostas Daniilidis  
Petros Maragos  
Nikos Paragios 
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Learning a Fine Vocabulary

Andrej Mikulı́k, Michal Perdoch, Ondřej Chum, and Jiřı́ Matas

CMP, Dept. of Cybernetics, Faculty of EE, Czech Technical University in Prague

Abstract. A novel similarity measure for bag-of-words type large scale image
retrieval is presented. The similarity function is learned in an unsupervised man-
ner, requires no extra space over the standard bag-of-words method and is more
discriminative than both L2-based soft assignment and Hamming embedding.

We show experimentally that the novel similarity function achieves mean av-
erage precision that is superior to any result published in the literature on a num-
ber of standard datasets. At the same time, retrieval with the proposed similarity
function is faster than the reference method.

1 Introduction

Recently, large collections of images have become readily available [1–3] and image-
based search in such collections has attracted significant attention of the computer
community [4–8]. Most, if not all, recent state-of-the-art methods build on [4] that rep-
resents the image by a histogram of ”visual words”, i.e. discretized SIFT descriptors
[9]. The bag-of-words representation possesses many desirable properties required in
large scale retrieval. If stored in inverted files, it is compact and supports fast search.
It is sufficiently discriminative and yet robust to acquisition ”nuisance parameters” like
illumination and viewpoint change as well as occlusion1.

The discretization of the SIFT features is necessary in large scale problems as it is
neither possible to compute distances on descriptors efficiently nor feasible to store all
the descriptors. Instead, only (the identifier of) the vector quantized prototype for visual
word is kept. After quantization, Euclidean distance in a high (128) dimensional space
is approximated by a 0–∞ metric - features represented by the same visual word are
deemed identical, else they are treated as ”totally different”. The computational conve-
nience of such a crude approximation of the SIFT distance has a detrimental impact on
discriminative power of the representation. Recent methods like soft assignment and in
particular the Hamming embedding aim at a better space-speed-accuracy trade off.

In this paper, unsupervised learning on a large set of images is exploited to improve
on the 0–∞ metric. First, an efficient clustering process with spatial verification estab-
lishes correspondences within a huge (>5M) image collection. Next, a fine-grained vo-
cabulary is obtained by hierarchical approximate nearest neighbour. The automatically
established correspondences are then used to define a similarity measure on the basis
of a probabilistic relationships of visual words; we call it the PR visual word similarity.

1 We only consider and compare with methods that support queries that cover only a (small) part
of the test image. Global methods like GIST [10] achieve a much smaller memory footprint at
the cost of allowing whole image queries only.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 1–14, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. An example of corresponding patches. A 2D PCA projection of the SIFT descriptors (left);
two most distant patches in the SIFT space and the images where they were detected (right); a set
of sample patches (bottom). The average SIFT distance within the cluster is 278, the maximum
distance is 591.

When combined with a 16 million word vocabulary (one or two orders of magnitude
larger than commonly used), the PR similarity has the following desirable properties:

(i) it is more accurate, i.e. it is more discriminative, than both standard 0–∞ metric
and Hamming embedding.

(ii) the memory footprint of the image representation for PR similarity calculation
is roughly identical to the standard method and smaller than that of Hamming
embedding.

(iii) search with PR similarity is faster than the standard bag-of-words.

As a main contribution of the paper, we present a novel similarity measure that is
learned in an unsupervised manner, requires no extra space (only O(1)) in compari-
son with the bag-of-words and is more discriminative than both 0–∞ and L2-based soft
assignment.

2 Related Work

In this section, approaches to vocabulary construction and soft assignment suitable for
large-scale image search are reviewed and compared.

In [4], the ‘bag of words’ approach to image retrieval was introduced. The vocabulary
(the number of visual words ≈ 104) is constructed using a standard k-means algorithm.
Adopting methodology from text retrieval applications, the image score is efficiently
computed by traversing inverted files related to visual words present in the query. The
inverted file related to a visual word W is a list of image ids that contain the visual
word W . It follows that the time required for scoring the documents is proportional to
the number of different visual words in a query and the average length of an inverted
file.

Hierarchical clustering. The hierarchical k-means and scoring of Nistér and Stewenius
[5] is the first image retrieval approach that scales up. The vocabulary has a hierarchical
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(a) (b) (c) (d)

Fig. 2. Different approaches to the soft assignment (saturation encodes the relevance): (a) hierar-
chical scoring [5] – the soft assignment is given by the hierarchical structure; (b) soft clustering
[11] assigns features to r nearest cluster centers; (c) hamming embedding [12] – each cell is di-
vided into orthants by a number of hyperplanes, the distance of the orthants is measured by the
number of separating hyperplanes; (d) the set of alternative words in the proposed PR similarity
measure.

structure which allows efficient construction of large and discriminative vocabularies.
The quantization effect are alleviated by the so called hierarchical scoring. In such a
type of scoring, the scoring visual words are not only located in the leafs of the vo-
cabulary tree. The non-leaf nodes can be thought of as virtual or generic visual words.
These virtual words naturally score with lower idf weights as more features are as-
signed to them (all features in their sub-tree). The advantage of the hierarchical scoring
approach is that the soft assignment is given by the structure of the tree and no addi-
tional information needs to be stored for each feature. On the downside, experiments
in [11] show that the quantization artifacts of the hierarchical k-means are not fully
removed by hierarchical scoring, the problems are only shifted up a few levels in the
hierarchy. An illustrative example of the soft assignment performed by the hierarchical
clustering is shown in Fig. 2(a).

Lost in quantization. In [11], an approximate soft assignment is exploited. Each fea-
ture is assigned to n = 3 (approximately) nearest visual words. Each assignment is

weighted by e−
d2

2σ2 where d is the distance of the feature descriptor to the cluster
center.

The soft assignment is performed on features in the database as well as the query
features. This results in n times higher memory requirements and n2 times longer run-
ning time – the average length of the inverted file is n times longer and there are up to
n times more visual words associated with the query features. For an illustration of the
soft assignment, see Fig. 2(b).

Hamming embedding. Jégou et al. [12] have proposed to combine k-means quantiza-
tion and binary vector signatures. First, the feature space is divided into relatively small
number of Voronoi cells (20K) using k-means. Each cell is then divided by n inde-
pendent hyper-planes into 2n subcells. Each subcell is described by a binary vector of
length n. Results reported in [12] suggest that the hamming embedding provides good
quantization. The good results are traded off with higher running time requirements and
high memory requirements.
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The higher running time requirements are caused by the use of coarse quantization
in the first step. The average length of an inverted file for vocabulary of 20K words is
approximately 50 times longer than the one of 1M words. Recall that the time required
to traverse the inverted files is given by the length of the inverted file. Hence 50 times
smaller vocabulary results in 50 times longer scoring time on average. Even if two
query features are assigned to the same visual word, the relevant inverted file has to be
processed for each of the features separately as they will have different binary signature.

While the reported bits per feature required in the search index ranges from 11 bits
[8] to 18 bits [11], hamming embedding adds another 64 bits. The additional informa-
tion reduces the number of features that can be stored in the memory by a factor of
6.8.

Summary. All approaches to soft clustering mentioned above are based on the distance
(or its approximation) in the descriptor (SIFT) space. It has been observed that the Eu-
clidian distance is not the best performing measure. Learning a global Mahalanobis
distance [13, 14] showed that the matching is improved and / or the dimensionality
of the descriptor is reduced. However, even in the original work on SIFT descriptor
matching [9] it is shown that the similarity of the descriptors is not only dependent on
the distance of the descriptors, but also on the location of the features in the feature
space. Therefore, learning a global Mahalanobis metric is suboptimal and a local simi-
larity measure is required. For examples of corresponding pathes where SIFT distance
does not predict the similarity well, see Figures 1, 3, and 4.

3 The Probabilistic Relation Similarity Measure

Consider a feature in the query image with descriptor D ∈ D ⊂ Rd. For most ac-
curate matching, the query feature should be compared to all features in the database.
The contribution of the query feature to the matching score should be proportional to
the probability of matching the database feature. It is far too slow, i.e. practically not
feasible, to directly match a query feature to all features in a (large) database. Also, the
contribution of features with low probability of matching is negligible.

The success of fast retrieval approaches is based on efficient separation of (poten-
tially) matching features from those that are highly unlikely to match. The elimina-
tion is based on a simple idea – the descriptors of matching patches will be close in
some appropriate metric (L2 is often used). With an appropriate data structure, enu-
meration of descriptors in proximity is possible in time sub-linear in the size of the
database. All bag-of-words based methods use partitioning {Wi} of the descriptor space
: ∪Wi = D, Wi ∩ Wj �=i = ∅. The partitions are then used to separate features that
are close (potentially matching) from those that are far (non-matching).

In the case of hard assignment, features are associated with the quantized visual
word defined by the closest cluster center. In the scoring that evaluates the query and
database image match, only features with the same visual word as the query feature are
considered.

We argue that the descriptor distance is a good indicator of patch similarity only
up to a limited distance, where the variation in the descriptors is caused mostly the
imaging noise. In our approach, we abandon the assumption that the descriptor distance
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provides a good similarity measure of patches observed under different viewing angles
or under different illumination conditions. Instead, we propose to exploit the matching
probability between a feature observed in the query image and a database feature. Since
our aim is to address retrieval in web-scale databases where storage requirements are
critical, we constrained our attention to solution that store no extra information per
feature, or more exactly, that have a minimum overhead in comparison with the standard
inverted file representation.

The proposed approach. We propose to use a fine partitioning of the descriptor space
where the partitions only compensate for imagining noise (or even less). Even though
the fine partitioning is learned in a data dependent fashion (as in the other approaches),
the fine partitioning unavoidable separates matching features into a number of clusters.

For each partition (visual word) we learn which other partitions (called alternative
visual words) are likely to contain descriptors of matching features. This step is based
on the probability of observing visual word Wj in a matching database image when
visual word Wq was observed in the query image

P (Wj |Wq). (1)

The probability (eqn. 1) is estimated from a large number of matching patches.
A simple generative model, independent for each feature, is adopted. In the model,

image features are assumed to be (locally affine) projections of a (locally close to pla-
nar) 3D surface patches Zi. Hence, matching features among different images are those
that have the same pre-image Zi. To estimate the probability P (Wj |Wq) we start with
(a large number of) sets of matching features, each set containing different projections
of a patch Zi. Using the fine vocabulary (partitioning) the sets of matching features are
converted to sets of matching visual words. We estimate the probability P (wj |wq) from
the feature tracks as

P (Wj |Wq) ≈
∑
Zi

P (Zi|Wq)P (Wj |Zi). (2)

For each visual word Wq , a fixed number of alternative visual words that have the
highest conditional probability (eqn. 2) is recorded.

3.1 Learning Stage

The first step of our approach is to obtain a large number of matching image patches.
The links between matching patches are consequently used to infer links between quan-
tized descriptors of those patches, i.e. between visual words. As a first step towards
unsupervised collection of matching image patches, called (feature) tracks, clusters of
matching images are discovered. Within each cluster, feature tracks are found by a wide-
baseline matching method. This approach is similar to [15], where the feature tracks are
used to produce 3D reconstruction. In our case, it is important to find a larger variety
of patch appearances rather than precise point locations. Therefore, we adopt a slightly
different approach to the choice of image pairs investigated.
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Image clusters. We start by analyzing connected components of the image matching
graph (graph with images as vertices, edges connect images that can be matched) pro-
duced by a large-scale clustering method [16, 17]. Any matching technique is suitable
provided it can find clusters of matching images in a very large database. In our case, an
image retrieval system was used to produce the clusters of spatially related images. The
following structure of image clusters is created. Each cluster of spatially related images
is represented as an oriented tree structure (the skeleton of the cluster). The children of
each parental node were obtained as results of an image retrieval using the parent image
as a query image. Together with the tree structure, an affine transformation (approxi-
mately) mapping child image to its parent are recorded. These mappings are later used
to guide (speed-up) the matching.

Feature tracks. To avoid any kind of bias (by quantization errors, for example), in-
stead of using vector quantized form of the descriptors, the conventional image match-
ing (based on the full SIFT [9]) has to be used. In principle, one can go back even to
the pixel level [18, 19], however such an approach seems to be impractical for large
volumes of data.

It is not feasible to match all pairs of images in image clusters, especially not in
clusters with a large number of images (say more than 1000). It is also not possible to
simply follow the tree structure of image clusters because not all features are detected
in all images (in fact, only a relatively small portion of features is actually repeated).
The following procedure, that is linear in the number of images in the cluster, is adopted
for detection of feature tracks that would exhibit as large variety of patch appearances
as possible. For each parental node, a sub-tree of height two is selected. On images in
the sub-tree, a 2k-connected graph called circulant graph [20] is constructed. Algorithm
for construction of minimal 2k-connected graph is summarized in Algorithm 1. Images
connected by an edge in such a graph are then matched using standard wide-baseline
matching. Since each image in the image cluster participates in at most 3 sub-trees (as
father, son and grand-son), the number of edges is limited to 6kN , where N is the size
of the cluster. Instead of using epipolar geometry as a global model, a number of close-
to-planar (geometrically consistent) structures is estimated (using affine homography).
Unlike the epipolar constraint, such a one-to-one mapping enables to verify the shape
of the feature patch. Connected components of matching and geometrically consistent
features are called feature tracks.

Tracks that contain two different features from a single image are called inconsistent
[15]. These features clearly cannot have a single pre-image under perspective projection
and hence cannot be used in the process of 3D reconstruction. Such inconsistent tracks
are often caused by repeated patterns. Inconsistent feature tracks are (unlike in [15])
kept as they provide further examples of patch appearance.

Large vocabulary generation. To efficiently generate a large visual vocabulary we
employ a hybrid approach - approximate hierarchical k-means. A hierarchy tree of two
levels is constructed, each level has 4K nodes. In the assignment stage of k-means,
approximate nearest neighbour, FLANN [21], is used for efficiency reasons.
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Input: K - requested connectivity, N - number of vertices
Output: V a set of vertices, E ⊂ V × V a set of edges of 2K connected graph
(V,E).

1. if 2K ≥ N − 1 then
return fully connected graph with N vertices.

end
2. S := a random subset of {2, . . . , �N−1

2
�}, |S| = K − 1

3. V := {v0, . . . , vN−1}
4. E := {(vi, vj) | vi, vj ∈ V, j = (i + 1) mod N}
5. for s ∈ S
6. E := E ∪ {(vi, vj) | vi, vj ∈ V, j = (i + s) mod N}
7. end

Algorithm 1. Construction of the 2K connected graph with a minimal number of edges as a
union of circulants

First, a level one approximate k-means is applied to a random sub-sample of 5 mil-
lion SIFT descriptors. Then, a two pass procedure on 10,713 million SIFTs (from almost
6 million images) is performed. In the first pass, each SIFT descriptor is assigned to the
level one vocabulary. For each level one visual word a list of descriptors assigned to it
is recorded. In the second pass, approximate k-means on each list of the descriptors is
applied. The whole procedure takes about one day on a cluster of 20 computers.

Balancing the tree structure. For the average speed of the retrieval, it is important that
the vocabulary is balanced, i.e. there is approximately the same number of instances of
each visual word in the database.

There are two options how to balance the proposed structure. The level one structure
can be balanced so that the branches are of approximately equal weight by constraining
the length of the mean vectors (this stems from the fact that SIFT features live approx-
imately on a hyper-sphere). Balancing can be also achieved by un-even splitting at the
second level – proportional to the weight of the branch. In our implementation, we have
used the former.

The imbalance measure [12] for our vocabulary is 1.17 for the training image set
(>5M images) and 1.33 for the Oxford 105k (compared to 1.21 in [12]).

Computing the conditional probability. To compute the conditional probability (eqn. 2)
from the feature tracks, an inverted file structure is used. The tracks are represented as
forward files (named Zi), i.e. lists of matching SIFT descriptors. The descriptors are as-
signed their visual word from the large vocabulary. Then, for each visual word wk , a list
of patches Zi so that P (Zi|wk) > 0 (the inverted file) is constructed. The sum (eqn. 2)
is evaluated by traversing the relevant inverted file.

Statistics. Over 5 million images were clustered into almost 20 thousand clusters cov-
ering 750 thousand images. Out of those 733 thousand were successfully matched in
the wide-baseline matching stage. Over 111 million feature tracks were established,
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Fig. 3. A 2D PCA projection of a feature track of SIFT descriptors (left); the most distant patches
and their images (right); sample of feature patches from the track. The distance of the most distant
SIFT descriptors is 542 and is caused by an enormous change in the viewpoint.

Fig. 4. A 2D PCA projection of a feature track of SIFT descriptors (left); the most distant patches
and their images (right); sample of feature patches from the track. The distance of the most distant
SIFT descriptors is 593 and is caused by the viewpoint and scale change.

out of which 12.3 millions are composed of more than 5 features. In total, 564 million
features participated in the tracks, 319.5 million features belong to tracks of more than
5 features. Some examples of feature tracks are shown in Figures 5 and 6.

Memory and time efficiency. For the alternative words storage, only constant space is
required, equal to the size of the vocabulary times the number of alternative words. The
pre-processing consists of image clustering ([16] reports near linear time in the size of
the database), intra-cluster matching (linearity enforced by the 2k-connected circulant
matching graph), and of the evaluation of expression eqn. (2) for all visual words. The
worst case complexity of the last step is equal to the number of tracks (correspondences)
times the size of the vocabulary squared. In practice, due to the sparsity of the repre-
sentation, the process took less than an hour for the dataset of over 5 million images
mentioned above.

3.2 Retrieval Stage

The implementation of the retrieval stage is fairly standard, using inverted files [4]
for candidate image selection which is followed by fast spatial verification and query
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expansion [6]. The modifications listed below are the major differences in our retrieval
implementation.

Unique matching. Despite being assigned to more than one visual word, each query
feature is a projection of a single physical patch. Thus it can match only at most one
feature in each image in the database. We find that applying this uniqueness constraint
adds negligible computational cost and improves the mean average precision (mAP) by
approximately 1%.

Weights of alternative words. Contribution of each visual word is weighted by the idf
weight [22]. A number of re-weighting schemes for alternative words have been tried,
none of them affecting significantly the results of the retrieval.

4 Experiments

We have evaluated the performance of the PR similarity on a standard retrieval dataset
Oxford 105K2. The experiments focus on retrieval accuracy and speed. Since both our
training set of 6 million images and the Oxford dataset were downloaded from FLICKR,
we have explicitly removed all images from the training set that appear (or their scaled
duplicate) in the test dataset.

4.1 Retrieval Quality

We follow the protocol of 55 queries (11 landmarks, 5 queries each) defined in [23]
and use the mean average precision as a measure of retrieval performance. We start by
studying the properties of the PR similarity for a visual vocabulary of 16 million words.

In the first experiment, the quality of the retrieval as a function of the number of al-
ternative words was measured, see Figure 7. The plots show that performance improves
monotonically for plain retrieval without query expansion and almost monotonically
when it is used for post-processing.

The second experiment studies the effects of the vocabulary size, the number of
alternative words and compares the PR similarity with soft assignment. The left-hand
part of Table 1 shows results obtained with the 16M vocabulary with three different
settings ‘std’ – standard tf-idf retrieval with hard assignment of visual words; ‘5L’ and
‘16L’ – retrieval using alternative words (4 and 15 respectively). The righthand part
presents results of reference state-of-the-art results [8] obtain with a vocabulary of 1M
visual words learned on the PARIS dataset3. Two version of the reference algorithm are
tested, without (“std”) and with the query soft assignment to 3 nearest neighbours (“SA
3NN”).

The experiments supports the following observations:

(i) For a hard assignment to a single visual word, 1M dictionary outperforms the 16M
one. For the 0–∞ metric, the 16M visual word dictionary is too fine.

(ii) Similarity calculation with the learned alternative words increases significantly the
accuracy of the retrieval, both with and without query expansion.

2 http://www.robots.ox.ac.uk/˜vgg/data/oxbuildings/
3 http://www.robots.ox.ac.uk/˜vgg/data/parisbuildings/

http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
http://www.robots.ox.ac.uk/~vgg/data/parisbuildings/
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Fig. 5. Three examples of feature tracks of size 50. Five selected images and all 50 patches of the
track. Even though the patches are similar, the SIFT distance of some pairs is over 500.
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Fig. 6. Three examples of feature tracks of size 20. Images and corresponding patches, note the
variation in appearance.
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Fig. 7. The quality of the retrieval, expressed as mean average precision (mAP), increases with
the number of alternative words. The mAP after (upper curve) and before (lower curve) query
expansion is shown.
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Table 1. Mean average precision for selected vocabularies on the Oxford 105k data-set

16M std 16M L5 16M L16 PARIS 1M std PARIS 1M SA 3NN

plain 0.554 0.650 0.674 0.574 0.652
QE 0.695 0.786 0.795 0.728 0.772

Table 2. Average execution time per query in sec

16M std 16M L5 16M L16 PARIS 1M std

Oxford 105K 0.071 0.114 0.195 0.247

(iii) The PR similarity outperforms soft SA in term of precisions, yet does not share
the drawbacks of SA.

(iv) The PR similarity outperforms the Hamming embedding approach combined with
query expansion, Jegou et al. [12, 24] report the mAP of 0.692 on this dataset.

(v) The mAP result for 16M L16 is superior to any result published in the literature
on the Oxford 105k dataset.

4.2 Query Times

To compare the speed of the retrieval, an average query time over the 55 queries de-
fined on the Oxford 105K data set was measured. Running times recorded for the same
methods and parameter settings as above are shown in Table 2.

The plot showing dependence of the query time on the number of alternative words
is depicted in Figure 8. The times for the references PARIS 1M std method and the 16M
L16 are of the same order. This is expected since the average length of inverted files is
of the same order for both methods. The proposed method is about 20% faster, but this
might be just an implementation artefact.
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Fig. 8. Dependence of the query time on the number of alternative words

Finally, we looked at the dependence of the speed of the proposed method as a func-
tion of the number alternative words. The relationship shown in Fig. 8 is very close
to linear plus a fixed overhead. The plot demonstrates that speed-accuracy trade-off is
controllable via the number of alternative words.
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4.3 Results on Other Datasets

The proposed approach has been tested on a number of standard datasets. These include
Oxford, INRIA holidays (with manually corrected orientation of images, where the
correct (sky-is-up) orientation is obvious), and Paris datasets. In all cases (Table 3),
the use of the alternative visual words improves the results. On all datasets except the
INRIA holidays the method achieves the state of the art results.

Table 3. Results (mAP) of the proposed method on a number of publicly available datasets.

Dataset 16M std 16M L16 16M QE 16M L16 QE

Oxford 5k 0.618 0.742 0.740 0.849
Paris 0.625 0.749 0.736 0.824

Paris + Oxford 100k 0.533 0.675 0.659 0.773
INRIA holidays rot 0.742 0.749 0.755 0.758

5 Conclusions

We presented a novel similarity measure for bag-of-words type large scale image re-
trieval. The similarity function is learned in an unsupervised manner using geometri-
cally verified correspondences obtained with an efficient clustering method on a large
image collection.

The similarity measure requires no extra space in comparison with the standard bag-
of-words method. We show experimentally, that the novel similarity function achieves
mean average precision that is superior to any result published in the literature on a
number of standard datasets. At the same time, retrieval with the proposed similarity
function is faster than the reference method.

Acknowledgement. The authors are grateful for the support from EC project FP7-
ICT-247022 MASH, Czech Government research program MSM6840770038, GAČR
project 102/09/P423, and Google.
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Abstract. Time synchronization of video sequences in a multi-camera

system is necessary for successfully analyzing the acquired visual infor-

mation. Even if synchronization is established, its quality may deterio-

rate over time due to a variety of reasons, most notably frame dropping.

Consequently, synchronization must be actively maintained. This paper

presents a method for online synchronization that relies only on the video

sequences. We introduce a novel definition of low level temporal signals

computed from epipolar lines. The spatial matching of two such tem-

poral signals is given by the fundamental matrix. Thus, no pixel corre-

spondence is required, bypassing the problem of correspondence changes

in the presence of motion. The synchronization is determined from reg-

istration of the temporal signals. We consider general video data with

substantial movement in the scene, for which high level information may

be hard to extract from each individual camera (e.g., computing trajec-

tories in crowded scenes). Furthermore, a trivial correspondence between

the sequences is not assumed to exist. The method is online and can be

used to resynchronize video sequences every few seconds, with only a

small delay. Experiments on indoor and outdoor sequences demonstrate

the effectiveness of the method.

1 Introduction

Applications of multiple camera systems range from video surveillance of large
areas such as airports or shopping centers, to videography and filmmaking. As
more and more of these applications utilize the information obtained in the
overlapping fields of view of the cameras, precise camera synchronization and its
constant maintenance are indispensable. Given enough video time, however, syn-
chronization will be violated because of technical imperfections that cause frame
dropping or incorrect timing between sequences. The tendency to use mostly in-
expensive components makes such violations a certainty in many video systems.
Manual synchronization is out of the question, as it is labor-intensive and cannot
be performed constantly; thus, it cannot handle arbitrary frame-dropping. Pre-
cise time synchronization via satellite, as in GPS systems, may be too expensive
or limited in indoor environments. Using distributed protocols for clock syn-
chronization methods depends on the properties of the communication network

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 15–28, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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and is sensitive to communication failures. Obvious alternative sources of time
information are the video streams themselves, which often provide sufficient and
reliable information for automatic synchronization. In this work we address the
problem of computing and maintaining the temporal synchronization between a
pair of video streams with the same frame rate, relying only on the video data.

Previous Work
Synchronization can be achieved using visual information by correlating spatio-
temporal features or events viewed by two or more cameras. Several synchro-
nization methods considered moving cameras viewing a static scene [10,12] or
a scene with relatively little motion [8,6]. Our method considers static cameras
acquiring a moving scene. Previous attempts to synchronize such sequences can
be classified by the choice of features used for matching. The most straight-
forward approach is finding both spatial and temporal correspondence between
point features at frames taken in all possible time shifts between the two video
streams. Such approaches are vulnerable to correspondence ambiguities and re-
quire a large search space. A method for reducing the complexity of the search
was suggested in [1]. Higher level features that contain temporal information
also assist to reduce the matching ambiguity and the search complexity. Motion
trajectories of features [9,14,12,2,6,11] or objects [13,3] could be used to this end.
The computation of the trajectories and its quality strongly depend on the scene
and can often be hard to compute as in the video considered in this paper. Since
the motion of the objects may be 3D, matching the observed 2D trajectories in
each sequence is ill posed. Several directions were considered for overcoming this
problem, for instance, assuming the existence of a homography transformation
that aligns the two trajectories [2], or using a three-or-more camera system and
3D tensors [13,6]. Another direction assumed an affine projection and used a lin-
ear combination approach in order to avoid exact point correspondence [14,11].
Highly discriminative action recognition features were also proposed for synchro-
nization [4]. Naturally, such high-level features are limited to scenes for which
these actions appear and can be detected.

In an effort to avoid complex computations such as tracking and action recog-
nition, an approach based on brightness variation over the entire image was sug-
gested in [2]. However, this method requires spatial alignment of the sequences
(e.g., using Homography transformation), that is not necessarily exist between
the views. Another approach suggested using statistics over low level space-time
interest points in each of the sequences [15]. This concept steers clear of com-
puting point-to-point, trajectory, or action correspondence. However, since the
statistics are computed over the entire image, the approach is strongly sensi-
tive to the overlapping regions of the two views and the relative viewing angle.
The limitations of these two approaches motivate the solution suggested in this
paper.
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Proposed Approach
We present a method for obtaining online time synchronization of a pair of video
sequences acquired by two static cameras, possibly in a wide-baseline setup. The
fundamental matrix between each pair of sequences, which provides epipolar line-
to-line correspondence, is assumed to be known. (It can be computed directly
from static corresponding features of the videos when there is no motion in
the scene.) This is the only spatial correspondence required by our method. We
consider sequences of general 3D scenes which contain a large number of mov-
ing objects, focusing on sequences for which features or object trajectories may
be hard to compute due to occlusions and substantial movement (see Fig. 1).
Furthermore, trivial correspondence (e.g., alignment by a homography trans-
formation) between the sequences is not assumed. The temporal misalignment
is considered to be only a translation, i.e., the sequences have the same frame
rate. Therefore, we do not detect sub-frame time shifts, as we are correcting
synchronization errors as frame-drops.

Our method is based on matching temporal signals defined on epipolar lines
of each of the sequences. Hence, the spatial matching is given by the funda-
mental matrix. The temporal matching is performed using a probabilistic op-
timization framework; independent simultaneous motion occurring on different
epipolar lines improve our synchronization. Failure to find such a matching (de-
spite the observed motion in the scene) indicates that the epipolar geometry
is incorrect. In a general scene, the correspondence between pixels at different
time steps changes due to 3D motion of objects in space. Therefore, the synchro-
nization cannot rely on corresponding pixels. For overcoming this problem, the
temporal signal is defined as an integration of the information along an epipolar
line, during a sufficient interval of time. A simple background subtraction algo-
rithm is used as an input to the integration. Integrating the information along
epipolar lines rather than considering signals at the pixel level not only avoids
the search for correspondence but allows the handling of general moving scenes.

The main contribution of this paper is the use of low level temporal events
along corresponding epipolar lines for video synchronization. Our method does
not require high level computation such as tracking, which may be hard to com-
pute in crowded scenes as the ones considered in our experiments. Furthermore,
we bypass the need to compute point-to-point correspondences between pixels
[5]. Finally, our method can be used in an online framework, because it detects
the synchronization errors (e.g., frame drops) in a matter of seconds, as they
occur in the video.

2 Method

Given a pair of color (or gray-level) sequences and a fundamental matrix, we
achieve synchronization by time registration of temporal signals from the two
sequences. We first present our novel definition of temporal signals of a sequence,
followed by a probabilistic approach for registering two of them. The summary
of the algorithm flow is presented in Algorithm 1 and Algorithm 2.
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Set 1 Set 2 Set 3

Fig. 1. Example of two frames from each video pairs. The two rows show frames from

the first and second view of each pair, respectively; the images contain an exemplary

subset of the used epipolar lines, each set of lines for each video pair.

2.1 A Temporal Signal

To define the temporal signals, we make unconventional use of epipolar geometry
of a pair of images. Given the fundamental matrix F for a pair of images, a set
of epipolar lines L = {�r} and L′ = {�′r} and their correspondence, �r ↔ �′r
are computed [5]. The correspondence of a given point p̂ ∈ �r is constrained
to lie on the epipolar line �̂′r = F p̂ in its synchronized frame (the points and
the lines are given in homogeneous coordinates). Traditionally, this property is
used for constraining the correspondence search in stereo or motion algorithms.
Pixel correspondence is not guaranteed to remain the same over time due to
3D motion. However, two corresponding epipolar lines in both sequences will
continue to correspond. (The only possible exception is a major occlusion on
one of the views.) Using this observation, we define the signals on the entire
epipolar line, avoiding not only the problem caused by the change of pixels
correspondence over time but also the general challenge of computing spatial
correspondence between frames.

A background subtraction algorithm is used for defining the temporal sig-
nal of each sequence. The base of the motion signal is the Euclidean distance
between the data frame and the selected background frame for each pixel. For
each epipolar line, a motion indicator is taken to be the sum of these distances
of the line’s pixels. The temporal signal of an epipolar line, the line signal, is
defined to be the set of motion indicators on an epipolar line as a function of
time. Formally, let I(p, t) and B(p, t) be the intensity values of a pixel p ∈ �r, in
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(a) (b) (c)

Fig. 2. (a),(b) are examples of temporal signals S and S
′ of two sequences, containing

130 epipolar lines for a time period of 8 seconds (200 frames). Each pixel in the signal

is the motion indicator of an epipolar line at a time point. (c) is the matching result for

those signals with a high-confidence peak at the correct time shift of Δt = −1 frames.

some video frame and corresponding background frame1, respectively. The line
signal of that epipolar line, Sr(t), is defined to be the distance between the two
vectors:

Sr(t) = Σp∈�r‖I(t, p) − B(t, p)‖. (1)

The collection of line signals for all the epipolar lines in a video, is the temporal
signal of the video sequence. The temporal signals of two considered sequences
are represented by matrices S and S

′ (Fig. 2), where each row r of this matrix
consists of a line signal, Sr. That is, Sr,t is the motion indicator of an epipolar
line �r at a time step t. Only a few dozen epipolar lines from each frame, a few
pixels apart, are considered.

2.2 Signal Registration

In this section we present the time registration of a given pair of temporal sig-
nals of the video sequences. For robust results, and in order to combine informa-
tion from different line signals, the matching is determined using a probabilistic
framework, utilizing a maximum a posteriori estimation. The time shift is de-
tected by finding a maximum likelihood value for the two signals, with different
time shifts applied to the second signal. A sliding window in a predefined range
is used to determine Δt.

Let S and S′ be a pair of line signals, extracted from corresponding epipolar
lines in two video sequences. At this stage, assume a single consistent time shift
between the two sequences and no frame drops in any of them. We begin with
considering the probability distribution of a time shift Δt of S′ to match S.
Applying Bayes’ law we obtain:

P (Δt |S,S′) =
P (S,S′ |Δt)P (Δt)

P (S,S′)
. (2)

1 Br(p, t) is a function of t, because in the general case an adaptive background sub-

traction can be used.
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The denominator term, P (S,S′), is an a priori joint probability distribution of
S and S′. A uniform distribution is assumed. In general, prior knowledge of the
overlapping regions of the two sequences can be used for computing this prior.
Extracting such knowledge is out of the scope of this paper. The term P (Δt) is
another prior, in this case on the probability distribution of Δt. Use of this prior
is discussed in the experimental part.

For estimating the likelihood term, P (S,S′ |Δt), we apply a simple stochastic
model to the temporal signals. For relating the two line signals, a commonly
used assumption of additive white Gaussian noise is used:

S(t) = S′(t + Δt) + N (μ, σ2), (3)

where Δt is the correct time shift between the two signals, and μ is the difference
between the averages of both.

In a somewhat simplified representation, different photometric parameters
of the camera, as well as the object foreshortening on corresponding epipolar
lines, will cause difference of gain and offset between the two line signals. By
subtracting the average μ from each line signal, we eliminate the offset effect.
In the rest of the paper each line signal S is used after this average subtraction.
The gain component between the signals is not eliminated, as we assume that it
will not affect the search for the optimal shift.

Using this model assumption, the likelihood of two line signals, given Δt, is
obtained by:

L(S,S′, Δt) =
1

σ
√

2π
e
−∑

t

(S(t) − S′(t + Δt))2

2σ2
. (4)

This representation has a hidden assumption of independence between the mo-
tion indicators in a single line signal. In reality, adjacent indicators are expected
to be correlated to some degree, because the objects captured in the video have
finite speed, relative to the sampling frame rate. Despite these simplifications,
the results are satisfying, as demonstrated by our experiments.

The desired time shift Δt is the one maximizing the value of P (Δt |S,S′),
which is identical to that maximizing the value of P (S,S′ |Δt)P (Δt):

argmax
Δt

P (Δt |S,S′) = arg max
Δt

P (Δt)
1

σ
√

2π
e
−∑

t

(S(t) − S′(t + Δt))2

2σ2
. (5)

As defined above, each row in S and S
′ represents a line signal for an epipolar line

�r ∈ L. We consider those signals to be independent, due to the spatial distance
between the selected epipolar lines. Therefore, computing the likelihood can be
extended to sequence signals S and S

′ by taking the product of the likelihoods
of all the line signals. Up to this point, this method assumed a single consistent
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Algorithm 1. Temporal signal update
The algorithm is triggered for every new frame acquired.

Input: two new frames from the video sequences

1. Perform background subtraction

2. For each epipolar line �r: calculate the motion indicators (Eq. 1).

3. Update the matrices S and S
′.

time shift between S and S
′. In order to incorporate it into an online framework,

the algorithm must work on a finite time interval at each iteration. Thus, the
synchronization at a given time step, t0, is determined only from a k interval of
the sequence signal, taken from t0−k up to t0 . Furthermore, the sought for Δt is
bounded by some finite range −c ≤ Δt ≤ c. (In our experiments, k corresponds
to roughly 4 to 8 seconds and c corresponds to 1 to 3 seconds). Inserting all
of the above into Eq. 2 and Eq. 5, we obtain:

arg max
Δt

P (Δt |S, S′) = argmax
Δt

P (Δt)
∏

�r∈L̂(t)

P (Δt |Sr,S′
r) (6)

= arg max
−c≤Δt≤c

P (Δt) e

−
∑

r∈L(t)

t0∑
t=t0−k

(
Sr,t − S

′
r,t+Δt

)2

2σ2

where L̂ ⊆ L is the subset of epipolar lines participating in the computation
(defined in 2.3), and Sr and S′

r are signals of corresponding epipolar lines �r.
The time shift Δt that yields maximal likelihood according to Eq. 6 is the

correct time shift for the two given video sequences (Fig. 2(c)). The actual value
of the likelihood is used as a confidence level of the resulting Δt. This value is
taken after a normalization step, which ensures that the probability distribution
of Δt in the range −c ≤ Δt ≤ c sums up to 1. The higher the probability is, the
more robust the answer is. In the online synchronization framework, only the
high-confidence results will be taken into account.

2.3 Epipolar Line Filtering

Registration of only a subset of the line signals is sufficient for synchronization.
Moreover, line signals that contain negligible motion information may insert
noise into the registration process, and are therefore removed from the compu-
tation. We next define the subset of epipolar lines L̂ ⊆ L, that participate in
the computation for a given time step t (see Eq. 6). The signals are removed
on the basis of both sequences considered. We test for motion information only
at short time interval. We do so by computing the temporal gradient along an
epipolar line, taking into consideration some noise estimation of such a gradient.
The noise at each image pixel is assumed to be additive white Gaussian noise
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Algorithm 2. Synchronization iteration
The algorithm is triggered every 0.8 seconds.

Input: two temporal signals S and S
′.

1. Extract the data corresponding to the time interval k from S and S
′.

2. Compute L̂ by filtering �r ∈ L for the current time step (Sec. 2.3).

3. For each �r ∈ L̂ subtract its average μr.

4. Compute the likelihood for each −c ≤ Δt ≤ c using Eq. 6.

5. Apply the prior for P (Δt).
6. Normalize the distribution of resulting probability such that it sums up to 1.

7. Find the maximal value of the probability.

with some variance σ2
m. Hence, we determine significant motion on the epipolar

line r only if the residual information on the time gradient along the epipolar
line goes beyond the estimated noise threshold. In case of no real motion, this
time gradient yields only noise. Formally, the motion probability at a given time
t, for an epipolar line �r is given by:

Pmotion(�r, t) =
1

σm

√
2π

e
−∑

p∈�r

(I(t, p) − I(t − 1, p))2

2σ2
m . (7)

The subset L̂ consists only of epipolar lines with motion probability over some
threshold. This simple filtering process compensates for the background sub-
traction algorithms, which are not ideal, and eliminates any wrongly detected
residual motion caused by them.

3 Experiments

We conducted a number of experiments to test the effectiveness of our method.
The input for each is a pair of video sequences taken with the same frame rate.
In addition, a fundamental matrix (computed manually) and a rough synchro-
nization (up to an error of 50 frames) are assumed to be given. The method
was implemented in Matlab. The corresponding epipolar lines of each pair of
sequences were computed using a standard rectification method. A naive back-
ground subtraction was used where the background consists of an empty frame,
subtracted from all the other frames in the video stream. The framework triggers
the synchronization computation every 0.8 seconds of the video.

Three sequences were taken, as shown in Fig. 1. Set 1 is an indoor scenario of a
dense crowd – around 30 people – walking about. The cameras were placed at an
elevation of approximately 6 meters. The cameras’ fields of view have a relatively
large overlap. Set 2 is similar to Set 1. In addition to the density of the crowd,
the challenge in this sequence is in the large difference in the viewing angles and
the small overlapping fields of view. Both videos consist of 5000 frames (3.33
minutes) and were recorded at 25 fps, with a frame size of 640× 480. Set 3 is an
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outdoor scenario with only few people walking around. The challenges in this set
are the small amount of motion along epipolar lines and the dark illumination.
The cameras were located at an elevation of about 6 meters, the videos were
recorded at 15 fps, with a frame size of 640 × 512 pixels. In the indoor video
sequences a flicker effect is evident, caused by fluorescent lighting in the scene.
In order to avoid distractions to the synchronization algorithm, the flicker was
removed by a temporal low-pass filtering of the video. All the results of the
experiments, including video clips, are available on the web.

3.1 Basic Results

The presented tests were performed on the three sets. The interval size was taken
to be k = 140, no prior on P (Δt) was used (i.e., uniform distribution is assumed
on P (Δt)). The value of σ for Set 1 and Set 2 was set to 1300, and for Set 3
to 600. (Setting the values of σ is discussed bellow.) The results consist of a set
of time shifts between two video streams with a probability (confidence) value
for each shift. Each of the time-shifts for Set 1, Set 2, and Set 3 are represented
by a single dot in Fig. 3(a), Fig. 3(b), and Fig. 4(a), respectively. The x-axis is
the computed time shift and the y-axis is the confidence in the computed result.
Ideally, we would like the dots to align along the correct time shift, and to have
high confidence. The correct time shift, computed by hand, is Δt = −1 frames
for all sets.

To evaluate the percentage of correct results, it is necessary to set a threshold
on the confidence value. The threshold 0.7 is considered in the analysis of the
three data sets. A result is considered to be correct if it is in the range of ±1
frames from the correct synchronization.

Using this threshold on Set 1, approximately 50% of the obtained results have
high levels of confidence, and 95% pecent of them are correct. That is, the system
yields, on average, a high-confidence result each 1.6 seconds.

The percentage of the correct high-confidence results obtained for Set 2 is
100%. However, only 12% of the obtained results had high confidence(> 0.7).
It is mostly due to the relatively small overlapping field of view of the two
cameras, resulting in a small number of epipolar lines that can participate in
the registration. As the working area is small, the algorithm analyses long time
periods without motion, which yield low-confidence results.

For Set 3, the percentage of correct results is 100% with only 13% of the
results having high confidence. In addition, the low confidence results consist of
a relatively large amount of errors. This is due to the small number of moving
objects in the scene and objects moving along the direction of epipolar lines.
Note that a movement along an epipolar line is not expected to produce good
synchronization, since it induces ambiguities, as discussed in Sec. 4. The effect
of a non-uniform prior on P (Δt) when incorporated into this set is discussed in
Sec. 3.3.

To summarize, our method constantly and reliably maintains the time syn-
chronization between the two sequences. It is important to note that tracking
objects or features in the crowded scene of Set 1 and Set 2 from a single camera
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(a) (b)

Fig. 3. Each of the 250 computed time-shifts for (a) Set 1 and (b) Set 2, one for

each 0.8 seconds, are represented by a single dot. Each dot in the graph represents the

computed time shift for a single time step. Low confidence results are marked in blue,

correct and incorrect high confidence results are marked by green and red, respectively.

The x-axis is the computed time shift and the y-axis is the confidence in the computed

result.

is considered to be an extremely difficult task due to substantial movement and
a large number of occlusions. Hence, synchronization studies that rely on tra-
jectories detected by each of the cameras (e.g., [3,13]) are not adequate in this
case. Furthermore, the scene consists of a genuine 3D structure and the distance
between the cameras is non-negligible. Hence, a homography transformation of
the pair of sequences cannot be used to match pixels or trajectories (as in [2]).

3.2 Frame Dropping

Frame dropping is expected in a simple commercial system when it operates over
a long period of time. The need to detect frame dropping and resynchronize is
one of the main motivations for an online synchronization algorithm. To test
the robustness of our method in the presence of frame dropping, we applied our
algorithm to Set 1 where 3 frame drops occurred during the video. That is, the
correct time shift changed from −1 to 16, then to −8 and finally, back to −1.
The rest of the experiment setup was identical to the basic one. The results are
presented in Fig. 5(b), where the detected time shift is plotted as a function of
time. The result demonstrates that the correct time shift is detected, and the
reaction time to the drop is approximately 7-8 seconds. This reaction time is
due to the interval of 140 frames, which, in addition to the search range c = 30,
corresponds to 8 seconds. During this time period the two registered temporal
signals contain inconsistent information with a frame drop in it. Hence, the
results are incorrect and have low confidence.
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(a) (b)

Fig. 4. Each of the 60 computed time-shifts, one for each 0.8 seconds, are represented

by a single dot computed fot Set 3. (a) without prior and (b) with a prior. The axes

description and color codes interpretation are as in Fig. 3.

3.3 Using a Prior on P (Δt)

In an online framework, a non-uniform probability distribution on Δt can be
applied, using the result of the previous synchronization iteration. It is assumed
that the time synchronization rarely changes during the video, and the changes
are of a few frames only (due to frame dropping). We tested our method using
a Gaussian distribution of P (Δt) with σ = 2 and a mean set to the previously
detected high-confidence time shift (starting with 0). Comparing the results with
(Fig. 4(a)) and without (Fig. 4(b)) use of the prior, shows that the prior reduces
the instability of the low-confidence results. We tested the effect of using a prior
on Set 1 (with and without frame dropping) and on Set 2. In all these tests the
results remain the same. Hence we can conclude that on the one hand the prior
can reduce errors for unstable results, and on the other hand it does not impair
other results.

3.4 Setting the Parameters

In addition to the confidence threshold, there are two parameters that have to
be set. The time interval k controls the number of frames that participate in the
signal registration procedure. Longer intervals will lead to more robust results,
especially for areas and times with limited motion. According to our tests, in a
video pair with a lot of motion, an interval of k = 20 frames (0.8 seconds) is
sufficient for robust synchronization results. However, for limited and sporadic
motion, such an interval yields a somewhat noisy output, therefore k = 140
frames was used in all our experiments. The downside of large intervals is the
increase in computation time and the slower reaction time in the presence of
frame drops. The reaction time to such changes can, in the worst case, be as
long as the interval time, as discussed in Sec. 3.2.
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(a) (b)

Fig. 5. (a) A graph showing the success rate as a function of the confidence threshold

for three different values of σ (see Eq. 6). The blue, red and green lines represent

σ = 1600, 1300, and 1000, respectively. (b) Frame dropping example, drop reaction

time = 7 seconds. The green and the red dots represent high and low confidence,

respectively. The vertical blue lines indicate the time at which the frame drop occurred.

The black line is the correct time shift.

The other parameter is the σ in Eq. 3-6. This value serves as a normalization
factor in the probability calculations. In general, it depends on photometric
parameters of the used cameras, as well as on their relative location. In the
experiments, the value of σ was set empirically. This factor affects the numerical
outcome of the confidence for each time shift, as demonstrated in Fig. 5(a). High
values of σ suppress the confidence, hence flatten the probability distribution of
P (Δt |S,S′), causing indecisiveness and noisy output. However, lower values of
σ increase the confidence of all the measurements, and as a result, the confidence
of incorrect time shifts increases as well. Thus, in order the preserve the correct
output of the framework, the final confidence threshold must be selected in
accordance to the value of σ. It is left for future study the automatic setting of
this parameter.

3.5 Verification of Calibration

The main goal of our method was to compute synchronization between a pair of
sequences, while the camera calibration (i.e., the epipolar geometry) is assumed
to be given to the system. Incorrect epipolar geometry causes motion indicators
on corresponding epipolar lines to be uncorrelated. In particular, the confidence
of all the possible synchronization results is expected to be low. An experiment
for demonstrating this observation was conducted, simulating a scenario of a
small tilt in one of the cameras. The tilt causes calibration failure, as it breaks
the correspondence of the epipolar lines. This leads to a total synchronization
failure. Consequently, it is impossible to use our method when the system is out
of calibration. Yet, this property of our method can be used to verify calibration,
i.e., to distinguish between correct and incorrect calibration of the cameras.
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Although it cannot be used in a straightforward manner for camera calibration,
because the search space for a fundamental matrix is too large, it does serve as
an essential first step towards recalibration, following calibration failure.

3.6 Additional Tests

We discussed in the introduction and the method sections why we choose to
use epipolar lines signals rather than point signals. Here we challenge our choice
to use epipolar line signals rather than a similar signal defined by a motion
indicator based on the entire frame (similar to the approach taken by [15]). When
the temporal signal is defined on the entire frame, any spatial correspondence
between motion indicators is neglected. We modified our method to sum the
motion indicators on the entire frame in order to obtain the motion signal. As
expected, the obtained result cannot be used for sequence synchronization. Such
an approach fails in the presence of complex motion in the scene.

To verify that our method works properly on other video sequences used in the
literature, we have performed the synchronization of a pair of short videos used
in [2]. The sequences contain a single car moving in a parking lot.1 The success
rate of our method on this sequence is 100% with the parameters: confidence
threshold of 0.6, σ = 400 and k = 80.

4 Conclusion

We presented a novel method for synchronizing a pair of sequences using only
motion signals of corresponding epipolar lines. Our method is suitable for detect-
ing and correcting frame dropping. Its simplicity is in bypassing the computation
of spatial correspondence between features, tracked trajectories or image points,
which may be hard to compute in the scenes considered in our experiments.
The only spatial correspondence required is between epipolar lines, which are
computed directly from the given fundamental matrix of the sequence pairs.
The relatively low computational effort will enable our algorithm to be incor-
porated into real-time systems, after a short optimization cycle. Furthermore,
it can detect the synchronization errors (e.g., frame drops) in a matter of sec-
onds, as they occur in the video. Thus, it can be used in an online framework.
Finally, the method can be used for detecting calibration failures, as a first step
in recalibration.

Our method requires sufficient motion in the overlapping regions of the two
sequences in order to compute the correct time shift between the two sequences.
However, when the entire motion is strictly along epipolar lines, the temporal
matching is expected to yield the same probability for all time shifts. There-
fore, no high-confidence result will be obtained and the time-shift will not be
computed. This problem can be resolved when a system with more than two
cameras is considered, and other pairs of epipolar lines are expected to produce
1 http://www.wisdom.weizmann.ac.il/~vision/VideoAnalysis/Demos/Seq2Seq/

Seq2Seq.html

http://www.wisdom.weizmann.ac.il/~vision/VideoAnalysis/Demos/Seq2Seq/Seq2Seq.html
http://www.wisdom.weizmann.ac.il/~vision/VideoAnalysis/Demos/Seq2Seq/Seq2Seq.html
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the required confidence. We intend to study the extension of the proposed ap-
proach to handle more than two sequences. Such extension should be natural
due to the probabilistic properties of the algorithm. Another case that should be
considered is when motion occurs on non-overlapping regions of epipolar lines.
In this case, the method may produce an incorrect result if accidental correlation
between motion at different times occurs. More likely, such motion reduces the
confidence of the correct result. In order to overcome this problem, it is worth
exploring a method for detecting overlapping regions of cameras, as in e.g. [7].

Acknowledgment. This work was partially supported by the VULCAN project
of the Israeli Ministry of Industry.
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The Generalized PatchMatch
Correspondence Algorithm

Abstract. PatchMatch is a fast algorithm for computing dense approx-
imate nearest neighbor correspondences between patches of two image
regions [1]. This paper generalizes PatchMatch in three ways: (1) to find k
nearest neighbors, as opposed to just one, (2) to search across scales and
rotations, in addition to just translations, and (3) to match using arbi-
trary descriptors and distances, not just sum-of-squared-differences on
patch colors. In addition, we offer new search and parallelization strate-
gies that further accelerate the method, and we show performance im-
provements over standard kd-tree techniques across a variety of inputs. In
contrast to many previous matching algorithms, which for efficiency rea-
sons have restricted matching to sparse interest points, or spatially prox-
imate matches, our algorithm can efficiently find global, dense matches,
even while matching across all scales and rotations. This is especially
useful for computer vision applications, where our algorithm can be used
as an efficient general-purpose component. We explore a variety of vi-
sion applications: denoising, finding forgeries by detecting cloned regions,
symmetry detection, and object detection.

1 Introduction

Computing correspondences between image regions is a core issue in many
computer vision problems, from classical problems like template tracking and

Connelly Barnes1, Eli Shechtman2, Dan B Goldman 2, and Adam Finkelstein 1

1 Princeton University
2 Adobe Systems

optical flow, to low-level image processing such as non-local means denoising and
example-based super-resolution, to synthesis tasks such as texture synthesis and
image inpainting, to high level image analysis tasks like object detection, image
segmentation and classification. Correspondence searches can be classified as
either local, where a search is performed in a limited spatial window, or global,
where all possible displacements are considered. Correspondences can also be
classified as sparse, determined only at a subset of key feature points, or dense,
determined at every pixel or on a dense grid in the input.

For efficiency, many common algorithms only use local or sparse correspon-
dences. Local search can only identify small displacements, so multi-resolution
refinement is often used (e.g., in optical-flow [3]), but large motions of small ob-
jects can be missed. Sparse keypoint [4, 5] correspondences are commonly used
for alignment, 3D reconstruction, and object detection and recognition. These
methods work best on textured scenes at high resolution, but are less effective
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in other cases. More advanced methods [6, 7] that start with sparse matches and
then propagate them densely suffer from similar problems. Thus, such methods
could benefit from relaxing the locality and sparseness assumptions. Moreover,
many analysis applications [8–11] and synthesis applications [12–15] inherently
require dense global correspondences for adequate performance.

The PatchMatch algorithm [1] finds dense, global correspondences an order
of magnitude faster than previous approaches, such as dimensionality reduction
(e.g. PCA) combined with tree structures like kd-trees, VP-trees, and TSVQ.
The algorithm finds an approximate nearest-neighbor in an image for every small
(e.g. 7x7) rectangular patch in another image, using a randomized cooperative
hill climbing strategy. However, the basic algorithm finds only a single nearest-
neighbor, at the same scale and rotation. To apply this algorithm more broadly,
the core algorithm must be generalized and extended.

First, for problems such as object detection, denoising, and symmetry
detection, one may wish to detect multiple candidate matches for each query
patch. Thus we extend the core matching algorithm to find k nearest neighbors
(k-NN) instead of only 1-NN. Second, for problems such as super-resolution,
object detection, image classification, and tracking (at re-initialization), the
inputs may be at different scales and rotations, therefore, we extend the matching
algorithm to search across these dimensions. Third, for problems such as object
recognition, patches are insufficiently robust to changes in appearance and
geometry, so we show that arbitrary image descriptors can be matched instead.

The resulting generalized algorithm is simple and fast despite the high dimen-
sional search space. The difficulty of performing a 4D search across translations,
rotations, and scales had previously motivated the use of sparse features that
are invariant to some extent to these transformations. Our algorithm efficiently
finds dense correspondences despite the increase in dimension, so it offers an
alternative to sparse interest point methods. Like the original PatchMatch algo-
rithm, our generalized algorithm is up to an order of magnitude more efficient
than kd-tree techniques. We show how performance is further enhanced by two
improvements: (1) a new search technique we call “enrichment” that generalizes

(a) (b) (c) (d) (e)

Fig. 1. Denoising using Generalized PatchMatch. Ground truth (a) is corrupted by
Gaussian noise (b). Buades et al. [2] (c) denoise by averaging similar patches in a small
local window: PSNR 28.93. Our method (d) uses PatchMatch for nonlocal search,
improving repetitive features, but uniform regions remain noisy, as we use only k = 16
nearest neighbors: PSNR 29.11. Weighting matches from both algorithms (e) gives the
best overall result: PSNR 30.90.
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“coherent” or locally similar matches from spatial neighborhoods to neighbor-
hoods in nearest neighbor space and (2) a parallel tiled algorithm on multi-core
machines. Finally, for k-NN and enrichment, there were many possible algo-
rithms, so we performed extensive comparisons to determine which worked best.

In summary, our main contributions are: (1) an extended matching algorithm,
providing k nearest neighbors, searching across rotations and scales, and descrip-
tor matching (Section 3.2-Section 3.5); (2) acceleration techniques, including a
new search strategy called “enrichment” and a parallel algorithm for multi-core
architectures (Section 3.3, Section 3.6) We believe this Generalized PatchMatch
algorithm can be employed as a general component in a variety of existing and
future computer vision methods, and we demonstrate its applicability for image
denoising, finding forgeries in images, symmetry detection, and object detection.

2 Related ork

When a dense, global matching is desired, previous approaches have typically
employed tree-based search techniques. In image synthesis (e.g., [16]), one
popular technique for searching image patches is dimensionality reduction (using
PCA) followed by a search using a kd-tree [17]. In Boiman et al [18], nearest-
neighbor image classification is done by sampling descriptors on a dense grid
into a kd-tree, and querying this tree. Other tree structures that have been
employed for querying patches included TSVQ [19] and vp-trees [20]. Another
popular tree structure is the k-means-tree that was successfully used for fast
image retrieval [21]. The FLANN method [22] combines multiple different tree
structures and automatically chooses which one to use according to the data.
Locality-sensitive hashing [23] and other hashing methods can be used as well.
Each of these algorithms can be run in either approximate or exact matching
mode, and find multiple nearest neighbors. When search across a large range
of scales and rotations is required, a dense search is considered impractical due
to the high dimensionality of the search space. The common way to deal with
this case is via keypoint detectors [4]. These detectors either find an optimal
local scale and the principal local orientation for each keypoint or do an affine
normalization. These approaches are not always reliable due to image structure
ambiguities and noise. The PatchMatch algorithm [1] was shown to find a
single nearest neighbor one to two orders of magnitude faster than tree-based
techniques, for equivalent errors, with running time on the order of seconds
for a VGA input on a single core machine. This paper offers performance
improvements and extends it to dense k-NN correspondence across a large range
of scales and rotations. The Generalized PatchMatch algorithm can operate on
any common image descriptors (e.g., SIFT) and unlike many of the above tree
structures, supports any distance function. Even while the algorithm naturally
supports dense global matching, it may also be constrained to only accept
matches in a local window if desired.

Section 4 investigates several applications in computer vision, and prior work
related to those applications is mentioned therein.

W
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3 Algorithm

This section presents four generalizations of the PatchMatch algorithm suitable
for a wide array of computer vision problems. After reviewing the original
algorithm [1], we present our extensions, including k-nearest neighbors, matching
across rotations and scale, and matching descriptors. We finally show how
performance can be improved with a new search strategy called “enrichment,”
and a parallel tiled algorithm suitable for multi-core architectures.

3.1 The PatchMatch lgorithm

Here we review the original PatchMatch algorithm as proposed by Barnes et al. [1].
It is an efficient randomized approach to solving the following problem: for every
p × p patch in image A, find the approximate nearest neighbor patch in image
B, minimizing the sum-squared difference between corresponding pixels.

A nearest-neighbor field (NNF) is a function f : A �→ R
2, defined over all

possible patch coordinates (locations of patch centers) in image A, for some
distance function D between two patches. Given patch coordinate a in image A
and its corresponding nearest neighbor b in image B, f(a) is simply b.1 We refer
to the values of f as nearest neighbors, and they are stored in an array whose
dimensions are those of A.

Note that the NNF differs from an optical flow field (OFF). The NNF uses
no smoothness constraints and finds the best match independent of neighboring
matches. The OFF is defined by ground truth motion and is often computed
with smoothness constraints.

The randomized algorithm works by iteratively improving the nearest-
neighbor field f until convergence. Initially, the nearest neighbor field is filled
with random coordinates, uniformly sampled across image B. Next, the field is
iteratively improved for a fixed number of iterations, or until convergence. The
algorithm examines field vectors in scan order, and tries to improve each using
two sets of candidates: propagation, and random search.

The propagation trials attempt to improve a nearest neighbor f(x) using
the known nearest neighbors above or to the left. The new candidates for
f(x) are f(x − Δp) + Δp, where Δp takes on the values of (1, 0) and (0, 1).
Propagation takes a downhill step if either candidate provides a smaller patch
distance D. (On even iterations, propagation is done in reverse scan order, and
candidates below and to the right are examined, so information propagates up
and left.) Propagation converges very quickly, but if used alone ends up in a
local minimum. So a second set of trials employs random search: a sequence of
candidates is sampled from an exponential distribution, and f(x) is improved
if any of the candidates has smaller distance D. Let v0 be the current nearest
neighbor f(x). The candidates ui are constructed by sampling around v0 at
an exponentially decreasing distance: ui = v0 + wαiRi, where Ri is a uniform
random in [−1, 1] × [−1, 1], w is the maximum image dimension, and α is a

1 Our notation is in absolute coordinates, vs relative coordinates in Barnes et al. [1]

A
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ratio between window sizes (α = 1/2 was used). The index i is increased from
i = 0, 1, 2, ..., n until the search radius wαi is below 1 pixel. For more details,
see Barnes et al. [1].

3.2 k-Nearest eighbors

For problems such as denoising, symmetry detection, and object and clone
detection, we wish to compute more than a single nearest neighbor at every
(x, y) position. This can be done by collecting k nearest neighbors for each
patch. Thus the NNF f is a multi-valued map, with k values. There are many
possible modifications of PatchMatch to compute the k-NN. We have compared
the efficiency of several of these against a standard approach: dimensionality
reduction with PCA, followed by construction of a kd-tree [17] with all patches of
image B projected onto the PCA basis, then an independent ε-nearest neighbor
lookup in the kd-tree for each patch of image A projected onto the same basis.

Since each of these algorithms can be tuned for either greater accuracy or
greater speed, we evaluated each across a range of settings. For PatchMatch, we
simply computed additional iterations, and for kd-trees we adjusted the ε and
PCA dimension parameters. The relative efficiency of these algorithms is plotted
in Figure 2. We also compare with FLANN [22], a package that includes kd-tree,
k-means tree, a hybrid algorithm, and a large number of parameters that can be
tuned for performance.

Heap algorithm. In the most straightforward variant, we associate k nearest
neighbors with each patch position. During propagation, we improve the nearest
neighbors at the current position by exhaustively testing each of the k nearest
neighbors to the left or above (or below or right on even iterations). The new
candidates are fi(x−Δp)+Δp, whereΔp takes on the values (1, 0) and (0, 1), and
i = 1 . . . k. If any candidate is closer than the worst candidate currently stored
at x, that worst candidate is replaced with the candidate from the adjacent
patch. This can be done efficiently with a max-heap, where the heap stores
the patch distance D. The random search phase works similarly: n samples
are taken around each of the k nearest neighbors, giving nk samples total.
The worst element of the heap is evicted if the candidate’s distance is better.
When examining candidates, we also construct a hash table to quickly identify
candidates already in our k list, to prevent duplicate entries.

Details of the additional strategies tested can be found in supplementary
material. Briefly, they include variants of the heap algorithm in which fewer
than k samples are taken from the neighbor list for propagation and/or search
(“P best,” “P random”, “RS best”, “RS random”, “P varying”, “RS varying”);
variants of the heap algorithm where k is changed over time (“Increase k”,
“Decrease k”); and modifications of the original 1NN algorithm in which no heap
is used but the sequence of candidates is retained (“List 1-NN”, “Run 1-NN k
times”). Some of these algorithms complete single iterations faster than the basic
heap algorithm described above, but convergence is slower as they propagate less
information within an iteration. In general, the original heap algorithm is a good
choice over a wide range of the speed/quality curve.

N
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Fig. 2. Left: Performance of k-PatchMatch variants, with k = 16, averaged over all
images in Figure 4, resized to 0.2MP, and matched against themselves. Error is average
L2 patch distance over all k. Points on each curve represent progress after each iteration.
Right: Comparison with kd-tree and FLANN, at 0.3 MP, averaged over the dataset.

We find the basic heap algorithm outperforms kd-tree over a wide range
of k and image sizes: for example, our algorithm is several times faster than
kd-tree, for k = 16 and input images of 0.1 to 1.0MP. In our comparisons
to the kd-tree implementation of Mount and Arya [17] and FLANN [22], we
gave the competition the benefit of the doubt by tuning all possible parameters,
while adjusting only the number of iterations for our heap algorithm. FLANN
offers several algorithms, so we sampled a large range of algorithmic options
and parameters, indicated by the + marks in Figure 2. FLANN can also
automatically optimize parameters, but we found the resulting performance
always lies within the convex hull of our point-sampling. In both cases, this
extensive parameter-tuning resulted in performance that approached – but
never exceeded – our heap algorithm. Thus, we propose that the general k-
PatchMatch heap algorithm is a better choice for a wide class of problems
requiring image patch correspondence. With additional optimization of our
algorithm, the performance gap might be even greater.

3.3 Enrichment

In this section we propose one such optimization for improving PatchMatch
performance further. The propagation step of PatchMatch propagates good
matches across the spatial dimensions of the image. However, in special cases we
can also consider propagating matches across the space of patches themselves:
For example, when matching an image A to itself – as in non-local-means
denoising (Section 4.1) – many of a patch’s k nearest neighbors will have the
original patch and some of the other k − 1 patches in their own k-NN list.

We define enrichment as the propagation of good matches from a patch to its
k-NN, or vice versa. We call this operation enrichment because it takes a nearest
neighbor field and improves it by considering a “richer” set of potentially good
candidate matches than propagation or random search alone. From a graph-
theoretic viewpoint, we can view ordinary propagation as moving good matches
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Fig. 3. Left: Comparison of the heap algorithm with and without enrichment. As in
Figure 2, times and errors are averaged over the dataset of Figure 4 at 0.2 megapixels
and k = 16 neighbors. Right: Searching across all rotations and scales.

along a rectangular lattice whose nodes are patch centers (pixels), whereas
enrichment moves good matches along a graph where every node is connected to
its k-NN. We introduce two types of enrichment, for the special case of matching
patches in A to other patches in A:

Forward enrichment uses compositions of the function f with itself to
produce candidates for improving the nearest neighbor field. The canonical case
of forward enrichment is f2. That is, if f is a NNF with k neighbors, we construct
the NNF f2 by looking at all of our nearest neighbor’s nearest neighbors: there
are k2 of these. The candidates in f and f2 are compared and the best k overall
are used as an improved NNF f ′. If min() denotes taking the top k matches, then
we have: f ′ = min(f , f2). See the supplementary material for other variants.

Similarly, inverse enrichment walks the nearest-neighbor pointers back-
wards to produce candidates for improving the NNF. The canonical algorithm
here is f−1. That is, compute the multi-valued inverse f−1 of function f . Note
that f−1(a) may have zero values if no patches point to patch a, or more than
k values if many patches point to a. We store f−1 by using a list of varying
length at each position. Again, to improve the current NNF, we rank our cur-
rent k best neighbors and all neighbors in f−1, producing an improved NNF f ′′:
f ′′ = min(f , f−1). Note that in most cases the distance function is symmetric, so
patch distances do not need to be computed for f−1. Finally we can concatenate
inverse and forward enrichment, and we found that f−1 followed by f2 is fastest
overall. The performance of these algorithms is compared in Figure 3.

In the case of matching different images A and B, inverse enrichment can be
trivially done. Forward enrichment can be applied by computing nearest neighbor
mappings in both directions; we leave this investigation for future work.

3.4 Rotations and cale

For some applications, such as object detection, denoising or super-resolution, it
may be desirable to match patches across a range of possible rotations or scales.

S
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Without loss of generality, we compare upright unscaled patch a in image A,
with patch b in image B that is rotated and scaled around its center.

To search a range of rotations θ ∈ [θ1, θ2] and a range of scales s ∈ [s1, s2], we
simply extend the search space of the original PatchMatch algorithm from (x, y)
to (x, y, θ, s), extending the definition of our nearest-neighbor field to a mapping
f : R

2 �→ R
4. Here f is initialized by uniformly sampling from the range of

possible positions, orientations and scales. In the propagation phase, adjacent
patches are no longer related by a simple translation, so we must also transform
the relative offsets by a Jacobian. Let T(f(x)) be the full transformation defined
by (x, y, θ, s): the candidates are thus f(x − Δp) + T′(f(x−Δp))Δp. In the
random search phase, we again use a window of exponentially decreasing size,
only now we contract all 4 dimensions of the search around the current state.

The convergence of this approach is shown in Figure 3. In spite of searching
over 4 dimensions instead of just one, the combination of propagation and
random search successfully samples the search space and efficiently propagates
good matches between patches. In contrast, with a kd-tree, it is nontrivial to
search over all scales and rotations. Either all rotations and scales must be added
to the tree, or else queried, incurring enormous expenses in time or memory.

3.5 Matching with rbitrary escriptors and istance etrics

The PatchMatch algorithm was originally implemented using the sum-of-squared
differences patch distance, but places no explicit requirements on the distance
function. The only implicit assumption is that patches with close spatial
proximity should also be more likely to have similar best-nearest-neighbors,
so that PatchMatch can be effective at propagating good nearest neighbors
and finding new ones. This turns out to be true for a variety of descriptors
and distance functions. In fact, the algorithm can converge even more quickly
when using large-area feature descriptors than it does with small image patches,
because they tend to vary relatively slowly over the image. In general, the
“distance function” can actually be any algorithm that supplies a total ordering,
and the matching can even be performed between entirely different images —
the rate of convergence depends only on the size of coherent matching regions.
Thus, our matching is quite flexible.

In this paper we explore several examples. In Section 4.3 we implement
symmetry detection with a modified L2 patch distance that is robust to changes
in luminance. In Section 4.4, we perform label transfer by sampling a SIFT
descriptor at every pixel. Our matching algorithm performs a global search, so
two matched objects can be present in different regions of the image.

3.6 Parallel iled lgorithm

Barnes et al. proposed a parallel variant of PatchMatch using “jump flooding” for
the propagation phase [1]. This algorithm was intended for GPU usage. However,
on the CPU, this approach is less effective than serial propagation and converges
more slowly in each iteration.
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Fig. 4. Dataset of 36 input images for denoising

On a multi-core architecture, we propose parallelizing PatchMatch by divid-
ing the NNF into horizontal tiles, and handling each tile on a separate core.
Because the tiles are handled in parallel, information can propagate vertically
the entire length of a tile in a single iteration. To ensure information has a chance
to propagate all the way up and down the image, we synchronize using a critical
section after each iteration. To prevent resource conflicts due to propagation
between abutting tiles, we write back the nearest neighbors in the last row of
the tile only after synchronization. Note that both propagation/random search
and forward enrichment can be parallelized using this tile scheme.

We observe a nearly linear speed-up, on our 8 core test machine. Our timing
values in this paper use only one core unless otherwise indicated. See the
supplementary material for details.

4 Vision

This section investigates several possible applications for the generalized Patch-
Match algorithm: denoising, clone detection, symmetry detection, and object
detection.

4.1 Non-local Means enoising

For image denoising, Buades et al. [2] showed that high-quality results could
be obtained by non-local means denoising: finding similar patches within an
image and then averaging these. Subsequent work [24, 25] showed that this patch-
based method could be extended to obtain state-of-the-art results by performing
additional filtering steps. While Buades et al. [2] searched for similar patches only
within a limited search window, Brox et al. [26] showed that a tree-based method
could be used to obtain better quality for some inputs. However they do increase
the distance to far away patches so searching is still limited to some local region.

Our kNN algorithm can be used to find similar patches in an image, so it
can be used as a component in these denoising algorithms. We implemented the
simple method of Buades et al. [2] using our kNN algorithm. This method works
by examining each source patch of an image, performing a local search over all
patches within a fixed distance r of the source patch, computing a Gaussian-
weighted L2 distance d between the source and target patch, and computing a
weighted mean for the center pixel color with some weight function f(d).

To use our kNN algorithm in this denoising framework, we can simply choose
a number of neighbors k, and for each source patch, use its k-NN in the entire

A
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image as the list of target patches. To evaluate this algorithm, we chose 36 images
as our dataset (Figure 4). We corrupted these images by adding to each RGB
channel noise from a Gaussian distribution with σ = 20 (out of 256 grey levels).
If the dataset is denoised with Buades et al (using an 11x11 search window) the
average PSNR is 27.8. Using our kNN algorithm gives an average PSNR of 27.4,
if the number of neighbors is small (k = 16). Counterintuitively, our algorithm
gives worse PSNR values because it finds better matches. This occurs because
our algorithm can search the entire image for a good match, therefore in uniform
regions, the patch’s noise pattern simply matches similar noise.

One solution would be to significantly increase our k. However, we found
that Buades et al and our algorithm are complementary and both are efficient.
Therefore, we simply run both algorithms, and list all target patches found
by each, before averaging the patches under a weight function f(d). We train
the weight function on a single image and then evaluate on the dataset. This
combined algorithm has an average PSNR of 28.4, showing that our kNN
matching can improve denoising in the framework of Buades et al. The best
results are obtained on images with repeating elements, as in Figure 1.

We also compared our results with the state-of-the-art BM3D algorithm [24].
For our dataset, BM3D produced an average PSNR of 29.9, significantly out-
performing our results. However, we intentionally kept our denoising algorithm
simple, and hypothesize that more advanced algorithms [24, 25] that are based
on local search for speed, could do even better with our kNN algorithm.

4.2 Clone etection

One technique for digitally forging images is to remove one region of an image by
cloning another region. For example, this can be done using Adobe Photoshop’s
clone brush. Such forgeries have been a concern in the popular press of late, as
fake photos have been published in major newspapers.

Methods of detecting such forgeries have been proposed recently [11, 27].
These methods propose breaking the image into either square or irregularly
shaped patches, applying PCA or DCT to discard minor variations in the image
due to noise or compression, and sorting the resulting blocks to detect duplicates.

We can apply our kNN algorithm for the purposes of detecting cloned regions.
Rather than sorting all blocks into a single ordered list, we can consider for each
patch, its k-NN as potentially cloned candidates. We identify cloned regions by
detecting connected “islands” of patches that all have similar nearest neighbors.

Specifically, we construct a graph and extract connected components from
the graph to identify cloned regions. The vertices of the graph are the set of
all (x, y) pixel coordinates in the image. For each (x, y) coordinate, we create a
horizontal or vertical edge in the graph if its kNN are similar to the neighbors
at (x+1, y) or (x, y+1), respectively. We call two lists A and B of kNN similar
if for any pair of nearest neighbors (ax, ay) ∈ A and (bx, by) ∈ B, the nearest
neighbors are within a threshold distance T of each other, and both have a patch
distance less than a maximum distance threshold. Finally, we detect connected
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(a) original (b) forged (c) detected forgery

Fig. 5. Detecting image regions forged using the clone
brush. Shown are (a) the original, untampered image, (b)
the forged image, (c) cloned regions detected by our kNN
algorithm and connected components. Imagery from [11]

Fig. 6. Symmetry detec-
tion using a regular lattice
(superimposed white dots)

components in the graph, and consider any component with an area above a
minimum cloned region size C (we use C = 50) to be a cloned region.

Examples of our clone detection implementation are shown in Figure 5. Note
that cloned areas are correctly identified. However, the area of the clone is not
exactly that of the removed objects because our prototype is not robust to noise,
compression artifacts, or feathering. Nevertheless, we believe it would be easy to
adapt the algorithm to better recover the complete mask.

4.3 Symmetry etection

Detecting symmetric features in images has been of interest recently. A survey
of techniques for finding rotational and reflective symmetries is given by
Park et al. [28]. Methods have also been developed for finding translational
symmetries in the form of regular lattices [8].

Because our kNN algorithm matches repeated features non-locally, it can
be used as a component in symmetry detection algorithms. Symmetries have
been detected using sparse interest points, such as corner detectors or SIFT
or edge interest points [28]. In contrast to sparse methods, our algorithm can
match densely sampled descriptors such as patches or SIFT descriptors, and
symmetries can be found by examining the produced dense correspondence field.
This suggests that our algorithm may be able to find symmetric components even
in the case where there are no sparse interest points present.

To illustrate how our method can be used for symmetry detection, we propose
a simple algorithm for finding translational symmetries in the form of repeated
elements on a non-deformed lattice. First we run our kNN algorithm. The
descriptor for our algorithm is 7x7 patches. We calculate patch distance using
L2 between corresponding pixels after correcting for limited changes in lighting
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Fig. 7. Detecting objects. Templates, left, are matched to the image, right. Square
patches are matched, searching over all rotations and scales, as described in Section 3.4.
A similarity transform is fit to the resulting correspondences using RANSAC.

by normalizing the mean and standard deviation in luminance to be equal. We
find k = 16 nearest neighbors, and then use RANSAC [29] to find the basis
vectors v1 and v2 that form the lattice. We classify as inliers the coordinates
where the distance between the lattice and all of the kNN is small. A result of
our symmetry detection is shown in Figure 6.

4.4 Object etection

Methods for object detection include deformable templates [30], boosted cas-
cades [31], matching of sparse features such as SIFT [5], and others. Our algo-
rithm can match densely sampled features, including upright patches, rotating
or scaled patches, or descriptors such as SIFT. These matches are global, so that
correspondences can be found even when an object moves across an image, or
rotates or scales significantly. Provided that the descriptor is invariant to the
change in object appearance, the correct correspondence will be found.

In Figure 7 we show an example of object detection. Similar to the method
of Guo and Dyer [32], we break the template into small overlapping patches.
We query these patches against the target image, searching over all rotations,
and a range of scales, as per Section 3.4. A similarity transform is fit from the
template to the target using RANSAC. We calculate patch distance using L2,
after correcting for lighting as we did in symmetry detection. The result is that
we can find objects under partial occlusions and at different rotations and scales.

For greater invariance to lighting and appearance changes, a more complex
local appearance model is needed. However it is straightforward to incorporate
more complex models into our algorithm! For example, suppose we have
photographs of two similar objects with different appearance. We might wish
to propagate labels from one image to the other for all similar objects and
background. The SIFT Flow work [33] shows that this can be done using
SIFT features correspondence on a dense grid combined with an optical-flow like
smoothness term. The resulting field is solved using a coarse-to-fine approach
and global optimization (belief propagation). Like most optical flow methods,
SIFT Flow assumes locality and smoothness of the flow and thus can fail to
align objects under large displacements. As shown in Figure 8, we can correctly
transfer labels even when objects move a large amount. We do this by densely
sampling SIFT descriptors and then matching these as described in Section 3.5.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 8. Label transfer using our method with SIFT descriptors. (a) car A; (b) car B;
(c) labeled A; (d) A warped to match B using SIFT Flow [33] as well as the transferred
label mask in (e); (f) A warped to B using our method and the transferred label mask
in (g). Our flow is globally less smooth but can handle arbitrarily large motions.

5 Discussion and uture ork

This paper generalizes the PatchMatch algorithm to encompass a broad range of
core computer vision applications. We demonstrate several prototype examples,
but many more are possible with additional machinery. For example, example-
based super-resolution can use PatchMatch, using a single [34] or multiple [12]
images. Section 4.4 shows an example of transferring labels using correspon-
dences without a term penalizing discontinuity, but in other settings a neigh-
borhood term is necessary for accurate optical flow [3, 6]. Finally, although we
demonstrate object detection, our speed is not competitive with the best sparse
tracking methods. It is possible that some variations of this approach using fewer
iterations and downsampled images could be used to provide real-time tracking.
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Abstract. Ultra-High Resolution Optical Coherence Tomography is a

novel imaging technology that allows non-invasive, high speed, cellular

resolution imaging of anatomical structures in the human eye, including

the retina and the cornea.

A three-dimensional study of the cornea, for example, requires the seg-

mentation and mutual alignment of a large number of two-dimensional

images. Such segmentation has, until now, only been undertaken by hand

for individual two-dimensional images; this paper presents a method

for automated segmentation, opening substantial opportunities for 3D

corneal imaging and analysis, using many hundreds of 2D slices.

Keywords: OCT, UHROCT, cornea, non-invasive imaging, statistical

modelling, segmentation, reconstruction.

1 Introduction

Optical Coherence Tomography is an optical imaging technique that allows for
non-invasive (non-contact), micrometer-scale imaging of transparent objects and
biological tissue. Some of the most advanced medical applications of OCT are
in the field of ophthalmology for non-invasive imaging of healthy and diseased
human retina and cornea [1–4].

The human cornea, which is the application focus of our research, consists of
five distinct layers of variable thickness: Epithelium (∼50μm), Bowman’s mem-
brane (∼15μm), Stroma (∼500μm), Descemet’s membrane (∼10μm) and En-
dothelium (∼5μm), labeled in Figure 1. Identifying individual corneal layers in
OCT tomograms and the precise measurement of their thicknesses is essential
in the evaluation of corneal disease, for example to study the progression and
treatment of Keratitis, Keratoconus, Fuchs’ dystrophy, and Hypoxia [5–8], as
these corneal diseases transform the shape and layer thickness of the cornea.

Until now, corneal layer segmentation has only been undertaken by hand
for individual 2D images, greatly limiting the types of problems or number of
patients who could be studied, and making completely impractical any 3D study
based on the segmentation and registration of hundreds of 2D images.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 44–57, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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This paper presents a method for automated segmentation, opening substan-
tial opportunities for 3D corneal imaging and analysis. The proposed segmenta-
tion method is the first fully automated algorithm, to the author’s knowledge,
that can segment the five corneal layers based on Optical Coherence Tomogra-
phy images. Since both boundaries of the Descemet’s membrane are less than
the imaging resolution, the Descemet’s Endothelium complex is represented by
a single boundary instead. The data in this paper were acquired with an Ul-
traHigh Resolution Optical Coherence Tomography (UHROCT) system, which
allows for non-invasive imaging of a human cornea with 3μm axial resolution
and an acquisition rate of 47,000 2D scans per second [9].

Fig. 1. UHROCT image of the cornea containing labeled layer boundaries

The Background section discusses existing 3D corneal reconstruction tech-
niques and segmentation algorithms. The Reconstruction Method section de-
scribes the novel 2D segmentation algorithm, developed in this paper, applied
to multiple cornea images, leading to the development of an approach for 3D
reconstruction.

2 Background

The proposed method intends to extend existing reconstruction techniques so
that a 3D model can be obtained from a series of noisy UHROCT images. The
following sections describe existing reconstruction methods and several segmen-
tation methods that can be used to facilitate corneal reconstruction.

2.1 3D Reconstruction

Existing medical imaging techniques can be utilized for imaging large organs,
such as the brain using MRI, or imaging small cells using electron microscopy.
Depending on the scale of the object, different reconstruction algorithms are
applied to the data collected from the imaging process.

When performing gross medical imaging, a series of 2D images might be
stacked together if the object motion and the imaging system motion is
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negligible compared to the overall dimensions of the object. For example, when
performing ultra-sound to image large organs, the vibrations of the ultra-sound
probe and the small motion of muscles surrounding the organs are insignificant
due to the relative scale of the object being imaged [10]. In addition, stacking
can be acceptable if a stationary object reference is visible in each frame. When
performing a brain MRI, the stationary bone structure of the skull can be used
to translate the 2D scans for the registration process [11].

Although on the smaller scale, electron microscopy is used to image cells. In
these cases, the vibrations and motions of the cells are significant. However, like
in gross medical imaging, electron microscopy can use reference points that are
present in multiple 2D images [12]. Single-particle analysis [13, 14] attempts to
identify macromolecules in each view and attempts to determine the orientation
of each macromolecule in the particle.

Scarpa presents a method to reconstruct a cornea from confocal microscope
imaging [15]. A region of interest is identified in each sequential set of images,
then a normalized correlation method [16] is applied to the region of interest
to find correspondences between the image frames. The images in the stack
are translated to align the correspondences in consecutive images. The process,
however, does not directly utilize the corneal layer boundaries for reference. The
process also relies on a stack of images instead of using images perpendicular to
the stack to assist with alignment.

Li applied confocal microscopy through focusing to measure the central layer
thickness of the Epithelium, Bowman’s layer, and total corneal thickness [17].
Although the approach is limited to manually measuring the central thickness,
it was the first technique to obtain measurements for three of the five corneal
layers. The proposed algorithm automates the manual process and extends the
segmentation to all five corneal layer boundaries.

Currently, corneal OCT images may be aligned using a software package from
Amira. Amira provides a suit of tools that can be used to align a stack of OCT
images by comparing the direct image intensity and any salient features con-
tained in sequential images [18, 19]. The software also allows the users to man-
ually align the images. Unfortunately, the package does not use the structural
properties of the cornea in the reconstruction process, preventing a suitable 3D
reconstruction, and the 3D reconstructions generated failed to yield the accuracy
necessary for corneal layer thickness research.

The proposed method attempts to automate and extend the 3D reconstruc-
tion process by utilizing the corneal layer boundaries and orthogonal UHROCT
images to establish accurate point correspondences.

2.2 Segmentation

The proposed 3D reconstruction algorithm requires the segmentation of the
corneal layer boundaries within the 2D UHROCT images.

Snakes and active contours are curves designed to surround lines and shapes
that may be present in the image [20–24]. The active contour converges when the
sum of internal (prior) and external (measurement) forces are minimized, such
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that the internal forces prefer contour smoothness (or some other prior shape),
and the external forces prefer a fit to the given image, normally related to the
image gradient.

The concept of intelligent scissors [25] allows the user to semi-manually seg-
ment the image. By placing points on the image, the user guides the intelligent
scissor algorithm, which snaps to the image gradient as the algorithm fits a curve
through the user-defined points. The advantage of this algorithm is that the user
can specify a few points on each corneal layer boundary while the algorithm fits
a curve to the image gradient that follows the layer boundaries. When applied to
a smooth image gradient, the algorithm can fit a curve to the gradient with little
user interaction. However, when applied to the UHROCT images, the intelligent
scissors fit the noise obscured the otherwise smooth gradient preventing the ef-
fective segmentation of the boundaries. Figure 2(b) illustrates the performance
of the algorithm despite having the user generate 20 to 30 points for each layer.

Fig. 2. UHROCT segmentation results for (left) geometric active contour and (right)

intelligent scissors. Neither method produces accurate segmentation results.

Fig. 3. Comparison of retinal (left) and corneal (right) UHROCTs. Unlike corneal

layers, each retinal layer has a visibly distinct intensity compared to adjacent layers.

In contrast, corneal layers contain a visible thin, dark boundary between each layer.

While many well developed retinal OCT imaging techniques exist to iden-
tify layer boundaries of the retina, corneal imaging provides different challenges.
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Garvin proposes the use of a general graph-based approached that attempts to
reconstruct the retinal images into a 3D model and isolate the surfaces that cor-
respond to the retinal layers [26]. In addition, Mishra developed a method using
image gradient information and a kernel function to successfully compensate for
the speckle noise, present in OCT images, and efficiently segments retinal lay-
ers [27]. The major difference between retinal and corneal segmentation is due
to composition of the layers. As shown in Figure 3, unlike the cornea, the retinal
layers have different mean intensities for each layer. The retinal methods are
good at finding the edge between these layers. In contrast, corneal layers have
a similar mean intensity, but are separated by low-contrast, discontinuous, thin
layer boundaries instead. As a result, retinal methods were able to find the high
contrast outer layers, but could not locate the inner layers.

3 Reconstruction Method

A variety of active contours, including parametric, geometric, and edge-free,
were implemented and tested on UHROCT images. Not one of the implemented
methods was able to segment the cornea; Figure 2(a) illustrates a typical example
of the final state of a geometric active contour [28]. In many ways this failure is
unsurprising: the images are noisy, the contours have frequent breaks, and the
active-contour methods have only a weak prior (smoothness) which knows very
little about corneal structure.

The failure of existing algorithms to segment the corneal layer boundaries
motivated the development of a method to perform 2D corneal segmentation.
The proposed method imposes a corneal model on the data to allow the corneal
layer boundaries to be segmented, despite the presence of noise and imaging
artefacts.

The reconstruction process consists of two major steps. The 2D UHROCT
images are first segmented so that each of the five layer boundaries can be
obtained and the layers are subsequently used as markers to for a second step,
the 3D reconstruction. These two respective steps are described in the following
two sections.

3.1 2D Reconstruction

The 2D reconstruction uses a corneal model to locate the internal layers of the
cornea. The starting point is to observe that the upper and lower corneal layers
have sufficient contrast, due to the high refractive index at the interface between
the cornea and the surrounding fluid, to segment these layers robustly. The
model then asserts that all internal layers can be derived using the curvature
information from the upper and lower corneal layers.

Let the data acquired from the UHROCT imaging device be a 2D greyscale
image I(x, y). During the imaging process, a higher contrast endothelium layer
can be obtained by focusing the UHROCT system on the endothelium layer in-
stead of the epithelium layer. Since the epithelium layer boundary is the interface
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between air and the cornea, the refractive index can produce sufficient contrast
for the segmentation algorithm. The focusing emphasizes the contrast of the en-
dothelium layer. However, as a consequence the cornea becomes inverted on the
image plane, as seen in Figure 4(a).

(a) (b)

Fig. 4. (a) The original UHROCT image obtained from the imaging system. (b) The

result of preprocessing applied to the original UHROCT image, to improve contrast to

robustly find the upper and lower layers.

The UHROCT layer boundaries appear quite noisy. The boundaries are about
one to two pixels thick, have a varying pixel intensity, and are surrounded by
what appears to be speckle or correlated noise, actually due to the distribution
of cells within the cornea. To improve segmentation accuracy in the presence
of noise, image preprocessing is undertaken by applying contrast-limited adap-
tive histogram equalization [29] to normalize pixel intensities across the image,
morphological operators to enhance arc structures, and a Gaussian blur filter to
smooth the remaining noise. The resulting preprocessed image, Ipre(x, y), shown
in Figure 4(b), contains sufficient contrast to clearly separate the cornea from
the surrounding fluid.

As a most basic segmentation of cornea from fluid, a Prewitt edge detector
is applied to find horizontal edges fragments in Ipre(x, y), producing edge map
Iedge(x, y), containing edges that correspond to the upper and lower boundaries,
as shown in Figure 5(a). Candidate endothelium / epithelium pixel locations are
determined by locating those edges stronger than some threshold in the upper
/ lower half of Iedge.

Manually-segmented boundaries were available for a limited number of images,
making it possible to learn a model and as ground truth in assessing the learned
layers. Then an optimization problem is formulated to fit a quadratic curve,
Qend(s) over arc-length s, to the upper layer boundary. An initial quadratic
polynomial, Qend(s), based on statistics from the manual boundaries, was used
to specify an initial curve for the optimization algorithm, as shown in Figure 5(b),
where ∑

∀pεPend

[
min

s
‖p−Qend(s)‖2

]
(1)
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is minimized, minimizing the Euclidean distance from the curve to all thresh-
olded edge points.

The quadratic is robust, but not a terribly good fit to the anatomy of the
cornea. Various polynomials were tested to find the lowest order that could best
model the corneal curvature. Since the difference between 5th and 4th-order
polynomials was insignificant a 4th-order polynomial was selected to model the
data. Having found the optimal quadratic fit, outlier rejection was performed by
point trimming and the best 4th-order polynomial fit Q∗

end(s) was found. The
preceding process was applied, unchanged, to the bottom half of the edge points
to find the best-fit curve to the epithelium Q∗

epi(s).
Both curves, Ω∗

end(s) and Ω∗
epi(s), are illustrated in Figure 5(c).

(a) (b)

(c)

Fig. 5. (a) Edge detection applied to the preprocessed OCT Image. (b) The initial

model of the upper and lower curves are independent of UHROCT image. (c) The

segmentation of the upper and lower layer boundaries.

The model asserts that a continuous transformation exists that maps the
Endothelium to the Epithelium; consequently, the curves representing the three
internal layer boundaries are expressed as a low-dimensional parameterized func-
tion that uses the upper and lower curves as a basis:

Ωα=0(s) = Ω0
epi(s− s0) Ωα=1(s) = Ω0

end(s− s1) (2)

The parameterized corneal model is illustrated in Figure 6. Any of the five corneal
layers can be represented by the parameterized curve Ωα(s), where parameter
α provides a mechanism to continuously transition between the upper and lower
curves:

Ωα(s) = (1− α)Ωα=0(s) + αΩα=1(s) (3)
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Fig. 6. Corneal model parametrization. s indexes along the arc, whereas α is essentially

an interpolation parameter between the bottom (α = 0) and top (α = 1) curves.

where the parameters s0 and s1 are required to establish point correspondences
between the upper and lower curves, established by the medial axis transform.

All five corneal layer boundaries are detected using a process essentially based
on the generalized Hough transform [30]. The mean pixel intensity, μα of the
UHROCT image, I(x, y), is sampled along the curve Ωα(s) as a function of α:

μα =
1
n

n∑
i=1

I

(
Ωα

(
i

n

)
x

, Ωα

(
i

n

)
y

)
(4)

An example of μα for a particular UHROCT is shown in Figure 7. The proposed
algorithm applies a peak detector that identifies the peaks with the largest dif-
ference between the proximate maximum and minimum. In this example the five
most significant peaks occur at α = [0.0930, 0.0138, 0.1227, 0.9917, and 0.9598],
which correspond to the five corneal layers.

Figure 9 illustrates six examples of segmenting the five layers overlaid onto
the original UHROCT image and illustrates the robustness of the algorithm
when applied to UHROCT data containing imaging artifacts. It needs to be
emphasized that the method is fully automated and that, to this point, no such
algorithm has existed which is able to perform such a segmentation. The results
are accurate, and robust in the presence of significant imaging artifacts.

Fig. 7. A plot of the generalized Hough projection μα, projecting along corneal arcs,

to identify prospective layers
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3.2 3D Reconstruction

The novelty and performance of the 2D segmentation from the previous section
is already a highly significant step in ophthalmologic research. Our ideal goal,
however, is 3D reconstruction.

A 3D reconstruction of the cornea can be obtained from an ensemble of 2D
segmented images either imaged in parallel or, preferably, in two orthogonal
directions, as illustrated in Figure 8. Parallel imaging requires some sort of
model regarding cross-plane behaviour, whereas perpendicular planes can be
fused without prior assumptions, by using the intersections of the image planes
as reference points for alignment. Since the primary source of alignment error
is due to eye motion and camera vibration, it is reasonable to assume that the
dominant inter-plane offsets are translational, rather than rotational or changes
in scale. The local coordinates

∣∣x y 0 1
∣∣T
‖ , for the parallel images, and

∣∣x y 0 1
∣∣T
⊥

for the perpendicular images are mapped to the global coordinates
∣∣X Y Z 1

∣∣T
using the linear transformations∣∣∣∣∣∣∣∣

X
Y
Z
1

∣∣∣∣∣∣∣∣ = H0
‖

∣∣∣∣∣∣∣∣
x
y
0
1

∣∣∣∣∣∣∣∣
‖

∣∣∣∣∣∣∣∣
X
Y
Z
1

∣∣∣∣∣∣∣∣ = H0
⊥

∣∣∣∣∣∣∣∣
x
y
0
1

∣∣∣∣∣∣∣∣
⊥

(5)

where

H0
‖ =

∣∣∣∣∣∣∣∣
1 0 0 xo

0 1 0 yo

0 0 1 zo

0 0 0 1

∣∣∣∣∣∣∣∣ H0
⊥ =

∣∣∣∣∣∣∣∣
0 0 1 zo

0 1 0 yo

1 0 0 xo

0 0 0 1

∣∣∣∣∣∣∣∣ (6)

The framework can be extended to six degrees of freedom by manipulating the
homogeneous transformation matrices, where (5) transforms the local coordi-
nates of Ωα(s) into global coordinates generating 3D coordinates for each layer
boundary.

Fig. 8. Orientation of image planes for 3D Reconstruction, superimposed on the no-

tional layers of a cornea

The intersection of the ith parallel plane with the jth perpendicular plane
produces a line on both image planes. The intersection of this line with the layer
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boundaries can produce point correspondences for each image. An optimization
problem can be formulated to minimize the total Euclidean distance, in 3D
space, between all of the corresponding points. The intersection of two lines
can be derived by relating the coordinates the ith parallel plane with the jth

perpendicular plane ∣∣∣∣∣∣∣∣
x
y
0
1

∣∣∣∣∣∣∣∣
j

= Hj
i

∣∣∣∣∣∣∣∣
x
y
0
1

∣∣∣∣∣∣∣∣
i

=

∣∣∣∣∣∣∣∣
zi − xj

o

yi + yi
o − yj

o

xi + xi
o − zj

o

1

∣∣∣∣∣∣∣∣ (7)

using a homogeneous transformation, Hj
i ,

Hj
i =

(
H0

⊥
)−1

H0
‖ = H⊥

0 H0
‖ =

∣∣∣∣∣∣∣∣
0 0 1 zi

o − xj
o

0 1 0 yi
o − yj

o

1 0 0 xi
o − zj

o

0 0 0 1

∣∣∣∣∣∣∣∣ (8)

The sequence of steps, below, in (9), defines the distance di,j between the bound-
ary layer defined by αi on the ith image plane and the corresponding boundary
defined by αj on the jth image plane:

xi = zj
o − xi

o

solve (Ωαi

i (si)x = xi, si)
yi = Ωαi

i (si)y

yj = yi + yi
o − yj

o

xj = zi
o − xj

o

solve
(
Ω

αj

j (sj)x = xj , sj

)
d2

i,j =
(
yj −Ω

αj

j (sj)y

)2

(9)

The method is extensible to the general case, including rotations to allow six
degrees of freedom, however the intersection line becomes significantly more
complicated.

4 Results

The 2D segmentation algorithm has been tested on 2,050 UHROCT images
obtained from 12 healthy subjects. The images were also manually segmented
to provide ground truth. The proposed algorithm located the Epithelium and
Endothelium boundaries to within about 2.5 pixels of the manually segmented
images for all of the images, with a standard deviation of about 1.3 and 3.2
pixels, respectively. Table 1 contains the results in pixels and a approximation
of μm for the other layers. These results can also be immediately improved
by compensating for the segmentation bias. Each boundary is statistically too
high in the image by between 0.7 to 3.7 pixels depending on the boundary. The
boundaries can be systematically adjusted to reduce the error.
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Fig. 9. Six examples of applying 2D corneal segmentation to OCT images. The model

accomplishes exact segmentation, despite significant noise and varying corneal layer

location within the image. The prominent imaging artifacts result from the high reflec-

tively of the cornea when imaging near the apex.

Fig. 10. Nine 3D Corneal reconstructions from the segmentation and mutual alignment

of 2D UHROCT images. The images are taken from three subjects, one on each row.

The segmentation results are superimposed on the underlying UHROCT data, which

can be seen to have significant noise and artifacts.
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Table 1. Segmentation Experimental Results

Error

Layer Bias [pixels] Std.Dev [pixels] Bias [pixels] [μm] Std.Dev [μm]

epi 1.32 1.26 3.92 4.38

bow 0.709 10.7 4.59 5.38

str 2.56 5.19 2.86 3.50

des 3.68 4.69 5.94 6.07

end 2.52 3.25 6.52 7.11

The 3D reconstruction algorithm used the results of the 2D segmentation
algorithm applied to 3 healthy human subjects. Although four datasets were
collected from each human subject, initial problems with the imaging procedure
prevented the use of some data because the cornea moved out of the imaging
plane as the subjects were being scanned. Figure 10 illustrates the 3D reconstruc-
tion obtained from the algorithm. Notice that the reconstruction for subject 2,
image panes (d-f), contains sparse data due to the aforementioned imaging prob-
lem (since corrected). The figure visually shows how well the 3D reconstruction
process aligned all of the layer boundaries, and supplementary material provided
with this paper includes video, rotating the results in 3D to better illustrate how
well the layers are aligned.

During the study, 442 UHROCT tomograms were successfully segmented for
all three subjects. The segmentation process required approximately eight hours
using Matlab on a dual-core 2.5GHz laptop (if these layers were manually seg-
mented, at an average rate of 15 minutes per image, it would take an experienced
user about 110 hours). The advantage of the segmentation algorithm is that it
is immune to fatigue and, given multiple processors, can segment UHROCT im-
ages in parallel. With such segmentation quality and reconstruction rates, the
inference and clinical use of 3D corneal layer boundaries becomes quite feasible.

5 Conclusions

The method proposed in this paper is capable of automatically producing two-
dimensional segmentations and three-dimensional reconstructions of a human
cornea.

The proposed segmentation algorithm was applied to over two-thousand im-
ages, segmenting each automatically, a performance so far unmatched in any
published method.

The three-dimensional corneal reconstruction is based on the simultaneous co-
alignment of segmented two-dimensional frames, with each frame permitted trans-
lational degrees of freedom, to be optimized. The resulting three-dimensional re-
construction was successfully applied to three test subjects.

The ability to produce large, three-dimensional corneal reconstructions opens
significant clinical and research opportunities. Collaborators in science and
optometry are eager to continue refining the methodology, to allow future work
in revealing details of corneal and retinal anatomy.
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Further work can introduce additional degrees of freedom in the perpendicular
planes to account for variance in planar orientation. Although perpendicular
planes were proposed, there is no inherit requirement in the algorithm prohibiting
planes of arbitrary orientation. Perpendicular planes were selected for imaging
convenience.
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Abstract. The homography between pairs of images are typically com-

puted from the correspondence of keypoints, which are established by

using image descriptors. When these descriptors are not reliable, either

because of repetitive patterns or large amounts of clutter, additional

priors need to be considered. The Blind PnP algorithm makes use of

geometric priors to guide the search for matches while computing cam-

era pose. Inspired by this, we propose a novel approach for homography

estimation that combines geometric priors with appearance priors of am-

biguous descriptors. More specifically, for each point we retain its best

candidates according to appearance. We then prune the set of poten-

tial matches by iteratively shrinking the regions of the image that are

consistent with the geometric prior. We can then successfully compute

homographies between pairs of images containing highly repetitive pat-

terns and even under oblique viewing conditions.

Keywords: Homography estimation, robust estimation, RANSAC.

1 Introduction

Computing homographies from point correspondences has received much atten-
tion because it has many applications, such as stitching multiple images into
panoramas [1] or detecting planar objects for Augmented Reality purposes [2,3].
All existing methods assume that the correspondences are given a priori and usu-
ally rely on an estimation scheme that is robust both to noise and to outright
mismatches. As a result, the best ones tolerate significant error rates among the
correspondences but break down when the rate becomes too large. Therefore,
in cases when the correspondences cannot be established reliably enough such
as in the presence of repetitive patterns, they can easily fail. In this paper, we
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(a) (b)

Fig. 1. Detecting an oblique planar pattern. (a) PROSAC fails due to high number of

outliers caused by the extreme camera angle. (b) Our approach can reassign correspon-

dences as the homography space is explored and can recover the correct homography.

introduce an estimation scheme that performs well even under such demanding
circumstances.

We build upon the so-called Blind PnP approach [4] that was designed to
simultaneously establish 2D to 3D correspondences and estimate camera pose.
To this end, it exploits the fact that, in general, some prior on the camera pose
is often available. This prior is modeled as a Gaussian Mixture Model that is
progressively refined by hypothesizing new correspondences. Incorporating each
new one in a Kalman filter rapidly reduces the number of potential 2D matches
for each 3D point and makes it possible to search the pose space sufficiently fast
for the method to be practical.

Unfortunately, when going from exploring the 6-dimensional camera-pose
space to the 8-dimensional space of homographies, the size of the search space
increases to a point where a naive extension of the Blind PnP approach fails
to converge. This is in part because this approach is suboptimal in the sense
that it does not exploit image-appearance, which can be informative even in
ambiguous cases. In general, any given 2D point can be associated to several po-
tentially matching 2D points with progressively decreasing levels of confidence.
To exploit this fact without having to depend on a prori correspondences, we
explicitly use similarity of image appearance to remove both low confidence po-
tential correspondences and pose prior modes that do not result in promising
match candidates. We further improve convergence rates by ignoring potential
matches that are least likely to reduce the covariances of the Kalman filter.

As a result, our algorithm performs well even in highly oblique views of pla-
nar scenes containing repetitive patterns such as the one of Fig. 1. In such scenes,
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interest point detectors exhibit very poor repeatability and, as a result, even such
a reliable algorithm as PROSAC [5] fails because a priori correspondences are
too undependable. We will use benchmark data to quantify the effectiveness of
our approach. We will also show that it can be used to improve the convergence
properties of the original Blind PnP.

2 Related Work

Correspondence-based approaches to computing homographies between images
tend to rely on a RANSAC-style strategy [7] to reject mismatches that point
matchers inevitably produce in complex situations. In practice, this means se-
lecting and validating small sets of correspondences until an acceptable solution
is found. The original RANSAC algorithm remains a valid solution, as long as
the proportion of mismatches remains low enough. Early approaches [8,9] to in-
creasing the acceptable mismatch rate, introduced a number of heuristic criteria
to stop the search, which were only satisfied in very specific and unrealistic situ-
ations. Other methods, before selecting candidate matches, consider all possible
ones and organize them in data structures that can be efficiently accessed. In-
dexing methods, such as Hash tables [10,11] and Kd-trees [12], or clusters in the
pose space [13,14] have been used for this purpose. Nevertheless, even within
fast access data structures, these methods become computationally intractable
when there are too many points.

Several more sophisticated versions of the RANSAC algorithm, such as Guided
Sampling [15], PROSAC [5], and ARRSAC [16] have been proposed and they
address the problem by using image-appearance to speed up the search for con-
sistent matches. However, when the images contain repetitive structure resulting
in unreliable keypoints and truly poor matches such as in Fig. 1, even they can
fail. In those conditions, simple outlier rejection techniques [25] also fail.

In the context of the so-called PnP problem, which involves recovering camera
pose from 3D to 2D correspondences, the Softposit algorithm [17] addresses this
problem by iteratively solving for pose and correspondences, achieving an effi-
cient solution for sets of about 100 feature points. Yet, this solution is prone to
failure when different viewpoints may yield similar projections of the 3D points.
This is addressed in the Blind PnP [4] by introducing weak pose priors, that con-
strain where the camera can look at, and guide the search for correspondences.
Although achieving good results, both these solutions are limited to about a hun-
dred feature points, and are therefore impractical in presence of the number of
feature points that a standard keypoint detector would find in a high resolution
textured image.

In this paper, we show that the response of local image descriptors, even when
they are ambiguous and unreliable, may still be used in conjunction with geomet-
ric priors to simultaneously solve for homographies and correspondences. This
lets us tackle very complex situations with many feature points and repetitive
patterns, where current state-of-the-art algorithms fail.
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3 Algorithm Overview

We next give a short overview of the algorithm we propose to simultaneously
recover the homography that relates two images of a planar scene and point
correspondences between them. We achieve this by

– Introducing a Geometric prior: We first define the search space for the
homography. It can cover the whole homography space or depending on the
application can be constrained to cover a smaller space, for example to limit
the range of rotations or scales. We generate random homography samples in
this search space, as we detail in Section 4. We then fit a Gaussian Mixture
Model (GMM) to these samples using the Expectation Maximization (EM)
algorithm. The modes of this GMM forms the geometric prior.

– Introducing an Appearance prior: For each keypoint pair (xi,xj), we
define the appearance prior as the similarity score sA(xi,xj) given by a local
matching algorithm.

– Iteratively solving for correspondences and homography: We explore
the modes of the geometric prior until enough consistent matches and the
corresponding homography are found. Section 5 gives the details, we provide
a brief overview here. This prior exploration starts at each prior mode mean
with the covariance matrices estimated by EM. Each model point is trans-
fered using the homography, while the projection of its covariance defines a
search region for potential matches. We use the appearance prior to limit
number of correspondences as explained in Section 4.3. The homography
estimate and its covariance are iteratively updated by a Kalman filter that
uses the best correspondences as measurements until the covariance becomes
negligible.

4 Priors on the Search Space

In this section we give details on how both geometric and appearance priors are
built, and on the pruning strategies we define to robustly reduce the number
of keypoints and eliminate unnecessary geometric priors. As we will show in
Section 6, this lets us to handle highly textured images with a large number of
interest points.

4.1 Parameterization of Homographies

To define a search space for the homography, we first need to select a parame-
terization for the homography. Then we can randomly sample these parameters
to obtain homography samples from the search space. A natural choice is to
decompose the homography as

x′ = A′ (R− tvT
π

)
A−1x ,

where A and A′ are the intrinsic parameters of the cameras, R and t their
extrinsic transformation, vπ is the unit normal to the scene plane, x′ is a point
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on the target image, and x is a point on the model image. However this is an
over-parameterization and has even more than 8 parameters. Therefore we look
for a direct parameterization of the 8 DOF of a homography:

x′ = Hx ,

Once such possibility is to consider its action on a unit square centered around
the origin. We can therefore parameterize the homography with the coordinates
of the resulting quadrangle as H(u1, v1, u2, v2, u3, v3, u4, v4). Given the 2D cor-
respondences between the four vertices of the quadrangle, we can find the cor-
responding homography as the solution of the linear system

MĤ = 0 , (1)

whereM is a 8×9matrix made of the vertices coordinates, ĤT = [H11, . . . ,H33]T,
Hij are the components of the matrix H, and 0 is a vector of zeros. We can also
work out its Jacobian evaluated at (u1, v1, u2, v2, u3, v3, u4, v4)

JH =

⎡⎢⎣
δH11
δu1

δH12
δu1

. . . δH33
δu1

...
...

...
δH11
δu4

δH12
δu4

. . . δH33
δu4

⎤⎥⎦ ,

which we will need when computing the projection of covariances defining the
search space for correspondences. Therefore, we can propagate a covariance as-
signed to the prior modes to the model image as follows

Σw = JuvJHΣusJT
HJT

uv

and Juv stands for the Jacobian of the homography evaluated for the image
point (u′, v′). It can be written as

Juv = δu′/δh =
1
z′

[
xT 0 −u′xT

0 xT −v′xT

]
, (2)

where u′ = (u′, v′)T = (x′/z′, y′/z′)T are the inhomogeneous coordinates.

4.2 Geometric Prior

To define the geometric prior, we use a set of homography samples representing
the set of all possible deformations of the image plane. If an estimate of the
internal parameters is available, it can be parametrized directly by the camera
rotation and translation. We apply all deformations obtained in this way to
the unit square and obtain a set of sample parameter values corresponding to
coordinates of the deformed square. Using EM we fit a GMM to these samples,
which yields G Gaussian components with 8-vectors {h1, . . . ,hg} for the means,
and 8 × 8 covariance matrices {Σh

1 , . . . ,Σh
g}. Note that it is possible to use a

larger or smaller set of deformations to define the geometric prior depending on
the constraints imposed by the application.
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Fig. 2. Pruning based on appearance. Left: For the projected model point on the

image, a direct adaptation of the Blind PnP would select every point within the uncer-

tainty ellipse as a correspondence candidate. Considering appearance, our algorithm

only selects a small subset of them. Right: We plot the residual re-projection error for

each prior mode. Modes with lower indexes have higher rank and are explored first. A

residual error of ‘Inf’ denotes a mode that does not converge to a good homography. A

blind approach explores the modes following the EM ranking therefore spending time

on ones that eventually do not result in good pose hypotheses. We use appearance to

rank the modes and explore a smaller subset without missing out the good ones.

4.3 Appearance Prior

To compute the similarity score between keypoint pairs, we have chosen to work
with the Ferns keypoint classifier [18] since it is fast and directly outputs a
probability distribution for each keypoint. However, our approach can use other
state-of-the-art keypoint descriptors such as SIFT [19] or SURF [20], provided
that we can assign a similarity score to each hypothetical correspondence. We
exploit the computed score in two ways.

Pruning keypoints. Using appearance, we are able to reduce for each model
point, the whole set of potential candidates to a small selection of keypoints.
The probability of finding a good match remains unaltered but the computa-
tional cost of the algorithm is highly reduced. Fig. 2 shows the effect of pruning
keypoints. Note that it significantly reduces the number of potential matches.
Additionally, we select only the most promising model keypoints that have a
high scoring correspondence given by Ferns posterior distributions.

Pruning prior modes. To avoid exploring all modes of the geometric prior,
we assign an appearance score to each one and eliminate the ones with lower
scores. To compute the appearance score SA for each mode hg, we transform
the set of model keypoints xi only once using the corresponding homography
given by the mode, pick the ones that has only one potential candidate, and
sum their similarity scores as

SA(hg) =
1
M

M∑
i=1

δ(xi ∈ C1) · sA(xi,xj), (3)
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where sA(xi,xj) is the similarity score of xi and its corresponding target key-
point xj , C1 is the set of model keypoints with exactly one match candidate, and
δ(.) is the indicator function that returns 1 if its argument is true or 0 otherwise.
Fig. 2 depicts an example with G = 100 pose prior modes.

5 Estimating Correspondences and Homography

At detection time, we are given a set of M 2D points {xi} on the model image
and a set of N keypoints {xj} on the target image. Some of the model keypoints
correspond to detected features and some do not. Similarly, the homography may
transfer some of the model points to locations without any nearby keypoints.
Our goal is to find both the correct homography H and as many point-to-point
correspondences as possible. LetM be a set of (xi,xj) pairs that represents these
recovered correspondences and Nnd be the subset of points for which no match
can be established. We want to find the correct homography H and matches M
by minimizing

Error(H) =
∑

(xi,xj)∈M
||xj −Hxi||2 + γ|Nnd| , (4)

where γ is a penalty term that penalizes unmatched points.

Pose Space Exploration. We sequentially explore the pose prior modes by
picking candidate correspondences (xi,xj) and by updating the mode mean hg

and covariance Σg using the standard Kalman update equations,

h+
g = hg + K (xj −Hgxi) ,

Σp+
g = (I−KJ(xi))Σp

g ,

where Hg is the homography corresponding to the mean vector hg, K is the
Kalman Gain, and I is the Identity matrix.

Candidate Selection. We use the covariance Σh
g to restrict the number of

potential of matches between the points of the two images, by transferring the
model points xi using the homography to target image coordinates ui and the
projected covariances Σu

i . Error propagation yields

Σu
i = J(xi)Σh

gJ(xi)T , (5)

where J(xi) = JuvJH is the Jacobian of the transfer by homography Hgxi that
we derived in Section 4. This defines a search region for the point xi, and we
only consider the detected image features u′

j such that

(ui − u′
j)

T Σu
i (ui − u′

j) ≤ T 2 (6)

as potential matches for xi and only if they have a high enough similarity score
sA(ui,u′

j). T is a threshold chosen to achieve a specified degree of confidence,
based on the cumulative chi-squared distribution.
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(a) (b)

(c) (d)

Fig. 3. Pose space exploration. (a) Exploration of a prior mode starts by picking

correspondences with small projected covariance hence high confidence. (b) In the

third iteration, covariances are much smaller. Also the selected candidate has larger

covariance than the 3 model points indicated with yellow ellipses. Their locations will

not be updated and they will not be considered for future Kalman updates. (c) The

fourth point is picked despite its large uncertainty since the other points close to the

center will not help to reduce covariance as much. (d) The covariances are very small

as four points have already been used to update the homography. We can still use a

fifth point to remove the uncertainty close to the borders.

Blind PnP selects the point with minimum number of potential candidates
inside the threshold ellipse. When the number of potential candidates is high
(n ≈ 5) this works just fine because it minimizes the number of possible combi-
nations. In our case, taking advantage of the appearance, n becomes very small
and most of the points have either zero or one potential candidate. In this case,
this blind selection process becomes random and the updates may not converge
to a good homography.

Another way to select the point to introduce into the Kalman Filter is the
one proposed by [21,22] that selects at each iteration the most informative point,
which would make the algorithm converge quickly to the optimal solution. How-
ever, this method is sensitive to outliers and the optimal solution may be hard
to find if it is found at all.

As none of the preceding methods was suitable, we implemented a new
approach for candidate selection. Instead of trying to converge as fast as pos-
sible, we choose the point which has the minimum number of correspondences,
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Fig. 4. Candidate selection. Left: A blind selection of candidates for Kalman filter-

ing can not recover homographies due to increased number of pose space dimensions.

Adding appearance with or without mutual information solves this problem. Right:
Although it has almost no effect on final performance, using mutual information during

candidate selection speeds up convergence considerably.

has small projected covariance and also has a high similarity score so that it
maximizes

sij =
dist(ui,u′

j)∣∣J(xi)Σh
gJ(xi)T

∣∣ · sA(u′
j |ui). (7)

This leads to a small and robust step towards the solution. We then remove
all other model points with smaller covariance from the list of potential points
to introduce into the Kalman Filter. This is motivated by the observation that
they will have even smaller covariance after the update and they can not reduce
the uncertainty significantly since a low covariance indicates a low Mutual Infor-
mation with the pose. As a result, we avoid making unnecessary computations
while decreasing the number of iterations. Figure 3 illustrates this selection and
pruning of model point projections as we iterate using the Kalman filter. Note
that at first low covariance candidates are preferred and during the iterations we
select candidates that lie progressively farther away from the plane center that
has the least uncertainty. Figure 4 shows that this candidate selection using both
mutual information and appearance outperforms the blind selection method or
appearance alone. The time values are given for our MATLAB implementation.

Homography Refinement. After performing four updates on a prior mode,
the covariance becomes very small, so we can directly transform model keypoints
and match them to the closest target keypoint. Finally, the homography needs
to be refined using all available information.

We tried directly using DLT [23] with all recovered correspondences to es-
timate a refined homography but this did not yield satisfactory results as the
estimated homography is not always close and the number of correspondences
is not large enough. Instead we use a PROSAC [5] algorithm as follows:

– For each model keypoint, we establish potential correspondences without us-
ing the similarity scores but only the projected covariances. This significantly
increases the number of correct matches that can be recovered.
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Fig. 5. Pose Refinement. Left: The Kalman Filter output refined by DLT using all

available correspondences. The result is inaccurate since the appearance scores are too

ambiguous leading to a low number of correct matches. Right: The correct homography

is recovered, using a robust estimator that can re-assign correspondences.

– During PROSAC iterations each model point is considered as an inlier only
for one of its potential correspondences.

Since potential matches are obtained using the result of the Kalman Filter, this
refinement is constrained enough to let us efficiently re-assign correspondences
with ambiguous appearance scores. Fig. 5 shows the results after refinement.

6 Results

We demonstrate the effectiveness of our approach using synthetic experiments,on
standard benchmark datasets as well as on a new sequence especially captured to
show robustness against repetitive textures. Finally, we show that appropriately
using appearance can significantly speed up the original Blind PnP approach for
camera pose estimation.

6.1 Synthetic Experiments

We used a synthetic scenario to evaluate the algorithm under the effects of
clutter, occlusions and different values for the sensor noise. More specifically, we
performed experiments varying the principal parameters such as the percentage
of noise in the images, the percentage of clutter points in the detected image,
the percentage of detected model points, and the Depth of the distribution of
the inlier correspondences. The Depth parameter represents the position that
the match candidate occupies, in a list of candidate points ordered according
appearance information. For instance, a model point with Depth = 5, means that
its true match corresponds to its fifth best candidate according to appearance
alone. Note that, the more repetitive patterns contains an scene, the depth values
for their features points will be higher, and hence, solving the matching will be
a more complex task.

We repeat the experiment 5 times for each set of parameters. We compare the
results with PROSAC and we show that our algorithm outperforms it when deal-
ing with occlusions while showing a similar robustness against cluttered images.
Our algorithm is not affected by the degradation in the probability distributions
of inlier matches as the experiment shows that depth affects PROSAC only.
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Fig. 6. a) Probability distribution function used to assign scores to the correspon-

dences. b) The experiment shows that our method is correctly estimating the solution

when the correct match is between the first 5 correspondences while PROSAC fails. c)
Algorithm robustness against clutter and d) occlusions.

The probability distribution functions used to assign appearance scores to the
correspondences and the results obtained in the experiments are shown in Fig. 6.

6.2 Homography Estimation

To test the method in real images, we have used images from various sources.
First, we tested our algorithm in some of the image datasets presented in [24].
In particular, we present the results obtained by experiencing on marked as
structured datasets like Graffiti (Fig.7) and textured datasets like Wall (Fig.8).
We also have built our own set of images showing a building wall with repetitive
texture as the viewpoint changes.

In all the experiments, the number of model points is M = 200, while the
number of detected keypoints is fixed at N = 3000 for the Graffiti and Wall
datasets and to N = 1500 for the rest. We considered a depth of correspondence
hypothesis below N ′ = 10 in all of the sequences and the number of model points
kept has been fixed to M ′ = M/3. For every dataset, G = 300 homography prior
modes was computed by EM from which we only keep a subset of G′ = 30 at
the end of prior pruning by the appearance score.

From the bottom histograms of Figs. 7, 8, and 9, it can be clearly seen that
as the viewpoint goes towards extreme angles, the repeatability of the feature
detector decreases, as the percentage of the correct ground truth matches do,
and it becomes more and more difficult to extract the correct homography with-
out considering hypotheses at higher Depth value. Observe how our algorithm
can manage to correctly retrieve the homography in most of experiments, while
PROSAC requires a large number of inliers with Depth = 1. Obviously it fails
when in extreme cases where there are no inliers with a Depth value < 10, such
as the right-most image in Fig. 8.

6.3 Camera Pose Recovery with an Appearance Prior

The Blind PnP approach uses only a geometric prior to recover 2D-to-3D cor-
respondences and also the camera pose with respect to the scene. In a final
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Fig. 7. Graffiti sequence. PROSAC fails to extract the homography when the simple

keypoint detector we use can not repeatedly detect the most keypoints visible in the

frontal view. Since it also relies on the geometric prior our algorithm continues to work.
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Fig. 8. Wall sequence. The highly ambiguous texture on the wall rapidly reduces the

matches that can be obtained using only the appearance. Our algorithm can still recover

the correct homography even after PROSAC starts to fail.

experiment we used the appearance prior of Section 4.3, to limit the number
of 2D-3D correspondences and also to search only priors with high appearance
scores given by Eqn. 3. Figure 10 shows that this speeds up the algorithm signif-
icantly since the computational complexity of Blind PnP is linear in the number
of 3D points and prior modes. Again, time values are obtained using our MAT-
LAB implementation.



70 E. Serradell et al.

O
u
r
m

e
th

o
d

P
R
O
S
A
C

M
a
tc

h
e
s

1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

 Match Depth

 In
lie

rs
 (

%
)

1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

 Match Depth

 In
lie

rs
 (

%
)

1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

 Match Depth
 In

lie
rs

 (
%

)
1 2 3 4 5 6 7

0

5

10

15

20

25

30

35

40

 Match Depth

 In
lie

rs
 (

%
)

1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

 Match Depth

 In
lie

rs
 (

%
)

Fig. 9. Building sequence. Due to the repeated texture on the building first appearance

matches are incorrect even if the keypoint detector responds strongly in the correct

location. This is reflected in the distribution of inliers as we consider up to first 7

matches. While PROSAC works only with the first match, our approach is able to

utilize correct matches from several levels and recover the correct homography.
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Fig. 10. PnP using an appearance prior. The curves show the time and speed up for

different number of 3D and 2D points kept, denoted respectively by M and N. The

algorithm recovers the correct camera pose in all cases. Left: Run-time of the algorithm

using appearance to remove potential correspondences. Right: Gain in speed compared

to using on a geometric prior.

7 Conclusion

We have presented a novel approach to simultaneously estimate homographies
and solve for point correspondences by integrating geometric and appearance
priors. The combination of both cues within a Kalman filter framework that
iteratively guides the matching process, this yields an approach that is robust to
high numbers of incorrect matches and low keypoint repeatability. We show this
by testing thoroughly in synthetic and real databases of complex images with
highly repetitive textures.

The formulation of our approach is fairly general, and allows integrating addi-
tional features. As part of future work, we consider exploiting motion coherence
and use the method for tracking homographies in real time.
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Abstract. When a purely rotating camera observes a general scene,

overlapping views are related by a parallax-free warp which can be esti-

mated by direct image alignment methods that iterate to optimise photo-

consistency. However, building globally consistent mosaics from video has

usually been tackled as an off-line task, while sequential methods suitable

for real-time implementation have often suffered from long-term drift. In

this paper we present a high performance real-time video mosaicing algo-

rithm based on parallel image alignment via ESM (Efficient Second-order

Minimisation) and global optimisation of a map of keyframes over the

whole viewsphere. We present real-time results for drift-free camera rota-

tion tracking and globally consistent spherical mosaicing from a variety

of cameras in real scenes, demonstrating high global accuracy and the

ability to track very rapid rotation while maintaining solid 30Hz opera-

tion. We also show that automatic camera calibration refinement can be

straightforwardly built into our framework.

Keywords: Real-time tracking, spherical mosaicing, SLAM,

auto-calibration.

1 Introduction

A set of images can be fused into a mosaic if there is no parallax between them,
and this is the case either when a generally moving camera browses a plane or
when a general 3D scene is observed by a camera which only rotates. There is a
great deal of literature on building mosaics from multiple images or video (see
the tutorial by Szeliski [1]). The emphasis has been on methods which operate
off-line, consisting of pair-wise image registration achieved either with features
(e.g. [2] using SIFT matching, or [3]) or whole image alignment (e.g. [4]), and
global optimisation. Meanwhile, methods that were able to operate from video
in real-time such as [5] achieved accurate local registration but were subject to
drift over longer periods due to the lack of explicit global optimisation.

The core issue of mosaicing is to accurately estimate the motion of the camera,
and if globally consistent mosaics are to be constructed from video in real-time
this motion estimation must be drift-free over arbitrarily long time periods. Like
any case of estimating the motion of an outward-looking sensor in a previously
unknown environment, mosaicing can be considered as a Simultaneous Local-
isation and Mapping (SLAM) problem. This is important, because in SLAM

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 73–86, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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research, originating in the mobile robotics area, there has been great attention
paid to developing algorithms which run sequentially in real-time but are also
able to generate globally consistent scene models.

The predominant early approaches to SLAM were based on sequential prob-
abilistic filtering algorithms, most importantly the Extended Kalman Filter
(EKF), to jointly estimate the positions of both the moving sensor and the fea-
tures which it observed. This methodology was recently successfully applied to
image mosaicing by Civera et al. [6], in the first work which was able to demon-
strate drift-free mosaicing at frame-rate from a rotating camera. The computa-
tional cost of the EKF backbone of this technique, however, scales badly with
the number of features kept in the map state, and this meant that only around
10–15 features (matched using 11×11 pixel patches) could be tracked per frame;
all but 3% of every image was ignored for the purposes of image alignment, and
this sets a limit on the mosaicing quality which can be achieved.

Recently in real-time 3D camera tracking, methods based not on filtering
but parallel pose estimation relative to keyframes and global optimisation have
enabled large amounts of image correspondence information to be used in all
frames. This approach was pioneered by Klein and Murray’s Parallel Tracking
and Mapping (PTAM) system [7] where hundreds of feature points are tracked
per frame and built into a globally consistent 3D model of a workspace. Impor-
tantly, PTAM demonstrated that only tracking relative to the nearest keyframe
is necessarily required to run at frame-rate to maintain live operation. The
global optimisation component of PTAM (bundle adjustment of scene points
and keyframes) runs in a parallel thread and repeats only as often as processing
resources allow at a fraction of frame-rate.

This decoupling of local motion tracking from building a consistent global
world model has become a dominant methodology in more generic SLAM re-
search in robotics, since the pioneering work of Lu and Milios [8] and the first
full implementation of a sequential mapping algorithm combining local tracking
with interleaved global optimisation by Gutmann and Konolige [9], in this case
with 2D laser scan data. With this interleaved approach, one is free to choose raw
data alignment methods for the local tracking component, and the SLAM ‘map’
consists of the historically estimated sensor poses rather than feature locations.

In our work, we adapt this parallel tracking/optimisation approach to live
video mosaicing, and make use of a state of the art whole image alignment
method both for local rotation tracking and at the heart of a parallel optimisation
thread for globally consistent alignment of a set of keyframes spanning the whole
viewsphere. We are also able to refine estimates of camera intrinsic parameters in
this global optimisation. Whole image alignment, as opposed to feature tracking,
densely makes use of all of the texture in the images to permit registration which
is as accurate as possible. Further, we show that a hierarchical implementation
via an image pyramid permits the tracking to be efficient while maintaining a
wide basin of convergence allowing very rapid camera rotation to be tracked.

Still one of the most widely used methods for estimating the warp between
images, the Lucas-Kanade [10] method is based on the iterative minimisation of
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a cost function related to how well one reference image matches that of a warped
comparison image. The parameters of the warp define the dimensionality of this
space. By computing the derivative of the cost function with respect to the warp
parameters, the parameter space gradient can be ‘surfed’ to a minimum, which
may or may not be the global minimum.

Within our system, we make extensive use of the technique proposed by Malis,
named Efficient Second-order Minimisation (ESM) [11] which instead finds the
second order minimiser of the cost function while using only first order terms.
This provides stable convergence in fewer iterations than the Lucas-Kanade
method.

2 Method

Our algorithm is split into two tasks which run as parallel threads on a multi-core
PC: a) tracking from a known map, and b) global map maintenance and optimi-
sation (see Figure 1), an approach inspired by PTAM [7]. In the first ‘tracking’
thread, we use the direct, whole image second order optimisation method ESM
of Malis [11], with further contributions from Mei et al. [12], which we implement
on graphics hardware for high-quality real-time tracking relative to our map. In
the second parallel thread, we run a global optimisation procedure also based
on ESM which adjusts the estimated orientations of all keyframes of our map
and camera intrinsics simultaneously. This allows us to produce globally consis-
tent mosaics in real-time. We remove radial distortion from all live frames as
they enter our system, and deal only with perspective images from then on. We
use a third party tool to establish the distortion parameters. Additionally, we
describe an automatic method for relocalisation if tracking should fail, allowing
the current mosaic to be re-joined without corruption.

Keyframe Map. Within our system, we store a collection of key historic camera
poses with associated image data, which we call keyframes. Keyframes within

Fig. 1. System overview showing separation of tracking and mapping
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our map are related to one another by a 3DOF rotation. We store the current
estimate of a keyframe’s pose as a rotation matrix Rwk relating the camera’s
local frame of reference, k, to that of the world, w.

Tracking. When tracking commences, we set the first live image to be our first
keyframe, k0 with pose Rwk0 set to the identity. For each subsequent live frame,
we use the previous live pose to select the closest keyframe from our map. We
estimate the current pose by considering the image warp between this keyframe
and the current image, which in turn allows us to estimate the relative motion.

Exploration. As tracking continues, we create new keyframes and add them to
the map if the overlap between our current image and closest keyframe becomes
too small and falls below a threshold. Keyframes which we add inherit the pose
of the live camera at that time.

2.1 Local Motion Estimation

For local motion estimation, we update our current pose estimate, Rwc, by con-
sidering the live image and a reference keyframe r with known pose, Rwr.

For two cameras in a general configuration observing a plane, we can de-
scribe pixel correspondence within their images by a plane induced homography.
Cameras which purely rotate, however, allow us to disregard the scene entirely.
Defining Hba as the homography that transfers points imaged in camera a to the
equivalent points in camera b, we can write Hba as a function of Rba:

Hba = KRbaK−1 , (1)

where K is the 3× 3 camera intrinsic calibration matrix:

K =

⎛⎝fu 0 u0

0 fv v0

0 0 1

⎞⎠ . (2)

This enables us to generate views from rotated ‘virtual’ cameras by warping an
existing image. Our frame to frame tracking problem is then to find an update
to the parameters of the plane induced homography Hlr which best reflects the
warp between reference keyframe r and our live camera l.

Following the method of Malis [11], we parametrise updates to our pose using
the Lie Algebra. The class of 3 × 3 rotation matrices belong to the Lie Special
Orthogonal group SO(3). This group can be minimally parametrised around the
identity by a three-vector belonging to the associated Lie Algebra so(3). This
parametrisation is locally Euclidean about 0, which is important for the ESM
method. An element x ∈ so(3) is related to a member R(x) ∈ SO(3) through
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the matrix exponential map, where elements of x form coefficients for the group
generators, Ai, i ∈ [1, 2, 3]:

R(x) = exp

(
3∑

i=1

xiAi

)
. (3)

Given a current estimate of the rotation, R̂lr, and an update parametrised by
x ∈ so(3), Rlr(x), we update our estimate using the following rule:

R̂lr ←− R̂lrRlr(x). (4)

We can now define an objective function describing the sum of squared differences
between pixels in the live and reference images related by the homography, itself
a function of the current rotation estimate R̂lr, and the update x:

f(x) =
1
2

∑
pr∈Ωr

[
Il

(
H
(
R̂lrR(x)lr

)
pr

)
− Ir (pr)

]2

. (5)

Ir and Il represent the reference keyframe and live image respectively. The sum
is formed from each pixel pr in the set of pixels Ωr defined in the reference image.

It can be shown that, up to second order, this function is minimised at
x0 (Equation 6), where + is the pseudo-inverse and J the Jacobian relating
change in parameters to changes in the cost function (Equation 7) [12]:

x0 = −J+f(0) (6)

J =
(

JIl + JIr

2

)
JwJKJRJx. (7)

The reader is asked to refer to [11,12,13] for details, including the definition
of these Jacobians. The special formulation of these Jacobians taken about the
reference and current images and the subsequent minimisation of this objective
function is what is referred to as Efficient Second-order Minimisation (ESM).

If we instead write f(x) explicitly as the norm of a residual difference vector
d (Equation 8), where each row corresponds to a pixel in Ωr (Equation 9), we
see that the size of the system can be reduced by solving instead its normal
equations (Equation 10):

f(x) =
1
2
‖d(x)‖2 (8)

dpr (x) = Il
(
H
(
R̂lrRlr(x)

)
pr

)
− Ir (pr) (9)

x0 = −(JTJ)−1JTf(0). (10)

Since J has dimensions num pixels ×3, JTJ (a 3 × 3 matrix) is significantly
smaller than J , and can be computed by summing the individual outer products
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of rows of J . We progress by iteratively solving this non-linear least squares
system, applying the update R̂lr = R̂lrRlr(x0) until convergence.

Upon convergence, R̂lr represents the transformation between the live and
reference cameras. Applying this to consecutive frames from a video sequence
could form the basis for a visual odometry system. Here, instead, we match the
current live image against the ‘closest’ keyframe in our map.

2.2 Global Map Optimisation

Joint global optimisation of all keyframes of the map and camera intrinsics
occurs concurrently in a separate thread. We apply the ESM method to a more
general objective function. We parametrise updates to pose through the Lie
Algebra as before, but formulate updates to the camera intrinsic parameters by
a vector, k ∈ R

4, through exponentiation. Thus, k = 0 represents no change to
the intrinsics. The update rule becomes:⎛⎜⎜⎝

fu

fv

u0

v0

⎞⎟⎟⎠←−
⎛⎜⎜⎝

fuek0

fve
k1

u0e
k2

v0e
k3

⎞⎟⎟⎠ . (11)

For N keyframes, our update vector x can be decomposed into rotation param-
eters, ri ∈ so(3), and intrinsic parameters: x = (k, r1, r2, ...rN ). The objective
function which we now wish to minimise includes all pairs of overlapping images:

f(x) =
1
2

∑
j

∑
i

∑
pj∈Ωj

[
Ii

(
Hij(x)pj

)
− Ij (pj)

]2

. (12)

Hij(x) = K̂K(k)R̂ijRij(ri, rj)(K̂K(k))−1 (13)

R̂ijRij(ri, rj) = (R̂wiRwi(ri))TR̂wjRwj(rj). (14)

We calculate the incremental minimiser of this function x0 using exactly the same
machinery as before. Iterations of this minimisation take place continuously,
helping to improve the map consistency.

Auto-calibration of camera intrinsics is particularly well posed in the case
of a camera which only rotates [14]. In our system, the expected performance
of calibration refinement is much further enhanced by our ability to match im-
ages automatically around full 360◦ panoramas, giving the potential for accurate
calibration even for cameras with a narrow field of view.

2.3 Recovery from Tracking Loss

We have provided our SLAM system with a straightforward relocalisation ca-
pability similar in spirit to the ‘small blurry image’ method of PTAM [7] but
which directly takes advantage of the main ESM pose estimate algorithm. If
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the camera becomes ‘lost’ then we aim to recover a pose estimate by simply
attempting ESM pose estimation from a number of seed locations visible in our
current mosaic, starting at the smallest image size in an image pyramid. Of the
estimated warp parameters obtained, we refine the most photo-consistent esti-
mate by performing more ESM iterations at higher resolutions in the pyramid.
We use the poses of our keyframes as seed locations, but indeed any regular
sample would be equally valid.

Computation time for relocalisation is proportional to the number of seed
locations. For spherical mosaics, relocalisation need not be costly. When lost
(measured using observed photoconsistency between the current keyframe and
live camera), we run the relocalisation procedure on one in ten frames. This
method operates well in environments with low perceptual aliasing.

3 Implementation

To achieve real-time performance, we make extensive use of commodity graphics
hardware and the parallelism that this can afford. Graphics cards usually have
a number of very simple, high throughput shaders that are ideal for stream
processing tasks; taking quantities of data which are largely independent of each
other and transforming this data in some way.

We use the portable graphics language Cg, which can run on the majority
of today’s PCs and laptops. In this section, we will outline some of the more
interesting implementation details of our system.

3.1 Real-Time Hierarchical ESM for Local Tracking

Our local tracking ESM implementation is split into three very simple stages
targeting the graphics card, described below.

Hierarchical Construction. After a frame is received from the video camera,
it is uploaded as a texture on the GPU. Once in graphics memory, a fragment
shader is invoked once for each desired level in a power-of-two reduction pyramid.

The fragment shader, which operates per pixel, simply takes the value of the
average of the corresponding 4-block from the level above. This gets rendered
back into a different texture of half the size. Typically, we use five levels in our
pyramid which correspond to four invocations of this fragment shader. The indi-
vidual levels of the pyramid are left on the graphics card and never downloaded
to the CPU.

By first estimating the warp parameters between images at the smallest resolu-
tion in the pyramid, we benefit from a wider parameter-space convergence basin
and lower processing costs. By assuming that per-pixel derivatives are meaning-
ful at each of the levels, we are able to reuse our estimated warp parameters in the
next highest resolution image and repeat. We can tune for performance/accuracy
by setting how many iterations to perform at various levels.
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Construction of Least Squares System Elements. For every step in the
ESM method, Jacobian terms common to all pixels are computed on the CPU
(JK , JR, Jx). This leaves the data-centric terms (Jw, JIl , JIr) to be computed
on the GPU. JIl and JIr are computed by central difference. The 9× 3 matrix
JKJRJx is loaded onto the GPU as parameters to a fragment shader in three
3× 3 blocks, which are supported as primitives in the Cg language.

Invoking the fragment shader runs a simple Cg function per pixel pr that
enables us to compute the appropriate row of J , Jpr and the residual dpr . This
shader function also computes the outer product JT

prJpr and product JT
prdpr .

Since JT
prJpr is symmetric, it has 6 unique elements; JT

prdpr has 3. The shader
function returns these 9 values as pixel ‘colours’ across three floating point RGBA
textures stored on the GPU. We use OpenGL framebuffers to enable this.

Reduction to Linear System. Given our three textures, where a channel of
each image, for every pixel pr, corresponds to elements of JT

prJpr and JT
prdpr , we

wish to compute JTJ and JTd. This involves summing the channels of each pixel,
which we perform in two stages. The first is a vertical reduction in another Cg
fragment shader. This shader is invoked on an output set of images containing
a single row. For each pixel, this shader sums the pixels of the input images in
the same column.

Finally, we download these three row images to the CPU, where the final
horizontal reduction takes place to a single vector, which is unpacked into the
appropriate matrix and vector. Here, it is solved using an efficient Cholesky
decomposition.

3.2 Rendering

Two common approaches to visualising rotational mosaics are spherical and
cylindrical projection. A spherical mosaic is visualised from within the center
of a view-sphere, where images are projected to the sphere surface. Cylindrical
projections are instead projected on to a cylinder, which we can then unwrap
into a single image, visualising all of the mosaic at once.

We again make use of Cg shaders to enable us to visualise the full quality,
blended mosaic live, and for correctly sampling from the constituent keyframes.

Spherical Panorama. For rendering a spherical panorama, we treat our vir-
tual (OpenGL) camera much like a keyframe, positioned at the origin and
parametrised by the camera to world transform Rwc. We can map image space
coordinates from our OpenGL viewport to a keyframe k by composing the ho-
mography Hkc = KRwkT

RwcK−1.
We use a shader which we invoke once for each keyframe within the field of

view of the virtual camera, passing in as a parameter the homography Hkc which
enables us to place the keyframe within the viewport. This shader, operating
per-pixel, simply adds the keyframe’s colour value to the colour already in the
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frame buffer associated with the viewport. Additionally, it adds 1.0 to the alpha
channel for the pixel which serves as a counter.

Finally, we invoke another normalisation shader, which simply divides the
Red, Green and Blue channels by the alpha channel. The result is a panorama
where each keyframe is displayed blended with equal weight. One of the nice
aspects of this method is that image fusion occurs in the space of the viewport.
This means that each keyframe, whose pixel data is not sampled to the same
‘grid’ in viewport space, gets mixed to form an image of higher resolution of
the constituent images. Dependent on the quality of image registration, this can
enable ‘super resolution’ images to be displayed at frame rate.

Cylindrical Panorama. To create cylindrical panoramas, we use similar ma-
chinery as for spherical panoramas. Within the shader, the u and v viewport
coordinates are interpreted as yaw (ψ) and pitch (θ) in the range [−π, +π] and
[−π

2 , +π
2 ] respectively.

For each keyframe, we invoke the shader, where, for each pixel we then com-
pute the desired image ray described by the unit vector r̂,

r̂ = (cos θ cosψ, sin θ, cos θ sinψ)T
. (15)

This is transferred into the frame of reference of the keyframe using the virtual
camera to keyframe rotation matrix, Rkc, which is uploaded as a parameter to
the shader. Finally, the camera intrinsic matrix can be used to map this to
keyframe image-space coordinates. Given this correspondence, we proceed as
with the spherical panorama.

4 Results

We wish to evaluate our system against two criteria; how accurately local motion
is estimated, and how consistently frames are registered into a final mosaic.

In all of the results, as our submitted video also highlights, mosaics were
computed incrementally and rendered live at frame rate, a solid 30fps. We cap
per frame ESM iterations to 48 at the 5th level of the pyramid, 16 at the 4th,
8 at the 3rd, 4 at the 2nd, and 2 at the 1st. We use any remaining time to
perform iterations at the 0th level which corresponds to the original image —
this typically is one, two or three iterations. We drop new keyframes when less
than 80% of the current keyframe is visible.

4.1 Local Motion Estimation and Dynamics

To test the ability of our method to track dynamic local motion, we have com-
pared the angular velocity output of our method against a solid state gyroscope
bolted to the back of the camera, which was mounted on a tripod and oscillated
to produce increasingly rapid motion (up to around 5 cycles per second) about
each of its axes in turn.
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Fig. 2. Graphs illustrating high dynamic tracking performance; the plots show angular

velocity estimates from our vision system compared with the output from a gyroscope

as the camera was vigorously oscillated about each of the three camera-oriented axes

in turn (y axis pan; x elevation, z cyclotorsion)

The characteristics of estimation are somewhat different depending on the axis
of rotation, as the plots of Figure 2 illustrate. Angular velocity about the z-axis
(cyclotorsion) is estimated very accurately. Note that the truncated peaks of the
gyroscope data show that the tracking limits of the device were exceeded while
visual tracking still continued accurately — our system was able to maintain
fidelity about this axis in excess of 7 rads−1, which is significantly faster than a
camera would normally move in a tracking scenario.

Angular velocity about the y-axis, corresponding to camera pan, tracks the gy-
roscope data closely, with a very slight systematic under-estimation. We suspect
that camera calibration may be the predominant cause, or a slight misalignment
between the camera and gyroscope frames of reference.

The plot showing rotation about the x-axis, corresponding to camera eleva-
tion, demonstrates a failure case of visual tracking caused by extreme motion.
The tracking under-shoots, and takes several oscillations to re-acquire corre-
spondence with the keyframe against which it is tracking. If the motion was
non-cyclic, it would be harder for the system to recover to an orientation fixed
in the global frame without resorting to relocalisation. The system is least stable
about this axis. We suggest that this is due to the narrower vertical field of view.
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4.2 Global Consistency and Intrinsics Refinement

For evaluation of global registration, we present several cylindrically projected
360◦ panoramas (Figures 3, 5) captured with two different cameras, and with
two different lenses for each camera. They are constructed by blending every
keyframe of the map with equal weight, as described in Section 3.2, enabling us
to visualise the quality of their alignment.

For areas of the mosaic formed from multiple images, pixel noise is significantly
reduced, and the mosaic appears smoother. The different sampling pattern of
keyframes and sub-pixel accuracy we achieve in alignment combine to create a
super-sampling, or ‘super-resolution’ image, efficiently rendered in real-time on
the graphics card.

Figure 4 demonstrates the importance of our joint estimation of camera in-
trinsic parameters, even for pre-calibrated cameras. Starting with intrinsics esti-
mated from a third party camera calibration tool, and continuing with no intrin-
sics optimisation, the first mosaic in this figure appears fuzzy. Upon inspection
we can see that the estimated loop length is longer than the actual length (in
pixels), causing the images to bunch up (the enlargement of the whiteboard
helps to convey this point). This is caused by intrinsic parameters which are
wider than the actual camera. The second mosaic in this figure is the result of
allowing our algorithm to optimise intrinsics as well as pose parameters (from
the starting point of the first mosaic).

The mosaics in Figure 3 were generated from three different lenses, all at
640× 480 resolution, and initialised with ‘Generic’ intrinsic calibration (nearest
10◦ FOV and central principal point). Table 4.2 shows the initial horizontal field
of view, which was based on our knowledge of the lens, and the converged field
of view estimate after a full loop was completed for these sequences.

Table 1. Calibration Refinement results for Different Cameras and Lenses. Calibration

initialised from Quoted Horizontal Field of View (FOV), and refined by mosaicing

cylindrical loops from 640 × 480 indoor sequences.

Camera Lens Lens Quality Initial FOV Estimate Refined FOV

Point Grey Flea2 Wide Angle Good 70◦ 69.42◦

Point Grey Flea2 TV Lens Fair 50◦ 51.43◦

Unibrain Standard Poor 50◦ 45.56◦

4.3 Convergence to Global Minimum

The results from mosaicing based on poor initial intrinsics (Figure 3) help to mo-
tivate that our system has useful convergence properties. By including intrinsics
in our optimisation, we help to enable loop closure by increasing the accuracy
of our pose estimate when we come to complete a loop. By completing a loop
too soon, or too early, we are more likely to fall into local minima — especially
if perceptual aliasing in this area is high.
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Fig. 3. 360◦ cylindrically-projected panoramas for three indoor sequences, taken with

different lenses. Point Grey Flea2, 70◦ FOV wide angle (top, close to full sphere in-

cluding full hemispherical upward coverage, 27 keyframes), 50◦ FOV TV Lens (middle,

single horizontal loop trajectory, 17 keyframes), and Unibrain 45◦ FOV Standard lens

(bottom, single horizontal loop trajectory, 19 keyframes).

Fig. 4. Mosaicing with fixed intrinsics estimated from a third party calibration tool

(top), compared against enabling live intrinsics estimation (middle). An enlargement

of the whiteboard from the two mosaics, emphasising improvement in alignment, is

shown at the bottom. The whiteboard is representative of several areas of the mosaic.
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Figure 5 shows an outdoor mosaic generated from rapid hand-held motion of a
Unibrain webcam with a wide angle lens. Note that in this experiment the pure
rotation assumption was approximately satisfied without a tripod due to the
large distance to the scene. This scene contains high perceptual aliasing in the
windows and building pillars, making loop closure difficult. For this sequence,
we were unable to converge to a globally consistent mosaic from our generic 80◦

FOV calibration parameters. Instead, we started from the parameters estimated
from a third party calibration tool.

Fig. 5. 360◦ Tower panorama from 21 keyframes (live hand held Unibrain webcam,

320×240 resolution), shown in horizontally and vertically-oriented cylindrical projec-

tion. Note the vertical hole due to poor texture and cloud movement in the sky.

Time to convergence is another important evaluation criterion. Each iteration
in our global minimisation is costly — forming the linear system from image
data dominates computational time. Actually solving this system is cheap since
spherical mosaics require only a relatively small number of keyframes. For this
reason, computation time scales linearly with the number of pairs of overlapping
pixels. For N keyframes, depending on keyframe alignment, this has a worst case
complexity of O

(
N2

)
. In practice, our system achieves convergence within time

in the order of seconds of completing a loop; often less than one second when a
wide angle lens means that the number of keyframes to span a loop is low.

5 Conclusions

We have presented an algorithm based on full image alignment which produces
accurate, globally consistent mosaics in real-time. Our key contribution is to
show how state of the art image alignment can be used in a robust and accurate
real-time mosaicing system which combines the best of a visual gyroscope, with
its ability to track rapid motion, with the properties of a visual compass, able
to function without long-term drift. We also demonstrate convincing automatic
camera calibration refinement, and explain how real-time tracking and rendering
can be comfortably achieved using commodity graphics hardware.

The clear extension to our method which we plan to investigate is the capabil-
ity to track general motion viewing multi-planar scenes, such as building façades
and room interiors. We can enforce strong priors in such environments and hope
to demonstrate very fast, robust tracking and coarse model construction.
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Abstract. This paper addresses the problem of registering a 3D model, repre-
sented as a cloud of points lying over a surface, to a set of 2D deforming image
trajectories in the image plane. The proposed approach can adapt to a scenario
where the 3D model to register is not an exact description of the measured image
data. This results in finding the best 2D–3D registration, given the complexity
of having both 2D deforming data and a coarse description of the image obser-
vations. The method acts in two distinct phases. First, an affine step computes a
factorization for both the 2D image data and the 3D model using a joint subspace
decomposition. This initial solution is then upgraded by finding the best projec-
tion to the image plane complying with the metric constraints given by a scaled
orthographic camera. Both steps are computed efficiently in closed-form with the
additional feature of being robust to degenerate motions which may possibly af-
fect the 2D image data (i.e. lack of relevant rigid motion). Moreover, we present
an extension of the approach for the case of missing image data. Synthetic and
real experiments show the robustness of the method in registration tasks such as
pose estimation of a talking face using a single 3D model.

1 Introduction

The analysis of non-rigid motion has great relevance in many life science and engi-
neering tasks. This need arises from the observation that most of the natural shapes
are constantly modifying their topology. Such variations may appear smooth and tiny
as in the bending of the arm muscles or drastic and violent, as in the reactions taking
place at the molecular level. Such degrees of variation have consequently brought new
challenges in the Structure from Motion (SfM) [3,12,2,1] and image registration fields
[4,8,14]. The problem is made more difficult because the assumption of rigidity is now
broken and the classical metric constraints used in rigid SfM [11] are weakened if not
irremediably lost. Here specifically, we study the problem of registering a 3D model
to a set of 2D trajectories extracted from an image sequence. Our challenge is repre-
sented by the fact that the 3D model to register may not be an exact description of the
2D motion shown in the image sequence as exemplified in Figure 1 in a face analysis
domain. The aim is to provide a new set of tools which adapt to the new information
provided by the image sequence. This problem occurs more often thanks to the rapid
� This work was partially supported by FCT, under ISR/IST plurianual funding (POSC program,

FEDER) and grant MODI-PTDC/EEA-ACR/72201/2006. Thanks to J. Peyras and J. Xiao for
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(a) Rigid sequence (b) Non-rigid 2D image sequence

Fig. 1. The figure shows an example of our problem. In the top row of figure (a), a 3D shape
can be recovered from a rigid image sequence with standard SfM algorithms. The model in the
bottom row has now to be registered to a new non-rigid image sequence (b) with 2D trajectories
extracted from a subject with different somatic traits. We seek the best registration given both 2D
and 3D data which satisfy the metric constraints of the shapes. White dots represent the 2D image
data and the red circles ◦ our algorithm result.

advancements of the modern sensor technologies. Nowadays, it is a more likely occur-
rence to have available measurements coming from different devices. However, tempo-
rally evolving data is mainly restricted to 2D observation (e.g. video from cameras, MRI
and ultrasound images) while full 3D information is captured at sparser time instances
(e.g. scans given by CT and range sensors). For this reason, a robust 2D-3D registration
of data coming from different sources is more often required. Moreover such registra-
tion has to adapt to the given observed image motion, since it is likely that the given 3D
surface may not be an exact representation of the evolving shape.

This paper proposes a novel registration procedure that adapts the given 3D shape to
the 2D data. In order to solve the problem, a general two-step formulation is introduced.
First, a compact low-rank description is extracted from both the 2D measurements and
the 3D rigid shape. This first decomposition is up to a generic affine transformation.
Then, this solution is corrected by finding the best transformation that complies with
the metric constraints given the image motion and the shape to register. To the authors
knowledge, the closest work to the proposed algorithm is the one by Xiao et al. [14]
where the scope of the authors was not only restricted to registration but also to the
inference of a full deformable model. Their closed form solution however makes use
of the assumption that there exists a set of independent basis shapes and results may
vary if this choice is not accurate as noted in [2,12]. Full 3D reconstruction is out of
the scope of this paper since our main aim is to find the most appropriate rigid motion
describing the non-rigid image trajectories without any assumptions about the model
underlying the deformations.

1.1 Contributions and Paper Organization

We first introduce the mathematical framework and a standard solution for the 2D–
3D registration problem with rigid models. Such an algorithm however cannot cope
properly when the registration is done with inaccurate 3D observations such as the
one shown in Figure 1(b). The proposed method instead performs an affine registration
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procedure which is derived from the work of Del Bue [5]. The first contribution is a
new set of metric constraints which jointly force the projection constraints for the 2D
data and 3D data. This problem is then formulated by finding a corrective transform
which enforces the given constraints. This optimization can be solved either in closed
form with Least Squares (LS) or by defining the problem with a cost function which is
minimised using convex optimization. In this way, we consequently not only perform a
registration but also the reconstruction of a new rigid shape or deformable model which
adapts automatically to the image measurement and 3D shape geometric constraints.
This solution is particularly robust to degenerate 2D motion given this new set of metric
constraints. The second contribution is an iterative extension of the proposed approach
which deals with the likely event of missing data in the 2D image trajectory.

The paper is structured as follows. Section 2 introduces the problem and a first initial
solution. Section 3 presents the new approach when the 3D shape needs adaptation to
deal with the variations in the 2D data. In the case of missing data, Section 4 provides an
iterative solution to the problem. Section 5 shows synthetic and real data while Section
6 points out the possible improvements and direction for future work.

2 Rigid and Non-rigid 2D–3D Registration

2.1 Rigid Registration with an Exact 3D Model

Consider first the problem of registering a single rigid shape to a set of 2D image tra-
jectories. The 2D image measurements are stored in a single matrix W of size 2F × P
with the following structure:

W =

⎡⎢⎣ w11 . . . w1P

...
. . .

...
wF1 . . . wFP

⎤⎥⎦ =

⎡⎢⎣ W1

...
WF

⎤⎥⎦ , (1)

where F and P are the total number of frames and the number of points respectively.
The 2-vector wij = (uij vij)T stores the image coordinates at each frame i and point j.
Given a known rigid shape B of size 3×P our aim is then to compute the best projection
that aligns the 3D shape to the 2D data. In this work there are two main assumptions.
The assignments between the image trajectories in W and the 3D points in B are given
and that, initially, W does not contain missing data. However, this last assumption will
be relaxed later in this paper.

The image projection model considered here is a scaled orthographic model denoted
as a 2 × 3 matrix Mi such that Mi = ciRi with the orthogonality constraints given by
RiRT

i = I2. The 2D–3D registration problem can be then re-stated as the optimization
of the following cost function:

min
RiR

T
i =I2

‖W− MB‖2 (2)

where M is the matrix obtained by stacking all the sub-blocks Mi for each frame as:

M =

⎡⎢⎣ M1

...
MF

⎤⎥⎦ . (3)
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A solution to this problem satisfying the exact orthographic constraints can be obtained
in two steps. First, by finding an affine Maximum Likelihood (ML) solution using the
pseudoinverse of B giving M̃ = WBT (BBT )−1 and then forcing the orthogonality con-
straints in M̃. This final step is not performed globally for the collection of the 2 × 3
sub-blocks M̃i as done in the Tomasi-Kanade factorization [11]. Instead, the affine block
is projected into the closest scaled orthographic camera matrix ciRi as presented by
Marques and Costeira [7] in a 3D reconstruction context. Such projection is given by:

Ri = UVT and ci = (σ1 + σ2)\2 (4)

where M̃i = UDVT is the SVD of the affine motion matrix and σd for d = 1, 2 are
the singular values stored in D. Such projection is preferred to the global LS solution
which may not exactly comply with the scaled orthographic camera matrix constraints.
Differently, eq. (4) always gives a matrix Ri that complies with the given constraints as
pointed out in [7, Appendix B].

Note that the solution obtained in step 2 of Algorithm 1 is optimal with the assump-
tion of isotropic and zero-mean Gaussian noise affecting the measurements in W. Such
assumption is generally valid when accurate 2D measurements are obtained from the
image tracks of a rigid object. However, when trajectories are extracted from shapes
with consistent directional deformations, such assumption is violated as it was noticed
by Xiao et al. [14] in a medical context.

Algorithm 1. Rigid registration with image projections
Require: The 2D image data W and the 3D shape B .
Ensure: A metric 2D–3D registration of the shape to the image measurements.
1: Compute the image centroid of t = 1

P
W1P and register the data as W̄ = W− t1T

P

2: Estimate the affine motion M̃ as M̃ = W̄BT (BBT )−1.
3: Project each 2 × 3 sub-block M̃i to the closest scaled orthographic matrix using eq. (4).

2.2 Registration Bias with Inexact Models

Deformation directionality is less noticeable when non-rigid motion is nearly isotropic
to the shape centroid or with strong symmetries. Figure 2 shows a case when a 2D
image of a cylinder is bending and the actual registration given Algorithm 1 with a
rigid 3D shape from the ground truth at rest. As expected, a consistent bias in the 2D–
3D registration appears when the shape is bending towards the direction of maximal
variation. In such cases, a rigid registration of a single B is unfit since it cannot deal
with the deformations. When the data is non-rigid we have at each frame that:

Wi = ciRiXi with Xi ∈ �3×P (5)

where Xi represents the metric time-varying shape. For the whole set of 3D shapes, the
most popular representation used is to parameterize Xi as a set of linear basis shapes [3]
giving Xi =

∑
d lidSd. These linear bases are usually sufficient to represent a generic set

of deformations however they may require a high number of basis shapes when dealing
with non-linear deformations as to the bending cylinder in Figure 2.
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Frame 1 Frame 120

Fig. 2. Black dots • represent the 2D measurements, red circles ◦ a half-cylinder 3D shape regis-
tered by Algorithm 1 and blue crosses × the results by the proposed Algorithm 2. The image data
show the cylinder starting from a rest position in Frame 1 where the registration is perfect. The
cylinder is bending at the last 3 semi-circles and the registration at the maximum deformation is
strongly biased toward the deformation direction.

3 Adaptive Registration Using Joint Subspaces

Algorithm 1 may perform well when B represents a single instance of the deformations
appearing in the image sequence. However such a case is unlikely in many registration
scenarios and a method which encompasses some degree of adaptation may strongly
reduce the registration error. In the following, the given surface B is not a current obser-
vation of the 2D image trajectories (i.e. Xi 	= B for i = 1 . . . F ). This will consequently
affects the estimated motion parameters in Algorithm 1 giving an additional bias from
the unfitness of B. In order to reduce this effect we propose a different approach which
first finds an affine joint subspace belonging to the set {W, B} and then computes the
best solution to registration given the joint metric constraints.

3.1 Affine Joint Subspace Computation

The main idea here is to join the information contained in B with the available mea-
surements in W in order to extract an affine fit which is dependent on both components.
In order to do so, we follow the strategy used in [5] for a 3D reconstruction scenario.
A Generalised Singular Value Decomposition (GSVD) is used to compute a joint row
space between the image data and the model to register. In such a way, we decompose
both matrices with GSVD as:

W = U DU XT

B = V DV XT (6)

where XT is a P × P matrix which spans the common row space of {W, B}, U is a
2F × 2F matrix with orthonormal columns (UTU = I) and V is a 3× 3 matrix such that
VT V = I. The diagonal value matrices DU and DV of size 2F×P and 3×P respectively
are given by:

DU =
[
ΣU 0
0 I

]
and DV =

[
ΣV 0

]
. (7)
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The diagonal matrices ΣU = diag(σ1, . . . , σ3) and ΣV = diag(μ1, . . . , μ3) of size
3× 3 are constrained such that Σ2

U + Σ2
V = I and the diagonal entries ordered as:

0 ≤ σ1 ≤ . . . ≤ σ3 ≤ 1 and 1 ≥ μ1 ≥ . . . ≥ μ3 > 0.

In order to guarantee a well-conditioned decomposition a single scaling of the data is
performed imposing that ‖W‖2=‖B‖2 [6]. Given the initial factorisation with GSVD, it
is possible after some matrix operations [5] to arrange the different factors as:

W = M̃2f×tS̃t×p = [MJ | MI ]
[
BJ

BI

]
B = N3×3BJ

(8)

where the J subscript refers to the components obtained from the joint space of B and
W while the I refers to the remaining ones. The dimensionality of the joint row space
BJ depends directly on the dimension of the model to register. Thus, in the case of rigid
registration, the matrix BJ has size 3× P and the r = (t− 3) dimension of BI depends
on the rank of the independent components. Such value can be estimated by inspecting
the singular values of the remaining 2D data and choosing a r which contains most of
the energy. Notice that this parameter is not important for the proposed approach since
it relies only on the joint components MJ and BJ .

3.2 Joint Metric Upgrade

The next step is to find a corrective transform for both the affine subspaces MJ and N
which complies with the metric constraints of the 3D shape to register and the 2D image
trajectories. This results in computing a 3 × 3 transformation matrix Q which enforces
the metric constraints such that MJQ = M and NQ = Z where Z is a rotation matrix with
ZZT = I3. The following problem is non-linear given the joint set of orthogonality con-
straints. However, a closed form solution can be computed if we consider the quadratic
form H = QQT and forming the orthogonality constraints as:

mT
uiHmui −mT

viHmvi = 0
mT

uiHmvi = 0
NHNT = I3

where mui and mvi refer to the motion components of the horizontal and vertical image
coordinates respectively such that:

MJi =
[
mT

ui

mT
vi

]
where MJ =

⎡⎢⎣ MJ1

...
MJF

⎤⎥⎦ . (9)

As follows H is a symmetric matrix which can be computed with LS for the six unique
parameters by rearranging eq. (9). Then, if H is positive semidefinite, the matrix Q is
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given by H
eig−→ Q = U

√
Δ with U and Δ being the eigenvectors and eigenvalues respec-

tively. On the contrary, if the matrix is not positive semidefinite, we estimate the closest
Q by defining:

F =

⎡⎢⎣ M1Q̃
...

MF Q̃

⎤⎥⎦ and G =

⎡⎢⎣ ((M1Q̃)T )†
...

((MF Q̃)T )†

⎤⎥⎦ (10)

where Q̃ is a SVD approximation of Q using the estimated H (i.e Q̃ = UD if H = UDVT ).
Then the closest Q given the metric constraints is computed as Q = Q̃

√
F\G where \

denotes the left matrix division.
Alternatively to this solution, we obtained more accurate results by solving the prob-

lem using Semi-Definite Programming (SDP). In this case we can compute explicitly H
such that H 
 0. First we define the cost function by separating the joint motion matrix
MJ in its horizontal and vertical image components such that:

MJu =

⎡⎢⎣mT
u1
...

mT
uf

⎤⎥⎦ and MJv =

⎡⎢⎣mT
v1
...

mT
vf

⎤⎥⎦ (11)

The problem is then re-formulated as the minimization of the following cost function:

minH

{∥∥diag(MuHMT
v )

∥∥ +
∥∥diag(MuHMT

u − MvHMT
v )

∥∥
+

∥∥NHNT − I3

∥∥}
such that

H 
 0
mT

u1Hm
T
u1 = d

(12)

where the last constraint mT
u1Hm

T
u1 = d imposes an arbitrary value over the first frame

to avoid the zero solution. This problem can be solved efficiently with current SDP
toolboxes such as SeDuMi [10] since optimization is run over a small 3 × 3 matrix
independently from the size of W and B.

3.3 Registration Algorithm and Discussions

The full approach is finally summarized in Algorithm 2. The idea at the basis of this
procedure is to obtain the best possible registration even if the 3D shape to register
is not an exact description of the image data. In this sense, given the first initial 3D
shape B, we search for a common representation of the set {W, B} using GSVD. This
representation is then used to find the best metric solution given a joint set of metric
constraints. This not only solves for the registration, but also compute a new metric
shape B̂ given the contribution of both data.

Enforcing the metric constraints for both the 2D measurements and the 3D shape
give robustness to degenerate motion in W. This happens often in non-rigid motion anal-
ysis whenever a non-rigid shape is not performing enough rigid motion compared to the
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Algorithm 2. Rigid registration using a joint subspace
Require: The 2D image data W and the 3D shape B .
Ensure: A metric 2D–3D registration of the shape to the non-rigid image measurements.
1: Compute the image centroid of t = 1

P
W1P and register the data as W̄ = W− t1T

P

2: Estimate the joint affine motions MJ and N together with the joint shape BJ as in Section 3.1.
3: Given the affine solution, compute the best metric motion and shape as shown in Section 3.2

such that:

WB = MJQ Q−1SJ = M̂ B̂ (13)

B = NQ Q−1SJ = Ẑ B̂ (14)

4: Project each 2 × 3 sub-block M̂i to the closest scaled orthographic matrix using eq. (4).

variations given by the deformations. In such cases, obtaining a reliable estimation of
the depth of the shape is rather complex since, without rotation, it is very ambiguous to
compute reliable estimates.

4 Registration with Missing Data

If the 2D image trajectories are interrupted due to occlusions or tracking failures, we
have to additionally solve for the missing entries in W. In such a task, the cost function
to optimise is the following:

min
RiR

T
i =I2

‖D� (W− MB)‖2 (15)

where D is a 2f × p mask matrix with either 1 if the 2D point is present or 0 if it
is missing. Given the missing entries, it is not possible to solve for the cost function
in closed form. Thus we revert to an iterative approach. Provided an initialisation of
the missing entries, the approach first computes an affine solution with GSVD for M
given S. After a projection to the correct orthographic camera matrices, missing entries
in W are filled given the 3D shape estimated with the joint subspaces provided by the
GSVD. The algorithm stops when the updated values have minimal variations from one
iteration to the other. Regarding the initialisation, best results were achieved by filling
the missing entries at each trajectory with the mean value computed from the known
trajectory points in W. Note that in this case we have also to estimate the shape 2D
centroid t at each iteration of the algorithm since it depends on the estimated missing
data. The algorithm is resumed in the table for Algorithm 3.

5 Experiments

5.1 Synthetic Data

The algorithm performance are evaluated with the following synthetic experimental
setup. The 2D data is created from a randomly generated cloud of 20 points Smean
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Algorithm 3. Rigid registration with missing data
Require: An initialisation for the 2D image data W and the 3D shape B .
Ensure: A metric 2D–3D registration of the shape to the non-rigid image measurements.
1: Compute the image centroid from the current estimate of W as t = 1

P
W1P .

2: Given W̄ = W− t1T
P and B, estimate the joint affine motions MJ and N together with the joint

shape BJ as in Section 3.1.
3: Given the affine solution, compute the best metric motion and shape with Algorithm 2.
4: Project each 2 × 3 sub-block M̂i to the closest scaled orthographic matrix using eq. (2).
5: Given the metric solution M̂ and B̂, input the missing entries as W̄ = M̂ B̂.
6: Iterate until the update on the 2D missing data points is less then a given threshold.

sampled inside a sphere of radius one. Deformations were constructed with a set of K
random linear basis S1 . . .SK . Each time-varying shape Xi was computed by the linear
combination of random linear weights giving Xi = Smean +

∑K
d=1 lidSd. In order to

control the deformation intensity, the Deformation Power ratio (DPr) is defined as:
DPr = ||fSmean|| \ ||

∑f
i=1

∑K
d=1 lidSd||. Finally, 50 random orthographic camera

matrices Ri and translation ti are used to form the 2D measurements onto the image
plane. The generation of the shape to register is made by selecting an initial random
Xi = B. Then, in order to simulate distortion in B, random affine transformation A
are applied to B such that: B̃ = AB. In more detail, this distortion was computed as
A = I3 + ℵ where ℵ was a 3 × 3 matrix of Gaussian noise with variance σℵ. To
conclude, zero-mean Gaussian noise with variance of σW image pixel was added to the
measurements stored in W100×20. The 2D data was finally scaled in order to fit into a
320 × 240 image frame. In the following tests the root mean squared (rms) error was
always used to compute the 2D registration error in pixels per point and the rotation
misalignment in degrees given the known ground truth.
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Fig. 3. Results for a synthetic sequence with DPr = 0.15. Top two figures show the result for
the rotation error in degrees. The two figures at the bottom present the rms 2D error in image
pixel per point.

Figure 3 shows a test result obtained by fixing DPr = 0.15 and after running 200
trials for each configuration of noise and affine distortion A (i.e. 25 configurations in
total). The results show that both algorithms are relatively robust to the added image
Gaussian noise however a difference is noticeable when evaluating the 2D and rotation
error at increasing distortions rates for the 3D shape B. An important fact to keep in mind
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Fig. 4. Results for a synthetic sequence with DPr = 0.45. Top two figures show the result for
the rotation error in degrees. The two figures at the bottom present the rms 2D error in image
pixel per point.

when evaluating the 2D errors is that we are evaluating a registration of a rigid shape to
a non-rigid sequence. Thus there is always a constant residual when plotting the error
(bottom plots in Figure 3). In contrast, here we put more emphasis on the worsening of
the error with the increase of the affine distortion A. In such case, Algorithm 2 is rather
robust for both 2D and rotation error due to the distortions ℵ until the last level of noise
where the algorithm starts to perform worse. Algorithm 1 reports a very high 2D error
up to 18 pixels rms for the stronger distortion (out of the plot scale). This is expected as
the shape is fixed. More interesting is the plot showing the rotational error, indicating
slightly better results for tiny distortions in respect to Algorithm 2 but then diverging
again up to 5 degrees for higher distortions. Figure 4 shows analogous behaviors for
both algorithms but in the case of stronger deformations in the image measurements
(DPr = 0.45). Algorithm 2 shows decreased the performance as expected but still
maintains reasonable values. Differently, Algorithm 1 reaches a misalignment up to 9
degrees.

Fig. 5. Real sequence 2D–3D registration with a 3D shape as in Figure 1(b). In the top row,
white dots show the 2D tracks extracted from the sequence. Red circles ◦ shows the registration
with Algorithm 1. Yellow circles ◦ show the registration with Algorithm 2 which achieves better
reprojection error especially in the eyeborow, mouth and temple areas. Bottom row shows frontal,
top and side view of the joint 3D shape B̂ obtained from the registration algorithm.
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5.2 Real Data

The scenario here considered is the registration of a 3D face model to a set of 2D
image trajectories obtained from an AAM tracker [13]. Notice that the 3D model that
represents our B of size 3×48 was computed from a subject with different somatic traits
as it was shown in Figure 1(a). The model building of B was performed using 2D points
obtained from nearly rigid motion of the subject followed by a rigid 3D reconstruction
using factorization [11]. The target 2D sequence came from a different video footage
as presented in Figure 5. Results for both registration algorithms are shown in Figure 5
with the reprojected image tracks. Algorithm 2 shows its properties of adaptation by
registering and computing a joint shape closer to the new subject traits. This can be
noticed especially in the different eyebrow shape compared with the registration of the
original B obtained by Algorithm 1. Finally for this test, bottom row of Figure 5 shows
three views of the reconstructed joint 3D shape B̂ which qualitatively describe well the
3D shape of the subject.

A further test presents the performance of the algorithms in the case of a degenerate
talking face sequence. This test is especially aimed to show the relevance of the joint
metric constraints in this type of image sequences. We used the same rigid shape as
the previous example and plotted the registration over the image sequence in Figure 6.
Again the subjects presented different physical traits from the reference 3D model B.
Figure 6(a) shows a side and top view of the joint shape B̂ computed with the joint
metric constraints as in Section 3.2. Figure 6(b) instead presents the same computation
omitting the cost term

∥∥NHNT − I3

∥∥ in eq. (12). The resulting 3D shape is geometrically
distorted and it is not representing the correct metric characteristics.

Image sequence with registration (a) Joint metric (b) 2D metric

Fig. 6. The figure shows the registration results for Algorithm 1 (red circles ◦) and Algorithm 2
(yellow circles ◦). The top three figures show the image sequence of a subject talking and per-
forming minimal rigid motion. Registration is made with the 3D shape as shown in Figure 1(b).
Bottom line shows first (a) two views of the shape B̂ extracted using the joint metric constraints
and figure (b) the distorted shape obtained from the metric constraints of the 2D data alone.

A final experiment shows the algorithm behavior on the IMM database [9] which
contains a set of 240 manually annotated face images. The dataset is divided in 6 dif-
ferent poses for 40 subjects. Among those six poses, 2 of them are showing non-rigid
motion. Each face is manually annotated with 58 points as shown in Figure 7. A global
mean 3D shape is reconstructed from all the subjects by running a rigid Tomasi and
Kanade [11] factorization on the first, third and fourth pose of each subject. These



98 A. Del Bue

frames were showing predominant rigid motion thus they were appropriate for the task.
Figure 7 shows as well three views of the 3D rigid reconstruction.

This mean shape was then registered to every image in the database using
Algorithm 1 and Algorithm 2 as presented in the paper. Note that in this case we have 40
sequences for each subject composed by six frames. Figure 8 shows the results on 2 sub-
jects. White dots show the 2D tracks manually extracted from each short sequence. Red
circles ◦ shows the registration with Algorithm 1. Yellow circles ◦ show the registration
with Algorithm 2. Again the proposed algorithm shows its adaptation capabilities when
dealing with a large set of people with different somatic traits.

Fig. 7. a) A subject from the database. The white dots represent the manually annotated 2D points.
b) Front, top and side views of the mean 3D shape reconstructed from the database.

Fig. 8. Four selected frames from subject �22 and �35 in the IMM database

5.3 Evaluation with Missing Data

The performance of Algorithm 3 was initially tested with synthetic data as showed in
the previous setup. Given the same amount of points and image frames, The affine
distortion was fixed to σℵ = .20 and DPr = 0.25. The evaluation included 25 tests
for each configuration of missing data and noise level (225 tests in total) Experiments
were made with increasing percentages of missing data and showed a robustness of the
approach until 40% ratio as shown in Figure 9. The maximum number of iterations was
fixed to 50 and a stop criteria was fixed at 10−6 on the update of the reprojection error
of the missing 2D points. Note here that, even if the reprojection error is minimised
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Fig. 9. Results for a synthetic sequence with DPr = 0.25 using Algorithm 3 and randomly
generated noise and missing data

Image sequence with registration Joint 3D shape

Fig. 10. The figures on the top show the image sequence together with the registration given by
Algorithm 3 with 30% of missing data. White dots show the available 2D data while the yellow
circles ◦ represent the estimated registration. The three images on the bottom present front, top
and side view of the joint 3D shape.

for the case of 50% missing data, the error in degrees is around 10 units thus we can
consider the registration compromised. For higher levels of missing data, the algorithm
fails to obtain a reliable registration and thus results are not presented in the plots.

The real test shown in Figure 10 presents the results on the sequence in Figure 5
where occlusions were randomly created up to a 30% ratio. The algorithm converged
after 74 iterations with a threshold on the 2D points update of 10−6. The registration
quality is barely degraded still showing a reasonable estimate of face side and frontal
profiles. We realised that most of the misalignement were present when the shape was
turning on the side. It is possible to notice that now there is less symmetry in the recon-
structed 3D shape with a wider gap in the side view corresponding to points lying on
the upper jaw. Still most of the depth of the shape was estimated reliably.

6 Conclusions

This paper presented a new approach to the 2D–3D registration problem in the case
of non-rigid 2D image trajectories and a shape represented as a set of 3D points. The
method is designed for the case when the shape is not an exact description of the 2D
trajectories and it can deal with degeneracies in the 2D motion. This solution is targeted
for the face analysis and medical registration scenario where often single 3D observa-
tions have to be fit to a set of 2D trajectories. The formulation, given the joint subspace
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may also give some intuition on how to solve the greatest crux of these methods; the
matching problem between the 3D shape and the 2D image points. This will represent
the starting point for future investigations together with the application of the proposed
joint metric constraints to the tracking and non-rigid 3D reconstruction domains.

References

1. Bartoli, A., Gay-Bellile, V., Castellani, U., Peyras, J., Olsen, S., Sayd, P.: Coarse-to-Fine
Low-Rank Structure-from-Motion. In: Proc. IEEE Conference on Computer Vision and Pat-
tern Recognition, Anchorage, Alaska, pp. 1–8 (2008)

2. Brand, M.: A direct method for 3D factorization of nonrigid motion observed in 2D. In: Proc.
IEEE Conference on Computer Vision and Pattern Recognition, San Diego, California, pp.
122–128 (2005)

3. Bregler, C., Hertzmann, A., Biermann, H.: Recovering non-rigid 3D shape from image
streams. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, Hilton
Head, South Carolina, pp. 690–696 (June 2000)

4. Cootes, T.F., Taylor, C.J.: Active shape models. In: Proc. British Machine Vision Conference,
pp. 265–275 (1992)

5. Del Bue, A.: A factorization approach to structure from motion with shape priors. In: Proc.
IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, Alaska, pp. 1–8
(2008)

6. Hansen, P.: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear
Inversion. Society for Industrial Mathematics (1998)

7. Marques, M., Costeira, J.P.: Estimating 3D shape from degenerate sequences with missing
data. Computer Vision and Image Understanding (2008)

8. Shen, D., Davatzikos, C.: An adaptive-focus deformable model using statistical and geo-
metricinformation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8),
906–913 (2000)

9. Stegmann, M.B., Ersbøll, B.K., Larsen, R.: FAME – a flexible appearance modelling envi-
ronment. IEEE Trans. on Medical Imaging 22(10), 1319–1331 (2003)

10. Sturm, J.: Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones.
Optimization Methods and Software 11(1), 625–653 (1999)

11. Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: A factor-
ization approach. International Journal of Computer Vision 9(2), 137–154 (1992)

12. Torresani, L., Hertzmann, A., Bregler., C.: Non-rigid structure-from-motion: Estimating
shape and motion with hierarchical priors. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 878–892 (2008)

13. Xiao, J., Baker, S., Matthews, I., Kanade, T.: Real-time combined 2d+3d active appearance
models. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, Washing-
ton D.C., vol. 2, pp. 535–542 (June 2004)

14. Xiao, J., Georgescu, B., Zhou, X., Comaniciu, D., Kanade, T.: Simultaneous Registration
and Modeling of Deformable Shapes. In: Proc. IEEE Conference on Computer Vision and
Pattern Recognition, New York, NY, pp. 2429–2436 (2006)



Local Occlusion Detection under Deformations
Using Topological Invariants�

Edgar Lobaton1, Ram Vasudevan2, Ruzena Bajcsy2, and Ron Alterovitz1

1 Department of Computer Science

University of North Carolina at Chapel Hill, NC 27599

{lobaton,ron}@cs.unc.edu
2 Department of Electrical Engineering and Computer Sciences

University of California, Berkeley, CA 94720

{ramv,bajcsy}@eecs.berkeley.edu

Abstract. Occlusions provide critical cues about the 3D structure of

man-made and natural scenes. We present a mathematical framework

and algorithm to detect and localize occlusions in image sequences of

scenes that include deforming objects. Our occlusion detector works un-

der far weaker assumptions than other detectors. We prove that occlu-

sions in deforming scenes occur when certain well-defined local topologi-

cal invariants are not preserved. Our framework employs these invariants

to detect occlusions with a zero false positive rate under assumptions of

bounded deformations and color variation. The novelty and strength of

this methodology is that it does not rely on spatio-temporal derivatives

or matching, which can be problematic in scenes including deforming

objects, but is instead based on a mathematical representation of the

underlying cause of occlusions in a deforming 3D scene. We demonstrate

the effectiveness of the occlusion detector using image sequences of nat-

ural scenes, including deforming cloth and hand motions.

1 Introduction

Inherent in the exhaustive work done on edge detection is the belief that discon-
tinuities in image intensity provide valuable clues about scene structure. Edges
resulting from occlusions are of special interest since they correspond to loca-
tions in an image where one surface is closer to the camera than another, which
can provide critical cues about the 3D structure of a scene. Occlusion detec-
tion is used in numerous applications including shape extraction, figure-ground
separation, and motion segmentation, e.g. [1–6]. The purpose of this paper is to
present a completely local, bottom-up approach to detect and localize occlusions
in order to provide this powerful low-level information to higher-level reasoning
methods. Our approach is applicable to image sequences including deforming
objects, which can present difficulties to classical methods.
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Fig. 1. The figure illustrates the inability of motion flow inconsistency to correctly

identify occlusions in scenes with deforming objects. Consider two images (right col-

umn) obtained at times t and t + 1 after a paper in 3D is folded along a crease (left).

Observe that this transformation is in fact not rigid and that there is no occlusion

in either image. Assuming perfect motion estimation from the images on the right

we would find that the gray colored checkerboard portion is moving to the left and

the white colored checkerboard portion is moving to the right, which would seem to

indicate the presence of a non-existent occlusion.

Traditional occlusion detectors rely almost entirely on spatiotemporal deriva-
tives or matching to detect the artifacts of occlusions. These artifacts fall into
two categories: motion flow inconsistency across an edge and the T-junction.
Unfortunately, both methods are effective only under restrictive assumptions
about the scene. The motion flow inconsistency approach implicitly assumes
that only rigid transformations take place, such as a foreground and background
layer moving in distinct directions. Due to this implicit assumption, motion in-
consistencies do not necessarily imply an occlusion, as illustrated in Figure 1.
Numerous methods are available to find T-junctions, but they all make assump-
tions about the orientations of the occluding contour. Moreover, even after a
T-junction has been detected, an occlusion may not be present. Our method to
detect occlusions works under far weaker assumptions than other methods. In
particular, we only assume a weak bound on the magnitude of deformation on
objects viewed by a camera and a bound on the color variations between frames.

In contrast to prior methods, we model the cause of occlusion, under a local
deformation model, and show that the proper measurement of certain topological
invariants serves as a definitive indicator to the presence of an occlusion. Prior
approaches do not give any analytical guarantee on the validity of their detec-
tions, only experimental results. Our approach, in contrast to existing methods,
is proven to yield a zero false positive rate as long as the required motion and
color variation bounds are satisfied. The strength of our framework is that it is
able to operate at different scales providing information that may otherwise be
unavailable while not relying on noisy derivatives, not making strict assumptions
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Fig. 2. The results of the occlusion detector presented in this paper applied to a se-

quence of images that depict a piece of cloth being folded. Observe the existence of

a self-occlusion. Frames of a sequence are shown (first three columns) and the corre-

sponding occlusion detections centered at time t1 (right).

about the orientation of occluding contours, not building complex appearance
models, and not performing any matching. In Figure 2, we apply our method
to an image sequence of a cloth deforming in 3D, creating a self occlusion. Our
method successfully detects the occlusion while producing no false positives.
Note that these local detections can be fed into a global process such as graph
cut in order to segment objects as is done in [2].

The contributions of this work are three-fold. First, in Section 3, we prove that
under a deformation model occlusions occur when there does not exist homeo-
morphisms between pairs of images in an image sequences. Second, in Section 4,
we define local topological invariants to detect an occlusion within an image.
Finally, in Section 5, we demonstrate the applicability of our occlusion detector
including some preliminary results on foreground/background segmentation.

2 Related Work

As described earlier, traditional approaches to occlusion detection can be di-
vided into two categories: those that attempt to detect motion inconsistencies
and those that detect T-junctions. Detecting motion inconsistencies is inspired
by the classic work of Horn and Schunck [7] and the observation that the mo-
tion between the two sides of an occluding edge are generally dissimilar. This
argument implicitly assumes that the objects being imaged undergo rigid trans-
formations. This argument is inapplicable if the projection is instead allowed
to transform in a more general fashion, as illustrated in Figure 1, and can re-
sult in false positives. The algorithms in this domain can be classified by the
varying level of assumptions used in order to make the motion estimate robust.
The presence of T-junctions in a contour has been shown to be a strong local
cue for occlusion [8]. Unfortunately, not all T-junctions are occlusions, which
can introduce false positives. Most algorithms in the T-junction domain can be
classified according to the methodology they employ to detect and classify them.

At one extreme of motion estimation is the class of layered motion segmen-
tation algorithms which employ a parametric model that is restricted to near-
planar, rigidly-moving regions for each layer to segment regions based on the
consistency of motion [9–12]. Incorporating a variety of techniques to estimate
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these models, these algorithms assume a fixed number of layers in the scene,
which does not scale well as the number of layers increases. Instead of relying
on this requirement, we argue that the low-level reasoning done by an occlu-
sion detector with a deformation model provides appropriate cues to high-level
reasoning algorithms like those performing layered motion segmentation.

At the other extreme of motion estimators are those that make the motion
estimate robust by smoothing the velocity field spatially or temporally [13, 14].
Regrettably, this has the unintended consequence of making the motion estimate
inaccurate at boundaries where occlusions occur. An alternative to this smooth-
ing approach is the use of an implicit model, either learned from local motion
cues estimated from training data or based on some fixed model of the distribu-
tion of motion cues in the vicinity of occluding boundaries [15–18]. Though these
approaches are appealing because they rely on well-defined statistical models,
they remain sensitive to deviations of the actual data from the trained model.

T-junction detection has a rich history. Until recently, there have been two
predominant approaches to T-junction detection: gradient or filter-based ap-
proaches [19–22] and model-based template matching [23]. These approaches
work singularly to detect the T-junctions rather than distinguish an occlud-
ing T-junction from a non-occluding T-junction. More recently, others define
what they call a proper T-junction as a T-junction at which an occlusion takes
place [3]. They detect these proper T-junctions by exploiting a rank constraint on
a data matrix of feature tracks that would normally be classified as outliers in a
multiple-view geometry problem. Although mathematically correct, the method
can be overly sensitive to even slight deviations from the given rank condition.
Inspired by this work, other alternatives have exploited a discriminative frame-
work to classify these proper T-junctions [1, 2]. Unfortunately, these methods
utilize 2D spatiotemporal slices instead of volumes which mean that detections
can only be made in fixed orientations.

In contrast to prior work, we prove that, under a deformation model, oc-
clusions occur when pairs of images are not equivalent via deformation. We
construct local topological invariants which exploit this result to localize oc-
clusions in an image. Our method applies under weaker assumptions than the
aforementioned detectors.

3 Modeling Scenes and Images

In this section, we describe our scene model. We let objects in R
3 correspond

to sets in the space. Each point on the surface of an object at a given time
is assigned a color. We initially assume that the color at a given point on the
surface of an object does not change over time, but we allow the object to de-
form via a homeomorphism. For simplicity, this model ignores lighting, shadows,
and specularities while extensions to account for such effects are discussed in
Section 4.2.

The motion of an object is determined via a continuous family of homeomor-
phisms: F (x, t) : R

3 × R → R
3, where F (·, t) is a homeomorphism from R

3 to
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R
3 for each t. The camera is located at the origin of our coordinate system. The

image domain, Ω, is defined to be a sphere of radius 1 centered at the origin,
S

2. We employ an omni-directional camera model in order to avoid occlusions
at the boundaries of the field of view. We consider the effect of boundaries and
the case of directional cameras in the next section. Throughout our analysis, we
assume for convenience that the camera is static and the world is moving. Fortu-
nately, our analysis applies to situations where the camera and the environment
are moving and changing simultaneously. We also assume objects in the scene
remain outside the unit sphere at all times.

A color image, I : Ω → R, and depth image, D : Ω → R
3, are defined

for every point s ∈ Ω via a ray drawn from the origin passing through s. We
consider 1D color images (i.e. grayscale) for simplicity. The depth value assigned
to s is obtained by finding the point in R

3 at which the ray beginning at the
origin through s first intersects. The color value at s is defined similarly. The
set of occluding contours in an image is the set of points at which the depth
image is discontinuous. The following result connects the homeomorphisms in
R

3 to homeomorphisms in Ω.

Proposition 1. If there are no occluding contours for an ordered set of depth
images indexed by t in [0, 1], then Dt(s) provides a homeomorphism between Ω
and Dt(Ω) ⊂ R

3 which implies that f(s, t) := D−1
t (F (Dt(s), t)) is a continuous

family of image homeomorphisms for which It1(f(s, t1)) = It2(f(s, t2)) for all
t1 and t2 ∈ [0, 1].

We refer to the existence of a family of continuous image homeomorphisms for
which It1(f(s, t1)) = It2(f(s, t2)) as the Image Homeomorphism Criterion.
If this criterion is violated, then using the previous theorem we conclude that an
occluding contour exists. Though this argument guarantees the existence of an
occlusion, it does not help us localize the occluding contour either temporally or
spatially. The reader may wonder if the converse of Proposition 1 is valid. The
following observation provides an important partial converse to the proposition:

Proposition 2. If the Image Homeomorphism Criterion is satisfied by a set of
color images, then there exists a realization of an object in R

3 that generates the
same color images with no occluding contours.

One such realization corresponds to forming a sphere of radius 2 centered at the
origin and coloring the sphere according to the color image. The motion homeo-
morphism F (x, t) for R

3 is then just the extension of the color image homeomor-
phism f(s, t). This result verifies that the Image Homeomorphism Criterion is in
fact the best achievable result to guarantee the existence of occlusions without
making additional assumptions.

4 Localizing Occlusions

In this section, we introduce an approach to locally detect occlusions in image
sequences over discrete time by extending the ideas in Section 3. This is done
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by introducing an additional constraint on the size of deformations in R
3. Then,

we generalize the concepts for image sequences in which color information also
varies. Finally, we focus on the case in which the image homeomorphisms can
be decomposed into a translational and deformation component.

4.1 Local Detections without Color Variation

To begin, we introduce a constraint on the size of deformations in R
3:

Definition 1. A family of homeomorphisms F (x, t) : R
3×R→ R

3 is said to be
Lipschitz if for all x ∈ R

3, t1 and t2 ∈ R

||F (x, t1)− F (x, t2)|| ≤ K|t1 − t2|
for some constant K that is independent of x, t1 and t2. The smallest such K
is called the Lipschitz constant.

From now on, we require that the continuous family of homeomorphisms, F ,
that R

3 transforms under be Lipschitz, and the Lipschitz constant, K, gives an
upper bound on the size of these deformations. In practice, this requirement
demands bounding the speed of objects in R

3 based on the rate at which the
camera captures images. If no occluding contours are present, then the induced
image homeomorphism is also Lipschitz with the same constant, K, since all
objects are required to remain outside of S

2.
In order to verify if the Image Homeomorphism Criterion has been violated,

we study changes to topological invariants of the set I−1([a, b]), where [a, b] ⊂ R.
In particular, we focus on the number of connected components. To illustrate the
problem with näıvely comparing the number of connected components to detect
local occlusions, consider the sets in Figure 3(a) and corresponding neighbor-
hoods drawn in the rest of the figure. The first neighborhood, Er, is a square
with a side of length 2r drawn in Figure 3(b). The second neighborhood Er+K

has a side of length 2(r + K) drawn in Figure 3(c). Er has 6 connected com-
ponents while Er+K has 5 connected components suggesting that some set has

Fig. 3. Illustration of how to count connected components for neighborhoods Er and

Er+K. (a) The original image before any window is applied. Counts of connected com-

ponents: (b) 6 in Er; (c) 5 in Er+K; and (d) 5 in Er after identification using Er+2K.

Without identification we would erroneously conclude that the Image Homeomorphism

Criterion is violated and that there is an occlusion.
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disappeared and that the Image Homeomorphism Criterion has been violated.
However, there are no occlusions in this instance. The problem arises because
we count the same set twice in the smaller neighborhood. We remedy this prob-
lem by identifying sets in Er that correspond to the same connected component
in Er+2K . This solution inspires the construction of a sort of local topological
invariant.

Definition 2. Given a color image I over the image domain Ω, two collection
of intervals, B = {[ak, bk]}NB

k=1 and B′ = {[a′
k, b′k]}NB

k=1, the histogram of con-
nected components in a neighborhood E ⊂ Ω given the bins B is defined
as the vector αE(I|B) = (αk)NB

k=1, where

αk = cc
(I−1([ak, bk]) ∩ E

)
,

and cc(A) is the number of connected components in the set A. Under the as-
sumption that E ⊂ E′ and [ak, bk] ⊂ [a′

k, b′k] for all k, the histogram of
connected components in E identified with the neighborhood E′ given
the bins B and B′, denoted αE|E′(I|B,B′), is computed in the same way ex-
cept the connected components in I−1([ak, bk]) ∩ E are identified (i.e. treated
as the same connected component) if they correspond to the same component in
I−1[a′

k, b′k]) ∩ E′.

Definition 3. The color support in a neighborhood E given the bins B
is the vector σE(I|B) = (σk)NB

k=1, where σk is 0 if I−1([ak, bk]) ∩ E = ∅ and 1
otherwise.

Employing this new method to calculate connected components, guarantees that
under Lipschitz image homeomorphisms, the histogram of connected components
in a neighborhood Er identified with the neighborhood Er+2K is always less than
the histogram of connected components in a neighborhood Er+K . If we apply
this procedure to the example in Figure 3 and compare the number of connected
components, we find that the Image Homeomorphism Criterion is not violated
(the number of connected components in Er after identification is 5 which is the
number of components in Er+K). The following result proves that this argument
can be used to identify local violations of the Image Homeomorphism Criterion,
which allows us to define a local occlusion detector.

Theorem 1. Given bins B, neighborhoods Er, Er+K , and Er+2K centered around
a common point s, and color images It1 and It2 where |t1 − t2| = 1, if either

αEr|Er+2K
(It1|B,B) ≤ αEr+K (It2|B) (1)

or
σEr+K (It2|B) ≤ σEr+2K (It1|B) (2)

is violated, where the inequality is checked element wise, then the Image Home-
omorphism Criterion is not satisfied between It1 ∩ Er and It2 ∩ Er+K .
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The argument for the proof proceeds as follows: For a scene deforming under
a Lipschitz homeomorphism, if a set is in the interior of the neighborhood Er,
then it is in the interior of Er+K . If two sets in Er are connected in Er+K

then the path connecting them is in Er+2K which explains why identification
using Er+2K guarantees the condition in Equation 1. The second condition just
specifies that the colors observed in Er+K are present in Er+2K .

At this point, we make two additional remarks. First, the previous theorem
allows us to consider occlusion detection in the case of directional cameras in
a straightforward manner. Second, observe that Theorem 1 works both forward
and backward in time so that appearance and disappearance events, which are
each just types of occlusions, can be identified locally.

4.2 Generalizing to Color Variation

In this section, we generalize our model to include color variations in the im-
ages. These variations may include soft shadows and slow lighting variations.
However, we do not claim to solve the problem for strong shadows and specu-
larities which are a challenge for all occlusion detection algorithms. In order to
quantify the amount of uncertainty allowed, we consider color variations that
are Lipschitz over time with constant Kc. That is, if f(s, t) is a family of image
homeomorphisms, we must have

|It1(f(s, t1))− It2(f(s, t2))| ≤ Kc|t1 − t2|
instead of I(f(s, t1)) = I(f(s, t2)) (i.e. Kc = 0) as was assumed in the previous
section. From now on, we require that the color variations be Lipschitz with
constant Kc.

We generalize the results of Theorem 1 to incorporate color variations.

Theorem 2. Assume the same setup as in Theorem 1 with Lipschitz color im-
ages with Lipschitz constant Kc. Define Bc := {[ak − c, bk + c]}NB

k=1 for c > 0. If
either

αEr |Er+2K
(It1|B,B2Kc) ≤ αEr+K (It2|BKc) (3)

or
σEr+K (It2|BKc) ≤ σEr+2K (It1|B2Kc) (4)

is violated, then the Image Homeomorphism Criterion under color variation is
not satisfied between It1 ∩ Er and It2 ∩Er+K .

Figure 4 illustrates this process where an object is moved behind a book resulting
in an occlusion detection. The sets I−1

t1 ([ak, bk]) ∩Er are shown in white on the
middle row for increasing k from left to right, the sets I−1

t1 ([ak−2Kc, bk+2Kc])∩
Er+2K are also shown in gray on the middle row, and the sets I−1

t2 ([ak−Kc, bk +
Kc]) ∩ Er+K are shown on the bottom row. The images in this example are of
size 240 × 240, B = {[40(k − 1), 40k]}7k=1, r = 40, K = 10, and Kc = 5. The
outcome for this example is

αEr|Er+2K
(It1|B,B2Kc) = [1 0 1 2 0 0 0]�
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Fig. 4. Demonstration of our local topological occlusion detector. Three images cor-

responding to an object moving behind a book (top). The sets I−1
t1 ([ak, bk]) ∩ Er and

I−1
t1 ([ak − 2Kc, bk + 2Kc])∩Er+2K are shown in white and gray respectively (middle).

The sets I−1
t2 ([ak −Kc, bk +Kc])∩Er+K are shown on the bottom row. Our framework

detects an occlusion since the condition in Equation 3 is violated.

and
αEr+K (It2|BKc) = [0 0 2 1 1 0 0]�.

Since the condition in Equation 3 is not satisfied, we conclude that an occlusion
has occurred.

4.3 Estimating Translational Component

Theorem 2 gives a mechanism to detect occlusions in situations in which the
motions and deformations of objects in 3D are unknown. In certain situations,
it may be convenient to take advantage of this structure and decompose the
homeomorphism into a translational and pure deformation component.

In this section, we assume that the image homeomorphism can be locally
decomposed as follows:

f(s, t) = ft(s, t) + fd(s, t),

where ft is a translation and fd is a deformation with Lipschitz constants Kt

and Kd, respectively. Using the framework developed in the previous section,
we would need to compare the connected components in Er and Er+Kt+Kd

. If
Kt >> Kd then Er+Kt+Kd

would be a large set which would decrease the utility
of our algorithm to detect occlusions.

In order to take advantage of our knowledge about the translation components
of the homeomorphism, we would like to split Er+Kt+Kd

into N2
t evenly spaced

regions that cover Er+Kt+Kd
. The diameter of the decomposed regions needs to
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be sufficiently larger in order to guarantee that the conditions in Theorem 2 are
fulfilled by at least one of the subregions whenever the Image Homeomorphism
Criterion is satisfied. Figure 5 illustrates this situation. In order to guarantee
that a deformed neighborhood Er is found in the interior of at least one of the
decomposed regions, an overlap of greater than 2(r +Kd) between the regions is
required. If we let 2(r + D) be the length of the side of the decomposed regions,
then the minimum length required corresponds to:

D = Kd +
Kt

Nt
. (5)

Solving for the spacing d required between centers of the regions, we obtain

d =
2

Nt
Kt. (6)

Hence, given that we have decomposed the neighborhood Er+Kt+Kd
into N2

t

regions of length 2(r + D) with centers spaced d units away, then the Image
Homeomorphims Criterion between regions Er at time t1 and Er+Kd+Kt at
time t2 is violated if the conditions in Equations 3 and 4 are not satisfied by
any of decomposed regions. This result is used in Section 5 to identify occlusions
between objects with large translational components. Note that this decompo-
sition approach can be used to estimate motion flow between regions without
direct tracking or differential operators applied to the images.

Fig. 5. Choosing an appropriate length for the coveraging sets of Er+Kt+Kd with Nt =

2. (a) Given a region Er, and bounds Kt and Kd, our objective is to obtain a cover

that guarantees that Er can be found within one of the covering sets. (b) A coverage

in which Er is not contained within any of the covering sets since the coverage does

not have enough overlap. The dark square corresponds to one of the regions in the

coverage. (c) Given that the overlap between the region is greater than 2r + 2Kd then

the neighborhood Er can be found in at least one of the covering sets. The length of

the sets needed to guarantee this fact are labeled 2r + 2D.
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5 Experiments

In this section, we present experimental results for occlusion detection applying
Theorem 2 to make local detections. We also briefly consider how to utilize these
results to perform foreground segmentation.

5.1 Implementation

The implementation of our approach takes the following image deformation pa-
rameters: the Lipschitz constants Kc, Kt and Kd. It also requires the following
algorithmic parameters: the radius for the base regions r, the color bins B, and
the number of subsections Nt in which each local neighborhood is decomposed.
For simplicity we take Nt to be odd. Note that any choice of the algorithmic
parameters is appropriate (e.g. different choices of radius r may yield different
detections, but still no false positives). The algorithm takes a base image It1

and marks detections against image It2.
We define a grid of points evenly spaced by a distance d (as defined by Equa-

tion 6). For each of the points in It1 we compute αEr |Er+2D
(It1|B,B2Kc) and

σEr+2D (It1|B2Kc), where D is given by Equation 5. For each of the points in It2

we compute αEr+D(It2|BKc) and σEr+D (It2|BKc).
For a fixed location x in the grid, let Er be the neighborhood centered at x

in image It1 and let Er+Kt+Kd
be the neighborhood centered at x in image It2.

We test the conditions in Theorem 2 by comparing the histogram of connected
components of Er against each of the histograms from the resulting N2

t regions
in which Er+Kt+Kd

is decomposed. If the conditions are not satisfied by any of
the regions then position x at time t1 is marked as an occluded location.

5.2 Detecting Occluding Contours

To begin, we consider results on real images. Figures 2 and 6 illustrate the re-
sults of applying our algorithm on a variety of image sequences: a deforming
cloth, a walking person, a closing hand, and a folding colored Macbeth board.
The first three columns correspond to frames from the sequence and the last
column is the detection results corresponding to the frame at time t1. Ani-
mations of the image sequences and the detected occlusions can be found at:
http://www.cs.unc.edu/~ron/research/ECCV2010/.

See the supplementary materials for animations of the image sequences and
the detected occlusions.

Our method successfully detected occlusions without introducing any false
positives. Note that several occluding contours were not highlighted in our de-
tections due to our unconstrained assumptions about the scene (i.e. we made
no prior assumptions about the environment and allowed for any type of defor-
mations). To illustrate this point, consider the image sequence with the closing
hand (second row in Figure 6). Though there are occluding contours along the
edges near the palm of the hand, the hand’s movement does not reveal the exis-
tence of any local occlusions here which means that the Image Homeomorphism

h
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Fig. 6. Detection results for image sequences of a walking person, a closing hand, and

a folding colored Macbeth board. Sample frames are displayed (first three columns)

and the occluding contours corresponding to the frames at time t1 (right column).

Criterion is never violated. Proposition 2 implies that there exists a 3D realiza-
tion of each image in this sequence around this edge that does not contain an
occlusion. By applying more global reasoning, one could hope to recover these
type of detections, which is the focus of future research.

The method presented in this paper is not directly comparable to other ap-
proaches in the literature since our goal is to obtain local detections in uncon-
strained deforming scenes, an area that has not previously been explored. In
future work, we plan to integrate local detections into consistent occluding con-
tours for deforming scenes, which requires a new dataset of deforming scenes for
evaluation and comparison of approaches.

5.3 Foreground/Background Segmentation

In this section, we briefly consider how one can employ the presented occlu-
sion detector to do foreground versus background segmentation. We assume
that there are two objects each with distinguishable color distributions, one per-
forming the occluding (the foreground) and the other being occluded (the back-
ground). When an occlusion occurs, the neighborhood Er contains samples of a
set that becomes occluded and the neighborhood Er+K contains samples of the
set that perform the occlusion. We can use this elementary information to learn
the color distribution of the foreground and background. After this distribution
has been learned, we can test to which segment a given pixel belongs. Figure 7
illustrates this approach applied to a synthetic (top row) and real (bottom row)
image sequences.
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Fig. 7. Foreground/background segmentation results for a synthetic sequence of a ball

moving through a room with multicolored tiles (top) and a real sequence of a hand

moving in front of a checkerboard (bottom). Sample frames from the sequences (first

two columns). Occlusion detections in white and segmentation by learning color distri-

bution in red (right column) centered at time t1.

6 Conclusion

In this paper, we present a mathematical framework to detect and localize oc-
clusions in image sequences of scenes that can include deforming objects. The
method works by measuring changes in a local topological invariant, which guar-
antees a zero false positive rate when certain motion and color variation bounds
are satisfied. Our occlusion detector works under far weaker assumptions than
other detectors. If the 3D scene transforms in a more restrictive fashion, the
method presented in this paper can be viewed as complementary to traditional
detectors. We also presented preliminary results on extending the detections to
perform figure-ground separation when the model undergoes Lipschitz defor-
mations. Most current such algorithms employ a fixed statistical model for the
variation allowed in the background, but the framework presented here is more
general and can work in tandem with a statistical model.

As future research, we plan to study how to integrate this local information
in order to come up with global solutions to problems such as segmentation and
matching. The descriptors that we used for identifying occlusions can also be
thought of as topological features which are robust to deformations. Integrating
the information from these local descriptors could lead to the development of
new matching and recognition techniques.

The generality of our framework can benefit applications such as tracking in
medical applications which involve soft, deformable tissues. For example, knowl-
edge of occlusions could help in the reconstruction of surgical scenes and in
performing foreground/background segmentation in scenes with soft tissue.
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2.5D Dual Contouring: A Robust Approach to
Creating Building Models from Aerial LiDAR

Point Clouds

Qian-Yi Zhou and Ulrich Neumann�

University of Southern California

Abstract. We present a robust approach to creating 2.5D building mod-

els from aerial LiDAR point clouds. The method is guaranteed to produce

crack-free models composed of complex roofs and vertical walls connect-

ing them. By extending classic dual contouring into a 2.5D method, we

achieve a simultaneous optimization over the three dimensional surfaces

and the two dimensional boundaries of roof layers. Thus, our method can

generate building models with arbitrarily shaped roofs while keeping the

verticality of connecting walls. An adaptive grid is introduced to simplify

model geometry in an accurate manner. Sharp features are detected and

preserved by a novel and efficient algorithm.

1 Introduction

Three dimensional building models are very useful in various applications such as
urban planning, virtual city tourism, surveillance, and computer games. The ad-
vance of acquisition techniques has made aerial LiDAR (light detection and rang-
ing) data a powerful 3D representation of urban areas, while recent research work
(e.g.,[10,15]) has introduced a successful pipeline to extract individual building
point clouds from city-scale LiDAR data.

The aerial LiDAR point clouds are 2.5D data, i.e., the LiDAR sensor captures
the details of roof surfaces, but collects few points on building walls connecting
roof boundaries. In addition, manually created building models (Figure 2) also
show a 2.5D characteristic. Nearly all of them consist of complex roofs (green
faces) connected by vertical walls (white faces). Thus, we desire a 2.5D modeling
method with the following properties:

– Accuracy: The method should produce simple polygonal models fitting the
input point clouds in a precise manner.

– Robustness: Regardless of the diversity and complexity of building roof
shapes, the method should always generate crack-free models, even with the
existence of undesired elements such as residual sensor noise and small roof
features.
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Fig. 1. Various kinds of building models are created using 2.5D dual contouring

Fig. 2. Manually created models [3] show the 2.5D nature of building structures

– 2.5D characteristic: The method should create 2.5D polygonal models
composed of detailed roofs and vertical walls connecting roof layers.

Most of the previous research work is based on the detection of some pre-defined
roof patterns, such as planar shapes [8,10,11,15] or a small set of user-given
primitives [5,12,13,14]. These methods work well for buildings composed of pre-
defined shapes, but lose accuracy and robustness when dealing with arbitrary
roof shapes such as those shown in Figure 1. Another way to attack this problem
is with traditional data-driven approaches. Polygonal models are first generated
directly from input data using rasterization or delaunay triangulation, then sim-
plified with general mesh simplification algorithms. The latter step significantly
reduces triangle number while preserving a low fitting error. However, since the
general simplification algorithms are usually ‘blind’ to the 2.5D nature of the
problem, they can hardly produce models satisfying our 2.5D requirement.

We propose a novel, data-driven approach to solve this problem, named 2.5D
dual contouring. Like the classic dual contouring [4], we use an adaptive grid as
the supporting data structure, and reconstruct geometry in each grid node by
minimizing the quadratic error functions known as QEFs. Model simplification
is easily achieved by merging grid nodes and combining QEFs.

In order to represent the detailed roof surfaces, our approach works in a 3D
space. However, unlike the classic 3D dual contouring, we use a 2D grid as our
supporting data structure. We generate a hyper-point in each grid cell, which
contains a set of 3D points having the same x-y coordinates, but different z
values. They can be regarded as a set of points intersected by a vertical line
and multiple roof layers. Hence, the consistency between boundary footprints of
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different roof layers is guaranteed, and vertical walls are produced by connecting
neighboring hyper-points together.

Given that our method is built on some of previous work, we explicitly state
our original contributions as follows:

1. We propose a new robust method to create 2.5D building models from aerial
point clouds. We demonstrate how to simplify geometry in a topology-safe
manner and construct polygons within a 2.5D framework. Our results are
guaranteed to be accurate watertight models, even for buildings with arbi-
trarily shaped roofs.

2. We propose an algorithm to detect sharp roof features by analyzing the QEF
matrices generated in 2.5D dual contouring. The analysis result is then used
to preserve such features in polygon triangulation.

3. Benefiting from a post-refinement step, our algorithm has the ability to pro-
duce building models aligning with principal directions, as defined in [14].

2 Related Work

We review the related work on two aspects: building reconstruction methods and
volumetric modeling approaches.

2.1 Building Reconstruction from Aerial LiDAR

Many research efforts have addressed the complex problem of modeling cities
from aerial LiDAR data. Recent work (e.g., [8,10,11,14,15]) introduced an auto-
matic pipeline with the following characteristics: trees and noises are removed
via a classification algorithm, and a segmentation module splits the remaining
points into individual building patches and ground points. The building patches
are then turned into mesh models by a modeling algorithm.

In the last step, these methods first apply a plane fitting algorithm to extract
planar building roofs, then employ different heuristics to guide the modeling pro-
cess. For example, Matei et al.[8] regularize roof outlines by estimating building
orientations. Poullis and You [10] create simple 3D models by simplifying bound-
aries of fitted planes. Verma et al.[11] employ a graph-based method to explore
the topology relationships between planar roof pieces. Zhou and Neumann [14]
learn a set of principal directions to align roof boundaries and this principal
direction learning procedure is further extended to city-scale data sets in [15].

To alleviate the problem that only planar shapes can be handled well, primitive-
based methods are developed to reconstruct complex building roofs. Lafarge et
al.[5] propose a two-stages method to find the optimal combination of parametric
models based on a RJMCMC sampler. You et al.[12] and Zhou and Neumann [14]
show the usage of primitives with the help of user-interaction. Zebedin et al.[13]
detect planes and surfaces of revolution. However, as mentioned previously, all of
these methods are limited by the user-defined primitive libraries, thus lose accu-
racy and robustness when dealing with arbitrary roof shapes.
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(a) (b) (c) (d) (e)

Fig. 3. Robust building modeling pipeline: (a) the input point cloud; (b) a 2D grid

with surface Hermite data (gold arrows) and boundary Hermite data (red arrows)

attached; (c) hyper-points (turquoise balls connected by red lines) generated by min-

imizing QEFs; (d) mesh model reconstructed via 2.5D dual contouring; and (e) final

model with boundaries snapped to principal directions

2.2 Volumetric Modeling Approaches

Volumetric methods [1,4,7] have proved to be a robust way of generating crack-
free models: input points are first scan-converted into a regularized grid; then
geometry and topology are created respectively. For example, the dual contouring
method [4] creates one mesh vertex in each minimal grid node by optimizing a
quadratic error function, and constructs polygons during a traversal over the
adaptive grid. Based on this work, Fiocco et al.[2] develop a modeling method
combining aerial and ground-based LiDAR.

Nevertheless, these volumetric approaches all work for regular 2D or 3D grids.
None of them have the same 2.5D characteristic as our approach.

3 Pipeline Overview

Given a building point cloud as input, our modeling process executes four steps
as illustrated in Figure 3:

1. Scan conversion: We embed the point cloud in a uniform 2D grid. Sur-
face Hermite data samples (gold arrows) are generated at grid points and
boundary Hermite data samples (red arrows) are estimated on grid edges
connecting different roof layers (Figure 3(b)). This 2D grid is also regarded
as the finest level of our supporting quadtree.

2. Adaptive creation of geometry: In each quadtree cell, we compute a
hyper-point by minimizing a 2.5D QEF. Geometry simplification is achieved
in an adaptive manner by collapsing subtrees and adding QEFs associated
with leaf cells (Figure 3(c)).
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3. Polygon generation: We reconstruct a watertight mesh model by connect-
ing hyper-points with surface polygons (turquoise triangles) and boundary
polygons (purple triangles), which form building roofs and vertical walls,
respectively (Figure 3(d)).

4. Principal direction snapping: The roof boundaries are refined to follow
the principal directions defined in [14] (Figure 3(e)).

4 Scan Conversion

The first step of our modeling algorithm converts the input point cloud into a
volumetric form, by sampling Hermite data (in the form of point-normal pairs)
over a 2D supporting grid. With elements being considered as their infinite exten-
sions along the vertical direction, this 2D grid has a 3D volumetric connotation.
E.g., a grid cell represents an infinite three dimensional volume, while a grid
point corresponds to a vertical line containing it.

4.1 Surface Hermite Data

Given a 2.5D point cloud as input, we first segment it into multiple roof layers
using a local distance-based region growing algorithm1, as shown in Figure 4(a).
Ideally, each vertical line passing through a grid point intersects with one and
only one roof layer. The intersection point is taken as a surface Hermite data
sample, and estimated by averaging the heights and normals2 of its k-nearest
input points within the same roof layer, illustrated as points marked with blue
or purple outlines (taking k = 4) in Figure 4(a).

The only difficulty in this process is to robustly detect the right roof layer
crossing the vertical line. Intuitively, we say a roof layer L covers a grid point g
iff each of g’s four neighboring cells contains at least one input point p belonging
to L or a higher cluster L′. E.g., in Figure 4(a), point A is covered by no roof
layers, and thus is assigned as ground; point B is only covered by and assigned
to the dark-grey layer; covered by both the dark-grey layer and the light-grey
layer, point C is assigned to the highest covering layer, i.e., the light-grey layer.

4.2 Boundary Hermite Data

While surface Hermite data captures the surface geometry of building roofs, the
shapes of roof boundaries are represented by the boundary Hermite data.

Considering a grid edge e connecting two grid points with surface Hermite
data samples {s0, s1} on different roof layers s0 ∈ L0, s1 ∈ L1,3 the vertical
1 The roof layers are always segmented in a local area, as global segmentation may

erase local features such as those shown in Figure 8(c). Specifically, the segmentation

for grid point g is applied to all the input points in g’s four neighboring cells.
2 Point normals are pre-computed using covariance analysis [14].
3 To avoid ambiguity, roof layers are determined again by a local segmentation over

{s0, s1} ∪ P , where P is the input point set within e’s two adjacent cells.
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Points of a high roof layer

Points of a low roof layer

Surface samples assigned to the high roof layer

Surface samples assigned to the low roof layer

Surface samples assigned as ground

A B C

Boundary Hermite data samples

E F G H

Support vectors

(a) (b) (c)

Fig. 4. Generating (a) surface Hermite data samples on grid points: the sample is

assigned to the highest roof layer which covers the grid point; (b,c) boundary Hermite

data samples on grid edges: we find the maximum margin line (thin black lines) to

divide the lower surface Hermite data sample from the higher roof layer

wall connecting L0 and L1 should split their projection images on the x-y plane.
Inspired by the 2D support vector machine algorithm, we find the maximum-
margin line l which separates L0 and L1 on the x-y plane, and estimate the
boundary sample by intersecting line l and edge e.

In practice, with the existence of residual sensor noise, the projections of
different roof layers may overlap on the x-y plane. Since our data is collected
from a top view, we give more saliency to the higher roof layer L1 (assuming
height(L0) < height(L1)), and thus take the maximum-margin line l which
separates {s0} and L1 while maximizing distance(s0, l), shown as the thin black
lines in Figure 4(b,c). Empirically, we find this method more robust than other
methods including that using a maximum-soft-margin line dividing L0 and L1.

5 Adaptive Creation of Geometry

Given a quadtree cell c (not necessarily being a finest-level leaf cell), we denote
the set of surface Hermite data samples on the grid points in c as S, and the
set of boundary Hermite data samples on atomic grid edges in c as B. The roof
layers in c are then determined by segmenting S into k clusters S = S1∪· · ·∪Sk.
Intuitively, if an atomic grid edge in c has no boundary sample attached, it con-
nects two surface samples of the same roof layer. Thus, we use an agglomerative
clustering algorithm via repeatedly combining surface sample sets connected by
edges without boundary samples.

Now our task is to generate k vertices for the k roof layers, denoted as a hyper-
point χ = {x1, . . . , xk}. To maintain the consistency of roof layer boundaries,
we require these k vertices to have the same projection onto the x-y plane, i.e.,
they should have the same x-y coordinates, but different z values. Thus χ can be
expressed as a k+2 dimensional vector χ = (x, y, z1, . . . , zk). We let x0 = (x, y, 0)
for convenience in following discussions.
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5.1 2.5D QEF

The hyper-point χ is optimized by minimizing a 2.5D QEF defined as the linear
combination of 2D boundary quadratic errors and 3D surface quadratic errors:

E(χ) =
∑

(p,n)∈B

(ωn · (x0 − p))2 +
∑

i=1,...,k

∑
(p,n)∈Si

(n · (xi − p))2 (1)

where ω is a user-given weight balancing between boundary samples and surface
samples. Empirically, a weight between 1 ∼ 4 satisfies most of our experiments.

Due to the horizontality of boundary sample normals, the third coordinates of
p and x0 do not affect the 2D error term. However, we choose to write all these
variables uniformly in 3D, in order to express the energy function in a matrix
product form:

E(χ) = (Aχ− b)T (Aχ− b) (2)

where A is a matrix whose rows come from normals in B, S1, . . . , Sk, with those
in B multiplied by ω. The x-y values of each normal are placed in the first two
columns, while the z values of normals in Si are placed in the (i +2)-th column.
The remaining entries in A are padded with zeros. b is a vector composed of
corresponding inner products n · p with the first |B| entries multiplied by ω.

We employ the QR decomposition proposed in [4] to improve numerical sta-
bility during QEF optimization, i.e.,

(A b) = Q

⎛⎜⎜⎝
Â b̂
0 r
0 0

. . . . . .

⎞⎟⎟⎠ (3)

where Q is an orthogonal matrix and Equation 2 can be rewritten as:

E(χ) = (Aχ− b)T QQT (Aχ− b) = (Âχ− b̂)T (Âχ− b̂) + r2. (4)

Thus, E(χ) is minimized by solving Âχ−b̂ = 0. To handle the possible singularity
of Â, we follow the solutions in previous methods [4,6] by applying an SVD
decomposition:

Â = UΣV T , (5)

truncating small singular values in Σ with a magnitude of less than 0.1, and
using the pseudo-inverse Σ+ to compute the hyper-point χ as:

χ = χ̄ + V Σ+UT (b̂ − Âχ̄) (6)

where χ̄ is a guessed solution whose first two coordinates come from the centroid
of B, and the (i + 2)-th coordinate is the mean height of samples in Si. If B is
empty, the first two coordinates equal to those of the centroid of S.
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Fig. 5. (a,b) Creating surface polygons (colored hollow polygons) and boundary poly-

gons (colored semitransparent polygons) around hyper-point A. Viewing from top, (c)

surface polygons are generated at grid points, while (d) boundary polygons are pro-

duced for grid edges which exhibit a roof layer gap.

5.2 Quadtree Simplification with QEFs

Taking a quadtree with QEF matrices pre-computed for all the finest-level cells,
we simplify the geometry by collapsing leaf cells into parent cells and combining
QEFs in a bottom-up manner. A user-given tolerance δ controls the simplification
level by denying sub-tree collapse when the residual is greater than δ.

Combining four regular 3D QEFs can be simply achieved by merging the
rows of their upper triangular matrices to form a 16 × 4 matrix [4]. We follow
this method to combine our 2.5D QEF matrices, yet with the consideration of
association between matrix columns and roof layers: as roof layers in leaf cells
merge into one roof layer in the parent cell, corresponding matrix columns are
placed in the same column of the combined matrix. Specifically, we redo the roof
layer segmentation in the parent cell before merging matrices. Assuming the i-th
roof layer in a leaf cell belongs to the j-th roof layer in the parent cell, we put
the (i + 2)-th column of the leaf cell matrix into the (j + 2)-th column of the
combined matrix. 0-columns are used to pad the leaf cell matrices where no roof
layers belong to certain roof layers in the parent cell.

Once again, the merged matrix is brought to the upper triangular form via a
QR decomposition. Due to the orthogonality of involved transformation matri-
ces, it represents the 2.5D QEF in the parent cell.

6 Polygon Generation

Given the simplified quadtree with hyper-points estimated in each leaf cell, our
next task is to create polygons connecting these hyper-points into a mesh. In
particular, we generate two kinds of polygons to satisfy our 2.5D characteristic.

1. Surface polygons: At each grid point p, we generate a surface polygon by
connecting vertices in the hyper-points on the same roof layer as p in its
neighboring cells.

2. Boundary polygons: At each minimal quadtree edge e, we create a bound-
ary polygon connecting two hyper-point segments in the adjacent cells.
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Sum of distance  = 635.10 m2 2 Sum of distance  = 36.69 m2 2

Fig. 6. Triangulation without (left) and with (right) our sharp feature preserving al-

gorithm. The colors of input points represent the squared distances from the mesh.

Figure 5 shows an example of polygon generation around a hyper-point A. The
surface polygons and boundary polygons are highlighted with colored outlines
and colored semitransparent polygons respectively. To avoid cracks generated
within a hyper-point, we make a boundary polygon sequentially pass through
the vertices in hyper-point segment in height ascending or descending order.
E.g., the dark-blue boundary polygon in Figure 5 goes through all the three
vertices in hyper-point A, from the top vertex to the bottom vertex.

Our method is guaranteed to produce crack-free models, which can be derived
from the fact that except for the border edges created around the entire grid,
the other mesh edges are contained by an even number of polygons. Proof is
straightforward: a non-vertical mesh edge is either contained by two surface
polygons, or by one surface polygon and one boundary polygon. As for the
vertical mesh edges created within a hyper-point, we consider all the boundary
polygons around this hyper-point (e.g., the colored semitransparent polygons
shown in Figure 5(a,b)). They go up and down though this hyper-point and
finally return to the start vertex, forming up a closed edge loop. Thus, each
vertical mesh edge in this hyper-point appears even times.

6.1 Sharp Feature Preserving Triangulation

By minimizing QEFs, 2.5D dual contouring has the ability to produce vertices
lying on sharp features, which are a common pattern in building roofs. However,
we find that a poor triangulation of surface polygons can spoil this advantage,
as shown in Figure 6 left. To solve this problem, we propose an efficient sharp
feature detection algorithm and preserve these features once detected.

In a grid cell c containing only one roof layer, we apply covariance analysis
over the normals of all surface samples, i.e., to get the eigenvalues of matrix:

C =
1
N

∑
i

ni · nT
i , (7)

and use Equation 3 and 5 to simplify it since c has no boundary samples:

C =
1
N

AT A =
1
N

ÂT Â =
1
N

V ΣT ΣV T . (8)

Thus, the diagonal of matrix 1
N ΣT Σ gives the eigenvalues of C, while the

columns of V are corresponding eigenvectors. As Pauly [9] suggests, the smallest
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Fig. 7. Comparison between topology-unsafe simplification (left) and topology-safe

simplification (right). Undesired features can be created by merging leaf cells in a

topology-unsafe manner.

eigenvalue λ0 and the middle eigenvalue λ1 estimate the minimal and maximal
curvatures, as the corresponding eigenvectors v0, v1 point to the curvature di-
rections. Therefore, we find ridges and valleys by detecting vertices with small
λ0 and fairly large λ1, and use v0 as the feature direction. Since the involved
matrices have all been computed in previous steps, the additional overhead of
this algorithm is trivial.

Specifically, for each diagonal e of a surface quad, we calculate:∑
p∈e and λ0(p)<τ

λ1(p) · |v0(p) · e| (9)

and choose the diagonal e∗ which maximizes this value to split the quad into
two triangles. Here τ is a user given threshold. Our experiments take τ = 0.01.

7 Topology-Safe Simplification

So far the quadtree simplification is completely built on QEFs, and the topology
of output models may change during this process. Undesired features can be
generated as shown in Figure 7 left. To solve this problem, we insert an additional
topology test right before sub-tree collapse happens; and reject collapse if the test
reveals a danger of topology change. Regarding multiple roof layers as multiple
materials, we use the topology test algorithm in [4], with an additional test (step
3) which prevents different roof layers in one leaf cell (top-left cell in Figure 8(a))
from merging into a same roof layer in the coarse cell (Figure 8(b)). This situation
may cause removal of small vertical wall features (e.g., Figure 8(c)).

1. Test whether each leaf cell creates a manifold; if not, stop.
2. Test whether the coarse cell creates a manifold; if not, stop.
3. Test whether any two roof layers in a same leaf cell belong to two different

roof layers in the coarse cell; if not, stop.
4. Test whether the topology of the dual contour is preserved using following

criteria; if not, stop; otherwise, collapse.
(a) Test whether the roof layer on the middle point of each coarse edge

agrees with the roof layer on at least one of the two edge endpoints.
(b) Test whether the roof layer on the middle point of the coarse cell agrees

with the roof layer on at least one of the four cell corners.
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(a) (b) (c)

Surface samples with
different roof layer
assignments

Boundary samples
exhibiting roof layer
gaps

Surface polygons

Boundary polygons

Fig. 8. An unsafe simplification case denied by the topology safety test step 3. Since

the center grid point has different roof layer assignments in these leaf cells, two different

layers in the top-left leaf cell (a) belong to the same roof layer in the coarse cell (b).

Unsafe merging may erase wall features such as the one shown in (c).

Principal
directions

Fig. 9. Roof layer boundaries (thick colored lines) are snapped to principal directions

8 Principal Direction Snapping

Our algorithm is completely data-driven, i.e., no pre-assumptions about the
roof shapes have been made. Thus our algorithm can handle complex roofs in a
robust manner. On the other hand, in some cases, prior knowledge of the urban
area is given and it is a desire to have building models concurring with such
knowledge. In this section, we show a post-processing refinement to our results
using the prior knowledge of principal directions, which are defined as the roof
edge direction preference in a local urban area [14].

The idea is straightforward: once the boundaries of individual roof layers are
extracted, we snap them to the principal directions as much as possible without
exceeding a small error tolerance. In order to maintain the consistency between
boundaries of different layers, the boundaries are handled one by one in height-
descending order. I.e., when a roof layer boundary has been processed, the x-y
coordinates of the touched hyper-points are fixed, which are then considered as
constraints during the subsequent processing of lower roof layers. Figure 9 shows
clean and simple roof boundaries generated by the principal direction refinement.

9 Experiment Results

Figure 10 shows an urban area of Los Angeles reconstructed from 26M LiDAR
points with 7 samples/sq.m. resolution. We employ the reconstruction pipeline
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Fig. 10. Building reconstruction for a 2KM-by-2.5KM urban area of Los Angeles
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Fig. 11. Building models created using different approaches (from left to right): 2.5D

dual contouring, plane-based method proposed in [14], general mesh simplification over

a rasterized DEM, and manual creation. Color bars under the models show the ratio

of points at different squared distance level.
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Table 1. Quantitative evaluation of experiments shown in Figure 11

Models in Figure 11
2.5D dual
contouring

Plane-based
method [14]

DEM simpli-
fication

Manual
creation [3]

First row

(4679 points)

Triangle number 214 76 198 78

Average distance2 0.016 0.599 0.061 0.058

Outlier ratio 0.06% 12.37% 0.53% 0.83%

Second row

(684907 points)

Triangle number 8009 6262 8000 1227

Average distance2 0.037 0.465 0.035 7.780

Outlier ratio 0.44% 7.93% 0.87% 70.38%

Third row

(198551 points)

Triangle number 12688 1619 12999 1558

Average distance2 0.203 1.610 0.264 16.220

Outlier ratio 2.03% 21.15% 3.08% 68.28%

l = 0.7 m l = 1.0 m l = 1.4 m

Tri. # = 835 Err avg = 0.009 Tri. # = 688 Err avg = 0.010 Tri. # = 584 Err avg = 0.016

Tri. # = 688 Err avg = 0.010 Tri. # = 878 Err avg = 0.016 Tri. # = 937 Err avg = 0.024

= 0 o = 30 o = 45o

Default grid configuration:
Grid size: l = 1.0 m
Grid orientation: = 0 o

Tri. # = 688 Err avg = 0.010

Fig. 12. Models of similar quality are generated with the same point cloud embedded

into grids of different sizes or different orientations

proposed in [15] to remove irrelevant parts such as noises, trees, vehicles and
even ground. We then test our 2.5D dual contouring on point clouds of individual
buildings to create 2.5D models with complex roofs. Our algorithm successfully
creates 1879 building models consisting of 857K triangles within 6 minutes on a
consumer-level laptop (Intel Core 2 1.8GHz CPU with 2GB memory).

To further demonstrate the ability of handling various kinds of building mod-
els, we test our method on a set of buildings from Atlanta, as illustrated in Figure
1. Figure 11 shows a comparison between our method and previous methods. In
particular, we compare the average squared distance from input point sets to
the generated models, and the ratio of points with squared distances greater
than 1sq.m. In Figure 11, point colors denote the squared distances, and the
colored bars show the percentage of points at different squared distance levels.
As the quantitative results in Table 1 illustrate, our method (first column) is the
most accurate algorithm to produce 2.5D models. Plane-based approaches such
as [14] (second column) are unable to handle non-flat roofs (a,d) and small roof
features (b,e). Cracks often exist when fitting is unsuccessful (c,d). A general
mesh simplification over the DEM (third column) is competitive in the sense of
fitting quality. However, it cannot produce 2.5D models composed of roofs and
vertical walls. In addition, the fitting quality on roof boundaries is unsatisfac-
tory (f,g,h). The last column demonstrates point clouds aligning with manually
created models. Designed without knowledge from real-world data, they often
lack of accuracy even after registration to the input points.
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We finally demonstrate the influence of grid configuration in Figure 12. As an
adaptive approach, our method is insensitive to the grid size (top row). In addi-
tion, 2.5D dual contouring has the ability to place vertices at optimal positions,
thus grid orientation affects the results insignificantly (bottom row).

10 Conclusion

We present a robust method to automatically creating building models from
aerial LiDAR point clouds. Our results are 2.5D models composed of complex
building roofs connected by vertical walls. By extending dual contouring into a
2.5D method, our algorithm optimizes the surface geometry and the boundaries
of roof layers simultaneously. The output models are guaranteed to be crack-free
meshes with small fitting error, faithfully preserving sharp features.
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Abstract. We present a technique for modeling non-central catadioptric

cameras consisting of a perspective camera and a rotationally symmetric

conic reflector. While previous approaches use a central approximation

and/or iterative methods for forward projection, we present an analyt-

ical solution. This allows computation of the optical path from a given

3D point to the given viewpoint by solving a 6th degree forward pro-

jection equation for general conic mirrors. For a spherical mirror, the

forward projection reduces to a 4th degree equation, resulting in a closed

form solution. We also derive the forward projection equation for imag-

ing through a refractive sphere (non-central dioptric camera) and show

that it is a 10th degree equation. While central catadioptric cameras

lead to conic epipolar curves, we show the existence of a quartic epipolar

curve for catadioptric systems using a spherical mirror. The analyti-

cal forward projection leads to accurate and fast 3D reconstruction via

bundle adjustment. Simulations and real results on single image sparse

3D reconstruction are presented. We demonstrate ∼ 100 times speed

up using the analytical solution over iterative forward projection for 3D

reconstruction using spherical mirrors.

1 Introduction

Catadioptric cameras allow large field of view 3D reconstruction and stable ego-
motion estimation from few images. As analyzed in [1], there are only a few
configurations that allow an effective single-viewpoint (central) catadioptric sys-
tem. Simple mirrors such as sphere as well as configurations when the camera
is not placed on the foci of hyperbolic/elliptical mirrors lead to a non-central
system. To handle such configurations, it is important to accurately model a non-
cental catadioptric camera. Approximations using a central model could lead to
inaccuracies such as skewed 3D estimation [2].

The projection of a scene point onto the image plane (Forward Projection)
requires computing the light path from the scene point to the perspective cam-
era’s center of projection (COP). Thus, the reflection point on the mirror needs
to be determined. This is considered to be hard problem and iterative solutions
are usually employed assuming there are no closed form solutions. In this paper,
we present an analytical solution to compute the forward projection (FP) for
conic catadioptric systems, where the mirror is obtained by revolving a conic
section around the axis of symmetry and the camera’s COP is placed on the

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 129–143, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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mirror axis. We show that for a given 3D point, the mirror reflection point can
be obtained by solving a 6th degree equation for a general conic mirror. Interest-
ingly, it reduces to solving a 4th degree equation for a spherical mirror, resulting
in a closed form solution. We show how to use these analytical solutions for fast
3D reconstruction using bundle adjustment, achieving a two order of magnitude
speed up over previous approach [2].

Forward projection for imaging through a refractive sphere (non-central diop-
tric camera) is even more challenging due to two refractions. We show that the
optical path from a given 3D point to a given viewpoint via a refractive sphere
can be obtained by solving a 10th degree equation. Thus, similar to mirrors,
refractive spheres can also be used for 3D reconstruction by plugging its forward
projection equation in a bundle adjustment algorithm. We believe that ours is
the first paper to analyze this problem and derive a practical solution.

The epipolar geometry for central catadioptric systems (CCS) and for several
non-central cameras (pushbroom, cross-slit, etc.) has been extensively studied.
However, analyzing the epipolar geometry for non-central catadioptric cameras
is difficult due to non-linear forward projection. We show the existence of a
quartic epipolar curve for catadioptric systems employing spherical mirror.
Contributions: Our paper makes the following contributions:

– We analyze forward projection for axial non-central dioptric/catadioptric
cameras with conic reflectors and refractive spheres, and show that analytical
solutions exist.

– We demonstrate that the back-projection for a spherical mirror can be for-
mulated as a matrix-vector product and that the corresponding epipolar
curves are quartic.

– We utilize the forward projection equations for fast sparse 3D reconstruction.

1.1 Related Work

Back-Projection and Epipolar Geometry: Baker and Nayar [1] presented
the complete class of central catadioptric systems. Svoboda et al. [3, 4] studied
the epipolar geometry for CCS and showed that the epipolar curves are conics.
Geyer and Daniilidis [5] showed the existence of fundamental matrix for para-
catadioptric cameras. A unified imaging model for all CCS was proposed by
Geyer and Daniilidis [6]. Using this model for forward/back-projection with sec-
ond order lifted image coordinates, Strum and Barreto [7] formulated the funda-
mental matrix for all CCS. For non-central cameras, Pless [8] introduced essential
matrix for the calibrated case. Rademacher and Bishop [9] described epipolar
curves for arbitrary non-central images. The epipolar geometry of cone-shaped
mirrors, when restricted to planar motions was derived by Yagi and Kawato [10].
Spacek [11] described the epipolar geometry for two cameras mounted one on
top of the other with aligned mirror axes.

Representing back-projection as a matrix-vector product for general
mirrors is typically difficult. Several non-central cameras can be modeled by
back-projection matrices operating on second order lifted image coordinates, re-
sulting in conic epipolar curves. These include linear pushbroom cameras [12],
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linear oblique cameras [13], para-catadioptric cameras [14], and all general linear
cameras (GLC) [15]. For the one-coefficient classical radial distortion model, the
epipolar curves are cubic [16]. We show that for spherical mirror, back-projection
can be described as matrix-vector product using fourth order lifted image coor-
dinates, and thus the epipolar curves are quartic.

Forward projection for a non-central catadioptric camera is a hard problem,
since the point on the mirror where the reflection happens need to be determined.
In general, there is no closed-form solution for this problem, so non-linear opti-
mization have been proposed (as in [2, 17]). Gonçalves and Nogueira [18] inves-
tigated quadric-shaped mirrors and reduced the problem to an optimization in
a single variable. Baker and Nayar [1] were unable to find a closed form solution
while analyzing mirror defocus blur and used numerical solutions. Their analysis
was in 3D, since the finite camera aperture requires considering viewpoints not
on the mirror axis. Vandeportaele [19] also analyzed forward projection for axial
case, but in 3D using intersection of quadrics. In contrast, we derive a much
simpler solution for the axial case in 2D with lower degree equation compared
to [19].

Spherical mirrors have been used for visual servoing and wide-angle 3D recon-
struction [2, 17, 20–23]. Both [22] and [2] state that computing forward projection
does not have a closed-form solution. In [22], a GLC approximation is used by
tessellating the captured multi-perspective image into triangles and associating
a GLC with each of them. In [2], an iterative method for forward projection
is used. Interestingly, for spherical mirror, forward projection corresponds to
the classical Alhazen’s problem with four solutions [24]. We show that our FP
equation for general quadric mirror reduces to a 4th order equation for spherical
mirror. Garg and Nayar [25] used a refractive sphere model for rain drops for
generating near-perspective images (environment at infinity). However, they did
not solve for the forward projection from a 3D point to compute the optical
path, which we describe.

2 Forward Projection: Conic Reflectors

We first derive the forward projection equation for conic catadioptric systems.
Let z axis be the mirror axis. A pinhole camera is placed at a distance d from
the origin on the mirror axis. Let P = [X, Y, Z]T be a 3D scene point. Since the
mirror is rotationally symmetric, the mirror reflection of P can be analyzed in
the plane π containing the mirror axis and P (Figure 1 (left)). Let (z1, z2) be
the local coordinate system of π. In this plane, P has coordinates p = [u, v]T

given by u = S sin θ and v = Z, where S =
√

X2 + Y 2 + Z2 is the distance of
P from the origin and θ = cos−1(Z/S) is the angle between the mirror axis and
the line joining the origin and the 3D point.

In plane π, the mirror is parameterized as a 2D conic Az2
2 + z2

1 + Bz2 = C.
This parametrization is used in [26] to handle spherical mirror along with other
mirrors for computing the caustics. Let m = [x, y]T be the reflection point on the



132 A. Agrawal, Y. Taguchi, and S. Ramalingam

Refractive 
sphere

COP 
(0, d)

p (u, v)

v1

n1 (x, y)

n2 (x2, y2)

v2

α

α

β

β

v3

Conic catadioptric system Refractive sphere

Plane π

Mirror 
profile

COP 
(0, d)

m (x, y)

p (u, v)

z2

vi
vr

n

z1x

y

P (X, Y, Z)
Mirror 

surface

COP
(0, 0, d) Plane π

z: Mirror axis

θ

Fig. 1. (Left) Reflection for conic catadioptric systems can be analyzed in the plane π
containing the mirror axis and the 3D scene point. (Right) Imaging through a refractive

sphere can also be analyzed similarly.

mirror. Then x = ±√
C −By −Ay2. The incident ray vector vi and the normal

vector n at m are given by vi = [x, y − d]T and n = [x, B/2 + Ay]T . Using the
law of reflection, the reflected ray vector vr = vi − 2n(nTvi)/(nT n). Since the
reflected ray should pass through P , vr × (p −m) = 0, where × denotes the
cross product. Solving using Matlab symbolic toolbox1, we obtain a 6th order
forward projection (FP) equation in y

u2K2
1 (y) + K2

2 (y)(Ay2 + By − C) = 0, (1)

where K1(y) and K2(y) are polynomials in y defined as

K1(y) = K11y
3 + K12y

2 + K13y + K14, K2(y) = K21y
2 + K22y + K23, (2)

and the individual terms are given by

K11 = 4A(1 − A), K12 = 4B − 4A(d + Ad + 2B)

K13 = 8AC − 4Bd − 3B2 − 4C − 4ABd, K14 = −dB2
+ 4CB + 4Cd

K21 = 4(A − 1)(A(d + v) + B), K22 = 8C + 2B2
+ 4A(−2C + B(d + v) + 2dv)

K23 = B2
(d + v) + 4B(−C + dv) − 4C(v + d).

For a given P , solving (1) results in six solutions for y. The correct solution can
be found by checking the law of reflection for each real solution. Note that for
the correct solution vT

r n = −vT
i n. Using x = sign(u)

√
C −By −Ay2, the 3D

mirror reflection point can be obtained as xz1/‖z1‖+ yz2/‖z2‖.
Spherical Mirror: Substituting A = 1, B = 0, C = r2, where r is the mirror
radius, results in a 4th order forward projection equation

u2(r2(d + y)− 2dy2)2 − (r2 − y2)(r2(d + v)− 2dvy)2 = 0. (3)

Thus, a close form solution for y can be obtained. Notice that for a spherical
mirror, the pinhole location is not restricted. For any pinhole location, a new axis
1 Matlab code and intermediate steps are provided in the supplementary materials.
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Table 1. Degree of forward projection equation for central and non-central catadioptric

systems using conic reflectors

Mirror Shape Pinhole Placement Parameters Central System Degree

General On axis A,B,C No 6

Sphere Any A = 1, B = 0, C > 0 No 4

Elliptic On axis, At Foci B = 0 Yes 2

Elliptic On axis, Not at Foci B = 0 No 6

Hyperbolic On axis, At Foci A < 0, C < 0 Yes 2

Hyperbolic On axis, Not at Foci A < 0, C < 0 No 6

Parabolic On axis, d = ∞ A = 0, C = 0 Yes 2

Parabolic On axis, Finite d A = 0, C = 0 No 5

joining the pinhole and the sphere center can be defined. In all other cases, the
pinhole needs to be on the mirror axis. Table 1 shows the degree of FP equation
for spherical (A = 1, B = 0, C > 0), elliptical (B = 0), hyperbolic (A < 0, C < 0)
and parabolic (A = 0, C = 0) mirrors. Note that when the catadioptric system
is central, the degree of FP is two. This is intuitive, since the reflection point
can be obtained by intersecting the mirror with the ray joining the 3D point and
the effective projection center.

3 Back-Projection and Epipolar Curve for Spherical
Mirror

Now we show that back-projection equations for a non-central catadioptric sys-
tem using a spherical mirror can be written in matrix-vector form. By intersect-
ing the back-projected ray with a general 3D ray, we show the existence of a
quartic epipolar curve. Then we verify that the projection of points on the same
3D line onto the image plane using the FP equation results in the same curve.

Let Cp = [0, 0,−d]T be the COP and let the spherical mirror of radius r be
located at the origin (Figure 2 (left)). For an image point q, let s = K−1q be
the ray direction, where K3×3 is the internal camera calibration matrix. The
intersection points b with the mirror are given by

b = Cp + s
ds3 ±

√
d2s2

3 − (d2 − r2)(sT s)
sT s

, (4)

where s3 is the third element of s. Note that bTb = r2 and the normal at b is
b/r. Since vi = b−Cp, the reflected vector vr is given by

vr = (b−Cp)− 2b(bT (b−Cp))/r2 = −b−Cp + 2b(bTCp)/r2, (5)

which intersects the mirror axis at m = [0, 0, k]T , where k = dr2/(2db3 + r2).
Thus, the Plücker coordinates of the reflected 3D ray are given by L = (bT −
mT , (b×m)T )T , where × denotes the cross product. Similar to [7], we use L+
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and L− to represent the reflected rays corresponding to the two intersections of
vi with the sphere (b+ and b−). We represent the two lines with a second-order
line complex C, described as a symmetric 6× 6 matrix

C ∼W (L+LT
− + L−LT

+)W, W =
(

0 I
I 0

)
, (6)

where ∼ denotes the equality of matrices up to a scale factor. By substituting
b and m, we obtain a line complex C that includes quartic monomials of s. As
in [7], let vsym(C) be the column-wise vectorization of the upper-right trian-
gular part of C (21-vector) and ˆ̂s denote double lifted coordinates of s in the
lexicographic order (15-vector). Then we obtain the back-projection equation in
a matrix-vector form:

vsym(C) ∼ Br,d
ˆ̂s = Br,d

ˆ̂
K−1 ˆ̂q, (7)

where Br,d is a sparse 21 × 15 matrix depending only on r and d, as shown in
the supplementary materials.

Note that the difference between [7] and ours is that m = [0, 0, 0] in [7], since
the reflected ray passes through the center of an imaginary sphere that models
all central catadioptric systems [6]. For a non-central catadioptric system, m
becomes dependent on the image pixel q. Note that when the pinhole is on the
mirror axis, one can always find the intersection point m as [0, 0, k] for some k.

Epipolar Curve: Consider a 3D ray defined in the sphere-centered coordinate
system and represented with Plücker coordinates as L0. This ray intersects the
line complex C iff

LT
0 CL0 = 0. (8)

Since C includes quartic monomials of s (thus q), the constraint results in a 4th

order curve. The projection of L0 therefore appears as a quartic curve in the
image of spherical mirror, which means that spherical-mirror based catadioptric



Analytical Forward Projection for Axial Non-central Cameras 135

systems yield quartic epipolar curves. Our FP equation allows us to validate the
degree and shape of epipolar curves. Figure 2 (right) compares the epipolar curve
analytically computed from (8) with the curve obtained by projecting 3D points
on L0 using the FP equation. We can observe that the shape of curves agree and
the numerical curve (using FP) is a continuous section of the analytical quartic
curve. Note that the image point converges as the 3D point goes to ±∞ on L0.

Similar to perspective cameras, the quartic epipolar curve can be used to re-
strict the search space for dense stereo matching. Typically, approximations such
as epsilon-stereo constraint [22] are used, which assumes that the corresponding
match will lie approximately along a line. However, our analysis provides the
analytical 2D epipolar curve for non-central spherical mirror cameras. Note that
the FP equation for general conic mirrors simplifies the correspondence search
for other non-central conic catadioptric systems as well.

4 Sparse 3D Reconstruction Using Spherical Mirrors

We demonstrate the applicability of analytical forward projection (AFP) for
sparse 3D reconstruction using well-known bundle adjustment algorithm, and
compare it with iterative forward projection (IFP) method [2]. We choose a
simpler setup of a single perspective camera imaging multiple spherical mirrors
as shown in Figure 4. We assume that the internal camera calibration is done
separately (off-line) and the sphere radius is known (we used high sphericity
stainless steel balls as spherical mirrors for real experiments). Thus, our opti-
mization involves estimating the sphere centers and the 3D points in the camera
coordinate system. Note that the FP equation can be easily applied to more gen-
eral calibration/3D reconstruction involving rotationally symmetric setups with
parabolic/hyperbolic mirrors [2]. For moving camera+mirror system, one may
require a central approximation to get the initial estimate of the relative camera
motion. However, AFP can replace IFP in subsequent bundle adjustment. In
addition, since AFP leads to a fast algorithm, we demonstrate in Section 4.3
that a central approximation is not required for iterative outlier removal.

4.1 Bundle Adjustment for Spherical Mirror Using AFP

Let C(i) =
[
Cx(i), Cy(i), Cz(i)

]T
, i = 1 . . .M be the sphere centers and P(j) =[

Px(j), Py(j), Pz(j)
]T , j = 1 . . .N be the 3D points in the camera coordinate

system, when the pinhole camera is placed at the origin. First we rewrite the FP
equation (3) in terms of 3D quantities. For a given 3D point P(j) and mirror
center C(i), the orthogonal vectors z1 and z2 defining plane π are given by
z2 = −C(i) and z1 = P(j) −C(i)C(i)T P(j)

‖C(i)‖2 . Further, d = ‖z2‖, u = ‖z1‖, and
v = −C(i)T (P(j) − C(i))/‖C(i)‖. By substituting d, u and v in (3), the FP
equation can be re-written as

c1y
4 + c2y

3 + c3y
2 + c4y + c5 = 0, (9)
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where each coefficient ci becomes a function of P(j) and C(i) only. In general,
when the scene point is outside the sphere and is visible through mirror reflection,
there are four real solutions. The single correct solution is found by checking the
law of reflection for each of them.

Using the solution, the 3D reflection point on the sphere is obtained as

Rm(i, j) = [Xm(i, j), Ym(i, j), Zm(i, j) ]T = C(i) +
√

r2 − y2
z1

‖z1‖ + y
z2

‖z2‖ . (10)

Finally, the 2D image projection pixel is obtained as p(i, j) = fxXm(i,j)
Zm(i,j) + cx,

q(i, j) = fyYm(i,j)
Zm(i,j) + cy, where (fx, fy) and (cx, cy) are the focal length and the

principal point of the camera, respectively.
Let [p̂(i, j), q̂(i, j)]T be the image projection of the jth 3D point for the ith

sphere and [p(i, j), q(i, j)]T denote their current estimates, computed from the
current estimates of sphere centers and 3D scene points. Each pair (i, j) gives a
2-vector error function F (i, j) = [p(i, j)− p̂(i, j), q(i, j)− q̂(i, j)]T , and the aver-
age reprojection error is given by E = 1

NM

∑N
j=1

∑M
i=1 ‖F (i, j)‖2. We perform

bundle adjustment by minimizing E (using Matlab function lsqnonlin), start-
ing from an initial solution. The initial 3D points are obtained as the center of
the shortest transversal of the respective back-projection rays. The initial sphere
centers are perturbed from their true positions (simulations) and obtained using
the captured photo (real experiments).

Jacobian Computation: AFP also enables the analytical Jacobian compu-
tation, which speeds up bundle adjustment. Let t denote an unknown. Then

∂F (i, j)
∂t

=

[
∂p(i,j)

∂t
∂q(i,j)

∂t

]
=

[
fx( 1

Zm(i,j)
∂Xm(i,j)

∂t − Xm(i,j)
Zm(i,j)2

∂Zm(i,j)
∂t )

fy( 1
Zm(i,j)

∂Ym(i,j)
∂t − Ym(i,j)

Zm(i,j)2
∂Zm(i,j)

∂t )

]
. (11)

Since Xm, Ym, Zm depend on y, the above derivatives depend on ∂y
∂t . Typically,

one would assume that a closed form expression for y is required to compute ∂y
∂t .

However, it can be avoided by taking the derivative of the FP equation (9) as

∂y

∂t
= −y4 ∂c1

∂t + y3 ∂c2
∂t + y2 ∂c3

∂t + y ∂c4
∂t + ∂c5

∂t

4c1y3 + 3c2y2 + 2c3y + c4
. (12)

For a given 3D point P(j) and sphere center C(i), y can be computed by solving
the FP equation and thus can be substituted in above to obtain ∂y

∂t . The gradient
of the reprojection error with respect to each unknown can be obtained using
Equations (10),(11), and (12). Thus, we showed that the analytical FP equation
can be used to compute the Jacobian of the reprojection error, without obtaining
a closed-form solution for the mirror reflection point.

4.2 Simulations

We place a pinhole camera at the center of the coordinate system and M = 4
spheres (radius r = 0.5”) at a distance of 200 mm. N = 100 3D points were ran-
domly distributed in a hemisphere of radius 1000 mm surrounding the spheres
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Fig. 3. Bundle adjustment simulations using M = 4 spherical mirrors and N = 100

3D points for different image noise levels. (Left) Reprojection error. (Right) RMSE

of reconstructed 3D points. The IFP curve matches the AFP curve when sufficient

iterations are used.

Table 2. Comparison of bundle adjustment run time (in seconds) using IFP [2] and

our AFP for N 3D points and M = 4 spherical mirrors. The run times were obtained

by repeating bundle adjustment 20 times and averaging.

Run Time Iterative FP AFP (Without Jacobian) AFP (With Jacobian)

N = 100 470 6.6 4.0

N = 1000 4200 68 48

and their true image projections were computed using the FP equation. Gaussian
noise was added both to sphere centers (σ = 0.5 mm) and true image projec-
tions (σ = [0 − 1] pixels). We compare the reconstruction error using (a) AFP,
(b) central approximation (the projection center was fixed at 0.64r mm from
the sphere center as in [2]), and (c) IFP [2]. IFP first computes the initial im-
age projection of a 3D point using the central approximation and then performs
non-linear optimization to minimize the distance between the 3D point and the
back-projected ray. It required ∼ 5 iterations to converge in the simulations.

Figure 3 compares the reprojection error and the root mean square error
(RMSE) in 3D points for different image noise levels. Note that only when suf-
ficient iterations are performed for IFP (referred to as ‘full iterations’), its error
reduces to that of AFP (same curve). The central approximation or smaller num-
ber of iterations for IFP lead to larger errors. In Figure 3 (right), the error due
to central approximation is too large (1.5× 104 mm) to be shown in the graph.

Run time for projecting 105 3D points with a single sphere was 1120 seconds
for IFP (full iterations) and 13.8 seconds for AFP (∼ 80 times faster). Table 2
compares the bundle adjustment run time, which shows that AFP along with
analytical Jacobian computation achieves a speed up of∼ 100. While the number
of iterations in bundle adjustment was almost the same for IFP and AFP, IFP
takes much longer time due to iterative optical path computation for each 3D
point and mirror pair. Similar speed-ups were obtained for elliptic, hyperbolic,
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Fig. 4. Input images (left) and zoom-in of sphere images (middle and right) superim-

posed with extracted SIFT features. Red dots and green crosses respectively represent

inliers and outliers determined in the iterative bundle adjustment process. Top shows

rendered image using POV-Ray and bottom shows real photo captured using a camera.

and parabolic mirrors as well (projecting 105 3D points took 1600–1800 seconds
for IFP and 22 seconds for AFP).

4.3 POV-Ray Simulations and Real Results Using Feature
Matching

In practice, the corresponding image points are estimated using a feature match-
ing algorithm such as SIFT, and invariably contain outliers and false matches.
We first show results using SIFT on sphere images rendered using POV-Ray,
which allows performance evaluation using available ground truth data.

Figure 4 (top) shows a rendered image (resolution 2000×2000) of four spheri-
cal mirrors, placed at the center of a cube 1000mm on each side. The walls of the
cube consist of textured planes. We extract SIFT features and select correspond-
ing points that are consistent among the four sphere images. For initial sphere
centers, we add Gaussian noise (σ = 0.3mm) to their ground truth locations.
Since the SIFT matches contains outliers, we perform robust reconstruction by
iterating bundle adjustment with outlier removal. After each bundle adjustment
step, we remove all 3D points whose reprojection error is greater than twice the
average reprojection error. Figure 5 shows that by iterating bundle adjustment
and outlier removal, the reprojection error and RMSE of 3D points reduces sig-
nificantly for all planes (from ∼ 460 mm to 6 mm). Figure 5 also shows the
number of inliers after each bundle adjustment step. Note that since AFP signif-
icantly reduces bundle adjustment time, this simple procedure can be repeated
multiple times and is effective in handling outliers.
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Fig. 5. 3D reconstruction results for the POV-Ray data. (Left) Reprojection error.

(Middle) Average distance of reconstructed 3D points from the ground-truth (GT)

planes. (Right) Number of inliers after each bundle adjustment/outlier removal step.
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Fig. 6. 3D reconstruction results for the real data. (Left) Reprojection error. (Middle)

Average distance of reconstructed 3D points from their fitted planes. (Right) Number

of inliers after each bundle adjustment/outlier removal step.

Real Results: We used four spherical mirrors (radius 0.75”) placed with an
interval of 3”, and captured a single photo using a Mamiya 645AFD camera,
as shown in Figure 4 (bottom). Each sphere image in the captured photo has
1300×1300 resolution. To determine initial sphere centers, we mark several points
on each sphere boundary, corresponding to the rays tangential to the sphere. We
find the central ray that makes the same angle α with all the tangential rays. The
sphere center is then at a distance of r

sin α along the central ray. Figure 6 shows
the reconstruction results. Since the ground truth is not available, we fit planes
to the set of 3D points corresponding to each plane in the scene (Planes 1–4 in
Figure 4) and measure the average distance error of the 3D points from the plane.
Note that this error measure includes a bias, but validates that the reconstructed
3D points are aligned on a plane with small errors (Figure 6 (middle)).

5 Forward Projection for Refractive Sphere

Now we derive the forward projection equation for imaging through a refractive
sphere, which results in a non-central dioptric system. The key idea is to use the
vector equation of the refracted ray [27], instead of directly applying Snell’s law.

Let a refractive sphere of radius r and constant refractive index μ be placed
at the origin of the coordinate system. Let the COP be at distance d from the
origin. As before, we consider the plane containing the optical axis and the scene
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point P . Let n1 = [x, y]T and n2 = [x2, y2]
T be refraction points on the sphere,

and v1 → v2 → v3 represent the optical path from COP to P (Figure 1 (right)).
Then v1 = [x, y − d]T and nT

1 n1 = nT
2 n2 = r2. Given an incoming ray vi and

normal n at a surface separating mediums of refractive index μ1 and μ2, the
refracted ray vr can be written in vector form [27] as vr = avi + bn, where

a =
μ1

μ2
, b =

−μ1vT
i n±

√
μ2

1(vT
i n)2 − (μ2

1 − μ2
2)(vT

i vi)(nT n)
μ2(nTn)

. (13)

This gives vT
r n ∝ ±

√
μ2

1(v
T
i n)2 − (μ2

1 − μ2
2)(v

T
i vi)(nT n). The correct sign is

obtained by using the constraint that the signs of vT
r n and vT

i n should be the
same. Since the tangent ray from COP to the sphere occurs at y = r2/d, y ≥ r2/d
for valid refraction point. This gives vT

1 n1 = r2 − dy ≤ 0. Thus,

v2 =
1
μ
v1 + n1

−vT
1 n1 −

√
(vT

1 n1)2 − r2(1− μ2)(vT
1 v1)

μr2
. (14)

The second refraction point n2 can be written as n1 + λv2 for some constant λ,
which can be obtained as follows.

r2 = nT
2 n2 = r2 + λ2vT

2 v2 + 2λvT
2 n1, ⇒ λ = −2vT

2 n1/vT
2 v2. (15)

The outgoing refracted ray is given by v3 = μv2 + b3n2, for some b3. Note
that the symmetry of sphere results in vT

3 n2 = −vT
1 n1 and vT

2 n2 = −vT
2 n1.

Using these constraints, b3 is obtained as b3 = (−vT
1 n1 − μvT

2 n1)/r2. Finally,
the outgoing refracted ray v3 should pass through the scene point p = [u, v]T .
Thus, v3 × (p− n2) = 0. By substituting all the terms, we get

0 = v3 × (p− n2) ⇒ 0 = K1(x, y) + K2(x, y)
√

A + K3(x, y)A3/2, (16)

where A = d2μ2r2−d2x2−2dμ2r2y +μ2r4, and K1, K2 and K3 are polynomials
in x and y (provided in the supplementary materials with Matlab code). After



Analytical Forward Projection for Axial Non-central Cameras 141

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Image Point Noise [pixel]

R
ep

ro
je

ct
io

n 
E

rr
or

 [p
ix

el
]

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

Image Point Noise [pixel]

R
M

S
E

 o
f 3

D
 P

oi
nt

s 
[m

m
]

 

 

Initial
Ours

Fig. 8. Bundle adjustment simulations using M = 4 refractive spheres and N = 100

3D points for different image noise levels. (Left) Reprojection error. (Right) RMSE of

reconstructed 3D points.

removing the square root terms, substituting x2 = r2 − y2 and simplifying, we
finally obtain a 10th degree equation in y.

Figure 7 shows an example of solving the FP equation for refractive sphere. In
general, when the 3D point is not on the axis, only 8 out of 10 solutions are real.
Constraining y ≥ r2/d further reduces to 4 solutions and the correct solution is
found by testing the Snell’s law for each of them. Figure 8 demonstrates that
the FP equation can be used in a bundle adjustment algorithm for sparse 3D
reconstruction using refractive spheres, similar to catadioptric systems.

6 Discussions and Conclusions

We believe that our paper advances the field of catadioptric imaging both the-
oretically and practically. Theoretically, we have derived analytical equations
of forward projection for a broad class of non-central catadioptric cameras and
have shown existence of quartic epipolar curves for spherical-mirror based cata-
dioptric systems. We hope that our work will lead to further geometric analysis
of non-central catadioptric cameras for mirror defocus, epipolar geometry, and
wide-angle sparse as well as dense 3D reconstruction. Practically, the analytical
FP and Jacobian computation significantly reduce the bundle adjustment run
time. Thus, the computational complexity of using a non-central model becomes
similar to that of a central approximation. The FP equation may be useful for
reducing the search space in dense stereo matching and for auto-calibration via
projection of scene features such as lines. We have also shown sparse 3D recon-
struction using a dioptric non-central camera with refractive spheres, by deriving
its forward projection equation. Unlike a catadioptric system, the camera is not
visible in the captured image for a refractive setup. This could be a benefit in
certain wide-angle applications, replacing expensive fish-eye lenses.
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Abstract. In practice, rigid objects often move on a plane. The object

then rotates around a fixed axis and translates in a plane orthogonal

to this axis. For a concrete example, think of a car moving on a street.

Given multiple static affine cameras which observe such a rigidly mov-

ing object and track feature points located on this object, what can be

said about the resulting feature point trajectories in the camera views?

Are there any useful algebraic constraints hidden in the data? Is a 3D

reconstruction of the scene possible even if there are no feature point

correspondences between the different cameras? And if so, how many

points are sufficient? Does a closed-form solution to this shape from mo-

tion reconstruction problem exist?

This paper addresses these questions and thereby introduces the con-

cept of 5 dimensional planar motion subspaces: the trajectory of a feature

point seen by any camera is restricted to lie in a 5D subspace. The con-

straints provided by these motion subspaces enable a closed-form solu-

tion for the reconstruction. The solution is based on multilinear analysis,

matrix and tensor factorizations. As a key insight, the paper shows that

already two points are sufficient to derive a closed-form solution. Hence,

even two cameras where each of them is just tracking one single point

can be handled. Promising results of a real data sequence act as a proof

of concept of the presented insights.

Keywords: 3D reconstruction, shape from motion, matrix and tensor fac-

torizations, feature point trajectories, affine cameras, planar rigid motion.

1 Introduction and Related Work

Setting and Objective: Assume a rigid object is moving on a plane. The
object is therefore rotating around a fixed axis orthogonal to this plane and
translations are restricted to shifts inside that plane. Multiple stationary affine
cameras observe the moving object and track feature points located on this ob-
ject. Computing correspondences across a wide baseline is a difficult problem in
itself and sometimes even impossible to solve (think of two cameras which point
at two completely different sides of the rigid object). In our setting, each camera
therefore tracks its own set of feature points. There are no feature point cor-
respondences between the different cameras. The only available correspondence

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 144–157, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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between the cameras is the motion correspondence: all the cameras observe the
same planar motion. This paper presents a thorough analysis of the geometric
and algebraic structure contained in 2D feature point trajectories in the camera
image planes. A closed-form solution for the reconstruction problem based on
the motion correspondence is derived.
Motivation: The reasons why an analysis of planar motions is important are
at least three-fold. Firstly, rigid planar motions are an important special case
of rigid motions. Vehicles moving on the street, traffic surveillance and analy-
sis represent prominent examples. Even data from a camera rig mounted on a
moving car behaves according to the above described setting: the camera rig
can be considered as stationary and the whole surrounding world as a moving
rigid object. Because the car is moving on the ground plane, the motion is re-
stricted to a planar motion. Secondly, in a fully practical system, we have to
deal with missing data, i.e. lost feature tracks. It is unreasonable to assume in
a practical scenario having feature tracks over a long temporal sequence. Thus
in practice, we are limited to trajectories over a short period of time. However,
continuous motions over a short period can often be well approximated by a ro-
tation and translation in a plane. The third reason is theoretical curiosity. What
can be gained by using an affine rather than a projective camera model? What
multiple-view insights are hidden in 2D feature trajectories obtained under the
given setting? The elegance of a theoretical exact derivation of a closed-form
solution under the given assumptions should not be despised either.
Main Contributions: A thorough theoretical analysis of the important special
case of planar rigid motions observed by multiple stationary affine cameras is
presented. Specifically, any feature point trajectory seen by any camera is re-
stricted to a 5 dimensional subspace which is common amongst all the cameras.
A general framework for planar motions is proposed. This framework together
with the theoretical insights enables a reconstruction algorithm which provides
a closed-form solution as long as the total number of tracked points is larger
or equal than two. Hence, the two minimal cases of one single camera tracking
two points or two cameras where each of them is tracking only one point can be
handled by the algorithm. No correspondences between different camera views
are required. Moreover, the algorithm fuses the data of all the cameras in order
to compute a robust reconstruction.
Related Work: There is a long history in computer vision about factorizations
for the structure from motion problem under affine cameras. Due to lack of space,
the interested reader is also referred to references contained in the mentioned
related work. The initial work by Tomasi and Kanade [1] about monocular rigid
factorizations initiated many variations and extensions, such as deformable [2]
and articulated objects [3,4]. The concept of motion subspaces has also widely
been used for feature trajectory motion segmentation [5]. Factorization based
approaches with a projective camera model have been proposed in [6]. Some
methods have been suggested to handle missing data in the feature trajectories
due to occlusions or outliers [7,8]. The monocular structure from planar motion
problem has previously attracted some interest [9,10]. However, these approaches
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either resort to iterative solutions or require additional information, like e.g. the
relative position of the plane of rotation w.r.t. the camera.

Extensions of the factorization approach to the case of multiple cameras ob-
serving the same scene have also been proposed, even though less numerous.
Most of them [11,12] require feature point correspondences between the cam-
eras to be known. Methods which deal with non-overlapping camera views are
generally not based on factorization approaches (e.g. hand-eye-calibration [13]).
However, a separate reconstruction for each camera is usually computed and thus
strong assumption about the captured data are implicitly assumed. The classi-
cal factorization approach [1] has recently been extended to the multi-camera
case [14]. This extensions considers the same setting, except the rigid object is
assumed to move fully general in 3D space whereas we assume the object to
move on a plane. This minor distinction has far reaching consequences. For ex-
ample, we will see in Sec. 2 that this requires the object to rotate around at
least 6 different axes of rotation, otherwise the 13 dimensional motion space is
only spanned partially. The 13 dimensional factorization will thus fail miserably
if applied to planar motions.

2 Rigid Planar Motions as Vectors in 5D Subspaces

This section presents how rigid planar motions can be embedded in linear sub-
spaces. The general case of non-planar rigid motions has already been inves-
tigated [14]. In contrast to that work, where 13-dimensional subspaces were
required, planar motions only ask for 5D subspaces.

Some notational conventions have to be defined first. The orthogonal pro-
jection matrix onto the column space of a matrix A is denoted as PA. The
projection matrix onto the orthogonal complement of the columns space of A
is P

⊥
A = I − PA. A matrix whose columns span the orthogonal complement of

the columns of matrix A is denoted as A⊥. Concatenation of multiple matri-
ces indexed with a sub- or supscript i is represented with arrows. For example,
[⇓i Ai] concatenates all the matrices Ai below each other, implicitly assuming
that each of them consists of the same number of columns. The Matlab R© stan-
dard indexing notation is used for the slicing operation (cutting out certain rows
and columns of a matrix). Multiplication of a tensor T along its i-th mode with
the matrix A is denoted as T ×i A. The matrix which results by flattening a
tensor along mode i is written as T(i). We refer to [15] for an introductory text
on multilinear algebra, tensor operations and decomposition.

The rotation around an axis a by an angle α can be expressed as a rotation
matrix Ra,α = cosαI3+(1−cosα)aaT +sin α [a]× , where [a]× denotes the skew-
symmetric cross-product matrix. Rotation matrices Ra,α around a fixed axis a
are thus restricted to a three dimensional subspace in nine dimensional Euclidean
ambient space vec (R) =

[
vec (I3) vec

(
aaT

)
vec

(
[a]×

)] (
cosα 1− cosα sin α

)T

where vec () vectorizes a matrix by stacking its columns below each other in a
column vector. Let the columns of V ∈ R

3×2 denote an orthonormal basis for the
orthogonal complement of the rotation axis a, i.e. these columns span the plane
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orthogonal to the rotation axis. A rigid motion in this plane (i.e. the rotation is
around the plane normal and the translations are restricted to shifts inside the
plane) is then given by

[
Ra,α Vt
01×3 1

]
⇔

(
vec (Ra,α)
vec (Vt)

1

)
=

⎡⎣vec (I3) vec
(
aaT

)
vec

(
[a]×

)
09×2

03×1 03×1 03×1 V
1 1 0 01×2

⎤⎦
⎛⎜⎝ cos α

1 − cos α
sinα

t

⎞⎟⎠, (1)

which shows that any rigid motion in this plane is restricted to a five dimen-
sional subspace of 13-dimensional (or 16 if zero-entries are not disregarded)
Euclidean space. Interestingly, by noting that the space of symmetric rank-1
matrices vec

(
aaT

)
considered as a linear space is 6 dimensional, we see that

rotations around at least six different axes of rotation are required to span the
full 13-dimensional space (the vector space of skew-symmetric matrices [a]× is 3
dimensional and thus rotations around 3 different axes already span this space).

3 Tensor Notation

Feature trajectories of points undergoing a planar rigid motion seen by different
cameras can be arranged as a 3rd-order tensor. Such a representation clearly
reveals the interplay between the three involved subspaces, namely the subspace
of the cameras, the points, and the planar rigid motion. The structure (homo-
geneous coordinates of the N feature points) is given by S ∈ R

4×N , the K
affine cameras (each of them consisting of two camera axes) are described by
P ∈ R

2K×4 and the motion over F frames will be described by the motion ma-
trix M ∈ R

F×5. The projection matrix of camera k is denoted as Pk ∈ R
2×4,

the points tracked by this camera as Sk ∈ R
4×Nk . The combined camera matrix

is thus P = [⇓k Pk], and the combined point matrix S = [⇒k Sk]. The axis of
rotation is denoted with the unit vector a and the two columns of V ∈ R

3×2 are
an orthonormal basis for the space orthogonal to the rotation axis. The image
coordinate W[k,f,n] of feature point n, at frame f , seen by camera axis k is thus

W[k,f,n] = P[k,:]

[
Ra,αf Vtf

01×3 1

]
S[:,n] = vec

([
Ra,αf Vtf

01×3 1

])T [
ST

[:,n] ⊗ P[k,:]

]T , (2)

where the Kronecker product property vec (AXB) =
[
BT ⊗A

]
vec (X) has been

used in the second step. The values W[k,f,n] are interpreted as a third order
tensor. In contrast to [14], planar rigid motions are restricted to a five rather
than a 13-dimensional space (as we have seen in Sec. 2). Thus, the core tensor C ∈
R

5×4×4, which captures the interactions between the three subspaces, becomes
in its flattened representation along the temporal mode

C(f) =

⎡⎢⎢⎢⎣
vec (I3)

T 01×3 1

vec
(
aaT

)T
01×3 1

vec
(
[a]×

)T
01×3 0

02×9 VT 02×1

⎤⎥⎥⎥⎦
[
I3 ⊗

[
I3 03×1

]
09×4

04×12 I4

]
∈ R

5×16 (3)
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and the data tensor is described as a Tucker tensor [15] decomposition1 W =
C ×k P×f M×n ST ∈ R

F×2K×N . These equations can be derived by arranging
the values of Eq. (2) in matrix form W =

[⇓f⇒k,n W[f,k,n]

]
, plugging in Eq. (1)

for the planar rigid motions, using Eq. (3) to properly combine the rigid motion
matrix with the Kronecker product of the points and camera matrices, and
defining the motion matrix as

M = [⇓f (cosαf , (1− cosαf ), sin αf , tT
f )]. (4)

The resulting matrix is exactly the same as the data tensor flattened along the
temporal mode W =W(f) = MC(f)

[
S⊗PT

]
. The interested reader is referred

to related work [14,15] for more details on tensorial representations.

4 Ambiguities

Let QP =
[

RP tP

01×3 1

]
and QS =

[
RS tS

01×3 1

]
denote two affine transformations of

the global camera reference frame and the global point reference frame, respec-
tively. The factorization is obviously ambiguous

W[k,f,n] = P[k,:]Q
−1
P QP

[
Ra,αf

Vtf

01×3 1

]
QSQ−1

S S[:,n]. (5)

In tensor notation, this equation looks like

W =
(C ×k QP ×f QM ×n QT

S

)×k PQ−1
P ×f MQ−1

M ×n

(
ST Q−T

S

)
, (6)

where transformations QP and QS which are restricted to similarity transforma-
tions inside the plane of motion can be compensated by a corresponding trans-
formation QM of the reference frame of the motion. In mathematical terms,
the overconstrained system C ×k QP ×f QM ×n QT

S = C can be solved exactly
for QM , i.e. QM = C(f)

[
Q−1

S ⊗Q−T
P

] C∗(f) where A∗ denotes the Moore-Penrose
pseudo-inverse. Since the first three columns of MQ−1

M should still lead to proper
rotations, the scaling factor of the similarity transformations of the cameras and
points must cancel each other. A reconstruction inside the plane of rotation is
thus unique up to two similarity transformations with reciprocal scaling (one
for the cameras and one for the points). Similarity transformations with re-
ciprocal scalings seem to be the only transformations which allow a solution to
C×kQP×f QM×nQT

S = C. This fact will be important later on in our algorithm:
Given a reconstruction inside the plane of rotation with proper algebraic struc-
ture, we are guaranteed that such a reconstruction is unique up to a similarity
transformation.

Transformations of the points or cameras outside the plane of rotation can not
be compensated by a transformation of the motion. A out-of-plane transforma-
tion of the cameras has to be compensated directly by a suitable transformation
1 ×k, ×f , and ×n indicate the mode-i product along the mode corresponding to the

camera matrix, the motion matrix, and the point matrix, respectively.
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of the points. Let Za,λ =
[
V a

]
diag (I2, λ)

[
V a

]T be a scaling along the rota-
tion axis, R an arbitrary rotation matrix, and t‖ = aβ a translation along the
rotation axis. With the camera and point transformations

QP =
[
RZa,λ −RZa,λt‖
01×3 1

]
and QS =

[
Z−1

a,λR
T t‖

01×3 1

]
(7)

it can be shown that Ca,V ×k QP ×n QT = CRa,RV where Ca,V denotes the core
tensor with rotation axis a and orthogonal complement V. Note that neither
the scaling nor the translation along the rotation axis influences the core tensor
or the motion matrix. Hence, there is a scaling and translation ambiguity along
the axis of rotation.

In the problem we are targeting, there are no point correspondences between
different cameras. In this situation there is a per camera scale and translation
ambiguity along the rotation axis. There is still only one global out-of-plane
rotation ambiguity: the transformation of the rotation plane is still linked to
the other cameras through the commonly observed planar motion, even in the
presence of missing correspondences. Fortunately, as we will see later, the scale
ambiguity along the rotation axis can be resolved by using orthogonality and
equality of norm constraints on the camera axes. The translation ambiguities
along the rotation axis however can not be resolved without correspondences
between different camera views. Nevertheless, by registering the centroids of the
points observed by each camera to the same height along the rotation axis, a
solution close to the ground truth can usually be recovered.

5 Closed-Form Solution

In contrast to a rank-13 motion subspace, one camera is sufficient in order to
span the complete 5 dimensional motion subspace of a planar motion. This leads
to the following idea: Intuitively, a separate reconstruction can be made for each
camera. These separate reconstructions are unique up to the ambiguities men-
tioned previously. This especially means that the reconstruction of each camera
restricted to (or projected onto) the plane of rotation is a valid similarity recon-
struction, i.e. the individual reconstructions are expressed in varying coordinate
reference frames which, however, only differ from each other by similarity trans-
formations. Using knowledge from the 5D-motion subspace, these reconstruc-
tions can then be aligned in a consistent world reference frame. If the additional
assumption is made that the two camera axes of each camera are orthogonal
and have equal norm (the norm can vary between different cameras) then the
coordinate frame of the reconstruction can be upgraded to a similarity frame in
all three dimensions. We thus end up with a consistent 3D-reconstruction.

There is a major drawback of the above algorithmic sketch. The fact that all
the cameras observe the very same rigid motion is only used in the final step
to align all the individual reconstructions. It is a desirable property that the
information from all the cameras should be fused right at the first stage of the
algorithm in order to get a more robust reconstruction. Furthermore, in order to
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W(f) M̂ Â

=

=

[
⊗

]
M C(f)

[
S ⊗ PT

]
Fig. 1. Visual representation of the rank-5 factorization. Missing data entries due to

missing correspondences between different cameras are depicted transparently.

compute the initial reconstruction of a camera, this camera needs to track at least
two points. If the camera tracks only one feature point, a reconstruction based
solely on this camera is not possible: at least two points are necessary to span the
5D-motion subspace. The algorithm which is presented in the upcoming sections
on the other hand does not suffer from these shortcomings. The algorithm fuses
the information from all the cameras right at the first stage and works even
when each camera tracks only one single point. Last but not least, the algorithm
provides a closed-form solution.

5.1 Rank-5 Factorization

In a similar spirit to [14], we can fuse the data from all the cameras in order
to compute a consistent estimate of the motion matrix. The data tensor Wk ∈
R

F×2×Nk of each camera is flattened along the temporal mode and the resulting
matrices Wk = Wk

(f) = MC(f)Sk ⊗ PkT are concatenated column-wise in a
combined data matrix W = [⇒k Wk]. A rank-5 factorization (e.g. with singular
value decomposition) of this combined data matrix reveals the correct column
span span (M) = span

(
M̂
)

of the motion matrix

W = M̂Â =
[⇓f cosαf 1 − cosαf sinαf tf,1 tf,2

]︸ ︷︷ ︸
=M̂Q

C(f)

[
⇒k Sk ⊗ PkT

]
︸ ︷︷ ︸

=Q−1Â

, (8)

where we have introduced the corrective transformation Q ∈ R
5×5 in order to

establish the correct algebraic structure. This factorization separates the tem-
porally varying component (the motion) from temporally static component (the
points and the cameras). The factorization is possible since all the cameras share
the same temporally varying component as all of them observe the same rigid
motion. If all the cameras only track two points in total, the combined data
matrix W will then only consist of four columns and thus a rank-5 factorization
is obviously impossible. Luckily, we know that the first two columns of the motion
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matrix in Eq. (4) should sum to the constant one vector. Hence, only a rank 4
factorization of the data matrix W is performed, the resulting motion matrix is
augmented with the constant one vector M̂← [M̂,1F×1] and the second factor is
adapted correspondingly Â← [ÂT ,02N×1]T . The rest of the algorithm remains
the same.

The corrective transformation is computed in a piecewise (or stratified) way.
Specifically, the corrective transformation is split into three separate transfor-
mations Q = QtrigQ−1

orientQ
−1
transl where the transformation Qtrig establishes the

correct trigonometric structure on the first three columns of the motion matrix,
Qorient aligns the orientations of the cameras in a consistent similarity refer-
ence frame, and Qtransl is related to correctly translate the reconstruction. The
individual steps are described in detail in the next sections.

5.2 Trigonometric Structure

The first three columns of Q = [q1,q2,q3,q4,q5] can be solved for in the fol-
lowing way: since M̂[f,:]qiqT

i M̂T
[f,:] = M[f,i]

2 we have

M̂[f,:]((q1 + q2)(q1 + q2)T )M̂T
[f,:] = (cosαf + (1 − cosαf ))2 = 1 (9)

M̂[f,:](q1qT
1 + q3qT

3 )M̂T
[f,:] = cos2 αf + sin2 αf = 1. (10)

These observations lead to F constraints on symmetric rank-2 matrix q1qT
1 +

q3qT
3 , symmetric rank-1 matrix (q1+q2)(q1+q2)T , or symmetric rank-3 matrix

b(q1qT
1 + q3qT

3 ) + (1− b)(q1 + q2)(q1 + q2)T with b ∈ R:

1 = M̂[f,:]((q1 + q2)(q1 + q2)T )M̂T
[f,:] = M̂[f,:](q1qT

1 + q3qT
3 )M̂T

[f,:] (11)

= M̂[f,:](b(q1qT
1 + q3qT

3 ) + (1− b)(q1qT
1 + q2qT

2 ))M̂T
[f,:] (12)

These F equations are linear in the unknown symmetric matrices and result
in a one dimensional solution space (since there is a valid solution for any
b ∈ R). [16] shows how to extract the solution vectors q1, q2, and q3 from
this one dimensional solution space. Once this is done, the corrective transfor-
mation Qtrig =

[
q1 q2 q3

[
q1 q2 q3

]
⊥
]

is applied to the first factor M̂Qtrig

which establishes the correct trigonometric structure in the first three columns.
The inverse of this transformation is applied to the second factor Ã = Q−1

trigÂ.
Note that the structure of the first three columns of the motion matrix should
not get modified anymore and hence any further corrective transformation must
have upper block-diagonal structure with an identity matrix of dimension 3 in
the upper left corner. The inverse of such an upper block-diagonal matrix has
exactly the same non-zero pattern, i.e.

QtranslQorient =
[

I3 Q3×2

02×3 I2

] [
I3 03×2

02×3 Q2×2

]
=

[
I3 Q3×2

02×3 Q2×2

]
. (13)
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5.3 Euclidean Camera Reference Frame

No more information can be extracted from the motion matrix and thus, we turn
our attention to the second factor Ã which after applying a proper transforma-
tion should have the following algebraic form

A =
[

I3 Q3×2

02×3 Q2×2

]
Ã = C(f)

[
⇒k Sk ⊗PkT

]
. (14)

This is a particularly tricky instance of a bilinear system of equations in Q3×2,
Q2×2, Sk, and Pk. Based on our experiences, even algebraic computer software
does not succeed in finding a closed-form solution. Nevertheless, we succeeded
in deriving manually a solution using geometric intuition and reasoning.

Projection onto Plane of Rotation. Eq. (14) together with the known ma-

trix C(f) in Eq. (3) tells that Ã[4:5,:] =
[
⇒k 11×Nk

⊗
(
Pk

[:,1:3]VQ−T
2×2

)T
]
, which

means that the columns of Ã[4:5,:] contain the coordinates (w.r.t. the basis V)
of the projection of the rows of the camera matrices onto the plane of rotation.
These coordinates however have been distorted with a common, but unknown
transformation Q2×2. This observation motivates the fact to restrict the recon-
struction first to the plane of rotation. Such a step requires a projection of the
available data onto the plane of rotation. [16] shows that this can be done by
subtracting the second from the first row and keeping the third row of Eq. (14).[

1 −1 0

0 0 1

]
Ã[1:3,:] +

[
1 −1 0

0 0 1

]
Q3×2︸ ︷︷ ︸

=T2×2

Ã[4:5,:] (15)

=

[
vec (PV)

T

vec
(
[a]×

)T

] [
⇒k

(
PVSk

[1:3,:]

)
⊗

(
PVPk

[:,1:3]

T
)]

(16)

=

[
vec (PV)

T

vec
(
[a]×

)T

] [
⇒k

(
PVSk

[1:3,:]

)
⊗ (VQ2×2)

(
Q−1

2×2V
T Pk

[:,1:3]

T
)]

. (17)

In the last step we have used PV = VQ2×2Q−1
2×2V

T and the parenthesis in the

last term should stress out that for for all the cameras the term Q−1
2×2V

T Pk
[:,1:3]

T

can be read off from Ã[4:5,:]. The unknowns of this bilinear equation are the points
and the 2-by-2 transformations T2×2 and Q2×2.

Per-Camera Reconstruction in the Plane of Rotation. Eq. (17) describes
a reconstruction problem in a plane which is still bilinear. As with any rigid
reconstruction, there are several gauge freedoms. Specifically, the origin and the
orientation of the reference frame can be chosen arbitrarily2. In the planar case,
2 The first three columns of the motion matrix have already been fixed and the trans-

lation of the cameras has been lost by the projection step. Thus, there is only one

planar similarity transformation left from the two mentioned in Sec. 4.



5D Motion Subspaces for Planar Motions 153

this means a 2D offset and the orientation of one 2D vector can be chosen freely.
In the following we will make use of the gauge freedoms in order to render
this bilinear problem in multiple sequential linear problems. The reconstruction
procedure described in the upcoming paragraphs could be applied to one single
camera. This would provide T2×2 and Q2×2 which could then be used to solve
for the points in the remaining cameras. However, increased robustness can be
achieved by solving the sequential linear problems for each camera separately
and aligning the results in a final step in a consistent coordinate frame. For each
camera, the gauge freedoms will be fixed in a different way which enables the
computation of a reconstruction for each camera. The reference frames of the
reconstructions then differ only by similarity transformations. This fact will be
used in the next section in order to register all the reconstructions in a globally
consistent reference frame.

In single camera rigid factorizations, the translational gauge freedoms are usu-
ally chosen such that the centroid of the points matches the origin of the coordi-
nate system, i.e. 1

N S1N×1 = 0. We will make the same choice 1
Nk

Sk1Nk×1 = 0
on a per-camera basis. Let Ãk denote the columns of Ã corresponding to cam-
era k. By closer inspection of Eq. (17) and with the Kronecker product property
[AB]⊗ [CD] = [A⊗C] [B⊗D] we get[[

1 −1 0
0 0 1

]
Ãk

[1:3,:] + T2×2Ãk
[4:5,:]

] [
1

Nk
1Nk×1 ⊗ I2

]
=

[
vec (PV)T

vec
(
[a]×

)T

](
PVSk

[1:3,:]

1
Nk

1Nk×1

)
⊗

(
PVPk

[:,1:3]

T
)

= 02×2. (18)

The last equation followed since the centroid has been chosen as the origin. The
above linear system consists of four linearly independent equations which can
readily be solved for the four unknowns in T2×2.

The remaining two gauge freedoms are due to the arbitrary choice of the
orientation of the coordinate frame inside the plane of rotation. These gauge
freedoms can be chosen s.t. the first row

(
1 0

)
Pk

[:,1:3]V of the kth camera matrix
equals the known row

(
1 0

)
Pk

[:,1:3]VQ−T
2×2. Such a choice poses two constraints

on Q2×2(
1 0

)
Pk

[:,1:3]V =
(
1 0

) (
Pk

[:,1:3]VQ−T
2×2

)
=

(
1 0

) (
Pk

[:,1:3]VQ−T
2×2

)
QT

2×2. (19)

Knowing T2×2 as well as the first row of Pk
[:,1:3]V implies that the remaining

unknowns in every second column of Ãk (i.e. the columns which depend on
the first row) are only the points. This results in 2Nk linear equations in the
2Nk unknowns of the projected point coordinates PVSk

[1:3,:]. After solving this
system, only the entries of Q2×2 are not yet known. The two linear constraints
of Eq. (19) enable a reparameterization with only two parameters Q2×2 = Q0 +
λ1Q1 +λ2Q2. Inserting this parameterization into Eq. (17) and considering only
every other second column (i.e. the columns corresponding to the second row of
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the camera) leads to a linear system in λ1 and λ2 with 2Nk linear equations.
The linear least squares solution provides the values for λ1 and λ2.

The above procedure works fine as long as every camera tracks at least two
points. Otherwise the computation of λ1 and λ2 in the final step will fail because
of our choice to set the mean to the origin. The coordinates of the single point
are then equal to the zero vector and hence, this single point does not provide
any constraints on the two unknowns. In order to avoid this problem we use the
following trick: instead of choosing the origin as the mean of the points which are
tracked by the camera currently under investigation, the origin is rather fixed
at the mean of the points of another camera. Such a choice is perfectly fine as
the origin can be chosen arbitrarily. The computation of T2×2 for camera k is
therefore based on the data of another camera k′ 	= k. This clever trick allows
to compute a reconstruction even for cameras which only track one single point.

Registration in a Common Frame Inside the Plane of Motion. After the
previous per-camera reconstruction a camera matrix is known for each camera.
Let P̃k denotes its first three columns whose projection onto the plane of rotation
is correct up to a registration with a 2-by-2 scaled rotation matrix λkRk. On the
other hand, we also know the projections Pk

[:,1:3]VQ−T
2×2 of the camera matrices

onto the plane of rotation up to an unknown distortion transformation Q2×2

which is the same for all the cameras. This implies P̃kVRkλk = Pk
[:,1:3]V and

thus

P̃kVVT P̃k,T λ2
k =

(
Pk

[:,1:3]VQ−T
2×2

)
QT

2×2Q2×2

(
Q−1

2×2V
TPk

[:,1:3]

T
)

. (20)

This is a linear system in the three unknowns of symmetric QT
2×2Q2×2 and K

scale factors λ2
k which is again solved in the least squares sense. Doing so provides

a least squares estimate of the three unknowns of QT
2×2Q2×2. An eigenvalue

decomposition EΛET = QT
2×2Q2×2 provides a mean to recover Q2×2 = ETΛ

1
2

which allows to express the projections of the camera matrices Pk
[:,1:3]PV =(

Pk
[:,1:3]VQ−T

2×2

)
QT

2×2V
T onto the plane in one single similarity frame.

Orthogonality and Equality of Norm Constraints. As has been previously
mentioned, the correct scaling along the rotation axis can only be recovered by
using additional constraints, like the orthogonality and equal norm constraints
on the two camera axes of a camera. These constraints will be used in the
following to compute the remaining projection of the camera matrix onto the
axis of rotation. Due to Pk

[:,1:3] = Pk
[:,1:3](PV + Pa) and PVPa = 0 we get λ2

kI2 =

Pk
[:,1:3]P

kT
[:,1:3] = Pk

[:,1:3]PVPk
[:,1:3]

T + Pk
[:,1:3]PaPk

[:,1:3]

T .
Thanks to the previous registration step, the projections Pk

[:,1:3]PV are known

for all cameras. As Pk
[:,1:3]PaPk

[:,1:3]

T = Pk
[:,1:3]aa

T Pk
[:,1:3]

T and replacing Pk
[:,1:3]a

by wk, the unknowns of the above equation become λk and the two components
of the vector wk. This results in K independent 2nd-order polynomial system
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of equations with 3 independent equations in the three unknowns wk and λk.
Straight-forward algebraic manipulation will reveal the closed-form solution to
this system (see [16] for details). Once wk is recovered, the camera matrix is given
by solving the linear system Pk

[:,1:3] [PV, a] =
[
Pk

[:,1:3]PV,wk
]
. The solution of

the polynomial equation is unique up to the sign. This means that there is a
per-camera sign ambiguity along the axis of rotation. Note that this is not a
shortcoming of our algorithm, but this ambiguity is rather inherent due to the
planar motion setting. However, the qualitative orientations of the cameras w.r.t.
the rotation axis are often known. For example, the cameras might be known to
observe a motion on the ground plane. Then the axis of rotation should point
upwards in the camera images, otherwise the camera is mounted upside-down.
Using this additional assumption, the sign ambiguity can be resolved.

Using the orthogonality and equality of norm constraints, it is tempting to
omit the registration step in the plane of rotation and to directly set up the
system of equations

λ2
kI2 = Pk

[:,1:3]P
k
[:,1:3]

T
= Pk

[:,1:3]PVPk
[:,1:3]

T
+ Pk

[:,1:3]PaP
kT

[:,1:3] (21)

=

(
Pk

[:,1:3]VQ−T
2×2

)
QT

2×2Q2×2

(
Q−1

2×2V
T Pk

[:,1:3]

T
)

+ wkwkT
(22)

in the three unknowns of QT
2×2Q2×2, the 2K unknowns of wk, and the K

unknowns λ2
k. Interestingly, these constraints on the camera axes are insufficient

to compute a valid matrix Q2×2 and valid vectors wk, even using non-linear local
optimization methods (there are solutions with residuum 0 which however turn
out to be invalid solutions). Moreover, experiments showed that this nonlinear
formulation suffers from many local minima. This observation justifies the need
for the registration step in the plane of motion.

Final Step. Once the first three columns of the camera matrices are known in
an Euclidean reference frame, the first three rows in Eq. (14) become linear in the
unknowns Q3×2, S, and the camera translations. A least squares approach again
provides the solutions to the unknowns of this overdetermined linear system. The
linear system has a 4 + K-dimensional nullspace in the noisefree case: 4 degrees
of freedom due to the planar translational ambiguities (planar translation of the
points or the cameras can be compensated by the planar motion) and K degrees
of freedom for the per-camera translation ambiguities along the axis of rotation.

6 Results

If synthetic data is generated with affine cameras and without noise, the algo-
rithm expectedly finds the exact solution in closed-form, even for the case of only
two cameras each of them tracking one single point. Based on our experience
with synthetic data according to a more realistic setting (i.e. projective cam-
era models with realistic internal parameters, some noise and plausible planar
motions) we concluded that the robustness of the algorithm strongly depends
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Fig. 2. Reconstruction of a planarly moving box: The right image shows a close-up

view of the reconstructed structure (tags tracked by one specific camera share the

same color)

on the observed motion. This is actually an expected behavior. If the motion
clearly spans the 5D motion subspace, the algorithm works robustly. However, if
a dimension of this subspace is not explored sufficiently, noise will overrule this
dimension and the reconstruction will deteriorate.

As a proof of concept the algorithm has been applied to a real data sequence.
Fig. 2 shows the results of a real sequence with four cameras observing the pla-
nar motion of a rigid box. The translation ambiguity along the rotation axis has
been resolved s.t. the centroids of the front-facing tags share the same coordi-
nate along the axis of rotation. A template based tracker [17] has been used to
generate the feature trajectories. Each camera tracked between 10 to 20 points.
Even though some cameras actually tracked the very same points, the algorithm
was purposely not aware of these correspondences. Such hidden correspondences
allow to evaluate the accuracy of the reconstruction. Based on the overlapping
area of the 3D model of the tracked feature tags, we conclude that the algorithm
succeeds in computing an accurate reconstruction given the fact that the recon-
struction is based on the approximate affine camera model and the solution is
given in a non-iterative closed-form. The reprojection error of the closed-form
solution is 1√

F
∑

k Nk

‖W−MC(f)

[⇒k Sk ⊗PT
k

] ‖F = 8.95 pixels (the resolution

of the cameras is 1920×1080). A successive nonlinear refinement step still based
on the affine camera model did not improve the reprojection error. This provides
evidence that most of the error is due to the discrepancy between the employed
affine camera approximation and the real projective cameras and not due to the
sub-optimal sequential steps of the closed-form solution.

7 Conclusions and Future Work

This paper presented an analysis of a planarly moving rigid object observed by
multiple static affine cameras. The theoretical insights gained thereby enabled
the development of an algorithm, which provides a closed-form solution to the
shape from motion reconstruction problem where no feature point correspon-
dences between the different camera views exist. The motion correspondence,
namely that all the cameras observe the same planar motion, was captured by a
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5D motion subspace. As future work, we plan to adapt the planar motion sub-
space constraint to a formulation with projective camera models. This probably
asks for iterative solutions for which the closed-form algorithm might provide a
good initialization. We also consider trying whether the rank-5 constraint could
be used as a means to temporally synchronize multiple camera streams.
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Abstract. This paper presents a linear solution for reconstructing the

3D trajectory of a moving point from its correspondence in a collec-

tion of 2D perspective images, given the 3D spatial pose and time of

capture of the cameras that produced each image. Triangulation-based

solutions do not apply, as multiple views of the point may not exist at

each instant in time. A geometric analysis of the problem is presented

and a criterion, called reconstructibility, is defined to precisely charac-

terize the cases when reconstruction is possible, and how accurate it can

be. We apply the linear reconstruction algorithm to reconstruct the time

evolving 3D structure of several real-world scenes, given a collection of

non-coincidental 2D images.

Keywords: Multiple view geometry, Non-rigid structure from motion,

Trajectory basis, and Reconstructibility.

1 Introduction

Without making a priori assumptions about scene structure, it is impossible
to reconstruct a 3D scene from a monocular image. Binocular stereoscopy is a
solution used both by biological and artificial systems to localize the position
of a point in 3D via correspondences in two views. Classic triangulation used in
stereo reconstruction is geometrically well-posed as shown in Figure 1(a). The
rays connecting each image location to its corresponding camera center intersect
at the true 3D location of the point — this process is called triangulation as
the two rays map out a triangle with the baseline that connects the two camera
centers. The triangulation constraint does not apply when the point moves in the
duration between image capture, as shown in Figure 1(b). This case abounds as
most artificial vision systems are monocular and most real scenes contain moving
elements.

The 3D reconstruction of a trajectory is directly analogous to monocular
image reconstruction: it is impossible to reconstruct a moving point without
making some assumptions about the way it moves. In this paper, we represent the
3D trajectory of a moving point as a compact linear combination of a trajectory

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 158–171, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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t = 1
t = 2

t = 3

K = 2

3P

(a) Static point triangulation

(b) Point trajectory estimation

2P

3KP

2P

Fig. 1. (a) A point in projective space, P3, is mapped to P2. From two views, the 3D

point can be triangulated. (b) From a series of images, a point trajectory, P3K , also

imaged to P2. To estimate the trajectory, at least three projections are required when

the number of parameters describing the trajectory is 6 (2 for each coordinate, x, y,

and z). (c) Geometric illustration of the least squares solution of Equation (4). The

estimated trajectory Θβ̂ is placed on the intersection between l containing the camera

trajectory space and the point trajectory, and the p space spanned by the column space

of the trajectory basis matrix, col(Θ).

basis and demonstrate that, under this model, we can recover the 3D motion
of the point linearly, and can handle missing data. By posing the problem in
this way, we generalize the problem of triangulation, which is a mapping from
P3 → P2, to 3D trajectory reconstruction, as a mapping P3K → P2, where
3K is the number of the trajectory basis required to represent the 3D point
trajectory1.

The stability of classic triangulation is known to depend on the baseline be-
tween camera centers [3]. In this paper, we characterize an instability encoun-
tered when interference occurs between the trajectory of the point and the tra-
jectory mapped out by successive cameras centers. We demonstrate that the
accuracy of 3D trajectory reconstruction is fundamentally limited by the corre-
lation between the trajectory of the point and the trajectory of successive camera
centers. A measure called reconstructibility is defined which can determine the
accuracy of reconstruction, given a particular trajectory basis, 3D point trajec-
tory, and 3D camera center trajectory. The linear reconstruction algorithm, in
conjunction with this analysis, is used to propose a practical algorithm for the
reconstruction of multiple 3D trajectories from a collection of non-coincidental
images.

1 Related observations have been made in [1, 2].
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2 Related Work

When correspondences are provided across 2D images in static scenes, the method
proposed by Longuet-Higgins [4] estimates the relative camera poses and triangu-
lates the point in 3D using epipolar geometry. In subsequent research, summarized
in [3, 5, 6], the geometry involved in reconstructing 3D scenes has been developed.
While a static point can be estimated by the triangulation method, in the case
where the point may move between the capture of both images the triangulation
method becomes inapplicable: the line segments mapped out by the baseline and
the rays from each camera center to the point no longer form a closed triangle
(Figure 1(b)).

The principal work in ‘triangulating’ moving points from a series of images is
by Avidan and Shashua [7], who coined the term trajectory-triangulation. They
demonstrated two cases where a moving point can be reconstructed: (1) if the
point moves along a line, or (2) if the point moves along a conic section. This
work inspired a number of papers such as the work by Shashua and Wolf [1], who
demonstrated reconstruction for points moving along planes, and the work by
Kaminski and Teicher [8] who extended to a general trajectory using the poly-
nomial representation. Wolf and Shashua [9] classified different manifestations
of related problems, analyzing them as projections from PN to P2.

In this paper, we investigate the reconstruction of the 3D trajectory of a
moving point where the motion of the point can be described as a compact
combination of a linear trajectory basis. This generalization allows far more
natural motions to be linearly reconstructed. We demonstrate its application
in reconstructing dynamic motion of objects from a series of image projections
where no two image projections necessarily occur at the same time instant.

The reconstruction of dynamic motion from monocular sequences, or nonrigid
structure from motion, is one such domain. The seminal work of Bregler et al. [10]
introduced linear shape models as a representation for nonrigid 3D structures,
and demonstrated their applicability within the factorization-based reconstruc-
tion paradigm of Tomasi and Kanade [11]. Subsequently, numerous constraints
and techniques have been proposed to specify shape priors depending on models
such as facial expressions and articulated body motions [12–16]. In contrast to
these methods which represent the instantaneous shape of an object as a linear
combination of basis shapes, Akhter et al. [17] proposed analyzing each trajec-
tory as a linear combination of basis trajectories. They proposed the use of the
Discrete Cosine Transform as a basis, and applied factorization techniques to
estimate nonrigid structure. The primary limitation of these factorization-based
methods is: (1) the assumption of an orthographic camera, and (2) their inabil-
ity to handle missing information. Several papers have relaxed the constraint of
orthography, such as Hartley and Vidal [2] and Vidal and Abretske [18], and the
work by Torresani et al. [15] can handle missing data. However, these algorithms
remain unstable and have been demonstrated to work only for constrained data
like faces or motion capture; studies of this instability have been pursued by
Xiao et al. [12] and Akhter et al. [19].
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Unlike previously proposed methods, we do not pursue a factorization based
solution. Instead we propose a linear solution to reconstruct a moving point
from a series of its image projections inspired by the Direct Linear Transform
algorithm [3]. In conjunction with rigid structure from motion estimation, and
the trajectory based representation of points, this facilitates the first practical
algorithm for dynamic structure reconstruction. It is able to handle problems
like missing data (due to occlusion and matching failure) and estimation insta-
bility. An analysis is presented which geometrically describes the reconstruction
problem as fundamentally restricted by the correlation between the motion of
the camera center and the motion of a scene point trajectory. This analysis is
leveraged to estimate an optimized trajectory basis to represent scene point mo-
tion, given an estimated camera center trajectory. We will assume that scene
point correspondences have been provided, and that the relative locations of the
view-points have been estimated, and that the basis describing the trajectory
are pre-defined: these are reasonable assumptions that will be justified presently.

3 Linear Reconstruction of a 3D Point Trajectory

For a static point in 3D projective space, correspondences across a pair of images
enable us to triangulate as shown in Figure 1(a). Traditional triangulation solves
for a 3D point from an overconstrained system because there are three unknowns
while the number of equations is 2F , where F is the number of images. For a
3D point trajectory, if it can be represented by K parameters per coordinate,
the projection is P3K → P2 as shown in Figure 1(b). As was the case with
static point projection, if 2F ≥ 3K, solving for a 3D trajectory becomes an
overconstrained problem. Using this observation, we develop a linear solution
for reconstructing a point trajectory given the relative poses of the cameras and
the time instances the images were captured.

For a given ith camera projection matrix, Pi ∈ �3×4, let a point in 3D,
Xi =

[
Xi Yi Zi

]T, be imaged as xi =
[
xi yi

]T. The index i used in this paper
represents the ith time sample. This projection is defined up to scale,[

xi

1

]
� Pi

[
Xi

1

]
, or

[
xi

1

]
×

Pi

[
Xi

1

]
= 0, (1)

where [·]× is the skew symmetric representation of the cross product [3]. This
can be rewritten as an inhomogeneous equation,[

xi

1

]
×

Pi,1:3Xi = −
[
xi

1

]
×

Pi,4 ,

where Pi,1:3 and Pi,4 are the matrices made of the first three columns and the
last column of Pi, respectively, or simply as QiXi = qi, where,

Qi =

([
xi

1

]
×

Pi,1:3

)
1:2

, qi =

([
xi

1

]
×

Pi,4

)
1:2

,
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and (·)1:2 is the matrix made of two rows from (·). By taking into account all
time instants, a closed form for the 3D point trajectory, X, can be formulated
as, ⎡⎢⎣Q1

. . .
QF

⎤⎥⎦
⎡⎢⎣ X1

...
XF

⎤⎥⎦ =

⎡⎢⎣ q1

...
qF

⎤⎥⎦ , or QX = q, (2)

where F is the number of time samples in the trajectory. Since Equation (2)
is an underconstrained system (i.e. Q ∈ �2F×3F ), there are an infinite number
of solutions for a given set of measurements (2D projections). There are many
ways to constrain the solution space in which X lies. One way is approximating
the point trajectory using a linear combination of any trajectory basis that can
describe it as,

X =
[
XT

1 · · · XT
F

]T ≈ Θ1β1 + . . . + Θ3Kβ3K = Θβ, (3)

where Θj ∈ �3F is a trajectory basis vector, Θ =
[
Θ1 . . . Θ3K

] ∈ �3F×3K is

the trajectory basis matrix, β =
[
β1 . . . β3K

]T ∈ �3K are the parameters or
coefficients of a point trajectory, and K is the number of bases per coordinate.

If the trajectory basis are known a priori [17], this linear map between the
point trajectory and basis enables us to formulate a linear solution. By plugging
Equation (3) into Equation (2), we can derive an overconstrained system by
choosing K such that 2F ≥ 3K,

QΘβ = q. (4)

Equation (4) is a linear least squares system for reconstructing a point trajectory,
β, which provides an efficient, numerically stable, and globally optimal solution.
β is the coefficient of the trajectory based on measurements and known camera
poses embedded in Q and q and known trajectory basis, Θ.

4 Geometric Analysis of 3D Trajectory Reconstruction

Empirically, the point trajectory reconstruction approaches the ground truth
point trajectory when the camera motion is fast or random. On the other hand,
if the camera moves slowly or smoothly, the solution tends to deviate highly
from the ground truth. To explain these observations, we decompose the process
of solving the linear least squares system into two steps: solving Equation (2)
and solving Equation (3).

4.1 Geometry of Point and Camera Trajectories

Let X and X̂ be a ground truth trajectory and an estimated point trajectory,
respectively. The camera matrix can always be normalized by intrinsic and rota-
tion matrices, K and R, respectively, because they can be factored out without
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loss of generality (as all camera matrices are known), i.e. RT
i K−1

i Pi =
[
I3 −Ci

]
,

where Pi = KiRi

[
I3 −Ci

]
, Ci is the camera center, and I3 is a 3 × 3 identity

matrix. This follows from the fact that triangulation and 3D trajectory recon-
struction are both geometrically unaffected by the rotation of the camera about
its center. All Pi subsequently used in this analysis are normalized camera ma-
trices, i.e. Pi =

[
I3 −Ci

]
. Then, a measurement is a projection of X onto the

image plane from Equation (1). Since Equation (1) is defined up to scale, the
measurement, x, can be replaced as follows,[

Pi

[
Xi

1

]]
×

Pi

[
X̂i

1

]
= 0. (5)

Plugging inPi =
[
I3 −Ci

]
results in, [Xi −Ci]×

(
X̂i −Ci

)
= 0, or equivalently,

[Xi −Ci]× X̂i = [Xi]× Ci. (6)

The solution of Equation (6) is

X̂i = aiXi + (1− ai)Ci, (7)

where ai is an arbitrary scalar. Geometrically, Equation (7) is the constraint for
the perspective camera model due to the fact that it enforces the solution to lie
on the ray joining the camera center and the point in 3D. From Equation (3),
Equation (7) can be rewritten as Θiβ̂ ≈ aiXi + (1 − ai)Ci where β̂ is the
estimated parameter and Θi is the matrix from Θ(3(i−1)+1):3i.

Figure 1(c) illustrates the geometry of the solution of Equation (4). Let the
subspace, p, be the space spanned by the column space of the trajectory basis
matrix, col(Θ). The solution Θβ̂, has to simultaneously lie on the hyperplane
l, which contains the camera trajectory and the point trajectory, and must lie
in col(Θ). Thus, Θβ̂ is the intersection of the hyperplane l and the subspace
p where A = D ⊗ I3.

2 In the figure, note that the line and the plane are a
conceptual 3D vector space representation for the 3F -dimensional space. The
camera center trajectory, C =

[
CT

1 . . . CT
F

]T, and the point trajectory, X, are
projected onto col(Θ) as ΘβC and ΘβX, respectively. From this point of view,
we want Θβ̂ to be as close as possible to ΘβX.

4.2 Reconstructibility

When a point trajectory is identical to the camera trajectory, it is not possible
to estimate the point trajectory because a series of 2D projections is stationary.
This intuition results in the following theorem.

Theorem 1. Trajectory reconstruction using any linear trajectory basis is im-
possible if corr(X,C) = ±1.3

2 ⊗ is the Kronecker product and D is a diagonal matrix which consists of

{a1, · · · , aF }.
3 corr(X, Y ) =

E[(X−μX)(Y −μY )]
σXσY

where E[·] is the expected value operator and μ and

σ are the mean and standard deviation, respectively.
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Proof. When corr(X,C) = ±1, or X = cC+d where c is arbitrary scalar and d
is arbitrary constant vector, we can transform X and C to X̃ and C̃ such that
X̃ = cC̃ without loss of generality. This linearity causes the RHS of Equation (6)
to be zero and the solution X̂i to be the same as C̃i up to scale. This results in
the scale ambiguity of X̂i. ��
While Theorem 1 shows the reconstruction limitation due to the correlation
between the point trajectory and the camera trajectory, solving Equation (3)
with respect to β provides a measure of the reconstruction accuracy for a given
trajectory basis. Solving the least squares, X̂ = Θβ̂ minimizes the residual error,

argmin
β̂,A

∥∥∥Θβ̂ −AX− (I−A)C
∥∥∥ . (8)

Let us decompose the point trajectory and the camera trajectory into the column
space of Θ and that of the null space, Θ⊥ as follows, X = ΘβX + Θ⊥β⊥

X, C =
ΘβC + Θ⊥β⊥

C, where β⊥ is the coefficient for the null space. Let us also define
a measure of reconstructibility, η, of the 3D point trajectory reconstruction,

η =

∥∥∥Θ⊥β⊥
C

∥∥∥∥∥∥Θ⊥β⊥
X

∥∥∥ . (9)

Theorem 2. As η approaches infinity, β̂ approaches βX.

Proof. From the triangle inequality, the objective function of Equation (8) is
bounded by,∥∥∥Θβ̂ −AΘβX − (I−A)ΘβC −AΘ⊥β⊥

X − (I−A)Θ⊥β⊥
C

∥∥∥ (10)

≤
∥∥∥Θβ̂ −AΘβX − (I−A)ΘβC

∥∥∥ +
∥∥∥AΘ⊥β⊥

X

∥∥∥ +
∥∥∥(I−A)Θ⊥β⊥

C

∥∥∥
≤

∥∥∥Θ⊥β⊥
C

∥∥∥
⎛⎝

∥∥∥Θβ̂ −AΘβX − (I−A)ΘβC

∥∥∥∥∥∥Θ⊥β⊥
C

∥∥∥ +
‖A‖

η
+ ‖I−A‖

⎞⎠ . (11)

As η approaches infinity, ‖A‖ /η in Equation (11) becomes zero. In order to
minimize Equation (11), A = I because it leaves the last term zero and β̂ = βX

because it also cancels the first term. This leads the minimum of Equation (11)
to be zero, which bounds the minimum of Equation (10). Thus, as η approaches
infinity, β̂ approaches βX. ��

Figure 2(a) shows how reconstructibility is related to the accuracy of the
3D reconstruction error. In each reconstruction, the residual error (null com-
ponents) of the point trajectory, eX =

∥∥∥Θ⊥β⊥
X

∥∥∥, and the camera trajectory,

eC =
∥∥∥Θ⊥β⊥

C

∥∥∥, are measured. Increasing eC for a given point trajectory en-
hances the accuracy of the 3D reconstruction, while increasing eX lowers accu-
racy. Even though we cannot directly measure the reconstructibility (we never
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know the true point trajectory in a real example), it is useful to demonstrate
the direct relation with 3D reconstruction accuracy. Figure 2(b) illustrates that
the reconstructibility is inversely proportional to the 3D reconstruction error.

In practice, the infinite reconstructibility criterion is difficult to satisfy be-
cause the actual X is unknown. To enhance reconstructibility we can maximize
eC with constant eX. Thus, the best camera trajectory for a given trajectory
basis matrix is the one that lives in the null space, col(Θ⊥). This explains our
observation about slow and fast camera motion described at the beginning of
this section. When the camera motion is slow, the camera trajectory is likely
to be represented well by the DCT basis, which results in low reconstructibility
and vice versa. However, for a given camera trajectory, there is no deterministic
way to define a trajectory basis matrix because it is coupled with both the cam-
era trajectory and the point trajectory. If one simply finds an orthogonal space
to the camera trajectory, in general, it is likely to nullify space that also spans
the point trajectory space. Geometrically, simply changing the surface of p in
Figure 1(c) may result in a greater deviation between ΘβX and Θβ̂. Yet, if we
have prior information of a point trajectory, we can enhance the reconstructibil-
ity. For example, if one is shooting video while walking, the frequency of the
camera trajectory will be concentrated at a certain frequency, say the walking
frequency, whereas that of a point trajectory is somewhere else. In such a case,
if we find a trajectory basis space that is orthogonal to the walking frequency
basis, the point trajectory can be estimated well, as long as it does not contain
that frequency. This process allows us to eliminate interference from the camera
trajectory.

5 Results

In this section, we evaluate 3D trajectory reconstruction on both synthetic and
real data. In all cases, the trajectory bases are the first K discrete cosine trans-
form (DCT) basis in order of increasing frequency. The DCT basis has been
demonstrated to accurately and compactly model 1D point trajectories [17]. If a
3D trajectory is continuous and smooth, DCT basis can represent it accurately
with relatively few low frequency components. We make the assumption that
each point trajectory is continuous and smooth and use the DCT basis as the
trajectory basis, Θ. We choose the value of K based on the number of visible
points on a trajectory such that the system is overconstrained and 2F ≥ 3K.
We consider two choices of DCT bases: the original DCT basis set, and the
specialized DCT basis set. The specialized DCT is a projection of the original
DCT onto the null space of the camera trajectory. The idea here is to limit how
well the specialized DCT reconstructs the camera trajectory and improve the
reconstructibility.

5.1 Simulation

To quantitatively evaluate our method, we generate synthetic 2D images from
3D motion capture data and test it in three perspectives: reconstructibility,
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Fig. 2. (a) As the null component of the camera trajectory, eC, decreases, the closed

form solution of Equation (4) deviates from the real solution. (b) Reconstructibility, η,

provides the degree of interference between the camera trajectory and the point tra-

jectory. (c) Comparisons of reconstruction accuracy of trajectories reconstructed with

the specialized and original DCT basis under various camera trajectories, and (d) tra-

jectories between the ground truth and the original and specialized DCT basis under

smooth camera trajectory. Black: the ground truth of the point trajectory, green: the

camera trajectory, and blue and red: reconstructed trajectory of the motion capture

marker from the original and specialized DCT basis, respectively. Comparisons of ro-

bustness between the original and specialized DCT basis with regard to (e) occlusion

and (f) frame rate.

robustness, and accuracy. For reconstructibility, we compare reconstruction from
the original DCT basis with the specialized DCT basis by increasing the null
component, eC, of the camera trajectory. Reconstruction error from the original
DCT basis is higher when there is small eC. For robustness, we test with miss-
ing data and lowered frame rates and we show that the specialized DCT basis
performs better. Finally, for accuracy, we compare our algorithm with state-of-
the-art algorithms by varying the perspectivity of projection. The results show
our method outperforms others, particularly under perspective projection.

Reconstructibility: Earlier, we defined the reconstructibility of a 3D tra-
jectory as the trade off between the ability of the chosen trajectory basis to
accurately reconstruct the point trajectory vs. its ability to reconstruct the cam-
era trajectory. To evaluate this effect empirically we generate camera trajecto-
ries by varying eC and measure the error in point trajectory reconstruction in
Figure 2(c). Each trajectory is normalized to have zero mean and unit variance
so that errors can be compared across different sequences. When eC is low, there
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Fig. 3. (a) Quantitative comparisons of reconstruction accuracy with previous methods

regarding projection types, and qualitative comparisons of reconstruction errors using

the original DCT basis (blue) and the methods by Torresani et al. [15](dark green),

Paladini et al. [16](light green) and Akhter et al. [17](orange). (b-e): Qualitative com-

parison between the ground truth (black) and reconstructed trajectories (red) for each

method.

is an advantage in using the specialized DCT basis. This is expected as the orig-
inal DCT basis is able to reconstruct both camera and point trajectories well,
and the reconstructibility is lower. As eC increases, this becomes less of an is-
sue, and both original and specialized DCT perform approximately the same.
Figure 2(d) shows the comparison of point trajectories reconstructed using the
original and specialized DCT basis compared to the ground truth. For this exam-
ple the reconstructibility using the specialized DCT is 2.45, and for the original
DCT basis it is 0.08.

Robustness: In this experiment, we evaluate the robustness of trajectory recon-
struction for smooth camera trajectories with missing 2D point samples. Missing
samples occur in practice due to occlusion, self-occlusion, or measurement fail-
ure. Figure 2(e) shows the normalized trajectory reconstruction error for varying
amounts of occlusion (0% and 20% of the sequence) and different numbers of
DCT basis. A walking motion capture sequence was used and each experiment
was repeated 10 times with random occlusion. As long as the visibility of a point
in a sequence is sufficient to overconstrain the linear system of equations, the
closed form solution is robust to moderate occlusion. Figure 2(f) evaluates ro-
bustness to the frequency of input samples, i.e. varying the effective frame rate
of the input sequence. Visibility of the moving points is important to avoid an
ill-posed condition of the closed form solution, and intuitively more frequent
visibility results in better reconstruction. The results confirm this observation.
In both robustness experiment, the specialized DCT basis perform better than
the original DCT basis for reduced number of bases. This is due to the (worst
case) smooth synthesized camera trajectories. This effect is reduced as the num-
ber of DCT basis increases and the reconstructibility of the sequence increases
accordingly.

Accuracy: We compare the accuracy of reconstructed trajectories against meth-
ods using shape basis reconstruction by Torresani et al. [15] and Paladini et al. [16]
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Fig. 4. Results of the rock climbing scene. Top row: sampled image input, second row:

five snap shots of 3D reconstruction in different views, and bottom row: reconstructed

trajectories (blue line) in different views.

and the method using trajectory basis reconstruction Akhter et al. [17]. To val-
idate that our closed form solution is independent of the camera projection
model, we parameterize camera projection as the distance between image plane
and the camera center and evaluate across a range that moves progressively from
projective at one end to orthographic at the other. Note that we are given all
camera poses for the closed form trajectory solution, while the previous methods
reconstruct both camera poses and point trajectories simultaneously. We set K
to 10 for all methods and use the original DCT basis. Figure 3 compares the
normalized reconstruction accuracy for the walking scene under a random cam-
era trajectory. The other methods assume orthographic camera projection and
are unable to accurately reconstruct trajectories in the perspective case.

5.2 Experiments with Real Data

The theory of reconstructibility states that it is possible to reconstruct 3D point
trajectories using DCT basis precisely if a camera trajectory is random. An
interesting real world example of this case occurs when many independent pho-
tographers take asynchronous images of the same event from different locations.
A collection of asynchronous photos can be interpreted as the random motion
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Fig. 5. Results of the handshake scene. Top row: sampled image input, second and

third row: five snap shots of 3D reconstruction in different views.

Fig. 6. Results of the speech scene. Top row: sampled image input, and bottom row:

reconstructed trajectories (blue line) in different views.

Table 1. Parameters of real data sequences

F (sec) # of photos # of photographers K

Rock climbing 39 107 5 12

Handshake 10 32 3 6

Speech 24 67 4 14

Greeting 24 66 4 10

of a camera center. Using multiple photographers, we collected data in several
‘media event’ scenarios: a person rock climbing, a photo-op hand shake, public
speech, and greeting. The static scene reconstruction is based on the structure
from motion algorithm described in [20]. We also extracted timing information
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Fig. 7. Results of the greeting scene. Top row: sampled image input, and bottom row:

reconstructed trajectories (blue line) in different views.

from image EXIF tags. Correspondences of moving points across images were
obtained manually.

The parameters for each scenario are summarized in Table 1. The number of
bases was selected empirically for each case. We were able to use the original
DCT basis for all scenes. Figures 4, 5, 6, and 7 show some of input images
and reconstructed point trajectories. The reconstructed point trajectories look
similar to postures of the person.

6 Conclusion

In this paper, we analyze the geometry of 3D trajectory reconstruction and define
a measure called reconstructibility to determine the accuracy of 3D trajectory
reconstruction. We demonstrate that 3D trajectory reconstruction is fundamen-
tally limited by the correlation between the 3D trajectory of a point and the 3D
trajectory of the camera centers. Using this analysis, we propose an algorithm
to reconstruct the 3D trajectory of a moving point from perspective images.
By constraining the solution space using a linear trajectory basis, the dimen-
sionality of the solution space can be reduced so that an overconstrained linear
least squares system can be formulated. The linear algorithm takes as input the
camera pose at each time instant, and a predefined trajectory basis. These re-
quirements are met in our practical application, where we reconstruct dynamic
scene from collections of images captured by a number of photographers. We
estimate the relative camera pose by applying robust structure from motion to
the static points in the scene. The Discrete Cosine Transform is used as a pre-
defined basis. As the effective camera trajectory is quite discontinuous, we are
able to obtain accurate 3D reconstructions of the dynamic scenes.
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Abstract. This paper presents a novel manifold learning approach for high di-
mensional data, with emphasis on the problem of motion tracking in video
sequences. In this problem, the samples are time-ordered, providing additional
information that most current methods do not take advantage of. Additionally,
most methods assume that the manifold topology admits a single chart, which is
overly restrictive. Instead, the algorithm can deal with arbitrary manifold topol-
ogy by decomposing the manifold into multiple local models that are combined
in a probabilistic fashion using Gaussian process regression. Thus, the algorithm
is termed herein as Gaussian Process Multiple Local Models (GP–MLM).

Additionally, the paper describes a multiple filter architecture where standard
filtering techniques, e.g. particle and Kalman filtering, are combined with the
output of GP–MLM in a principled way. The performance of this approach is
illustrated with experimental results using real video sequences. A comparison
with GP–LVM [29] is also provided. Our algorithm achieves competitive state-of-
the-art results on a public database concerning the left ventricle (LV) ultrasound
(US) and lips images.

1 Introduction

There has been long standing interest in learning non-linear models to approximate
high-dimensional data, and specifically in reducing the dimensionality of the data, while
preserving relevant information. The scope of application is vast, including, e.g., mod-
eling dynamic textures in natural images, surface reconstruction from 3-D point clouds,
image retrieval and browsing, and discovering patterns in gene expression data.

Consider the example of an image sequence. In the absence of features such as con-
tour points or wavelet coefficients, each image is a point in a space of dimension equal
to the number of image pixels. When facing an observation space of possibly tens or
hundreds of thousands of dimensions, it is often reasonable to assume that the data is not
dense in such a space and that many of the measured variables must be dependent with
only a few free parameters that are embedded in the observed variables, frequently in a
nonlinear way. Assuming that the number of free parameters remains the same through-
out the observations, and also assuming spatially smooth variation of the parameters,
we have geometric restrictions which can be well modeled as a manifold. Learning this
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manifold is a natural approach to the problem of modeling the data, with the advantage
of allowing nonlinear dimensionality reduction.

This paper proposes a new algorithm, named Gaussian Process with Multiple Lo-
cal Models (GP–MLM), that applies manifold learning ideas to the problem of motion
tracking, e.g., in video sequences. The emphasis in motion tracking means that, unlike
most manifold learning methods, the observations are assumed to be time-ordered. The
proposed methodology addresses the problem of estimating unknown dynamics on an
unknown manifold, from noisy observations. This leads to the simultaneous estima-
tion of a nonlinear observation model and a nonlinear dynamical system - a nonlinear
system identification type of problem, which has received some attention ([11,29,23]),
but seldom in the context of manifolds, with a few recent exceptions [24]. While this
problem is ill-posed (see e.g. [11]), it can be advantageous to exploit information that
is common to both subproblems: the velocity vectors. Moreover, purely from a mani-
fold learning point of view, GP–MLM addresses some limitations of existing methods,
namely: (i) it is not limited to a simple coordinate chart - it can deal with arbitrary mani-
fold topology through multiple local models; (ii) it provides a computationally efficient
way to partition the manifold into multiple regions and compute the corresponding lo-
cal parameterizations; (iii) it offers a principled way of combining the estimates from
the multiple local models by using Gaussian process regression to compute the corre-
sponding likelihoods. From a tracking perspective, it will be shown that GP–MLM can
retrieve the contours with remarkable fidelity.

2 Background

Key concepts: A manifold [4]M is a set contained in R
m, associated with a collection

of p one-to-one continuous and invertible functions gi : Pi → Ui, indexed by i =
1, . . . , p with overlapping domains Pi ⊂ M such that M is covered by the union of
the Pi and where each Ui ⊂ R

n. For points y ∈ Pi ∩ Pj in the overlap between
patches i and j, with images xi and xj , it is possible to define a transition function Ψij :
gi(Pi∩Pj) −→ gj(Pi∩Pj) which converts between the two local coordinate systems.
See Fig. 1 for an illustration. Locally,M is “like” R

n and its intrinsic dimension is n.
The gi are called charts. It is assumed that M is compact, i.e., it can be covered with
p <∞ charts. The inverse mappings hi = g−1

i are parameterizations of the manifold.

m

n

Fig. 1. A manifold and its charts
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The Ui are parametric domains and the Pi are patches. Two charts gi and gj defined
in the overlapping region Pi ∩Pj should be compatible, that is, g−1

j (Ψij(gi(y))) = y.
For manifolds with arbitrary topology, there must be, in general, more than one chart
and, therefore, more than one patch in order to maintain the one-to-one property.

The tangent bundle [4] of an n-dimensional manifoldM is another manifold, T (M),
whose intrinsic dimension is 2n and whose members are the points ofM and their tan-
gent vectors. That is, T (M) = {(y,v) : y ∈ M,v ∈ Ty(M)} where Ty(M) is the
tangent space of M at y. It is readily apparent that Ty(M) is the set of possible ve-
locity vectors of trajectories in M through y. Therefore, any dynamic system defined
inM must induce trajectories where both the velocities and their points of application
belong to T (M).

A Gaussian process [22] is a real-valued stochastic process {YX}x∈X , over an in-
dex set X , where the joint probability density function for any finite set of indices
{x1, . . . ,xN} is Gaussian, with mean μ ∈ R

N and covariance K ∈ R
N×N . Note that,

in order to be a valid covariance matrix, K must be symmetric and positive semidef-
inite. This means that it can also be thought of as a valid Mercer kernel matrix. An
attractive feature of Gaussian processes is that they allow the computation, in closed
form, of probability densities in observation space.

Problem statement: Let y0:T−1 ≡ {yt, t = 0, . . . , T − 1}, with discrete t and yt ∈
R

m, be a trajectory. Let Y ≡ {y0:Tl−1, l = 1, . . . , L} be a set of L such trajectories. It
is assumed that the trajectories in Y lie close to an unknown manifold M of intrinsic
dimension n (also unknown) embedded in R

m, with n < m. Therefore, one or more
lower dimensional representations Xi of the original set Y can be found, where each
Xi ≡ {x0:Tl−1,i, l = 1, . . . , L} represents all the trajectories in i-local coordinates,
with xt,i ∈ R

n. Being assumed compact, M can be charted by p charts, where p is
unknown, and each Xi corresponds to one of the charts. It is intended to estimate M
and identify the dynamics in the lower dimensional coordinates given by the charts of
M, assuming that the trajectories are generated by one or more discrete state space
models of the form:

xt,i = fi(xt−1,i) + ωt,i (1)

yt,i = hi(xt,i) + νt,i (2)

where ωt,i and νt,i are noise variables. hi is the ith parametrization being used around
yt, and fi defines the dynamics. In summary, given Y , we wish to learn the state model
(2) and (1), thus capturing both geometrical and dynamical information about the tra-
jectories.

Prior work: Several manifold learning algorithms have emerged in recent years. Re-
cent advances include, on one hand, probabilistic methods such as the Generative To-
pographic Mapping (GTM) [2], Gaussian process related algorithms, such as Gaussian
Process Latent Variable Models (GP-LVM) [18] and Gaussian Process Dynamical Mod-
els (GPDM) [29]; on the other hand, graph spectral methods such as ISOMAP [27],
Locally Linear Embedding (LLE) [25], Laplacian [1] and Hessian Eigenmaps [10], as
well as Semi-Definite Embedding [31,30].



Manifold Learning for Object Tracking with Multiple Motion Dynamics 175

Most methods assume that the manifold can be modeled using a single coordinate
patch, an assumption that fails for manifolds with topologies as simple as a sphere.
Also, spectral methods usually do not provide out-of-sample extension. Only a few
methods, such as [5,19], attempt to deal with multiple charts without assuming p known
somehow.

Estimating the intrinsic dimension n remains a challenge. The most common method
[13] for estimating n is based on local Principal Component Analysis (PCA), relying
on a threshold to select the n most significant eigenvalues of local covariance matri-
ces. Other approaches can be found in [20,15] and the references therein. With either
type of algorithms, the estimate often suffers from high variance and bias, as well as de-
pendence on the unknown scale parameters for neighborhood analysis, as pointed out in
[15]. Hence, dimensionality estimation continues to be a challenging problem, although
some promising advances have recently been made using multiscale approaches [16].

Finally, while simultaneous dimensionality reduction and dynamical learning has
received some attention [23,11,14], many of these approaches are not formulated in
terms of manifolds. Some techniques that do explicitly use the manifold assumption are
[24,21,12]. In [24], the manifold is modeled as a mixture of local linear hyperplanes
(i.e., factor analyzers), while we use instead a mixture of nonlinear GP regressors. In
[21], a mapping from high-dimensional observations to latent states is estimated, both
not the inverse. In [12] a manifold tracking method is used for learning nonlinear mo-
tion manifolds in the recovery of 3D body pose, but does not address the case when
significant dynamics changes are observed in the video sequence (i.e., multiple dynam-
ics). Other methods that, like ours, are based on Gaussian Processes include [29,28].
However, [29] assumes one single chart and a priori fixed latent dimensionality, while
[28] encourages certain topologies in a top-down manner, based on prior knowledge.
Our approach also somewhat resembles, in spirit, the Spatial GPCA method [3], al-
though Spatial GPCA operates at the pixel level rather than extracting contours and
requires downsampling for computational reasons. Our main advantage resides in the
fact that we perform dimensionality reduction, avoiding the need to downsample. In
summary, our proposed method explicitly utilizes the manifold assumption, avoids the
need to perform alignment of multiple local coordinate systems and maintains topo-
logical flexibility. To summarize, the following main differences should be considered:
we consider arbitrary topologies with multiple nonlinear charts and multiple nonlinear
dynamics, while existing methods consider either: (i) single nonlinear charts/dynamics
[29]; (ii) multiple linear charts/dynamics [24]; or (iii) predefined topologies [28]. Be-
sides, we do not marginalize over parameters and therefore can more easily perform
out-of-sample prediction, as well as sequential state estimation, while GPDM [29] and
[28] use batch inference.

3 GP–MLM Algorithm

The GP–MLM algorithm comprises the following steps: (i) estimation of intrinsic di-
mensionality and tangent subspaces; (ii) a nonparametric, nonlinear regression proce-
dure for partitioning the manifold and learning the charts. Each of the steps is described
here.
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Intrinsic dimension: In the spirit of [13], GP–MLM addresses the problem of dimen-
sionality estimation by automatically finding the “knee” of the eigenvalues λ1, . . . , λm

of the local covariance Syj = 1
|Byj,ε|−1

∑
yk∈Byj ,ε

(yk − μByj ,ε
)(yk − μByj ,ε

)T ,

using local PCA, but in GP–MLM this is done for all ε-local neighborhoods Byj,ε

around each data point yj . For each neighborhood, the eigenvalue immediately before
the greatest drop in value should correspond to the intrinsic dimension, estimated by
n̂j ≡ argmaxi=1,...,m−1 |λi+1 − λi|. The global estimate is n̂ = medianj=1,...,N (n̂j),
which is more robust than the mean. The advantage of this approach is that it takes
advantage of the potentially large number of local PCA neighborhoods.

Temporal information is also used to improve the estimates of the tangent subspaces.
We use the first differences Δyt = yt − yt−1, together with the observations yt for
performing local PCA, by augmentingByj ,ε with μByj ,ε +Δyk, for k = 1, . . . , |Byj,ε|,
with the neighborhood centers μByj ,ε given by the sample means

μByj ,ε = 1
|Byj ,ε|

∑
yk∈Byj,ε

yk. Note that the velocities (of which the Δyt are rough

estimates), applied at the neighborhood centers, must live on the corresponding tangent
subspaces. This leads to an effective increase in the number of available points at each
neighborhood, from |Byj ,ε| points to 2|Byj,ε| (or 2|Byj,ε| − 1 if either the first or last
Δyt can not be computed).

Charts: At this stage, an estimate n̂ of the intrinsic dimension is available. The tangent
bundle TM can, if approximated by some finite set of n̂-dimensional tangent linear
hyperplanes, form a convenient collection of local parametric domains upon which to
map the manifold points. We partition M into overlapping patches P1, . . . ,Pp, find
p corresponding tangent hyperplanes, and estimate mappings back and forth between
the patches and the hyperplanes. It is important to find a partition which facilitates
subsequent estimation of the mappings. We follow the Tangent Bundle Approximation
(TBA) approach proposed in [26] which is based on principal angles, a generalization
of the concept of angle to linear subspaces.

The idea is not to allow the maximum principal angle between the tangent sub-
spaces – spanned by matrices Vi and Vj of column eigenvectors found by local PCA
on neighborhoods i and j – to vary more than a set threshold τ . The exact value of τ is
not critical, as long as it is below π

2 .
Patches are found by an agglomerative clustering procedure, i.e., region growing.

Each patch grows by appending all neighboring (within an ε radius) points where the
tangent subspace does not deviate, in maximum principal angle, more than a set thresh-
old from the tangent subspace at the initial seed. Any specific point may belong to more
than one patch. The final result is a covering of M by a finite number, p, of overlap-
ping patches. Within each patch, the curvature is controlled through τ , and the distance
test ensures that each patch is a connected set. Subsequently, we find the best fitting
hyperplane for each patch using PCA, providing local coordinate systems for differ-
ent manifold regions. The collection of hyperplanes approximates the tangent bundle.
Thus, PCA must be performed twice: first with local scope, in tight neighborhoodsBx,ε

around each point, so that the principal angles can be controlled within the patch dur-
ing the partitioning procedure; and second, for all patch members, in order to find an
overall hyperplane for charting and the corresponding coordinate system. If SPi is the
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covariance of the points in Pi, i.e. SPi = 1
|Pi|−1

∑
yk∈Pi

(yk−μPi
)(yk−μPi

)T , then,

by performing the eigendecomposition SPi = VPiDPiV
T
Pi

, where VPi is the matrix
whose columns are the eigenvectors of SPi and DPi = diag(λ1, . . . , λm), an orthonor-
mal basis is found in the columns of VPi . Note that the patch mean μPi

does not, in
general, coincide with the patch seed. The added computational burden of patch-wide
PCA is negligible, compared to that of local PCA.

An important note is that GP–MLM (like TBA) does not guarantee that the number
of patches is minimal - in fact, the followed approach usually leads to an overestimation
of the number of patches needed to cover a manifold. On the other hand, it should also
be noted that, since the principal angles only need to be computed between the data
and the seeds, and not between all pairs of data points, the overall complexity of the
partitioning algorithm is not quadratic in N , but rather it is O(Np).

Gaussian process regression: Using the coordinate systems found above, and since
there are no folds in any patch (thanks to the angular restriction), the regression prob-
lem associated with the charts is significantly simplified. From the previously obtained
partition of the dataset into patches Pi, with i = 1, . . . , p, it is now intended to estimate
the charts gi(y). Let a particular training point y, belonging to patch Pi, be denoted
y = [y1 . . . ym]T , where yj , j = 1, . . . , m refers to the jth coordinate. Projecting y
onto the subspace spanned by VPi yields the ith local representation xi. This can be
done according to x̃i = VT

Pi
(y − μPi

) in which the intermediate quantity x̃i simply
corresponds to y in a new coordinate system with origin at μPi

and versors given by
the columns of VPi ; the following step is

xi = [x̃i,1 . . . x̃i,n]T = gi(y) (3)

where xi denotes a truncated version of x̃i using only the first n components. This is the
chart. The inverse mapping, that is, the parametrization hi(xi) follows the expression

hi(xi) = VPi

[
xi h̃i(xi)

]T

+ μi (4)

in which h̃i must be estimated. The remaining m − n components of x̃i are approxi-
mated by h̃i(xi), and thus the nonlinear character of the manifold is preserved. In the
ith local coordinates, the parametrization is xi → [xi h̃i(xi)]T .

It is now necessary to estimate h̃. For a particular m − n-dimensional vector x̃i,
consider an independent Gaussian process for each scalar component x̃j , dropping the
j subscript of the jth coordinate for conciseness – the exposition will proceed, without
loss of generality, as if m−n = 1. The regression problem is that of estimating h̃i, from
the set of available data X̃Pi = {x̃k,i}k=1:|Pi| and the corresponding set of |Pi| local
projections XPi = {xk,i}k=1:|Pi|, all collected in x̃ ∈ R|Pi| and X ∈ Rn×|Pi| respec-
tively. The estimate should be the one that best matches the model x̃k = hi(xk,i)+ωk,i

with noise ωk,i ∼ N (0, σ2
i ), ∀k. It is assumed that the joint pdf of x̃ is Gaussian,

with zero mean (the data can be mean-subtracted) and with known covariance matrix
K ∈ R

|Pi|×|Pi|. With this assumption, it is possible to derive the conditional density
p(x̃|X). Furthermore, for any new set of inputs X� outside of the training set, the con-
ditional density p(x̃�|X∗,X, x̃) is given [22] by

p(y�|X∗,X,y) = N (K(X∗,X)K(X,X)−1y, (5)

K(X∗,X∗)−K(X∗,X)K(X,X)−1K(X,X∗)).
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For constructing K, we choose the RBF covariance function

k(xi,xj) = θ1 exp(− 1
2θ2
‖xi − xj‖2) + δijθ3 (6)

and optimize the hyperparameters by maximizing the marginal likelihood, as proposed
in [22].

4 Dynamical Learning Using the Manifold Model

We now extend GP–MLM to deal with the simultaneous estimation of the data manifold
and dynamics. The idea is to start from the state model in (1), (2), assuming that, in the
observation equation, h is given by the manifold model found by the GP–MLM and
therefore fixed. We then tackle the following two subproblems: (i) Identification of the
dynamics f , given h; (ii) Estimation of the state at time t, given all information up
to time t. The first subproblem is called system identification and is solved offline, as
explained next.

System identification: We assume that the training trajectories have been mapped to
low dimensional points xt,i in patch Pi, at instant t. For each i, we form training pairs
(xt−1,xt). The subscript i has been dropped for conciseness, since it will be assumed
that the trajectory segment remains on patch i. This is no loss of generality, since in the
case when the original high dimensional {yt}t=0:T−1 crosses patches i and j (or more),
this simply results in multiple trajectory segments, {xt,i}t=0:Ti−1 and {xt,j}t=0:Tj−1,
which can be treated separately and which count towards the dynamics in patch Pi and
Pj respectively.

The regression procedure aims at finding the best fi that maps xt−1 to xt in patch Pi,
given the corresponding set Xi of trajectory segments pertaining to Pi. The generative
model is

xt,i = fi(xt−1,i) + ωt,i. (7)

In the case when the dynamics are linear, and dropping the i subscript, (7) turns into
xt = Axt−1 + ωt, with A a n × n matrix. When, additionally, the ωt are iid and
Gaussian, then this is a thoroughly studied case; identification consists of estimating A
from the pairs (xt−1,xt), which can be done by the Least Mean Squares method.

When f is not a linear function of x, then we propose a nonparametric approach,
again based on Gaussian process regression using the RBF kernel (6).

As in the geometrical step, but now with training pairs (xt−1,xt) arranged in matri-
ces Ξ,X defined as X = [x1, . . . ,xT−1], Ξ = [x0, . . . ,xT−2], the regression proce-

dure yields, for any new x�
t−1, Gaussian conditional densities p(x̂(i)

t |x�
t−1, Ξ, ξ(i)) =

N (μ
x
(i)
t

, σ2

x
(i)
t

), for all i = 1, . . . , n components of x̂t and with ξ(i) ∈ R
(T−1) equal to

the i-th column of XT .

Filtering: The second subproblem is one of filtering. It is not desirable in general to
use one single observation to obtain the state, because simply inverting the observa-
tion equation (2) ignores the temporal dependence between successive data points. The
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Fig. 2. Block diagram of the mixture architecture for combining the local dynamic models

correct procedure is to estimate the state, at each instant t using information about the
whole trajectory up to time t. This can be done online by a variety of filtering methods.

Note that GP–MLM is a multiple-model framework; thus, we employ one filter for
each patch, using different dynamics, observation models and coordinate systems. This
means that a procedure for combining the local estimates is required. Fig. 2 illustrates
how this is performed. Essentially, we make use of the predictive variance from each
local GP in order to compute patch posterior probabilities (mixture weights) inexpen-
sively, i.e., we set

P (θi|x,Yt) ∝ p(x|θi,Yt). (8)

The mixture weights provided by block G take the different dynamics into account.
Different strategies are possible: a “winner-take-all” rule, where only the output of the
model with the highest posterior probability is used, or a “blending” rule, where the
weighted average using all models is computed. In this paper we present results using
Kalman and particle filtering with the above mentioned rules.

5 Experimental Results

This section presents an experimental evaluation of GP–MLM in several data sequences.
The evaluation is done in two main situations: first, two ultrasound sequences of the left
ventricle (LV) of the heart, aiming at estimating the endocardium boundary. In both,
the object of interest undergoes changing motion dynamics. For all experiments, three
identification strategies are compared: (i) linear first order; (ii) linear second order and
(iii) Gaussian process (GP) first order. In the second experiment, lip sequences are con-
sidered. Two situations are presented: (i) speaking, and (ii), singing, where in the latter
the lips boundary exhibits a higher deformation. An objective evaluation is conducted
for all the experiments using several metrics proposed in the literature.

Heart tracking: This example consists of two ultrasound (US) images sequence. Each
US image displays a cross section of the left ventricle (LV) in the long-axis. The length
of the sequences is: 490 frames (26 cardiac cycles) and 470 frames (19 cardiac cycles).
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The heart motion is described by two dynamics: an expansion motion that occurs in di-
astole phase, and a contraction motion that characterizes the systole phase. To represent
the boundary of the LV, 21 contour points are used, which would require thousands of
manual clicks, if we were to obtain ground-truth by hand. Instead, an automatic proce-
dure is used [17]. The MMDA (Multiple Model Data Association) tracker is robust with
respect to outliers and capable of coping with different, abrupt motion dynamics. Thus,
we measure the performance of the GP–MLM with the respect to the MMDA tracking
output, which we treat as ground truth.

In this study, we go further in the attempt to find the best technique (i.e. Kalman vs
particle filtering; “winner-take-all” vs “blending” rules); at the same time we hope to
demonstrate the superiority of the non-linear GP 1st order model. To attain this goal
an objective evaluation between the MMDA contour estimates (taken as gold contours)
and the GP–MLM estimates is provided; several metrics proposed in the literature for
contours comparison are used. To accomplish this, a comparison between the contour
estimates provided by MMDA tracker (i.e. the ground-truth) and the GP–MLM esti-
mate is conducted. Five metrics are used in these tests: Hammoude distance (HMD)
[6]; average distance (AV); Hausdorff distance (HDF); Mean sum of Square Distances
(MSSD); Mean Absolute Distance (MAD) (as in used in [9]); and the DICE metric.
Next, we briefly describe them.

Let X = {x1,x2, . . . ,xNx}, and Y = {y1,y2, . . . ,yNy}, be two sets of points
obtained by sampling the estimated contour and the reference contour. The smallest
distance from a point xi to the curve Y is

d(xi,Y) = min
j
||yj − xi|| (9)

This is known as the distance to the closest point (DCP). The average distance between
the sets X , Y is

dAV = 1
Nx

∑Nx

i=1 d(xi,Y) (10)

where Nx is the length of the X The Hausdorff distance between both sets is defined as
the maximum of the DCP’s between the two curves

dHDF(X ,Y) = max
(
max

i
{d(xi,Y)}, max

j
{d(yj ,X )}

)
(11)

The Hammoude distance is defined as follows [6]

dHMD(X ,Y) =
#((RX ∪RY)− (RX ∩RY))

#(RX ∪RY)
(12)

where RX represents the image region delimited by the contour X , similarly for RY .
To define MSSD [7] and MAD [8] distances, let us consider the tracked sequence Si

with m contours {c1, c2, ..., cm}, where each jth contour cj has n points {(xj,1, yj,1),-
(xj,2, yj,2), ..., (xj,n, yj,n)}, the distances of sequence Si from other version of the se-
quence Sr

i (which is the ground truth) are

dMSSDi = 1
m

∑m
j=1

1
n

∑n
k=1((xj,k − xr

j,k)2 + (yj,k − yr
j,k)2) (13)

dMADi = 1
m

∑m
j=1

1
n

∑n
k=1

√
(xj,k − xr

j,k)2 + (yj,k − yr
j,k)2 (14)
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The overall performance measure for a particular method is the averaged distance on
the whole test set of L sequences:

dMSSD = 1
L

∑L
i=1 dMSSDi , dMAD = 1

L

∑L
i=1 dMADi

The DICE metric is also used, which is the mean perpendicular distance between esti-
mated contour and the ground-truth contour. We compute the average metric distance
for all points in the curve as follows

dDICE = 1
N

∑N
i=1 ‖xi − yi‖ni (15)

where ni defines the normal vector at point i.
Table 1 left, lists the MSE for the three identification strategies for each path found

by GP–MLM. In both sequences the GP consistently provide the best results comparing
with the remaining strategies. In these experiments, the data was split in two disjoint
training/test sets (50% for training and testing).

Objective evaluation: Table 1 shows the fidelity in the representation of the LV contour
obtained in the two US sequences. These values correspond to the mean values of the
metrics. From this table and in both sequences and for the majority of the measures,
the best values are obtained when ones used particle filtering with the “blending” rule.
Although, the particle filtering with the “blending” rule provides the best results, what
is important to stress is that any tracking method can be incorporated in the framework
and the manifold is always well estimated.

In this study we carried out an additional experiment, we varied the number of frames
used in training-testing sets for both sequences, more specifically, we varied the number
of training images from 25%, 50% and 75%. Table 2 shows the Hammoude distance
using the particle filter with the blending rule (similar behavior is observed of the other
tracking versions). From the Table 2, what it is interesting to note is that changing
the number of training-test images, the manifold is always well estimated for both se-
quences, where a slight and negligible increase of this metric is shown.

Table 1. MSE for the three identification strategies obtained in both US sequences: linear 1st and
2nd order models and a non-linear GP model (left); objective evaluation considering five metrics.
The mean values are shown for the two US sequences(right).

Sequence # 1 MSE
Patch # Linear 1st order Linear 2nd order GP 1st order

1 4.7826 6.9604 1.1440
2 2.5327 1.7007 0.4164
3 4.8318 4.4788 0.4199
4 7.1060 1.7813 0.3520
5 2.0454 4.2491 0.4662

Sequence # 2 MSE
Patch # Linear 1st order Linear 2nd order GP 1st order

1 5.8521 5.3898 0.5788
2 5.9573 3.6770 0.1379
3 4.8241 4.5712 0.4720
4 6.0968 4.9661 2.6763

dHMD dAV dHDF dMSSD dMAD dDICE

Seq. 1

KF - WTA 0.14 3.08 5.48 13.23 3.09 2.52

KF - BLD 0.14 3.08 5.47 13.20 3.09 2.53

PF - WTA 0.09 2.12 3.86 7.42 2.17 1.79

PF - BLD 0.09 2.02 3.63 6.22 2.04 1.70

Seq. 2

KF - WTA 0.11 2.73 4.80 10.66 2.79 2.00

KF - BLD 0.11 2.81 4.89 11.33 2.89 2.04

PF - WTA 0.08 1.76 3.70 4.92 1.78 1.59
PF - BLD 0.08 1.74 3.64 4.81 1.75 1.59
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Table 2. Hammoude metric for two US sequences, varying the number of training images

dHMD 25% 50% 75%

Seq. 1 0.063 0.088 0.093

Seq. 2 0.077 0.081 0.090

Fig. 3. GP–MLM tracking estimates (yellow line), superimposed with MMDA tracker (red line)
taken as gold contours. First sequence (top row), and second sequence (bottom row).

Fig. 3 shows some snapshots for both LV sequences. The manifold results are shown
in yellow solid lines, and the ground truth is (output of the MMDA tracker).

Lip tracking: The second example consists of lip tracking in two different situations:
speaking and singing. We show results in seven speaking sequences and three singing
sequences. In the speaking sequences, each one has about 80 images, while in the
singing case the sequence are a bit longer (100 images). Comparing to the previous
example, the nonrigid object (lip boundary) exhibits an higher variability in the shape,
specially when a person is singing.

From this point on, and due to the lack of space we present the results using particle
filtering with the blending rule (other alternatives are, of course, possible to use as
previously illustrated).

In the following, the training and testing mechanism follows a leave-one-out strategy
(this can be also used in the case of the LV tracking, but there was no need to do this
due to the large extension of the LV sequences).

Table 3 (left) shows the results obtained for the speaking case. It can be seen that
the framework proposed herein maintain comparable results as in the previous case.
Recall that the Hammoude metric (XOR pixel wise operation between the ground truth
and the manifold estimates) is always below 15%. Comparing to the results obtained
for the singing sequences (see right of the Table 3), we see that a small decrease on
this distance, and the small increase of the metrics which penalizes maximum local
distances. This is somehow expected, since in this case, a large and sudden changes
in the lips boundary may be obtained in consecutive frames. For instance, in Fig. 5
(top row) the 2nd, 3rd and 7th, 8th frames are consecutive in the video frame. These
correspond to difficult situations where the GP–MLM is able to produce good results.

We also compare the GP-MLM approach with the Gaussian Process Latent Variable
Model GPLVM. 1 To perform the comparison, we first used the reconstruction parameters

1 The code is available from the authors athttp://www.cs.man.ac.uk/˜neill/gplvm/

http://www.cs.man.ac.uk/~neill/gplvm/
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Table 3. Average distances and metrics obtained using the GP–MLM, for speaking sequences
(left) and singing sequences (right)

Speaking Sequences
dHMD dAV dHDF dMSSD dMAD dDICE

Seq1 0.08 2.89 5.80 12.58 3.06 2.14

Seq2 0.11 3.68 7.33 22.44 4.07 3.29

Seq3 0.15 4.62 10.29 48.78 5.69 4.26

Seq4 0.09 3.74 7.93 39.99 4.18 3.04

Seq5 0.14 4.36 8.62 35.19 4.71 3.91

Seq6 0.08 3.23 6.86 15.31 3.33 2.53

Seq7 0.10 3.67 8.08 23.65 3.93 3.02

Singing Sequences
dHMD dAV dHDF dMSSD dMAD dDICE

Seq1 0.16 5.19 10.82 68.62 6.60 4.52

Seq2 0.14 4.31 9.07 71.53 5.24 4.19

Seq3 0.14 4.95 10.07 54.79 5.48 4.33

Fig. 4. GP–MLM tracking estimates for seven speaking sequences shown in red dots

of the GPLVM (see [18] for details). We then applied the GPLVM (as we do for the
GP-MLM) using the particle filtering with the blending rule for contour tracking. We
illustrate the results by showing the Hammoude distance provided by both methods. As
previously, this metric is computed between the GP-MLM contour estimates with the
output of the MMDA (taken as the ground-truth); and the GPLVM estimates with the
MMDA. From the Table 4, we can see that comparable results are achieved. Recall that,
for sequences having a higher deformation (see the results in the singing sequences) the
GP-MLM exhibits good results.

Fig. 5. GP–MLM tracking estimates for three singing sequences shown in red dots
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Table 4. Comparison between the tracked contours provided by GP-MLM and the GPLVM in
terms of the Hammoude distance. The mean values of the distance are shown for each sequence.

Left Ventricle Speaking Singing

GP-MLM 0.088 0.081 0.104 0.079 0.142 0.092 0.150 0.084 0.113 0.157 0.141 0.145

GPLVM 0.091 0.088 0.091 0.081 0.112 0.095 0.140 0.084 0.127 0.177 0.151 0.156

6 Conclusions

A novel method for manifold learning has been proposed in this paper. This frame-
work employs a local and probabilistic approach to learn a geometrical model of the
manifold and thus reduce the dimensionality of the data. The GP-MLM uses the Gaus-
sian process regression as a way to find continuous patches. The decomposition of the
patches renders GP-MLM more flexible when dealing to arbitrary topology. A frame-
work was proposed for probabilistically combining the local patch estimates, based on
the output of Gaussian process regression. The optimization of the Gaussian process
hyperparameters is accomplished via standard gradient descent, which offers a suitable
and effective tool for model selection. Dynamical system identification and recursive
state estimation are tackled by using the multiple local models returned by the man-
ifold learning step. Identification is accomplished via Gaussian process regression. A
filter bank architecture (which uses the learned dynamics) was also developed, both for
Kalman and particle filters. A systematic comparative evaluation in several sequences
was conducted, combining both filtering techniques with different gating strategies. The
experimental evaluation provided indicates that the performance of the GP-MLM pro-
vides good results and it is competitive with the GPLVM approach.

Issues for future research include reducing the number of patches, as well as a way to
compute the scale parameter ε. Reliable estimation of the intrinsic manifold dimension
also remains a difficult challenge, on its own right. Robust statistics may be a fruitful
direction of research for this problem.
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Abstract. In this paper, we tackle the problem of object detection and

tracking in a new and challenging domain of wide area surveillance. This

problem poses several challenges: large camera motion, strong parallax,

large number of moving objects, small number of pixels on target, sin-

gle channel data and low framerate of video. We propose a method that

overcomes these challenges and evaluate it on CLIF dataset. We use me-

dian background modeling which requires few frames to obtain a work-

able model. We remove false detections due to parallax and registration

errors using gradient information of the background image. In order to

keep complexity of the tracking problem manageable, we divide the scene

into grid cells, solve the tracking problem optimally within each cell us-

ing bipartite graph matching and then link tracks across cells. Besides

tractability, grid cells allow us to define a set of local scene constraints

such as road orientation and object context. We use these constraints as

part of cost function to solve the tracking problem which allows us to

track fast-moving objects in low framerate videos. In addition to that,

we manually generated groundtruth for four sequences and performed

quantitative evaluation of the proposed algorithm.

Keywords: Tracking, Columbus Large Image Format, CLIF, Wide Area

Surveillance.

1 Introduction

Recently a new sensor platform has appeared on the scene, allowing for persistent
monitoring of very large areas. The dataset examined in this paper is Columbus
Large Image Format or CLIF dataset. In CLIF, the sensor consists of six cameras
with partially overlapping fields of view, mounted on an aerial platform flying
at 7000 feet. All six cameras simultaneously capture 4016x2672 intensity images
at 2 frames per second. See Figure 1(a) for an example of global camera mosaic.

CLIF dataset belongs to the domain of Wide Area Surveillance (WAS), which
could be used to monitor large urban environments, as an aid in disaster relief,
as well as traffic and accident management. Monitoring such a large amount of
data with a human operator is not feasible, which calls for an automated method
of processing the data. An initial step for such a system would be the detection

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 186–199, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.cs.ucf.edu/~vision


Detection and Tracking of Large Number of Targets in WAS 187

(a) (b)

Fig. 1. (a) CLIF data - all six cameras. (b) top shows two consecutive frames overlayed

in two different color channels: red is frame t, green is frame t + 1. (b) bottom shows

how far vehicles move between consecutive frames. Red boxes show vehicle positions

in previous frame and blue boxes show vehicle positions in next frame.

and tracking of moving objects such as vehicles moving on highways, streets and
parking lots.

Data obtained from such a sensor is quite different from the standard aerial
and ground surveillance datasets, such as VIVID and NGSIM, which have been
used in [1,2], as well as aerial surveillance scenario [3,4,5]. First, objects in WAS
data are much smaller, with vehicle sizes ranging from 4 to 70 pixels in grayscale
imagery, compared to over 1500 pixels in color imagery in the VIVID dataset.
Second, the data is sampled only at 2 Hz which when compared against more
common framerates of 15-30 Hz is rather low. Third, the traffic is very dense
comprising thousands of objects in a scene compared to no more than 10 objects
in VIVID and no more than 100 in NGSIM.

The first issue makes object detection difficult, but more importantly it dis-
allows the use of shape and appearance models for objects during tracking as in
[3,1,5,6] and necessitates an accurate velocity model. However, issues two and
three make initialization of a velocity model extremely difficult. High speed of
vehicles on highway combined with low sampling rate of the imagery results in
large displacement of objects between frames. This displacement is larger than
spacing between objects, making proximity based initial assignment produce
incorrect labeling which results in incorrect velocity model.

Highspeed 60Hz cameras have been used to address this problem in dense
scenarios [7,8], where the high sampling rate makes initial proximity based as-
signment meaningful. Instead, we leverage structured nature of the scene to
obtain a set of constraints and use them in our tracking function. Specifically,
we derive road orientation and traffic context constraints to help with initial as-
signment. We cannot define context based on appearance of neighboring objects
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Fig. 2. This figure shows different stages of our pipeline. First, we remove global camera

motion using point based registration, then we model the background using a 10 frame

median image, perform background subtraction and suppress false positives due to

parallax and registration errors. We track objects within individual grid cells, then

perform handover of tracks between grid cells.

and background as has been done in [9], instead, we define a descriptor for the
geometric relationship of objects with their respective neighbors.

2 Method

Our proposed method consists of the following modules (see figure 2 for refer-
ence). First, we register images using a point correspondence based alignment
algorithm. Then we perform motion detection via a median image background
model. We perform gradient suppression of the background difference image to
remove motion detection errors due to parallax and registration. Once we have
moving object blobs, we divide the scene into a number of grid cells and opti-
mally track objects within each grid cell using Hungarian algorithm. The use
of overlapping cells is a novel idea which makes possible the use of O(n3) Hun-
garian algorithm in a scene containing thousands of objects and provides a way
to define a set of structured scene constraints to disambiguate initialization of
the algorithm. The contribution of our paper is a method for performing object
detection and tracking in a new and challenging Wide Area Surveillance dataset
characterized by low framerate, fast camera motion and a very large number of
fast moving objects. In rest of the paper, we describe how we address all of the
challenges and provide details for the individual modules.

2.1 Registration

Prior to motion detection in aerial video, we remove global camera motion.
The structured man-made environment in these scenes and large amount of
detail yields itself nicely to a point-matching based registration algorithm. It is
also much faster than direct registration method. We detect Harris corners in
frames at time t as well as at time t + 1. Then we compute SIFT descriptor
around each point and match the points in frame t to points in frame t+1 using
the descriptors. Finally, we robustly fit a homography Ht+1

t using RANSAC,
that describes the transformation between top 200 matches. Once homographies
between individual frames have been computed, we warp all the images to a
common reference frame by concatenating the frame to frame homographies.



Detection and Tracking of Large Number of Targets in WAS 189

Fig. 3. Left shows a background model obtained using mean which has many ghosting

artifacts from moving objects. Right shows background model obtained using median

with almost no ghosting artifacts.

2.2 Detection

After removing global camera motion, we detect local motion generated by ob-
jects moving in the scene.

To perform motion detection, we first need to model background, then moving
objects can be considered as outliers with respect to the background. Probabilis-
tic modeling of the background as in [10] has been popular for surveillance videos.
However, we found these methods to be inapplicable to this data. In the para-
metric family of models, each pixel is modeled as either a single or a mixture of
Gaussians. First, there is problem with initialization of background model. Since
it is always that objects are moving in the scene, we do not have the luxury of
object-free initialization period, not even a single frame. Additionally, since the
cameras move, we need to build the background model in as few frames as
possible, otherwise our active area becomes severely limited. Furthermore, high
density of moving objects in the scene combined with low sampling rate makes
the objects appear as outliers. These outliers can be seen as ghosting artifacts
as shown in figure 3. In the case of single Gaussian model, besides affecting the
mean, the large number of outliers make the standard deviation high, allowing
more outliers to become part of the model, which means many moving objects
become part of the background model and are not detected.

A mixture of Gaussians makes background modeling even more complex by
allowing each pixel to have multiple backgrounds. This is useful when background
changes, such as in the case of a moving tree branch in surveillance video. This
feature, however, does not alleviate any of the problems we highlighted above.

Therefore, we avoid probabilistic models in favor of simple median image
filtering, which learns a background model with less artifacts using fewer frames
(figure 3). We found that 10 frame median image has fewer ghosting artifacts
than mean image. To obtain a comparable mean image, it has to be computed
over at least four times the number of frames which results in smaller field of
view and makes false motion detections due to parallax and registration errors
more prominent.

We perform motion detection in the following manner. For every 10 frames
we compute a median background image B, next we obtain difference image i.e.
Id = |I − B|. Prior to thresholding the difference image, we perform gradient
suppression. This is necessary to remove false motion detections due to parallax
and registration errors. Since we fit a homography to describe the transformation
between each pair of frames, we are essentially assuming a planar scene. This
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Fig. 4. Left to right: Section of original image, gradient of the median image, motion

blobs prior to gradient suppression, motion blobs after gradient suppression. Bottom

row shows an area of image that has false motion detections due to parallax and

registration errors, top row shows a planar area of the image.

assumption does not hold for portions of the image that contain out of plane
objects such as tall buildings. Pixels belonging to these objects are not aligned
correctly between frames and hence appear to move even in aligned frames.
Additionally due to large camera motion, there may be occasional errors in the
alignment between the frames. An example of this is bottom row of figure 4
where we show a small portion of an image containing a tall building (left). Due
to parallax error, the building produces false motion detections along its edges
(third image from the left). We suppress these by subtracting gradient of the
median image ∇B (second column) from the difference image i.e. Ir

d = Id−∇B.
The top row shows a planar section of the scene and contains moving objects.
As evident from figure 4, this procedure successfully suppresses false motion
detections due to parallax error without removing genuine moving objects. Also,
the method has the advantage of suppressing false motion detections due to
registration errors, since they too manifest along gradients. Note that above
method works under an assumption that areas containing moving objects will
not have parallax error which is valid for roads and highways.

2.3 Tracking

After detecting moving objects, we track them across frames using bipartite
graph matching between a set of label nodes (circled in blue) and a set of
observation nodes (circled in magenta). The assignment is solved optimally us-
ing the Hungarian algorithm which has complexity O(n3) where n is the number
of nodes. When we have thousands of objects in the scene, an optimal solution
for the entire scene is intractable. To overcome this problem, we break up the
scene into a set of overlapping grid cells (see figure 8). We solve the correspon-
dence problem within each grid cell independently and then link tracks across
grid cells. The use of grid has an additional advantage of allowing us to exploit
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Fig. 5. The figure shows an example of the bipartite graph that we solve at every

frame. Four different types of edges are marked with numbers.

local structured-scene constraints for objects within the grid cell, which will be
discussed later.

For each grid cell in every pair of frames we construct the following graph.
Figure 5 shows an example graph constructed for assigning labels between frames
t and t+1. We add a set of nodes for objects visible at t to the set of label nodes.
A set of nodes for objects visible at t + 1 are added to the set of observation
nodes, both types are shown in green. Since objects can exit the scene, or become
occluded, we add a set of occlusion nodes to our observation nodes, shown in
red. To deal with the case of reappearing objects, we also add label nodes for
objects visible in the set of frames between t− 1 and t− p, shown in yellow. We
fully connect the label set of nodes to the observation set of nodes, using four
types of edges.

1. Edge between label in frame t and an observation in frame t + 1.
2. Edge between label in frame t− p and an observation in frame t + 1.
3. Edge between a new track label in frame t and an observation in frame t+1.
4. Edge between a label and an occlusion node.

We define edge weights in the following manner. Weight for edge of type 3 is
simply a constant δ. Weights for edges of type 1 and 2 contain velocity orientation
and spatial proximity components. Spatial proximity component Cp is given by

Cp = 1 − ‖xt−k + vt−k(k + 1) − xt+1‖√
S2

x + S2
y

, (1)

where x is the position of the object, Sx and Sy are the dimensions of the
window within which we search for a new object and k is the time past since
last observation of the object.

Velocity orientation component Cv is given by

Cv =
1

2
+

vt · vt+1

2‖vt‖‖vt+1‖ , (2)
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(a)

(b)

(c)

Fig. 6. This figure shows the process of estimating road orientation within a grid cell.

Objects tracked in frame t are shown in red, objects detected in frame t+1 are shown in

blue. (a) Obtain all possible assignments between objects in frame t and frame t+1. (b)

Obtain a histogram of resulting possible velocities. (c) Take mean of velocities which

contributed to the histogram peak.

t

t+1
(a)

(c)

(b)

(d)

Fig. 7. Vehicles tracked at time t are shown in red while vehicles detected in frame t+1

are shown in blue. White arrows indicate the assignment of labels to objects based on

proximity only and correspond to resulting velocities of objects. Yellow arrows indicate

the road orientation estimate for this particular grid cell. (a) shows a case where road

orientation estimate can be used to disambiguate the assignment of labels and (b) shows

where it is not useful. To handle cases such as (b), we introduce a new constraint for

context of each vehicle, shown in (c). At frames t and t+1 we compute vectors between

vehicle of interest (green) and its neighbors (orange). We then compute a 2D histogram

of orientations and magnitudes of the vectors shown in (c).

where vt is the last observed velocity of an object, vt+1 is the difference between
xt+1, the position of observation in current frame, and xt−k, the last observed
position of object at frame t− k.

We define the weight for edges of type 1 and 2 as follows

w = αCv + (1 − α)Cp. (3)

We found these to be sufficient when object’s velocity is available. If on the
other hand, velocity of the object is unavailable as in initial two frames or when
new objects appear in the scene, we use structured scene constraints to compute
weights for edges.

Assigning labels based simply on proximity between object centroids is not
meaningful in wide area scenario. Due to low sampling rate (2 Hz), high scene



Detection and Tracking of Large Number of Targets in WAS 193

density and high speed of objects, proximity based assignment is usually incorrect
(see figure 7). Therefore we use road orientation estimate and object context as
constraints from the structured scene.

Road orientaion estimate g is computed for each grid cell in the following
manner (see figure 6). First, we obtain all possible assignments between objects
in frame t and t+1. This gives us a set of all possible velocities between objects at
frames t and t+1. Next, we obtain a histogram of orientations of these velocities
and take the mean of orientations that contributed to peak of the histogram.
See Algorithm 1 for a formal description.

Algorithm 1. Algorithm to compute global
velocity for each cell in grid of size m x n using
detections Dt and Dt+1.

1: procedure computeGlobalVelocity
2: for i ← 1, m do
3: for j ← 1, n do
4:
5: for all d ∈ Di,j

t do

6: for all d′ ∈ Di,j
t+1 do

7: θ = tan−1 (d′ − d)
8: Store θ in Θ
9: end for

10: end for
11:
12: h = histogram(Θ)
13: Find bin ψ s.t. mode(h) ∈ ψ
14: θ′ = mean(θ|θ ∈ ψ)
15: −→g (i, j) = [cos(θ′) sin(θ′)]
16:
17: end for
18: end for
19: end procedure

Algorithm 2. Algorithm to compute context
Φ(Oa

t ) for object a at frame t.

1: procedure computeContext
2: for all c do
3:
4: if ‖Oc

t − Oa
t ‖2 < r then

5: θ = tan−1 (Oc
t − Oa

t )
6: d = ‖Oc

t − Oa
t ‖2

7: Φ = Φ + N (μ, Σ)
8: � N centered on (d, θ)
9: end if

10:
11: end for
12: end procedure

Note that orientation of g essentially gives us orientation of the road along
which vehicles travel, it does not give us the direction along that road. However,
even without the direction, this information is oftentimes sufficient to disam-
biguate label assignment as shown in figure 7(a). When vehicles travel along
the road in a checkerboard pattern, proximity based assignment will result in
velocities which are perpendicular to g. That is not the case when a number
of vehicles are traveling in a linear formation as in Figure 7(b). Therefore, we
introduce an additional formation context constraint (see figures 7(c) and 7(d)).
If we are trying to match an object Oa in frame t (or t− k) to an observation in
frame t + 1, we compute object context as a 2 dimensional histogram of vector
orientations and magnitudes between an object and its neighbors.

In order to account for small intra-formation changes, when computing the
context histograms Φa and Φb, we add a 2D Gaussian kernel centered on the
bin to which a particular vector belongs. Furthermore, since 0◦ and 360◦ are
equivalent, we make the kernel wrap around to other side of orientation portion
of the histogram.
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Fig. 8. (a) This figure shows an example frame with grid overlayed onto an image. (b)

shows the grid cell search procedure for handing over tracks. The bold colored lines

correspond to OLLeft, OLBottom, and OLRight, in counterclockwise direction. Only

colored grid cells are searched, white cells are ignored.

The road orientation constraint component is defined as

Cg =
1

2
+

|g · vt+1|
2‖g‖‖vt+1‖ (4)

The purpose of this constraint is to prevent tracks from travelling across the
road. The context constraint is the histogram intersection between histograms
Φa and Φb:

Cc =

Nbins∑
p

Mbins∑
q

min(Φp,q
a , Φp,q

b ) (5)

Finally, weight for edge of type 3 is computed as follows,

w = α1Cg + α2Cp + (1 − α1 − α2)Cc (6)

We solve the resulting bipartite graph using Hungarian algorithm. We track all
objects within each grid cell by performing the above procedure for all frames.
Next, we find and link tracks that have crossed the cell boundaries, using Al-
gorithm 3 utilizing the overlapping regions of the neighboring grid cells. (see
figure 8 for reference).

2.4 Handling Multiple Cameras

There can be several possible frameworks for tracking objects across overlap-
ping cameras which employ inter-camera transformations. One possible way is
to establish correspondences at the track level where objects are detected and
tracked in each camera independently, and afterwards, tracks belonging to the
same object are linked. But, this approach has a serious issue which arises from
the fact that background for a particular frame of a camera can only be modeled
on overlapping region of all frames used for background. This reduces the area
of region where objects can be detected. When objects are detected in cameras
separately, reduction in detection regions results in the loss of overlap between
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Algorithm 3. Algorithm for object handover across grid cells. The size of grid is m x n. S(i, j)

represents all tracks for the sequence in the cell at ith row and jth column in grid.

1: procedure interCellHandover
2: for i ← 1, m do
3: for j ← 1, n do
4: Calculate OLLeft, OLRight and OLBottom � See figure 8
5: for all si,j ∈ S(i, j) do
6:
7: if ∃ k | si,j

k > OLRight then

8: completeTrack(si,j, S(i + 1, j))

9: else if ∃ k | si,j
k

> OLRight ∧ ∃ k | si,j
k

> OLBottom then

10: completeTrack(si,j, S(i + 1, j + 1))

11: else if ∃ k | si,j
k > OLBottom then

12: completeTrack(si,j, S(i, j + 1))

13: else if ∃ k | si,j
k < OLLeft ∧ ∃ k | si,j

k > OLBottom then

14: completeTrack(si,j, S(i − 1, j + 1))
15: end if
16:
17: end for
18: end for
19: end for
20: end procedure

1: procedure completeTrack(s, S) � s=track to complete, S=tracks in neighboring cell
2: for all s′ ∈ S do
3: if ∃ (l, m) | sl.detectionID = s′

m.detectionID ∧ sl.t = s′
m.t then

4: assign s and s′ unique label
5: end if
6: end for
7: end procedure

two cameras. While methods for matching objects across non-overlapping cam-
eras exist [1,11,12,6], low resolution and single channel data disallow the use
of appearance models for object hand over, and reacquisition based on motion
alone is ambiguous. The increased gap between cameras arising from detection
adds further challenge to a data already characterized by high density of objects
and low sampling rate of video.

In order to avoid above problems, we perform detection and tracking in global
coordinates. We first build concurrent mosaics from images of different cameras
at a particular time instant using the Registration method in §2.1 and then
register the mosaics treating each concurrent mosaic as a single image.

One problem with this approach, however, is that cameras can have differ-
ent Camera Response Functions or CRFs. This affects the median background,
since intensity values for each pixel now come from multiple cameras causing
performance of the detection method to deteriorate. To overcome this issue, we
adjust the intensity of each camera with respect to a reference camera using the
gamma function [13] i.e.

I ′
C(x, y) = βIC(x, y)

γ , (7)

where IC(x, y) is the intensity of the original image at location (x, y). We find
β, γ by minimizing the following cost function:

argmin
β,γ

∑
(x,y)∈IC1∩IC2

(IC1(x, y) − I ′
C2(x, y))

2, (8)
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Fig. 9. This figure shows the result of multi-camera intensity equalization. Notice the

seam in image on left which in not visible in equalized image on right.

where IC1 ∩ IC2 is the overlap between the two cameras. The cost function is
minimized using a trust region method for nonlinear minimization. The approx-
imate Jacobian matrix is calculated by using finite difference derivatives of the
cost function. Transformation in equation 7 is then applied to each frame of
the camera before generating concurrent mosaics. Results for this procedure are
shown in figure 9.

3 Results

We validated our method on four sequences from CLIF 2006 dataset. Sequences
1 to 3 are single camera sequences while sequence 4 has multiple cameras. The
average number of objects in these sequences are approximately 2400, 1000,
1200 and 1100 respectively. Objects in sequence 2 and 3 undergo merging more
often than objects in the other two sequences. This is primarily due to oblique
angle between highway and camera in these sequences as opposed to top view
in sequences 1 and 4. Figure 10 shows some of the tracks from these sequences.

For quantitative evaluation, we manually generated ground truth for the four
sequences. Due the sheer number of objects, smaller size and similar appearance,
generating ground truth for each object is a daunting task. We selected one
region from sequence 1,3 and 4 and two regions from sequence 2 for ground
truth. Objects were randomly selected and most of them undergo merging and
splitting. The number of objects for which ground truth was generated are 34
for sequence 1, 47 and 60 for sequence 2 and 50 each for sequences 3 and 4.

Our method for evaluation is similar to [2] and measures performance of both
detection and tracking. We compute the following distance measure between
generated tracks and ground truth tracks:

D(Ta, Gb) =
1

|Ω(Ta, Gb)|2
∑

t∈Ω(Ta,Gb)

‖xa
t − xb

t‖2, (9)

where Ω(Ta, Gb) denotes the temporal overlap between Ta and Gb, |.| denotes
cardinality while ‖.‖ is the Euclidean norm. A set of pairs are associated i.e.
(a, b) ∈ A iff Ta and Ga have an overlap. The optimal association,

A∗
= argmin

A

∑
(a,b)∈A

D(Ta, Gb) subject to Ω(Ta, Tc) = ∅ ∀(a, b), (c, b) ∈ A (10)
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is used to calculate the performance metrics. Abusing notation, we define

A(Gb) = {Ta|(a, b) ∈ A}. (11)

The first metric Object Detection Rate, measures the quality of detections prior
to any association:

ODR =
# correct detections

# total detections in all frames
. (12)

We cannot compute ODR for each track and then average, because that would
bias the metric towards short tracks as they are more likely to have all detections
correct. Further notice that, it is not possible to detect false positives as the
number of ground truth tracks is less than number of objects. A related metric,
Track Completeness Factor,

TCF =

∑
a

∑
Tb∈A(Ga)

|Ω(Tb, Ga)|∑
a |Ga|

, (13)

measures how well we detect an object after association. TCF will always be less
than or equal to ODR. The difference between ODR and TCF is the percentage
of detections that were not included in tracks. Finally, Track Fragmentation
measures how well we maintain identity of the track,

TF =

∑
a

|A(Ga)|

|{Ga|A(Ga) �= ∅}| . (14)

Weighing the number of fragments in a track with length, we get Normalized
Track Fragmentation,

NTF =

∑
a

|Ga| · |A(Ga)|∑
a|A(Ga) �=∅

|Ga|
. (15)

which gives more weight to longer tracks as it is more difficult to maintain
identity for long tracks than short ones.

We compare our method with the standard bipartite matching using greedy
nearest-neighbor initialization. Initial assignment is done based on proximity
while linear velocity model is used for prediction. Standard gating technique is
used to eliminate unlikely candidates outside a certain radius. The same reg-
istration and detection methods were used for all experiments. The values of
parameters for our tracking method were α = 0.5 (eq. 3) and α1 = α2 = 0.33
(eq. 6). Table 1 shows the comparison between both methods:

As can be seen from table 1, our method achieved better TCF and TF because
unique characteristics of WAS demand the use of scene-based constraints which
were not leveraged by the standard bipartite matching. We derived road orien-
tation estimate and object context using only the image data, which allowed for
better initialization and tracking performance.
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Table 1. Quantitative Comparison

ODR TCF TF NTF TCF TF NTF
Seq1 0.975 0.716 2.471 2.506 0.361 13.06 13.11
Seq2 0.948 0.714 2.894 2.895 0.489 12.55 12.55
Seq3 0.972 0.727 2.76 2.759 0.583 8.527 8.53
Seq4 0.984 0.824 1.477 1.48 0.638 6.444 6.443

Our Method GreedyBIP

Fig. 10. This figure shows a number of results for different sequences. Top group is for

sequence 1, second group is for sequence 2. In the bottom group, first column is from

multiple camera sequence (camera boundary is shown in black), next two columns are

from sequence 4.
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4 Conclusion

We analyzed the challenges of a new aerial surveillance domain called Wide Area
Surveillance, and proposed a method for detecting and tracking objects in this
data. Our method specifically deals with difficulties associated with this new
type of data: unavailability of object appearance, large number of objects and
low frame rate. We evaluated proposed method and provided both quantitative
and qualitative results. These preliminary steps pave way for more in-depth
exploitation of this data such as scene modeling and abnormal event detection.

Acknowledgments. This work was funded by Harris Corporation.
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Abstract. We present a discriminative model that casts appearance modeling and
visual matching into a single objective for visual tracking. Most previous discrim-
inative models for visual tracking are formulated as supervised learning of binary
classifiers. The continuous output of the classification function is then utilized as
the cost function for visual tracking. This may be less desirable since the function
is optimized for making binary decision. Such a learning objective may make it
not to be able to well capture the manifold structure of the discriminative ap-
pearances. In contrast, our unified formulation is based on a principled metric
learning framework, which seeks for a discriminative embedding for appearance
modeling. In our formulation, both appearance modeling and visual matching
are performed online by efficient gradient based optimization. Our formulation is
also able to deal with multiple targets, where the exclusive principle is naturally
reinforced to handle occlusions. Its efficacy is validated in a wide variety of chal-
lenging videos. It is shown that our algorithm achieves more persistent results,
when compared with previous appearance model based tracking algorithms.

1 Introduction

Appearance based visual tracking has been an active research topic for decades [1, 2, 3,
4,5,6,7,8]. There are two essential tasks: the modeling task builds an appearance model
for the visual target; then the matching task matches the model with the source visual
data to recover the motion of the target objects. Appearance models can roughly be put
into two categories: generative models [2, 3, 4, 6] and discriminative models [7, 9, 8, 5].

Generative models seek a compact model to account for as much visual variations of
the appearances as possible. Most often a set of training examples is leveraged either to
obtain a subspace model [6, 2, 3] using embedding methods such as principle compo-
nent analysis (PCA) [6, 3] or Gram-Schmidt decomposition [2], or to learn a Gaussian
mixture model [1] using the Expectation-Maximization (EM) algorithm [10].

Discriminative models aim at differentiating the appearances of the visual targets
from the background. Most previous works proposed to learn a binary classifier to dif-
ferentiate the visual target from the background by using, for example, support vector
machine (SVM) [7], Boosting [8], linear discriminant analysis [9], and multiple in-
stance Boosting [5]. Compared to generative models, discriminative models may be
more desirable for tracking due to the discrimination of foreground and background.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 200–214, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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After the classifier is learnt, most previous works utilize the continuous output of the
classification function as the objective for visual matching and tracking. This may be
less desirable since the classification functions are trained to be good mainly for making
binary decision. In other words, they may not be able to well capture the manifold
structure of the discriminative appearances, a vital factor for robust visual tracking.

Given the visual appearance model, different tracking algorithms [11, 12, 13, 14, 15,
16] come with different optimization paradigm for matching. They can largely be clas-
sified into two. The first class [11,12] takes a hypothesis generation and observation ver-
ification approach by probabilistic information fusion. Seminal works include Kalman
filter, probabilistic data association filter (PDAF) [11], and particle filter [12].

However, both Kalman filter and PDAF [11] make the assumption that the visual
observations of the target can be obtained in certain ways, which may not be satisfied in
many cases. Although particle filter [12] eliminates this assumption by taking a direct
verification approach, it needs sufficient number of particle hypotheses, and hence a lot
of computation resources for good performance. It is even worse when dealing with
high dimensional motions [17, 18]. This is why partitioned sampling [17] and impor-
tance sampling [18] are needed to effeciently utilize the limited particle budget.

The second class takes a direct optimization approach, where iterative gradient based
search [13,15] is performed, or a linear program [14,16] is solved to obtain the tracking
results. Compared to the first class of tracking algorithms, direct optimization [14, 13]
usually does not make any additional assumptions about image observations, and the
gradient based optimization can be performed efficiently with modern nonlinear pro-
gram [19]. This renders them to be more applicable when certain assumptions do not
hold or the computational resource is constrained.

We propose a unified discriminative visual tracking framework for both appearance
modeling and visual matching. It is cast under a discriminative metric learning algo-
rithm proposed by Globerson and Roweis [20]. In our formulation, appearance mod-
eling is to identify a discriminative embedding, and visual matching performs an ex-
emplar based regression on such a manifold w.r.t. the motion parameters. Both steps
optimize the same objective function and are performed alternatively by efficient gradi-
ent search. Therefore, we achieve two tasks in an unified formulation.

Without requiring any additional efforts, our formulation can naturally deal with the
discriminative modeling and visual matching of multiple targets. Due to the mutual dis-
crimination of the multiple appearances, and the joint optimization of multiple motions
in our model, our tracking algorithm naturally reinforces the exclusive principle [21].
Exclusive principle states that no two visual targets shall account for the same image
observations, which is vital to handle cross occlusions, as manifested in [21].

Our unified formulation presents three benefits to previous works: firstly, it presents
a unified discriminative formulation where appearances modeling and matching are op-
timizing the same objective function. Secondly, the unified discriminative formulation
gracefully handles visual modeling and tracking of multiple targets where an exclu-
sive principle is naturally reinforced. This makes it to be robust to occlusions occurring
among the different visual targets. Thirdly, a principled criterion is derived from it to
select the optimal set of visual examples for online learning and matching.
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2 Discriminative Appearance and Motion Model

2.1 A Unified Formulation

We take a unified formulation for joint discriminative appearances modeling and visual
matching. More formally, suppose we have a set of labeled training examples X0 =
{xi ∈ R

N , yi}n
i=1, where yi = 1 means xi is among the n1 foreground samples, and

yi = 0 implies that xi is one of the n0+1 background samples, such that n1 +n0+1 =
n. In our experiments, each xi is usually a w × h image patch and N = w × h.

We further denote I(m) to be the visual target we would like to track where m ∈ R
L

is the motion parameters we want to recover. Obviously, the label y of I(m) is 1, since it
represents the visual target. For ease of notation, we denote x0 = I(m). Therefore, our
final labeled data set X = X0 ∪{(x0, y0 = 1)}. Following Globerson and Roweis [20],
we propose to learn a Mahalanobis form metric, i.e.,

dA(xi,xj) = (xi − xj)T A(xi − xj). (1)

where A is a positive semi-definite (PSD) matrix to be learnt. For each xi ∈ X , define

pA(xj |xi) =
1
Zi

e−dA(xi,xj) =
e−dA(xi,xj)∑

k �=i e−dA(xi,xk)
. (2)

The ideal distribution of the optimal A shall collapse samples from the same class to
be a single point. Specifically, the ideal distribution shall take the following form,

p0(xj |xi) =
{

1
nl

yi = yj = l

0 yi 	= yj
. (3)

where l ∈ {0, 1}. Recall that x0 = I(m), we define

f(A,m) =
n∑

i=0

KL (p0(xj |xi)||pA(xj |xi)) = C +
∑

yi=yj=l

1
nl

(dA(xi,xj) + log Zi)

(4)
where C =

∑
yi=yj=l

1
nl

log 1
nl

is a constant. To have pA(xj |xi) to be as close to
p0(xj |xi) as possible, we only need to proceed to minimize f(A,m), i.e.,

min f(A,m) (5)

s.t. ∀a ∈ R
N , aT Aa ≥ 0. (6)

where the constraint in Eq. 6 confines A to be PSD. Solving the above optimization
problem would allow us to jointly obtain the optimal discriminative appearance model
defined by A, and track the motion of the target visual object, which is defined by m.
We solve both by efficient gradient based search, as presented in the following sections.

We shall emphasize here that we present our formulation and optimization in this
section with a single visual target for ease of presentation. We will extend the discussion
to present more details on how to deal with multiple objects tracking in Sec. 4.
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2.2 Appearance Model Estimation

In our unified formulation, discriminative appearance modeling refers to identifying the
optimal A, which defines the discriminative metric, and thus a discriminative embed-
ding. Assume that the motion parameter m is fixed, following [20], it is easy to figure
out that f(A,m) is a convex function of A. Taking the derivative of f(A,m) with
respect to A, we have

∂f(A,m)
∂A

=
n∑

i,j=0

(p0(xj |xi)− pA(xj |xi))(xj − xi)(xj − xi)T . (7)

Similar to [20], we take a gradient projection algorithm [22] to obtain the optimal A.
Specifically the following two steps are performed:

1. GRADIENT DESCENT:A = A − ε∂f(A,m)
∂A , where ε determines the step length for

gradient descent.
2. PSD PROJECTION: Compute the eigen-value decomposition of A, i.e., {λk,uk}N

k=1

such that A =
∑N

k=1 λkukuT
k , set A =

∑N
k=1 max(λk, 0)ukuT

k .

The first step above performs gradient descent, and the second step reinforces the con-
straint to make A to be a positive semi-definite matrix. These two steps are iterated
until convergence. Since f(A,m) is a convex function of A given m. The iteration of
these two steps is guaranteed to find the optimal solution to A.

2.3 Motion Parameter Optimization

In this subsection, we fix the discriminative appearance model A, and develop the gra-
dient descent search for the motion parameters m. Not losing any generality, we assume
that m is a linear motion model, i.e.,[

x
y

]
=

[
a b
c d

] [
x′

y′

]
+

[
e
f

]
(8)

where [x′, y′]T is the canonical coordinates for the labeled examples, and [x, y]T is the
coordinates in the target video frame. This linear motion model covers a wide variety of
motions such as translation, scaling, similarity, as well as full affine motion. We proceed
to derive the gradient based search for the full affine motion model.

Recall that x0 = I(m) is the only term that involves the motion parameter m, ac-
cording to chain rule, we have

∂f(A,m)
∂m

=
∂f(A,m)

∂x0

∂x0

∂m
. (9)

With some mathematical manipulation, it can be shown that

f(A,m) =
1
n1

∑
yj=1,j �=0

2dA(x0,xj) +
n∑

j=0

log Zj + C(A) (10)
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where C(A) is a term which is independent of x0 and thus independent of m. There-
fore, with some more mathematical manipulations, we have

∂f(A,m)
∂x0

=
4
n1

∑
yj=1,j �=0

A(x0 −xj)− 2
n∑

j=1

(pA(xj |x0)+ pA(x0|xj))A(x0 −xj).

(11)
For any parameter ξ ∈m, again, applying chain rule, we have

∂x0

ξ
=

∂I(m)
∂ξ

=
∂I(m)

x

∂x

∂ξ
+

∂I(m)
y

∂y

∂ξ
, (12)

where ∂I(m)
x and ∂I(m)

y represents the image gradient in the target frame in horizontal
and vertical directions, respectively. For ease of notation, we denote them as Ix and Iy

respectively. Following Eq. 12, we have

∂x0

∂a
= Ixx′,

∂x0

∂b
= Ixy′,

∂x0

∂c
= Iyx′,

∂x0

∂d
= Iyy′,

∂x0

∂e
= Ix,

∂x0

∂f
= Iy (13)

Therefore, we may easily calculate the gradient of f(A,m) with respect to m by ap-
plying Eq. 9 to Eq. 13. Then we can take a gradient descent step to recover the optimal
motion parameter m, i.e.,

m = m− η
∂f(A,m)

∂m
(14)

where the step length η could be estimated, for example, by a quasi-Newton method
such as L-BFGS [19].

3 Online Matching and Model Estimation

One of the main challenges in appearance model based visual tracking is to robustly
adapt the model to the visual environment. This adaptation may be indispensable for
robust tracking since the target objects may go through drastic visual changes from
environmental conditions such as extreme lighting, occlusions, casting shadows, and
pose and view changes. The unified formulation we proposed in Eq. 5 enables us to
naturally fulfill this task. We proceed to present it in a more formal way.

Extended from the notation of Sec. 2, let X (t) be the set of n labeled examples
we maintain at time instance t. We also let At be the current discriminative appear-
ance model, and mt be the motion parameters we need to recover. Hence we have
x(t)

0 = I(t)(mt). At each time instant t, givenX (t) and At, we run the gradient descent
optimization algorithm outlined in Sec. 2.3 to obtain the optimal motion parameter m�

t .
This fulfills our visual matching and tracking task. Then we perturb m�

t to generate a

set of α negative samples X (t+1)
− to replace the oldest α negative sample subset X (t)

− in
X (t). This results in the new labeled examples X (t+1), i.e.,

X (t+1) = (X (t)
0 \ X (t)

− ) ∪ X (t+1)
− . (15)
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Since mt has been recovered, for ease of presentation, we abuse the notation to tem-
porally define x(t+1)

0 = It(mt). With X (t+1) We can then run the gradient projection
optimization algorithms outlined in Sec. 2.2 to obtain the optimal At+1. To proceed
with the next matching step to identify the optimal It+1(mt+1), with a fixed memory
budget, we need to retire one positive examples in the currentX (t+1), we propose a least
consistent criterion based on the contribution of each positive examples to the unified
cost function f(At+1,mt). Indeed, fixing At+1 and mt, f(At+1,mt) is a function of
X (t+1), i.e., f(At+1,mt) = g(X (t+1)). We can similarly define a g(·) function for any
subset of X (t+1) based on Eq. 4. Therefore, for each x ∈ X (t+1), a consistent criterion
can be defined as

c(x) = g
(
X (t+1)

)
− g

(
X (t+1) \ {x}

)
. (16)

It is easy to understand that the larger c(x) is, the more contribution x has made to
f(At+1,mt). If the label y(x) = 1, a larger c(x) indicates that x is not very compatible
to the rest of the positive samples, and hence should be retired from the sample set. More
formally, we select

x� = argmaxx∈X (t+1),y(x)=1c(x) (17)

to retire from X (t+1). In real operation, we only need to change the numbering of
x(t+1)

0 = It(mt) to the numbering of x�, then we reset x(t+1)
0 = It+1(mt+1) which is

unknown now to kick off the matching process for the optimal motion parameter mt+1.
The above steps will be repeated from time instant t to time instant t + 1. There-

fore we track the visual target and estimate the discriminative visual appearance model
simultaneously in an online fashion, which are all based on efficient gradient based opti-
mization. Most previous approaches resort to heuristics or the oldness of visual samples
to select the optimal set of online training examples. While our proposed selection cri-
terion for positive examples in Eq. 17 is derived directly from our unified cost function
in a principled fashion, an obvious benefit of our unified formulation.

To initialize the tracking algorithm, we can run an object detector if it applies, such as
a face detector [23] or a human detector [24], if we are tracking a face or a person. Or we
can request the users to manually specify a tracking rectangle in the first frame. Then the
initialized tracking rectangle, either from a detector or manually specified, is perturbed
to form the initial set of labeled examplesX (1). More specifically, perturbed rectangles
with sufficient overlap with the initial rectangle are regarded as positive examples, while
those perturbed rectangles which are deviated too much from the initial rectangles are
deemed as negative examples. This bootstraps learning for the optimal discriminative
appearance model A2, which is then adopted to obtain the optimal motion parameter
m2. This processes will be repeated as described above.

Last but not least, when maintaining the labeled example set X (t), we fix a small
set of β negative and β positive examples extracted from the initialization frame in the
set, i.e., we never replace them with new examples. This treatment is very important to
keep some invariance to our discriminative appearance model and avoid it to be drifted
too drastically in the visual tracking process, a trick which has been adopted also in
previous work, such as [8].
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4 Modeling and Tracking Multiple Objects

Our unified formulation is natural to handle the tracking of multiple targets. To see this,
we assume yi = 0 indicates background, and yi = 1, . . . , K indicates each of the K
visual targets we are intending to track. Let S0 = {(x0j , y0j = 0)}n0

j=0, and also let
Si = {(xij , yij = i)}ni

j=0 for any i = 1, . . . , K , where ∀i > 0, xi0 = I(mi) indicates
each of the visual targets we want to track in the current frame, where mi is represented
by {ai, bi, ci, di, ei, fi}, as defined in Eq. 8. Following similar steps as we have derived
Eq. 4, denoteM = {m1,m2, . . . ,mK}, and X = {xi0}K

i=1 we have

f(A,M) = C +
K∑

i=0

ni∑
j �=k=1

1
ni

(dA(xij ,xik) + log Zij) . (18)

where Zij and dA(·, ·) are all defined similar to the corresponding terms defined in
Sec. 2.1. Here A captures the discriminative appearances information for all the K
visual targets, and mi represents the motion for the ith visual target which, in our
experiments, are again the affine motion parameters defined in Eq. 8.

Following similar derivations as in Sec. 2.2 and Sec. 2.3, we can compute

∂f(A,M)
∂A

=
K∑

i=0

ni∑
j=0

K∑
k=0

nk∑
l=0

ωij(kl)(xkl − xij)(xkl − xij)T (19)

where
ωij(kl) = p0(xkl|xij)− pA(xkl|xij). (20)

With this formula to compute the gradient, we can utilize similar Gradient projection
steps outlined in Sec. 2.2 to obtain the optimal A. Notice that here A captures both the
discriminative appearances among all the visual targets, as well as the discriminative
information between the visual targets and background. Similarly, we obtain that

∂f(A,M)
∂xi0

=
4
ni

ni∑
j=1

A(xi0 − xij)− 2
K∑

k=1

nk∑
l=0

βi0(kl)A(xi0 − xkl). (21)

where
βi0(kl) = pA(xkl|xi0) + pA(xi0|xkl) (22)

Following Eq. 13, we also have

∂xi0

∂ai
= Ixx′

i,
∂xi0

∂bi
= Ixy′

i,
∂xi0

∂ci
= Iyx′

i,
∂xi0

∂di
= Iyy′

i,
∂xi0

∂ei
= Ix,

∂xi0

∂fi
= Iy . (23)

Following chain rules and with Eq. 23, we can easily calculate

∂f(A,mi)
mi

=
∂f(A,M)

∂xi0

∂xi0

mi
(24)

With Eq. 24, again, we use L-BFGS [19] to solve the nonlinear optimization problem
to obtain each set of motion parameters mi for the ith visual target. Based on the above
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two gradient based optimization schemes for A and each mi, respectively, following
similar ideas as outlined in Sec. 3, we can further develop online appearances modeling
and updating algorithms and visual matching algorithms for robust visual tracking of
multiple objects. We shall not verbose on it since it follows quite similar steps as those
outlined in Sec 3.

4.1 Discriminant Exclusive Principle

We argue that the proposed joint formulation for multiple object tracking naturally in-
corporates an exclusive principle [17] in the matching process. Therefore it is robust to
handle occlusions among the different visual objects. The exclusive principle states that
no two visual tracker shall occupy the same image observation. Our proposed algorithm
naturally achieves it because of the joint discriminative appearance model A, which re-
inforces the mutual discrimination of the appearances between two visual targets I(mi)
and I(mj). To see this more clearly, given an optimal A, if I(mi) and I(mj) occupy
similar image regions (a.k.a, mj

.= mi), and thus have similar appearance, the mu-
tual discriminative information encoded in A would incur a large value for f(A,M).
Therefore, mj

.= mi is not an optimal solution toM. In other words, the optimal mo-
tion parameterM is more likely to occur when ∀1 ≤ i < j ≤ K , mj 	= mi. Therefore,
the exclusive principle among the different visual targets is naturally reinforced.

5 Experiments

We dub the name TUDAMM to the Tracker with Unified Discriminative Appearance
Modeling and Matching (TUDAMM). Comparing with the results of other state-of-
the-art trackers [2, 13], we evaluate our TUDAMM using several challenging video
sequences including video clips from CAVIAR dataset [25], and other real-world video
sequences downloaded from Internet.

5.1 Evaluation Criteria

Enlightened by the simplicity and the elegance of the Average Precision (AP) criterion
used in the PASCAL grand challenge [26] for object detection evaluation, we define
a simple measure for tracker evaluation, namely Average Tracking Precision (ATP).
More formally, for each tracking task, a ground truth mask for the object of interest is
labeled in each frame j. The mask is represented as a point set Gj . The tracking result
is represented as a point set Tj at frame j. (xi, yi) ∈ Gj or Tj indicates that the pixel at
(xi, yi) is inside them. For an ideal tracker, ∀i, Gj = Tj .

For each frame j, the tracking precision rj is defined as: rj = |Gj ∩ Tj |/|Gj ∪ Tj |.
Noticing that rj ∈ [0, 1], the ATP for a tracker of an object in a video clip is defined as:

ATP =
1

N

N∑
j=1

rj =
1

N

N∑
j=1

|Gj ∩ Tj |
|Gj ∪ Tj |

, (25)

where N is the running length of the video clips in frame number. For an ideal tracker,
ATP ≡ 1. We use it as the exclusive quantitative measure to compare the performance
of the TUDAMM with other state-of-the-art trackers.
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Fig. 1. The sample key frames of the tracking results for CAVIAR dataset. Key frame NO.
443, 455, 467, 488, 501, 772 are shown from left to right. First row: TUDAMM. Second Row:
Meanshift [13]. Third row: Incremental Learning Tracker (ILT) [3].

5.2 Visual Tracking of Single/Multiple Target(s)

We firstly present the tracking results of TUDAMM for single target on a video se-
quence from the CAVIAR dataset1, where three persons are walking in the corridor of
a shopping mall in Portugal. We call this video sequence “ThreePerson”. We run the
proposed tracking algorithm to track one of the three persons individually. The tracking
task is challenging in several aspects: 1) the scales of the visual targets change dras-
tically; 2) the three persons walked across each other and thus induced occlusion; 3)
some other crossing person occluded the target person.

As shown in the first row of Fig. 1, the TUDAMM tracker successfully tracked
the target person from beginning of the sequence to the end of the sequence with-
out any problem, which is more robust than both the mean-shift tracker [13] (second
row) and the incremental PCA tracker [3] (third row). Both of these algorithms failed
to track the target after the person with red cloth occluded the target person, as dis-
played in the second and third row of Fig. 1. The robustness of our TUDAMM tracker
attributes to our unified discriminative formulation, which makes it more robust to
background clutter. For detailed video results, please check out our video demo file
“http://vision.ece.missouri.edu/demo/ECCV2010Tracking.avi”.

Quantitative comparisons to other work. Since the ThreePerson video in the CAVIAR
dataset has ground-truth labels of the bounding boxes of the walking persons in the
video sequence, we use the ATP criterion presented in Sec. 5.1 to quantitatively evalu-
ate the performances of the proposed TUDAMM tracker, the mean-shift tracker (Mean-
shift) [13], and the incremental PCA tracker (ILT) [3]. We present two such evaluation
results for tracking two different persons in the video in Fig. 2(a) and Fig. 2(b), respec-
tively. It is clear TUDAMM consistently presents more accurate tracking results than

1 Data set from EC Funded CAVIAR project/IST 2001 37540, downloaded at URL:
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.
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Fig. 2. (a) The performance comparison for the person tracked in figure 1. (b) The performance
comparison for tracking the black person at right to the red person at the starting frame.

Fig. 3. The top 12 eigenvectors (with the descent order from left to right) for the discriminative
matrix A

the other algorithms, which achieves an average tracking ATP of 75%. This demon-
strates the good performance of the gradient based matching algorithm to recover the
motion parameters.

Visualizing the appearance model A. As a matter of fact, the appearance model A
defines a discriminative embedding to differentiate the visual object from the back-
ground. Each eigenvector of A is corresponding to one basis vector of the embedding.
To have a better understanding of how the appearance model A functions, in Fig. 3, we
visualize the top 12 eigenvectors of an optimal A estimated at frame 436 when tracking
the person in red in the ThreePerson sequence. As we can clearly observe, these eigen-
vectors focusing on extracting the contour and thus encode the shape information of the
target person. They also tend to focus more on features inside the human contour while
suppress features outside the human contour. This indicates that our metric learning
framework really picks up the discriminative information for tracking.

Visualizing the gradient optimization processes. To gain a good understanding of
the gradient optimization process of both the discriminative appearance estimation as
well as the gradient based optimization process for visual matching, we visualize the
evolution of both optimization processes in frame 532 of the ThreePerson sequence,
as shown in Fig. 4 and Fig. 5, respectively. The tracking target is the rightmost person
in this frame. Fig. 4 visualizes how the tenth eigen-vector of the discriminative model



210 X. Wang, G. Hua, and T.X. Han

Fig. 4. The evolution of the tenth Eigen vector of A during gradient optimization in the first 11
steps of gradient descent from left to right

Fig. 5. The gradient optimization of objective function w.r.t. the motion parameters in frame 532
in the CAVIAR sequence. The tracking is initialized as the tracking result in frame 512 for better
visualization. Red rectangle in the left image is the final converged matching results. The figure
on the right displays how the objective function is minimized by gradient descent.

A evolves in the first 11 iterations. We start the optimization by initializing A as an
identity matrix, so the initialization of the tenth eigen-vector is a unit vector with the
tenth element to be one and all the other elements are zero, as shown in the first image
in Fig. 4. As we can clearly observe, only after 8 steps of gradient descent the eigen-
vector has already been stabilized. From Fig. 5, we can clearly observe the effectiveness
of the gradient optimization process in the visual matching step. In only 4 steps of
gradient descent, the matching result is already converged. These figures demonstrate
the efficiency of the proposed gradient optimization process.

Tracking under various visual variations. We have also extensively tested the TU-
DAMM with other challenging videos used in previous works or downloaded from
YouTube with various challenging aspects. We highly recommend to check our demo
video for more details of all the tracking results.

More specifically, in Fig. 6, we present the tracking results of a human face from
the TUDAMM, the ILT [3], and the Meanshift trackers [13], respectively. The ILT
tracker [3] firstly reported results in this video, which is subject to drastic illumina-
tion changes and casting shadows. As we can clearly observe in Fig. 6, the TUDAMM
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Fig. 6. The sample key frames of the tracking results on the challenging face moving under
shadow with big illumination change video . Key frame NO. 201, 210, 220, 230, 240, 260 are
shown from left to right. First row: TUDAMM. Second Row: Meanshift. Third row: ILT.

Fig. 7. The sample key frames of the CrazyCarChasing tracking results of TUDAMM with large
scale zooming and camera motion.

robustly tracked the human face despite the dramatic shadows and illumination changes.
While both the ILT tracker and the Meanshift tracker failed with the drastic visual vari-
ations. The results video contains 71 frames.

In Fig. 7, we report the tracking results of TUDAMM on a car chasing video down-
loaded from YouTube. The video is subject to large scale change and drastic camera
motion since it was taken from a helicopter. Our tracking algorithm successfully tracked
the motion of the target car without any problem. The results video contains 578 frames.
In Fig. 8, we present the tracking results of a rabbit which underwent a lot of non-rigid
motions. TUDAMM successfully tracked the rabbit across the video, which contains
156 frames.

Tracking multiple targets with cross occlusion. To demonstrate the ability of TU-
DAMM in dealing with occlusions in multiple object tracking, we report results in two
video sequences, one is the ThreePerson video from the CAVIAR dataset, and the other
is a horse racing video downloaded from YouTube. Tracking results in sample video
frames are displayed in Fig 9 and Fig 10, respectively. Three people are tracked in the
CAVIAR video, while five horse racers are tracked in the horse racing video. As we can
clearly observe, despite severe cross occlusion among the different visual targets, our
TUDAMM tracked all of them without any problem. This is attributed to the discrimi-
native appearance model induced from our unified discriminative formulation.
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Fig. 8. The sample key frames of the tracking results by TUDAMM on the RabbitRun video with
nonrigid motion

Fig. 9. The sample key frames of the tracking results by multiple target TUDAMM on the
CAVIAR dataset

Tracking speed. Last but not least, with a PC of 2.3-GHz CPU in Windows XP, without
any code optimization in our C++ implementation, our tracker runs at 2 frames per
second for tracking a single target. It runs at 0.5 frames per second for tracking the
three people and 0.2 frames per second for tracking the 5 horses. We expect to have 10
times speed up with reasonable efforts on code optimization.

Fig. 10. Multiple Tracking results for a horse racing video. The order of the video frame is pre-
sented from top-left to bottom-right.

6 Conclusion and Future Work

In this paper, we present a unified discriminative framework based on metric learn-
ing for robust tracking of either single or multiple targets, where both the appearance
modeling and visual matching are optimizing a single objective with efficient gradient
based search. Our experimental results validate the efficacy of the proposed tracking al-
gorithm. When tracking multiple targets, our unified formulation encodes an exclusive
principle which naturally deals with cross occlusions among the multiple targets. This
has also been manifested in our experiments. Future research includes exploring means
of integrating our multiple target tracker with state-of-the-art surveillance systems to
handle the appearance of new targets and disappearance of old targets.
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Memory-Based Particle Filter
for Tracking Objects

with Large Variation in Pose and Appearance

Dan Mikami, Kazuhiro Otsuka, and Junji Yamato

NTT Communication and Science Laboratories

Abstract. A novel memory-based particle filter is proposed to achieve

robust visual tracking of a target’s pose even with large variations in tar-

get’s position and rotation, i.e. large appearance changes. The memory-

based particle filter (M-PF) is a recent extension of the particle filter,

and incorporates a memory-based mechanism to predict prior distribu-

tion using past memory of target state sequence; it offers robust target

tracking against complex motion. This paper extends the M-PF to a uni-

fied probabilistic framework for joint estimation of the target’s pose and

appearance based on memory-based joint prior prediction using stored

past pose and appearance sequences. We call it the Memory-based Par-

ticle Filter with Appearance Prediction (M-PFAP). A memory-based

approach enables generating the joint prior distribution of pose and ap-

pearance without explicit modeling of the complex relationship between

them. M-PFAP can robustly handle the large changes in appearance

caused by large pose variation, in addition to abrupt changes in moving

direction; it allows robust tracking under self and mutual occlusion. Ex-

periments confirm that M-PFAP successfully tracks human faces from

frontal view to profile view; it greatly eases the limitations of M-PF.

1 Introduction

Visual object tracking, one of the most important techniques in computer vision
[1], is required for a wide range of applications such as automatic surveillance,
man-machine interfaces [2,3], and communication scene analysis [4]. Target track-
ing has still been acknowledged as a challenging problem because the target’s
appearance changes greatly due to pose variation, occlusion, illumination change,
etc. For example, when an object rotates, its visible surface gradually becomes in-
visible, i.e. self-occlusion, and hidden surfaces becomes visible. Mutual occlusion,
the interjection of another object between the target and the camera, makes the
target’s visible surface invisible. Also, the target tracker needs to handle complex
motion, such as when the moving direction abruptly reverses, which can occur
with occlusions in real world situations.

Bayesian filter-based trackers have been acknowledged as a promising ap-
proach; they represent a unified probabilistic framework for sequentially esti-
mating the target state from an observed data stream [5]. At each time step, the
Bayesian filter computes the posterior distribution of the target state by using

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 215–228, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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observation likelihood and the prior distribution. One variant, the particle filter,
has been widely used for target tracking. It represents probability distributions
of the target state by a set of samples, called particles. Particle filter can po-
tentially handle non-Gaussian distribution and nonlinear dynamics/observation
processes; this contributes to robust tracking. For object tracking, an example
of target state is the position and orientation of the target.

We proposed the memory-based particle filter (M-PF) as an extension of the
particle filter [6]. M-PF eases the Markov assumption of PF and predicts the
prior distribution based on target’s long-term dynamics using past history of
the target’s states. M-PF realized robustness against abrupt object movements
and quick recovery from tracking failure without explicit modeling of target’s
dynamics. However, M-PF employs the same observation process as the tradi-
tional PF. The visual tracker in [6] uses a single template representing frontal
face, which is built at tracker initialization. Therefore, the M-PF-based tracker
can handle face rotation only so long as the initial frontal face remains visible;
[6] suggests that the horizontal limit is 50 degrees.

This paper extends M-PF to a unified probabilistic framework for joint estima-
tion of target’s position/pose and its appearance based on memory-based joint
prior distribution prediction using stored past pose-appearance pairs. We call it
the Memory-based Particle Filter with Appearance Prediction (M-PFAP). The
appearance of an object varies with its pose. By predicting appearance from pose,
M-PFAP enables robust tracking against changes in appearance. A memory-
based approach is proposed to generate the joint prior distribution of pose and
appearance; the complex relationship between them is not explicitly modeled.
M-PFAP can robustly handle the large changes in appearance caused by large
pose variation, in addition to abrupt changes in moving direction; it allows ro-
bust tracking under self and mutual occlusion. To the best of our knowledge,
M-PFAP is the first pose tracker that handles pose-appearance relationship as a
probabilistic distribution and that simultaneously predicts future pose and ap-
pearance in a memory-based approach. As the tracking target, this paper focuses
on the face and we implement the M-PFAP-based face pose tracker. Experiments
confirm that M-PFAP successfully tracks human faces from frontal view up to
profile view, i.e. 90 degrees horizontally; it far exceeds the limits of M-PF.

This paper is organized as follows. Section 2 overviews related works, Sect. 3
proposes M-PFAP, and Sect. 4 describes face pose tracking based on M-PFAP,
experiments, and results. Finally, Sect. 5 gives our conclusions.

2 Related Works

2.1 Template Matching-Based Tracking and Template Update

Template matching has been widely employed for visual target tracking; the
template represents the target’s appearance from the camera’s view. The target
position is the best-matched position of the template on the input image. To
cope with appearance change, the template is updated repeatedly over time
[7,8]. However, error in the estimates of position/pose yields erroneous templates
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and error accumulates, which results in tracking failure. It is called “drift”. To
suppress drift, two approaches have been proposed.

The first approach uses pose-invariant features extracted from the target. The
tracker of Matthews et al. [9] employs a set of invariant features from multiple
views of the target object; the tracker can keep track of the target even when its
pose changes. Jepson et al. [10] proposed a WSL model which uses separate mod-
els for Stable, Wandering, and Lost situations; these models are mixed to predict
the target appearance by using the EM algorithm. Zelniker et al. [11] combined
multiple features according to e.g. illumination condition. These methods can
be used only for position estimation, not for pose estimation.

The second approach is template updating through adaptive criteria. Morency
et al. [12,13] and Ross et al. [14] proposed methods that use an initial template as
a supplement to avoid error accumulation; both the initial template and updated
template are used for matching. However, the use of the initial template limits
the pose range possible. In the example of [13], a frontal face is used as the
initial template, and the horizontal rotation angle in their experiment was up to
50 degrees. Lefèvre et al. [15] used view-based templates obtained online. Their
approach is to generate templates from not only frontal views but also from
profile views. This allows an appearance model to be generated by interpolation,
not by extrapolation. However, the trackable angle range is restricted by the
profile views.

M-PFAP provides a new approach to handling the large appearance changes
caused by pose change. It handles pose-appearance relationship as a probabilistic
distribution, and estimates pose and appearance simultaneously in the Bayesian
filter framework by using the memory-based approach.

2.2 Memory-Based Particle Filter (M-PF)

M-PF [6] realized robust target tracking without explicit modeling of target’s
dynamics even when a target moves quickly.

Fig.1 outlines M-PF. M-PF keeps temporal sequence of past state estimates
x̂1:T = {x̂1, · · · , x̂T } in memory. Here, x̂1:T denotes a sequence of state estimates
from time 1 to time T , and x̂t denotes a pose estimate at time t. M-PF assumes
that the subsequent parts of past similar states provide the good estimates of
the current future.

M-PF introduced Temporal Recurrent Probability (TRP), which is a proba-
bility distribution defined in the temporal domain and indicates the possibility
that a past state will reappear in the future. To predict the prior distribution,
M-PF starts with TRP modeling. It then conducts temporal sampling based
on TRP. The sampled histories are denoted by blue dots in Fig.1. It retrieves
the corresponding past state estimates for each sampled time step, which are
denoted by pink dots in Fig.1. After that, considering the uncertainty in the
state estimates, each referred past state is convoluted with kernel distributions
(light green dist. in Fig.1), and they are mixed together to generate the prior
distribution (green dist. in Fig.1). Finally, a set of particles is generated accord-
ing to the prior distribution (black dots in Fig.1). M-PF-based face pose tracker
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Fig. 1. M-PF employs past state se-

quences to predict a future state. First,

it calculates the reoccurrence possibility

of past state estimates (TRP). Past time

steps are then sampled based on TRP.

Past state estimates corresponding to the

sampled time steps are combined to pre-

dict prior distribution. M-PF enables the

implicit modeling of complex dynamics.
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Fig. 2. M-PFAP extends M-PF [6] to re-

alize robustness against large changes in

pose. We focus on the fact that the pose-

appearance relationship is not one-to-one

but stochastic. The key extension from M-

PF is prediction of joint prior distribution

of pose and appearance.

in [6] estimates the position and rotation at each time step. M-PF uses the
same observation process as traditional PF, which uses a single template built
at initialization. This yields the 50 degree face rotation limit noted in [6].

M-PFAP extends M-PF. It adds appearance prior distribution prediction to
M-PF for enabling handling of large appearance changes while keeping the merits
of M-PF; robustness against abrupt movements and recoverability from tracking
failure.

3 Memory-Based Particle Filter with Appearance
Prediction (M-PFAP)

3.1 Formulation of M-PFAP

In this section, we define M-PFAP by extending the Bayesian filter formulation.
The Bayesian filter consists of two processes, update and prediction, as

p(xt|z1:t) = kt · p(zt|xt) · p(xt|z1:t−1), (1)

p(xt+1|z1:t) =
∫

p(xt+1|x1:t)p(x1:t|z1:t)dx1:t, (2)

where kt is a normalization term, z1:t = {z1, · · · , zt} and x1:t = {x1, · · · ,xt}
denote a sequence of observation vectors and that of state vectors from time 1 to
t, respectively. Equation (1) corresponds to the update process that computes the
posterior distribution of the target state, and (2) corresponds to the prediction
process, which calculates the prior distribution for the next time step.
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M-PF replaced the prediction process in (2) with memory-based prior predic-
tion as written in (3).

p(xt+Δt|z1:t) := π(xt+Δt|x̂1:t, Δt). (3)

M-PF obtains the prior distribution at time t + Δt from the history of state
estimates x̂1:t and the lead time Δt.

M-PFAP adds appearance as the state vector in addition to position and ro-
tation. Hereafter, Xt = (xt, At) denotes state vector at time t, where xt and At

denote the position/rotation and the appearance at time t, respectively. Exam-
ples of appearance include a set of feature points and corresponding gray levels.
The posterior distribution and the prior distribution of M-PFAP are defined
below.

p(Xt|z1:t) = kt · p(zt|xt, At) · p(xt, At|z1:t−1), (4)

p(Xt+Δt|z1:t) = π(Xt+Δt|X̂1:t, Δt) = π(xt+Δt, At+Δt|x̂1:t, Â1:t, Δt), (5)

where X̂1:t = {(x̂1, Â1), · · · , (x̂t, Ât)} denotes the sequence of pairs of estimated
pose x̂t and appearance Ât at time t. Â1:t = {Â1, · · · , Ât} denotes the sequence
of appearances from time 1 to time t. We define the joint prior distribution of
pose and appearance described in (5) as follows, by introducing a conditional
probability of a future appearance given a future pose π(AT+Δt|xt+Δt, x̂1:t, Â1:t)
and a past history of appearance and pose (x̂1:t, Â1:t).

Equation (5) = π(xt+Δt|x̂1:t, Â1:t, Δt) · π(At+Δt|xt+Δt, x̂1:t, Â1:t, Δt), (6)

:= π(xt+Δt|x̂1:t, Δt) · π(At+Δt|xt+Δt, x̂1:t, Â1:t). (7)

The first part of (7) corresponds to prior distribution of pose xt+Δt. It assumes
that the pose at Δt time in the future xt+Δt is independent of the past history
of appearance Â1:t, in other words, the dynamics of object movement are inde-
pendent of the past appearance history. The last part of (7) corresponds to the
conditional probability for a given pose, xt+Δt; it assumes that the appearance
at Δt time in the future At+Δt depends on the pose at time T +Δt, xT+Δt, and
is independent of lead time Δt. The first part of (7) is prior distribution of pose;
i.e. it equals the prior distribution of M-PF.

To define the conditional probability for a given pose, M-PFAP assumes that
the main determinant of appearance is pose. Note that there is no deterministic
one-to-one correspondence between them, i.e. significant uncertainty exists in
the relationship. This assumption is based on the following observations. First,
when the object rotates, its visible surface gradually becomes invisible and vice
versa. However, appearance is also influenced by various factors such as illu-
mination change and non-rigid deformation. Moreover, the explicit modeling of
the appearance changes caused by pose is difficult, because appearance exhibits
complex dynamics of high dimensionality.

Based on the above assumption, M-PFAP represents the relationship between
pose and appearance as a probability distribution, like in Fig.3. In Fig.3, the
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Fig. 3. An illustration of pose-appearance relationship; what we want to compute here

is the conditional prior distribution, p(A|x∗(i)), for given the pose x∗(i). We approxi-

mately represent the conditional distribution using past pose-appearance pairs. Each

selected past pair is geometrically transformed, f(·), to compensate the difference be-

tween desired pose and selected pose.

horizontal axis and vertical axis denote pose space and appearance space, re-
spectively. As seen in Fig.3, for a given pose, there is a distribution of possible
appearances and vise versa. M-PFAP handles such uncertainty within the M-
PF framework. It exploits the long-term history of the target state to predict
complex prior distribution. This paper proposes a memory-based algorithm that
jointly predicts appearance and pose.

3.2 Algorithm of the M-PFAP

M-PFAP sequentially estimates the target position and pose by repeating the
posterior distribution estimation in (4) and the prior distribution prediction in
(7). In the prior prediction step, M-PFAP predicts a joint prior distribution of
pose and appearance. In the posterior prediction step, the observation likelihood
of each particle is calculated by using the appearance estimated in the prior
prediction step. Then, point estimates of pose and appearance are obtained from
their joint posterior distribution. Next, the pair of pose and appearance is added
to the history. Prior distribution prediction, posterior distribution estimation,
and accumulation of history are described below.

Prior distribution prediction in M-PFAP
M-PFAP generates a set of particles, {(x∗(1), A∗(1)), · · · , (x∗(N), A∗(N))}, which
represents a joint prior distribution of pose and appearance, by using a memory-
based mechanism and the stored history of them.

We focus on the fact that the joint distribution of pose and appearance de-
fined by (7) is the product of the prior distribution of pose and the conditional
probability of appearance (conditioned by pose). Therefore, we employ two step
solutions. In Step-1, a set of particles that represents a prior distribution of pose
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is created by the previous M-PF, which is described in Fig.1 and Sect.2.2. In
Step-2, the appearance that corresponds to each particle is generated. The pro-
cess is shown in Fig.2 and Fig.3. In Fig.2, the current time is denoted by T , and
prediction target is Δt time future state. Here, we assume we already have the
history of pose x̂1:T and appearance Â1:T . Each step is detailed below.

Step-1. Generating pose prior samples
Step-1 generates a set of particles {x∗(1), · · · ,x∗(N)} that represents the prior
distribution of pose at time T + Δt in the same manner as M-PF. This step
corresponds to the first part of (7), π(xT+Δt|x̂1:T , Δt).

Step-2. Prediction of appearance prior
Step-2 uses random sampleing according to π(AT+Δt|xT+Δt, x̂1:T , Â1:T ),
which is the last part of (7), to generate a set of appearance samples. It gen-
erates appearances {A∗(1), · · · , A∗(N)} corresponding to particles {x∗(1), · · · ,
x∗(N)}, that are obtained from Step-1. Here, what we want to compute is
the conditional prior distribution p(A|x∗(i)) for given the pose x∗(i). The ba-
sic idea is that the appearance distribution can be obtained as a mixture of
past appearances whose associated poses are similar to pose condition x∗(i).
Based on the idea, first, past pose-appearance pairs are sampled (Step-2-
1), and then the past sampled appearances are geometrically transformed
to fill in the gap between the desired pose x∗(i) and past sampled pose x̂t

(Step-2-2). We define the conditional appearance distribution as

p(A|x∗(i)) :=
1
α

T∑
t=1

w(t) · δ(A− f(Ât|x∗(i), x̂t)), (8)

where f(·) denotes the geometric transformation, δ(·) denotes the delta func-
tion, w(t) denotes the weight which is determined by the difference between
x∗(i) and x̂t, and α is the normalization factor to make

∫
p(A|x∗(i))dA = 1.

Random sampling with weight w(t) based on (8) generates the appearance
prior distribution. We name weight w(t) the history selection probability.
This is defined in the temporal domain based on pose similarity; the higher
the similarity between a pose in the history x̂t and that of the target particle,
x∗(i), becomes, the higher the history selection probability becomes. The un-
certainty that exists in the appearance-pose relationship can be represented
as random sampling from the past history. We expect that the mixture of
past appearances well reflects the uncertainty in the appearance-pose re-
lationship. This approach is simple but effective; it does not need explicit
modeling or stochastic learning
Step-2-1. Sampling history

This step samples a past history of pose that is similar to the parti-
cle x∗(i), denoted by a black dot in the upper part of Fig.2 and in
Fig.3 on the horizontal line. More specifically, this paper samples one
past pose history, x̂t, t ∼ w(t), this is because we use enough samples,
x∗(i), (i = 1, · · · , N), to create sufficient diversity in the appearance dis-
tribution. The sampled history is denoted by a blue dot in the upper
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part of Fig.2 and Fig.3. As the history selection probability, this paper
employs function w(t); this makes the probability proportional to the in-
verse of the Euclidian distance between the pose of target particle x∗(i)

and that of history entry x̂t, (t < T ).

w(t) = β/
√

(x̂t − x∗(i))T · (x̂t − x∗(i)), (9)

where, β is a normalization factor to realize
∑T

t=1 w(t) = 1.
Step-2-2. Appearance prediction

Considering the gap between the pose of sampled x̂t and the target pose
x∗(i), Step-2-2 predicts the appearance A∗(i) by geometrically transform-
ing Ât based on the pose difference as written in

A∗(i) = f(Ât|x∗(i), x̂t). (10)

Here, we assume that the local appearance difference caused by the small
difference in pose can be well predicted by local geometric transforma-
tion. See Sect. 4 for more details.

Posterior distribution estimation
As in (4), posterior distribution is defined by multiplying the prior distribution
by the likelihood function for the observation at time step t. In the PF approach,
the posterior distribution is represented by weighted particles. The weight is
calculated by using a likelihood function for given input image. This function
is calculated based on the matching error between the appearance and input
images.

In contrast to M-PF, which uses a fixed appearance model, M-PFAP uses
predicted appearance in the prior distribution for each particle.

Accumulation of history
At each time T , M-PFAP stores pose-appearance pairs X̂T = (x̂T , ÂT ). From
the particle set that represents the joint posterior distribution of appearance
and pose, the point estimates of pose and appearance are calculated. For pose,
weight averaging is used, and appearance estimates are obtained from the latest
input image by using the target’s pose estimates and rough shape model on the
current image frame. See Sect.4 for more details.

4 Implementation of Face Pose Tracker

We create a variant of the Sparse Template Condensation Tracker (STCTracker)
[16], by using M-PFAP to implement particle filtering. Figure 4 shows the
flowchart of the implemented face pose tracker. This section describes some
details.

Pose parameter
Target position and pose are described by a vector of seven dimensions, x =
(mx, my, s, rr, rp, ry, l); 2-DOF translation, scale, 3-DOF rotation, and an illu-
mination coefficient.
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Fig. 4. Flowchart of face pose tracking

by using M-PFAP
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Fig. 5. Interest points deployed for ini-

tial face

Sparse template representation of an appearance
M-PFAP employs sparse template matching, which uses a sparse template
as the appearance model, as same as [16]. The sparse template consists of a
sparse set of pixels within the target region. Here, appearance A is denoted
by {(ux(1), uy(1), uz(1), b(1)), · · · , (ux(M), uy(M), uz(M), b(M))}, where M denotes
the number of interest points, (ux(i), uy(i), uz(i)) denotes the 3-D position of an
interest point, and b(i) denotes its gray level. The matching error is calculated
as the sum of differences between the gray levels of the interest points and those
of the corresponding points in the input image. Figure 5 shows the 250 interest
points selected in the initialization step. These points are selected from edge
sides and from minimum or maximum points among 8 neighbor pixels.

Geometric transform for predicting appearance
As written in Step-2-2, M-PFAP uses geometric transformation to bridge the
gap between the sampled pose x̂t and the target pose x∗(i). As the geometric
transformation, M-PFAP uses 3-DOF rotation. It transforms interest point’s
corrdinate [ûx, ûy, ûz]T into desired pose, [u∗(i)

x , u
∗(i)
y , u

∗(i)
z ]T , as in (11).[

u
∗(i)
x u

∗(i)
y u

∗(i)
z

]T

= R(x∗(i))R′(x̂k)
[
ûx ûy ûz

]T
, (11)

where R(·) and R′(·) denotes rotation matrix and inverse matrix of R(·), respec-
tively. Additionally, illumination change is assumed by uniform changes in gray
levels of a set of interest points. The gray level b∗(i) corresponding to interest
point [u∗(i)

x , u
∗(i)
y , u

∗(i)
z ]T , is obtained by b∗(i) = v·b̂, where v ∼ N(1, σ2). N(1, σ2)

denotes normal distribution with mean 1 variance σ2.

Adding pose and appearance into history
At each time step, M-PFAP stores a pose-appearance pair. The pose estimate
x̂T is obtained as the point estimate of marginal posterior distribution of pose.
Appearance ÂT , which is a set of three dimensional interest points and corre-
sponding gray levels in this paper, is obtained from the point estimate of the
pose and the latest input image.

M-PFAP employs two steps to obtain a new appearance ÂT ; interest point
detection and depth information extraction. First, interest points are detected



224 D. Mikami, K. Otsuka, and J. Yamato

from the input image. Then, corresponding depth values of interest points are
extracted from a rough shape model. As the rough shape model, we used a
laser-scanned averaged head shape (not a tracked person’s model).

M-PFAP stores pose-appearance pairs only when the tracking is stable to
prevent erroneous pairs from being stored. The stability of tracking is judged
by the maximum likelihood of particles. The maximum likelihood works well
in most cases, however, it is not perfect, and erroneous pairs may become held
in memory. If, however, the erroneous pairs are in the minority in memory,
the stochastic sampling from all past memory yields few erroneous samples and
the majority of samples are valid. This condition ensures that M-PFAP does
not suffer explosive error growth, which is a serious weakness of the traditional
template update scheme.

Additionally, to suppress memory usage and retrieval time, M-PFAP employs
the data structuring process. It stores a new pose-appearance pair only when
there are no pairs whose pose are very similar to the new pose.

5 Experiments and Results

Experiments in this paper targets face pose. This section describes the experi-
mental environment, the details of the experiments, and the results.

5.1 Experimental Environment

We used PointGreyResearch’s FLEA, a digital color camera, to capture 1024 ×
768 pixel-size images at 30 frames per second. The tracking processes use only
gray images converted from color images. A magnetic-based sensor, Polhemus
FASTRAK was used to obtain quantitative ground truth data. The rotation
angles, pitch, roll, and yaw roughly correspond to shaking, nodding, and tilt-
ing actions, respectively. As shown in Fig.5, two sensors were attached to both
temples of the subject. The number of particles was set to 2000.

Table 1 summarizes the proposed method and baseline methods. We employed
three baseline methods, all based on M-PF; the first one is the original M-PF,
it uses only one template without updating; the second one (LT) updates the
template and uses the latest template; the last one (NN) updates the template
and uses the template nearest to the target pose.

Table 1. Comparison between proposed method and comparative methods

template updating selection criterion of templates

ProposediM-PFAPj accumulating history Probabilistic selection

M-PF No initial template

LT Yes latest template

NN Yes nearest template
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Fig. 6. An example of face tracking; the proposed method can track against large

appearance changes

5.2 The Effective Tracking by the M-PFAP

To verify the effectiveness of M-PFAP, we used a test video sequence that in-
cluded a head that rotated from frontal view to profile view (=90 deg. in hor-
izontal direction). The target video includes profile faces. Figure 6 shows the
result of M-PFAP. The snapshots in Fig.6 are listed in time order from left to
right. In Fig.6, the white mesh represents the estimated position and rotation,
and the dots located around center of the face denote the prior distribution of
face pose, which only represent positions. The initial template surface is almost
invisible in profile view as in Fig.6 (a) and (d) ; old trackers that use only frontal
view template cannot track the face anymore. In contrast, M-PFAP successfully
tracked the face in profile view.

5.3 Quantitative Evaluation of Tracking Accuracy

Three types of video were employed for this quantitative evaluation. Video-1
included a wide range of moderate rotations. This video was used for evaluating
basic performance. Video-2 included abrupt movements, such as abrupt reverse
of moving direction and abrupt shaking of the head. This video is used to ver-
ify that M-PFAP mirrors the robustness against such abrupt motion of M-PF.
Video-3 included occlusions such as the rotating head being hidden by a moving
arm. Occlusion recovery is another merit of M-PFAP inherited from M-PF.

Fig.7 shows the tracking results of Video-1. The horizontal axis denotes time
and the vertical axis denotes horizontal rotation angle. Figure 7 shows that the
M-PFAP output closely followed the ground truth. M-PF, on the other hand,
became unstable when the rotation angle exceeds about 60 degrees. NN and LT
could not track correctly; they had worse performance than M-PF. We consider
that the updated template included errors and so the tracking drifted.

Fig.8 shows snapshots during tracking of the target face moved from left to
right abruptly (Video-2). The snapshots are listed from left to right in time
order. It was tracked correctly. Absolute average errors of face pose tracking
against Video-1 and Video-2 and variances are shown in Table 2. The proposed
method yielded improved tracking performance in both videos.
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Fig. 7. Head rotation angle in horizontal direction

Fig. 8. Snapshots of tracking the abrupt movements

Video-3 included occlusions. Snapshots of Video-3 during tracking are shown
in Fig. 9. In this scene, the face turns from right to left, at the same time, an
arm moves from top to bottom causing an occlusion; the face turns and shifts
during the occlusion; so the face poses before and after occlusion are completely
different. Additionally, the profile face appears immediately after the occlusion;
it can not be tracked by the initial template. M-PFAP could recover tracking
even in this severe situation.

Fig. 9. Snapshots of occlusion recovery

5.4 Past Appearance Used for Appearance Prediction

Fig.10(b) shows the history entries that were selected to estimate the pose prior
distribution of Fig.10(a). It can be observed that many entries were used for
appearance prediction. Each entry includes error to some extent. By using a
number of entries to estimate appearance, M-PFAP prevents the tracking from
accumulating errors and from drifting.
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Table 2. Absolute average errors [degree] in horizontal rotation; values in blacket show

corresponding variances

Proposed M-PF NN LT

Video-1 7.1 (35.0) 15.9 (182.7) 35.0 (1316.5) 38.7 (1448.1)

Video-2 8.5 (108.8) 14.3 (117.0) 16.7 (684.7) 31.2 (698.0)

@

(a) Target

face

(b) Past appearance used for

prediction

Fig. 10. Pose estimation target and past appearance used for the appearance prior

prediction

6 Summary and Future Works

This paper proposed M-PFAP; it offers robust visual tracking of the target’s
position and pose. M-PFAP is an extension of M-PF and represents a unified
probabilistic framework for the joint estimation of target position/pose and its
appearance based on memory-based joint prior prediction using stored past pose
and appearance sequences. Quantitative evaluations confirmed that M-PFAP
successfully tracks human faces in frontal view up to profile view, i.e. 90 degree
horizontal rotation; it thus completely overcomes the limitation of M-PF.

Future works include the following two points. First, we consider how to han-
dle appearance change due to illumination change. Among the various illumina-
tion changes, the current implementation of M-PFAP realizes robustness against
uniform illumination change since the state vector employs an illumination coef-
ficient. Also, M-PFAP potentially can handle non-uniform illumination change
by accumulating pose-appearance pairs under gradual changes in illumination.
We are going to evaluate the limits of robustness against various illumination
conditions and achieve further robustness.

Second, we will tackle GPU implementation. Our current CPU-based M-
PFAP does not work in real-time. We consider that M-PFAP suits GPU ac-
celeration, because it is an extension of M-PF and supports parallel processing
as does M-PF. M-PF processing was made 10 times faster by GPU implemen-
tation. For the GPU implementation, more effective way of storing memory to
save memory usage and to save retrieval time should be considered.
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15. Lefèvre, S., Odobez, J.: View-based appearance model online learning for 3d de-

formable face tracking. In: Proc. VISAPP (2010)

16. Lozano, O.M., Otsuka, K.: Real-time visual tracker by stream processing. Journal

of VLSI Signal Processing Systems (2008), doi:10.1007/s11265-008-0250-2



3D Deformable Face Tracking with a
Commodity Depth Camera
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Abstract. Recently, there has been an increasing number of depth cam-

eras available at commodity prices. These cameras can usually capture

both color and depth images in real-time, with limited resolution and

accuracy. In this paper, we study the problem of 3D deformable face

tracking with such commodity depth cameras. A regularized maximum

likelihood deformable model fitting (DMF) algorithm is developed, with

special emphasis on handling the noisy input depth data. In particular,

we present a maximum likelihood solution that can accommodate sensor

noise represented by an arbitrary covariance matrix, which allows more

elaborate modeling of the sensor’s accuracy. Furthermore, an �1 regu-

larization scheme is proposed based on the semantics of the deformable

face model, which is shown to be very effective in improving the tracking

results. To track facial movement in subsequent frames, feature points

in the texture images are matched across frames and integrated into the

DMF framework seamlessly. The effectiveness of the proposed method is

demonstrated with multiple sequences with ground truth information.

1 Introduction

Tracking non-rigid objects, in particular human faces, is an active research area
for many applications in human computer interaction, performance-driven facial
animation, and face recognition. The problem is still largely unsolved, as usually
for 3D deformable face models there are dozens of parameters that need to be
estimated from the limited input data.

A number of works in the literature have focused on 3D deformable face
tracking based only on videos. There are mainly two categories of algorithms:
(1) appearance based, which uses generative linear face appearance models such
as active appearance models (AAMs) [1] and 3D morphable models [2] to capture
the shape and texture variations of faces, and (2) feature based, which uses active
shape models [3] or other features [4] for tracking. Appearance based algorithms
may suffer from insufficient generalizability of AAMs due to lighting and texture
variations, while feature based algorithms may lose tracking due to the lack of
semantic features, the occlusions of profile poses, etc.

Another large body of works considered fitting morphable models to 3D scans
of faces [5,6,7,8,9]. These 3D scans are usually obtained by laser scanners or
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(a) (b) (c) 

Fig. 1. Data captured by a commodity depth camera. (a) Texture image; (b) depth

image; (c) enlarged face region rendered from another viewpoint.

structured light systems, which have very high quality. Fitting these high quality
range data with a morphable face model usually involves the well-known iterative
closest point (ICP) algorithm [10] and its variants [11], and the results are
generally very good. The downside, however, is that these capturing systems are
usually very expensive to acquire or operate.

Recently, depth cameras based on time-of-flight or other principles became
available at commodity prices, such as 3DV systems and Canesta. Fig. 1 shows
some captured data from our test depth camera, which derives depth information
from infrared light patterns and triangulation. The camera is capable of recording
both texture and depth images with 640×480 pixels resolution at 30 frames per
second (fps). In general the depth information is very accurate, though a closer
look at the face region (Fig. 1(c)) shows that it is still much noisier than laser
scanned results.

In this paper, we propose a regularized maximum likelihood deformable model
fitting (DMF) algorithm for 3D face tracking with a commodity depth camera.
Compared with existing approaches, this paper has two major contributions.
First, unlike most previous works on DMF, we do not assume an identity covari-
ance matrix for the depth sensor noise. This leads to a more general maximum
likelihood solution with arbitrary noise covariance matrices, which is shown to
be effective for our noisy depth data. Second, the noisy depth data also re-
quire regularization in the ICP framework. We propose a novel �1 regularization
scheme inspired by the semantics of our deformable face model, which improves
the tracking performance significantly.

2 Related Work

There is a large amount of literature in facial modeling and tracking. We refer
the reader to the survey by Murphy-Chutorian and Trivedi [12] for an overview.

Many models have been explored for face animation and tracking. Parametric
models use a set of parameters to describe the articulation of the jaw, eyebrow
position, opening of the mouth, and other features that comprise the state of
the face [13]. Physics-based models seek to simulate the facial muscle and tis-
sue [14]. Blanz and Vetter [2] discovered that the manifold of facial expression
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and appearance can be effectively modeled as a linear combination of exemplar
faces. This morphable model is computed from a large database of registered
laser scans, and this approach has proven useful for face synthesis [2], expression
transfer [8], recognition [5], and tracking [15]. For tracking, a subject-specific
morphable model can be constructed [9], which requires each subject to un-
dergo an extensive training phase before tracking can be performed. In contrast,
we use a generic morphable model constructed by an artist, which is first fit
to the subject during initialization. Only a few frames with neutral faces are
required to automatically compute the subject-specific appearance parameters
before tracking.

Several approaches have used range data for face modeling and tracking. Zhu
and Fujimura [6] used range data as an additional image channel in optical flow-
based tracking. Methods that rely solely on visual appearance will be sensitive to
lighting conditions and changes, whereas many ranging techniques are unaffected
by lighting conditions. Many methods, such as that of Zhang et al. [7], used
structured light or other active ranging techniques. The structured light systems
in [7,8,9] required a camera, a projector, and in some cases synchronization
circuitry. This hardware is not uncommon, but still expensive to acquire and
operate. This paper will study deformable face tracking with a commodity depth
camera, which is projected to cost under $100 in the next few years, and has lower
resolution and less accuracy than structured light systems. A key part of our
method is thus to model the sensor noise and add regularization to improve the
tracking performance. Note uncertainty on measurements has been considered in
other contexts such as motion analysis for mobile robot navigation [16], though
we are not aware of similar work in the context of deformable face tracking.

Iterative closest point (ICP) is a common approach for aligning shapes, such
as range images of faces. Besl et al. [10] proposed the ICP algorithm for rigid
shape alignment, and variants have been proposed for nonrigid alignment [11].
Lu and Jian [17] used ICP for face matching, and applied ICP in deformable
model fitting as an intermediate step assuming the deformation is fixed. ICP
has also been used in face recognition [18] and real-time tracking [9]. Note in
model fitting and tracking applications, regularization is a common technique
to stabilize the final results [11,9]. However, the �1 regularization that will be
introduced in Section 4.5 has not be used in previous works, and its performance
improvement is rather significant.

3 Linear Deformable Model

We use a linear deformable model constructed by an artist to represent pos-
sible variations of a human face [19], which could also be constructed semi-
automatically [2]. The head model is defined as a set of K vertices P and a set
of facets F . Each vertex pk ∈ P is a point in R

3, and each facet f ∈ F is a
set of three or more vertices from the set P . In our head model, all facets have
exactly 3 vertices. In addition, the head model is augmented with two artist-
defined deformation matrices: the static deformation matrix B and the action
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(a) (b) (c) (d) (e) 

Fig. 2. Example deformations of our 3D face model. (a)(b) Static deformations;

(c)(d)(e) action deformations.

deformation matrix A. According to weighting vectors s and r, they transform
the mesh linearly into a target head model Q as follows:⎡⎢⎣ q1

...
qK

⎤⎥⎦ =

⎡⎢⎣ p1

...
pK

⎤⎥⎦ + A

⎡⎢⎣ r1

...
rN

⎤⎥⎦ + B

⎡⎢⎣ s1

...
sM

⎤⎥⎦ , (1)

where M and N are the number of deformations in B and A, αm ≤ sm ≤
βm, m = 1, · · · , M , and θn ≤ rn ≤ φn, n = 1, · · · , N are ranges specified by
the artist. The static deformations in B are characteristic to a particular face,
such as enlarging the distance between eyes, or extending the chin. The action
deformations include opening the mouth, raising eyebrows, etc. Some example
deformations of our model are shown in Fig. 2.

4 Regularized Maximum Likelihood DMF

4.1 Problem Formulation

Let P represent the vertices of our head model, and G represent the 3D points
acquired from the depth camera. We want to compute the rotation R and trans-
lation t between the head model and the depth camera, as well as the deformation
parameters r and s. We formulate the problem as below.

Following the procedure of ICP [10], let us assume that in a certain iteration, a
set of point correspondences between the deformable model and the depth image
is available. For each correspondence (pk,gk), gk ∈ G, we have the equation:

R(pk + Akr + Bks) + t = gk + xk (2)

where Ak and Bk represent the three rows of A and B that correspond to
vertex k. xk is the depth sensor noise, which can be assumed to follow a zero
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mean Gaussian distribution N (0,Σxk
). The maximum likelihood solution of the

unknowns R, t, r and s can be derived by minimizing:

J1(R, t, r, s) =
1
K

K∑
k=1

xT
k Σ−1

xk
xk, (3)

where xk = R(pk + Akr + Bks) + t − gk. r and s are subject to inequality
constraints, namely, αm ≤ sm ≤ βm, m = 1, · · · , M , and θn ≤ rn ≤ φn, n =
1, · · · , N . Additional regularization terms may be added to the above optimiza-
tion problem, which will be discussed further in Section 4.5.

A useful variation is to substitute the point-to-point distance with point-
to-plane distance [20]. The point-to-plane distance allows the model to slide
tangentially to the surface, which speeds up convergence and makes it less likely
to get stuck in local minima. Distance to the plane can be computed using
the surface normal, which can be computed from the head model based on the
current iteration’s head pose. Let the surface normal of point pk in the head
model coordinate be nk. The point-to-plane distance can be computed as:

yk = (Rnk)T xk, (4)

The maximum likelihood solution is thus obtained by minimizing:

J2(R, t, r, s) =
1
K

K∑
k=1

y2
k

σ2
yk

, (5)

where σ2
yk

= (Rnk)T Σxk
(Rnk), and αm ≤ sm ≤ βm, m = 1, · · · , M , and θn ≤

rn ≤ φn, n = 1, · · · , N .
Given the correspondence pairs (pk,gk), since both the point-to-point and

the point-to-plane distances are nonlinear, we resort to a solution that solves for
r, s and R, t in an iterative fashion. For ease of understanding, we present the
solution for identity noise covariance matrix in Section 4.2 first, and extend it
to arbitrary covariance matrix in Section 4.3.

4.2 Iterative Solution for Identity Noise Covariance Matrix

We first assume the depth sensor noise covariance matrix is a scaled identity
matrix, i.e., Σxk

= σ2I3, where I3 is a 3 × 3 identity matrix. Further, let R̃ =
R−1, t̃ = R̃t, and

yk = R̃xk = pk + Akr + Bks + t̃− R̃gk. (6)

Since xT
k xk = (Ryk)T (Ryk) = yT

k yk, the likelihood function can be written as:

J1(R, t, r, s) =
1

Kσ2

K∑
k=1

xT
k xk =

1
Kσ2

K∑
k=1

yT
k yk. (7)
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Similarly, for point-to-plane distance, since yk = (Rnk)T xk = nT
k RTRyk =

nT
k yk, and σ2

yk
= (Rnk)TΣxk

(Rnk) = σ2, we have:

J2(R, t, r, s) =
1

Kσ2

K∑
k=1

yT
k Nkyk, (8)

where Nk = nknT
k .

We may decompose the rotation matrix R̃ into an initial rotation matrix R̃0

and an incremental rotation matrix ΔR̃, where the initial rotation matrix can
be the rotation matrix of the head in the previous frame, or an estimation of
R̃ obtained in another algorithm. In other words, let R̃ = ΔR̃R̃0. Since the
rotation angle of the incremental rotation matrix is small, we may linearize it
as:

ΔR̃ ≈
⎡⎣ 1 −ω3 ω2

ω3 1 −ω1

−ω2 ω1 1

⎤⎦ , (9)

where ω = [ω1, ω2, ω3]
T is the corresponding small rotation vector. Further,

let qk = R̃0gk = [qk1, qk2, qk3]T , we can write the variable yk in the form of
unknowns r, s, t̃ and ω as:

yk = pk +Akr +Bks+ t̃−ΔR̃qk ≈ (pk −qk) + [Ak,Bk, I3, [qk]×]

⎡⎢⎢⎣
r
s
t̃
ω

⎤⎥⎥⎦ (10)

where [qk]× is the skew-symmetric matrix of qk:

[qk]× =

⎡⎣ 0 −qk3 qk2

qk3 0 −qk1

−qk2 qk1 0

⎤⎦ . (11)

Let Hk = [Ak,Bk, I3, [qk]×], uk = pk − qk, and z =
[
rT , sT , t̃T , ωT

]T
, we have:

yk = uk + Hkz. (12)

Hence,

J1 =
1

Kσ2

K∑
k=1

yT
k yk =

1
Kσ2

K∑
k=1

(uk + Hkz)T (uk + Hkz) (13)

J2 =
1

Kσ2

K∑
k=1

yT
k Nkyk =

1
Kσ2

K∑
k=1

(uk + Hkz)T Nk(uk + Hkz) (14)

Both likelihood functions are quadratic with respect to z. Since there are linear
constraints on the range of values for r and s, the minimization problem can be
solved with quadratic programming [21].

The rotation vector ω is an approximation of the actual incremental rotation
matrix. One can simply insert ΔR̃R̃0 to the position of R̃0 and repeat the above
optimization process until it converges.
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4.3 Solution for Arbitrary Noise Covariance Matrix

When the sensor noise covariance matrix is arbitrary, again we resort to an
iterative solution. Note since yk = R̃xk, we have Σyk

= R̃Σxk
R̃T . A feasible

solution can be obtained if we replace R̃ with its estimation R̃0, i.e.,

Σyk
≈ R̃0Σxk

R̃T
0 , (15)

which is known for the current iteration. Subsequently,

J1 =
1
K

K∑
k=1

yT
k Σ−1

yk
yk =

1
K

K∑
k=1

(uk + Hkz)T Σ−1
yk

(uk + Hkz) (16)

J2 =
1
K

K∑
k=1

yT
k Nkyk

nT
k Σyk

nk
=

1
K

K∑
k=1

(uk + Hkz)T Nk(uk + Hkz)
nT

k Σyk
nk

(17)

We still have quadratic likelihood functions with respect to z, which can be
solved via quadratic programming. Again, the minimization will be repeated
until convergence by inserting ΔR̃R̃0 to the position of R̃0 in each iteration.

4.4 Multi-frame DMF for Model Initialization

In our tracking system, the above maximum likelihood DMF framework is ap-
plied differently in two stages. During the initialization stage, the goal is to fit
the generic deformable model to an arbitrary person. We assume that a set of L
(L ≤ 10 in the current implementation) neutral face frames are available. The
action deformation vector r is assumed to be zero. We jointly solve the static
deformation vector s and the face rotations and translations as follows.

Denote the correspondences as (plk,glk), where l = 1, · · · , L represents the
frame index. Assume in the previous iteration, R̃l0 is the rotation matrix for
frame l. Let qlk = R̃l0glk; Hlk = [Bk,0,0, · · · , I3, [qlk]×, · · · ,0,0], where 0
represents a 3 × 3 zero matrix. Let ulk = plk − qlk, and the unknown vector
z =

[
sT , t̃T

1 , ωT
1 , · · · , t̃T

L, ωT
L

]T
. Following Eq. (16) and (17), we may rewrite the

overall likelihood function as:

Jinit1 =
1

KL

L∑
l=1

K∑
k=1

(ulk + Hlkz)T Σ−1
ylk

(ulk + Hlkz) (18)

Jinit2 =
1

KL

L∑
l=1

K∑
k=1

(ulk + Hlkz)T Nlk(ulk + Hlkz)
nT

lkΣylk
nlk

, (19)

where nlk is the surface normal vector for point plk, Nlk = nlknT
lk, and Σylk

≈
R̃l0Σxlk

R̃T
l0. xlk is the sensor noise for depth input glk.

The point-to-point and point-to-plane likelihood functions are used jointly
in our current implementation. A selected set of point correspondences is used
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for Jinit1 and another selected set is used for Jinit2 (see Section 5.1 for more
details). The overall target function is a linear combination:

Jinit = λ1Jinit1 + λ2Jinit2, (20)

where λ1 and λ2 are the weights between the two functions. The optimization
is conducted through quadratic programming.

4.5 Regularization for Tracking

After the static deformation vector s has been initialized, we track the face
frame by frame, estimating the action deformation vector r and face rotation
and translation R and t, while keeping s fixed. Although our maximum likeli-
hood solution above can incorporate arbitrary sensor noise covariance matrices,
we found the expression tracking results are still very unstable. Therefore, we
propose to add additional regularization terms in the target function to further
improve the results.

A natural assumption is that the expression change between the current frame
and the previous frame is small. In our case, let the previous frame’s face action
vector be rt−1, we can add an �2 regularization term as:

Jtrack = λ1J1 + λ2J2 + λ3||r− rt−1||22, (21)

where J1 and J2 follow Eq. (16) and (17). Similar to the initialization process,
J1 and J2 use different sets of feature points (see Section 5.2 for more details);
||r − rt−1||22 = (r − rt−1)T (r − rt−1) is the squared �2 norm of the difference
between the two vectors.

The �2 regularization term works to some extent, though the effect is in-
significant. Note as shown in Fig. 2, each dimension of the r vector represents
a particular action a face can perform. Since it is hard for a face to perform all
actions simultaneously, we believe in general that the r vector shall be sparse.
This inspires us to impose an additional �1 regularization term as:

Jtrack = λ1J1 + λ2J2 + λ3||r− rt−1||22 + λ4||r||1, (22)

where ||r||1 =
∑N

n=1 |rn| is the �1 norm. This regularized target function is now
in the form of an �1-regularized least squares problem, which can be reformulated
as a convex quadratic program with linear inequality constraints [21], which can
again be solved with quadratic programming methods.

Note for PCA-based deformable face models, the �1 regularization term may
not be applied directly. One can identify a few dominant facial expression modes,
and still assume sparsity when projecting the PCA coefficients to these modes.

5 Implementation Details

5.1 Deformable Model Initialization

As described in Section 4.4, we use multiple neutral face frames for model ini-
tialization, as shown in Fig. 3. Note the likelihood function Jinit contains both
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(a) (b) (c) (d) 

Fig. 3. The process of multi-frame deformable model initialization. (a) Multiple slightly

rotated frames with neutral faces as input; (b) face detection (top) and alignment

(bottom); (c) define correspondences for edge points around eyebrows, lips etc; (d)

DMF with both point-to-point and point-to-plane terms (top) and DMF with point-

to-plane term only (bottom).

point-to-point and point-to-plane terms (Eq. (20)). For the point-to-plane term
Jinit2, the corresponding point pairs are derived by the standard procedure of
finding the closest point on the depth map from the vertices on the deformable
model [20]. However, the point-to-plane term alone is not sufficient, because our
depth images are very noisy and the vertices of the deformable model can drift
tangentially, leading to unnatural faces (Fig. 3(d)). In the following we discuss
how to define the point-to-point term Jinit1.

For each initialization frame, we first perform face detection and alignment on
the texture image. The results are shown in Fig. 3(b). The alignment algorithm
provides 83 landmark points of the face, which are assumed to be consistent
across all the frames. These landmark points are separated into four categories.
The first category contains the green points in Fig. 3(b), such as eye corners,
mouth corners, etc. These points have clear correspondences plk in the linear
deformable face model. Given the calibration information between the depth
camera and the texture camera, we simply project these landmark points to the
depth image to find the corresponding 3D world coordinate glk.

The second category contains the blue points on eyebrows and upper/lower
lips. The deformable face model has a few vertices that define eyebrows and
lips, but they do not all correspond to the 2D feature points provided by the
alignment algorithm. In order to define correspondences, we use the following
steps illustrated in Fig. 3(c):

1. Use the previous iteration’s head rotation R0 and translation t0 to project
the face model vertices plk of eyebrows/lips to the texture image, vlk;

2. Find the closest point on the curve defined by the alignment results to vlk,
let it be v′

lk;
3. Back project v′

lk to the depth image to find its 3D world coordinate glk.

The third category contains the red points surrounding the face, which we refer
as silhouette points. The deformable model also has vertices that define these
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Fig. 4. Track feature points to build correspondences for the point-to-point function

boundary points, but there is no correspondence between them and the align-
ment results. Moreover, when back projecting the silhouette points to the 3D
world coordinate, they may easily hit a background pixel in the depth image.
For these points, we follow a similar procedure as the second category points,
but ignore the depth axis when computing the distance between plk and glk.

The fourth category includes all the white points in Fig. 3(b), which are not
used in the current implementation.

5.2 Tracking

During tracking, we again use both point-to-point and point-to-plane likelihood
terms, with additional regularization as in Eq. (22). The point-to-plane term is
computed similarly as during model initialization. To reliably track face expres-
sions, the point-to-point term is still crucial. We rely on feature points detected
and tracked from the texture images to define these point correspondences, as
shown in Fig. 4. Similar schemes have been adopted in deformable surface track-
ing applications such as [22].

The feature points are detected in the texture image of the previous frame
using the Harris corner detector. These points are then tracked to the current
frame by matching patches surrounding the points using cross correlation. One
issue with such detected and tracked feature pairs is that they may not corre-
spond to any vertices in the deformable face model. Given the previous frame’s
tracking result, we first represent the feature points with their barycentric coor-
dinates. Namely, as shown in Fig. 4, for 2D feature point pair υt−1

k and υt
k, we

obtain parameter η1,η2 and η3, such that:

υt−1
k = η1p̂t−1

k1
+ η2p̂t−1

k2
+ η3p̂t−1

k3
, (23)

where η1 + η2 + η3 = 1, and p̂t−1
k1

, p̂t−1
k2

and p̂t−1
k3

are the 2D projections of the
deformable model vertices pk1 , pk2 and pk3 onto the previous frame. Similar to
Eq. (2), we can have the following equation:

R
3∑

i=1

ηi (pki + Akir + Bkis) + t = gk + xk, (24)

where gk is the back projected 3D word coordinate of 2D feature point υt
k. Let

p̄k =
∑3

i=1 ηipki , Āk =
∑3

i=1 ηiAki , and B̄k =
∑3

i=1 ηiBki . Eq. (24) will be in



3D Deformable Face Tracking with a Commodity Depth Camera 239

identical form as Eq. (2), thus tracking is still solved with Eq. (22). Results on
the tracking algorithm will be reported in Section 6.

5.3 Noise Modeling

Due to the strong noise in the depth sensor, we find it is generally beneficial to
model the actual sensor noise with the correct Σxk

instead of using an identity
matrix for approximation. The uncertainty of 3D point gk has two major sources:
the uncertainty in the depth image intensity, which translates to uncertainty
along the depth axis, and the uncertainty in feature point detection/matching
in the texture image, which translates to uncertainty along the imaging plane.

Assuming a pinhole, no-skew projection model for the depth camera, we have:

zk

⎡⎣uk

vk

1

⎤⎦ = Kgk =

⎡⎣fx 0 u0

0 fy v0

0 0 1

⎤⎦⎡⎣xk

yk

zk

⎤⎦ (25)

where vk = [uk, vk]T is the 2D image coordinate of the feature point k in the
depth image, and gk = [xk, yk, zk]T is the 3D world coordinate of the feature
point. K is the intrinsic matrix, where fx and fy are the focal lengths, and u0

and v0 are the center biases.
For the depth camera, the uncertainty of uk and vk is generally caused by

feature point uncertainties in the texture image, and the uncertainty in zk is due
to the depth derivation scheme. These two uncertainties can be considered as
independent to each other. Let ck = [uk, vk, zk]T , we have:

Σck
=

[
Σvk

0
0T σ2

zk

]
. (26)

It is easy to find that:

Gk � ∂gk

∂ck
=

⎡⎣ zk

fx
0 uk−u0

fx

0 zk

fy

vk−v0
fy

0 0 1

⎤⎦ . (27)

Hence as an approximation, the sensor’s noise covariance matrix shall be:

Σxk
≈ GkΣck

GT
k . (28)

In our current implementation, to compute Σck
from Eq. (26), we assume Σvk

is diagonal, i.e., Σvk
= σ2I2, where I2 is a 2 × 2 identity matrix, and σ = 1.0

pixels in the current implementation. Knowing that our depth sensor derives
depth based on triangulation, following [23], the depth image noise covariance
σ2

zk
is modeled as:

σ2
zk

=
σ2

0z4
k

f2
dB2

, (29)

where fd = fx+fy

2 is the depth camera’s average focal length, σ0 = 0.059 pixels
and B = 52.3875 millimeters based on calibration. Note since σzk

depends on
zk, its value depends on each pixel’s depth value and cannot be pre-determined.
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Fig. 5. Example tracking results using the proposed algorithm. From top to bottom

are sequence #1 (810 total frames), #2 (681 total frames) and #3 (300 total frames),

respectively.

6 Experimental Results

We tested the proposed algorithm with three sequences captured by our depth
camera. Both the color and the depth images are at 640× 480 pixels resolution
and 30 fps. In each sequence the user sat about 3 ft from the depth camera, and
moved around with varying expressions. The head sizes in the images are about
100 × 100 pixels. Throughout the experiments, we set the weights of different
terms in Jinit and Jtrack to be λ1 = λ2 = 1, λ3 = 10−6 and λ4 = 10. All
sequences are initialized fully automatically and accurately with the multi-frame
DMF algorithm presented in Section 4.4 and 5.1. Initialization from 10 input
frames takes about 20 iterations and 6.7 seconds on an Intel 2.66 GHz computer,
while tracking usually converges in 2 iterations and can be done at about 10-12
fps without much code optimization.

We first show a few example tracking results using the proposed algorithm
in Fig. 5, which demonstrate the robustness of the proposed algorithm despite
large face pose and expression variations.

To provide some quantitative results, we manually labeled 12 feature points
around the eye and mouth regions of each face in every 3-5 frames of the three
sequences, as shown in Fig. 6(a). We then computed the average Euclidian dis-
tance from the 2D projections of their corresponding deformable model vertices
to the labeled positions. We compared various combinations of algorithms with
and without noise modeling, with and without the �2 regularization, and with
and without the �1 regularization. The results are summarized in Table 1. Note
because some combinations could not track the whole sequence successfully, we
reported the median average error of all the labeled frames in Table 1. It can
be seen that all three components improved the tracking performance. More
specifically, compared with the traditional scheme that adopts an identity co-
variance matrix for sensor noises and �2 regularization (ID+�2), the proposed
scheme (NM+�2+�1) reduced the median average error by 25.3% for sequence
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Table 1. Comparison of median tracking error (in pixels) for various algorithms. The

suffix “L” indicates that the tracking algorithm lost the face and never recovered. “ID”

stands for using the identity covariance matrix for sensor noises, and “NM” stands for

using the proposed noise modeling scheme.

ID+�2 ID+�1 ID+�2+�1 NM+�2 NM+�1 NM+�2+�1
Seq#1 (164 labeled frames) 3.56 2.88 2.78 2.85 2.69 2.66

Seq#2 (164 labeled frames) 4.48 3.78 3.71 4.30 3.64 3.55

Seq#3 (74 labeled frames) 3.98L 3.91 3.91 3.92L 3.91 3.50

(a) (b) (c) 

Fig. 6. (a) Face labeled with 12 ground truth feature points; (b)a few successfully

tracked frames with NM+�2+�1 (top) which were failed using the traditional approach

ID+�2 (bottom); (c) two failure examples for the proposed algorithm.

#1 and by 20.8% for sequence #2. The traditional ID+�2 scheme lost tracking
for sequence #3 after about 100 frames, while the proposed scheme successfully
tracked the whole sequence.

Fig. 6(b) shows a few examples where the proposed algorithm tracked the
face successfully, while the traditional scheme failed. Nonetheless, our algorithm
may also fail, as shown in Fig. 6(c). In the top frame, the head moved very
fast and the color image was blurry. In addition, the proposed algorithm is an
iterative scheme, and fast motion can cause poor initialization of the estimated
parameters. In the bottom frame, the face turned downward, which caused prob-
lems in tracking facial features in the color image. Currently we have not built
any recovery mechanism in the system such as adding key frames or occasional
re-initialization, which will be part of our future work.

7 Conclusions and Future Work

In this paper, we presented a regularized maximum likelihood DMF algorithm
that can be used to track faces with noisy input depth data from commodity
depth cameras. The algorithm modeled the depth sensor noise with an arbitrary
covariance matrix, and applied a new �1 regularization term that is semantically
meaningful and effective. In future work we plan to work on 3D face alignment
that can re-initialize the tracking process at arbitrary face poses, thus further
improving the performance of the overall system.
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Abstract. We show that, from the output of a simple 3D human pose tracker one
can infer physical attributes (e.g., gender and weight) and aspects of mental state
(e.g., happiness or sadness). This task is useful for man-machine communication,
and it provides a natural benchmark for evaluating the performance of 3D pose
tracking methods (vs. conventional Euclidean joint error metrics). Based on an ex-
tensive corpus of motion capture data, with physical and perceptual ground truth,
we analyze the inference of subtle biologically-inspired attributes from cyclic
gait data. It is shown that inference is also possible with partial observations of
the body, and with motions as short as a single gait cycle. Learning models from
small amounts of noisy video pose data is, however, prone to over-fitting. To mit-
igate this we formulate learning in terms of domain adaptation, for which mocap
data is uses to regularize models for inference from video-based data.

1 Introduction

The fidelity with which one needs to estimate 3D human pose varies from task to task.
One might be able to classify some gestures based on relatively coarse pose estimates,
but the communication of many biological and socially relevant attributes, such as gen-
der, age, mental state and personality traits, necessitates the recovery of more subtle
cues. It is generally thought that current human pose tracking techniques are insuffi-
cient for this task. As a consequence, most previous work on action recognition, ges-
ture analysis, and the extraction of biometrics, has focused on 2D image properties, or
holistic spatiotemporal representations. On the contrary, we posit that it is possible to
infer subtle human attributes from video-based 3D articulated pose estimates. Further,
we advocate the inference of human attributes as a natural, meaningful way to assess
the performance of 3D pose tracking techniques.

In this paper, we consider the inference of gender, age, weight and mood from video-
based pose estimates. One key problem is the lack of suitable training data comprising
labeled image sequences with 3D pose estimates. To deal with this issue, our models are
bootstrapped from a substantial corpus of human motion capture data, and then adapted
using a simple form of inductive transfer learning. In particular, the adaptation accounts
for differences between the distributions of features derived from mocap and the video-
based pose tracking data. Ground truth gender, age and weight are provided with the
mocap and some video-based pose tracking data. We also consider models trained on
perceived attributes gathered from human perception experiments over the internet. For
various aspects of mental state, like mood (happiness), human perception is, at present,
our principal source of (ground truth) training data.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 243–257, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The inference of human attributes has myriad potential uses, ranging from human-
computer interaction to surveillance to clinical diagnostics. E.g., biometrics are of in-
terest in security, and retails stores are interested in shopper demographics. The range
of potential applications increases further as one considers a wider range of attributes,
including, for example, the degree of clinical depression [17], or levels of anxiety.

The goal of this paper is to demonstrate a simple proof-of-concept model for attribute
inference. We restrict our attention to walking motions, a generic 3D pose tracker, the
extraction of simple motion features, and a very basic set of attributes. Pose tracking
from two views is accomplished with an Annealed Particle Filter [8,29], with a like-
lihood derived from background subtraction and 2D point tracks. We avoid the use of
sophisticated activity-specific prior models (e.g., [18,30]) that are prone to over-fitting,
thereby biasing pose estimates and masking useful information. Following [23,28,31,33]
our motion features are derived from a low-dimensional representation of joint trajec-
tories in a body-centric coordinate frame. We then use a regularized form of logistic
regression for classification. The experimental results show that one can infer attributes
from video pose estimates (at 60–90% accuracy depending on the attribute). We are
confident these results can be improved with advances in 3D pose tracking.

2 Background and Related Work

Perception of Biological Motion: Almost 40 years ago, Johansson [12] showed that a
simple display with a small number of dots, moving as if attached to major joints of
the human body, elicits a compelling percept of a human figure in motion. Not only can
we detect people quickly and reliably from such displays, we can also retrieve details
about their specific nature. Biological motion cues enable the recognition of familiar
people [6,32], and the inference of attributes such as gender, age, mental state, actions
and intentions, even for unfamiliar people [3,20,31].

Humans reliably classify gender from point-light walkers with a hit rate (correct
classification rate) of 65 to 75%; frontal views are classified best [20,25,31]. Studies
have focused on cues that mediate gender classification, such as the shoulder-hip ratio
[7] or the lateral sway of the upper body that is more pronounced in men [20]. Interest-
ingly, depriving observers of kinematics degrades gender classification rates. When in
conflict, information conveyed by dynamic features dominates that of static anthropo-
metrics [20,31]. Using PCA and linear discriminants Troje [31] modeled such aspects of
human perception. Similar models have even been shown to convey information about
weight and mood and the degree of depression in clinical populations [17].

Biometrics: Gait analysis is closely related to our task here. There is a growing liter-
ature on gait recognition, and on gender discrimination from gait (see [4] for a good
overview), and a substantial benchmark datasets exist for gait recognition ([27]). How-
ever, such datasets are not well suited for 3D model-based pose tracking as they lack
camera calibration and resolution is often poor. Indeed, most approaches to gait recog-
nition rely mainly on background subtraction and properties of 2D silhouettes. Very few
approaches exploit articulated models, either in 2D or 3D (although see [33,35]).

Like gait recognition, gender classification from gait is usually formulated in terms
of 2D silhouettes, often from sagittal views where the shape of the upper body, rather
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than motion, is the primary cue (e.g., [16,19]). With multiple views some form of voting
is often used to merge 2D cues [10]. The use of articulated models for gender discrim-
ination has been limited to 2D partial-body models. Yoo et al., [34] used a set of 19
features, including 2D joint angles, dynamics of hip angles, the correlation between
left and right leg angles, and the centre coordinates of the hip-knee cyclogram, with
linear and RBF SVMs, and a 3-layer feed-forward neural net for gender classification.
Samangooei and Nixon [26] consider video retrieval with physical attributes that in-
clude gender, age and weight. But they assume 2D sagittal views and a green screen to
simplify the extraction of silhouette-based gait signatures.

Unlike the gait recognition problem, inferring attributes of unfamiliar people does
not presuppose that test subjects exist in the training data. Further, by using 3D artic-
ulated tracking we avoid the need for view-based models and constrained domains (cf.
[10,26,34]). The video sequences we use were collected in an indoor environment with
different (calibrated) camera locations, most of which did not include a proper sagittal
view. Finally, here we infer physical attributes as well as aspects of mental state, like
the mood of the subject. To our knowledge this is the first paper that attempts to address
recovery of such attributes collectively from video-based 3D pose estimates.

Action Recognition: Like biometrics, most work on action recognition has focused on
holistic space-time features, local interest points or space-time shapes (e.g., [9,14,21]),
in the image domain rather than with 3D pose in a body-centric or world frame. It is
widely believed that 3D pose estimation is sufficiently noisy that estimator bias and
variance will outweigh the benefits of such compelling representations. Nevertheless,
some recent methods have successfully demonstrated that this may not be the case (e.g.,
[22]). Unlike such work focused on classifying very different motion patterns, we tackle
the more subtle problem of inferring meaningful percepts from locomotion.

3D Pose Tracking: The primary benchmark for evaluating techniques for pose tracking,
HUMANEVA [29], uses the 3D Euclidean distance between estimated and ground truth
(mocap) joint positions. Errors in joint positions and joint angles are easy to measure,
but it is not clear how they relate to task requirements. Will RMSE (root-mean-squared
error) of 70mm be sufficient to determine gender or mood, or for gesture recognition?
Some trackers with errors of 70mm might preserve the relevant information while oth-
ers may not. As such, task-specific measures, like attribute inference, complement con-
ventional RMSE measures. In particular, attribute inference is relatively complex as
it depends on subtle pose and motion information. Furthermore, unlike many activity
recognition tasks, which depend on motion and scene context (e.g., [15]), attribute in-
ference is mainly a function of information intrinsic to the agent or the perception of the
agent’s motion. Human attributes are of clear social significance, and may be directly
relevant to applications. That said, an extensive comparison of different pose trackers
based on attribute inference is beyond the scope of this paper.

3 Human Motion and Attribute Data

Models for different attributes are learned from a combination of partially labeled video
and motion capture data. Unfortunately, since we had video data from only 20 subjects,
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Gender Mood Weight Age

male female

10

20

happy sad

10

20

light heavy

10

20

young old

10

20

Attribute #Observers #Ratings

Gender 563 36524
Weight 694 44657
Age 67 4380
Mood 126 8093

45 65 85 105

10

20

30

(kg)
15 25 35 45

10

20

30

(years)

Fig. 1. Web Attribute Data: The top row shows histograms of average ratings from observers
for four attributes. The bottom row histograms show ground truth distributions of weight (kg) and
age (yrs). The numbers of observers and walkers rated for each attribute are given in the table.

models trained on video-based tracking data are prone to over-fitting. On the other hand,
models learned from mocap should not be applied blindly to tracking data because many
of the discriminative features in mocap data cannot be reliably estimated during pose
tracking. Therefore, as discussed below (Sec. 4), we train from a combination of mocap
and tracking data using a simple formulation of transfer learning.

3.1 Motion Capture Data: Dmocap

Our source mocap data comprises walking motions from 115 individuals. From 41
physical markers we estimate 15 3D “virtual markers” at major joints of the body, i.e.,
at shoulder joints, elbows, wrists, hip joints, knees, and ankles, and at the centers of
the pelvis, clavicles, and head. Each participant walked for several minutes within the
capture volume at their preferred speed, after which we began to record up to 4 trials of
walking. The data are also labelled with gender, age and weight (see Fig. 1).

Human Subject Ratings: In addition to physical attributes we also consider perceived
attributes, i.e., what people perceive when viewing point-light displays of walking peo-
ple. With this data one can begin to explore biological cues that convey gender, age and
weight. More importantly, this provides us with labels about apparent mental state, such
as mood (happiness or sadness).

In a web-based experiment observers were asked to rate walkers using attributes of
their choosing. Each observer specified an attribute, and then rated up to 100 walkers (in
random order) on a scale of 1 to 6. They were also asked to enter two phrases to indicate
what ratings of 1 and 6 represent.1 From ratings of over 4000 observers, each of whom
rated at least 20 walkers, we selected sessions for which the named attribute was one
of “gender”, “age” or “weight”, and the labels for ratings 1 and 6 were meaningful. For
“gender” we accepted “male-female” or “masculine-feminine”, for “age” they had to
contain “young” and “old” (or “elderly”), and for “weight”, “light” and “heavy”. We
accepted any of “mood”, “emotion”, “happy”, or “happiness” for the mood attribute,
and ratings 1 and 6 had to include the words “happy” and “sad”. The resulting numbers

1 http://www.biomotionlab.ca/Demos/BMLrating.html

http://www.biomotionlab.ca/Demos/BMLrating.html
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Fig. 2. Video Pose Tracking: The APF tracker uses a background model and 2D tracked points
from two views (top row). Tracking output for three subjects are shown in the bottom three rows,
with average error in 3D joint locations of 63.7 (mm), 59.9 (mm), and 82.3 (mm) respectively.
Notice the differences in camera orientations and the background.

of subjects and trials are given in Fig. 1. For each of the 100 walkers displayed, we
computed the average rating, over all observers. Fig. 1 shows the distributions. Although
data from experiments like this are noisier than those collected under more controlled
conditions, they do reveal consistent perceptual interpretations.

3.2 Video Pose Tracking Data: Dvideo

In addition to the mocap above, we also have synchronized binocular video (30Hz) and
mocap (120hz). We captured 2-3 sequences for each of 20 subjects (10 male, 10 female)
walking, with different camera configurations, but usually with views that were within
30◦ of frontal and sagittal. Each sequence was approximately two gait cycles in length.

The 3D pose tracker was a modified version of an Annealed Particle Filter (APF)
[8,29]. The likelihood used a combination of a probabilistic background model with
shadow suppression, and 2D point tracks [11] (see Fig. 2 (top)). Point tracks were only
used for body parts that remain visible, the likelihood for which was formulated as a
truncated Gaussian (for robustness). The same likelihood was used for all subjects. We
used a 15-part body model comprising truncated cylinders, with 34 joint angles plus
global pose [29] (40 DOFs in total). The prior motion model was a smooth first-order
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Fig. 3. Subspace Visualization: The distribution of motions in Dmocap in the first 2 principal
dimensions is shown. (Left) Males (blue +) and females (red o). (Middle) Weight is depicted
with blended colors: Heavy (red) and light (blue). (Right) Video pose tracks and mocap from 5
subjects in Dvideo are shown in 2 subspace dimensions: (color coded); circles indicate two video
trials, crosses corresponding tracks; (cyan – Dmocap males, yellow – Dmocap females).

Markov model, with weak joint limits and inter-penetration constraints. The lack of an
activity-specific prior motion model was motivated by the desire to avoid biasing the
pose estimates towards a particular population. All experiments used the same APF
setup (200 particles/layer, 5 layers), requiring roughly 2 minutes/frame (Matlab). We
believe it is possible to estimate partial anthropometrics online while tracking [2], but
for simplicity we assumed known anthropometrics.

The tracker performed well except when the legs were close; in rare cases the leg
identities were switched. In these cases we did not filter the results in any way. In fact
we report performance on all tracks obtained. We ran the tracker twice on every test
sequence (yielding 80 pose trajectories). Sample tracking results for three subjects are
shown in Fig. 2; in terms of the average Euclidean joint errors, the results are compa-
rable to state-of-the-art [29]. The average Euclidean error in 3D joint locations over the
80 runs had a mean of 73mm and a standard deviation of 19mm.

Finally, note that pose data in Dvideo and Dmocap have structual differences. To
facilitate video tracking the body model in Dvideo had fewer degrees of freedom. Also
the mocap protocol used to estimate joint positions differed in Dvideo and Dmocap.

3.3 Motion Representation

Following [28,31] we represent each motion as a pose trajectory, i.e., a vector com-
prising the 15 3D joint positions at each time step.2 We exploit the periodic nature of
locomotion, expressing each motion as a Fourier series [23,31]; two harmonics are suf-
ficient for walking [31]. To represent each pose trajectory, we encode the mean (DC)
pose, along with the Fourier coefficients at the fundamental frequency and its second
harmonic. This yields a 225-D vector for each motion (i.e., 5 real-valued Fourier coef-
ficients for each of 15, 3D markers). This encoding is somewhat robust to the noise in

2 Initially all the walkers are aligned. The world frame is oriented so subjects are walking along
the X-axis. We remove slow trends in the forward and lateral directions, based on the motion
of the COM (i.e., the average of all 15 joint markers) the XY plane.
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the 3D poses within a trajectory, allowing us to better deal with the poor SNR of the
video-based pose data.

Let the Fourier-based representation of these N motions be {mj}N
j=1, where mj ∈

R
225. Not surprisingly we find that the dimension of the representation can be reduced

significantly with PCA. Since the SNR of the mocap data is much higher than the track-
ing data, we compute the subspace basis from the mocap data (from the 115 subjects
described above in Sec. 3.1). Well more than 90% of the data variance is captured in 16
dimensions; in practice, using more than 16 dimensions does not improve the accuracy
of attribute prediction appreciably.

Let B ≡ [b1, ...,bK ] denote the subspace basis, where K is usually 16 or below.
Further, let cj denote the subspace coefficients for mj; i.e., cj = BT (mj − m̄) where
m̄ is sample mean of the motion data {mj}. Fig. 3 depicts the distribution of gender and
weight in the first two principal directions. While not linearly separable, the attribute
structure is clearly evident.

Of course there are other possible motion features. For example, Yoo et al. [34] use
features of an articulated model extracted from a sagittal view of walking people, from
which they acheive good gender classification with SVMs. Based on their paper, our
implementation of their features with several different classifiers produces no better
than 75% correct gender classification on our mocap dataset Dmocap, compared to hit
rates of 80%-90% obtained here (cf. Fig. 5).

4 Learning

Dmocap provides a significant corpus of labeled mocap, but the subspace motion fea-
tures fromDmocap andDvideo have different distributions. First, the pose data inDvideo

is based on a different joint parameterization (more suitable for video-based pose track-
ing). More importantly, the video tracking data has a lower SNR and is often biased
because certain parts of the body (e.g., the feet) are not tracked well. Indeed, some
features that are highly discriminative in Dmocap will be uninformative in Dvideo. Con-
versely, learning models from the small corpus of noisy video data in Dvideo is prone
to over-fitting.

To mitigate these problems we formulate the learning problem as a form of trans-
fer learning, called domain adaptation. It is applicable when the source (Dmocap) and
target (Dvideo) domains share the same features, but have significantly different feature
distributions (e.g., see [24]). Intuitively, we learn source models from the mocap train-
ing data. The source models are then adapted to the video-feature domain through the
minimization of a loss function on the target data that is biased toward the source model
(e.g., [1,5]). The resulting models generalize much better than those learned from the
video-based pose data directly, and they produce much better results than the direct
application of models learned from Dmocap.

In more detail, we use logistic classifiers for the inference of binary attributes and
for predicting human ratings. A logistic model expresses the posterior probability of an
attribute, g ∈ {0, 1}, as a sigmoidal function σ(·) of distance from a planar decision
boundary, defined by parameters θ ≡ (w, b); i.e.,
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p(g = 1 | c, θ) =
1

1 + exp(−cTw − b)
≡ σ(cT w + b) . (1)

The weights that define the decision hyperplane are found by ML optimization. That is,
given source mocap data, {cs

j , g
s
j}Ns

j=1, the optimized parameters are found by minimiz-
ing the negative log likelihood of the data with respect to the weight vector w and the
bias offset b, i.e., θs = (ws, bs) = arg minLs, where

Ls(w, b) = − log
Ns∏
j=1

σ(cs
j ;w, b)gs

j (1− σ(cs
j ;w, b))1−gs

j . (2)

To adapt the model learned from Dmocap to the target data Dvideo, following [5], we
learn a logistic model on the target training data with a Gaussian prior centered at the
source model. That is, we minimize a loss function that is a combination of the nega-
tive log likelihood of the video training data, {ct

j , g
t
j}Nt

j=1, Nt ! Ns, and a quadratic
regularizer:

Lt(w, b) = − log
Nt∏
j=1

σ(ct
j ;w, b)gt

j (1−σ(ct
j ;w, b))1−gt

j + λ||w −ws||2 . (3)

While this formulation assumes an isotropic prior, with variance 1/λ, the loss function
is easily generalized to an anisotropic prior that allows some weights to drift more than
others. The covariance for an anisotopic prior might be set according to the ratio of
variances in the subspace projections of Dmocap and Dvideo respectively. Nevertheless
the experiments reported below are based on an isotropic prior.

Cross-validation is used to determine λ. Also, note that we do not regularize the bias
offset since it is often convenient to allow b to vary freely to account for any bias in the
tracking data. Minimization of Lt is accomplished with Newton iterations to solve for
critical points, i.e.,

∂Lt

∂w, b
=

Nt∑
j=1

(σ(ct
j ;w, b)− gt

j)
(
ct

j

1

)
+ λ

(
w−ws

0

)
= 0 . (4)

One can generalize the approach to model the ratings data by replacing the ground
truth g in (3) with the average rating (scaled to (0, 1)). Treating the average rating as
the expected value of g over different observers, (3) can be interpreted as the expected
likelihood. Also, while the approach formulated here presupposes labelled target data,
it is also possible to extend the technique to the semi-supervised case where the target
video data is not labeled (e.g., [1]).

In addition to simple classifiers for binary attributes, we also consider domain-adapted
least-squares (LS) regressors for real-valued attributes, such as age and weight. For ex-
ample, the adapted LS predictor for real-valued attribute a minimizes

Lc(w, b) =
Nt∑
j=1

[
(wT ct

j + b)− at
j

]2
+ λ||w −ws

LS ||2 . (5)

where ws
LS is the LS optimal weight vector learned from the mocap data in Dmocap.
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Fig. 4. Effect of Subspace Dimension and Sequence Length: Leave-one-out cross validation
is used to asses the effect of subspace dimension on the correct-classification rate for the ground
truth gender classification (left) and the RMSE of the real-valued weight regressor (middle). The
right plot shows the dependence of gender classification on the duration (in gait cycles) of mocap
sequences (based again on leave-one-out cross-validation).

5 Models and Analysis of Source Data: Dmocap

We first learn models for the inference of different attributes using the labelled mocap
corpus,Dmocap. We tried learning with several different loss functions, including Gaus-
sian class-conditional models and linear/RBF SVMs, but none generalized significantly
better than logistic or linear LS regression. In all cases we characterize the expected
performance of the classifier/regressor using leave-one-out cross-validation.

Figure 4 (left) shows how gender classification depends on the subspace dimension
of the motion representation. With fewer than 16 dimensions important information is
lost. Classification performance with more than 20 dimensions yields marginal gains;
with a 16D subspace the correct classification rate for gender is 90%. Fig. 4 (middle)
shows the behaviour of a LS predictor for weight. The weights of our 115 walking
subjects ranged from 50 to 100 kg, while the RMSE of predictions (16D features and
leave-one-out cross-validation) is 5.4 kg. Fig. 4 (right) shows that gender can be classi-
fied with as little as one gait cycle (consistent with human perception [13]).

Normalized Models: To infer attributes from video pose estimates, we may not have ac-
cess to full 3D pose. For example, with monocular tracking one might be able estimate
3D pose only up to the overall scale of the subject. Many 3D pose trackers simply as-
sume the subject is average height (e.g., [2]). In extreme cases a pose tracker may have
no anthropometric knowledge whatsoever. To explore these cases we computed two fur-
ther subspace representations of the data in Dmocap. First all walkers were normalized
to be the same height, and second, all anthropometrics are removed (by computing joint
angles and then using the mean anthropometrics to reconstruct the motions).

The first row of results in Fig. 5 gives the gender hit rate (i.e., correct classification
rate) and the RMSE of linear LS predictors for weight and age, all based on leave-one-
out (LOO) testing. One can see that the two normalized models are less informative than
using the full 3D data. Predictions from the height-normalized models are somewhat
better than the anthropometric-normalized models as expected. Also note that while
predictions of gender and weight are quite good, age is poorly predicted. The walking
subjects in this dataset ranged in age from roughly 18 to 35 years, while the RMSE for
age prediction is 6.9 years.
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Gender (% correct) Weight (RMSE kg) Age (RMSE yrs)
Full Height Motion Full Height Motion Full Height Motion

3D Norm. Only 3D Norm. Only 3D Norm. Only

Full 3D Pose 89.6 86.1 81.7 5.4 9.7 10.9 6.9 6.9 6.4
Upper 3D Body 87.8 86.1 80.9 5.9 9.9 11.0 7.0 7.1 6.3
Lower 3D Body 84.4 80.0 73.9 6.2 9.4 12.2 7.2 7.2 7.3
Frontal 2D Pose 87.0 80.0 76.5 5.5 9.6 10.8 7.0 7.1 6.9
Sagittal 2D Pose 80.9 83.5 79.1 9.9 11.5 12.2 7.1 7.0 6.7

Fig. 5. Inference with Dmocap Models: To assess performance, with and without missing data,
we build 3 models: Full 3D uses known anthropometrics and kinematics; Height Normalized is
learned from mocap that is height normalized; and Motion Only uses only kinematic information
(all walkers have the same limb lengths). The lack of anthropometrics degrades performance,
but the inference of gender and weight are above chance in all models. We also report how
performance varies with different subsets of markers (e.g., upper/lower body) or 2D projections.
Again, despite degradation in performance, the models continue to predict attributes well.

Gender Weight Age Mood
Full 3D 94 93 88 94
Height Normalized 93 93 86 93
Motion Only 93 94 86 93

Fig. 6. Inference of Perceived Attributes: We report the accuracy of predictions of human rat-
ings for gender, weight, age and mood, all from the source mocap dataset Dmocap. Perceived
attributes are quantized to one bit based on the average rating for each subject, and the output
of the logistic regressor is thresholded at 0.5. The table shows the fraction of subjects for which
the classifier matches the quantized rating. Notice that perceived attributes are generally better
predicted by the learned models than are ground truth attributes (cf. age in Fig. 5).

Incomplete Data: To infer attributes from video-based pose estimates, we must be able
to cope with missing data, since parts of the body may be partially or entirely occluded.
Let m ∈ R

225 be a complete measurement vector (i.e., the Fourier coefficients for each
joint). Let the observed measurements be m0 = Pm, where the matrix P comprises
only those rows of the identity matrix that correspond to the observed joints. It then
follows from the generative subspace model, i.e., m = Bc + m̄, that a LS pseudo-
inverse can be used to estimate the subspace coefficients c0 from m0, i.e.,

c0 = (BT PT PB)−1BT PT (m0 − Pm̄) . (6)

The columns in Fig. 5 report model performance when data from model joints of the
upper body, or from the lower body, are used. Also reported are results when one uses
2D data under orthographic projection from frontal or sagittal views. Interestingly, the
observation that frontal views are more informative than sagittal views is consistent
with studies of human perception [31].

Predicting Human Ratings: It is also interesting to consider how well one can predict
perceived attributes. This is a scientific curiosity for physical attributes like gender, age
and weight. For mood, however, we have no physical ground truth. Rather, the per-
ceived mood is our only labelled data source. For all attributes, because our perceptual
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rating data are noisy, we quantize ratings of each attribute to one bit; i.e., each walker is
(perceived to be) (1) male or female, (2) heavy or light, (3) young or old, and (4) happy
or sad. Then, the average attribute rating for a given training subject (scaled to (0, 1))
is taken to be the corresponding probability of being male, heavy, old, and happy, re-
spectively. We use logistic regression to predict these probabilities, with leave-one-out
measures of performance given in Fig. 6.

It is striking that, in all cases, we can do a better job predicting human ratings than
ground truth. Human observers are, purportly using the available visual cues in a con-
sistent manner, even if it is inconsistent with the ground truth. In particular, while true
age is very hard to predict, perceived age is predicted well; it’s not how old you are,
it’s how old you look. While interesting, this also shows clearly that percevied attributes
may be biased, and therefore require qualification.

6 Attribute Inference from Dvideo

Given the source models learned fromDmocap, we use domain adaptation to learn mod-
els for the test pose data in Dvideo. Not only is this useful in generating models for the
video pose tracking data, it is also useful in building a classifier from the test mocap in
Dvideo. The reason is that the pose data in Dvideo is noisier and is parameterized dif-
ferently from that in Dmocap. The mocap in Dmocap allows for variable joint locations,
while the parameterization of the tracker used in Dvideo has fixed joints. The tracker
also has a fewer DOFs. Hence there are structural differences even between the mocap
in Dmocap and that in Dvideo.

Domain Adaptation: Figure 7 (left) show the leave-one-out hit rates for gender classi-
fiers learned from Dvideo with domain adaptation from Dmocap. The curves show how
performance depends on adaptation from the source model, as a function of λ (see (3)
in Sec. 4). The highest hit rates occur with λ between 103 and 104. For comparison, the
crosses (x) depict the hit rate when there is no domain adaptation (i.e., with ws = 0
in (3)). The circles (o) depict the hit rate when the classifiers are trained solely on
the source data Dmocap (with no domain adaptation) and then tested on the mocap in
Dvideo. Remember that the body model inDvideo has fewer degrees of freedom and was
estimated using a different mocap protocol from that in the original mocap in Dmocap.
Hence even the mocap motion features inDmocap andDvideo are distributed differently,
and hence the value of domain adaptation.

Pose Tracking Data: Figure 7 (middle) shows leave-one-out hit rates for gender from
video-based 3D pose tracking data (two trials of the APF, for each of 2 walking se-
quences for each of 20 subjects). As above, the curves show the dependence on the
strength of the prior from the source model. The crosses (x) depict hit rates with no do-
main adaptation (from pose tracking data alone), and the circles (o) depict the hit rates
from classifiers trained solely on the source mocap data Dmocap. It is not clear why the
full 3D model with pose tracking data is much worse than that with mocap input.

Figure 7 (right) shows how predictions of weight from video-based 3D pose data
depends on domain adaptation. As above, the crosses (x) and the circles (o) show that
predictions are poor when based solely on the data inDmocap or inDvideo. With domain
adaptation the results improve significantly. The standard deviation of the weight among
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Fig. 7. Domain Adaptation: (a) Gender classification from the mocap in Dvideo for 20 test
subjects (from leave-one-out performance), as a function of the strength of the prior λ, for each
of 3 models (full 3D, height normalized, motion only). (b) Gender classification from the video-
based pose tracking data for 20 test subjects (leave-one-out performance). (c) RMSE of weight
estimates from pose tracking data, for 20 test subjects, as a function of the strength of the prior.

Gender - mocap Gender - tracking Weight - mocap Weight - tracking
(% correct, λ = 104) (% correct, λ = 104) (RMSE kg, λ = 101.5) (RMSE kg, λ = 105)

Full Height Motion Full Height Motion Full Height Motion Full Height Motion

3D Norm. Only 3D Norm. Only 3D Norm. Only 3D Norm. Only

Cmocap 75.0 65.0 62.5 53.8 57.5 47.5 5.7 10.9 6.6 51.4 42.1 42.7
Ctrack 65.0 57.5 42.5 55.0 55.0 50.0 4.0 7.3 6.9 12.5 13.1 14.5
CtrackTL 77.5 70.0 67.5 61.3 73.8 61.3 3.6 7.6 6.0 10.6 10.9 12.4

Fig. 8. Attributes from Mocap and Pose Tracking Data: The tables reports leave-one-out
performance on gender classification and weight prediction from test mocap and pose tracking
data in the target dataset Dvideo of 20 subjects. There are 40 mocap sequences (2 walks/subject),
and 80 pose trajectories from video tracking (2 tracking trials per sequence). Results from 3
models are reported: Cmocap is learned from the source mocap Dmocap; Ctrack is learned solely
from test data Dvideo; CtrackTL is learned with Dvideo and domain adaptation from Dmocap.

the test subjects is approximately 12kg. With domain adaptation, with λ = 105, the
RMSE decreases to approximately 10.6. These results with tracking data are worse than
those based on training mocap data in Fig. 5, but we find them encouraging nonetheless.

Figure 8 gives numerical results for gender classification and weight prediction, from
both test mocap and test pose tracking data (like the plots in Fig. 7). As above, we show
results from three models: Cmocap is learned solely from the source mocap Dmocap;
Ctrack is learned solely from test data Dvideo; CtrackTL is learned with Dvideo and
domain adaptation fromDmocap. Not surprisingly, the predictions of gender and weight
from on video tracking data are not as reliable as those from the mocap. They are,
however, encouraging. While not shown in the figure, we also note that errors in gender
classification are reasonably consistent between the test mocap and the test tracking
data. Approximately 85% of the motions classified from the pose tracking data are
concistent with classification from the corresponding mocap. Thus, while some of the
errors in Fig. 8 are due to noise in the pose tracking data, some are due to the fact that
indeed some females consistently walk like males and vice versa.
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Gender Weight Age Mood
CtrackTL (Full 3D) 83 79 93 86
CtrackTL (Height Normalized) 74 79 90 85

Fig. 9. Classification of Perceived Attributes with Respect to MoCap: The table reports con-
sistency of leave-one-out performance on perceived gender, weight, age and mood (happiness)
between test mocap and pose tracking data in the target dataset Dvideo of 20 test subjects. We use
predicted attribute values for test mocap as targets to train CtrackTL binary classifiers (learned
with Dvideo and domain adaptation from Dmocap, all with λ = 104).

Inference of Perceived Attributes: Figure 9 reports leave-one-out hit rates in the pre-
diction of the perceived attributes. Like the above experiment in Fig. 6 we quantize
perceptual ratings to one bit and use logistic regression for classification (e.g., happy
vs. sad). For the purposes of this experiment we also consider the perceptual data as the
ground truth (indeed for perceived mental state, e.g., mood, that is our only source of
data label) and look at the consistency of predictions between the leave-one-out model
trained with mocap and with video tracking results from Dvideo.

The consistency between the mocap and pose tracking is very good, with consistent
classification rates between 74% to 93%. It is interesting to note that we can recover the
mental state – mood (happiness), with 85% to 86% accuracy. Like the results reported in
Fig. 6 the perceived age is predicted well when compared to our models for predicting
true age.

7 Discussion

This paper demonstrates that one can, from the output of a video-based, 3D human
pose tracker, infer physical attributes (e.g., gender and weight) and aspects of mental
state (e.g.. happiness). The models are used to infer binary attributes (gender) and real-
valued attributes (weight). We also consider the prediction of perceived attributes based
on human perceptual experiments. This is useful for infering attributes such as mood
where human judgements are our source of ground truth. Learning is accomplished
using datasets comprising labelled mocap and video-based 3D pose estimates. These
sources of training data are combined with a simple for of domain adaptation.

To our knowledge, this is the first paper in the literature that attempted to infer such
perceptually and biologically meaningful attributes from 3D video-based pose esti-
mates. In the future we hope to collect large datasets and explore stronger tracking
prior models trained from large collections of mocap data. We also hope to be able to
test the inference of attributes with monocular pose tracking methods. While the results
reported here are interesting in their own right, we also suggest that tasks like this pro-
vide a natural way to assess the fidelity with which people trackers estimate 3D pose.
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Abstract. Visual tracking is one of the central problems in computer

vision. A crucial problem of tracking is how to represent the object. Tra-

ditional appearance-based trackers are using increasingly more complex

features in order to be robust. However, complex representations typi-

cally will not only require more computation for feature extraction, but

also make the state inference complicated. In this paper, we show that

with a careful feature selection scheme, extremely simple yet discrimi-

native features can be used for robust object tracking. The central com-

ponent of the proposed method is a succinct and discriminative repre-

sentation of image template using discriminative non-orthogonal binary

subspace spanned by Haar-like features. These Haar-like bases are se-

lected from the over-complete dictionary using a variation of the OOMP

(optimized orthogonal matching pursuit). Such a representation inherits

the merits of original NBS in that it can be used to efficiently describe

the object. It also incorporates the discriminative information to distin-

guish the foreground and background. We apply the discriminative NBS

to object tracking through SSD-based template matching. An update

scheme of the discriminative NBS is devised in order to accommodate

object appearance changes. We validate the effectiveness of our method

through extensive experiments on challenging videos and demonstrate

its capability to track objects in clutter and moving background.

1 Introduction

Visual object tracking in video sequences is an active research topic in computer
vision, due to its wide applications in video surveillance, intelligent user inter-
face, content-based video retrieval and object-based video compression. Over
the past two decades, a great variety of tracking methods have been brought
forward. Some of them include template/appearance based methods [1,2,3,4,5],
layer based methods [6,7], image statistics based methods [8,9,10], feature based
methods [11,12], contour based methods [13], and discriminative feature based
methods [14,15]. One of the most popular category of method is appearance
based approaches, these trackers represent the object to be tracked using an
appearance model and it is matched to each new frame to determine the object
state. In order to handle appearance variations, an appearance update scheme

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 258–271, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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is usually employed to adapt the object representation over time. Appearance
based trackers have shown to be very successful in many scenarios. However
they may not be robust to background clutter where the object is very similar
to the background. In order to handle this problem, more and more complicated
object representations that take into account color, gradients, texture are used.
However, extraction of the complicated features usually incurs more computa-
tion which slows down the tracker. Moreover, complex representation will make
the inference much more complicated. One natural question to ask is how com-
plicated feature is really needed to track an object? In this paper, we show that
with a careful feature selection scheme, extremely simple object representations
can be used to robustly track objects.

Essentially, object tracking boils down to the image representation problem
- what type of feature should be used to represent the object. Effective and ef-
ficient image representation not only makes the feature extraction process fast
but also reduces the computation for object state inference. Traditional object
representations for example raw pixels, color histograms are generative in nat-
ural, they are usually designed to describe the appearance of the object being
tracked while completely ignoring the background. Trackers using this represen-
tation may fail when the object appearance is very similar to the background. It
is worth noting that some appearance based trackers model both foreground and
background, for example in the layer tracker [7] the per-pixel layer ownership is
inferred by competing the foreground and background likelihoods.

Recently, discriminative methods have opened a promising new direction in
the tracking literature by posing tracking as a classification problem. Instead of
trying to build an appearance model to describe the object, discriminative track-
ers seek a decision boundary that can best separate the object and background.
The support vector tracker [16] (denoted as SVT afterwards) uses an offline-
learned support vector machine as the classifier and embeds it into an optical
flow based tracker. Collins et al. [14] were perhaps the first to treat tracking as
a binary classification problem. A classifier is learnt in each frame to be used to
locate object in the next frame. A feature selection scheme using variance ratio
to select the most discriminative features is used to measure feature discrim-
inability and select the best feature for tracking. Avidan’s ensemble tracker [15]
combines an ensemble of online learned weak classifiers using AdaBoost to label
pixels in the next frame. After the data is labeled, the peak of the classification
score map is detected to be the object. To handle the object appearance changes
and maintain temporal coherence, in each frame some classifiers that do not
perform well or have existed longer than a fixed number of frames get removed
or pruned from the tracker, and new classifiers are trained to replace them. In
co-tracking [17], two semi-supervised support vector machines are built for color
and gradient features. A co-training framework is used to update the classifiers.

Previous discriminative trackers generally have two major problems. First, the
tracker only relies on the classifier which can well separate the foreground and
background and does not have any information what the object is like. This makes
it hard to recover once the tracker makes a mistake. Second, discriminative
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trackers generally have a fixed image representation for all objects to be tracked
and this representation is not updated any more. However, adaptive objective rep-
resentation is more desirable in most cases because it can capture the character-
istics of particular object being tracked.

In this paper, we propose an extremely simple object representation using
Haar-like features that combines the advantage of generative trackers and dis-
criminative trackers. The representation is generative in nature in that it finds
the features that can best reconstruct the foreground object. It is also discrimina-
tive because only those features that make the foreground representation differ-
ent from background are selected. Our representation is based on the nonorthog-
onal binary subspace(NBS) method in [18]. The original NBS tries to select from
an over-complete dictionary a set of Haar-like features that can best represent
the image. We extend the NBS method to incorporate discriminative information
by adding a discriminative background term. The new representation is called
discriminative non-orthogonal binary subspace. The discriminative nonorthogo-
nal binary subspace is a compact representation of an image which is spanned
by Haar-like rectangle base vectors. By approximating image patches with dis-
criminative NBS, the inner product between templates could be obtained very
fast using integral image trick. We show in this paper that such extremely simple
features can be used for effective object tracking even when the object is similar
to background.

The rest of this paper is organized as follows. In section 2, we briefly review
Haar-like features and the non-orthogonal binary subspace approach. The dis-
criminative nonorthogonal binary subspace is proposed in section 3. In section
4, the application of discriminative NBS to tracking is described. Afterwards, we
provide both qualitative and quantitative experimental results in section 5. The
paper is concluded in section 6.

2 Background: Nonorthogonal Binary Subspace

The original NBS [18] tries to find a subset of Haar-like features from an over-
complete dictionary to span a subspace that can be used to reconstruct the
original image.

The Haar-like box function φ for NBS is defined as,

φ(u, v) =

⎧⎨⎩
1, u0 ≤ u ≤ u0 + w′ − 1

v0 ≤ v ≤ v0 + h′ − 1
0, otherwise ,

(1)

where w′ and h′ represent the width and height of the box in the template.
(u0, v0) is its top-left pixel. The advantage of such box functions is that the
inner product of the Haar-like base with any same-sized image template can
be computed with only 4 additions, by pre-computing the integral image of the
template.

Suppose that for a given image template x ∈ RWH of size W × H and the
selected binary box features are {ci, φi}(1 ≤ i ≤ K). ci is the coefficient of box
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function φi. The NBS approximation is expressed as x =
∑K

i=1 ciφi + ε, where
ε denotes the reconstruction error. We define ΦK = {φ1, φ2, . . . , φK} as a base
matrix, each column of which is a chosen binary base vector. Note that, this base
set is non-orthogonal in general, hence the reconstruction vector of template x
is calculated as

RΦK (x) = ΦK(ΦT
KΦK)−1ΦT

Kx . (2)

The number of Haar-like box functions is W (W + 1)H(H + 1)/4, thus the dic-
tionary of base vectors is highly redundant. In previous work, the NBS is used
to approximate the image template. Thus, a specific small number of features
are chosen from the over-complete dictionary to optimize the function

arg min
ΦK

‖ x − RΦK(x) ‖ . (3)

Since the dictionary is highly redundant, the optimal solution to Eq.(3) is NP-
hard. It is shown in [18,19] that a sub-optimal solution can be produced by a
greedy algorithm named the optimized orthogonal matching pursuit (OOMP).

3 Discriminative Nonorthogonal Binary Subspace

The NBS method has been successfully used for fast template matching and
face recognition [18]. However, it only considers the information embodied in
the object image itself without any information about the rest of the image. In
the applications such as video object tracking, which is essentially a classification
problem, the background content should be taken into account in addition to the
object template. To account for this, we propose a discriminative NBS (D-NBS)
image representation that considers both foreground object and background.
The discriminative NBS method inherits the merits of the original NBS in that
it can well describe the object appearance, and at the same time, it captures the
discriminant information that can best separate the object from background.

3.1 Formulation

The objective of discriminative NBS is to construct an object representation that
can separate object from background. This will facilitate vision tasks such as
object tracking. In contrast to the original NBS, we formulate the discriminative
NBS by finding the bases such that the foreground can be well separated with
background for SSD based template matching.

The main idea behind discriminative NBS is that we want to select features
so that the reconstruction error for foreground is small while it is large for
background. Different from the original NBS formulation Eq.(3) in which only
the foreground reconstruction is considered, in discriminative NBS formulation,
the objective function has foreground and background reconstruction terms.

Let ΦK be the discriminative NBS based vectors with K bases and RΦK (X)
be the reconstruction of X via ΦK using Eq.(2). Note that F =

[
f1, f2, . . . , fNf

]
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is a matrix of Nf recent foreground samples. B = [b1,b2, . . . ,bNb
] is a matrix

of Nb sampled background vectors. The objective function for ΦK is

arg min
ΦK

{
1

Nf
‖ F− RΦK (F) ‖2

F − λ

Nb
‖ B − RΦK (B) ‖2

F

}
, (4)

where ‖ · ‖F represents the Frobenius norm. The first term in the equation is to
make the foreground better approximated while the second one is to make the
representation far away from background. This formulation is a hybrid approach
in which the generative and discriminative items are balanced by λ.

To make it more clear, Eq.(4) can be transformed to

arg min
ΦK

⎧⎨⎩ 1
Nf

Nf∑
i=1

‖ fi − RΦK (fi) ‖2 − λ

Nb

Nb∑
i=1

‖ bi − RΦK (bi) ‖2

⎫⎬⎭ . (5)

It can be further simplified to

argmax
ΦK

⎧⎨⎩ 1
Nf

Nf∑
i=1

〈fi, RΦK (fi)〉 − λ

Nb

Nb∑
i=1

〈bi, RΦK (bi)〉
⎫⎬⎭ . (6)

3.2 Solution

It can be proved that Eq.(4) is a NP hard problem, even verification of a so-
lution is difficult. To optimize the objective function, we propose an extension
of OOMP(Optimized Orthogonal Matching Pursuit) [18] called discriminative
OOMP. Similar to OOMP, discriminative OOMP is a greedy algorithm to com-
pute adaptive signal representation by iterative selection of base vectors from a
dictionary.

We assume that totally K base vectors are to be chosen from the base set
Ψ = {ψ1, ψ2, . . . , ψNψ

}. Nψ is the total number of base vectors in the dictionary.
Suppose k−1 bases Φk−1 = {φ1, φ2, . . . , φk−1} have been selected, the k-th base
is chosen according to

argmax
ψi

⎧⎨⎩ 1
Nf

Nf∑
j=1

|〈γ(k)
i , εk−1(fj)〉|2
‖ γ

(k)
i ‖2

− λ

Nb

Nb∑
j=1

|〈γ(k)
i , εk−1(bj)〉|2
‖ γ

(k)
i ‖2

⎫⎬⎭ , (7)

where γ
(k)
i = ψi −RΦk−1(ψi) is the component of base vector ψi that is orthog-

onal to the subspace spanned by Φk−1. εk−1(x) = x − RΦk−1(x) denotes the
reconstruction error using Φk−1.

In each iteration of the base selection, the algorithm needs to search all the dic-
tionary ψi to compute γ

(k)
i . Since the number of bases in dictionary is quadratic

to the number of pixels in image, this process may be slow for large templates.
We further analyze the above equation for simplification,

〈γ(k)
i , εk−1(x)〉 = 〈ψi − RΦk−1(ψi),x − RΦk−1(x)〉 = 〈ψi,x − RΦk−1(x)〉 . (8)
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Since ψi is a box base, the inner product can be computed in O(1) time with
pre-computation of x − RΦk−1(x) using integral image. Because

RΦk
(x) = RΦk−1(x) +

ϕk〈ϕk,x〉
‖ ϕk ‖2

, (9)

where ϕk = φk − RΦk−1(φk) denotes the component of φk that is orthogonal to
the subspace spanned by Φk−1, we therefore have

‖ γ
(k)
i ‖2=‖ ψi − RΦk−2(ψi) − ϕk−1〈ϕk−1, ψi〉

‖ ϕk−1 ‖2
‖2=‖ γ

(k−1)
i ‖2 −|〈ϕk−1, ψi〉|2

‖ ϕk−1 ‖2
.

(10)
The denominator for each base vector ‖ γ

(k)
i ‖2 can be easily updated in each

iteration, because the inner product 〈ϕk, ψi〉 can be quickly computed.
Note that the reconstruction for any x (i.e. RΦk

(x)) can be efficiently com-
puted by pre-storing Φk(ΦT

k Φk)−1. The calculation of ΦT
k x is the inner prod-

ucts between x and the base vectors, which can be accomplished in O(k) time.
Thus, computing the reconstruction simply costs O(kWH) time, where W, H
are respectively the width and height of the base template. As 〈ϕk,x〉 and
‖ x − RΦk−1(x) ‖2 can be pre-computed, the total computational complexity
is O(NψK(Nf + Nb)) with Nψ the number of features in dictionary.

3.3 Fast Search Using Coherence

As aforementioned, computation of the above algorithm is mainly spent on repet-
itive searching in the dictionary. Since, in the NBS framework, the size of base
dictionary is proportional to W 2·H2, the computational cost may increase dra-
matically as the template size increases. A natural way to accelerate it is to
reduce the number of bases to be searched in each iteration. We propose to
achieve this through basis filtering using coherence.

A μ-coherent dictionary Ψ has coherence μ for 0 ≤ μ ≤ 1, if | 〈ψi, ψj〉 |≤ μ
for all distinct ψi, ψj ∈ Ψ. A 0-coherent base set is orthogonal. In general,
bases with high coherence are likely to be redundant in representing the vector
space. Coherence is used to reduce dictionary redundancy hence reducing the
computation. Using coherence our algorithm can be accelerated by pruning all
the base vectors with μ-coherent (μ is a given parameter) after each iteration of
base selection.

An example image and the selected Haar-like features using discriminative
NBS are shown in the left image of Figure 1. It is compared with the results
selected using original NBS in the right image. Figure 2 shows the number of
remaining bases for each coherence μ after selection of the largest Haar base.
The template size is 50 × 50.

4 Tracking Using Discriminative NBS

With the discriminative NBS object representation, we locate object position
in the current frame through sum of squared difference (SSD)-based matching.
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Fig. 1. Top 30 features selected using

discriminative NBS (left) and the orig-

inal NBS (right) for an image
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Fig. 2. The number of remaining bases after

selecting the largest base

Using discriminative NBS, the object is first compared with the possible locations
in an region around the object position detected in the previous frame. The
one with the minimum SSD value is the target object location. In order to
account for object appearance changes, the foreground and discriminative NBS
are automatically updated every few frames.

4.1 Object Localization

The tracker starts from the predicted object position in the previous frame
and searches the best matched template in an extended area around it. We
use SSD to match the template, due to its high efficiency of matching under
the discriminative NBS representation. In each frame t, we specify a rectangular
region surrounding the object position with a margin as the search window, in
which the templates are sequentially compared with the referenced foreground
x = R

Φ
(t)
K

(f (t)
ref ).

Suppose that x is the object and y is a possible candidate object in the search
window. The SSD between them is,

SSD(x,y) =‖ x − y ‖2=‖ x ‖2 + ‖ y ‖2 −2〈x,y〉 , (11)

where ‖ · ‖ represents the L2-norm and 〈·, ·〉 denotes the inner product. x is
approximated by the discriminative NBS ΦK (i.e. R

Φ
(t)
K

(f (t)
ref ) =

∑K
i=1 c

(t)
i φ

(t)
i ) ,

built using the approach in Section 3. Eq.(11) is then transformed to

SSD(
K∑

i=1

c
(t)
i φ

(t)
i ,y) =‖

K∑
i=1

c
(t)
i φ

(t)
i ‖2 + ‖ y ‖2 −2

K∑
i=1

c
(t)
i 〈φ(t)

i ,y〉 . (12)

The first term is the same for all the candidate locations in the current frame.
While the second and third ones can be computed rapidly with using integral
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image. The online computational complexity of Eq.(12) is only O(K), where K
is the number of selected bases.

4.2 Subspace Update

Due to appearance changes of the object, the discriminative NBS built in the
previous frame might be unsuitable for the current frame. A strategy to dynam-
ically update the subspace is necessary. Here we update the subspace every 5
frames. Once a new subspace needs to be computed, we first use the updated
template and background samples from the current frame to compute the dis-
criminative NBS again as Eq.(4).

Template Update. The object template is also updated constantly to incorpo-
rate appearance changes, which serves as the new positive samples. As Eq.(4),
NBS is constructed to better represent for a set of foreground templates. In-
tuitively, these sampled foregrounds should recently appear, in order to more
precisely describe the current status of the object. Many previous efforts have
been devoted to template update (see [20]). One natural way is to choose the
recent Nf referenced foregrounds. Another solution is to update the reference
template in each frame, but this may incur considerable error accumulation. Sim-
ply keeping it unchanged is also problematic due to object appearance changes.
A feasible way is to update the foreground by combining the frames using time-
decayed coefficients. Here, we propose to update the foreground reference for
every Nu frames,

f (t)
ref =

{
f0 t = 0
γf (�(t−1)/Nu�Nu)

ref + (1 − γ)ft otherwise ,
(13)

where f0 is the foreground specified in the first frame and ft is the matched
template at frame t. γ is the tradeoff, which is empirically set to 0.5 in our
experiments. �(t − 1)/Nu�Nu is the frame at which the current subspace was
updated. f (�(t−1)/Nu�Nu)

ref is the object template at that frame. This means we
are updating the template periodically instead of at each frame, which is more
robust to tracking errors. This template updating scheme is compared with other
methods and results are shown in the experiments section.

Background Sampling. The background samples which closely resemble the
reference foreground often interfere with the stability and accuracy of tracker.
We sample the background templates which are similar to the current reference
object and take them as the negative data in solving the discriminative NBS.
We compute a distance map in a region around the object and those locations
that are very similar to the object are selected as the negative samples. Note
this process can be done very efficiently because the SSD distance map can be
computed very efficiently using Haar-like features and the integral image. Once
the distance map is computed, locations which are local minima together with
a non-minimal suppression are used to select negative samples.
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5 Experiments

We first discuss in this section several key parameters used in constructing the
discriminative NBS. Then we show qualitative tracking results of our approach
on challenging sequences with significant background clutter and camera mo-
tion. To demonstrate the advantages of our approach, our tracking results are
compared with three kinds of trackers: (1) a standard SSD tracker which uses
direct patch matching, (2) an NBS tracker which applies the original NBS for ob-
ject representation, and (3) a discriminative feature tracker proposed by Collins
et al. in [14].

5.1 Parameter Selection

Several parameters are used in the discriminative NBS. Parameters with different
settings will influence the accuracy of foreground reconstruction and tracking.
We discuss here the justification of selecting them.

The formulation of the discriminative NBS balances the influence of the fore-
ground and background reconstruction terms with a coefficient λ. Intuitively, it
should be set to a small value to ensure the accuracy of foreground representa-
tion. To find the best value, we use several image sequences (mostly from PETS
2001 data set) with ground-truths to quantitatively evaluate how the parameter
changes the tracking result. The tracking performance is evaluated as the mean
distance error between the tracked location and the groundtruth object center.
The discriminative NBS-based tracker with varying λ from 0 to 1 is applied to
this sequence. The curve plotted in Fig. 3 shows the correlation of λ and centroid
tracking error averaged over the whole sequence. Obviously, the centroid error
is relatively more stable and smaller when λ is set to 0.25.

Another parameter for discriminative NBS is the number of bases K used.
The selection of this parameter depends on image content. In general, the more
features, the more accurate tracking, but it will also incur more computation.
As a tradeoff, we set K = 30. Some other parameters we set empirically include:
the number of foreground template Nf to 1 and background ones Nb to 3. These
parameters are fixed for all the experiments in this paper.

We also conducted experiments to show the effectiveness of our template up-
dating scheme. Here, we review several template updating methods mentioned
above by comparing their tracking error of video sequence browse. These updat-
ing methods include: 1) updating the current template with the previous one,
2) updating the current template with an average of previous 5 frames and our
updating method. All of the methods are initialized with the same bounding box
at the first frame and the error of object center is computed according to the
ground truth. Figure 4 shows that the time-decaying approach is more robust
and stable.

5.2 Tracking Results

Qualitative Results. We apply our tracker to several challenging sequences
to show its effectiveness. We show some qualitative results on pedestrian videos
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here to show that our tracker can handle background clutter, camera motion,
and object appearance variations. In the following figures, red boxes indicate
tracked object while blue boxes indicate the negative samples selected if there is
a subspace update in that frame. The subspace is updated every 5 frames and
if there is no update of subspace, no blue boxes (background samples) will be
showed.

Sequence Crosswalk (Figure 5) has totally 140 frames, with two pedestrians
walking together along a crowded street with an extremely cluttered background.
The tracking result demonstrates the discriminative power of our algorithm. In
this sequence the hand-held camera is extremely unstable. The shaky nature of
the sequence makes it all the more difficult to accurately track the pedestrians.
Despite this, our algorithm is able to track the pedestrians throughout the entire
140 frames of the sequence. Shai Avidan mentions in [15] that the Ensemble
Tracker is able to track for the first 80 frames of the sequence but does not
mention the performance for the remaining 60 frames.

Sequence Browse (Figure 6) is a video clip of frames 24-185 in Browse1.avi
derived from CAVIAR people (ECCV-PETS 2004)Dataset [21]. This sequence
is obtained by a distorted camera. Each frame is 384×288 pixels and the object
is bounded by a 44 × 35 box. With significant distortion, the object can still be
tracked.

Sequence Courtyard (Figure 7) is a video clip from 134th to 267th frame
which records a person walking in the yard. The frame size is 720× 480 and the
object is manually bounded at frame 134 with a 41× 101 red box. With moving
background and variation of the object, our tracker can stably track the person.

Sequence Crowd (Figure 8) is a video clip (250th to 338th frames) selected
from PETS 2007 Data set. In this sequence the background is very cluttered
with many distracters. As can be observed the object can still be well tracked.
The frame size is 720×576 and the object is initialized with a 26×136 bounding
box.
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Fig. 5. Crosswalk sequence: The frames 0, 16, 50, 74, 105 and 139 are shown. The

red boxes are the tracked objects and the blue boxes at 5k frame are the sampled

backgrounds.

Fig. 6. Browse sequence: The frames 24, 45, 74, 115, 139, 185 are shown. The red

boxes are the tracked objects and the blue boxes at 5k + 4 frame are the sampled

backgrounds.

Comparative result between our DNBS tracker and another discriminative
tracker [14] is showed in Fig. 9. Sequence Female is a video clip in PETS 2007
data set. It starts from frame 826 to 870, each of which has 720×576 pixels. The
object is initialized at the 826th frame of size 26 × 106. Collins’ tracker drifts
away at frame 841, while our method still keeps track all along.
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Fig. 7. Courtyard sequence: The frames 134, 153, 189, 205, 234, and 267 are shown.

The red boxes are the tracked objects and the blue boxes at 5k + 4 frame are the

sampled backgrounds.

Fig. 8. Crowd sequence: The frames 250, 267, 295, 306, 325, and 338 are shown. The

red boxes are the tracked objects and the blue boxes at 5k frame are the sampled

backgrounds.

Quantitative Evaluation. In order to quantitatively evaluate the performance
of our approach, we compare our results with the ground truth of the above two
sequences (Crosswalk and Browse). The error is measured as the distance be-
tween the tracked object center location and the groundtruth object location in
pixels. Figure 10 shows the results for three methods: (blue) SSD method, (green)
NBS method, (red) Discriminative NBS method, and (light blue) a discrimina-
tive feature tracker proposed by Collins et al. [14]. The objects are initialized at
the same position at the first frames and the reference templates are updated in
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Fig. 9. Female sequence: The frames 826, 840, 854 and 870 are shown. The upper row

shows results for DNBS tracker and the second row shows results for Collins’ tracker.
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Fig. 10. Quantitative results for the Crosswalk and Browse sequence. The horizontal

axis is the frame number and the vertical axis is the tracking error between the tracked

object location and groundtruth.

the same way (with Nu = 5 and γ = 0.5) as mentioned in this paper. As can be
observed, our approach is consistently better than these two methods.

6 Conclusions

We have proposed the discriminative NBS, a simple yet informative object rep-
resentation that can be solved using a variant of OOMP. Such a representation
incorporates the discriminate image information to distinguish the foreground
and background, making it suitable to be used in object tracking. We use SSD
matching built upon the discriminative NBS to efficiently locate object in video
frames. Our experiments on challenging video sequences show that the discrim-
inative NBS-based tracker can stably track the dynamic object. We intend to
explore the application of discriminative NBS on other vision and multimedia
tasks such as image copy detection in future.
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Abstract. We use a simple yet powerful higher-order conditional ran-

dom field (CRF) to model optical flow. It consists of a standard photo-

consistency cost and a prior on affine motions both modeled in terms

of higher-order potential functions. Reasoning jointly over a large set of

unknown variables provides more reliable motion estimates and a robust

matching criterion. One of the main contributions is that unlike pre-

vious region-based methods, we omit the assumption of constant flow.

Instead, we consider local affine warps whose likelihood energy can be

computed exactly without approximations. This results in a tractable,

so-called, higher-order likelihood function. We realize this idea by em-

ploying triangulation meshes which immensely reduce the complexity of

the problem. Optimization is performed by hierarchical fusion moves and

an adaptive mesh refinement strategy. Experiments show that we achieve

high-quality motion fields on several data sets including the Middlebury

optical flow database.

1 Introduction

Currently most methods for optical flow estimation can be roughly divided into
two groups: (i) variational methods based on the pioneering work of Horn and
Schunck [1], and (ii) discrete methods utilizing combinatorial optimization such
as graph-cuts [2]. Both approaches have their advantages and disadvantages.
While variational methods often yield very high accuracy, these methods depend
on rather local image properties and may also suffer from local minima during
optimization of the cost function. Combinatorial optimization is often able to
recover strong minima but only with respect to a rather sparse discretization of
the search space. Recently, methods have been proposed [3,4] which successfully
combine both worlds towards discrete-continuous optimization which is able to
avoid local minima and obtain highly accurate (continuous) flow estimates at the
same time. A rather comprehensive overview and comparison of latest optical
flow methods can be found in [5] and on the website of the Middlebury optical
flow database1.
1 http://vision.middlebury.edu/flow/
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Still, a major limitation of existing algorithms is in the definition of the likeli-
hood (or data) term within the energy formulation. Often, a matching criterion
is defined pixel-wise for instance using squared differences on the intensities. In
general, such a formulation yields an ill-posed problem since two-dimensional
flow vectors have to be recovered from a one-dimensional signal (aperture prob-
lem). Ambiguities may arise for matching individual pixels independently. Here,
regularization plays an important role to render the problem well-posed such
that the optimization yields meaningful solutions.

In contrast, region-based approaches [6,7] use local image patches to estimate
point correspondences. Here, a matching criterion such as the correlation coef-
ficient (CC) is evaluated on the whole patch centered at a point for which the
motion is to be determined. The distribution of such points can be dense or
sparse (by employing a parameterization of the motion field) [8]. Region-based
approaches yield a more robust definition of the likelihood compared to pixel-
wise methods [9], but often introduce a rough approximation. In fact, in most
approaches it is assumed that all pixels within the patch move with constant
flow. However, except for pure translation within the patch, the assumption of
constant flow does not hold.

One may claim that an optimal definition of the likelihood should be (i) robust
and reliable, by considering a larger set of unknown variables simultaneously and
(ii) precise and tractable by modeling the various motions for the set of variables
beyond the assumption of constant flow. This leads us to our main contribution
in this paper, which we call higher-order likelihoods. In the following, we will
introduce the concept of higher-order likelihoods and their corresponding energy
in a conditional random field (CRF). We demonstrate how triangulation meshes
perfectly support our concept. The effectiveness of our approach is evaluated on
several datasets including the Middlebury optical flow database. We also revisit
the concept of motion layers [10] which, when integrated in our framework,
enables us to handle occlusions in a natural way in form of overlapping meshes.
We conclude our paper by a discussion on future work.

1.1 Related Work

Conditional random fields are ubiquitous in computer vision. Their success can be
certainly attributed in large parts to the existence of powerful optimization meth-
ods which have been developed in the last decade. The most commonly used mod-
els in low-level vision applications are first-order CRFs2, which contain cliques of
size up to two. Here, the unary potentials play the role of the likelihood term eval-
uating how well a certain label fits to a variable w.r.t. to the observation, inde-
pendently of all other variables. The pairwise potentials are then used to enforce
smoothness by penalizing deviations of labelings between two neighboring vari-
ables. These models are quite intuitive due to their natural relationship to the
image grid itself. Additionally, first-order models are attractive due to efficient
optimization methods, which often guarantee to find the global optimum.

2 Note that an n-th order CRF contains cliques of size up to n + 1.
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Despite the popularity of first-order models, their modeling capabilities are
very limited. As already mentioned, a likelihood term based on unaries is ei-
ther not very reliable or rough approximations have to be used as in previous
region-based methods. In some works (e.g. in [11,12,13]), the pairwise terms are
considered for the likelihood in order to model a conditional data-dependency
on a pair of variables which yields a more appropriate model for the problem at
hand.

Recent advances in CRF optimization allow the use of higher-order potentials
in an efficient and principled manner [14,15,16]. A combination of fusion moves
[17,18], reduction techniques [19], and the QPBO algorithm [20,21] allows to use
a second-order model in stereo [22], while a similar model is used for motion
in [23] employing belief propagation. Both works use a second-order prior de-
fined on triple-cliques to enforce smoothness based on second derivatives of the
disparity/motion field. Still, only unary terms are used for the likelihood.

Recently, many techniques have been developed for larger cliques of up to
several hundred variables, e.g. [15,24] just to mention a few. In order to deal
with such large cliques in a tractable way , they must exhibit some internal
structure. For instance in [15] it is assumed that only a few (important) label-
configurations have a low energy and all remaining configurations a constant
(high) cost.

In the following, we will introduce our concept of higher-order likelihoods for
the task of optical flow. We will derive a likelihood term based on triple-cliques
which models the costs of local affine motions exactly without approximations.
Additionally, we propose two novel regularization terms, the first one being also
based on triple-cliques, and the second one based on quadruple-cliques.

2 Concept of Higher-Order Likelihoods

Consider a set V of variables i, ..., N . In optical flow, the variables correspond to
pixels and we seek for optimal assignments di

3 corresponding to two-dimensional
flow vectors. Additionally, we introduce the power set C containing all possible
cliques (subsets) c of variables. We define the cost for a labeling d (i.e. every
variable is assigned a value di) in terms of a general CRF energy as

E(d|θ) =
∑
c∈C

ψc(dc|θ) . (1)

The clique potential functions ψc evaluate the cost for assigning a sub-labeling
dc to a clique c conditioned on the observation θ (the image data). In first-order
models, the energy would then be simply the sum of unary potentials ψi(xi|θ)
plus the sum of pairwise potentials ψij(di, dj |θ). For simplicity, in the following
we will neglect θ in the potential functions.

3 Depending on the context we will treat i, j, ... as random variables and as 2D coor-

dinates. Similarly, we treat labels di, dj , ... also as 2D motion vectors.
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Theoretically, reasoning jointly over all variables would be the best approach
for finding an optimal labeling. The energy would simply consist of one higher-
order potential for a clique containing all variables. Obviously, even for a small
number of variables this approach is doomed in practice regarding the compu-
tational complexity. A compromise has to be found between the clique size and
the tractability of the problem.

Let us concentrate on the problem of optical flow. Determining the flow vec-
tor of individual pixels is clearly not well defined due to the aperture problem
mentioned earlier. In contrast, solving for the flow for a group of pixels might
be more reliable. Assume we are seeking for the optimal flow vectors within a
discretized search space L (a set of labels). Then, for a clique of K pixels the
solution space for the labeling problem has the cardinality |L|K . Evaluating all
of the potential labelings is infeasible. We discuss two alternative solutions to
this dilemma. We realize one of these solutions in our practical system, which
we discuss in detail in Sec. 2.1.

Let us first consider the alternative solution, which we only discuss theoreti-
cally. It is based on the recent work [15], where higher-order cliques are modeled
by sparse higher-order representations. Only a few labelings have assigned the
correct higher-order cost and all other remaining labelings are assigned a con-
stant (high) cost, which approximates their true cost. The key question is now
which labelings should be modeled? Note that there is actually only one label-
ing, i.e. the maximum a posteriori (MAP) labeling d̂, which has to be modeled.
This is the labeling which corresponds to the global optimum of the CRF energy,
which is obviously unknown. One approach is to design a data-driven prediction
function which has the observation as input and possible labelings as output.
Also, an iterative optimization procedure can be envisioned, where the higher-
order terms, which only approximate the current MAP labeling by a constant
cost, are redefined and thus improve the modeling of the MAP labeling in the
next iteration. However, such an approach might be computationally very ex-
pensive. In this paper, we present a simple yet powerful model overcoming this
limitation by exploiting inherent properties of optical flow.

2.1 Reduction of Complexity Using Triangulations

Optical flow estimation consists of recovering the apparent motion from two
dimensional images capturing a scene of three dimensional objects moving over
time. We make two observations: (i) often the scene contains mainly solid objects,
which might translate, rotate, and/or scale from one image to another, (ii) the
motion of non-solid objects (such as textiles) can be sufficiently represented
by several local affine motions. These observations are consistent with other
approaches previously proposed for optical flow [25,26,27].

If we restrict the set of labelings to the ones representing affine motions only,
we already achieve an immense reduction of complexity. An affine motion in 2D
is fully defined by three two-dimensional points (i.e. six degrees of freedom). So,
estimating an affine motion from K(> 3) pixels is an over-determined problem
which allows further simplifications. Additional reduction of complexity can be
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Fig. 1. Left: the triangles (ijk) and (ijl) represent higher-order likelihoods and define

local affine warps when labels (di, dj , dk, dl) are assigned to the triangle points. Right:

illustration of the two different regularization terms. The ADP penalizes changes be-

tween initial angles (α, β) and angles (α′, β′). The NAMP determines how well the

warp of one triangle describes the warp of the other one by computing the (normal-

ized) distance between the warped points k′, l′ and their locations Aijl(k), Aijk(l) if

warped by the neighboring triangle.

achieved by a parameterization of the cliques motion using a simple geometrical
transformation model in terms of triangulation. A triangle in 2D space defines
an affine warp. We propose to represent a clique of pixels by a single triangle.
Then, the task becomes to find the optimal displacements of the triangle points,
instead of seeking for individual displacements for each pixel. Let us now derive
the energy for this model.

2.2 Likelihood Term

First, we need to define a matching criterion. In this work, we consider the
correlation coefficient (CC). For two sets of measurements X and Y , the CC is
defined as

CC(X, Y ) =
∑

(xi − x̄)(yi − ȳ)√∑
(xi − x̄)2

√∑
(yi − ȳ)2

=
cov(X, Y )

σxσy
, (2)

where x̄ and ȳ are the two means and σx and σy the standard deviations. The
CC takes values from [−1, 1], where 1 indicates a perfect linear relationship, 0
indicates no linear relationship, and −1 an inverse linear relationship. In order
to use the CC score within an energy minimization, we modify the original term
into CC′ = (1 − CC) taking values from [0, 2].

Second, we formalize the local affine motion model based on a triangulation
mesh. Assume that a set of triangles covering the image domain is given. We
can define a local affine warp Tijk of a point p = (x, y)� lying in a triangle (ijk)
as the sum of the products of the barycentric coordinates (ωi, ωj, ωk) of p and
the three displacement vectors (di, dj , dk) as

Tijk(p) = p + ωidi + ωjdj + ωkdk . (3)

This is a simple linear triangle interpolation. The warping is illustrated in Fig.
1(left). Note that instead of expressing the local warp as a linear combination
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of the three displacements, we can equivalently define an affine transformation
matrix Aijk as

Aijk =

⎡⎣ax bx cx

ay by cy

0 0 1

⎤⎦ , (4)

which maps (homogeneous) image points to their new locations. The matrix can
be determined by solving a simple linear system of equations.

From Aijk we can extract two linear functions P x
ijk(p) = ax x + bx y + cx and

P y
ijk(p) = ay x + by y + cy, together defining the movement of point p. These

definitions are later used in one of our regularization terms.
For convenience, we define some further notation used in the following equa-

tions. Given an image I, then I ′ denotes the warped image I ◦ T . Additionally,
Iijk denotes the triangular sub-image containing only the pixels lying within the
triangle (ijk).

Based on the above matching criterion and the triangle motion model, and
given two images I and J (i.e. the two adjacent frames in an optical flow se-
quence), we can now define the higher-order likelihood in terms of triple-clique
potential functions

ψijk(di, dj , dk) = CC′ (I ′ijk , Jijk

)
= 1 − cov(I ′ijk , Jijk)

σI′
ijk

σJijk

. (5)

In fact, any labeling (di, dj , dk) yields a potential affine warp and the resulting
matching cost is evaluated exactly (without approximations) for the set of pixels
within the triangular sub-image. One problem remains, which is that the space
of affine transformations also includes reflections. This type of transformations
should not be considered in case of optical flow. We can enforce this by a simple
modification on the likelihood term

ψijk(di, dj , dk) =

{
CC′

(
I ′ijk , Jijk

)
if O(i, j, k) = O(i′, j′, k′)

2 otherwise
, (6)

where O(i, j, k) determines the orientation (i.e. clockwise or counter-clockwise)
of a triangle. Note that this is a very simple and efficient geometrical operation
to check whether a triangle warp constitutes a reflection. The assignment of the
maximum cost of 2 for reflections avoids such unwanted warps.

An energy based on the sum of such triple-clique potentials could be sufficient
for estimating the flow. It imposes some implicit regularization on the transfor-
mation since the cliques overlap at the common edge of neighboring triangles.
However, texture-less regions and small triangles might benefit from an explicit
regularization.

2.3 Regularization Term

Triangles covering homogeneous regions might lead to unreliable estimates. Reg-
ularization is needed such that discriminative triangles with reliable motion drive
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the less reliable triangles towards a good solution. There are several ways for em-
ploying a regularization on the mesh of triangles. Here, we propose two different
terms. Which of these two terms should be used depends on the application
and the motion we expect to be present in the image sequence. We evaluate the
performance of both terms later in our experiments.

The first regularization term is based on triple-clique potential functions and
we call it the angle deviation penalty (ADP). The ADP is defined as

ψijk(di, dj , dk) = ‖(αi, αj , αk) − (α′
i, α

′
j , α

′
k)‖ . (7)

The term penalizes the change between the initial angles (αi, αj , αk) and the
angles of the warped triangle (α′

i, α
′
j , α

′
k) (see also Fig. 1(right)). The ADP is

invariant to similarity transformations (i.e. all transformations containing only
translation, rotation, and isotropic scaling).

The second term is more general and defined on quadruple-cliques. It regular-
izes the motion between neighboring triangles (ijk) and (ijl). We call this term
non-affine motion penalty (NAMP) and define it as

ψijkl(di, dj , dk, dl) =
∥∥∥∥θk

θl

∥∥∥∥ , (8)

with

θk =
∥∥∥∥ δ(P x

ijl , k, k′
x)

δ(P y
ijl , k, k′

y)

∥∥∥∥ θl =
∥∥∥∥ δ(P x

ijk , l, l′x)
δ(P y

ijk , l, l′y)

∥∥∥∥ δ(P, p, v) =
|P (p) − v|√
a2 + b2 + 1

. (9)

Intuitively, the term determines how well the warp of one triangle, represented
by the linear functions P x and P y, describes the motion of the other one. If
the two local warps Aijk and Aijl constitute an affine motion on the rectangle
(ijkl), then the penalty term evaluates to zero. A geometrical interpretation is
illustrated in Fig. 1. We adopted the NAMP from the closely related distances
from planes measure proposed in [28]. The NAMP can be seen as the multi-
variate extension.

The final energy of our higher-order CRF is then the weighted sum of the
likelihood energy and the regularization energy

E(d) = Elikelihood(d) + λEregularization(d) , (10)

where λ controls the influence of the regularization term.

3 Triangulation

So far, we have defined an energy model which enables us to use any triangula-
tion for estimating optical flow. Since there are various ways for obtaining such
triangulations, which might be more or less suitable for optical flow, we would
like to discuss some of them in the following, which are all based on the popular
Delaunay triangulation [29].



Optical Flow with Triangulation-Based Higher-Order Likelihoods 279

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Illustration of different approaches for obtaining triangulations (cf. Sec. 3) for

an input image (a). Triangulation based on a regular mesh in (b), based on Canny

edges in (c,d), and based on segmentation in (e,f). Mesh refinement with and without

merging step in (g) and (h) (cf. Sec. 3.2).

The simplest way of defining a mesh of triangles is through a uniform dis-
tribution of nodes along the image domain (cf. Fig. 2(b)). Such regular meshes
have been previously used for optical flow [8], and they can be represented by
a small number of parameters (e.g. number of nodes or node spacing). While
they have the advantage of simplicity, regular meshes have the drawback of
a missing relation to the underlying image data. Triangles might cover differ-
ent objects and thus probably different layers of motion. Here, data-dependent
triangulation (DDT) seems to provide more suitable triangulations. Low-level
data-dependence (e.g. using Canny edges as shown in Fig. 2(c)) would allow to
place triangle edges along image edges (cf. Fig. 2(d)). However, image edges do
not necessarily follow motion boundaries. In [30], a method is proposed which
extracts occlusion boundaries from a single image. These boundaries might fol-
low the real motion boundaries more closely. Another approach could be based
on object segmentation. In Fig. 2(e), we utilize a mean-shift color segmentation4

to extract the shape of the teddybear. We perform a Delaunay triangulation for
boundary nodes and discard triangles outside the segmentation (cf. Fig. 2(f)).
In all these examples, the nodes can be obtained with the Douglas-Peucker al-
gorithm for line simplification [31] from any given boundary or edge image.

3.1 Layered Representation

An elegant and promising approach for motion estimation is based on a multi-
layer representation, starting with the work of Wang and Adelson [10] and

4 http://www.caip.rutgers.edu/riul/research/code/EDISON/

http://www.caip.rutgers.edu/riul/research/code/EDISON/
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numerous ongoing developments, e.g. [32,33,12] just to name a few. However,
this approach has fallen a little bit into oblivion when reviewing the list of meth-
ods in the popular Middlebury optical flow ranking. In this work, we revisit a
simple but effective method for determining motion layers. We follow a similar
approach as described in [33]. Initially, we use a mean-shift color segmentation
on the first frame to obtain an over-segmentation. Then we estimate affine warps
in a least-squares sense from displacements of the pixels in each segment. The
displacements are taken from an initial motion field, which we compute in ad-
vance using our energy model and a regular mesh. Next, segments with similar
affine motions are grouped by spectral clustering. For that purpose we use the
end-point distance of warped image boundary points as a distance measure on
affine warps and a fixed value of 15 clusters. This approach allows us to define
independent meshes, one for each cluster, where each cluster represents a motion
layer. This also allows us to handle occlusions and preserve discontinuities be-
tween motion layers in a natural way. Whenever two meshes overlap, we consider
the mesh with a higher CC score in the overlap area to be in front of the other.

3.2 Mesh Refinement and Area Importance

As discussed earlier, larger triangles are in general more robust in providing
reliable flow estimates due to the larger set of pixels considered simultaneously.
Now, imagining two neighboring triangles where one of them is significantly
larger than the other one, we would trust more in the motion corresponding
to the energy minimum of the larger one. However, the actual energy value is
independent of the size of the triangles. To this end, we propose to add an area
weighting factor. The modified likelihood term becomes

ψijk(di, dj , dk) =

{
Δijk CC′

(
I ′ijk, Jijk

)
if O(i, j, k) = O(i′, j′, k′)

2 Δijk otherwise
, (11)

where Δijk is the area of the triangle (ijk). Similarly, we add a weighting factor
to the ADP regularization term5.

Still, smaller triangles are more suitable for recovering local flow, in particular
for areas undergoing non-rigid motion. To this end, we propose a hierarchical
mesh refinement. Starting with an initial triangulation containing larger triangles
which will drive the estimation in the beginning, we subsequently refine the mesh
by inserting a node at the center of each edge and recompute the triangulation.
Each triangle will be separated into four smaller triangles all having the same
size. On this refined mesh we continue the optical flow estimation.

We demonstrate the effectiveness of this refinement strategy in a small ex-
periment on the RubberWhale sequence, for which the ground truth flow field
is available. In four different runs, we distribute triangles of same sizes – with
different initial sizes in each run – over the whole image domain. We run our
energy minimization over four to five levels of refinement (depending on the

5 The NAMP already has an inherent bias towards larger triangles.
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initial size), where in each level the motion of the triangles is initialized with
the motion from the previous level. The motion of inserted nodes is linearly
interpolated. We compute the average angular error for the estimated flow of
each level. In Fig. 3 we plot the progress of the error versus the triangle size.
The error decreases along with the level of refinement until a certain point where
the error increases in all four runs. There seems to be a critical point where the
triangle sizes are becoming too small to provide reliable motion estimates.

We conclude that a refinement of triangles im-
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Colors show different runs.

proves the result, while a certain size should be pre-
served. This is exactly the range, where all four runs
have their minimum error. In order to preserve these
sizes, while still refining triangles above this range,
we add a threshold on the edge length in the refine-
ment. Nodes are only inserted on edges having at
least a length of 15 pixels which results in minimum
triangles of sizes between 100 and 25px2.

In some cases the node insertion can lead to nodes
lying very closely next to each other. To this end,
after each mesh refinement we identify nodes whose
initial position is located at almost the same position and replace the nodes by
one averaged node and compute its motion as the average motion of the replaced
ones. The refinement with and without this merging step is illustrated in Fig.
2(g) and 2(h).

4 Optimization

In order to optimize our CRF energy, we employ a discrete optimization over
hierarchical sets of displacement vectors. We generate a search space for each
optimization sweep by defining a maximum range and a sub-sampling of this
range by a fixed number of displacements along the eight main directions in 2D
(i.e. positive and negative horizontal, vertical, and diagonal direction). A similar
quantization strategy has been previously used in [13]. The energy minimization
is performed by subsequent sweeps using the QPBO-I algorithm [34], iteratively
over the set of displacements. Higher-order potential functions are transformed
into pairwise terms based on the reduction techniques for triple-cliques [19], and
quadruple-cliques [16]. After an optimization sweep, the displacement set and
thus the search range is re-scaled by a user defined factor. This procedure is
repeated for a fixed number of sweeps, before we initiate a mesh refinement and
rerun the optimization on the refined mesh. Throughout this work, we use fixed
setting. We set the initial maximum range to 10 pixels and the number of sub-
sampling steps to 5 yielding 41 displacements (including the zero-displacement).
We perform 5 sweeps on one mesh level, and after each run we refine the dis-
placements by a factor of 0.66 while we use a total of 4 mesh levels.
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(a) (b) (c) (d) (e)

Fig. 4. Experiment on regularization behavior of ADP and NAMP for different types

of transformations (cf. Sec. 5.1). We show the initial triangulation in (a), and in (b-e)

the warp applied on (a) in green and the results for ADP in red and for NAMP in blue.

5 Experiments

5.1 ADP versus NAMP

The purpose of this experiment is to investigate the behavior of the two differ-
ent regularization terms in a fully controlled setting. Remember, that ADP is
invariant to similarity transformations, while NAMP is invariant to affine trans-
formations. We define a triangulation on a test image (cf. Fig. 4(a)) where only
one triangle is covering a textured part of the image. The likelihood of this tri-
angle will be the driving force for the alignment to four different warped images.
The warped images are generated by applying warps to the initial image and
triangulation, i.e. an isotropic scaling, a rotation, an anisotropic scaling, and a
shearing (cf. Fig. 4(b) to 4(e)). Except for the one triangle in the middle, the
motion of the other triangles will result only from the regularization term. We
find that both terms yield very good alignments for the outer triangles in case of
similarity transformations. For pure rotation, ADP performs even slightly bet-
ter, most probably due to the higher invariance of NAMP. In contrast, NAMP
yields accurate alignments in case of the two affine transformations, while here
ADP prevents a proper alignment of the outer triangles. We conclude that ADP
should be used, when mostly similarity transformations are expected. It is also
much more efficient w.r.t. to computational time than NAMP. Beyond this ex-
periment, we experienced that NAMP based on quadruple-cliques is currently
impracticable for triangulations with several thousands of triangles due to its
computational demands. In the following experiment, we will again use both
terms and measure the performance w.r.t. to computational time.

5.2 Giraffe

In this experiment, we perform a motion estimation on two frames of the Giraffe
sequence (180× 144 pixels), where the Giraffe deforms considerably. Segmenta-
tions of the giraffe are available, so we can define two motion layers, one for the
giraffe and one for the background. We run the estimation with both regulariza-
tion terms, and each run with three levels of mesh refinement (≈ 800 triangles
on the finest level). We find a large difference in the running time. While using
ADP, the optimization takes less than one minute, using NAMP takes almost
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(a) (b) (c) (d)

Fig. 5. Experiment on Giraffe sequence. Target frame in (a), initial and final mesh in

(b) and (c), and the resulting flow field in (d) (cf. Sec. 5.2).

Fig. 6. Flow fields for the Army and Teddy sequence for the single-layer approach

using a regular mesh on the left, and results for the multi-layer approach on the right

(cf. Sec. 5.3). Please note the sharp transitions at motion boundaries in case of the

multi-layer approach.

ten minutes until convergence. We show the images, the initial and final meshes,
and the color-encoded flow field using ADP in Fig. 5. The NAMP yields a similar
result. Despite its more restrictive nature, we are able to obtain a high-accurate
flow field using ADP even for the giraffe layer with highly non-rigid motion.

5.3 Middlebury

Finally, we perform an evaluation on the datasets of the Middlebury database.
We compare two approaches for defining the triangulation. The first one is based
on a single regular mesh, and the second one is based on the layered represen-
tation described in Sec. 3.1. Here, the resulting flow fields of the first approach
are used for the affine motion clustering yielding the different motion layers.
Throughout the experiments we use the ADP regularization with λ = 0.3. The
remaining optimization parameters correspond to those described in Sec. 4. The
initial node distance for the regular mesh is set to 60 pixels and subsequently
refined to 30, 15, and 7.5. The initial motions of the multi-layer meshes are
interpolated from the single-layer result.

The single-layer approach yields already quite reasonable results ranked in
the midfield of the database. The multi-layer approach results in high-quality,
discontinuity preserving motion fields which are competing with the best meth-
ods currently listed in the ranking, including advanced variational methods. In
Fig. 6 we show some visual results. The detailed quantitative evaluation can be
found online on the Middlebury website and in the supplementary material.
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The computationally expensive part of our method is the likelihood evalua-
tion, in particular on the finer mesh levels containing a large number of triangles
(>10, 000). Since the computations are based on rather simple geometrical trian-
gle operations and linear interpolation, a tremendous speed-up might be achieved
by GPU implementation providing efficient, hardware-supported functionalities.

6 Conclusion

We propose a novel CRF model with higher-order likelihoods for the application
of optical flow beyond the assumption of constant flow. Likelihood terms are de-
fined on local pixel regions whose motions are constrained to local affine warps
through triangle-based parameterization. The energies are defined as triple-
cliques for the likelihood as well as the similarity invariant regularization term,
while non-affine motions can be penalized through quadruple-clique energies. To
our best knowledge, this is the first time that higher-order CRF likelihoods are
modeled in such a way. Here, the main advantage of our approach is that the
energies are evaluated exactly without approximations yielding a robust and re-
liable matching process. An interesting direction would be to integrate the whole
process of triangulation and motion layer definition into the optimization. A prior
on the maximum number of layers, as well as a flow-dependent mesh-refinement
could further improve the the results. A step beyond our current approach could
allow for the definition of higher-order likelihoods with arbitrary shapes and
without restrictions through the parametrization. We believe our model can be
seen as a building block for new directions in CRF modeling in computer vision,
which directly benefit from future advances in CRF optimization.
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Abstract. Given a set of points corresponding to a 2D projection of a
non-planar shape, we would like to obtain a representation invariant to
articulations (under no self-occlusions). It is a challenging problem since
we need to account for the changes in 2D shape due to 3D articulations,
viewpoint variations, as well as the varying effects of imaging process
on different regions of the shape due to its non-planarity. By modeling
an articulating shape as a combination of approximate convex parts con-
nected by non-convex junctions, we propose to preserve distances between
a pair of points by (i) estimating the parts of the shape through approxi-
mate convex decomposition, by introducing a robust measure of convexity
and (ii) performing part-wise affine normalization by assuming a weak
perspective camera model, and then relating the points using the inner
distance which is insensitive to planar articulations. We demonstrate
the effectiveness of our representation on a dataset with non-planar ar-
ticulations, and on standard shape retrieval datasets like MPEG-7.

Keywords: Shape representation, articulations, convex decomposition.

1 Introduction

Understanding objects undergoing articulations is of fundamental importance
in computer vision. For instance, human actions and hand movements are some
common articulations we encounter in daily life, and it is henceforth interesting
to know how different ‘points’ or ‘regions’ of such objects transform under these
conditions. This is also useful for vision applications like, inferring the pose of
an object, effective modeling of activities using the transformation of parts, and
for human computer interaction in general.

Representation and matching of articulating shapes is a well-studied problem,
and the existing approaches can be classified into two main categories namely,
those based on appearance-related cues of the object (eg. [1]), and those using
shape information which can be contours or silhouettes or voxel-sets (eg. [2–4]).
Our work corresponds to the latter category, wherein we represent an object by
a set of points constituting its silhouette. Although there are lots of work ([5–
7]) on deformation invariant ‘matching’ of shapes, there is relatively less work
on ‘representing’ a shape invariant to articulations, eg. [2, 8, 9]. Among the
above-mentioned efforts only [2] deals with 2D shapes and their representation
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Fig. 1. (a): Comparing distances across 2D projections of non-planar articulating

shapes. (L-R) Shape 1 and 2 belong to the same 3D object, whereas shape 3 is from a

different one. For a pair of points with same spatial configuration (yellow dots), Top:

Inner distance [2] yields ‖d11 − d12‖2 > ‖d12 − d13‖2, whereas our method (bottom)

gives ‖d21−d22‖2 < ‖d22−d23‖2. (b) Keypoints with similar shape description obtained

from our method. Points were picked in the first frame, and their ‘nearest neighbors’

are displayed in other two frames. No holistic shape matching was done, emphasizing

the importance of a shape representation. (All figures are best viewed in color).

mainly addresses planar articulations. However, most articulating shapes, such
as a human, are non-planar in nature and there has been very little effort focusing
on this problem. This leads us to the question we are addressing in this work.

Given a set of points corresponding to a 2D projection of an articulating shape,
how to derive a representation that is invariant/insensitive to articulations, when
there is no self-occlusion? An example where this question is relevant is shown
in Figure 1, along with results from our proposed shape representation. Such
situations also arise when multiple cameras are observing a scene containing
non-planar objects, where the projection of a particular ‘region’ of an object
will depend on its relative orientation with the cameras. Accommodating for
such variations, in addition to articulations (for which, each object can have
different degrees of freedom) makes this a very hard problem.

Contributions: Under the assumption that a 3D articulating object can be ex-
pressed as a combination of rigid convex parts connected by non-rigid junctions
that are highly non-convex, and there exists a set of viewpoints producing 2D
shapes with all parts of the object visible; given one such instance of the 2D
shape, we are interested in obtaining an invariant representation across articu-
lations and view changes. We address this problem by,

1. Finding the parts of a 2D articulating shape through approximate convex
decomposition, by introducing a robust area-based measure of convexity.

2. Performing part-wise affine normalization to compensate for imaging effects,
under a weak perspective camera model, and relating the points using inner
distance to achieve articulation invariance (upto a data-dependent error).

After reviewing the prior work in Section 2, we formally define the problem
in Section 3. We then present our proposed method in Section 4 by providing
detailed analysis on the model assumptions. We evaluate our shape descriptor
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in Section 5 through experiments for articulation invariance on a dataset with
non-planar shapes, including both intra-class and inter-class studies, and for
standard 2D shape retrieval using the MPEG-7 [10] dataset. Section 6 concludes
the paper.

2 Related Work

Representation and matching of shapes described by a set of N-dimensional
points has been extensively studied, and the survey paper by Veltkamp and
Hagedoorn [11] provides a good overview of the early approaches. More recently,
there have been advances in matching two non-rigid shapes across deformations.
For instance, Felzenszwalb and Schwartz [6] used a hierarchical representation
of the shape boundary in an elastic matching framework for comparing a pair
of shapes. Yang et al [12] used a locally constrained diffusion process to relate
the influence of other shapes in measuring similarity between a pair of shapes.
Registering non-rigidly deforming shapes has also been addressed by [7] and
[13]. Mateus et al [4] studied the problem of articulation invariant matching of
shapes represented as voxel-sets, by reducing the problem into a maximal sub-
graph isomorphism. There are also efforts, for instance by Bronstein et al [14],
on explaining partial similarity between the shapes.

Though there has been considerable progress in defining shape similarity met-
rics and matching algorithms, finding representations invariant to a class of non-
rigid transformations has not been addressed extensively. This is critical for
shape analysis because, rather than spending more efforts in matching, we stand
to gain if the representation by itself has certain desirable properties. Some works
towards this end are as follows. Elad and Kimmel [8] construct a bending invari-
ant signature for isometric surfaces by forming an embedding of the surface that
approximates geodesic distances by Euclidean distances. Rustamov [9] came up
with a deformation invariant representation of surfaces by using eigenfunctions
of the Laplace-Beltrami operator. However in this work, we are specifically inter-
ested in articulation insensitive representation of 3D shapes with the knowledge
of its 2D projection alone. A key paper that addresses this particular problem is
that of Ling and Jacobs [2]. They propose the inner distance, which is the length
of the shortest path between a pair of points interior to the shape boundary, as an
invariant descriptor of articulations when restricted to a set of translations and
rotations of object parts. But such an assumption is applicable only for planar
shapes, or when the shape is viewed using an ideal orthographic camera. Since
neither of these two settings hold true in most real world scenarios, representing
a 2D projection of a 3D non-planar shape invariant to articulations becomes an
important problem, which we formalize in the following section.

3 Problem Formulation

An articulating shape X ⊂ R
3 containing n parts, {Pi}n

i=1, together with a set
of Q junctions, can be written as X = {⋃n

i=1 Pi}
⋃{⋃i�=j, 1≤i,j≤n Qij}, where
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1. ∀i, 1 ≤ i ≤ n, Pi ⊂ R
3 is connected and closed, and Pi

⋂
Pj = φ, ∀i �= j, 1 ≤

i, j ≤ n
2. ∀i �= j, 1 ≤ i, j ≤ n, Qij ⊂ R

3, connected and closed, is the junction between
Pi and Pj . If there is no junction between Pi and Pj , then Qij = φ. Other-
wise, Qij

⋂
Pi �= φ, Qij

⋂
Pj �= φ. Further, the volume of Qij is assumed to

be small when compared to that of Pi
1.

Let A(.) be the set of articulations of X , wherein A(Pi) ∈ E(3) belong to the
rigid 3D Euclidean group, and A(Qij) belong to any non-rigid deformation.
Further, let V be the set of viewpoints, and M ⊂ (A × V ) denote the set of
conditions such that the 2D projection of X , say S ⊂ R

2, has all parts visible;
i.e. Sk = {⋃n

i=1 pik}
⋃{⋃i�=j, 1≤i,j≤n qijk}, ∀k = 1 to M , where pik ⊂ R

2 and
qijk ⊂ R

2 are the corresponding 2D projections of Pi and Qij respectively. The
problem we are interested now is, given an instance of S, say S1, how to obtain
a representation R̃(.) such that,

R̃(S1) = R̃(Sk), ∀k = 1 to M (1)

4 Proposed Method

In pursuit of (1), we make the following assumptions. (i) X has approximate
convex parts Pi that are piece-wise planar, and (ii) X is imaged using a weak-
perspective (scaled orthographic) camera to produce {Sk}M

k=1. Let each Sk be
represented by a set of t points {ulk}t

l=1. Given two such points u1k, u2k ∈ Sk,
we would now like to obtain a distance D such that

D(u1k, u2k) = c, ∀k = 1 to M (2)

where c is a constant, using which a representation R̃(.) satisfying (1) can be ob-
tained. Now to preserve distances D across non-planar articulations, we need to
account for (atleast) two sources of variations. First, we compensate for changes
in the 2D shape S due to changes in viewpoint V and due to the varying effect of
imaging process on different regions of a non-planar X , by performing separate
affine normalization to each part pik ∈ Sk. Let T denote the transformation that
maps each part pik to p′ik. Inherently, every point ulk ∈ Sk gets transformed as
T (ulk) → u′

lk, where the transformation parameters depend on the part to which
each point belongs. Next, to account for changes in Sk due to articulations A,
we relate the two points u′

1k, u′
2k ∈ Sk using the inner distance ID [2] which is

unchanged under planar articulations. Essentially, we can write (2) as

D(u1k, u2k) = ID(u′
1k, u′

2k), ∀k = 1 to M (3)

which, ideally, can be used to construct R̃ (1). But, in general,

D(u1k, u2k) = c + εk, ∀k = 1 to M (4)

1 A glossary of symbols used in this paper is given in the supplementary material.
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where,
εk = εPk

+ εDk
+ εSk

, ∀k = 1 to M (5)

is an error that depends on the data Sk. εPk
arises due to the weak perspective

approximation of a real-world full-perspective camera. εDk
denotes the error in

the inner distance when the path between two points, u1k and u2k, crosses the
junctions qijk ∈ Sk; this happens because the shape change of qijk, caused by
an arbitrary deformation of the 3D junction Qij , can not be approximated by
an affine normalization. But this error is generally negligible since the junctions
qijk are smaller than the parts pik. εSk

is caused due to changes in the shape
of a part pik, while imaging its original piece-wise planar 3D part Pi that has
different shapes across its planes. An illustration is given in Figure 2(a).

Under these assumptions, we propose the following method to solve for (1).
By modeling an articulating shape S ⊂ R

2 as a combination of approximate
convex parts pi connected by non-convex junctions qij , we

1. Determine the parts of the shape by performing approximate convex decom-
position with a robust measure of convexity.

2. Affine normalize the parts, and relate the points in the shape using inner
distance to build a shape context descriptor.

We provide the details in the following sub-sections.

4.1 Approximate Convex Decomposition

Convexity has been used as a natural cue to identify ‘parts’ of an object [15]. An
illustration is given in Figure 2(b), where the object consists of two approximate
convex parts p1 and p2, connected by a non-convex junction q12. Since exact
convex decomposition is NP-hard for shapes with holes [16], there are many
approximate solutions proposed in the literature (eg. [17]). An important com-
ponent of this problem is a well-defined measure of convexity for which there
are two broad categories of approaches namely, contour-based and area-based.
Each has its own merits and limitations, and there are works addressing such
issues (eg. [18–20]). But the fundamental problems, that of the intolerance of
contour-based measures to small boundary deformations, and the insensitivity
of area-based measures to deep (but thin) protrusions of the boundary, have not
been addressed satisfactorily.

4.1.1 A New Area-Based Measure of Convexity
In this work, we focus on the problem with existing area-based measures. We

start from the basic definition of convexity. Given t points constituting an N-
dimensional shape S′, the shape is said to be convex if the set of lines connecting
all pairs of points lie completely within S′. This definition, in itself, has been
used for convex decompositions with considerable success (eg. [21, 22]). What we
are interested here is to see if a robust measure of convexity can be built upon it.
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Fig. 2. (a): Error εSk (5) illustrated by 2D projections, pik, with the camera parallel to

planes 1 and 2. (b): Our model of an articulating object with two approximate convex

parts p1 and p2, connected by a non-convex junction q12. (c): Variation between ID
and ED for a pair of points (green dots). ID−ED is large for non-convex points, with

the yellow dots indicating junction regions. (d): Information conveyed by (6) on the

potential convex neighbors of ul. The shape is enclosed by dashed red line. Color of

other points um is given by
ED(ul,um)
ID(ul,um)

, with value 1 (white) for convex neighbors and

tending towards 0 (black) for non-convex neighbors.

We make the following observation. Given two points u1, u2 ∈ S′, let ID(u1, u2)
denote the inner distance between them, and ED(u1, u2) denote their Euclidean
distance. For a convex S′, ID = ED for any given pair of points, whereas for
a non-convex S′ this is not the case, as shown in Figure 2(c). We can see that,
unlike the Euclidean distance, the inner distance inherently captures the shape’s
boundary and hence is sensitive to deep protrusions along it. Whereas, the differ-
ence between ID and ED is not much for minor boundary deformations. Using
this property, which significantly alleviates the core issue of the existing area-
based convexity measures, we propose a new measure of convexity as follows

1 − 1
(t2 − t)

∑
ul∈S′

∑
um∈S′,m �=l

(
1 − ED(ul, um)

ID(ul, um)

)
(6)

where t is the number of points in S′, and 1 ≤ l, m ≤ t. For a perfectly convex
object, this measure will have a value one. We evaluate the robustness of this
measure in Section 5.3, and discuss how it conforms to the properties that a
convexity measure should satisfy in the supplementary material.

4.1.2 An Algorithm to Obtain Approximate Convex Segments
We now use (6) to segment an articulating shape S into approximate convex

regions pi. We first study if ED(u1,u2)
ID(u1,u2)

, in addition to saying whether points u1

and u2 belong to a convex region, can shed more information on the potential
‘convex neighbors’ of a particular point u1. We proceed by considering a 2D
shape S′

1 having two convex regions, shown in Figure 2(d), and measure how
ED(u1,.)
ID(u1,.) from u1 to all other t − 1 points in S′

1 vary. We observe that for those
points lying in the same convex region as u1 this term has a value one, whereas
its value decreases for points that lie deeper into the other convex region. Hence
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(6) also gives a sense of ordering of convex neighbors around any specific point
of interest. This is a very desirable property. Based on this, we formulate the
problem of segmenting an articulating shape S ⊂ R

2 as,

min
n,pi

n∑
i=1

∑
ul∈pi

∑
um∈pi,ul �=um

(
1 − ED(ul, um)

ID(ul, um)

)
(7)

where 1 ≤ l, m ≤ t, n is the desired number of convex parts, and pi are the cor-
responding convex regions. We then obtain approximate convex decomposition
of S by posing this problem in a Normalized cuts framework [23] and relating
all points belonging to S using the information conveyed by (6). The details are
provided in Algorithm 1, which is applicable for any N-dimensional shape S′.

Given a set of points t corresponding to an N-dimensional articulating shape S′

(which can be a contour or silhouette or voxel-sets, for instance), an estimate

n(> 0) of the number of convex parts, and the desired convexity (a number

between 0 and 1) for the parts,

(i) Connect every pair of points (ul, um) ∈ S′ with the following edge weight

wulum = exp−(#junctions(ul,um)) ∗ exp

−‖1−ED(ul,um)
ID(ul,um) ‖2

2

σ2
I ∗

⎧⎨⎩ exp

−‖ID(ul,um)‖2
2

σ2
X if‖ ID(ul, um) − ED(ul, um) ‖2≤ T2

0 otherwise
(8)

(ii) Do: Number of segments from n − η to n + η (to account for possible

errors in junction estimates, see Figure 3(a) for example)

(iii) Perform segmentation using Normalized cuts [23]

(iv) Until: The resulting segments satisfy the desired convexity (6).

Algorithm 1. Algorithm for segmenting an N-dimensional shape into approxi-
mate convex parts

Estimate of the Number of Parts: We automatically determine the po-
tential number of parts n using the information contained in (6). We do this
by identifying junctions qij , i �= j, 1 ≤ i, j ≤ n, which are the regions of high
non-convexity. For those pair of points with ID �= ED, we analyze the shortest
path SP using which their inner distance is computed. This SP is a collection
of line segments, and its intermediate vertice(s) represent points, which by the
definition of inner distance [2], bridge two potentially non-convex regions. This
is illustrated in Figure 2(c) (see the yellow dots). We then spatially cluster all
such points using a sliding window along the contour, since there can be many
points around the same junction. Let the total number of detected junctions be
nj . The initial estimate of the number of parts n is then obtained by n = nj +1,
since a junction should connect at least two parts.
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With this knowledge, we define the edge weight between a pair of points in (8)
where the first two terms collectively convey how possibly can two points lie in
the same convex region, and the third term denotes their spatial proximity. T2, σI

and σX are thresholds chosen experimentally. T2 governs when two nodes need to
be connected, and is picked as the mean of ID(ul, um)−ED(ul, um), 1 ≤ l, m ≤ t.
σI and σX are both set a value of 5. We chose η = 2 and desired convexity of
0.85 in all our experiments. Sample segmentation results of our algorithm on
silhouettes and voxel data are given in Figure 3.

(a) (b)

(c)

Fig. 3. (a): Result of the segmentation algorithm (Section 4.1.2) on a 2D shape. Junc-

tion detection (yellow dots), initial segmentation, followed by the refined segmentation

using the desired convexity (=0.85 here) as the user input. (b) Results on shapes from

Brown [5] (Top row) and MPEG-7 [10] (Bottom row) datasets. (c): Segmenting a shape

represented by voxel-sets using the same algorithm

4.2 Shape Representation Invariant to Non-planar Articulations

We now have an approximate convex decomposition of the articulating shape
S ⊂ R

2, i.e. S = {⋃n
i=1 pi}

⋃{⋃i�=j, 1≤i,j≤n qij}. Given a set of M 2D projections
of the 3D articulating shape X , {Sk}M

k=1 with all n parts visible, we want to find
a representation R̃ that satisfies (1). As before, let {ulk}t

l=1 be the number of
points constituting each Sk. Let u1k, u2k ∈ Sk, be two such points. We now
compute a distance D(u1k, u2k) satisfying (2) using a two step process,
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4.2.1 Affine Normalization
To compensate for the change in shape of Sk due to the varying effect of the
imaging process on different parts of the non-planar X and due to the changes
in viewpoint V , we first perform part-wise affine normalization. This essentially
amounts to finding a transformation T such that,

T (pik) → p′ik (9)

where T fits a minimal enclosing parallelogram [24] to each pik and transforms
it to a unit square. Hence this accounts for the affine effects that include, shear,
scale, rotation and translation. This is under the assumption that the original
3D object X has piece-wise planar parts Pi for which, the corresponding 2D part
pik ∈ Sk can be approximated to be produced by a weak perspective camera.

4.2.2 Articulation Invariance
Let u′

1k, u′
2k be the transformed point locations after (9). As a result of T , we

can approximate the changes in Sk due to 3D articulations A, by representing
them as articulations in a plane. Hence, we relate the points u′

1k, u′
2k using

inner distance (ID) and inner angle (IA) [2] that are preserved under planar
articulations. We then build a shape context descriptor [25] for each point u′

lk,
which is a histogram hlk in log-polar space, relating the point u′

lk with all other
(t − 1) points as follows

hlk(z) = #{u′
mk, m �= l, 1 ≤ m ≤ t : ID(u′

lk, u′
mk)× IA(u′

lk, u′
mk) ∈ bin(z)} (10)

where z is the number of bins. We now construct the representation R̃(Sk) =
[h1k h2k . . htk] that satisfies (1) under the model assumptions of Section 4.

5 Experiments

We performed two categories of experiments to evaluate our shape descriptor
(10). The first category measures its insensitivity to articulations of non-planar
shapes on an internally collected dataset2, since there is no standard dataset for
this problem. Whereas, the next category evaluates its performance on 2D shape
retrieval tasks on the benchmark MPEG-7 [10] dataset. We then validated the
robustness of our convexity measure (6) on the dataset of Rahtu et al [20].

For all these experiments, given a shape S ⊂ R
2, we model it as S =

{⋃n
i=1 pi}

⋃{⋃i�=j, 1≤i,j≤n qij}. We then sample 100 points along its contour,
by enforcing equal number of points to be sampled uniformly from each affine
normalized part p′i. Then to compute the histogram (10), we used 12 distance
bins and 5 angular bins, thereby resulting in total number of bins z = 60. The
whole process, for a single shape, takes about 5 seconds on a standard 2GHz
processor.
2 The dataset is available at

www.umiacs.umd.edu/~raghuram/Datasets/NonPlanarArt.zip

www.umiacs.umd.edu/~raghuram/Datasets/NonPlanarArt.zip
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5.1 Non-planar Articulations

We did two experiments, one to measure the variations in (10) across intra-class
articulations, and the other to recognize five different articulating objects.

5.1.1 Intra-class Articulations
We collected data of an articulating human, observed from four cameras, with

the hands undergoing significant out-of-plane motion. The silhouettes, shown in
Figure 4, were obtained by performing background subtraction, where the parts
pi of the shape (from Section 4.1) along with some points having similar repre-
sentation (10) are identified by color-codes.

(a) (b)

Fig. 4. Dataset with non-planar articulations: Intra-class variations of an articulating

human. (a): A set of actions observed from a single camera. (b): A same action observed

from 4 cameras. The regions obtained from segmentation (Section 4.1) along with the

points having similar shape representation (Section 4.2), are color-coded

We divided the dataset of around 1000 silhouettes, into an unoccluded part
of about 150 silhouettes (where there is no self-occlusion of the human) and an
occluded part, and compared our representation (10) with the inner distance
shape context (IDSC) [2] that is insensitive to articulations when the shape is
planar. We chose to compare with this method since, it addresses articulation
invariance in 2D shapes from the ‘representation’ aspect rather than matching.
We used dynamic programming to obtain point correspondences between two
shapes. Given in Table 1 are the mean and standard deviations of the difference
(in L2 sense) of the descriptions (10) of the matched points. We do this for every
pair of shapes in our dataset, with and without occlusion.

It can be seen that the matching cost for our descriptor is significantly less for
the unoccluded pair of shapes, and is noticeably lower than [2] for the occluded
pair too. This, in a way, signifies that our model assumptions (Section 4) is a good
approximation to the problem of representing a shape invariant to non-planar
articulations (Section 3).

5.1.2 Inter-class Variations
We now analyze how our representation (10) can be used for recognition across
the 2D shapes produced by different 3D non-planar articulating objects. We col-
lected silhouettes of five different objects, a human and four robots, performing
articulations observed from different viewpoints. There were ten instances per
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Table 1. Shape matching costs on the dataset with an articulating human. The cost

for our descriptor is around one-tenth of that of [2].

Method Matching cost (mean ± standard deviation)

Without occlusion With occlusion

IDSC [2] 0.48 ± 0.21 3.45 ± 1.63

Ours 0.025 ± 0.0012 0.46 ± 0.11

subject, with significant occlusion, leading to fifty shapes in total as shown in
Figure 5. We compared our algorithm with IDSC in both a leave-one-out recog-
nition setting by computing the Top-1 recognition rate, and also in a validation
setting using the Bulls-eye test that counts how many of the 10 possible correct
matches are present in the top 20 nearest shapes (for each of the 50 shapes).
We report the results in Table 2. It can be seen that our descriptor, in addition
to handling non-planar articulations, can distinguish different shapes. This vali-
dates the main motivation behind our work (Figure 1). The errors in recognition
are mostly due to occlusions, which our model can not account for. It is an in-
teresting future work to see how to relax our assumptions to address the more
general problem stated in Section 3.

Fig. 5. Dataset of non-planar articulations of different subjects. Four robots and hu-

man, with a total of 50 shapes.

Table 2. Recognition across inter-class non-planar articulations

Method Top-1 Recognition rate (in %) BullsEye score (in %)

IDSC [2] 58 39.4

Ours 80 63.8
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5.2 Shape Retrieval

We then evaluated our descriptor for 2D shape retrieval3 tasks to study its
ability in handling general shape deformations, in addition to pure articulations.
We used the benchmark MPEG-7 dataset [10], which contains 70 different shape
classes with 20 instances per class. This is a challenging dataset with significant
intra-class shape deformations. Some example shapes are given in Figure 3(b).
The recognition rate is calculated using the Bulls-Eye test by finding the top
40 closest matches for each test shape, and computing how many of the twenty
possible correct matches are present in it. The retrieval rates are given in Table
3, and we compare with the most recent and other representative methods.

Almost all shapes in this dataset are planar. So the least we would expect
is to perform as well as [2], since but for handling non-planar articulations our
representation resembles IDSC. The improvement using our representation is
mainly due to cases where the shapes have distinct part structure, and when the
variations in the parts are different. A part-driven, holistic shape descriptor can
capture such variations better. It is interesting to see that we perform better
than methods like [12, 26] that use sophisticated matching methods by seeing
how different shapes in the dataset influence the matching cost of a pair of
shapes. Hence through this study, we would like to highlight the importance of
a good underlying shape representation.

Table 3. Retrieval results on MPEG-7 dataset [10]

Algorithm BullsEye score (in %)

SC+TPS [25] 76.51

Generative models [27] 80.03

IDSC [2] 85.40

Shape-tree [6] 87.70

Label Propagation [26] 91.00

Locally constrained diffusion [12] 93.32

Ours 93.67

5.3 Experiment on the Convexity Measure

Finally, we performed an experiment to evaluate our convexity measure (6) by
comparing it with the recent work by Rahtu et al [20]. Since there is no standard
dataset for this task, we provide results on their dataset in Figure 6. We make
two observations. 1) For similar shapes (text in red and blue), the variation in
our convexity measure is much smaller than that of [20]. This reinforces the
insensitivity of our measure to intra-class variations of the shape, which is very
desirable. 2) It can also been seen that our convexity measure is very sensitive to
lengthy disconnected parts (text in green). This is mainly because, we compute
pair-wise variations in ID and ED for all points in the shape, which will be high
in such cases. These results, intuitively, are more meaningful than that of [20].
3 Evaluations on the Brown dataset [5] and some illustrations on incorrect retrievals

are provided in the supplementary material.
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Fig. 6. Performance of our convexity measure on the dataset of [20]. Given at bottom

of each shape are the convexity measures of [20] followed by ours (6). Our measure is

insensitive to intra-class shape variations (text in red and blue), and is more sensitive

when a part of the shape is disconnected from other parts (text in green).

6 Conclusion

We proposed a method to represent a 2D projection of a non-planar shape invari-
ant to articulations, when there is no occlusion. By assuming a weak perspective
camera model, we showed that a part-wise affine normalization can help pre-
serve distances between points, upto a data-dependent error. We then studied
its utility through experiments for recognition across non-planar articulations,
and for general shape retrieval. It is interesting to see how our assumptions can
be relaxed to address this problem in a more general setting.
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Abstract. In this paper we propose a probabilistic framework that mod-

els shape variations and infers dense and detailed 3D shapes from a single

silhouette. We model two types of shape variations, the object pheno-

type variation and its pose variation using two independent Gaussian

Process Latent Variable Models (GPLVMs) respectively. The proposed

shape variation models are learnt from 3D samples without prior knowl-

edge about object class, e.g. object parts and skeletons, and are com-

bined to fully span the 3D shape space. A novel probabilistic inference

algorithm for 3D shape estimation is proposed by maximum likelihood

estimates of the GPLVM latent variables and the camera parameters that

best fit generated 3D shapes to given silhouettes. The proposed inference

involves a small number of latent variables and it is computationally ef-

ficient. Experiments on both human body and shark data demonstrate

the efficacy of our new approach.

1 Introduction

3D shape estimation from a single image has wide applications for graphics,
surveillance, HCI and 3D object recognition. Single view reconstruction is a
highly under-constrained problem and requires prior knowledge on 3D shapes of
an object class. Various approaches have been investigated with different con-
straints. While previous methods for general scenes/object categories find it
typically hard to capture complex 3D topology of objects, much of recent study
has tackled estimating detailed 3D shapes of specific categories, e.g., human
faces [11] and body shapes [12,13,14,15]. In this work, we propose an approach
for both synthesizing and reconstructing dense 3D shapes of general object cat-
egories under articulations or deformations given a single image.

1.1 Literature Review

Below we give a brief overview of related work for general scenes/object cate-
gories and work designed specifically for human body.

Methods for general scene reconstruction have relied on primitive geometri-
cal constraints such as symmetry and yielded a coarse pop-up reconstruction:
e.g., Criminisi et al. [17] have used vanishing points and projective geometry

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 300–313, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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constraints and Hoiem et al. [2] assumed planar/ground-vertical scenes. Prasad
et al. [1] have tackled reconstruction of curved objects, requiring user interac-
tions to reduce down complexity of 3D object topology. Saxena et al. [18] have
investigated to recover rough depth estimate from image features. Hassner and
Basri [19] have similarly inferred depth from image appearance. 3D geometries
having similar image appearance to that of a query object from a database
served as the shape prior. These view based methods require an exhaustive
number of samples. Some efforts have been made for 3D shape reconstruction
from 2D sketches or line drawings [20], where man-made objects are represented
by transparent edge-vertex graphs. Bayesian reconstruction of Han et al’s [3] is
limited to polyhedral objects, tree or grass only. An unified method to segment,
infer 3D shapes and recognise object categories proposed in [4] is based on a
voxel representation for the shape prior model and applied to object categories
such as a cup, mug, plate etc, all rather simple and rigid objects. Torresani et
al.’s [21] have attempted to recover non-rigid 3D object shape as in our work
but only up to sparse reconstruction using 2D point tracks. Their work falls into
a different topic, structure-from-motion.

More related study to ours is the work for estimation of detailed human body
shape [13,14,15]. Human body is an articulated object with a number of joint
angles. A fixed or deformable crude model based on skeleton, e.g. a cylinder
model has been widely exploited for human body pose estimation and tracking.
By fitting the model to images, joint angles and a rough 3D shape estimation are
obtained, e.g. [6]. Finer body models, e.g. using volumetric representations [7] or
generic deformable models [8] have been used to capture more subtle shape vari-
ations. These models, however, consider body parts independently and decouple
pose from shape variations, therefore not representing shape variations around
joints and pose-dependent shape deformations. Recently, a more detailed human
model called SCAPE (Shape Completion and Animation for PEople) has been
proposed [12]. SCAPE models 3D shape variations among different human bod-
ies in a canonical pose by Principal Component Analysis (PCA), and different
poses, i.e. articulation, by joint angles. The shape transfer from a source body
to target bodies is obtained by rigid rotations of the 13 body parts manually
defined and the pose-dependent deformations for subtle muscular deformation
around joints. Balan et al. [13] have adopted this model for the detailed hu-
man body shape estimation from silhouettes and formulated the problem as
an optimisation over the SCAPE model parameters. However, the optimisation
of the SCAPE model is difficult due to uniform priors placed on a number of
parameters (joint angles and eigen-coefficients). Stochastic search in [13] is com-
putationally expensive and has initialisation problems. Sigal et al. [14] have used
a regression technique to help in initialising the SCAPE model parameters prior
to stochastic search and Guan et al. [15] have incorporated more visual cues,
the shading cues and internal edges as well as silhouettes to facilitate fitting the
SCAPE model to images. Although these methods have shown detailed shape
recovery from a few silhouettes, using strong priors on a human body model, i.e.
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Fig. 1. 3D shape recovery (blue meshes) of a human body (left) and a shark (right)

under pose change and their shapes in the canonical pose (gray meshes)

manually defined skeleton and body parts, makes it difficult to extend to other,
especially, free-form object categories without redesigning the representation.

1.2 Proposed Approach

In this work, we propose a probabilistic generative model for both learning and
inferring dense and detailed 3D shapes of a class of nonrigid objects from a single
silhouette. In contrast to prior-arts, we learn shape priors under a challenging
setting including pose variations and camera viewpoint changes, and we infer
more complex and general deformable 3D shapes from a single image (see Fig. 1).

In our probabilistic framework the shape variations of objects are modeled by
two separate Gaussian Process Latent Variable Models (GPLVMs) [22], named
the shape generator and the pose generator. The former captures the phenotype
variation, which refers to the shape variation between objects: tall vs short, fat vs
thin, etc, while the latter captures the pose variation, which includes articulation
or other nonrigid self-deformation. They are learnt directly from 3D samples
without prior knowledge about object class. The GPLVM has been successfully
applied for human pose estimation by mapping a high-dimensional parameter
space, i.e., a number of joint angles, to a low dimensional manifold [9]. In our
work, it nonlinearly maps the complex 3D shape data into a low-dimensional
manifold, expressing detailed shape variations only by a few latent variables.
With both generators, arbitrary 3D shapes can be synthesized through shape
transfer [5], as shown in Fig. 2.

We also propose a novel probabilistic inference algorithm for 3D shape esti-
mation from silhouettes. The shape estimate is obtained by maximum-likelihood
estimation of the latent variables of the shape and pose generators and cam-
era parameters that best match generated shapes to input silhouettes. Com-
pared to stochastic optimisation over a large parametric space, i.e. joint angles
in [7,13,14,15], the proposed inference is computationally efficient as the latent
space has a very low dimension. Experiments on articulated human bodies and
sharks demonstrate efficacy of the proposed method for reconstructing detailed
shapes of general deformable object categories.
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Fig. 2. Synthesizing sharks (left) and human bodies (right) by shape transfer

The rest of this paper is structured as follows. Section 2 presents the proposed
probabilistic model; Section 3 explains learning the shape and pose generator and
synthesizing new shapes by the shape transfer; Section 4 presents probabilistic
inference algorithm; experimental results are shown in Section 5, and discussions
conclusions are drawn in Section 6 and 7 respectively.

2 Probabilistic Model for 3D Shape Estimation

The proposed shape estimation is done by: first, synthesizing 3D shapes from a
shape generator MS that spans the phenotype variation, and a pose generator
MA that spans the pose variation; and then, matching the generated shapes with
the input silhouette(s). The proposed graphical model is shown in Fig. 3(a).
In the formulation, we consider a more general k-views setting. Let Sk (k =
1, 2, · · · , K) be the observed silhouettes in K distinct views, which are given
in the form of 2D point sets; V = [V1,V2, · · · ,VN] is a 3N -D vector which
represents the 3D shape with N sampling points on its surface; and Wk (k =
1, 2, · · · , K) is the silhouette of V in the k-th view. The joint distribution can
be written as:

P ({Sk,Wk}K
k=1,V,u,v|{γk}K

k=1,xA,xS,MA,MS)

=
( K∏

k=1

P (Sk|Wk)P (Wk|V, γk)
)

P (u|xA,MA)P (v|xS,MS)P (V|u,v). (1)

In (1), xA and xS are the latent coordinates of the corresponding models; u and
v are the respective latent feature vectors generated by MA and MS at xA

and xS; γk = {Pk, tk} (k = 1, 2, · · · , K) are the camera parameters of K views.
Here, we assume an affine camera model, Pk is a 3 × 2 projection matrix and
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tk is a 2 × 1 translation vector on the image plane. The terms P (Sk|Wk) and
P (Wk|V, γk) (k = 1, 2, · · · , K) model the matching of 3D shapes V with the
observed silhouettes Sk. The details of inferring shapes from silhouettes will be
presented in Section 4. The last three terms P (u|xA,MA), P (v|xS,MS), and
P (V|u,v) of (1) model the 3D shape synthesis from the pose generator MA and
the shape generator MS given the new latent coordinates xA and xS, which will
be presented in detail in Section 3.

3 Shape Generation

3.1 Data Set and Shape Registration

In our approach, the shape generator MS and the pose generator MA are mod-
eled by two independent GPLVMs [22], and trained separately on two data sets,
named shape data set and pose data set. The former contains different shape
instances in the canonical pose, while the latter is comprised of various poses of
a particular shape instance called zero shape.

In order to train the generators, we must build up vertex-wise correspondences
among training instances so that we can encode the phenotype variation and pose
variation in a vectorized form. For the pose data set, the correspondences are
straightforward as all the pose data are generated by animating the same 3D
instance in our experiment. Such correspondences are, however, not given for
the shape data set and shape registration is required.

In our implementation, every instance in the shape data set is registered with
the zero shape in the canonical pose. Firstly, we compute hybrid distances as
weighted averages of the spatial distance [24] and the χ2 distance of the 3D
shape contexts [23] between every paired sample points of two shapes, and then
use Hungarian algorithm to find the minimal cost matching. Secondly, we use
the thin-plate spline (TPS) model to recover point-wise displacements between
the pair of shapes using the correspondences established. After this, Principal
Component Analysis (PCA) is applied to reduce the dimension of input data
before training the pose and shape generators. We use the first m = 30 principal
components as the pose feature u and shape features v for training the GPLVMs.

3.2 Synthesizing New Shapes and Poses from GP

Given the new latent coordinates xA and xS, generating the pose vector u of
the zero shape and the shape vector v of the canonical pose from MA and MS
can be formulated as the following Gaussian predictive likelihoods:

P (u|xA,MA) = N (
u;kT

U(xA)K−1
U YA, (kU (xA,xA) − kT

U(xA)K−1
U kU(xA))I)

= N
(
u; ū(xA), σ2

A(xA)I
)

(2)

P (v|xS,MS
)

= N (
v;kT

V(xS)K−1
V YS, (kV (xS,xS) − kT

V(xS)K−1
V kV(xS))I

)
= N

(
v; v̄(xS), σ2

S(xS)I
)
. (3)
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Fig. 3. (a) The graphical model for the 3D shape inference. (b) Transforming local

triangle meshes during pose change.

In (2) and (3), YA = [ui]NA

i=1 and YS = [vi]NS

i=1 are matrices which contain NA

and NS training instances in columns for learning MA and MS , respectively;
KU = [kU (xA,i,xA,j)] 1≤i≤NA,1≤j≤NA , KV = [kV (xS,i,xS,j)]1≤i≤NS ,1≤j≤NS ,
kU(xA) = [kU (xA,xA,i)]1≤i≤NA , kV(xS) = [kV (xS,xS,i)]1≤i≤NS are the cor-
responding non-linear kernel matrices/vectors. In this paper, kU and kV are
defined as the RBF+linear kernels [9].

3.3 Shape Transfer Using Jacobian Matrices

MA or MS only models the shape variation along one of two axes in the shape
space. To fully span the shape space, we present a shape synthesis method based
on shape transfer in this section.

For the convenience of formulation, we introduce two auxiliary variables VA

and VS to represent the shapes with only the pose variation/phenotype variation
imposed, respectively. See Fig. 2. Both of them are 3N -D vectors, which contain
the 3D spatial positions of N sampling vertices of the shape. VA and VS are
recovered from the m-D features u and v through linear combinations of the
PCA eigen-vectors as: VA = GA + AAu and VS = GS + ASv, where GA and
GS are the mean vectors, and AA and AS are 3N × m matrices containing the
first m eigen-vectors of the pose and shape data set, respectively; VO denotes
the zero-shape in the canonical pose.

The concept of transferring deformation from a source object to target objects
has been investigated in the previous work [5]. In our problem, an arbitrary shape
V is synthesized by applying the phenotype variation on the posed zero-shape
VA locally as follows:

V = VA + ΔV′ + nV, (4)

where ΔV′ = [ΔVi
′]Ni=1 is a 3N -D concatenating displacement vector that

represents the pose-dependent local shape variation from VA, and nV is an
additional random variable modeled by the white Gaussian noise subjected to
N (0, σ2

nI3N×3N). We assume that the vertex-wise phenotype variations ΔVi and
ΔV′

i before and after the pose change are locally linear transforms as ΔVi =
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VS
i −VO

i and ΔV′
i = Vi −VA

i (refer to Fig. 2) and they can be related by the
3 × 3 local Jacobian matrix Ji, similarly to [5]:

ΔV′
i = JiΔVi. (5)

We calculate the local Jacobian matrix at each single sampling vertex approxi-
mately from the mesh triangle it belongs to. Given a sampling vertex VO

i on the
canonical-posed zero-shape (and its corresponding vertex VA

i in the new pose),
we can find their corresponding the mesh triangles as shown in Fig. 3(b). Two
in-plane vectors mO,1

i ,mO,2
i and one normal vector perpendicular to the trian-

gle plane mO,3
i are computed for the mesh in the canonical pose and the same

mA,1
i ,mA,2

i ,mA,3
i for the mesh in the new pose. The local Jacobian matrix Ji

can then be computed as:

Ji = [mA,1
i ,mA,2

i ,mA,3
i ][mO,1

i ,mO,2
i ,mO,3

i ]−1. (6)

In the training stage, we compute the Jacobian matrix at every sampling point
for all the instances of the data set using the method described above. A weighted
average filtering over 8 nearest-neighbor sampling points is applied to Jacobian
matrices for smoothness. Finally, these matrices are vectorized and used to learn
the pose generator MA in junction with the vertex displacements. In the pre-
diction, the elements of Jacobian matrices can thus also be recovered from the
pose feature u using PCA mean GJ and eigen-vectors AJ as

vec(J) = GJ + AJu, (7)

where 9N -D vector vec(J) = [vec(J1),vec(J2), · · · ,vec(JN)] is the vectorized-
form of matrix J.

3.4 A Probabilistic Model for the Shape Synthesis

The last term P (V|u,v) of (1) models the synthesis of new 3D shapes from
the pose feature u and shape feature v, which are generated by GPLVMs in
Section 3.2. By combining (4), (5), and (7) the shape synthesis can therefore be
formulated as the following equation:

V = VA + J · (VS − VO) + nV

= GA + AAu + mat
(
GJ + AJu

) · (GS + ASv − VO
)

+ nV, (8)

where J = diag(J1,J2, · · · ,JN) is a 3N ×3N matrix, and mat(·) is an operator
which reshapes the 9N × 1 vector into a 3N × 3N block diagonal matrix.

We hope to formulate the posterior distribution of the synthesized shape V
explicitly given the latent coordinates xA and xS of the pose and shape genera-
tors MA and MS . From the previous subsection, we know that the distributions
of VA, VS, and vec(J) have Gaussian form, since they are linearly generated
from Gaussian-Process predictions u and v.

VA|xA,MA ∼ N (VA; μVA(xA),ΣVA(xA)), (9)
VS|xS,MS ∼ N (VS; μVS(xS),ΣVS(xS)), (10)

vec(J)|xA,MA ∼ N (vec(J); μJ(xA),ΣJ(xA)). (11)
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where

μVA(xA) = GA + AAμu, μVS(xS) = GS + ASμv, μJ(xA) = GJ + AJμu,

ΣVA(xA) = σ2
uA

AAAT
, ΣVS(xS) = σ2

vA
SAST

, ΣJ(xA) = σ2
uA

JAJT
.

According to (8), the synthesized shape V is the product of multi-variate Gaus-
sian VS and J, and it is non-Gaussian. However, we find its Gaussian projection
V̂ with the same mean and covariance is very good approximation to the true
distribution of V, and this projection greatly helps the computation.

P (V̂|xA,xS,MAMS) ≈ N (
V̂; μV(xA,xS),ΣV(xA,xS)

)
, (12)

where

μV = μVA + μ̂J(μVS − VO)

ΣV = σ2
nI + ΣVA + μ̂JΣVS μ̂T

J +
[[

Tr
(
ΣJ

ij
mnSij

)]
m,n=0,1,2

]
i,j=0,1,··· ,N−1

where μ̂J = mat(μJ) represents 3N × 3N matrix shape of μJ
1; Sij = S(3i + 1 :

3i+3, 3j +1 : 3j +3) is the 3×3 sub-matrix of the 3N ×3N matrix S = ΣVS +
(μVS −VO)(μVS −VO)T ; and ΣJ

ij
mn = ΣJ(9i+3m+1:9i+3m+3,9j+3n+1:9j+3n+3) is

the 3 × 3 sub-matrix of the 9N × 9N matrix ΣJ.

4 Inferring 3D Shapes from Silhouettes

The matching between the synthesized 3D shapes and input silhouettes is for-
mulated as a two-stage process in our approach. The first stage is the projection
stage, which models the procedure of projecting the 3D shape V into a silhouette
Wk in the k-th view, as shown in (13).

P (Wk|V, γk) = N (Wk; P̃kV + t̃k, σ2
wI), (13)

where P̃k = Pk ⊗ Mk and t̃k = tk ⊗ 1N′ are the expanded version of projec-
tion matrix and the offset vector in the k-th view, respectively. Here, Mk =
[mk,ij ]1≤i≤N ′,1≤jleqN is a N ′×N binary masking matrix with element mk,ij = 1
if the projection of the i-th 3D sample points is on the boundary and mk,ij = 0
otherwise. Mk selects the N ′ silhouette points of the projection in the k-th view
and it is fully determined by Pk.

The second stage is the matching stage, which models how well the input
silhouette Sk fits the corresponding boundary projection Wk of the generated
shape in the k-th view. The observation likelihood is defined on the basis of
Chamfer matching, which provides more robustness to errors and outliers in the
input silhouettes as

P (Sk|Wk) =
1
Z

exp
(
− 1

2σ2
s

DT 2
Sk

(
Wk)

))
, (14)

1 For the convenience of notation, we sometimes omit the parameters of the mean and

covariance in the formulation. E.g., μJ = μJ(xA).
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where DT 2
S(·) refers to the squared L2-distance transform of the silhouette S =

{si}|S|i=1. For an arbitrary point set W = {wi}|W|
i=1 , it is defined as DT 2

S(W) =
1

2|W|
∑|W|

i=1 minsi∈S ‖wi − si‖2 + 1
2|S|

∑|S|
j=1 minwj∈W ‖wj − sj‖2. To simplify the

computation, the normalization factor Z is approximated by a constant here.
As stated in the previous section, generating the 3D shapes V from MS and

MA can be approximately formulated as a Gaussian Process (12). It follows
that the silhouette likelihood P (Wk|xA,xS, MA,MS , γk) also has the Gaussian
form by combining (12) with (13):

P (Wk|xA,xS,MA,MS , γk) = N (
Wk; μWk

(xA,xS, γk),ΣWk
(xA,xS, γk)

)
,(15)

where μWk
= P̃kμV + t̃k and ΣWk

= P̃kΣVP̃T
k + σ2

wI.
Our target is to find the 3D shape which best fits all the image evidences

Sk (k = 1, 2, · · · , K) in K views, or equivalently, to find such latent positions
xA, xS and the parameters γk of K cameras. This can be done by finding
the maximum of the overall likelihood P ({Sk}K

k=1|xA,xS,MA,MS , {γk}K
k=1)

(k = 1, 2, · · · , K). The likelihood has no closed form since the direct integral
over the terms with distance transform is not tractable, but it can be efficiently
optimised by the closed-form lower bound Q [16]:

P ({Sk}K
k=1|xA,xS,MA,MS , {γk}K

k=1) ≥ Q(xA,xS, {γk}K
k=1)

=
K∏

k=1

1

Zk

√
det

(
I + 1

σ2
s
ΣWk

) exp
(− 1

2σ2
s

DT 2
Sk

(
μWk

))
. (16)

Maximizing the lower bound Q, or equivalently, minimizing − log Q, gives a good
approximated maximum-likelihood estimate of the latent coordinate xML

A , xML
S ,

and camera parameters γML
k (k = 1, 2, · · · , K):

(xML
A ,xML

S , {γML
k }K

k=1) ≈ arg min
xA,xS,{γk}K

k=1

− log Q(xA,xS, {γk}K
k=1). (17)

In our implementation, we minimize − log Q by adaptive-scale line search and
use multiple initializations to avoid local minima. The optimization alternates
between finding the latent coordinate (xA, xS) and correcting the camera pa-
rameters {γk}K

k=1 (and hence the masking matrices {Mk}K
k=1). The convergence

usually comes fast, as the latent dimensions of GPLVMs are low. Consequently,
the corresponding maximum likelihood estimate of the 3D shape can be approx-
imately given as:

P (VML|xML
A ,xML

S ,MAMS) ≈ N (
VML; μV̂(xML

A ,xML
S ),ΣV̂(xML

A ,xML
S )

)
,(18)

which gives the mean shape μV̂ and the uncertainty measurement ΣV̂.

5 Experimental Results

We have investigated two shape categories in the experiments: human bodies
and sharks. For the human data, we used Civilian American and European
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Fig. 4. Generation of new human body shapes in running pose. The shape and pose

latent spaces are shown in their first two dimensions. Shapes are spanned by the paired

coordinates.

Surface Anthropometry Resource (CAESAR) database as the shape data set,
which contains over 2000 different body shapes of North American and European
adults in the canonical pose. The pose data set was obtained by synthesizing
animations of different 3D poses, e.g, running (150 frames), walking (150 frames),
arm stretching and torso movements (250 frames), etc., using the 3D female
human model Sydney in Poser 7. For the shark data, the shape data set contains
eleven 3D shark models of different shark species available from Internet [19]. For
the pose data set, we used an animatable 3D MEX shark model to generate an
11-frame sequence of shark tail-waving motion. The mesh resolution of the zero-
shapes are: 3678 vertices/7356 faces for the human data, and 1840 vertices/3676
faces for shark data, respectively. To train MA and MS , we empirically set the
latent space dimension dS = 6 for the human shape generator, dS = 3 for the
shark shape generator, and dA = 2 for the pose generator for both data sets.

5.1 Shape Synthesis

A direct and important application of our framework is to synthesize a variety
of shapes in the category from the shape generator and the pose generator. We
visualize the process of synthesizing human shapes in running pose for the latent
coordinates of the pose and shape generators in Fig. 4. To examine the synthesis
quality, we sampled 10 positions in both the shape and pose latent spaces along
the trajectories shown by numbers, and generated the human shapes by pairing
up the corresponding shape and pose coordinates. As shown in Fig. 4, a wide-
range of body shapes and different stages in the running pose were synthesized.
We have also observed that the predictive variances (low variance indicated by
red in Fig. 4) imply the quality of shape synthesis. The higher-quality shapes
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Data Precision Recall
22 shark s

20 human bodies
0.8996     0.0481± 0.9308      0.0380±
0.7801     0.0689± 0.8952      0.0995±

Fig. 5. (a) An example of variance estimates of the shark reconstruction; (b) Precision-

Recall ratios of the predicted shapes

(shapes 4 − 7 marked by the rectangle) were generated from the low variance
area of the shape latent space, where more training samples were presented.

5.2 3D Shape Reconstruction from Images

To verify the efficacy of our 3D shape inference framework, we have tested our
approach over 20 human images in tight-fitting clothes and 22 shark images
which were collected from Internet. These images involve different camera poses
and various object motions, including human running, walking, arm stretching,
and shark tail movement. We adopted GrabCut [25] to roughly segment the
foreground and extract the corresponding silhouettes. The goal is to infer the
reasonable 3D shapes implied by the pictures given the foreground region.

It is worth mentioning that the single-view reconstruction problem is inher-
ently ambiguous. The single silhouette often corresponds to multiple possible 3D
shapes mainly due to symmetry and viewpoint changes. Our software generates
multiple shape candidates to the silhouette and provides estimate variances for
each prediction (Fig 5(a)). For each image, the running time to predict 10 candi-
dates was about 10 - 15 minutes by our unoptimized c++ codes in 2.8GHz PC.
In the implementation, we randomly initialised the latent positions of the shape
and pose generators. However, we find it helpful to roughly initialise the camera
viewpoint. This will speed up the algorithm and greatly increase the possibility
of obtaining desired results.

We have evaluated the performance of the approach qualitatively (see Fig. 6
and 7), and quantitatively by the Precision-Recall (P-R) ratios as given in
Fig 5(b). Here, the precision and recall are defined as: Precision = |SF ∪SR|

SR
,

and Recall = |SF ∪SR|
SF

, where SF denotes the ground-truth foreground and SR

represents the projection of our prediction. All the 3D results provided in Fig. 6
and 7 correspond to the highest likelihood values given the input silhouettes
and the shape priors. It shows that our approach captures both phenotype and
pose variations and gives accurate estimates on the camera viewpoint. Also, P-
R ratios on human data are of reasonable accuracy in comparison with those
generated by the human specific model [13], although it is not straightforward
to compare quantitatively due to different data sets and number of silhouettes.
The reconstructed human bodies are comparatively worse in both visual quality
and the P-R ratios than those of sharks because the more complex articulation
structure makes exact pose fitting difficult. For example, the pose generator fails
to explicitly model the closing hands in the first example of Fig. 7, although the
arm and torso poses are well fit (see Section 6 for more discussions).
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Fig. 6. The qualitative results on shark images. Column 1, 4: input images; Column 2

and 5: the reconstructed shapes in contrast with the input silhouettes; Column 3 and

6: the reconstructed shapes at another viewpoint.

6 Discussion

Compared to previous parametric models [12,13], the proposed method has both
advantages and disadvantages. The benefits include: 1) requiring no strong class-
specific priors (parts and skeletons), which facilitates modeling general cate-
gories, 2) estimating a much smaller number of model parameters and thus be-
ing more efficient, and 3) providing a probabilistic intuition on the uncertainty
of shape generation and inference. However, the second benefit could be the
drawback at the same time. E.g. whereas the SCAPE allows all possible body
configurations by joint angles, our method generates poses similar to those in the
pose data set. When training instances are insufficient, the pose generator can
be limited in descriptive power (see the first example of Fig. 7). However, the
pose generator is easily extendable by more pose data sets and is able to span
sufficient local pose variations (the same advocated for pose estimation in [9]).

It is interesting to compare the shape transfer stage in our approach with
that in parametric models. In the SCAPE, part-wise rigid rotations matrices
and pose-dependent deformation matrices together serve similar functions as
Jacobian matrices in our method do but incorporate joint angles. The shape
transfer in our method can also benefit when structure priors are available,
e.g. Jacobian matrices can be more reliably computed by enforcing part-wise
smoothness constraints.

Although our method exploits only silhouettes in the experiments, more visual
cues such as shading and internal edges could be used to improve matching
accuracy [15]. More direct mapping from silhouettes to shapes could be learnt
by regression techniques [14] from the new shapes of new poses synthesized by
the proposed model. This would help initialising the proposed inference.
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Fig. 7. The qualitative results on human images: Row 1: input images; Row 2: the

reconstructed shapes in contrast with the input silhouettes; Row 3: the reconstructed

shapes at another viewpoint; Row 4: the body shapes in the canonical pose.

7 Conclusions

In this paper, we have proposed a probabilistic generative method that models
3D deformable shape variations and infers 3D shapes from a single silhouette.
The inference in the proposed framework is computationally efficient as it in-
volves a small number of latent variables to estimate. The method is easy to
extend to general object categories. It learns and recovers dense and detailed 3D
shapes as well as camera parameters from a single image with a little interaction
for segmentation. The proposed method can also serve as a good substitution or
approximation of a detailed parametric model especially when physical structure
of a category is not available.

As future work we shall perform experiments using multiple silhouette inputs
for higher precision and extend the framework to incorporate dynamic models
for inferring shapes from video sequences. Also, 3D object recognition or ac-
tion recognition can also be done by the pose-free 3D shape or shape-free pose
recovered by the proposed method respectively.
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Abstract. We address the problem of estimating human pose in a single

image using a part based approach. Pose accuracy is directly affected by

the accuracy of the part detectors but more accurate detectors are likely

to be also more computationally expensive. We propose to use multiple,

heterogeneous part detectors with varying accuracy and computation re-

quirements, ordered in a hierarchy, to achieve more accurate and efficient

pose estimation. For inference, we propose an algorithm to localize ar-

ticulated objects by exploiting an ordered hierarchy of detectors with

increasing accuracy. The inference uses branch and bound method to

search for each part and use kinematics from neighboring parts to guide

the branching behavior and compute bounds on the best part estimate.

We demonstrate our approach on a publicly available People dataset and

outperform the state-of-art methods. Our inference is 3 times faster than

one based on using a single, highly accurate detector.

Keywords: Human pose estimation, part based models, branch and

bound, message passing.

1 Introduction

We consider the problem of localizing 3-D articulated objects such as humans
in their 2-D images; the projected shape varies with the viewpoint and articu-
lations, we choose to model these variations as deformations. An intuitive and
widely accepted approach to model an articulated object is to decompose the
object into smaller objects (parts) and model the deformability by loose spa-
tial relationships between the parts. [1], [2], [3], [4], [5] used such part based
representations to detect and localize objects with large variations. The local-
ization accuracy increases with better part detectors but it comes at the cost of
increased computation. We enhance the part based model with multiple hetero-
geneous features for better detection accuracy, and propose a novel progressive
search based method for efficient inference.

A common model for part based object representation is that of pictorial
structures, which is a tree-structured graphical model that represents the kine-
matic relationships between the parts; pose is inferred by enforcing kinematics
constraints on part hypotheses that are obtained by applying part detectors.
Such part based approaches can be dense or sparse based on how parts are sam-
pled from the image. Dense sampling methods [1], [6], [7], [8] apply each part

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 314–327, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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detector over all possible locations, orientations and scales; [1] presents exact and
efficient inference on densely sampled parts, however for better efficiency, these
methods tend to use part detectors that are generally weak. [7] shows that better
part detectors can significantly improve the performance accuracy; however bet-
ter part detectors are often more complex and computationally expensive. The
sparse sampling methods approximate the part likelihood using few hypotheses
and infer the pose from these hypotheses [9], [10], [2], [11]. To avoid applying
the part detector over the entire space, these approaches obtain part hypothe-
ses from bottom up feature responses such as by using parallel line segments
[10], [2]. For inference, [9] uses non parametric belief propagation which is slow
due to its stochastic nature; [10], [11] use integer programming methods to infer
pose, but the size of the program grows rapidly with increase in the number of
candidate part hypotheses.

An alternate representation is to use hierarchical model in which multiple
levels represent the object at varying granularity [3], [12], [5]; parts need not
correspond to the natural object parts (such as limbs for human). [13] presented
a generic AND/OR graphical model for deformable objects, where the leaf nodes
are points on the boundary and the intermediate nodes represent different object
parts. [14], [15], [16] use 2-level hierarchical models to find humans with a whole
object representation at higher level and subsequent parts at the lower level.
[16] used Poselets (tightly coupled local part configurations) at the lower level
to achieve more accurate detection. However, these methods use pose-restrictive
assumptions such as upright human where torso is above the legs.

We use a densely part sampled approach in this work and propose to use
multiple heterogeneous detectors for each part to achieve a higher detection
accuracy. More precisely, we use a linearly weighted combination of multiple
detectors for a part, and order the detectors by their discriminability and effi-
ciency. The combination weights are learnt in a discriminative framework using
Voted Perceptron [17], so that the combined detector has better accuracy than
the individual detectors. Further, the ordering of the detectors is selected such
that as we go up the order, the part detectors become more accurate and precise,
but also computationally more expensive.

For efficient inference over the graphical model with ordered heterogeneous
features, we propose a novel collaborative branch and bound algorithm. The key
idea is to use branch and bound search for each part, where the bounds on
the best part estimate are obtained by enforcing kinematic consistency between
the search branches of neighboring parts; thus, the kinematic constraints form
a collaboration model between part search branches. At each step, search space
is reduced by applying a more accurate detector for each part and pruning out
the subsets that are less likely to contain the best part estimate. The best part
estimate refers to the estimate otherwise obtained by dense sampling parts using
all the detectors, which is highly inefficient. We demonstrate our approach on a
commonly used dataset of complex human poses in cluttered backgrounds [6].
Our algorithm gives better than the state-or-art accuracy on the dataset and
inference is ∼ 3 times faster than one using a single, highly accurate detector.
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In the rest of the paper, we first discuss the pictorial structure with multiple
part detectors in section 2 and the collaborative branch and bound algorithm in
section 3. Next, we present the parameter learning in section 4, followed by the
experiments in section 5 and conclusion in section 6.

2 Pictorial Structure with Multiple Part Detectors

We use pictorial structures [1] to model humans. Instead of part detectors with
one type of feature descriptor such as shape context [7] or Haar-like [6], we
use detectors with multiple heterogeneous features for each part. We impose
a hierarchical ordering on these detectors such that the model becomes more
precise as we go up the hierarchy. Thus, different levels in the hierarchy represent
part detectors with different descriptors. Figure 1 shows the pictorial structure
for full body and a 3-part model with n detectors for each part.
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Fig. 1. Pose Model: (a) Tree structured human model, with one of the observation

nodes showing multiple detectors (b) A 3 part model showing detectors in a hierarchical

order. Note that the dotted arrows are not graphical model links but are shown to

indicate the relationship between the different detectors.

[Representation Details]
We assume that the output of different detectors of a part are independent of each
other and that the part likelihood distributions are conditionally independent
given the full object x. Under these assumptions, the posterior log-likelihood of
the object x obtained by applying detectors at level k is given by,

Fk(x, I) =
∑

i∈V φk
i (I|xi) +

∑
ij∈E ψk

ij(xi, xj) (1)

where (V, E) is the graphical model, I is the image observation, φk
i is the likeli-

hood for part i using detector fk; we refer to φk
i as the part support for i using fk.

The log-likelihood in equation 1 is same as log-likelihood function of a pictorial
structure. Note for simplicity we assume that the kinematic models are same at
all the levels i.e. ψk

ij = ψij for all k, and are assumed to be Gaussian.
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Given the part supports φk
i s obtained by applying all the detectors for part i,

we combine them to obtain the part likelihood distribution. Since the accuracy
of detectors for each part may vary with parts, we associate a weight with all
the detectors for every part. We then define the optimal pose configuration x∗

by

x∗ = arg max
x∈X

⎛⎝∑
i∈V

nf∑
k=1

wk
i φk

i (I|xi) +
∑
ij∈E

ψij(xi, xj)

⎞⎠ (2)

where, wk
i is the weight associated detector fk for part i. Our part representation

with hierarchical feature model (eqn 2) can be interpreted as a combination of
nf tree pictorial structures, each with part detectors with different features.

[Model Constraints]
For selection of part detectors that are useful for efficient and more accurate
inference, we impose the following constraints on the set of detectors used for
each part,
� For the ground truth pose xgt, Fk+1(xgt, I) > Fk(xgt, I), where Fk(x, I) is
the log-likelihood obtained using features at level k (see eqn 1). This ensures that
the detectors at level k + 1 have better localization accuracy than the detectors
at a lower level.
� For each part i, time(φk+1

i ) > time(φk
i ) i.e. the detectors at higher level are

less efficient than the detectors at lower level.

3 Inference

Next we describe our collaborative search approach for efficient inference over
the pictorial structures with hierarchical feature ordering. [1] proposed efficient
algorithms for inference on pictorial structures using sum-product/message pass-
ing algorithm. However, the proposed method uses a dense search for each ob-
ject part and hence becomes inefficient with complex (more discriminative) part
detectors. [18] proposed an efficient algorithm for localization using complex
features by defining quality functions that bound the probability of finding the
object within a window. In this work, we use the branch and bound algorithm
to iteratively search for the object part using coarse-to-fine features. However
in order to quickly concentrate the search in high likelihood regions, we make
inter-branch inferences between the active search branches. In other words, the
branching algorithm depends on the estimated likelihood of the neighboring
parts in the current iteration.

We proceed by briefly describing the message passing algorithm, and then
introduce our inference algorithm.

[Belief Propagation on Pictorial Structures] [19]
Pictorial structures infers the object position by maximizing joint distribution
of the parts (see eqn 1). [1] presented efficient algorithms for inference using
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belief propagation [19]. The algorithm simultaneously computes the posterior
distribution of all parts by locally exchanging messages between connected parts.
The message from part i to part j is the distribution of the joint connecting
parts i and j, based on the observation at part i. This distribution is efficiently
obtained by transforming the part distribution into the coordinate system of
the connecting joint (using eqn 3) and applying a zero mean Gaussian whose
variance determines the stiffness between the parts.

Tij(xi) =

⎛⎜⎜⎝
pxi + siμ

ji
x cosθi − siμ

ji
y sinθi

pyi + siμ
ji
x sinθi + siμ

ji
y cosθi

θi + μji
θ

si

⎞⎟⎟⎠ (3)

where, xi = (pxi, pyi, θi, si) is position, orientation and scale of xi, (μji
x , μji

y ) is
the mean relative position of the joint between i and j, and μji

θ is the relative
angle of part j in the coordinate frame of part i.

3.1 Collaborative Branch and Bound Algorithm

Now we describe the collaborative search algorithm for a tree-structured picto-
rial structures with hierarchical part features. We introduce the following terms
and notations for our algorithm. The configuration space of part i is denoted
with Di; the response function for each part detector is assumed to be of the
form φi : Rd → R. Instead of working over the entire configuration space for
each part, the algorithm maintains subsets that are most likely to contain a true
part response. We refer to these subsets as active. As the subsets are obtained
by branching, each active subset is associated with a unique active branch, and
for each part i, the current set of active branches is denoted by Ri. The subset
spanned by a branch ti is denoted as S(ti).

[Initialization]: Initiate the search for each part i over the entire domain space
Di. Thus the initial set of active branches Ri = Di.

[Iterative Step]: Given sets of active branches for all parts R at the current
iteration k, apply the next detector fk over all branches ∈ R. Note that as the
new detector is applied, the part support at each part location gets accumulated
i.e. value at location l after applying kth detector fk is

∑
k wkφk(l).

Branching: For each branch ti, uniformly partition the space S(ti) into non-
overlapping subsets {S(ti,c)} such that S(ti) =

⋃
c S(ti,c), and initialize new

branches ti,c over each partition S(ti,c) and add them to active branch set Ri.
For simplicity, each space is partitioned uniformly along the all dimensions and
thus all the subsets are blocks (hypercuboids). For each active branch including
the new branches, say ti, compute the max, min and average of the detection
responses over the subset spanned by the branch S(ti,c), denoted by max(ti),
min(ti) and avg(ti) respectively. We refer to these values as branch statistics.
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Inter-branch Message Passing: We use inter branch message passing to compute
the quality q(ti) of each branch ti. For inter-branch message passing, we define
the joint likelihood between a pair of branches from connected parts using eqn 4,

ψ(ti|tj) = −logN(δ(T ji(ti), T ij(tj)); μji, Σji) (4)

Here, T ji(ti) is the transformed subset of ti in the coordinate system of the joint
between parts i and j (given by eqn 3), and δ(ti, tj) is the minimum displacement
vector between the subsets spanned by ti and tj i.e. S(ti) and S(tj). More
precisely,

δ(ti, tj) = li − lj where (li, lj) = argminli∈S(ti),lj∈S(tj)||li − lj||2

Note that since each subset is a block, the minimum displacement vector can be
computed very efficiently, and is independent of the size of the subset.

We now define the quality q(ti) of a thread ti as the joint posterior of average
branch statistic of ti and max statistic of all threads t 	= ti.

q(ti) = avg(ti) + max
ti∪(R\Ri)

⎛⎝ ∑
j∈V,j �=i

max(tj) +
∑

(j,k)∈E

ψ(tj |tk)

⎞⎠ (5)

This definition of the branch quality roughly captures the idea that higher branch
quality implies greater likelihood of the best part hypothesis to belong to the
subset spanned by that branch. Note however that since quality is defined on
average statistic, there is no guarantee that the highest quality thread will al-
ways have the best part hypothesis.

Compute the bounds on the branch quality q(ti) using inter-branch message
passing over with max and min branch statistic of ti. More precisely, to obtain
an upper bound on q(ti), say qU (ti), compute the joint posterior of max branch
statistic of ti and all threads t 	= ti. Similarly, compute the lower bound qL(ti)
as the joint posterior of min branch statistic of ti and min statistic of all threads
t 	= ti. Note that equation for qU (ti) and qL(ti) can be written by replacing the
first term in eqn 5 by max(ti) and min(ti) respectively.

Pruning : Clearly, the quality of branch q(ti) belongs to [qL(ti), qU (ti)]. More
importantly, notice that qL(ti) and qU (ti) are upper and lower bounds of the
best part estimates for all xi ∈ S(ti) (best part estimate is referred to best
hypothesis obtained by belief propagation over entire part space). After these
bounds are computed for all the active branches in R, prune the branches in
ti ∈ Ri when qU (ti) is lower than the lower bound of another branch t̂i ∈ Ri

i.e. qU (ti) < qL(t̂i). Note that since we are pruning based on the accumulated
part support upto level k, the pruning is not guaranteed to retain the best hy-
pothesis for each part. However, in our experiments, we did not observe any loss
in accuracy. For greater efficiency, we also prune the branches with a very low
quality.

After pruning we then apply the next detector and repeat until all the detec-
tors have been applied.
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[Selecting the Best Pose]: After we have applied all the features by progres-
sively reducing the search space, we still need to estimate the best pose over
the current set of active subsets. One may continue to use branch and bound to
reduce the search space, however as branches increase the computational over-
head for computing the branch bounds increases. So we use belief propagation
over the active subsets to obtain the part posterior distribution, and best pose
is obtained by assembling the MAP for each part.

The search algorithm is summarized in Algorithm 1.

Algorithm 1. Collaborative Branch and Bound Algorithm
Initialize each Ri with a single thread over Di

for k ← 1 to |F| do
� For each branch t ∈ R, apply the next detector fk over the entire subset S(t)
Branching
for each part i do

� Ri ← partition(Ri)

� Compute max, min, average statistic for each branch t ∈ Ri

end for
Inter-thread Message Passing {compute the quality of each active thread}
� Compute quality q(t) for each branch t ∈ R using equation 5

� Compute quality bounds qL(t) and qU (t) for each branch t ∈ R
Pruning
for each part i do

� Remove branch t if there exists tk ∈ R〉 qU (t) < qL(tk)

end for
end for
� Compute joint posterior distribution of the parts over the active search space

� Obtain the best pose by collecting MAP estimate of each part

[Accuracy vs Efficiency Tradeoff]: The key aspect of our inference is that
the branching and pruning step depends not on the detection responses but also
on the kinematic constraints. This allows the algorithm to quickly focus on the
subsets that are most likely to contain the best hypothesis. The efficiency of
the algorithm depends on branching factor. When branching factor is too high,
the inter-branch message passing becomes computationally expensive since the
overhead of computing bounds becomes significant. When the branching factor
is small, higher level detectors will be applied over a large space, thereby slowing
down the inference. Since optimal branching factor for highest efficiency depends
on the accuracy of detectors on the input image itself, we empirically select the
branching factor based on the performance of our algorithm on the training data.

4 Parameter Learning

Model parameters include the kinematic functions ψijs and model weights {wk
i }.

[Kinematic Prior]: The kinematic function is modeled with Gaussians, i.e. po-
sition of the connecting joint in a coordinate system of both parts (mij , σij) and
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(mji, σji) and the relative angles of the parts at the connected joint (mij
θ , σij

θ ).
Given the joint annotations that is available from the training data, we learn
the Gaussian parameters with a Maximum Likelihood Estimator [1], [7].

[Feature Weight Vector]: Since the joint likelihood function is log-linear (eqn
2), we learn the model weights using the Voted Perceptron algorithm [17]. The
algorithm computes the prediction error given the current set of weights and
update the weights based on the error between the true and predicted positions
(see Algorithm 2). The algorithm doesn’t converge to a zero error but rather
gets close a certain value and oscillates around it. Thus as in [17], we use the
weights obtained by averaging weights obtained over many runs.

Algorithm 2. Model Weight Learning using Structured Perceptron
Randomly set the initial weights w
for t = 1 to T , j = 1 to N do

� Compute MAP pose xo on training image Ij using current weights w.

for p = 1 to n do
if xo

p �= xgt
p then

� Collect the feature error vector, Δk
p = Δk

p + φk
p(Ij |xgt) − φk

p(Ij |xo)

� Update the weight vector, wk
p = wk

p +
Δk

p

||Δp||
L1

end if
end for

end for

5 Experiments

For evaluation, we use the People dataset [6] which contains 305 images, each
with highly articulated human poses in a cluttered background. The images are
resized such that the human in these images are about 100 pixels high. The first
100 images were used for training and rest 205 images used for testing, as in
other reported experiments on this dataset [6], [7].

5.1 Part Detectors

We use 3 detectors in a hierarchy for each part - minimum edge density (fast
but low accuracy), boundary and region templates (slower but more accurate)
and boosted cascades (slowest but high accuracy). Figure 2 shows the features
and templates used in part detectors.

[Edge Density Filters]: We learn edge density filters for each body part from
the training set. Edge density filters (EDF) find the potential candidate regions
for each part based on the density of edges within a window. This involves com-
puting a Sobel edge map, followed by thresholding applied at each location based
on the density of edges within the window. For each part, a square window of
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(c)(a) (b)

Fig. 2. Templates and features used in part detectors: (a) Boundary templates (b)

Region Templates, dark areas correspond to low probability of edge, and bright areas

correspond to a high probability; (c) Selected JRoGs, each granule-pair used to compute

the feature is indicated by the same color. For clarity, only the first few pairs are shown

for each part;

size equal to the length of the part was considered, and integral images were used
for efficiency. Note that this filtering process mainly helps in removing obvious
regions where the density of edges is low.

[Boundary and Region Templates]: We used the boundary and region tem-
plates trained by Ramanan et al [6] for localizing human pose (see 2(a, b)).
Each template is a weighted sum of the oriented bar filters where the weights
are obtained by maximizing the conditional joint likelihood (refer [4] for details
on training). The likelihood of a part is obtained by convolving the part bound-
ary template with the Sobel edge map, and the part region template with part’s
appearance likelihood map. Since the appearance of parts is not known at the
start, part estimates inferred using boundary templates are used to build the
part appearance models. For each part, an RGB histogram of the part hfg and
its background hbg is learnt; the appearance likelihood map for the part is then
simply given by the binary map p(Hfg|c) > p(Hbg|c). For more details, please
refer to [6].

[Boosted JRoG Cascades]: We trained discriminative part detectors using
the JRoG (Joint Ranking of Granules) proposed in [20]. A JRoG captures region
dissimilarity between a pair of image blocks due to the difference in grayscale
value or the average gradient, and is more accurate and efficient on pedestrian
detection tasks [20] than other popular features such as HOG [21] and Edgelets
[22]. The likelihood of a part hypothesis is given by the sum of the fraction of lay-
ers passed (in the cascade) and detection confidence obtained by the final layer
(if all layers are passed). We trained each part cascade detector using boosting
with 5000 positive training examples for each part and a million negative ex-
amples from the images obtained from the Internet. The positive samples were
obtained by the 100 part annotations, their flipped versions and small affine per-
turbations (rotation, scale and translation). Figure 2(c) shows the first selected
JRoG features.
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5.2 Human Pose Inference

We used the following hierarchy of detectors: edge-density filters, boundary tem-
plates, boosted JRoG cascades and region templates. The joint posterior distri-
bution of parts was efficiently computed using the proposed collaborative branch
and bound algorithm. We used RGB histograms discretized into 16 × 16 × 16
bins to model appearance of each part. Part appearance models were learnt us-
ing the joint part posterior of the boundary templates and the boosted JRoG
cascades. Note that unlike [6], we learn part appearance models and apply the
region templates only over the active search space (after applying the JRoG
detector) which is much smaller than entire part space.

5.3 Evaluation

We compute the pose accuracy of the entire dataset by computing the average
correctness of each body part over all the images (total of 2050 parts). An es-
timated body part is considered correct if its segment endpoints lie within 50%
of the length of the ground-truth segment from their annotated location, as in
earlier reported results [7].

[Part Detectors]: We compare the performance of the part detectors used
in this work over the entire test set. Each part detector was applied at every
pixel in 24 orientations. Both accuracy and timing of the part detectors trained
with different features are shown in Table 2. We observed that even though
the person in each image has been scaled to approximately 100 pixels, the vari-
ance in part sizes is still significant (e.g. lower leg has a standard deviation of
∼ 10 pixels over the entire dataset). So we applied the detectors over 5 scales
- {0.8, 0.9, 1.0, 1.1, 1.2}. While applying template detectors over multiple scales
did not improve the detection accuracy, the boosted JRoG part detectors applied
over multiple scales was much more accurate than for a single scale (shown in
Table 1). Thus, in our experiments we apply the template detector over a single
scale and the JRoG detectors over all 5 scales. Also notice that the appearance
models obtained from more accurate detection responses, improve the accuracy
of the region templates [6]. Thus, we use the region templates at the top of our
hierarchy.

The times reported in Table 2 are the total time taken by densely applying
all the detectors to process a 276 × 213 image. Timing is computed on a state-
of-art machine with 3GHz Dual-Quad Core CPU. Since the part detectors are
independent of each other, we apply part detectors in parallel using OpenMP
programming. This speeds up the detectors by about ∼ 5 times. Template detec-
tors were applied using the fast convolution method in the Intel Image Processing
Primitives library.

[Pose Estimation]: We evaluate the performance of our system at various levels
in the hierarchy with different combination of part detectors.

Accuracy: Table 2 shows the pose estimation accuracy averaged over all parts
(total of 2050 parts). Notice that the detection accuracy increases with the use of
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Table 1. Comparison of Part Detector accuracy. Arm and leg numbers are average of

left and right parts. The appearance models for region detectors in row 3 and 4 are

obtained by using responses from boundary templates and JRoG detectors (shown in

parentheses).

Method Accuracy Time

Torso U-Leg L-Leg U-Arm L-Arm Head Total (in secs)

Edge Density Filters - - - - - - - 0.12s

Boundary Templates 3.9 6.3 9.7 2.4 5.6 3.9 5.61 2.032s

Region (wBoundary) 18.0 13.4 10.0 1.9 1.7 0.0 7.22 2.047s

Region (wBoundary+JRoG) 30.7 26.6 14.8 3.9 1.7 1.9 12.68 2.047s

JRoG 28.8 16.5 5.8 3.4 1.0 32.4 11.48 2.640s

JRoG (5 scales) 34.1 23.1 13.2 5.1 5.8 42.4 17.13 13.843s

more heterogeneous detectors for each part. Also note that our selection of part
detector ordering clearly satisfies the model constraints (increasing accuracy and
computation time with increase in level) given in Section 2.2. Learning of feature
weights increases the performance accuracy by about ∼ 2%. Figure 3(a) shows
the variation in the number of poses with number of detected parts per pose;
notice that with increase in number of detectors, the number of poses with fewer
detected parts decreases while the number of poses with higher detected parts
increases.

Timing: The speed up factor using our algorithm depends on the amount of
pruning achieved by the faster part detectors. Hence in images with significant
background clutter the speed up factor is smaller. Table 2 shows the time taken
to process a ∼ 200×180 image averaged over 50 images from the People dataset.
Our inference is about 3.6 times faster than Pictorial Structures’ dense search
[1]. Over the entire dataset, the speed up factor varied between 3 to 5 with an
average factor of ∼ 3.7. When the detectors were applied sequentially (without
parallel programming), the average speed up factor increased to ∼ 4. Figure
3(b) illustrates the progressive search space reduction at various levels in the
hierarchy over the entire dataset.

Table 2. Pose Estimation accuracy with different part detector combinations. Time

reported is averaged over 50 images of size ∼ 200 × 180.

Accuracy Time (in secs)

Dense Parsing [1] Collaborative BnB

EDF + Edge Templates 33.95 1.785s 1.487s

EDF + Edge + Region Templates 43.90 3.711s 2.987s

EDF + Boosted JRoG Cascades 51.95 8.727s 6.807s

EDF + Edge + JRoG 54.78 9.832s 3.096s

EDF + Edge + JRoG + Region 60.88 11.76s 3.27s
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Fig. 3. (a) Number of poses vs number of detected parts per pose (b) the percentage

of configuration space processed by detectors at different levels in hierarchy

Table 3. Comparison of Pose Estimation Results with other approaches: Iterative

Image Parsing (IIP) [6], Boosted Shape Context with Pictorial Structures (PS) [7].

Method Torso Upper leg Lower leg Upper arm Forearm Head Total

Boundary-PS [6] 39.5 21.4 20 23.9 17.5 13.6 11.7 12.1 11.2 21.4 19.2

Boundary+Color-IIP [6] 52.1 30.2 31.7 27.8 30.2 17 18 14.6 12.6 37.5 27.2

ShapeContext-PS [7] 81.4 67.3 59 63.9 46.3 47.3 47.8 31.2 32.1 75.6 55.2

MultiPart-CBnB 91.2 69.3 73.7 61.0 68.8 50.2 49.8 34.6 33.7 76.6 60.88
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Fig. 4. Results on the People Dataset. For each image, the inferred parts (overlaid in

red) and the joint likelihood distribution of parts obtained by our algorithm are shown.

The image pairs (a-l) are the initial few entries from the dataset (also shown by [7]);

(r-u) show some failure cases (see text for description).
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Figure 4 shows sample results obtained by our algorithm. Notice that our
algorithm performs quite well on fairly articulate poses in cluttered backgrounds
4(d, i, l, m, q). Since our human pose model does not represent non-overlapping
and occlusion constraints between parts [8], our algorithm fails to disambiguate
parts in such poses 4(f, h, s-u).

[Comparison with Other Approaches]: We compare our method with the
closely related iterative parsing approach [6] that uses boundary and region
templates also used in this work, and pictorial structures with part detectors
with boosted shape context features [7]. Table 3 shows the localization accuracy
on the People dataset obtained using our approach and those reported by [6], [7].
As Table 3 clearly shows, our method significantly outperforms both methods.
A direct speed comparison is difficult as [6], [7] do not report run time numbers.

6 Conclusion

In this paper we proposed a part based model with heterogeneous part features
for object pose estimation and demonstrated that the use of multiple detectors
for each part improves the accuracy. For efficient inference over these models, we
created a hierarchical ordering over the different detectors for each part based
on accuracy and efficiency and proposed a collaborative branch and bound al-
gorithm which progressively reduces the search space for each part by imposing
kinematic constraints from the neighboring parts. We applied our approach to
estimate human pose in a single image and outperformed the state-of-art ap-
proaches, and showed that our inference is 3 times faster than dense sampling
methods using a single, highly accurate detector and 3.7 times faster than those
using multiple detectors.
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Abstract. In this paper, we propose a new shape/object retrieval al-

gorithm, co-transduction. The performance of a retrieval system is criti-

cally decided by the accuracy of adopted similarity measures (distances

or metrics). Different types of measures may focus on different aspects

of the objects: e.g. measures computed based on contours and skeletons

are often complementary to each other. Our goal is to develop an al-

gorithm to fuse different similarity measures for robust shape retrieval

through a semi-supervised learning framework. We name our method

co-transduction which is inspired by the co-training algorithm [1]. Given

two similarity measures and a query shape, the algorithm iteratively re-

trieves the most similar shapes using one measure and assigns them to

a pool for the other measure to do a re-ranking, and vice-versa. Using

co-transduction, we achieved a significantly improved result of 97.72%
on the MPEG-7 dataset [2] over the state-of-the-art performances (91%

in [3], 93.4% in [4]). Our algorithm is general and it works directly on

any given similarity measures/metrics; it is not limited to object shape

retrieval and can be applied to other tasks for ranking/retrieval.

1 Introduction

Shape-based object retrieval is an important task in computer vision. Given a
query object, the most similar objects are retrieved from a database based on
a certain similarity/distance measure, whose choice largely decides the perfor-
mance of a retrieval system. Therefore, it is critically important to have a faithful
similarity measure to account for the large intra-class and instance-level varia-
tion in configuration, non-rigid transformation, and part change. Designing such
a measure is a very difficult task. Fig. (1) gives an illustration where a horse
might have a smaller distance to a dog (based on their contours) than another
horse, whereas our human vision systems can still identify them correctly.

In this paper, we refer to shape as the contour of an object silhouette. Our al-
gorithm, however, is general and not limited to any particular similarity measure
or representation. Building correspondences is often the first step in computing
shape difference but it is challenging: two shapes may not have the direct corre-
spondences in representation, regardless if they are represented by sparse points,
closed contours, or parametric functions. For example, two shapes with the same

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 328–341, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. A horse in (a) may look more similar to a dog in (b) than another horse in (c)

contour but different starting points typically are considered as the same one.
Therefore, measuring the similarity between two shapes often can be done in two
ways: (1) computing direct difference in features extracted from shape contours,
which are invariant to the choice of starting points and robust to certain degree of
deformation, such as moments and Fourier descriptors; (2) performing matching
to find the detailed point-wise correspondences to compute the differences [5,6].
The latter recently becomes dominate due to their ability of capturing intrin-
sic properties, and thus leading to more accurate similarity measures. Recently,
Yang et al. [3] explored the group contextual information of different shapes to
improve the efficiency of shape retrieval on several standard datasets [2,7]. The
basic idea was to use shapes as each others’ contexts in propagation to reduce
the distances between intra-class objects. The implementation was done by a
graph-based transduction approach [8]. Later, several other graph-based trans-
duction methods were suggested for shape retrieval [4,9]. Different similarity
measures have different emphasis: for example, similarities computed on match-
ing the skeletons of two objects may be robust against non-rigid transformation,
but are hard to capture the rich variability in part change; similarities computed
on matching the contour parts can capture subtle change but may not be robust
against articulation. It would be natural to think to fuse/combine different com-
plementary metrics together to achieve better performance. A straight-forward
way is to linearly combine a few measures together. However, this often requires
certain level of supervision or manual tuning and will not necessarily produce
the best results (we will see a comparison in the experiments).

This paper provides a different way of fusing similarity/distance measures
through a semi-supervised learning framework, co-transduction. The user input
is a query shape and our system returns the most similar shapes by effectively
integrating two distance metrics computed by different algorithms, e.g. Shape
Contexts [5] and Inner-Distance [6]. Our approach is inspired by the co-training
algorithm [1]. The difference though is that, in co-training, it requires having two
conditionally independent views of the data samples. In our problem, each data
only has one view but different algorithms report measures by exploring differ-
ent aspects of the data. Therefore, they may lead to different retrieval results
for the same query, which can be helpful to each other. For example, as shown
in Fig. (2), the retrieval results of Shape Contexts (SC) [5] in the first row and
Inner-Distance Shape Contexts (IDSC) [6] in the second row are very different as
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their different shape representation, even they can gain the comparable Bull-eyes
retrieval rate (SC: 86.8%1, IDSC: 85.4%) in MPEG-7 Shape dataset [2].

Fig. (3) shows another example for illustrating the motivation of the pro-
posed method: In Fig. 3(1), the SC distances between query shape A and B/C
are not small due to articulation. However, in Fig. 3(2), IDSC reports different
result as it is more stable than SC for articulation changes (it uses the inner
distance to replace the Euclidean distance in SC’s representation). As shown in
Fig. 3, the SC distance between B and C is small as they have the same pose.
Even though C is thicker than B, the SC distance still finds a good match be-
tween C and B. We use IDSC to retrieval B out firstly, and then put B and
query A together as labeled data; a new classifier based on SC distance trained
by A and B will give high confidence to C as shown in Fig. 3(4). Our algorithm is

Fig. 2. The first column shows the query shape. The remaining 10 columns show the

most similar shapes retrieved from the MPEG-7 data set. The 1st-4th rows are the

retrieval results of SC [5], IDSC [6], SC+LP [3], IDSC+LP [3], respectively. The 5th

row is the result of the proposed method by integrating two distance metrics computed

by SC and IDSC.

Fig. 3. The motivation of the proposed method

1 Here we use Dynamic Programming (DP) to replace thin plate spline (TPS) as

Belongie et al. did in [5] for the matching process and achieve 86.8% on MEPG-7

dataset. The new distance measure by DP based on SC descriptor is used as the

input for our retrieval framework.
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inspired by co-training [1]. However, unlike co-training in which two independent
views (sets of features) are assumed, our algorithm deals with single-view but
multiple classifiers; each transduction algorithm on a given similarity measure
is a classifier and they help each other by sending most similar results to the
others. Co-Transduction is also related to [10] but with the difference: (1) [10]
tackles a regression problem; (2) kNN was used in [10]; (3) we focus on fusing
different metrics for object retrieval.

2 Co-transduction Algorithm

We first briefly review the graph-based transduction algorithm (label propaga-
tion) [8] applied in shape retrieval [3]. Given a set of objects X = {x1, ..., xn} and
a similarity function sim: X × X → R+ that assigns a positive similarity value
to each pair of objects. Assume that x1 is a query object (eg., a query shape),
{x2, ..., xn} is a set of known database objects(or a training set). Then by sorting
the values sim(x1, xi) in decreasing order for i = 2, ..., n we can obtain a ranking
for database objects according to their similarity to the query. A critical issue
is then to learn a faithful sim. Yang et al. [3] applied label propagation (diffu-
sion map) to learn a new similarity function simT that drastically improves the
retrieval results of sim for the given query x1. They let wi,j = sim(xi, xj), for
i, j = 1, ..., n, be a similarity matrix, then obtain a n×n probabilistic transition
matrix P as a row-wise normalized matrix w.

Pij =
wij∑n

k=1 wik
(1)

where Pij is the probability of transit from node i to node j.
A a new similarity measure s is computed based on P . Since s is defined

as similarity of other elements to query x1, we denote f(xi) = s(x1, xi) for
i = 1, . . . , n. A key function is f and it satisfies

f(xi) =
n∑

j=1

Pij f(xj) (2)

Thus, the similarity of xi to the query x1, expressed as f(xi), is a weighted
average over all other database objects, where the weights sum to one and are
proportional to the similarity of the other database objects to xi. In other words
a function f : X → [0, 1] such that f(xi) is a weighted average of f(xj), where
the weights are based on the original similarities wi,j = sim(xi, xj).

Note that LP is not limited to only one query object, which also can be used
for 2 or more queries as it’s a classification method (see the case in Fig. 3(4),
there are two query objects A and B). Assume that {x1, ..., xl} is a group of
query objects, and {xl+1, ..., xn} is a set of known database objects. Then the
LP algorithm for computing the new similarity can be shown in Fig. 4.

In a general situation, graph-based transduction can be viewed as performing
manifold regularization [11]. f∗ = argminf∈HK

∑l
i=j V (xj , yj, f) + λ1||f ||2HK

+
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Input: The n×n row-wise normalized similarity matrix P with the query {x1..., xl},
f1(xi) = 1 for i = 1, ..., l, and f1(xi) = 0 for i = l + 1, ..., n.
while: t < T.
for i = l + 1, ..., n,

ft+1(xi) =
∑n

j=1 Pij ft(xj)

end
ft+1(xi) = 1 for i = 1, ..., l.

end
Output: The learned new similarity values to the query {x1, ...xl}: fT .

Fig. 4. The pseudo-code of LP algorithm when the query includes a group of objects

λ2fT L which is an approximation to the continuous function space of f based on
the labeled (query objects in our case) and unlabeled data (database objects).
L is the Laplacian map computed from the similarity measures P . V (xj , yj , f)
measures classification error of f on the supervised data and ||f ||2HK

is a regu-
larize of f . Now we view LP as a tool to improve an input similarity function by
taking the contextual information between objects. The key problem we want to
address in this paper is how to build a robust retrieval system, if there are two
(even more) input similarity measures. A straight-forward solution is to linearly
combine different measures and use LP to gain further improvement. We will
later show that this yields less encouraging results than the proposed algorithm,
co-transduction.

Input: the labeled training set L
the unlabeled training set U

Process:
Create a pool U ′ of examples by choosing u examples at random from U
Loop for k iterations:

Use L to train a classifier h1 that considers only the x1 portion of x
Use L to train a classifier h2 that considers only the x2 portion of x
Allow h1 to label p positive and n negative examples from U ′

Allow h2 to label p positive and n negative examples from U ′

Add these self-labeled examples to L
Randomly choose 2p + 2n examples from U to replenish U ′

Fig. 5. Co-training Algorithm by Blum and Mitchell [1]

Fig. (5) and Fig. (6) give the pseudo-code for co-training [1] and the proposed
co-transduction algorithm respectively. Same as in Yang et al. [3], a query ob-
ject x1 and database objects {x2, .., xn} are respectively considered as labeled
and unlabeled data for graph transduction. In spirit, co-transduction is in the
co-training family; unlike the original co-training algorithm, co-transduction em-
phasizes single view but different metrics (in a way classifiers). It uses one metric
to pull out confident data for the other metric to refine the performance. In im-
plementation, the nearest neighbors of the query object are added to labeled
data set for graph transduction in the next iteration based on the other shape
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similarity. The final similarity simF of co-transduction is the average of all the
similarities: simF = 1

2 (simm
1 + simm

2 ).

Input: a query object x1 (a labeled data)

the database objects X = {x2, ...xn} (unlabeled data)

Process:
Create a n × n probabilistic transition matrix P1 based on one

type of shape similarity (eg. SC)

Create a n×n probabilistic transition matrix P2 based on another

type of shape similarity (eg. IDSC)

Create two sets Y1, Y2 such that Y1 = Y2 = {x1}
Create two sets X1, X2 such that X1 = X2 = X
Loop for m iterations:

Use P1 to learn a new similarity simj
1 by graph transduction

when Y1 is used as the query objects (j = 1, ..., m is the iteration index)

Use P2 to learn a new similarity simj
2 by graph transduction

when Y2 is used as the query objects

Add the p nearest neighbors from X1 to Y1 based on the

similarity simj
1 to Y2

Add the p nearest neighbors from X2 to Y2 based on the

similarity simj
2 to Y1

X1 = X1 − Y1

X2 = X2 − Y2

(Then X1, X2 will be unlabeled data for graph transduction

in the next iteration)

Fig. 6. Co-transduction algorithm

When the database of known objects is large, computing all the n objects
becomes impractical; in practice, we construct similarity matrix w using the
first M << n most similar objects to the query x1 according to the original
similarity, which is similar to Yang et al. [3]. Let S denote the first M similar
objects to the query x1. As different shape similarity often have different S,
we use S1 and S2 to represent the first M similar objects to x1 according to
two kinds of shape similarity respectively. Then the Pseudo code of an efficient
version of Co-Transduction algorithm is shown in Fig. 7, which is used in all our
experiments. In our experiments, M is always setting as 300.

Theoretical justification
Next, we provide a brief theoretical discussion of our algorithm. We borrow
the analysis from [12], which mostly follows the PAC (probably approximately
correct) learning theory. Let H0

1 and H0
2 be two classifiers (the two transduction

algorithms on different metrics in our case) at round 0. They are respectively
bounded by generalization errors a0 < 0.5 and b0 < 0.5 with high probability,
1 − δ, in PAC. Then H0

1 selects u number of unlabeled data samples (database
objects) and put them into σ2 for training H1

2 using transduction. Let l be the
number of labeled data and G = u × a0. If l × b0 ≤ e G

√
G! − G, then

Pr[d(H1
2 , H∗) ≥ b1] ≤ δ,
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Input: a query object x1 (a labeled data)

the database objects X = {x2, ...xn} (unlabeled data)

Process:
Create a M ×M probabilistic transition matrix P1 based on one

type of shape similarity with the data from S1

Create a M × M probabilistic transition matrix P2 based on

another type of shape similarity with the data from S2

Create two sets Y1, Y2 such that Y1 = Y2 = {x1}
Create two sets X1, X2 such that X1 = X2 = X
Loop for m iterations:

Use P1 to learn a new similarity simj
1 by graph transduction

when Y1 is used as the query objects (j = 1, ..., m is the iteration index)

Use P2 to learn a new similarity simj
2 by graph transduction

when Y2 is used as the query objects

Add N1

⋂
S2 (N1 denotes the p nearest neighbors from X1 to

Y1 based on the similarity simj
1) to Y2

Add N2

⋂
S1 (N2 denotes the p nearest neighbors from X2 to

Y2 based on the similarity simj
2) to Y1

X1 = X1 − Y1

X2 = X2 − Y2

(Then X1, X2 will be unlabeled data for graph transduction

in the next iteration)

Fig. 7. Co-transduction algorithm for a large database

where H∗ is the ideal classifier to retrieve all the correct answers, and d(H1
2 , H∗)

measures the difference between learned H1
2 and H∗. The new error is then

b1 = max[
l × b0 + u × a0 − u × d(H0

1 , H1
2 )

l
, 0].

As we can see, the general guidance to achieve a small b1 is to: (1) reduce the
errors of the original learners (good input metrics); (2) increase the complemen-
tariness of the metrics. Our algorithm does not necessarily improve the overall
performance if the input metrics are not so good at the first place and they are
not so different from each other.

From a different perspective, different measures explore different aspects about
similarity; the top M most similar objects w.r.t each measure are often not all
correct; however, the most similar one (nearest neighbor) is likely be the case;
pulling out the best match by one measure to the other helps to further retrieve
similar ones by the other complementary measures. This intuition explains why
co-transduction works. Our work is also related to the diffusion map [13] which
obtains improved similarity measures for clustering by performing Markov ran-
dom walks. Our transductive learning component improves similarity measures,
just like the diffusion map algorithm, and the fusion of different metrics gives
further improvement. By exchanging the improved similarity measures of two
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transductive learning algorithms, we gradually achieve a fused similarity by let-
ting two originally different measures to meet with each other, which realizes
a fusion process. A more detailed theoretical analysis will be left in a longer
version.

3 Experimental Results

In this section, we show results on three datasets: MPEG-7 shape dataset [2],
Tari’s shape dataset [14], and Wei’s trademark dataset [15]. In addition, we show
our algorithm has a potential to bag-of-feature image search.

3.1 Results on Shape Datasets

The MPEG-7 shape dataset consists of 1400 silhouette images grouped into
70 classes with class having 20 different shapes. Usually the retrieval rate for
this dataset is measure by “Bull’s eyes test”. Every shape in the database is
compared to all other shapes, and the number of shapes from the same class
among the 40 most similar shapes is reported. The bulls eye retrieval rate is
the ratio of the total number of shapes from the same class to the possible
number (which is 20 × 1400). We use the similarities computed by SC [5] and
IDSC [6] as the original distance measures. The new similarity obtained by co-
transduction resulted in 97.72% on Bull’s eyes test, which outperforms existing
state-of-the-art algorithms; to further illustrate that our algorithm is indepen-
dent of specific algorithms, we also use the similarity computed by data-driven
general model (DDGM) [16] proposed by Tu and Yuille together with SC or
IDSC as the distance measures for co-transduction; we achieve scores 97.45%
and 97.31% respectively. These improvements show that the performance gain
of our method is general, and not tied to any specific similarity measures. Our
results and the scores by several other recent methods on the MPEG-7 dataset
are shown in Table 3.1. We observe that co-transduction significantly outperform
the alternatives. This demonstrates that integrating different shape similarities
is an important direction for shape recognition.

In order to visualize the gain in retrieval rates by our method compared to
SC or IDSC , we plot the percentage of correct results among the first k most
similar shapes in Fig. 8(a). For example, we plot the percentage of the shapes
from the same class among the first k-nearest neighbors for k = 1, ..., 40. Recall
that each class has 20 shapes and this is the reason for curve k > 20. We observe
that not only does the proposed method increase the bull’s eye score, but also
the ranking of the shapes for all k = 1, ..., 40 gets improved. In Fig. 8(a), we also
plot the curves of retrieval rates for SC/IDSC with graph transduction [3] (eg.
SC + LP and IDSC + LP).

Tari’s dataset [14] consists of 1, 000 silhouette images grouped into 50 classes
with 20 images per class. Tari’s dataset has more articulation changes within
each class than MPEG-7 dataset as shown in Fig. 9, and consequently IDSC
achieved better results than SC on this dataset (see Table 3.1). The retrieval
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Table 1. Bull’s eyes scores on MPEG-7 dataset [2] and Tari’s dataset [14]

Algorithm MPEG-7 dataset Tari’s dataset

SC [5] (DP) 86.8% 94.17%

IDSC [6] 85.4% 95.33%

DDGM [16] 80.03%

Planar Graph Cuts [17] 85%

Shape-tree [18] 87.7%

Contour Flexibility [19] 89.31%

IDSC + LP [3] 91% 99.35%

SC + LP [3] 92.91% 97.79%

IDSC + LCDP[9] 93.32% 99.7%

SC + GM + Meta [20] 92.51%

IDSC + Mutual Graph [4] 93.40%

SC + IDSC + Co-Transduction 97.72% 99.995%
IDSC + DDGM + Co-Transduction 97.31%
SC + DDGM + Co-Transduction 97.45%

Fig. 8. The curves of retrieval rates for SC, IDSC, SC+LP, IDSC+LP, and Co-

Transduction on MPEG-7 shape dataset (a) and Tari’s dataset (b)

Fig. 9. Sample images in Tari dataset
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performance on this dataset is also measured by “Bull’s eyes test”. Only one
error was made when retrieving all the shapes from the dataset, which means
we achieve nearly perfect retrieval rate: 99.995%. Table 3.1 also lists several
results of Tari’s dataset in comparison with other approaches; we observe that
the second highest result by IDSC+LCDP [9] is 99.7% with 60 errors. Same as
in Fig. 8(a), the retrieval curves in Fig. 8(b) are plotted to clearly show the
performance gain by co-transduction algorithm.

3.2 Results on Trademark Images

We also tested our method on a trademark dataset [15] consisting of 14 different
classes with 1, 003 trademark images in all. Fig. 10 shows typical some examples
from the trademark dataset. To evaluate the performance of trademark retrieval,
we use the precision-recall curves. The x-axis and y-axis represent recall and pre-
cision rates, respectively. Precision is the ratio of the number of relevant images
retrieved to the total number of images retrieved while recall is the number of
relevant images to the total number of relevant images stored in the database.
For each query image input to the system, the system returns 11 pages of hits
with descending similarity rankings, each page containing nine trademark im-
ages. This allows the performance of our system to be evaluated on a page-wise
manner. Since there are only five classes containing more than 99 images, we only
report the precision-recall graph on these five classes. Each curve consists of 11
data points, with the ith point from the left corresponding to the performance
when the first i pages of hits are taken into consideration. A precision-recall line
stretching longer horizontally and staying high in the graph indicates that the
corresponding algorithm performs relatively better. Here, we use two distance
measures: moment invariants [21], Zernike [22], which are two kinds of region-
based shape features. Then we use our method on these two distance measures.
In Fig. 11, the data points shown on the curve for co-transduction are the average
precisions and recalls over the five classes. The curves shows that our method can
improve the performance of trademark retrieval significantly, which also prove
that co-transduction algorithm is good fit for trademark images and different
shape distance measures.

Fig. 10. Sample images in Wei’s trademark dataset

3.3 Improving Bag-of-Features Image Search with Co-transduction

In this section we show that co-transduction can improve the accuracy of im-
age search. Bag-of-features image representation [23,24] is usually suggested for
image search problem. Recently, Jegou et al. [25] proposed a distance learning
method called contextual dissimilarity measure (CDM), which can significantly
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Fig. 11. The precision/recall curves for trademark images

Fig. 12. Sample images of N-S dataset [26]

improve the similarity computed by bag-of-features. We compare our method
with CDM on the Nistér and Stewénius (N-S) dataset [26]. The N-S dataset
consists of 2, 550 objects or scenes, each of which is imaged from 4 different
viewpoints. Hence the dataset has 10, 200 images in total. A few example im-
ages from N-S dataset are shown in Fig. 12.

We adopt the method in [25] to compute the similarity for image search.
The image descriptor is a combination of Hessian-Affine region detector [27]
and SIFT descriptor [28]. A visual vocabulary is obtained using the k-means
algorithm on the sub-sampled image descriptors. As co-transduction requires
two kind of similarity measures, we proposed a new similarity named reverse
similarity based on the one by [25]. Let wi,j denote the similarity between
objects i and j computed by [25], the reverse similarity wr

i,j = 1
dβ , where d is

the ranking number of i when using j as a query for the dataset, and β is a
weight factor setting with a constant 10. Reverse similarity is motivated the
phenomenon pointed out by [25]: a good ranking is usually not symmetrical
in image search, which tells us two objects can be very likely from the same
category when they both obtain a good ranking position when using each other
as a query. With w and wr, we can apply co-transduction to image search on N-S
dataset, and the measure score is the average number of correct images among
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Table 2. The results on N-S dataset

number of distinct vocab. original N-S score N-S score with

visual vocab. size N-S score with CDM co-transduction

1 30000 3.26 3.57 3.66

the four first images returned. Table 3.3 lists the results on N-S dataset. We can
observe that co-transduction significantly increases the score from 3.26 to 3.66,
which is also better than CDM’s result when the number visual vocabulary is
1 and vocabulary size is 30000. Our result demonstrates that co-transduction is
also able to improve the performance of image search problem.

3.4 The Parameter Setting and Discussion

As introduced in [29], there are two key parameters for label propagation: α and
K. Beside α and K, there are two additional parameters for co-transduction:
the iteration number m and the number of nearest neighbors p. For the MPEG-
7 and Tari’s dataset, we use the following parameter settings: α = 0.25, K =
14, (which are consistent with the setting in [29]), m = 4, and p = 3. For the
trademark dataset, since the input distance measures are different from the ones
for MEPG-7 dataset, the parameter setting is α = 8, K = 8, m = 2, and p =
2. For the N-S dataset, the parameters are α = 0.25, K = 10, m = 3, and p =
1. Since [29] has introduced a supervised learning method for determining the
parameters α and K in details, we no longer review it here. We only need to
focus on m and p. As both m and p are integer, the values of them are very
easily to set. Table 3.4 shows the scores on MPEG-7 dataset when setting m, p
with the integers from 1 to 5. We observe that all these scores are around 97%,
which demonstrates the insensitiveness of co-transduction to parameter tuning.

Now we want to discuss why co-transduction is essential. We iteratively run
LP on MPEG-7 dataset based on only one type of similarity with the same
parameter setting for co-transduction (the p most similar objects will be added
into the query set for the next iteration), and we get the bull’s eyes scores
92.68% and 91.79% based on SC and IDSC respectively. Compared to the LP’s
results in Table 3.1, there is not so much change. Let sim′

SC and sim′
IDSC

denote the similarities obtained in the above experiments. We obtain a new
similarity sim′

c by linearly combining sim′
SC and sim′

IDSC as follows: sim′
c =

Table 3. The bull’s eyes scores on MEPG-7 dataset with different parameter setting

m = 1 m = 2 m = 3 m = 4 m = 5

p = 1 96.89% 97.05% 97.30% 97.32% 97.34%

p = 2 97.06% 97.24% 97.36% 97.45% 97.36%

p = 3 97.20% 97.54% 97.63% 97.72% 97.67%

p = 4 97.13% 97.30% 97.42% 97.37% 97.32%

p = 5 97.24% 97.55% 97.58% 97.20% 96.92%
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λsim′
SC+(1−λ)sim′

IDSC, where λ is a weight factor. We tuned λ, and the highest
score based on sim′

c is 92.0% when λ is 0.9. These results are much lower than
the ones by co-transduction, and this illustrates that the performance achieved
by co-transduction can not be reached by simply combining the similarities.

4 Conclusion

We have proposed a shape retrieval framework named co-transduction which
combines two (our algorithm is actually not limited to just two) different distance
metrics. The significant performance improvement on four large datasets has
demonstrated the effectiveness of co-transduction for shape/object retrieval.Our
future work includes the extension to other problems and providing deeper un-
derstanding of the approach.
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Abstract. In this paper, we propose a very efficient method to learn shape mod-
els using local curve segments with multiple types of distance metrics. Our learn-
ing approach includes two key steps: feature generation and model pursuit. In the
first step, for each category, we first extract a massive number of local “prototype”
curve segments from a few roughly aligned shape instances. Then we quantize
these curve segments with three types of distance metrics corresponding to dif-
ferent shape deformations. In each metric space, the quantized curve segments
are further grown (spanned) into a large number of ball-like manifolds, and each
of them represents a equivalence class of shape variance. In the second step of
shape model pursuit, using these manifolds as features, we propose a fast greedy
learning algorithm based on the information projection principle. The algorithm
is guided by a generative model, and stepwise selects the features that have max-
imum information gain. The advantage of the proposed method is identified on
several public datasets and summarized as follows. (1) Our models consisting
of local curve segments with multiple distance metrics are robust to the various
shape deformations, and thus enable us to perform robust shape classification and
detect shapes against background clutter. (2) The auto-generated curve-based fea-
tures are very general and convenient, rather than designing specific features for
each category.

1 Introduction

Although many shape descriptors have been proposed for distortion and deformation
measurement, learning shape detector incorporating with multiple types of distance met-
rics has been rarely addressed in previous work. This paper presents a novel learning-
based shape detector for detecting and matching shapes from cluttered edge maps.

In the following, we briefly review the previous work for (i) shape descriptors (or
similarity measurements) and (ii) learning shape models.

(i) Many shape matching problems are posed as minimizing the distance measures
of deformation and bending by searching corresponding points between two shapes.
Most of these distance measures are mainly defined on the spaced landmarks of shape
boundaries and designed to account for various shape transformation. For example,
the procrustes distance [9] is very robust to the rigid affine transformation; the in-
ner distance [13] and shock graph distance [21] capture the articulation transforma-
tion very well. Recently, to deal with more complex non-rigid shape deformations
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and configurations, the context and hierarchy of shapes have been the theme of recent
work [1, 7, 17, 16]. Despite of the acknowledged success of these methods, it is still an
open problem to adaptively select the proper shape distances corresponding to different
shape categories.

(ii) Early work on learning shape models include learning contour groups with per-
ception organization [19, 26] and learning global modes of variation with the Active
Shape Models [3]. In the research of object detection, contour-based features were
widely adopted due to their large invariance against lighting conditions and variations
in object color and texture [22,8]. However, in the context of noisy edge maps and back-
ground clutter, shape contours are often considered as been less discriminative. Some
recent hierarchical or part-based object models [10, 23] prefer region (or appearance)
features.

In this paper, we argue that automatic object recognition was indeed achievable by
employing only shape contour information. Incorporating with multiple types of dis-
tance metrics, the proposed shape detectors are robust to capture various shape defor-
mations, and thus enable us to perform stable shape classification and detect shapes
against background clutter. Our approach includes two key steps: (i) automatic feature
generation and (ii) generative shape model pursuit.

In the first step, for each category, we first extract a massive number of local “proto-
type” curve segments from roughly aligned shape instances and quantize each of them
with three types of different descriptors, i.e. procrustes distance [18], articulation dis-
tance and geodesic distance [12]. This is inspired by the classical work of shape analy-
sis [6], which shows that the arbitrary deformation of a shape curve (or contour) can be
decomposed into three types: the rigid (affine) transformation, articulation transforma-
tion, and distortion (twist). The three distances we employed are proven to accordingly
capture the three typical transformations very well. In the rest of this paper, we call
these “prototype” curve segments as proto-curves for simplification.

In the perspective of mathematics, each proto-curve quantized by a descriptor can
be viewed as a point in the metric space, where this point can be further spanned into a
manifold by introducing a statistical fluctuation �. As illustrated in Fig.1 (a), we visually
define the manifold centering at a proto-curve as an “�-ball”, in the sense that the ball-
like manifold is essentially an equivalence class of the proto-curve in the metric space.
Moreover, each �-ball encodes the relative location (i.e. global spatial configuration) of
the proto-curve with respect to the center of the shape that we extracted the proto-curve
from, inspired by the Implicit Shape Model [14]. Therefore, given an input shape, each
�-ball can be further defined as a “visual feature” or classifier that decides whether the
testing shape has the similar local deformation corresponding to the �-ball.

In the second step of shape model pursuit, we propose a fast greedy feature selection
algorithm based on the information projection principle [4]. For each shape category,
the training set consists of a small number of positive samples and a certain amount of
reference samples chosen over all categories. The algorithm is guided by a generative
shape model based on the Pietra’s representation [20], in that each feature (�-ball) cap-
tures the shape variance explicitly and generatively. In our learning algorithm, different
types of features, (i.e. proto-curves quantized by different metrics), are made compara-
ble to each other by an information gain criterion; the shape model pursuit is formulated
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Fig. 1. (a) Illustrates that we extract “prototype” curve segments from the roughly aligned shapes
and quantize each of them with three metrics. Each quantized proto-curve is spanned to a few
manifolds. We name each manifold “�-ball” and define it as binary feature. Here the circle, square
and diamond denote the proto-curve, positive sample and reference (negative) sample respec-
tively. (b) shows two significant clutter edge maps and their corresponding detection results. The
detected curves and shape bounding box are plotted in yellow and green respectively.

as the procedure of maximizing the log-likelihood ratio of positive samples against the
reference samples, with stepwise feature selection. By pruning the correlated features
within the feature selection, we assume that the likelihood ratio can be factorized into
individual likelihood ratios of the features. As a result, the shape model is in the form
of the weighted sum of a small number of �-balls. In the testing stage, given a learned
shape model, we adopt the sliding window approach to fast localize and match shapes
from clutter edge maps, as shown in Fig.1 (b).

The key contribution of this paper is summarized as follows. (1) We propose a gen-
eral approach to produce shape features by growing manifolds from curve segments in
different distance metrics. (2) We present a simple algorithm to learn generative shape
models consisting of multiple types of features by an information gain criterion. (3) Our
approach is tested on two challenging datasets, such as the ETHZ shape dataset [8] and
a 40 categories image dataset chosen from LHI database [24], and shows the-state-of-
the-art performance.

The remainder of this paper is arranged as follows. We first introduce our curve-
based features in sec.2, including three distance metrics and feature generation. The
algorithm for pursuing shape models and a shape matching algorithm are proposed in
sec.3. The experimental evaluations are presented in sec.4. The paper concludes with a
summary in sec.5.

2 Feature Generation via �-Balls

In this section, we will introduce the procedure of curve-based feature generation with
three types of shape distances.

In our method, a shape S is represented by a batch of curve segments �c�. As il-
lustrated in Fig.2, a curve segment c from the shape S is described as a two tuple
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Fig. 2. A shape S is represented by a batch of curve segments. We encode the relative position
of the curve segment with respect to the shape. u� v denote two end points of the curve, the mass
center of the shape is g and the orientation of a shape is �.

��� � � (�u� �v� o)�, where � is the set of interpolated landmarks along c. � � (�u� �v� o)
indicates the relative position of the curve segment c with respect to the shape S. Sup-
posing u� v denote two end points of c, the mass center of the shape is g and the orienta-
tion of the shape is �, �u denotes the relative angle between gu and �, and �v is defined
similarly at end point v. o is the offset of the curve centroid related to g. Note that the
orientation of a shape can be calculated by the PCA method.

At the first step of feature generation, we extract a number of curve segments, namely,
proto-curve, from the shape instances in the training set. We denote this proto-curve as
boldface letter c. Then we quantize each curve segment with three different distances
corresponding to various shape deformation. In the three metric spaces, each quantized
proto-curve c is further spanned into a number of ball-like manifold, called “�-ball”, as
follows,

�w(c) � �c : �w(c� c) � ��� (1)

where w � ��p��� a��� g�� indicates the type of distance metrics, i.e. procrustes distance,
articulation distance and geodesic distance. We will introduce three distance metrics
later on. Each �-ball can be viewed as an equivalent class bounded by residual �, in
which each element c may share the same statistical characteristics with respect to c.

Furthermore, an �-ball can be naturally transformed to a binary feature (weak clas-
sifier), hi � �w(c)� i � 1� 	 	 	M, (M indicates the size of the feature set), and given a
testing shape S, its response is defined as,

ri(S) �

�
1� �w(c�� c) � ���c� � S s	t	 �c� � �c�

0� otherwise�
(2)

where �c� � �c indicates that two curve segment c� and c have the similar relative
position with respect to the shape. Intuitively, one shape S is predicted as positive by
the feature h is equivalent to existing a curve c� in S that has the almost the same relative
position as well as the same similarity the distance metric similar deformation compared
to the proto-curve c. Unlike the discriminative boundaries in many previous work [8],
the proposed manifold features “keep silence” (equal to 0) to a shape S not falling into
them.
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Fig. 3. (a) Shows the rigid transformation between two bones and (b) shows bijection correspon-
dence between two curve segments using procrustes analysis. (c) and (d) illustrate the articulated
transformation and distortion (twist) between two shapes respectively.

2.1 Quantizing Curve Segments

For each proto-curve c, we map it into three different metric space, in that the proto-
curves are transformed as a quantized point. It worth mentioning that though the various
distance metrics are not entirely uncorrelated, they capture different characteristics of
the shape.

Procrustes distance metric: �p(c). We adopt the squared Procrustes distance [6] to
measure the goodness of match between a pair of curve segments. By writing the co-
ordinates of xi � (
i� �i) in c and yi � (


�

i � �
�

i) in c in complex form, namely, X and Y ,
respectively, we have

�p(c� c) � 1 �
�Y� 	 X�2

Y� 	 Y 	 X� 	 X
� (3)

where X� and Y� are the conjugate forms of X and Y. One exemplar of this metric is
illustrated in Fig.3 (a), which shows the rigid transformation between two bones. Fig.3
(b) exhibits bijection correspondence of curves computed by procrustes analysis [9].

Articulation distance metric: �a(c). In order to capture articulation invariance shown
in Fig.3 (c) between a pair of curve segments, we design articulation distance metric by
employing three geometrical shape descriptors as,

�a(c� c) � min � �(c) � �(c) �� (4)

where�(	) denotes a six dimensional vector of the curve segment, (ID,A1,A2,S1,S2,S3),
that combines the following three shape descriptors together.


 Inner-distance between the ends (ID): The traditional computing process of the
inner distance [13] which refers to the shortest path between a pair of points within
the whole shape silhouette is suitable for label maps during the learning procedure, but
suffers pain when dealing with clutter edge maps in the testing stage, since there is no
information about the inner and the outer parts (Fig.1 (b)). Thus we improve it by find-
ing two shortest pathes between u� v following (i) respectively building two weighted
undirected-graphs with the landmarks as their nodes on both sides of the curve, and
(ii) individually applying the shortest route algorithm (e.g. Bellman-Ford) over these
graphical structures.
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 Relative angles (A1, A2): As shown in Fig.3 (c), we achieve the angles A1 = �uv,
A2 = �vu between the path uv and the tangents at u and v respectively.


 Articulated-invariant curve signature (S1, S2, S3): Let din be the inner distance
matrix of a curve segment calculated between each pair of landmarks. While mapping
din into Euclidean distance space deu by multidimensional scaling (MDS), the land-
mark point set � will be transformed into a new one ��, which can be computed by
minimizing the following equation,

���
� arg min

��

����
i

����
j

(din(i� j;�) � deu(i� j;��))2

din(i� j;�)2
	 (5)

And the articulated-invariant curve signature is defined to be a triple (S1, S2, S3), that
it is the l2-norm between � u�� v� 
, � u�� v�cen 
 and � v�cen� v

� 
 respectively, where
u�� v� � �� and v�cen is the center point of the mapped curve segment.

Geodesic distance metric: �g(c). The geodesic distance between each pair of points
on a 3D shape keeps stationary even though the shape is distorted. And this would be
the same case if two 2D shapes to be matched have approximately identical view. Thus,
we use the contour distance as an analogue to model distortive transformation (Fig.3
(d)). And �g(c� c) indicates the Euclidean distance between the contour length of c and
the length of the proto-curve. Due to different lengths of the curve segments, �g(c) has
been proved a discriminative distance metric in practice (see sec.4).

2.2 Feature Evolution

We conduct a procedure called “feature evolution” to calculate the residual � for each
manifold feature �w(c). In practice, we generate three �-balls for each proto-curve c in
each metric space.

Recall that the all proto-curves are quantized points in the metric space. Intuitively,
for each c, we grow the � starting from an initial small number, and the more neighbor-
ing proto-curves will fall into the growing ball when the � increases. The specific value
of � relies on the number of neighboring proto-curves in the �-ball. In our implementa-
tion, the discretized value of � is computed by the ball containing 0	1%, 0	3% and 0	5%
amount of total proto-curves.

We ensure feature independence by pruning those redundant �-balls with high rele-
vance, i.e. having the same similarity and relative position. We thus calculate the mutual
correlation between arbitrary two features following the theory of Pearsonian Correla-
tion Coefficient in Statistics,

corr(hi � h j) �

�
k ri(ck) 	 r j(ck)�

k r j(ck)
	 (6)

Note the correlation is non-symmetric measured. For example, if a feature hi is totally
covered by h j, then corr(hi � h j) � 1 and corr(h j � hi) � 1.

3 Learning Shape Models via Information Projection

With a large amount of “�-balls” as features, we introduce a novel learning algorithm
based on information projection [4], embedded with a loop named “MaxMin-KL”, to
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pursue the generative shape models that implicitly form the quantized curve segments
based deformable templates.

3.1 Learning Procedure

We pursue the generative shape model on a given training set �(S1� l1)� 			� (SN� lN)�,
where l � �1� 0� denotes the label of each sample.

Let f (S) be the target distribution of a shape category. To learn a generative model
with a few positive examples, we gradually pursue a series of models p1(S)� p2(S)� 			�
pt(S) to approach f (S) from a background model q(S) (reference samples) by step-
wise selecting the most informative features, which lead to the fastest decreasing of
the information gain. Since any shape S is projected into the feature spaces, we can
redefine our problem that pt(r1� r2� 			� rt) must agree upon dimensions (r1� r2� 			� rt) with
the target distribution f (r1� r2� 			� rt), where rt is the response of the selected feature ht.
Therefore, in each step, we choose a feature ht to maximize KL divergence��(pt(rt) 

pt�1(rt)). Since the overlapping features have been roughly pruned, we may assume
that pt�1(rt) � q(rt) (i.e. feature independence). With this independence assumption,
the likelihood ratio of f (rt) and q(rt) can be factorized into individual likelihood ratios
for the features. Thus, our shape model has the following form,

pT (S) � q(S)
T�

t�1

1
Zt

exp��trt(S)�� (7)

where Zt � Eq[exp��trt(S)�] is the normalized term and each �t is found by E f [rt] �
Ept [rt]. And the following log-linear equation would provide a matching score against
background for a given shape,

H(S) � log
pT (S)
q(S)

�

T�
t�1

(�trt(S) � log Zt)� (8)

which can be combined with a threshold � (� � 0 in our implementation) for object
classification.

We repeat two steps called “MaxMin-KL” for pursuing the shape model, that is se-
lecting feature ht and calculating the parameters �t and Zt in Eq.(8). During the t-th
pursuit iteration, we perform:

1) a max-step to argumentatively maximize the ��(pt(rt) 
 q(rt)) for choosing a
most distinct feature ht.

Proposition I: Let f obs
i � E f [ri] and qre f

i � Eq[ri] be the expectations of any feature
hi responding to positives and reference samples respectively. We select a most distinct
feature by maximizing KL-divergence in iteration t as

h�t � arg max( f obs
t � qre f

t )2	 (9)
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Proof: Let rt � Ept [rt] be a variable, we establish a function � (rt) � ��(pt(rt) 


q(rt)) � �trt � log Zt. Perform Taylor expansion of � (rt) at point Ept�1 [rt],

� (rt) � � (Ept�1 [rt])��������������������
�0

�

�� (Ept�1[rt])

�rt������������������������
�0

(rt � Ept�1 [rt])

�

�2� (
rt�Ept�1 [rt]

2 )

2�r2
t

(rt � Ept�1 [rt])2

������������������������������������������������������������������������
�(rt�Ept�1 [rt])2

�			

� (rt � Ept�1 [rt])
2
� (Ept [rt] � Eq[rt])

2 (10)

from which we can choose Eq.(9) as an approximation.
Intuitively, after selecting ht, we can simply update f obs

i and qre f
i for each feature hi

as,

f obs
i � Ept [ri] �

1
N�

(1 � corr(ht � hi))
N��
j�1

ri(S j)� (11)

qre f
i � Eq[ri] �

1
N�

(1 � corr(ht � hi))
N��
j�1

ri(S j)�

where N�, N� stand for the number of positives and reference examples respectively
and corr(ht � hi) is defined in Eq.(6), which guides to perform the sparse feature set.
In each iteration, the features that have their correlations with the selected feature ht

exceed a threshold Æ will be directly excluded (Æ = 0.2 in our implementation).
2) a min-step to compute �t, Zt for the selected ht in order to meet the constraint

E f [rt] � Ept [rt].

Proposition II: Given the selected feature ht, the parameters �t and Zt of the current
model is,

�t � log
f obs
t (1 � qre f

t )

(1 � f obs
t )qre f

t

and Zt � e�t qre f
t � 1 � qre f

t 	 (12)

Proof: As discussed above, Zt � Eq[exp��trt(S)�] �
�

�wt q(rt) exp��trt(S)�, which can
be partitioned by �wt as

Zt �

�
�wt��t

q(rt) exp��t� �
�

�wt��t
q(rt) (13)

� e�t Eq[rt] � 1 � Eq[rt] � e�t qre f
t � 1 � qre f

t 	

Similarly, the analytical solution of �t can be easily proved in the same way.
The stepwise learning algorithm is summarized in Alg.1.

3.2 Shape Matching from Clutter Background

While the learned shape model in sec.3.1 consists a sparse feature set incorporated with
different distance metrics, the corresponding proto-curves of features are directly used
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Algorithm 1. Features pursuit
Input: A small set of positive shapes (i.e. we name it the “proto set”) for extracting

proto-curves and a training set, which contains a small number of positive samples
and a certain amount of reference samples. The positive examples and the shapes
of the proto set have no intersection, and have been normalized to the same scale.

Initialization: determining � for each “�-ball” to generate shape features by feature
evolution (sec.2.2); computing correlation between each pair of features by Eq.(6).
Loop t=1 to T

max-step: select a distinct feature h�

t by Eq.(9); update f obs
i , qre f

i for any feature hi by
Eq.(11) and prune correlated features with Æ.

min-step: calculate �t, Zt for h�

t by Eq.(12).
� until information gain is smaller than a threshold (say 0.05) then stop.

Output: A generative model (i.e. a strong classifier with a threshold � � 0) for a
shape category,
H(S) �

�T
t�1(�trt(S) � log Zt).

Fig. 4. (a) Shows a proto-curve as in the left of Fig.1 (a). We detect object contours from the edge
map inside a ribbon of each proto-curve. (b) illustrates the idea of moving the ribbon around its
eight neighborhood. (c) shows that each ribbon is used as the deformable template.

as deformable templates to match shape from clutter background in this section. We
adopt a coarse-to-fine sliding window approach [5] and normalize the points inside each
detection window to the same scale as the training step (Alg.1). Our goal is to sample
curves and calculate response of the feature by Eq.(2). Since the object boundaries in
clutter edge map are usually broken and surrounded by noise, it is natural to sample
curves by scanning specific regions according to the spatial configuration of the proto-
curve.

A template is defined as a four tuple �c� vcen� �� ��, where vcen indicates the center
point of the proto-curve c and �, � are two radii acting on each landmark of c and vcen

respectively. Each template is working as follows. (i) We detect object boundary inside
a ribbon of c, that is obtaining by marching each landmark off its normal direction with
a small distance � as illustrated in Fig.4 (a). (ii) A partial scan strategy is proposed
to sample curves from clutter edge map. we first place this ribbon inside the detection
window referring to the position of vcen, which can be accurately calculated by its end
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directions and center offset (Fig.4 (c)), and then move it around with a small radius �
as shown in Fig.4 (b). (iii) Finally we compute the minimum distance of the sampled
curves and the proto-curve using the related distance metric.

The above method is inspired by the part-based detection work [2], which uses sin-
gle shape contour as template and gradients of each point as feature. The experimental
results in sec.4 demonstrate that our promotion is successful. Combining with multiple
metrics, the pursued shape model is robust and flexible to account for various deforma-
tion, occlusion and noise.

4 Experiments

We evaluate the proposed shape detectors with the following three experiments.


 Experiment I. Shape detection from cluttered edge maps. We select four classes
(e.g. Bottles, Giraffes, Mugs and Swans) from the ETHZ image dataset [8] for this
experiment. For each category, we partition the images into two half for training and
testing respectively. Due to too few amount of this dataset, we use another 30 shapes
LHI database [24] for extracting proto-curves. It worth mentioning that there are no any
overlapped data between the two datasets. In this experiment, our method takes only
about 2 minutes to learn four shape models.

Fig. 5. Comparison of precision vs recall (PR) curves for four classes on ETHZ

Table 1. The precisions are compared to [11, 2, 19, 8] at the same recall rates

Bottles Giraffes Swans Mugs
Our precision/recall 83.9%/92.7% 83.4%/70.3% 88.5%/93.9% 84.4%/83.4%

Shape Prior CVPR09 [11] 39.6%/92.7% 88.7%/70.3% 60.4%/93.9% 69.9%/83.4%
Shape Band CVPR09 [2] 95.0%/92.7% 56.0%/70.3% 44.1%/93.9% 83.3%/83.4%

Cluttering Lines ICCV09 [19] 41.3%/92.7% 37.5%/70.3% 19.8%/93.9% 40.1%/83.4%
Ferrari 2008 [8] 33.3%/92.7% 43.9%/70.3% 23.3%/93.9% 40.9%/83.4%

Detecting results: the results of our algorithm are summarized in Fig.5. We compare
with the results by [11, 2, 19, 8] using precision vs recall (PR) curves, where the ad-
vantage of our method is clearly identified. We also compared our approach to those
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Fig. 6. Some selected results on ETHZ dataset [8] with the detected bounding boxes and contours
plotted in green and yellow respectively

Fig. 7. Several data of the 40 image categories dataset chosen from LHI database [24] are illus-
trated. The last row shows some corresponding label maps.

methods at the same recall rates in Tab.1. Fig.6 shows some representative results on
this dataset with the detected boxes (in green color) and localized curves by our system.


 Experiment II. Shape-based categorization from images. We further evaluate our
method on a 40 categories image dataset selected from LHI database [24]. It contains
about 3600 images and each with its corresponding edge map and label map. Our task
is to detect and classify shapes from the edge maps. Due to the the heavy occlusion,
shading, and surrounding clutter, this task is more complex. For example, the animal
faces in Fig.7 are hardly distinguished. In the training stage, for each category, we sep-
arate the images into three equal parts: one for extracting proto-curves, one for learning
models and the other for testing.

Results: we obtain an overall classification rate approaching 87.3%, which is better than
the 81.4% reported in [15], and Fig.8 shows several selected results on this dataset.
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Fig. 8. We show some selected results on LHI dataset [24] and demonstrate that the shape detec-
tors are robust to various deformations, background clutter and occlusion

Additional details of Experiment I and II are summarized here: the label maps used
during the training stage are roughly annotated and aligned manually. Each of them is
normalized to 256�256 with the aspect ratio preserved, and vectorized to 200 landmark
points. For each shape in the proto set, we extract about one hundred prototype curves
that represented by 30�120 spaced landmarks. There are thus more than 104 features in
total. The maximum iteration number T in Alg.1 is set to be 500. In the testing stage,
we obtain edge maps of the images by canny detector and also normalize each detection
window to 256 � 256. The radius � of each ribbon is set as 15 and the radius � is 10
(see sec.3.2).

Fig. 9. Top 20 most informative features of horse (left) and mouse (right) are both plotted and
visualized . Different colors indicate three distance metrics. From these results, we conclude that
horses are more likely to perform articulation and mice are usually distorted, which matches
our intuition very well. Moreover, we find that articulation mostly occurs on four limbs while
distortion happens more often on the back and tail of animals. The shape models consisting of
�-balls can be viewed as the implicit deformable templates that includes different local shape
variance.


 Experiment III. Evaluating for feature selection. It is an interesting experiment
to reveal which types of features, corresponding to different deformation metrics, are
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effective for different shape categories. We use two categories, horse and mouse, from
the data in the Experiment II. As shown in Fig.9, top 20 informative features (i.e. first
selected by our algorithm) are plotted and visualized respectively. Features with dif-
ferent distance metrics are denoted by different colors (green for procrustes metric �p,
orange for articulation metric �a and purple for geodesic metric �g). The results show
that horses are more likely to perform articulation and mice are usually distorted, which
matches our intuitive observation very well. Moreover, from these results we find that
articulation mostly occurs on the limbs while distortion happens more often on the back
and tail of animals. The shape models consisting of �-balls can be viewed as the implicit
deformable templates that includes different local shape variance.

5 Conclusion

In this paper, we learn shape models using local curve segments with multiple types
of distance metrics. These shape models consisting of quantized curve segments can
be viewed as the implicit deformable templates that incorporate different local shape
variance. We show that our method significantly improves the shape classification and
detection results on two public datasets. In the future work, we will implement a so-
phisticated design for further modeling distinct shape transformations and supporting
wide range of shape descriptors more generally.
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Abstract. This paper deals with local 3D descriptors for surface matching. First,
we categorize existing methods into two classes: Signatures and Histograms.
Then, by discussion and experiments alike, we point out the key issues of unique-
ness and repeatability of the local reference frame. Based on these observations,
we formulate a novel comprehensive proposal for surface representation, which
encompasses a new unique and repeatable local reference frame as well as a new
3D descriptor. The latter lays at the intersection between Signatures and His-
tograms, so as to possibly achieve a better balance between descriptiveness and
robustness. Experiments on publicly available datasets as well as on range scans
obtained with Spacetime Stereo provide a thorough validation of our proposal.

1 Introduction and Previous Work

The ability of computing similarities between 3D surfaces, sometimes referred to as
surface matching [1], is a key for computer vision tasks such as 3D object recognition
and surface alignment. These tasks find numerous applications in fields such as robotics,
automation, biometric systems, reverse engineering, search in 3D object databases [1]
[2] [3].

There has been strong research interest in surface matching since the 1980’s. Early
works were based on fitting 3D data with global parametric surfaces such as geons [4]
or superquadrics [5]. For the last 15 years though, the most popular trend for surface
matching exploits a compact local representation of the input data, known as descriptor,
and shares basic motivations with the successful approaches for matching 2D images
that rely on local invariant features. Local correspondences established by matching
3D descriptors (Fig. 1) can then be used to solve higher level tasks such as 3D object
recognition. This approach allows for dealing effectively with issues such as occlusion,
clutter and changes of viewpoint. As a result, a variety of proposals for 3D descriptors
can be found in recent literature.

In Table 1 we propose a categorization of the main proposals in the field. As shown
in the second column, we divide proposals for 3D descriptors into two main categories,
namely Signature and Histogram. The first category, that includes earliest works on the
subject, describes the 3D surface neighborhood of a given point (hereinafter support)
by defining an invariant local Reference Frame (RF) and encoding, according to the
local coordinates, one or more geometric measurements computed individually on each

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 356–369, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Example of matching local descriptors in an 3D object recognition scenario. Green lines
identify correct matches, whereas red ones represent wrong correspondences.

point of a subset of the support. On the other hand, Histogram-based methods describe
the support by accumulating local geometrical or topological measurements (e.g. point
counts, mesh triangle areas) into histograms according to a specific quantized domain
(e.g. point coordinates, curvatures) which requires the definition of either a Reference
Axis (RA) or a local RF. In broad terms, signatures are potentially highly descriptive
thanks to the use of spatially well localized information, whereas histograms trade-off
descriptive power for robustness by compressing geometric structure into bins.

As far as Signature-based methods are concerned, one of the first proposals is Struc-
tural Indexing [6], which builds up a representation based on either a 3D curve or a
Splash depending on the characteristics of the 3D support. The former encodes the
angles between consecutive segments of the polygonal approximation of edges (corre-
sponding to depth or orientation discontinuities) on the surface. The latter encodes as a
3D curve the local distribution of surface orientations along a geodesic circle centered
on the point. In Point Signatures [7] the signature is given by the signed height of the 3D
curve obtained by intersecting a sphere centered in the point with the surface. 3D Point
Fingerprint [8] encodes the normal angle variations and the contour radius variations
along different geodesic circles projected on the tangent plane. Recently, Exponential
Mapping [9] proposed a descriptor that encodes the components of the normals within
the support by deploying a 2D parametrization of the local surface.

As for Histogram-based methods, those relying on the definition of just a RA are
typically based on the feature point normal. For example, Spin Images [1], arguably
the most popular method for 3D mesh description, computes 2D histograms of points
falling within a cylindrical volume by means of a plane that ”spins” around the normal.
Within the same subclass, Local Surface Patches [10] computes histograms of normals
and shape indexes [11] of the points belonging to the support. As for methods rely-
ing on the definition of a full local RF, 3D Shape Context [12] modifies the basic idea
of Spin Images by accumulating 3D histograms of points within a sphere centered at the
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feature point. Intrinsic Shape Signatures [13] proposed an improvement of [12] based
on a different partitioning of the 3D local volume as well as on a different definition
of the local RF. Finally, Mian et al. [2] accumulate 3D histograms (Tensors) of mesh
triangle areas within a cubic support.

Table 1. Taxonomy of 3D descriptors

Method Category
Local RF

Unique Unambig.
StInd [6] Signature No Yes

PS [7] Signature No Yes
3DPF [8] Signature No Yes
EM [9] Signature Yes No
SI [1] Histogram RA

LSP [10] Histogram RA
3DSC [12] Histogram No Yes
ISS [13] Histogram Yes No

Tensor [2] Histogram No Yes
SHOT Both Yes Yes

As pointed out in Tab. 1, all propos-
als rely on the definition of a local RF or,
at least, a repeatable RA. However, we
believe that the importance of the choice
of the local reference for a 3D descrip-
tor is underrated in literature, with ef-
forts mainly focused on the development
of discriminative descriptors. As a con-
sequence, approaches for the choice of
the local reference are ambiguous, or not
unique, or too sensitive to noise and also
lack specific experimental validation. In-
stead, as we will show in the remainder
of the paper, the repeatability of the lo-
cal RF (or, analogously, of the RA) is
mandatory to achieve effective local sur-
face description.

Therefore, the first contribution of this paper is a specific study upon local RFs.
We carry out an analysis of repeatability and robustness on proposed local RFs, and
provide experiments that demonstrate the strong impact of the choice of the RF on the
performance of a 3D descriptor (Sec. 2). Given the impact of such a choice, the second
contribution of this paper is a robust local RF that, unlike all other proposals, is unique
and unambiguous(Sec. 3).

As for the descriptor, based on the nature of existing approaches highlighted by the
proposed categorization, it is our belief that an effective and robust solution to the prob-
lem of 3D shape description can be found as a proper combination of Signatures and
Histograms. Hence, the third contribution of the paper is a novel 3D descriptor aware of
the proposed categorization (Sec. 4). Its design, inspired by an analysis of the successful
choices performed in the related field of 2D descriptors, has been explicitly conceived
to achieve computational efficiency, descriptive power and robustness. Finally, we pro-
vide a thorough experimental validation of our proposals (Sec. 5). We compare them to
three state-of-the-art methods in surface matching experiments run on publicly available
datasets as well as on range scans acquired in our lab.

2 On the Traits and Importance of the Local RF

The definition of a local RF, invariant to translations and rotations and robust to noise
and clutter, has been the preferred option to endow a 3D descriptor with invariance to
the same sources of variations, similarly to the way rotation and/or scale invariance
is injected into 2D descriptors. On the other hand, the definition of such an invariant
frame is challenging. Furthermore, although almost every new proposal for local shape
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description is equipped with its own local RF, experimental validation has always been
focused on the results obtained by the joint used of an RF and a descriptor, whilst the
impact of the selected local RF on the descriptor performance has not been investigated
in literature.

Fig. 2. Impact of the local RF on a descriptor performance

In Table 1 we have reported for each proposal the properties of uniqueness and unam-
biguity of their local RF. As highlighted in the third column, the majority of proposals
are based on RFs that are not unique [6] [7] [8] [12] [2], i.e. to obtain an invariant de-
scription they require multiple descriptors to be computed at each feature point. This is
usually handled by describing a ”model” point using multiple descriptors, each based on
a different local RFs, and a ”scene” point with just one of them. This approach causes
additional ambiguity to the correspondence problem since it shifts the intrinsic non-
uniqueness of the local RF to the matching stage, thus increasing potential mismatches,
computational requirements and sometimes also memory footprint. Another disadvan-
tage brought in by the use of multiple local RFs is that the proposed matching stage is
so tailored on the descriptor that it prevents the use of off-the-shelf efficient solutions
for matching and indexing, that in principle could be advantageously performed orthog-
onally with respect to the description. This may result in a severe loss of computational
efficiency.

In addition to multiple RFs, another limit of current proposals consists in the intrin-
sic ambiguity of the sign of the local RF axes. For example, in [9] and [13], normals
and principal curvature directions are used. The main problem with this choice is that
principal directions are not vectors, i.e. their sign is not defined. From a practical point
of view, principal directions are computed using Singular Value Decomposition (SVD)
or Eigenvalue Decomposition (EVD) of the covariance matrix of the point coordinates
within the support. Of course, the output of the algorithm is a vector with a sign. Never-
theless, this sign is simply a numerical accident and, thus, is not repeatable on different
(e.g. rotated) instances of the same mesh, even though the same SVD/EVD algorithm
is used, as clearly discussed in [14]. Therefore, such an approach to the definition of the
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local RF is inherently ambiguous and thus not repeatable. [13] resorts to multiple RFs
to overcome this limitation, while [9] does not deal with it explicitly.

To highlight the impact of the local RF on a descriptor performance, we show in
Fig. 2 the performance of the EM descriptor [9] with different local RFs. Results are
reported as Recall vs 1-Precision curves (see Sec. 5 for a discussion about this choice
and for the settings used in all our experiments). The ambiguous RF used in [9] leads
to unsatisfactory performances (yellow curve). Using exactly the same settings and ex-
actly the same descriptor, we can boost performances simply by deploying the Sign
Disambiguation technique recently proposed in [14]. Furthermore, using the more ro-
bust and more repeatable local RF that we propose in next section we can obtain another
significant improvement (e.g. at recall 0.7 precision raises from 0.308 to 0.994) without
changing the descriptive power of the descriptor.

3 Disambiguated EVD for a Repeatable RF

As shown by Table 1, none of current local RF proposals is at the same time unique
and unambiguous. To fill this gap we have designed and extensively tested a variety
of novel unique and unambiguous local RFs. We present here the method that turned
out to be the most robust in our thorough experimental evaluation. It builds on a well
known technique presented in [15] and [16], where the problem of normal estimation
in presence of noise is specifically addressed. A Total Least Squares (TLS) estimation
of the normal direction is obtained in [15] and [16] by EVD of the covariance matrix
M of the k−nearest neighbors pi of the point, defined by

M =
1
k

k∑
i=0

(pi − p̂)(pi − p̂)T , p̂ =
1
k

k∑
i=0

pi . (1)

In particular, the TLS estimation of the normal direction is given by the eigenvector
corresponding to the smallest eigenvalue of M . Finally, they perform the sign disam-
biguation of the normals globally by means of sign consistency, i.e. propagating the
sign from a seed chosen heuristically.

While this has proven to be a robust and effective technique for surface reconstruc-
tion of a single object, it cannot work for local surface description since in the latter case
signs must be repeatable across any possible object pose as well as in scenes with multi-
ple objects, so that a local rather than global sign disambiguation method is mandatory.
Moreover, Hoppe’s sign disambiguation concerns the normal only, hence it leaves am-
biguous the signs of the remaining two axes.

In our proposal, we start by modifying (1) so as to assign distant points smaller
weights, in order to increase repeatability in presence of clutter. Then, to improve ro-
bustness, all points laying within the spherical support (of radius R) which are used to
compute the descriptor are used also to calculate M. For the sake of efficiency, we also
neglect the centroid computation, replacing it with the feature point p. Therefore, we
compute M as a weighted linear combination,

M =
1∑

i:di≤R

(R−di)

∑
i:di≤R

(R − di)(pi − p)(pi − p)T (2)



Unique Signatures of Histograms for Local Surface Description 361

where di = ‖pi − p‖2. Our experimental evaluation indicates that the eigenvectors of
M define repeatable, orthogonal directions in presence of noise and clutter. It is worth
pointing out that, compared to [15] and [16], in our proposal the third eigenvector no
longer represents the TLS estimation of the normal direction and sometimes it notably
differs from it. However, this does not affect performance, since in the case of local
surface description what matters is a highly repeatable and robust triplet of orthogonal
directions, and not its geometrical or topological meaning.

Hence, eigenvectors of (2) represent a good starting point, but they need to be disam-
biguated to yield a repeatable local RF. The problem of sign disambiguation for EVD
and SVD has been recently addressed in [14]. Their proposal basically reorients the
sign of each singular or eigenvector so that its sign is coherent with the majority of the
vectors it is representing. We determine the sign on the local x and z axes according to
this principle. In the following we refer to the three eigenvectors in decreasing eigen-
value order as the x+, y+ and z+ axis, respectively. With x−, y− and z−, we denote
instead the opposite vectors. Hence, the final disambiguated x axis is defined as

S+
x =̇

{
i : di ≤ R ∧ (pi − p) · x+ ≥ 0

}
(3)

S−
x =̇

{
i : di ≤ R ∧ (pi − p) · x− > 0

}
(4)

x =

{
x+, |S+

x | ≥ |S−
x |

x−, otherwise
(5)

The same procedure is used to disambiguate the z axis. Finally, the y axis is obtained
as z × x.

We compare the repeatability of our proposal against two representative RFs: that of
PS and that of EM, respectively a not-unique solution and an ambiguous one. To pre-
vent these shortcomings from invalidating the comparison we consider only the global
maximum of the height [7] for PS and we add the sign disambiguation of [14] to EM
(EM+SD), thereby obtaining two unique and unambiguous RFs. We also consider the
original EM approach to show the effectiveness of sign disambiguation. Using again
the settings detailed in Sec. 5, in Fig. 3 we plot, for 5 increasing noise levels, the mean
cosine between corresponding axes of the local RFs computed on two instances of the
same mesh, i.e. the original one and a rotated and noisy instance. On one hand, am-
biguity is clearly the most serious nuisance, as the low performances of the original
EM proposal demonstrate. On the other hand, the use of a higher number of points to
compute the local RF ( i.e. the whole surface contained in the spherical support, as
done by EM, instead of the 3D curve resulting by the intersection of the spherical sup-
port with the surface, as done by PS) yields better robustness, as shown by the relative
drop of EM with respect to PS when noise increases. The disambiguation introduced in
EM+SD dramatically enhances repeatability. However, both EM and EM+SD subordi-
nate computation of the directions on the tangent plane to the normal estimation (i.e. ,
the repeatable directions they compute are then projected onto the tangent plane to cre-
ate an orthogonal basis). This choice sums noise on the normal to the noise inevitably
affecting the other directions, thereby leading to increased sensitivity of the estimation
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of the axes on the tangent plane and finally to poor repeatability. Our proposal, instead,
estimates all axes simultaneously and turns out to be the most effective, thanks to the
combination of its noise and clutter-aware definition, the effectiveness of the proposed
disambiguation and the inherent uniqueness deriving from its theoretical formulation.

Fig. 3. Comparison between local RFs

4 Description by Signatures of Histograms

In Sec. 1 we have classified 3D descriptors as based on either histograms or signatures.
We have designed our proposal following this intuition and aiming at a local represen-
tation that is efficient, descriptive, robust to noise and clutter as well as to point density
variation. The point density issue is specific to the 3D scenario, where the same 3D
volume of the real world may be represented with different amounts of vertexes in its
mesh approximation, e.g. due to the use of different 3D sensors (stereo, ToF cameras,
LIDARs, etc...) or different acquisition distances.

Beside our taxonomy, another source of inspiration has been the related field of 2D
feature descriptors, which has reached a remarkable maturity during the last years. By
analyzing SIFT [17], arguably the most successful and widespread proposal among 2D
descriptors, we have singled out what we believe are among the major reasons behind
its effectiveness. First of all, the use of histograms is spread throughout the algorithm,
from the definition of the local orientation to the descriptor itself, this accounting for
its robustness. Since a single global histogram computed on the whole patch would
be not descriptive enough, SIFT relies on a set of local histograms, that are computed
on specific subsets of pixels defined by a regular grid superimposed on the patch. The
use of this coarse geometric information creates what we identify as a signature-like
structure. Moreover, the elements of these local histograms are based on first order
derivatives describing the signal of interest, i.e. intensity gradients. Although it has
been argued that building a descriptor based on differential entities may result in poor
robustness to noise [7], they hold high descriptive power, as the effectiveness of SIFT
clearly demonstrates. Therefore, we believe they can provide a more effective solution
for a descriptor than point coordinates [1] [12]. Yet, to account for robustness to noise,
differential entities have to be filtered, and not deployed directly, e.g. as done in [9].
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Fig. 4. Signature struc-
ture for SHOT

Based on these considerations, we propose a 3D descriptor
that encodes histograms of basic first-order differential entities
(i.e. the normals of the points within the support), which are
more representative of the local structure of the surface com-
pared to plain 3D coordinates. The use of histograms brings in
the filtering effect required to achieve robustness to noise. Hav-
ing defined an unique and robust 3D local RF (see Sec. 3), it is
possible to enhance the discriminative power of the descriptor
by introducing geometric information concerning the location
of the points within the support, thereby mimicking a signa-
ture. This is done by first computing a set of local histograms
over the 3D volumes defined by a 3D grid superimposed on the
support and then grouping together all local histograms to form
the actual descriptor. Hence, our descriptor lays at the intersection between Histograms
and Signatures: we dub it Signature of Histograms of OrienTations (SHOT).

For each of the local histograms, we accumulate point counts into bins according to
a function of the angle, θi, between the normal at each point within the corresponding
part of the grid, nvi , and the normal at the feature point, nu. This function is cosθi, the
reason being twofold: it can be computed fast, since cosθi = nu ·nvi ; an equally spaced
binning on cosθi is equivalent to a spatially varying binning on θi, whereby a coarser
binning is created for directions close to the reference normal direction and a finer one
for orthogonal directions. In this way, small differences in orthogonal directions to the
normal, i.e. presumably the most informative ones, cause a point to be accumulated
in different bins leading to different histograms. Moreover, in presence of quasi-planar
regions (i.e. not very descriptive ones) this choice limits histogram differences due to
noise by concentrating counts in a fewer number of bins.

As for the structure of the signature, we use an isotropic spherical grid that encom-
passes partitions along the radial, azimuth and elevation axes, as sketched in Fig. 4.
Since each volume of the grid encodes a very descriptive entity represented by the local
histogram, we can use a coarse partitioning of the spatial grid and hence a small cardi-
nality of the descriptor. In particular, our experimentations indicate that 32 is a proper
number of spatial bins, resulting from 8 azimuth divisions, 2 elevation divisions and 2
radial divisions (though, for clarity, only 4 azimuth divisions are shown in Fig. 4).

Since our descriptor is based upon local histograms, it is important to avoid bound-
ary effects, as pointed out e.g. in [1] [17]. Furthermore, due to the spatial subdivision of
the support, boundary effects might arise also in presence of perturbations of the local
RF. Therefore, for each point being accumulated into a specific local histogram bin, we
perform quadrilinear interpolation with its neighbors, i.e. the neighboring bins in the
local histogram and the bins having the same index in the local histograms correspond-
ing to the neighboring volumes of the grid. In particular, each count is multiplied by
a weight of 1 − d for each dimension. As for the local histogram, d is the distance of
the current entry from the central value of the bin. As for elevation and azimuth, d is
the angular distance of the entry from the central value of the volume. Along the radial
dimension, d is the Euclidean distance of the entry from the central value of the volume.
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Fig. 5. Exp. 1: Precision-Recall curves on Stanford dataset and a scene at the 3 noise levels

Along each dimension, d is measured in units of the histogram or grid spacing, i.e. it is
normalized by the distance between two neighbor bins or volumes.

To achieve robustness to variations of the point density, we normalize the whole
descriptor to sum up to 1. This is preferable to the solution proposed in [12], i.e. nor-
malizing each bin with the inverse of the point density and bin volume. In fact, while
[12] implicitly assumes that the sampling density may vary independently in every bin,
and thus discards as not informative the differences in point density among bins, we as-
sume global (or at least regional) variations of the density and keep the local differences
as a source of discriminative information.

5 Experimental Results

In this section we provide experimental validation of our proposals, i.e. the unique
local RF together with the SHOT descriptor. To this purpose, we carry out a quanti-
tative comparison against three state-of-the-art approaches in a typical surface match-
ing scenario, where correspondences have to be established between a set of features
extracted from a scene and those extracted from a number of models. The consid-
ered approaches are: Spin Images (SI), as representative of Histogram-based methods
due to its vast popularity in the addressed scenario; Exponential Mapping (EM) and
Point Signatures (PS) as representatives of Signature-based methods, the former since
it is a very recent approach, the latter given its importance in literature. All methods
were implemented in C++ and are made publicly available together with the datasets
(www.vision.deis.unibo.it/SHOT ).

www.vision.deis.unibo.it/SHOT
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Fig. 6. Exp. 2: Precision-Recall curves on subsampled dataset and a detail from one scene

Fig. 7. Exp. 3: Results on Spacetime Stereo dataset and two models (middle) and scenes (right)

For a fair comparison, we use the same feature detector for all algorithms: in par-
ticular, we randomly extract a set of feature points from each model, then we extract
their corresponding points from the scene, so that performance of the descriptors is not
affected by errors of the detector. Analogously, for what concerns the matching stage,
we adopt the same matching measure for all algorithms, i.e. , as proposed in [1], the
Euclidean distance. We could also have evaluated the synergistic effect of description
and matching for those methods that explicitly include a proposal for the latter, e.g. the
tolerance band for PS. In turn, we did experiments on the whole dataset with the origi-
nal EM and PS matching schemes, obtaining slightly worse performance for both. This,
and the attempt to be as fair as possible, leaned us to use the same measure for all algo-
rithms. However, we did not discard the characteristics of the descriptors that required
a specific treatment during matching: in particular, since EM is a sparse descriptor, we
compute the Euclidean distance only on the overlapping subset of EM descriptor pairs,
as proposed by the authors; and for PS we use the matching scheme proposed by the
authors to disambiguate its not-unique local RF [7]. For each scene and model, we
match each scene feature against all model features and we compute the ratio between
the nearest neighbor and the second best (as in [17]): if the ratio is below a threshold a
correspondence is established between the scene feature and its closest model feature.
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Time (s) Radius (mr) Length

SHOT 4.8 15 320

SI 5.6 30 100

EM 52.6 10 2700

PS 248.8 10 90

Fig. 8. Charts: ms/correspondence vs. support radius (in the smaller chart the time axis is zoomed
in for better comparison between SI and SHOT). Table: measured execution times (in Experiment
1) and tuned parameter values. Radius values are reported in mesh resolution units. As for SI, the
support radius is the product of the bin size by the number of bins in each side of the spin image

According to the methodology for evaluation of 2D descriptors recommended in
[18], we provide results in terms of Recall versus 1-Precision curves. This choice is
preferable compared to ROC curves (i.e. True Positive Rate versus False Positive rate)
when comparing descriptors or detectors due to the ambiguity in calculating the False
Positive Rate [19]. We present three different experiments. Experiment 1 deals with
6 models (”Armadillo”, ”Asian Dragon”, ”Thai Statue”, ”Bunny”, ”Happy Buddha”,
”Dragon”) taken from the Stanford 3D Scanning Repository 1. We build up 45 scenes
by randomly rotating and translating different subsets of the model set so to create
clutter2; then, similarly to [20], we add Gaussian random noise with increasing standard
deviation, namely σ1, σ2 and σ3 at respectively 10%, 20% and 30% of the average mesh
resolution (computed on all models). In Experiment 2 we consider the same models
and scenes as in Experiment 1, add noise (i.e. σ1) and resample the 3D meshes down
to 1/8 of their original point density. For a fair comparison in this experiment, our
implementation of SI -used throughout all the evaluation- normalizes each descriptor to
the unit vector to make it more robust to density variations [3]. Finally, in Experiment 3
the dataset consists of scenes and models acquired in our lab by means of a 3D sensing
technique known as Spacetime Stereo [21], [22]. In particular, we compare 8 object
models against 15 scenes characterized by clutter and occlusions, each scene containing
two models. Fig. 7 shows two scenes together with the models appearing in them. In
each of the three experiments, 1000 feature points were extracted from each model. As
for the scenes, in Exp. 1 and 2 we extract n ∗ 1000 features per scene (n being the
number of models in the scene) whereas in Exp. 3 we extract 3000 features per scene.

Throughout all the three experiments we used the same values for the parameters
of considered methods. In particular, we tuned the two parameters of each descrip-
tor (support radius and length of the descriptor) based on a tuning scene corrupted

1 http://graphics.stanford.edu/data/3Dscanrep
2 3 sets of 15 scenes each, containing respectively 3, 4 and 5 models.

http://graphics.stanford.edu/data/3Dscanrep
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with noise level σ1 and built rotating and translating three Stanford models (”Bunny”,
”Happy Buddha”, ”Dragon”). The values resulting from the tuning process are reported
in the last two columns of the Table in Fig. 8. It is worth noting that our tuning yielded
comparable values of the support radius among the various methods, and that, for SI
and PS, the resulting parameter values are coherent, as far as the order of magnitude is
concerned, with those originally proposed by their authors (no indication about EM pa-
rameters is given in [9]). Yet, we used the finely tuned values instead of those originally
proposed by the authors since the former yield higher performance in these experiments.

Results for the three Experiments are reported in Figure 5, 6 and 7, respectively. Ex-
periment 1 focuses on robustness to noise. Given the reported results, it is clear that
SHOT performs better than the other methods at all different noise levels on the Stan-
ford dataset. We can observe that, comparing the two Signature methods, PS exhibits
a higher robustness than EM. We address this mainly to the higher robustness of its
local RF, as shown in Fig. 3. As for SI, it appears to be highly susceptible to noise, its
performance notably deteriorating as the noise level increases. This is due to the fact
that this descriptor is highly sensitive to small variations in the normal estimation (i.e.
SI Reference Axis), that here we compute as proposed in [1]. This is also consistent
with the results reported in [12]. As for Experiment 2, it is clear that the point density
variation is the most challenging nuisance among those accounted for, causing a severe
performance loss of all methods. SHOT, PS and SI obtain comparable performance,
nevertheless for high values of precision, that are typical working points for real appli-
cations, SHOT obtains the highest levels of Recall. Experiment 3 shows that under real
working conditions SHOT outperforms the other methods. It is worth noting that this
experiment is especially focused on the descriptiveness of evaluated approaches, since
the much smoother shapes of the objects surfaces compared to those of the Stanford
models make the former harder to discriminate. Hence, results demonstrate the higher
descriptiveness embedded in SHOT with respect to the other proposals.

In addition, we have compared the methods in terms of their computational efficiency
and memory requirements. Since, as discussed in Sec. 2, descriptors based on multiple
RFs, like PS, can not deploy efficient indexing to speed-up the matching stage, we use
a full search strategy for all methods. Results are reported in Fig. 8. The two charts
in the Figure, showing the number of milliseconds per correspondence needed by the
various methods using different support sizes, demonstrate the notable differences in
computational efficiency between the algorithms. In particular, SI and SHOT run one
order of magnitude faster than EM and almost two orders of magnitude faster than PS,
with SI turning out consistently slightly faster than SHOT at each support size. As for
EM, efficiency is mainly affected by the re-parametrization of the support needed to de-
scribe each feature point and to the large memory footprint (see next). With regards to
PS, as discussed in Sec. (2) the use of multiple local RFs dramatically slows down the
matching stage. These results are confirmed by the Table in the Figure (first column),
which reports the measured times required to match the scene to the models in Exper-
iment 1 (i.e. 3000 scene features and 3000 models features) using the tuned parameter
values. Here, the larger support needed by SI allows SHOT to run slightly faster. As
for memory requirements, the reported descriptor length (third column) highlights the
much higher memory footprint required by EM compared to other methods.
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Finally, as a practical application in a challenging and active research area, we demon-
strate the use of SHOT correspondences to perform fully automatic 3D Reconstruction
from Spacetime Stereo data. We merge 18 views covering a 360◦ field of view of one of
the smooth objects used in Experiment 3. We follow a 2 steps procedure: 1) we obtain
a coarse registration by estimating the 3D transformations between every pair of views
and retaining only those maximizing the global area of overlap; 2) we use the coarse reg-
istration as initial guess for a final global registration carried out using a standard exter-
nal tool (Scanalyze). In the first step, correspondences among views are established by
computing and matching SHOT descriptors on 1000 randomly selected feature points.
3D transformations are estimated by applying a well known Absolute Orientation algo-
rithm [23] on such correspondences and filtering outliers with RANSAC. Maximization
of the area of overlap is achieved through the Maximum Spanning Tree approach de-
scribed in [9]. As shown in Fig. 9, without any assumptions about the initial poses,
SHOT correspondences allows for attaining a coarse alignment which is an accurate
enough initial guess to successfully reconstruct the 3D shape of the object without any
manual intervention. To the best of our knowledge, fully automatic 3D reconstruction
from multiple Spacetime Stereo views has not been demonstrated yet.

(a) (b) (c) (d)

Fig. 9. 3D Reconstruction from Spacetime Stereo views: (a) initial set of views (b) coarse regis-
tration (c) global registration frontal view (d) global registration rear view

6 Conclusion and Future Work

Overall, our proposals compare favorably with the considered methods. The results val-
idate the proposed categorization as well as the intuition that the synergy between the
design of a repeatable local RF and the embedding of an hybrid signature/histogram
nature into SHOT allows for achieving at the same time state-of-the-art robustness
and descriptiveness. Remarkably, our proposal delivers such notable performances with
high computational efficiency. As for future work, we plan to investigate on how to im-
prove robustness to point density variations. Comparing our proposal with other relevant
methods and on a larger dataset is another main direction of our research.

Acknowledgments. The authors would like to deeply thank Alioscia Petrelli and
Alessandro Franchi, of theComputerVision Labof theUniversity ofBologna,whohelped
implementing all the proposals used in our experiments.
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Abstract. Recovering the 3D shape of deformable surfaces from sin-

gle images is difficult because many different shapes have very similar

projections. This is commonly addressed by restricting the set of possi-

ble shapes to linear combinations of deformation modes and by imposing

additional geometric constraints. Unfortunately, because image measure-

ments are noisy, such constraints do not always guarantee that the correct

shape will be recovered. To overcome this limitation, we introduce an ef-

ficient approach to exploring the set of solutions of an objective function

based on point-correspondences and to proposing a small set of candidate

3D shapes. This allows the use of additional image information to choose

the best one. As a proof of concept, we use either motion or shading cues

to this end and show that we can handle a complex objective function

without having to solve a difficult non-linear minimization problem.

Keywords: 3D shape recovery, deformation model, nonrigid surfaces.

1 Introduction

It has been shown that the 3D shape of deformable surfaces can be recovered
from even single images provided that enough correspondences can be established
between that image and one in which the surface’s shape is already known [1–3].
While effective, these techniques return one single reconstruction without ac-
counting for the fact that several plausible shapes could produce virtually the
same projection and therefore be indistinguishable on the basis of correspon-
dences and geometry alone. In practice, as shown in Fig. 1 disambiguation is
only possible using additional image information.

In this paper, we introduce an efficient way to sample the space of all plausible
solutions. We achieve this by representing shape deformations in terms of a
weighted sum of deformation modes and relating uncertainties on the location
of point correspondences to uncertainties on the mode weights. This lets us
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Fig. 1. Handling 3D shape ambiguities. First Row. Image of a surface lit by a nearby

light source and the corresponding ground truth surface. Three other Rows. In each

one, a different candidate surface proposed by our algorithm is shown in black. The

corresponding projection and synthesized image given automatically estimated lighting

parameters are shown in the middle columns. As can be seen, its projection is very

similar, even though its shape may be very different from the original one. However,

when comparing the true and synthesized images, it becomes clear that the correct

shape is the one at the second row.

explore the space of modes and select a very small number of likely ones, which
correspond to 3D shapes such as those shown in the left column of Fig. 1.

In this paper, as a proof of concept, we use either shading or motion informa-
tion to select the best 3D shape among the candidates generated in this manner.
When using shading, we show that we can exploit it both when the light sources
are distant and when they are nearby. The latter is particularly significant be-
cause exploiting nearby light sources would involve solving a difficult non linear
minimization problem if we did not have a reliable way to generate 3D shape
hypotheses. In our examples, this is all the more true since the lighting parame-
ters are initially unknown and must be estimated from the images. Alternatively,
when a video is available, we can exploit three-frame sequences to pick the set of
candidate 3D shapes that provides the most temporally consistent motion. We
show that both these approaches outperform state-of-the-art methods [4, 5].

Summarizing, our contribution is an approach to avoiding being trapped in
the local minima of a potentially complicated objective function by efficiently
exploring the solution space of a simpler one. As a result, we only need to evaluate
the full objective function for a few selected shapes, which implies we could use
a very discriminating and expensive one if necessary.
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2 Related Work

Single-view 3D reconstruction of non-rigid surfaces is known to be a highly
under-constrained problem that cannot be solved without a priori knowledge.
A typical approach to introducing such knowledge and reducing the space of
possible shapes is to use deformation models [7–11]. Surface deformations are
expressed as weighted sums of modes and retrieving shape entails estimating
the modal weights by minimizing an image-based objective function. Since such
functions usually have many local minima, a good initialization is required.

Several recent methods propose to recover the shape of inextensible surfaces
without an explicit deformation model. Some are specifically designed for appli-
cable surfaces, such as sheets of paper [12, 13]. Others constrain the distances
between surface points to remain constant [1, 6]. This is generally applicable to
many materials that do not perceptibly shrink or stretch as they deform.

Other approaches achieve shape-recovery either in closed form [4] or by solving
a convex optimization problem [2], and thus, eliminate the need for an initial-
ization. To this end, they require 2D point correspondences between the image
in which one wishes to compute the shape and one in which it is already known.
However, as will be shown in the results section, small inaccuracies in the cor-
respondences can result in erroneous reconstructions.

The method proposed in this paper builds on the formalism introduced in [4]
to return not a single solution but a representative set of all possible solutions
and then uses additional information to decide which one is best. In this paper,
we use shading or motion but any image cue could have been used instead.

Of course, many methods, such as [14, 15], have been proposed to merge geo-
metric and shading cues into a common framework. However, these techniques,
unlike ours, involve multiple iterative processes that require good initial esti-
mates. An exception is the algorithm of [5] that solves for shape in closed form
but is only applicable for Lambertian surfaces lit by a distant point light source.

3 Exploring the Space of Potential 3D Shapes

Let us assume that we are given a reference image in which the shape of a 3D
deformable surface represented by a triangulated mesh is known and a set of
2D point correspondences between this reference image and an input image in
which the shape is unknown. In [4], it was shown that this unknown 3D shape
could be computed in closed form by representing the surface deformations in
terms of a weighted sum of modes and picking the weights that minimize the
reprojection errors while preserving the length of the mesh edges. However, the
resulting shape is not always the right one, as shown in Table 1. This is because
the correspondences are not infinitely accurate and the algorithm can trade a
small amount of reprojection error against similarly small violations of the length
constraints. As it turns out, this is enough to result in large changes in 3D shape
since, as discussed earlier, very different shapes can have very similar projections.

To avoid this problem, we also represent the shape as a weighted sum of modes.
But, instead of picking the best set of weights according to a geometric criterion,
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Table 1. Mean reconstruction, reprojection and inextensibility errors for the candidate

shapes of Fig.1. Note that, although shape#1 violates edge-length constraints slightly

more than shape#3, it still is the reconstruction closest to the ground truth by far.

Shape # 1 Shape # 2 Shape # 3

Reconst. Error (mm) 0.82 4.25 5.35
Reproj. Error (pix) 1.92 1.87 1.93
Inextens. Error (mm) 4.00 4.27 3.97

we fit a Gaussian distribution to those that correspond to acceptable projections.
This lets us exhaustively sample the sets of weights that also preserve the length
of the mesh edges. This typically results in approximately one hundred candidate
shapes per image, among which the best can be picked using additional sources
of shape information. In Section 4, we show that either shading or motion cues
can be used for this purpose.

3.1 Problem Formulation

We represent our surface as a triangulated 3D mesh with nv vertices vi concate-
nated in a vector x=[v


1 , . . . ,v

nv

]
. We model surface deformations as weighted
sums of nm deformation modes Q = [q1, . . . ,qnm ], obtained by applying Prin-
cipal Component Analysis over a set of training meshes. We write

x = x0 +
nm∑
i=1

αiqi = x0 + Qα , (1)

where x0 is a mean shape and α = [α1, . . . , αnm ]
 are unknown weights that
define the current surface shape.

As in [4, 5], we treat a correspondence between a 2D point ri in the reference
image and a 2D point ui in the input image as a 2D-to-3D correspondence
between ui and pi, the 3D point on the mesh in its reference configuration that
projects at ri. We express the coordinates of pi in terms of the barycentric
coordinates of the face to which belongs as pi =

∑3
j=1 aijv

[i]
j , where the aij are

the barycentric coordinates and the v[i]
j are the vertices.

Assuming the matrix A of internal camera parameters to be known and that
the 3D points are expressed in the camera referencial, the fact that pi projects
at ui implies that

wi

[
ui

1

]
= Api =

[
A2×3

a

3

]
pi , (2)

where wi is a scalar, A2×3 are the first two rows of A and a

3 the last one. Since

wi = a

3 pi, we can write

(
uia


3 − A2×3

)
pi = 0. By representing pi with its

barycentric coordinates, we then have

3∑
j=1

aij

(
uia


3 − A2×3

)
v[i]

j = 0 . (3)
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In short, for each 3D-to-2D correspondence, Eq. 3 provides 2 linear constraints
on x. nc such correspondences yield 2nc constraints which can be written as a
linear system Mx = 0, where M is a 2nc×3nv matrix obtained from the known
values aij , ui and A. Injecting the modal description of Eq. 1 then yields

MQα + Mx0 = 0 , (4)

such that any set of weights α that is a solution of it corresponds to a surface
that projects at the right place.

3.2 Proposing Candidate Shapes

Since correspondences {pi,ui} are potentially noisy, the simplest way to solve
Eq. 4 is in the least-squares sense. This, however, may not be satisfactory be-
cause MQ is an ill-conditioned matrix with several small eigenvalues [4, 5]. As
a result, even when there are many correspondences, small changes in the ex-
act correspondence locations, and therefore in the coefficients of M, can result
in very large changes of the resulting α values. In other words, many different
sets of α weights can result in virtually the same projection. In [4], this is ad-
dressed by choosing the weights that best preserve the lengths of the mesh edges.
However, as shown by Table 1, this does not necessarily yield the best answer.

In this paper, instead of choosing the best set of weights based on geometric
considerations alone we have devised a way to quickly propose a restricted set of
candidate solutions among which the best can be chosen using additional sources
of image information, as will be done in Sections 4.1 and 4.2. To this end, we
first derive an analytical expression of the solution space as a function of the 2D
input data statistics. We then efficiently sample this space and keep the best sam-
ples in terms of both minimizing reprojection errors and preserving edge lengths.

Gaussian Representation of the Solution Space. The α weights we seek
can be computed as the least-squares solution of Eq. 4:

α = (B
B)−1B
b , (5)

where B=MQ is a 2nc×nm matrix, and b=−Mx0 is a 2nc vector. The compo-
nents of B and b are linear functions of the known parameters aij , ui, Q and A.
We have seen that this solution may not, in fact, be the right one because B is
ill-conditioned and solving the system in the least-squares sense magnifies small
inaccuracies in the correspondences. We can nevertheless exploit the expression
of Eq. 5 to model where to look for other potential solutions as follows.

Let us assume that the estimated correspondence locations are normally dis-
tributed around their true locations. Injecting the corresponding 2nc×2nc diag-
onal covariance matrix Σu into Eq. 5 means that the nm×nm covariance matrix
for the α weights can be written as Σα = JβΣuJ


β , where Jβ is the nm×2nc

Jacobian of (B
B)−1B
b with respect to the 2D correspondence coordinates:

Jβ =
∂(B
B)−1

∂u
B
b + (B
B)−1 ∂B
b

∂u
. (6)
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Fig. 2. Efficient exploration of the solution space. Left: Number of samples ns needed

to correctly approximate Rα . We plot
det(Σ̃α)−det(M2Σα)

det(M2Σα)
, an estimate of the distance

between the theoretical covariance matrix and its empirical estimate from the samples.

It diminishes quickly and becomes negligible for ns = 105. Right: We represent each

set of 30-dimensional α weights by a line whose color encodes the value of the error of

Eq. 9, according to the color-code at the right. The black line represents the ground

truth. Note how well distributed the samples are around it.

We can therefore represent the family of 3D surfaces whose projections are close
to the one that minimizes the reprojection error as being normally distributed
around μα, the least squares solution of Eq. 4, with covariance Σα. Note that,
because μα is the solution of an ill-conditioned system, it is an unreliable esti-
mate of the distribution’s center. We could have improved the system’s condi-
tioning by adding a damping term, but this would have amounted to arbitrarily
constraining the norm of μα. Instead, as discussed in the next section, we use a
sampling mechanism to explore different possible values of μα.

Efficiently Exploring the Solution Space. To create a set of plausible 3D
shapes whose projection are acceptably close to the correct one, we first define
a search region Rα in nm-dimensional space. We then sample it using a stan-
dard numerical technique and progressively apply more stringent constrains to
an ever decreasing number of samples.

Given the normal distribution N (μα,Σα) introduced above, we take Rα to
be made of the αi such that

(αi − μα)
Σ−1
α (αi − μα) ≤ M2 , (7)

where M is a threshold chosen to achieve a specified degree of confidence. To
compute its value we use the cumulative chi-squared distribution, which depends
on the dimensionality of the problem . In our experiments, we use nm = 30 modes
and M = 7 yields a 98% level of confidence.

To sample Rα, we draw ns random samples {α̃i}ns

i=1 from the distribution
N (μα,M2Σα). Let μ̃α and Σ̃α be the mean and covariance matrix of these
samples. The technique we use guarantees that μ̃α = μα and that the difference
between Σ̃α and M2Σα approaches zero as ns increases [16].
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In practice, as the μα we use is unreliable, we do not draw all ns samples at
once. Instead, we draw successive batches and, having drawn batch k, we draw
the next one by sampling from the distribution centered around

μk
α =

∑nk
s

i=1 πk
i α̃k

i∑nk
s

i=1 πk
i

, (8)

where the πk
i are weights associated to individual samples, computed as follows.

Let x̃ = [ṽ

1 , . . . , ṽ


nv
]
 be the mesh computed using sample α̃, and let {ũi}nc

i=1

be the 2D projections of the 3D points for which correspondences ui are available.
α̃ is assigned the weight π such that

1/π ∼ λ1

nc∑
i

‖ũi − ui‖ + λ2

∑
{i,j}∈N

‖l̃ij − lref
ij ‖ , (9)

where the two terms account for the reprojection and inextensibility errors, re-
spectively. Since these errors are expressed in different units of measurement,
we use λ1 and λ2 to give them similar orders of magnitude. In addition, l̃ij is
the distance between two neighboring vertices ṽi and ṽj , lref

ij is the distance
between the same vertices in the reference configuration, and N represents the
indices of neighboring vertices.

In our experiments we used ns = 105 random samples, which as shown in
Fig. 2(Left), approximate Rα with an error below 0.5%. These samples were
drawn in 10 consecutive batches of 104 samples each. As depicted by Fig. 2(Right)
the samples generated in this way densely cover a large region of the solution
space around the true one. To reduce their number and speed up further pro-
cessing, we only keep the 10% of the samples with highest weight.

By construction, all these samples represent shapes that yield similar projec-
tions and only small violations of the length constraints. Furthermore, many of
them yield almost undistiguinshable 3D shapes. To further reduce their number,
we therefore run a Gaussian-means clustering algorithm over all the remaining
samples in the space of the 3D coordinates [17]. This is a variant of the k-means
algorithm that automatically identifies the optimal number of clusters based on
statistical tests designed to check whether all the clusters follow a Gaussian dis-
tribution. These tests are controlled by means of a significance level parameter
which we set to a very low value to favor over-segmentation, that is, to pro-
duce more clusters than absolutely necessary to avoid grouping shapes whose
difference is statistically significant.

Finally, we take our candidates set of shapes to be the cluster centers. This
whole process typically reduces the initial 105 samples to about one hundred.

4 Using Additional Cues to Select the Best Candidate

Given correspondences between the reference image and the input image, the al-
gorithm discussed in the previous section returns about 100 candidate 3D meshes
that all project correctly in the input image and whose edges have retained their
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original length. In this section, we show how to use either lighting or motion
cues to disambiguate and pick the best one.

4.1 Shading Cues

We consider two different cases. First, we assume the surface is lit by a distant
light source, which is the situation envisioned in earlier works on monocular de-
formable surface reconstruction that use shading clues [5, 14, 15]. Second, we
address the situation in which the surface is lit by a nearby light source. This
is more difficult because the inverse of the changing distance to the light source
has to be taken into account, which rules out approaches based on simple linear
or quadratic constraints. In both cases, we do not assume the lighting parame-
ters known a priori and estimate them from the candidate 3D shapes. As shown
in Fig. 1, this lets us render the image we would see for any candidate shape,
compare it to the real one, and select the best. To perform the rendering, we
use ray-tracing and take into account visibility effects and shadows cast by the
object on itself. Such non-local and non-linear phenomena are rarely taken into
account by continuous optimization-based schemes because they result in highly
complex energy landscapes and poor convergence. We now turn to the estima-
tion of the lighting parameters in these two cases.

Light Source at Infinity. Recall from Section 3.1, that we start from a set of
correspondences between 3D surface points pi and 2D image points ui in the
input image with intensity Ii. For each i, we also know that pi projects at ri in
the reference image and has intensity Iref

i . In practice, we acquire the reference
image under diffuse lighting so that, assuming the surface to be Lambertian, we
can take the albedo ρi of pi to be Iref

i . In the remainder of this Section, let pi

denote the 3D coordinates of the 3D surface points in the candidate shapes. For
each candidate shape, these pi are recomputed using the barycentric coordinates,
which are the same for all candidates, to average the 3D vertex coordinates of
the facets they belong to.

Assuming a distant light source parameterized by its unit direction l and
power L, we can write Ii = ρiL(l · ni) , where ni is the surface normal at
pi, which may be estimated from the vi vertex coordinates. Grouping these
equations for all nc correspondences yields

Iρ = NL , (10)

where Iρ = [I1/ρ1, . . . , Inc/ρnc ]
, N = [n1, . . . ,nnc ]
, and L = L · l. Solving this
system in the least-squares sense yields an estimation of L, from which the light
intensity and direction can be taken to be L = ‖L‖ and l = L/L.

Nearby Light Source. When considering light sources that are not located
at infinity, the fact that the radiosity due to individual light sources decreases
with the square of the distance must be taken into account. The image irradiance
at pi therefore becomes

Ii = ρiL
li · ni

‖pi − s‖2
(11)
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where s is the position of the light source and li = 1
‖pi−s‖(pi − s). s and L are

estimated by minimizing
nc∑
i=1

∣∣∣∣Ii − ρiL
li · ni

‖pi − s‖2

∣∣∣∣ , (12)

with respect to L and s using the nonlinear least-squaresmatlab routine lsqnonlin.
To avoid local minima, we define a sparse set of light positions {s̃j}nl

j=1 and use each
one in turn to initialize the optimization. In our experiments, we used nl = 125
light positions uniformly distributed within a hemisphere on top of the reference
mesh. Its radius was taken to be sufficiently large to include all distances for which
the nearby light assumption holds.

Note that what makes this approach computationally feasible is the fact that
we are only attempting to recover the lighting parameters, while fixing the shape
parameters. Otherwise, the problem would be massively underconstrained. This
should also allow the use of more sophisticated lighting models [18] to relax the
single light and Lambertian assumptions.

4.2 Motion Cues

When video sequences are available, we can rely on temporal consistency between
consecutive shapes to select the most likely ones. Let us assume that a second
order autoregressive model [19] has been learned from training data. Given such
a model, the shape at time t, xt, can be expressed as function of the shapes at
times t − 1 and t − 2 as

xt = Â2xt−2 + Â1xt−1 + B̂wt , (13)

where Â2, Â1 and B̂ are 3nv × 3nv matrices learned offline, and wt is an nv

Gaussian noise vector.
For any three consecutive images and the corresponding shape samples, the

most plausible shape in the third one can be found by considering all {x̃t−2
i , x̃t−1

j ,

x̃t
k} triplets and picking the x̃t

k belonging to the one that best satisfies Eq. 13.
Since this is done independently at each time step t, we are not imposing tem-
poral consistency beyond our three consecutive frames windows.

5 Results

We compare the performance of our approach on synthetic and real sequences
against that of two state-of-the-art techniques [4, 5], which we refer to as Salzm08
and Moreno09, respectively. As discussed in Section 2, the first essentially returns
the approximate solution of Eq. 4 that minimizes the variations in edge-length
from the reference shape while the second returns the solution that best fits
a shading model involving a point light source at infinity. Note that all three
methods compute the 3D shape from either individual images or consecutive
triplets, without enforcing temporal consistency across the sequence. We can
therefore treat their results as independent and compute their statistics.
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2D Projection 
(Our Approach)  Ground Truth Salzm08 Moreno09 

(Distant Light) 
Moreno09 

(Nearby Light) 
Our Approach 
(Distant Light) 

Our Approach 
(Nearby Light) 

Fig. 3. Results for the synthetic wave sequence. They are best viewed in color as

deviations from the ground truth are encoded according the color-code of Fig. 2. Errors

of more than 75% of the maximum amplitude of the ground truth shape appear in red.

5.1 Synthetic Experiments

We created two synthetic data sets by deforming an initially planar 9×9 mesh of
30×30 cm. In the first case, we created 500 meshes such as the one of Fig. 1 by
randomly changing the angles between neighboring facets. In the second case, we
built 250 meshes by giving the surface a wave-like shape, as shown in Fig. 3. In
both cases, the virtual camera was placed approximately 75 cm above the mesh
and we used a real image as a texture-map. We synthesized a shaded image
by selecting a random light-source direction in the hemisphere above the mesh.
The light was located either infinitely far or within 30cm of the mesh center.
We then produced 100 random 3D-to-2D correspondences between the reference
configuration and individual deformed meshes and added a 2-pixel standard
deviation Gaussian noise to the 2D coordinates. To compare the sensitivity of
Moreno09 and of our approach to lighting conditions, for each synthetic shape
we computed two different estimates, one using the image rendered using the
distant light and the other using the nearby light.

Fig. 3 depicts results on the synthetic wave sequence using Salzm08, Moreno09,
and our own approach in conjunction with either the distant or the nearby light-
ing. In Fig. 4, we use boxplots1 to summarize them. We also include the output
of an hypothetical algorithm that would be able to select the best candidate
shape among all the samples produced by the sampling mechanism of Section 3,
which represents the theoretical optimum an algorithm like ours could achieve
by using the image information as effectively as possible. Our method consis-
tently returns a lower 3D reconstruction error. This is true even though the
reprojection and inextensibility errors are very similar for all three methods,
1 Box denoting the first Q1 and third Q3 quartiles, a horizontal line indicating the

median, and a dashed vertical line representing the data extent taken to be Q3 +

1.5(Q3 −Q1). The red crosses denote points lying outside of this range.
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Fig. 4. In each column, reconstruction, reprojection, and inextensibility errors for each

of the two synthetic and the two real sequences. Sa: Salzmann08. Mo: Moreno09. OA:

Our Approach. BC: An hypothetical algorithm that would always choose the Best

Candidate. DL: Distant Light. NL: Nearby Light. MM: Motion Model.

which confirms that minimizing these is not sufficient by itself to retrieve the
correct 3D shape. Both Moreno09 and our approach address this issue by taking
advantage of shading cues. Since we explicitly model a nearby light, we clearly
outperform Moreno09 in that case.

Another measure of success is the Percentage of correct solutions of Table 2.
Given the ground truth solution, a 3D sample mesh is considered to be correct if
at least 75% of its vertices have a reconstruction error smaller than 0.5×Height,
where Height refers to the maximum amplitude of the ground truth shape. Again,
our approach clearly yields the best numbers. The specific ratios –75% and
0.5×Height– are of course ad hoc and have been chosen so that 3D meshes
that are deemed incorrect produce disturbing effects when viewed in sequence.
To provide the reader with an intuitive understanding of what this measure
actually represents, in Fig. 3 facets with reconstruction errors of more than 75%
are color-coded in red.

Finally, the table at the top of Fig. 5 depicts the accuracy of the estimated
lighting parameters. Note that we estimate the position and direction of a light
source that was allowed to move freely within a 30 cm radius hemisphere with
an accuracy of less than a 1 cm and 10 degrees.
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Table 2. Percentages of correct solutions for all four set of experiments. DL: Distant

Light. NL: Nearby Light. MM: Motion Model.

Salzm08 Moreno09 Our Method Best Cand.
DL NL DL NL MM

Random Meshes 84 81 15 91 99 – 100

Wave Sequence 78 95 31 100 100 – 100

Bending Paper 80 – 43 – 99 96 100

Deforming Cloth 59 – 57 – 97 81 99

Distant Light Nearby Light
Direction Err(deg) Power Err(%) Position Err(mm) Power Err(%)

Random Meshes 6.9 ± 4.3 5.2 ± 2.1 7.4 ± 6.1 6.8 ± 3.3

Wave Sequence 2.1 ± 0.9 2.2 ± 0.8 3.2 ± 0.8 2.8 ± 1.0

Bending Paper Deforming Cloth

Fig. 5. Estimated lighting parameters. Upper table: Mean error and standard deviation

of the lighting parameters–direction, position and power– estimated independently in

each frame of the synthetic sequences. Bottom figures: Light source positions estimated

independently in all frames of the real sequences. Note how well clustered they are.

5.2 Real Images

We tested our approach on a 120-frames sequence of bending paper and a 150-
frame sequence of a deforming T-shirt, both acquired with a Pointgrey Bum-
Blebee stereo rig. The surfaces were lit by a dim ambient lighting and a light
source located about 30 cm from the surface. We used the stereo pairs to esti-
mate the ground truth shape and then ran our algorithms using the output of a
single camera. We used SIFT [20] to establish correspondences between the ref-
erence and input images. In both experiments we used the algorithm described
in Sect. 3 to initially produce a set of candidate 3D shapes in each individual
frame. We then chose the best using either shading or motion information.

Using Shading to Disambiguate. When using shading, the reconstruction
errors depicted in the two right-most boxplots of Fig. 4 exhibit the same pat-
terns as those obtained for the synthetic sequences, which confirms that our
method outperforms the other two. As shown in Table 2, we obtain 97% of cor-
rect solutions, which represents a 30% increase in performance, using the same
definition of “correct” as before. In the bottom of Fig. 5, we plot the estimated
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2D Projection 
(Our Approach) Ground Truth Salzm08 Moreno09 Our Approach 

(Nearby Light) 
Our Approach 
(Motion Model) 

Our Approach 
(Texture) 

Fig. 6. Results for the two real sequences. Top three rows: Paper. Bottom three rows:

Cloth. The reconstruction errors are again color-coded.

light source positions in each frame. Although we did not measure the exact light
source locations, the fact that the estimates are tightly clustered is an indication
that they are probably correct, given that they all were obtained independently.

Using Motion to Disambiguate. To learn the autoregressive model of Sect. 4.2,
we used additional sequences, obtained ground truth data using our stereo rig,
and learned the model parameters by probabilistic fitting [19]. In the case of the
sheet of paper, as shown in the third column of Fig. 4 and in Table 2, using the
motion model yields results similar to those obtained using shading. The per-
formance degrades slightly in the case of cloth because our second order motion
model is not accurate enough to perfectly capture the sharp cloth deformations.
Nevertheless, our method still outperforms both Salzm08 and Moreno09.

6 Conclusion

For the purpose of single view 3D non-rigid reconstruction, approaches that rely
on purely geometric constraints can return incorrect answers because several
different shapes that obey, or nearly obey these constraints, often yield very
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similar projections. To overcome this problem given that the input data is noisy,
we use error propagation techniques to derive an analytical expression of the
space of potential candidate shapes and to propose a small but representative
number of samples. The best among them can then be chosen based on additional
image cues, such as shading or motion, which significantly improves results with
respect to state-of-the-art methods.
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Abstract. With the rapid development of fast data acquisition tech-

niques, 3D scans that record the geometric and photometric information

of deformable objects are routinely acquired nowadays. To track sur-

faces in temporal domain or stitch partially-overlapping scans to form a

complete model in spatial domain, robust and efficient feature detection

for deformable shape correspondences, as an enabling method, becomes

fundamentally critical with pressing needs. In this paper, we propose an

efficient method to extract local features in scale spaces of both texture

and geometry for deformable shape correspondences. We first build a

hierarchical scale space on surface geometry based on geodesic metric,

and the pyramid representation of surface geometry naturally engenders

the rapid computation of scale-space features. Analogous to the SIFT,

our features are found as local extrema in the scale space. We then pro-

pose a new feature descriptor for deformable surfaces, which is a gradient

histogram within a local region computed by a local parameterization.

Both the detector and the descriptor are invariant to isometric defor-

mation, which makes our method a powerful tool for deformable shape

correspondences. The performance of the proposed method is evaluated

by feature matching on a sequence of deforming surfaces with ground

truth correspondences.

Keywords: Shape feature, Scale space, Deformable shape, SIFT.

1 Introduction

In recent years, the rapid development of data acquisition techniques naturally
gives rise to a massive collection of 3D scans of the geometric and photometric
information of deformable objects. Comparing with 2D images that are generally
perspective projections of the scenes, 3D scans capture the shape and the pho-
tograph of objects. Feature extraction is an enabling method to organize/index
partial 3D scans of an object and track its temporal variations. Strongly moti-
vated by scientific evidences from both physics and biological vision, scale-space
features that can appear in multiple scales, are much more desirable with many
attractive properties. This paper aims to compute scale-space features directly
on deformable surfaces, with a unique application of matching and tracking sur-
faces undergoing deformation.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 384–397, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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photometric geometric

Fig. 1. Photometric (green) and geometric (red) features for deformable shape corre-

spondences (right). Oriented circles indicate the scales and orientations of the features.

The geometric information here is the Gaussian curvature map.

Different from 2D images, 3D scans acquired by active scanner, stereo vi-
sion, multi-view silhouette, or a mixture of them, are commonly represented as
triangular meshes, with specific challenges:

– Deformation: Besides shape geometry, consecutive scans recording deforma-
tion frequently have unpredictable changes of topology and boundary.

– Irregular grid: The triangulation of scans is typically irregular, with no re-
striction on the valence (number of connected edges) of a vertex.

– Metric: On curved surfaces, the metric is often referred to the geodesic dis-
tance rather than the Euclidean distance.

– Local access: In a triangular mesh, the global index does not reflect its con-
nectivity, and thus the data can only be accessed locally.

Such challenges create many difficulties towards developing algorithms to com-
pute scale-space features on deformable surfaces, with the purpose of shape cor-
respondence. The state of the art therefore is struggling in finding efficient and
robust algorithms for local feature extraction and representation on deformable
surfaces. For metric choices, some used the Euclidean metric [1–3] that is not
preserved under deformation. Some other [4] employed the geodesic metric that
is invariant to isometric deformation. Besides, there are also methods converting
surfaces to some intrinsic domains to address deformations, e.g., the parametric
domain [5–8] and the frequency domain [9, 10]. Parameterization-based meth-
ods are usually accompanied by model cutting, and can be easily affected by
topological changes. Frequency-based methods decompose the surface into its
globally defined Laplace-Beltrami eigenfunctions (LBE), and thus are not appli-
cable for local features. Moreover, most existing methods only focus on geometric
characteristics (e.g., normal, curvature, spectrum, etc.). We are interested in the
concept of scalar fields on surfaces [3], which neatly combines geometric and
photometric characteristics.

In this paper, we develop an efficient method to compute scale-space features
using geodesic metric for deformable shape correspondences. Specifically, the
contributions of this paper are as follows:

– We present a hierarchical scale space using the pyramid representation, to-
gether with geodesic metric. It downsamples the surface when the scale
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increases, while controlling the sampling rate by a constant factor in the
scale space. This hierarchical scale space elegantly integrates photometric
and geometric characteristics, and engenders the computation efficiency.

– We propose a new feature descriptor for deformable surfaces enabled by a
local parameterization. This descriptor is a gradient histogram on a local re-
gion parameterized by geodesics and polar angles in the local tangent plane.

– We evaluate the performance of feature descriptors via a matching exper-
iment on a dataset, which contains a sequence of deforming surfaces with
ground truth correspondences.

An example of photometric (green) and geometric (red) features extracted by
our method is shown in Fig. 1(left), where the deformable shape correspondences
based on these features are shown on the right. The geometric information used
here is the Gaussian curvature map.

2 Previous Work

Extracting distinctive local features for 2D images is a fundamental and long-
lasting task in computer vision. Perhaps the most influential method with great
impact is the scale invariant feature transformation (SIFT) proposed by Lowe [11].
The success of SIFT primarily lies in its effective strategies including pyramid
representation, extremum detection in scale space, orientation assignment, his-
togram of gradients, etc. According to a performance evaluation of local feature
descriptors [12], SIFT-based descriptor could reach the best performance. With
continuously-increasing interest, extensions have been made to improve the SIFT
in recent years. Ke and Sukthankar [13] applied principal components analysis
(PCA) to the normalized gradient patch instead of weighted histograms in SIFT.
The PCA-SIFT representation with top eigenvectors is more compact than the
gradient image, whereas it requires pre-computation over large amount of train-
ing data. Mikolajczyk and Schmid [12] proposed the gradient location-orientation
histogram (GLOH) descriptor, which extends the rectangular sampling grid of
SIFT to a log-polar sampling grid that is more meaningful under rotation. Tola et
al. [14] introduced the descriptor “DAISY” replacing the weighted sums of gradi-
ent norms in SIFT by convolutions with several oriented derivatives of Gaussian
filters, which can be computed even faster without degrading the performance.

Strongly inspired by the prior success of SIFT-like methods on images, some
recent work has been dedicated to compute multi-scale features for surfaces. An
intuitive idea is to “flatten” surfaces to 2D images via parameterization, and
then compute SIFT features of geometric attributes such as normal [6, 7] and
curvatures [8]. The parameterization itself, however, suffers from unpredictable
changes of topology and boundary, accompanied by domain cutting and shape
distortion. In [2], texture was projected to the tangent plane to locally flatten the
surface. This method, however, was designed for surfaces with simple geometric
shape such as walls. Purely derived from geometry, some other work constructed
scale space directly on the 3D surfaces evolving the scale domain information.
In [15], a scale space was formulated via surface variation on point-sampled
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surfaces. Line-type features were extracted by a multi-scale classification opera-
tor that smoothes the surface at different scales. In [16], an intrinsic geometric
scale space (IGSS) of 3D surfaces was proposed for extracting scale-dependent
saliency. Using Ricci Flow, the surface gradually changes its curvature via shape
diffusion. This scale space, therefore, is invariant to conformal deformation. For
scale space on surfaces, Lee et al. [1] adopted 3D Gaussian convolution of cur-
vature maps to compute mesh saliency. The 3D Gaussian scale space is easy to
compute, nevertheless, it is based on Euclidean distance and only feasible for
rigid objects. To improve this, a geodesic scale space (GSS) [4] was introduced
using geodesic-based Gaussian convolution. The cost of computing geodesics,
however, is extremely high as the scale increases. Recently, the concept of scalar
fields defined on 3D surface has been proposed [3], which nicely combines the
photometric and geometric characteristics together. They proposed a 3D feature
detector (MeshDoG) and a descriptor (MeshHoG). The MeshDoG, however, was
computed by 3D Gaussian convolution in 1-ring neighborhood, which is compu-
tationally redundant in scale space and may vary subject to shape deformation.

Among descriptors of local features on surfaces, the spin-images [17] is perhaps
the most widely adopted. It maps a local surface patch to a 2D image by the
radial distance and the axial distance. However, its widespread use has been
limited only for rigid objects. The 3D shape context [18] has also been proved to
be a successful shape descriptor. In [19], a statistical approach was proposed to
describe surface features, where the neighbors of a feature were organized by a
spiral pathway, and modeled by a Hidden Markov Model. Others, like the LBE-
based shape signatures [9, 10], are defined globally and dedicated to describe
geometric characteristics only.

3 Hierarchical Scale Space on Deformable Surfaces

3.1 Gaussian Scale Space Using Geodesic Metric

Let S be a surface, a 2D (topological) manifold embedded in R
3, and let T (V, E, F )

be an irregular triangular mesh of S with vertex subset V , edge subset E and face
subset F . Irregular meshes have no restriction on the valences of vertices, engen-
dering more flexibility for complex geometric features and topology changes. A
scalar field L(v) where v ∈ V , has attributes defined on all vertices, e.g., texture,
curvature, normal, heat, density, etc.

We build a scale space of the scalar field on the surface using the Gaussian
kernel, given by

L(v, σ) = G(v, σ) ∗ L0(v), (1)

where L0(v) = L(v, 0) is the initial scalar field, and the scale space L(v, σ) varies
according to the scale σ. The Gaussian kernel on surface is defined as

G(v, σ) =
1

2πσ2
exp(−g(v)2

2σ2
), (2)

where σ is the standard deviation, and g(v) is the geodesic from vertex v to the
Gaussian center. This is a convolution of a family of isometric embeddings that
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46.8k faces

1/4−−→

11.7k faces

1/4−−→

2.9k faces

Fig. 2. A pyramid consists of 3 octaves with geodesic neighborhoods of the same radii

on different units. It is faster to access large neighbors in higher octave of the pyramid.

preserve geodesic distances from valid neighboring vertices to the center. The
discrete Gaussian convolution is then computed in a local region of any v (set
as the center)

L(v, σ) =

∑
g(u)<Cσ G(u, σ)L0(u)∑

g(u)<Cσ G(u, σ)
, (3)

where Cσ is a sufficiently large cut-off (e.g., C = 2 in our implementation) and
the unit is the average edge length e.

3.2 Pyramid Representation

We propose a hierarchical scale space using geodesic metric. The geodesics on
arbitrary triangular meshes can be computed by the fast marching method [20].
It solves the Eikonal equation

|∇T (x)| = F (x), (4)

where the solution T (x) is the shortest time needed to travel from the source to
x with F (x) being the time cost. This algorithm has O(m log m) time complex-
ity for one-source geodesics, where m is the number of traversed vertices. In the
discrete Gaussian convolution in Eq. (3), m is related to the area of the neigh-
borhood with radius Cσ, which yields O(m) = O(σ2). Hence, the complexity
of computing geodesics for all vertices is O(nσ2 log σ), which is linear w.r.t. the
number of vertices n, but quadratic-logarithmic to the scale σ. It implies that
the computation cost could be incredibly high when the scale increases.

To address this problem, we introduce a hierarchical scale space using a pyra-
mid representation, which has demonstrated its efficiency in images [11]. A level
of the pyramid, or an octave, is obtained by subsampling the previous octave
of the pyramid. For triangular meshes, the subsampling can be accomplished by
mesh simplification. There is a large amount of literature on mesh simplifica-
tion using various error metrics. Here we favor approximately uniform sampling
during mesh simplification. Therefore, general approaches such as Progressive
mesh [21] and QSlim [22] suffice for this purpose. To make sure that the in-
put mesh is approximately uniformly sampled, we investigate the edge lengths,
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(a) (b) (c) (d)

Fig. 3. Stages of feature detection: (a) the input scalar field, (b) the initial (494)

extrema, (c) selected (150) keypoints by discarding weak responses, and (d) the final

(116) keypoints by further removing unstable (i.e., edge, boundary) responses

and insert vertices on edges with length larger than twice of the e using linear
interpolation.

The pyramid consists of consecutive octaves [T0, T1, ..., TO], where O is the
number of octaves, and T0 is the original mesh. An octave Ti is subsampled
from the lower octave Ti−1 such that the number of faces n(Fi) is one fourth of
n(Fi−1). The unit of the i-th octave is the average edge length ei ≈ 1

2ei−1. Fig. 2
shows a pyramid of 3 octaves. It is faster to access large geodesic neighborhoods
in higher octave of the pyramid. Therefore, this computation approach is very
efficient. Though the geometry in higher octave is coarser, the lost details are not
significant for large scales. Each octave contains S scales. The sampling in the
scale space is consistent for all octaves by a constant factor k = 21/S . Besides,
the pyramid and geodesics can be computed in the pre-processing stage that
may be accomplished by the procedure of triangulation.

4 Feature Detector and Descriptor

4.1 Feature Detector

The entire pipeline of feature detection is highlighted in Fig. 3, with specific
processes presented as follows.

Local Extrema. Features are detected by finding extrema in the differences of
the scales:

D(v, σ) = L(v, kσ) − L(v, σ)
= (G(v, kσ) − G(v, σ)) ∗ L0(v), (5)

where k = 21/S is the factor in scale domain. Assuming the valence of vertex
v is nv, the local extremum of D(v, σ) are detected in (nv + 1) × (nv + 1) ×
(nv + 1) neighborhoods of samples. Weak features with small values in D(v, σ)
are discarded.

Unstable responses. Candidate keypoints with unstable responses (bound-
aries, edges) are further removed. In regular domain, the edge responses are
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defined as large ratios of the principal curvatures. In irregular meshes, we can
also apply this strategy using algorithms in [23] that compute curvatures in 1-
ring neighborhood. Specifically, we project the 1-ring neighbors N1(v) of v to its
local tangent plane, and use the scalar value as the third dimension to build a
new mesh structure. The mean curvature κH and Gaussian curvature κG on the
new mesh are given by{

κH(v) = 1
4Amix

∣∣∣∑u∈N1(v)(cotαvu + cotβvu)(v − u)
∣∣∣

κG(v) = 1
Amix

(2π −∑nv

j=1 θj)
, (6)

where Amix is the area of the generalized Voronoi region for arbitrary meshes,
cotαvu and cotβvu are the well-known “cot” coefficients (please refer to [23]
for more details), and θj is the angle of the j-th face at the vertex v. The two
principal curvatures are then given by{

κ1(v) = κH +
√

Δ(v)
κ2(v) = κH −√

Δ(v)
, (7)

with Δ(v) = κ2
H(v) − κG(v).

Refinement. The detected extremum leads to a local region that contains the
location of the feature. Thus, the refinement of feature localization is performed
to locate the accurate position. To prevent the localization from leaving the
surface, we use projected 1-ring neighbors with scalars in the previous stage. A
quadratic function on samples of D(v, σ) is fitted over spatial and scale domain
in the local coordinate system

D(x, y, σ) = a0x
2 + a1y

2 + a2σ
2 + a3xy + a4xσ +

a5yσ + a6x + a7y + a8σ + a9, (8)

where [a0, a1, ..., a9] are a group of coefficients that can be estimated by least-
square fitting. The localization x = [x, y, σ]T is updated using

x̂ = x − ∂2D(x)
∂x2

−1
∂D(x)

∂x
. (9)

4.2 Feature Descriptor

Estimation of Vertex Gradient. For irregular meshes, the gradient of scalar
filed L(v) at vertex v, defined as a vector in its local tangent plane, is usually
estimated by solving an optimization problem using the finite element method
(FEM) [24]. Specifically, let N1(v) be the 1-ring neighbor of vertex v. The gra-
dient ∇L(v) can be estimated by minimizing the following error

∇L(v) = arg min
∇L(v)

∑
u∈N1(v)

∣∣∣∇L(v)T P (−→vu) − L(u) − L(v)
g(u)

∣∣∣2, (10)

where P (−→vu) is the projected unit vector of −→vu in the local tangent plane TvS.
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Fig. 4. Local parameterization (a) and descriptor (b). Neighboring vertices are assigned

to 9 bins according to their geodesics and polar angles in the local tangent plane TvS.

The histogram of gradients w.r.t. their directions is computed in each bin.

Orientation Assignment. The orientation of the feature is assigned by the
dominating direction of gradients in its neighborhood. This assignment makes
the detected feature invariant to rotation, which has been a common strategy [3,
11] in computer vision. We divide the local tangent plane into 36 bins, and
compute weighed magnitudes of gradients falling into the corresponding bins
within a 1.5σ geodesic region. The orientation of the bin with greatest magnitude
is assigned as the feature, and a second orientation may also be assigned if there
exists a second maximum that is no less than 80% of the highest peak.

Local Parameterization. Previous feature descriptors for curved surfaces (e.g.,
Spin-images[17], MeshHoG[3]) are typically statistical characteristics distributed
in 3D. We propose a new descriptor for deformable surfaces based on a local
bivariate parameterization enabled by geodesics and polar angles. Intuitively
speaking, any given vertex in a 2D manifold has a neighborhood which is home-
omorphic to an open set of a 2D plane. Thus, we parameterize the local region
of the vertex v by a polar coordinate system [g(u), θ(u)] on the surface, where
g(u) is the geodesic from vertex v to u, and θ(u) is the projected polar an-
gle of u from the orientation of v in the local tangent plane TvS. As shown in
Fig. 4(a), this parameterization is completely local, which encodes the geodesic
of the destination on the surface and the direction projected in the local tangent
plane. Comparing with other local parameterization [25], our method preserves
geodesic distances from all neighbors to the origin, and is easy to compute.

Descriptor. A possible drawback of this local parameterization is that the pro-
jected polar angles may change subject to severe deformations. To reduce the
dependence on the polar angle θ, we quarter the angles in the tangent plane as
shown in Fig. 4(b), which affords our shape descriptor to be invariant to most
isometric deformations. We use polar grid to cluster vertices into 9 bins, and
use tri-linear interpolations to reduce boundary effects. The histogram of gra-
dients w.r.t. eight directions is computed in each bin. The radii of three circles
are subject to the ratio of 1 :

√
5 : 3 with unit σ, so each bin has the same

area. The magnitudes of gradients are smoothed by a Gaussian function with
3σ. This descriptor converts histograms of gradients in 2D to a 1D vector that
is normalized for matching purpose.
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Table 1. Comparison of SIFT-like methods on surfaces

Methods Grid Scale Sample Pyramid Descriptor Deform. Invariance

SIFT regular σ02
o+s/S yes 2D HoG no

GSS irregular σ0k
n no Spin-images no

MeshDoG regular σ
√

n no 3D HoG no

ours irregular σ02
o+s/S yes 2D HoG yes (isometric)

4.3 Discussion

Most recent multi-scale methods of feature detection on surfaces are inspired by
the SIFT on images. It is therefore valuable and illustrative to compare them
to clarify their differences, as shown in Table 1. Our method is the most similar
one in spirit to the SIFT, and is invariant to isometric deformation. Although
all of these methods can produce multi-scale representation of scalar inputs, we
found that the tight coupling of samplings in scale and spatial domain is critical
to scale-dependent features. The SIFT, which has been shown effective, samples
by a constant factor k = 21/S in the scale space: σ02o+s/S , where σ0 is the initial
value, S is the number of scales per octave, o and s are the order of octave and
scale in the pyramid, respectively. By using the pyramid representation, SIFT
increases the sampling intervals by a factor 2 in the spatial domain, which allows
us to find extrema in larger neighborhoods for greater scales. The GSS method
also samples by a constant factor k in the scale space, while the sampling interval
in spatial domain remains unchanged for all scales. The MeshDoG method, which
builds the scale space by repeatedly convolving the kernel with the same scale σ,
samples in the scale domain as σ

√
n. The sampling rate gets smaller when the

scale increases, so it generate many more redundant samples, while the sampling
rate in spatial domain remains unchanged. Our method has similar sampling
strategy to that of SIFT, which makes itself both effective and robust.

5 Experimental Results

In this section, experiments are conducted to evaluate the efficiency and reliabil-
ity of different methods. The deformable surface data being used are 3D scans
from [26] acquired by real-time scanners using structured light, and spacetime
faces [27] captured by synchronized video cameras and structured light projec-
tors. Previous methods such as the GSS [4] and the MeshDoG/MeshHoG [3] that
fall into the same category as our method are used for the comparison purpose.

5.1 Efficiency Evaluation

We run the three methods on three kinds of data with different resolutions and
geometric characteristics: complete model, spacetime face, and 3D scan, and
show their results in Fig. 5. We use Gaussian curvature maps for scalar fields
(a) of data 1 and 2, and photograph for data 3. The scales of detected features
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1

2

3
(a) scalar fields (b) GSS (c) MeshDoG (d) ours

σmax

σmin

Fig. 5. Scale-space features on three kinds of data: (a) input scalar fields; (b) results

by the GSS; (c) results by the MeshDoG; and (d) our results in this paper. We use

Gaussian curvature maps for data 1 and 2, and photograph for data 3. Different colors

of detected features represent their scales (better viewed in color).

are represented by their colors: blue for large scale, red for small scale. The GSS
method (b) contains 32 scales, and the most features detected belong to small
and medium scales. We compute 80 scales in the MeshDoG method (c), while
the features only show up in the very small scales. For the data used in our
experiments, the two methods have redundant samples in spatial domain and
scale domain, indicated by the dense spheres and their intensively distributed
colors respectively. Our method (d) has 4 octaves (12 scales) for data 1 and
data 2, and has 3 octaves (9 scales) for data 3. The detected features by our
method appear to be more intuitive in the sense of scale. We also noticed that
the geometric features are related to the resolutions of data. It tends to find more
large-scale features for coarse meshes (e.g., data 1), and more small-scale features
for fine meshes (e.g., data 2). This fact results from the discrete computation of
Gaussian curvatures.

The computation time for the three methods in this experiment are shown
in Table 2, obtained from a PC with Quad 2.66GHz CPU and 4GB RAM. In
the pre-process (pre), we compute geodesics for the GSS, and geodesics and
pyramids for our method. And in the running-process (run) we compute feature
detectors and descriptors for all three methods. Compared with the GSS that
also uses geodesic metric, our method significantly reduces the pre-process time.
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Table 2. Computation time of three methods in the experiment of Fig. 5

Methods Data 1 (47.1k faces) Data 2 (46.9k faces) Data 3 (10k faces)

scale feature pre-(s) run-(s) feature pre-(s) run-(s) feature pre-(s) run-(s)

GSS 32 1127 5893.9 11.7 478 6252.0 5.7 38 970.9 1.2

MeshDoG 80 540 N/A 31.8 451 N/A 22.2 15 N/A 1.9

ours 12/9 274 47.5 1.8 128 33.7 0.8 36 6.3 0.2

10k faces 32k faces 10k faces 32k faces

Fig. 6. Photometric features over mesh changes and different resolutions. The results

by the MeshDoG (left two) are affected by the resolutions. Our results (right two) are

more stable under mesh changes and different resolutions.

The MeshDoG only uses 1-ring neighbors to compute Gaussian kernel for all
scales, which is actually a bad practice though it saves the pre-process time.
In terms of running-process time, our method is still much faster. In fact, for
rigid models we can use Euclidean distances to replace geodesics, this will reduce
computation time in the pre-process (e.g., about 10 seconds pre-process time for
data 1, and the total computation time is about 1/3 of that in the MeshDoG).

Another experiment is conducted to examine the scales of photometric fea-
tures over mesh changes and different resolutions, with the results shown in
Fig. 6. The original scan from [26] has high resolution (170k faces) and mod-
erate accuracy. We downsample them into scans with different resolutions (10k
faces and 32k faces). The MeshDoG (left) only finds features in the small scales,
and thus the results are unstable under resolution changes. Our method (right)
is more stable under mesh changes and different resolutions.

5.2 Reliability Evaluation via Feature Matching

The reliability of features for matching purpose can be evaluated by feature
matching with ground truth, as in [12, 13]. Thus, we use the spacetime faces
which have ground truth correspondences to evaluate the feature descriptors via
feature matching. In this experiment, we use the photometric scalar fields, and
evaluate two descriptors: MeshHoG and ours. Since the descriptor employed in
the GSS is the Spin-images for geometric features on rigid models only, it is not
appropriate for our purpose. The matching strategy is a basic nearest neighbor
algorithm with cross validation as in [3]. A pair of candidate matches {f1

i , f2
j }

from S1 and S2 is identified if they are the nearest neighbor to each other in the
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frame 1 - frame 2 frame 1 - frame 5 frame 1- frame 9

Fig. 7. Selected frames from our evaluation of the MeshHoG (first row) and our method

(second row). We match frame 1 to all other frames. Green lines represent correct

matches, while black lines represent false matches.

Euclidean space of descriptor. And only matches that are discriminative (i.e.,
the distance of the closest neighbor is γ or less to that of the second-closest
neighbor) can be finally accepted.

The spacetime face data has a sequence of a deforming face, where 34 frames
are selected for evaluation which last about 5 seconds. We fix thresholds for
the two methods respectively, which maintain about (120 ∼ 160) features de-
tected for each frame. Then we match features in the first frame to the ones
in other frames to evaluate the reliability of feature descriptors under deforma-
tion. The parameter for matching algorithm is set as γ = 0.9 for both methods.
Some selected frames are shown in Fig. 7, where green lines represent correct
matches while black lines represent false matches. The complete result (up to 50
frames) can be found in the supplementary material (in the interest of space).
Three criteria are employed: effectiveness, recall, and 1-precision. The effective-
ness is defined as the ratio between the number of correct matches and the
number of detected features, which reflects how effective for the method to find
correct matches. The correct matches are identified if the matched feature is
within one unit of e of the ground truth. The recall and 1-precision are defined
conventionally as that in [13]. The number of positives is determined for the
detected features using the same way as correct matches. The evaluation results
are shown in Fig. 8. The MeshHoG performs well for the first two frames with
small deformation, and its performance severely deteriorates for large frame in-
dices (i.e., large deformation) in our experiment. This is primarily because the
detected features by the MeshDoG are not distinctive, and the MeshHoG is not
deformation-invariant. Our method is more reliable in terms of high effectiveness,
recall, and low 1-precision, and is stable even for large deformations.
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Fig. 8. Evaluation results on reliability of descriptors. The performance of the Mesh-

HoG (blue) severely deteriorates for large deformation, while our method (red) is more

stable in terms of high effectiveness, recall, and low 1-precision both consistently and

simultaneously.

6 Conclusion

In this paper we have detailed an efficient method to compute scale dependent
features on surfaces for deformable shape correspondences, which is a natural
generalization of the SIFT. The proposed feature detector and descriptor are
invariant to isometric deformation. Unlike previous methods on rigid surfaces,
our method takes the 3D scans as scalar fields on deformable manifolds using
geodesic metric. By employing a hierarchical scale space and a pyramid shape
representation, our method is both efficient and stable, as shown in the experi-
mental results. We have also conducted the comprehensive evaluation of the reli-
abilities of descriptors via matching features on a sequence of deforming surfaces
with ground truth correspondences. Compared with existing work, our method
is much more robust and effective under natural deformations. Our on-going
research efforts will continue to center on the comprehensive studies on shape
matching and registration of deformable surfaces, with new research directions
including shape completion in both temporal and spatial domains.
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Abstract. Automatic detection of symmetries, regularity, and repetitive struc-
tures in 3D geometry is a fundamental problem in shape analysis and pattern
recognition with applications in computer vision and graphics. Especially chal-
lenging is to detect intrinsic regularity, where the repetitions are on an intrinsic
grid, without any apparent Euclidean pattern to describe the shape, but rising
out of (near) isometric deformation of the underlying surface. In this paper, we
employ multidimensional scaling to reduce the problem of intrinsic structure de-
tection to a simpler problem of 2D grid detection. Potential 2D grids are then
identified using an autocorrelation analysis, refined using local fitting, validated,
and finally projected back to the spatial domain. We test the detection algorithm
on a variety of scanned plaster models in presence of imperfections like missing
data, noise and outliers. We also present a range of applications including scan
completion, shape editing, super-resolution, and structural correspondence.

1 Introduction

Symmetries and regular structures are ubiquitous in nature and in man-made objects,
often being closely related to form, function, aesthetics, and manufacturing ease of
geometrically complex but procedurally simple shapes. While humans are extremely
skilled at perceiving and identifying such patterns, even under a cursory inspection [1],
automatic detection of such regularity remains challenging. One of the main difficulties
is the fact that neither the parts that are being repeated nor their repetition pattern is
known a priori. Additionally, the surfaces are often warped in practice, making pattern
detection challenging (see Figure 1). Such distortions have been widely studied in com-
puter vision, specially work on shape-from-texture [2], and in the context of pose and
articulation invariant shape representation and matching [3–7].

State-of-the-art methods [8–10] can detect structured repetitions in 3D geometry if
the Euclidean transformations between repeated patches exhibit group-like behavior.
In case of non-rigid and deformable shapes, however, the problem is challenging since
no apparent structure is visible to simple Euclidean probes in the absence of repetitive
Euclidean transformations to describe the shape (see Figure 4).

In this paper, we address the problem of identifying regularity and repeating struc-
ture on an intrinsic grid on the shape, i.e., regularity detection on (near) developable
surfaces. The Euclidean structure of such a grid depends on the embedding of the
shape in the ambient space. Yet, using an intrinsic notion of distance, the grid becomes
deformation-invariant, and is simpler to identify and extract. To the best of our knowl-
edge, this is the first attempt to detect grid-regularities invariant under isometric de-
formations. We demonstrate our algorithm on a variety of scanned plaster models of

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 398–410, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. (Left) A cylindrical seal, (middle) impression left by a cylindrical seal on a (near) devel-
opable surface, and (right) near-intrinsic regular marking created by a car tyre on soft ground

stamped surfaces, with missing parts, and varying degree of noise. Such footprints are
common among stenciled concrete, industrial patterns, impressions of cylindrical seals,
and vehicle tire tracks just to mention a few.

Related work. Symmetry and structure detection in images and shapes is a well-
researched topic in the computer vision and graphics communities (see e.g. [10–19])
with applications including segmentation [20], scan completion [9], pose invariant rep-
resentation [21], image de-fencing [22], shape retrieval [12], and editing images with
repeated elements [23].

Local structure and repetition detection for 3D geometry was addressed by Pauly
et al. [8] where self-similarity is represented as a collection of local Euclidean trans-
formations, parameterized in a suitably designed 7D transformation space. The paper
observes that repeating self-similar structures correspond to regular grids in special
slices of the transformation space, and presents an algorithm for detecting such grid
and, subsequently, the repeating elements. However, this approach is limited to handle
only regular Euclidean lattices. More recently, Park et al. [24] presented a computa-
tional framework using a fourth-degree Markov random fields and mean shift belief
propagation, interleaved with thin plate spline warping, for detecting deformed lattices
or 2D wallpaper patterns in images. To the best of our knowledge, there are no known
extensions to handle intrinsic regularity in 3D geometry.

Raviv et al. [25] introduced intrinsic symmetries as a natural extension of the notion
of symmetry to non-rigid objects, based on a model of shapes as metric spaces [3, 26,

Fig. 2. Embedded intrinsic regularity on a shape as detected, shown in black, by Euclidean trans-
formation analysis [8] (left) and by our algorithm (right)
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Fig. 3. Stages of the proposed algorithm for intrinsic structure detection: Flattening using MDS,
computation of descriptor image, accumulation image, detection of grid generators by autocorre-
lation analysis, local grid refinement, validation and final detected structure (see Section 3)

27]. In a separate attempt, Ovsjanikov et al. [28] presented a method for symmetry
detection based on the properties of eigenfunctions of the Laplace-Beltrami operator
of the shape. Since the operator is invariant under isometric deformations, the resultant
symmetry detection also detects intrinsic symmetry of objects. Recently, Xu et al. [29]
introduced an algorithm to obtain intrinsic reflection symmetry axis (IRSA) transform
of objects, followed by an iterative refinement to extract dominant IRSA curves. These
efforts, however, are targeted towards detection of pairwise intrinsic symmetry, and not
for extracting patterns among the detected symmetries.

Although, intrinsic distances has been employed in computer vision in various con-
texts like texture mapping [30], face animation and morphing [31], articulation invari-
ant shape matching [3, 4], their use for repetition or regular structure detection has been
largely unexplored.

Contribution. We extend the notion of regular structure detection in 3D geometry to
handle isometric deformations. The detected structure grids are robust and invariant
to bending and articulations of the shapes. State-of-the-art algorithm [8] in regularity
detection under Euclidean transformations fails to identify such intrinsic structures in
non-rigid shapes since their embedding distorts the Euclidean structures (see Figure 2,
left). By using multidimensional scaling (MDS), the intrinsic geometry of the surface is
mapped into a Euclidean one, thus reducing the problem to the case of Euclidean regu-
larities. Such a planar embedding, however, reduces the problem to a simpler instance
of regular grid detection in the plane, instead of intrinsic grid detection on the surface.
The use of MDS removes the necessity to detect deformed lattices as proposed by Park
et al. [24], leading to a simple, robust, and computationally-efficient algorithm.

2 Background

Let X be a surface modeled as a two-dimensional Riemannian manifold. A parametric
curve γ(t) on X is called a geodesic if parallel transport along the curve preserves the
tangent vector γ̇ to the curve, i.e., ∇γ̇ γ̇ = 0 for each point along the curve (∇ denotes
the covariant derivative on the manifold, roughly equivalent to directional derivative in
a vector space). For any point x and a tangent vector v ∈ TxX , there exists a unique
geodesic passing though x whose tangent vector is v. Also, given a pair of points on
the manifold, the geodesic curve γ is the (locally) shortest path between the points. We
denote by dX : X × X → R the geodesic metric measuring the length of the shortest
paths between points on X .
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Fig. 4. Photographs of the plasticine imprints scanned in our experiments (top row), the detected
grids in the parametrization domain obtained using MDS along with the locally refined grids
(middle row), and the corresponding intrinsic structure depicted on the scanned models (last
row). Parts of the shape that do not belong to any detected intrinsic regularities are in blue

Recent works [3, 26, 27] have considered non-rigid surfaces as metric spaces of the
form (X, dX) that are deformation-invariant. Raviv et al. [25] defined intrinsic symme-
try as self-isometry with respect to the metric dX : surface X is intrinsically symmetric
if there exists a non-trivial bijection φ : X → X ′ such that dX = dX′ ◦ (φ × φ).

Given a point x and a tangent vector v ∈ TxX , we define translation t by a fixed
length in the direction v using parallel transport on the manifold along the geodesic
passing through point x in the direction v. Rotation R is defined as rotation of the tan-
gent vector v in the tangent plane. With these two operations, we can define an intrinsic
grid as a collection of points or nodes G ⊂ X obtained by successive applications of
translation and rotation operations. For example, an orthogonal intrinsic grid is defined
by setting an origin x and a vector v, having R defined as a rotation by π/2 and t as a
translation by fixed length (Figure 5).

The goal of intrinsic structure detection is to explain the surface using local self-
similarity on an intrinsic grid, i.e., finding the largest grid G that for any pair of points
xi,xj ∈ G the surface is locally self-similar at xi,xj . The main idea of our approach
is as follows: Let X (or its subset) has an isometric embedding into the plane, i.e.,
there exists a bijection ψ : (X, dX) → (R2, dR2) satisfying dX = dR2 ◦ (ψ × ψ).
Here ψ can be thought of as a flattening or parametrization of the surface that replaces
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ttttttttttttttttt

xxxxxxxxxxxxxxxxx

Fig. 5. Example of geodesic grid embedded on the surface



402 N.J. Mitra, A. Bronstein, and M. Bronstein

geodesics on X with straight lines in the plane. In particular, the intrinsic regularity
manifests as a grid in the plane. Thus, by means of isometric embedding, the problem
of grid detection on the surface is replaced by planar grid detection, a well-researched
problem in computer vision and image processing. Since a warped surface rarely has
an isometric parametrization in the plane, we find the best ψ that minimize distortion
‖dX −dR2 ◦ (ψ×ψ)‖ in the least squares sense, which, in the discrete case, is obtained
using MDS [32].

3 Intrinsic Structure Detection

We now describe the different stages of our proposed pipeline for detecting intrinsic
structures in 3D geometry (see Figure 3). The algorithm has three main stages: First,
we use MDS for surface flattening, which transfers intrinsic grids defined on the surface
onto the plane. Second, local shape structure is represented using intrinsic descriptors,
and their repeating patterns detected in the plane. Finally, the detected planar grid is
refined, validated, and mapped back to the surface.

In the following, we assume that the shape X is presented as a triangular mesh built
upon a set of vertices V ≡ {x1, ...,xn}. Let E denote the set of edges with (i, j) ∈ E if
vertices xi,xj are connected by an edge. In our experiments, n is typically 50K–100K.

3.1 Shape Flattening

Distance computation. The geodesic metric on the triangular mesh is approximated
using fast marching (FMM) [33], a numerical solver to the Eikonal equation that com-
putes distance map from a point to the rest of the mesh vertices by simulating wavefront
propagation. To reduce the computational cost of the MDS stage, we use a landmark-
based approach [34]. The mesh is sampled at m � n landmark points (denoted, with-
out loss of generality, by x1, ...,xm) using the farthest point sampling (FPS) proce-
dure [35], performed as follows: Start with some vertex, say x1, selected at random.
The k-th point is selected from V to be the most distant point from the current selection
of k − 1 points, i.e.,

xk = arg max
x∈V

dX({x1, ..,xk−1},x) = arg max
x∈V

min
i=1,..,k−1

dX(xi,x). (1)

FPS produces a subsampling with m approximately equidistant points. Then FMM is
employed to compute the m × n matrix of geodesic distances dX(xi,xj), i = 1, .., m;
j = 1, .., n between the landmark points and all the vertices of the mesh. In our experi-
ments, we set the sample size m to a default value of 500.

Flattening. The minimum-distortion parametrization ψ is computed using a variant
of landmark MDS [34]. First, the landmark points are embedded into the plane. We
denote by ui = ψ(xi) for i = 1, .., m their parametrization coordinates in the plane,
i.e., ui ∈ R

2, that are found by minimizing the stress function

min
u1,...,um

m∑
i=1

m∑
j=i+1

(dX(xi,xj) − ‖ui − uj‖)2. (2)
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Fig. 6. Robustness of our method to missing and corrupt data: occlusions due to imperfect acqui-
sition and synthetic holes (left), simulated Gaussian noise (center), and shot noise (right). Regions
not explained by detected intrinsic structure are in blue.

The minimizer of the stress function is the minimum-distortion parametrization of the
surface in the least squares sense. We use SMACOF iterations [32]

U (k+1) =
1
m

B(U (k))U (k), (3)

repeated until convergence, to solve the LS-MDS problem (2) iteratively1. Here, U is a
m × 2 matrix of landmark point parametrization coordinates with

bij(U) =

⎧⎪⎨⎪⎩
dX(xi,xj)
‖ui−uj‖ i 	= j and ‖ui − uj‖ 	= 0,

0 i 	= j and ‖ui − uj‖ = 0,
−∑

k �=i bik i = j.

We initialize the LS-MDS solver using classical scaling based on a globally-convergent
algebraic MDS method minimizing the Frobenius norm of the distance distortion. SMA-
COF iterations are guaranteed to produce a monotonically decreasing sequence of stress
values [37].

Interpolation. The obtained landmark parametrization coordinates are employed to
interpolate the parametrization coordinates for the remaining mesh vertices using a
distance-based interpolation proposed in [34]. The interpolated coordinates are inferred
from the landmark coordinates using

uj = −1
2
U †(δj − δ̄),

1 SMACOF iteration is equivalent to a weighted gradient descent and generally does not guar-
antee global convergence. However, using a sufficiently good initialization or multiscale opti-
mization, reasonable convergence is obtained [36].
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for j = m + 1, .., n, where U † denotes the pseudoinverse of the matrix of landmark
point parametrization coordinates, δj = (d2

X(xj ,x1), .., d2
X(xj ,xm))T is the m × 1

vector of squared distances from xj to the landmark points, and

δ̄ =
1
m

m∑
i=1

(d2
X(xi,x1), .., d2

X(xi,xm))T

is the average squared distance between the landmark points. Thus, for every vertex
x ∈ V on the mesh, we get a mapping to a corresponding point u = ψ(x) in the plane.

3.2 Grid Detection

Descriptor. We now compute a simple scalar descriptor at each point to facilitate repe-
tition detection in the next stage. The input mesh is smoothed using a discrete Laplacian,

(Δx)i =
1

v(i)

∑
j:(i,j)∈E

xj , (4)

producing a smoothed version Xp = ΔX . Here, v(i) denotes the valence of the vertex
xi, i.e., the number of vertices adjacent to it. We define a scalar descriptor at each vertex
of the mesh as c ≡ 〈x − xp,n〉, where x and xp are the original and smoothed shape
coordinates, respectively, and n is the normal vector to the smoothed mesh at that point.
Such a descriptor captures the high-frequency geometric details or the coating of the
surface, and is insensitive to low-frequency bending and non-rigid deformations. Map-
ping the descriptor to the plane using the parametrization ψ results in a descriptor image
c◦ψ−1, which contains regular Euclidean 2D patterns. In our experiments, we sampled
the descriptor image on a regular planar Cartesian grid with the largest dimension of
128.

Accumulation. The 3D surface of the height-field descriptor image contains regular
structures in the Euclidean sense. While one can detect the repetitions on this derived
surface using the method proposed by Pauly et al. [8], given the nature of the repetitions
in the MDS domain, a much simpler approach is to directly detect the grids on the
descriptor image. An accumulation image representing the repeating patterns in the
descriptor image is constructed as

A(w) =
∑
z

exp(−〈P (z), P (z + w)〉/2σ2) (5)

where P (z) and P (z + w) are normalized descriptor image patches, and the inner
product between them is weighted by a Gaussian window with kernel width σ. Thus,
if the descriptor image contains many patches that are similar up to a displacement by
a vector w, the accumulation image will exhibit a peak at w. In our experiments, by
default, the accumulation image was of size 257× 257, the patch size was 21× 21, and
σ = 0.075 was used.

Autocorrelation. The autocorrelation of the accumulation image allows to find the grid
generators, i.e., the vectors that define the grid in the parametrization domain. Autocor-
relation is computed as the similarity of the accumulation image to its version shifted
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by a vector u, represented in polar coordinates. Two peaks are detected in the polar
autocorrelation image, representing the grid generators. Often, there might exist more
than one pair of generators explaining the same grid, as visualized in Figure 10. In such
cases, we give preference to shorter ones resulting in a denser grid.

Phase selection. The detected grid is inherently ambiguous to phase, i.e., shift along
the grid generator vectors (Figure 10). While there is no theoretical preference to a spe-
cific phase of the detected grid, some phases produce semantically and visually more
meaningful results. We perform phase selection by shifting the grid to maximize the lo-
cal variation of the descriptor at the grid nodes. This way, the grid locks onto interesting
geometric features.

3.3 Refinement and Validation

Refinement. Peaks of the autocorrelation function of the accumulation image provide
good generators for grids in the MDS domain. However, because of them being only
approximate, we locally refine the grid point locations as well as remove grid points
and connections that do not correspond to any structural element (see Figure 3). This
local correlation and refinement is performed using descriptor images with twice the
resolution used in the previous stage. We used images with maximum dimension of
256 pixels as default.

Validation. The input mesh and the corresponding MDS descriptor image do not solely
constitute of regular structures. Hence we explicitly identify and extract the structural
elements around each grid point using a greedy growth with validation (see Figure 10).
Finally, we project back the detected structural elements to the surface. In, Figure 4 the
unstructured parts are indicated in blue.

+

super-resolution

→
structural patch

repetition grid

geometry synthesis

original details

Fig. 7. Square-shape (see Figure 4) is decomposed into a smooth base and a detail layer consisting
of a structural patch and a repetition grid (top). This enables geometry processing like super-
resolution and synthesis of a shape with the same structural layout but different with geometric
details (bottom).
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Table 1. Mesh sizes and run times (in seconds) for different stages of the algorithm. Performance
measured on a 2 GHz Core Duo Pentium CPU with 3GB of RAM.

square oblique Colosseum ball

# vertices 54,880 54,817 57,563 40,601
FMM + MDS 5 5 6 4
interpolation 11 10 12 5
descriptor 3 4 4 4
accumulation 23 34 17 54
correlation 31 41 28 59
refinement 13 16 12 18

4 Results and Applications

For the experiments in this paper, we used scans of objects sculpted and stamped using
plasticine depicted in Figure 4 (first row). The objects were designed to contain intrin-
sically repeating structure, which is hard to perceive if considered in a Euclidean way.
Four objects were used: deformed surfaces with square and oblique grids, a detail of a
curved architectural shape (non-rigid Colosseum), and part of a ball with square grid
structure. Each of the objects presents a different challenge in structure recovery. Thus,
in the Colosseum shape, the structural elements are holes (windows), and the ball has a
non-developable geometry. The objects were scanned using a coded light range camera,
producing triangular meshes that were cleaned up and resampled to about 50K vertices.
Data and code are available for academic use from the project webpage. Our algorithm
is robust to a range of parameter settings, and all the reported results are with a default
set of values.

Figure 4 shows the intrinsic grids detected using the proposed algorithm. The al-
gorithm was implemented in Matlab without optimization. Overall run time in these
examples is about a minute (see Table 1 for detailed timing of each stage of the al-
gorithm). In the 2D processing stages of the algorithm (accumulation image creation,
correlation, and refinement) the complexity is dictated mainly by the descriptor image

Fig. 8. Intrinsic structures can be detected on scans with missing data (left). The detected structure
is used to propagate structural elements from healthy regions to conceal the damaged or missing
areas (right).
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+ +

Fig. 9. Structural correspondence, up to phase ambiguity, between two geometrically different
shapes having similar repeating structures, established using the detected correspondence be-
tween the respective intrinsic grids. Combinatorially similar respective grids are shown at the
top right and top left, respectively. High-frequency texture mapping was used to visualize the
accuracy of local correspondence.

size, which, in turn, depends on the way MDS embedding maps the surface into the
plane. For comparison, Figure 2 (left) shows the results produced by Euclidean struc-
ture detection of Pauly et al. [8]. Only a small part of the grid (four points located in the
flat part of the shape) is recovered. The behavior is similar for the other scans.

Robustness. The proposed algorithm is insensitive to noise and can work even when
large parts of the grid are missing. Figure 6 (left) shows examples of grid detection
is shapes suffering from missing details (resulting from real occlusion artifacts in 3D
acquisition and synthetic removal of parts of the shape). Despite large portions of the
shape missing (up to 35% in Figure 6, middle), most of the grid structure is correctly
detected. Figure 6 (middle) shows a shape contaminated by random Gaussian noise
with standard deviation of about 70% of the average feature elevation, while Figure 6
(right) shows corruption by shot noise appearing as spikes. Besides a few missing grid
nodes, the repeating structure is detected correctly in these cases as well.

Geometry substitution. A shape can be decomposed into a low-frequency base gov-
erning the embedding in R

3, and the high-frequency detail admitting the intrinsic re-
peating pattern. Replacing the detail allows to synthesize new shapes sharing with the
original one the 3D layout, while retaining the repeating structure. An example of such
a substitution is presented in Figure 7. The low-frequency surface was obtained by solv-
ing the Laplace equation for the surface coordinates with the grid lines serving as the
boundary conditions. The new detail was mapped onto the low-frequency base using
a normal displacement map. Detail substitution can be used to conceal irregularities
of a regular shape due to manufacturing or acquisition imperfections. In this case, the
structural element from a “healthy” region of the shape is transferred to a damaged one
as shown in Figure 8. While MDS mapping by itself can be influenced by topological
errors, the grid detection and refinement phases make the pipeline robust to small holes
and perforations (see also the Colosseum example). Use of topologically-consistent
weighted MDS [38] can increase the stability of the system. In this example, we first
closed the holes using smooth interpolation; the interpolated regions were healed by
detail transfer from healthy regions resulting in a nearly perfectly regular shape. Sub-
stituting the detail with its higher resolution version (obtained, for example, from a
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Fig. 10. Ambiguities inherent to intrinsic grid detection: phase (left), shape of the structural ele-
ment (middle), and different generators explaining the same grid (right). All such results provide
plausible explanations to the intrinsic structure of the oblique-shape. For reference, results from
Figure 4 are overlaid as blue curves/spheres.

close-up scan or a CAD model) produces super-resolution of the original shape, al-
lowing to overcome the classical field-of-view versus resolution tradeoff or combine
different acquisition modalities (see Figure 7 for an example).

Structural correspondence. The knowledge of intrinsic structure allows us to estab-
lish correspondence between objects significantly different geometrically and topolog-
ically, yet resembling in their self-similarity structure. This concept has been recently
explored in image analysis applications for comparison of images depicting similar
concept in visually different ways [5]. Given two shapes with similar intrinsic struc-
tures, we first extract the intrinsic grids and then find the correspondence between these
grids. The structural elements and the extrinsic geometry of the shapes can be wildly
different, as exemplified in Figure 9. Such a great difference in geometry and topology
is an obstacle that most state-of-the-art non-rigid correspondence methods find very
challenging to overcome.

5 Conclusions

We presented an approach for intrinsic local self-similarity detection in 3D shapes. Un-
like previous approaches limited to Euclidean self-similarity, our approach is able to
detect warped and curved grids. By using MDS, we reduce the problem of intrinsic
grid detection on the surface to regular grid detection in the plane. We demonstrated
the efficiency and robustness of the method on various scanned (stamped) models with
different geometries, topologies, and structures, as well as real and simulated artifacts.
Examples of applications to scan completion, detail substitution, super-resolution, and
correspondence between structurally similar yet geometrically and topologically differ-
ent shapes were presented.

Limitations and extensions. The current limitation of our approach is that the use
of planar parametrization implies a tacit assumption that the topology of the surface is
coarsely similar to that of the plane. While this is true in many cases of shapes acquired
by means of a range scanner and represented as geometry images, a generic shape may
have more complicated topology, e.g. of a sphere. Trying to embed such shapes into
the plane would result in large distortions such that intrinsic grids would be no more
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mapped into planar regular grids. A possible way to handle complex topologies is by
applying MDS in a local manner, to disk-like regions on the shape, and then stitch
together the detected grids, which we leave to future work.

Other limitations, inherent to regular structure detection in general, are the ambigui-
ties in phase and non-uniqueness of the grid generators and the structural elements (see
Figure 10). Optimization over these parameters with the goal to achieve optimal pack-
ing of full structural elements over the shape can be a way to resolve such ambiguities.
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Abstract. We propose a novel framework, aspect space, to balance deforma-
bility and discriminability, which are often two competing factors in shape and
image representations. In this framework, an object is embedded as a surface in
a higher dimensional space with a parameter named aspect weight, which con-
trols the importance of intensity in the embedding. We show that this framework
naturally unifies existing important shape and image representations by adjust-
ing the aspect weight and the embedding. More importantly, we find that the
aspect weight implicitly controls the degree to which a representation handles
deformation. Based on this idea, we present the aspect shape context, which ex-
tends shape context-based descriptors and adaptively selects the “best” aspect
weight for shape comparison. Another observation we have is the proposed de-
scriptor nicely fits context-sensitive shape retrieval. The proposed methods are
evaluated on two public datasets, MPEG7-CE-Shape-1 and Tari 1000, in compar-
ison to state-of-the-art solutions. In the standard shape retrieval experiment using
the MPEG7 CE-Shape-1 database, the new descriptor with context information
achieves a bull’s eye score of 95.96%, which surpassed all previous results. In the
Tari 1000 dataset, our methods significantly outperform previous tested methods
as well.

1 Introduction

To understand and analyze object deformation is one of the most important goals in
pattern recognition. The study of object shapes dates back to at least a century ago in
D’Arcy Thompson’s seminal work [35]. Recently, great successes have been achieved
in robust image and shape representation for many computer vision tasks
[24,25,18,27,9,21,14,5,36,33,13]. Many approaches gain the robustness by using rep-
resentations that are invariant (or insensitive) to certain groups of deformations. For
example, the popular scale invariant feature transform (SIFT) [24] selects scale invari-
ant blob regions [20] for reliable key point matching. Some further works push this
frontier to more general deformations such as affine invariant [27], projection invari-
ant [37], or general deformation invariant [25,21]. Similar progress has been made in
shape analysis as well. Moment invariants [12] are well known to be robust to similar-
ity transformations. Bending invariants [10,6,7] for 2D and 3D shapes can be achieved
by using geodesic distances. Articulation insensitivity is gained similarly by using the
inner-distance [22]. Topology invariants [8,30] have been applied for both 2D and 3D
shape analysis. Invariant representations are also used in texture analysis [18,39].

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 411–424, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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α = 1.7

α = 2.1

α = 22.8

α = 32.3

Fig. 1. Four shape classes from the MPEG7 dataset and their discriminative deformabilities α
(§ 3.3)

On the other hand, invariants to larger groups of deformation often come at a price
of reduced discriminability [37,21] and sometimes introduce vulnerability to imaging
nuisances such as noises and illumination variations. In fact, as observed in category
classification tasks [42], the best local features are often a trade off between descriptive
abilities and robustness to deformations.

In Fig. 1, we see that objects often undergo different degrees of deformation and a
trade off between deformation robustness and discriminability is desired. For example,
simple Euclidean distance based approaches (e.g., shape context [5]) can work well for
rigid objects like bottles (first row in Fig. 1) while the articulation invariant represen-
tations (e.g., inner-distance shape context [22]) handles articulated shapes like human
body (fourth row of Fig. 1) successfully. However, for complicated shapes like the pie-
shaped devices in Fig. 1 (second row), articulation invariance becomes an over-killing
that easily confuses a query shape with other shapes through articulation. This fact is
illustrated in the first row of Fig. 2.

Motivated by the above work and especially by [21,20], we propose a new frame-
work called aspect space1 to balance the deformation and discriminability for object
representation. The basic idea is to embed a 2D image or a shape (or a 3D volume) as
a surface in a 3D space (or a 4D space) with a parameter named aspect weight, which
controls the importance of intensity in the embedding. The embedded surfaces with dif-
ferent aspect weights then form an aspect space, such that the aspect weight naturally
correlates to the degree of object deformation. By converting silhouettes to binary im-
ages, we show that the aspect space provides a unified framework for several popular
shape descriptors including the shape context [5], the inner-distance shape context [22],
and the bending invariant shape signature [10].

We apply the aspect space framework for shape retrieval tasks that is an important
problem in computer vision. Taking advantage of the aspect weight’s ability of con-
trolling the degree of deformation, we propose a new shape descriptor named aspect
shape context (ASC), which extends the inner-distance shape context (IDSC) [22] by
replacing the inner-distance with geodesic distances in the aspect space. In fact, both
the shape context (SC) [5] and inner-distance shape context are special cases of ASC,
corresponding to a zero aspect value and a sufficiently large aspect value, respectively.

1 The “aspect” in our work comes from “aspect ratio”, which should not be confused with that
used in the “aspect” graph.
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Fig. 2. The top 10 nearest neighbors obtained by IDSC (the first row) and ASC (the second row)
for the query of a pie-shaped device

When comparing two shapes, the distance between them is chosen as the minimum
distance over different aspect weights. This way, ASC successfully balances the shape
deformation and discriminability. We tested the proposed approach on a standard shape
retrieval experiment with the MPEG7-CE-1 shape database. ASC demonstrates promis-
ing retrieval results and improves the previous approach. For example, in Fig. 2, one
comparison between IDSC and ASC is given. The query shape is a pie-shape device.
It is obvious that the retrieval results of IDSC are very different from the query shape
demonstrating that articulation invariance becomes an over-killing factor. The results
of the second row clearly show that ASC can balance between deformation robustness
and discriminability.

In summary, we make three main contributions in this paper. First, we propose the
aspect space framework, which provides a unified image and shape representation that
allows controlling the degree of deformation. Second, with the framework, we designed
a new shape descriptor that automatically balances the deformation and discriminabil-
ity for shape matching. The descriptor demonstrates excellent performance for shape
matching tasks on two benchmark shape datasets, the MPEG7 shape database [17] and
the Tari 100 database [4]. Third, the novel shape descriptor can describe the relation
between shapes very well, not only in the same class, but also in different classes. Thus,
it provides an excellent input for diffusion based, context-sensitive shape similarity,
which reaches the best ever bull’s eye score of 95.96% on the MPEG7 shape database.
This increases by 20% the best bull’s eye scores on this dataset [17] published first time
in CVPR 2000, which clearly demonstrates the progress in the field achieved in the last
10 years.

The rest of the paper is organized as follow. § 2 describes the aspect space frame-
work and its relation to existing object and shape representations. Then, we describe
the new shape descriptor, aspect shape context, in § 3. To compute a context-sensitive
shape distance, we utilize the locally constrained dissuasion process described in § 4.
Experimental results are reported and analyzed in § 5. Finally, § 6 concludes the paper.

2 Aspect Space

2.1 Aspect Space and Geodesics

Given an image I : Λ → [0, 1], where Λ ⊂ R
2 is the image domain, we define its

induced aspect space A(I; α) of I as

A(I; α) = (x, y, αI(x, y)), (x, y) ∈ Λ, α ∈ [0,∞) . (1)
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Fig. 3. Aspect spaces and geodesics on embedding surfaces. Left: a “T” shape and two geodesics
between points p, q for α = 2 and 50 respectively. Middle: the aspect space and the geodesic for
α = 2. Right: the aspect space and the geodesic for α = 50.

Note that the embedding is equivalent to the one used in [21], i.e.,

(1 − α)x, (1 − α)y, αI(x, y), α ∈ [0, 1],

but the new definition is practically more convenient and numerically stabler. Also note
that the embedding and the following derivations are not restricted to 2D.

A natural way to study the embedding in A(I; α) is to investigate the curves espe-
cially geodesics on it. Following [21], for a given parameterized curve

γ(t) = (x(t), y(t), αI(x, y)), t ∈ [0, 1]

on A(I; α) with a fixed α, its curve length is l(γ) =
∫ 1

0

(
∂x
∂t

2
+ ∂y

∂t

2
+ α2 ∂I

∂t

2
)1/2

dt.

Fig. 3 shows an example of embedding a “T” shape and the geodesics between two
points p, q on the embedded surfaces.

It has been shown in [21] that geodesic distances become invariant to general de-
formation (i.e., homeomorphism) when α approaches ∞, in which case the intensity
term dominates l(γ). On the other extreme, when α equals to zero, geodesic distances
degenerate to the Euclidean distances that are invariant to only rigid deformations. This
brings a connection between the geodesic intensity histogram [21] and the spin im-
age [18]. Motivated by this observation, we will use the aspect space framework for
designing robust and discriminative shape descriptor (§ 3).

2.2 Relations to Robust Shape Descriptors

We now show how the aspect space relates to several popular shape descriptors in-
cluding the shape context (SC) [5], inner-distance shape context (IDSC) [22], and the
bending invariant signature [10].

The shape context [5] uses the joint distance-orientation distributions of landmarks
for shape description. It has been shown to be very effective in many shape comparison
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tasks. The inner-distance shape context [22], IDSC extends SC to achieve articulation
invariant by using the so called inner-distance, which is defined as the length of shortest
paths between landmark points when the paths are restricted within a shape boundary.
To relate them in the aspect space framework, we treat a given shape S : Λ → [0, 1] as
a binary mask, i.e.,

S(x, y) =
{

1 if (x, y) ∈ shape interior
0 otherwise . (2)

Consequently, the aspect space of S is defined as

A(S; α) = (x, y, αS(x, y)) . (3)

Given two points p, q on shape S, it can be shown that the geodesic distance between
them on A(S; α) is equivalent to the inner-distance between them, for a large enough
α. An example is shown in Fig. 3 for α = 50. The reason is, when α is large enough,
the geodesic path from p to q along the surface will remain on the plateau formed by
the object. This means that the geodesic path, which is also a shortest path, is restricted
within the shape boundary. Therefore, it reduces to the inner-distance used in IDSC.

On the other hand, when α=0, the geodesic distance on the surface degenerates to
the Euclidean distance, as illustrated for α=2 in Fig. 3. This is the distance used in SC.

The bending invariant signature uses geodesic distances along object surfaces. Let a
3D volume V : Λ′ ⊂ R

3 → [0, 1] has boundary ∂(V ), we first build a 3D volume mask
as following

V (x) =
{

1 if x ∈ ∂(V )
0 otherwise . (4)

Then, with a large enough aspect weight, the geodesic path on A(V ; α) is restricted
on the object boundary ∂(V ), which is used for building the bending invariant signa-
tures [10].

It is also worth mentioning that our work is related the work on shape analysis using
the diffusion distances [8,30] and the Gromov-Hausdorff framework [7,6].

2.3 Relations to Other Image Representations

Aside from the above representations, the aspect space also closely relates to many other
image representations or statistics. For example, when α → ∞, aspect space relates to
the total variation (TV) [29] in that only intensity values are taken into account. In this
case, the geodesic distance along between points becomes, up to a constant ratio, the
total variation of the geodesic path connecting them.

Another important motivation to our work is the Beltrami flow framework [34],
where an image is embedded as a surface in 3D space and differential properties of
the surface are used for low-level image processing. We expect future works along sim-
ilar directions in the aspect space.



416 H. Ling, X. Yang, and L.J. Latecki

3 Balancing Deformability and Discriminability for Shape
Comparison

3.1 Aspect Shape Context

We propose to use the aspect space framework for shape analysis. As shown in § 2,
for a given shape S as defined in equation (2), the geodesic distances between land-
mark points of S on A(S; α) varies from the Euclidean distance to the inner-distance
when α increases from 0 to a large positive value. This property provides a natural way
to unify the shape descriptors taking advantages of both distances, namely the shape
context (SC) [5] and the inner-distance shape context (IDSC) [22]. Motivated by this
observation, we present the aspect shape context (ASC) as below:
Definition: Let {pi}n

i=1 be n silhouette landmark points of S, its aspect shape context
(ASC) is defined as a set of n histograms on its aspect space A(S; α) as

ASC(S, α) = {Hi(S, α)}n
i=1 , (5)

where Hi(S, α) ∈ R
ng×no is a ng×no histogram measuring the joint geodesic distance-

orientation distribution of landmarks w.r.t. point pi, such that the geodesic distances and
orientations are all computed w.r.t. A(S; α). Specifically, Hi(S, α) captures the joint
distribution of geodesic distances and orientations of all other points with respect to
point pi. In ASC, for the orientation, we use the angle between boundary tangent direc-
tion and the direction of the geodesic projected to the 2D image domain, which is an
extension of the inner-angle defined in [22]. The geodesic distance in our implementa-
tion is through the fast marching algorithm [32].

3.2 Comparing Aspect Shape Context

How should we compare two shapes S1, S2 given their ASCs? The basic idea is to
compare two shapes by adaptively choosing the “best” aspect weight α. We expect that
a small α (such that ASC works like SC) will be used for rigid shapes while a large α
(such that ASC works like IDSC) for non-rigid ones.

We define the co-aspect α̂ as the one that produces minimum shape distances be-
tween S1 and S2

2.

α̂(S1, S2) = arg min
α

dH(ASC(S1, α), ASC(S2, α)) , (6)

where dH(., .) computes a distance between two sets of shape context histograms at a
fixed α (e.g., the “shape context” distance used in [5,22]). Consequently, the distance
between S1, S2 is defined as the histogram distance that minimizes (6), i.e.,

dASC(S1, S2) = dH (ASC(S1, α̂(S1, S2)), ASC(S2, α̂(S1, S2))) . (7)

Another choice is to integrate the distances over α,

d′ASC(S1, S2)=
∫

dH(ASC(S1, α), ASC(S2, α))dα . (8)

2 If such α is not unique, the smallest one is chosen.
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However, we observed that this definition is less effective than that in (7), since the
“smoothing” over all α may wash out the information provided by the right α.

Here we clarify a potential confusion. For two topologically equivalent shapes S1, S2,
one may guess that dASC(S1, S2) = 0 with a very large (theoretically infinite) co-
aspect, since they are the same up to a homeomorphic transformation. This is fortu-
nately not true, except when S1, S2 are related by an articulation. This observation is
very important, because it shows that ASC is not biased toward arbitrary deformations
while being able to handle articulation.

3.3 Discriminative Deformability

To further understand the relation between aspect weights to shape deformation and dis-
criminability, we define the discriminative deformability for a set of shapes S={Si}|S|i=1

coming from the same class. The discriminative deformability of S, denoted as α(S), is

α(S) =
1

|S|(|S| − 1)

∑
1≤i<j≤|S|

α̂(Si, Sj) . (9)

Roughly speaking, the deformability of a class of object is defined as the average aspect
that minimizes the distances between image pairs from the class. Such a deformability
naturally takes into account the discriminative information. For example, in Fig. 1, we
have shown the discriminative deformabilities of four classes of images. For the pie-
shaped devices (e.g., the second row of Fig. 1), each single shape seems to have complex
structures that can easily lead to articulation. However, by checking objects in the class,
we find no articulation at all and the global shapes of these devices remain fairly rigid.
Consequently, it has a relatively small discriminative deformability.

4 Beyond Pairwise Shape Similarity

Recent work clearly demonstrated that adding context information to direct pairwise
shape similarity can substantially improver shape retrieval [40,15,41]. Under context of
a given shape we understand here its first K nearest neighbors. However, these methods
[40,15,41] mainly focus on improving the transduction algorithms. We demonstrate
that a ’better’ original distance matrix is also very crucial for the shape retrieval with
context information. The word ’better’ does not necessarily mean a better bull’s eye
score. Instead, it means the algorithm can balance the deformation and discriminability,
so that the retrieval results should have really similar view to the query. In other words,
even if the retrieved results are not from the same shape class, they have perceptual
resemblance to the query. Otherwise, totally different objects in the top retrieval results
may ruin the graph structure constructed by the shapes, which makes negative impact
for the graph transduction or diffusion processes to learn the shape manifold structure.
In order to show that ASC is suitable for context information based shape retrieval, we
use the Locally Constrained Diffusion Process (LCDP) introduced in [41] to learn the
sub-manifold structure for shapes.

In LCDP, a fully connected graph is constructed. The vertices are the data points
(shapes) and each edge is labeled with the strength of the connection P (i, j) = k(xi, xj),
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where k is a kernel function that is symmetric and positivity preserving. In this paper,
given two shapes xi and xj , k(xi, xj) is defined by applying a Gaussian to dASC(xi, xj).
We then normalize row wise the matrix (P (xi, xj))i,j so that the sum of each row is
one. We obtain a stochastic matrix (P (xi, xj))i,j , which we denote with the same sym-
bol. Then, the original graph G is replaced by a K nearest neighbor (KNNs) graph GK

that has the edge weights defined as follows: PK(i, j) = k(xi, xj) if xj belongs to the
KNNs of xi and PK(i, j) = 0 otherwise. We also row wise normalize (PK(xi, xj))i,j

to a stochastic matrix. It represents one-step transition probabilities PK(xi, xj) from xi

to xj .
LCDP only considers the paths between the KNNs of xi and the KNNs of xj ,

which can be viewed as a soft measure of their KNNs’ compatibility. The probability
of transition from node xi to xj is high if all the the paths between points in KNNs(xi)
and in KNNs(xj) contain high strength. This restriction make the diffusion focus on
more meaningful paths, as KNNs have higher probability to be the same class. This
helps to remove the negative impact from far away noises. To reach this goal, LCDP
defines an iterative method to update probability of transition PKK

P t+1
KK = PK P t

KK (PK)T . (10)

where t controls the degree of diffusion, P 1
KK = P and (PK)T is the transpose of

PK . After several iterations updating, PKK can describe the manifold structure of the
shapes well and it is used as the final distances for retrieval. LCDP has been proved
to be able to learn the sub-manifold structure of shapes very well and obtain excellent
retrieval results [41]. With the help of LCDP, bull’s eye score on MPEG-7 data set can
reach the highest ever 95.24%, which is discussed in details below.

5 Experiments

5.1 Shape Classification Using MPEG7 Dataset

The proposed framework and shape descriptor is tested for shape classification on a
commonly used MPEG7 CE-Shape-1 part B database [17]. The database contains 1400
silhouette images from 70 classes, where each class has 20 different shapes (some ex-
amples are shown in Fig. 4). The performance of different solutions is measured by the
so called bull’s eye score: every shape in the database is submitted as a query and the
number of shapes from the same class in the top 40 is counted. The bull’s eye score is
then defined as the ratio of the number of correct hits to the best possible number of hits
(which is 20 × 1400).

We tested on the MPEG7 dataset using the distance dASC defined in (7), with α =
0, 10, . . . , 60,∞, where ∞ indicates the IDSC. We used 300 sample point son each
shape and 8×12 distance-orientation bins. Table 1 lists the performance along with
previous reported results. It is clear that the proposed ASC descriptor achieves excellent
classification rate that is comparable to the state-of-the-art. Example retrieval results by
ASC and IDSC are shown in Fig. 2.

Table 2 shows a combined result of LCDP and ASC and compares it to other context-
sensitive methods. The proposed method can reach the best ever result 95.96% on
MPEG7 data set. For using LCDP, we set K = 7 and number of iteration t = 19.
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Fig. 4. Typical shape images from the MPEG7 CE-Shape-1, two images from each class

Table 1. Retrieval rates (bull’s eye) of different methods on the MPEG-7 data set

Alg. CSS Vis. Parts Shape Multiscale IDSC Hier.
[28] [16] Context [5] Rep. [1] [22] Procrustes [26]

Score 75.44% 76.45% 76.51% 84.93% 85.40% 86.35%

Alg. IDSC+ Triangle Shape ASC Layered Contour
EMD-L1 [23] Area [2] Tree [11] (proposed) Graph [19] Flexibility [38]

Score 86.56% 87.23% 87.70% 88.30% 88.75% 89.31%

Table 2. Retrieval rates (bull’s eye) of different context shape retrieval methods on the MPEG-7
data set

Alg. IDSC + IDSC + IDSC + IDSC + proposed approach +
LP [40] LCDP [41] LCDP+gp [41] Mutual graph [15] LCDP

Score 91.00% 92.36% 93.32% 93.40% 95.96%

We also show the precision/recall curves of IDSC, the proposed ASC, and ASC with
LCDP in Fig. 5. We follow [4] for the precision/recall curves. Precision can be seen as
a measure of exactness or fidelity, whereas recall is a measure of completeness, which
is more informative for retrieval task. It is clear that ASC has better performance than
IDSC not only in the bull’s eye score, but also in the precision/recall curve. Moreover,
the LCDP improves the performance a lot, which demonstrates ASC provides a very
good input to context-sensitive shape retrieval.

In order to further demonstrate the reason why the proposed approach with context
information can obtain much better results, we show the bull’s eye score increment for
each class after LCDP in Fig. 6(a). Compared to Fig. 6(b), which is taken from [41],
none of the class bull’s eye score has obvious drop after LCDP. This demonstrates the
advantage of ASC compared to IDSC. The class which has the most obvious drop in
[41] is the class spoon. In Fig. 7, we compare the retrieval results on an example from



420 H. Ling, X. Yang, and L.J. Latecki

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

 

 

IDSC
ASC
ASC+LCDP

Fig. 5. Precision/Recall curves of IDSC, ASC and ASC+LCDP on the MPEG7 CE-Shape-1
database
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Fig. 6. (a) The percent gain in bull’s eye retrieval rates for each class by the proposed approach.
(b) The percent gain in bull’s eye retrieval rates for each class in [41].

class spoon between IDSC+LCDP [41] (the first row) and ASC+LCDP (the second
row). The shapes with red rectangles mean wrong retrieval results. They come from
the class guitar. It is clear that the ASC+LCDP yields better results than IDSC+LCDP.
Only guitars with shape very similar to the query spoon remained.

5.2 Shape Classification Using Tari 1000 Dataset

In order to demonstrate the proposed approach can handle articulated shapes, we also
test it on recently constructed Tari 1000 data set [4] (see Figure 8), which is designed
to have large intra-class shape deformation. It is formed by extending the 180 data set
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Fig. 7. The retrievals of IDSC+LCDP [41] (the first row) and ASC+LCDP (the second row). The
shapes with red rectangle are the wrong results.

Fig. 8. Typical shape images from the Tari 1000 dataset, two images from each class
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Fig. 9. Precision/Recall curves on Tari 1000 dataset. The result of “Tree Edit+Context” is from
[4].

in [3] with shapes collected from various sources including [16,31]. It consists of 1000
shapes with 50 class, each class contains 20 shapes. Many of the shapes are articulated
and have large deformation. On this dataset, Baseski et al. [4] have demonstrated an
effective shape matching algorithm based on using skeletal trees.

For the experiments on Tari 1000, we use exactly the same parameters as on MPEG7
dataset. For evaluation, however, the authors in [4] did not report the bull’s eye score
for the whole data set. Instead, they provided the precision/recall curve. We report both
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of them. ASC can reach 95.44%, and with the help of LCDP, the bull’s eye can go to
nearly perfect 99.79%. For using LCDP, we set K = 10 and number of iteration t = 3.
The precision/recall curves are shown in Fig. 9.

6 Conclusion and Future Work

In this paper we introduce a general framework, aspect space, to simultaneously ad-
dress the deformation and discriminatingly problem. The framework naturally models
the degree of deformation that is allowed in a representation by adjusting a embed-
ding parameter named aspect weight. In this framework, we designed a new shape de-
scriptor named aspect shape context, which improves the original shape context and
inner-distance shape context in a standard shape retrieval benchmark testing, using the
MPEG7 CE-Shape-1 database. It also provides a very good input for context-sensitive
shape retrieval.

We also show that the framework is closely related to many existing image and shape
representations. These attractive properties indicate its potential for many interesting
future works. We are especially interested in the study of designing representations that
address simultaneously the illumination and shape variations. Another topic we would
like to pursue is the shape descriptors without knowing silhouettes. One practical issue
with the proposed shape descriptor is the computational cost. In addition to seeking
faster computational solution, we will also investigate supervised technology to learn
properties for each object class.
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Abstract. 3D human pose estimation in multi-view settings benefits

from embeddings of human actions in low-dimensional manifolds, but

the complexity of the embeddings increases with the number of actions.

Creating separate, action-specific manifolds seems to be a more prac-

tical solution. Using multiple manifolds for pose estimation, however,

requires a joint optimization over the set of manifolds and the human

pose embedded in the manifolds. In order to solve this problem, we pro-

pose a particle-based optimization algorithm that can efficiently estimate

human pose even in challenging in-house scenarios. In addition, the algo-

rithm can directly integrate the results of a 2D action recognition system

as prior distribution for optimization. In our experiments, we demon-

strate that the optimization handles an 84D search space and provides

already competitive results on HumanEva with as few as 25 particles.

1 Introduction

3D human pose estimation in multi-view scenarios is an active field of research [14].
While recent approaches [3,6,11,12] report impressive results on benchmarks like
HumanEva [23], real-world applications such as in-housemonitoring still posemany
challenges. For example, background clutter, occlusions, and interactions with ob-
jects are all difficulties not encountered in studio recordings.

To maintain robustness in more unconstrained scenarios, the use of priors on
human actions and dynamics have become very popular. For instance, the poses
of a certain group of actions can be embedded into a low-dimensional mani-
fold [12,15,29]. While ‘full-body’ motions like walking, jogging, and golf swings
can be nicely embedded, learning embeddings for more ambiguous actions like
‘carrying an object’, particularly from sparse and noisy data, is a much more
difficult task. Furthermore, the complexity increases with the number of actions
and many dimensionality reduction techniques struggle to establish useful em-
beddings for a high number of actions. Instead of embedding all actions into a
single manifold, creating separate, action-specific manifolds is an easier task to
solve. Moreover, this allows for the incremental addition of new actions, which
is an important property to have in practice. Using multiple manifolds, however,
leads to an unsolved problem: how can we estimate the pose from a set of man-
ifolds? An approach would be to learn the transitions between each manifold,

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 425–438, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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using techniques like motion graphs [10] or switching models [4], but this does
not scale with the number of actions.

Here, we propose a new algorithm for optimizing over a set of manifolds that
can efficiently estimate human pose even in challenging scenarios like the TUM
kitchen dataset [27]. We have adapted a particle-based annealing optimization
scheme [7] to jointly optimize over the action-specific manifolds and the human
poses embedded in the manifolds. The approach scales in the worst case linearly
with the number of manifolds, under the assumption that each manifold can be
optimized with the same amount of time, i.e. they have the same dimensionality,
which is more efficient than modeling transitions between the manifolds. Since a
linear scaling is not optimal for a high number of action classes, we also propose
a prior on the distribution of the actions obtained by a 2D action recognition
system. In our experiments, we demonstrate that the action prior improves the
tracking performance and that the optimization provides already competitive re-
sults with as few as 25 particles. The action recognition and tracking performance
are evaluated on two state-of-the-art benchmarks, the HumanEva dataset [23]
and the TUM Kitchen dataset [27].

2 Related Work

Using priors learned from motion capture databases is now very popular for ro-
bust tracking in difficult scenarios [22,30]. By learning a mapping between the
image space and the pose space, the pose can be recovered directly from silhou-
ettes and image features [1,3,8,11,24]. In [15,28,29], Gaussian process dynamical
models were used for embedding motion in a low-dimensional latent space, while
in [12] locally linear coordination is proposed for dimensionality reduction. Re-
trieved motions from databases have also been used [2] to refine tracked poses.

Action recognition is a rich sub-field of computer vision research in itself;
we refer the reader to the recent review [18] and limit our discussion to multi-
camera methods. Most work in multi-view action recognition has been focused
on achieving view-invariant recognition. One line of approach has been to model
the changes with respect to view, either of the location of feature points, using
linear basis functions [21] or of the action’s appearance, using low-dimensional
manifolds [25]. A second line of approach has been to construct templates in
either 3D [13,31,32] (2D space and time) or 4D [17] (3D space and time) and
then projecting them back to a lower dimension from an arbitrary view, for
matching either silhouettes or visual hulls.

Little work, however, has been done in coupling action recognition with pose
estimation, as much of the previous work in pose estimation has been focused on
sequences of single action classes rather than multi-actioned longer sequences.
An exception is the switching Gaussian process dynamic model [4], in which the
action is modelled as a hidden switching state. We follow a different approach
since we do not model pose estimation as a filtering problem over time but as
an optimization problem over the manifolds for each frame. Hence, we do not
need to observe transitions between actions for training.
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(a) Silhouette (b) Action Recognition (c) Pose Distribution (d) Final Pose

Open Cupboard
p = 0.478

Fig. 1. System Overview. (a) Silhouettes are extracted by background subtraction.

(b) Tracks are built over the entire sequence and classified by a 2D action recognition

system. (c) Confidences of each action are used to distribute the particles over the

action-specific manifolds. (d) Final pose is obtained by optimizing over the manifolds.

3 Framework

The multi-view system can be decomposed into action recognition on the 2D
images and 3D pose estimation, with the action-specific manifolds acting as
a link between the two. First, silhouettes are used to establish a track of the
person over the sequence; the action recognition system then assigns labels for
the track over time (Section 4). The confidence measure of the action labels are
then used to distribute the particles in the particle-based optimization scheme
over the action-specific manifolds (Section 5.1). Finally, the pose is estimated by
an optimization over the entire set of manifolds (Section 5.3).

4 2D Action Recognition

For 2D action recognition, a separate classifier is trained for each of the cameras
in the multi-view setup; results from the individual classifiers are then combined
with standard classifier ensemble methods. Motivation for fusing the single views
is based on the assumption that actions which are ambiguous in one view, e.g.
due to self-occlusion, is more distinguishable from another view.

2D action recognition is performed according to the Hough-transform voting
method presented in [33]. It breaks down the action recognition problem into
an initial localization stage, which generates tracks of the individual performing
the action, and a subsequent classification stage, which assigns action labels to
the tracks. In scenarios where the cameras are fixed, it is not necessary to build
the tracks with a tracking-by-detection technique as presented in [33]. Instead,
background subtraction is used to generate silhouettes of the person performing
the action (Fig. 1). Bounding boxes are then extrapolated around the silhouette
and the trajectory of the bounding boxes is smoothed to build the track.

The output of the classification stage is a confidence score of each action class
over time, normalized such that the confidences over all classes at any time point
sum up to 1. A classifier combination strategy such as the max-rule is then used
to combine the outputs from the multiple cameras [9].
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5 Optimizing over a Set of Manifolds

Having a skeleton and a surface model of the human, the human pose is repre-
sented by a vector in a bounded, high-dimensional state space E ⊂ R

D+6. While
Θ = θ1, · · · , θD ∈ EΘ denotes the joint angles, the global orientation and posi-
tion are encoded by the 6D vector (r, t). An element of the search space is given
by x = (r, t, Θ). We formulate pose estimation as an optimization problem over
E for a given positive energy function V , i.e. minx∈E V (x). The energy function
measures the consistency between the images of all camera views and the projec-
tions of the model’s surface for a given pose x. As consistency measure, we use
edges and silhouettes [20]. Although these features are not optimal for human
pose estimation, since edges are sensitive to background clutter and silhouettes
are sensitive to occlusions and background changes, the associated energy func-
tion is fast to compute and fixed for all our experiments. As a baseline, we imple-
mented the particle-based annealing optimization scheme ISA over E, which has
been used in the multi-layer framework [6]. The optimization scheme, based on
the theory of Feynman-Kac models [16], iterates over a selection and mutation
step, and is also the underlying principle of the annealed particle filter [5].

We modify the baseline algorithm to optimize over a set of manifolds instead
of a single state space. To this end, we consider a set of action classes A =
{a1, · · · , a|A|}, where we learn for each class an action-specific low-dimensional
manifold Ma ⊂ R

da with da � D. We assume that the following mappings are
available:

fa : EΘ �→ Ma, ga : Ma �→ EΘ, ha : Ma �→ Ma, (1)

where fa denotes the mapping from the state space to the low-dimensional
manifolds, ga the projection back to the state space, and ha the prediction
within an action-specific manifold. Since the manifolds encode only the space
of joint angles, a low-dimensional representation of the full pose is denoted by
ya = (r, t, Θa) with Θa = fa(Θ). A particle si = (yi

a, ai) stores the correspond-
ing manifold label ai in addition to the vector yi

a = (ri, ti, Θi
a) and the set of

particles is denoted by S. Our algorithm operates both in the state space as well
as in the manifolds. An overview of the algorithm is given in Fig. 2.

5.1 Action-Specific Manifolds

Each of the action-specific low-dimensional manifolds, Ma, are learned from the
joint angles Θ in motion capture data using Isomap [26], a non-linear dimen-
sionality reduction technique. As Isomap does not provide mappings between the
high- and low-dimensional pose spaces, we learn two separate Gaussian Process
(GP) regressions [19], fa and ga (2), to map from the high-dimensional space to
the low-dimensional space and back, respectively, where m (·) and k (·) denote
the mean and covariance functions.

y = fa (x) ∼ GP (m (x) , k (x, x′)) ; x = ga (y) ∼ GP (m (y) , k (y, y′)) . (2)
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In addition, a third GP regression, ha, is learned to model temporal transitions
between successive poses within each action-specific manifold:

yt = ha (yt−1) ∼ GP (m (yt−1)) , k (yt−1, y′t−1)) . (3)

5.2 Theoretical Discussion

As mentioned in Section 5, one seeks the solution of the minimization problem
minx∈E V (x). When optimizing over a set of manifolds the problem becomes

min
a∈A

(
min
y∈Ma

V (ga(y))
)

. (4)

Minimizing the problem this way, i.e. searching the global minimum in all mani-
folds Ma and then taking the best solution mapped back to the state space, does
not scale well with the number of manifolds. Hence, we propose to optimize over
all manifolds jointly. Before outlining the optimization procedure in Section 5.3,
we briefly discuss the existence and the uniqueness of the solution. Since ga and
fa are not direct inverses of each other, i.e. (ga ◦ fa) does not equal the identity
function, the optimization over the manifolds (4) does not provide the same so-
lution as the original optimization problem over the state space. Indeed, this is
the case only if the following is satisfied:

∃a ∈ A, ∃y ∈ Ma : min
x∈E

V (x) = V (ga(y)). (5)

The uniqueness of the solution for the manifold and thus of the action a is
interesting from the point of action recognition. It is given if and only if

∀a1, a2 ∈ A with a1 	= a2 : min
y∈Ma1

V (ga1(y)) 	= min
y′∈Ma2

V (ga2(y
′)). (6)

In most cases, optimization of the pose propagates the particles into the “right”
manifold, i.e. the correct action, as plotted in Fig. 3. However, there is usually
an overlap of poses between the manifolds such that Eq. (6) is not satisfied. Note
that in comparison to the action recognition, which takes a sequence of frames
into account (Section 4), the pose is optimized only for the current frame.

To cope with the problem defined in (5), we introduce two optimization steps

(ŷ, â) = argmin
a∈A,y∈Ma

V (ga(y)) and (7)

x̂ = argmin
x∈E

V (x), with x0 = gâ(ŷ) (8)

as the initialization. In other words, we first search for the nearest approxima-
tion by optimizing over the manifolds and then use this result to initialize the
optimization over the state space. With this procedure, we can design an opti-
mization that converges to the global minimum in the state space, see Fig. 2.
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Fig. 2. For each action class a, we learn an embedding in a low-dimensional manifold

Ma. The manifolds are indicated by the small circles and the high-dimensional state

space E is indicated by the large circle. Having estimated the pose xt−1, a set of parti-

cles is selected from the previous particle sets (Select p1). To this end, the particles in E

are mapped by fa to Ma where each particle is associated to one of the manifolds. This

process is steered by a prior distribution on the actions obtained by a 2D action recog-

nition system. Since the manifolds are action-specific, the pose for the next frame can

be predicted by the function ha. The first optimization step, Optimization A, optimizes

jointly over the manifolds and the human poses embedded in the manifolds. Since our

manifolds do not cover transitions between actions, we run a second optimization step,

Optimization B, over the particles mapped back to the state space E by ga. Before the

optimization, the particle set is augmented by making use of the embedding error of

the previous pose xt−1 (Select p2).

5.3 Algorithm

Optimization A: Since ISA [7] is not directly applicable for optimizing over a set
of manifolds, we have to modify the algorithm. For the weighting, the particles
are mapped back to the full space in order to evaluate the energy function V :

wi = exp
(−βk · V (

ri, ti, gai(Θi
a)
))

, (9)

where k is the iteration parameter of the optimization. The weights of all particles
are normalized such that

∑
si wi = 1. Note that the normalization does not take

the label of the manifold ai into account. As result, particles in a certain manifold
might have higher weights than particles in another manifold since their poses
fit the image data better. Since particles with higher weights are more likely to
be selected, the distribution of the particles among the manifolds Ma changes
after the selection step. This is desirable since the particles should migrate to
the most likely manifold to get a better estimate within this manifold. While the
selection is performed as in [7]1, the mutation step needs to be adapted since
the particles are spread in different spaces. To this end, we use |A| mutation
kernels Ka, one for each manifold, and an additional kernel K0 for the global
position and orientation. In our implementation, we use Gaussian kernels with
covariance matrices Σa proportional to the sample covariance within a manifold,

1 Using the selection kernel εk(η) = 1
inf{y : η({x∈E : exp(−βk V (x))>y})=0} .
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Fig. 3. HumanEva. Action recognition prior from camera C1 (a). The curves show the

action confidence per frame. Note the smooth transitions between the actions around

frame 800 for subject S4. After jogging, the subject walks a few steps before balancing.

At the end of the sequence, the person walks away, as recognized by the action recogni-

tion system. The distribution of the particles among the action-specific manifolds after

Optimization A is shown by the area plot. The particles move to the correct manifold

for nearly all frames. Pose estimate for jogging (b) and balancing (c).

i.e. Sa = {si ∈ S : ai = a}:

Σa =
αΣ

|Sa| − 1

⎛⎝ρ I +
∑

si∈Sa

(Θi
a − μa) (Θi

a − μa)T

⎞⎠ , μa =
1

|Sa|
∑

si∈Sa

Θi
a.

(10)
The scaling factor αΣ = 0.4 and the positive constant ρ = 0.0001, which ensures
that the covariance does not become singular, are fixed for all kernels. The kernel
K0 for rotation and translation is computed over the full set of particles S:

Σ0 =
αΣ

|S| − 1

(
ρ I +

∑
si∈S

(
(ri, ti) − μ

) (
(ri, ti) − μ

)T

)
, μ =

1
|S|

∑
si∈S

(ri, ti).

(11)
Since we compute the extra kernel K0 instead of taking (r, t) as additional dimen-
sions for the kernels Ka, the correlation between (r, t) and Θa is not taken into
account. However, the number of particles per manifold can be very small, such
that K0 computed over all particles provides a better estimate of the correlation
between the global pose parameters (r, t).

Select p2: Before continuing with the optimization in the full state, the set of
particles S needs to be mapped from the manifolds Ma to E, where the particles
build the initial distribution for the next optimization step. However, it can
happen that the true pose is not well represented by any of the manifolds. This
is typical of transitions from one action to another, which are not modelled in
our setting. As we will show in our experiments, it is useful to use the previous
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estimate x̂t−1 to augment the initial particle set. To measure the discrepancy
between the last estimated pose and the poses modeled by the manifolds, we
compute Σâ based on the reconstruction error for x̂t−1:

â = argmin
a∈A

∥∥∥Θ̂t−1 − ga(fa(Θ̂t−1))
∥∥∥ , σâ,i =

|Θ̂t−1 − gâ(fâ(Θ̂t−1))|i
3

. (12)

We create a new set of particles by sampling from N (Θ̂t−1, Σâ), where Σâ is
the diagonal matrix with σâ,i as entries. According to the 3σ rule, this means
that nearly all samples are within the distance of the reconstruction error. The
selection process between the two particle sets is controlled by the parameter
p2 ∈ [0, 1]. For all si ∈ S, we draw u from the uniform distribution U [0, 1]. If
u < p2, si = (ri, ti, Θi) is added to the new set; otherwise the particle (ri, ti, Θ̂)
is added to the set, where Θ̂ is sampled from N (Θ̂t−1, Σâ).

Optimization B: The second optimization step eventually runs ISA [7] on the
full state space. However, we do not start from the beginning but continue with
the optimization, i.e. when ItA is the number of iterations used for Opt. A, we
continue with βItA+1 instead of β1.

Select p1: After Opt. A, all the particles may aggregate into one single manifold,
so we distribute the particles again amongst the manifolds Ma when moving to
the next frame It; otherwise, we get stuck in a single action class. Similar to
the previous selection, we make use of two particle sets; the particles SM in the
manifolds Ma after Opt. A and the particles in the state space SE after Opt.
B. The selection is controlled by the parameter p1 ∈ [0, 1]. For all si ∈ SM, we
draw u from the uniform distribution U [0, 1]. If u < p1, si is added to the new
set; otherwise the particle (ri, ti, Θi) ∈ SE is mapped to one of the manifolds
and added to the set. The manifold Mai is selected according to the proba-
bility p(A = a|T = t, I), yielding the mapped particle (ri, ti, fai(Θi), ai). In our
experiments, we use two choices for p(A|T = t, I):

p(A = a |T = t, I) = p(A = a) = 1
|A| (Uniform Prior)

p(A = a |T = t, I) = p(A = a | It−l · · · It+l) (Action Prior)

The uniform prior is independent of the current frame and results in a joint
optimization over the manifolds Ma∈A and poses y ∈ Ma. However, the prior
does not scale well with the number of manifolds since the total number of
particles is fixed and there must be a sufficient number of particles available
for each manifold. The action prior distributes the particles to manifolds that
are more likely a-priori, meaning that a manifold Ma cannot be explored when
p(A = a|T = t, I) = 0 and {si ∈ SM : ai = a} = ∅. This also motivates the
use of the particle set SM to increase the robustness to temporary errors in the
action prior as demonstrated in Fig. 4(a). Note that a zero-probability error for
the true manifold over many frames cannot be compensated. In our experiments,
p(A|It−l · · · It+l) is obtained by an action recognition system which takes a set
of frames in the neighborhood of t into account (Section 4).
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(a) p1 (b) p2 (c) ItA

Fig. 4. Evaluation of parameters. (a) Select p1: The best result is obtained by p1 = 0.5,
which shows the benefit of taking both particle sets SM and SE into account. For p1 = 1,

the particles SE from Opt. B are discarded. (b) Select p2: The best results are achieved

with p2 ∈ [0.25, 0.5]. It shows the benefit of taking the reconstruction error for x̂t−1 into

account. (c) Number of iterations for Opt. A (ItA) and Opt. B (15-ItA). The summed

number of iterations was fixed to 15. Without a second optimization step (ItA=15),

the error is significantly higher than for the optimal setting (ItA=5).

6 Experiments

HumanEva. The HumanEva-II [23] dataset is the standard benchmark on 3D
human pose estimation. It comprises two sequences S2 and S4 with three actions,
see Fig. 3. The dataset provides a model for subject S4, which we also use for
subject S2 despite differences in body shape. The human pose is represented by
28 parameters. We perform two trials: testing on S2 and training on S4 and vice
versa. For learning the action-specific manifolds, we use the tracking results of
the multi-layer tracker [6] where we split the data into the three action classes
and discard the transitions between the actions. Note that training data from
marker-less tracking approaches is in general noisier and less accurate than data
from marker-based systems.

In Fig. 4, we plot the impact of the parameters on the tracking accuracy. For
evaluation, we use 200 particles, 5 iterations for Opt. A, and 10 iterations for
Opt. B unless otherwise specified. The optimization is run with a polynomial an-
nealing scheme with b = 0.7 [7]. The results clearly support our design decisions
for the algorithm (Section 5.3).

In Fig. 5, we plot the 3D estimation error of the joints with respect to the
number of particles. For comparison, we show the mean and standard deviation
for optimizing over the state space E (baseline) and the proposed algorithm
with a uniform prior and an action prior, with the action prior computed as
described in Section 4. For the baseline, we run Opt. B with 15 iterations and
without taking the manifolds Ma into account. Note that according to [6,23],
pose estimation requires usually at least 200-250 particles to achieve good results
on this dataset. We perform the optimization of the 28 parameters with 200
down to 25 particles. Unsurprisingly, that the error for the baseline increases
significantly when the number of particles drops below 100. When optimizing
over the manifolds and the poses embedded in the manifolds, the error increases
gently with a decreasing number of particles. Since the dataset contains only
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(a) S2 (b) S4

Fig. 5. 3D Estimation error with respect to number of particles. The proposed ap-

proach performs significantly better than the direct optimization in the state space E

(baseline), particularly for a small number of particles. The discrepancy between uni-

form prior and the prior obtained from 2D action recognition is getting larger for very

few particles. In this case, the number of particles per manifold becomes very small for

a uniform distribution. Note that competitive results are still achieved with only 25

particles. Timings are given in Table 1.

Table 1. Computation time per frame and 3D estimation error of the optimization

with respect to number of particles. The 2D action recognition takes additional 0.4
seconds for each frame consisting of 4 images, which is roughly the computation time

for 20 particles. ap: action prior; up: uniform prior; base: baseline.

Time (sec.) S2 Error (mm) S4 Error (mm)
n ap,up base ap up base ap up base
200 3.89 3.80 44.9 ± 9.5 49.4 ± 19.0 62.9 ± 24.4 45.2 ± 13.4 45.2 ± 11.8 73.1 ± 70.7
100 1.96 1.92 48.2 ± 12.7 55.4 ± 37.8 71.7 ± 25.7 51.9 ± 20.9 51.0 ± 21.3 54.7 ± 25.0
50 0.98 0.96 50.2 ± 13.4 78.7 ± 72.4 98.0 ± 61.1 56.4 ± 19.2 57.6 ± 19.2 98.3 ± 67.4
25 0.5 0.49 69.3 ± 51.1 72.3 ± 51.2 100.5 ± 40.4 61.3 ± 21.2 71.8 ± 29.3 114.3 ± 85.4

3 action classes, the uniform prior performs very well. Differences between the
two priors become more prominent for very few particles per action class. This
indicates that the action prior scales better with a large number of classes since
this basically limits the number of particles per action class. In general, the
uniform prior describes the worst case scenario where the action recognition is
not better than a random guess. Timings and mean errors are given in Table 1.

Finally, we show the tracking performance with respect to number of camera
views in Fig. 6(a); using 200 particles. Again, the proposed approach significantly
outperforms the baseline. At first glance, the uniform prior and the action prior
seem to perform similarly, due to the scaling of the plot from the large error of
the baseline, though the action prior actually reduces the error on average by
4%. The benefit of the action prior is more evident for very few particles per
action class as shown in Fig. 5.

TUM Kitchen dataset. A more challenging dataset than HumanEva is the newly
released TUM Kitchen dataset [27]. The dataset contains 20 episodes of record-
ings from 4 views of 4 subjects setting a table. In each episode, a subject moves
back and forth between the kitchen and a dining table, each time fetching
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Fig. 6. (a) 3D Estimation error with respect to number of views for HumanEva. For

the setting with two views, cameras C1 and C2 are taken. The reduced number of views

results in more ambiguities. The proposed approach handles these ambiguities better

than the direct optimization in the state space E (baseline). (b) Confusion matrix for

fused results according to the max-rule for TUM kitchen.

Table 2. Individual camera and fused action recognition performance for subjects 1-4;

fused performance is higher than any individual camera view for each subject

Camera 1 Camera 2 Camera 3 Camera 4 Fused
Subject 1 0.542 0.493 0.569 0.564 0.574
Subject 2 0.532 0.501 0.456 0.560 0.585
Subject 3 0.690 0.718 0.652 0.666 0.740
Subject 4 0.619 0.529 0.610 0.610 0.706
Average 0.596 0.560 0.572 0.600 0.651

objects such as cutlery, plates and cups and then transporting them to the
table. The dataset is particularly challenging for both action recognition as well
as pose estimation, as the actions are more subtle than those of standard ac-
tion recognition datasets and parts of the body are often occluded by objects
such as drawers, cupboard doors and tables (see Fig. 1). Training was done on
episodes 1-0 to 1-5, all of which are recorded from subject 1 and testing was
done on episodes 0-2, 0-4, 0-6, 0-8, 0-10, 0-11, and 1-6, which are recorded from
all 4 subjects. For the action recognition, we use the 9 labels that are annotated
for the ‘left hand’ [27]. Since the labels are determined by the activity of the
arms and we would like the manifolds to be representative of the entire body,
we further split the idle/carry class according to whether the subject is walking
or standing; see Fig. 6(b).

Results of the action recognition for cameras 0 and 2, as well as the fused
results are shown in Table 2. For classifier fusion, we use the max-rule that gave
the best performance compared to other standard ensemble methods [9], though
results were similar for all the methods. Fused results and the confusion matrix
are shown in Fig. 7 and Fig. 6(b).

Based on the fused results of the action recognition, we also evaluate the
tracking performance. For the dataset, we use the provided models with 84
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Fig. 8. 3D Error for TUM kitchen dataset (a). The proposed approach performs sig-

nificantly better than the direct optimization in the state space E (baseline). The error

for the sequences 0-2 and 0-8 are the lowest since the action-specific manifolds were

trained on the same subject. Mean and standard deviation are provided in Table 3.

Pose estimates for opening drawer (b) and lowering object (c).

Table 3. 3D Error for TUM kitchen dataset in mm. ap: action prior; up: uniform
prior; base: baseline.

(mm) 0-2 0-4 0-6 0-8 0-10 0-11 1-6
ap 48.4 ± 17.1 58.2 ± 20.5 64.7 ± 24.9 49.0 ± 22.5 63.7 ± 25.2 70.5 ± 31.5 79.8 ± 35.9
up 51.6 ± 23.6 61.4 ± 23.9 82.9 ± 60.5 50.5 ± 21.5 64.0 ± 22.0 131.1 ± 78.8 82.5 ± 35.8
base 116.5 ± 45.1 181.9 ± 70.6 174.8 ± 61.2 183.0 ± 61.4 229.4 ± 85.0 190.6 ± 65.0 155.4 ± 70.4

parameters. The large errors for the baseline in Fig. 8 show that 200 particles are
not enough to optimize over a 84 dimensional search space. Note that we do not
make use of any joint limits or geometric information about the kitchen and use
only the images as input. The proposed approach estimates the sequences with a
comparable accuracy as HumanEva, although the dimensions of the state space
increased from 28 to 84, the number of action classes from 3 to 8 (the ‘open’
and ‘close’ actions are embedded in one manifold), and the silhouette quality is
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much worse due to truncations and occlusions. Compared to the uniform prior,
the action prior reduces the error on average by 12%.

7 Conclusion

We have presented an algorithm2 that efficiently solves the problem of optimizing
over a set of manifolds. In the context of 3D pose estimation, we demonstrated
that the algorithm handles high-dimensional spaces with very few particles. Since
transitions between actions are not explicitly modeled, as in previous work, it
is an important step towards pose estimation with many action classes. Fur-
thermore, we have shown that a prior distribution based on action recognition
improves the performance. This is interesting since it is expected that the algo-
rithm scales very well with the number of classes when the action recognition
system does as well. In this way, 3D human pose estimation can be linked to
the progress in the field of action recognition. As there are very few datasets for
pose estimation and action recognition available and none contains many action
classes, new datasets are required to investigate scalability more in detail.
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Abstract. Based on the Lagrangian framework for fluid dynamics, a

streakline representation of flow is presented to solve computer vision prob-

lems involving crowd and traffic flow. Streaklines are traced in a fluid flow

by injecting color material, such as smoke or dye, which is transported

with the flow and used for visualization. In the context of computer vision,

streaklines may be used in a similar way to transport information about a

scene, and they are obtained by repeatedly initializing a fixed grid of par-

ticles at each frame, then moving both current and past particles using op-

tical flow. Streaklines are the locus of points that connect particles which

originated from the same initial position. In this paper, a streakline tech-

nique is developed to compute several important aspects of a scene, such as

flow and potential functions using the Helmholtz decomposition theorem.

This leads to a representation of the flow that more accurately recognizes

spatial and temporal changes in the scene, compared with other commonly

used flow representations. Applications of the technique to segmentation

and behavior analysis provide comparison to previously employed tech-

niques, showing that the streakline method outperforms the state-of-the-

art in segmentation, and opening a new domain of application for crowd

analysis based on potentials.

1 Introduction and Related Work

Behavior analysis in crowded scenes remains an open problem in computer vision
due to the inherent complexity and vast diversity found in such scenes. One
hurdle, that must be overcome, is finding good ways to identify flow patterns
without tracking individual objects, which is both impractical and unnecessary in
the context of dense crowds. Another hurdle is finding good ways to understand
changes in behavior when the scene context and crowd dynamics can vary over
such a wide range.

Several methods based on optical flow have been presented in recent years
to handle these hurdles. In computer vision, optical flow is widely used to com-
pute pixel wise instantaneous motion between consecutive frames, and numerous
methods are reported to efficiently compute accurate optical flow. However, op-
tical flow does not capture long-range temporal dependencies, since it is based
on just two frames, and by itself does not represent spatial and temporal features
of a flow that are useful for general applications.
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Recently, based on the Lagrangian framework of fluid dynamics, a notion of
particle flow was introduced in computer vision. Particle flow is computed by
moving a grid of particles with the optical flow through numerical integration,
providing trajectories that relate a particles initial position to its position at a
later time. Impressive results employing particle flow have been demonstrated
on crowd segmentation [1] and abnormal crowd behavior detection [2]. However,
in particle flow the spatial changes may be ignored, and it has significant time
delays. The main goal of this paper is to introduce a notion of streaklines to
computer vision with the intent to remedy these problems, and though our ap-
plications are crowd and traffic dynamics, the method of streaklines is applicable
to many problems that are approached through optical flow.

Streaklines are well known in flow visualization [3,4] and fluid mechanics [5]
as a tool for measurement and analysis of the flow. With regard to flow visu-
alization, streaklines are defined as the traces of a colored material in the flow.
To understand streaklines, consider a fluid flow with an ink dye injected at a
particular point. If the ink is continuously injected, then a line will be traced
out by the ink in the direction of the flow, this is a streakline. If the direction of
flow changes, then the streaklines change accordingly.

Streaklines are new to computer vision research. In this context, streaklines
may be obtained by repeatedly initializing a grid of particles and moving all
particles according to the optical flow, in the spirit of a Lagrangian fluid flow. In
other words, place a particle at point p, and move the particle one time step with
the flow. In the next time step, the point p is initialized with a new particle,
then both particles are moved with the flow. Repeating this process on some
time interval T produces particle positions from which we obtain streaklines.

In video scene analysis, which is the scope of this paper, some approaches
consider the entire scene as a collection of objects, and methods for scene under-
standing often involve object trajectory clustering and human action recognition.
Examples include the tracking methods of [6] for individuals and [7] for groups
of pedestrians, and the more recent work of Pellegrini et al. [8] in tracking
based on social force model. Yet, the domain of application for these methods is
limited to low density scenes with medium to high pixel resolutions on objects.
Our work is concerned with high density scenes and low object resolution.

In other approaches, motion and tracking are represented by a set of modal-
ities such as salient feature points [9,10], spatio-temporal volumes [11]. This
promotes occlusion handling while preserving local accuracy. In the related ap-
proaches, it is common to represent both crowds and individuals as a set of
regions, group of feature points, or sparse flows. In [9], Brostow and Cipolla use
low level feature tracking to detect individuals in a dense crowd. Seemann et
al. [12] presented a generative model to detect pedestrians as a combination of
occupancy distributions.

Other methods of scene understanding involve particle tracking, motion pat-
tern recognition, and segmentation based on dense optical flow [13,14]. These
methods are popular due to the intrinsic ability of global approaches to handle
occlusion. The framework provides insight to social/group behavior of humans
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Table 1. Advantages of Streaklines over Streamlines and Pathlines

Streamlines Pathlines Streaklines

Spatial gaps in flow. Ignores spatial changes. Fills gaps.

Rough transitions in time. Time delays. Captures instant changes.

in crowds, but individual tracking or action recognition is only possible through
a top-down framework. Recent works of Ali and Shah [1] on crowd analysis,
and [15,16,2] on abnormal behavior detection fall into this category. In addition,
the particle video method [17] of Sand and Teller has a potential application
in crowded scenes as it was originally introduced to handle occlusions while
providing dense motion information.

In this paper, we maintain three major contributions. First, we assert a streak-
line framework as a new tool for analysis of crowd videos. We demonstrate
streaklines can be more informative than commonly used flow representations,
known as optical flow and particle flow. Second, we present an innovative al-
gorithm to compute a fluid like flow of crowds to perform behavior analysis.
Third, we present potential functions as valuable tools, for behavior analysis,
and compliment the streakline framework.

The capabilities of the streakline framework is tested in two applications: crowd
segmentation and abnormal behavior detection. The segmentation results demon-
strate an improvement for unsteady flows in comparison to state of the art. The
behavior detection results show an improvement over base-line optical flow.

2 Streaklines vs. Pathlines and Streamlines

In fluid mechanics there are different vector field representations of the flow [5]:

Streamlines are tangent to the velocity vectors at every point in the flow. These
correspond to optical flow, and a visual example is given in Figure 1(a).

Pathlines are trajectories that individual particles in a fluid flow will follow.
These directly correspond to integration of optical flow in time and are illus-
trated by a set of curves with the spectrum of colors from Blue to Orange in
Figure 1(b). Particle flow is the set of pathlines which are computed from time
averaged optical flow [1].

Streaklines represent the locations of all particles at a given time that passed
through a particular point. Figure 1(c) shows streaklines as red curves next to
pathlines.

For flows that are steady and unchanging, these three representations are the
same, but for flows that are unsteady, so that directions of flow can change with
time, they are different. Since we are using a Lagrangian model for fluid flow
to exploit the dynamics in crowd videos, where frequent changes in the flow
are expected, it is important to know which vector field representation is most
appropriate for the given problem. In this work, we provide a juxtaposition of
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Table 2. A table of values for x-coordinate particle positions, which are computed from

the optical flow. Columns correspond to pathlines and rows correspond to streaklines.

L p(0 , T ) L p(1 , T ) L p(2 , T ) · · · L p( t, T ) · · · L p(T, T )
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Fig. 1. An illustration of pathlines and streaklines generated using a locally uniform

flow field which changes over time. (Labels on points and curves directly correspond to

Table 2.) (a) The changes in the flow vectors over time period t = 0 to t = 18. (b) The

pathlines are illustrated as a spectrum of lines. Blue corresponds to the initiating frame

of t = 0 and orange corresponds to initiating frame of t = 18. The red line illustrates

the streakline at frame t = 18. (c) Streaklines at different frames as red curves to

illustrate the evolution of the streaklines through time. The streakline at time t = 18

is illustrated along with the initiating motion vector as explained by (2).

streaklines with streamlines and pathlines, which correspond to commonly used
methods [16,18] based on optical flow and particle flow, respectively. Our theory
and results show that streamlines leave spatial gaps in the flow, as well as choppy
transitions between frames. This is because it is produced from instantaneous
velocity vectors. Hence, this approach does not produce fluid-like flow for crowd
videos [19]. Pathlines overcome this problem by filling the spatial gaps, but do
not allow for detection of local spatial changes, and in addition create an artificial
time lag. Our streakline approach provides solutions to each of these problems,
and Table 1 gives an overview of the advantages.

To explain how streaklines are computed, let (xp
i (t), y

p
i (t)) be a particle posi-

tion at time t, initialized at point p and frame i for i, t = 0, 1, 2, . . . , T . Repeated
initialization at p implies (xp

i (i), y
p
i (i)) = (xp

0(0), yp
0(0)). Particle advection is

achieved by

xp
i (t + 1) = xp

i (t) + u(xp
i (t), y

p
i (t), t)

yp
i (t + 1) = yp

i (t) + v(xp
i (t), y

p
i (t), t) ,

(1)
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Fig. 2. (a) An illustration of streaklines for a video sequence. (b) The crowd segmen-

tation algorithm. (c) Abnormal behavior detection algorithm.

where u and v represent the velocity field obtained from optical flow. This yields
a family of curves, all starting at point p and tracing the path of the flow from
that point in frame i. Naturally, for steady flow all these curves lie along the same
path, but for unsteady flows the curves vary in direction and shape, characteristic
of pedestrian flow.

Particle advection for all i, t = 0, 1, 2, . . . , T using (1), yields a table of values
for xp

i (t) (shown in Table 2) and similarly for yp
i (t). The columns of the table

show the pathlines Lp(t, T ), which are the particle trajectories from time t to T .
The rows provide the streaklines Sp(0, t), connecting all particles from t frames
that originated at point p. Corresponding to this table, Figure 1 illustrates the set
of streaklines and pathlines for an example unsteady flow at time t = T . At the
start of observation, particles are initiated at every time instant at point p. The
spectrum of lines from blue to orange represents the pathlines of particles which
have been initiated at time t = 0. The solid red color lines depict streaklines.
Since the flow is not steady, the streaklines and pathlines are different.

The unsteady flow at a point can be represented by either a set of pathlines
or a streakline. However, the streakline provides a speed and memory gain, as
a streakline with L particles corresponds to L pathlines with L × (L − 1)/2
particles. There are other interesting, less obvious, properties that streaklines
inherit from fluid mechanics. First, in unsteady flows, extra long streaklines may
exhibit shapes inconsistent with the actual flow, meaning they can not be allowed
to get too long [20]. Second, as invented for visualization purposes, streaklines in
fluids transport a color material along the flow, meaning they propagate changes
in the flow along their path. Similarly, our setup allows streaklines to propagate
velocities, given by the instantaneous optical flow Ω = (u, v)T at the time of
initialization, along the flow like a material. To this end, we define an extended
particle i as a set of position and initial velocity

Pi = {xi(t), yi(t), ui, vi}, (2)

where ui = u(xp
i (i), y

p
i (i), i), and vi = v(xp

i (i), yp
i (i), i). In the whole scene,

we consider only streaklines comprising extended particles. Figure 2.a depicts
streaklines for an example sequence.
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3 Computations with Streaklines

Streaklines provide a means to recognize spatial and temporal changes in the
flow, that neither streamlines nor pathlines could provide directly. This point is
made here using streak flow and potential functions. In essence, streak flow is
obtained by time integration of the velocity field, while potential functions are
obtained from spatial integration, and each provides useful information concern-
ing the dynamics in the scene.

3.1 Streak Flow

Research in social behavior of pedestrians in crowds reveals that people tend to
follow a pathway trailing pedestrians who have similar paths as a group [21]. As a
pedestrian passes a point, there is a social expectation that any other pedestrian
behind him/her would follow a similar path. Considering this social behavior,
the actual, but invisible, flow of pedestrians has no gaps between individuals who
are walking similarly. Hence, for crowd motion, gaps in the optical flow should
be filled along trajectories with similar motion vectors prior to analysis.

In order to achieve an accurate representation of flow from crowd motion, we
use the streaklines to compute a new motion field which we refer to as streak flow,
denoted Ωs = (us, vs)T . To compute streak flow, we compute the streaklines by
temporally integrating optical flow, as illustrated in Table 2, and forming the
particles as in Equation (2). We describe the computation of us; computation of
vs is similar. Given data in the vector.

U = [ui], where ui ∈ Pi, ∀i, p, we compute the streak flow in the x direction
at each pixel.

Based on equations (1), particle positions have sub-pixel accuracy. We com-
pute a triangulation of pixels, which implies that each particle Pi has three
neighboring pixels (nearest neighbors). At the sub-pixel level, it is reasonable to
consider ui to be the linear interpolation of the three neighboring pixels. Hence,
we define

ui = a1us(k1) + a2us(k2) + a3us(k3) , (3)

where kj is the index of a neighboring pixel, and aj is the known basis function of
the triangulation of the domain for the j-th neighboring pixel. Using a triangular
interpolation formula, each us(ki) is computed based on the relative positions of
the three pixels and the particle. Using (3) for all the data points in U , we form
a linear system of equations

Aus = U , (4)

where ai are entries of the matrix A, and us is the least square solution of (4).1

Streak flows encapsulate motion information of the flow for a period of time.
This resembles the notion of particle flow (equivalent to average optical flow)
where advection of a grid of particles over a window of time provides information

1 www.mathworks.com/matlabcentral/fileexchange/

8998-surface-fitting-using-gridfit
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Fig. 3. The comparison of optical flow, particle flow and streak flow for Boston sequence

(color coded). The red circle indicates the area to notice.

for segmenting the crowd motion. We argue that streak flows exhibit changes in
the flow faster than particle flow, and therefore, they capture crowd motions bet-
ter in a dynamically changing flow. This can be observed in Figure 3, illustrating
sample frames from a video of a traffic intersection, which includes motions from
both pedestrians and vehicles. The flow in the scene is unsteady and the differ-
ent motion patterns appear in the video as the traffic lights change. The figure
compares the streak flow to the particle flow and the optical flow in capturing
temporal and local changes. For temporal changes the flow is compared at two
different times: (1) A the start of the top-down flow of traffic (1st row), and (2)
at the ending stage of the up-down traffic flow (2nd row).

Temporal changes: The first row of Figure 3 shows a frame from the sequence
a few seconds after the change of a traffic light, so vehicles and pedestrians are
now moving in a different direction, from top to bottom. By comparing the area
to notice inside the red circle, it is evident that the streak flow is able to capture
this change after only a couple of frames, but the particle flow lags in shaping to
the new flow, and the optical flow shows choppy flow segments that are difficult
to use for further analysis.

Local changes: Both streak flow and particle flow have the ability to fill in the
gaps of the non-dense traffic flow. In second row of Figure 3, the optical flow
shows the motion of a car making a left turn. The particle flow is unable to
capture this change, and the region on the bus and car both show inconsistency
compared to instantaneous flow. The figure shows that the streak flow was more
accurate in exhibiting immediate flow changes over the car as well as the bus.

3.2 Potential Functions

Building on the fluid dynamics approach to crowd motion, we employ another
concept from fluids providing a different point of view. In simplified mathe-
matical models of fluids, it is often assumed that the fluid is imcompressible,
and irrotational. These assumptions imply several conservation properties of the
fluid, but most importantly, they lead to potential functions, which are scalar
functions that characterize the flow in a unique way. For this discourse, poten-
tial functions enable accurate classification of behaviors in a scene, which is not
possible with streak flow alone. Application of potential functions to abnormal
behavior detection is presented in Sections 4 and 5.
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Since the optical flow Ω = (u, v)T denotes a planar vector field, the Helmholtz
decomposition theorem states that Ω = Ωc + Ωr, where Ωc and Ωr respectively
denote the incompressible and irrotational parts of the vector field. To clarify, an
incompressible vector field is divergence free ∇·Ω = 0, and an irrotational vector
field is curl free ∇×Ω = 0. Thus, there are functions ψ and φ, known respectively
as the stream function and the velocity potential, satisfying Ω⊥

c = ∇ψ and
Ωr = ∇φ (see, for example [5]). Following [22], we use Fourier transforms to
decompose incompressible and irrotational parts of the vector field and estimate
the potential functions using

φ(x, y) = φ0 +
1
2

∫ x

0

(ur(s, y) + ur(s, 0)) ds +
1
2

∫ y

0

(vr(x, s) + vr(0, s)) ds , (5)

ψ(x, y) = ψ0 +
1
2

∫ y

0

(uc(x, s) + uc(0, s)) ds − 1
2

∫ x

0

(vc(s, y) + vc(s, 0)) ds . (6)

Potential functions are computed in Corpetti et al. [22] and used in a meteorolog-
ical application to track weather patterns in satellite images. In order to compute
valid potential fields, one needs a dense motion field. In that particular applica-
tion the motion fields are as dense as possible, but in crowd videos the degree
of motion density can vary by large amounts. In addition, a potential function
computed directly from optical flow is noisy with many valleys and peaks, which
quickly disappear and reappear. Streak flows enable us to compute reliable po-
tential functions for crowd flow, incorporating local and temporal changes. In
other words, we incorporate streaklines to compute smoothly evolving poten-
tial functions, which better reveal the dynamics of the crowd. In a broad view,
the stream function ψ provides the information regarding the steady and non-
divergent part of the flow, whereas the velocity potential φ contains information
regarding the local changes in the non-curling motions. Moreover, to have a
complete picture of the flow we need information from both potential functions.
With this perspective, we illustrate the strength of potentials in discriminating
lanes and divergent/convergent regions in five different scenes in Figure 4. In
this figure, the velocity potential is accountable for capturing unsteady changes
in the flow. For instance, escape to the sides of the scene corresponds to a valley
in the center of φ and formation of surrounding peaks on the sides. Furthermore,
the stream function ψ is incorporated to detect lanes in the steady motion of
vehicles. The area between contours of ψ (i.e. streamlines) show the regions of
steady and non-divergent motion such as lanes. The algorithm for detection of
lane and divergent/convergent regions is explained in Section 4.

4 Applications of Streaklines

Using streak flow and potential functions, we demonstrate the strength of our
approach for crowd segmentation and abnormal behavior detection in unsteady
flows. In the end, we find that our method performs better than other methods
for solving these problems.
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Fig. 4. An illustration of discrimination power of potentials for six manually labelled

behaviors. The first two columns, escape panic from UMN Dataset [23], column 3

shows circulating motion of cars in a lane, and column 4 to 6 show traffic forming

lanes from NGSIM dataset. Potentials are scaled to maximum value and plotted using

jet colormap. (1st row) The lanes are overlaid the frame for the steady motions. (2nd

row) divergent regions (red circles) and convergent regions (green circle). (3rd row)

Streamlines, which are contours of stream function.

4.1 Crowd Segmentation

In this algorithm, we segment every frame of the video into regions of different
motions based on the similarity of the neighboring streaklines. Similar streaklines
correspond to similar trajectories of particles passing from neighboring pixels
over a period of time. Hence, it captures the affinity of current and previous mo-
tions at these pixels. Figure 2.b presents the block diagram of the segmentation
algorithm. First, frame by frame optical flow of the video is computed. Using the
optical flow, a set of particles are then moved over the frame to construct the
streaklines and the streak flow. These quantities are used to compute similarity
in a 8-connectivity neighborhood. For every pair of pixels i and j, the similarity
is computed in terms of streaklines and streak flow.

Each pixel is associated with a streakline of length l. The streakline similarity
is computed using the sum of the normalized projections of internal vectors as
Rs(i, j) =

∑l−1
m=0 prj(X i

m, Xj
m), where X i

m and prj(·, ·) are defined in Figure 5.a.
Streak flow similarity is computed as RΩ(i, j) = | cos(∠Ωi

s) − cos(∠Ωj
s)|, where

∠Ωi
s is the angle of the streak flow vector at pixel i. In order to define boundaries

of the regions, we compute the similarity map at every pixel using

H(i) =
∑

j∈N(i)

αRs(i, j) + βRΩ(i, j) , (7)

where α and β are weights regulating the share of streakline and streak flow
similarities in the final segmentation. We use α = 0.8 and β = 0.2 in the ex-
periments. Since similar motions over time build similar streaklines and streak
flows, boundaries of different motions form valleys in the similarity map. Using
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of divergence factor, Vi, for a region of interest.

the negative of the similarity map, we segment the crowd into regions of similar
motion with watershed segmentation. Results are presented in Section 5.1.

Lane detection: In addition to segmenting a frame into regions of consistent
motion, we combine information from potentials to detect lanes in each segment.
As stated in section 3.2, the area between contours of ψ corresponds to the steady
flow, and the rate of the incompressible flow between a pair of contours is equal
to the difference between the values of ψ on those contours. Considering this,
we detect lanes as parts of a segmented region that fall between two contours of
the stream function by a simple intersection operation (see Figure 4).

4.2 Abnormal Behavior Detection

To detect abnormal behavior of crowds, it is necessary to have a global picture
of the behavior in a scene, for which we use potential fields. The surfaces φ and
ψ characterize particle positions and velocities in a global sense, and abnormal
behaviors are simply detected as large deviations from the expected. Here, we
present an algorithm to detect abnormal behavior in crowds using potential
functions for the flow.

Figure 2.c shows the block diagram for the algorithm. For every frame in a
video sequence, the Streak flow Ωs = (us, vs)T is computed, and the poten-
tial functions of the frame {φ, ψ} are computed using equations (5) and (6).
The peaks and valleys of the potential surface convey information regarding the
global behavior of the flow (Figure 4). Thus, potentials provide new features
to distinguish global behaviors in the crowd in compact form. For every frame,
a feature vector V is formed by concatenating the values of φ and ψ of that
frame. Using feature vector V , we recognize behaviors in each frame by training
a support vector machine (SVM) classifier. In Section 5, we provide comparative
results of abnormal behavior detection using potentials.

In addition to detecting abnormal behaviors, we incorporate streaklines and
the velocity potential φ to provide a description of the anomaly based on di-
vergent/convergent regions. The extrema on velocity potentials correspond to
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divergent or convergent regions. To robustly detect these regions, we find the
major local extrema of φ, and then compute the average divergence factor,
V̄ = 1

n

∑
i Vi, where Vi is defined in Figure 5.b, and n is the number of pixels

in the radius r of the extremum point. Simple thresholding of this factor distin-

guish divergent/convergent regions as Region Type =

{
Divergent, if V̄ > T

Convergent, if V̄ < T
.

In the experiments, r is set fixed empirically for each scene and T = 0. As it is
illustrated in Figure 4 the escape panic scene involves the divergent region in the
center and convergent regions on the sides to which the crowd is running. Simi-
larly, a sudden change in the direction of turning vehicles or the entry/exit points
form divergent/convergent regions. The circular regions in the second row are
the actual output of our algorithm. Obviously, there are some mistakes (20%).
For example, in circling traffic, column 3, the region on the right is detected
incorrectly.

5 Experimental Results

We present results of algorithms outlined in Section 4, using experiments on
two datasets. A stock footage dataset from the web [2] is used for streakline
analysis, and a dataset from the University of Minnesota [23], which contains 11
videos of crowd escape panic, is used to evaluate the effectiveness of potentials
for abnormal behavior detection.

5.1 Results of Crowd Motion Segmentation

Results of our proposed segmentation algorithm are provided here. We compare
with the state of the art [1], considering crowds with dynamic segmentations,
such that the motion patterns vary in time exhibiting different states of behavior.

Figure 6 provides segmentation results for two scenes, and video frames are
overlaid by colored segmentation regions. In this experiment, the length of streak-
lines and pathlines is l = 40. On the left side of Figure 6, an intersection is
shown in Boston, containing three behavioral phases represented by frames 40,
197, and 850. (1) South bound traffic is formed. (2) Traffic lights change and
an east/west bound (from/to station) a flow of pedestrians emerges. (3) Traf-
fic lights change again, and a north bound vehicle flow is formed together with
an east bound pedestrian flow. On the right side of Figure 6, an intersection
is shown in Argentina containing three behavioral phases. (1) East/west bound
traffic is formed. (2) After the traffic lights change, a south bound vehicle flow
and a north/south pedestrian flow develop. (3) Traffic lights change to the first
phase and east/west bound flows resume. Frames 115 and 213 illustrate the start
of phases 2 and 3, respectively. The optical flow of this video is particulary noisy
as it is based on time-lapse imagery, whereas the Boston sequence is a regular
30fps video. Videos are available in the supplementary material.

Figure 6 demonstrates segmentations based on streaklines are spatially and
temporally pronounced and more accurate in dynamic scenes than the state of
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Frame 040 Frame 197 Frame 850 Frame 115 Frame 213 

Fig. 6. Comparison of segmentation results using streaklines (1st row), and pathlines

[1] (2nd row) for scenes with unsteady motions

the art. We highlight the gains in using our method in each frame: (Frame 40) A
walking pedestrian and the north bound vehicle motion are segmented correctly.
(Frame 197) Pedestrians are distinguished from the south bound cars. (Frame
850) A south bound pedestrian (first row, green) is separated from north bound
vehicles. (Frame 115, 4th column) Different pedestrian flows are distinguished
(first row, cyan and purple). (Frame 213) West bound vehicle flow (first row,
yellow) is segmented earlier, at start of phase 2 of the video.

In Figure 7, the quantitative comparison of the proposed segmentations method
and [1] is provided. In this experiment, frame by frame segmentations of both
methods are compared as following. The number of objects (human/vehicle) in
the each segmented region is counted provided that its direction of motion is
no more that 90 degrees apart from the direction motion of the majority of the
objects. We refer to this number as the number of correctly segmented objects
(see Figure 7.a). To evaluate the methods, this number is counted manually for
a subset of frames of Boston and Argentina video sequences. Figure 7 demon-
strates that streakline segmentation outperforms the state of the art in number
of correctly and incorrectly segmented objects.

5.2 Results of Abnormal Behavior Detection

This section illustrates results for abnormal behavior detection on the UMN
dataset [23], containing 11 sequences for 3 scenes. In this dataset, pedestrians
initially walk randomly, and exhibit escape panic by running in different direc-
tions in the end. Figure 4 shows that potential functions provide rich informa-
tion about global behavior. Interesting properties of potentials are revealed as
we compare φ for frames where people escape to all sides to the frames which
people run in a single direction (2nd column).

In order to illustrate the strength of potentials in representing the global
behavior we compared our method using different features. In experiment (a),
we first use frame-based potentials as the input features V for training a SVM
with RBF kernels. Second, we use vectorized streak flow Ωs = (us, vs) and third,
we use average baseline optical flow (pyramidal LK) to perform the same task.
Figure 7.e compares the recognition results using any of these three features for a
different number of training examples. In order to reduce the computation time,
we downsample the features of each frame by factor of n = 20. In this experiment,
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Fig. 7. (a) The criterion for segmentation evaluation, (green) correctly segmented ob-

ject, (red) incorrectly segmented object. (b), (c), and (d) Quantitative comparison of

segmentation results using streaklines (blue), and pathlines [1] (red). (e,f) Abnormal

behavior recognition, (e) Variation of the number of training examples. (f) ROC of the

cross validation.

the frames from different scenes in the dataset are combined in a single pool and
a portion is selected as the train set and the rest is considered as the test set
(no overlaps). The figure shows that after increasing the number of examples to
merely 20%, the potentials show considerable improvement in performance. In
addition, the figure illustrates the strength of streak flows compared to particle
flow in providing information for abnormal behavior detection.

In experiment (b), we performed a leave-one-out cross validation on the UMN
dataset using downsampled version of potentials and average optical flow. In this
experiment, we trained a SVM with RBF kernels on 10 videos and computed the
false positive and true positives on one video sequence and repeating this for all
the 11 videos. Figure 7.f illustrates the ROC of this experiment which indicates
improvement using potentials over baseline optical flow.

6 Conclusion

Based on a Lagrangian particle dynamics framework for fluid flow, we juxtapose
three vector field representations of the flow, given by streamlines, pathlines
and streaklines. With application to problems in segmentation and abnormal
behavior detection for crowd and traffic dynamics, we show that the streakline
representation is advantageous. When compared to the other two representa-
tions, which are commonly used to solve problems in computer vision, streaklines
demonstrated the ability to quickly recognize temporal changes in a sequence,
in addition to finding a balance between recognition of local spatial changes and
filling spatial gaps in the flow. When used to compute potential functions and to
perform segmentation, the streakline approach was superior to using optical flow
and comparable to using particle flow, aside from the ability to recognize scene
changes. With regard to abnormal behavior detection, the method of streaklines
proved superior to both of the other representations, and the introduction of
potential functions for this purpose proved valuable.
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Fast Multi-aspect 2D Human Detection

Tai-Peng Tian and Stan Sclaroff�

Department of Computer Science, Boston University

Abstract. We address the problem of detecting human figures in im-

ages, taking into account that the image of the human figure may be

taken from a range of viewpoints. We capture the geometric deforma-

tions of the 2D human figure using an extension of the Common Factor

Model (CFM) of Lan and Huttenlocher. The key contribution of the

paper is an improved iterative message passing inference algorithm that

runs faster than the original CFM algorithm. This is based on the insight

that messages created using the distance transform are shift invariant and

therefore messages can be created once and then shifted for subsequent

iterations. Since shifting (O(1) complexity) is faster than computing a

distance transform (O(n) complexity), a significant speedup is observed

in the experiments. We demonstrate the effectiveness of the new model

for the human parsing problem using the Iterative Parsing data set and

results are competitive with the state of the art detection algorithm of

Andriluka, et al.

1 Introduction

We consider the problem of detecting a 2D articulated human figure in a single
image. Furthermore, we are interested in recovering the pose of the human figure,
where the pose is described by the position and orientation of the legs, arms,
torso, and head. This is a difficult problem because the appearance of human
figures varies widely due to factors such as clothing, differences in body sizes,
articulation of the human body, and viewpoint from which the image is taken.
In this paper, we concentrate on modeling the last two factors, i.e., articulation
and viewpoint changes.

The prevailing practice is to employ discretization when modeling viewpoint
changes and articulations of the human figure. For example, clustering can be
used to partition the training data into groups corresponding to different artic-
ulation and viewpoint instances [1]. Such an approach is convenient because a
simpler single-view or single-configuration model can be used to model the data
within each cluster. Unfortunately, there is a price to pay for such a convenience:
an additional layer of arbitration logic must be built to coordinate among these
models to give an illusion of a multi-aspect and multi-articulation model. This
modeling approach is overly complicated and we propose a simpler alternative.

In our approach, we model the geometric deformations of the 2D human figure
caused by articulation and viewpoint changes. We separate out these two types of
� This research was funded in part through grant NSF IIS-0713168.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 453–466, 2010.
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Fig. 1. Fixing the value of the factor for the Common Factor Model (CFM) defines

a tree structured Gaussian prior for human poses. Each human pose shown above

represents the mean of each distribution for the corresponding value of the factor. In

the top row, by varying the factor, the human poses changes from a frontal configuration

(leftmost) to a side view (rightmost) configuration. The bottom row depicts the swing

of the arms and legs during walking.

deformation into two different modes of variation. These modes can be modeled
by a simple extension of the Common Factor Model (CFM) [2] and these modes
can be learned using a straightforward training procedure without the need to
partition the data into different viewpoints. A concise review of the CFM is given
in Sec. 3.

Varying a common factor has the effect of inducing a particular deformation
mode in the Pictorial Structure. An intuition for this is given for the human figure
model in Fig. 1. If we fix the pose of the human figure and vary the viewpoint by
moving along the equator of the view sphere centered on the human figure, then
the projected body parts will be translated as the viewpoint changes. Similar
observations can be made when a person is walking (viewpoint is kept fixed),
which results in rotation and translation of the parts of the Pictorial Structure.
This second mode of variation coordinates geometric transformations between
body parts; e.g., during a walking cycle the left arm swings forward as the right
arm swings backward. Thus, the model of a walking person can be described
using a combination of the “walking phase” and “viewpoint” modes. This idea
of associating modes of variation with geometric deformations of the Pictorial
Structure is general; for example, it is applicable to other types of motion such
as a person performing jumping jacks, kicking etc.

Even though CFM inference has linear time complexity, it is still time con-
suming – especially when the problem size is large, as is the case here. The CFM
inference algorithm requires multiple iterations of the min-sum Belief Propaga-
tion (BP) algorithm. During each iteration of BP, messages are created from
scratch and this is costly because each message contains more than a million en-
tries. Overall, for s iterations of the BP algorithm, there will be s(n−1) messages
created for a Pictorial Structure model with n parts.

We propose a new CFM inference algorithm that offers a significant speedup.
We reduce the number of messages that need to be created from s(n−1) to (n−1)
(a reduction by a factor of s). This speed improvement is significant because the
number of BP iterations s scales exponentially in the number of dimensions of
the common factor. This speedup relies on two observations: firstly, messages
are created using distance transforms and secondly, messages from one iteration
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of BP to the next differ only by a shift. Since distance transforms are shift
invariant (see proof in Sec 4.1), our method replaces costly distance transforms
by shifts, thus gaining a speed improvement over the original formulation. Note
that shifting an array only requires an O(1) update to the offset of the array
while the distance transform is an O(h) operation that requires visiting all the
h elements in the array. Details of the algorithm can be found in Sec. 4.

We provide experimental evaluation of our multi-aspect model in Sec. 6. We
show experimental results comparing the speed of our new inference algorithm
with the original [2] and evaluate the accuracy of our model on the Iterative
Parsing data set [3].

Contribution. The contribution of this paper is twofold. Firstly, we provide
a method for modeling multiple modes of deformation in a Pictorial Structure
model. Secondly, we improve the running time of the original CFM inference
algorithm by observing that messages created by distance transforms are shift
invariant. Replacing costly O(h) time complexity distance transforms with fast
O(1) time complexity shifting yields a significant speed up.

2 Related Work

Our work is related to the use of Pictorial Structures for detecting human figures
using tree structured Gaussian graphical models [3–6], as well as loopy graphical
model [7–10]. Our work is different from these related work as we focus on
modeling geometric deformation of the Pictorial Structures due to factors such
as viewpoint changes and phase of the walking cycle.

Our work builds on the Common Factor Model (CFM) [2]. Originally in [2], a
1D latent variable (or factor) is used to model the phase of a walking cycle, and
it is used to capture correlations among the upper limbs of the human figure.
We provide a new perspective on the CFM by interpreting the dimensions of the
factor as modes of geometric deformation in the Pictorial Structure.

Unfortunately, using higher dimensional latent variables increases the CFM
inference running time, e.g., if uniformly sampling the 1D factor requires n sam-
ples then in 2D it will require n2 samples. This slows down the CFM inference
significantly because multiple distance transforms are required in each iteration
of the inference algorithm. We propose a faster CFM inference that only requires
a constant number of distance transforms to be computed, i.e., independent of
the number of iterations in the CFM inference.

Other multi-aspect modeling works [1, 11, 12] use a discrete set of viewpoints.
In contrast, our work uses a continuously parameterized viewpoint.

3 Background: The Common Factor Model

In this section, we review the Common Factor Model (CFM) of [2]. The CFM
provides an alternative to high order clique models. Such high order clique mod-
els arise in 2D human detection because strong correlations exist among the
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(a) Tree Structured
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X

(c) Common Factor

Model.

Fig. 2. Different type of priors used for the ten part human figure. Abbreviations are

tor : torso, hea: head, lua : left upper arm, rll : right lower leg, etc.

upper arms and upper legs when a person is walking [2]. These dependencies
create a large clique among the upper limbs of the graphical model (Fig. 2(b))
and inference over graphical models with large cliques is computationally inten-
sive. The computational difficulty can be ameliorated by breaking up the large
clique into smaller cliques. This breaking up is justified by positing that a latent
variable X is responsible for the observed correlations among the upper limbs
(Fig. 2(c)). More importantly, when the latent variable X is observed, i.e., condi-
tioned on X , then the graphical model becomes a tree again. The latent variable
X can be viewed as a hyper parameter and fixing a value for this hyper parame-
ter will produce the tree structured Gaussian prior in Fig. 2(a), but parameters
for this tree structured prior will be different for two distinct values of X .

The detection problem is stated as finding the latent variable value X∗ and
body parts locations L∗ that maximize the posterior, i.e.,

〈L∗, X∗〉 = argmax
L,X

p(L, X |I) = arg max
L,X

p(I|L, X) p(L, X), (1)

where I is the image, L = {li} and i are body part names corresponding to nodes
shown in Fig 2(a). Each body part configuration li is described by an oriented
rectangle comprising the center of the rectangle (u, v) and its orientation θ.

The CFM takes on the following factorization

p(I|L, X)p(L, X) = p(I|L, X)p(L|X)p(X)

∝
∏
i∈V

p(I|li)
likelihood

⎛⎝ ∏
eij∈EX

φij(li, lj , X)
∏

eij∈ET −EX

φij(li, lj)

⎞⎠
prior

p(X),

where the likelihood is independent of the latent variable X and the CFM as-
sumes that image appearances among body parts li are independent. In the
above equation, V is an index set for the body parts of the 2D human model,
which corresponds to the set of vertices shown in Fig. 2(a). The set of edges
ET is shown in Fig. 2(a), and EX is a subset of ET . Edges from EX have both
end vertices forming a clique with the latent variable X in Fig. 2(c). The prior
is factorized according to the graphical model in Fig 2(c), and parameters for
the common factor X are learned from data [2]. The compatibility function φij
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between two body parts is defined based on the distance Yij between the joint
locations Tij(li) and Tji(lj), i.e.,

Yij = Tij(li) − Tji(lj). (2)

The transformation Tij shifts the body part center to the joint position, i.e.,

Tij(li) = Tij([u, v, θ]T ) = [u′, v′, θ]T , where
[
u′

v′

]
=
[
u
v

]
+ Rθ

[
uij

vij

]
. (3)

In the above equation, Rθ is the rotation matrix by θ angle, uij and vij are
connection parameters that are learned from a tree structured prior [5]. The def-
inition for the transformation Tji is similar to Tij and details are given in [5]. For
edges that are not involved with the common factor, the compatibility function
is given by

φij(li, lj) = N (Yij ; 0, Σij) , (4)

where Σij is a diagonal matrix learned from data [5], and N is the Gaussian
function. For edges that are involved with the common factor X , the potential
function is given as

φij(li, lj, X) = N (Yij −AjX ; 0, Ψj) , (5)

where Aj is part of the loading matrix A learned from data. Both of these are
defined in the next paragraph.

Learning the Loading Matrix A: In order to learn the loading matrix A, the
training data for the four body parts llua, lrua, llul, lrul are stacked up into a 12
dimensional vector. Suppose there are m training instances, then a 12×m matrix
is formed and Common Factor Analysis is applied on this matrix to recover the
loading matrix A and covariance matrix Ψ . If the dimension of the common
factor X is two, then the resulting loading matrix A will have dimension 12× 2,
and the covariance matrix Ψ will be a 12 × 12 matrix. Therefore, Alul denotes
the corresponding 3× 2 sub matrix of A whose rows correspond to the stacking
order for the body part left upper leg (lul). The covariance sub-matrix Ψlul will
be a 3 × 3 square matrix that includes the diagonal entries of Ψ whose rows
correspond to the stacking order for lul.

3.1 Messages and Dynamic Programming in the CFM

In this section, we review the message passing algorithm applied on the tree
structured model generated by the Common Factor Model (CFM). In the CFM
inference, the goal is to find the best body part location L∗ and common factor
X∗ that maximize the posterior p(L, X |I). This is equivalent to minimizing the
negative log posterior, which is

〈L∗, X∗〉 = argmin
L,X

c(X) +
∑
i∈V

mi(li) +
∑

ij∈ET −EX

dij(li, lj) +
∑

ij∈EX

dij(li, lj , X),

(6)
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Fig. 3. The boxes show the messages passed during an iteration of the Belief Propaga-

tion algorithm for a fixed value of the common factor X. Bold boxes indicate messages

parameterized by the common factor X.

where c(·) is the negative log of the prior p(X), mi(·) is the negative log of the
likelihood, and dij(·) is the negative log of the compatibility function.

Given a fixed value X for the common factor, the resulting graphical model is
a tree. Therefore, dynamic programming can be used to find the MAP solution.
The dynamic programming proceeds from leaves to the root and intermediate
results from the dynamic programming can be interpreted as messages being
passed from leaves up to the root. These messages can be efficiently computed
via the distance transform [5]. The types of messages passed between a child
node j and its parent parent i are

μ
j→i

(li)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T −1

ij DTji[mj ](li), if j is a leaf node,

T −1
ij DTji

⎡⎣mj +
∑

c∈Cj

μ
c→j

⎤⎦ (li), if j is an internal node with children Cj,

T −1
ij DTAjXTji

⎡⎣mj +
∑

c∈Cj

μ
c→j

⎤⎦ (li),
if j is an internal node with children Cj

and common factor X,

(7)

where Tij and Tji are operators that bring the coordinates of body parts into
ideal alignment at the joint, TAjX is the translation induced by the common
factor X , and D is the distance transform operator. All of these are defined as

T −1
ij [f ](lj) = f(T−1

ij (lj)), Tji[f ](lj) = f(Tji(li)), (8)

Txj [f ](lj) = f(lj −AjXj), D[f ](lj) = min
li∈G

f(li) + ||li − lj||2,

where G represents grid positions on which the function f is sampled. Note the
notational difference between Tij (in calligraphic script) and Tij (in regular font);
they are conceptually different as the operator Tij transforms one function into
another, whereas the function Tij transforms coordinates. Lastly, the operators
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are applied from right to left, i.e., for the chain of operations, T −1
ij TAjXDTji[f ],

the operator Tji is applied first, followed by D, TAjX and T −1
ij .

These messages are depicted in Fig. 3. At the root node, the messages are
combined, and the best configuration for the root is

l∗tor = min
ltor

(
mtor(ltor) +

∑
c∈Ctor

μ
c→tor

(ltor)

)
. (9)

Once the best solution for the root is found, the algorithm backtracks down the
tree to recover the corresponding values for other body parts.

4 Faster Inference for the Common Factor Model

We propose a method that speeds up the inference algorithm of Lan and Hut-
tenlocher [2]. First we briefly review the inference algorithm of Lan and Hut-
tenlocher. During inference, values are sampled from the latent variable X and
for each sample value, an iteration of dynamic programming (DP) is performed.
For each DP iteration, the messages are created from scratch by applying dis-
tance transforms [5]. Overall, the number of distance transforms required scales
linearly with the sample size of the common factor, i.e., s(n− 1) distance trans-
forms are required, where s is the sample size for the common factor X and n
is the number of body parts.

We propose a method that reduces the number of distance transforms re-
quired. Our method only requires computing n − 1 distance transforms, i.e.,
independent of the number of samples size s for X . This is a significant speedup
because s scales exponentially in the dimension of the of the common factor X .
This speedup is possible because varying the values of X has the effect of shifting
the messages, and secondly, distance transforms are shift invariant. Therefore,
new messages can be created by simply shifting the previous messages. Com-
putationally, shifting is more efficient than DT because shifting has O(1) time
complexity (where we only need to update the offset for the array), compared to
O(h) time complexity for DT, where the algorithm has to visit all the h entries
in the array (typically, h ∼ 106 for the examples we are testing on).

The next section gives the proof for shift invariance of distance transforms
and following that, we describe the inference algorithm.

4.1 Distance Transforms Are Shift Invariant

We prove that the distance transform of a sampled function is shift-invariant
under some fairly mild conditions that are usually satisfied in practice. Let D
be the distance transform operator, where

D[f ](p) = min
q∈G

f(q) + ||p − q||2, (10)
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and p is a position in the grid G for sampling the function f . The operator Tr

translates a function f by r, that is,

Tr[f ](p) = f(p + r). (11)

Proposition 1. Suppose f is a function sampled on the grid G. For any given
position p ∈ G and a fixed translation r, such that f(p) = ∞ if p /∈ G, then
DTr[f ](p) = TrD[f ](p).

Proof. Starting from LHS,

DTr [f ](p) = D[g](p) (where g(x) ≡ f(x + r)) (12)
= min

v∈G
g(v) + ||p− v||2 (13)

= min
v∈G

f(v + r) + ||p − v||2 (14)

= min
(q−r)∈G

f(q) + ||p + r − q||2. (q = v + r) (15)

On the RHS,

TrD[f ](p) = Tr[h](p) whereh(p) ≡ min
h∈G

f(q) + ||p− q||2 (16)

= h(p + r) (17)
= min

q∈G
f(q) + ||p + r − q||2. (18)

Therefore, the operator D commutes with the operator Tr. �

4.2 Faster Inference

We describe how to exploit the shift invariance property of the distance transform
to speed up the inference algorithm. Within different iterations of the inference
algorithm, messages originating from the leaves do not change (Fig. 3); only
messages affected by the common factor X are recomputed. Those messages
affected by the common factor are recomputed using the chain of operators
T −1

ij DTxjTji. Notice that the distance transform operator D is applied after the
translation operator Txj ; therefore, based on this chain of operations, when the
common factor X changes, a distance transform operation is required to compute
the new message. Since the distance transform is shift invariant, we can rewrite
the messages involving the common factor X as

μ
j→i

(li) = T −1
ij TxjDTji [f ] (li), where f = mj +

∑
c∈Cj

μ
c→j

, (19)

where the positions of the operators D and Txj are swapped, i.e., the operator
D has been pushed inwards to the right. Conceptually, this means that we can
memoize the result of DTji[f ] as this does not vary with the common factor X ,
and for varying X , we only need to apply the operator T −1

ij Txj to the memoized
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Cost : 23.6948 Cost : 22.1067 Cost : 23.9326 Cost : 24.1685 Cost : 22.9213 Cost : 20.8888 Cost : 21.2689

Fig. 4. Human pose prior affects the detection results. Row 1 shows the optimal

pose detected. Row 2 shows the mean of the tree structured Gaussian prior for the

human pose. Notice that the most visually appealing solution (center image) does not

correspond to the configuration with the lowest cost.

DTji[f ]. Computationally, this translates to substantial savings because for each
new message to be created, we only require the translation operator T −1

ij Txj .
Overall, only n − 1 distance transformed messages need to be computed, for n
body parts, compared to s(n − 1) originally, where s is the number of samples
for the common factor X .

5 Detection Using the Multi-aspect Model

Computing the the maximum a posteriori (MAP) estimate or, equivalently, find-
ing the lowest cost configuration does not necessarily give the most visually
correct solution (see the example in Fig. 4). We remedy this problem using a
“sample and test” strategy [5, 13]. First, we sample a set of values for the fac-
tors of the CFM and recover the corresponding set of detection results. Following
that, detection results are re-evaluated using additional constraints. We summa-
rize the detection algorithm in Algorithm. 1. The following constraints are used
to re-score the detection results.

1. Appearance Symmetry: Humans typically wear clothing that is symmet-
ric and we penalize detection results with dissimilar appearance between the
upper arms and upper legs of the Pictorial Structure. Dissimilarity of ap-
pearance between two body parts is described using the distance between
the two Region Covariance (RC) descriptors [14]. The RC descriptor for a
body part is a 5× 5 symmetric matrix and involves entries for spatial posi-
tions (x, y) and the three color channels of the image (r, g, b). The distance
ρ1 between two RC descriptors C1 and C2 is given as

ρ1(C1, C2) = γ

√√√√ 5∑
i=1

λi(C1, C2), (20)

where {λi(C1, C2)}i=1···5 are the generalized eigenvalues of C1 and C2, and
γ is a scaling factor chosen empirically to be 0.1.
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Algorithm 1. Detection Algorithm for the Multi-Aspect Model
Let X = {X1, X2, . . . , Xk} be the samples for the common factor.

Let C = {lua, rua, lul, rul}.
Let pairs = {(lua, rua), (lul, rul)}
Compute the messages μ

j→i
shown in Fig. 3 with X = 0.

for k = 1 . . . s do

μ′
tor

(p) = μ(p)
hea→tor

+
∑
i∈C

TAiXi

[
μ

i→tor

]
(p) (Tr[·] in Eqn. 11 and AiXi in Eqn. 5)

p∗ = arg min μ′
tor

(p)

score(k) = μ′
tor

(p∗) +
∑

ij∈pairs

ρ1(li, lj) +
∑

ij∈pairs

ρ2(li, lj) (ρ1, ρ2 Eqn. 20,21)

end for
bestscore = min score(k)

To recover the pose with the best score, perform a backtracking on the corresponding

messages (similar to backtracking for dynamic programming [5]).

2. Overlapping Bodyparts: Tree structured Pictorial Structures are prone
to the “over counting of evidence” problem, e.g., the legs typically snap onto
the same region in the image. We can ameliorate this problem by adding a
penalty term

ρ2(li, lj) =
|R(li)

⋂
R(lj)|

min(|R(li)|, |R(lj)| (21)

for overlapping body parts, where li and lj are the configurations of body
parts i and j, R(·) denotes the rectangular region in the image covered by
the configuration of a body part and | · | denotes the area. The overlap area
is computed by first clipping the rectangle R(li) against R(lj) using the
Sutherland Hodgman clipping algorithm and the resulting polygon gives the
overlapping region. The overlap area is scaled to the range [0, 1] by dividing
it by the smaller body part’s area.

6 Experiments

We use the Iterative Parsing (IP) data set [3] for all the experiments. This
challenging data set contains a large variety of human figures in difficult poses
such as baseball pitchers, sumo wrestlers, etc. The Pictorial Structure parameters
are learned from data following [5]. For the body parts detector, we use the
code from [4]. All coding is done in Matlab and the computationally intensive
functions such as distance transforms are implemented in mex code.

For the common factor, we learned a two-dimensional common factor from
the training set in the IP data set. We were able to obtain the viewpoint effect,
i.e., varying the first common factor adjusts the joint position between the upper
arms / legs to be closer or further apart, giving the effect of a viewpoint change
from side view to front view (see Fig. 1). Unfortunately, the training data does
not contain sufficient variations in the swing of the arms and legs to learn a
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Fig. 5. Comparing the running time for Lan and Huttenlocher’s [2] inference algorithm

with the proposed algorithm for various sample sizes for the common factor. Both

algorithms have linear running time curves but the proposed algorithm is faster, e.g.,

six times speedup for 10 samples, eight times speedup for 20 samples and nine times

speedup for 35 samples. The speedup continues to grow for increasing sample sizes.

common factor for that effect; in contrast, [2] uses primarily walking sequences
as training data and is able to capture the arm swing effect in the common factor.
As a substitute, the following loading matrix is used in all the the experiments,

A =
[

A
tor,lua

, A
tor,rua

A
tor,lul

, A
tor,rul

]T

, (22)

where

A
tor,lua

=
[
0 −1 0
0 0 1

]
, A
tor,rua

=
[
0 1 0
0 0 −1

]
, A
tor,lul

=
[
0 −1 0
0 0 0.5

]
, A
tor,rul

=
[
0 1 0
0 0 −0.5

]
.

For each sub matrix, the three columns are ordered according to (u, v, θ), where
(u, v) is the spatial location and θ is the rotation angle. The loading matrices
above can be considered as idealized versions of those learned from the IP data
set, as well as the the loading matrix published in [2].

Speed Comparison. We compare the running time of the proposed algorithm
against [2]. We fix the image (size 454 × 353) and vary the number of samples
for the common factor. The plot of running times versus varying samples for the
common factor is shown in Fig. 5. Asymptotically, both algorithms have linear
time complexity, but empirically, the proposed algorithm runs significantly faster
in practice. For example, when using 10 samples, we observe a six fold speedup
(120 seconds vs. 743 seconds). The speed gap between the two algorithms con-
tinues to widen as the number of samples is increased, e.g., at 20 samples we
observe an eight-fold speedup, and at 35 samples there is a nine-fold speedup.
This linear increase in speedup trend is true for increasing number of samples.

Accuracy of Parts Localization. We compare the accuracy of localizing body
parts for our algorithm against three state of the art algorithms: the standard
PS model [5], the Common Factor Model [2] and the work of Andriluka, et al. [4].
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Table 1. Body part detection accuracy in percentages. A body part is correctly lo-

calized when both ends of the limb are within half the part’s length from the ground

truth (similar to [4, 6]). (Row 1) The standard pictorial structures model with a tree

structured prior. (Row 2) The Common Factor Model. (Row 3) Our proposed multi-

aspect detection that includes appearance symmetry and rectangle overlap constraints.

(Row 4) Andriluka (AN), et al. [4]. The results obtained for AN differ slightly from

published result because we used our own implementation of the algorithm.

Torso Upper Arms Upper Legs Lower Arms Lower Legs Head Avg

Left Right Left Right Left Right Left Right

FH [5] 67.8 32.7 35.1 58.0 52.7 24.4 27.3 54.6 42.9 37.6 43.3

CFM [2] 78.5 41.0 42.0 63.9 59.5 30.2 28.3 62.4 46.8 53.7 50.6

Our work 80.0 41.0 41.0 65.9 62.4 31.2 30.0 62.4 47.8 54.1 51.6

AN [4] 79.0 45.9 47.8 65.4 59.0 33.7 34.1 61.4 47.3 57.6 53.1

In the experiments, the Common Factor Model and our multi-aspect model
use the same parameter for the prior. Samples are drawn from the 2D common
factor X as follows. First, we sample the first dimension (controlling the aspect)
while keeping the other dimension fixed and values are sampled in the range
[−22, 15] at increments of 1.5 resulting in 26 samples. Next, we sample the other
dimension that coordinates the swinging of the arms and legs while keeping the
first dimension fixed. Values are sampled in the range [−18π

17 , 13π
17 ] in increments of

π
17 resulting in 26 samples. Overall, there are 52 samples chosen for the common
factor X . We have found that uniformly sampling the 2D grid to generate 262

samples is excessive for the walking human figure model; e.g., from a front view,
deformation of the Pictorial Structure due to walking is small. In contrast, these
deformations are more prominent from a side view. Therefore, we concentrate
on capturing prominent deformations in our sampling.

The Common Factor Model picks the maximum a posteriori solution over
these 52 samples, but our multi-aspect model re-scores the solution using the ρ1

and ρ2 (Sec. 5), and picks the solution with the minimum cost. The localization
results are summarized in Table 1. A part is classified as correctly localized when
both endpoints of that body part are within 50% of the length of the body part
(similar to [4, 6]).

Our approach (Row 3, Table 1) yields better localization results when com-
pared with the standard Pictorial Structures (Row 1 FH) for all the body parts.
The best improvement is in the localization of the left upper leg, which shows
an increase in correct detections of 13.9%. This is because the standard Pictorial
Structure uses a tree structured Gaussian prior that is biased towards a frontal
view, and it is prone to the “over counting of evidence” problem.

When compared against the Common Factor Model (Row 2, Table 1), our
results (Row 3, Table 1) show an improvement in correct detection that averages
about 2% across all the body parts. The difference between the two algorithms is
in the inference step. CFM uses the MAP solution, but we re-score the solutions
using additional constraints therefore improvements in the detection results are
attributed to the re-scoring step. Qualitative examples are shown in Fig. 6.
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Fig. 6. Examples where incorporating appearance symmetry and rectangle overlap

constraints improve detection results. In each pair of image the left image shows the

detection result using the Common Factor Model [2] and the right image shows the

detection result obtained using our multi-aspect model. For example, in the first pair

of images, the person’s left arm is across the chest and this is correctly detected by our

method.

Fig. 7. Examples of the “scattered body parts” problem present in Andriluka, et

al.’s [4] detection method. In each pair of image the left image shows the detection

result using Andriluka, et al.’s method and the right image shows the detection result

obtained using our multi-aspect model.

We have mixed results when comparing with Andriluka (AN), et al. [4] (Row 4,
Table 1). AN has better results for localizing upper and lower arms while we have
better results for localizing upper and lower legs. We found that AN’s approach
suffers from the “scattered body parts” problem, which arises because AN’s
inference algorithm maximizes the marginal posterior and spatial constraints
between body parts are not strictly enforced. This results in solutions where
body parts are not tightly grouped together. We show more of these examples
in Fig. 7. Our detection results do not suffer from this problem.

7 Conclusion

We have presented a multi-aspect model that is capable of capturing the effects
of viewpoint changes in Pictorial Structures using an extension of the Common
Factor Model (CFM). We also proposed a two stage algorithm that rescores
CFM solutions using additional constraints and this method is shown to be
effective in the experiments. Furthermore, we demonstrate how to exploit the
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shift invariance property of distance transforms to provide a speedup for the
CFM inference algorithm; consequently, we can sample a larger set of samples
for the common factor during CFM inference. Sampling a larger set of samples
for the common factor enables testing of more views during inference, which
contributes to the improved detection results in our experiments.
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Abstract. This paper explores a method, first proposed by Wei and

Chai [1], for estimating 3D human pose from several frames of uncal-

ibrated 2D point correspondences containing projected body joint lo-

cations. In their work Wei and Chai boldly claimed that, through the

introduction of rigid constraints to the torso and hip, camera scales, bone

lengths and absolute depths could be estimated from a finite number of

frames (i.e. ≥ 5). In this paper we show this claim to be false, demon-

strating in principle one can never estimate these parameters in a finite

number of frames. Further, we demonstrate their approach is only valid

for rigid sub-structures of the body (e.g. torso). Based on this analysis

we propose a novel approach using deterministic structure from motion

based on assumptions of rigidity in the body’s torso. Our approach pro-

vides notably more accurate estimates and is substantially faster than

Wei and Chai’s approach, and unlike the original, can be solved as a

deterministic least-squares problem.

Keywords: Human pose estimation, Structure from motion.

1 Introduction

The task of estimating 3D non-rigid structure from a small number of 2D point
correspondences is, in general, an inherently ill posed problem. Recently, Wei and
Chai [1] proposed an approach for solving the non-rigid structure from motion
problem specifically for bodies. Their approach took advantage of assumed, and
empirically validated, rigid constraints in the human body’s torso and hip. Their
approach is notable in comparison to previous literature [2,3,4,5] in the area as
it: (i) makes no assumptions about bone lengths or camera scale, (ii) is not
limited/constrained to modeling shapes previously seen in a train set, and (iii)
can handle missing body points.

In [1] Wei and Chai claim their approach requires a minimum of five frames
with 2D point correspondences (under a weak perspective assumption) for a 17
bone body containing 4 rigid triangles and 7 symmetry constraints, from which
they can then estimate bone lengths, camera scale, and articulated pose. Their
argument is made elegantly under the assumption that if one wants to recon-
struct all unknowns without any ambiguity, one needs at least the same number
of constraints. The authors claim that the introduction of rigid constraints across
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a finite number of frames (i.e. ≥ 5) balances the number of unknowns with con-
straints. In this paper we demonstrate that this, rather strong assumption, is
false. This dilemma forms the central thesis of our paper. The contributions of
our paper are as follows:-

– We demonstrate that Wei and Chai’s approach is only valid for rigid sub-
structures of the human body (e.g. torso) rather than the entire body’s
non-rigid structure. We further demonstrate that the assumption that this
approach was valid for non-rigid bodies led to the false claim that camera
scales, bone lengths and absolute depths can be solved in minimum of 5
frames for a 17 bone body model. (Section 4)

– A fast and deterministic solution to the problem of estimating camera scale
and bone lengths for the body’s rigid torso is proposed. This solution differs
substantially to the approach employed in [1] which attempted to solve a
quartic objective function. Unlike our fast deterministic approach based on
canonical rigid structure from motion [6], the method of Wei and Chai re-
quires a slow non-linear optimizer with a number of heuristics needing to be
chosen to estimate a satisfactory answer. Our approach also exhibits supe-
rior empirical performance to [1]. Further, our approach solves for the full 3D
structure of the torso up to a reflection, whereas [1] has inherent ambiguity
with respect to the sign of each bone depth. (Section 5)

– A remaining problem now exists, however, with respect to estimating the
bone lengths and joint angles of the residual non-rigid structures of the body
(e.g, arms, legs, etc.). For this task, we propose an elegant approach based
on: (i) making an assumption that all non-rigid bones (taking into account
symmetry) will be parallel to the image plane in at least one frame, and (ii)
using prior statistics on allowable human joint angles. (Section 6)

The most important contribution, however, of our work is to highlight where
assumptions of rigidity help, during 3D human pose estimation, and where they
do not. First, our work demonstrates the absolute importance of the accurate
labeling of the 4 rigid points on the body’s torso. Without these accurate labels
it is impossible to estimate camera scale and therefore the lengths of any of
the other non-rigid bones. Second, we demonstrate that, with the exception
of camera scale, assumptions of rigidity in the body’s torso and hip cannot
aid in the estimation of bone lengths, or joint angles, in the remaining non-
rigid substructures. Further assumptions are required, such as those discussed
in Section 6, in order to estimate these additional lengths and angles.

1.1 Background

Factorization approaches, first proposed for recovering rigid structure by Tomasi
and Kanade in [6], were extended to handle non-rigidity in the seminal paper
by Bregler et al. [5]. In this notable work the authors realized that the only
way to make the non-rigid structure from motion problem tractable is to impose
some constraint on the object being analyzed (e.g. assuming we are looking at a
body). Bregler et al. imposed this constraint as a linear shape basis. A number of
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approaches that develop the use of shape basis have subsequently been proposed,
including [7,8,9]. A fundamental criticism, however, of all these approaches is
the specificity, or more critically the poor generalization properties, of the shape
basis. For example, the shape basis of a “person walking” will not be the same
as that of a “person bending down to pick something up”. Akhter et al. [10]
recently proposed an approach to non-rigid structure from motion that is shape
agnostic, and instead places a constraint on how individual points are allowed to
move through space over time. The authors frame this work in a manner similar
to Bregler et al. through the introduction of a trajectory basis. A criticism of
this approach, however, is that it requires each frame of a video sequence to have
2D point correspondences and cannot handle 2D points of an object sampled at
random points in time.

2 The Problem

In this section we will quickly review the problem of establishing 3D human poses
from uncalibrated 2D point correspondences. Given a series of F 2D frames of
a person in different poses, we seek to establish the 3D weak perspective struc-
ture namely, camera scale, bone lengths, and 3D pose. Under weak perspective
projection, each camera has a single unknown scale parameter sf . The length of
each bone lb is constant across all frames. The relative depth across each bone
zfb defines the 3D pose.

Let s and σ denote vectors of squared and inverse-squared camera parameters
respectively.

s =

⎡⎢⎣ s1
2

...
sF

2

⎤⎥⎦ σ =

⎡⎢⎣ σ1

...
σF

⎤⎥⎦ =

⎡⎢⎣ s1
−2

...
sF

−2

⎤⎥⎦

Fig. 1. Human skeleton model with B = 17 bones as used by [1]. Wei and Chai propose

the introduction of R = 4 hidden bones to enforce the rigidity of points on the torso

and hip (rigid sub-structures of the body are shaded).
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Fig. 2. Weak perspective (or scaled orthographic) projection is a good approximation

for perspective projection assuming the length of each bone is small compared to the

distance from the camera. In our work we assume each frame f has a single unknown

scale parameter sf , and the length lb of each bone b is constant across all frames. xfb

and zfb are the known projected lengths, and relative depths respectively for each

frame and bone.

Let l be a vector of squared bone lengths. Let zf and xf be vectors of relative
depths and known projected lengths of all bones in frame f respectively; squared.

l =

⎡⎢⎣ l1
2

...
lB

2

⎤⎥⎦ zf =

⎡⎢⎣ zf1
2

...
zfB

2

⎤⎥⎦ xf =

⎡⎢⎣ xf1
2

...
xfB

2

⎤⎥⎦
The problem, generically, can be expressed as minimizing the following objective
function,

Ep(l, z, σ) =
F∑

f=1

‖l− σfxf − zf‖2
2 (1)

The depths for frame f are only estimated up to their absolute value {|zfi|}B
i=1.

Estimating the unknown signs is discussed in Section 6, but shall be ignored
for the moment. The system as described in Equation 1 has B unknown bone
lengths, BF unknown bone depths and F unknown camera scales; with only BF
Pythagorean constraints and 1 arbitrary scale constraint (i.e. we can assume
the scale on the first frame to be unity σ1 = 1). The system will be rank-
deficient unless the number of constraints is greater than or equal to the number
of unknowns. The difference between constraints and unknowns is 1 − F − B.
The condition on F therefore is,

F ≤ 1 −B (2)

Clearly there is no positive solution for F which satisfies the inequality. Some
additional constraints/prior is required to solve the problem in Equation 1.

3 Wei and Chai’s Method

In recentworkWei andChai [1] proposed a novel solution to this under-constrained
problem through the introduction of rigid constraints on the torso (3 bones) and
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the hip (2 bones). The authors demonstrated empirically [1] that the hip and torso
can be considered separate rigid structures. In their approach they enforced the
rigid constraint through a hidden bone, which closes a pair of bones to form a rigid
triangle, resulting in the following rigid constraint function which is quartic (in
terms of the squared variables).

Er(e, z, σ) =
F∑

f=1

R∑
i=1

[(
e2

i − xe
fi

2σf − z2
fj(i) − z2

fk(i)

)2

− 4z2
fj(i)z

2
fk(i)

]2

(3)

where ei denotes the length of the i-th hidden bone, xe
fi denotes the correspond-

ing projection length, j(i) and k(i) are indexes to the visible bones that form
the rigid triangle with the i-th hidden bone. For R hidden bones, they intro-
duce R extra unknown bone lengths and therefore RF new constraints. Wei and
Chai also take advantage of the natural symmetry occurring in human bodies
to improve the rank of the system. All visible bones (i, j) in a left-right pair are
assumed to be of equal length,

li
2 − lj

2 = 0 (4)

with this property being encoded into A resulting in the following symmetric
constraint function,

Es(l) = ‖Al‖2
2 (5)

Wei and Chai proposed that the objective functions in Equations 1, 3 and 5 can
be linearly combined such that the new objective function is,

arg min
l,z,σ,e

= Ep(l, z, σ) + λ1Es(l) + λ2Er(e, z, σ) (6)

where λ1 and λ2 are parameters that are used to control the influence of the two
constraint functions Es() and Er() respectively. These parameters are tuned
through a cross-validation process.

3.1 Constraints versus Variables

At first glance the combination of objective and constraint functions in Equa-
tion 6 seems substantially more constrained than the original objective function
described in Equation 1. The overall system has (B + 1)F + (B + R) unknowns
and (B +R)F +1 constraints. Including symmetry adds another M constraints,
effectively reducing the number of unknown bone lengths so that the condition
on F (assuming R ≥ 2) is,

F ≥ 1 +
B −M

R − 1
(7)

It seems for a skeleton with B = 17 bones, M = 7 symmetry constraints and
R = 4 rigid bone pairs, it is always possible to find bone lengths, bone depths and
camera parameters (up to a constant factor) given point correspondences from
5 distinct frames under weak-perspective projection. In the following section,
however, we dissect this claim further showing it to be false.
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4 A Toy Problem

Nothing limits the application of Wei and Chai’s method to human bodies.
More generally, their approach should hold for any connected structure, satis-
fying Equation 7, containing a subset of rigid points. For convenience we shall
continue to refer to the edges connecting points in such structures as bones, even
though we are no longer referring to the human body. Figure 3 shows a single
free bone attached to a rigid tetrahedron. We define a bone as being free if one of
its end points is not connected to a rigid structure, implying that the end-point
can move non-rigidly with respect to the structure (e.g. bones on the arm or
leg of the human body). The shape in Figure 3 according to Wei and Chai’s
approach can be described as B = 4, R = 3, and M = 0. Applying Equation 7
in this circumstance implies that the lengths and camera scales for the structure
can be solved for F ≥ 3. The absurdity of this claim can be understood if we
attempt to solve this problem in an alternative manner using canonical structure
from motion [11]. It is widely accepted that the weak-perspective parameters,
camera orientations and 3D structure of the tetrahedron can be recovered, given
a minimum of 4 non-coplanar points, from F ≥ 3 frames using the structure
from motion theorem [11]. Assuming these variables are known, however, the
problem of finding the length of the single free bone remains, in general, fun-
damentally unsolvable. It is impossible to know the length of a free bone from
multiple projections of unknown orientation. It is easy to show through a simple
thought experiment, see Figure 4, that no minimum number of images neces-
sarily guarantees that the length of a free bone can be determined. This clearly
violates Wei and Chai’s conditon on F in Equation 7. This violation occurs
due to the misuse of the hidden bones, introduced by Wei and Chai, to enfore
rigidity. These rigid constraints only apply to those bones comprising the rigid
structure. To understand this further, one can partition the objective function in
Equation 6 into separate components describing rigid structures (e.g. the torso
and hip) and the residual non-rigid structures. The only variable that is common
across these separate partitions is camera scale. Were we to consider the problem
under orthography, each free bone would emerge an independent, under-ranked

Fig. 3. This figure depicts a tetrahedron with a single free bone (i.e. the end point can

move non-rigidly with respect to the rigid points defining the tetrahedron) highlighting

the underlying problem in the method of Wei and Chai [1] with regard to non-rigid

points. The hidden bones, denoted by a dotted line, enforce rigid structure in the

tetrahedron.
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Fig. 4. This figure depicts the inherent ambiguity of a free bone projected onto the

image plane (assuming parallel projection)

system (or each left-right pair remembering symmetry). It becomes clear that
the claim of Wei and Chai is just a mirage, creating the illusion of a solvable
system by combining under- (i.e. non-rigid) and over-ranked (i.e. rigid) systems.

5 Estimating Camera Scale from Rigid Sub-structure

From Section 4 it is clear that Wei and Chai’s approach cannot be applied to rigid
structures with additional free bones. Their approach, however, still holds for the
estimation of camera scale, bone lengths and absolute depths for rigid structures.
This, unfortunately, involves finding the solution to a quartic objective function,
as described in Equation 6, which is susceptible to local minima and requires a
slow non-linear, non-deterministic solver. As discussed in Section 4 an alternative
method for estimating the camera scale, bone lengths and actual depths of the
rigid structure is through the use of canonical structure from motion [11,6].
Canonical structure from motion has a number of advantages over the objective
function described in Equation 6 specifically: (i) structure from motion has a
deterministic, linear least-squares solution [12], and (ii) the direction of the depth
across each bone can be found, not just the magnitude.

Structure from motion, under a weak perspective assumption, involves the
resolution of a matrix of 2D projection coordinates W (2F ×N) into rotation R
(2F ×3) and structure S (3×N) matrices where N +1 is the number of points in
the rigid structure [6]. We assemble W from relative vectors between projected
points instead of expressing points relative to their centroid, explaining why W
is 2F ×N instead of 2F × (N + 1) where,

W = RS =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1iT1
...

sF iTF
s1jT1

...
sF jTF

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
p1 · · · pN

]
(8)

Typically, singular value decomposition (SVD) is used to find a rank-3 approxi-
mation Ŵ = R̂Ŝ. The rotation and structure matrices are then determined up
to a rotation and constant factor by enforcing metric constraints on R.
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W ≈ Ŵ = R̂Ŝ = (R̂G)(G−1Ŝ) = RS (9)

For the special case of N = 3 (such as with the human torso), the SVD is not
required. We can simply substitute R̂ = W, Ŝ = I. In our approach the typical
weak perspective metric constraints [13] are modified to obtain a single estimate
of scale for each frame. We then adopt the method presented by Morita and
Kanade [12] for posing the metric constraints as a linear least squares optimisa-
tion to solve for G, subject to s > 0.

5.1 Experiments

Our experiments were carried out on the CMU Motion Capture Database.1

Experiments were performed using 5 randomly selected frames from each of
128 motion sequences. Each sequence featured one of 20 different actors. For
each sequence, the camera parameters and rigid bone lengths on the torso were
calculated using our structure from motion approach and variants of Wei and
Chai’s non-linear optimisation. Histograms of normalized scale and length results
are shown in Figures 5 and 6 respectively. Scale and length estimates have all
been normalized by their ground-truth values. The more accurate the results,
the more they tend towards unity.
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Fig. 5. Histograms of camera scale estimates using our deterministic structure from

motion approach compared to Wei and Chai’s computationally expensive non-linear

optimisation, with and without symmetry and hip bones. All estimates have been

normalized by their ground-truth values so that the more accurate the approach the

more the scale estimate will tend towards unity.

Experiments were restricted to estimating camera scale, as well as lengths,
from just the body’s torso not the hip. This is due to the structure from mo-
tion theorem [11] which states that you need a minimum of 4 non-coplanar rigid
points. Inspecting Figure 1 one can see the torso satisfies this criteria (contain-
ing 4 non-coplanar points2), but the hip does not (containing only 3 points).
1 http://mocap.cs.cmu.edu/
2 Care was taken to consistently mark the torso joint at the front of the subject’s chest

to ensure non-coplanar points.
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Fig. 6. Histograms of the torso bone lengths; namely the back, left clavicle and right

clavicle bones. Length estimates depicted include our deterministic structure from

motion approach compared to Wei and Chai’s computationally expensive non-linear

optimisation, with and without symmetry and hip bones. All estimates have been nor-

malized by their ground-truth values so that the more accurate the approach the more

the length estimate will tend towards unity.

Similarly, for Wei and Chai their approach cannot be applied solely to the hip
due to there only being R = 1 hidden bones enforcing rigidity. Inspecting Equa-
tion 7 one can see that there is no F that satisfies the condition for R = 1.

Results in Figures 5 and 6 demonstrate that our structure from motion ap-
proach consistently outperforms Wei and Chai’s for both scale and length estima-
tion (in terms of the estimates tending towards unity). Results did not improve
even when the symmetry constraint function (enforcing the left and right clavicle
in the torso to be the same length), described in Equation 5, was introduced.
Additional results are depicted in Figure 5 to empirically reinforce our claim that
the employment of the hip, in conjunction with the torso, does not aid in the
estimation of camera scale. All our experiments were conducted in MATLAB.
The approach of Wei and Chai, which required the minimization of the quartic
objective function described in Equation 6 (using lsqnonlin in MATLAB), em-
pirically took over 300 times as long to compute as our deterministic structure
from motion approach.
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6 The Remaining Problem

It is clear from Section 5 that we are now able to reliably estimate the rigid
structure of the torso along with camera scale using our structure from motion
approach. A problem still remains, however, in how to estimate the lengths and
joint angles of the remaining free bones.

6.1 Estimating Free Bone Lengths

Given F frames of a free bone in random orientations, as F tends toward infinity
the longest observed projection provides an increasingly accurate estimation of
bone length,

Fig. 7. 3D pose reconstructed from ten manually-labelled images of Steelers quarter-

back Ben Roethlisberger. Shown from the original front-view and an elevated side-view.



Deterministic 3D Human Pose Estimation Using Rigid Structure 477

l2b ≈
F

max
f=1

{
1
s2

f

x2
fb

}
(10)

where an estimate of sf is known from our structure from motion approach. That
is, the likelihood of the bone lying parallel to the camera plane in at least one
image approaches certainty as F increases. In our approach, instead of requiring a
large number of images to find bone lengths, we consider the “human in the loop”
responsible for choosing images such that each bone is near-parallel in at least one
image. We assume that a finite F well-selected frames will tend towards the true
bone length. Symmetry constraints reduce the number of degrees of freedom,
but even with symmetry the free bone problem remains under-ranked (by at
least one unknown bone length). The key advantage of considering symmetry in
free bones is that only one bone in each symmetrical pair need lie parallel to the
image plane.

We note from Equation 10 that the accuracy of the solution for free bones
depends critically on the accuracy of all scales. If the scale of one image is
significantly under-estimated, the length of a free bone could potentially be over-
estimated, which affects the 3D pose for all frames. This effect is most obvious
for poses where an elbow or knee joint is close to fully extended, but has to be
bent in the reconstruction to fit the projection (see the bottom-left image in
Figure 7 and the middle image in Figure 9).

Fig. 8. 3D pose of cricket all-rounder Michael Clarke. Generated from five human-

labelled images.
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6.2 Estimating Joint Angles

Once we have an estimate of bone length we then also have the absolute bone
depth,

z2
fb = l2b −

1
s2

f

xfb (11)

although we have ambiguities over the sign of zfb. In our approach, we borrow
upon Wei and Chai’s approach for reducing this ambiguity by enforcing joint
angle limit constraints from the biomechanics community. The joint angle limit
constraints significantly reduce the ambiguity, but for some poses they are not
sufficient to remove all ambiguity. When this happens, we allow the user to
specify the sign of zfb for bones that still have ambiguity until we have a solution.

6.3 Experiments on Real Images

We evaluated the effectiveness of our proposed approach using freely available
images of four notable athletes, Ben Roethlisberger, Michael Clarke, Yu-Na Kim
and Roger Federer, in Figures 7, 8, 9 and 10 respectively.

Fig. 9. Korean figure skater Yu-Na Kim, 2010 gold medallist. The 3D poses were

reconstructed using only the three images shown. Wei and Chai [1] previously proposed

that a minimum of five images were required.
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Fig. 10. The 3D pose of Swiss tennis player Roger Federer estimated from four images

7 Discussion and Conclusions

In this paper we present a novel approach for estimating 3D human pose from
several frames of uncalibrated 2D point correspondences using a deterministic
least-squares approach. Our approach, takes advanatge of rigid constraints in the
human body first proposed by Wei and Chai [1]. We have additionally demon-
strated that Wei and Chai’s approach is only valid for rigid sub-structures of the
human body (e.g. torso) rather than the entire body’s non-rigid structure. We
further demonstrate that the assumption that this approach was valid for non-
rigid bodies led to the false claim that camera scales, bone lengths and absolute
depths can be solved in minimum of 5 frames for a 17 bone body model.
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Abstract. Recognition problems in computer vision often benefit from

a fusion of different algorithms and/or sensors, with score level fusion

being among the most widely used fusion approaches. Choosing an ap-

propriate score normalization technique before fusion is a fundamentally

difficult problem because of the disparate nature of the underlying dis-

tributions of scores for different sources of data. Further complications

are introduced when one or more fusion inputs outright fail or have ad-

versarial inputs, which we find in the fields of biometrics and forgery

detection. Ideally a score normalization should be robust to model as-

sumptions, modeling errors, and parameter estimation errors, as well as

robust to algorithm failure. In this paper, we introduce the w-score, a

new technique for robust recognition score normalization. We do not as-

sume a match or non-match distribution, but instead suggest that the top

scores of a recognition system’s non-match scores follow the statistical

Extreme Value Theory, and show how to use that to provide consistent

robust normalization with a strong statistical basis.

1 Introduction

For many different recognition problems in computer vision, the ability to com-
bine the results of multiple algorithms and/or sensors brings significant improve-
ment in overall recognition performance. While there are many approaches and
“levels” of fusion, a widely used approach is score level fusion, where scores from
different recognition algorithms are combined. Since score distributions vary as
a function of the recognition algorithms, and sometimes the underlying sensors,
one must normalize the score data before combining it in score level fusion.

The goal of fusion is to improve recognition accuracy, and hence it is important
that the underlying process be robust. Choosing a robust score normalization
technique is often a challenge for several reasons. In the literature, the term ro-
bust has been defined as insensitivity to the presence of outliers (noise) [1] for the
estimation of any necessary parameters. While this definition captures one prop-
erty of good fusion, there are more issues than just the parameter estimation. We
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define the term robust fusion to be a fusion process (including normalization)
that is insensitive to errors in its distributional assumptions on the data, has
simple parameter estimation, and a high input failure tolerance. For this work,
simple parameter estimation means there is no dependence on a large sample
set for modeling the match and non-match distributions for each algorithm, and
a very small number of parameters must be estimated experimentally. Failure
tolerance means that if one or more recognition algorithms involved in the fusion
process is not producing correct matching results, it does not strongly impact
the final result of fusion. Ideally, we would like a score normalization that is both
robust to failure, and is unencumbered by complicated parameter estimation as
score distributions vary. Further, if an algorithm is repeatedly failing, robust
fusion should be able to detect this.

Robustness in score level fusion is strongly impacted by normalization in two
major ways:

1. The varying nature of the underlying distribution of scores across different
recognition algorithms often leads to inconsistency in normalization results.
For example, if a normalization technique assumes the algorithms considered
for fusion produce scores that follow a Gaussian distribution, and at least
one of those distributions is not Gaussian, the results will not be optimal.
The distribution of recognition scores is the result of a complex function of
both the algorithm and the actual data being processed, and it is dangerous
to assume too much about the score distribution.

2. Complications are introduced when one or more sensors or recognition al-
gorithms being considered for fusion fail or are deceived. For recognition
problems, failure occurs when an input sample of a class unknown to the
system is recognized as being part of a known class, or when an input sam-
ple that should be recognized by the system is rejected as being unknown.
The scores produced in these failure scenarios become problematic for nor-
malization techniques, especially when they resemble an “expected” (and
often estimated) match distribution.

In this paper, we introduce a new score normalization approach for robust fusion
based on a probability of confidence that a particular score is not drawn from
the non-match distribution. For an overview, we turn to Figure 1. Based on the
match scores produced by multiple recognition algorithms applied to a particular
object, a post-recognition score analysis [2] [3] is performed to predict the prob-
ability of the scores not being from the non-match distribution. For this work,
we introduce a statistical Extreme Value Theory normalization that draws these
probabilities from the cumulative distribution function of a Weibull distribution
(hence “w-score”). The resulting probabilities from the different algorithms are
the normalized w-scores, which can then be fused together to produce an overall
probability of not being a non-match. In Figure 1, the process is shown for the
case of two algorithms, though it applies to any number of inputs.

Traditional normalization techniques change the location and scale parameters
of a score distribution in an ad-hoc manner or based on unproven distributional as-
sumption. In contrast, our w-score normalization changes raw scores to probability



Robust Fusion: Extreme Value Theory for Recognition Score Normalization 483
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w-score?

Prediction+

Perform
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Fig. 1. An overview of the w-score normalization process. Recognition scores are pro-

duced by an algorithm for the given input. An Extreme Value Theory statistical model

(Weibull) is fit to the tail of the sorted scores. The normalization of all data is done

using the cumulative distribution function of the resulting Weibull distribution (hence

w-scores). The w-score is an estimate of the probability of a particular score not being

from the non-match distribution, and hence an ideal normalization for fusion.

scores based on a strong statistical theory. This is a new paradigm for recognition
score normalization supporting robust recognition fusion.

We organize the rest of this paper as follows. In Section 2, we discuss the
strengths and weaknesses of common recognition score normalization techniques.
In Section 3, we review the post-recognition score analysis based on statistical
Extreme Value Theory (pre-requisite to our new normalization technique) and in
Section 4, we detail the w-score normalization technique. Finally, we present ex-
perimental results for the w-score on a series of biometric recognition algorithms
and content-based image retrieval descriptors in Section 5.

2 Recognition Score Normalization

2.1 Recognition Systems

There are multiple formal ways to define what exactly a “recognition” task is.
For this work, we consider the general definition of Shakhnarovich et al. [4],
where the task of a recognition system is to find the class label c∗, where pk is
an underlying probability rule and p0 is the input distribution, satisfying

c∗ = argmax
class c

Pr(p0 = pc) (1)

subject to Pr(p0 = p∗c) ≥ 1− δ for a given confidence threshold δ, or to conclude
the lack of such a class (to reject the input). We define probe as the input
image distribution p0 submitted to the recognition system in order to find its
corresponding class label c∗. Similarly, we define gallery to be all the classes c∗

known to the recognition system.
Many systems replace the probability in the above definition with a more

generic “score,” which produces the same answer when the posterior class prob-
ability of the identities is monotonic with the score function. In this case, setting
the minimal threshold on a score effectively fixes δ. We call this rank-1 recogni-
tion, because the recognition is based on the largest score. One can generalize
the concept of recognition, as is common in content-based image retrieval some
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biometrics problems and some object recognition problems, by relaxing the def-
inition of success to having the correct answer in the top K responses. Many
researchers use a pseudo-distance measure where smaller scores are better, which
is trivially converted to a “larger is better” approach.

For analysis, presuming the ground-truth is known, one can define the overall
match and non-match distributions for recognition and the per-instance post-
recognition distributions (see Figure 2) . For an operational system, a threshold
t0 on the similarity score s is set to define the boundary between proposed
matches and proposed non-matches. The choice of t0 is often made empirically,
based on observed system performance. Where t0 falls on each tail of each over-
all distribution establishes where False Rejection (Type I error: the probe has a
corresponding entry in the gallery, but is rejected) or False Recognition (Type
II error: the probe does not have a corresponding entry in the gallery, but is in-
correctly associated with a gallery entry) will occur. The post-recognition scores
in the example yield a False Rejection for the t0 shown.

2.2 Normalization Techniques

Traditional normalization techniques change the location and scale parameters
of a score distribution. Jain et al. [5] define two types of normalizations based
on the data requirements for parameter estimation. In fixed score normalization,
which includes machine learning based approaches, the parameters used for nor-
malization are determined a priori using a fixed training set. This means that
the training set must accurately reflect the score distribution for each recognition
algorithm – any deviation will have an impact on the recognition results. In an
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approach that is inline with our desire for simple parameter estimation, adap-
tive score normalization estimates parameters based on the scores at hand for a
particular recognition instance. As a further consideration, a normalization tech-
nique is robust if it is insensitive to outliers. In this section, we briefly describe
various normalization techniques, including the very popular z-score, which we
use for comparison in all of our experiments in Section 5. For each example, a
set of match scores {sk}, k = 1, 2, . . . , n is considered for normalization.

z-scores are adaptive score normalizations that are computed in a straight-
forward manner. Referring to Equation 2, the normalized score is produced by
subtracting the arithmetic mean μ of {sk} from an original score, and dividing
this number by the standard deviation σ of {sk}. This parameter estimation
makes z-score normalization an adaptive score normalization, but it is possible
to compute z-score normalization as a fixed score normalization if μ and σ are
estimated for the overall distributions of scores produced by different recognition
algorithms. z-score normalization is not robust in the traditional sense, and, as
we show in this paper, is highly impacted by recognition algorithm failure.

s′k =
sk − μ

σ
(2)

tanh-estimators [6] are fixed score normalizations that are considered robust to
noise, but are far more complicated to compute, compared to the adaptive z-
scores. The normalized score is produced by taking the hyperbolic tangent of
a z-score-like calculation. The robust nature of tanh-estimators comes from the
mean and standard deviation estimates, which are computed from a genuine
score distribution that is itself computed from Hampel estimators, making tanh-
estimators fixed score normalizations. The Hampel estimators are based on an
influence function, which makes the normalization robust to noise by reducing
the influence of the scores at the tails of the distribution being considered. The
tail points for three different intervals from the median score of the distribu-
tion must be defined in an ad hoc manner. These parameters can be difficult
to determine experimentally, and if chosen incorrectly, limit the effectiveness of
tanh-estimators. tanh-estimators are robust to noise, but not parameter esti-
mation. Further, tanh-estimators have been shown to produce good results for
noisy data in verification problems [5], but not recognition problems, where the
underlying score distributions are different.

Other important work in score normalization has investigated advanced topics
in statistical modeling including: the effect of correlation and variance on z-scores
[7]; client specific normalization related to classifications made with respect to
the Doddington’s zoo effect (which includes failure cases) [8]; cost-sensitive per-
formance evaluation of hardware and software failure [9]; and effects related to
signal quality [10].

3 Statistical Extreme Value Theory

As we saw in Section 2.1, we can map almost any recognition task into the
problem of determining “match” scores between the input data and some class



486 W. Scheirer et al.

descriptor, and then determining the most likely class [4]. Success in a recognition
system occurs when the match is the top score. Failure in a recognition system
occurs when the match score is not the top score (or not in the top K, for
the more general rank-K recognition). With these two definitions in mind, it is
critical to note that the analysis here is done for a single probe at a time, and
this assessment is not based on the overall “match/non-match” distributions,
such as those in [11] and [12], which include scores over many probes. Rather it
is done using a single probe producing at most one match score mixed in with a
larger set of non-match scores.

We can formalize our analysis as score-based accuracy prediction for rank-
K recognition, determining if the top K scores contain an outlier with respect
to the current probe’s non-match distribution. In particular, let F(p) be the
distribution of the non-match scores that are generated by the matching probe p,
and m(p) to be the match score for that probe. In addition, let S(K) = s1 . . . sK

be the top K sorted scores. We can formalize the null hypothesis H0 of our
prediction for rank-K recognition as:

H0(failure) : ∀x ∈ S(K), x ∈ F(p), (3)

If we can reject H0 (failure), then we predict success.
While some researchers have formulated recognition as hypothesis testing

given the individual class distributions [4], that approach presumes good models
of distributions for each match/class. We cannot model the “match” distribution
here effectively, as we only have one sample per probe, and so the only way to
apply that is to assume a consistent distribution across all probes, which is ques-
tionable. That is the key insight; we don’t have enough data to model the match
distribution, but we have n samples of the non-match distribution — generally
enough for a good non-match modeling and outlier detection. If the best score
is a match it’s an outlier with respect to the rest of the data.

As we seek a more formal approach, the critical question then becomes how
to model F(p), and what hypothesis test to use for the outlier detection. Various
researchers have investigated modeling the overall non-match distribution [12],
developing a binomial model. Our goal, however, is not to model the whole
non-match distribution over the entire population, but rather to model the tail
of what exists for a single probe comparison. The binomial models developed
by [12] account for the bulk of the data, but have problems in the tails, and are
not a good model for a particular probe.

An important observation about the problem we consider here is that the
non-match distribution we seek to model is actually a sampling of scores, one or
more per “class,” each of which is itself a distribution of potential scores for this
probe versus the particular class. Since we are looking at the upper tail, the top
n scores, there is a strong bias in the samplings that impact the tail modeling;
we are interested only in the top similarity scores.

Claiming the tail of a distribution to be an extreme value problem may ap-
pear intuitive. Recent work [13] looking at verification score spaces relies on this
intuition, but does not explain why extrema value theory applies to the tails of
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Fig. 3. Why our score analysis is an extreme value problem. One can view this problem

as considering a collection of portfolios composed of sub-sets of the gallery, each of which

produce scores. One portfolio contains a match-score (red), the rest are non-matching

scores (brown). The best of the best of the portfolio scores are those that show up in

the tail of the post-recognition score distribution — leaving us with an extreme value

problem for the data we consider. The best score in the tail is, if a match, an outlier

with respect to the EVT model of the non-match data.

their score distributions. Just being in the tail is not sufficient to make this an
extreme value problem, as one can take the top N samples from any particular
distribution D, which by definition fit distribution D and not any other distri-
bution. Just considering tails of data is not sufficient justification to invoke the
extreme value theorem, just like taking a sample from a distribution does not
necessarily invoke the central limit theorem.

We can consider the recognition problem as logically starting with a collection
of portfolios, each of which is an independent subset of the gallery or recognition
classes. This is shown in Figure 3. From each portfolio, we can compute the
“best” matching score in that portfolio. We can then collect the subset where
all of these scores are maxima (extrema) within their respective portfolios. The
tail of the post-match distribution of scores will be the best scores from the
best of the portfolios. Looking at it this way we have shown that modeling the
non-match data in the tail is an extreme value problem. With this formalized
view of recognition, we can invoke the Extreme Value Theorem: [14]:

Extreme Value Theorem 1. Let (s1, s2, . . .) be a sequence of i.i.d samples.
Let Mn = max{s1, . . . , sn}. If a sequence of pairs of real numbers (an, bn) exists
such that each an > 0 and

lim
x→∞P

(
Mn − bn

an
≤ x

)
= F (x) (4)

then if F is a non-degenerate distribution function, it belongs to one of three
extreme value distributions.

Thus, a particular portfolio is represented as the sampling (s1, s2, . . .), drawn
from an overall distribution of scores S. Theorem 1 tells us that a large set of
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individual maximums Mn from the portfolios must converge to an extreme value
distribution. As portfolio maxima fall into the tail of S, they can be most accu-
rately modeled by the appropriate extreme value distribution. The assumptions
necessary to apply this for a recognition problem are that we have sufficiently
many classes for the portfolio model to be good enough for the approximation
in the limit to apply, and that the portfolio samples are approximately i.i.d..

The EVT is analogous to a central-limit theorem, but with minima (or max-
ima) over the data. Extreme value distributions are the limiting distributions
that occur for the maximum (or minimum, depending on the data representa-
tion) of a large collection of random observations from an arbitrary distribution.
Gumbel [15] showed that for any continuous and invertible initial distribution,
only three models are needed, depending on whether you are interested in the
maximum or the minimum, and also if the observations are bounded from above
or below. Gumbel also proved that if a system/part has multiple failure modes,
the failure is best modeled by the Weibull distribution. The resulting three types
of extreme value distributions can be unified into a generalized extreme value
(GEV) distribution given by

GEV (t) =

{
1
λe−v−1/k

v−(1/k+1) k �= 0
1
λe−(x+e−x) k = 0

(5)

where x = t−τ
λ , v = (1 + k t−τ

λ ) where k, λ, and τ are the shape, scale, and
location parameters respectively. Different values of the shape parameter yield
the extreme value type I, II, and III distributions. Specifically, the three cases
k = 0, k > 0, and k < 0 correspond to the Gumbel (I), Frechet (II), and Reversed
Weibull (III) distributions. Gumbel and Frechet are for unbounded distributions
and Weibull for bounded. Equation 6 gives the CDF of a Weibull.

CDF (t) = 1 − e−( t
λ )k

(6)

If we presume that match scores are bounded, then the distribution of the min-
imum (or maximum) reduces to a Weibull (or Reversed Weibull) [16], inde-
pendent of the choice of model for the individual non-match distribution. For
most recognition systems, the distance or similarity scores are bounded from
both above and below. If the values are unbounded, the GEV distribution can
be used. Most importantly, we don’t have to assume a distributional model for
overall match or non-match distributions. Rephrasing, no matter what model
best fits each non-match distribution, be it a truncated binomial, a truncated
mixture of Gaussians, or even a complicated but bounded multi-modal distribu-
tion, with enough samples and enough classes the sampling of the top-n scores
always results in a Weibull distribution.

Given the potential variations that can occur in the class for which the probe
image belongs, there is a distribution of scores that can occur for each of the
classes in the gallery. Figure 3 depicts the recognition of a given probe image
as implicitly sampling from these distributions. Our method takes the tail of
these scores, which are likely to have been sampled from the extreme of their
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Algorithm 1. w-score Normalization Technique
Require: A collection of scores S, of vector length m, from a single recognition

algorithm j;
1: Sort and retain the n largest scores, s1, . . . , sn ∈ S;

2: Fit a GEV or Weibull distribution WS to s2, . . . , sn, skipping the hypothesized

outlier;

3: while k < m do
4: s′k = CDF(sk, WS)

5: k ← k + 1

6: end while

underlying portfolio, and fits a Weibull distribution to that data. Given the
Weibull fit to the data, we can determine if the top score is an outlier, by
considering the amount of the cumulative distribution function that is to the
right of the top score.

4 Normalization via w-Scores

With the necessary theory covered, we can describe the process for computing
w-scores (Weibull-score, for the statistical fitting that serves as its basis) for
score normalization. The exact process for computing w-score normalization is
given in Algorithm 1. The w-score re-normalizes the data based on its formal
probability of being an outlier in the extreme value “non-match” model, and
hence its chance of being a successful recognition. This is an adaptive score
normalization; we only require the scores from a single recognition instance for
a particular recognition algorithm. w-scores are very robust to noise and failure.

As w-scores are based on the fitting of the Weibull model to the non-match
data of the top scores, an issue that must be addressed is the impact of any
outliers on the fitting. For rank-1 fitting, where the top score is the expected
match data, this bias is easily reduced by excluding the top score and fitting
to the remaining n − 1 scores from the top n. If the top score is an outlier
(recognition is correct), then excluding it does not impact the fitting. If the top
score was not a match, including this recognition in the fitting will bias the
distribution to be broader than it should, which will produce lower probability
scores for the correct match and most of the non-matches. In addition, we must
address the choice of n, the tail size to be used in fitting. This tail size represents
the only parameter that must be estimated for w-scores. Including too few scores
might reduce accuracy, including too many items could impact assumptions of
portfolio sampling. However, as we show in Section 5, even very small tail sizes
(3 and 5) produce good normalization. That is consistent with work in other
fields [14], where 3-5 is a very common fitting size range for Weibulls.

Once the fitting has taken place, we have all of the information necessary to
complete the normalization. For every gallery class i, let score s′i,j be its nor-
malized score in the collection of scores S for algorithm j. We use the CDF
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defined by the parameters of the fitting WS to produce the normalized proba-
bility score s′i,j (we note that in Algorithm 1, the normalization process follows
the sorted list of scores for a single recognition algorithm; s′i,j is a score-index
representation for fusion). We then define w-score fusion as

fi =
∑

j

s′i,j . (7)

Alternatively, similar to Equation 1, one can consider the sum of only those
items with a w-score (probability of success) above some given threshold δ, or
could consider products or likelihood ratios of the w-scores.

Algorithm 2. w-score Error Detection For Fusion
Require: A collection of w-scores S′

n, where n is the number of algorithms to fuse,

and the collection has m different score vectors for each algorithm;

Require: Algorithm FRR/FAR at current settings or ground-truth for each

recognition instance;

Require: A significance threshold ε and an error percentage threshold T ;

1: while i < m do
2: while j < n do
3: f1 ← f1 + s′i,j,1.
4: end while
5: if not a match then
6: if f1 ≥ n × ε then
7: PossibleMatches ← PossibleMatches +1

8: end if
9: end if

10: i ← i + 1

11: end while
12: if PossibleMatches ≥ mT then
13: return System Error Detected

14: end if

The w-score fusion possesses a unique robust property, providing built-in error
detection. An inverse Weibull allows us to estimate the “confidence” of partic-
ular measurement (refer to the hypothesis test of Section 3). Considering the
probabilities for the top score for each algorithm, we can determine if it is highly
likely that the final fused score f1 is not a non-match; if a particular algorithm
consistently fails (or the ground-truth shows it is not failing), we have evidence
of a possible error, most probably some type of data misalignment. Algorithm 2
describes the process of the error detection. A count of the possible matches is
kept, and if it exceeds T percent, we declare system error.

We have found this error detection property to be useful for indicating three
possible errors: (1) the Weibull fitting is inaccurate for valid score data (due to
a mis-estimated tail size) (2) invalid score data (from parsing errors) produced a
CDF that returns an improbably large number of high w-scores; (3) an error is
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present in alignment or the ground-truth labeling (off-by-one errors due to bad
pre-processing). To our knowledge, no other fusion technique has this property.

5 Experimental Results

In this section, we present experimental results for our w-score method on a
series of biometric recognition algorithms and content-based image retrieval de-
scriptors. We compare the w-score approach to the well known z-score normal-
ization. z-score normalization remains one of the most popular normalization
techniques out there (a search for “z-score” using Google scholar returns 102,000
scholarly works), because of its theoretical performance on Gaussian data, and
its straightforward parameter estimation. Fixed score normalizations such as
tanh-estimators or machine learning based approaches are not considered for
the reasons given in Section 2.2.

5.1 Biometric Recognition

For our first set of experiments, we tested a series of biometric recognition al-
gorithms from the NIST BSSR1[17] biometric score set. The data set consists
of scores from 2 face recognition algorithms (labeled C & G) and 1 fingerprint
recognition algorithm applied to two different fingers (labeled LI & RI). BSSR1’s
multibiometric subset contains 517 score sets for each of the algorithms, with
common subjects between each set. BSSR1 also contains individual score sub-
sets for all algorithms, where the scores do not have common subjects between
them. Out of this individual score set data, we created a “Chimera” data set
with 3000 score sets and consistent labeling across all algorithms. This was done
to address the limited nature of the true multibiometric set, where fusion pushes
the recognition rate close to 100% for even weak normalizations.

We performed two different types of experiments on this data. All results
are presented as a percentage of error reduction (improvement) compared to
z-scores, the most popular type of adaptive score normalization, calculated as

%reduction = (%ez −%ew)/%ez (8)

where %ez is the percentage of incorrect rank-1 results for z-score fusion, and
%ew is the percentage of incorrect rank-1 results for w-score fusion.

For the first experiment, we fused a variety of face and fingerprint recognition
algorithms. We note that in normalization and fusion, performance varies as a
function of the data considered. Thus, we only considered the scores equal to
a percentage of the total number of classes, expressed as %c∗. This threshold
is independent of the Weibull fitting, and is applied to both the w-score and
z-score. While we show results for experiments with a consistent percentage of
classes for w-scores and z-scores, we note that in our broader experimentation,
we were always able to achieve better performance than z-scores when choosing
the correct tail size for fitting, and fusing scores within the tail used for fitting.
The tail size used for fitting for all biometrics experiments in this paper is 5.
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Fig. 4. A graphical summary of all of the results presented in this paper. In all cases,

w-scores reduce the margin of error after fusion, when compared to z-scores (baseline),

for a variety of biometric recognition algorithms and CBIR descriptors.

The second experiment tests fusion behavior in a failure scenario, where rank-
1 recognition for at least one of the algorithms is 0%. For biometrics, this may
be thought of as an “impostor” test, where a subject is trying to actively defeat
the recognition system (consider the possibility of a facial disguise that causes a
face algorithm to fail, but has no effect on a fingerprint recognition algorithm).
Results for the BSSR1 multibiometric set and the BSSR1 Chimera set are given
in Tables 1 & 2. w-scores have a clear advantage over z-scores for regular fusion,
and a significant advantage in cases where a recognition algorithm is failing.

5.2 Content Based Image Retrieval

To show the broader applicability of w-score normalization, we also tested a se-
ries of simple CBIR descriptors [18]. Data from the Corel “Relevants” set [19],
containing 50 unique classes, and the INRIA “Holidays” set [20], containing 500
unique classes. Using a variety of descriptors, we generated 1624 score sets for
Corel Relevants and 1491 score sets for INRIA Holidays. In total, we tested 47
different combinations of descriptors across all experiments, but due to space
constraints, we only show four different representative combinations. The exper-
iments are identical to those of the biometric sets in Section 5.1. Results for the
Corel Relevants set and the INRIA Holidays set are given in Tables 3 & 4. We
note that in all of our fusion experiments with CBIR descriptors, w-scores out-
performed z-scores when the appropriate tail size was chosen for Weibull fitting,
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which is consistent with our biometric results. The tail sized used for fitting for
all CBIR experiments is 3.

Table 1. Rank-1 fusion results, expressed as the percentage of error reduction com-

pared to z-scores, for the BSSR1 multibiometric and the BSSR1 “Chimera” data sets

Algorithm Improve %c∗

C & LI 65.9% 2.0%

C & RI 25.0% 2.0%

G & LI 57.7% 2.0%

G & RI 22.2% 2.0%

Chimera C & G 49.1% 0.2%

Chimera C & LI 48.1% 0.2%

Algorithm Improve %c∗

Chimera C & RI 59.1% 0.2%

Chimera G & LI 42.4% 0.2%

Chimera G & RI 54.3% 0.2%

Chimera C & G & LI 38.9% 0.2%

Chimera C & G & RI 35.3% 0.2%

Table 2. Rank-1 fusion results, expressed as the percentage of error reduction com-

pared to z-scores, for the BSSR1 multibiometric and the BSSR1 “Chimera” data sets,

fusing with failing algorithms (marked with *). Note the significant reduction in error.

Algorithm Improve %c∗

*C & LI 63.6% 2.0%

*C & RI 71.8% 2.0%

*G & LI 60.6% 2.0%

*G & RI 63.6% 2.0%

Chimera *C & LI 57.2% 0.3%

Chimera *C & RI 71.3% 0.3%

Algorithm Improve %c∗

Chimera *G & LI 57.5% 0.3%

Chimera *G & RI 70.1% 0.3%

Chimera LI & *RI 54.4% 0.3%

Chimera RI & *LI 46.2% 0.3%

Chimera *C & *G & LI 55.8% 0.3%

Chimera *C & *G & RI 68.9% 0.3%

Table 3. Rank-1 CBIR fusion results, expressed as the percentage of error reduction

compared to z-scores, for the Corel Relevants and INRIA Holidays data sets. We note

that fusion performance here is relative to data set difficulty.

CBIR Algorithm Improve %c∗

Relevants csd & gch 20.8% 6.0%

Relevants csd & jac 27.5% 6.0%

Relevants cwhsv & cwluv 14.9% 6.0%

Relevants cwhsv & jac 17.5% 6.0%

CBIR Algorithm Improve %c∗

Holidays csd & gch 8.9% 0.6%

Holidays csd & jac 6.1% 0.6%

Holidays cwhsv & cwluv 7.6% 0.6%

Holidays cwhsv & jac 9.3% 0.6%

Table 4. Rank-1 CBIR fusion results, expressed as the percentage of error reduction

compared to z-scores, for the Corel Relevants and INRIA Holidays data sets, fusing

with failing algorithms (marked with *). Note the significant reduction in error for this

experiment, which is consistent with the biometric results presented in Table 2.

CBIR Descriptor Improve %c∗

Relevants *csd & gch 40.3% 6.0%

Relevants csd & *jac 35.5% 6.0%

Relevantscwhsv & ∗cwluv 29.8% 6.0%

Relevants cwhsv & jac 39.1% 6.0%

CBIR Descriptor Improve %c∗

Holidays *csd & gch 11.1% 0.6%

Holidays csd & *jac 13.9% 0.6%

Holidays cwhsv & ∗cwluv 11.0% 0.6%

Holidays ∗cwhsv & jac 12.3% 0.6%
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6 Conclusion

In this paper, we have introduced a theory of post-recognition score analysis
based on statistical Extreme Value Theory, and used this theory to develop
our new w-score adaptive score normalization. Through our analysis, we showed
that no matter what model best fits each non-match distribution, with enough
samples and enough classes, the sampling of the top-n scores always results in
a Weibull distribution. With this knowledge, we developed a method that takes
the tail of these scores, which are likely to have been sampled from the extreme
of their underlying sub-sets from the gallery, and fits a Weibull distribution to
that data; the CDF of the resulting distribution allows us to normalize the entire
score sequence. In essence, the w-score normalizes scores to a probability score
reflecting the confidence of the score not being a non-match. Results on a wide
range of biometric and CBIR data show that the w-score is superior to the z-
score, the most popular type of adaptive score normalization, especially when
one or more recognition algorithms fail or when there are impostor scores.
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Abstract. Automatically recognizing human faces with partial occlu-

sions is one of the most challenging problems in face analysis commu-

nity. This paper presents a novel string-based face recognition approach

to address the partial occlusion problem in face recognition. In this ap-

proach, a new face representation, Stringface, is constructed to integrate

the relational organization of intermediate-level features (line segments)

into a high-level global structure (string). The matching of two faces

is done by matching two Stringfaces through a string-to-string match-

ing scheme, which is able to efficiently find the most discriminative lo-

cal parts (substrings) for recognition without making any assumption

on the distributions of the deformed facial regions. The proposed ap-

proach is compared against the state-of-the-art algorithms using both

the AR database and FRGC (Face Recognition Grand Challenge) ver2.0

database. Very encouraging experimental results demonstrate, for the

first time, the feasibility and effectiveness of a high-level syntactic method

in face recognition, showing a new strategy for face representation and

recognition.

Keywords: Partial occlusion, Stringface.

1 Introduction

Face recognition has attracted much attention in both academic and industrial
communities during the past few decades. A great deal of progress has been
made to robustly identifying faces under controlled condition. However, recog-
nizing faces under uncontrolled conditions remains challenging open problems in
face recognition community. A face recognition system can be confront occluded
faces in real world applications very often due to use of accessories, such as scarf
and sunglasses. Hence, the face recognition system has to be robust to occlu-
sion in order to guarantee reliable real-world applications. Recognizing partially
occluded face has received considerable attention in recent years [1][11] [14][18].

Penev and Atick [14] proposed a Local Feature Analysis (LFA) technique by
modifying PCA to solve the partial occlusion problem. LFA is a derivative of
the eigenface method and utilizes specific facial features such as eyes, mouth
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and nose for identification instead of the entire representation of the face. These
features are used as the basis for representation and comparison. Its performance
is dependent on a relatively constant environment and the quality of the image.
Bartlett et al. [1] presented an Independent Component Analysis (ICA) archi-
tecture to find a spatially local face representation. Conceptually, LFA also finds
local basis images for face using the second-order statistics but its kernels are not
sensitive to the higher than second-order dependencies in a face image. On the
contrast, Independent Component Analysis (ICA) architecture I is sensitive to
these high-order statistics. It treats the images as random variables and the pix-
els as outcomes to find a set of statistically independent basis images. Martinez
[11] proposed a probabilistic face recognition approach that could compensate
for the imprecise localization, partial occlusion, and extreme expressions with a
single training sample. In his method, face images are analyzed locally in order to
handle partial face occlusion. The face image is first divided into k local regions
and for each region an eigenspace is constructed. If a region is occluded, it is au-
tomatically detected. Moreover, weighting of the local regions were also proposed
in order to provide robustness against expression variations. Recently, Wright et
al. [18] presented a partition Sparse Representation Classification (SRC) method
which is inspired by the ideal of compressed sensing. In their method, a face is
first partitioned into blocks and compute an independent sparse representation
for each block. Then a general classification algorithm and a voting method are
used to recognize face images.

In this paper, we propose a novel Stringface representation and matching con-
cept for face recognition with one single model image per person under partial
occlusions. Cognitive psychological studies [2][3] indicated that human beings
recognize line drawings as quickly and almost as accurately as gray-level im-
ages since the line drawings preserve most important feature information. In
addition, line segments are less sensitive to illumination changes and local vari-
ations as they integrate the inherent local structural characteristics with spatial
information of a face image [5]. Based on these findings, we represent a face
by an attributed string (Stringface), which groups the relational organization
of intermediate-level features (line segments) into a high-level global structure
representation. Because the Stringface represents not only the local structural
information but also the global structure of a face, it improves upon the lo-
cal characteristics of feature-based methods [5][7]. Furthermore, the Stringface
can be constructed using only a single face image and without training stage
involved in this approach. The matching of two frontal faces is done by match-
ing two Stringfaces through a string-to-string matching scheme. The proposed
attributed string matching concept is able to effectively find the most discrimina-
tive local parts (substrings) for recognition without making any assumption on
the distributions of the deformed facial regions. This substring matching ability
is used to address the occlusion problem. This is believed to be the first piece of
work on frontal face analysis using a high-level syntactic matching method. The
studies and experimental results in this paper are confined to human frontal face
recognition. We deal with partial occlusion, but we do not explicitly account for
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other conditions, such as illumination, expressions and pose. We also assume the
detection, cropping and normalization of the face have been performed prior to
applying our algorithm.

The paper is organized as follows: Section 2 defines the Stringface representa-
tion and matching concept in detail. A feasibility investigation and performance
evaluation of the proposed approach is given in Section 3. Finally, the paper
concludes in Section 4.

2 Proposed Stringface Recognition Approach

String matching is a syntactic and structural method for similarity measure-
ment between strings or vectors, which has been widely used for pattern search
in molecular biology, speech recognition, and file comparison. Strings can be
classified into two categories: symbolic strings and attributed strings. The sym-
bolic string matching is widely used for shape recognition, in which shapes are
described by string representation and primitives are described by symbols. How-
ever, symbols are discrete in nature while most problems of pattern recognition
deal with attributes that are basically continuous in nature. It was found inad-
equate to use symbols as primitives for complex pattern recognition [6]. Hence,
the attributed string matching [4][6] were proposed and the attributed string
representation makes it easier to handle noise and distortion. One advantage of
using variant attributes (location, length and orientation) is that segment merg-
ing becomes possible. However, string matching was believed a technique not
suitable for frontal face recognition due to its highly ordered global represen-
tation and complex nature of a human face. The only most related work [6] is
attempted on human face profile. Their method is based on Needleman-Wunsch
algorithm [13], which performs a global alignment on two sequences of profile
line segments, which fails to work when a face profile has large local shape defor-
mations or occlusions. Obviously, this face representation is not able to describe
frontal faces as it only can represent the continuous silhouette of a profile face,
ignoring other important but unconnected distinctive features, such as the eyes,
eyebrows, mouth and ears. In this study, we propose a novel string representa-
tion and matching concept to recognize frontal faces, an unattempted area, to
address the challenging problem of face recognition with partial occlusions.

2.1 Stringface Representation

A novel syntactic face representation is proposed here to integrate the structure
connectivity information of line segments in a face image. The basic primitives of
our syntactic representation are line segments, which are generated by a polyg-
onal line fitting process [9] from a face edge map. Each line segment, L, is rep-
resented as L(l, θ, x, y), where attributes l, θ, x and y are the length, direction
and midpoint location of the line, respectively. The line direction θ is defined as
the the minimum angle formed between the line segment and the reference line.
The line between two eyes is used as the reference line in this study.
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Definition 1. A Stringface (SF) is defined as a syntactic representation of hu-
man face, which is viewed as being composed of a set of substrings Si (Si ∈ SF ).
Substrings are connected by null primitives φ linking the ith substring Si and the
(i + 1)th substring Si+1 in SF .

SF = SSF
1 φSSF

2 φ · · ·φSSF
n−1φSSF

n , (1)

where n is the number of substrings. The ith substring SSF
i is given by

SSF
i = LSF

j LSF
j+1 · · ·LSF

j+mi
, (2)

where LSF
j is the jth primitive in SF as well as the first primitive in substring

SSF
i and (mi + 1) is the number of primitives in SSF

i , i = 1, . . . , n.

Fig. 1. An example Stringface representation

Fig. 1 illustrates a Stringface representation SF = SSF
1 φSSF

2 · · ·φSSF
8 φSSF

9

generated from line segments, where φ is a null primitive connecting two sub-
strings and each substring SSF

i is a consecutive run of connected line segments
LSi

j (called primitives), i = 1, . . . , 9. In Fig. 1, SSF
2 is composed of three line

segments as
SSF

2 = LSF
4 LSF

5 LSF
6 (3)

2.2 Cost Functions

The goal of string matching algorithms is to find a sequence of elementary edit
operations which transform one sting into another at a minimal cost. The ele-
mentary operations for string matching are deletion, insertion, and substitution.

1. Substitution (or Change): to replace a symbol or primitive (e.g. a in S1)
with the other (e.g. b in S2), denoted as a → b.

2. Insert: to insert a symbol or primitive (e.g. b) into a string (e.g. S1), denoted
as φ → b, where φ is a symbol used to denote nothing (called null symbol).

3. Delete: to delete a symbol or primitive (e.g. a) from a string (e.g. S1),
denoted as a → φ.



500 W. Chen and Y. Gao

A new edit operation, merge, is introduced in attributed string matching, which
can address the noise and distortion issues. The merge operation is used to
combine any number of consecutive primitives in one string and match with
those in the other string. An example of merge operation is illustrated in Fig. 2,
where primitives LSF

i−k+1, . . . and LSF
i are combined into a new primitive LSF

i→k.
We define new cost functions for edit operations of change, insert, delete and

merge. Let SF1 and SF2 be the input and model Stringfaces, respectively. LSF1
i

and LSF2
j are the ith and the jth primitives in SF1 and SF2 with attributes

(li, θi, xi, yi) and (lj , θj , xj , yj). Let SF 〈i → j〉 specify the substring in SF from
the ith to the jth primitives, that is SF 〈i → j〉 = LSF

i LSF
i+1 · · ·LSF

j . The cost
functions of the proposed Stringface matching method are described as follows.

The cost function for change operation from LSF1
i to LSF2

j is defined as

Cost[Change(LSF1
i , LSF2

j )] = |li − lj |+ f(�(θi, θj)) +
√

(xi − xj)2 + (yi − yj)2,
(4)

where �(θi, θj) is the angle difference between two primitives (see Eq.(5)), and
f() is a non-linear penalty function to map the angle to a scalar using f(x) =
x2/W , and W = 50 is the weight to balance the angle and length.

�(θi, θj) =

⎧⎪⎪⎨⎪⎪⎩
|θi − θj | : |θi − θj | ≤ 90o,
180o − |θi − θj | : 90o < |θi − θj | ≤ 180o,
|θi − θj | − 180o : 180o < |θi − θj | ≤ 270o,
360o − |θi − θj | : 270o < |θi − θj | ≤ 360o.

(5)

The costs of delete and insert operations can be derived from the above change
cost function by introducing a null primitive φ with zero length and indefinite
angle and location. The cost functions of these two operations are defined as

Cost[delete(LSF1
i )] = f(Kθ) + li + Kloc, (6)

Cost[insert(LSF2
j )] = f(Kθ) + lj + Kloc, (7)

where Kθ and Kloc are constants to represent the indefinite orientation and
location of the line segment. For the purpose of penalization, 90o and the diagonal
distance of the input image, which are the maximum angle difference and the
maximum location difference, are used for Kθ and Kloc.

Next, we consider the merge operation. The merge operation is used to com-
bine and match any number of consecutive primitives in one face with those in

Fig. 2. An example of the merge operation
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the other. Let SF 〈i − k + 1 → i〉 = LSF
i−k+1L

SF
i−k+2 · · ·LSF

i be a substring with
k primitives in Stringface SF to be merged, and LSF

i→k be the merged primitive
of these k primitives. An example of merge operation is illustrated in Fig. 2.
The merge operation is denoted as merge(SF 〈i − k + 1 → i〉, LSF

i→k). If k = 1,
LSF

i→k = LSF
i . This is the case without any merge operation. The merge cost is

defined as

Cost[merge(SF 〈i− k + 1 → i〉, LSF
i→k)] = f(

k − 1
lk

i∑
p=i−k+1

�(θk, θp)× lp), (8)

where k is the number of merged primitives. lk and θk are the length and the
line direction of the merged primitive LSF1

i→k, lp and θp are the length and the
line direction of primitive LSF

p in SF 〈i − k + 1 → i〉 before merging. Now, by
considering LSF

i→k as a single primitive, the cost function for a change operation
after merge can be rewritten as:

Cost[Change(LSF1
i→k, LSF2

j→l)] = |lk − ll| + f(
(θk, θl
)) +

√
(xk − xl)2 + (yk − yl)2, (9)

which is performed after the k primitives in SF1〈i − k + 1 → i〉 are merged as
LSF1

i→k and the l primitives in SF2〈j − l + 1 → j〉 are merged as LSF2
j→l. If k = 1

and l = 1, no merge is performed and the above change operation reduces to the
conventional one-to-one change operation Change(LSF1

i , LSF2
j ) (see Eq.4)

2.3 Dynamic Merge Limit Determination

The Stringface is composed of substrings and null primitives. The merge limit
merge limitSF

i is used to ensure that the merge operation is restricted in the
same substring, which means that primitives in substring SSF

i cannot be merged
with primitives in its neighboring substrings SSF

i−1 and SSF
i+1. Let SF denote a

Stringface:
SF = SSF

1 φSSF
2 φ · · ·φSSF

n = LSF
1 LSF

2 · · ·LSF
N (10)

where LSF
i is the ith line primitive (including φ) in SF and SSF

j is the jth
substring (curve primitive) in SF , j = 1, . . . , n, i = 1, . . . , N , N and n are the
number of line primitives plus the number of null primitives (φ) and the number
of curve primitives in SF , respectively. Let |SSF

j | be the length of jth substring.
For a primitive LSF

i , if LSF
i ∈ SSF

j , then its merge limit is defined as

merge limitSF
i = i−

j−1∑
t=1

|SSF
t | − j + 1 (11)

2.4 Similarity Measure via Dynamic Programming

The similarity between the two faces can be characterized by the edit opera-
tion cost using Dynamic Programming (DP) between the two Stringfaces. Let
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SF1 = LSF1
1 · · ·LSF1

N1
and SF2 = LSF2

1 · · ·LSF2
N2

be string representations of input
face and model face, respectively, where N1 and N2 are numbers of primitives
in SF1 and SF2. To find pairs of strings with high degrees of similarity, we set
up a similarity matrix S. Let the input Stringface (i.e. SF1) has N1 primitives
represented by the rows of the similarity matrix S, and let the model Stringface
(i.e. SF2) has N2 primitives represented by the columns of the similarity matrix
S. First we initialize

S(i, 0) = S(0, j) = 0 (0 ≤ i ≤ N1 , 0 ≤ j ≤ N2). (12)

S(i, j) is the similarity of two strings ending at LSF1
i and LSF2

j . If LSF1
i = φ or

LSF2
j = φ, S(i, j) = 0. If LSF1

i �= φ and LSF2
j �= φ, S(i, j) is defined as:

S(i, j) = max

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0
S(i, j − 1)− Cost[φ→LSF2

j ]
S(i− 1, j)− Cost[LSF1

i →φ]
maxk,l{S(i− k, j − l)

+c(SF1〈i− k + 1 → i〉,
SF2〈j − l + 1 → j〉)}

(13)

where Cost[φ→LSF2
j ] and Cost[LSF1

i →φ] are costs of insert and delete edit
operations, respectively (see Eq.6). φ is a null primitive. c(SF1〈i − k + 1 →
i〉, SF2〈j − l + 1 → j〉) is defined as follows:

c(SF1〈i− k + 1 → i〉, SF2〈j − l + 1 → j〉)} = λ

−Cost[SF1〈i − k + 1 → i〉, SF2〈j − l + 1 → j〉], (14)

where Cost[SF1〈i−k+1 → i〉, SF2〈j−l+1 → j〉] is the cost of merge and change
edit operations between substring SF1〈i − k + 1 → i〉 and SF2〈j − l + 1 → j〉
(see Eq. 8 and Eq.9). k and l are numbers of the merged primitives. In Eq.14,
λ is used to decide the similarity between primitives SF1〈i − k + 1 → i〉 and
SF2〈j− l+1 → j〉. If the cost value Cost[SF1〈i−k+1 → i〉, SF2〈j− l+1 → j〉]
is less than λ, these primitives are considered as similar elements.

For two Stringfaces, SF1 and SF2, with primitives LSF1
i (i = 1, 2, . . . , N1)

and LSF2
j (j = 1, 2, . . . , N2), we compute all the similarity costs between their

primitives and obtain the similarity matrix S and edit operations matrix M :

S =

⎛⎜⎝ S(0, 0) S(0, 1) . . . S(0, N2)
...

...
...

...
S(N1, 0) S(N1, 1) . . . S(N1, N2)

⎞⎟⎠ (15)

M =

⎛⎜⎝ M(0, 0) M(0, 1) . . . M(0, N2)
...

...
...

...
M(N1, 0) M(N1, 1) . . . M(N1, N2)

⎞⎟⎠ (16)

The pair of substrings with maximum similarity is found by first locating the
maximal element in S. The other matrix elements leading to this maximal value
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are then sequentially determined with a traceback procedure ending with an
element of S(i, j) equaling to zero. For example, S(i1, j1) = v1 is the maximal
element with maximal value v1 in S. M(i1, j1) = (r1, c1) is corresponding edit
operations with value r1 and c1 in M . Then, the next element leading to S(i1, j1)
is then sequentially determined by r1 and c1. If S(i1 − r1, j1 − c1) �= 0, then
S(i2, j2) is one of the element in the matched pair of substrings, where i2 = i1−r1

and j2 = j1 − c1. The corresponding edit operations of S(i2, j2) is M(i2, j2) =
(r2, c2) All elements of can be found using this procedure, until the element
S(ik − rk, jl − cl) = 0, where k ≥ 1 and l ≥ 1. The pair of segments with the
next best similarity is found by applying the traceback procedure to the second
largest element in S not associated with the first traceback.

S(0, 0) := 0

f o r i := 1 to N1 do S(i, 0) := 0 ;

f o r j := 1 to N2 do S(0, j) := 0 ;

f o r i := 1 to N1

f o r j := 1 to N2

i f L
SF1
i = φ or L

SF2
j = φ

S(i, j) = 0 ;

e l s e

m1 := S(i, j − 1) − Cost[insert(L
SF2
j )] ;

m2 := S(i − 1, j) − Cost[delete(L
SF1
i )] ;

f o r k := 1 to merge limit
SF1
i

f o r l := 1 to merge limit
SF2
j

T [k, l] := S(i − k, j − l) + λ

−{Cost[merge(SF1(i − k + 1 → i), L
SF1
i→k)]

+ Cost[merge(SF2(j − l + 1 → i), L
SF2
j→l)]

+ Cost[change(L
SF1
i→k, L

SF2
j→l)]}

m3 := max(T [k, l]) ;

S(i, j) := max(0, m1, m2, m3) ;

i f S(i, j) = m3 , M(i, j) = argmaxk,l(T (k, l));

i f S(i, j) = m1 , M(i, j) = (1, 0);

i f S(i, j) = m2 , M(i, j) = (0, 1);

i f S(i, j) = 0 , M(i, j) = (0, 0);

end

Algorithm 1. Proposed Stringface matching.

String matching is conducted according to Algorithm 1, where merg limitSF1
i

and merg limitSF2
j are controlling upper limits on the number of primitives to

be merged into a new one in Stringfaces SF1 and SF2, respectively (as discussed
in Section 2.3). The similarity of associating a group of segments from Stringface
SF1 with a group of segments from Stringface SF2 is computed as

s(SF1, SF2) = ξ ×
f∑

i=1

Si, (17)

The term Si is the similarity ( the ith maximal element in S matrix table) of
the ith best similar substrings between two Stringfaces and f is the number
of best similar substrings. ξ is a weight term which emphasizes the importance
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of matching large parts from both Stringfaces in accordance to the way that
humans pay more attention to large shape parts when judging the quality of
matching [15]. The proportion of the matched substrings lengths with respect
to their total length is used to define ξ:

ξ =
length of matched SF1 + length of matched SF1

length of SF1 + length of SF2
(18)

3 Experimental Verification

In this section, we present a system performance investigation on publicly avail-
able databases, which covers human face recognition with real and synthetic
occlusions.

3.1 Databases and Experimental Settings

In this study, two well-know face databases (AR [12] and FRGC ver2.0 [16])
were tested. The AR database contains faces with different conditions, including
partially occluded condition, which can not be found in other latest databases.
Hence, AR database is particularly suitable for our evaluation. The FRGC ver2.0
dataset is much larger than the AR database, and is used to test the performance
of our proposed method with occlusion variations.

The AR database consists of over 4,000 frontal view images for 126 individuals
(70 males and 56 females). Each person has 26 images captured in two different
sessions (separated by two-week time interval). Each session contains 13 face
images under different light conditions (right light, left light and both lights),
different facial expressions (smiling, anger and screaming) and partial occlusions
(sunglasses and scarf). Some images were found missing or corrupted for a few
subjects. We chose a subset of the data set consisting of 50 male subjects and
50 female subjects for our experiments.

The FRGC ver2.0 dataset consists of 50,000 recordings divided into training
and validation partitions. The training partition is designed for training algo-
rithms. The training set consists of 12,776 images from 222 subjects, with 6,388
controlled still images and 6,388 uncontrolled still images and contains from 9
to 16 subject sessions per subject. The validation partition is for assessing per-
formance of an approach in a laboratory setting. The validation set contains
images from 466 subjects collected in 4,007 subject sessions. Each subject ses-
sion consists of four controlled still images, two uncontrolled still images, and one
three-dimensional image. The validation partition contains from 1 to 22 subject
sessions per subject. In our experiment (Section 3.4), 410 subjects from the vali-
dation set with more than 2 subject sessions are used. Hence, The data set used
in our experiments consists of 820 FRGC controlled frontal face images with
neutral expressions corresponding to 410 subjects, with two images per subject
(two sessions).

In all the experiments, the original images were first normalized (in scale and
orientation). Then, the facial regions are cropped to the size of 160 x 160. In all
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experiments, there is only one single image per person used as the model of the
person. We quantitatively compare our method to several popular techniques for
face recognition in the vision literature. Partitioned SRC [18] (with tuned block
size 4 x 2) is one of the latest partially occluded face recognition algorithms
and achieved higher recognition rate. LocPb (local probabilistic approach) [11]
is a well-known method to recognize partially occluded faces and widely used
as a benchmark algorithm in many partial matching methods. ICA I [1], LNMF
[10] and PCA [17] are three popular methods used as benchmarks in recent face
recognition approaches under occlusions [18]. LEM (Line Edge Maps) method
[5] which is one of the best illumination insensitive methods based on facial
edges with only one training face image per individual. AWPPZMA (Adaptively
Weighted Patch Pseudo Zernike Moment Array) [8] is one of the best moment-
based face recognition techniques to address occlusion and illumination when
only one exemplar image per person is available.

3.2 Determination of λ

In this section, we examine the parameter (λ) involved in the propose method
(see Eq.14). To determine λ, an experimental investigation on recognition ac-
curacy was conducted under controlled condition with different values of λ on
AR face database. The neutral faces under controlled/ideal condition taken in
the first session were selected as the gallery set and the neutral faces under con-
trolled/ ideal condition taken in the second session were used as the probe set.
Fig. 3 shows the curve of recognition rate against the values of λ. The horizontal
axis indicates the value of λ used and the vertical axis represents the rate of
correct face recognition, which is the rate that the best returned face is from
the correct class. The recognition rate increases greatly from λ = 2 to λ = 8.
Between λ = 8 and λ = 14, the rate remains stable. Then it decreases with
further increase of λ. In the rest of the experiments, λ is set as 10.

Fig. 3. The effect of λ on the recognition rate under controlled/idea condition

3.3 Face Recognition with Partial Occlusions

In this section, we test the performance of the proposed approach to cope with
real partial occlusions using AR face database, which is the only database avail-
able that contains real images with disguise accessories. In the experiment, we
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Fig. 4. Images of one subject in the AR database with different partial occlusions.

(a) is a neutral facial image taken from the first session; (b-e) are images with partial

occlusions taken from the first session and the second session, respectively.

Table 1. Performance comparison for sunglasses and scarf occluded faces

Methods
Session-1 Session-2

sunglasses scarf sunglasses scarf

Stringface 88.0% 96.0% 76.0% 88.0%

SRC 86.0% 92.0% 64.0% 86.0%

LocPb 80.0% 82.0% 54.0% 48.0%

AWPPZMA 70.0% 72.0% 58.0% 60.0%

ICA I 54.0% 56.0% 38.0% 50.0%

LNMF 33.5% 24.0% 18.5% 9.6%

chose a subset of the data set consisting of 50 male subjects and 50 female sub-
jects from AR face database. The neutral face images of the first session (see
Fig. 4) were used as the galley set. Sunglasses and scarf occluded face images
of the first and the second sessions (see Fig. 4 (b-e)) were used as the probes.
The performance comparisons of the proposed approach with these benchmark
methods are tabulated in Table 1, showing that the proposed approach archived
the highest accuracies in both experiments.

3.4 Face Recognition with Random Block Occlusions

To further verify the performance of our method against various level of con-
tiguous occlusions, we conducted a simulation experiment on the FRGC ver2.0
database . The data set used in our experiments consists of 820 FRGC controlled
frontal face images with neutral expressions corresponding to 410 subjects, with
two images per subject (two sessions). The data set is divided into gallery and
probe sets. The gallery set consists of 410 images from 410 subjects. The rest of
images are used as the probe set.

Occlusions are added to the probe images by using a black square of s × s
with s ∈ {10, 20, . . . , 100} at a random location, as shown in Fig. 5. Note that

Fig. 5. Examples of FRGC ver2.0 face images with simulated occlusions. (a) images

in the database; (b-k) the generated test images with random occluding blocks of sizes

(10x10,20x20, ..., 100x100).
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the s× s occlusion masks are randomly added to the images in probe sets. The
graph in Fig. 6 shows the recognition rates of all four algorithms under varying
degrees of occlusion. As can be seen, the Stringface method again outperformed
the three benchmark methods for all levels of occlusion. Although there is only
one sample image per person used as a template, SRC [18] still performed ex-
cellent as the proposed approach when the occlusion block size is small. The
better performance of the Stringface approach against SRC becomes clear as the
occlusion block size increases. Because of insufficient training samples, LNMF,
ICA and PCA performed poorly in this single sample per class condition.

Fig. 6. Recognition under varying level of random occlusion (10x10, 20x20, ..., 100x100

of occluding blocks)

3.5 Preliminary Experiment under Varying Lighting and Expression
Conditions

To evaluate the effects of different lighting conditions and facial expressions
on the proposed approach, the preliminary experiment was designed using face
images taken under different lighting conditions and facial expression from the
AR database. In this experiment, we chose a subset of the data set consisting
of 50 male subjects and 50 female subjects from AR database. The neutral face
images taken in the first session were used as single models of the subjects. The
face images under three different light conditions and facial expressions taken in
the first session were used as probe images. The proposed approach is compared
with the eigenface and LEM methods.

The experimental results on probe images with three lighting conditions and
different facial expressions (smiling, angry and screaming) are illustrated in Ta-
ble 2. In the three experiments under varying lighting conditions, the proposed
Stringface method significantly outperformed the eigenface approach and also
consistently performed better than the illumination-insensitive LEM approach[5].
The experimental results on faces with smile, anger and scream expressions show
that the Stringface method achieved varying results compared to the LEM and
eigenface methods.
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Table 2. Preliminary results under varying lighting conditions and facial expressing

changes

Conditions

Recognition rate(%)

Eigenface
LEM AWPPZMA Stringface

k = 20 k = 60 k = 100 k = 100(w/o 1st 3 )

Left Light on 6.25% 9.82% 9.82% 26.79% 92.86% 74.36% 96.43%

Right Light on 4.46% 7.14% 7.14% 49.11% 91.07% 64.96% 95.53%

Both Light on 1.79% 2.68% 2.68% 64.29% 74.11% 42.74% 75.89%

Smiling 87.87% 94.64% 93.97% 82.04% 78.57% 96.58% 87.50%

Angry 78.57% 84.82% 87.50% 73.21% 92.86% 87.18% 87.50%

Screaming 34.82% 41.96% 45.54% 32.14% 31.25% 38.46% 25.89%

4 Conclusions

This paper proposes a novel Stringface approach for recognizing faces with par-
tial occlusions from a single image per person. Stringface is a syntactic face repre-
sentation, which integrates the local structural information with spatial informa-
tion of a face image by grouping the relational organization of intermediate-level
features (line segments) to a high-level global structure (a string). The proposed
approach represents a face image as a string and enables it to define complex dis-
continuous features in a human frontal face. The matching of two frontal faces
is achieved by matching two Stringfaces through a string-to-string matching,
which was believed a technique not suitable for frontal face recognition due to
its highly ordered global representation and complex nature of a human face.
The performance of the proposed approach has been evaluated and compared
with several state-of-the-art approaches. Experimental results demonstrated the
feasibility and effectiveness of a high-level syntactic method in face recognition,
showing a new way for face representation and recognition.
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Abstract. We introduce a real-time stereo matching technique based

on a reformulation of Yoon and Kweon’s adaptive support weights algo-

rithm [1]. Our implementation uses the bilateral grid to achieve a speedup

of 200× compared to a straightforward full-kernel GPU implementation,

making it the fastest technique on the Middlebury website. We introduce

a colour component into our greyscale approach to recover precision and

increase discriminability. Using our implementation, we speed up spatial-

depth superresolution 100×. We further present a spatiotemporal stereo

matching approach based on our technique that incorporates temporal

evidence in real time (>14 fps). Our technique visibly reduces flickering

and outperforms per-frame approaches in the presence of image noise.

We have created five synthetic stereo videos, with ground truth dispar-

ity maps, to quantitatively evaluate depth estimation from stereo video.

Source code and datasets are available on our project website1.

1 Introduction

In contrast to global stereo matching techniques such as graph cuts [2] or belief
propagation [3], Yoon and Kweon’s adaptive support weights [1] only aggregate
evidence over a finite window size. The effectiveness of their technique is due to
aggregation of support over large window sizes and weights that adapt according
to similarity and proximity to the central pixel in the support window. Results
are good, but the algorithm is slow, taking about one minute to process the
Tsukuba images on a current generation CPU. This has prompted people to
resort to a separable implementation [4] to achieve interactive frame-rates.

We take a different approach. We rewrite their technique (section 2) as a dual-
cross-bilateral filter with Gaussian weights (section 3). Based on the bilateral grid
(section 3.1), we present a real-time GPU-based implementation (section 3.2)
and improve its performance using a dichromatic approach (section 3.3). We
show how spatial-depth super-resolution can be accelerated using our technique
(section 3.4) and we extend our technique to stereo video (section 3.5). We
conclude with results (section 4) and discussion of future work (section 5). Key
literature is referred to in-line where it is most relevant.
1 http://www.cl.cam.ac.uk/research/rainbow/projects/dcbgrid/

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 510–523, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.cl.cam.ac.uk/research/rainbow/projects/dcbgrid/
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2 Adaptive Support Weights

We start with a brief summary of Yoon and Kweon’s technique. It builds on
a winner-take-all stereo pipeline [5] and computes the initial cost space using
truncated AD (absolute difference). We write this initial cost space as C(p, d)
where p = (x, y) are the coordinates of a pixel in the left image and d is some
disparity hypothesis. For convenience, let p = (x − d, y) be the corresponding
pixel in the right image.

The key idea is to aggregate costs over a large support window of 35×35 pixels
for each pixel, where each pixel in the support window is weighted according to
similarity and proximity to the central pixel. This is motivated by the Gestalt
theory of perceptual grouping, with the weight between two pixels given by

w(p,q) = exp
(
−ΔE(p,q)

γc
− ‖p− q‖

γp

)
, (1)

where ΔE is the Euclidean distance between pixel values in the CIELAB colour
space, and the parameters γc and γp control grouping by similarity and proxim-
ity, respectively. Yoon and Kweon use default values of γc = 5 and γp = 17.5.

The aggregated cost space C′ is now calculated using

C′(p, d) =
1
k
·
∑

q∈Np

w(p,q) · w(p,q) · C(q, d) , (2)

where k =
∑

q∈Np
w(p,q) · w(p,q) is the normalisation quotient and Np the set

of all pixels in the support window. For the winner-take-all stage, we use Yang
et al .’s sub-pixel refinement process [6]. We implemented all techniques in this
paper using C for CUDA, an architecture for general purpose computation on
NVIDIA GPUs. We measure run times on an NVIDIA Quadro FX 5800 GPU.

Our straightforward GPU implementation is about 25× faster than reported
by Yoon and Kweon and produces comparable results to their publicly-available
implementation (on the Middlebury website2). However, neither implementation
achieves the results reported in the original paper. We believe this to be due to
differences in filling in pixels that are invalidated by the left-right consistency
check [7]. As we compare different techniques, it is fairest to only compare GPU
techniques to other GPU techniques, and also to have all techniques share the
same post-processing.

3 Dual-Cross-Bilateral Aggregation

The bilateral filter [8] is a common edge-preserving smoothing filter. One variant,
the cross- or joint-bilateral filter [9], smoothes an image with respect to edges in
a different image. Yoon and Kweon’s technique is another variant that smoothes
the cost space while preserving edges in both input images. In the bilateral
filtering framework, we call this kind of filter a dual-cross-bilateral filter (DCB).
2 http://vision.middlebury.edu/stereo/

http://vision.middlebury.edu/stereo/
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We reformulate their approach using Gaussian weights, the de facto standard
in bilateral filtering. This yields

w(p,q) = Gσr (ΔE(p,q)) ·
√

Gσs(‖p− q‖) , (3)

where σr and σs are similarity and proximity parameters, and Gσ(x) = exp(−x2

2σ2 )
is the unnormalised Gaussian centred on zero, with standard deviation σ. The
square root is applied to the second factor, so that w(p,q) ·w(p,q) includes the
proximity weight exactly once.

The aggregation remains unchanged from equation 2, resulting in

C′(p, d) =
1
k
·
∑

q∈Np

Gσr (ΔE(p,q)) ·Gσr (ΔE(p,q)) ·Gσs(‖p− q‖) · C(q, d), (4)

which we compute within a window of 35 × 35 pixels. We use the parameter
values σr = 10 and σs = 10, which we found to produce the best results.

The resulting disparity maps are shown in table 2 and the Middlebury eval-
uation results in table 3. It is notable that our dual-cross-bilateral aggregation
improves on our Yoon and Kweon implementation in the nonocc (non-occluded
pixels) and all pixels categories in almost all cases.

3.1 Bilateral Grid

Full-kernel implementations of the bilateral filter are very slow, so several speed-
up approaches have been proposed. A separable implementation [11] is too in-
accurate for our purposes. Weiss’ technique [12] only supports spatial box-filters
rather than the Gaussians we use. And Yang et al .’s constant-time bilateral fil-
tering [13] does not generalise well to higher dimensions, which we require. We
therefore use the bilateral grid [10,14]. It has the interesting property that it
runs faster and uses less memory as σ increases.

Consider the example of a greyscale image I(x, y). The bilateral grid embeds
it in a 3D space: 2D for spatial coordinates and 1D for pixel values. Each pixel
(x, y) is mapped to (x, y, I(x, y)) in the bilateral grid Γ . The 1D example in
figure 1 illustrates the use of the bilateral grid in three steps.

(a) input signal (b) grid created from signal (c) filtered grid (d) filtered signal

create process slice

Fig. 1. Illustration of 1D bilateral filtering using the bilateral grid: the signal (a) is

embedded in the grid (b), which is processed (c) and sliced to obtain the filtered signal

(d). See text for details. Adapted from Chen et al . [10].
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1. Grid Creation All grid voxels (x, y, c) are first zeroed using Γ (x, y, c) =
(0, 0). Then, for each pixel (x, y),

Γ

([
x

ss

]
,

[
y

ss

]
,

[
I(x, y)

sr

])
+= (I(x, y), 1) . (5)

where [ · ] is the rounding operator, and ss and sr are the spatial and range
sampling rates, which are set to σs and σr respectively. Note that the pixel values
and the number of pixels are accumulated using homogeneous coordinates, which
make it easy to compute weighted averages in the grid slicing stage.

2. Grid Processing The grid is now convolved with a Gaussian filter, of
standard deviation σs and σr along the space and range dimensions. As the
previous step has already sub-sampled the data accordingly, we only need to
convolve each dimension with a 5-tap 1D kernel with σ=1.

3. Grid Slicing The result is now extracted by accessing the grid coordinates
(x/ss, y/ss, I(x, y)/sr) using trilinear interpolation, and dividing the homoge-
neous vector to access the actual data.

The bilateral grid is amenable to real-time GPU implementation, as demon-
strated by Chen et al . [10].

3.2 Dual-Cross-Bilateral Grid

Chen et al . [10] show that the bilateral grid can also be used for cross-bilateral
filtering. This is achieved by using an edge image E(x, y) to determine grid
coordinates, but storing the pixel values of the image I(x, y) to be filtered:

Γ

([
x

ss

]
,

[
y

ss

]
,

[
E(x, y)

sr

])
+= (I(x, y), 1) . (6)

The grid processing remains the same, and the slicing stage accesses the grid at
(x/ss, y/ss, E(x, y)/sr).

Recall that our dual-cross-bilateral cost aggregation smoothes the cost space
while preserving edges in the two input images. To implement it, we extend
the bilateral grid to take into account both input images as edge images when
calculating grid coordinates, and to accumulate cost space values instead of pixel
values. We call our extension the dual-cross-bilateral grid, or DCB grid.

For a pixel p at (x, y) in the left image, and its corresponding pixel p at
(x − d, y) in the right image, we create the DCB grid using

Γ

([
x

σs

]
,

[
y

σs

]
,

[
L�

L(p)
σr

]
,

[
L�

R(p)
σr

])
+= (C(p, d), 1) . (7)
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Instead of image intensities, as in Chen et al . [10], we use the lightness com-
ponent L� of the CIELAB colour space, as it is perceptually more uniform and
hence more closely models how we perceive greyscale images. However, this also
degrades performance compared to the full-kernel DCB, which uses full-colour
images. The subscripts L and R indicate the left and right images, respectively.

The result of slicing the DCB grid is the aggregated cost

C′(p, d) = Γ

(
x

σs
,

y

σs
,
L�

L(p)
σr

,
L�

R(p)
σr

)
. (8)

In our implementation, we tile the 4D bilateral grids for all disparities into one
large 2D texture. In the slicing stage, we perform the quadrilinear interpolation
by using bilinear texture filtering to fetch the values stored at the surrounding
four ([x/σs], [y/σs]) coordinates, and bilinearly interpolate between them.

The run times in table 1 show that the DCB grid runs at 13 fps or higher on all
data sets, with 70 fps on Tsukuba – more than 200× faster than the full-kernel
implementation, and more than 165× faster than our GPU implementation of
Yoon and Kweon. The disparity maps of all our techniques are shown in table 2
for visual comparison, and evaluated on the Middlebury datasets in table 3.

Table 1. Run time comparison in milliseconds. Our techniques, shown in bold, are

benchmarked on an NVIDIA Quadro FX 5800. Asterisks (�) mark run times estimated

from reported figures, rounded to one significant digit.

Technique Tsukuba Venus Teddy Cones

384×288×16 434×383×20 450×375×60 450×375×60

DCB Grid 14.2 25.7 75.8 75.0

Real-time GPU [15] 30� 60� 200� 200�

Reliability DP [16] 42 109 300� 300�

Dichromatic DCB Grid 188 354 1,070 1,070

Plane-fit BP [17] 200� 400� 1,000� 1,000�

Y&K (our GPU impl.) 2,350 4,480 13,700 13,700

Full-kernel DCB 2,990 5,630 17,700 17,600

Yoon & Kweon [1] 60,000 100,000� 300,000� 300,000�

3.3 Dichromatic DCB Grid

The dramatic speedup achieved by the DCB grid comes at some loss of quality.
This is because the underlying bilateral grid only works on greyscale images and
hence does not differentiate colours that have similar greyscale values, as shown
in the examples of figure 2b.
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a) greyscale only b) DCB grid
c) greyscale

+ hue
d) dichromatic

DCB grid

T
su

ku
ba

C
on

es

Fig. 2. Comparison of input images (a, c) and disparity maps of the (b) greyscale and

(d) dichromatic DCB grids. The input images are displayed as ‘seen’ by the algorithms.

Note that the dichromatic DCB grid (d) visibly improves on (b).

A solution is to add additional colour axes to the grid, to increase its colour
discriminability. Unfortunately, the memory requirements of the bilateral grid
are exponential in the number of dimensions. The teddy and cones data sets, for
example, each have a total memory footprint of

60 disparities× 450
10

× 375
10

×
(

100
10

)k

× 8 bytes (9)

when using the standard parameters σs = 10 and σr = 10, k colour dimensions,
and two single-precision floating-point numbers per grid cell. For the DCB grid,
where k=2, this amounts to 78 MB. However, the best results, with full CIELAB
colours in both images (k=6), would require a prohibitive 764 GB.

The maximum number of colour dimensions that can be afforded on current
generation graphics cards is k = 3 which equates to 783 MB for teddy. This al-
lows one additional colour axis in one of the images, in addition to each image’s
greyscale component. The result is a dichromatic technique which can differ-
entiate colours along two colour axes. This is an interesting trade-off between
the common monochromatic (greyscale) and trichromatic (e.g. RGB) stereo ap-
proaches, that has not previously been explored.

We experimented with several colour dimensions (table 4) and found that
CIELAB hue hab provided the highest discriminability.

The results in tables 1 and 3 show that the dichromatic approach improves
on the monochromatic DCB grid in all categories (except run time), achieving
results comparable (tsukuba, teddy) or superior (venus) to our implementation
of Yoon and Kweon, at a 13× speedup. The close-ups in figure 2 also show
qualitative improvements.
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Table 2. Disparity maps for the Middlebury data sets [5]

Tsukuba Venus Teddy Cones

Yoon &

Kweon [1]

(our imple-

mentation)

Full-kernel

DCB

DCB Grid

Dichromatic

DCB Grid

Ground

truth

Table 3. Performance comparison of the proposed methods to Yoon & Kweon and

selected real-time techniques using the Middlebury stereo benchmark

Technique Rank Tsukuba Venus Teddy Cones
nonocc all disc nonocc all disc nonocc all disc nonocc all disc

Plane-fit BP [17] 19.4 0.97 1.83 5.26 0.17 0.51 1.71 6.65 12.1 14.7 4.17 10.7 10.6

Yoon & Kweon [1] 32.8 1.38 1.85 6.90 0.71 1.19 6.13 7.88 13.3 18.6 3.97 9.79 8.26

Full-kernel DCB 47.7 3.96 4.75 12.9 1.36 2.02 10.4 9.10 15.9 18.4 3.34 9.60 8.26

Y&K (our impl.) 48.2 4.39 5.29 8.10 1.30 2.07 8.31 9.39 16.3 18.4 3.68 9.96 8.42

Dichrom. DCB Grid 52.9 4.28 5.44 14.1 1.20 1.80 9.69 9.52 16.4 19.5 4.05 10.4 10.3

Real-time GPU [15] 56.2 2.05 4.22 10.6 1.92 2.98 20.3 7.23 14.4 17.6 6.41 13.7 16.5

Reliability DP [16] 59.7 1.36 3.39 7.25 2.35 3.48 12.2 9.82 16.9 19.5 12.9 19.9 19.7

DCB Grid 64.9 5.90 7.26 21.0 1.35 1.91 11.2 10.5 17.2 22.2 5.34 11.9 14.9
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Table 4. Performance comparison of the dichromatic DCB grid with various colour

properties using the Middlebury stereo benchmark. Judging by rank, as computed by

the Middlebury website, the best technique is CIELAB hue, hab.

Technique Rank Tsukuba Venus Teddy Cones
nonocc all disc nonocc all disc nonocc all disc nonocc all disc

hab = atan2(b�, a�) 48.6 4.28 5.44 14.1 1.20 1.80 9.69 9.52 16.4 19.5 4.05 10.4 10.3

HSL saturation 49.0 4.44 5.37 12.9 1.05 1.58 8.29 9.46 16.4 19.4 4.30 10.7 11.3

C�
ab =

√
a�2 + b�2 49.9 4.97 5.94 16.7 1.15 1.75 8.65 9.55 16.4 19.9 4.00 10.4 10.5

sab = C�
ab/L� 50.0 4.36 5.45 12.9 1.19 1.86 9.32 9.41 16.3 19.2 4.41 10.8 11.6

b� 50.8 4.79 5.83 16.2 1.25 1.84 10.1 9.53 16.3 19.6 4.28 10.7 11.6

a� 52.0 5.36 6.49 18.3 1.24 1.84 9.13 9.62 16.5 19.9 4.28 10.5 11.3

HSL hue 51.2 4.62 5.85 14.9 1.30 1.87 10.4 9.83 16.6 20.2 4.18 10.7 11.1

3.4 Spatial-Depth Super-Resolution

Yoon and Kweon’s method is also used in other contexts such as spatial-depth
super-resolution. Yang et al . [6] use it as a central component in their system.
Starting from a low-resolution depth map, they iteratively upsample it to the
full resolution of the input images using Yoon and Kweon’s cost aggregation. We
use the same algorithm with our DCB grid and achieve a speedup of more than
100×. Figure 3 compares results, run times and errors.

a) Yoon and Kweon [1] b) Our DCB Grid

fps nonocc all disc fps nonocc all disc

0.15 17.1 17.4 41.7 17.0 19.9 19.2 42.5

Fig. 3. Comparison of Yoon & Kweon’s and our cost aggregation techniques in Yang

et al .’s spatial-depth super-resolution on 8× sub-sampled teddy. Our technique is more

than 100× faster, at only a small loss of quality.

3.5 Temporal DCB Grid

Stereo videos pose different challenges to stereo images: the application of tech-
niques on a per-frame basis is insufficient to achieve flicker-free and temporally



518 C. Richardt et al.

coherent disparity maps. Given the success of the DCB grid method, we turned
our attention to adding time as an extra dimension, inspired by approaches that
aggregate costs over a 3D spatiotemporal support window [18,19]. Our experi-
ments consider a time window of five frames, which we found to work well.

For each frame of the video, the DCB grid is created and processed as de-
scribed in section 3.2, but the slicing is based on the grids of the last n = 5
frames, each weighted by wi:

C′(p, d) =
n−1∑
i=0

wi · Γi

(
x

σs
,

y

σs
,
L�

L(p)
σr

,
L�

R(p)
σr

)
, (10)

where i = 0 indicates the current frame, i = 1 the previous frame and so on.
The original spacetime stereo approaches use constant weights (wi = 1). We use
Gaussian weights, wi = exp

(−i2/2σ2
t

)
with σt = 2, which extends the DCB grid

into the time dimension. We also tried Paris’ adaptive exponential decay [20],
but did not see any improvements compared to our simpler technique.

Note that we cannot use the dichromatic and temporal extensions at the same
time, as we have insufficient memory to handle 6 dimensions of data (4 GB of
GPU memory). Results of qualitative and quantitative nature are discussed next.

4 Results

All results in this paper were created using an NVIDIA Quadro FX 5800 GPU
with 4 GB video memory, on a 2.4 GHz Intel Quad Core CPU with 4 GB RAM.
Disparity maps created using our per-frame techniques are shown in table 2 and
compared to other techniques in tables 1 and 3. Like Yoon and Kweon, we include
left-right post-processing when reporting performance figures, but exclude it in
run time measurements.

Our DCB grid is currently the fastest stereo correspondence approach on the
Middlebury stereo evaluation website. A faster technique by Yang et al . [21] is
not listed, as it has not been evaluated on the new Middlebury data sets, and
we hence cannot compare to it fairly.

We improved the performance of the DCB grid using a dichromatic technique,
drawing on a second colour axis to increase colour discriminability. Our results
demonstrate that partial-colour solutions can improve stereo results, and we
believe that this idea has more general applicability.

Tables 1 and 3 also show an interesting trade-off: both ‘Real-time GPU’ [15]
and ‘Reliability DP’ [16] are slower than the DCB grid, but faster than the di-
chromatic DCB grid, with performance being inversely related: the dichromatic
DCB grid outperforms both ‘Real-time GPU’ and ‘Reliability DP’ which in turn
outperform the DCB grid. Yang et al .’s plane-fit BP [17] outperforms our di-
chromatic DCB grid at similar run times, but their technique occupies both CPU
and GPU, whereas our techniques leave the CPU available for other tasks.
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Video frame

(red-cyan anaglyph)
Per-frame DCB Grid Temporal DCB Grid

c© Eric Deren, Dzignlight Studios.

Fig. 4. Disparity maps for selected frames of the ‘skydiving’ stereo video. Note that

our temporal DCB grid visibly reduces errors (see highlighted regions).

4.1 Stereo Videos

We evaluated the temporal DCB grid qualitatively using real stereo videos and
quantitatively on synthetic stereo videos with ground truth disparities, where
we also compared it against per-frame techniques.

Qualitative Evaluation. Figure 4 shows frames from the ‘skydiving’ video3.
We processed it at a resolution of 480×270 with 40 disparities, without left-right
consistency check. On our machine, the per-frame DCB grid runs at 16 fps and
the temporal DCB grid at 14 fps. As can be seen in the supplementary video, the
temporal DCB grid visibly reduces flickering compared to the per-frame method.

Stereo Videos with Ground Truth Disparities. The quantitative evalua-
tion of disparity maps from stereo videos is hindered by the general lack of ground
truth disparity maps. We created a set of five stereo videos with ground truth
disparity maps (see figure 5) and make them available on our project website:

book – turning a page of an old book (41 frames)
street – camera pans across a street view (100 frames)
tanks – camera flies along a grid of tanks (100 frames)
temple – rotating Mayan temple (100 frames)
tunnel – moving through a winding corridor (100 frames)

3 http://www.dzignlight.com/stereo/skydiving.shtml

http://www.cl.cam.ac.uk/research/rainbow/projects/dcbgrid/
http://www.dzignlight.com/stereo/skydiving.shtml
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book street tanks temple tunnel

Fig. 5. Selected frames and disparity maps from our synthetic stereo videos

We generated the sequences using Blender, an open source modeller. Each frame
is 400×300 pixels in size with a disparity range of 64 pixels. The ‘book’, ‘tanks’
and ‘temple’ objects were taken from the Official Blender Model Repository4,
while the tunnel scene was our own design. For the ‘street’ sequence, we combined
models and materials by Andrew Kator and Jennifer Legaz5. We added two
parallel cameras to each scene with a small lateral offset between them, to provide
the left and right views, and used the Blender node system to render disparity
maps from the point of view of each camera.

Quantitative Evaluation. We compared the temporal DCB grid against per-
frame techniques using our synthetic ground truth videos. We processed all video
frames by all techniques and used the same left-right consistency post-processing
as earlier. Our ground truth stereo videos do not contain any noise, but real
videos do. For this reason, we investigated the robustness to noise of per-frame
techniques and the temporal DCB grid. We simulate thermal imaging noise by
adding zero-centred Gaussian noise to all colour channels of the input frames.

The performance and run times of our implementations are shown in table 5.
We summarise the level and variability of errors using the mean and standard
deviation of the percentage of bad pixels across frames.

The best results are produced by the temporal DCB grid which significantly
outperforms the per-frame techniques on all datasets except tunnel, on which
it shows the least variation in error. Our per-frame DCB grid techniques come
second and third, and our full-kernel implementations are placed last.

We believe that the poor performance of the temporal DCB grid on the tunnel
video is because it has a lot of texture, so that simple per-frame approaches work
well, while our temporal technique tends to over-smooth. Nevertheless, it reduces
flickering visibly in all videos, as can be seen in the supplementary videos.

It is also notable that our temporal DCB grid has a run time that is sub-linear
in the number of frames: it only takes 76% longer than the per-frame DCB grid
to process a five frames window instead of a single frame.
4 http://e2-productions.com/repository/
5 Licensed under CC-BY 3.0, available at http://www.katorlegaz.com/3d_models/ .

http://e2-productions.com/repository/
http://www.katorlegaz.com/3d_models/


Real-Time Spatiotemporal Stereo Matching 521

Table 5. Performance comparison of the proposed methods on our synthetic stereo

videos with additive Gaussian noise (σ = 20). Shown are the average and standard

deviation of the percentage of bad pixels (threshold is 1), and per-frame run times. For

most datasets, the temporal DCB grid has the least mean error.

Technique Time Book Street Tanks Temple Tunnel
in ms mean stdev mean stdev mean stdev mean stdev mean stdev

Temporal DCB Grid 90 44.0 2.02 25.9 2.00 31.4 6.06 31.7 1.82 36.4 7.88

DCB Grid 51 52.2 2.04 32.5 2.33 36.0 6.16 39.5 1.91 25.7 11.1

Dichromatic DCB Grid 782 58.9 1.83 39.2 2.62 47.8 12.0 43.0 1.73 32.9 12.0

Full-kernel DCB 13,200 65.9 1.45 49.1 3.13 53.5 6.15 52.0 1.28 43.0 11.7

Y&K (our impl.) 9,770 84.2 1.24 56.1 2.67 87.7 2.01 72.8 1.80 58.4 11.7

Plots of the error levels at standard deviations between 0 and 100 (out of 255)
are shown in figure 6. The graphs show that the temporal DCB grid improves on
the per-frame technique at increased noise levels in all cases. In particular, it is
superior for all noise levels in the street and temple sequences, and starting from
noise levels of 5–45 for the other sequences. We assume that it is the integration
of temporal evidence across several frames that makes this improvement possible.

book

σ of Gaussian noise

0 20 40 60 80 100

%
b
a
d

p
ix
e
ls

0

20

40

60

80

100

street

σ of Gaussian noise

0 20 40 60 80 100

%
b
a
d

p
ix
e
ls

0

20

40

60

80

100

tanks

σ of Gaussian noise

0 20 40 60 80 100

%
b
a
d

p
ix
e
ls

0

20

40

60

80

100

temple

σ of Gaussian noise

0 20 40 60 80 100

%
b
a
d

p
ix
e
ls

0

20

40

60

80

100

tunnel

σ of Gaussian noise

0 20 40 60 80 100

%
b
a
d

p
ix
e
ls

0

20

40

60

80

100

Temporal
DCB Grid

DCB Grid

shaded regions: ±σ

Fig. 6. Error versus noise curves for ground truth stereo videos: the temporal DCB

grid performs better than the per-frame DCB grid at higher noise levels. Please also

refer to the supplementary videos for a visual comparison.

5 Discussion

Rewriting Yoon and Kweon’s adaptive support weights as a dual-cross-bilateral
filter with Gaussian weights allows us to use the bilateral grid for acceleration,
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and to incorporate temporal information into the stereo matching process. Our
DCB grid achieves real-time frame-rates through a speedup of more than 200×
compared to a full-kernel GPU implementation, at only a small loss of precision.
Our DCB grid is currently the fastest method on the Middlebury stereo website.
The source code for our techniques, our ground truth stereo videos and further
supplementary materials are available from our project website.

The speed of the DCB grid makes it versatile. Techniques building on Yoon
and Kweon’s method automatically benefit from a large speedup. We showed
this by applying it to Yang et al .’s spatial-depth super-resolution, achieving a
speedup of 100×, with minimal loss of quality.

Future Work
Using our dichromatic DCB grid, we showed that colour is a useful component in
achieving high quality disparity maps. However, the enormous memory require-
ments of the bilateral grid effectively inhibit filtering in full colour. Recent work
by Adams et al . [22] proposes a method with linear memory requirements. They
agree that the bilateral grid is currently the fastest bilateral filtering technique
for 4 dimensions when using a filter standard deviation of 10, as we do. However,
full-colour filtering, using a total of 8 dimensions, would be about four times as
fast with their technique, with significantly reduced memory requirements.

We hope that our new ground truth stereo videos provide a useful resource for
research in depth estimation from stereo videos. There is a need for specialised
stereo video correspondence techniques that incorporate temporal evidence to
resolve ambiguities. With this in mind, it will be necessary to set up a stereo
video evaluation website, perhaps as part of the Middlebury vision website.

In addition, we are interested in investigating suitable evaluation metrics for
assessing stereo videos. We used the mean and standard deviation of the bad
pixel percentage. However, it might be useful to consider other metrics that
objectively quantify flickering and temporal coherence in disparity videos.
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Abstract. We describe a new fast algorithm for multi-labelling prob-

lems. In general, a multi-labelling problem is NP-hard. Widely used algo-

rithms like α-expansion can reach a suboptimal result in a time linear in

the number of the labels. In this paper, we propose an algorithm which

can obtain results of comparable quality polynomially faster. We use the

Divide and Conquer paradigm to separate the complexities induced by

the label set and the variable set, and deal with each of them respec-

tively. Such a mechanism improves the solution speed without depleting

the memory resource, hence it is particularly valuable for applications

where the variable set and the label set are both huge. Another merit of

the proposed method is that the trade-off between quality and time effi-

ciency can be varied through using different parameters. The advantage

of our method is validated by experiments.

1 Introduction

Solving multi-labelling problems by way of Markov random field (MRF) opti-
mization has been a popular research topic in recent years due to its effectiveness.
Successful algorithms like α-expansion [1,2] and FastPD [3,4] can already provide
high quality solutions in polynomial time. However, most existing work involved
images of relatively small size or with a limited number of labels. From the
perspective of practical applications, for example large-scale 3D reconstruction
based on high resolution images, both the number of variables and the number
of labels involved in the optimization will be huge. Therefore, developing an even
faster optimization method that is scalable to the size of the Markov random
field attracts our attention.

One important attribute of the variables in a Markov random field is that
their values (or labels) are generally smooth, whereas violent fluctuation only
happens in sparse boundary areas. Based on this assumption, we divide each
multi-labelling problem into two smaller multi-labelling problems, which handle
the huge variable set and the huge label set respectively. In the first subproblem,
we force some of the neighbour variables to share the same labels, so the number
of random variables is reduced. In the second problem, we fine tune the result
of the first subproblem, so that neighbouring pixels that were forced to share
identical labels can now have different labels. During this fine tuning we exclude
the possibility of violent variations, so the number of optional labels for each

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 524–537, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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variable is largely reduced. Through implementing these two steps recursively,
the original problem can be solved in a time sublinear in the number of labels.

High speed and low memory cost is the major contribution of our method.
However, rather than exclusively pursuing speed, a trade-off between efficiency
and quality can be tuned by varying the parameters in our method. Experiments
show that our method possesses strong advantages in efficiency over previous
algorithms.

2 Previous Work

Many low level computer vision tasks can be modelled as multi-labelling
problems. Examples include stereo matching, image denoising and image seg-
mentation. A multi-labelling problem can be solved by energy minimization.
In particular, Markov Random Fields have been popular as a formulation for
multi-label energy minimization. The Hammersley-Clifford theorem makes the
connection between the probabalistic viewpoint of MRFs and minimization of
an abstractly defined cost-functions.

As optimizing a multi-label Markov random field is in general NP-hard [5],
all usable algorithms need to sacrifice optimality for time efficiency [1,4,6,7,8] or
generality. Among current approaches, α-expansion [1] is one of the most pop-
ular algorithms. The divide and conquer paradigm is utilized in α-expansion.
Specifically, instead of tackling the intractable full problem directly, α-expansion
assumes that the applicability of each label can be checked individually. There-
fore, each n-label problem is divided into n 2-label subproblems, each of which
determines whether a label α should be applied to variables currently having
other labels. Each 2-label problem can be solved with a max-flow algorithm in
polynomial time provided the edge costs satisfy a metric [1] or convexity [6]
condition. To reach a stationary point, or local minimum, multiple outer itera-
tions are required. One of the most popular max-flow algorithm, Push-relabel,
has a time complexity of O(M3), where M is the number of vertices (variables)
in the graph. Assuming the number of variables and the number of labels are
independent, and that the number of necessary outer iterations is a constant,
the time complexity of α-expansion is linear in the number of labels and the
time complexity of its max-flow subroutine, namely O(M3N), where N is the
number of labels.1 However, in applications like stereo matching, the number of
labels is usually proportional to the image resolution. Hence the processing time
of α-expansion increases rapidly as the image size grows. A restriction on using
α-expansion with max-flow is that the 2-label sub-problems must be submodu-
lar; this constrains its applicability to cost functions with metric or convex edge
costs. However, there is no need to restrict the method for solving the 2-label
problems to max-flow. Other algorithms such as roof-dual (QPBO) [10] or Lazy-
Elimination [7] can be used instead. Another method that handles more generic
1 Push-relabel is not the fastest max-flow algorithms. The fastest one so far was pro-

posed in [9] and has a time complexity of O(min(M2/3, E1/2)E log(M2/E+2) log C),

where C is the maximum capacity of the network and E is the number of edges.
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energy functions is Alphabet Soup [11], which can be viewed as a generalized
α-expansion.

FastPD [3] is another very successful multi-labelling algorithm. By relax-
ing the integrality constraint to a continuous positive constraint, it transforms
the original discrete optimization problem into linear programming and then
approaches the optimal solution through iteratively applying the primal-dual
schema. FastPD can handle quite general types of energy functions and also
obtains a convincing suboptimal results very rapidly. However, to pursue high
processing speed, the avaliable implementation of FastPD easily exhausts the
memory resource even dealing with a middle-sized stereo pair (e.g. 600 × 500
containing 64 labels). A more comprehensive review of relevant algorithms can
be found in [12,13].

Earlier work on enhancing the speed of MRF optimization can be found in [8],
where the max-flow problem on a graph is efficiently solved using the known
solution for a similar graph. Approaches to accelerating stereo matching were
discussed in [14,15], where higher speed (2.8 and 4 times speed-up respectively)
is obtained through reducing the search range during matching. Particularly,
an idea similar to our work was interpreted as search-range reduction through
downscaling, tested and reported to fail in [15]. However, that paper gave only a
sketchy description of their algorithm, with insufficient detail for us to distinguish
the cause of failure. In contrast, our work shows that through proper construction
and implementation, this method can handle MRF optimization with promising
quality in a speed significantly faster than the existing algorithms.

3 Dividing the Original Problem

Optimizing a Markov random field containing M variables and N labels can be
described as finding the optimal among NM discrete states. For positive integers
M and N both of which are larger than 1, and positive integers m and n which
are smaller than M and N respectively:

NM−m − 1 ≥ nM−m

⇒ nm(NM−m − 1) ≥ nM

⇒ Nm(NM−m − 1) > nM

⇒ NM −Nm > nM

⇒ NM > Nm + nM

Hence the complexity of the original problem can be reduced, if we can divide
the original problem, i.e. split M and N into separate subproblems and tackle
them respectively.

To construct the first subproblem, we need to reduce the number of random
variables. On a 4-connected Markov grid as shown in Figure 1, a minimum cycle
is composed of 4 vertices. Each vertex is directly related to 2 out of 3 of the
other vertices on the cycle. Hence the values of all vertices on the same cycle
should generally be similar. Based on this prior, we favour vertices on the same
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Fig. 1. Left: the original Markov grid; middle: four vertices on the same minimum cycle

are merged, their exterior edges are inherited by the super-vertex; right: merging has

been implemented with the rest vertices, some duplicate edges connecting the same

super-vertices are dropped off.

minimum cycle to share the same value. Note that we cannot force vertices on
all the minimum cycles to share the same value, otherwise all the vertices will
have identical value. Whereas each vertex participates in 4 minimum cycles, we
only force it to share the same value with neighbour vertices in 2 of the cycles.
In this way, vertices on the selected minimum cycles are merged into one vertex,
which inherits all the exterior edges of its component vertices. By merging all
vertices on selected minimum cycles, the number of vertices in the Markov grid
is reduced to a quarter of the original. At the same time, the number of edges is
also reduced to a quarter of the original. Half of the edges in the original rigid are
removed as interior edges, whereas a further quarter are eliminated as duplicate
exterior edges. The consequent Markov grid after merging inherits the general
structure of the original but loses the local details.

In the second subproblem, we retrieve the details lost due to merging vertices
in the first subproblem. Since the general structure of the Markov grid has
already been identified, only fine tuning within a small range is necessary for
each vertex. That is why we can reduce the number of labels in the second
subproblem. The fine tuning range depends on the nature of the problem and
the requirement of the user. The proposed method favors problems satisfying the
following criterion. Given the labels of surrounding vertices, the possible labels
for a vertex can be narrowed down to a subset of all labels. In many practical
problems, most of the vertices can be regarded as satisfying the above criterion.
In such cases, the loss in optimality is limited. Obviously, the loss in optimality
can be reduced through increasing the fine tuning range. The highest quality, as
well as the worst time efficiency, is achieved by using all labels in the fine-tuning.
In this case, however, the result obtained in the first subproblem is useless, and
the problem is solved in its original form in the second subproblem. At the other
end of the scale, the best time efficiency is obtained by using as few labels as
possible in the fine-tuning step, i.e {−1, 0, +1}.
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Fig. 2. The original problem as well as its time complexity are divided recursively

along the binary tree. The number of variables reduces as the tree branches.

4 Recursion and Solving

Rather than dividing the original problem into two subproblems, our ambition
really lies in recursively implementing the division. Theoretically, we can always
further divide both the subproblems, as long as they are still large enough. How-
ever, in implementation, we generally use a small fine tuning range in the second
subproblem for the purpose of time efficiency. Thus the second subproblem usu-
ally cannot be further divided. Therefore, the recursive division usually generates
a binary tree which only branches on the left children as in Figure 2.

After dividing the original problem according to the binary tree in Figure 2, we
solve the subproblems on the leaves and combine them together to generate the
solution for the original problem. The time complexity of the proposed algorithm
is the sum of the time complexity on all the leaves:

T (M, N) = T (
M

4k
, N) +

k−1∑
i=0

T (
M

4i
, c) . (1)

Among all the leaves, only one of them is the left child of its parent and might
have a large number of labels. However, since the number of variables shrinks
rapidly as the tree branches, this single left leaf which is on the highest level of
the tree contains extremely few variables. The time needed to solve it can be
regarded as a small constant. All the other leaves are the right children of their
parent, hence have a very small number of labels, which can be solved efficiently
using any existing single-scale multi-labelling algorithm. In our work, we adopt
α-expansion as the default option. Therefore, (1) can be computed as:

T (M, N) = Θ(1) +
k−1∑
i=0

O((
M

4i
)3c)
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Fig. 3. The image pyramid generated by the proposed method in stereo matching

= Θ(1) +
k−1∑
i=0

64−iO(M3c)

< Θ(1) +
64
63

O(M3c)

= O(M3c)

which shows the time complexity of the proposed method is independent of
the number of labels N . As the fine tuning range c can be treated as a small
constant independent of the size of the original problem, the time complexity
of the proposed method is simply O(M3). Soon we will see that a dynamic c is
even more powerful than a constant c.

Particularly in stereo matching, the above recursive division can be inter-
preted as depth estimation over a Gaussian-pyramid as shown in Figure 3. The
bottom of the pyramid corresponds to the original image. Each division gener-
ates a higher level in the pyramid, where the numbers of variables and labels
are reduced to a quarter and a half respectively. Optimization starts from the
top level, where the number of variables and search range are both the smallest.
The solution for the bottom level, namely the original image, is reached through
hierarchical fine tuning.

5 Fine Tuning with α-Expansion

As α-expansion calls max-flow algorithms as its subroutine, it is necessary for
the binary term in the energy function to be submodular as shown in (2):

E(0, 0) + E(1, 1) ≤ E(0, 1) + E(1, 0) . (2)

According to the original design of α-expansion [1], the above requirement is
interpreted as

E(p, q) + E(α, α) ≤ E(p, α) + E(α, q) . (3)

In our problem the above interpretation is generalized to a more complex form:

E(p̂ + p, q̂ + q) + E(p̂ + α, q̂ + α) ≤ E(p̂ + p, q̂ + α) + E(p̂ + α, q̂ + q) , (4)
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where p̂ and q̂ are the labels belonging to the two vertices before the fine tuning,
namely the labels obtained in the first subproblem. The original α-expansion can
be viewed as a special case in our problem, where p̂ = q̂ = 0. To show what (3)
really means, we discuss it in three complementary situations. To simplify the
discussion, we assume the range of fine tuning is {−1, 0, +1}, p̂− q̂ = d, and that
E(p, q) = f(p− q).

– When α = −1, p = 0, q = 1, equation (4) is converted to

f(d − 1) + f(d) ≤ f(d + 1) + f(d− 2) , (5)

requiring the energy function to be convex.
– When p = −1, α = 0, q = 1, equation (4) is converted to

f(d − 2) + f(d) ≤ f(d− 1) + f(d− 1) , (6)

requiring the energy function to be concave.
– When p = −1, q = 0, α = 1, equation (4) is converted to (5), requiring the

energy function to be convex again.

According to the above discussion, neither concave nor convex functions can
fulfill the requirement of submodularity in all situations. However, as has been
shown by many previous papers, the Potts model [2] can usually do the job. As
we can judge, it does fulfill the requirement of submodularity in all the three
conditions when d = 0. However, in our case, as d is no longer 0, the Potts model
as well as many other energy functions no longer guarantee the submodular
requirement.

The solution lies in one particular function:

f(x) = |x| , (7)

which is globally convex as well as sectionally concave. It is globally convex,
hence (5) is naturally met. It is sectionally concave, when all points are sampled
from the same side of the origin. Thus (6) can be met as well if we can ensure
that the four terms lie on the same side of the origin. Obviously, if the two terms
on the left lie on the same side of the origin, the two terms on the right will do
so as well. The left two terms, to give their original form in (4), (m+p)− (n+ q)
and m− n, are the label difference between two neighbour variables, before and
after the fine tuning. Enforcing ((m + p) − (n + q)) (m − n) ≥ 0 indicates that
neighbouring variables should not invert their label orders in the fine tuning
step. Although such a constraint confines the fine tuning moves, the optimality
should not be affected much unless severe mistakes were made earlier, requiring
such an inversion in the label orders.

An alternative implementation of α-expansion was proposed in [6], which re-
quires the edge function to be convex in all the 3 situations. With this design,
more convex functions can be adopted in our problem. However in practical
usage, if we expect the label jumps to happen intensively at narrow edges in-
stead of loosely covering a wide area, concave functions are preferable to convex
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functions. Thus we use (7) as the smooth term in our method. This is a convex
function by definition, but penalizes sharp edges the least among all the convex
functions.

Note that α-expansion is not the only option for single-scale MRF optimiza-
tion. We stick to it in this work because it is widely known. People familiar
with other single-scale MRF optimization methods like [3] and [7] can adapt our
methods into their work very easily without necessarily restricting to the cost
function (7).

6 Experiments

To examine the usefulness of the proposed method, we use it to estimate the
disparity between high resolution stereo image pairs. The machine is an average
PC, equipped with 2 GB RAM and 2.39 GHz Dual Core CPU. The images are
downloaded from the Middlebury stereo dataset [16,17]. All the images are over
1000 × 1000 in size. The disparity range in each image pair is larger than 100
pixels, requiring more than 100 labels. We will use α-expansion as the subroutine
in our method, and compare its performance against the original single-scale α-
expansion. Both methods optimize the energy function given by (8), (9), (10),
where Il(i) is the normalized grey value of pixel i in the left image, Ir(i′) is the
normalized grey value of its corresponding pixel in the right image, and L(i) and
L(j) are the labels of pixel i and j respectively. Certainly more sophisticated en-
ergy functions can be designed and used instead, which is an important research
topic by itself, but not our major concern in this work.

E =
∑

i

Ui +
1

100

∑
ij

Bij (8)

Ui = |Il(i) − Ir(i′)| (9)

Bij = |L(i)− L(j)| (10)

We have also implemented our method with FastPD as the subroutine. However,
as the single-scale FastPD cannot be executed to solve a problem of this size
due to the memory limitation on a normal PC, we cannot conduct detailed
comparison with it, but only show our output.

Table 1 shows the processing time, peak memory usage and result quality for
the different methods. All values are the average over the 4 image pairs we used
in the experiments. We refer to the original single-scale α-expansion as 1-scale
in the table. 1-scale� is equivalent to 1-scale except that it is optimized for speed
during programming and hence demands a much larger memory space than 1-
scale. The other rows in the table correspond to our method implemented over
different numbers of hierarchies. The tuning range in the second subproblems is
{−1, 0, +1} in all cases. Figure 4 shows the left views of the four stereo pairs, the
ground truth and the results produced by different methods. The content of the
image are chosen to be different and representative. For example, the image in
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Table 1. Performance comparison: 1-scale� follows the original α-expansion algorithm,

except that it is optimized for speed during programming

Method Time Peak Memory Extra Energy(%)

1-scale 34m03s 270MB 0

1-scale� 17m01s 2.3GB 0

2-scale 2m21s 540MB 4.33

3-scale 37s 540MB 7.63

4-scale 27s 540MB 11.63

5-scale 22s 540MB 18.50

the second column contains many slender objects, which cause frequent and
sharp discontinuities in depth value, whereas the image in the last column con-
tains generally smooth surfaces on which depth value varies only mildly.

6.1 Time and Memory Efficiency

The proposed method is absolutely faster than single-scale α-expansion, no mat-
ter whether it is optimized for speed or not. The optimized α-expansion uses
arrays to store precomputed unary terms. Consequently, it requires 10 times the
memory of the original α-expansion. Nevertheless, it only becomes 2 times faster.
Moreover, when its memory occupancy exceeds the physical memory limit, vir-
tual memory swapping makes it even slower. That is also why FastPD cannot
be used here. On the other hand, the memory requirement of our method is only
moderately larger than that of the original α-expansion, but the boost in speed
is significant. With FastPD as the subroutine, the peak memory occupancy of
our method is 1.4GB, and the algorithm terminates within 15 seconds over 3
levels of hierarchy.

Significant decrease in processing time can be observed between 1-scale and
2-scale, as well as between 2-scale and 3-scale optimization, but as we further
increase the number of hierarchies, no further increase is observed. That is be-
cause, after merging the vertices once, the size of the first subproblem is still
quite huge, whereas after merging twice or three times, the size of the first sub-
problem is already small enough that further reducing its size will not save much
time.

After cutting the problem into small enough pieces, the peak memory occu-
pancy, as well as the processing time of our method is determined by the final
fine tuning on the original scale. That is why the peak memory occupancy of our
method remains the same irrespective of the number of hierarchy levels. It needs
more memory than the original α-expansion because we have pre-computed the
unary term. However, since the number of labels in the fine tuning is small, the
additionally required memory space does not become a problem for a normal PC.
That also suggests that on images of the same size but with increasing number
of labels, whereas the running time of α-expansion or the memory occupancy
of FastPD will increase accordingly, the cost of our method remains almost the
same, because the number of labels needed in the final fine tuning is not changed.
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Fig. 4. From the top to the bottom: left views of the stereo pairs, ground truth, result

produced by the original α-expansion, the proposed method over 3 levels of hierarchy,

using α-expansion and FastPD as subroutines respectively

The time and memory efficiency of single-scale α-expansion and FastPD may
vary due to different implementations, however, that will not affect the compar-
ison here, because the proposed method calls them as the subroutine.
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Fig. 5. Refinement and convergence of depth values at different levels of resolution.

The first row shows depth values. The second row shows which pixels change their

labels as resolution is increased during the sequential fine-tuning operation. The pixels

colored black are to be decreased in disparity as resolution increases; the pixels colored

white are to be increased in disparity, and the pixels colored grey will keep their current

disparity.

6.2 Quality

As shown in the second column in Figure 4, our method does not handle slender
objects particularly well. Slender objects correspond to a sequence of discon-
tinuities in depth values. This result is not surprising, as our assumption is
that neighbouring pixels have similar labels (depth values), and hence can be
merged. Such an assumption does not apply to slender objects, where adjacent
pixels may possess completely different labels. Merging in these areas leads to
severely wrong labelling which cannot be corrected by small range fine tuning.
That is why part of the stick is absorbed by the background, and the other
part becomes thicker through absorbing background pixels. However, as slender
objects are naturally difficult for graph cuts, even the original α-expansion does
not perform outstandingly well on them.

Despite the above defects, the proposed method performs quite well with
generally smooth surfaces like the cloth image in the last column, and sparse
edges like the aloe image on the first column. The extra energy in the MRF due
to hierarchical optimization, as shown in Table 1, is minor, as long as we do not
use too many hierarchies.

Figure 5 shows how the final result is reached through sequential fine tuning
from the coarse estimation. In particular, only the final three levels of recursion
are shown here. The total number of recursion levels is 5. The images in the first
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Fig. 6. Result produced with different parameters using α-expansion as the subroutine.

From left to right: 4 hierarchies, 3 tuning labels; 3 hierarchies, 3 labels; 3 hierarchies,

5 labels.

row show the improvement as the disparity estimate becomes more and more
accurate with increasing resolution. The images in the second row reflect the fine
tuning operation on different pixels.

6.3 Trade-Off between Efficiency and Quality

Table 1 shows that the trade-off between efficiency and quality can be tuned
by changing the number of hierarchy levels of optimization. Another parame-
ter affecting the trade-off is the range of fine tuning. As a rule of thumb, using
more labels during fine tuning over all hierarchies will significantly increase the
processing time. Consequently, we only increase the range of fine tuning in hier-
archies other than the final one. Recall that the processing time of our method
is mainly determined by the last fine tuning at the original scale. As long as
the problem size of this step remains the same, the time efficiency of the whole
algorithm will not be significantly changed.

Table 2 shows how time efficiency and result quality vary as we use different
numbers of levels of hierarchy and different tuning ranges. As one would expect,
with the same number of levels, the wider the tuning range is, the better the qual-
ity will be, and the slower the algorithm will be. However, the opposite results can
be found when the tuning range is increased to 7, i.e. {−3,−2,−1, 0, +1, +2, +3}.
Not only the energy in the MRF but also the processing time is reduced. Again,
note that the processing time mainly depends on the last fine tuning in the orig-
inal scale, which is a single-scale α-expansion. The processing time of a single-
scale α-expansion algorithm depends not only on the size of the MRF but also
on the initial state. The closer the initial state is to the optimal state, the fewer
iterations the α-expansion algorithm needs to converge, hence the faster it ter-
minates. Although using a wider tuning range takes more time on the earlier
hierarchies, it also generates better initial estimation for the final hierarchy,
which is the payoff for previous loss. Figure 6 visually compares the difference
in quality due to different combinations of parameters.
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Table 2. Efficiency and quality with different combinations of parameters. As expected

the quality of the solution is improved by using a larger fine-tuning range. This is done

at all levels of hierarchy, except at the finest resolution level. This improvement in

quality is also at times accompanied by a decrease in run time. The table also shows

that increasing the number of levels can be counter-productive.

Levels Tuning Range Time Extra Energy(%)

3
3 37s 7.63

5 40s 6.00

4

3 27s 11.63

5 37s 8.75

7 35s 7.53

5

3 22s 18.50

5 37s 10.62

7 32s 7.98

7 Conclusion

The proposed method provides a mechanism for separating the complexity in-
duced by the variable set and the label set. This mechanism is able to obtain
satisfying optimization results in time much shorter than that of the other exist-
ing algorithms. This speed opens an opportunity for large scale MRF optimiza-
tion. The tunable parameters leads to the versatility of our method, which can
be applied to different applications through proper parameter selection. For fu-
ture work, we see the possibility of combining our method with Dynamic Graph
Cuts [8], where segmentation in previous frames can be used to guide the forma-
tion and fine-tuning in the hierarchy. In another approach, to avoid improperly
merging vertices of completely different values, mechanisms like backtracking
might be adopted into the proposed method. With these improvements, fast
algorithms producing results of even better quality are to be expected.
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Abstract. In this work the weighted minimal surface model tradition-

ally used in multiview stereo is revisited. We propose to generalize the

classical photoconsistency-weighted minimal surface approach by means

of an anisotropic metric which allows to integrate a specified surface

orientation into the optimization process. In contrast to the conven-

tional isotropic case, where all spatial directions are treated equally, the

anisotropic metric adaptively weights the regularization along different

directions so as to favor certain surface orientations over others. We show

that the proposed generalization preserves all properties and globality

guarantees of continuous convex relaxation methods. We make use of a

recently introduced efficient primal-dual algorithm to solve the arising

saddle point problem. In multiple experiments on real image sequences

we demonstrate that the proposed anisotropic generalization allows to

overcome oversmoothing of small-scale surface details, giving rise to more

precise reconstructions.

1 Introduction

Recovering 3D geometry of the observed scene from multiple calibrated cameras
is one of the fundamental problems in Computer Vision. An established paradigm
for solving this problem – often called multiview stereo – is to reconstruct the
spatial structure in a way that maximizes the photoconsistency along the object
surface, i. e. in a way that the projection of surface points into pairs of cameras
gives rise to the same colors or local neighborhood structure. In contrast to other
techniques like shape from shading or shape from silhouettes, multiview stereo
does not require a controlled environment or additional user interaction. It is
applicable to arbitrary Lambertian objects and forms the basis of the currently
most competitive generic reconstruction methods.

However, the viability of the stereo paradigm strongly relies on the success of
the matching process. When objects exhibit low texture or specular reflections
and when the camera calibration is erroneous, this matching process may fail.
In order to suppress the influence of different sources of error, a robust regu-
larization scheme is therefore crucial. Among the pioneering approaches to this
problem are the variational methods introduced by Faugeras and Keriven [1]

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 538–551, 2010.
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Fig. 1. The figure depicts a challenging test scenario (1 out of 21 images is shown). The

input sequence illustrates a bird figurine with a complex geometric structure comprising

thin protrusions (e.g. the wings) and fine-scale details (e.g. the feathering). Note that

classical photoconsistency is not able to capture the feathering of the wings due to

their extremely low thickness. In this paper we propose a new energy minimization

approach based on a robust and transparent integration of photoconsistency, silhouette

and normal information, capable of accurately recovering such objects. Two views of

the reconstructed surface are visualized.

and by Yezzi and Soatto [2]. The key idea in [1] is to specify the 3D geome-
try as a weighted minimal surface model, where the local metric is defined in
terms of a photoconsistency measure reflecting the agreement of projected sur-
face colors among pairs of images. While this approach successfully suppresses
noise, it suffers from two important limitations. Firstly, the authors in [1] merely
compute suboptimal local minima. In fact, the global minimum is actually the
empty set. Secondly, the minimal surface formulation causes oversmoothing ef-
fects. As a result, protrusions and surface indentations tend to be suppressed in
the reconstructions [3,4].

To overcome these limitations, researchers have devised a variety of strate-
gies. Firstly, one can remove the trivial solution and the related shrinking bias
by introducing constant ballooning terms so as to favor shapes of larger vol-
ume [5]. As an undesired side effect the resulting expansion force tends to fill
in concavities or, respectively, cut off protrusions, depending on the strength of
the inflating force. More elaborate methods were presented in [3,4], where the
constant ballooning term is replaced by a data-aware volume subdivision. While
these procedures help to drastically alleviate the shrinking bias of minimal sur-
face models, they become unreliable in the presence of specular reflections or
with very few input images and the reconstruction fails.

An alternative approach to avoid the empty set was recently proposed in [6].
The authors advocate to retain the weighted minimal surface model but restrict
the optimization to the set of silhouette-consistent configurations. By imposing
that along visual rays, passing silhouette pixels, the voxel occupancy must be at
least one, the trivial solution is no longer feasible. Nevertheless, the shrinking bias
is still present. Even within the set of silhouette-consistent solutions the obtained
reconstruction may suffer from oversmoothing and suppression of indentations
that are not captured by the silhouettes.
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A different strategy to address the multiview stereo problem was suggested in
[7,8,9]. The key idea is to specify additionally to the surface localization in terms
of spatial photoconsistency also the local surface orientation. In [9] the gradient
of the photoconsistency measure was used to approximate the orientation of the
observed shape. [7,8] proposed to estimate the surface orientation directly via
an optimization procedure over the local patch distortion. The optimal patch
is determined based on the agreement of its projections onto the images, where
it is visible. Directionally sensitive anisotropic metrics provide a powerful tool
to integrate such shape normal information in the minimization process. Recent
advances in this field within the context of discrete optimization [10,11] as well
as continuous counterparts [12,13] provide the necessary machinery to compute
a globally optimal solution.

Many of the discussed ideas have been developed independently with focus on
particular weaknesses of previous methods for multiview reconstruction. For ex-
ample, the fusion of multiview stereo and silhouettes aims at recovering thin
protrusions while retaining concavities. Moreover, the normal information is
known to capture high-frequency surface details and enhance reconstructions.
This raises the straightforward question of how these different sources of infor-
mation can be integrated in a unified framework in a robust and transparent
manner. The ultimate goal is to combine their advantages and extend the range
of applicability of established techniques. In particular, such an approach should
be able to reconstruct fine-scale shape details on thin protruding structures, a
test scenario for which most of the existing methods fail – see Fig. 1.

The contribution of this paper is to propose an energy minimization frame-
work for multiple view reconstruction that allows to combine multiview photo-
consistency, silhouette and normal information. We show that the reconstruction
can be efficiently determined as an anisotropic minimal surface which favors not
only locations of good photoconsistency but also orientations that are consistent
with the specified normal field. By adaptively reducing the smoothing along the
predetermined directions, the inherent shrinking bias of traditional minimal sur-
face models is alleviated. Making use of convex relaxation techniques we pose
the reconstruction problem as one of minimizing a convex energy functional. We
show that globally optimal shapes which best fit the photoconsistency values
and the specified normal field are obtained by thresholding the solution of the
relaxed problem. In addition, exact silhouette consistency can be imposed by
constraining the optimization to the convex set of silhouette consistent surfaces.
It should be noted that the proposed approach is a portent of a wide range of
applications involving normal field integration including range data fusion [14],
shape from shading [15] and photometric stereo [16].

The paper is organized as follows. In the next section we introduce the concept
of anisotropic minimal surfaces for multiview stereo. In Section 3 we derive corre-
sponding specific energy functionals to integrate photoconsistency, surface orien-
tation and silhouettes. In Section 4 we provide an efficient primal-dual algorithm
for solving the arising saddle point problem. In Section 5 we show experimental
results on challenging real data sets. We conclude with a brief summary.
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2 Continuous Anisotropic Minimal Surfaces

This section introduces the main concept of anisotropic metrics preferring certain
orientation selectivity by generalizing the traditionally used weighted minimal
surface model. Similar anisotropic formulations have independently been devel-
oped in the context of binocular stereo [12] and image segmentation [13].

We start with some notations. Let V ⊂ R
3 be a volume which contains the

scene of interest and I1, . . . , In : Ω → R
3 a collection of calibrated color images

with perspective projections π1, . . . , πn. Let S1, . . . , Sn ⊂ Ω be the observed
silhouettes of the 3D object and ρ : V → [0, 1] be a photoconsistency map
measuring the discrepancy among various image projections.

The most photoconsistent shape can be obtained according to the following
weighted minimal surface model:

E(S) =
∫

S

ρ(s) ds. (1)

The model encourages the surface to pass through points with high observa-
tion agreement. Its minimization identifies shapes with minimal overall costs
according the local isotropic metric induced by ρ. However, the model does not
explicitly affect the orientation of the estimated shape. To this end, in case of
given surface orientation, a generalization has to be developed. This can be
achieved by introducing a family of positive semidefinite anisotropic tensors
D(x) ∈ R

3×3, x ∈ V tolerating certain directional selectivity. Now, the mini-
mal surface model (1) generalizes to:

E(S) =
∫

S

√
NS(s)T D(s)NS(s) ds, (2)

where NS(s) ∈ S2 ⊂ R
3 denotes the unit outward surface normal at point

s. Obviously, the tensors D(x) can be designed to energetically favor certain
shape orientations while suppressing others. Note that D is defined pointwise.
However, in the remainder of this section we will omit the argument for the
sake of simplicity. The energy model (2) can sill be interpreted as a minimal
surface formulation according to the Riemannian metric induced by D ( i. e.
||v||D =

√
vT Dv ). The Euclidean metric, which treats all spatial directions

equally, appears as a special case with D = I, where I ∈ R
3×3 denotes the

identity matrix. Examples of local distance maps in 2D of the Euclidean and the
more general Riemannian metric are visualized in Fig. 2. The classical weighted
minimal surface model (1) also appears as a special case for D = ρ2 I.

Now, we are confronted with the question of defining the family of anisotropic
tensors D appropriately. Let us assume that a vectorfield F : V → R

3 is provided
representing an estimate of the unit outward orientation of the desired shape.
In practice, meaningful normal estimates can be computed only for points on
the surface of the observed object. For all other points we can set D = ρ2 I,
which corresponds to the conventional isotropic case. Thus, in the sequel we will
assume F : V → S2 ⊂ R

3, where S2 denotes the unit sphere. In Section 4 we
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isotropic anisotropic
metric metric

Fig. 2. Local distance maps. Examples of local distance maps:
√

vT v = 1 (isotropic

case) and
√

vT Dv = 1 (anisotropic case). While isotropic metrics treat all directions

equally, anisotropic metrics possess directional selectivity.

will give more details on how orientation information can be obtained from the
input images. Based on this data, we would like to suppress regularization along
the corresponding normal and encourage the process along the tangent plane.
Moreover, the photoconsistency map ρ should be taken into account. This can
be achieved by setting

D = ρ2

(
τFFT +

3 − τ

2
(I − FFT )

)
, (3)

where τ ∈ [0, 1] is a weighting parameter that controls the distortion of the
corresponding metric, i. e. the tolerance of the normal field F . In effect, the
formulation in (3) realizes a basis transformation and subsequent scaling. The
first term treats the component along F and scales it by τ , whereas the second
one affects the tangential components. It is easy to verify that the choice τ = 1
gives the original model (1). On the other hand, τ = 0 will completely turn off
smoothing along the vectorfield F . In our experiments we found out τ = 0.15 to
be a good compromise.

Next, we will show some favorable properties of the tensor D defined above.

Proposition 1. For a normalized vector F , ρ ≥ 0 and τ ∈ [0, 1] the matrix D
defined in (3) is symmetric and positive semidefinite with tr(D) = 3ρ2.

Proof. The symmetry of D is obvious.
In order to show that D is positive semidefinite, we observe for v ∈ R

3

vT Dv = ρ2 3τ − 3
2

(
vT F

)2
+ ρ2 3 − τ

2
||v||2 ≥ ρ2 τ ||v||2 ≥ 0

due to ||F || = 1.
Finally, we obtain

tr(D) = ρ2

(
3τ − 3

2
||F ||2 +

3 (3 − τ)
2

)
= 3ρ2. �

The condition that tr(D) does not depend on the choice of the parameter τ
assures that the overall smoothing remains fixed.



Anisotropic Minimal Surfaces 543

It should be noted that the inverse of the matrix in (3) as well as its square
root can easily be computed as

D−1 =
1
ρ2

(
1
τ
FFT +

2
3 − τ

(I − FFT )
)

D1/2 = ρ

(
√

τFFT +

√
3 − τ

2
(I − FFT )

)
.

(4)

This will be useful for optimization purposes (see Section 4.2).

3 Fusing Photoconsistency, Orientation and Silhouettes

In this sectionwewill formulate specific energy functionals based on the anisotropic
minimal surface model (2) which will serve as a data-aware smoothness term.

3.1 Adding Regional Terms

As mentioned previously, an undesired property of minimal surface models of
the form (2) is that the empty set always exhibits a global minimum. One way
to avoid this trivial solution is to derive additional information from the images,
which gives a closer specification of the observed object. This can be achieved
by introducing data terms ρint : V → [0, 1] and ρext : V → [0, 1] defining costs
for each point within the volume for being inside or outside the imaged shape,
respectively. Now, we obtain the following energy model:

E(S) = λ

(∫
int(S)

ρint(x) dx +
∫

ext(S)

ρext(x) dx

)

+
∫

S

√
NS(s)T D(s)NS(s) ds,

(5)

where int(S), ext(S) ⊂ V denote the surface interior and exterior, respectively,
and λ ∈ R≥0 is a weighting parameter.

Next, we are confronted with the optimization of the functional (5). To this
end, the first steps are a conversion to an implicit representation u = 1int(S),
where 1int(S) denotes the characteristic function of int(S), and subsequent re-
laxation:

E(u) = λ

∫
V

(ρint(x) − ρext(x)) u(x) dx +
∫

V

√
∇u(x)T D(x)∇u(x) dx, (6)

where u ∈ Crel := { û | û : V → [0, 1]}. Note that the “binary” version of (6), i. e.
optimization over the set of binary functions u ∈ Cbin := { û | û : V → {0, 1}}, is
equivalent to (5). Fortunately, the optimization of (5) turns out to be as simple
as minimizing (6) which exhibits a constrained convex optimization problem.
This is stated by the following
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Theorem 1. Let u∗ : V → [0, 1] be a global minimizer of the functional (6).
Then the characteristic functions of all upper level sets (i.e. thresholded versions)

Σμ,u∗ = {x ∈ V |u∗(x) > μ}, μ ∈ (0, 1), (7)

of u∗ are also global minimizers of (6).

Proof. The claim follows directly from the layer cake representation of u∗ (see
[17]) and the anisotropic coarea formula (see [13] for a detailed derivation). �

The above theorem implies that we can obtain a global minimum of (5) by
solving the constrained convex optimization problem (6) and thresholding the
result by some μ ∈ (0, 1).

3.2 Incorporating Silhouette Constraints

In certain practical scenarios obtaining reliable volume subdivision terms may
be a challenging task. In such cases a reasonable alternative could be to retain
the original minimal surface model (2) but to restrict the domain of feasible
shapes in order to exclude the trivial solution. The object silhouettes serve as a
useful tool that could provide such constraints:

E(S) =
∫

S

√
NS(s)T D(s)NS(s) ds,

s. t. πi(S) = Si ∀ i = 1, . . . , n.

(8)

Note that for D = ρ2I the above formulation boils down to the model proposed
in [6].

Unfortunately, global optimization of (8) is not a trivial task. Nevertheless, a
global minimum can be obtained up to an energetic upper bound. Reverting to
an implicit representation and subsequent relaxation yields:

E(u) =
∫

V

√
∇u(x)T D(x)∇u(x) dx,

s. t. u ∈ [0, 1]∫
Rij

u(x) dRij ≥ 1 if j ∈ Si∫
Rij

u(x) dRij = 0 if j /∈ Si,

(9)

where Rij denotes the visual ray through pixel j of image i. It can be verified
that (9) exhibits a constrained convex optimization problem for which the global
minimum can be obtained. Since we are interested in finding minimizers of the
original non-convex problem (8), we threshold the solution of the convex problem
umin appropriately:

ũ(x) =
{

1, if umin(x) ≥ μ
0, otherwise , (10)
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where

μ = min
{(

min
i∈{1,...,n},j∈Si

max
x∈Rij

umin(x)
)

, 0.5
}

. (11)

The threshold is estimated such that the computed binary solution is the closest
one that still fulfills exact silhouette consistency. Note that minimizing (8) is
equivalent to minimizing the “binarized” version of (9) (where u ∈ [0, 1] is
replaced by u ∈ {0, 1}). Although this approach does not assure finding the
global minimum of (8), it entails certain globality guarantees.

Proposition 2. Let u′ be a (global) minimum of the “binary” version of (9),
ũ the computed solution and umin a (global) minimum of (9). Then, a bound
γ(umin, ũ) exists such that

E(ũ) − E(u′) ≤ γ(umin, ũ).

Proof. Since the binary functions are a subset of the real-valued functions, we
have the relation

E(umin) ≤ E(u′) ≤ E(ũ)

As a consequence, we obtain the inequality

E(ũ) − E(u′) ≤ E(ũ)− E(umin) =: γ(umin, ũ). �

Generally, we used the energy model in (5) in our experiments, since it does not
require silhouette information to be provided, and switched to (8) in cases where
computing accurate regional terms was not feasible.

4 Implementation and Numerics

This section will give more details on the particular choice of data terms and
the numerical implementation of the proposed approach.

4.1 Data Term Computation

Following the formulation in (3), we need to define multiple data measures: a
photoconsistency map ρ, regional subdivision costs ρint, ρext and an outward
normal field F .

The photoconsistency estimation that we used in our experiments is based on
the voting scheme proposed in [19]. Moreover, we used the propagating approach
in [4] to derive volumetric assignment costs for object interior/exterior.

In order to obtain an estimate of a normal field F representing the surface
orientation, we assume a sparse oriented point cloud

P = { pi | pi ∈ V }
O =

{
vi | vi ∈ S2

}
,

where S2 denotes the unit sphere. Such data can be obtained via an optimization
procedure over the local photometric consistency (see Fig. 3). In our experiments,
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(a) (b) (c)

Fig. 3. Surface normal estimation. (a) The orientation of a point in space is obtained,

based on a local planar patch. The optimal orientation is given by the maximal pho-

tometric agreement of the projections of the patch onto the images, where it is visible.

(b) A point cloud for the data set in Fig. 4, generated with the software at [18]. (c)

Corresponding color-coded normal vectors.

we used the approach of [7], an implementation of which is publicly available at
[18]. See [7] for more details. A sample oriented point cloud for a real image
sequence, obtained with the above procedure, is visualized in Fig. 3 (b), (c).
Based on this data, we define the vectorfield F as

F (x) =
{

vi, if x = pi

0, otherwise . (12)

In practice, we replace F with a semi-dense blurred version F̃ in order to account
for inaccuracies due to image noise.

4.2 Efficient Primal-Dual Optimization

As mentioned previously, the minimization of (6) and (9) poses classical con-
strained convex optimization problems. Hence, any iterative local optimization
procedure will provide the global minimum. However, the particular choice of
minimization method will affect the speed of convergence. In the current work,
we adopt the primal-dual method proposed in [20].

First, we observe that that the energy functionals in (6) and (9) are both in
the form

E(u) =
∫

V

√
∇uT D∇u dx +

∫
V

fu dx, (13)

where f : V → R summarizes the constant part not dependent on u. We proceed
by splitting D as D = D1/2D1/2 and introducing a dual variable ξ : V → R

3,
which allows for the following conversion:

E(u) =
∫

V

√
∇uT D∇u dx +

∫
V

fu dx

=
∫

V

||D1/2∇u|| dx +
∫

V

fu dx

= max
||ξ||≤1

∫
V

〈ξ, D1/2∇u〉 dx +
∫

V

fu dx.
(14)
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Now, we obtain a new functional

E(u, ξ) =
∫

V

〈ξ, D1/2∇u〉 dx +
∫

V

fu dx, (15)

that should be minimized with respect to u and maximized with respect to
ξ under the constraint ||ξ|| ≤ 1. This states a typical saddle point problem
that can be solved by a projected gradient descent/ascent strategy. Denoting
by K := { ξ ∈ R

3 | ||ξ|| ≤ 1 } the unit ball, our optimization scheme can be
described as follows. We choose (u0, ξ0) ∈ Crel ×K and let ū0 = u0. We choose
two time-steps τ, σ > 0. Then, we iterate for n ≥ 0

ξn+1 = ΠK(ξn + σ(D1/2∇ūn))

un+1 = ΠCrel
(un + τ(div(D1/2ξn+1)− f))

ūn+1 = 2un+1 − un,

(16)

where ΠK and ΠCrel
denote projections onto the corresponding sets. Both pro-

jections are realized by simple normalization and clipping, respectively. For pro-
jection onto the set of silhouette-consistent solutions, imposed in (9), we refer to
[21]. Note that the matrix square root D1/2 can easily be computed according
to the construction (see (4)). Note however that D1/2 is, in general, spatially
varying.

For sufficiently small time-step parameters convergence of the above iterative
procedure can be proved [20]. In our experiments we observed stable behavior
for τ = σ = 0.1.

5 Experiments

To motivate the exploration of anisotropic minimal surface models allowing to
integrate normal information, we start with a challenging image sequence illus-
trated in Fig. 4. Depicted are 3 out of 21 input images and multiple views of the
reconstructions with the classical weighted minimal surface model [6] and the
proposed anisotropic generalization (8). The data set is quite inconvenient due
to the complex geometry of the imaged object comprising multiple thin struc-
tures (e.g. the wings or the legs). While the isotropic minimal surface model
accurately recovers all elongated structures, it completely fails at small-scale
surface details (e.g. the feathering) in contrast to the proposed anisotropic ap-
proach which clearly enhances the reconstruction. In Fig. 3 the utilized normal
field is illustrated. It should be noted that for very thin geometric structures no
meaningful photoconsistency can be derived. In this case the weighted minimal
surface model boils down to Euclidean minimal surface model and produces the
smoothest silhouette-consistent shape.

Although the Middlebury benchmark [23] is essentially exhausted and no
longer provides a major challenge for multiview stereo approaches, it remains
one of the most established benchmarks. Fig. 5 shows multiple views of the re-
constructions obtained with the model in (5) on the well-known “dinoRing” and
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isotropic minimal surface

anisotropic minimal surface

Fig. 4. Bird sequence. 3 out of 21 input images of resolution 1024 × 768 and multiple

views of the reconstructions with the classical isotropic minimal surface model (used

for example in [6]) and the proposed anisotropic generalization (8). Note that small-

scale structures like the feathering are clearly oversmoothed by the isotropic model in

contrast to the proposed anisotropic approach.

Fig. 5. Middlebury data sets. Two of the input images and two views of the recon-

structions obtained with the model in (5) on the well-known “dinoRing” (48 images of

resolution 640 × 480) and “templeRing” (47 images of resolution 640 × 480) data sets.

See Table 1 for a quantitative evaluation and [22] for a comparison to other approaches.

“templeRing” data sets. We refer to Table 1 for a quantitative evaluation and a
comparison to the results reported in [4] for an isotropic version of (5). Moreover,
we refer to [22] for a comparison to alternative approaches. Surprisingly, despite
the already very low errors, experiments show that the proposed anisotropic for-
mulation leads to a further reduction of accuracy and completeness scores. It
should be recalled that the proposed method operates on a discrete volume grid,
which poses a restriction on the precision of the recovered 3D meshes. Additional
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Table 1. Quantitative comparison between the anisotropic model in (5) and the

isotropic version reported in [4] on the Middlebury data sets (see Fig. 5). The numbers

give accuracy (in mm) and completeness (in %). The completeness score measures the

percentage of points in the ground truth model that are within 1.25mm of the recon-

structed model. The accuracy metric shown is the distance d that brings 90% of the

reconstructed surface within d from some point on the ground truth.

isotropic anisotropic
model model

dinoSparseRing 0.53mm / 98.3% 0.48mm / 98.6%
dinoRing 0.43mm / 99.4% 0.42mm / 99.5%

templeSparseRing 1.04mm / 91.8% 0.97mm / 92.7%
templeRing 0.72mm / 97.8% 0.7mm / 98.3%

Fig. 6. Niobe sequence. 2 out of 38 input images of resolution 2048×3072 and multiple

views of the reconstruction obtained by optimizing the energy model in (5). Note the

accurate reconstruction of fine-scale surface details.

post-processing refinement of the generated triangle meshes could be included
to further increase the scale of accuracy and obtain better evaluation results but
this is beyond the scope of the current work.

Finally, we conclude with an experiment on an image sequence capturing a
Greek statue (Niobe, reproduction from the 19th century, 2m high). Two of the
input images and multiple views of the high-quality reconstruction obtained by
optimizing the energy model in (5) are depicted in Fig. 6. Despite the fixed
volumetric discretization most of the relevant fine-scale surface details like body
parts and creases of the clothing are recovered accurately. Note also the severe
brightness variations that make a robust optimization scheme indispensable. It is
interesting to mention that the input photographs were acquired by a hand-held
camera and calibrated with the Bundler software [24].

All demonstrated reconstructions were computed on volumetric grids consist-
ing of 18−40 million voxels. On a consumer PC we measured runtimes of up to a
couple of hours, whereas most of the time was spent on data term computations.
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6 Conclusion

In this paper, we proposed to integrate multiview stereo information and sur-
face orientation estimates by means of anisotropic minimal surfaces. The key
idea is that the local photoconsistency enters as the overall weight of the met-
ric, while the additional normal information induces a local anisotropy of the
metric which favors discontinuities of the labeling function in directions of the
prescribed normal field. We prove that optimal anisotropic minimal surfaces can
be computed using convex relaxation and thresholding techniques. In addition,
exact silhouette consistency can be imposed by constraining the optimization to
the convex set of silhouette-consistent solutions. In experiments on real-world
data we demonstrate that stereo-based reconstruction results can be enhanced
both qualitatively and quantitatively by incorporating normal information.
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17. Chan, T., Esedoḡlu, S., Nikolova, M.: Algorithms for finding global minimizers of

image segmentation and denoising models. SIAM Journal on Applied Mathemat-

ics 66, 1632–1648 (2006)

18. PMVS. http://www.cs.washington.edu/homes/furukawa/research/pmvs/

19. Hernandez, C., Schmitt, F.: Silhouette and stereo fusion for 3D object modeling.

Computer Vision and Image Understanding 96, 367–392 (2004)

20. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing

the piecewise smooth Mumford-Shah functional. In: IEEE on International Con-

ference,Computer Vision (ICCV), Kyoto, Japan (2009)

21. Dykstra, R.: An algorithm for restricted least squares regression. Journal of the

American Statistical Association 78, 837–842 (1983)

22. Middlebury, http://vision.middlebury.edu/mview/

23. Seitz, S., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and

evaluation of multi-view stereo reconstruction algorithms. In: Proc. International

Conference on Computer Vision and Pattern Recognition, pp. 519–528 (2006)

24. Bundler, http://phototour.cs.washington.edu/bundler/

http://www.cs.washington.edu/homes/furukawa/research/pmvs/
http://vision.middlebury.edu/mview/
http://phototour.cs.washington.edu/bundler/


An Efficient Graph Cut Algorithm
for Computer Vision Problems

Chetan Arora, Subhashis Banerjee, Prem Kalra, and S.N. Maheshwari

Department of Computer Science and Engineering,
Indian Institute of Technology, Delhi, India

{chetan,suban,pkalra,snm}@cse.iitd.ac.in

Abstract. Graph cuts has emerged as a preferred method to solve a class of en-
ergy minimization problems in computer vision. It has been shown that graph cut
algorithms designed keeping the structure of vision based flow graphs in mind are
more efficient than known strongly polynomial time max-flow algorithms based
on preflow push or shortest augmenting path paradigms [1]. We present here a
new algorithm for graph cuts which not only exploits the structural properties
inherent in image based grid graphs but also combines the basic paradigms of
max-flow theory in a novel way. The algorithm has a strongly polynomial time
bound. It has been bench-marked using samples from Middlebury [2] and UWO
[3] database. It runs faster on all 2D samples and is at least two to three times
faster on 70% of 2D and 3D samples in comparison to the algorithm reported
in [1].

1 Introduction

Many problems in computer vision such as image segmentation [4], stereo [5], texture
synthesis [6], multi-view reconstruction [7] have been modelled as label assignment
problems involving energy minimization. Label assignment problem is NP hard in gen-
eral [8]. However, for a number of problems (e.g. texture synthesis, segmentation etc.)
the label set has only two labels. It is well known that in the two label case the energy
minimization problem can be modelled as determining a minimum capacity cut in a
flow graph [9]. Two label case is also important because many multiple labelling algo-
rithms use binary labelling repeatedly to get to an acceptable solution [8,10]. Graph cuts
are also used to solve MAP (maximum a posteriori) solution for discrete MRFs. Apart
from efficient algorithms for determining graph cuts [1,11,12,13], recent research has
focussed on mapping computer vision problems on appropriately constructed graphs
[6,10,14,15] and characterizing energy functions that can be minimized by graph cuts
[8,10].

Finding a minimum cut in a flow graph is equivalent to solving the max-flow in it
and [11,12,13] focus on implementing/adapting known polynomial time max-flow algo-
rithms to run on flow graphs obtained from vision problems. Boykov and Kolmogorov
[1] have developed a max-flow algorithm specifically with the objective of practical
efficiency when run on such flow graphs. They included a study of comparative perfor-
mance of their algorithm with the standard shortest augmenting path based algorithm
[16], and variations of the preflow push algorithm [17,18]. They [1] showed that while
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the provable time bound (for integer capacities) of their algorithm (referred to as BK
from now on) was weaker (O(n3C), where n is the number of nodes and C is the cost of
minimum cut in comparison to O(n3) for the standard algorithms), their algorithm out-
performed the others in practice. Goldberg [19] compares experimental performance
of BK with some variations of preflow push that have been proposed since [1]. BK
continues to out-perform the others on most and particularly the two dimensional data
sets.

Contribution: We present in this paper a new flow based graph cut algorithm which
is both strongly polynomial and efficient in practice. We show that in comparison to our
new algorithm the best known algorithm [1] is slower by a factor of 2 to 3 on most of
the BVZ (2D dataset), bone, bunny, babyface and adhead (3D datasets) samples from
the UWO database [3]. On the Middlebury database [2] used by [20] to test their GPU
implementation, we show that our algorithm is 3 times faster than the time reported for
the GPU runs. At a very macro level our algorithm may be viewed as a hybrid of the
preflow push strategy with the layered graph approach of augmenting path methods.
The algorithm keeps the simplicity and locality of preflow strategies while at same
time borrows ideas from layered graph based augmenting path methods to give general
directions to flow.

Section 2 describes our algorithm. In Section 3 we present results and comparison
with currently known best methods in the field followed by conclusion and discussion
in Section 4.

2 Voronoi Based Preflow Push (VPP)

We first review some of the basic terminology we use. We assume that the node set of
original grid graph is augmented by two additional vertices s and t called source and
sink respectively. The edge set of such graph (called flow graph hereinafter) consists
of all the neighbourhood edges called n-links, and t-links which connect s and t to all
nodes in N (the edges are directed from s to nodes in N , and from nodes in N to t).
We assume that between two nodes p and q both directed edges (p, q) and (q, p) exist.
Each n-link (p, q), and t-link connecting a node p ∈ N to s and t has capacity greater
than or equal to zero (Vpq denotes capacity of edge (p, q)). An (S, T ) cut in this flow
graph is defined as a partitioning of the nodes into sets S and T such that s is in S
and t is in T . Capacity of an (S, T ) cut is the sum of the capacities of edges directed
from S to T . Flow in a flow graph is a non negative real valued function that associates
a value fpq with an edge (p, q) in the flow graph where fpq ≤ Vpq . Effective flow in
edge (p, q) is, therefore, equal to fpq - fqp. Residual capacity of an edge (p, q), denoted
by residue(p, q), is a measure of the additional flow that can be sent through it in the
presence of some existing flow. An edge with non-zero residual capacity is called a
residual edge. In-flow/Out-flow at node is the sum of the effective flow in all the edges
directed into/out of node. A flow is a preflow if in-flow is at least as large as out-flow at
all nodes other than the source and the sink. Excess(v) of a node v is equal to in-flow
minus out-flow at node v. Consider a starting configuration in which flow is set equal
to the capacity in t-links and equal to zero in n-links. Now if we label the vertices other
than s and t by their excesses, it is easy to see that the original max-flow problem is
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equivalent to finding max-flow in the flow graph in which all t-links have been removed.
Source-Sink max-flow problem is solved in the resultant flow graph by treating nodes
with positive excesses as sources and those with negative excesses as sinks. From now
on we will assume that the max-flow problem is being solved on such a flow graph.
It should be noted that in this version of the problem sources and sinks do not have
unlimited capacity, rather they have the ability to send or absorb only the amount equal
to the excess on them. With every node v of the grid graph we associate label d(v)
called distance label (or simply label) satisfying the following conditions: d(v) = 0 for
all nodes with negative excesses and for every residual edge (v, w), d(v) ≤ d(w) + 1.
A residual edge (v, w) will be an out-edge/in-edge of v/w if d(v) = d(w) + 1.

Broad steps of our algorithm (referred to as VPP hereafter) are given in Algorithm
1. Our algorithm differs from standard preflow push based algorithms in some crucial
ways.

Algorithm 1. Voronoi Based Preflow Push
1: Create shortest distance based Voronoi region graphs around sink clusters;
2: for Voronoi region graphs with sources do
3: Push flow from the sources towards the sink cluster in each such Voronoi region followed

by pushing flow within the sink cluster;
4: rebuild the Voronoi region graphs around remaining sink clusters;
5: end for

1. Unlike preflow push algorithms we maintain exact distance labels from the sinks.
Note that in computer vision problems, sources and sinks are very often clustered
(collection of source(sink) nodes in which there is a path between any two nodes
passing through only nodes in the collection is called a cluster). Also such clus-
ters are often interspersed. In VPP distance labels are shortest distance to a sink
node on a sink cluster boundary. Initially these labels are generated by the standard
global labelling procedure of push relabel algorithms and at later iterations by an
incremental relabelling algorithm developed specifically to control the number of
nodes relabelled at each iteration. Assignment of distance labels stops once all the
sources are labelled. The subgraphs of nodes and their in and out edges reachable
from a sink cluster are called Voronoi region graph.

2. Flow is pushed in a push flow iteration by processing the nodes in topological sort
order (similar to the highest label first heuristic in preflow push algorithms). This
ensures that once flow is pushed out of a node flow will not be pushed in it in the
current push iteration. There is no local relabelling step at all.

3. Once flow reaches the boundary nodes of a sink cluster the second phase of the
push iteration is initiated. This consists of starting from all the boundary nodes of a
sink cluster and pushing flow inwards in the sink cluster by processing the cluster
nodes in a breadth first manner till either all the excess gets absorbed among the
nodes of the cluster or there are no nodes left in the cluster. The first case will result
in a smaller sink cluster(s) and in the second the sink cluster will disappear. In push
relabel based algorithms when a boundary sink node of a cluster gets saturated,
the inside neighbour in the cluster gets exposed. This results in distance labels of
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a large set of nodes to be recomputed. Pushing flow within a sink cluster before
relabelling contributes to pushing as much flow as possible towards sink clusters
between two relabelling steps.

Maintaining exact distance labels and the flow pushing strategy used ensures that flow
that gets pushed into a sink cluster originates only from sources that lie on the Voronoi
region graphs associated with the sink cluster. Also, because flow pushing to all sink clus-
ters takes place simultaneously between two relabelling iterations, changes in Voronoi
boundaries is incremental as long as sink clusters do not disappear. In effect most of the
time flow pushing towards a sink cluster takes place within that part of the grid graph
that became part of the Voronoi region graph during initialization. Normally only af-
ter a cut has been discovered and/or a sink cluster has disappeared will sources change
their association and become part of other Voronoi region graphs. Such changes in as-
sociation contribute significantly to the relabelling cost. Pushing flow within Voronoi
regions, therefore, works to control relabelling costs. Preflow push algorithms with lo-
cal relabelling cannot focus on this issue as implicit Voronoi boundaries can change with
every relabel. At the surface level algorithms like HI PR [18] which use variations of
highest level first push strategy with occasional global relabelling (the process of creat-
ing exact distance labels) seem to be very similar. However, we show in section 3 that
the number of nodes touched in HI PR in both pushing flow and relabelling phases is
an order of magnitude larger than our algorithm. This is primarily due to: (i) there are
no wasteful local relabelling steps: flow pushing takes place only within Voronoi region
graphs, (ii) repeated relabelling caused by shrinking cluster boundaries is avoided, and
(iii) incremental relabelling process, explained in detail in a following section, ensures
efficient calculation of exact distance labels.

Details of steps at line number 1, 3, and 4 of Algorithm 1 are provided in the follow-
ing sections.

2.1 Initialization

We call the process of creating shortest distance based Voronoi region graphs as the
initialization phase. This process is similar to the global relabelling phase of a tradi-
tional preflow push algorithm starting with initializing all sinks at distance label 0. The
Voronoi region graphs with in/out edge lists at every node get created. Excess(v) is ini-
tialized to 0 for all nodes v other than sources and sinks. For all source and sink nodes
excess(v) is set equal to source capacity if v is a source or equal to negative of sink
capacity if v is a sink. Initialization also inserts all sources in structures called Excess
List (EL). Excess lists are maintained for each distance label. EL(d) contains source
nodes with distance label d. dmax is the largest distance label assigned to any node.

2.2 Push Flow

Push flow happens in two phases. First phase (Algorithm 2) takes excess from sources
to the boundaries of sink cluster following the highest distance label first strategy. At a
node flow is pushed saturating the out edges till the node has no excess left or all out
edges of the node get saturated. The saturated out edges are deleted and a node whose
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all out-edges are deleted is inserted in a list called Disconnected List(DL). Pushing flow
may also involve inserting the node into which flow is being pushed into an EL and
deleting the node whose excess becomes zero from an EL. DLs are maintained for
each distance label d. Second phase moves the excess that accumulates at boundary
nodes of a sink cluster inside the sink cluster. Second phase (Algorithm 4) starts from
those sink cluster boundary nodes with positive excess on them and pushes the excess
inside the cluster in a breadth first manner.

Algorithm 2. Voronoi Push Flow Phase 1
1: for d = dmax..1 do
2: for all v in EL(d) do
3: while excess(v) > 0 and v has out-edges do
4: pick an out-edge (v,w);
5: Push Flow in Edge (v,w);
6: insert w in EL(d(w)) if not already inserted;
7: if residue(v,w) = 0, delete edge (v,w) from out-edges and in-edges of v and w

respectively;
8: end while
9: delete v from EL(d);

10: if all out-edges of v have been deleted, then insert v in DL(d);
11: end for
12: end for

Procedure 3. Push Flow in Edge (v,w)
1: f ← min(excess(v), residue(v, w));
2: excess(v) ← excess(v)− f ;
3: excess(w) ← excess(w) + f ;
4: residue(v,w) ← residue(v, w) − f ;
5: residue(w, v) ← residue(w, v) + f ;

2.3 Rebuilding the Acyclic Voronoi Regions

A node v is labelled disconnected during the Push flow stage because all paths from v
to the sink of a Voronoi region graph have been saturated and there is no remaining path
from v to a sink in the Voronoi region graph on which flow can be pushed. Specifically,
these are nodes put in DL(d) in step 10 of Algorithm 2. It is important to note here
that these nodes are not all the nodes for which there do not exist augmenting paths in
the Voronoi region graphs after the Push flow stage. Other nodes in the Voronoi region
graphs for which all paths to a sink pass through nodes put in DL(d) are also effectively
disconnected. Algorithm 5 identifies all such additional nodes (step 5) and adds them
to the DL(d). Other nodes (i.e. nodes not put in DL(d) in step 10 of Algorithm 2
or step 5 of Algorithm 5) continue to have augmenting paths to sinks in the Voronoi
region graphs and hence have the correct shortest distance label. An augmenting path
from a node v in DL(d) to a sink in the new residual graph will necessarily have to
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Algorithm 4. Push Flow Phase 2
1: for all sinks v set BfsLevel(v) = ∞;
2: for all v in EL(0) do
3: if excess(v) ≥ 0 then
4: BfsLevel(v) = 0

5: insert v in CurrentBfsList
6: end if
7: end for
8: while CurrentBfsList is not empty do
9: for all v in CurrentBfsList do

10: while any (v,w) with residue(v,w) > 0 exists and excess(v) > 0 do
11: if w is a sink with BfsLevel(w) > BfsLevel(v) then
12: Push Flow in Edge (v,w);
13: if BfsLevel(w) = ∞ then BfsLevel(w) ← BfsLevel(v) + 1;
14: insert w in NextBfsList if not already inserted;
15: end if
16: end while
17: if excess(v) ≥ 0 then insert v in DL(0);
18: delete v from CurrentBfsList;
19: end for
20: swap CurrentBfsList and NextBfsList;
21: end while

pass through a node which continues to retain its shortest distance label after a push
flow stage. Also, such a path, if it exists, from a node v, whose all out edges have
been saturated during push flow, will have to pass through a neighbour w not in its
out-edge list as it existed when flow was pushed last. For such a node w, d(w) was
greater than or equal to d(v) in the Voronoi region graph in which flow was pushed,
and so the new label for v will be larger than its current label. This also implies that
the label of all those nodes u, for which augmenting paths to the sink pass through v in
the new residual graph, either increase their labels as well or the edge (u,v) be dropped
from the Voronoi region graph to retain consistency among distance labels. We give
below a two phase incremental relabelling process the first phase of which (Algorithm
5) identifies nodes whose shortest distance labels will increase (the disconnected nodes
added to DL(d)s) and those which have residual edges pointing to them from a newly
discovered disconnected node (inserted in a Rebuild List (RL)). In first phase the DL
lists are processed in order of increasing distance labels thereby ensuring that at the
end of processing nodes in Dl(d), the DL(d + 1) and RL(d) lists have been correctly
computed. Nodes in RL(d) can provide distance label d + 1 to disconnected nodes.

To ensure that disconnected nodes get the shortest distance label, second phase (Al-
gorithm 6) starts with the lowest level non empty rebuild list. It can be shown that after
RL(d) has been processed all disconnected nodes which are at shortest distance d + 1
from a sink have been so labelled. Such nodes would necessarily have to have a resid-
ual edge directed from them to a node whose shortest distance label is d. The phase
one and two ensure that such nodes will be in RL(d). It is possible that in the process
of rebuilding, a node shifts from one Voronoi region to another. This will depend upon
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Algorithm 5. Rebuild Phase 1
1: for d = 0..dmax do
2: for each v in DL(d) do
3: for all edges (w,v) do
4: remove edge (w,v) from out-edges and in-edges of w and v respectively;
5: if there are no out-edges in w then insert it in DL(d(w));
6: if w exists in RL(d(w)) then delete it from RL(d(w));
7: end for
8: for all residual edges (v,u), if u has any out-edge, then insert u in RL(d(u)) if not already

inserted;
9: d(v) ← ∞;

10: delete v from DL(d);
11: end for
12: end for

the Voronoi region to which the node in the rebuild list through which the disconnected
node finds a new path to a sink belonged.

Algorithm 6. Rebuild Phase 2
1: for d = 0..dmax do
2: for each v in RL(d) do
3: for all edges (w,v) with residual(w, v) > 0 do
4: if d(w) = d + 1 then
5: make (w, v) an out-edge of w and in-edge of v;
6: else
7: if d(w) = ∞ then
8: d(w) ← d + 1;
9: if dmax < d(w) then dmax ← d(w);

10: if excess(w) > 0 then insert w in EL(d(w))

11: make (w, v) an out-edge of w and in-edge of v;
12: insert w in RL(d(w));
13: end if
14: end if
15: end for
16: delete v from RL(d);
17: end for
18: end for

Figures 1(a), 1(b), and 1(c) depict the state of the flow graph prior to a push flow
iteration, after the push flow iteration, and after the corresponding rebuild phase. In
these figures sinks clusters are circles labelled A,B,C, and D. Rest of the circles are
source clusters. Figure 1(a) represents a possible scenario prior to a push phase with
four Voronoi regions corresponding to the four sink clusters. Directed lines are parts of
the shortest paths that exist in the Voronoi region graphs. Flow will get pushed in each of
these four Voronoi region graphs starting from the furthest away sources in topological
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(a) After initialization/rebuild (b) After Push flow (c) After rebuilding Voronoi
regions

Fig. 1. Flow graph states in VPP

sort order. Figure 1(b) represents the state after the push flow phase. Thick dashed lines
indicate saturated edges. Dashed circles show the changes in sources and sink clusters.
Note that in region VRG-A the sink cluster has shrunk, in VRG-B the sink cluster has
disappeared and a new source created (circle labelled Y). In VRG-C and VRG-D sink
clusters have not changed but a few source clusters have disappeared and new ones
created. Figure 1(c) represents the state of the flow graph immediately after the rebuild
phase. The three Voronoi regions correspond to the remaining sink clusters. Voronoi
boundaries have shifted and sources X, Y, and Z are now in different Voronoi regions.

The algorithm finds the value of the max flow and the corresponding minimum en-
ergy graph cut. Flow in the graph may be a preflow when the algorithm terminates. The
standard phase of converting a preflow into a flow would need to be incorporated to
convert the above into a max flow algorithm [18].

Worst case time complexity of the algorithm is easily established. Beyond the ini-
tialization phase an iteration of the algorithm involves pushing flow and rebuilding the
acyclic Voronoi regions. In a push flow phase, flow is pushed in an edge only once and
so the total time taken is bounded by the number of edges in the acyclic Voronoi regions.
In grid graphs with bounded degree, number of edges are O(n). Rebuilding the acyclic
Voronoi regions requires two passes over the grid graph in which edges and nodes of
the graph that are accessed are touched a constant number of times. Rebuild time in
each iteration is, therefore, O(n). Shortest distance labels on nodes in the grid graph
increase monotonically. Between iterations at least one node in the graph will have its
label increased by one. Shortest distance labels can not remain the same between iter-
ations as that would imply no change in the acyclic graph structure between iterations.
This is not possible if there are nodes at the end of an iteration with positive excesses.
Since there are n nodes in the grid graph the maximum number of iterations possible
is O(n2) (under the assumption that only one node gets its labelled increased in any
iteration and that the maximum label any node can have is n). Over all time complexity
of the algorithm is, therefore, O(n3). We would like to mention that the above analysis
simply establishes strong polynomial bound and is not necessarily the sharpest bound
provable. However, we show experimentally in section 3 that the actual number of iter-
ations on vision grid graphs is much less. Tight analysis of the algorithm on vision grid
graphs is an open issue.
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3 Results and Comparison

We have implemented our algorithm in C++ and compared its performance with BK
[21], and HI PR [22] on a machine with dual core 2.5 GHz CPU with 2GB RAM.
Performance comparison with P2R [19] and CH-n [23] has been included on the basis
of results on 3D datasets in [19]. Comparison with CudaCuts is using times reported in
[20] on data sets from Middlebury [2]. 2D samples are BVZ and 3D samples are bunny,
babyface, adhead and bone from UWO database [3]. For tests that we have conducted
we have measured only time taken to run the algorithms after the flow graph has been
constructed. Accuracy of the algorithm is verified by matching the flow computed by it
to the one given with the database.

Figure 2 tabulates the time taken by our algorithm and CudaCuts time as reported in
[20]. Our algorithm is 2 to 3 times faster.

Sample VPP Time (ms) CudaCuts Time (ms)

flower 19.81 37

person 20.77 61

sponge 17.74 44

Fig. 2. Time comparison between CudaCuts
and VPP

Fig. 3. Graph showing ratio of time for BK Vs
VPP algorithms on BVZ test database

Figure 3 plots the ratio of time taken by BK and VPP. Note that BK is slower by at
least a factor of 2 on 70% of the samples. Figures 4(a) and 4(b) compare the total num-
ber of nodes touched during push flow (expansion/augmentation) and relabelling(adopt
orphans) phases in VPP, BK, and HI PR. In both figures values have been truncated at
the upper end. Note that the number of nodes touched during push flow phase in VPP
are significantly smaller than those touched in BK and HI PR. Poor performance of
HI PR is primarily due to use of approximate distance labels and repeated relabelling
steps. In BK nodes touched in push flow is large as there is little control over augment-
ing path lengths and the amount of flow pushed in each path. However, nodes touched
in the relabelling phase in BK is comparable to VPP.

It must be pointed out that total relabelling effort in BK is spread over a very large
number of flow augmentation iterations. This effort is very small per flow augmentation
iteration. This is because source and sink trees maintained by BK undergo very little
change per iteration and effort involved (identification of disconnected nodes called or-
phans and rebuilding of trees by a process called adoption) is limited to searching in a
small local neighbourhood in the grid graph. Also, since augmentation is not required
to be on shortest paths global nature of the relabelling step in shortest path/distance la-
bel based algorithms is avoided. Note, however, that HI PR which has local and global
relabelling performs particularly poorly. This is not only due to the wasteful local rela-
belling steps but also because global relabelling cannot be made incremental as there is
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(a) Nodes touched during push flow (b) Nodes touched during relabel

Fig. 4. Nodes touched

no obvious way to identify nodes whose distance labels will not change between two
global relabelling steps in the presence of local relabelling.

We would like to point out that there is further scope for controlling relabelling in
VPP. The current incremental relabelling strategy will assign non zero labels to sink
cluster nodes at the cluster boundary that were neutralized (excess(v) = 0) during a
push phase. The impact of this is to increase the number of nodes requiring relabelling
in the Voronoi region graph though structurally graph may not have changed much.
By carrying out partial labelling first from the shrunk boundary of a sink cluster to the
original boundary we can determine the nodes of the original boundary which can still
pass flow to the sink cluster nucleus. If we do this, we can effectively retain much of the
original boundary of the sink cluster for the purposes of incremental relabelling. We call
this the Hybrid VPP algorithm (VPP-h). Note that (Figures 4(a) and 4(b)) while nodes
touched in the push phase in both VPP and VPP-h are similar number of nodes touched
during relabelling in VPP-h is smaller. This is another instance where focus on the
Voronoi subdivision of the grid graph has resulted in a heuristic to control relabelling
costs.

Figure 5(a) shows total nodes touched in BK and VPP (sum of numbers in Figures
4(a) and 4(b)). It is interesting to see that time comparison in Figure 5(b) follows the
trend showed by touched nodes graph in Figure 5(a). This is intuitive and logical since
all the work in max-flow algorithms is concentrated in push and relabel operations.

Figure 6 has cumulative time, flow pushed and the number of nodes touched plotted
as function of iteration number for one sample run of VPP algorithm. Note that all

(a) Total nodes touched (b) Time taken

Fig. 5. Comparing trends of total nodes touched and time taken in VPP and BK
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Fig. 6. Per iteration analysis for VPP for sam-
ple Sawtooth 9

Fig. 7. Number of iterations on BVZ samples
for VPP

the three curves have the same trend. Most of the time is taken as well as most of
the flow gets pushed in the first iteration. As iteration number increases both the time
taken and amount of flow pushed decrease as do the number of nodes touched. The
implication is that Voronoi regions created become progressively smaller as iteration
number increases. Also, useful work done per iteration is large in that ratio of the nodes
relabelled and nodes involved in pushes in any iteration is high.

The above point gets made even more emphatically in Figure 8(b) and Figure 8(c)
which show nodes involved (colored yellow) in a push operation during 1st and 35th
iteration respectively when VPP is run on Venus7. It seems as if most of the nodes in
the Voronoi region graphs around the sinks were involved in pushing flow from sources
to the sinks. Since most of the pushes are saturated, one would expect that flow that
reaches the sinks is large. This is indeed so. We have observed that about 90% of flow
reaches the sinks in the first few iterations.

The worst case running bound of our algorithm is strongly polynomial compared to
O(n3C) in case of BK. This is not simply an asymptotic curiosity. Relatively simple
tweaks in link capacities can change the edges in such a way that BK slows down by as
much as ten times. For the purpose of our experiments we took a sample (Sawtooth 9)
from the dataset and scaled the capacities of n-links. Figure 9(a) shows the change in
time. The reason for this time degradation is that the number of nodes touched during
push flow starts to increase. Figure 9(b) shows the corresponding change in the number
of nodes touched in the two algorithms during flow augmentation iterations.

(a) Venus sample image (b) 1st iteration used nodes (c) 35th iteration used nodes

Fig. 8. Used nodes (shown in yellow) in one iteration
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(a) Running time comparison (b) Touched nodes comparison

Fig. 9. VPP and BK Comparison after scaling n-links in Sawtooth 9

Fig. 10. Performance comparison of BK with VPP, HI PR, PAR, P2R and CH-n on 3D, 6-
connected datasets

Figure 7 shows the number of iterations taken by the VPP algorithm on BVZ sam-
ples. One interesting observation is that the upper bound on the number of iterations
(O(n)) that one can formally prove overestimates the actual observed number signifi-
cantly.

We have also compared performance of VPP and BK by running the two algorithms
on 6 connected 3 dimensional data sets consisting of bone, babyface, bunny and adhead
samples [3]. Figure 10 plots the ratio of time taken by BK and VPP, HI PR, P2R, and
CH-n. Ratio of time taken by BK and HI PR, P2R, and CH-n are as reported in Table
5 in [19]. Note that VPP’s performance is comparable to BK’s on those samples for
which Goldberg’s set of algorithms (HI PR, P2R, CH-n) are slower than BK [19]. On
those samples (bone) for which CH-n, P2R are slightly faster than BK, VPP is 3 to 5
times faster.

4 Conclusions

The VPP algorithm presented above uses multiple paths with a single labelling, collects
all flow first at a node before pushing, and partitions the grid flow graph in Voronoi
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regions at each iteration. Flow maintained after each iteration is a preflow but unlike
the traditional preflow push algorithms there are two distinct phases in an iteration.
The relabelling phase rebuilds the Voronoi region graphs, and push flow phase uses
highest label first push and then breadth first inside sink cluster to push flow in the
preflow framework in each Voronoi region. As sinks get saturated their Voronoi regions
is redistributed among Voronoi regions which are still active. The algorithm improves
upon the earlier reported algorithms both in terms of performance over standard data
sets as well as demonstrably strongly polynomial worst case bound. This is important as
we show cases where performance of algorithms without this property degrades quickly.
We would like to re-iterate that our set of algorithms attempts to control the way a sink
cluster can hold on to its ”Voronoi region”. There could be number of other strategies,
around this central theme of ”Voronoi based preflow push” to improve the performance
of graph cut algorithms for vision flow problems.

It should be noted that flow pushing is a symmetric activity, i.e. the end graph cut
and max-flow obtained is independent of whether the flow is being pushed from so
called sources to sinks or from sinks to sources. All that would happen is that the ini-
tial Voronoi regions created would change both in numbers as well as in shape. Actual
time taken would also change. While we provide no formal proof, time taken would be
proportional to the number of initial Voronoi regions and this can be used to improve
performance. We have shown that relabelling costs are controllable by exploiting prop-
erties of the vision problems. Hybrid VPP is an example. In higher dimensions the grid
structure becomes even more important as the number of edges in the grid graph start
dominating. One way to use the higher dimensional grids effectively will be to model
the neighbourhood locality structure more precisely. That is, distinguish between edges
which are incident on nodes which are grid neighbours and those which are further
apart. Preliminary experiments have suggested that in higher dimensions such locality
impacts performance of algorithms compared here. How does it do so in higher dimen-
sions is a theme we are exploring.

The authors would like to thank Niloy Mitra and the referees for their comments,
inputs and careful reading of the manuscript.
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Abstract. This paper presents a non-local kernel regression (NL-KR)

method for image and video restoration tasks, which exploits both the

non-local self-similarity and local structural regularity in natural im-

ages. The non-local self-similarity is based on the observation that image

patches tend to repeat themselves in natural images and videos; and the

local structural regularity reveals that image patches have regular struc-

tures where accurate estimation of pixel values via regression is possible.

Explicitly unifying both properties, the proposed non-local kernel re-

gression framework is robust and applicable to various image and video

restoration tasks. In this work, we are specifically interested in applying

the NL-KR model to image and video super-resolution (SR) reconstruc-

tion. Extensive experimental results on both single images and realistic

video sequences demonstrate the superiority of the proposed framework

for SR tasks over previous works both qualitatively and quantitatively.

1 Introduction

One of the recent trends in image processing is to pursue the low-dimensional
models for image representation and manipulation. Examples include the lo-
cal structure based methods [1], sparse representation methods [2][3], manifold
methods [4], etc. The success of such models is guaranteed by the low Degree of
Freedom (DOF) of the local structures in natural images, represented as mean-
ingful local structural regularity as well as self-similarity of local patterns.

Many conventional image processing algorithms are based on the assumption
of local structural regularity, meaning that there are meaningful structures in
the spatial space of natural images. Examples are structure tensor based meth-
ods [1][5][6]and bilateral filtering [7]. These methods utilize the local structural
patterns to regularize the image processing procedure and are based on the as-
sumption that images are locally smooth except at edges.

Another type of methods exploiting the self-similarity in natural images are
recently emerging. The self-similarity property means that higher level patterns
(e.g., texton and pixon) will repeat themselves in the image (possibly in dif-
ferent scales). This also indicates the DOF in one image is less than the DOF
offered by the pixel-level representation. A representative work is the popular
Non-Local Means (NL-Means) [8], which takes advantage of the redundancy of

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 566–579, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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similar patches existing in the target image for denoising tasks. Later, this idea
is generalized to handle multi-frame super-resolution tasks in [9]. Recently, this
self-similarity property is thoroughly explored by Glasner et. al in [10] for ad-
dressing single image super-resolution problems. Gabriel Peyré et. al proposed
a non-local regularization method for general inverse problems [11].

We propose in this paper a Non-Local Kernel Regression (NL-KR) method
for image and video restoration (see Fig. 1 for a graphical illustration of the
proposed model). We take advantage of both local structural regularity and non-
local similarity in a unified framework for more reliable and robust estimation.
The non-local similarity and local structural regularity are intimately related,
and are also complimentary in the sense that non-local similar pattern fusion
can be regularized by the structural regularity while the redundancy from similar
patterns enables more accurate estimation for structural regression.

The rest of the paper is organized as follows. We first review and summarize
related works in Section 2, then we propose our NL-KR model and discuss its
relations to other algorithms in Section 3. The practical algorithm for SR based
on NL-KR is described in Section 4. Experiments are carried out in Section 5 on
both synthetic and real image sequences, and extensive comparisons are made
with both classical as well as state-of-the-art methods. Section 6 provides some
discussions and concludes our paper.

Fig. 1. Non-Local Kernel Regression. (1) Similar patch searching: different colors

indicate the similarity (red the highest, green the medium and blue the least); (2)

Structural kernel estimation and reweighting: estimate a regression kernel adapted

to the structure at each position where the similar patches reside and re-weight them

according to similarity; (3) Non-local kernel regression: estimate the value for the query

point with both local structural and non-local similar information in raster-scan order.

2 Related Works

In this work, we are interested in image and video restorations where we de-
sire to estimate the pixel value of a given location in the image plane (e.g.,
image super-resolution, inpainting and denoising). This section presents a brief
technical review of local structural regression or filtering method as well as the
non-local similarity-based approach.
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2.1 Local Structural Regression

Typical image filtering methods usually perform in a local manner, i.e., the value
of the estimated image at a query location is influenced only by the pixels within
a small neighborhood of that position. They usually take the form of:

ẑ(xi) = arg min
z

∑
j∈N (xi)

(yj − z)2 Kxi
(xj − xi) (1)

where N (xi) denotes the neighbors of xi, and Kxi
(xj − xi) is the spatial ker-

nel at location xi that assigns larger weights to nearby similar pixels while
smaller weights to farther non-similar pixels. Since the local image structure is
not isotropic, local structure aware kernels are developed, with representative
examples as Orientated Gaussian kernel [1] and Bilateral kernel [7]. To approx-
imate the local structure better, higher order estimation can be used:

â = arg min
a

‖RxiY − Φa‖2
WKxi

(2)

Here Φ is the polynomial bases given in Eq. 3 developed from Taylor expan-
sion1 with a the corresponding regression coefficients, and tril(·) extracts the
lower triangular part of a matrix and stack it to a column vector. WKxi

=
diag[Kxi(x1−xi), Kxi(x2−xi), · · · , Kxi(xm−xi)] (m = |N (xi)|) is the weight
matrix defined by the kernel. Rxi

takes a patch centered at xi from Y and rep-
resents it as a vector.

Φ =

⎡⎢⎢⎢⎣
1 (x1 − xi)T tril{(x1 − xi)(x1 − xi)T }T · · ·
1 (x2 − xi)T tril{(x2 − xi)(x2 − xi)T }T · · ·
...

...
...

...
1 (xm − xi)T tril{(xm − xi)(xm − xi)T }T · · ·

⎤⎥⎥⎥⎦ (3)

Therefore, the first element of the regression coefficient is the desired pixel value
estimation at xi.

ẑ(xi) = eT
1

[
ΦT WKxi

Φ
]−1

ΦT WKxi
RxiY (4)

where e1 is a vector with the first element equal to one, and the rest zero.

2.2 Non-Local Similarity-Based Estimation

Local image structures tend to repeat themselves across the image and also the
image sequence in videos. This property has been explored in many applications

1 The regression bases do not have to be polynomial, and other choices are open. For

more details about deriving the polynomial bases, one can refer to [6], which gives

a nice tutorial on kernel regression.
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such as texture synthesis [12], image inpainting [13], denoising [8] and super-
resolution [9] [14]. This self-similarity property provides the redundancy that is
sometimes critical for many ill-posed image processing problems, as similar struc-
tures can be regarded as multiple observations from the same underlying ground
truth. For instance, the NL-Means algorithm recently introduced by Buades et
al. in [8] for image denoising has become very popular, due to its effectiveness
despite of its simplicity. The algorithm breaks the locality constraints of previous
conventional filtering methods, making use of similar patterns found in different
locations of the image to denoise the image. Specifically, NL-Means algorithm is
a weighted average:

z(xi) =

∑
j∈P(xi)

wijyj∑
j∈P(xi)

wij
(5)

where P(xi) denote the index set for similar pixel observations for xi (includes
xi itself). The weight wij reflects the similarity between the observations at xi

and xj [8]. Eq. 5, can be reformulated into an optimization problem:

ẑ(xi) = arg min
z

∑
j∈P(xi)

[yj − z(xi)]
2
wij

= arg min
z

‖y − 1z(xi)‖2
Wxi

(6)

where y denotes the vector consisting of the pixels at the locations in the similar
set P(xi), 1 denotes a vector of all ones, and Wxi

= diag [wi1, wi2, ..., wim]
(m = |P(xi)|). Compared with Eq. 2, the NL-Means estimation Eq. 6 can be
regarded as a zero-order estimation, and the weight matrix is constructed from
the similarity measures instead of the spatial kernel as before.

3 Non-Local Kernel Regression Model

3.1 Mathematical Formulation

We derive the Non-Local Kernel Regression (NL-KR) algorithm in this section.
The approach makes full use of both cues from local structural regularity and
non-local similarity for image and video restoration. We argue that the pro-
posed approach is more reliable and robust for ill-posed inverse problems: local
structural regression regularize the noisy candidates found by non-local similar-
ity search; and non-local similarity provides the redundancy preventing possible
overfitting of the local structural regression. Instead of using a point prediction
model in non-local methods, we use the more reliable local structure-based pre-
diction. On the other hand, rather than predicting the value with only one local
patch, we can try to make use of all the non-local similar patches in natural
images. Mathematically, the proposed high-order Non-Local Kernel Regression
model is formulated as:
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â = arg min
a

1
2

local︷ ︸︸ ︷
wii‖RxiY − Φa‖2

WKxi
+

1
2

non−local︷ ︸︸ ︷∑
j∈P(xi)\{i}

wij‖Rxj Y − Φa‖2
WKxj

= arg min
a

1
2

∑
j∈P(xi)

wij‖Rxj
Y − Φa‖2

WKxj

= arg min
a

1
2

∑
j∈P(xi)

‖Rxj
Y − Φa‖2

W̃xj

(7)

where WKxj
is the weight matrix constructed from kernel Kxj

, and P(xi) again
is the similar index set for xi. wij is calculated between the location xi of
interest and any position xj (j ∈ P(xi)) by measuring the similarity of their
neighborhoods weighted by a Gaussian kernel:

wij = exp
(
−‖Rxi

Y −Rxj
Y ‖2

WG

2σ2

)
(8)

where WG is the weight matrix constructed from a Gaussian kernel, which puts
larger weights on the centering pixels of the patch. The proposed NL-KR regres-
sion model consists of two parts:

1. Local regression term: the traditional local regression or filtering term,
with wii set to be 1. This term also contributes as a fidelity loss, as the
estimation should be close to the observation.

2. Non-local regression term: instead of zero-order point estimation as in
Non-Local means, higher-order kernel regression is also used to make full use
the structural redundancy in the similar patches.

The effects of these two parts will be more clear with experimental results in
Section 5. To get the regression coefficients, differentiate the right hand side of
Eq. 7 with respect to a and set it to zero, we have

â =

⎡⎣ΦT

⎛⎝ ∑
j∈P(xi)

wijWKxj

⎞⎠Φ

⎤⎦−1

ΦT
∑

j∈P(xi)

wijWKxj
Rxj

Y (9)

Then ẑ(xi) = eT
1 â. Examination on Eq. 9, we have the following two comments:

– The structural kernel is estimated from contaminated observations, and thus
is not robust. Compared with Eq. 4, with non-local redundancy, our estima-
tion is more stable because of the weighted average of kernel weight matrices
inside the inverse, and the weighted average of the structural pixel values.

– Compared with Eq. 6, our model can regularize the estimation from the non-
local patches by structural higher-order regression, and thus is more robust
to outliers.

Therefore, the proposed model make full use of both important cues from local
structure and non-local similarity, leading to more reliable and robust estimation,
which will be verified by experimental results in Sec. 5.
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3.2 Structural Kernel Estimation

It is desirable to use a structure adaptive kernel in estimation. Given the obser-
vation Y and a query location xi, we can construct a structure adaptive kernel
as:

Kxi
(x− xi) =

1√
det(T )

exp
{
−1

2
(x − xi)T T−1(x − xi)

}
(10)

where T is the diffusion tensor at xi controlling the spatial structure of the
kernel. Given two unit vectors u and v defined by the gradient and tangent
direction respectively, we can construct T = fuuT + gvvT and adjust f and
g according to the underlying structure, so that the induced kernel is isotropic
(f ≈ g) at almost constant regions and aligned along the image contour (g > f)
otherwise. One possible choice 2 is f(α, β) = β+γ

α+γ and g(α, β) = α+γ
β+γ (γ ≥ 0),

where α and β are the eigen values of the structure tensor [1], reflecting the
strength of the gradient along each eigenvector directions. α, β, u and v can be
calculated from the following relation using singular value decomposition (SVD):

∇Yxi∇Y T
xi

= αuuT + βvvT (11)

where ∇Yxi is a 2 × 1 vector, denoting the gradient of Y at xi.

3.3 Relations to Other Works

Tons of works have emerged recently based on non-local redundancy and lo-
cal regressions for image and video processing. It is worthwhile to talk about
the relations of the proposed model to those previously proposed algorithms.
The non-local models in [4], [8] and [9] use the redundancy from non-local self-
similarity, but do not include the spatial structure explicitly as a regularization.
The high order generalization of non-local means in [15] uses the computation of
non-local similarity to find the local kernel for regression, which actually violates
the philosophy of the non-local model. Local structural regression [1][6][7] ex-
plicitly employ the spatial kernel for regularization, but neglect the redundancy
of similar local patterns useful for robust estimation. The 3D kernel regression
method [16] exploits the local spatial-temporal structure by extending their 2D
spatial kernel regression, also discards the non-local self-similarity. Sparse repre-
sentation for denoising [2] and super-resolution [3] do local regression using bases
learned from a training database. They perform estimation on each individual
local patch and discard the patch redundancy. The sparse representation model
is later generalized in [17] for image denoising by doing simultaneous sparse cod-
ing over similar patches found in different locations of the image. However, the
non-local redundancy is used in a hard assignment clustering way instead of a
soft way. [10] fully explores the self-similarity property for single image super-
resolution, but no spatial structural regularization is applied. To summarize, our
model is the first work to explicitly unify the self-similarity and local structural
regularization into a single model, allowing more robust estimation.
2 One can refer to [1] for other choices of diffusion tensor.
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Fig. 2. Operator Illustration. Rl
xj

Y , the patch of the LR image Y at xj , is formed

by downsampling HR patch Rh
xj

Z by factor r = 2 as DpRh
xj

Z, keeping the center pixel

still in the center. Operator DT
p up samples a patch with zero padding.

4 Non-Local Kernel Regression for Super-Resolution

The NL-KR model proposed above is a general model that can be applied to
many image and video restoration tasks. In this work, we specifically apply the
formulation Eq. 7 to image and video super-resolution.

Image super-resolution (SR) aims to estimate a high-resolution image (HR)
from a single or a set of low-resolution (LR) observations. Conventional multi-
frame SR follows the steps of (1) global motion estimation, (2) image wrapping
and (3) data fusion. These methods are limited in the assumed global motion
model, and can not be applied to realistic videos that almost certainly contain
arbitrary motion patterns. Recently, several multi-frame SR algorithms based
on fuzzy motion estimation of local image patches are proposed to process real
videos [9][16]. We will show that similarly our model can also be applied to real-
istic videos, while achieving better results both qualitatively and quantitatively.
Besides, due to the self-similarity property of the image, we can also perform
single frame SR without additional training, arguing that the motion may not be
that critical as in the conventional SR cases for image resolution enhancement.
The LR image frames are usually modeled as blurring and downsampling the
desired HR image, i.e.:

Yk = DkHX + εk = DZ + εk, k = 1, 2, ... (12)

where Dk is the downsampling operator, H is the blurring operator and εk is a
noise term, and k is the LR frame index. Therefore, the SR recovery problem can
be divided into two steps: LR image fusion and deblurring. In our NL-KR model,
we also target recovering Z followed by deblurring. As now we have two different
spatial scales, i.e., high- and low-resolution image grids, the following notations
are introduced for ease of presentation. We let r denote the zoom factor, x
and x denote the coordinates on HR and LR grids respectively. Rh and Rl

denote the patch extraction and vectorization operator on HR and LR images,
where the extracted vectors are of dimension u2 × 1 and v2 × 1 respectively, and
u = (v − 1) × r + 1 relates the two spatial scales. Dp is a patch downsampling
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operator which keeps the center pixel of the patch on the LR grid, while DT
p

is a patch upsampling operator with zero-padding (refer to Fig. 2). For a given
query position xi on the HR grid, P(xi) can be constructed from the initial HR
estimation of the current image or consecutive frames, while keeping only those
corresponding to integer positions on the LR grid, i.e., xj = (xj − 1) × r + 1
(j ∈ P(xi)). Then using Eq. 7 and Eq. 12, the NL-KR model tailored for SR
tasks is formulated as:

â = arg min
a

1
2

∑
j∈P(xi)

‖DT
p (Rl

xj
Y −DpΦa)‖2

W̃xj

= arg min
a

1
2

∑
j∈P(xi)

‖Rl
xj

Y −DpΦa‖2
W̃ D

xj

(13)

where we denote W̃xj
= wijWKxj

to keep the notation uncluttered, Φa is a high
order regression for the patch Rh

xj
Z centered at query location xj for the blurred

HR image Z, and W̃D
xj

= DpW̃xj
DT

p . Solution of Eq. 13 is straightforward:

â =

⎡⎣ΦT

⎛⎝ ∑
j∈P(xi)

DT
p W̃D

xj
Dp

⎞⎠Φ

⎤⎦−1

ΦT
∑

j∈P(xi)

DT
p W̃D

xj
Rl

xj
Y (14)

The estimated pixel value at query point xi is eT
1 â.

As we can see, the missing pixels in the high resolution grid are filled up by
multiple low resolution observations found in a non-local way on the current
frame or current sequence. These low resolution observations are further fused
with regularization from the local structure. The estimated image is then de-
blurred with a Total Variation based algorithm [18]. Algorithm 1 describes the
practical implementation for the proposed model.

5 Experimental Validation

The proposed NL-KR model can handle both single image and multiple frame SR
naturally. In this section, we validate the performance of the proposed method
with experiments on single images, synthetic and real video sequences. Perfor-
mance comparisons are performed with related state-of-the-art algorithms. We
use both Peak Signal to Noise Ratio (PSNR) and Structural SIMilarity (SSIM)
index [19] to evaluate different algorithms objectively.

In all the experiments, we focus on zooming the LR frame(s) by factor of
3. These LR frames are modeled by first blurring the HR frames with a 3 × 3
uniform PSF and downsampling with decimation factor of 3. Gaussian noise of
standard deviation 2 is added to the LR frames to model the real imaging system.
In our algorithm, the LR patch size is fixed as 5× 5, and the corresponding HR
patch size is thus 13 × 13. The support of the non-local similar patch searching
is fixed to be the 10-nearest neighbors. We set σ = 169c with c = 0.06 for
similarity weight calculation and γ = 1 for diffusion tensor computation. For
image deblurring, we use a Total Variation based deblurring algorithm [18].
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Algorithm 1. (Non-local kernel regression for image super-resolution).
1: Input: a low resolution video sequence Y = [Y1, Y2, ..., YM ] and zoom factor r.
2: Initialize an enlarged sequence Ỹ = [Ỹ1, Ỹ2, ..., ỸM ] with bicubic interpolation.

3: For each pixel location xi on the high resolution image grid for frame Ym, do

– Construct the similar patch index set P(xi) with sequence Ỹ ;

– Estimate the image gradient ∇Yxi ;

– Calculate the diffusion tensor Kxi use Eq. 11 and Eq. 10.

4: End
5: For each pixel location xi on the high resolution image grid for frame Ym, do

– Construct the spatial weight matrix W̃ D
xj

using estimated Kxj for all j ∈ P(xi);

– Calculate the regression coefficients with Eq. 14 and update the current esti-

mation of Zm at xi with Zm(xi) = eT
1 â.

6: End
7: Perform deblurring for Zm: Xm = TVdeblur(Zm).

8: Output: a high resolution video frame Xm.

5.1 Single Frame Based Super-Resolution

We will first evaluate the proposed method on single image SR. In the first
set of experiments, we specifically compare the proposed model with 2D case
of Generalized NL-Means (GNL-Means) [9] and Kernel Regression (KR)[6] in
order to show that our model is more reliable and robust for estimation. We
take one frame from each of the popular test sequences: Foreman, Miss America
and Suzie used in [9], degrade it and perform the SR estimation. The PSNR
and SSIM results for the three frames are summarized in Table 1, which shows
that the proposed method is constantly better than 2D GNL-Means and 2D
Kernel Regression. The results of Nearest Neighbor (NN), Bicubic Interpolation
(BI) and Sparse Coding (SC) method [3] are also provided as references. Fig. 3
shows the visual quality comparisons on Foreman. As shown, the 2D GNL-
Means method is prone to block artifacts due to poor patch matching within a
single image and the 2D Kernel Regression method generates ghost effects due to
insufficient observation for regularizing the local regression. Our result, however,
is free of either of these artifacts. We further make more comparisons with state-
of-the-art methods on real images, where the input LR image is zoomed by a
factor of 4, as shown in Fig. 4 and Fig. 5. Note that these methods are designed
specifically to work on single images. In Fig. 4, it can be seen that the proposed
method can preserve more details than Fattal’s method [20] and is comparable
with Kim’s method [21] and the more recent work [10]. In Fig. 5, however,
our algorithm outperforms both [20] and [10], where our result is free of the
jaggy artifacts on the edges and the characters generated by our method is more
realistic. The improvement comparison could be more impressive if one notices
that in [10], multiple scales are used for similar pattern matching while our
method only uses one scale.
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Fig. 3. Single-frame super resolution (×3, PSNR, SSIM in brackets). Left

to right: NN(28.6917, 0.8185), BI(30.9511, 0.8708), GNL-Means(31.9961, 0.8747)[9],

KR(32.4479, 0.8862)[6], NL-KR(32.7558, 0.8918). GNL-Means generates block effect

while KR generates ghost artifacts. Our method does not suffer from these problems.

Fig. 4. Single-frame super resolution for real color images (×4). From left to

right: NN, BI, Kim’s method [21], Fattal’s method [20], Glasner’s method [10], NL-KR.

Note that our result preserves more details than Fattal’s method and is comparable to

results from Kim’s learning based method and recently proposed method by Glasner.

Fig. 5. More results on single-frame SR for real color images (×4). From left

to right: NN, GNL-Means [9], KR [6], Fattal’s method [20], Glasner’s method [10],

NL-KR. Note that Fattal’s method and Glasner’s method generate jaggy effects on the

edge. Our method is free from the jaggy artifacts and preserves better structure.
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Table 1. PSNR (Top) and SSIM (Bottom) results for single image super-resolution

Images NN BI GNL-Means [9] KR [6] SC [3] Proposed

Foreman 28.6917 30.9511 31.9961 32.4479 32.5997 32.7558
Miss America 31.5765 34.0748 34.4700 34.4419 34.9111 35.4033

Suzie 30.0295 31.4660 31.6547 31.8203 31.5208 32.1033

Foreman 0.8185 0.8708 0.8747 0.8862 0.8768 0.8924
Miss America 0.8403 0.8941 0.9008 0.8990 0.8843 0.9117

Suzie 0.7892 0.8286 0.8355 0.8285 0.8334 0.8449

Table 2. PSNR (Top) and SSIM (Bottom) results for synthetic test frames

Sequence NN BI GNL-Means [9] BM3D [22] Proposed

Foreman 28.8977 30.9493 34.6766 34.9 35.2041
Miss America 31.6029 34.0684 36.2508 37.5 37.8228

Suzie 30.0307 31.4702 32.9189 33.6 33.9949

Foreman 0.8413 0.8709 0.9044 NA 0.9234
Miss America 0.8404 0.8928 0.8193 NA 0.9346

Suzie 0.7904 0.8290 0.8428 NA 0.8864

5.2 Synthetic Experiment for Multi-frame SR

Our second experiment is conducted on synthetic image frames. We generate 9
LR images from one HR image by blurring the HR image with a 3 × 3 uniform
PSF and then decimating the blurred HR image every 3rd row or column with
shifts of {0, 1, 2} pixels. Gaussian noise with standard deviation of 2 is also
added. The PSNR and SSIM results are summarized in Table 2, showing that the
proposed method is again constantly better. Note that the results from BM3D
is cited directly from [22], which are obtained from noise-free observations.

5.3 Evaluation on Real Video Sequences

Finally, we evaluate the performance of our model on three real image sequences
with general motions: Foreman, Miss America and Suzie. Comparisons are made
with the GNL-Means [9], BM3D [22], and 3D-KR [16]. The average PSNR and
SSIM results on these three test sequences are given in Table 3. As shown,
the proposed method achieves better reconstruction accuracy than GNL-Means
and BM3D.3 In Fig. 7, we further show the PSNR results on Foreman and
Miss American frame by frame, compared with Bicubic and GNL-Means. The
proposed method outperforms GNL-Means method by a notable margin in all
frames. The SR results on Miss America and Foreman sequences are given in Fig.
8 and Fig. 6 respectively for visual comparison. Note that GNL-Means sometimes

3 The PSNR results of 3D-KR are not listed, because they are not numerically available

in their original papers (plotted in a figure). However, compared with their figure,

our method improves over GNL-Means by a larger margin than the 3D-KR method.



Non-Local Kernel Regression for Image and Video Restoration 577

Fig. 6. Video super-resolution for Foreman sequence (frame 8, zoom factor 3,

PSNR and SSIM in brackets). Left to right: Ground-truth, BI(30.1758, 0.8739), GNL-

Means(33.2233, 0.9041), BM3D(33.45, NA), 3D-KR(33.30, NA), NL-KR(33.7589,
0.9137). GNL-Means performs well at regular-structured area but generates severe

block artifacts where few similar patches can be found; BM3D suffers from jagged
effects at edges; 3D-KR can not preserve the straight structure well due to the non-

robustness of its spatial-temporal kernel and can generate ghost image; our method

preserves both the larger structure and fine details well and is free of these artifacts.

Table 3. Average PSNR (Top) and SSIM (Bottom) for the three video sequences

Sequence NN BI GNL-Means[9] BM3D[22] Proposed

Foreman 28.8444 31.0539 32.8165 33.5 34.0141
Miss America 31.6555 34.2424 35.3453 36.3 36.4377

Suzie 30.0846 31.4363 32.9725 33.0 33.0915

Foreman 0.8207 0.8720 0.9025 NA 0.9120
Miss America 0.8426 0.8938 0.9136 NA 0.9164

Suzie 0.7857 0.8233 0.8797 NA 0.8671

generates severe block artifacts (see the Mouth part in Fig. 6 and Eye part in
Fig. 8). The 3D-KR method, on the other hand, will generate some ghost effects,
due to overfitting of the regression and inaccurate estimation of the 3D kernel
(see the Mouth part in Fig. 6). Furthermore, the 3D-KR method has to employ
a motion pre-compensation in order for good 3D kernel estimation, while our
model does not require this step.
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Fig. 7. PSNR plots for Video SR. Left: Foreman and right: Miss America data.

The proposed method outperforms other two methods in terms of PSNR in all frames.
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Fig. 8. Video super-resolution for Miss America sequence (frame 8, zoom fac-

tor 3, PSNR and SSIM in brackets). Left to right: NN(32.4259, 0.8580), BI(34.5272,

0.8958), GNL-Means(34.7635,0.9132), 3D-KR(35.53, NA), NL-KR(36.6509, 0.9171).

The GNL-Means method suffers from block effects, while our method is free from

artifacts and is comparable to 3D-KR in this case.

6 Conclusions and Future Work

This paper proposes a Non-Local Kernel Regression (NL-KR) model for image
and video restoration tasks, which combines the local structural regularity as well
as non-local similarity explicitly to ensure a more reliable and robust estimation.
The proposed method is a general model that includes many related models as
special cases. In this work, we focus on the image and video super-resolution
task, and experiments on both single frame and video sequence demonstrate the
effectiveness and robustness of our model. Further more, the NL-KR on single
image super-resolution may suggest that the image itself contains enough in-
formation that SR without training and motion is possible. Also, incorporating
more self-similarity information by extending the image into multi-scale space
is straightforward under our model. In the current algorithm, the patch match-
ing and spatial kernel calculation are most computationally heavy, which can
be speeded up by KD-tree searching and parallel computing respectively. The
proposed model can also be applied to other image and video restoration tasks,
e.g. inpainting and denoising, and we leave those to be our future work.
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Abstract. We introduce a segmentation framework which combines and

shares advantages of both an implicit surface representation and a para-

metric shape model based on spherical harmonics. Besides the elegant

surface representation it also inherits the power and flexibility of vari-

ational level set methods with respect to the modeling of data terms.

At the same time it provides all advantages of parametric shape models

such as a sparse and multiscale shape representation. Additionally, we

introduce a regularizer that helps to ensure a unique decomposition into

spherical harmonics and thus the comparability of parameter values of

multiple segmentations. We demonstrate the benefits of our method on

medical and photometric data and present two possible extensions.

Keywords: Segmentation, Level Set Methods, Variational Methods,

Shape Models, Spherical Harmonics.

1 Introduction

Level set methods and particularly variational level set methods belong to the
most flexible tools for image segmentation as far as the modeling of data terms
and the handling of topological changes during the evolution are concerned.
However, this topological flexibility may be undesired for two reasons:

– The object boundaries are not clearly defined by strong image gradients or
significant changes in the intensity distribution, which occurs especially for
many medical applications, where image data often suffers from low tissue
contrast or noise. Thus the contour may leak into surrounding objects.

– The evolution might get stuck in an undesired local minimum. Thus the
segmentation problem needs additional regularization in order to pick out
the desired minimum.

In contrast to topologically flexible level set methods, parametrized active con-
tours allow to add the required amount of regularity to such problems as illus-
trated in Fig. 1. We distinguish three classes of parametrized active contours,

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 580–593, 2010.
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(a) initialization (b) Sobolev flow (c) proposed method

Fig. 1. The Benefit of a Parametric Shape Model: The segmentation of the outer

wall of the left ventricle acquired with magnetic resonance imaging [1] with a Sobolev

gradient flow (cf. Sec. 5) gets stuck in an undesired local minimum (b). In contrast to

this, the proposed approach clearly benefits from the employed shape model (c).

no matter whether they use an explicit or implicit surface representation: Meth-
ods using a parametrized surface description, methods based on statistical shape
models and methods employing a parametric shape model. The first class con-
sists of methods that only have a parametrized surface description, but no model
based assumption about the topology of the shape to be segmented. Popular ex-
amples are all kinds of topology-adaptive and generalized snakes, which can be
subsumed under deformable models [2]. The second and the third class are rep-
resented by all approaches employing a statistical or a parametric shape model.
In both cases the object is represented as a linear combination of basis functions.
While for statistical shape models these basis functions are generated from train-
ing data and are thus application specific, parametric shape models employ a
fixed set of basis functions such as spherical harmonics or wavelets for instance.
Of course, many methods based on parametric shape models also use training
data in order to adapt the shape model to the specific application by constraining
the parameters as it is done in [3], [4], [5], [6], and [7].

However, there are situations where one would like to use a parametric shape
model even when no training data is available. The method we propose com-
bines an implicit surface representation with a parametric shape model based on
spherical harmonics. Moreover, we propose a regularizer which helps to ensure
a unique decomposition into spherical harmonics and thus the comparability
of several segmentations, if no training data is available. In detail, our method
inherits the following advantages from implicit representations:

– In contrast to explicit surface representations no remeshing of the surface
during the evolution is necessary.

– Cost function evaluations, especially for region-based data terms, can be
computed very easily using smeared-out versions of the Heaviside function
and its derivatives, because the membership of every pixel to fore- or back-
ground is automatically given by the level set function.

– The proposed framework inherits the full flexibility of variational level set
methods regarding the modeling of region- and surface-based data terms.
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Table 1. Overview over Parametrized Active Contours: Our method combines

an implicit surface representation with a parametric shape model as well as the advan-

tages from both of them

shape model none statistical parametric

explicit shape
representation

Deformable Models
(e.g. Terzopoulos in [2])

Active Shape Models
(e.g. Cootes et al. [8])

Staib and Duncan [3],
Székely et al. [4],
Kelemen et al. [5],
Nain et al. [6],
Yu et al. [7]

implicit shape
representation

Huang et al. [9]
(MetaMorphs),
Morse et al. [10],
Ho et al. [11],
Slabaugh et al. [12]

Leventon et al. [13],
Tsai et al. [14]

our method

Moreover, the presented method also inherits advantages from the employed
parametric shape model and the proposed regularizer:

– In contrast to traditional level set methods, the parametrization removes the
necessity for the level set function to be a signed distance function in order
to avoid numerical problems.

– The spherical harmonics parametrization provides a sparse and multiscale
surface description.

– The proposed regularizer helps to ensure a unique decomposition of spherical
harmonics, if no training data is available. This makes it possible to compare
the parameters of several segmentations, which is helpful for creating an atlas
for instance.

Concisely put, the proposed method combines advantages from both implicit
surface representations and parametric shape models.

1.1 Related Work

As illustrated in Tab. 1, our method is a missing link in the field of parametrized
active contours, because it combines a parametric shape model (based on spher-
ical harmonics) with an implicit surface representation. Related methods have
either no parametric shape model, or no level set representation. Note that tra-
ditional level set methods are not discussed in this context as they do not feature
a parametrization.

Methods Employing no Parametric Shape Model. All methods with a
parametrized surface description based on splines or NURBS and an explicit
contour representation are referred to as deformable models [2]. Besides these
methods employing an explicit surface representation, there are several publi-
cations on parametrized implicit contours. In 2004 Huang et al. have published
their MetaMorphs framework, where a grid of control points is attached to the
level set function, which is then deformed via free-from deformations [9]. Level



A Spherical Harmonics Shape Model for Level Set Segmentation 583

set functions parametrized by radial basis functions have been investigated by
Morse et al. [10] and Slabaugh et al. [12] in 2005 and 2007, respectively. Also,
in 2005 Ho et al. [11] have suggested to use an unstructured point cloud for
discretizing the level set function.

Methods Employing a Statistical Shape Model. As explained above,
methods employing a statistical shape model represent the shape using basis
functions computed from training data. This makes them very flexible as far
as the shape of the object is concerned, but it requires training data for every
new application. In 1992 Cootes and Taylor have introduced the so-called active
shape models or smart snakes, characterized by an explicit surface representa-
tion (see Cootes et al. [8] for a detailed description). Similar approaches using
an implicit contour representation have been developed by Leventon et al. [13]
and Tsai et al. [14] in 2000 and 2003, respectively.

Methods Employing a Parametric Shape Model. In 1996 Staib and Dun-
can have used Fourier surfaces to describe objects with open and closed surface
as well as tori and tubes [3]. Also in 1996 Székely et al. have published their
framework for segmenting objects with spherical topology [4]. Therefore they
discretize the object by a mesh, which is then mapped onto the unit sphere
and parametrized by spherical harmonics. Kelemen et al. have used a similar
approach in [5] (1999). Recently, these methods have found their counterparts
based on spherical wavelets, which have been published by Nain [6] and Yu [7]
in 2007. It is important to notice, that all of these methods employ an explicit
surface representation and require training data.

1.2 Outline

The remainder of this work is organized as follows. Section 2 describes how the
implicit contour representation is combined with the parametric shape model.
After that we explain how to use the derived level set framework with exemplary
surface- and region-based data terms in section 3. Additionally, we derive a
regularizer that helps to ensure a unique decomposition into spherical harmonics
while providing the ability to incorporate prior information, if necessary. All
necessary information for implementing our method is given in section 4. In
section 5 we discuss all performed experiments. Finally, section 6 is dedicated to
the conclusion.

2 Level Set Framework

Before explaining how a parametric shape model based on spherical harmonics
can be combined with a level set representation, we recap the concept of spherical
coordinates. The boundary of any (two- or three-dimensional) stellar or star-
shaped object (see Fig. 2 for explanation) can be described by

r(θ, ϕ) · s(θ, ϕ), (1)
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(a) (b) (c) (d) (e)

Fig. 2. Examples for Star-shaped Objects: Star-shaped or stellar objects consist

of one connected component, with at least one point in the interior from which the

whole boundary of the object can bee seen

where r : [0, π] × [0, 2π) → [0, +∞) is the radius (function) scaling the corre-
sponding unit vector

s(θ, ϕ) = (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ))T , (2)

as shown in Fig. 3(a). θ ∈ [0, π] is called inclination angle and ϕ ∈ [0, 2π) is
called azimuth angle. In the two-dimensional case θ equals π/2 and we simply
write r(ϕ) = r(π/2, ϕ).

2.1 Contour Representation

In the following we denote the image domain by Ω ⊂ R
d (d = 2, 3) and the

embedding function by φ : Ω → R. First, we consider the case of segmenting a
ball Br(c) with constant radius r and center point c ∈ R

d. In this case, φ can be
written as

φ(x) = |x − c| − r (3)

such that the zero level set of φ describes the surface of Br(c). By allowing r to
be dependent on θ = θ(x) and ϕ = ϕ(x) we can now segment any star-shaped
object:

φ(x) =

{
|x − c| − r(θ(x), ϕ(x)), x �= c,

infx �=c φ(x), x = c.
(4)

In order to keep the notation simple, we will omit the argument x from θ and
ϕ in the following. Before we continue with the parametric shape model, the
following two points are important to notice:

– The radius r depends on the position of the center point c as illustrated in
Fig. 3(b) and 3(c). Thus, if a unique representation is needed, e.g. in order
to compare two segmentations, we need a regularizer that helps to ensure
this unique representation. We will discuss this issue in detail in subsection
3.2.

– φ has a singularity at x = 0. This singularity, however, only affects the vicin-
ity of a few pixels and is thus not an issue for real applications as depicted
in Fig. 4. Moreover, traditional level set methods require the embedding
function to be a signed distance function in order to avoid shocks causing
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x3

x2

x1

θ

ϕ

s(θ, ϕ)

r(θ, ϕ) · s(θ, ϕ)

(a) (b) (c) r

Fig. 3. Spherical Coordinates and their Dependency on the Center Point:
The radius r(θ, φ) (a) depends on the position of the center point (b) as visualized in

(c). Thus a regularizer is required, if a unique representation is needed (see Sec. 3.2).

numerical problems during the evolution [15]. Of course, φ in the form of (4)
is not necessarily a signed distance function (see also Fig. 4), but since φ is
parametrized via r(θ, ϕ), there is no need for maintaining this property.

2.2 Parametric Shape Model

The level set representation (4) can now be combined with any parametriza-
tion of r(θ, ϕ), such as double Fourier series, spherical harmonics, or spherical
wavelets. However, in contrast to double Fourier series for instance, spherical
harmonics have the advantage that no care has to be taken for ensuring cor-
rect boundary conditions at the poles. Thus we approximate r with a truncated
spherical harmonics expansion [16]:

r(θ, ϕ) ≈
N∑

l=0

{r0
l ·P 0

l (cos(θ))+
l∑

m=1

[am
l ·cos(mϕ)+bm

l ·sin(mϕ)]·Pm
l (cos(θ))}, (5)

where Pm
l denotes the associated Legendre Polynomial of degree l and order m.

In the two-dimensional case (5) boils down to a Fourier expansion of the form

r(θ, ϕ) ≈ r0
0 +

N∑
l=1

[al
l · cos(lϕ) + bl

l · sin(lϕ)], (6)

because for θ = π/2 we have

Pm
l (cos(θ)) = Pm

l (0) =

{
0, m < l

1, m = l
. (7)

3 Variational Formulation

In this section we show how the level set framework introduced in the last section
can be combined with variational level set formulations. Further, we explain how
to regularize the level set evolution in order to obtain a unique decomposition
into spherical harmonics.
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(a) segmentation (b) contours of φ (c) surface plot of φ

Fig. 4. A First Example: Segmentation of a flower (a), taken from [17], and a contour

plot (b) as well as a surface plot (c) of the embedding function

3.1 Data Terms

The derived level set framework can be combined with arbitrary data terms
for variational level set methods. Since the discussion of all possible variational
data terms is far beyond the scope of this work, we only consider widely used
representatives of surface- and region-based energies.

For the remainder of this work I : R
d → R denotes the image or volume

containing the object to be segmented. A well-known surface-based energy is
the geodesic active contour model

G(φ) =
∫

Ω

δ(φ)|∇φ|g dx, (8)

where g is an edge-indicator function such as

g(x) = (1 + |∇I(x)|2)−1, (9)

which was used by Caselles et al. in [18]. Often, surface-based energies are com-
bined with a region-based ones like the weighted area term [15]

A(φ) =
∫

Ω

H(−φ)g dx (10)

for forcing the contour either to shrink, or to expand. Another well-known region-
based energy is the one proposed by Chan and Vese in [19]

P(φ) =
∫

Ω

H(−φ)(I − μi)2 + H(φ)(I − μo)2 dx, (11)

where μi and μo denote the mean intensity values inside and outside the contour.
We denote the linear combination of these three data terms by

D(φ) = λGG(φ) + λAA(φ) + λPP(φ), (12)

where λG, λA, and λP control the influence of each term. While λA > 0 results in
a shrinking contour, λA < 0 forces the contour to expand. All these parameters
are easy to adjust as shown in Tab. 2.
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3.2 Regularization

For many examples a minimization of D(φ) using the parametrized embedding
function φ would already provide us with meaningful segmentation results. How-
ever, if we want to use the found coefficients r0

l , am
l , and bm

l for generating an
atlas or if we want to compare them with coefficients of another segmentation,
we have to ensure their uniqueness as also illustrated in Fig. 3. Uniqueness of
the parameters can be achieved by constraining the radius function. The reason
is that any constraint on the radius function is also a constraint on the center
and thus a unique decomposition is guaranteed.

At a first glance
1
2

∥∥∇(θ,ϕ)r
∥∥2

L2

!= min (13)

might seem to be a reasonable constraint, because smoothness constraints are
often used as regularizers. In our case (13) is not a good choice, because r0

0 is
not constrained as ∇(θ,ϕ)r does not depend on r0

0 . Instead, by penalizing the
L2-norm of the radius function

1
2
‖r‖2

L2 =
1
2

∫ 2π

0

∫ π

0

|r(θ, ϕ)|2 dθ dϕ
!= min (14)

we achieve a unique decomposition into spherical harmonics, because applying
Parselval’s theorem [16] to (14) yields

1
2
‖r‖2

L2 =
1
2

N∑
l=0

{(r0
l )2 +

l∑
m=1

[(am
l )2 + (bm

l )2]} != min . (15)

Obviously all coefficients are constrained now. Moreover, (14) allows the follow-
ing two interpretations.

Let x̄ ∈ Ω denote the center of mass of the object defined by r. Then

x̄ =
1

2π2

∫ 2π

0

∫ π

0

c + r(θ, ϕ) · s(θ, ϕ) dθ dϕ (16)

= c +
1

2π2

∫ 2π

0

∫ π

0

r(θ, ϕ) · s(θ, ϕ) dθ dϕ (17)

From (17) we deduce that

‖x̄ − c‖2
2 ≤

1
2π2

‖r‖2
L2 , (18)

which means that (14) has the nice side-effect, that it attracts c towards the
center of mass. This can also help to prevent the level set evolution from getting
stuck in local minima.

Rewriting (14) as
1
2
||r||2L2 =

1
2
||r − 0||22 (19)

yields the second interpretation. Obviously (14) forces r to be close to 0 and that
is why severe over-regularization might result in a shrinking contour. However,
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(a) initialization (b) Sobolev flow (c) proposed method

(d) initialization (e) Sobolev flow (f) proposed method

Fig. 5. Adding Regularity: If the object of interested is star-shaped, the additional

regularity provided by the shape model helps to avoid undesired local minima. Note

that the Sobolev flow minimizes the same energy. Both examples are taken from [17].

by replacing 0 with a known radius function r̂ prior shape information can be
incorporated. Of course, in this case θ and ϕ have to be replaced by θ + θ0 and
ϕ + ϕ0, where θ0 and ϕ0 are additional phase angles, that allow us to optimize
for rotations as well. An example for this situation is shown in Fig. 6.

3.3 The Complete Model

Combining the data term (12) and the regularizer (14), we obtain the following
minimization problem characterizing the optimal configuration of the surface:

min
φ,r

E(φ, r), where E(φ, r) = D(φ) +
λR

2
‖r‖2

L2
. (20)

4 Numerical Solution

We minimize (20) using a gradient descent approach, whose details will be de-
scribed in Sec. 4.1. In Sec. 4.2 we give some details on the implementation and in
Sec. 4.3 we discuss the parameter settings and the initialization of the contour.

4.1 Gradient Descent

Let p denote one of the parameters r0
l , am

l , bm
l , or cj (c = (c1, c2, c3)T ) and ∂p

the partial derivative with respect to p. For every parameter p we perform a
fixed number of steepest descent steps i = 0, 1, 2, . . .:

pi+1 = pi − τ · ∂pE(φ, r). (21)
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(a) initialization (b) 10 steps (c) 50 steps (d) 100 steps (e) 250 steps

Fig. 6. Incorporating Prior Knowledge: By incorporating prior information into

the regularizer we can initialize the level set function arbitrarily and segment the

destroyed object successfully

It is important to notice that we perform the steepest descent simultaneously
for all parameters and that we use the same step size τ for all of them. The
main reason for this fact is, that r0

l , am
l and bm

l contribute to the shape of the
surface in equal shares. This is not the case when using complex-valued spherical
harmonics, where the parameters are the amplitudes and phase shifts, which have
not the same units. Further, also the mean values μi and μo in (11) are updated
in every step (cf. [19]).

In order to optimize the phase parameters p = θ0 and p = ϕ0 (cf. Fig. 6) we
recommend to use a modified version of (21):

pi+1 = pi − τ · sign(∂pE(φ, r))min(|∂pE(φ, r)|, C), (22)

where C is a positive constant restricting the maximal angle change per step to
τ · C. In the example of Fig. 6 we set C = 0.5 and τ = 0.02.

4.2 Details on the Implementation

In all our experiments we normalized the image intensities to the range [0, 1].
Further, we replaced ∇I in (9) by ∇(G ∗ I)/σ, where G is a truncated Gaussian
kernel with window size 3 and standard deviation 0.5. The only differential
operator necessary for computing ∂pE(φ, r) is ∇, which can be approximated
using central differences. For computing ∂pE(φ, r) we also require approximations
of H(φ), δ(φ), and δ′(φ) and we employed their smeared-out versions as suggested
by Osher and Fedkiw in [20].

4.3 Initialization and Parameter Choice

The easiest way of initializing the level set evolution consists of defining an initial
ball. It is also possible to let the user specify an initial polyhedron which can
be easily approximated by spherical harmonics as done in Fig. 6. As far as the
choice of the parameters N , λG, λA, λP , λR, τ , and σ is concerned we can
deduce from Tab. 2 that they do not vary significantly from one experiment to
another. The step size τ has to be chosen approximately an order of magnitude
smaller when performing segmentations in three dimensions, because the data
term D(φ) scales with the size of the zero level set.
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(a) initialization (b) 10 steps (c) 100 steps

Fig. 7. Simultaneous Segmentation: We segment the inner and outer wall of an

abdominal aortic aneurysm using two level set functions evolved simultaneously by the

coupled Chan-Vese model described in Sec. 5.3

5 Experiments

We performed several experiments to demonstrate the potential of our method.
The used parameter values can be found in Tab. 2.

5.1 Two Dimensional Experiments

We compared our results with a topological flexible level set method and we
used a Sobolev gradient flow [21]

φ(x, t + τ) = φ(x, t) − τ · (I −Δ)−1∇D(φ), (23)

where ∇D(φ) is defined as

d

dh
D(φ + h · ψ)

∣∣∣∣
h=0

=
∫

Ω

∇D(φ)ψ dx. (24)

The experiments in Fig. 1 as well as Fig. 5 clearly show that, if the object
to be segmented is star-shaped, the parametric shape model and the proposed
regularizer add meaningful information to the problem. It is important to notice
that both methods - the Sobolev flow and our method - minimize the same data
term.

5.2 Three Dimensional Experiments

The applicability of our method to three dimensional medical applications is pre-
sented in Fig. 8. We segmented five abdominal aortic aneurysms (AAAs) from
computed tomography angiography (CTA) data. An AAA is a pathological di-
lation of the lumen in the abdominal part of the aorta, which may rupture, if
left untreated. Among others, the maximum diameter is used as an indicator for
estimating the rupture risk. Since a segmentation of these AAAs is not only ben-
eficial for diagnosis, but also for treatment planning, this application is of great
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(a) (b) (c) (d) (e)

Fig. 8. 3D Experiments: The segmentation of abdominal aortic aneurysms with our

method shows that our method is able to capture the large anatomical variability

relevance. Thanks to the proposed regularizer, the parameter values r0
l , am

l and
bm
l contain meaningful shape information, which could be used for automated

diagnosis. As visible in Fig. 8 our method performs well in capturing the large
variability of these AAAs.

5.3 Possible Extensions

Fig. 6 shows the incorporation of prior information into the level set evolution
by replacing (14) with

1
2
‖r − r̂‖2

L2

!= min, (25)

where r̂ is obtained from a segmentation of an unspoilt image. This example
shows that our method is not only modular and flexible as far as the choice
of data terms is concerned, but also with respect to the employed regularizer.
As a suggestion for future research, one could also think of including statistical
information about r̂.

Another possible extension is shown in Fig. 7, where we minimized the fol-
lowing coupled Chan-Vese model in order to segment the inner and the outer
wall of an abdominal aorta acquired by computed tomography angiography:

D(φi) =
∫

Ω

H(−φi)[(I − μi)2 + λH(φo)] + H(φi)H(−φo)(I − μm)2 dx, (26)

D(φo) =
∫

Ω

H(−φo)H(φi)(I − μm)2 + H(φo)[(I − μo)2 + λH(−φi)] dx, (27)

where φi is the level set function corresponding to the inner contour and φo

is the level set function corresponding to the outer contour. Consequently μi

is the mean intensity value inside both contours, μm is the mean intensity be-
tween both contours, and μo is the mean intensity value outside both contours.
Thus we are able to segment the lumen as well as the thrombus of an AAA
simultaneously.



592 M. Baust and N. Navab

Table 2. Parameters used

Fig. N λG λP λA λR σ τ τ (Sobolev) steps

1(a) 5 1 0 0.1 0.1 0.04 0.02 20 100

4(a) 25 0.1 1 0 0.02 0.045 0.02 - 100

5(a) 20 0.3 1 0 0.1 0.1 0.01 20 500

5(d) 15 0.2 1 0 0.1 0.6 0.02 30 500

6 25 0.2 1 0 6 0.023 0.02 - 250

7 8 0 1 0 0.02 - 0.01 - 100

8 12 0.25 1 -0.3 0.1 0.023 0.001 - 500

6 Conclusion

We have introduced a missing link in the field of parametric active contours which
combines advantages of both implicit active contours and parametric shape mod-
els. The great flexibility with respect to the choice of data terms and the ability
to work also in three dimensions make the proposed method valuable for many,
especially medical, applications. Another benefit of our method is the proposed
regularizer, which constraints the parameters in a meaningful way and allows to
incorporate prior information very easily. We hope that, due to the presented
extensions and the ability to combine the proposed method also with other shape
models, such as spherical wavelets for instance, our work could serve as a fruitful
basis for further research and applications.

Acknowledgments. The first author is funded by the International Graduate
School of Science and Engineering at Technische Universität München. Moreover,
the authors would like to thank Darko Zikic for many valuable comments.
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4. Székely, G., Kelemen, A., Brechbühler, C., Gerig, G.: Segmentation of 2-d and 3-d

objects from mri volume data using constrained elastic deformations of flexible

fourier contour and surface models. Medical Image Analysis 1, 19–34 (1996)

5. Kelemen, A., Szekely, G., Gerig, G.: Elastic model-based segmentation of 3-d neuro-

radiological data sets. Medical Imaging, IEEE Transactions on 18, 828–839 (1999)

6. Nain, D., Haker, S., Bobick, A., Tannenbaum, A.: Multiscale 3-d shape represen-

tation and segmentation using spherical wavelets. IEEE Transactions on Medical

Imaging 26, 598–618 (2007)



A Spherical Harmonics Shape Model for Level Set Segmentation 593

7. Yu, P., Grant, P., Qi, Y., Han, X., Segonne, F., Pienaar, R., Busa, E., Pacheco,

J., Makris, N., Buckner, R., Golland, P., Fischl, B.: Cortical surface shape analysis

based on spherical wavelets. IEEE Transactions on Medical Imaging 26, 582–597

(2007)

8. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models - their training

and application. Computer Vision and Image Understanding 61, 38–59 (1995)

9. Huang, X., Metaxas, D., Chen, T.: Metamorphs: Deformable shape and texture

models. In: Proceedings of the 2004 IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition, CVPR 2004, vol. 1, pp. I–496 – I–503 (2004)

10. Morse, B., Liu, W., Yoo, T., Subramanian, K.: Active contours using a constraint-

based implicit representation. In: IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, CVPR 2005., vol. 1, pp. 285–292 (2005)

11. Ho, H.P., Chen, Y., Liu, H., Shi, P.: Level set active contours on unstructured point

cloud. In: IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, CVPR 2005., vol. 2, pp. 655–662 (2005)

12. Slabaugh, G., Dinh, Q., Unal, G.: A variational approach to the evolution of radial

basis functions for image segmentation, pp. 1 –8 (2007)

13. Leventon, M., Grimson, W., Faugeras, O.: Statistical shape influence in geodesic

active contours. In: Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition, vol. 1, pp. 316–323 (2000)

14. Tsai, A., Yezzi Jr., A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, W.,

Willsky, A.: A shape-based approach to the segmentation of medical imagery using

level sets. IEEE Transactions on Medical Imaging 22, 137–154 (2003)

15. Li, C., Xu, C., Gui, C., Fox, M.: Level set evolution without re-initialization: a

new variational formulation. In: IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 430–436 (2005)

16. Groemer, H.: Geometric Applications of Fourier Series and Spherical Harmonics.

Cambridge University Press, Cambridge (1996)

17. Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic

bottom-up aggregation and cue integration. In: IEEE Conference on Computer

Vision and Pattern Recognition, CVPR 2007, pp. 1–8 (2007)

18. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput.

Vision 22, 61–79 (1997)

19. Chan, T., Vese, L.: Active contours without edges. IEEE Transactions on Image

Processing 10, 266–277 (2001)

20. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer,

Heidelberg (2003)

21. Sundaramoorthi, G., Yezzi, A.J., Mennucci, A.: Sobolev active contours. Interna-

tional Journal of Computer Vision 73, 345–366 (2007)



A Model of Volumetric Shape for the Analysis of
Longitudinal Alzheimer’s Disease Data�

Xinyang Liu1, Xiuwen Liu2, Yonggang Shi3,
Paul Thompson3, and Washington Mio1

1 Department of Mathematics, Florida State University, Tallahasse, FL 32306
2 Department of Computer Science, Florida State University, Tallahasse, FL 32306
3 Laboratory of NeuroImaging, UCLA School of Medicine, Los Angeles, CA 90095

Abstract. We develop a multi-scale model of shape based on a volu-

metric representation of solids in 3D space. A signed energy function

(SEF) derived from the model is designed to quantify the magnitude

of regional shape changes that correlate well with local shrinkage and

expansion. The methodology is applied to the analysis of longitudinal

morphological data representing hippocampal volumes extracted from

one-year repeat magnetic resonance scans of the brain of 381 subjects

collected by the Alzheimer’s Disease Neuroimaging Initiative. We first es-

tablish a strong correlation between the SEFs and hippocampal volume

loss over a one-year period and then use SEFs to characterize specific

regions where hippocampal atrophy over the one-year period differ signif-

icantly among groups of normal controls and subjects with mild cognitive

impairment and Alzheimer’s disease.

Keywords: Shape space, volumetric shape, hippocampal atrophy,

Alzheimer’s disease, ADNI.

1 Introduction

We construct shape spaces and metrics that provide a framework for the analysis
of volumetric morphological data. We use the model to quantify and compare
regional and global shape changes in the hippocampus (HC) due to normal aging,
tissue loss caused by conversion to Alzheimer’s disease (AD) and progression of
the disorder over a one-year period.

AD is the most common form of dementia and afflicted more than 26 million
elderly individuals worldwide in 2006; it is projected that, globally, an average of
1 in 85 people will suffer from the disorder by 2050. AD is a neurodegenerative
disease and patients experience severe memory loss and progressive decline of
various cognitive functions. Studies that track the propagation of neurodegenera-
tion in AD (cf. [1,2]) indicate that the medial temporal lobe structures, including
the hippocampus, are among the first to degenerate. As such, the hippocampus
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has been the focus of many studies of AD, which demonstrate considerable vol-
ume loss in the left and right hippocampi as the disease progresses (cf. [3,4] and
references therein). Changes in hippocampal shape in AD have also been mod-
eled with large deformation diffeomorphisms (cf. [5]). Although presently there is
no cure, mapping the patterns of propagation of tissue loss and advances in early
diagnosis will potentially enhance clinical trials that increase our understanding
of the disorder and also help in the management of the disease, as symptomatic
therapy is likely to be more effective before severe neurodegeneration occurs.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a major multi-
site study of AD to determine whether brain imaging can help to predict onset
and monitor the progression of AD [6,7]. ADNI is a longitudinal MRI (mag-
netic resonance imaging) and FDG-PET (fluorodeoxyglucose positron emission
tomography) study of 800 elderly subjects. One of the main goal of ADNI is data
collection for subsequent analysis; existing studies of the hippocampus based on
ADNI data include [4,8,9]. The morphological analysis of the hippocampus car-
ried out in this paper employs a subset of the ADNI dataset comprising two
scans of each of 381 subjects acquired one year apart. At each scan acquisi-
tion, an individual is classified as normal (NL), with mild cognitive impairment
(MCI), or with AD. This classification naturally divides the subjects into four
groups: NL-NL, MCI-MCI, MCI-AD and AD-AD. Table 1 shows the breakdown
of the 381 individuals included in this study for a total of 762 scans. MCI may
be viewed as a transitional stage to dementia, even though conversion may not
necessarily occur. MCI patients are of particular interest because they exhibit
an increased risk of conversion and the MCI-AD group represent the early stages
of the disease.

Table 1. Subset of 381 ADNI subjects used in this study

Group # of Subjects Group # of Subjects

NL-NL 118 MCI-MCI 153

MCI-AD 39 AD-AD 71

In this paper, we present a shape model equipped with a multi-scale Sobolev-
type metric to quantify volumetric similarity and divergence of solids in 3D
Euclidean space. We develop volumetric models of shape because they are po-
tentially more sensitive to morphological changes caused by neurodegeneration
than models just based on contour surfaces. The model may be viewed as a
continuous extension of classical Procrustes analysis of shapes [10] to solids in
3D space. One major difference, however, is that the metric employed is base
not only on the relative positions of points, but also on the first derivatives of
parametrizations. First-order metrics are more sensitive to local non-linear de-
formations such as local contractions or expansions. To suppress the undesirable
effect of very small variations or noise, the first-order term is smoothed out with
the Riemannian heat operator (cf. [11]). This model provides a framework for the
development of a tool, which we refer to as the signed energy function (SEF),
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to quantify localized shape contrasts in populations. We show that measures de-
rived from SEF correlate well with volume loss in the hippocampus, an important
indicator that SEF is sensitive to the morphology of neurodegeneration.

For each subject, the hippocampal volume was segmented from the whole-brain
MRI scan using the techniques of [4]. First, triangular meshes were constructed to
represent the contour surfaces of all hippocampi. Following a standard procedure,
one of the NL meshes was fixed as a reference and all other surfaces were regis-
tered with it with the direct mapping method of [12]. Then, the registration of
the surfaces was extended to hippocampal volumes using a thin-plate-spline inter-
polant [13]. For computations, the registered left hippocampal volumes were dis-
cretized as “cubical” meshes with 3,908 vertices and 10,533 edges, while the right
hippocampus was represented with 3,796 vertices and 10,219 edges. For each sub-
ject, the SEF was calculated between the baseline and follow-up scans. For each
group, we applied the SEFs to the localization of specific regions with statistically
significant shape differences linked with local shrinkage. Moreover, we compared
the left hippocampus of the AD-AD group with all other groups, as well as the
right hippocampus of the MCI-AD group with the others, since these two groups
showed more significant shape changes.

The paper is organized as follows. In Section 2 we present the continuous
model of volumetric shape. The signed energy function is discussed in Section 3
and the discretization of the model is sketched in Section 4. Applications of the
model to Alzheimer’s disease are presented in Section 5.

2 A Multi-scale Model of Shape

2.1 Sobolev Metrics

Let V be a connected solid in 3D space with a smooth contour surface. V will be
fixed throughout as a reference domain. A parametric shape will be represented
by a mapping α : V → R

3, with coordinates α(p) = [α1(p) α2(p) α3(p) ]T . We
impose Neumann boundary conditions ∇αi(p) · ν(p) = 0, for every p on the
boundary ∂V , where ν(p) is the outer unit normal at p ∈ ∂V . If we denote the
differential of α at p by dαp : R

3 → R
3, the usual first-order Sobolev metric on

V may be expressed as

〈α, β〉 =
∫

V

α(p) · β(p) dp+
∫

V

〈dαp, dβp〉 dp , (1)

where 〈dαp, dβp〉 = tr (dαp ◦ dβ∗p) and dβ∗p is the adjoint of dβp. This coincides
with the usual Euclidean inner product of matrices under the matrix represen-
tation of differentials relative to an orthonormal basis.

Since the first-order term can be very sensitive to small deformations and
noise, we modify the metric by smoothing it out via the heat kernel. Smoothing
of the first-order term also leads to more stable computations. Let 0 = λ0 <
λ1 ≤ λ2 ≤ · · · ↑ ∞ be the eigenvalues of the Laplacian on V subject to Neumann
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boundary conditions. We denote an associated orthonormal set of eigenfunctions
by φi, i � 0. The heat kernel on V may be expressed as

K(p, q, t) =
∞∑

i=0

e−λitφi(p)φi(q) . (2)

For each fixed t > 0, we obtain a smoothed out version of α via the kernel K
given by αt(p) = [α1(p; t) α2(p; t) α3(p; t) ]T , where

αi(p; t) =
∫

V

K(p, q, t)αi(q) dq . (3)

The Sobolev metric (1) is modified to

〈α, β〉t = a
∫

V

α(p) · β(p) dp+ b
∫

V

〈
dαt

p, dβ
t
p

〉
dp . (4)

We also introduce weights a, b > 0 to be able to adjust the contributions of the
two terms, as desired, and normalize them to satisfy a + b = 1. Note that the
smoothing operator is only applied to the derivative term. The associated norm
is denoted ‖ · ‖t.

2.2 The Shape Model

As in conventional Procrustes analysis, to obtain a representation of shape that
is invariant under translations, we place the centroid of α at 0 by requiring that∫

V
αi(p) dp = 0, for 1 � i � 3. As in Kendall’s formulation [10] and the surface

model of [14], we could also normalize size with respect to the proposed metric.
However, we shall skip this step since one of our main goals is to use the metric to
detect change in shape and size caused by atrophy. Thus, the proposed model is
sensitive to scale. We also need to enforce invariance under change of orientation
via the action of the group O(3) of 3 × 3 orthogonal matrices. If U ∈ O(3), the
action of U on α is given by α �→ Uα. Clearly, this is an action by isometries,
i.e., 〈U ◦ α,U ◦ β〉t = 〈α, β〉t. Moreover, if U , W ∈ O(3),

〈W ◦ α,U ◦ β〉t =
〈
α,WTUβ

〉
t
=
〈
α, Ũβ

〉
t
, (5)

where Ũ =WTU . Thus, to calculate the shape distance, one may fix α and only
apply orthogonal transformations to β. If sα, sβ are the shapes represented by
α and β, the shape distance is defined as

dt(sα, sβ) = min
U∈O(3)

‖α− U ◦ β‖t = ‖α− Û ◦ β‖t , (6)

where Û is the orthogonal transformation that minimizes the distance. To find
Û , we extend the classical Procrustes alignment of configurations of landmarks
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to the present setting. Let α = [α1, α2, α3]T and β = [β1, β2, β3]T . Consider the
3 × 3 matrix A, whose (i, j)-entry is

aij = 〈αi, βj〉t = a
∫

V

αi(p)βj(p) dp+ b
∫

V

∇αi(p; t) · ∇βj(p; t) dp . (7)

If A = V1ΣV
T
2 is an singular value decomposition of A, one can show that

Û = V1V
T
2 [15].

3 Signed Energy Function

In practical applications of the model, we are interested not only in the shape
metric as a global quantifier of shape dissimilarity, but also in localization tools
to detect specific regions where shape divergence is most significant. To design
such a tool notice that, although the shape distance (6) has a global nature,
the total deformation energy (the square of the shape distance) is an integral of
pointwise energies. More precisely, letting β̂ = Û ◦ β, (4) and (6) imply that

d2t (sα, sβ) =
∫

V

(
a‖α(p) − β̂(p)‖2 + b‖dαt

p − dβ̂t
p‖2

p

)
dp . (8)

Thus, we define the energy function Et
α,β : V → R by

Et
α,β(p) = a‖α(p) − β̂(p)‖2 + b‖dαt

p − dβ̂t
p‖2

p . (9)

The local energy Et
α,β(p) quantifies how much the shapes of α and β differ near p

from the standpoint of the metric dt. Note, however, that the energy associated
with local shape changes due to local shrinkage and expansion are both non-
negative. This raises the question of whether it is possible to modify Et

α,β to a
signed measurement that can better differentiate these two types of deformation.
This is of particular interest in applications to neurodegenerative diseases such
as AD. Here, we propose a simple approach to this problem and show in Section 5
that the modified energy function correlates well with total hippocampal volume
loss. Assume that α and β are centered and orthogonally aligned. We attribute
a ‘+’ sign to Et

α,β(p) if ‖α(p)‖ � ‖β̂(p)‖ and a negative sign, otherwise. In other
words, the sign is positive if the Euclidean distance to the centroid decreases as
we change α to β and negative if it increases. Thus, a positive or negative signed
energy function (SEF) should indicate local shrinkage or expansion, respectively.

4 The Discrete Model

We briefly sketch the discretization of the model of Section 2. We discretize the
reference volume V in 3D space as a regular cubical mesh K with edge length 	.
Let V = {v1, v2, · · · , vn} and E = {e1, e2, · · · , em} be the vertex and edge sets of
K, respectively. We fix an arbitrary orientation for each edge ei ∈ E. A discrete
parametric shape α is represented by a piecewise linear map K → R

3, so that α
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is completely determined by its values on the vertices of K. Therefore, α can be
viewed as a 3× n matrix, where the jth column represents α(vj) ∈ R

3.
We use the discrete exterior derivative to represent the differential of α, which

is defined on E. For the oriented edge ej ∈ E, we let dα(ej) =
[
α(e+j )− α(e−j )

]
/	,

where e+j and e−j are the terminal and initial vertices of ej, respectively. Thus,
the derivative can be viewed as a 3 ×m matrix, whose jth column represents
dα(ej) ∈ R

3. To discretize the inner product (4), we first discuss the discrete
volume elements. For the first term, it is simply the volume 	3 of the voxels of
K. For the second, we use the volume “around” each edge ej, which is calculated
as follows. Each cube σ incident with ej contributes 	3/12 to this volume. Thus,
for an interior edge, the volume around ej is 	3/3.

We use a standard finite-difference discretization of the Laplacian and the
eigenvalues and eigenvectors are calculated using the Lanczos subspace method.
In computations, we truncate the discrete version of (2) after the first r + 1
eigenvalues based on experimental experience. Therefore, for a vertex v, the
expression (3) becomes

αi(v; t) = 	3
r∑

k=0

n∑
j=1

e−λktφk(v)φk(vj)αi(vj) , (10)

The Sobolev inner product (4) can now be discretized as

〈α, β〉t = a	3
n∑

i=1

α(vi) · β(vi) +
b	3

3

m∑
j=1

dαt(ej) · dβt(ej). (11)

Finally, the value of the energy function in (9) at a vertex v is

Et
α,β(v) = a‖α(v) − β̂(v)‖2 +

b

6

∑
j

‖dαt(ej)− dβ̂t(ej)‖2 , (12)

where j varies over the indexes of the edges incident with v.

5 Experimental Results

As mentioned in the Introduction, after segmentation of the hippocampal vol-
umes and registration of their contour surfaces, we extended the point correspon-
dences to their entire volumes through a thin-plate-spline interpolant [13]. Using
a subset of the baseline scans of normal controls, we construct a hippocampal
atlas V as a sample mean shape. We adopted the Fréchet mean shape with re-
spect to the shape metric proposed, that is, the minimizer of the sum of the
square shape distances (cf. [8,14]). A regular cubical mesh K was then generated
to represent the hippocampal atlas. The atlas reflects the anatomical character-
istics shared by the members of a population and provides a common domain
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for comparison and analysis of different individuals and groups. To obtain com-
patible meshes, we transferred the cubical mesh K of the atlas via the volume
registration to all the other hippocampi. This gives a parametric representation
of all shapes overK. We then calculated the shape distance between the baseline
and 12-month hippocampal volumes of each subject and their associated SEF.
The parameters were set to a = 0.9, b = 0.1, t = 0.01 and r = 49. These values
were chosen experimentally.

As explained in Section 3, we expect the signed energy functions to reflect
shape changes associated with local shrinkage and expansion effectively. There-
fore, to make a more convincing case, we first show that our measure of volume
loss is consistent with results obtained in other studies and verify that SEFs
correlate well with volume loss during the one year period. We then proceed to
a finer analysis to detect specific regions where the shape changes in the NL-NL,
MCI-MCI, MCI-AD and AD-AD groups differ significantly.

Left HC NL-NL MCI-MCI MCI-AD AD-AD

Plane 1

Plane 2

Plane 3

Fig. 1. Volumetric p-value maps of the comparison of the mean SEF with 0 for the left

hippocampus
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Right HC NL-NL MCI-MCI MCI-AD AD-AD

Plane 1

Plane 2

Plane 3

Fig. 2. Volumetric p-value maps of the comparison of the mean SEF with 0 for the

right hippocampus

5.1 Correlation with Volume Loss

To simplify the computations, we focus on total volume loss and the sum of the
values of each SEF over all vertices of the mesh, which we refer to as the total
signed energy. The mean volume loss for the left and right hippocampi in each
group is given in Table 2, where MCI-ALL is the combination of both MCI-MCI
and MCI-AD. These numbers agree well with the meta-analysis of [3], which in-
cludes nine studies from seven centers, with 595 AD and 212 controls. Their study
found the annualized hippocampal atrophy rates to be 4.66%(95% CI3.92, 5.40)
for AD and 1.41%(0.52, 2.30) for controls. Another study [4] also based on the
ADNI data showed a similar numerical range, with 5.59%(95% CI : +/− 1.44%)
for AD, 3.12%(+/− 0.79%) for MCI and 0.66%(+/− 0.96%) for controls. Two
numbers in our calculations that are particularly interesting are the volume loss
for the left hippocampus in the AD-AD group and the right hippocampus in the
MCI-AD group, which are significantly larger than in the other groups. Table 2
also shows the mean total signed energy of each group. Again, the numbers for
the left hippocampus in the AD-AD group and the right hippocampus in the
MCI-AD group are relatively high.
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Table 2. Mean volume loss and mean total signed energy for the left and right hip-

pocampi in each group

Volume Loss NL-NL MCI-MCI MCI-AD MCI-ALL AD-AD

Left HC 1.55% 2.36% 2.79% 2.44% 5%

Right HC 0.37% 2.76% 4% 3% 3.94%

Total Signed Energy NL-NL MCI-MCI MCI-AD MCI-ALL AD-AD

Left HC 333 527 505.5 522.6 805.9

Right HC 116.7 508.1 656.4 538.2 563.7

To verify that the total signed energy correlates well with total volume loss,
we calculated Pearson’s linear correlation coefficients, which are shown in Table
3 and indicate that the correlation is strong. We also tested the total unsigned
energy function and the correlation is much weaker and exhibit much larger
variation among different groups. These results strongly support the use of SEFs
for the proposed analysis of regional shape changes characteristic of tissue loss.

Table 3. Pearson’s linear correlation coefficient with total volume loss

Correlation with Total NL-NL MCI-MCI MCI-AD AD-AD
Volume Loss

Total Signed Energy Left HC 0.665 0.741 0.713 0.774

Right HC 0.742 0.78 0.794 0.793

Total Energy Left HC 0.016 0.238 0.454 0.554

Right HC 0.177 0.323 0.564 0.229

5.2 Group Comparison

We are primarily interested in identifying regions that exhibit morphological
changes that are characteristic of local shrinkage related to tissue loss due to
hippocampal degeneration over a one-year time. According to our sign conven-
tion, these regions correspond to positive values of the signed energy functions.
Thus, for each of the four groups, we perform a 1-tailed t-test at each vertex to
determine whether the mean SEF at that vertex is significantly larger than 0.
The corresponding p-value maps for the left and right hippocampi are plotted
over the hippocampal atlases and shown in Figs. 1 and 2, respectively. For visu-
alization of these volumetric statistical maps, we sectioned the volumes along 3
planes.
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As expected, the AD-AD group in Fig. 1 and MCI-AD group in Fig. 2 show
larger “red” areas than the other groups. Somewhat surprising is that there is
nothing significant detected for the AD-AD group in Fig. 2. This is very likely
due to the high variance for this group. The average value of the variance of SEFs
over all vertices is shown in Table 4. We also performed a similar experiment to
analyze negative values of the signed energy functions, but nothing noteworthy
was detected at comparable significance levels.

Lastly, since the left hippocampus in the AD-AD group and the right hip-
pocampus in the MCI-AD group exhibit the most significant morphological
changes, we compare them with the other groups. This time, a 1-tailed t-test
at each vertex is performed to examine whether the mean of the SEFs of the

Table 4. Mean of the variance of SEFs over the vertices for the left and right hip-

pocampi

Variance NL-NL MCI-MCI MCI-AD AD-AD

Left HC 0.39 0.59 0.42 0.72

Right HC 0.6 0.66 0.38 1.11

AD-AD vs. NL-NL MCI-MCI MCI-AD

Plane 1

Plane 2

Plane 3

Fig. 3. Volumetric p-value maps of AD-AD versus other groups for the left hippocampus
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MCI-AD vs. NL-NL MCI-MCI AD-AD

Plane 1

Plane 2

Plane 3

Fig. 4. Volumetric p-value maps of MCI-AD versus the other groups for the right

hippocampus

reference group is significantly greater than that of the comparison group. Of
course, the mean of the SEFs of the two special groups are expected to be larger.
Again, the corresponding p-value maps are plotted on the hippocampal atlases
in Figs. 5.2 and 4. The plot in Fig. 4 suggests that there is a specific region at
the bottom of the atlas, which may be meaningful in tracking the progression
of the early stage of AD, as the change of morphology in that area of the right
hippocampus is highly characteristic of the conversion from MCI to AD over the
one-year period.

6 Summary and Discussion

In this paper, we presented a shape model based on parametric representations
of volumetric shapes. We constructed a shape space equipped with a multi-scale
Sobolev-type metric, which provides a framework for the statistical analysis of
shape evolution. We also introduced a signed energy function derived from the
model that reflects shape changes that exhibit high correlation with regional
shape shrinkage and expansion. We applied SEFs to the identification of specific
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regions of the hippocampus where shape changes related to atrophy differ sig-
nificantly in normal aging, conversion to Alzheimer’s disease and progression of
the disorder. This analysis was based on 1-year repeat magnetic resonance scans
of the brain of 381 subjects collected by the Alzheimer’s Disease Neuroimaging
Initiative. The subjects were diagnosed as normal or with mild cognitive im-
pairment (MCI) or Alzheimer’s disease (AD) at the time of scan acquisition.
Among the results obtained, we identified a region on the right hippocampus
in which, according to the model, shape changes differ significantly in the MCI-
AD group as compared to groups of subjects whose diagnoses did not progress
beyond MCI. We also constructed p-value maps from t-tests of pointwise SEFs
to visualize patterns of atrophy that differentiate the normal and pathological
groups. In this work, the signs of the energy functions were chosen using a simple
criterion to detect localized shrinkage, but other alternatives such as the distance
to a medial curve rather the centroid of the hippocampus will be explored in
future work.
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Abstract. We consider the minimization of a smooth convex function regular-
ized by the mixture of prior models. This problem is generally difficult to solve
even each simpler regularization problem is easy. In this paper, we present two
algorithms to effectively solve it. First, the original problem is decomposed into
multiple simpler subproblems. Then, these subproblems are efficiently solved
by existing techniques in parallel. Finally, the result of the original problem is
obtained from the weighted average of solutions of subproblems in an iterative
framework. We successfully applied the proposed algorithms to compressed MR
image reconstruction and low-rank tensor completion. Numerous experiments
demonstrate the superior performance of the proposed algorithm in terms of both
the accuracy and computational complexity.

Keywords: Compressive Sensing, MRI Reconstruction, Tensor Completion.

1 Introduction

The mixture of prior models have been used in many fields including sparse learning,
computer vision and compressive sensing. For example, in compressive sensing, the
linear combination of the total-variation (TV) norm and L1 norm is known as the most
powerful regularizer for compressive MR imaging [1,2,3] and widely used in recovering
the MR images.

In this paper, we propose two composite splitting algorithms to solve this problem:

min{F (x) ≡ f(x) +
m∑

i=1

gi(Bix), x ∈ Rp} (1)

where f is the loss function and {gi}i=1,...,m are the prior models; f and {gi}i=1,...,m

are convex functions and {Bi}i=1,...,m are orthogonal matrices. If the functions f and
{gi}i=1,...,m are well-structured, there are two classes of splitting algorithms to solve
this problem: operator splitting and variable splitting algorithms.

The operator-splitting algorithm is to search anx to make the sum of the corresponding
maximal-monotone operators equal to zero. Forward-Backward schemes are widely used
in operator-splitting algorithms [4,5,6]. These algorithms have been applied in sparse
learning [7] and compressive MR imaging [2]. The Iterative Shrinkage-ThresholdingAl-
gorithm (ISTA) and Fast ISTA (FISTA) [8] are two important Forward-Backward meth-
ods. They have been successfully used in signal processing [8,9], matrix completion [10]
and multi-task learning [11].

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 607–620, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The variable splitting algorithm is another choice to solve problem (1) based on the
combination of alternating direction methods (ADM) under an augmented Lagrangian
framework. It was firstly used to solve the numerical PDE problem in [12,13]. Tseng
and He et al. extended it to solve variational inequality problems [14,15]. There has
been a lot of interests from the field of compressive sensing [16,17], where L1 reg-
ularization is a key problem and can be efficiently solved by this type of algorithms
[18,19,20]. It also shows the effectiveness for the sparse covariance selection problem
in [21]. The Multiple Splitting Algorithm (MSA) and Fast MSA (FaMSA) have been
recently proposed to efficiently solve (1), while {gi}i=1,...,m are assumed to be smooth
convex functions [22].

However, all these algorithms can not efficiently solve (1) with provable conver-
gence complexity. Moreover, none of them can provide the iteration complexity bounds
for their problems, except ISTA/FISTA in [8] and MSA/FaMSA in [22]. Both ISTA
and MSA are first order methods. Their complexity bounds are O(1/ε) for ε-optimal
solutions. Their fast versions, FISTA and FaMSA, have complexity bounds O(1/

√
ε)

correspondingly, which are inspired by the seminal results of Nesterov and are optimal
according to the conclusions of Nesterov [23,24]. However, Both ISTA and FISTA are
designed for simpler regularization problems and can not be applied efficiently to the
composite regularization problem in our formulation. While the MSA/FaMSA in [22]
are designed to handle the case of m ≥ 1 in (1), they assume that all {gi}i=1,...,m

are smooth convex functions, which make them unable to directly solve the problem
(1). Before applying them, we have to smooth the nonsmooth function {gi}i=1,...,m

first. Since the smooth parameters are related to ε, the FaMSA with complexity bound
O(1/

√
ε) requires O(1/ε) iterations to compute an ε-optimal solution, which means

that it is not optimal for this problem.
In this paper, we propose two splitting algorithms based on the combination of vari-

able and operator splitting techniques. We dexterously decompose the hard composite
regularization problem (1) into m simpler regularization subproblems by: 1) splitting
the function f(x) into m functions fi(x) (for example: fi(x) = f(x)/m); 2) splitting
variable x into m variables {xi}i=1,...,m; 3) performing operator splitting to minimize
hi(xi) = fi(xi)+gi(Bixi) over {xi}i=1,...,m independently and 4) obtaining the solu-
tion x by the linear combination of {xi}i=1,...,m. This includes both function splitting,
variable splitting and operator splitting. We call them Composite Splitting Algorithms
(CSA) and fast CSA (FCSA). Compared to ISTA and MSA, CSA is more general as
it can efficiently solve composite regularization problems with m (m ≥ 1) nonsmooth
functions. More importantly, our algorithms can effectively decompose the original hard
problem into multiple simpler subproblems and efficiently solve them in parallel. Thus,
the required CPU time is not longer than the time required to solve the most difficult
subproblem using current parallel-processor techniques.

The remainder of the paper is organized as follows. Section 2 briefly reviews the
related algorithms. The composite splitting algorithm and its accelerated version are
proposed to solve problem (1) in section 3. Numerical experiment results are presented
in Section 4. Finally, we provide our conclusions in Section 5.
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Algorithm 1. ISTA
Input: ρ = 1/Lf , x0

repeat
for k = 1 to K do

xk = proxρ(g)(xk−1 − ρ∇f(xk−1))

end for
until Stop criterions

2 Algorithm Review

2.1 Notations

We provide a brief summary of the notations used throughout this paper.
Matrix Norm and Trace:

1. Operator norm or 2-norm: ||X ||;
2. L1 and Total Variation norm: ||X ||1 and ||X ||TV ;
3. Matrix inner product: 〈X,Y 〉 = trace(XHY ).

Gradient: ∇f(x) denotes the gradient of the function f at the point x.
The proximal map: given a continuous convex function g(x) and any scalar ρ > 0,

the proximal map associated to function g is defined as follows [9,8]:

proxρ(g)(x) := arg min
u
{g(u) +

1
2ρ

‖u− x‖2} (2)

ε-optimal Solution: Suppose x∗ is an optimal solution to (1). x ∈ Rp is called an
ε-optimal solution to (1) if F (x) − F (x∗) ≤ ε holds.

2.2 ISTA and FISTA

The ISTA and FISTA consider the following optimization problem [8]:

min{F (x) ≡ f(x) + g(x), x ∈ Rp} (3)

Here, they make the following assumptions:

1. g : Rp → R is a continuous convex function, which is possibly nonsmooth;
2. f : Rp → R is a smooth convex function of type C1,1 and the continuously

differential function with Lipschitz constant Lf : ‖∇f(x1)−∇f(x2)‖ ≤ Lf‖x1−
x2‖ for every x1, x2 ∈ Rp;

3. Problem (3) is solvable.

Algorithm 1 outlines the ISTA. Beck and Teboulle show that it terminates in O(1/ε)
iterations with an ε-optimal solution in this case.

Theorem 1. (Theorem 3.1 in [8]): Suppose {xk} is iteratively obtained by the algo-
rithm of the ISTA, then, we have

F (xk) − F (x∗) ≤ Lf‖x0 − x∗‖2

2k
, ∀x∗ ∈ X∗
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Algorithm 2. FISTA

Input: ρ = 1/Lf , r1 = x0, t1 = 1

repeat
for k = 1 to K do

xk = proxρ(g)(rk − ρ∇f(rk))

tk+1 =
1+

√
1+4(tk)2

2

rk+1 = xk + tk−1
tk+1 (xk − xk−1)

end for
until Stop criterions

Algorithm 2 outlines the FISTA. Compared with ISTA, the increased computation
burdens come from the second step and third step in each iteration, which is almost
negligible in large scale applications. Because of these advantages, the key idea of the
FISTA is recently widely used in large scale applications, such as compressive sensing
[8], image denoising and deblurring [9], matrix completion [10] and multi-task learning
[11]. It has been proven that (Theorem 4.1 in [8]), with this acceleration scheme, the
algorithm can terminate in O(1/

√
ε) iterations with an ε-optimal solution instead of

O(1/ε) for those of ISTA.

Theorem 2. (Theorem 4.1 in [8]): Suppose {xk} and {rk} are iteratively obtained by
the FISTA, then, we have

F (xk)− F (x∗) ≤ 2Lf‖x0 − x∗‖2

(k + 1)2
, ∀x∗ ∈ X∗

The efficiency of the FISTA highly depends on being able to quickly solve their first
step xk = proxρ(g)(xg), where xg = rk − ρ∇f(rk). For simpler regularization
problems, it is possible, i.e, the FISTA can rapidly solve the L1 regularization prob-
lem with cost O(p log(p)) [8] (where n is the dimension of x), since the second step
xk = proxρ(β‖Φx‖1)(xg) has a close form solution; It can also quickly solve the TV
regularization problem, since the step xk = proxρ(α‖x‖TV )(xg) can be computed
with cost O(p) [9]. However, the FISTA can not efficiently solve the composite regu-
larization problem (1), since no efficient algorithm exists to solve the step

xk = argmin
x

1
2
‖x− xg‖2 +

m∑
i=1

gi(Bix) (4)

To solve (1), the key problem is thus to develop an efficient algorithm to solve (4). In the

following section, we will show that a scheme based on composite splitting techniques
can be used to do this.
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3 Composite Splitting Algorithms

3.1 Problem Definition

We consider the following minimization problem:

min{F (x) ≡ f(x) +
m∑

i=1

gi(Bix), x ∈ Rp} (5)

where we make the following assumptions:

1. gi : Rp → R is a continuous convex function for each i ∈ {1, · · · ,m}, which is
possibly nonsmooth;

2. f : Rp → R is a smooth convex function of type C1,1 and the continuously
differential function with Lipschitz constant Lf : ‖∇f(x1)−∇f(x2)‖ ≤ Lf‖x1−
x2‖ for every x1, x2 ∈ Rp;

3. {Bi ∈ Rp×p}i=1,...,m are orthogonal matrices;
4. Problem (5) is solvable.

Ifm = 1, this problem will degenerate to problem (3) and may be efficiently solved by
FISTA. However, it may be very hard to solve by ISTA/FISTA if m > 1. For example,
we can suppose m = 2, g1(x) = ||x||1 and g2(x) = ||x||TV . When g(x) = g1(x)
in the problem (3), the first step in Algorithm 2 has a closed form solution; When
g(x) = g2(x) in the problem (3), the first step in Algorithm 2 can also be solved
iteratively in a few iterations [9]. However, if g(x) = g1(x)+ g2(x) in (3), the first step
in Algorithm 2 is not easily solved, which makes the computational complexity of each
iteration so high that it is not practical to solve using FISTA.

When all function {gi}i=1,...,m are smooth convex functions, this problem can be
efficiently solved by the MSA/FaMSA. However, in our case, the function {gi}i=1,...,m

can be nonsmooth. Therefore, the MSA/FaMSA can not be directly applied to solve this
problem. Of course, we may smooth these nonsmooth function first and then apply the
FaMSA to solve it. However, in this case, the FaMSA with complexity bound O(1/

√
ε)

requires O(1/ε) iterations to compute an ε-optimal solution. It is obviously not optimal
for the first order methods [24].

In the following, we propose our algorithm that overcomes these difficulties. Our
algorithm decomposes the original problem (1) intom simpler regularization subprob-
lems, where each of them is more easily solved by the FISTA.

3.2 Building Blocks

From the above introduction, we know that, if we can develop a fast algorithm to solve
problem (4), the original composite regularization can then be efficiently solved by the
FISTA, which obtains an ε-optimal solution in O(1/

√
ε) iterations. Actually, problem

(4) can be considered as a denoising problem. We use composite splitting techniques
to solve this problem: 1) splitting variable x into multiple variables {xi}i=1,...,m; 2)
performing operator splitting over each of {xi}i=1,...,m independently and 3) obtaining
the solution x by linear combination of {xi}i=1,...,m. We call it Composite Splitting
Denoising (CSD) method, which is outlined in Algorithm 3. Its validity is guaranteed
by the following theorem:
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Theorem 3. Suppose {xj} the sequence generated by the CSD. If x∗ is the true solution
of problem (4), xj will strongly converges to x∗.

Due to page limitations, the proof for this theorem is given in the supplemental material.

Algorithm 3. CSD

Input: ρ = 1/L, α, β, {z0
i }i=1,...,m = xg

for j = 1 to J do
for i = 1 to m do

xi = arg minx
1

2m
‖x − zj−1

i ‖2 + gi(Bix)

end for
xj = 1

m

∑m
i=1 xi

for i = 1 to m do
zj

i = zj−1
i + xj − xi

end for
end for

3.3 Composite Splitting Algorithm (CSA)

Combining the CSD with ISTA, a new algorithm, CSA, is proposed for composite reg-
ularization problem (5). In practice, we found that a small iteration number J in the
CSD is enough for the CSA to obtain good reconstruction results. Especially, it is set as
1 in our algorithm. Numerous experimental results in the next section will show that it
is good enough for real composite regularization problem.

Algorithm 4 outlines the proposed CSA. In each iteration, Algorithm 4 decomposes
the original problem intom subproblems and solve them independently. For many prob-
lems in practice, these m subproblems are expected to be far easier to solve than the
original joint problem. Another advantage of this algorithm is that the decomposed
subproblems can be solved in parallel. Given xk−1, the m subproblems to compute
{yk

i }i=1,··· ,m are solved simultaneously in Algorithm 4.

3.4 Fast Composite Splitting Algorithms

In this section, a fast version of CSA named as FCSA is proposed to solve problem
(5), which is outlined in Algorithm 5. FCSA decomposes the difficult composite regu-
larization problem into multiple simpler subproblems and solve them in parallel. Each
subproblems can be solved by the FISTA, which requires only O(1/

√
ε) iterations to

obtain an ε-optimal solution.
In this algorithm, if we remove the acceleration step by setting tk+1 ≡ 1 in each

iteration, we will obtain the CSA. A key feature of the FCSA is its fast convergence
performance borrowed from the FISTA. From Theorem 2, we know that the FISTA can
obtain an ε-optimal solution in O(1/

√
ε) iterations.

Another key feature of the FCSA is that the cost of each iteration is O(mp log(p)), as
confirmed by the following observations. The step yk

i = proxρ(gi)(Bi(rk− 1
L∇fi(rk))

can be computed with the cost O(p log(p)) for a lot of prior models gi. The step xk =
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Algorithm 4. CSA

Input: ρ = 1/L, x0

repeat
for k = 1 to K do

for i = 1 to m do
yk

i = proxρ(gi)(Bi(x
k−1 − 1

L
∇fi(x

k−1))

end for
xk = 1

m

∑m
i=1 B−1

i yk
i

end for
until Stop criterions

Algorithm 5. FCSA

Input: ρ = 1/L, t1 = 1 x0 = r1

repeat
for k = 1 to K do

for i = 1 to m do
yk

i = proxρ(gi)(Bi(r
k − 1

L
∇fi(r

k))

end for
xk = 1

m

∑m
i=1 B−1

i yk
i

tk+1 =
1+

√
1+4(tk)2

2

rk+1 = xk + tk−1
tk+1 (xk − xk−1)

end for
until Stop criterions

1
m

∑m
i=1 B

−1
i yk

i can also be computed with the cost of O(p log(p)). Other steps only
involve adding vectors or scalars, thus cost only O(p) or O(1). Therefore, the total cost
of each iteration in the FCSA is O(mp log(p)).

With these two key features, the FCSA efficiently solves the composite regulariza-
tion problem (5) and obtains better results in terms of both the accuracy and computa-
tion complexity. The experimental results in the next section demonstrate its superior
performance.

4 Experiments

4.1 Application on MR Image Reconstruction

Specifically, we apply the CSA and FCSA to solve the Magnetic Resonance (MR) im-
age recovery problem in compressive sensing [1]:

min
x
F (x) ≡ 1

2
‖Ax− b‖2 + α‖Φ−1x‖TV + β‖x‖1 (6)

where A = RΦ−1, R is a partial Fourier transform, Φ−1 is the wavelet transform, b is
the under-sampled Fourier measurements, α and β are two positive parameters.
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This model has been shown to be one of the most powerful models for the com-
pressed MR image recovery [1]. However, since the ‖Φ−1x‖TV and ‖x‖1 are both
nonsmooth in x, this problem is much more difficult to solve than any of those with a
single nonsmooth term such as the L1 regularization problem or a total variation reg-
ularization problem. In this case, the FISTA can efficiently solve the L1 regularization
problem [8], since the first step xk = proxρ(‖x‖1)(rk − ρ∇f(rk)) has a close form
solution in Algorithm 2. The FISTA can also efficiently solve the total variation reg-
ularization problem [9], since the first step xk = proxρ(‖Φ−1x‖TV )(rk − ρ∇f(rk))
can be computed quickly in Algorithm 2. However, the FISTA can not efficiently solve
the joint L1 and TV regularization problem (6), since xk = proxρ(α‖Φ−1x‖TV +
β‖x‖1)(rk − ρ∇f(rk)) can not be computed in a short time.

The Conjugate Gradient (CG) [1] has been applied to the problem (6) and it con-
verges very slowly. The computational complexity has been the bottleneck that made
(6) impractical in the past [1]. To use this model for practical MR image reconstruc-
tion, Ma et al. proposed a fast algorithm based on the operator splitting technique [2],
which is called TVCMRI. In [3], a variable splitting method (RecPF) was proposed to
solve the MR image reconstruction problem. Both of them can replace iterative linear
solvers with Fourier domain computations, which can gain substantial time savings. To
our knowledge, they are two of the fastest algorithms to solve problem (6) so far. Dif-
ferent from their algorithms, the CSA and FCSA directly attack the joint L1 and total
variation norm regularization problem by transferring it to the L1 regularization and TV
norm regularization subproblems, which can be efficiently solved. In the following, we
compare our CSA and FCSA with their algorithms. The results show that the FCSA is
far more efficient than the TVCMRI and RecPF.

Experiment Setup. Suppose a MR image x has n pixels, the partial Fourier transform
R in problem (6) consists of m rows of a n × n matrix corresponding to the full 2D
discrete Fourier transform. Them selected rows correspond to the acquired b. The sam-
pling ratio is defined as m/n. The scanning duration is shorter if the sampling ratio is
smaller. In MR imaging, we have certain freedom to select rows, which correspond to
certain frequencies. In the k-space, we randomly obtain more samples in low frequen-
cies and less samples in higher frequencies. This sample scheme has been widely used
for compressed MR image reconstruction [1,2,3]. Practically, the sampling scheme and
speed in MR imaging also depend on the physical and physiological limitations [1].

All experiments are conducted on a 2.4GHz PC in Matlab environment. We compare
the CSA and FCSA with two of the fastest MR image reconstruction methods, TVCMRI
[2] and RecPF [3]. For fair comparisons, we download the codes from their websites
and carefully follow their experiment setup. For example, the observation measurement
b is synthesized as b = Rx + n, where n is the Gaussian white noise with standard
deviation σ = 0.01. The regularization parameter α and β are set as 0.001 and 0.035.
R and b are given as inputs, and x is the unknown target. For quantitative evaluation,
we compute the Signal-to-Noise Ratio (SNR) for each reconstruction result.

Numerical Results. We perform experiments on a full body MR image with size of
924×208. Each algorithm runs 50 iterations. The sample ratio is set to be approximately
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25%. To reduce the randomness, we run each experiments 100 times for each parameter
setting of each method. Due to page limitations, we include the experimental results and
comparisons in the supplemental materials. The examples of the original and recovered
images by different algorithms are shown in Figure 1. From there, we can observe that
the results obtained by the FCSA are not only visibly better, but also superior in terms
of both the SNR and CPU time.

(a) (b) (c) (d) (e)

Fig. 1. Full Body MR image reconstruction from 25% sampling (a) Original image; (b), (c), (d)
and (e) are the reconstructed images by the TVCMRI [2], RecPF [3], CSA and FCSA. Their SNR
are 12.56, 13.06, 18.21 and 19.45 (db). Their CPU time are 12.57, 11.14, 10.20 and 10.64 (s).

To further evaluate the reconstruction performance, we use sampling ratio 25% to ob-
tain the measurement b. Different methods are then used to perform reconstruction. To
reduce the randomness, we run each experiments 100 times for each parameter setting
of each method. The SNR and CPU time are traced in each iteration for each methods.
Figure 2 gives the performance comparisons between different methods in terms of the
CPU time and SNR. The reconstruction results produced by the FCSA are far better
than those produced by the CG, TVCMRI and RecPF. The reconstruction performance
of the FCSA is always the best in terms of both the reconstruction accuracy and the
computational complexity, which further demonstrate the effectiveness and efficiency
of the FCSA for the compressed MR image construction.
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Fig. 2. Performance comparisons with sampling ratio 25%: a) Iterations vs. SNR (db) and (b)
Iterations vs. CPU Time (s)

4.2 Application on Low-Rank Tensor Completion

We also apply the the proposed FCSA to the low rank tensor completion problem. This
problem has gained a lot of attentions recently [25,26,10,27]. It is formulated as follows:

min
X
F (X) ≡ 1

2
‖A(X)− b‖2 + α‖X‖∗ (7)

whereX ∈ R
p×q is a unknown matrix, A : R

p×q → R
n is the linear map, and b ∈ R

n

is the observation. The nuclear norm is defined as ‖X‖∗ =
∑

i σi(X), where σi(X) is
the singular value of the matrix X . The accelerated proximal gradient (APG) scheme
in the FISTA has been used to solve (7) in [10]. In most cases, the APG gains the best
performance compared with other methods, since it can obtain an ε-optimal solution in
O(1/

√
ε) iterations.

Similarly, the tensor completion problem can be defined. We use the 3-mode tensor
as an example for the low rank tensor completion. It is easy to extend to the n-mode
tensor completion. The 3-mode tensor completion can be formulated as follows [28]:

min
X
F (X ) ≡ 1

2
‖A(X ) − b‖2 +

m∑
i=1

αi‖BiX‖∗ (8)

where X ∈ R
p×q×m is the unknown 3-mode tensor, A : R

p×q×m → R
n is the linear

map, and b ∈ R
n is the observation.B1 is the “unfold” operation along the 1-mode on

a tensor X , which is defined as B1X := X(1) ∈ R
p×qm; B2 is the “unfold” operation

along the 2-mode on a tensor X , which is defined as B2X := X(2) ∈ R
q×pm; B3 is the

“unfold” operation along the 3-mode on a tensorX , which is defined asB3X := X(3) ∈
R

m×pq . The opposite operation “fold” is defined as BT
i Xi = X where i = 1, 2, 3.

Generally, it is far harder to solve the tensor completion problem than the matrix
completion because of the composite regularization. The solvers in [10] can not be used
to efficiently solve (8). In [28], a relaxation technique is used to separate the dependant
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Table 1. Comparisons of the CPU Time and RSE

CGD-LRTC [28] APG-LRMC [10] FCSA-LRTC
Time (s) RSE Time (s) RSE Time (s) RSE

Window 133.21 0.3843 100.98 0.0962 133.56 0.0563
Cherry 134.39 0.5583 102.43 0.3201 134.65 0.1069
Sheep 134.96 0.5190 101.33 0.1784 131.23 0.1017
Fish 136.29 0.5886 99.89 0.2234 135.31 0.1056

relationships and the block coordinate descent (BCD) method is used to solve the low
rank tensor completion problem. As far as we know, it is the best method for the low
rank tensor completion so far. However, it converges very slow due to the convergence
properties of the BCD. Fortunately, the proposed FCSA can be directly used to effi-
ciently solve 8. Different from the BCD method for LRTC using relaxation techniques
[28], the FCSA can directly attack the composite matrix nuclear norm regularization
problem by transforming it to multiple matrix nuclear norm regularization subproblems,
which can be efficiently solved in parallel. In the following, we compare the proposed
FCSA and BCD for the low rank tensor completion. We called them FCSA-LRTC and
CBD-LRTC respectively. The results show that the FCSA is far more efficient than the
BCD for the LRTC problem.

Experiment Setup. Suppose a color image X with low rank has the size of h×w× d,
where h, w, d denote its height, width and color channel respectively. When the color
values of some pixels are missing in the image, the tensor completion is conducted to
recover the missed values. Suppose q pixels miss the color values in the image, the
sampling ratio is defined as (h×w× d− q× d)/(h×w× d). The known color values
in the image are called the samples for tensor completion. We randomly obtain these
samples or designate the samples before the tensor completion [28].

All experiments are conducted on a 2.4GHz PC in Matlab environment. We compare
the proposed FCSA-LRTC with the CGD-LRTC [28] for the tensor completion prob-
lem. To show the advantage of the LRTC over the low rank matrix completion (LRMC),
we also compare the proposed FCSA-LRTC with the APG based LRMC method (APG-
LRMC)[10]. As introduced in the above section, the APG-LRMC is not able to solve
the tensor completion problem (8) directly. For comparisons, we approximately solve
(8) by using the APG-LRMC to conduct the LRMC in d color channels independently.
For quantitative evaluation, we compute the Relative Square Error (RSE) for each com-
pletion result. The RSE is defined as ‖Xc − X‖F /‖X‖F , where Xc and X are the
completed image and ground-truth image respectively.

Numerical Results. We apply different methods on four 2D color images respectively.
To perform fair comparisons, all methods run 50 iterations. Figure 3 shows the visual
comparisons of the completion results. In this case, the visual effects obtained by the
FCSA-LRTC are also far better than those of the CGD-LRTC [28] and slightly better
than those obtained by the APG-LRMC [10]. Table 1 tabulates the RSE and CPU Time
by different methods on different color images. The FCSA-LRTC always obtains the
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(1)

(2)

(3)

(4)
(a) (b) (c) (d)

Fig. 3. Comparisons in terms of visual effects. Color images are: (1) Window; (2) Cherry; (3)
Sheep and (4) Fish. The column (a), (b), (c) and (d) correspond to the images before completion,
the obtained results by the CGD-LRTC [28], APG-LRMC [10] and FCSA-LRTC, respectively.

smallest RSE in all color images, which shows its good performance for the low rank
tensor completion.

5 Conclusion

In this paper, we proposed composite splitting algorithms based on splitting techniques
and optimal gradient techniques for the mixture prior model optimization. The proposed
algorithms decompose a hard composite regularization problem into multiple simpler
subproblems and efficiently solve them in parallel. This is very attractive for practical
applications involving large-scale data optimization. The computation complexities of
the proposed algorithms are very low in each iteration. The promising numerical results
on applications of compressed MR image reconstruction and low-rank tensor comple-
tion validate the advantages of the proposed algorithms.
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Abstract. Finding point correspondences plays an important role in automati-
cally building statistical shape models from a training set of 3D surfaces. For the
point correspondence problem, Davies et al. [1] proposed a minimum-description-
length-based objective function to balance the training errors and generalization
ability. A recent evaluation study [2] that compares several well-known 3D point
correspondence methods for modeling purposes shows that the MDL-based ap-
proach [1] is the best method.

We adapt the MDL-based objective function for a feature space that can ex-
ploit nonlinear properties in point correspondences, and propose an efficient opti-
mization method to minimize the objective function directly in the feature space,
given that the inner product of any vector pair can be computed in the feature
space. We further employ a Mercer kernel [3] to define the feature space im-
plicitly. A key aspect of our proposed framework is the generalization of the
MDL-based objective function to kernel principal component analysis (KPCA)
[4] spaces and the design of a gradient-descent approach to minimize such an ob-
jective function. We compare the generalized MDL objective function on KPCA
spaces with the original one and evaluate their abilities in terms of reconstruc-
tion errors and specificity. From our experimental results on different sets of 3D
shapes of human body organs, the proposed method performs significantly better
than the original method.

1 Introduction

Statistical shape models show considerable promise as a basis for understanding and
interpreting images and have been widely used in model-based image segmentation
and tracking [5]. To automatically build statistical shape models [5] from a training set
of shapes, finding point correspondence across images becomes an essential task. In
this paper, we focus on establishing dense 3D point correspondences between all 3D
surfaces of a training set.

There are as many proposed methods and algorithms in automatically computing
point correspondences as in statistical shape modeling itself. These approaches vary
in terms of the shape representation and registration procedure [6]. Davies et al. [1]
assumed the projected coefficients of principal component analysis (PCA) of the data
have multivariate Gaussian distributions and derived an objective function for point
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correspondence problems that uses minimum description length (MDL) to balance the
training errors and generalization ability. This optimization approach, although slow
in convergence, produces high quality matching results. A recent evaluation study [2]
compares several well-known 3D point correspondence methods for modeling purposes
and shows that the MDL-based approach [1] generates the best results.

Despite all the progress, finding accurate 3D point correspondences has remained
a challenging task, largely due to the lack of a well-defined metric for a good corre-
spondence. However, certain properties of a good correspondence can be identified. For
example, various nonlinear properties, such as curvature [7] and torsion [8], can not
be quantified nor computed by linear combinations of point positions but have been
shown not only necessary for modeling shapes but also helpful for finding point corre-
spondences. This suggests that point correspondence algorithms should take nonlinear
information into considerations.

Exploiting nonlinear properties in point correspondences to improve results is the
main motivation of this paper. Despite being ranked as the state-of-the-art method for
finding point correspondences, the MDL-based approach [1] does not capture such
knowledge directly, as no local patch information is used. In addition, one key assump-
tion behind the MDL-based approach is that the projected coefficients on principal com-
ponent analysis have a multivariate Gaussian distribution. Such Gaussian properties are
preserved and propagated back via affine transformations (e.g., PCA reconstruction) to
all points in the set, which may not reflect reality. In this paper, we propose to overcome
this limitation by assuming that the distribution of the projected PCA coefficients of the
data in a feature space is a multivariate normal; thus we allow a nonlinear mapping from
the input space to the feature space. We further adapt the MDL-based objective function
for the feature space, given that the inner product of any vector pair can be computed in
the feature space.

Besides presenting a novel objective function, we further propose an efficient opti-
mization method to minimize the objective function directly in the feature space, in-
spired by the success of applying the gradient descent method proposed by Heimann
et al. [9][10] on the original MDL-based approach. In order to compute the gradient
of the proposed objective function in the feature space, we identify the key condition,
which requires the inner product of any vector pair to be computed in the feature space.
This requirement is extremely useful for guiding us to a broad set of feature spaces for
efficient optimization.

We further employ the Mercer kernel [3] to define the feature space implicitly, given
its nice property of supporting pair-wise vector inner product computation. A key aspect
of our proposed framework is to generalize the MDL-based objective function to kernel
principal component analysis (KPCA) [4] spaces and a gradient descent approach to
minimize such an objective function. Although there has been some previous work
[11][12] using KPCA in active shape models to model shapes, we are not aware of
any previous work that generalizes the MDL-based objective functions to KPCA or
shows how to optimize such an objective function. With our generalized framework, the
original MDL framework turns out to be a special case where a homogenous polynomial
kernel of degree 1 (i.e., an inner product between two vectors) is used.



3D Point Correspondence by Minimum Description Length in Feature Space 623

We compare the generalized MDL objective function on KPCA spaces with the orig-
inal MDL approach [1] and evaluate their abilities in terms of reconstruction error and
specificity. From our experimental results on different sets of 3D shapes of different
organs of the body, the proposed method performs significantly better than the original
method.

The two main contributions of the paper are summarized below. First, there is a
significant theoretical generalization of the MDL-based objective function to feature
spaces using gradient descent energy minimization. The original MDL framework, is
a special case of this generalization, when an inner product is used. Second, besides
the theoretical improvement, the empirical contribution is also substantial. Overcoming
the limitation that nonlinear properties are not included in the original MDL framework
directly is significant as our proposed KPCA approach yields much better results.

2 Previous Work

The objective functions automatic methods used to quantize the quality of point
correspondences can be partitioned into three classes: shape-based, model-based and
information-theoretic objective functions [5]. Shape-based objective functions are based
on similarity between shapes and the representative examples use Euclidean distances,
bending energy, curvatures, shape contexts [13] and SPHARM [14] to measure shape
similarity. In contrast model-based objective functions consider the statistics of the dis-
similarity among shapes; the determinant of the model covariance is a representative ex-
ample. Information-theoretic objective functions uses information theoretic measures,
such as MDL and mutual information [1][15]. A recent evaluation study [2] that com-
pares several well-known 3D point correspondence methods for modeling purposes
shows that an information theoretic objective function, the MDL-based approach [1], is
the best method. Because of its superior performance, this class of information theoretic
objective functions is the main focus in this paper.

In the following, we first review the MDL-based approach [1] in detail. Then, PCA
and KPCA, which play important roles in both MDL-based objective functions and
understanding the proposed framework, are reviewed. Assume that we have a training
set of N 3D shapes, Γ = {x1, x2, . . . , xN}, and each shape is represented by M 3D
landmarks points. Conventionally, we can represent each such shape by a vector with
dimension 3M×1. Note that 3D shapes are used for illustration only and all the methods
we will review can be applied to both 2D curves and 3D shapes.

2.1 Correspondence by Minimizing Description Length

Davies et al. [1] proposed a MDL-based objective function to quantize the quality of the
point correspondences. In this paper, we use the commonly-used version F proposed
by Thodberg [16] as defined below.

F =
N∑

k=1

Lk with Lk =

{
1 + log(λk/λcut), if λk ≥ λcut

λk/λcut, otherwise
(1)
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Given a set of shapes and a set of known point correspondences, PCA is computed
on the set of shapes, and the computed eigenvalues, {λk|k = 1, . . . , N}, are used to
calculate F in (1). λcut is a parameter that determines the point where we effectively
switch between the determinant-type term (i.e., the if-part in (1)) and the trace-type
term (i.e., the otherwise-part in (1)). The determinant-type terms jointly measure the
volume of the training set after correspondence in shape space, which favors compact-
ness. The trace-type terms jointly measure similarity of each pair of the training shapes
after correspondence via Euclidean distance.

Given the above MDL-based objective function, an efficient method for manipulating
point correspondences and an optimization algorithm that minimizes the objective func-
tion are required in order to find optimal point correspondences [5][9]. Typically, manip-
ulating point correspondences is treated as parameterizing and then re-parameterizing
the surfaces. A parameterization assigns every point on the surface of the mesh to a
unique point on the unit sphere, although parameterizations may not exist for arbitrary
surfaces. In this paper, we assume that the 3D shapes are closed two-manifolds of genus
0. We use a conformal mapping as a parameterization and a reparameterization that
modifies the parameterization based on kernels with strictly local effects, as developed
in [9].

We assume that the parameterization of the ith shape is controlled by some parameter
vector αi, for which the individual parameters are given by {αi,a|a = 1, . . . , A}. The
gradient descent approach is used to minimize F with respect to a parameter vector αi.
The Jacobian matrix for the gradient of the objective function is defined as

∂F

∂αi,a
=

N∑
k=1

∂Lk

∂λk

∂λk

∂αi,a
(2)

It is easy to compute ∂Lk

∂λk
(see (1)) and so we focus on ∂λk

∂αi,a
in the following discus-

sions. ∂λk

∂αi,a
can be computed by using the following chain rule for derivatives.

∂λk

∂αi,a
=
∂λk

∂xi
· ∂xi

∂αi,a
(3)

While ∂xi

∂αi,a
is typically computed by using finite differences, the following analytic

form for ∂λk

∂xi
exists:

∂λk

∂xi
= 2(1 − 1

N
)ci,kbk. (4)

where ci,k is the projection coefficient of the i-th shape vector xi onto the k-th eigen-
vector bk.

2.2 PCA and KPCA

PCA. PCA is a common approach to model the shape variations of a given training set
of 3D shapes. The total scatter matrix S is defined as

S =
N∑

i=1

(xi − x̄)(xi − x̄)t (5)
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where x̄ is the mean shape vector as defined below.

x̄ =
∑N

i=1 xi

N
(6)

PCA finds a projection axis b that maximizes btSb. Intuitively, the total scatter of the
projected samples is maximized after the projection of the samples onto b. The op-
timal Q projection axes bq, q = 1, . . . , Q that maximize the above criterion are the
eigenvectors of S corresponding to the largest Q eigenvalues, {λq|q = 1, . . . , Q}. The
reconstruction x̃ of shape vector x can be used to approximate it.

x̃ = x̄+
Q∑

q=1

cqbq (7)

where cq = (x− x̄)tbq.

KPCA. Assume that we have an input space of shapes Ψ = R3M×1, a feature space
Ω, and a mapping φ : Ψ → Ω. Instead of performing PCA in the input space Ψ , KPCA
performs PCA in the feature space Ω.

The mean of the data points in the feature space, x̂, is defined as follows.

x̂ =
1
N

N∑
i=1

φ(xi) (8)

The covariance matrix C can be defined as follows.

C =
N∑

i=1

(φ(xi) − x̂)(φ(xi) − x̂)t (9)

Let β denoting the column vector with entries, β1, β2, . . . , βN , which can be computed
by solving the following eigenvalue problem.

Nλβ = K̃β (10)

where K̃ij = (K− 1NK−K1N + 1NK1N )ij , K = [Kij ] is a N ×N Gram matrix,
and Kij = φ(xi) · φ(xj).

To require e, an eigenvector, to be a unit vector, an additional constraint on β must
be posed.

1 = λβ · β (11)

Let {eq, q = 1, . . . , Q} be the eigenvectors of C with the largestQ eigenvalues {λq|q =
1, . . . , Q}. Any eigenvector ei of C can be expressed as

ei =
N∑
j

βijφ(xj) (12)
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The reconstruction φ̃(x) of φ(x) can be used to approximate it.

φ̃(x) = x̂+
Q∑

q=1

cqeq (13)

where cq = (φ(x) − x̂) · eq.
Instead of using an explicitly defined mapping φ, we can use a Mercer kernel [3] that

satisfies the following constraint:

K(xi, xj) = φ(xi) · φ(xj) (14)

Commonly used Mercer kernels include Gaussian radial basis functions (RBFs), inho-
mogeneous polynomial functions, and sigmoidal functions. Gaussian RBFs are defined
as

K(xi, xj) = exp(−||xi − xj ||2
2σ2

) (15)

where σ ∈ R is a kernel parameter, and ||x|| is the Euclidean norm of x. Inhomogeneous
polynomial kernels of degree d ∈ R are defined as

K(xi, xj) = (xi · xj + 1)d (16)

In contrast with inhomogeneous polynomial kernels where the constant one is added in
the definition, homogeneous polynomial kernels of degree d are defined as

K(xi, xj) = (xi · xj)d (17)

The common inner product between two vectors xi and xj is a special case of a ho-
mogenous kernel of degree 1. If such a kernel is used in KPCA, KPCA degenerates to
PCA.

3 The Proposed Framework

In the following, we first focus on general feature spaces and then on special feature
spaces called Mercer-kernels-induced feature spaces.

3.1 General Feature Spaces

In contrast with [1][16][9] that perform all the work in the input space Ψ , we generalize
and perform our work in the feature space Ω. In other words, instead of using the
eigenvalues computed by PCA in (1), we propose to use those computed by PCA in the
feature space Ω. We propose a gradient descent approach to minimize the objective
function based on the ideas in Section 2.2. to compute the Jacobian matrix for the
gradient of the objective function.

The Jacobian matrix for the gradient of the objective function is defined as

∂F

∂αi,a
=

N∑
k=1

∂Lk

∂λk

∂λk

∂αi,a
(18)
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As in Section 2.1, it is easy to compute ∂Lk

∂λk
, and so we focus on ∂λk

∂αi,a
here. ∂λk

∂αi,a
can

be computed by using the following chain rule for derivatives.

∂λk

∂αi,a
=

∂λk

∂φ(xi)
· ∂φ(xi)
∂αi,a

(19)

The term, ∂φ(xi)
∂αi,a

, is typically approximated by using finite differences. For example,

we can use a forward difference to approximate ∂φ(xi)
∂αi,a

as follows.

∂φ(xi)
∂αi,a

≈ φ(xi +�αi,a) − φ(xi) (20)

where �αi,a is a predefined small quantity. In addition to the above forward difference
method, it is also possible to use other finite difference methods, such as backward and
central differences and high-order difference methods.

In this paper, we focus on a general class of finite difference methods whose cal-
culations can be represented by a weighted linear combination,

∑P
p=1 wpφ(yp), where

{wp|p = 1, . . . , P} is a given set of weights and {yp|p = 1, . . . , P} is a given set of
shape vectors as shown below.

∂φ(xi)
∂αi,a

≈
P∑

p=1

wpφ(yp) (21)

Note that forward, backward and central differences, as well as high order difference
methods, are representative examples in this class.

In contrast with using finite differences to approximate ∂φ(xi)
∂αi,a

, the following analytic

form for ∂λk

∂φ(xi)
exists1.

∂λk

∂φ(xi)
= 2(1 − 1

N
)ci,kek (22)

where ci,k is the projection coefficient of the feature vector φ(xi) of i-th shape vector
xi onto the k-th eigenvector ek.

By plugging (21), (22) and (12) into (19),

∂λk

∂αi,a
=

∂λk

∂φ(xi)
· ∂φ(xi)
∂αi,a

≈ 2(1 − 1
N

)ci,kek · (
L∑
l

wlφ(yl))

= 2(1 − 1
N

)ci,k(
N∑

j=1

βk,jφ(xj)) · (
P∑

p=1

wpφ(yp))

= 2(1 − 1
N

)ci,k
N∑

j=1

βk,j

P∑
p=1

wpφ(xj) · φ(yp) (23)

1 The full derivations can be found in appendix A.
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From (23), a key insight is that the calculation of ∂λk

∂αi,a
depends on the inner product of

two vectors in the feature space (φ(xj) · φ(yp)). If an explicitly defined mapping φ(x)
from Ψ to Ω is used, ∂λk

∂αi,a
can be computed by (23).

It is easy to see that the previous methods [1][16][9] are special cases of our work
when φ(x) = x. In other words, when φ(x) = x is used in the proposed framework,
the objective function degenerates to (1)[1][16], and the above gradient descent opti-
mization approach degenerates to the one in Section 2.2 [9]. In addition, our framework
allows nonlinear information easily if we choose φ(x) as a nonlinear mapping from Ψ
to Ω.

3.2 Mercer-Kernel-Induced Feature Spaces

Instead of using an explicitly defined mapping φ(x) from Ψ to Ω , we can in (23) use a
Mercer kernel (14) that implicitly induces a mapping. In other words, (23) can be further
simplified as follows by plugging (14) into the right-hand side of the last equation in
(23).

∂λk

∂αi,a
≈ 2(1 − 1

N
)ci,k

N∑
j=1

βk,j

P∑
p=1

wpK(xj , yp) (24)

Although nonlinear mappings are allowed in both (23) and (24), their time complexities
can be very different. In contrast with the time complexity of using (23) to compute
∂λk

∂αi,a
depending on the dimensionality of the feature space, the time complexity of

using (24) to compute ∂λk

∂αi,a
depends on the dimensionality of the input space. If a

Mercer kernel is used, our framework can deal with nonlinear mapping functions whose
feature spaces with infinite dimensionality (the dimensionality of φ(x) is infinite) and
still keep its time complexity dependent on the dimensionality of the input space and
not on the dimensionality of the feature space. Note that although we focus on using a
Mercer kernel in the above discussions, the proposed framework naturally allows using
multiple Mercer kernels without any modifications.

4 Experiments

We have 3D triangular mesh models of 17 left kidneys, 15 right kidneys, and 18 spleens
as shown in Figure 1. All 3D meshes are constructed from CT scans of different pa-
tients2. After correspondences are found, all the mesh models of the same organ have
the same number of vertices (2563) and the same number of faces (5120), and all ver-
tices are used as landmarks to represent the shapes. Two methods, the proposed method
and MDL, are compared. The code [10][9] that implements the ideas described in Sec-
tion 2.1 is used as an implementation of MDL, and the implementation of the proposed
method is built on top of it. The same heuristic used in [10][9] is used to select λcut val-
ues for the organ dataset on which the two methods are compared. A weighted forward
difference (e.g., a weighted form of (20)) is used in (21).

2 We constructs the shape of an organ from manual segmentation of CT scans of a patient by
using marching cubes in ITK-SNAP.
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Fig. 1. Some examples of the 3D triangular meshes of different organs used in the experiments.
From the top row to the bottom row are left kidneys, right kidneys and spleens, respectively.

We follow a standard procedure extensively used in [1][5][2][9] to compare different
point correspondence methods when the ground truth correspondences among different
shapes are not available, and two standard evaluation measures, leave-one-out cross
validation and specificity, are used. Leave-one-out cross validation is used to determine
how accurately an algorithm will be able to predict data that it was not trained on. The
evaluation measure for this method is the difference between an unknown shape and its
reconstruction. In contrast, given a set of shapes sampled from the probability density
function of the training set, the specificity measure computes the average distance from
each sampled shape to the nearest element of the training set. In both measures, the
Euclidean distance (i.e, the sum of the distances between all pairs of corresponding
landmarks) is used to measure the difference between two shapes.

Table 1. The point correspondences found with the compared methods. The columns show differ-
ent organs. The rows show the results with the proposed method with Gaussian RBF kernels, the
results with the proposed method with inhomogeneous polynomial kernels and the results with
MDL, respectively. Points that correspond are shown in same colors.

Left Kidney Right Kidney Spleens

MDL+K(G)

MDL+K(P)

MDL
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Fig. 2. How the leave-one-out reconstruction errors for different organs change with different
kernel parameters and the numbers of principal components in use. The rows show different
organs. The first column shows the results with the Gaussian RBF kernels while the second
column shows the results with inhomogeneous polynomial kernels.
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Fig. 3. How the average specificity for different organs change with different kernel parameters
and the numbers of principal components in use. The rows show different organs. The first column
shows the results with the Gaussian RBF kernels while the second column shows the results with
inhomogeneous polynomial kernels.
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Figure 2 shows the changes in leave-one-out reconstruction errors for different or-
gans with different kernel parameters and the numbers of principal components in use.
The kernel parameters can greatly affect the reconstruction errors; for example, the pa-
rameters in Gaussian RBF kernels, 9 and 10, gave significantly lower errors than 2 and
16 in Figure 2(a). In addition, some feature spaces induced by using different parame-
ters in Mercer kernels failed to capture the nonlinear properties in the point correspon-
dences and performed worse than MDL. The proposed method with Gaussian RBF ker-
nels, MDL+K(G), and the best kernel parameters, is better than MDL for left kidneys
and spleens and comparable to MDL for right kidneys. In contrast,the proposed method
with inhomogeneous polynomial kernels, MDL+K(P), and the best kernel parameters,
is comparable to MDL in all the datasets. Figure 3 shows that the specificity measures
for different organs change with different kernel parameters and with the numbers of
principal components in use. MDL+K(G) and MDL+K(P) have better performances
than MDL, which has either the worst or the second worst performance in all datasets.
From these two figures, it can be concluded that MDL+K(G) is the best among the
compared methods. Table 1 shows point correspondences resulting from the models
with the lowest reconstruction errors in Figure 2 in for visual comparisons.

The better performance of MDL+K(G) is mainly attributed to the fact that KPCA
with Gaussian RBF kernels can model nonlinear properties in the point correspon-
dences, while PCA can not. The comparisons between MDL+K(G) and MDL+K(P)
show that for the test datasets, Gaussian RBF kernels are more suitable than MDL+K(P)
in capturing nonlinear properties in the point correspondences.

5 Conclusions and Future Work

In this paper, we generalize the MDL-based objective function to feature spaces and
propose a gradient descent approach to minimize the objective function. The original
MDL framework is a special case of this theory when an inner product is used in the
proposed framework. We empirically compare the generalized MDL objective function
on KPCA spaces with the original one. From our experimental results on different sets
of 3D shapes of different organs, the proposed method is better than the MDL in terms
of the reconstruction errors and specificity.

Instead of using the reconstruction errors and specificity, we plan to use some datasets
whose ground truth correspondences are known to directly compare the proposed method
with other existing methods. We currently use a brute-force approach to test all possible
kernel parameter values and select the best one. Because the effect of kernel parameters
can affect the reconstruction errors and specificity greatly, a future study is to investigate
how to choose the kernel parameters that perform best and under what conditions on in-
put shapes the proposed framework is guaranteed to perform better than the original one.
In the experiments, we only focus on Mercer kernels that can implicitly induce nonlin-
ear feature spaces. However, the induced nonlinear mappings may not be anatomically
meaningful. Hence, an interesting future direction is to incorporate priori knowledge into
the Mercer kernel, so that an anatomically meaningful feature space can be induced.
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Appendix A

In the following, we will derive an analytic form for ∂λk

∂φ(xi)
. Assume the k-th eigen-

vector and eigenvalue of C defined in (9) are ek and λk, respectively. By definition of
eigenvalues and eigenvectors of a matrix, we have Cek = λkek. The inner product of ek
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and Cek, etkCek, is λk because etkλkek = λk and the above relation can be expressed
by using the following equation.

λk =
N∑

i=1

etk(φ(xi)− x̂)(φ(xi) − x̂)tek

=
N∑

i=1

((φ(xi)− x̂)tek)2 (25)

where the second equality is obtained by substituting C by its definition in (9).
∂λk

∂φ(xi)
can be obtained by the following chain rules.

∂λk

∂φ(xi)
=

∂λk

∂(φ(xi) − x̂)tek

∂(φ(xi) − x̂)tek
∂(φ(xi)− x̂)

∂(φ(xi) − x̂)
∂φ(xi)

= 2(φ(xi) − x̂)teke
t
k(1 − 1

N
)I

= 2(1− 1
N

)(φ(xi)− x̂)teke
t
k (26)

I is an identity matrix both of whose dimensions are the same as ek. For some nonlinear
mapping functionsφ, the dimensionality of φ(x) can be infinite. Note that ∂λk

∂φ(xi)
in (26)

is treated as a row vector but it is defined as a column vector in the main paper.
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Abstract. Most state-of-the-art approaches to action recognition rely

on global representations either by concatenating local information in a

long descriptor vector or by computing a single location independent his-

togram. This limits their performance in presence of occlusions and when

running on multiple viewpoints. We propose a novel approach to pro-

viding robustness to both occlusions and viewpoint changes that yields

significant improvements over existing techniques. At its heart is a local

partitioning and hierarchical classification of the 3D Histogram of Ori-

ented Gradients (HOG) descriptor to represent sequences of images that

have been concatenated into a data volume. We achieve robustness to

occlusions and viewpoint changes by combining training data from all

viewpoints to train classifiers that estimate action labels independently

over sets of HOG blocks. A top level classifier combines these local labels

into a global action class decision.

1 Introduction

Action recognition has applications in video surveillance, human computer inter-
action, and multimedia retrieval, among others. It is also very challenging both
because the range of possible human motions is so large and because variations
in scene, viewpoint, and clothing add an additional layer of complexity.

Most state-of-the-art approaches compute image-sequence descriptors based
on variants of either sparse interest points [3,11,17,20,24] or dense holistic fea-
tures [9,13,19,22,23]. They integrate information over space and time into a
global representation, bag of words or a space-time volume, and use a classifier,
such as an SVM, to label the resulting representation.

These approaches achieve nearly perfect results on the well-known KTH and
Weizmann datasets [20,1]. These, however, are relatively easy because subjects
are seen from similar viewpoints and against uniform backgrounds. Furthermore,
the motions in the test and training set look very similar, so that test-motions are
well explained as small variations of training ones. Most of the above-mentioned
publications do not report results on difficult multiview datasets, such as the
� This work was funded in part by Swiss National Science Foundation project.
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Fig. 1. We evaluate our approach on several datasets. (Top) Weizmann, KTH, and

UCF datasets. (Middle) IXMAS dataset, which contains strong viewpoint changes.

(Bottom) Finally, to measure robustness to occlusions, we evaluate the models learned

from the IXMAS dataset on a new dataset that contains substantial occlusions, clut-

tered backgrounds, and viewpoint variations.

IXMAS [27] one, which includes subjects seen from arbitrary viewpoints. Nor do
they discuss what happens when the subjects are partially occluded so that none
of the training samples resembles the observation for the whole body. One must
note that some of these approaches have been tested on the even more challenging
Hollywood [12] dataset. However, the recognition rates on the Hollywood dataset
are much lower, and the action classes contain scene context cues that can be
exploited by scene classification techniques. Such discriminative scene context is
not always present depending on the set of actions and also for tasks that require
action classification in the same scene, such as surveillance or HCI.

To handle occlusions, an alternative to global models is to use part based ones
to make independent decisions for individual body parts and to fuse them into a
global interpretation [7]. However, robustly tracking body parts remains an open
problem, especially in the presence of occlusions. As a result, these methods have
not been tested on sequences containing substantial occlusion.

In this paper, we propose a hybrid approach that uses a local partitioning of
a dense 3DHOG representation in a hierarchical classifier, which first performs
local classification followed by global, to provide robustness to both viewpoint
changes and occlusions. Not only can it handle sequences with substantial oc-
clusions such as in Fig. 1, it also yields significant improvements on the IXMAS
dataset [27] against recent methods explicitly designed with view-invariance in
mind [5,10,27,28]. This is achieved without any performance loss on the Weiz-
mann, KTH, and UCF datasets [1,20,18].

2 Related Work

Early attempts at view independent action recognition [15,16] required indi-
vidual body parts being detected or feature points being tracked over long
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sequences. However, in a typical single-camera setup, it is difficult both to track
individual limbs and to find feature points in images of people wearing normal
clothes. Current approaches proceed differently and can be partitioned into two
classes depending on whether they represent the spatio-temporal information
densely or sparsely.

Sparse Representations. Many approaches rely on 3D interest points, also
known as space-time corners and represent them using SIFT-like 2D descrip-
tors [3,11,17,20,24]. These descriptors are often incorporated into a single his-
togram to be used for classification purposes using a Bag-of-Words (BoW)
approach.

These approaches depend neither on background subtraction nor on exact
localization of the person. They perform particularly well with periodic actions,
such as walking or running that produce many space-time corners. A major
limitation, however, is that all geometric information is lost during the BoW
step and we will show that this results in a drop in performance. Furthermore,
they are not suitable for action sequences that do not contain enough repeatable
space time corners such as aperiodic motions.

Dense Representations. The requirement for space time corners can be elimi-
nated by replacing sparse representations with dense ones, such as those provided
by HMAX [21] or HOG [2]. These descriptors can represent 2D gradients, op-
tical flow, or a combination thereof. For instance [22] encodes video sequences
into histograms of 2D HOG descriptor and the biologically inspired approaches
of [9,19] use 2D Gabor-filter responses combined with optical flow. Such dense
representations avoid some of the problems discussed above but require a region
of interest (ROI) around the human body, which is usually obtained by using
either a separate human body detector or background subtraction followed by
blob detection. Nevertheless, they have shown much better performance on the
Weizmann [1] and KTH [20] datasets than sparse representations. Interestingly,
improved performance on some datasets was obtained using BoW-based repre-
sentations when the interest point detection was replaced by dense sampling [24].

View Independence. The above described methods have not been designed
with view-independence in mind. To achieve it, several avenues have been ex-
plored. In [5], the change of silhouettes and optical flow with viewpoint is learned
and used to transfer action models from a single source-view into novel target-
views. This requires source and target views that record the same action, which
severely limits the applicability of this technique. By contrast, in [10], actions
are learned from arbitrary number of views by extracting view-invariant features
based on frame-to-frame similarities within a sequence, which yields very stable
features under difficult viewing conditions. However, discarding all absolute view
information results in a loss of discriminative power. For instance, a moving arm
or leg might produce exactly the same self-similarity measures.

Another class of techniques relies on recovering the 3D body orientation from
silhouettes. For example, in [27], 3D models are projected onto 2D silhouettes
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with respect to different viewpoints and, in [28], 2D features are detected and
back-projected onto action features based on a 3D visual hull. Such approaches
require a search over model parameters to find the best match between the 3D
model and the 2D observation, which is both computationally expensive and
known to be relatively fragile. As a result, these techniques are usually only
deployed in very constrained environments.

Occlusion Handling. The above mentioned approaches for action recognition
have not been demonstrated on partially occluded action sequences. Recently,
[25] tried to infer occlusion maps from a global HOG-SVM classifier for pedes-
trian detection by analyzing the individual contribution of each HOG block to
the classifier response. However, this approach requires estimation of determin-
istic local occlusion labels based on a globally trained classifier. By contrast, we
directly learn local SVM classifiers, each one tuned to a specific region of the
HOG feature and combine the results without the need of hard decisions.

3 Recognition of Action Classes

Our approach is depicted by Fig. 2. It relies on the 3D extension of the HOG
descriptor [2] to represent image sequences that have been concatenated into a
data volume. The volume is subdivided into equally spaced overlapping blocks
and information within each block is represented by a histogram of oriented 3D
spatio-temporal gradients [11]. The resulting block descriptors are embedded
temporally [26] at each spatial location, providing a discriminative representa-
tion that has fixed dimension independent of the duration of a sequence and
hence can be easily fed to a classifier. By contrast to HOG and BoW, the fea-
ture descriptors are not spatially integrated into a global representation, i.e. by
concatenating the blocks into a single vector (HOG) or by computing a location
independent histogram of the blocks (BoW). Instead each location is individually
encoded using a set of location dependent classifiers. Preserving location depen-
dent information introduces additional discriminative power. Moreover, the local
classifiers let us also estimate probabilities for occlusion, which we use to filter
out contributions from cluttered and occluded regions when finally combining
the local action assignments into a global decision.

In our experiments, we will demonstrate this additional robustness to oc-
clusion over using the standard HOG and BoW. Moreover, and even though
our representation is not view-independent, if trained using samples from differ-
ent viewpoints such as those in the IXMAS dataset [27], our experiments also
demonstrate strong robustness to realistic viewpoint variations. Surprisingly, our
approach not only outperforms similar learning based approaches, but also those
specially designed with view-independence in mind. While our approach can not
generalize to view orientations that are significantly far away from all training
samples, the performance of our approach does not degrade much trained on
the IXMAS data and tested on new recordings acquired in a different setup and
with a wide range of different viewpoints depicted by Fig. 1.
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Fig. 2. We use a 3D HOG descriptor to represent a video sequence. Temporal infor-

mation at each grid location is integrated over time using temporal embedding, and

classified using location dependent classifiers. Finally the local results are combined

into a global decision.

3.1 3D Histograms of Oriented Gradients

We use the 3DHOG descriptor introduced in [11]. In difference to [11] we com-
pute the descriptor not at previously detected interest locations, but at densely
distributed locations within a ROI centered around the person. Computing
the descriptor involves the following steps: First, the region to be character-
ized is partitioned into regular cells and a histogram h of 3D gradient orien-
tations is computed in each one. This compactly represents temporal and spa-
tial texture information and is invariant to local deformations. Histograms for
all cells in a small neighborhood are then concatenated into a block descriptor
B = L2– clip ([h1, . . . ,hNC ]), to which SIFT-like L2 normalization with clipping
is applied to increase robustness. Since the blocks overlap with each other, this
yields a redundant representation, which increases discriminative power because
normalization emphasizes different bins in different blocks.

Finally, let
Bp = [B1, . . . , BNT ] , p = 1, . . . , NP (1)

be the sequence of blocks computed at spatial location p along the time axis,
where NT is the number of overlapping blocks that fit within the duration of
the sequence, and NP is the number of blocks that fit within the ROI centered
around the subject.

As will be discussed in the following Sections, these blocks are the primitives
that we will feed first to the embedding and then to the local classifiers for
recognition purposes. Such individual treatment of HOG blocks is what sets us
apart from the original HOG and BoW computation that combine all blocks
into a global representation, as discussed above. We will show it to be critical
for occlusion handling.

3.2 Block Embedding and Classification

In this Section, we present an effective way to compute the probability that a
block represents a specific action using information from all subsequences along
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the temporal axis. To this end, we create a set V = {V1, . . . , VNV } of NV proto-
type descriptors by randomly sampling the HOG blocks computed for the train-
ing subsequences. Given an action sequence and the block descriptors of Eq.1, we
create an NV -dimensional vector made of the distances of each one of the Vi to
the closest block within the sequence. In the case of a sequence belonging to the
training set, some of these distances will be exactly zero since some elements of
V are contained in its set of block descriptors but they may not be the only one
to be small. Prototypes that do not belong to the sequence but resemble one of
the blocks will also be assigned a small value. This Sequence Embedding, which
is inspired by max-pooling of action descriptors [9] and exemplar-based embed-
ding [26], makes the training and recognition much more effective. We discuss it
in more details below.

Let Bp be a sequence of blocks at spatial location p partitioned into NT

overlapping blocks, as defined in Eq.1. We represent Bp in terms of minimum-
distances to the set V of NV prototype descriptors introduced above. We take
the distance of the sequence to each Vi to be

d∗i (Bp) = min
t
d(Bt, Vi) , Bt ∈ Bp , (2)

where d represents the distance between orientation histograms. We compute it
as the χ2-distance

d(B, V ) =
1
2

∑
k

(hk − vk)2

hk + vk
, (3)

which we experimentally found to be more suited for our purposes than both the
squared-Euclidean-distance and Kullback-Leibler divergence. Fig 3 illustrates
the embedding for an action sequence.

(a) (b)

Fig. 3. Embedding of HOG block sequence. (a) Each exemplar Vi is compared against

all blocks extracted from the sequence using the χ2-distance and the minimum distance

d∗
i is stored in a feature vector that we use for classification. The blocks extracted from

the HOG descriptors overlap to minimize quantization error. (b) Same set of blocks

and exemplars visualized in the space of histograms.
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We then take the resulting set of d∗ distances

D∗
p = (d∗1(Bp), . . . , d∗NV

(Bp))
 ∈ R
NV , (4)

as input to a classifier trained for location p.
An alternative is to use a local BoW approach that performs the bagging

along the time axis. Each HOG descriptor in the sequence can vote for the closest
words in the vocabulary and a histogram over the vocabulary can be input to the
SVMs. Since NV is much larger than NT in a typical sequence, every descriptor
must vote for multiple words in the vocabulary to avoid quantization effects and
sparse histograms. This can be facilitated by votes that decay exponentially with
the distance between Bt and Vi. Optimizing the rate of decay for each dataset
yields comparable performance to the embedding method. However we prefer
the embedding method because it is simpler and does not involve adjusting an
additional parameter to each dataset.

We pick the exemplars Vi from the training set by random sampling. We
experimented with a selection strategy as in [26]. This gave better results with a
small number of exemplars, however using a sufficiently large number (500) the
performance of both approaches was very close. We therefore report results for
random selection since it is simpler.

Finally, we use L2-regularized logistic regression [4] to produce probability
estimates p(c|D∗

p, Θp) for each class c = 1, . . . , NC , where D∗
p is the descriptor

of Eq. 4 and Θp is the learned logistic regression weights at position p.

3.3 Occlusion Handling

The overall framework that we propose resembles that of a global HOG rep-
resentation that is well known for being sensitive to occlusions [25]. We have
introduced the local partitioning and embedding of the 3DHOG descriptor to
preserve the advantages of HOG, while at the same time making it robust to
occlusions. This is achieved by individually classifying each embedded block de-
scriptor and then combining the classification responses from all blocks in a final
stage as detailed in the next Section.

To further improve occlusion robustness, we learn at each location in addition
to the Nc actions a separate class. Thus p(c = NC + 1|D∗

p, Θp) represents the
probability of region p being occluded. If a region is occluded with high probabil-
ity, and because the probability distribution normalizes to one, the probabilities
for all other classes will be reduced. Hence when fusing the results as discussed
in the next Section, such a region will carry reduced weight.

To generate a large variety of potential occlusions during training, we artifi-
cially hide parts of the training images, as shown in Fig. 4. These occluders are
placed so that approximately either the lower part of the body, the right or left
side is occluded. We then calculate for each region the amount of overlap with
the occluding object; if it is higher than a predefined threshold the correspond-
ing HOG block is labeled as belonging to the occluded class during training. In
practice, we found that setting the threshold to 90% yields the best results.
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Fig. 4. Sample images from artificially occluded training data used to introduce addi-

tional robustness against occlusions in learned classifiers

3.4 Classifier Combination

The previously described local classifiers produce action probabilities at uni-
formly distributed locations of the HOG window. We have evaluated the follow-
ing strategies to fuse these results into a single decision.

Product Rule. Our classifiers produce probabilities p(c|D∗
p, Θp). Thus if inde-

pendence can be assumed, the natural choice is to combine these by the product
rule p(c|D∗

1:NP
, Θ1:NP ) =

∏
p p(c|D∗

p, Θp). Note that we choose the sigmoid pa-
rameters [4] that are used to convert the classifier outputs into probabilities so
that the resulting probability estimates are not overly confident.

Sum Rule. It is also possible to compute a score for each class by averaging
the probabilities of the individual classifiers, i.e. f(c) =

∑
p p(c|D∗

p, Θp), which
can produce better results than the product rules, when the probabilities are not
accurately estimated.

Weighted Sum. Not every region of the HOG window carries equally dis-
criminative information for each action. Thus, when summing the individual
probabilities from each region they can be weighted accordingly. One way to
choose the weights is via conditional error probabilities p(c̃|c, p), which repre-
sent the probability that the true class label is c̃ conditioned on the actual
output c of a classifier. Following [8], a weighed sum can then be computed as
p(c̃|D∗

1:NP
, Θ1:NP ) =

∑
p

∑
c p(c|D∗

p, Θp)p(c̃|c, p). Thus, intuitively, a local classi-
fier that is easily confused between several actions will distribute its vote over all
those actions, while a classifier that is very confident in classifying an action will
account its vote only to this action. The conditional error probabilities p(c̃|c, p)
are estimated from confusion matrices, i.e. by counting how often an observation
is classified as c if the true class label was actually c̃.

Top-Level SVM Classifier. Using a hierarchical classification scheme, we can
combine the outputs of all local classifiers into a single feature vector and learn
a global SVM classifier on top of this representation.

As shown in Table 2, when there are no occlusions, the product rule combina-
tion and the SVM classifier perform best, closely followed by the rest. However,
as shown in Table 4, occlusions degrade the performance of the product rule
even below that of the sum rule. This was to be expected since we use artificial
occlusions in training and real ones in the testing sets and the product rule is the
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most sensitive one to biases in the learned probabilities. Overall, we therefore
prefer the weighted sum and SVM based methods since they result in higher or
at least similar classification rates on all datasets.

4 Experiments

We experimented with the well-known Weizmann [1], KTH [20], UCF [18], and
IXMAS [27] datasets. Since none of these datasets includes occluded subjects,
we also acquired and processed our own video sequences involving the actions in
the IXMAS dataset, but with substantial occlusions and cluttered backgrounds.

We implemented two baseline methods to compare our results on this newly
acquired multiview dataset with occlusions. Both methods use the same 3DHOG
features and training data as the local method that we advocate in this paper.
However global SVM, the first baseline method, combines the HOG blocks into
a single feature vector followed by global embedding along the temporal axis
and a linear SVM classifier. This method hence resembles the original global
HOG approach [2] combined with the temporal embedding of [26]. BoW SVM,
the second baseline method, accumulates the HOG blocks into a histogram of
4000 visual words and classifies them using a non-linear SVM with χ2-kernel.
This approach hence resembles the approaches [11,12] and more specifically the
dense 3DHOG representations in [24], except that for comparison purposes we
sample features not at multiple scales, because the local approach and global
HOG also use only a single scale, and we use information only within the same
ROIs centered around the subjects as for the other methods.

To compute the ROIs around people that our approach requires, we proceed
as follows. For KTH, we use the bounding boxes provided by [13]. For UCF we
use the bounding boxes available in the dataset. For Weizmann and IXMAS we
use the background subtracted silhouettes and fit a bounding box around them.

For our new recordings we interactively determine the bounding box in every
first frame of an action, because simple background subtraction can not accu-
rately detect the partially occluded persons. For all datasets, the ROIs are scaled
and concatenated to produce 48× 64× t cubes, where t is the number of frames
in the sequence.

Unless stated otherwise, we use 16×16×16 pixel blocks subdivided in 2×2×2
cells for 3DHOG, which implies an overlap of 8 pixels in all dimensions. We
compute histograms using the dodecahedron based quantization [11] with 6 ori-
entation bins. For the embedding we use a set of approximately 500 prototypes.

Also, unless stated otherwise, recognition rates are computed by the leave-
one-out method: If K subjects appear in a dataset, we average over K runs,
leaving a different person out of the training set each time.

The recognition speed depends on the length of a sequence and on the HOG
and embedding dimensions used. With our experimental setting on the IXMAS
data, computing the HOG features takes on average 75.5ms per sequence, with
our Matlab implementation on a Core i7 CPU. The cost of computing the em-
bedding is on average 34ms per sequence. The hierarchical classification is the
fastest step and takes on average 1ms per sequence.
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Table 1. Comparison of recognition rates (in %) on Weizmann (left), KTH (middle),

and UCF (right) datasets

Method Weizmann

Local SVM 100.0
Local Weighted 100.0
Local Product 100.0
Local Sum 100.0

Global SVM 100.0
BoW SVM 100.0

Lin [13] 100.0
Schindler [19] 100.0
Blank [1] 99.6

Jhuang [9] 98.8

Thurau [22] 94.4

Kläser [11] 84.3

Method KTH

Local SVM 92.2

Local Weighted 92.4

Local Product 92.2

Local Sum 92.0

Global SVM 90.7

BoW SVM 89.3

Gilbert [6] 94.5
Lin [13] 93.4

Schindler [19] 92.7

Wang [12] 92.1

Laptev [12] 91.8

Jhuang [9] 91.7

Kläser [11] 91.4

Rodriguez [18] 88.7

Schuldt [20] 71.7

Method UCF

Local SVM 90.1
Local Weighted 89.4

Local Product 87.7

Local Sum 87.7

Global SVM 85.6

BoW SVM 81.2

Wang [24] 85.6

Rodriguez [18] 69.2

4.1 Weizmann, KTH, and UCF Datasets

The Weizmann dataset consists of videos of 9 actors performing 9 actions. Re-
cently, several approaches reported close to perfect recognition rates on this
relatively easy dataset. Note that existing approaches use slightly different eval-
uation methodologies on the data. Some evaluate on the whole sequences, oth-
ers split sequences into multiple subparts. We report here results for the full
sequences, where our method yields perfect recognition rates, that is 100%. In
Table 1, we summarize our recognition results and compare them against other
approaches.

The KTH dataset consists of 6 actions performed by 25 actors in four different
scenarios. We follow the evaluation procedure of the original paper [20] and split
the data into training/validation (8+8 people) and testing (9 people) sets, and
report results for learning a single model from all scenarios. Note that some of the
approaches use slightly different evaluation schemes, e.g. a leave-one-out cross
validation, or do not require bounding boxes, etc. Optimizing our parameters
on the validation set, we found HOG blocks of size 16× 16 × 2 subdivided into
2× 2× 1 cells, and an icosahedron based quantization to give best results. With
this setting, we achieve a recognition rate of 92.4% using the weighted sum based
combination, which is among the best results reported for this dataset.

In Table 1, we summarize our recognition results and compare them against
other approaches.

We also evaluate our approach on the UCF dataset that consists of 10 actions.
Since the publicly available part of the dataset does not contain the videos for
pole vaulting, we report results using the 9 available ones and achieve a mean
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recognition rate of 90.1% using the SVM which is the best reported result for
this dataset. Note that these are not directly comparable to the reported rate
of 69.2% [18], nevertheless, they demonstrate that our approach generalizes well
to broadcast action videos.

4.2 IXMAS Dataset

The IXMAS dataset [27] is a multiview action recognition dataset. It consists of
videos of 10 actors performing each 3 times 11 actions. Each action was recorded
with 5 cameras observing the subjects from very different perspectives and as
shown in Fig. 1, the actors freely choose their orientation for each sequence.

We learn single action models from all camera views. Average recognition
rates for the different combination strategies are shown in Table 2 evaluated on
all cameras. In Table 3 we show individual rates per camera when learning from
all views or individual views, and also compare against other methods that used
the same evaluation methodology on the full IXMAS dataset. For each camera,
we improve upon previously published results.

In summary, we observed that combining training data from multiple view-
points and using a non-invariant dense representation yields comparable recog-
nition rates than invariant representations. However, performance is adversely
affected by local changes in feature statistics. Our local classification step mit-
igates this problem. As a result, our local approach performs better than com-
peting ones.

Table 2. Average recognition rates (in %) on IXMAS dataset for different combination

strategies for our local method compared against the global SVM and BoW SVM

baselines

Method
Local Local Local Local Global BoW

SVM Product Sum Weighted SVM SVM

Rec. Rate 83.4 83.5 82.8 82.4 80.6 71.9

4.3 IXMAS Actions with Occlusions

To demonstrate the generalization power of our approach, we recorded our own
dataset composed of the IXMAS actions, but performed by different actors, who
could be partially occluded. The actions were performed on average 3 times by
6 actors and recorded with 5 cameras. As shown in Fig. 1, actors chose their
orientation freely and the occluding objects were rearranged between each take.

We split the data into two subsets: 395 sequences were recorded without
occlusions, and 698 sequences contain objects partially occluding the actors.
We then evaluate on the two sets by learning from all sequences of the original
IXMAS dataset and by testing on either one of these subsets.
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Table 3. Recognition rates (in %) on IXMAS dataset for individual cameras. The left

half of the table shows the results when all cameras are used for training. The other

half shows the results for training using a single camera.

Method
Training with All Cameras Training with Single Camera

all cam1 cam2 cam3 cam4 cam5 cam1 cam2 cam3 cam4 cam5

Local SVM 83.4 86.7 89.9 86.4 87.6 66.4 84.7 85.8 87.9 88.5 72.6

Local Product 83.5 87.0 88.3 85.6 87.0 69.7 85.8 86.4 88.0 88.2 74.7

Tran [23] 80.2 — — — — — — — — — —

Liu [14] — 76.7 73.3 72.0 73.0 — — — — — —

Junejo [10] 72.7 74.8 74.5 74.8 70.6 61.2 76.4 77.6 73.6 68.8 66.1

Reddy [17] 72.6 69.6 69.2 62.0 65.1 — — — — — —

Yan [28] — — — — — — 72.0 53.0 68.0 63.0 —

Farhadi [5] 58.1 — — — — — — — — — —

Weinland [27] 57.9 65.4 70.0 54.3 66.0 33.6 55.2 63.5 — 60.0 —

Table 4. Average recognition rates (in %) when learning from IXMAS dataset and

testing on new clean and occluded recordings. Results are shown for learning models

with (oc) and without (no oc) the additional occlusion class. In all cases our local

combination strategy outperforms the baselines.

Method
clean occluded

no oc oc no oc oc

Local SVM 83.5 86.3 61.9 76.7
Local Weighted 83.3 85.1 61.6 76.7
Local Sum 79.0 82.5 54.0 72.8

Local Product 77.7 81.5 44.6 68.9

Global SVM 74.4 76.0 46.1 58.3

BoW SVM 47.1 52.9 18.1 27.8

Results are shown in Fig. 5 and Table 4. Columns clean in Table 4 show re-
sults on the occlusion free sequences. This is relevant because it still requires
that our approach generalizes to new viewpoints and actors not included in the
training data. Because the sequences contain no occlusions, also the performance
of the global HOG classifier generalizes well to this sequences (74.4%). Interest-
ingly, when introducing the additional occlusion classifier, performance on the
dataset improves (86.3% for SVM combination), even though it contains no oc-
clusions. This is because the occlusion classifier also responds to background
clutter, reducing its effect on classification. Note, that for columns oc the base-
line classifiers were trained using all clean as well as all artificially occluded
sequences as a single training set.

When evaluating on the sequences with occlusions the effect of the additional
occlusion classifier becomes even more evident. We observe the best performance
with 76.7% recognition rate for the SVM based combination and also for the
weighted sum.
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Fig. 5. Confusion matrixes (in %) for the new IXMAS recording. (Left) Recordings

without occlusions with average recognition rate 86.3%. (Right) Recordings with oc-

clusions with average recognition rate 76.7%.

In all cases, our experiments demonstrates that using local classifiers as well as
explicitly introducing occlusions into the training set leads to strong performance
improvements for recognition of partially occluded actions.

5 Conclusion

In this paper, we proposed a new approach based on a local 3D HOG descriptor.
Our approach is simple, efficient, and combines the benefits of the HOG based
dense representation with that of local approaches to achieve occlusion robust
action recognition. We demonstrated that our descriptor, when trained from
multiple views, can perform action recognition from multiple viewpoints, with
highest recognition rates on the difficult IXMAS dataset. Moreover, we showed
that these results carry over to new situations, with different backgrounds, sub-
jects, viewpoints, and partial occlusions.
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Abstract. We consider the task of labeling facial emotion intensities in

videos, where the emotion intensities to be predicted have ordinal scales

(e.g., low, medium, and high) that change in time. A significant chal-

lenge is that the rates of increase and decrease differ substantially across

subjects. Moreover, the actual absolute differences of intensity values

carry little information, with their relative order being more important.

To solve the intensity prediction problem we propose a new dynamic

ranking model that models the signal intensity at each time as a label

on an ordinal scale and links the temporally proximal labels using dy-

namic smoothness constraints. This new model extends the successful

static ordinal regression to a structured (dynamic) setting by using an

analogy with Conditional Random Field (CRF) models in structured

classification. We show that, although non-convex, the new model can

be accurately learned using efficient gradient search. The predictions re-

sulting from this dynamic ranking model show significant improvements

over the regular CRFs, which fail to consider ordinal relationships be-

tween predicted labels. We also observe substantial improvements over

static ranking models that do not exploit temporal dependencies of or-

dinal predictions. We demonstrate the benefits of our algorithm on the

Cohn-Kanade dataset for the dynamic facial emotion intensity prediction

problem and illustrate its performance in a controlled synthetic setting.

Keywords: Video-based Facial Emotion Intensity Analysis, Ordinal Re-

gression, Ranking, Structured Output Prediction.

1 Introduction

A typical task in analyzing video sequences of human emotions (e.g., facial ex-
pressions) or hand gestures is to divide the sequence into segments correspond-
ing to different phases or intensities of the displayed artifact. For example, facial
emotion signals typically follow envelope-like shapes in time: neutral, increase,
peak, and decrease, beginning with low intensity, reaching a maximum, then
tapering off. A significant challenge in modeling such an envelop is that the
rates of increase and decrease differ substantially across subjects (e.g., different
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subjects express the same emotion with substantially different intensities). How-
ever, for subsequent recognition of different emotions across subject pools the
absolute difference of intensity values is, to a large extent, less significant than
the general envelope shape. Qualitative labeling and ranking is also preferred
by human annotators, who can more easily judge coarse relative relationships
instead of the absolute signal differences. In this work we propose to address
these problems by modeling the shape of the emotion intensity envelope using a
new structured ordinal regression approach, an extension of ranking to dynamic
(structured) sequence domains.

The ordinal regression, often called the preference learning or ranking, is an
emerging topic in the machine learning community [1] and has found applica-
tions in several traditional ranking problems, such as image classification and
collaborative filtering [2,3], or image retrieval [4,5]. In the static setting, we want
to predict the label y of an item represented by feature vector x ∈ R

p where
the output bears particular meaning of preference or order (e.g., low, medium or
high). The ordinal regression is fundamentally different from the standard regres-
sion in that the actual absolute difference of output values is nearly meaningless,
but only their relative order matters (e.g., low < medium < high). The ordinal
regression problems may not be optimally handled by the standard multi-class
classification either because of classifier’s ignorance of the ordinal scale and in-
dependent treatment of different output categories (e.g., low would be equally
different from high as it would be from medium).

Despite success in static settings (i.e., vectorial input and a singleton output
label), ranking problems are rarely explored in structured output prediction
problems, such as the segmentation of emotion signal into regions of neutral,
increasing or peak emotion. In this case the ranks or ordinal labels at different
time instances should vary smoothly, with temporally proximal instances likely
to have similar ranks. One may model this rank envelope by enforcing that the
intensity rank at time t− 1 has to be higher (or lower, depending on which part
of the envelope one is on) than the next intensity at time t. Learning a static
ranking model individually and independently for each time slice, however, fails
to impose the same constraints during the decoding of test sequences.

In this work, we propose an intuitive but principled Conditional Random Field
(CRF)-like model that can faithfully represent multiple ranking outputs corre-
lated in a combinatorial structure (e.g., sequence or lattice). The binning mod-
eling strategy adopted by recent static ranking approaches (see (2) in Sec. 2.1)
is incorporated into our structured models through graph-based potential func-
tions. This formulation leads to a family of log-nonlinear models that can still be
estimated with high accuracy using general gradient-based search approaches.
By considering the models that take into account the dynamically changing
ranks of different emotion segments instead of their absolute intensity we are
able to learn intensity-based segmentation of emotion sequences which is largely
invariant to intra- and inter-subject variations.

We formally setup the problem and introduce basic notation below. We then
briefly review the static ordinal regression in Sec. 2.1 and the CRF model in
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Sec. 2.2, traditionally aimed at non-ordinal scale structured output classification.
Our ordinal regression models are described in Sec. 3. After reviewing the related
work in Sec. 4, we provide the experimental results in Sec. 5 where the superior
prediction performance of the proposed structured output ranking model to the
regular CRF model is demonstrated on both synthetic dataset and the real facial
emotion intensity prediction problem on the Cohn-Kanade expression database.

1.1 Problem Setup and Notations

In the structured output prediction problems we deal with multiple output vari-
ables denoted by boldfaced y for distinction. y is composed of individual output
variables yr (i.e., y = {yr}) where r is the variable index. Each output variable
is assumed to take one of R different categories (i.e., yr ∈ {1, . . . , R}) which are
either nominal (regular classification) or ordinal (ranking or ordinal regression).
Although it is fairly straightforward to extend our framework to arbitrary out-
put structures, here we assume that the output variables yr in y are correlated
in a 1-D temporal structure, with r being the time index. The observation, de-
noted by x = {xr}, is structured similarly as the output y, and serves as input
covariate for predicting y.

Throughout the paper, we assume a supervised setting: we are given a training
set of n data pairs D = {(xi,yi)}n

i=1, which are i.i.d. samples from an underlying
but unknown distribution P∗(x,y).

2 Static Ordinal Regression and Traditional Sequence
Segmentation

2.1 Ordinal Regression

The goal of ordinal regression is to predict the label y of an item represented by a
feature vector1 x ∈ R

p where the output indicates the preference or order of this
item. Formally, we let y ∈ {1, . . . , R} for which R is the number of preference
grades, and y takes an ordinal scale from the lowest preference y = 1 to the
highest y = R, y = 1 ≺ y = 2 ≺ . . . ≺ y = R.

The most critical aspect that differentiates the ordinal regression approaches
from the multi-class classification methods is the modeling strategy. Assuming
a linear modeling (straightforwardly extendible to a nonlinear version by kernel
tricks), the multi-class classification typically (c.f. [6]) takes the form of

y = argmaxc∈{1,...,R}w


c x + bc. (1)

For each class c, the hyperplane (wc ∈ R
p, bc ∈ R) defines the confidence toward

the class c. The class decision is made by selecting the one with the largest

1 We use the notation x interchangeably for both a sequence observation x = {xr}
and a vector, which is clearly distinguished by context.
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confidence. The model parameters are {{wc}R
c=1, {bc}R

c=1}. On the other hand,
the recent ordinal regression approaches adopt the following modeling strategy:

y = c iff w
x ∈ (bc−1, bc], where −∞ = b0 ≤ b1 ≤ · · · ≤ bR = +∞. (2)

The binning parameters {bc}R
c=0 form R different bins, where their adjacent

placement and the output deciding protocol of (2) naturally enforces the ordinal
scale criteria. The parameters of the model become {w, {bc}R

c=0}, far fewer than
those of the classification models. The state-of-the-art Support Vector Ordinal
Regression (SVOR) algorithms [2, 3] conform to this representation while they
aim at maximizing margins at the nearby bins in the SVM formulation.

2.2 Conditional Random Fields for Sequence Segmentation

CRF [7, 8] is a log-linear model that represents the conditional distribution
P (y|x) as the Gibbs form clamped on the observation x:

P (y|x,θ) = Z(x; θ)−1es(x,y;θ). (3)

Here Z(x; θ) =
∑

y∈Y e
s(x,y;θ) is the normalizing partition function (Y is a set of

all possible output configurations), and θ is the parameters2 of the score function
(or the negative energy) that can be written as:

s(x,y; θ) = θ
Ψ (x,y), (4)

where Ψ (x,y) is the joint feature vector.
The choice of the output graph G = (V,E) and the cliques critically affects

model’s representational capacity and the inference complexity. For the nota-
tional convenience, we further assume that we have either node cliques (r ∈ V )
or edge cliques (e = (r, s) ∈ E). We denote the node features by Ψ (V )

r (x, yr) and
the edge features by Ψ (E)

e (x, yr, ys). Letting θ = {v,u} be the parameters for
node and edge features, respectively, the score function can be expressed as:

s(x,y; θ) =
∑
r∈V

v
Ψ (V )
r (x, yr) +

∑
e=(r,s)∈E

u
Ψ (E)
e (x, yr, ys). (5)

Although the representation in (5) is so general that it can subsume nearly ar-
bitrary forms of features, in the conventional modeling practice, the node/edge
features are often defined as the product of measurement features confined to
cliques and the output class indicators. More specifically, denoting the measure-
ment feature vector at node r as φ(xr), the node feature becomes:

Ψ (V )
r (x, yr) =

[
I(yr = 1), · · · , I(yr = R)

]

⊗ φ(xr), (6)

where I(·) is the indicator function that returns 1 (0) if the argument is true
(false) and ⊗ denotes the Kronecker product. Hence the k-th block (k = 1, . . . , R)
2 For simplicity, we often drop the dependency on θ in notations.
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of Ψ (V )
r (x, yr) is φ(xr) if yr = k, and the 0-vector otherwise. The edge feature

is similarly defined where we typically employ the absolute difference between
measurement features at adjoining nodes. Thus, Ψ (E)

e (x, yr, ys) is[
I(yr = k ∧ ys = l)

]
R×R

⊗ ∣∣φ(xr) − φ(xs)
∣∣. (7)

These feature forms are commonly used in CRFs with sequence [7] and lattice
outputs [8, 9]. We call the product of parameters and the feature vectors on a
clique the (clique) potential. For instance, v
Ψ (V )

r (x, yr) and u
Ψ (E)
e (x, yr, ys)

are the node potential and the edge potential, respectively. Hence the score
function is the sum of the potentials over all cliques in the graph.

3 Structured Output Ordinal Regression Model

The above standard CRF modeling aims at classification, treating each output
category nominally and equally different from all other categories. The conse-
quence is that the model’s node potential has a direct analogy to the static
multi-class classification model of (1): For yr = c, the node potential equals
v


c φ(xr) where vc is the c-th block of v, which corresponds to the c-th hyper-
plane w


c xr + bc in (1). The max can be replaced by the softmax function. To
setup an exact equality, one can let φ(xr) = [1,x


r ]
.
Conversely, the modeling strategy of the static ordinal regression methods

such as (2) can be merged with the CRF through the node potentials to yield
a structured output ranking model. The mechanism of doing so is not obvious
because of the highly discontinuous nature of (2). We based our approach on the
probabilistic model for ranking proposed by [10], which shares the notion of (2).

In [10], the noiseless probabilistic ranking likelihood is defined as

Pideal(y = c|f(x)) =
{

1 if f(x) ∈ (bc−1, bc]
0 otherwise (8)

Here f(x) is the model to be learned, which could be linear f(x) = w
x. The
effective ranking likelihood is constructed by contaminating the ideal model with
noise. Under the Gaussian noise δ and after marginalization, one arrives at the
ranking likelihood

P (y = c|f(x)) =

∫
δ

Pideal(y = c|f(x)+δ)·N (δ; 0, σ2
)dδ = Φ

(
bc − f

σ

)
−Φ

(
bc−1 − f

σ

)
,

(9)

where Φ(·) is the standard normal cdf, and σ is the parameter that controls the
steepness of the likelihood function.

Now we set the node potential at node r of the CRF to be the log-likelihood
of (9), that is,

v
Ψ (V )
r (x, yr) −→ Γ (V )

r (x, yr; {a,b, σ}), where

Γ (V )
r (x, yr) :=

R∑
c=1

I(yr = c) · log
(

Φ

(
bc − a�φ(xr)

σ

)
− Φ

(
bc−1 − a�φ(xr)

σ

))
.(10)
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Here, a (having the same dimension as φ(xr)), b = [−∞ = b0, . . . , bR = +∞]
,
and σ are the new parameters, in contrast with the original CRF’s node param-
eters v. Substituting this expression into (5) leads to a new conditional model
for structured ranking,

P (y|x, Ω) ∝ exp

(∑
r∈V

Γ (V )
r (x, yr; {a,b, σ}) +

∑
e=(r,s)∈E

u�Ψ (E)
e (x, yr, ys)

)
. (11)

We refer to this model as CORF, the Conditional Ordinal Random Field. The
parameters of the CORF are denoted as Ω = {a,b, σ,u}, with the ordering
constraint bi < bi+1, ∀i. Note that the number of parameters is significantly
fewer than that of the regular CRF.

Due to the nonlinear dependency of Γ on {a,b, σ}, (11) becomes a log-
nonlinear model. It should first be noted that the new nonlinear modeling does
not impose any additional complexity on the inference task. Since the graph
topology remains the same, once the potentials are evaluated, the inference
follows exactly the same procedures as that of the standard log-linear CRFs.
Second, it is not difficult to see that the node potential Γ (V )

r (x, yr), although
non-linear, remains concave.

Unfortunately, the overall learning of CORF is non-convex because of the log-
partition function (log-sum-exp of nonlinear concave functions). However, the
log-likelihood objective is bounded above by 0, and the quasi-Newton or the
stochastic gradient ascent [9] can be used to estimate the model parameters.
We briefly describe the learning strategy. Initially, we set the edge parameters
u = 0 to form a static ranking model that treats each node independently.
After learning the node parameters {a,b, σ}, we optimize the model w.r.t. u
by gradient search while fixing the node parameters. The gradient of the log-
likelihood w.r.t. u is (the same as the regular CRF):

∂ log P (y|x,Ω)

∂u
=

∑
e=(r,s)∈E

(
Ψ (E)

e (x, yr, ys) − EP (yr,ys|x)

[
Ψ (E)

e (x, yr, ys)

])
. (12)

Once we obtain the initial Ω, we can start gradient search simultaneously for
the whole parameters. The gradient of the log-likelihood w.r.t. μ = {a,b, σ} can
be derived as:

∂ logP (y|x,Ω)
∂μ

=
∑
r∈V

(
∂Γ (V )

r (x, yr)
∂μ

− EP (yr|x)

[
∂Γ (V )

r (x, yr)
∂μ

])
, (13)

where the gradient of the node potential can be computed analytically,

∂Γ
(V )
r (x, yr)

∂μ
=

R∑
c=1

I(yr = c) ·
N (z0(r, c); 0, 1) · ∂z0(r,c)

∂μ
−N (z1(r, c); 0, 1) · ∂z1(r,c)

∂μ

Φ(z0(r, c)) − Φ(z1(r, c))
,

where zk(r, c) =
bc−k − a
φ(xr)

σ
for k = 0, 1. (14)
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3.1 Model Reparameterization for Unconstrained Optimization

The gradient-based learning proposed above has to be accomplished while re-
specting two sets of constraints: (i) the order constraints on b: {bj−1 ≤ bj for
j = 1, . . . , R}, and (ii) the positive scale constraint on σ: {σ > 0}. Instead of gen-
eral constrained optimization, we introduce a reparameterization that effectively
reduces the problem to an unconstrained optimization task.

To deal with the order constraints in the parameters b, we introduce the
displacement variables δk, where bj = b1 +

∑j−1
k=1 δ

2
k for j = 2, . . . , R − 1. So, b

is replaced by the unconstrained parameters {b1, δ1, . . . , δR−2}. The positiveness
constraint for σ is simply handled by introducing the free parameter σ0 where
σ = σ2

0 . Hence, the unconstrained node parameters are: {a, b1, δ1, . . . , δR−2, σ0}.
Then the gradients for ∂zk(r,c)

∂μ in (14) then become:

∂zk(r, c)
∂a

= − 1
σ2

0

φ(xr),
∂zk(r, c)
∂σ0

= −2
(
bc−k − a
φ(xr)

)
σ3

0

, for k = 0, 1. (15)

∂z0(r, c)
∂b1

=
{

0 if c = R
1

σ2
0

otherwise ,
∂z1(r, c)
∂b1

=
{

0 if c = 1
1

σ2
0

otherwise . (16)

∂z0(r, c)
∂δj

=

{
0 if c ∈ {1, . . . , j, R}
2δj

σ2
0

otherwise ,
∂z1(r, c)
∂δj

=

{
0 if c ∈ {1, . . . , j + 1}
2δj

σ2
0

otherwise ,

for j = 1, . . . , R− 2. (17)

We additionally employ parameter regularization on the CORF model. For a
and u, we use the typical L2 regularizers ||a||2 and ||u||2. No specific regular-
ization is necessary for the binning parameters b1 and {δj}R−2

j=1 as they will be
automatically adjusted according to the score a
φ(xr). For the scale parameter
σ0 we consider (logσ2

0)2 as the regularizer, which essentially favors σ0 ≈ 1 and
imposes quadratic penalty in log-scale.

4 Related Work

Developing sequence-based regressors is a recently emerging problem in com-
puter vision. Some related work includes [11] where the problem of dynamic
state estimation was tacked by the conditional state space model, an extension
of the CRF to the continuous multi-variate output domain. The difficult density
integrability constraints were effectively handled by the convex parameter learn-
ing. In [12], the joint task of localization and output prediction was considered,
aiming at structured prediction and salient input selection at the same time.
The approach can be particularly beneficial for un-segmented image/video data.

More closely related to our work, [13] proposes a ranking model based on rela-
tions between objects to be ranked, in an document retrieval setting. Unlike our
CORF model the proposed continuous CRF model is a general regression model,
and unable to impose the ordinal monotonicity constraints. [14] considered the
sequence output prediction problem in which the outputs are partially orderable
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sentiments in a document. Their model is a restricted subset of the CRF. To
enforce the monotonicity constraints, they introduced a set of constraints on the
CRF parameters based on the strong correlation between specific ordinal states
and related binary features, also dependent on the positivity of the sentiment.
Hence their approach may be restricted to discrete/binary observations/features
and the particular application of the local sentiment flow estimation problem.
Unlike these limitations, our approach is applicable to general features and ap-
plications since we impose the ordinal constraints on the potential functions.

5 Evaluations

We empirically demonstrate the performance of the proposed CORF model on
the sequence labeling problem where each of the output states to be predicted
has an ordinal scale. We first consider a synthetic setting, with sequences gener-
ated from a model with complex switching dynamics, where the ordinal output
states are obtained by discretizing the true system states to emulate an ordinal
preference scale. Next, we test the algorithm on the problem of predicting the
emotion intensity from the facial image sequence. Each emotion state consists of
three different intensity levels, neutral < increasing < apex, which naturally
encode the total ordering typically exhibited in dynamic emotion sequences.

In these experiments, we focus on contrasting the performance of our CORF
model with the standard CRF which treats the output categories as nominal
classes. For both models, the optimization is accomplished using the quasi-
Newton limited-BFGS method with a sufficiently large number of iterations to
ensure the convergence in the regularized log-likelihood objective within a per-
missible precision. The balancing tradeoff between the regularization and the
log-likelihood terms is estimated by grid search under cross validation. For both
models the optimization starts from the zero-valued parameters with the excep-
tion of the displacement parameters δj = 1 and the scale parameter σ0 = 1 for
the CORF.

5.1 Synthetic Sequences from Switching Linear Dynamical Systems

Ordinal scales can arise from observing and qualitatively quantizing the states
of complex physical processes, while retaining mutual ordering of the quan-
tized states. To simulate a complex physical dynamic processes, we consider
the switching linear dynamical system (SLDS) [15]. We then quantize the states
of the SLDS using an ordinal scale and seek to infer those dynamic ranks from
observations.

In SLDS, the dynamical process can undergo transitions among different
switching states over time, which are governed by different linear dynamic mod-
els. The overall system can be described using the state-space equations:

yt = A(st−1) · yt−1 + vt(st), xt = C(st) · yt + wt(st), P (st = i|st−1 = j) = Qij ,
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where yt ∈ R
d is the d-variate system state at time t, xt ∈ R

p is the p-variate
observation features, and st is the (discrete) switching state taking K differ-
ent states (st = 1, . . . ,K). The system parameters consist of (A(j),C(j)) ∈
(Rd×d,Rp×d) for each switching state j = 1, . . . ,K, and the (K ×K) switching
transition matrix Q. The model takes into account the white noises vt and wt.

We design the SLDS model with K = 8 switching states, d = 1-dim system
state, and p = 4-dim observation features while properly choosing the model pa-
rameters and the (Gaussian) white noise variances (i.e., all system dynamics are
stable, |A(j)| < 1). We then generate 10 sequences from the SLDS model, where
the sequence length T varies as T ∼ N (500, 302). For the generated sequences,
we regard the system state yt as the output to be predicted at time t while xt is
the input feature vector at time t. To convert the real-valued yt to ordinal-scale
discrete-valued yt, we discretize yt into R = 6 categories, with each category
being equally likely. We generate ten pairs of such sequences, one of which (y)
is illustrated in Fig. 1 as the blue dotted curve.
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Fig. 1. Output prediction for synthetic SLDS sequences. The ground truth is depicted

as blue dashed line while the predicted outputs are red solid lines.

For this set we perform leave-one-out validation. The average test errors
(means and standard deviations) of the competing approaches are shown in
Table 1. Here we present both the average 0/1 loss ( 1

T

∑
t I(yt �= yt)) and the

absolute loss ( 1
T

∑
t |yt− yt|), where yt and yt are the predicted and the ground-

truth label, respectively.
To see the baseline performance, we first test the Gaussian HMM (denoted by

GHMM) where its hidden state at time t represents the ordinal label yt. Hence
the joint likelihood maximization leads to a one-shot learning with no latent vari-
ables. The label prediction for a given test sequence can be accomplished using
the well-known Viterbi decoding. The next model we contrast with is the regular



658 M. Kim and V. Pavlovic

CRF. For the measurement features for the CRF, we use the quadratic expansion
of xt yielding 15-dim node features, which corresponds to the GHMM’s Gaussian
measurement modeling. The edge features are simply set to 1 to mimic GHMM’s
transition matrix. Not surprisingly, the CRF’s discriminative modeling improves
the prediction performance over the generative GHMM models.

We also compare our approach with the static ordinal regression approaches,
which have been studied considerably in the machine learning community. These
approaches are static and unable to handle structured outputs in a principled
manner as they treat the time slices {(yt,xt)}t as i.i.d. samples. Here we con-
sider one of the most recent approaches3, the support vector ordinal regression
(SVOR) of [3], which optimizes multiple thresholds to define parallel discriminant
hyperplanes for the ordinal scales. We use the method with explicit constraints.
The features for the SVOR are the same as the node features of the CRFs. The
SVM hyperparameters are selected by 5-fold cross validation.

Our CORF model again uses the same node/edge features as the CRF. As
shown in the table, the CORF prediction is nearly perfect, outperforming other
methods with strong statistical significance. Fig. 1 showing predicted and true
ordinal ranks of a selected test sequence exemplifies this trend. Interestingly, the
static ordinal regressor SVOR exhibits superior performance to the standard
CRF learning, which can be attributed to the effective treatment of the ordinal-
scale output variables, not present in the CRF model which treats all levels as
equally different/similar. However, the SVOR exhibits non-smooth prediction as
it fails to exploit the temporal dependency of predictions. The CORF, on the
other hand, combines both the benefit of proper ordinal scales and the temporal
smoothness, resulting in accurate predictions.

Table 1. Test errors in synthetic SLDS data set

Methods GHMM CRF SVOR CORF

0/1 Loss 0.4687 ± 0.0567 0.2407 ± 0.0328 0.1847 ± 0.0493 0.0052 ± 0.0029

Absolute Loss 0.5894 ± 0.0605 0.3830 ± 0.0581 0.2028 ± 0.0678 0.0052 ± 0.0029

5.2 Dynamic Facial Emotion Intensity Prediction

The next task we consider is the facial emotion intensity prediction. We use
the Cohn-Kanade facial expression database [16], which consists of six basic
emotions (anger, disgust, fear, happiness, sadness, and surprise) performed by
100 students aged from 18 to 30 years old. In this experiment, we selected image
sequences from 96 subjects. We randomly select 66 subjects as the training set,
and the rest subjects as the testing set. After detecting faces by the cascaded
face detector [17], we normalize them into (64 × 64) images which are aligned
based on the eye locations similar to [18].

3 We also tested the static approach [10], the Gaussian process ordinal regressor

(GPOR). However, its test performance on this dataset was far worse than that

of the SVOR.



Structured Output Ordinal Regression 659

Facial expression recognition is an active research area in computer vision [19,
20, 21, 22]. Unlike the traditional settings (e.g., [21]) where just the ending few
peak frames are considered, we use the entire sequences that cover the onset of the
expression all the way to the apex in order to conduct the task of dynamic emotion
intensity labeling. The sequence lengths are about 20-frame long on average.

The frames in the sequences are manually labeled into three ordinal categories:
neutral < increasing < apex. Overall the increasing state takes about 10 ∼
30% of the frames in each sequence, while the other two states occupy the rest
roughly equally on average. For the image features, we first extract the Haar-like
features, following [22]. To reduce feature dimensionality, we apply PCA on the
training frames for each emotion, which gives rise to 20 ∼ 30 dimensional feature
vectors corresponding to 95% of the total energy. To normalize the sequence,
we subtract the initial-frame feature vector from the subsequent frames, i.e.,
xt ← xt − x1.

The average per-frame test errors within each emotion class are shown in
Table 2. Here we also contrasted with the static ordinal regression approach
based on the probabilistic model, called the Gaussian process ordinal regres-
sor (GPOR) [10]. Although the GPOR performs better than the SVOR in this
problem, its independent treatment of the frames in sequences yields inferior
performance to the dynamic models.

Our CORF consistently performs best for all emotions, exhibiting perfor-
mance superior to the regular CRF that fails to consider ordering relationships
between intensity levels. The static ordinal regressors (SVOR and GPOR) often
result in highly biased predictions (e.g., either all neutral frames or all apex),
which signifies the importance of capturing the smooth emotion dynamics in this
problem. Interestingly, most approaches yield higher errors for “sadness” than
other emotions, such as say “surprise”. By visually inspecting the videos of these
emotions, we have noticed that the intensity variations of “sadness” are far more
subtle to discriminate than “surprise”. For some selected test sequences, we also
depict the decoded intensities by the CRF and the CORF in Fig. 2.

Table 2. Average test errors in facial emotion intensity prediction

(a) Anger

Loss GHMM CRF SVOR GPOR CORF

0/1 0.4059 0.2890 0.6103 0.5735 0.1817

Abs. 0.4276 0.2951 0.8534 0.7977 0.2017

(b) Disgust

Loss GHMM CRF SVOR GPOR CORF

0/1 0.1493 0.1154 0.5938 0.5187 0.0582

Abs. 0.1493 0.1154 0.9417 0.5662 0.0582

(c) Fear

Loss GHMM CRF SVOR GPOR CORF

0/1 0.2941 0.2530 0.5733 0.4416 0.1689

Abs. 0.2971 0.2564 0.9051 0.6533 0.1689

(d) Happiness

Loss GHMM CRF SVOR GPOR CORF

0/1 0.2954 0.2341 0.4964 0.4216 0.1617

Abs. 0.3035 0.2341 0.7876 0.4515 0.1617

(e) Sadness

Loss GHMM CRF SVOR GPOR CORF

0/1 0.4598 0.3538 0.6287 0.5561 0.2760

Abs. 0.5754 0.4388 0.9836 0.8993 0.3405

(f) Surprise

Loss GHMM CRF SVOR GPOR CORF

0/1 0.1632 0.1397 0.5855 0.4065 0.0924

Abs. 0.1632 0.1397 0.9563 0.5984 0.0924
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Fig. 2. Facial emotion intensity prediction results for some test sequences. The ground

truth is depicted as blue dotted line while the predicted outputs of the regular CRF

and the CORF are in black dashed and red solid lines, respectively.
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5.3 Discussion and Conclusions

Our approach, much like the similar modeling strategies in static ranking /
ordinal regression settings [1, 2], treats the ordinal-scale states as intervals on a
real line using a binning model. As a consequence, ordering and distinct inter-
relationship between different ranks/labels is preserved, which is of essence when
modeling ordinal processes. As discussed in [1, 2], the multi-class SVM, and
similarly the regular CRF in the dynamic setting, ignore the total ordering of
the class labels. These classification-based models fail to model the correlation
among the hyperplanes (or potentials in the CRFs) representing the classes, a
task necessary for preserving the distinction of relationships among labels.

Another crucial aspect of our CORF model is its ability to preserve the tran-
sitivity and asymmetry of the ordinal scale states. As alluded to in [1], learning
of preference relations may not be properly treated as a standard classification
problem by considering pairs of objects since the properties of transitivity and
asymmetry may be violated by traditional approaches due to the problem of
stochastic transitivity.

The binning-based node potentials in our model also tend to yield smaller
errors as they focus on closest neighboring intervals. That is, when the misclas-
sification occurs, it is more likely to be close to the true class (interval) in the
total ordering. On the other hand, in the regular CRF, the class-wise node poten-
tials compete with one another “independently”, failing to make use of proximity
constraints. As a consequence, the misclassifications away from the true “label”
incur higher cost in the ordinal regression compared to the label-distance agnos-
tic classification setting. This all leads to more accurate predictions by CORF
on classes of problems where ordinal scales are critical but have been commonly
tackled as classification problems.

While this work focuses on the intensity estimation and segmentation of emo-
tion signals as an example of this class of problems, similar approaches can be
applied to other instances where dynamically changing ordinal scale is important.
Modeling the envelope of hand gesture signals or dynamic qualitative character-
izations of video events (e.g., low-to-high-to-low intensity of an explosion) can
benefit from this setting.

Acknowledgments. We are grateful to Peng Yang and Dimitris N. Metaxas
for their help and discussions throughout the course of this work. This material
is based upon work supported by the National Science Foundation under Grant
No. IIS-0916812.
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Abstract. We propose new ideas and efficient algorithms towards bridg-

ing the gap between bag-of-features and constellation descriptors for im-

age matching. Specifically, we show how to compute connections between

local image features in the form of a critical net whose construction is

repeatable across changes of viewing conditions or scene configuration.

Arcs of the net provide a more reliable frame of reference than individual

features do for the purpose of invariance. In addition, regions associated

with either small stars or loops in the critical net can be used as parts
for recognition or retrieval, and subgraphs of the critical net that are

matched across images exhibit common structures shared by different

images. We also introduce the notion of beta-stable features, a variation

on the notion of feature lifetime from the literature of scale space. Our

experiments show that arc-based SIFT-like descriptors of beta-stable fea-

tures are more repeatable and more accurate than competing descriptors.

We also provide anecdotal evidence of the usefulness of image parts and

of the structures that are found to be common across images.

Keywords: Bag-of-features, constellation, image matching.

1 Introduction

Image matching enables at least tracking, stereo, recognition, and retrieval, and
is therefore arguably the most important problem in computer vision.

A fundamental tension exists between the repeatability and distinctiveness of
the features used in matching (our terminology is from a recent survey [1]). Fea-
tures with a small image support can often be made to be repeatable in the sense
that they can be found reliably in different views of the same scene. Features
with more extended supports are potentially more distinctive in that two large,
distinct regions are less likely to look like each other, ceteris paribus, than two
small ones. Because of this, repeatability reduces false negatives in matching,
and distinctiveness reduces false positives. Unfortunately, larger features tend to
be less repeatable: They often deform more than smaller features under changes
of viewing conditions or scene configuration, and occlusions are more likely to
hide different parts of large features in different views.
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Two approaches in the literature have shown considerable success in easing
this tension. The “constellation” approach [2,3,4] describes both the appear-
ance and the relative positions of small features. The “bag of features” ap-
proach [5,6,7,8] foregoes the description of positions, and relies on aggregate
statistics of appearance. Constellations subsume bags of features, so the wide
use of the latter is justified by considerations of efficiency.

Important steps have been made in recent literature [9,10] to connect local
features into more global models efficiently. In this paper, we propose a further
step towards practical constellations by defining repeatable connections between
local features. Specifically, we introduce the notion of a critical net, a non-planar
but low-average-degree graph that connects extrema of a function of the image
intensities. Repeatability is a consequence of the fact that the critical net is
invariant to affine deformations of the image domain and a certain wide class
of changes in the function values. Our critical nets are a close relative of the
Morse-Smale graph [11,12], but can be computed much more reliably and very
efficiently on images defined on the integer grid.

We then show how critical nets can be used for matching. First, the primi-
tives being matched are arcs of the net, rather than nodes. Arcs encode relative
positions of local features, and are more reliable than individual features in estab-
lishing an image-dependent frame of reference to be used as a basis for invariance
to geometric image transformation. Second, we use the connectivity induced by
the critical net to identify both repeatable image parts and common structures
of interest across images. Specifically, parts are regions associated with either
small stars or loops in the critical net, and common structures of interest are
the convex hulls of connected components that are matched across two images.

To complement the repeatability of critical nets, we also introduce a notion of
β-stable features based on a Laplacian scale-space description of the image. We
choose the Laplacian for several reasons: this operator has been proven success-
ful in empirical evaluations [13]; the resulting extrema detect image contrast but
remain invariant to multiplicative changes or the addition of any harmonic func-
tion to the image; and the choice of the Laplacian facilitates comparison with
operators like SIFT [14] and its variants (see [1] for a survey). The concept of
β-stability is a variation on the theme of a feature’s lifetime (a.k.a. ’stability’ [15]
or ’persistence’ [11]) familiar to the literature of scale space [16,17,18,19,20], and
is built on the notion of convexity: rather than selecting features that persist over
a wide interval of scales, we compute the features at a scale chosen so that the
number of convex and concave regions of the image brightness function remains
constant within a scale interval of length β. We show that this shift in selection
criterion leads to robustness to high-frequency perturbations of the image, in
addition to the invariance advantages deriving from the use of the Laplacian.

For ease of exposition, β-stable features are described first, in section 2, fol-
lowed by a discussion of the concept of critical net in section 3. Sections 4 and 5
then introduce concepts for – and experiments with – image matching and the
definition of image parts and common structures of interest. Section 6 concludes
and outlines future work.
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2 Beta-Stable Features in Scale Space

One of the most common feature detectors is based on the Laplacian of the
Gaussian (LoG, [18,19]). First, the input image I(x, y) is convolved with an
Gaussian kernel Gσ multiple times to give a scale space representation {Ik}:

Ik = Gσ ∗Gσ · · · ∗Gσ∗︸ ︷︷ ︸
k

I = G√
kσ ∗ I (1)

where ∗ is the convolution operator, σ is the smoothing kernel width and k is
the index for the scale. Then, the Laplacian operator Lk = ∇2Ik is well approx-
imated by the Difference of Gaussian (DoG), defined as Lk ≈ Ik+1 − Ik [14] if
σ � 1.6. This value of σ is used throughout this paper. For a fixed scale k, the
Laplacian Lk divides the image domain into regions of convex brightness (posi-
tive Laplacian) and concave brightness (negative Laplacian). More precisely:

Definition 1 (Maximally Convex Region). X ⊆ R
2 is a convex region at

scale k if X is connected and Lk > 0 in X . The region X is maximally convex
if no convex regions Y exists such that X ⊂ Y.

Convexity and concavity of image brightness are among the main ingredients for
the detection of features in this paper. Figure 1 portrays the evolution of the
maximally convex regions of a human face as scale increases. In order to make
the maximally convex regions insensitive to moderate variations in scale, we
select for image analysis the smallest scale k at which the number of maximally
convex regions remains constant within an interval of scales. To this end, we first
define the variation speed of the Laplacian:

Fig. 1. The maximally convex regions Lk > 0 are shown in white for k ranging from 1 to

100 in approximately equal steps. Image boundaries are handled in standard way: pad

images by replication before processing, then remove boundary regions in the results.

Unless otherwise indicated, input images in this paper are from Caltech 101 [7].
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Fig. 2. The left plot shows the speed δk versus the scale index k, and the right plot

shows the β-stable scale index k for different values of β. Both plots are averages over

48 images from the benchmark data set used in [21].

Definition 2 (Variation Speed of the Laplacian). Let τk be the number of
maximally convex regions at scale k. The variation speed δk of the Laplacian at
scale k is δk � τk+1 − τk.
As long as δk stays far below zero, we say the Laplacian function is not stable in
the sense that a small scale change will lead to a substantial structural change
that is reflected by the change of the number of maximally convex regions. In
contrast, when δk ≈ 0, we say that the resulting Laplacian function is stable. In
the left plot in Figure 2, the absolute value of the speed δk is initially very large
and quickly approaches zero and stays relatively stable thereafter. Based on this
observation, we define the notion of β-stable scale:

Definition 3 (β-Stable Scale). Scale k is β-stable if k is the smallest integer
for which δξ = 0 for all ξ ∈ [k − β, k).
The right plot in Figure 2 shows the β-stable scale index k for different values of
β. This plot is increasing by construction. Figure 3 shows a sample image with
the contour plot of its Laplacian at scales k = 2 and the 10-stable scale k = 25.
The 10-stable Laplacian is both smooth and stable.

The advantages of β-stability are threefold: (1) The positive and negative
regions of the Laplacian are topologically stable within the scale interval [k −
β, k). (2) The β-stable Laplacian is robust to high frequency perturbations since
these are annihilated by the heavy isotropic smoothing. (3) Since the number
of maximally convex regions encodes the richness of details of an image, the β-
stable Laplacian balances stability and detail by anchoring to the smallest scale
required for stability.

We use the extrema of the β-stable Laplacian, i.e., the locally most convex
and concave points of the smoothed input image, to define image features:

Definition 4 (β-Stable Features). The maxima and minima of the β-stable
Laplacian of the image intensity function I are called β-stable features of I.
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Figure 4 shows a sample image of a human face overlayed with SIFT features
and β-stable features. The β-stable features are better anchored to visually sig-
nificant parts of the image than SIFT features are. Our experiments in section
4 show that β-stable features are preferable for image matching as well. In ad-
dition, and more importantly, section 3 shows how to weave β-stable features
into constellations. This connection between features enhances the discriminative
power of the β-stable features and helps bridge the gap between bag-of-features
and constellation approaches to image matching.

3 The Critical Net

Let f be the β-stable Laplacian function of the intensity image I defined on a
grid G = 〈V , E〉. The vertices in V group together adjacent pixels with equal
values, and the arcs in E are the remaining arcs induced by pixel neighborhood
(4- or 8-connected). By construction of V , f(a) �= f(b) for all (a, b) ∈ E . Let Γf

be the set of the minima of f and Λf be the set of the maxima of f . The union
Γf ∪Λf is the set of β-stable features. In order to construct a constellation model
that weaves β-stable features into a graph, we need the notion of connection:

Definition 5 (Connection). For any a, b ∈ V, there is a connection between
a and b on the grid G, denoted as a ≺ b, if there exists an ascending path
from a to b, that is, a sequence 〈a = p1, p2, ..., pn = b〉 where (pi, pi+1) ∈ E and
f(pi) < f(pi+1) for 1 ≤ i ≤ n− 1.

The connection ≺ induces a partial order in V , that is, for any a, b ∈ V , a ≺ b,
or b ≺ a, or a, b are not ordered. Transitivity also holds: {a ≺ b, b ≺ c} ⇒ a ≺ c.
This connection naturally defines a graph:

Definition 6 (Critical Net). The critical net of an intensity image I is a
directed acyclic graph: Gf = 〈Vf , Ef〉 where Vf = Γf ∪ Λf is the set of β-stable
features of I and Ef = {(a, b) ∈ Γf × Λf | a ≺ b} is the set of connections in Vf .

By construction, the arcs of critical nets are associated to local image patches
with both convex and concave image brightness patterns. Thus, they encode
image content that is rich, local, and stable in a formally well-defined sense.

Fig. 3. From left to right: An image patch of a human eye and its Laplacian at scales

2 (middle) and 25 (right). Scale k = 25 is 10-stable.
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Fig. 4. From left to right: Original image; The 10-stable Laplacian image; SIFT features

(green); 10-stable features. Red and blue dots are maxima and minima of L10.

Our critical net is a close relative of the two dimensional Morse-Smale (M-S)
graph [11,12], but is both simpler in concept and more reliable in computation.
The following three aspects distinguish the critical net from the M-S graph and
underscore the computational advantages of the former: (1) Critical nets are
well defined for any discrete or continuous function, while M-S graphs requires
the extra assumptions that all critical points are non-degenerate and there is no
saddle-saddle connection. (2) In critical nets we do not compute saddles, whose
identification is usually cumbersome in practice. Instead, saddles are implicitly
bounded by the loops formed via pairs of minima and maxima. (3) The M-
S graph connects critical points via integral paths by following the gradient
directions everywhere. In contrast, the critical net connects minima to maxima
by ascending paths, which require no gradient computation.

Because of these differences, the critical net is much simpler than the M-S
graph in both concept and computation. The price paid for these advantages is
that the critical net is no longer a planar graph. Nevertheless, the average degree
of the critical net is low for real images and resembles a planar graph in efficient
computation. Before we present an algorithm for computing the critical net, we
analyze its robustness and invariance. Because the critical net is computed on
the β-stable Laplacian function, it is insensitive to high frequency perturbations,
which are erased by the heavy isotropic smoothing. Moreover, the critical net
is invariant to any invertible affine deformation of the image domain and to
monotonic changes in the Laplacian function values.

Definition 7 (Affine and Monotonic Changes). Let α : x → Ax + b be
an affine transformation of the domain of image I where x,b ∈ R

2 and A is
a 2 × 2 nonsingular matrix. Let λ : R

2 → R be a function such that for each
(a, b) ∈ E , λ(a) > λ(b) if and only if f(a) > f(b) for the β-stable Laplacian f
of I. The composition g = λ ◦ α−1 : R

2 → R is called an affine and monotonic
change of the Laplacian f of I.

Theorem 1. Critical nets are invariant to affine and monotonic changes.

Proof. We show that graph Gf is isomorphic to Gg. First, Λf = Λg and Γf = Γg

since both α and λ preserve the extrema. Second, α−1(a) ≺ α−1(b) ⇔ a ≺ b⇔
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Fig. 5. Left: critical net. Red and blue dots are maxima and minima of L10, respectively,

and yellow edges are oriented from blue to red. Middle: Some of the parts overlayed on

the image (top) and by themselves (bottom). Eyes are captured by star structures, while

nose, mouth and other parts are captured by loops (saddle-like parts). Bottom right:

Image parts can be integrated to form objects of interest for high level recognition.

∃ 〈a = p1, p2, ..., pn = b〉 with f(p1) < · · · < f(pn), the latter of which holds if
and only if λ(p1) < · · · < λ(pn).

Algorithm 1 outlines a simple and practically fast algorithm that computes the
critical net by starting a breadth-first traversal from each minimum of f . The
program takes about 0.1 seconds in Matlab to compute the critical net (after
Laplacian computation) for an image of size 200× 300 on a regular laptop. The
complexity of the algorithm is O(λn) where n is the number of pixels and λ
is the average number of the maxima or minima that a single pixel can reach
through ascending paths. Although λ could be large under contrived geometrical
arrangements, we find that λ is small (λ < 2) in practice for real images. The
left image in Figure 5 shows a sample critical net.

Algorithm 1. Compute the critical net from G =< V , E > and f
for each minimum α of f do

Initialize a queue to be empty and clear all the labels.

Push α into the queue and mark α as visited.

while the queue is not empty do
Remove u, the head of the queue.

Report the minimum-maximum connection α ≺ u if u is the maximum.

Mark all the unvisited vertices v ∈ V with (u, v) ∈ E and f(v) > f(u) as visited

and push them into the queue.

end while
end for
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Fig. 6. The orientation and scaling for each feature point pair connected by an ascend-

ing path are uniquely determined through the direction and length of the line segments

connecting minima and maxima. Images from [21]

4 Image Matching

4.1 Dual SIFT Descriptor

The success of SIFT descriptors shows the validity of the ideas that underlie their
format: Regions around points of interest are divided into small patches, which
are then described by the histogram of the local gradient orientations. In this
way, both geometric structure and local statistics of image contrast are accounted
for. Also, in order to be rotation-invariant, the SIFT descriptor estimates the
principal direction of image gradient by looking for the peaks in the histogram
of the gradient directions. In cases where peaks are not prominent, multiple
directions are assigned in order to handle ambiguity. We incorporate these ideas
into the design of our new descriptor called dual SIFT descriptor, but make three
modifications to enhance discriminative power:

First, we describe arcs connecting minima and maxima by concatenating the
SIFT descriptors of the two extrema attached to each arc (minimum followed by
maximum). Therefore, the new descriptor ends up with a vector that is twice as
long as SIFT, and describes pairs of regions with opposite convexity patterns.
This concatenation scheme implicitly enforces that convex patterns can only
match convex patterns and the same holds for the concave ones.

Second, by relying on arcs, our descriptor reduces the sensitivity of rotation
and scale estimates to noise and modeling errors. To be more specific, given a pair
of minimum a and maximum b, the rotation angle for both a and b is determined
by the direction of the vector

−→
ab, which is simpler, longer, and more inherently

unique, compared to the SIFT direction. See Figure 6 for an illustration.
Third, SIFT achieves scale invariance by selecting scales at which the DoG

is locally an extremum in both scale and space. In contrast, we normalize our
descriptor relative to scale by using the distance between the arc endpoints a and
b, ‖−→ab‖. Thus, the support region for the descriptor shrinks when local features
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cluster together and expands when features are sparsely distributed. We compute
the scale of a and b with the sigmoid function: s(a, b) = α[1 + exp(−‖−→ab‖/s)]−1

where α and s are determined empirically and are not critical (see experiments).

4.2 Matching Criteria and Evaluation

Consider now two images I, J to be matched, and let Gf and Gg be two critical
nets of their β-stable Laplacians f and g of I and J respectively. Also, let
d(e) be the dual SIFT descriptor vector for the arc e. Transferring to arcs the
strategy typically used to match SIFT descriptors, arc eq ∈ Ef is matched to
arc e1 = arg mine∈Eg ‖d(eq) − d(e)‖ if mine2∈Eg\e1

‖d(eq)−d(e2)‖
‖d(eq)−d(e1)‖ > 1.5 – that

is, if the next-best match is at least 50% worse than the best one for eq. In our
experiments, we use repeatability and accuracy to evaluate the matching quality:

Repeatability =
# correct matches found in the image pair

min {# features in image 1,# features in image 2} (2)

Accuracy =
# correct matches found in the image pair
# total matches found in the image pair

.

Figure 7 shows a first comparison of β-stable features and SIFT features, which
illustrates anecdotally the repeatability and accuracy of β-stable features mar-
ried with the critical net. In the implementation, we use published software [22]
with the provided default parameters to produce the dual SIFT descriptors for
each arc of the critical net.

We also ran more systematic experiments on a published benchmark data
set [21]. This set is composed of 8 image groups, each containing 6 images warped
by known homographies relative to each other. We first do the matching using
a fixed value β = 10 for all the images, and find that features based on the
critical net already yield better performance than SIFT in both repeatability and
accuracy in most of the test image pairs. This is expected, because β-stability
promotes more repeatable features by construction.

However, the matching result can further be improved with an automatic
selection of β based on the matching of multiple critical nets. Let F (I) be the
set of β-stable Laplacian functions of the image I for, say, β ∈ {2, 4, 6, 8, 10}.
Given two input images I and J to match, we select the pair Gf̂ and Gĝ such that
(f̂ , ĝ) = arg minf∈F (I),g∈F (J) ρ(Gf ,Gg) where ρ is a criterion to be optimized. We
propose two different criteria based on the set Ef,g ⊆ Ef×Eg of matched arcs. The
match count ρ1(Gf ,Gg) = |Ef,g| and the normalized match count ρ2(Gf ,Gg) =

|Ef,g |
min{|Ef |,|Eg|} . Features obtained by optimizing the match count ρ1 over F (I) ×
F (J) might be preferable in the bag-of-features approach, because their greater
number leads to more significant statistics of appearance. In contrast, optimizing
the normalized match count ρ2 leads to sparser graphs of features that can be
connected to each other in a more reproducible way by the critical net, and are
thereby more in tune with the constellation approach, where geometry matters.
Both choices outperform a fixed value of β. Either way, matching based on critical
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Fig. 7. Top row: standard SIFT features and their matching. 164 and 117 features are

found respectively in the two images of the pair. Between these, 26 correct matches

(marked blue) are found (repeatability = 22.2%), plus 12 wrong ones (marked red;

accuracy = 68.43%). Middle row: the 10-stable features and the matching result with-

out using the critical net connections; that is, standard SIFT descriptors with fixed

scale and rotation are used for individual features. 56 and 41 10-stable feature points

are found in the image pair, among which 20 correct and 3 wrong matches are found

(repeatability = 48.8%; accuracy = 87.0%). Bottom row: same 10-stable features, but

with matching based on the critical net where dual SIFT descriptors are used, and

rotation and scaling of individual features are determined from the spatial distribution

of extrema. All matches are correct (accuracy = 100%) and there are 24 matched fea-

ture points (repeatability = 58.54%). If repeatability is computed from the number of

arcs instead of the number of points, then 29 correct matches are found among the 117

and 75 critical-net arcs in the image pair (repeatability = 38.7%). Although repeata-

bility based on the critical net vertices is higher, we calculate the repeatability based

on the critical net arcs in our experiments, in order to emphasize the importance of

connections. Beta-stable features married with the critical net win either way.



Critical Nets and Beta-Stable Features for Image Matching 673

Fig. 8. The first image in each of eight groups is compared to the remaining five

(40 image pairs). Images are downsized to 1/3 of original. Default parameters [22]

are used for the SIFT features. Critical-net matches use β = 10 first, and then β
selected automatically through ρ1 or ρ2. Matches that fall within 5 pixels from truth

are considered correct. Matching based on the critical net typically outperforms SIFT

in repeatability and accuracy, regardless of how β is chosen. Selection via ρ2 achieves

the highest repeatability in all cases. Selection via ρ1 produces the largest number of

features, comparable to that of the SIFT features.
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Fig. 9. Common structures of interest for 16 image pairs. In each image pair, we

compute and match critical nets. The convex hull (yellow) of the largest connected

component of each matched subnet is taken as the common structure across the two

images. Matched features that are disconnected from the largest connected subnet are

not shown here. Differences in viewpoint, lighting, and scene are often substantial. First

4 pairs from [21], last from [23], Notre Dame through Google Images, others from [7].



Critical Nets and Beta-Stable Features for Image Matching 675

nets and with automatic selection of β performs significantly better than SIFT
in repeatability and as well or better in accuracy. Results of the matching based
on a fixed β or on β selected through either ρ1 or ρ2 are shown in Figure 8.

5 Image Parts and Common Structures Across Images

The graph structure of the critical net contains richer information than what the
point representation or even the individual arcs are able to capture. Intuitively,
there are two types of structures that can serve for the definition of image parts:
star and loop. A star is a minimum of Lk(β) together with all its neighboring
maxima in the critical net, or a maximum together with all its neighboring min-
ima. A loop is an alternating sequence of minima and maxima that is cyclic.
Since saddles are implicitly bounded by loops of minima and maxima, we also
call loops ‘saddle-like’ image parts. These two types of image parts are comple-
mentary to each other and Figure 5 shows some examples.

Image parts can further be joined into structures of interest, in the spirit of
pictorial structures [10]. In these approaches, the configuration of image parts are
represented as deformable models whose parameters are learnt from examples.
In contrast, our approach determines the relations among image parts fully via
the critical net, one image at a time. In this sense, the critical net can also
be considered as a discriminative constellation model. Objects of interest can
be discovered automatically if these structural relations remain stable across
different images. Figure 9 shows some of the matching results together with the
extracted common structures of interest. These are defined as the convex hull in
each image of the largest connected component of matched subnets of the critical
nets constructed in each of the two images. These common structures are large
and reliable even in the presence of significant changes in scene or viewpoint.

6 Conclusion and Future Work

Beta-stable features are resilient to moderate changes of scale and high-frequency
image perturbations. Critical nets are simple graphs that reveal intrinsic connec-
tions between features. They are efficiently computed and are invariant to affine
geometric distortions and to monotonic changes of the Laplacian values. Critical
net arcs provide a more reliable basis for scale and rotation invariance than in-
dividual SIFT descriptors do. Stars or loops in the net can be used as parts for
recognition and retrieval, and are computed bottom-up from the images, with-
out supervision. The convex hulls of matched subnets across images of the same
scene are strikingly reliable indicators of common structures of interest. Again,
these are computed from pairs of images, and without supervision. The future
work entails the improvement of the feature descriptors so that the critical net
structure can handle extreme scale change, significant image deformation and
object appearance change. We plan to explore the applications of β-stable fea-
tures, critical nets, parts, and common structures of interest to video tracking,
stereo matching, image recognition, and image and video retrieval.
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Abstract. Many visual search and matching systems represent images

using sparse sets of “visual words”: descriptors that have been quantized

by assignment to the best-matching symbol in a discrete vocabulary. Er-

rors in this quantization procedure propagate throughout the rest of the

system, either harming performance or requiring correction using addi-

tional storage or processing. This paper aims to reduce these quantization

errors at source, by learning a projection from descriptor space to a new

Euclidean space in which standard clustering techniques are more likely

to assign matching descriptors to the same cluster, and non-matching

descriptors to different clusters.

To achieve this, we learn a non-linear transformation model by mini-

mizing a novel margin-based cost function, which aims to separate match-

ing descriptors from two classes of non-matching descriptors. Training

data is generated automatically by leveraging geometric consistency.

Scalable, stochastic gradient methods are used for the optimization.

For the case of particular object retrieval, we demonstrate impressive

gains in performance on a ground truth dataset: our learnt 32-D de-

scriptor without spatial re-ranking outperforms a baseline method using

128-D SIFT descriptors with spatial re-ranking.

1 Introduction

We are interested in the problem of efficiently retrieving occurrences of a par-
ticular object, selected by an image query, in a large unorganized set of images.
Typically, methods in particular object retrieval take a text-retrieval approach
to the problem in order to achieve fast retrieval at run time [1,2,3,4]. Interest
points and descriptors are found in every dataset image and the descriptors are
then clustered (usually by k-means or some variant) and quantized to give a
visual word representation for each image in the corpus.

Whilst being ostensibly similar to textual words, visual words as generated
through clustering suffer from a lot more noise and dropout compared to text.
This is caused partly by errors and failures in interest point detection and de-
scription, but also by quantization – descriptors that lie close to a Voronoi bound-
ary after clustering being assigned to the “wrong” visual word. Previous work
attempted to overcome quantization errors by compensating for mis-clustered
descriptors using additional information in the retrieval index, for example by
soft-assigning descriptors [5,6,7], or by performing more work at query time [1,8].

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 677–691, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Instead, the goal of this work is to reduce these errors at source, by con-
structing a projection from the raw descriptor space to a new Euclidean space
in which matching descriptors are more likely to land in the same cluster, and
non-matching descriptors are more likely to land in different clusters. By re-
moving the initial quantization errors, we keep the indexes small (for example,
they become less sparse when soft-assignment is used) and the query times fast.
Optionally, our method can also reduce the dimensionality of the projected de-
scriptors resulting in smaller storage requirements for features and increased
clustering and quantization speeds during pre-processing.

There have been several recent applications of distance learning to classifi-
cation problems [9,10,11,12,13,14,15], however these methods assume clean, la-
belled data indicating pairs of points that belong to the same class and pairs
that belong to different classes. In our task, even when the same object appears
in two images, the images typically have different backgrounds and there is a
non-trivial transformation between the views of a common object, so we can-
not simply classify images as being matching or non-matching. At the same
time the number of individual descriptors per image and the complexity of the
correspondence problem between them means that manually labelling the sets
of matching and non-matching descriptors would be unacceptably burdensome.
Therefore, in this work, we introduce a new method for generating training data
from a corpus of unlabelled images using standard techniques from multi-view
geometry. In contrast to Hua et al. [16], who also generated training pairs from
unlabelled image data via patches matched by the Photo Tourism system [17],
here we adopt a much cheaper pairwise image measure which doesn’t require us
to compute a global bundle adjustment over many image pairs. Thus, we can
train on patches of objects that appear in as few as two images.

Previous works in distance learning use two categories of point pairs for train-
ing: “matching” and “non-matching”, typically derived from known class labels.
In this work, we show that we can significantly improve performance by forming
two “non-matching” categories: random pairs of features; and those which are
easily confused by a baseline method. We adopt a margin-based cost function to
distinguish these three categories of points, and show that this gives improved
performance more than using non-margin-based methods [14,16].

To optimize this cost function, a fast, stochastic, online learning procedure
is used that permits the use of millions of training pairs. We will show that
non-linear projection methods, previously used for hand-written digit classifi-
cation [13], perform better than the linear projections previously applied to
computer vision distance learning [9,10,11,12].

The next section motivates the distance learning task by showing that retrieval
performance is significantly worse using standard quantized descriptors than
when a much slower, exhaustive search procedure is applied to the raw SIFT
descriptors – this indicates the potential gain achievable from better clustering.
After describing in Section 3 how we automatically generate our training data,
we set out our learning methods in Section 4 and then conclude with results and
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a discussion. Improved performance is demonstrated over SIFT descriptors [18]
on standard datasets with learnt descriptors as small as 24-D.

2 Datasets and the mAP Performance Gap

To learn and evaluate, we use two publicly available datasets with associated
ground truth: (i) the Oxford Buildings dataset [19]; and (ii) the Paris Buildings
dataset [20]. We show that a significant performance gap (the mAP-gap) is in-
curred by using quantized descriptors compared to using the original descriptors.
It is this gap that we aim to reduce by learning a descriptor projection.

2.1 Datasets and Performance Measure

Both the Oxford (5.1K images) and Paris (6.3K images) datasets were obtained
from Flickr by querying the associated text tags for famous landmarks, and both
have an associated ground truth for 55 standard queries: 5 queries for each of 11
landmarks in each city. To evaluate retrieval performance, the Average Precision
(AP) is computed as the area under the precision-recall curve for each query.
As in [3], an Average Precision score is computed for each of the 5 queries for
a landmark. These scores are averaged (over 55 query images in total for each
dataset) to obtain an overall mean Average Precision (mAP) score.

Affine-invariant Hessian regions [21] are computed for each image, giving ap-
proximately 3, 300 features per image (1024 × 768 pixels). Each affine region is
represented by a 128-D SIFT descriptor [18].

2.2 Performance Loss Due to Quantization

To assess the performance loss due to quantization, four retrieval systems (RS)
are compared:

The baseline retrieval system (RS1): In this system each image is represented
as a “bag of visual words”. All image descriptors are clustered using the ap-
proximate k-means algorithm [3] into 500K visual words. At indexing and query
time each descriptor is associated with its (approximate) nearest cluster cen-
tre to form a visual word, and a retrieval ranking score is obtained using tf-idf
weighting. No spatial verification is performed. Note that each dataset has its
own vocabulary.

Spatial re-ranking to depth 200 (RS2): For this system a spatial verification
procedure [3] is adopted, estimating an affine homography from single image
correspondences between the query image and each target image. The top 200
images returned from RS1 are re-ranked using the number of inliers found be-
tween the query and target images under the computed homography.

Spatial verification to full depth (RS3): The same method is used as in RS2, but
here all dataset images are ranked using the number of inliers to the computed
homography.
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Table 1. The mAP performance gap between raw SIFT descriptors and
visual words on the Oxford and Paris datasets. In the spatial cases, an affine

homography is computed using RANSAC and the data is re-ranked by the number

of inliers. Using raw SIFT descriptors coupled with Lowe’s second nearest neighbor

test [22] gives a 14% retrieval boost over the baseline method for Oxford. (i)-(iii) all

use a K = 500, 000 vocabulary trained on their respective datasets.

Item Method Oxford mAP Paris mAP

i. RS1: Baseline (visual words, no spatial) 0.613±0.011 0.643±0.002

ii. RS2: Spatial (visual words, depth=200) 0.647±0.011 0.655±0.002

iii. RS3: Spatial (visual words, depth=FULL) 0.653±0.012 0.663±0.002

iv. RS4: Spatial (raw descriptors, depth=FULL) 0.755 0.672

Raw SIFT descriptors with spatial verification (RS4): Putative matches on the
raw SIFT descriptors (no quantization) are found between the query and every
image in the dataset using Lowe’s second nearest neighbour test [18] (threshold
= 0.8). Spatial verification as in RS3 is applied to the set of putative matches.

It should be noted that the methods RS3 and RS4 exhaustively match doc-
ument pairs and so are infeasibly slow for real-time, large scale retrieval. RS3
is ∼10 times slower and RS4 is ∼100 times slower than RS2 even on the 5.1K
Oxford dataset. These run-time gaps increase linearly for larger datasets.

The results for all four methods are shown in table 1. For methods based
on visual words, the mean and standard deviation over 3 runs of k-means with
different initializations are shown. Going from baseline (i) to baseline plus spa-
tial (ii) gives moderate improvements to both datasets, but reranking signifi-
cantly more documents gives little appreciable further gain. In contrast, using
the raw SIFT descriptors gives a large boost in retrieval performance for both
datasets, demonstrating that the mAP-gap is principally due to quantization
errors. This implies that a lack of visual word matches contributes substantially
more to missed retrievals than reranking too few documents at query time. The
raw-descriptor matching procedure will be used to generate point pairs for our
learning algorithm, so Table 1(iv) gives a rough upper bound to the retrieval im-
provement we can hope to achieve using any learning algorithm based on those
training inputs.

3 Automatic Training Data Generation

In this section, we describe our method to automatically generate training data
for the descriptor projection learning procedure. The training data is generated
by pair-wise image matching, a much cheaper alternative to the full multi-view
reconstruction used in [16,17], allowing us to generate a large number (3M+) of
training pairs. In addition to positive (matched) examples, we separately collect
“hard” and “easy” negative examples and show later that making this distinction
can significantly improve the learnt projections.

We proceed as follows: (i) An image pair is chosen at random from the dataset;
(ii) A set of putative matches is computed between the image pair. Each putative



Descriptor Learning for Efficient Retrieval 681

match consists of a pair of elliptical features, one in each image, that pass Lowe’s
second nearest neighbour ratio test [18] on their SIFT descriptors; (iii) RANSAC
is used to estimate an affine transform between the images together with a
number of inliers consistent with that transform. Point pairs are only taken
from image matches with greater than 20 verified inliers. The ratio test ensures
that putative matches are distinctive for that particular pair of images. This
procedure generates three sets of point pairs, shown in Figure 1, that we treat
distinctly in the learning algorithm:

1. Positives: These are the point pairs found as inliers by RANSAC.
2. Nearest neighbour negatives (nnN): These are pairs marked as out-

liers by RANSAC—they are generally close in descriptor space as they were
found to be descriptor-space nearest neighbors between the two images, but
are spatially inconsistent with the best-fitting affine transformation found
between the images.

3. Random negatives (ranN): These are pairs which are not descriptor-
space nearest neighbours, i.e. random sets of features generally far apart in
the original descriptor space.

A histogram of SIFT distances for the three different sets of point pairs on the
Oxford dataset is shown in Figure 2(b). As expected, the original SIFT descrip-
tor easily separates the random negatives from the positive and NN negative
point pairs, but strongly confuses the positives and NN negatives. Section 5 will
show that the best retrieval performance arises when the positive and NN nega-
tive pairs are separated whilst simultaneously keeping the random negative pairs
distant. It is important to note that, due to the potential for repeated structure
and the limitations of the spatial matching method (only affine planar homogra-
phies are considered), some of the nnN point pairs might be incorrectly labelled
positives – this can lead to significant noise in the training data. We collect 3M
training pairs from the Oxford dataset split equally into positive, NN negative
and random negative pairs, and we also have a separate set of 300K pairs used
as a validation set to determine regularization parameters.

4 Learning the Descriptor Projection Function

Our objective here is to improve on a baseline distance measure that partially
confuses some pairs of points that should be kept apart (the nearest neighbor
negatives pairs) with those that should be matched (the positive pairs), as shown
in figure 2(b). There is a danger in learning a projection using only these training
points that are confused in the original descriptor space: although we might learn
a function to bring these points closer together, the projection might (especially
if it is non-linear) “draw in” other points so that a particular pair of points are
no longer nearest neighbours. Being a nearest neighbour explicitly depends on
all other points in the space, so great care must be exercised when ignoring other
points.

Here, we aim to overcome these problems by incorporating the distances be-
tween a large set of random point pairs directly into our cost function. These
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(a) (b) (c)

Fig. 1. Gathering training point pairs. Three groups of point pairs are shown: (a)

inliers to an affine homography found using RANSAC (positives); (b) outliers which

are nevertheless nearest neighbors in SIFT space (nnN); and (c) random pairs of points

which are usually distant in descriptor space (ranN).

(a)

Positive
NN negative
Random negative

0 100 200 300 400 500 600 700 800
(b)

Fig. 2. Multiple margins. (a) Schematic of the multiple margin loss functions. This

encourages the ordering on point pairs to be satisfied as per Equation 1. (b) Histograms

of the raw 128-D SIFT distances for the three types of point pairs.

are precisely the pairs which can “crowd in” and tend to reduce the precision
of clusters during vocabulary building if they are not explicitly considered. This
effect has previously been ignored. It will be shown that, if this third set (the
random negatives) is not explicitly considered, then a learnt mapping can reduce
the confusion between positive and NN negative training pairs, but this simul-
taneously reduces the distance between random negative point pairs, leading to
increased confusion. The solution we propose here is to add an additional loss
function to prevent this confusion (and we quantify its benefit in Section 5).

More formally, given a set of positive training pairs P, NN negative training
pairs nnN, and random negatives ranN, our aim is to learn a projection function
T : R

D → R
M , where D is the dimension of the original descriptor space (e.g.

D = 128 for SIFT) and M is the dimension of the projected descriptor, such
that:
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d(T (pi), T (pj)) < d(T (pk), T (pl)) and d(T (pi), T (pj)) ! d(T (pm), T (pn)) (1)

for pi, pj ∈ P, pk, pl ∈ nnN and pm, pn ∈ ranN.
In practice, it is not possible to fully separate these pairwise distances because

of noise in the training data and restricted model complexity, so instead a margin
based approach will be used which encourages the distance between the three
classes of point pairs to separate without enforcing the distance ordering as a
hard constraint. The loss function for this situation is illustrated in Figure 2(a).
The first margin aims to separate the positive and NN negative point pairs
confused by SIFT in the original space. The second margin applies a force to
the random negatives to keep them distant from the positive pairs – ideally
the overlap in histograms between the positive and random negative point pairs
should be small. This motivates learning the projection function by minimizing
the cost function:

f(λ,W ) =
∑

x,y∈P

L(b1 − dW (x, y)
)

+
∑

x,y∈nnN

L(dW (x, y) − b1
)

+
∑

x,y∈ranN

L(dW (x, y) − b2
)

+
λ

2
‖W‖2 (2)

where L(z) = log(1+exp(−z)) is the logistic-loss, a smooth approximation to the
hinge loss which is more suitable for learning with gradient-based optimization,
dW (x, y) = ‖T (x;W ) − T (y;W )‖2 is the standard Euclidean distance between
the projected points, and W are the parameters of the projection function T .

The first three terms in (2) give the loss for the three different margins used,
and the fourth is a regularization term, controlled by λ, which is used to limit the
model complexity and stop over-fitting on the training data. b1 and b2 are the
positions of the left-hand and right-hand margin biases in projected distance
space. f(λ,W ) can be differentiated w.r.t. W by repeated application of the
chain rule provided T is also differentiable. The absolute values of b1 and b2 are
unimportant due to the scaling freedom in the projection functions – it is the
ratio b1/b2 which is important.

4.1 Projection Function Models

We consider two different forms for the projection function T : a linear model
of the form Wx; and a non-linear form for T based on a deep belief network
(DBN). For the linear model, the projection function T is parameterized as
T (x;W ) = Wx, with derivative ∂Ti

∂Wij
= xj , where W is a real valued D′ × 128

matrix and so projects x linearly to a D′-dimensional space. This is equivalent
to learning a Mahalanobis matrix M = W
W , therefore the linear model is
equivalent in power to that used in [9,10,16]. Because W is real valued, M is
positive semi-definite, and by learning W directly one can avoid the complica-
tions of adding semi-definiteness constraints into the learning routine. Though
the projection function T is linear, the cost function (2) is not convex in W due
to the square roots in d(·). However, previous work [13,23] has shown that, in
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practice, optimizing this cost over W does not lead to serious problems with
poor local minima.

For the non-linear model the projection function is based on a DBN [24] using
a series of restricted Boltzmann machines (RBM). In this case W contains the
projection parameters and biases for all the layers of the DBN. For one hidden
layer, the projection function is of the form:

T (x;W1,W2,W3, h0, h1, h2) =W3σ(W2σ(W1σ(x+ h0) + h1) + h2)

where σ is an element-wise logistic sigmoid function, Wi are matrices and hi

are column vectors (the hi act as per-layer biases for the transformation). For
a DBN projecting a 128-D SIFT descriptor to a 32-D descriptor with a single
hidden layer of size 384-D, the number of parameters is = 128×384+384×384+
384×32+128+384+384 = 209, 792. We adopt a DBN architecture because we
expect non-linearities to allow the distance function to adapt itself depending
on the statistics of the local neighborhood of the features being considered,
and so improve the separation in distances between matching and non-matching
point pairs. While a kernel method might be thought of as a natural alternative
mechanism to introduce non-linearity, this would rule out the direct mapping of
descriptors that we seek. DBNs have previously proven successful for distance
learning in simple vision tasks, such as handwritten digit classification [13].

One potential problem with DBNs is that again (2) is not a convex function
of the parameters W . Nevertheless, with a large amount of training data and
good stochastic learning routines (see below), we find solutions which empirically
seem to generalize well to unseen data.

4.2 Optimization

The task is to minimize the cost function, f(λ,W ), w.r.t. to the parameterized
weights, W . In this work we use stochastic gradient descent (SGD) methods
to optimize the loss function, for two main reasons. First, stochastic gradient
methods scale linearly with the number of training points and have constant
memory requirements. This makes them attractive in online learning or when
the amount of training data is very large as in our case—here we use 3M train-
ing pairs, though more could easily be generated. Second, although stochastic
gradient methods may require a large number of steps to converge, they often
learn models which generalize well to unseen data [25].

SGD incrementally minimizes a cost function f by examining just a few data
points at a time. If f(X,W ) is the function to minimize, and X is the data, the
SGD update is:

Wt+1 =Wt −Θt∇wf(Xm..n,Wt)

The parameter vector W is updated according to the negative gradient of the
cost computed on just a few examples Xm..n. Θt is a learning rate which should
decrease over time to ensure convergence. Here, we use “mini-batches” of 200
point pairs (with labels positive, NN negative, and random negative) per pa-
rameter update step. In each mini-batch there are about equal numbers of the
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three types of point pairs. In practice SGD can converge slowly so, to speed up
convergence, we use a pseudo second order method known as Stochastic Meta
Descent (SMD) [26]. SMD uses a per-parameter learning rate based on an ap-
proximation of the local curvature. One difference from the method used in [26]
is that here, we estimate the Hessian-vector product using finite-differences:
Hv ≈ (∇f(Wt + εv) −∇f(Wt))/ε, rather than using an analytical approach.

4.3 DBN Implementation Details

The weights in the model are initialized using a generative procedure that pro-
ceeds layer-by-layer, optimizing weights using contrastive divergence [24]. This
performs an initialization that empirically speeds up convergence of the subse-
quent discriminative training. The generative training is run layer-by-layer for
one pass of the training data and takes around 30 minutes on a modern processor.

After this initialization, W is learnt discriminatively by optimizing (2): each
point pair of a mini-batch is pushed through the network to give the transformed
descriptors. The differentiable cost function (2) is then used to compute the
gradient on the output layer based on all the points in the minibatch. Back-
propagation is used to compute the gradient for the other layers in the network.

Once the gradient has been computed for all the DBN weights and hidden
biases, the parameters W are updated using SMD. This is done once per mini-
batch of points for a number of iterations over the dataset. For a DBN with
one hidden layer of size 384-D projecting to 32-D, training one iteration of 3M
point pairs takes just under 35 minutes on a single core of a modern processor.
Training is performed for 50 iterations over the training data – after this we see
rapidly diminishing returns.

Table 2. Comparison of several different retrieval methods. The results for the

proposed methods are shown under the “Learnt” descriptor. The results for the baseline

and raw-matching methods are duplicated from table 1 for completeness. DNF1: RS4

is too slow to be run on this dataset.

Descriptor Notes Descriptor Dataset mAP

size RS1 RS2 RS4

(i) SIFT 128 Oxford 0.613 0.647 0.755

(ii) Learnt Linear 32 Oxford 0.599 0.634

(iii) Learnt Linear 64 Oxford 0.636 0.665

(iv) Learnt Non-linear 24 Oxford 0.606 0.649

(v) Learnt Non-linear 32 Oxford 0.644 0.681

(vi) Learnt Non-linear 64 Oxford 0.662 0.707

(vii) SIFT 128 Paris 0.655 0.669 0.683

(viii) Learnt Non-linear 32 Paris 0.669 0.680

(ix) Learnt Non-linear 64 Paris 0.678 0.689

(x) SIFT 128 Oxford-100K 0.490 0.541 DNF1

(xi) Learnt Non-linear 32 Oxford-100K 0.524 0.592

(xii) Learnt Non-linear 64 Oxford-100K 0.541 0.615
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5 Results

Our objective is to reduce the mAP-gap, and so our principal evaluation measure
will be the mAP of the retrieval system. However, as mAP is computed after
many steps of processing (and also involves a weighting function, tf-idf, in two of
the retrieval systems), in some cases we also show a simpler measure which is the
cluster true positive rate (CTPR): this is simply the proportion of true positive
validation pairs which cluster to the same visual word – for a fixed vocabulary
size it is a measure of the recall of each word, and is closer to the informal goal
stated in the introduction. In practice the two measures are closely correlated.
In the following we learn the projection function on the Oxford dataset. Where
results are stated with error bars, these are computed as a standard deviation
over 3 vocabularies learnt from different initializations of the k-means clustering,
with k = 500, 000. For the baseline system RS1, CTPR is 0.336 ± 0.005. The
regularization parameter, λ, is optimized on the validation set. Other than the
generalization experiments, all results are produced on the Oxford dataset.

(a) (b)

Fig. 3. Adjusting the margin ratio. The (a) CTPR, and (b) mAP retrieval per-

formance as a function of the margin ratio, b2/b1 (see Equation 2). The hidden layer

dimension and final dimension are 384 and 32 respectively. “+L” indicates that a learnt

model is used.

(a) (b) (c)

Fig. 4. Histograms of pair distances. The distance histograms of validation pairs

after training for (a) b2/b1 = 1.0 (b) b2/b1 = 1.6 (c) b2/b1 = 2.5. The histograms show

the positive, NN negative and random negative point pairs.
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(a) (b)

Fig. 5. (a) Linear model: mAP performance as the final dimension D′ is varied. (b)

Non-linear model: mAP performance as the hidden layer dimension is varied. The

output dimension is fixed to 32.

Choosing the margin ratio: Figure 3 examines the retrieval performance as a
function of the margin ratio b2/b1 for a non-linear model with one hidden layer
of size 384 projecting down to 32-D. This ratio controls the extent to which the
random negative pairs should be separated from the positive pairs. At b2/b1 =
1.0, both margins are the same, which mimics previous methods that use just
two types of point pairs: if the ratio is set too low, the random negative pairs
start to be clustered with the positive pairs; if it is set too high then the learning
algorithm focuses all its attention on separating the random negatives and isn’t
able to separate the positive and NN negative pairs. Distance histograms for
different margin ratios are shown in Figure 4. As the ratio is increased, there is
a peak in performance between 1.6 and 1.7. In all subsequent experiments, this
ratio is set to 1.6 with b1 = 20.0. These results clearly demonstrate the value of
considering both sets of negative point pairs.

Linear model: Results for the linear model are given in Table 2 and are shown in
Figure 5(a). Performance increases only up to 64-D and then plateaus. At 64-D
the performance without spatial re-ranking is 0.636± 0.002, an improvement of
3.4% over RS1. With spatial re-ranking the mAP is 0.665± 0.003, an improve-
ment of 1.8% over RS2. Therefore, a learned linear projection leads to a slight
but significant performance improvement, and we can reduce the dimensionality
of the original descriptors by using this linear projection with no degradation in
performance.

We compare to the linear discriminant method of Hua et al. [16], using a local
implementation of their algorithm on our data. For this method, we used the
ranN pairs as the negatives for training (performance was worse when nnN pairs
were used as the negatives). Using 1M positive and 1M random negative pairs,
reducing the output dimension to 32-D, gives a performance of 0.585 without
spatial re-ranking; and 0.625 with spatial re-ranking. This is slightly worse than
our linear results which gives an mAP of 0.600 and 0.634 respectively. The
difference in performance can be explained by our use of a different margin-based
cost function and the consideration of both the nnN and ranN point pairs.
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(a) (b)

Fig. 6. Non-linear model: variation with output dimension for (a) CTPR and

(b) mAP performance. The hidden layer dimension is fixed at 384. (a) the CTPR rate

increases as the output dimension increases to 48, then flattens. Similarly, (b) shows

that at D = 32 the projected descriptors without spatial re-ranking (system RS1)

achieve performance equal to the original descriptors with spatial re-ranking (system

RS2). Performance continues to increase to D = 64 and then plateaus. Spatial reranking

on the projected descriptors beats RS2 by 5.9% (0.647 to 0.706 mAP).

Non-linear model: Figure 5(b) shows the results of adjusting the dimension of
the hidden layer. The hidden layer dimension only affects the time taken to train
the model and project the features into the new space and doesn’t affect storage
requirements or clustering/assignment speed. From the figure, one can see that
retrieval performance increases up to around 384-D before leveling off, and for
subsequent experiments we fix the hidden layer dimension at 384-D.

Figure 6 and Table 2 show the effect on performance of adjusting the output
dimension of the projection function. The learnt descriptor attains the same
performance as SIFT at just over 24-D, a saving in storage of over 5 times. At
32-D, but without spatial re-ranking, the learnt descriptor performs as well as
using SIFT with spatial re-ranking (RS2). After 32-D, the performance gains
start to level off, but still improve up to 64-D. Using a 64-D descriptor with
spatial re-ranking beats RS2 by 5.9% (0.647 to 0.706 mAP). Note also that the
non-linear model greatly improves performance over the linear model (0.665 to
0.706 mAP). The non-linear model substantially closes the mAP-gap and brings
the quantized visual word method much closer in performance to the raw SIFT
method. This is achieved with no increase in query times or index size.

Generalization: Here we examine the generalization of the learnt descriptor to
the held-out Paris dataset. Spatial re-ranking on the raw SIFT descriptors for
Paris gave a much lower performance gain than for Oxford, so there is less
that our method can do. Nevertheless, we still increase performance over the
baseline method. Our 64-D descriptor, learnt on Oxford, gives a score without
spatial re-ranking of 0.678 (compared to 0.655) and with spatial re-ranking gives
0.689 (compared to 0.669), slightly exceeding the performance from using the
raw descriptors of 0.683. This is principally due to the many non-planar queries
present in the Paris dataset which is challenging for the RS4 method.
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26 37 48

38 56 61

49 64 114

(a) (b) (c) (d)

Fig. 7. Qualitative examples on the Paris dataset. Demonstrating the improve-

ments in matching using our quantized learnt descriptor. The number of inliers found

are listed beneath each image pair. The four columns are: (a) the original image pair;

(b) matches found by the baseline visual words; (c) matches found by our learnt visual

words; (d) matches found by the raw SIFT matching method.

In figure 7, we qualitatively examine the spatially verified inliers between
some image pairs for the baseline method, our quantized learnt method and the
raw descriptor method. The quantized learnt descriptor gives more inliers to the
computed homography and closes the gap on the raw matching method.

Table 2(x)-(xii) gives retrieval results for Oxford combined with a large set
of 100K images [3]. The additional images do not contain the landmarks and
so act as “distractors” for retrieval. Using the quantized learnt descriptor with
D=64 and spatial re-ranking gives a substantial boost in performance from 0.541
to 0.615. Again this illustrates that the learnt projection function is able to
generalize to other datasets, whilst still boosting retrieval performance.

6 Conclusion

We have shown that, by transforming descriptors prior to clustering, we can
boost performance considerably over a baseline retrieval method and can pro-
duce results using visual words alone that are as good as the baseline method
combined with spatial re-ranking. We have considerably closed the performance
gap between the raw SIFT matching method and the much faster quantized re-
trieval method for both datasets considered here. This performance boost comes
at zero runtime cost (though some offline cost) and with reduced data storage.

Since the descriptors are transformed before quantization, they can easily be
used in conjunction with other recent works that have improved performance
over a raw bag of visual words approach, such as [27,28].
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We have illustrated the method for SIFT and for two types of projection
functions, but clearly the framework of automatically generating training data
and learning the projection function through optimization of (2) could be applied
to other descriptors, e.g. the DAISY descriptor of [29] or even directly to image
patches.
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Abstract. We present an approach to multiscale image analysis. It

hinges on an operative definition of texture that involves a “small re-

gion”, where some (unknown) statistic is aggregated, and a “large region”

within which it is stationary. At each point, multiple small and large re-

gions co-exist at multiple scales, as image structures are pooled by the

scaling and quantization process to form “textures” and then transitions

between textures define again “structures.” We present a technique to

learn and agglomerate sparse bases at multiple scales. To do so efficiently,

we propose an analysis of cluster statistics after a clustering step is per-

formed, and a new clustering method with linear-time performance. In

both cases, we can infer all the “small” and “large” regions at multiple

scale in one shot.

1 Introduction

Textures represent an important component of image analysis, which in turn is
useful to perform visual decision tasks – such as detection, localization, recogni-
tion and categorization – efficiently by minimizing decision-time complexity [12].
The goal of image analysis1 is to compute statistics (deterministic functions of
the data) that are at the same time insensitive to nuisance factors (e.g., view-
point, illumination, occlusions, quantization) and useful to the task (i.e., in the
context of visual decision tasks, discriminative). Such statistics are often called
features, or structures. Such structures have to satisfy a number of properties to
be useful, such as structural stability, commutativity, and proper sampling [12].
The dual of such structures, in a sense made precise by Theorem 5 of [12], are
textures, or more precisely stochastic textures, defined by spatial stationarity of
some (a-priori unknown) statistics. Regular textures, on the other hand, are de-
fined by cyclo-stationarity (or stationarity with respect to a discrete group) of
some (a-priori unknown) structure.

1 Image analysis refers to the process of “breaking down the image into pieces,” which

is prima facie un-necessary and even detrimental for data storage and transmission

tasks ([11], p. 88), but instead plays a critical role in visual decision tasks [12].

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 692–705, 2010.
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Whether a region of an image is classified as texture or structure depends on
scale.2 A region can be a structure at some scale, a texture at a coarser scale,
then again a structure at yet a coarser scale and so on (Fig. 1), reflecting the lack
of causality in two-dimensional scale-space [9]. Therefore, we do not seek for a
single transition from structure to texture [17,18], but instead seek to represent
the entire phase-space of transitions at each location in an image.

To address these issues, in Sect. 2 we introduce a definition of texture that
guides the development of efficient schemes for multiscale coding in Sect. 3, where
we introduce an algorithm to compute statistics based on three fast clustering
algorithms reviewed in Sect. 4.1 and 4.3, and a new variant introduced in Sect.
4.2. These clustering algorithms allow us to perform multiscale analysis in one
shot (Sect. 5). The analysis can also be done directly in the clustering process
with linear complexity (Sect. 5.2).

Our characterization of textures uses three ingredients: A statistic, ψ, the
minimal domain where such a statistic is pooled, ω, and the maximal domain
(in the sense of inclusion) where it is stationary, Ω. Therefore, we focus on
defining suitable classes of statistics, and on designing efficient algorithms to
partition the image into multiple regions. This is done through efficient tech-
niques to create sparse bases (dictionaries), using clustering and dimensionality
reduction in high-dimensional non-Euclidean spaces. In particular, we introduce
“kNN-Quick Shift,” a generalization of [16] modified to handle data distributed
in high-dimensional spaces, and to allow different variables, such as scale, as
“gap” measures. This enables simultaneous estimation of “small” ω and “big” Ω
regions can be performed by alternating Min-Max entropy segmentation in lin-
ear time. Our entropy measure exhibits a “staircase-like” behaviour, with each
step determining the small regions ω at the lower edge, and the big regions at
the upper edge. Note that we achieve this in one-shot, for all scales, without
having to match patches or searching for periodic patterns [6].

2 Texture/Structure Multiple Transitions

Image structures are regions of the image that are salient (i.e., critical points
of some functional, Def. 4 of [12]), repeatable (i.e., the functional is structurally
stable, Def. 9 of [12]), and insensitive to nuisance factors (i.e., the functional is
invariant to group nuisances and commutes with respect to non-invertible ones,
Def. 6 of [12]). For zero-dimensional structures (attributed points, or frames), it
has been shown that the attributed Reeb tree (ART) is a complete invariant with
respect to viewpoint and contrast away from occlusions [13]. However, occlusions
of viewpoint and illumination (cast shadows) yield one-dimensional structures,
such as edges and ridges. The main technical and conceptual problem in encoding
2 Note that scaling alone is not what is critical here. Scaling is a group, so one can

always represent any orbit with a single canonical element. What is critical is the

composition of scaling with quantization, which makes for a semi-group. Without

quantization we would not need a notion of stochastic texture, since any region

would reveal some structure at a sufficiently small scale.
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them is that such critical structures (extrema and discontinuities) are not defined
in a digital image. For this reason, we must first define a notion of “discrete
continuity,” lest every pixel boundary is a structure. This is achieved by designing
a detector, usually an operator defined on a scalable domain, and searching for
its extrema at each location in the image, at each scale. In principle one would
have to store the response of such detectors at all possible scales. In practice,
owing to the statistics of natural images, we can expect the detector functional
to have isolated critical loci that can be stored in lieu of the entire scale-space.
In between critical scales, structures become part of aggregate statistics that we
call textures.

To make this more precise, we define a texture as a regionΩ ⊂ D within which
some image statistic ψ, aggregated on a subset ω ⊂ Ω, is spatially stationary.3

Thus a texture is defined by two (unknown) regions, small ω and big Ω, an
(unknown) statistic ψω(I) .= ψ({I(y), y ∈ ω}), under the following conditions of
stationarity and non-triviality:

ψω(I(x + v)) = ψω(I(x)), ∀ v | x ∈ ω ⇒ x+ v ∈ Ω (1)
Ω′\Ω �= ∅ ⇒ ψΩ′(I) �= ψΩ(I). (2)

The small region ω, that defines the intrinsic scale s = |ω| (the area of ω), is mini-
mal in the sense of inclusion4. Note that, by definition, ψω(I) = ψΩ(I). A texture
segmentation is thus defined, for every quantization scale s, as the solution of the
following optimization with respect to the unknowns {Ωi}N

i=1, {ωi}N
i=1, {ψi}N

i=1

min
N(s)∑
i=1

∫
Ωi

d(ψωi(I(x)), ψi)dx+ Γ (Ωi, ωi) (3)

where Γ denotes a regularization functional and d denotes a distance, for instance
	2, or a nonparametric divergence functional [2,8].

In Sect. 3 we discuss the role of the statistics ψ. In Sect. 4, we discuss about
some clustering algorithms, introducing along the way a novel extension of a
clustering algorithm that is suited for high-dimensional spaces. Finally we build
on these clustering algorithms to derive, in Sect. 5, two methods to automatically
compute the set of all regions {ωi} and {Ωi}.

3 Multiscale Feature Selection and Dictionary
Agglomeration

The difficulty in instantiating the definition of texture into an algorithm for
image analysis is that neither the regions ωi, Ωi, nor the statistics ψω are known
3 Constant-color regions are a particular (trivial) case of texture, where the statistic

ψ(I) = I is pooled on the pixel region ω = {x}. It is an unfortunate semantic

coincidence that such regions are sometimes colloquially referred to as “textureless.”
4 {I(x), x ∈ ω} is sometimes called a texton [7], or texture generator. This definition

applies to both “periodic” or “stochastic” textures. Regions with homogeneous color

or gray-level are a particular case whereby ω is a pixel, and do not need separate

treatment.
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Fig. 1. Left: multiple Texture/Structure Transitions: The same point can be inter-

preted as either structure or texture depending on scale. Starting from a small red

region ω, the green region Ω determines the domain where some statistic computed in

ω is stationary (relative some group, which includes cyclo-stationarity when the group

is discrete).

a-priori. It is therefore common to define ψ in terms of a class of functions such
as a Gabor wavelets or other bases learned directly from the image under sparsity
constraints [1]. One can even consider just samples of the image in a window
of varying size around each pixel [15]. Whatever representation one chooses for
a local neighborhood of the image at a given scale, the fact that all points
have to be represented at all scales causes an explosion of complexity. This can
be mitigated by clustering the dictionary elements into a codebook, with each
dictionary element encoded with an index and representing a mode in the data
distribution. Each image region is then then represented by an histogram of these
indices. In principle, one could take these to be our statistics ψ, and represent
structures as locations where the label histogram is surrounded by different ones,
and textures as locations where the label histogram is surrounded by similar ones.

However, the dictionaries thus learned are usually very large and cumbersome
to work with. Therefore, one can reduce the dimensionality of the representation
by reducing the number of atoms in the dictionary. However, in order to achieve
the insensitivity to nuisance factors described in the previous section, cluster-
ing cannot just be performed with respect to the standard 	2 distance as the
atoms may undergo deformations. Clustering with an histogram-based distance
is also ill-advised as the distributions of different classes have significant overlap.
Kullback-Leibler’s divergence naturally adapts to the supports and the modes of
the distributions, and is therefore a natural choice for divergence measure. The
feature space is then chosen so as to discount nuisance variability.

We propose clustering in three different feature spaces to agglomerate patches
modulo three different types of transformation (Fig. 2): First, we consider ψω

.=
{I(x, y), x, y}(x,y)∈ω to get rid of small translations. In this feature space one
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Fig. 2. (left) Clustering with a ”bag-of-features” dictionary of 256 image patches.

Patches identical modulo small feature / geometry deformations are now agglomer-

ated to one exemplar texture patch. (right) Clustering on sparse representation of

images with uncertainty on value and position: the three columns show the different

feature spaces, and red arrow shows the direction along which neighbors are preferably

searched for. The distance on these feature spaces is the symmetric Kullback-Leibler

divergence.

pays a small price to align two similar I(x, y) as long as their (x, y) distance is
small. Similarly, polar coordinates {I(x, y), r, ε.θ}, with a small weight ε on the
angle, are insensitive to small rotations and with a small weight on the radius
{I(x, y), ε.r, θ} they are insensitive small scalings (Fig. 2).

Now, the last step is the most critical, for it involves clustering in high-
dimensional and highly non-Euclidean spaces (Fig. 2). We will describe our
approach in the next two sections.

4 Three Fast Clustering Algorithms

In this section we use two existing clustering algorithm, Quick Shift (QS) and
Statistical Region Merging (SRM), and introduce a novel one, “kNN Quick
Shift,” that adapts QS to high-dimensional data.5 The purpose is to show that
the analysis that follows is not dependent on the particular algorithm to arrive
at a clustering tree.

4.1 Mode Seeking with Quick Shift

Quick Shift [16] is a modification of Medoid-Shift that retains its benefit of
operating on non-Euclidean spaces and still converges in one iteration.

yi(1) = arg min
j:P (j)>P (i)

Dij (4)

τ(i) = Diyi(1) (5)

5 Those two families of algorithms were also recently combined in [4].
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Its main advantage is simplicity and speed. One clustering with Quick Shift
gives a full segmentation tree as all nodes are connected to each other with a
different strength τ called the gap. Thresholding this gap with different values
thus yields different segmentations. The most common use of these clustering
algorithms is with the feature space {I(x), x, y}, yielding compact regions of
uniform luminance or color usually called superpixels. In practice, the full matrix
Dij does not needed to be built, as the feature space often has a geometric
component, so physical neighbors are also neighbors in feature space. This limits
the search to a small local window. Even if no geometric prior is available,
one can still use a window of a certain size h around each datum. When the
data distribution is high-dimensional and sparsely distributed, a large h has to
be selected, leading to oversmoothing the estimate of the probability density
function (PDF), and to a computationally intensive search. In the next section
we introduce a modification of this algorithm designed to mitigate this problem,
similarly to what [5] has done for Mean Shift.

4.2 kNN Quick Shift

To extend QS to high-dimensional data spaces we replace the Parzen density
estimator with a balloon estimator. The analysis of [14] shows that, although
baloon estimators underperform Parzen in one dimension, they improve as the
dimension of the space increases. We choose the neighborhood of possible con-
nections to be the k-nearest neighbors Nk(i) of each point.

yi(1) = arg min
j:j∈Nk(i)&Pj>Pi

Dij (6)

The resulting kNN Quick Shift is made very fast by using approximate nearest
neighbors with (1 + ε) tolerance. In practice, this works well if k is low, so
we implemented a recursive kNN-Quick Shift algorithm: It first builds a tree
connecting pixel values, then unconnected superpixels are connected until every
node is linked.

When clustering pixels in an image, Dij is simply the Euclidean distance
between two pixel features. When clustering patches for agglomeration of bases
modulo some deformations, Dij is the symmetric Kullback-Leibler divergence
computed on three different feature spaces (Sec. 3). The parameter k exerts
direct control on the cluster size. It can therefore be used as a gap measure to
perform a cut of the tree structure provided by QS. This is particularly relevant
in the context of texture analysis, where we seek the smallest ω and largest Ω
regions where certain statistics are stationary. However, it is inconsistent with a
region based energy as defined in eq. (3).

4.3 A Fast Statistical Region Merging (SRM)

SRM is an efficient greedy algorithm [10] for region merging with theoretical
guarantees. Every pair of adjacent pixels (both horizontally and vertically) is
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assigned a strength value, for instance the absolute value of their intensity dif-
ference. The list is then sorted, and location labels retained. For each pair of
pixels, a test called predicate is run to decide if the regions are to be merged.
This runs in linear time as it only goes through all the pixel pairs once (2N -
complexity). The region merging structure is a union find data structure which
allows finding pixel labels with complexity O(1). In order to build a segmentation
tree with this algorithm, the predicate is made to depend on a scalar parameter,
and the same algorithm is run repeatedly for increasing values of the parameter
and with pairs of adjacent regions instead of pairs of pixels.

5 Recursive Max-Min Entropy for Texture Analysis

From the operational definition of texture (2), we seek to efficiently compute
a multiscale representation to simultaneously detect the small ω and large Ω.
The basic intuition comes from the observation that aggregating adjacent su-
perpixels yields an increase in the entropy of the aggregate descriptor, up to the
point where a minimum stationary region is reached, ω. At that point, aggre-
gating further regions will not change the entropy, because of the stationarity
assumption (of course, the complexity of the encoding will decrease, as more and
more superpixels are lumped into the same region), up to the point where the
boundary of the large region Ω is reached. Aggregating superpixels outside this
region will cause the entropy to resume its climb.

The recursive fucntional reads, initializing ω(0)
i as N different regions of 1

pixel size, where N is the number of pixels in the image,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ω

(k)
i = argmin

Ωi

N(s)∑
i=1

∫
Ωi

H(ψ
ω

(k)
i

(I(x)))dx + Γ (Ωi)

ω
(k)
i = arg max

ωi

N(s)∑
i=1

∫
ωi

H(ψ
Ω

(k−1)
i

(I(x)))dx − Γ (ωi)

(7)

where H is the Shannon entropy.
We propose two methods to perform this optimization. Building from a seg-

mentation trees e.g. Sec. 4.1, 4.2, or 4.3 Method 1 performs a constrained opti-
mization as a line search in the tree of superpixels. While Method 2 is a free-form
optimization in the image domain.

5.1 Method 1: Constrained Solution from a Pre-processed
Segmentation Tree

To instantiate this, we use the entropy-based saliency function introduced in [8],
followed by entropy-based segmentation, as customary [2].

Using the dictionary features defined in Sect. 3, and the superpixel segmenta-
tion map at a given scale, one can compute an entropy H of features inside the
superpixel containing i:
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Hi(s) = −
D∑

x=1

Pi(x, s) logPi(x, s) (8)

where Pi is the distribution of the reduced dictionary features built on the region
defined by i, i.e., the superpixel S(i, s), D is the size of the dictionary,

Pi(x) =
1

|S(i, s)|
∑

p∈S(i,s)

δ(x− d(p)) (9)

and δ is Dirac’s delta, d(p) is the index of the dictionary at point p. The small
scale of a texture is defined as the largest scale at which entropy stops increasing:{

ω(i, s) = S(i, s′)
s′ = argmaxt>s{t | ∀v s ≤ v ≤ t, dHi(v)

ds > 0}. (10)

The stationary domain of the texture Ω is simply defined as the boundary of
the region past which entropy resumes increasing,{

Ω(i, s) = S(i, s′′)
s′′ = argmaxt>s{t | ∀v s ≤ v ≤ t, dHi(v)

ds ≤ 0} (11)

Therefore, we perform the final segmentation at the maximum region that pre-
serves stationarity.

While this method can be used with any segmentation tree, the solution will be
constrained as unions of preprocessed segmentations. An unconstrained free-form
solution can be found by building a segmentation tree that optimizes directly a
Min-Max entropy in linear time using the properties of SRM.

5.2 Method 2: SRM with Alternate Min-Max Entropies

We start from an initial segmentation ωi, e.g., from SRM, to initialize the statis-
tics, then perform SRM again with the ordering of neighboring segments given
by sorting the strength between segments Γ =

∫
∂Ωi

‖∇I(x)‖2 dx in increasing
order. Now the predicate changes to an entropy-increasing or -decreasing test,
and regions are merged only if entropy keeps decreasing or is constant. Once a
region Ωi is found, we turn to maximizing the entropy to find the region ωi. The
ordering of Γ neighboring segment is now sorted by decreasing order, and the
regions are merged if entropy increases. In this way, one can define an alternat-
ing Min-Max entropy exploration of the image with the same complexity, since
the neighboring graphs are only processed once. The number of merging tests is
again linear in the number of pixels in the image.

5.3 Features Persistence and Stability

If the hypothesis underlying our definition of texture is correct, entropy will
have a staircase-like behavior, with flat plateaus bounded below (in the sense
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of inclusion) by the small region ω, and above by Ω. As the same region can
switch back-and-forth from texture to structure, we expect several such plateaus
as the scale of inclusion changes. In the next section, we verify this hypothesis
empirically on different superpixels from natural images. While this behavior is
given a priori in the Min-Max entropy clustering, it is not obvious that it will
be manifest when using any segmentation tree.

Those entropy profiles at each pixel are now agglomerated into one global
histogram of entropies using a voting approach. As a staircase value of entropy
appears at one pixel, it sums as a weighted contribution in the histogram of
entropies, the weight being simply the length of the step. This histogram thus
shows the different stable regimes of entropies appearing in the image. Knowing
this histogram, one can deduce simply the local scale at a pixel position by doing
mode seeking on this histogram (smoothed as a PDF). The definition of a local
scale at one pixel position is the smallest scale where a mode value of the global
histogram entropy appears. This allow us to perform stable segmentation and
description of the natural scale of the image at a pixel, according to a structural
stability criterion where the length of each step measures the structural stability
margin [12].

6 Experimental Results

6.1 Computational Speed

In this section we explore the complexity and performance of the one dictionary
learning and four clustering algorithms discussed. Computational speed is shown
in Table 1, measured in seconds on a matlab/C implementation. Three different
methods are used to build the dictionaries : (1) Color dictionary using k-means
(2) Texture dictionary using k-means (3) Texture dictionary using k-means and
agglomerated using a QS with Kullback-Leibler divergence. Based on those three
different features, four different segmentation trees have been built: (a) Classical
QS as described in Sect. 4.1 (b) kNN QS , with a scale parameter, designed for
high dimensional spaces in Sect. 4.2 (c) Classical SRM as described in Sect. 4.3
(d) SRM with alternated min max entropies as described in Sect. 5.2

Table 1. Running times in seconds, (1,2,3) dictionary learning methods (a,b,c,d) seg-

mentation tree methods

Method (1) (2) (3) (a) (b) (c) (d)

Speed 0.2 4.1 8.1 0.4 0.1 1.5 3.8

6.2 Dictionary Agglomeration

We illustrate agglomeration by clustering a dictionary built on the “Barbara”
image to eliminate nuisance variations such as small rotations, translations, and
contrast changes. QS does not require a smooth embedding, so it can be used with
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a non-Euclidean metric, for instance one defined on the quotient space under the
nuisance group. We use the symmetrized Kullback-Leibler divergence estimated
with an efficient kNN-based estimator [3]. For every atom we build the pairwise
distance matrix Dij in (6). The first stage, with feature space {I(x, y), x, y},
forms a big cluster containing most of the texture elements “stripes” (Fig. 2).
This dictionary now contains only one atom representing this texture cluster, or
“exemplar.”

In order to evaluate the efficiency of this agglomeration we take 32 random
images from the Berkeley segmentation dataset. For each one we compare four
ways of building a 128-atom dictionary: (i) direct k-means on the patches, (ii)
first learning 256 clusters, then reducing QS using either 	2, or (iii) KL clustering
on {I(x, y)}, and finally (iv) KL clustering on {I(x, y), x, y}. One measure of
efficiency of these dictionaries is the spatial coherence of the index of the atoms
used. To measure it, one can compute first a color segmentation (in order to be
independent of the texture measures) on each image and sum the entropies of
each segment. The lower this entropy Haverage, the more coherent the index of
the atoms.

Haverage(feature) =
1
32

32∑
i=1

1
NS(i)

NS(i)∑
s=1

H(feature)(i, s) (12)

where NS(i) is the number of superpixels in image i across all scales, H(feature)
(i, s) is the entropy of a given feature, in image i, inside superpixel s. In this
section the feature used is the index of the dictionary. Average entropies shown
in Table reveal that one can obtain coherent sparse decompositions in natural
images and thus efficient dimensionality reduction.

Table 2. Agglomeration of dictionaries for efficient sparse representation. Sum of en-

tropies over all the superpixels. (a) k-means on 128 elements, (b) (c) (d) k-means

with an initial size of 256 reduced to 128 with, (b) �2 clustering, (c) KL clustering on

{I(x, y)} (d) KL clustering on {I(x, y), x, y}.

(a) (b) (c) (d)

Haverage(index) 3.25 3.10 3.17 2.21

This method is also computationally tractable as it runs on the space of bases,
rather than the space of all image patches as in [2]. However, as the scale of the
texture is unknown, it can contain many dictionary elements. A solution is to
look for the dictionary dimension that gives uniform regions in the space of
coefficients. Another solution is to try to find the natural scale of the textures
using region growing algorithms, in our case superpixels aggregating across the
tree of possible segmentations.
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6.3 Multiscale Region Analysis

An illustration of the multiscale region analysis is shown in Figure 3. From one
image, a superpixel map is computed at different scales. Then the dictionary
features are computed and agglomerated. Finally, for six randomly select points
inside each superpixel, we plot the variations of entropy. It is evident that, as
scale increase, entropy increases in steps. The stationary regime corresponds with
superpixels merging with others of similar distribution. Structural transitions
occur when superpixels merge that have different distributions. The process ends
when no new regions are discovered. These phase changes serve to detect ωi and
Ωi, which are displayed for different superpixels at key scales when the entropy
regime changes. In Figure 4, critical scales at successive levels are shown. First
on a synthetic image, starting from one pixel, critical scales are: the pixel itself,
the dark brown region minimizing entropy, then maximizing entropy, the light
brown region to form an ”L” , then minimizing entropy again, until the entire
image is segmented. The same process is shown for a natural image; a light brick
is first selected, then agglomerated with a darker one, then with a window, then
with the whole building since all the statistics that describe the building are
captured.

Fig. 3. It shows the entropy regime of 6 randomly selected points in the first image, by

going through the different scales of the segmentation tree. Staircase is visible and shows

the successive entropy regime of superpixels from successive ω regions to Ω regions.

The regions are computed with QS trees. Detection of critical scales of textures on two

different images. The segmentation scheme is now SRM Min-Max.

6.4 Scale Segmentation

The natural scale of a pixel is then extracted as described in Sect. 5.3. We use
the segmentation tree SRM Min-Max with the features based on agglomerated
dictionaries. Once the critical scales are computed, one builds a PDF of entropies
over all superpixels. The scale at one pixel is defined as the smallest scale at
which a mode appears. Those modes show stable regimes of entropies and can
be used as a feature for scale segmentation. They also have the property of being
accurate at boundaries, since the size of statistics is adaptive.
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Fig. 4. Scale segmentation results on two images. By computing the statistics at the

right scale, one can segment boundaries with pin-point precision, rather than suffering

from “fat-boundary effects” common in texture segmentation. Last image shows a

result with a standard texture segmentation algorithm [6] suffering from uniform scale

selection and “fat-boundary effects”

6.5 Stability

To evaluate stability, again thirty-two images of the Berkeley segmentation
dataset are again randomly selected. If the critical scales extracted are correct,
there should be some coherence in all the regions extracted across the image
(since our definition does not leverage on any matching, this condition is not
forced by construction). The measure of stability is then the average entropy
over the 32 images over all the superpixels as described in Sect. 6.2 and Equa-
tion (12). The features used here are size and color of the superpixels. Such
features, if regions are stable and consistent, should have a low entropy across
the image. That means that many regions should be similar in size and color in
natural images.

Table 3. Stability of critical scales extracted using four different segmentation trees

(a,b,c,d) based on three different features (1,2,3). The dictionaries, all of size 128, are:

(1) Color (2) Texture (3) Agglomerated Texture using QS with Kullback-Leibler as

described in Sect. 3. The segmentation trees are (a) QS described in Sect. 4.1 (b) kNN

QS described in Sect. 4.2 (c) SRM described in Sect. 4.3 (d) SRM Min-Max entropy

described in Sect. 5.2. The best result for each features and entropy (color or size of the

critical scales) is shown in bold. The best overall result is obtained with SRM Min-Max

with agglomerated texture dictionary features.

(a-1) (a-2) (a-3) (b-1) (b-2) (b-3)

Haverage(color) 3.17 3.01 2.88 3.08 2.97 2.81

Haverage(size) 4.87 4.52 4.18 4.15 4.12 4.05

(c-1) (c-2) (c-3) (d-1) (d-2) (d-3)

Haverage(color) 3.11 3.01 2.95 2.22 2.14 2.07

Haverage(size) 4.51 4.21 4.12 4.17 4.08 3.98
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7 Discussion

We have presented an approach to multiscale texture analysis. The operative
definition of texture we introduce guides the development of algorithms that
efficiently enable the estimation of all the “small regions” (a.k.a. “texton re-
gions”), the “big regions” (a.k.a. “texture segments”) and the statistics within.
We have introduced a novel clustering algorithm adapted for high-dimensional
spaces, and showed how an information-theoretic criterion can be used to define
the “gaps” to simultaneously detect small and large regions.
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A High-Quality Video Denoising Algorithm Based on
Reliable Motion Estimation

Ce Liu1 and William T. Freeman1,2
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Abstract. Although the recent advances in the sparse representations of images
have achieved outstanding denosing results, removing real, structured noise in
digital videos remains a challenging problem. We show the utility of reliable
motion estimation to establish temporal correspondence across frames in order
to achieve high-quality video denoising. In this paper, we propose an adaptive
video denosing framework that integrates robust optical flow into a non-local
means (NLM) framework with noise level estimation. The spatial regularization
in optical flow is the key to ensure temporal coherence in removing structured
noise. Furthermore, we introduce approximate K-nearest neighbor matching to
significantly reduce the complexity of classical NLM methods. Experimental re-
sults show that our system is comparable with the state of the art in removing
AWGN, and significantly outperforms the state of the art in removing real, struc-
tured noise.

Keywords: Video denoising, structured noise, approximate K-nearest neighbors,
non-local means, optical flow.

1 Introduction

Image quality enhancement is a long-standing area of research. As low-end imaging
devices, such as web-cams and cell phones, become ubiquitous, there is ever more need
for reliable digital image and video enhancement technologies to improve their outputs.
Noise is dominant factor that degrades image quality.

We focus on video denoising in this paper. Our goal is to achieve an efficient, adap-
tive and high-quality video denoising algorithm that can effectively remove real, struc-
tured noise introduced by low-end camcorders and digital cameras. Unlike synthetic,
additive noise, the noise in real cameras can have strong spatial correlations. This struc-
tured noise can have many different causes, including the demosaicing process in CCD
camera. We find that computer vision analysis and techniques are useful in addressing
these noise problems.

For image and video denoising, a key is to exploit the property of image sparsity
[1, 2, 3]. In the frequency domain, image sparsity can be formulated as high-kurtotic
marginal distribution of bandpass filtering, and image coring [4, 5] is a straightforward
denoising algorithm that preserves large-magnitude responses while shrinking small-
magnitude responses. In the spatial domain, image sparsity arguments imply that for
any image patch, there will be similar ones in other locations of the image. The non-
local means (NLM) method [6] was introduced to remove noise by averaging pixels in

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 706–719, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(a) RGB noisy image (b) R channel (c) G channel (d) B channel

Fig. 1. In real video denoising scenarios, images contain structured noise. For this example, the
blue channel is heavily contaminated with structured noise that can be mixed with signal. Even
the state-of-the-art video denoising algorithm [10] fails to obtain temporally smooth denoising
results. On the contrary, the proposed algorithm in this paper is able to remove structured noise
and obtain temporally smooth results.

an image weighted by local patch similarities. Recently, these two forms of sparsity are
combined in [7] to produce the state of the art in image denoising.

Sparsity also resides in videos. Most videos are temporally consistent; a new frame
can be well predicted from previous frames [8, 9]. Indeed, temporal coherence can be
vital to achieving high quality. Given two noise-free videos that share the same average
peak signal-to-noise ratio (PSNR), we may prefer the one with more temporal coher-
ence.

Although the state of the art video denoising algorithms often satisfy the temporal
coherence criterion in removing additive white Gaussian noise (AWGN), many real
videos contain structured noise that makes it challenging to ensure temporal coherence.
As shown in Figure 1, the blue channel of the image contains structured noise that can
be misinterpreted as signal by many denoising algorithms. Confused by the jittering
blocky noise, block matching techniques (e.g. in [10]) may fail to track the true motion
of the objects.

Therefore, in contrast with [11], we argue that high-quality video denoising, espe-
cially when structured noise is taken into account, indeed needs reliable motion estima-
tion. In theory, estimating motion and noise suffers from a chicken-and-egg
problem, since motion should be estimated from the underlying signals after denois-
ing, and denoising relies on the temporal correspondence from motion estimation. In
practice, however, we used robust optical flow with spatial regularization to establish
reliable temporal correspondence despite noise. Because of its power, we use non-local
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means (NLM) as the backbone of our system. Due to the inherent search complexity of
NLM, searching for similar patches is often constrained to a small neighborhood. We
introduce approximate K-nearest neighbor patch matching with much lower complexity
to allow for searching over the entire image for similar patches. In addition, we estimate
the noise level at each frame for noise-adaptive denoising.

We conduct experiments to test our theories. We first show that our system is compa-
rable with the state of the art [10] in removing additive white Gaussian noise (AWGN)
on benchmark videos. Then, we show the importance of establishing good temporal
correspondence through some real, challenging examples. Our video denoising system
produces high-quality and temporal coherent denoising results on these real-world ex-
amples, outperforming the state of the art.

2 Related Work

Image and video denoising has been studied for decades. As it is beyond the scope of
this paper to provide a thorough review, we will focus on reviewing the work closest to
ours.

Image sparsity can manifest itself in different forms. When images are decomposed
into sub-bands, sparsity leads to image coring algorithms on wavelets coefficients [4,5]:
large-magnitude coefficients that more likely correspond to true image signal should be
retained, whereas small-magnitude coefficients that more likely correspond to noise
should be shrunk. When the prior of natural images is incorporated in denoising [12,
13, 14], image sparsity is reflected by the heavy-tailed robust potential functions asso-
ciated with band-pass filters: pixels in a neighborhood are encouraged to be similar, but
occasional dissimilarity is allowed. Other denoising techniques such as PDE’s [15] and
region-based denoising [16] also implicitly formulate sparsity in their representation.

Unfortunately, wavelet- and natural image prior-based denoising algorithms can in-
troduce unwanted artifacts to denoised images. Recently, image sparsity was formulated
as image self similarity, namely patches in an image are similar to one another, which
leads to the non-local means (NLM) methods [6]. In NLM, similar patches are aggre-
gated together with weights based on patch similarities. This surprisingly simple algo-
rithm produces high-quality results. NLM was also extended to video denoising [11] by
aggregating patches in a space-temporal volume. Because of this, we choose NLM as
the framework of our video denoising system.

The frequency and spatial forms of image sparsity are seamlessly integrated in [7],
where similar patches are stacked in a 3D array, and both hard and soft shrinkages are
performed on a 3D DCT transformed domain. This idea can be easily extended to video
denoising, and state of the art video denoising results were reported in [10].

In [17], it was claimed that under the NLM framework “denoising image sequences
does not require motion estimation” because the aperture problem, which often causes
motion estimation to fail on textureless regions, is indeed beneficial to denoising as
redundant patches are available for better denoising. However, we disagree on this point.
As shown in Figure 1, structured noise can mislead the search for similar patches and
then breaks the temporal coherence criterion in video denoising. We attempt to resolve
this issue in this paper.
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Patch matching has been widely used for image synthesis and editing, e.g. [18]. Re-
cently, random patch matching was proposed to significantly speed up nearest neighbor
searching on images [19]. The key ideas are random initialization and improvement,
and spatial propagation. We extend this idea to random K-nearest neighbor matching to
speed up patching matching under the NLM framework.

3 A Temporally Coherent Video Denoising Framework

For every patch in a video, we want to find a set of supporting patches from this frame
and temporal adjacent frames that are similar to this patch. To ensure the nature of
spatial and temporal sparsity of videos, we want spatially neighboring pixels and tem-
porally corresponding pixels to share similar structures of supporting patches. This is
ensured by approximate K-nearest neighbor matching for a single frame and establish-
ing temporal correspondence using optical flow.

3.1 Approximate K-Nearest Neighbors (AKNN) for a Single Frame

Mathematically, we use notion {I1, I2, · · · , IT } to denote an input noisy sequence
that contains T frames. We use z = (x, y, t) to index the space-time volume, and P (z)
(or equivalently P (x, y, t)) to denote a patch at location z. In this subsection, we focus
on searching for K-nearest neighbors within a single frame, and will extend to multiple
frames in next subsection. For notational convenience, we let q=(x, y) and omit time
t from the notation. For each pixel q, we want to obtain a set of approximate K-nearest
neighbors (AKNN) N (q) = {P (qi)}K

i=1. Let vi = qi − q be the offset of the found
patch from the current patch. Searching for N (q) is equivalent to searching for {vi}.

For efficiency, we used the priority queue data structure to store the K-nearest neigh-
bors such that the following increasing order is always maintained for the elements in
the priority queue:

D
(
P (q), P (qi)

)
� D

(
P (q), P (qj)

)
, ∀1 � i < j � K, (1)

whereD(·, ·) is sum of square distance (SSD) over two patches, defined as

D
(
P (q), P (qi)

)
=

∑
u∈[−s,s]×[−s,s]

(
I(q + u) − I(qi + u)

)2

. (2)

When a new patch is pushed back to this queue, it will be discarded if the distance
is greater than the last element of the queue, or will otherwise be added at the appro-
priate position in the priority queue. A heap implementation of the priority queue has
complexityO(logK).

Suppose there are N pixels in an image, then the complexity of a brute-force K-
nearest neighbor search over the entire image is O(N2 logK), almost implausible for
high-definition (HD) videos. Inspired by the approximate nearest neighbor algorithm
in [19], we propose an approximate K-nearest neighbor algorithm that contains three
phases, initialization, propagation and random search, which will be explained below.
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Fig. 2. The approximate K-nearest neighbors (AKNN) of patch P (x, y) (blue) can be improved
by propagating AKNN from P (x−1, y) (red). Left: the approximate K-nearest neighbors of
P (x−1, y) are shifted one pixel to the right to be pushed to the priority queue of (x, y). Right:
we do not need to recompute patch distances with this shift. To compute the distance between
P (xk, yk) and P (x, y), we can simply take the distance between P (xk−1, yk) and P (x−1, y),
remove the left column (orange) and add the right column (green).

To ensure the order in Eqn. (1), any new item generated in these phases is pushed back
to the priority queue.

Initialization. The K-nearest neighbors are initialized by randomization

vi = σsni (3)

where ni is a standard 2d normal random variable, and σs controls the radius. In this
paper we set σs =w/3 where w is the width of an image.

Propagation. After initialization, an iterative process that consists of propagation and
random search is performed in an interleaving manner. The idea is to improve the
approximate K-nearest neighbor set based on the fact that neighboring pixels tend to
have similar AKNN structures (offsets). The propagation procedure intertwines be-
tween scanline order and reverse scanline order [19]. In the scanline order, we attempt
to improve AKNN {vi(x, y)} using neighbor {vi(x−1, y)} and {vi(x, y−1)}. In the
reverse scanline order, we attempt to improve {vi(x, y)} using neighbor {vi(x+1, y)}
and {vi(x, y+1)}.

As an example, we use the AKNN of patch P (x−1, y) (red, filled square) to improve
the AKNN of patch P (x, y) (blue, filled square) as shown in Figure 2. The approximate
K-nearest neighbors (red, dashed squares) of P (x−1, y) are shifted one pixel to the right
to obtain a proposal set (blue, dashed squares), which are pushed back to the priority
queue of P (x, y). There is no need of recalculating the patch distance as illustrated
in Figure 2. We only need to compute the pixel-distance contributed from the non-
overlapping region, as in [19].

This propagation is very similar to the sequential update scheme in belief propagation
[20]. Although the (implicit) objective function is independent for neighboring pixels,
this propagation scheme makes neighboring patches share similar AKNN structures.
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Fig. 3. Illustrations of the supporting patches in spatial-temporal domain for a patch P (z). We
use approximate K-nearest neighbor patch matching at frame t to find an initial set of spatially
supporting patches N (z), shown as dashed boxes. Since z corresponds to z+wf (z) in frame
t+1, the AKNN of z+wf (z) is added to the set of supporting patches. Likewise, the AKNN of
z+wb(z) that z corresponds to in frame t−1 is also added. In fact, we use the AKNN’s along
the motion path up to ±H frames to form the entire supporting patches.

Random search. After the propagation step, we allow every patch to randomly match
other patches in the image for M times using the following mechanism

vi = σsα
ini, i = 1, · · · ,M (4)

where ni is a standard 2d normal random variable, α= 1
2 and M = min(log2 σs,K).

So the radius of the random search σsα
i decreases exponentially. Each random guess is

again pushed back to the priority queue to maintain the increasing order of the queue.
This approximate K-nearest neighbor patch matching algorithm converges quickly.

We found that running more than 4 iterations does not generate more visually pleasing
results. Furthermore, in the matching procedure we excluded the patch itself because it
has distance zero. In the end, we add patch P (x, y) into N (x, y).

3.2 Non-local Means with Temporal Coherence

We feel that temporal coherence is vital for denoising. Two algorithms may perform
equally well for a single frame, but the one that produces more temporal coherent re-
sults is preferred. It was argued in [11] that denoising image sequence does not require
motion estimation. But for real sequences, it can be difficult to distinguish high-intensity
structured noise from image signal. Therefore, it is important to establish temporal cor-
respondence between adjacent frames and require corresponding pixels to be similar.
Instead of formulating this property explicitly, we design a mechanism to satisfy this
criterion implicitly.
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We implemented a state-of-the-art optical flow algorithm [21] which integrates Lucas-
Kanade [22] into the total variation optical flow framework [23] with robust L1 norms
for both the data and smoothness terms. Since, in general, optical flow is not invert-
ible, we estimate forward flow wf (z)=[vx, vy, 1] from frame It to It+1, and backward
flow wb(z) = [vx, vy,−1] from frame It to It−1, in order to establish bidirectional
correspondence.

Under this setup, pixel z corresponds to z + wf (z) in next frame and to z + wb(z)
in previous frame, as shown in Figure 3. This process can propagate up to ±H frames
and we set H = 5 in our system. We include the AKNN of temporally corresponding
pixels to the set of supporting patches, and therefore the motion path results in a se-
ries of AKNN’s {Nt−H , · · · ,Nt−1,Nt,Nt+1, · · · ,Nt+H}, which forms the support-
ing patches for P (z). Ni = {P (zij)}K

j=1 denotes the patches in the AKNN at the ith
frame. Notation zij =(xij , yij , i) means the jth-nearest neighbor of the corresponding
pixel at frame i. The non-local means estimate for pixel z can be written as:

Î(z)=
1
Z

t+H∑
i=t−H

γ|i−t|
K∑

j=1

I(zij) exp

⎧⎨⎩−
Dw

(
P (z), P (zij)

)
2σ2

t

⎫⎬⎭ , (5)

where Z is the normalization factor:

Z =
t+H∑

i=t−H

γ|i−t|
K∑

j=1

exp

⎧⎨⎩−
Dw

(
P (z), P (zij)

)
2σ2

t

⎫⎬⎭ , (6)

andDw(·, ·) is a weighted SSD function, summed over spatial, but not temporal, offsets:

Dw

(
P (z1), P (z2)

)
=

1
Z ′

∑
u∈[−s,s]×[−s,s]×0

(
P (z1 + u)− P (z2 + u)

)2

exp
{
−‖u‖2

2σ2
p

}
,

(7)
where σp = s

2 , and Z ′ is a normalization constant. We set γ = 0.9 to control temporal
decay. σt is related to the noise level in the video sequence, which will be discussed in
the next subsection.

For a fixed number of iterations, the complexity of our denoising algorithm for a
frame is O(NHK logK), where N is the number of pixels per frame, H is the tem-
poral window size, andK is the number of approximate K-nearest neighbors. This is a
significant reduction compared toO(N2) of the original NLM algorithm, sinceK<<N
(typically K = 10 and N = 640×480). Even if the search space of the original NLM
algorithm is reduced to a 3D volumeM×M× (2H + 1) [11] (typicallyM =40), the
complexity remains as O(NHM2), still greater than our algorithm, which considers
patches over the entire image lattice and 2H+1 frames.

3.3 Noise Estimation for Adaptive Noise Removal

It is important to set the parameter σt appropriately in Eqn (5). Intuitively, when the
noise level is low in the original sequence, we should set σt small to avoid over-
smoothing, and when the noise level is high, we should set σt large to smooth out
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noise. Instead of using a single-frame noise estimator as in [24], we propose a simple
noise model based on optical flow.

Theoretically, as we warp frame It+1 back to t according to the forward flow field
wf (z), the difference between the warped frame and It should be the difference of in-
dependent noise. However, motion estimation can be unreliable especially at textureless
regions and the brightness constancy assumption fails for occluded regions. Therefore,
we introduce an outlier in noise estimation:

It
(
z
)

= It+1

(
z + wf (z)

)
+ αznz + (1 − αz)uz. (8)

In the above equation,nz is a pixel-wise Gaussian random variable:E(nz)=0, E(n2
z)=

σn, and uz ∼ U [−1, 1] is a pixel-wise uniform random variable. These two random
variables are balanced by weight αz. Let Jt(z) = It(z)− It+1(z+wf (z)). We use an
expectation-maximization (EM) algorithm to estimate parameters:

1. Initialize σn = 20. Loop between step 2 and 3 until convergence.

2. (E-step) Evaluate αz =
exp

{
−Jt(z)

2σ2
n

}
exp

{
−Jt(z)

2σ2
n

}
+

1
2

√
2πσn

.

3. (M-step) Estimate σn =

√∑
z Jt(z)2αz∑

z αz
.

We perform this estimation for each of R, G and B channels independently.
The relationship between the noise level σn and scaling parameter σt in Eqn. (5)

depends on K and H. Empirically, we have found that whenK=11 andH = 5 (which
means that there are in total K(2H + 1)=121 patches in total for NLM at one pixel),
σt =σn generates visually pleasing results.

4 Experimental Results

We conducted experiments to examine whether, in the framework we use, video de-
noising requires reliable motion estimation. In this section, we will first verify that our
denoising algorithm is comparable with the state of the art [10] on synthetic sequences.
Then, we will show that our algorithm outperforms the state of the art on real video se-
quences. Please see denoised videos in the supplementary materials or the authors’
websites. Please also use your monitor to view the results in the paper.

Here are some implementation details of our algorithm. We use 7×7 patches, and
K=11 nearest neighbors (including the patch itself), and 11 temporal frames (H=5)
in our system. We allow 4 iterations of random K-nearest neighbor matching for each
frame. The EM algorithm for noise estimation converges in about 10 iterations. For the
optical flow algorithm, we used a coarse to fine scheme on image pyramid (with down-
sample rate 0.7) to avoid local minimum. The objective function is optimized through
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(a) One frame from tennis sequence (b) Denoising by VBM3D (30.22db, 31.20db)

(c) Denoising by our system (30.21db) (d) Ground truth

Fig. 4. For the tennis sequence, although the PSNR of our denoising system is slightly lower, the
visual difference is subtle. VBM3D tends to generate smoother regions (but the background is
over-smoothed), whereas our system preserves texture better (but the table is under-smoothed).

iterative reweighted least square (IRLS). More details of the flow estimation algorithm
can be found in [25], and the source code is available online1.

We first run our system on the tennis sequence with synthetically generated AWGN
(σ = 20) to compare with existing methods. The average peak signal to noise ratio
(PSNR) is 30.21db. We also downloaded the code from the BM3D webpage 2 for evalu-
ation. In their MATLAB package, function VBM3D.m is used for gray-scale frames and
CVBM3D.m is for color frames. We used VBM3D for the tennis sequence and CVBM3D
for other sequences, but we will call it VBM3D in general. The first denoising step of
VBM3D produces PSNR 30.22db, and the second step boosts it to 31.20db. The gain
comes from re-matching patches from the denoising results at the first step and joint
Wiener filtering at the second step, which are missing in our model. The backbone of
our system is non-local means and therefore performs slightly worse in terms of PSNR.
But the visual difference between ours and VBM3D is subtle, as shown in Figure 4.

We move on to a real video sequence named room captured by a Canon S90. This
is a challenging sequence as the camera moves in between bright and dark rooms. We
first examine the importance of regularization in motion estimation by comparing block

1 http://people.csail.mit.edu/celiu/OpticalFlow/
2 http://www.cs.tut.fi/˜foi/GCF-BM3D/index.html

http://people.csail.mit.edu/celiu/OpticalFlow/
http://www.cs.tut.fi/~foi/GCF-BM3D/index.html
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(a) Frame 1 (b) Frame 2

(c) Motion obtained by block matching (d) Motion obtained by optical flow (e) Flow code

Fig. 5. The right motion estimation algorithm should be chosen for denoising. For two consec-
utive frames in the room sequence, we apply both block matching [10] and optical flow [21] to
estimate motion, shown in (c) and (d), respectively. We used the color scheme in [26] to visualize
flow fields (e).

matching to the optical flow algorithm with spatial regularization. The motion estima-
tion of one frame is shown in Figure 5, where motion vectors are visualized by the
color scheme proposed in [26]. Clearly, spatially independent block matching in (c) is
highly affected by the presence of structured noise. On the contrary, the optical flow
with spatial regularization in (d) produces a smooth, discontinuity preserving tempo-
ral motion field that corresponds to the human perception of motion, and to the known
smooth character of the optical flow induced by a camera moving through this piecewise
smooth planar, static scene.

The quality of our motion estimation determines the quality of our video denoising.
Because the code we downloaded from VBM3D does not allow input of frame-based
noise intensities, we try two parameters σ = 20 and σ = 40 to denoise the room se-
quence, with results shown in Figure 6 (b) and (c), respectively. The result of our adap-
tive denoising system is shown in Figure 6 (d). Although there is no ground truth of
this video, it is clear that our system outperforms VBM3D in both smoothing regions
and preserving boundaries. The visual difference is more obvious when watching the
videos in the supplementary materials.

Average PSNR over the video sequence has been used to measure video denoising
qualities, but temporal coherence was not included in the quality assessment. We feel
that temporal coherence is indeed vital to evaluate video denoising algorithms. For this
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(a) One frame from the room sequence (b) Denoising results (VBM3D, σ = 20)

(c) Denoising results (VBM3D, σ = 40) (d) Denoising results, our system

(a) (b) (c) (d)

Fig. 6. We run our system on the room sequence and compare the results with VBM3D [10].
Top: whole frames; bottom: the blowup view of a region. Our system outperforms VBM3D in
both smoothing regions and preserving boundaries. Please view this figure on your monitor.
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Fig. 7. Temporal smoothness of different denosing algorithms. We measure pixel intensities along
motion paths over frames. Two motion paths are shown here. Our system (red curve) has the least
amount of temporal fluctuation.
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Table 1. The average standard deviation along motion paths is measured for different algorithms
at different RGB channels. Our system has overall the least temporal fluctuation.

Std. Dev. Input data VBM3D σ=20 VBM3D σ=40 Our algorithm
Red 4.20 2.22 1.52 1.23

Green 3.81 1.78 1.45 1.13
Blue 9.55 5.77 2.81 2.91

(a)

(b)

Fig. 8. Removing realistic video noise has broad applications. For example, we can turn a noisy
HD home video (a) to a high-quality, noise-free video (b), which can be pleasantly played on an
HDTV. Please see the baby video in the supplementary materials. Please view this figure on
your monitor.
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purpose, we downloaded the human-assisted motion annotation tool [27] to annotate
the ground-truth motion of the room sequence. Using the annotated motion we can
analyze how pixel intensities change over time for different denoising algorithms. Two
exemplar motion paths are plotted in Figure 7, and the average standard deviation for
each of the RGB channels is listed in Table 1. Clearly, our system has overall the least
temporal fluctuation, which we feel is crucial for visual quality.

Lastly, we run our system on another video sequence with real noise, baby, a 720P
HD video clip captured by SONY HDR-XR150. One input frame and denoised frame
are shown in Figure 8. Our video denoising system is able to remove the structured
noise and preserve image details without introducing artifacts. This example shows the
broad applications for reliable video denoising algorithms.

5 Conclusion

We argue that robust motion estimation is essential for high-quality video denoising, es-
pecially in the presence of real, structured noise. Based on the non-local means frame-
work, we introduce an efficient, approximate K-nearest neighbor patch matching algo-
rithm that can search for similar patches in a neighborhood as large as the entire image.
This random matching algorithm significantly reduces the complexity of classical NLM
methods. A robust optical flow algorithm with spatial regularity was used to estimate
temporal correspondence between adjacent frames. The spatial regularity is the key to
robust motion estimation in the presence of structured noise. We use the temporal cor-
respondence to enlarge the set of supporting patches over time and to ensure temporal
coherence. Experimental results show that our system is comparable with the state of
the art in removing AWGN, and significantly outperforms the state of the art in remov-
ing real, structured noise. Our system is easy to implement, with broad applications in
digital video enhancement.
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Abstract. This paper proposes a novel approach to segment three dimensional
curvilinear structures, particularly vessels in angiography, by inspecting the
symmetry of image gradients. The proposed method stresses the importance of
simultaneously considering both the gradient symmetry with respect to the curvi-
linear structure center, and the gradient antisymmetry with respect to the object
boundary. Measuring the image gradient symmetry remarkably suppresses the
disturbance introduced by rapid intensity changes along curvilinear structures.
Meanwhile, considering the image gradient antisymmetry helps locate the struc-
ture boundary. The gradient symmetry and the gradient antisymmetry are evalu-
ated based on the notion of oriented flux. By utilizing the aforementioned gradient
symmetry information, an active contour model is tailored to perform segmenta-
tion. On the one hand, by exploiting the symmetric image gradient pattern ob-
served at structure centers, the contours expand along curvilinear structures even
through there exists intensity fluctuation along the structures. On the other hand,
measuring the antisymmetry of the image gradient conveys strong detection re-
sponses to precisely drive contours to the structure boundaries, as well as avoiding
contour leakages. The proposed method is capable of delivering promising seg-
mentation results. This is validated in the experiments using synthetic data and
real vascular images of different modalities, and through the comparison to two
well founded and published methods for curvilinear structure segmentation.

1 Introduction

Segmentation of three dimensional curvilinear objects, particularly vascular structures
has a wide range of applications. In the past decades, incorporating curvilinear structure-
specific image features in active contour models for vessel segmentation has been inten-
sively studied. For instance, Lorigo et al. [8] developed the CURVES algorithm based
on the geodesic active contour model [1], which aims at driving the active contours
to the boundaries where image intensity is rapidly changing. The CURVES algorithm
employs the minimal curvature regularization term to prevent the evolving contours
from vanishing inside narrow vascular structures. Yan and Kassim refined the geodesic
active contour model by introducing the capillary force [14] to encourage contours to
propagate into small vessels. The contour dynamics of these segmentation methods are

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 720–734, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



An Oriented Flux Symmetry Based Active Contour Model 721

governed by the image intensity gradient. It is possibly problematic if the structure
intensity fluctuates along and inside structures. The intensity fluctuation can halt the
evolving contours inside structures, and such intensity fluctuation commonly exists in
some images, such as angiographic images. Furthermore, low contrast structure bound-
aries cannot exert enough image force to compete against other forces generated from
the intensity fluctuations along the structures. The evolving contours can finally stop
inside structures instead of at the boundaries of the structures.

To extract reliable image features for segmentation of three dimensional curvilinear
structures, the intensity profiles along the structure cross-sectional plane are commonly
considered to be symmetric with respect to the structure center. Classic differential op-
erators, such as the second derivatives of Gaussian [6] and the Hessian matrix [10][4],
which are based on convolving an image with symmetric filter functions1, were pro-
posed for the detection of curvilinear structures. The differential operators quantify the
difference between the intensity inside a local region defined by a scale parameter and
those in the vicinity of that local region. Exploiting the Hessian matrix, Toledo et al.
[11] developed an active contour model based on the eigenvalues and eigenvectors ex-
tracted from the Hessian matrix. In [3], Descoteaux et al. fused the Hessian matrix
and the flux measure [12] to formulate an active contour model to segment vascular
objects. The flux measure was introduced by Vasilevskly and Siddiqi in [12]. It drives
the active contours to segment vessels by using a discretized Laplacian operator, which
inspects the intensity changes that occur at the boundary of a local sphere with a pre-
defined radius. Analogous to the original Laplacian operator, the discretized version is
isotropic and sensitive to symmetric structures. To handle vessels with various widths,
these symmetric operators are always incorporated in multiscale frameworks. However,
they commonly return faint responses at structure boundaries. It is because the local
intensity variations across the structure boundaries are not symmetric with respect to
those boundaries. At the boundaries, the active contours driven by the responses of
these operators can evolve randomly according to the image noise attached along the
object boundaries. It can lead to subsequent contour leakages.

To segment curvilinear objects such as vessels without leakages, this paper proposes
a novel approach that inspects the symmetry of image gradients for active contour evo-
lution. The proposed model considers both the image gradient symmetry with respect
to the structure center, and the image gradient antisymmetry with respect to the struc-
ture boundary. Analyzing both the gradient symmetry and antisymmetry helps devise
image features to encourage contour propagation even through there exists intensity
fluctuation along structures, and simultaneously avoids contour leakages. In this paper,
through the experiments using a noise corrupted synthetic image volume and real vascu-
lar image volumes, the proposed method is compared with two well founded published
approaches, the flux method [12] and the CURVES algorithm [8]. The ability of the
proposed method to correctly segment curvilinear structures, particularly vasculatures
without leakages is validated. It consistently delivers promising segmentation results in
all cases. It is therefore well suited to perform segmentation of curvilinear structures.

1 The image Hessian matrices can be found by convolving the image with a set of the second
derivatives of Gaussian [10].
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2 Methodology

Without the loss of generality, we assume that the objects of interest have stronger in-
tensity than image backgrounds. For the detection of curvilinear structures, we first
analyze the image gradients at a local spherical region boundary which touches the ob-
ject boundary. These image gradients are projected along a direction on the object’s
cross-sectional plane. As shown in Fig. 1a, along the cross-sectional plane of a curvi-
linear structure, the image gradients point to the structure center and form a symmetric
pattern. When the local spherical region centers at the middle of the object, the projected
gradients are symmetric (see Fig. 1b). The symmetry of the projected gradients implies
that both the magnitudes and the orientations of the projected gradients are symmetric
with respect to the spherical region center. When the local spherical region centers at
other positions, the projected gradients are aligned in various patterns (see Figs. 1c-e).
At the object boundary, the projected gradients at the local spherical region boundary
point along the same direction (Fig. 1d). As such, the projected gradient magnitudes are
symmetric but the projected gradient orientations are antisymmetric with respect to the
spherical region center. This pattern of image gradients is referred to as the antisymmet-
ric pattern (Fig. 1d). In the positions slightly inside or outside the structure, the projected
image gradients are similar to the patterns as shown in Figs. 1c and e respectively, in
which both the projected gradient magnitudes and orientations are antisymmetric. This
pattern of projected gradients is considered as neither symmetric nor antisymmetric. In
summary, there are three situations discussed regarding various positions located,

– at the structure centers, the projected gradients are symmetric (the projected gradient
magnitudes and orientations are symmetric);

– at object boundaries, the projected gradients are antisymmetric (the projected gradi-
ent magnitudes are symmetric but their orientations are antisymmetric); and

– slightly inside or outside the object, the projected gradients are neither symmetric nor
antisymmetric.

2.1 Oriented Flux Symmetry

In this section, two measures are devised to analyze the symmetric gradient patterns
and the antisymmetric gradient patterns. These two measures jointly quantify the gra-
dient symmetry. They are therefore conveying reliable detection responses to identify
the aforementioned three situations. This detection scheme is referred to as oriented
flux symmetry. In oriented flux symmetry detection scheme, the first measure to help
quantify the gradient symmetry is introduced on the basis of a previous work, called
optimally oriented flux [7]. The oriented flux measure quantifies the amount of image
gradient, which is projected on a direction ρ̂, flowing into a local spherical region cen-
tered at x,

f(x; r, ρ̂) =
1

4πr2

∫
∂Br

(
(v(x + A) · ρ̂)ρ̂

)
· n̂dA, (1)

where Br is a local spherical region with radius r, A is the position vector on ∂Br,
n̂ is the inward normal of the sphere at A, dA is the infinitesimal area on ∂Br and
v is image gradient. The differentiability of a discrete image can be approximated by
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Table 1. The analysis of the response magnitudes of various measures obtained at different posi-
tions x. In the second, the third and the fifth columns, ρ̂ is given as the direction on the structure
cross-sectional plane, pointing from object centers to x. In the second to the fifth columns except
the entries with ∗, r is given as the distance from x to the nearest object boundary; in the entries
with ∗, r is assumed to be a value smaller than the structure radius.

Location of x, relative to a curvilinear object |f(x; r; ρ̂)| |s(x; r; ρ̂)| |Λ12(x; r)| Q12(x; r) M(x)
At the center (Fig. 1b) >> 0 ≈ 0 >> 0 ≈ 0 >> 0

At the boundary (Fig. 1d) ∗ ≈ 0 ∗ >> 0 ∗ ≈ 0 ∗ >> 0 = 0
Slightly inside or outside the object (Figs. 1c and e) > 0 > 0 > 0 > 0 ≈ 0

obtaining the image gradient from the image smoothed by a Gaussian filter with the
scale factor of 1.

Whereas the authors of [7] focused on finding the optimal projection orientation
to maximize the resultant value of the oriented flux measure, we aim at making use
of the above equation to help quantify the image gradient symmetry. In this aspect,
the oriented flux is regarded as a measure sensitive to the symmetric image gradient
pattern. The above oriented flux measure detects curvilinear structures grounded on
its high sensitivity to the symmetric gradient pattern, as shown in Fig. 1b. Given that
Equation 1 is evaluated when ρ̂ is a direction on the structure cross-sectional plane and
r is equal to the structure radius, f(·) attains its maximal value at the structure centers.
The gradient symmetry decreases with respect to the positions away from the centers
and thus, the strength of the oriented flux detection response declines accordingly. To
identify the antisymmetric gradient pattern, the second measure is devised as,

s(x; r, ρ̂) =
1

4πr2

∫
∂Br

(
v(x + A) · ρ̂

)
dA. (2)

This measure helps quantify the antisymmetry of the image gradients that contributes
to the resultant value of the above oriented flux measure (Equation 1). It is referred to
as oriented flux antisymmetry (OFA). It is sensitive to antisymmetric gradient patterns
occurring at object boundaries. The OFA measure and the oriented flux measure alter-
natively return strong detection responses at the structure centers and at the structure
boundaries (see the second and the third columns of Table 1).

2.2 Quantifying Gradient Symmetry along Structure Cross-Sectional Planes

Developing a measure to indicate the middle of vascular structures is now possible
by aggregating the OFA measure and the oriented flux measure. It is achieved by first
performing the eigen decomposition on a tensor to obtain the optimal projection axis
which maximizes the magnitude of the oriented flux measure [7]. There are three pairs
of resultant eigenvalues and eigenvectors, denoted as λj(x; r) and êj(x; r) respectively,
where j ∈ [1, 2, 3], |λ1(·)| ≥ |λ2(·)| ≥ |λ3(·)|. To detect curvilinear structures, the
amount of the image gradients pointing to the structure center along its cross-sectional
plane spanned by ê1(·) and ê2(·) [7] is evaluated,
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Λ12(x; r) =
1

4πr2

∫
∂Br

(
[ê1(x; r) ê2(x; r)]T v(x + A)

)
·([ê1(x; r) ê2(x; r)]T n̂

)
dA,

= f(x; r, ê1(x, r)) + f(x; r, ê2(x, r)) = λ1(x; r) + λ2(x; r). (3)

Utilizing Equation 2, an OFA based measure associated with ê1(·) and ê2(·) is used to
inspect the antisymmetry of gradients along structure cross-sectional planes,

Q12(x; r) =
1

4πr2

∣∣∣∣∫
∂Br

(
[ê1(x; r) ê2(x; r)]T v(x + A)

)
dA

∣∣∣∣
=
√
s2(x; r, ê1) + s2(x; r, ê2). (4)

The above equation evaluates the magnitude of the sum of the projected image gradi-
ents at ∂Br on the detected structure cross-sectional plane. A moderate or large resul-
tant value signals the situation that x is not located at the structure center (see the fifth
column in Table 1). As presented in the second row, the fourth and the fifth columns in
Table 1, Λ12(·) >> Q12(·) in the middle of a curvilinear structure. Also, both Q12(·)
and Λ12(·) are robust against the intensity fluctuation along structure because they are
evaluated along its cross-sectional planes. Besides, Λ12(·) cannot give a very large mag-
nitude outside the middle of structures (see the fourth column in Table 1), including
the positions either inside the structures and closed to the structure boundaries, at the
boundaries, or slightly outside the structure. It is because the gradients are not symmet-
ric at these positions. Based on Λ12(·) and Q12(·), a measure that only reports positive
responses in the middle of structure is, max

(
0, Λ12(x; r) −Q12(x; r)

)
. As the target

object radius is unknown, the detection response at x is the maximum response among
those responses computed in a set of radii. It therefore retrieves the most significant
responses induced by the image gradients located at the object boundaries. As such,

M(x) = max
r∈R

(
max (0, Λ12(x; r) −Q12(x; r))

)
. (5)

R is the radius set and is specified to include all possible radii of the target structures.
Regarding the proposed active contour based segmentation algorithm, the measure

M(x) guides the evolving contours to expand along and inside curvilinear structures,
even through there exists intensity fluctuation along them. To illustrate this idea,M(x)
is evaluated using a noise corrupted synthetic tube with a radius of 4 voxels (Figs. 2a-
d). In this example, the radius set forM(·) is specified as R = {1, 1.5, 2, ...6} voxels.
A sharp intensity drop is observed along the tube. This synthetic tube exaggerates the
situation where a sudden intensity change is present along a structure. Many existing
active contour approaches [1][8][14] can misidentify sudden intensity drops as parts of
object boundaries. On the contrary, the measureM(x) can consistently deliver positive
detected values in the middle of the synthetic tube despite the intensity drop (Fig. 2e). In
each sub-figure of Fig. 2j, it is observed when the detection radius ofM(x) differs from
the structure radius (all cases, except the one with “R = {4}“), the detection responses
are smaller than that with a matched radius (in the case of “R = {4}“). It is because
the symmetric gradient pattern vanishes as the spherical region radius differs from the
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(a)

ρ̂

(b) (c) (d) (e)

Fig. 1. Illustrations of image gradients which form various patterns. The black arrows and grey
solid lines represent image gradients and structure boundaries respectively. (a) Image gradients
along a curvilinear structure cross-sectional plane. (b-e) Four examples showing image gradients
located at the local spherical region boundaries (black dotted circles), projected along ρ̂.
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Fig. 2. (a) An xy-plane which shows the cross-section of the synthetic tube with a 4 voxel radius.
(b) An xz-plane of the synthetic tube. (c) The numbers represent the intensity of various parts of
the image in (b). (d) An xz-plane of the synthetic tube corrupted by additive Gaussian noise with
standard deviation 0.1. (e-g) The xz-planes which shows different measures. The black line in (g)
showing the boundary where maxρ̂ |s(x; rs(x), ρ̂)| is maximal along the vertical directions from
the tube center to the image background. (h-i) The profiles of different measures obtained along
the lines shown as dotted lines in (c). (j-k) The values of M(x) and maxρ̂ |s(x; r, ρ̂)|, which are
obtained using one radius for each sub-figure.
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Applying 6 image filters 
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Fig. 3. The flow chart of the efficient algorithm to retrieve the level set evolution speed function
F (x) (Equation 8). The block sizes vary according to the complexity of different tasks.

structure radius. Thus, acquiring the maximum response obtained among all radii as in
Equation 5 offers a reliable measure to quantify the symmetric gradient patterns.

As a major component of M(x), the magnitude of Λ12(·) is insignificant at object
boundaries (see the third row, the fourth column in Table 1). This observation is vali-
dated using the above synthetic tube (see the grey solid line in Fig. 2i, and it is a plot
along the dotted line (i) in Fig. 2c). Along the tube boundary, the response magni-
tude of Λ12(·) is small and slightly fluctuating along the tube boundary. The response
magnitude exhibits no significant change at the position where the tube intensity drops
from 1.0 to 0.6. This implies that the response fluctuates randomly instead of following
the tube intensity. Returning faint and randomly fluctuating response magnitudes along
object boundaries is common to the approaches that extract image features by using
symmetric measures, such as the oriented flux measure, the Hessian matrix [4][11][3]
and the discretized Laplacian operator used by the flux method [12]. Since the local
intensity variations across the object boundaries are not symmetric with respect to the
boundaries, these symmetric measures deliver noisy responses at object boundaries.
Evolving an active contour according to the symmetric measure based responses can
lead to subsequent contour leakages. In the proposed method,M(·) is obtained by sub-
tracting Λ12(·) from Q12(·). It keeps the resultant values of M(·) zero at the object
boundaries (see in the third row, the fourth to the sixth columns in Table 1). It avoids
the interference in the detection results incurred by the fluctuating responses of Λ12(·)
along boundaries.

2.3 The Oriented Flux Symmetry Based Active Contour Model

To locate the structure boundaries in the proposed active contour model, the OFA mea-
sure which can capture the antisymmetric gradient patterns occurring at object bound-
aries is utilized. Suppose that C is a closed contour and N is the contour inward nor-
mal, one of the criteria of finding the desired segmentation solution is to maximize∫
C s(S; r,N )dS, where S and dS are the position vector and the infinitesimal area on
C respectively. Regarding the value of r, for positions inside curvilinear structures or
slightly outside the structures, a proper value is the distance from those positions to the
closest object boundary. It ensures that the responses of s(·) computed at the various
positions, such as those shown in Figs. 1c and e are significant and produced by the
image gradient at the object boundaries. It is illustrated in Fig. 2k, when r is small (1
or 2 voxels), the OFA responses are concentrated in the vicinity of the tube boundary.
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As r grows, more OFA responses can be observed in the regions further away from
the tube boundary, despite the generally weaker responses than those obtained using
smaller values of r. Therefore, large values of r can guide the evolving contours which
are located further away from object boundaries. Meanwhile, a small valued r is ben-
eficial to precisely indicate the boundaries. Hence, r is estimated at each location by
observing the OFA measure along the direction giving the strongest detection response,
which is maximal among a set of radii,

rs(x) = arg max
r∈R′

(
max

ρ̂
|s(x; r, ρ̂)|

)
= argmax

r∈R′

∣∣∣∣ 1
4πr2

∫
∂Br

v(x + A)dA
∣∣∣∣ . (6)

To recognize structures adjacent to the strong edges of undesired objects,R′ can contain
only the smallest radius inR discussed in the previous section. This avoids the detection
being adversely affected by the strong edges of adjacent objects. For detection of curvi-
linear structures with complicated geometry (e.g. high curvature vessel or bifurcation)
or irregular cross-sections, R′ can be defined as the same as R. It ensures that various
positions inside or slightly outside the structures can reach the nearest object bound-
ary by those radii in R. In Fig. 2g, the value of maxρ̂ |s(x; rs(x), ρ̂)| is presented. Its
profiles along the dotted lines in Fig. 2c are given in Figs. 2h and i. Along the verti-
cal direction in Fig. 2g, from the tube center to the image background regions (in the
upper half and in the lower half of Fig. 2g), the locations where maxρ̂ |s(x; rs(x), ρ̂)|
attains its maximum are shown as two black lines. These black lines are located along
the tube boundaries, which become distinctive in the image of maxρ̂ |s(x; rs(x), ρ̂)|.
It illustrates that evolving contours according to the OFA measure with the detection
radius rs(x) can facilitate the detection of object boundaries.

The OFA measure is not limited to the detection of curvilinear structures unlike the
oriented flux measure does. The OFA measure can also highlight the boundaries of
various kinds of structures, which deviates from the curvilinear ones. However, this
flexibility implies that the OFA measure is sensitive to all intensity changes, including
the intensity fluctuation along curvilinear structures. As shown by the black solid line
in Fig. 2h, a large value of maxρ̂ |s(x; rs(x), ρ̂)| is observed when the tube intensity
drops from 1.0 to 0.6 inside the synthetic tube. Nonetheless, M(x) retains a high de-
tection response as compared to maxρ̂ |s(x; rs(x), ρ̂)| (see the black solid line and the
black dotted line in Fig. 2h). On the contrary, maxρ̂ |s(x; rs(x), ρ̂)| is large at the tube
boundary as compared to M(x) (see the black solid line and black dotted line in Fig.
2i). These two measures alternatively deliver higher responses than their counterparts at
the structure centers and at the object boundaries (also see the last two columns of Table
1). Hence, the desired resultant contour maximizes the following energy functional,

E(C) =
∫

Inside(C)

M(V)dV +
∫
C
s(S; rs(S),N )dS, (7)

where V and dV are the position vector and the infinitesimal volume respectively. The
evolving contour C is represented as the zero level of a level set function φ [9]. By
using the gradient descent approach, the dynamic of the level set function is described
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as2 φt = F |∇φ|, where F is the first variation of E(C), i.e.

F (x) =M(x)− div

(
1

4πr2s(x)

∫
∂Brs(x)

v(x + A)dA

)
. (8)

Considering the large positive responses of M(x) in the middle of curvilinear struc-
tures, the regions with large values ofM(x) can be used as the seed positions to initial-
ize the contour evolution. The function F (x) is positive inside curvilinear structures to
keep the contour expanding. It is negative at the positions slightly outside the structure
boundaries. This eventually stops the evolving contour over the structure boundaries.

2.4 Fourier Expressions of the Oriented Flux Measure and the Oriented Flux
Antisymmetry Measure

Studying the Fourier expressions helps devise the efficient computation algorithm for
the proposed measures. It also reveals the orthogonality of the oriented flux measure and
the OFA measure if they are regarded as two types of image filters. Denote FFT be
the fast Fourier transform operator, i.e. FFT−1{FFT {I}} ≡ I and u is the frequency
(in cycle per millimeter). The Fourier expression of the OFA measure s(x; r, ρ̂) can be
found by first rewriting Equation 2 as,

s(x; r, ρ̂) =
∫

Image
Dr(V )(ρ̂ · (∇g) ∗ I)(x + V )dV = ((ρ̂ · (∇g) ∗Dr)(x)) ∗ I(x),

where g is the Gaussian filter employed for smoothing the input image as discussed
in Section 2.1, and Dr(x) is a spherical impulse function which is equal to (4πr2)−1

when ||x|| = r and 0 elsewhere. By employing the Hankel transform,

FFT {(ρ̂ · (∇g) ∗Dr)} =
√−1(r||u||)−1(ρ̂ · u)e−2(π||u||)2 sin(2πr||u||). (9)

Besides, as stated in [7], f(x; r, ρ̂) can be computed by

FFT−1

{
FFT {I}

(
4πr(ρ̂(uT u)ρ̂T )
||u||2e2(π||u||σ)2

)(
cos(2πr||u||) − sin(2πr||u||)

2πr||u||
)}
. (10)

As such, the computation of the oriented flux measure and the OFA measure are con-
sidered as two filtering operations. To facilitate the discussion, we denote Φρ̂,r(u) =
FFT {(ρ̂ · (∇g) ∗Dr)}, and the non-image terms in Equation 10 (i.e. the terms after
FFT (I)) as Ψρ̂,r(u). These two functions exhibit the following properties,

Φρ̂,r(−u)Ψρ̂,r(−u)= −Φρ̂,r(u)Ψρ̂,r(u), lim
u→0

Φρ̂,r(u)= lim
u→0

Ψρ̂,r(u) = 0, and thus,∫
Image

(
FFT−1{Φρ̂,r}(x)

) (
FFT−1{Ψ}∗(x)

)
dx=

∫
Image bandwidth

Φρ̂,r(u)Ψρ̂,r(u)du=0,

2 The implementation is based on [13] and a publicly available library, ”The Insight Segmenta-
tion and Registration Toolkit” (http://www.itk.org). The level set evolution is stopped when
the increment of the segmented voxels over 20 iterations is less than 0.01% of them.

(
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(a) (b) (c) (d)

Fig. 4. The 80 × 80 × 80 voxels synthetic image used in the synthetic data experiment. (a) the
isosurface of the spiral with the isovalue of 0.5; (b) the 15th slice showing the bottom part of the
noise corrupted spiral; (c) the 65th slice showing the top part of the noise corrupted spiral; (d) the
initial level set function for the segmentation of the spiral.

where the superscript ∗ is function conjugate. Hence, given the same radius r and ori-
entation ρ̂, the oriented flux measure and the OFA measure can be regarded as two
orthogonal image filters. They convey two distinct types of information - the gradient
symmetry and the gradient antisymmetry. Fusing this information, the measure M(x)
(Equation 5) judges which type of the information is more significant at a given po-
sition. It delivers responses only if that position exhibits a greater degree of gradient
symmetry than that of antisymmetry.

On the other hand, the level set evolution speed F (x) is independent of the evolving
contour. It is therefore evaluated prior to the level set evolution process, in which,

[s(x; r, â1) s(x; r, â2) s(x; r, â3)]T =
1

4πr2

∫
∂Br

v(x + A)dA, (11)

where â1, â1 and â3 are the unit vectors along the x-, y- and z-directions. With the aid of
the aforementioned Fourier expressions, F (x) is evaluated efficiently, with complexity
O(|R|N logN). This is summarized in Fig. 3. It is noted that, whereas the complicated
formulation of F (x), its complexity is comparable to that of the FFT-based multiscale
Hessian techniques (see [7] for details). Finally, the divergence in Equation 8 is evalu-
ated using the central difference scheme.

3 Experimental Results

The proposed method is compared with two published vascular segmentation tech-
niques, the CURVES algorithm [8] (CURVES) and the flux method [12] (FLUX). Prior
to performing segmentation using these methods, the image volumes are smoothed by
a Gaussian filter with a scale factor of 1 smallest voxel length, for noise reduction for
CURVES and FLUX, and for ensuring differentiability of the discrete image signal for
the proposed method. Based on visual assessments of the clinical data, the widths of the
target structures are all less than 3mm. The radius set used for FLUX and the proposed
methodR covers the radii from 1 voxel-length (the physical length depends on the voxel
sizes of different images) to 3mm (or 8 voxel-length in the synthetic case). The second
radius set for the proposed methodR′ is the same asR in all tests except the fourth real
vascular image case. For CURVES, for each case, we present the structure which re-
ports no leakage and that segmented region has the largest number of segmented voxels
among those obtained using different heuristic parameter values used by CURVES.
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CURVES FLUX The proposed method

Fig. 5. The segmentation results of the noise corrupted synthetic spiral by using CURVES, FLUX
and the proposed method

Image dimension: 512 × 512 × 64 voxels
Voxel size: 0.39 × 0.39 × 1.0mm3

(a)

Image dimension: 512 × 512 × 64 voxels
Voxel size: 0.39 × 0.39 × 1.0mm3

(b)

Image dimension: 512 × 512 × 60 voxels
Voxel size: 0.39 × 0.39 × 0.95mm3

(c)
Image dimension: 380 × 360 × 236 voxels

Voxel size: 0.32 × 0.32 × 0.40mm3

(d)

Fig. 6. The image volumes used in the real vascular image experiment. (a, b) The perspective
maximum intensity projections, along the axial, the sagittal and the coronal directions of two
intracranial PC-MRA volumes; (c) the axial perspective maximum intensity projection (left) and
the 53th image slice (right) of an intracranial TOF-MRA volume; (d) The 182th (left) and 214th
(right) slices of a cardiac CTA volume. The red circles indicate the aorta and the blue dots are the
manually placed initial seed points. (Please refer to the electronic version of this paper for better
illustration).
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(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 7. (a, b, e, f) The segmentation results of the clinical cases shown in Figs. 6a, b, c and d
respectively, by using CURVES. (c, d, g, h) The segmentation results of the clinical cases shown
in Figs. 6a, b, c and d respectively, by using FLUX.

(a)
(b)

(c) (d)
Fig. 8. The segmentation results obtained by using the proposed method from the four angio-
graphic images shown in Figs. 6a-d
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3.1 Synthetic Data

Using a noise corrupted synthetic spiral, as shown in Figs. 4a-c, we examine the ability
of different approaches to segment an elongated structure, where the intensity is chang-
ing along the structure and image noise is present. The inner radius and the intensity
of the spiral are gradually reduced from 4 voxels and a value of 1 at the bottom of the
structure, to 1 voxel and a value of 0.5 at the top of the structure. This synthetic spiral
is corrupted using additive Gaussian noise with standard deviation equal to 0.1.

The active contours of all methods are initialized inside the bottom part of the spiral
(Fig. 4d). In Fig. 5, the segmentation results of various approaches are shown. In which,
the contour of CURVES cannot propagate along the spiral to reach the top of the struc-
ture. As the image intensity declines along the structure, the image gradient generated
by the image noise inside the spiral exerts higher image force than that exerted by the
weak boundary of the structure having low intensity value. Thus, the evolving contour
of CURVES is halted inside the structure. Besides, the contour of FLUX (Fig. 5) pene-
trates the object boundary and it results in contour leakages. It is because the symmet-
ric discretized Laplacian operator used by FLUX returns faint responses along object
boundaries. The contour is randomly evolved at the low contrast spiral boundaries and
leaks through these boundaries. On the contrary, for the proposed method, the measure
M(x) allows the contour to propagate along structure and the OFA measure stops the
evolving contour at object boundaries. The proposed method is therefore capable of
segmenting the entire spiral without leakages (see Fig. 5, the proposed method).

3.2 Real Vascular Images

There are four angiographic images employed in this experiment, including two in-
tracranial phrase contrast magnetic resonance angiographic (PC-MRA) images 3 (Figs.
6a and b), one intracranial time-of-flight MRA (TOF-MRA) image 3 (Fig. 6c) and one
cardiac computed tomographic angiographic (CTA) image 4 (Fig. 6d). The voxel inten-
sity of these images was scaled to be in the range of 0 and 1. The experimental settings
of different approaches are the same as those settings in the synthetic data experiments
except the procedures of contour initialization. For the PC-MRA and TOF-MRA image
volumes, the initial level set function is obtained by thresholding the 0.1% image voxels,
which produce the highest values of M(x) among all voxels in the image. The initial
contours are only placed in the middle of vessels with large detected values of M(x).
For the CTA image volume, the object of interest - coronary arteries are connected with
the aorta, which is not a part of the target region. They share the same intensity range.
We manually select two spheres with a radius of 3mm at two positions where the aorta
is connected with the left coronary artery, and the right coronary artery. The level set
update (i.e. the contour evolution) is disabled within these two spheres for all methods.
Two initial seeds are placed in the left coronary artery and the right coronary artery (see
the blue dots in Fig. 6d). In this CTA image, the radius set R′ of the proposed method

3 Acquired using a Philips 3T ACS Gyroscan MR scanner without the use of contrast agent, at
the University Hospital of Zurich, Switzerland.

4 Rotterdam Coronary Artery Algorithm Evaluation Framework,
http://coronary.bigr.nl/

�http://coronary.bigr.nl/�
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contains only the smallest radius in R to avoid the disturbance introduced by the edges
adjacent to the arteries (see Fig. 6d).

It is noted that the vessel intensity of the flow-sensitive PC-MRA images fluctuates
significantly because of the variation of blood flow speeds inside the vessels with differ-
ent sizes. This intensity fluctuation produces image gradient along vascular structures
and stops the evolving contours of CURVES inside the vessels (see Figs. 7a and b).
For FLUX, the faint responses detected by the symmetric discretized Laplacian opera-
tor cannot precisely position the boundaries of the vessels. The evolving contours leak
through the object boundaries and are subsequently guided by image noise as shown
in Figs. 7c and d. In TOF-MRA image, the non-vascular tissues can report intensity
values similar to those of vascular regions (see Fig 7c, right). It greatly reduces the
intensity contrast of the vessel boundaries where a non-vascular structure with simi-
lar intensity is nearby. As a result, the weak vessel boundaries cannot exert enough
image force to draw the evolving contours of CURVES along the vessels and causes
under-segmentation (Fig. 7e). In Fig. 7g, the contour of FLUX expands beyond the
weak vessel boundaries and follows the non-vascular structures. In the CTA image, the
evolving contours of both CURVES and FLUX (Figs. 7f and h) leak through the arteries
and follow the edges of the heart chamber surface. The contour evolution of FLUX and
CURVES in this case was manually stopped for contour visualization.

In contrast, the measure M(x) of the proposed method encourages contours to ex-
pand along vessels despite the intensity variation of vessels. On the other hand, the OFA
based measure, as stated in Equation 7, is capable of halting the evolving contours at
the vessel boundaries. It can segment the vessels without leakage (Figs. 8a-c). Based
on the visual comparison between the segmented vessels of the proposed method, and
the original image volumes shown in Figs. 6a-c, the proposed method is able to deliver
faithful segmentation results. It can also withstand the disturbance introduced by the ir-
relevant edges adjacent to the target structures. Thus, the proposed method successfully
segment the coronary arteries as presented in Fig. 8d.

4 Perspective and Conclusion

The proposed active contour model is devised based on various measures which aim at
locally quantifying the image gradient symmetry. In our application vascular segmen-
tation, since the tissue intensity can vary spatially due to the presence of multiplicative
bias field, the proposed model avoids encapsulating the regional intensity variance in-
formation [2][5]. Albeit the three dimensional formulation of the proposed method, it
is general to cope with curvilinear structures in two, three or higher dimensions, if any.
Also, we are acquiring more data sets and also segmenting ground truth in order to
perform quantitative comparison to other approaches.

Besides, analogous to the studies in [8][10], introducing geometric constraints to the
proposed active contour model may be beneficial. The major concern is that these ge-
ometric constraints require intensive parameter searching. Furthermore, vast numbers
of application specific constraints or supplementary information have been proposed re-
cently, for instance, detecting only structures with circular cross sections, regularization
based on the curvature of structure centerlines or structure radii, disallowing bifurcation,
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exploiting training data or interactive segmentation (see [15] for a comprehensive sur-
vey). The proposed measures can provide useful features to detect curvilinear structures
along with these constraints or supplementary information for particular applications.

Regarding the proposed active contour model, the oriented flux symmetry based for-
mulation expands the evolving contours in the middle of curvilinear structures where
the image gradients are symmetric. The contours are eventually driven to the object
boundaries, in order to maximize the gradient antisymmetry along the contour inward
normal direction. Benefited from the oriented flux antisymmetry measure and the ori-
ented flux measure, the proposed model is capable of segmenting the entire structures
without contour leakages, in both the experiments using the synthetic image and the
real images of different modalities. It is experimentally demonstrated that the oriented
flux symmetry based active contour model achieves promising segmentation results.
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Abstract. We present a novel dual decomposition approach to MAP

inference with highly connected discrete graphical models. Decomposi-

tions into cyclic k-fan structured subproblems are shown to significantly

tighten the Lagrangian relaxation relative to the standard local polytope

relaxation, while enabling efficient integer programming for solving the

subproblems. Additionally, we introduce modified update rules for max-

imizing the dual function that avoid oscillations and converge faster to

an optimum of the relaxed problem, and never get stuck in non-optimal

fixed points.

1 Introduction

We focus on the Maximum A Posteriori (MAP) inference problem with discrete
Markov Random Field (MRF) models. While applying graph cuts and iterated
graph cuts has become standard for inference with exactly solvable submodular
models, and for approximate inference with intractable models on sparse grid
graphs, respectively [5, 21], recent research has focused on involved higher order
models1 [15, 9, 16], model decomposition and lower bound maximization based
on linear programming (LP) duality [10, 12, 11, 17, 8], and tightening the com-
mon local polytope relaxation by advanced convex optimization [23, 24, 13, 20].

In this paper, we study the latter two points in connection with a particular
class of highly connected graphical models, motivated by applications in com-
puter vision. The models involve k-fan substructures2 as subgraphs of the overall
model. As illustrated in Figure 1, the defining property of this sub-structure is
that an acyclic graph is obtained if we replace all inner nodes by a single node
and merge resulting multiple edges.

Figure 2 illustrates our model for evaluating the HumanEva dataset [19]. Our
graphical model detects the human pose in each image based on appearance
features inside each view and epipolar-features between the 4 views. The random
variables represent model parts (head, elbow, hand ...) defined over a finite set
of image positions with a structure shown in Figure 2(b).

1 The order of a model is given by the highest order of a term in the objective.
2 We use the shorthand Gk,n

fan for a fan graph with n nodes and k inner nodes. If n
does not matter we just say k-fan.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 735–747, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



736 J.H. Kappes, S. Schmidt, and C. Schnörr

(a) G1,5
fan (b) G2,6

fan (c) G3,7
fan (d) G4,8

fan

Fig. 1. Examples for fan graphs. Inner nodes are connected to each other. Outer nodes

are connected to all inner nodes, but not among each other.

Exact inference algorithm using this model is not feasible in acceptable time.
By decomposing the problem in simple problems involving fan-structures as
shown in Figure 2(c), however, high-quality inference becomes feasible by opti-
mizing a bound on the relaxed linear problem via linear programming (LP) du-
ality. We demonstrate below that utilizing fan-structures significantly improves
the quality of the bounds obtained by standard LP relaxation.

(a) (b) (c)

Fig. 2. a) Images from the HumanEva dataset. Detection of human pose is done by

processing all four views simultaneously, using the graphical model shown in b). The

model enhances a standard representation for each single view by epipolar constraints

between views. c) shows one of 15 fan-structured subproblems used for tight relaxation.

The primary motivation for the decomposition of graphical models is twofold.
Firstly, an approximation to the intractable inference problem can be formulated
in terms of a two-level optimization procedure, where at the lower level inference
on tractable substructures is carried out, while the master program at the upper
level combines these partial solutions via dual variables. Secondly, the resulting
objective value at the upper level yields a bound to the original (intractable)
objective function, whose optimization through dual variables possibly meets
the value of some locally computed optimum, thus providing a certificate that
this optimum is indeed a global one. For the general background, we refer to
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standard textbooks [3, 2], and for sophisticated applications of this principle in
computer vision to, e.g. [10, 8, 12, 22].

A major difference to our work presented here is that we do not focus on graph
decompositions into substructures for which inference can be efficiently done by
standard methods, e.g. trees and belief propagation. While trees as substructures
are natural for sparse grid graphs (e.g. row/column decomposition [10, 11]), they
appear unnatural in connection with highly connected models as sketched above
in Figure 2. Rather, we directly focus on more complex cyclic substructures,
provided they are embedded into k-fans (Fig. 2(c)). This results in a relaxation
of the overall inference problem that is provably tighter than the standard local
polytope LP relaxation corresponding to tree structured subproblems. In the
literature, cyclic substructures in connection with dual decomposition have been
studied for the specific case of planar grid graphs by [11], in a general framework
without specific evaluations by [8], and by [20] in terms of iteratively adding
higher-order terms for locally improving the local polytope relaxation. Our work
differs by focusing on k-fan substructures that can be flexibly applied to a wide
range of non-planar, densely connected graphical models.

Another issue concerns the method for optimizing the Lagrangian dual at the
upper level. In most work on dual decomposition of graphical models, conver-
gence of the corresponding subgradient-based iteration is not really addressed.
Either a “sufficiently small” step size is chosen, or the basic divergent series up-
date rule is applied [7, 14]. In this paper, therefore, we merely raise this issue
in the light of more recent pertinent work [18], due to its increasing importance
in computer vision, leaving a more comprehensive investigation of this topic for
future work.

Contribution. To summarize, our contribution consists in specifying mathe-
matically the novel relaxation and showing both theoretically and empirically
the influence of the choice of the subproblems on the relaxation and inference.
In particular, we focus on k-fan substructures and general energy functions that
are not restricted to any subclass. Furthermore, we improve convergence of the
subgradient based optimization of the Lagrangian dual function.

Organization. We describe our problem decomposition and Lagrangian relax-
ation approach in Section 2 and show that this relaxation is tighter than the
standard linear programming relaxation. Optimization of the Lagrangian dual
via projected subgradient methods is discussed in Section 3. Finally, we present
in Section 4 experimental results for synthetic and real world data.

Notation. Given a graph G = (V,E) we associate to each node a ∈ V a variable
xa taking values in Xa and a energy function J(x) =

∑
c∈C fc(xc) with C ⊂

V ∪ E. For A ⊂ V , we define xA = (xa)a∈A and XA = ⊗a∈AXa, and as a
shorthand x = xV and X = XV . Following [23], we reformulate the problem of
determining the optimal configuration x in X ,

x∗ = argminx∈X
∑
c∈C

fc(xc), (1)
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in overcomplete form∑
c∈C

fc(xc) = 〈θ, φ(x)〉 =
∑

i∈I(G)

θi · φi(x) (2)

with vectors θ and φ(x) indexed by I(G) = {(c; j)|c ∈ C, j ∈ Xc} and 〈·, ·〉
denoting the inner product. Furthermore, given θ according to (2), problem (1)
is equivalent to determining μ∗ as solution to the LP

μ∗ = argmin
μ∈M(G)

〈θ, μ〉, (3)

where M(G) denotes the marginal polytope defined as convex hull of all inte-
ger configurations with respect to the overcomplete representation. The expo-
nentially large description of the feasible set M(G) reflects the combinatorial
difficulty of the inference problem and necessitates problem approximations for
general objective functions.

2 Problem Decomposition and Relaxation

In this section, it will be convenient to distinguish between original parameter
vectors θ, θ

i
and parameter vectors θi defined by the problem decomposition –

cf. (6) below. Starting with the convex optimization problem (3),

J(μ∗) = min
μ∈M(G)

〈θ, μ〉, (4)

we decompose it as follows. Given a set of graphs {G1, . . . , Gn}, with Gi =
(V,Ei) such that Ei ⊂ E and

⋃n
i=1E

i = E, we define θ
i ∈ R

I(G):

θ
i

a;j :=

⎧⎨⎩
0 if a �∈ V ∪ Ei,

θa;j/n if a ∈ V,
θa;j/#a if a ∈ Ei.

(5)

Here, #a denotes the number of edge-sets containing a. Note that the decom-
position ensures θ =

∑
i θ

i
. For each subproblem, we define another smaller

exponential parameter vector

θi := [θ
i
]I(Gi) (6)

called the projection of θ
i

with respect to I(Gi) and reformulate problem (4):

J(μ∗) = min
μ∈M(G)

∑
i

〈θi
, μ〉 (7a)

= min
μ ∈ M(G)

∀i : μi ∈ M(G)

∀i : μi = μ

∑
i

〈θi
, μi〉 eqn. (5)

= min
μ ∈ M(G)

∀i : μi ∈ M(Gi)

∀i : μi = [μ]I(Gi)

∑
i

〈θi, μi〉 (7b)

≥ min
μ ∈ R

I(G)

∀i : μi ∈ M(Gi)

∀i : μi = [μ]I(Gi)

∑
i

〈θi, μi〉 eqn. (5)
= min

μ ∈ R
I(G)

∀i : [μ]I(Gi) ∈ M(Gi)

〈θ, μ〉 (7c)



MRF Inference by k-Fan Decomposition and Tight Lagrangian Relaxation 739

Decomposition (7) has the following properties:

– If all subgraphs are trees the relaxation is equivalent to the standard relax-
ation over the local polytope [23].

– If the subproblems include cycles, we get tighter relaxations which also take
into account higher-order constraints.

In this paper, we focus on the latter option in terms of k-fan structured subprob-
lems and show that this significantly tightens the relaxation and hence improves
inference. Because problem (7c) is still difficult to solve, we focus on its dual
by adding Lagrangian multipliers for the equality constraints, yielding the dual
function

g(λ1, . . . , λn) := min
μ ∈ R

I(G)

∀i : μi ∈ M(Gi)

∑
i

〈θi, μi〉 +
∑

i

∑
α∈I(Gi)

λi
α(μi

α − μα) (8)

Since μ is unconstrained, this vector is determined by the corresponding partial
derivatives of the right-hand side of (8). This yields the condition

(λ1, . . . , λn) ∈ Λ :=
{

(λ1, . . . , λn)
∣∣∣ ∀α ∈ I(G) :

∑
i∈{j|α∈I(Gj)}

λi
α = 0

}
, (9)

and by insertion into (8) the dual problem of the relaxed LP (7c)

sup
(λ1,...,λn)∈Λ

∑
i

min
μi∈M(Gi)

〈(θi + λi), μi〉. (10)

Since the feasible set of the primal problem (7c) includes a strict feasible point,
Slater’s condition [4] holds and guarantees that the duality gap between (7c)
and its dual problem (10) is zero, i.e.

sup
(λ1,...,λn)∈Λ

g(λi, . . . , λn) =: L∗ = U∗ := min
μ ∈ R

I(G)

∀i : [μ]I(Gi) ∈ M(Gi)

〈θ, μ〉. (11)

Instead of solving the relaxed primal problem (7c) which is still fairly complex,
we can now solve the dual problem (10) by projected sub-gradient descent [3, 18],
taking advantage of the problem decomposition into tractable subproblems. To
this end, we have to optimize each subproblem

min
μi∈M(Gi)

〈
(θi + λi), μi

〉
(12)

for a given λi (cf. section 3). Rather than solving the LP in (12) directly, we solve
instead the corresponding integer programming problem. This is correct because
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vertices of the polytopes M(Gi) correspond to integer configurations. Accord-
ingly, if the decomposition has been chosen properly, these integer problems can
be solved very fast. As a by-product, we obtain an upper bound U(t) of the
original objective function (4) by evaluating3 in each step t for all subproblems
i the solutions (μi)t:

U(t) = min
t′=1,...,t

min
i=1,...,n

〈θ, [(μi)t′ ]I(G)〉 (13)

The lower bound, on the other hand, reads

L(t) = max
t′=1,...,t

∑
i=1,...,n

〈θi + (λi)t′ , (μi)t′〉. (14)

It crucially depends on the problem decomposition and thus reflects the quality
of the relaxation. Figure 3 further explains and illustrates the relation between
the different bounds and optima.

3 Solving the Dual Problem

The dual problem (10) is a nonsmooth concave maximization problem with linear
constraints. The main difference between most inference algorithm based on
dual decomposition [8, 11, 23, 24], besides the decomposition itself, concerns the
choice and the computation of updates of λ in each step. A standard solver for
such problems is the Projected Sub-Gradient Method (PSGM) [3] that requires
to compute a subgradient of g at λ. The set of all subgradients at λ is called the
subdifferential at λ and denoted by ∂g(λ). We perform inference with respect to
all subproblems and select a subgradient from the set

∂gi(λi) = ∂
(

min
μi∈M(Gi)

〈θi + λi, μi〉
)

(15)

=

{
∇〈θi + λi, μ∗〉

∣∣∣∣∣μ∗ ∈ argmin
μi∈M(Gi)

gi(λi)

}
(16)

=

{
μ∗

∣∣∣∣∣μ∗ ∈ argmin
μi∈M(Gi)

gi(λi)

}
. (17)

Concerning the subproblems, inference for a Gk,n
fan -structured model with L states

per variable can be done using the junction tree algorithm [6] with asymptotic
complexity O((n − k) · L(k+1)). We use an alternative search-based algorithm
proposed in [1] having the same asymptotic worst case runtime complexity
for fan graphs, but performs faster on average. For the synthetic data in

3 The main trick in (13) is that (μi)t′ is integer and both graphs (G and Gi) have the

same node set V , consequently the projection [·]I(G) is well defined.
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Fig. 3. This figure displays typical progressions of the bounds. Gray lines mark optimal

values for the original primal and the relaxed primal/dual problem. Note that L∗ = U∗

(zero duality gap for the relaxed problems). The blue line shows the current lower bound

L(t) of the dual relaxed problem. The red line marks the current upper bound U(t) of

the primal relaxed problem whose computation is too complex. Therefore we compute

instead an upper bound U of the minimum of the original primal problem (marked

in red). The observed gap U(t) − L(t) includes the current duality gap as well as the

current relaxation gap, and we can not infer how they split up the total gap. However,

we know that the duality gap will be zero and as a consequence, that after convergence

the remaining gap is only due to the relaxation.

section 4 this decreases the dominant term of the average complexity from Lk+1

to approximately L0.5·(k+1), which is significant in practise.
Algorithm 1 shows a modified form of the PSGM. This modified version, also

known as heavy ball method, does not step into the direction of the last subgra-
dient, but rather into the direction of a convex combination of the subgradients
observed so far. For ρ(t) = 1, we obtain the standard PSGM, and for constant
sequence ρ(t) ∈ (0, 1) a ’damped version’ of it. We can guarantee that Algorithm
1 converges to an optimum provided that

lim
t→∞ τ

(t) = 0,
∞∑

t=0

τ (t) = ∞, lim
t→∞

τ (t)

ρ(t)
= 0. (18)

For τ (t) = τ 1
1+α·t conditions (18) is satisfied for any constant sequence ρ(t).

The speed of convergence depends highly on good choices of the sequence τ (t),
which we determine offline by grid-search on the parameter space for a particular
problem class and the corresponding graphical model. However, a good choice
of ρ(t) also depends on the current value of τ (t). Ruszczynski [18] suggests a
damping sequence ρ(t) = ρ τ (t)

τ and shows that for this sequence Algorithm 1
converges for ρ ∈ (0, 1], which generalizes the standard conditions (18).
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Algorithm 1. Projected Sub-gradient Method
t = 0, λ(0) = 0 ∈ Λ
repeat

s ∈ ∂g((λ)(t))

if t == 0 then
ζ(t) = s

else
ζ(t) = ζ(t−1) + ρ(t)(s − ζ(t−1))

end if
Compute U(t) and L(t)

(λ)(t+1) =

[
(λ)(t) + τ t · ζ(t)

]
Λ

t = t + 1

until ‖U(t) − L(t)‖ ≤ ε or t > tmax

4 Experiments

Dual decomposition with k-fans: computer generated example. We
first demonstrate the increasing accuracy achieved by selecting more complex
k-fan subproblems, that is by raising k. We generated complete (fully con-
nected) graphs G = (V,E) containing first and second order potentials uniformly
sampled between 0 and 1. Next we decomposed the graph into #|V |/k$ graphs
Gi = (V,Ei), as shown in Figure 4.

(a) G6
full (b) Decomposition in three 2-fans

Fig. 4. A decomposition of a full connected graph with 6 nodes in three 2-fan structured

graphs

As Figure 5 reveals, we obtain much tighter bounds for decompositions with
larger k. Also we achieved better integer solutions and this quite efficiently.
Decompositions into cyclic subproblems outperform decompositions with acyclic
subproblems (lowest curve). This finding agrees with observations in [11, 8, 20].
Our results show that this property carries over to more complex problems with
k-fan graphs as subproblems.
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Fig. 5. Lower bounds for different k-fan decompositions as functions of runtime. The

original problem involves 12 variables and 10 labels. The second order graph is fully

connected, and the potentials were uniformly sampled between 0 and 1. Increasing k
leads to tighter (larger) bounds.

Dual decomposition with k-fans: HumanEva dataset. The HumanEva
dataset [19] contains 7 calibrated video sequences (4 grayscale and 3 color) that
are synchronized together with 3D body poses obtained from a motion capture
system. We used the 4 grayscale views and trained a model for images without
taking into account temporal context. The graphical structure of our model is
shown in Figure 2(b). Random variables take positions in the image domain, and
the objective contains unary and pairwise potentials which include information
about geometry and appearance. Nodes corresponding to each single view span a
fully connected graph. Edges between views represent soft epipolar constraints.
For a detailed description of the model, we refer to [1].

As inference for such models is difficult, we use a decomposition of this model
into a set of 1-, 4- and 5-fans in order to derive a relaxation of the original prob-
lem as described above. The 1-fan corresponds to the approach of Komodakis
[12] applied on our non-grid graphs. The 5-fan decomposition consist of 12 sub-
problems. Inner nodes of the fan of each subproblem correspond to the same
single view, as sketched in Figure 7(c). Surprisingly the use of the 5-fans brings
no advantage over the 1-fans for this problem. Rather, the decomposition with
1-fans gives even better results (see Table 1). The explanation for this is firstly,
that the local relaxation inside a single view seems to be quite tight, and sec-
ondly that the computation of a subgradient of the 5-fan decomposition is more
expensive than for 1-fans, hence takes more runtime. As we select some subgra-
dient of the set ∂g(λ), our current implementation does not check the optimality
condition 0 ∈ g(λ) (Fermat condition), and therefore we additionally impose an
upper bound on the runtime for possibly terminating the iteration.

In order to effectively enforce higher order constraints between the same parts
in different views, we set up a 4-fan decomposition in which the subproblems
contain the clique of variables assigned to the same body-part in all views, as



744 J.H. Kappes, S. Schmidt, and C. Schnörr

Fig. 6. The plot shows the progression of lower and upper bounds as a function of

runtime. While both 1-fan and 5-fan decompositions restricted to single views per-

form similarly, the 4-fan decomposition enforcing epipolar consistency generates signif-

icantly tighter bounds and better integer solutions. The decompositions are sketched in

Figure 7.

shown in Figure 7(b). This decomposition gives much better bounds and guar-
antees a gap which is less than ε = 10−6 in nearly 80% of the images and always
outperforms the 1-fan decomposition. See Table 1 for more details.

These results show that while our approach can be applied to general graph-
ical models, the overall performance may depend on the choice of a particular
decomposition based on application-specific expertise.

(a) 1-fan (b) 4-fan (c) 5-fan

Fig. 7. The three graphs above sketch the structure of subproblems corresponding to

three decompositions of the graphical model used for the HumanEva data. The 4-fan

subgraphs include all epipolar constraints between single parts. The 5-fan decomposes

the 15 nodes in each single view into three 5-fan substructures.
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Table 1. We tested 3 different decompositions for 103 images from the HumanEva

dataset. We decomposed the original problem into 1-fans, 4-fans and 5-fans as shown

in Figure 7. We used a constant as well as a decreasing ρ-sequence (the latter one

marked with *) for subgradient ascent with ε = 10−6. Choosing 5-fans inside single

views does not improve inference while 4-fans between views results in much tighter

relaxations. Furthermore, the decreasing ρ-sequence leads to faster convergence. The

leftmost two columns specify how often the remaining gap was smaller than ε, and how

often the best lower bound over all 6 approaches was reached. The 3rd and 4th column

specify mean values of the gap and the lower bound. Finally, we compared the runtime

for all data where all 6 approaches achieved ε-optimality.

ε-gap best lower bound mean gap mean lower bound mean runtime

convergence achieved

1-fan 27.18% 18.45% 0.0165 8.4816 1330 sec

1-fan* 35.92% 24.27% 0.0149 8.4820 1140 sec

4-fan 64.08% 60.19% 0.0011 8.4942 917 sec

4-fan* 78.64% 98.06% 0.0009 8.4943 577 sec

5-fan 11.65% 11.65% 0.0238 8.4760 2422 sec

5-fan* 23.30% 22.33% 0.0178 8.4805 1389 sec

5 Conclusions

We studied the decomposition of complex discrete graphical models into k-fan
structured subproblems by Lagrangian relaxation. This enables to take into ac-
count more complex constraints as part of the subproblems that can still be
solved to optimality within reasonable runtime. We also improved the perfor-
mance of the subgradient ascent iteration for solving the Lagrangian dual prob-
lem, which is relevant not only for our problem but for any dual decomposition
approach that are increasingly applied in computer vision research.

Experiments show that just choosing arbitrary decompositions into larger
subproblems does not automatically lead to significantly better bounds. With
little application-specific expertise, however, decompositions can be chosen that
improve inference considerably, at moderate additional costs. The latter becomes
immaterial for parallel implementations that are naturally supported by the
problem decomposition.

Choosing automatically an optimal set of subproblems remains an open prob-
lem for future work, as is the case for automatically determining optimal pa-
rameter values for subgradient-based iterative optimization of nonsmooth dual
functions.

Acknowledgement. Authors acknowledge partial support by the Research
Training Group 1653 (http://graphmod.iwr.uni-heidelberg.de/) funded by
the German Research Foundation (DFG).
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Abstract. Visual vocabulary construction is an integral part of the pop-

ular Bag-of-Features (BOF) model. When visual data scale up (in terms

of the dimensionality of features or/and the number of samples), most

existing algorithms (e.g. k-means) become unfavorable due to the pro-

hibitive time and space requirements. In this paper we propose the ran-
dom locality sensitive vocabulary (RLSV) scheme towards efficient visual

vocabulary construction in such scenarios. Integrating ideas from the

Locality Sensitive Hashing (LSH) and the Random Forest (RF), RLSV

generates and aggregates multiple visual vocabularies based on random

projections, without taking clustering or training efforts. This simple

scheme demonstrates superior time and space efficiency over prior meth-

ods, in both theory and practice, while often achieving comparable or

even better performances. Besides, extensions to supervised and kernel-

ized vocabulary constructions are also discussed and experimented with.

1 Introduction

The bag-of-features (BOF) model (also known as the bag-of-words) has gained
much empirical success in producing orderless representations of feature-rich vi-
sion data. In this model, in order to obtain uniform representations for feature
sets of varying cardinalities, one performs feature quantization for each primi-
tive feature referring to a learnt “visual vocabulary”, and then summarizes each
set into histograms. Despite its simplicity, the BOF model has shaped the cur-
rent paradigms towards many high-level vision problems, e.g., object recognition
and content-based image retrieval (CBIR). In fact, state-of-the-art approaches
to object recognition are to first extract local descriptors such as SIFT [1] from
interest points (i.e., local extrema in scale space pyramid) in images, and then
devise Mercer kernels such as Pyramid Match Kernels (PMK) or Histogram
Intersectional Kernels (HIK) between pairwise feature histograms. Finally, so-
phisticated classifiers such as the Supporting Vector Machines (SVM) are used
for per-sample decision.
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Visual vocabulary construction is critical to the BOF model. In ideal cases,
every visual word in the vocabulary bears concrete meaning, or semantic, in-
spired from the similar idea of bag-of-words models in text analysis. In practice,
however, quality of the vocabulary depends on numerous factors associated with
the vocabulary creation process, such as the source of samples, the number of
visual words specified, and the similarity metric. Hence, a practical criterion for
a proper visual vocabulary could be visual features near to the same visual word
bear some similarities. This in essence turns the vocabulary construction prob-
lem into partitioning the visual feature space according to a few data samples.
Numerous methods (as described in Sec-1.1) have been proposed to address this
partition problem.

Complications associated with vision data, however, stem from the typical
scale issue including huge amount and high dimensionality. For example, the
popular SIFT descriptor [1] used for local visual feature description has 128 di-
mensions, while a typical image at normal resolution can produce 1k ∼ 2k such
primitive feature descriptors. The complexity quickly explodes for real-world vi-
sion databases that usually consist of millions or even billions of such images.
Moreover, peculiarities with high dimensionality, such as concentration of dis-
tribution [2][3], show up frequently and deserve special investigations. Questing
into large-scale problems, most techniques that work nicely in low-dimensional
spaces with small amount of data may not healthily scale up. This calls for novel
solutions that are efficient and dedicate for large-scale data while producing ac-
ceptable levels of performance.

1.1 Prior Work

There are intimate connections between the vocabulary construction and the
clustering/space partitioning problem, the latter of which is widely studied in
machine learning. Hence various unsupervised clustering methods have been ap-
plied to this particular problem, among which k-means clustering1 is the most
popular. Other methods include mean-shift [4], tree-based coding (e.g., tree in-
duced by hierarchical k-means) [5]. On the other hand, for problems where super-
vision or prior knowledge are available, e.g., labels or segmentations for images,
sparsity in representation, supervision is applied to partially guide the unsuper-
vised clustering (e.g., random forest [6] based methods such as ERC-Forest [7]),
or to learn informative vocabularies directly (e.g.,[8][9]). Nevertheless, most of
the supervised vocabulary learning techniques are very expensive and unlikely
to scale up nicely. Hence we will focus on unsupervised clustering techniques
(e.g. k-means) and extremely efficient and flexible supervised techniques (e.g.
the random forest family).

Sparse coding and its various applications [10] are perhaps the most inviting
work into high-dimensional spaces for vision research. In fact for clustering [2]
reveals that in high-dimensional spaces, clustering methods such as k-means tend

1 Hereafter we default k-means to the hierarchical k-means algorithm due to its effi-

ciency until otherwise stated.
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to return many similar centers to a query, which makes these methods rather
unstable. This is partially explained by the concentration of finite number of
samples as reported by many authors, e.g. [2][3]. In this case, aggregation of
distinct clustering results prove useful to enhancing the stability. This is the
underlying principle for the random forest method [6], which also inspires our
method.

Randomized algorithms have been widely studied and analyzed in algorithm
designs [11]. For large-scale problems, [3] has tried to contrast the random pro-
jection with the classic PCA technique. Moreover random vectors sampled from
the unit sphere have served as the hashing vectors for one family of LSH [12].
In this vein, there is fruitful research work on LSH theory (e.g.,[13]) and appli-
cations (e.g., image database indexing and search[14]). Our method build from
the idea of LSH.

1.2 Our Approach

We propose and empirically validate the idea of randomized locality sensitive
vocabulary (RLSV), which is inspired by both RF and LSH. Instead of build-
ing visual vocabularies by optimizing a global objective, our proposed method
generates visual words by applying a sequence of random linear bipartitions.
Assume all samples are originally embedded in a specific metric space (e.g.,
Hamming space, 	p-normed space). For any sample pair, theoretic analysis of
LSH guarantees that their collision probability in the resulting vocabulary is
tightly related to the pairwise similarity or distance. Furthermore, to reduce the
inherent randomness, multiple random vocabularies are independently created
using the same method, and the final inter-sample distance or similarity is based
on the consensus of all vocabularies.

Compared with existing methods, the proposed RLSV has the following mer-
its: 1) No time-consuming training or clustering stage in RLSV. The major com-
putational cost comes from the random hash function generation and histogram
binning operations, which can be efficiently handled. 2) Noise resistance and
stability by exploiting the ensemble technique. RLSV generates an ensembles of
several vocabularies to mitigate the effect of randomness and noise. 3) As stated
above, nearest-prototype based methods (e.g., k-means) tend to suffer from the
so-called curse of dimensionality problem. In contrast, the performance of RLSV
is stable for high-dimensional data. 4) Compared to methods such as RF which
require supervision, RLSV is unsupervised in nature but can be readily extended
to supervised and kernerlized cases.

2 Randomized Locality Sensitive Vocabularies

In this section and the next we elaborate on the proposed vocabulary construc-
tion algorithm, and discuss its relationship to existing methods. We provide
theoretic analysis on the time and space complexity in contrast with k-means
and RF, and also present extensions to the supervised or kernelized cases.
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2.1 Preliminaries

A key ingredient to many visual recognition and retrieval applications is to
search k-nearest-neighbors (k-NN) for the query (or testing sample). In many
cases the performance of the whole system heavily hinges on the efficiency of
the k-NN procedure. In practice, exact k-NN is somewhat unnecessary, since
in many scenarios approximate nearest neighbors (ANN) results in nearly the
same performance. Several efficient algorithms are known for low-dimensional
cases (e.g., up to 10 to 20), such as the kd-tree [15] algorithm. However, for
high-dimensional cases, these methods often provide little improvement over
a linear scan algorithm, which is known to be the phenomenon “the curse of
dimensionality”. In recent years, various locality sensitive hashing (LSH) [16][13]
methods are proposed to tackle this problem.

Let H be an LSH family defined on metric space R
d. For any x, y ∈ R

d, the
following relationship holds2:

∀h ∈ H, P r[h(x) = h(y)] = κ(x, y), (1)

where κ(·, ·) denotes the similarity measure between samples x and y. In other
words, x and y’s collision probability (i.e., being mapped to the same hash
bucket) is monotonically increasing with their similarity value, which is known
as the “locality sensitive” property. Several LSH families have been developed
for various distances (or similarities). Here we list some representative work:
Arccos distance: for real-valued feature vectors lying on hypersphere Sd−1 =
{x ∈ R

d | ‖x‖2 = 1}, an angle-oriented distance can be defined as Θ(x, y) =
arccos

(
x·y

‖x‖‖y‖
)
. Charikar et al. [12] proposes the following LSH family:

h(x) =
{

0, if ρ
x < 0
1, if ρ
x ≥ 0 (2)

where the hashing vector ρ is uniformly sampled from the unit hypersphere Sd−1.
The collision probability is Pr[h(x) = h(y)] = 1−Θ(x, y)/π.
	p distance: for linear vector spaces equipped with the 	p metric, i.e.,D�p

(x, y) =(∑d
i=1 |xi − yi|p

) 1
p

, Datar et al. [16] proposes a hashing algorithm based on lin-
ear projections onto a 1-dimensional line and chopping the line into equal-length
segments, as below:

h(x) =
⌊
ρ
x+ b
W

⌋
, (3)

where the hashing vector ρ ∈ R
d is randomly sampled from the p-stable distri-

bution and %·& is the flooring function for rounding. W is the data-dependent
window size and b is sampled from the uniform distribution U [0,W ).

2 Note that other definitions of LSH exist, such as the one in [17]. However, they are

fundamentally equivalent to the current.
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We employ the arccos distance family in the current work, and the locality
sensitivity property will be key to ensuring that our hashing vectors properly
partition the feature space such that near neighbors are grouped together with
high probability.

2.2 Overview

K-means is probably the most popular due to its empirical success. The goal
of k-means is to seek K prototypes (or cluster centers) that minimizes a pre-
specified functional value. These prototypes constitute a Voronoi diagram per se
and each sample is assigned to its nearest prototype according to some specific
distance metric. Despite its popularity, for an input feature set of size n, the
classic k-means requires O(Knd) operations per iteration and typically costs
tens of iterations before convergence, which is computationally forbidden for
massive data source, high dimensional feature spaces and large vocabulary sizes.
Tree structured vocabulary [5][7] requires shorter training time compared with
k-means, yet consuming exponentially increasing memory space (w.r.t. the tree
depth) to store the splitting information (random dimension, threshold etc.) of
inner tree nodes.

Compared with these aforementioned structures, the proposed RLSV method
is superior in terms of both memory requirement and training time. The major
weakness is the inferior discriminant ability of single vocabulary resulting from
the intrinsic randomness in visual word generation. To mitigate it, a straight-
forward solution is to collect an ensemble of independent random vocabularies,
similar to the idea in ERC-Forest [7].

2.3 RLSV Construction

The algorithmic pipeline for RLSV can be described in three consequent steps
as follows:

Step-1: visual word generation Assume the similarity between any two sam-
ples p, q ∈ R

d can be measured by κ(p, q). Previous studies (see [18] for a brief
survey) reveal the existence of LSH families for many well-known metrics or sim-
ilarities such as 	p. Formally, let H be an LSH family such that for any hash func-
tion h ∈ H : R

d → {0, 1}, the locality-sensitive property holds. Suppose B hash
functions are independently generated from H, obtaining H = 〈h1, h2, . . . , hB〉
after direct concatenation. We proceed to give a formal definition for “random
visual word” as below:

Definition 1. (random visual word): there is a bi-mapping between any vi-
sual word wi and valid permutation πi from {0, 1}B. Any two samples p, q ∈ R

d

belong to the same visual word if for any i ∈ {1, . . . , B}, there is hi(p)⊕hj(q) = 0,
where ⊕ denotes the XOR bit operation.

In ideal case, B hash functions are able to produce at most 2B unique vi-
sual words. However, in practice the evolutionary curve of visual word count
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seldom demonstrates such an exponentially growing tendency. The phenomena
can be geometrically understood, since it is almost impossible for the hyper-
plane induced by a hash function intersects with all other polyhedrons produced
by other hash functions. Since the relationship between B and the number of
valid vocabulary entries cannot be accurately determined, practically we main-
tain the record of vocabulary sizes and continue adding new hash functions until
a pre-defined vocabulary size M is reached.

Step-2: visual word filtering In Fig. 1 we plot the sample counts correspond-
ing to distinct visual words. It can be seen that it roughly follows a power-law
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Fig. 1. Illustration of the typical distribution of features (left, sorted descendingly)
and Shannon entropy of labels (right , sorted descendingly) for a 1024 word visual
vocabulary in a multi-class problem.Empty words are omitted. Non-informative bins
of the vocabulary can be filtered out accordingly by throwing away low-frequency
bins.

distribution and thus part of the vocabulary can be trimmed without notable
information loss. Moreover, in the supervised (or semi-supervised) settings (dis-
cussed in Sec-3.2), we can also abandon the visual words that have weak discrim-
inating power. For multi-class problems, useful statistics can be calculated based
on the entropy of class-label distribution for each valid visual word. In Fig. 1 we
plot the entropy distribution on the data set of Caltech-101 (vocabulary size M
= 1000). In the above two cases, a simple threshold-based visual word filtering
will benefit outlier removal and yield more compact representations.

Step-3: histogram binning and normalization In practice, we maintain
L independent random vocabularies to ensure the stability and enhance the
performance. After vocabulary construction, each feature bag can be transformed
into uniform histogram representations by casting its elements into visual words
and then perform counting and normalization. For each feature, the binary hash
bits H = 〈h1, h2, . . . , hB〉 determine a unique decimal value in [0, 2B ]. Recall
that there are actually no valid visual words corresponding to most decimal
values, we maintain a word-key mapping table T : {0, 1}B → {1, . . . ,M} for the
purpose of efficient binning.
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2.4 Complexity Analysis

Here we provide theoretic comparisons amongst RLSV, ERC-Forest (ERCF),
and Hierarchical k-means (HK), in terms of the vocabulary construction time
complexity, storage requirements, and the query complexity (i.e., a new vector
gets assigned to one of the bins in the vocabulary). Table 1 presents these results
in Big-O notation. Here we assume all tree-structures are with splitting factor
of 2, and D for feature dimension, N for total number of available samples, K
number of desired cluster centers. For simplicity, we further assume K = 2d,
where d+1 will be the tree depth for binary splitting trees as we have assumed.
Note that c is an undetermined constant in (1, 2), accounting for the empty

Table 1. Comparison of time and space complexity of different methods

Algorithm Construction Time Space Complexity per Word Query Complexity

RLSV O(D logcK) O( logc K
K D) O(D logcK)

ERCF O(
√
DN log2K) O(K−1

K D) O(log2K)
HK O(2DN log2K) O( 2(K−1)

K D) O(2D log2K)

buckets that have been generated and trimmed after random projections. For
the time complexity, RLSV is independent of N , so it can scale up nicely even
when the data set is huge. For the storage requirement, KLSH approaches 0 for
space per word as K goes up, whereas the other two methods remain constant
for large K. It is unfortunate that the query complexity of RLSV is not as low
as the ERCF, which could be hurt for very high-dimensional data.

3 Extensions

The algorithm presented in subsection 2.3 targets unsupervised cases in finite-
dimensional linear feature spaces. However, both kernel tricks and supervision
information are ubiquitous in computer vision databases. For the former, the
pairwise similarity is gauged via the inner product in reproducing kernel Hilbert
space (RKHS) [19]. While for the latter, supervision information from manual
labeling or annotations is available to regularize the constructed visual words.
Both of them are common scenarios in real-world applications. In this section
we discuss the extensions to these cases.

3.1 Kernelized RLSV (K-RLSV)

Note that choice of an LSH family in an application depends on the underly-
ing metric in the feature space. Here we focus on 	p distance when p = 2 and
Arccos distance. Recall that in both cases LSH is feasible based on sampling
from standard Gaussian distribution which belongs to the p-stable distribution.
Generally, sampling in RKHS is difficult owing to the lack of explicit feature
representation. However, we have the following observation (similar to the the-
oretic results in [14] yet no zero-centered assumption on the Gram matrices
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here), which reveals that sampling from Gaussian distribution in Hilbert space
is feasible:

Theorem 1. (	2-keeping projection in RKHS) Denote κ(·, ·) as the inner
product in Hilbert space K. Given an m-cardinality data set X and corresponding
Gram matrix G, the 	2-metric keeping projection can be expressed as p(x) =∑m

i=1 ω(i)κ(x, xi), where ω(i) only relies on G.

Proof. Denote the implicit Hilbert mapping function as ψ. The geometric mean
can be computed as μψ = 1

m

∑m
i=1 ψ(xi). For a t-cardinality subset S ⊂ {1 . . .m},

let z = 1
t

∑
i∈S ψ(xi) and z̃ =

√
t(z−μψ). According to the central limit theorem,

z̃ is distributed as Gaussian Φ(0, Σ), where Σ is the covariance matrix of X .
Further applying a whitening transform, we can obtain the desired hash vector
in K, i.e. r = Σ1/2z̃. For any datum x, h(x) = ψ(x)
Σ1/2z̃.

Given Gram matrix G = Ψ
Ψ , where each column of Ψ corresponds to a
feature vector in data set X . It is easily verified that

z̃
Σ1/2ψ(x) = z̃
(ΨQ)(QGQ)−
1
2 (ΨQ)
ψ(x) (4)

where Q = I − 1
mee


. Substituting z̃ =
√
tΨ( 1

t δS − 1
me)


, where δS is a binary
indicator vector for subset S. Finally we get

p(x) =
[√
t(

1
t
δS − 1

m
e)GQ(QGQ)−

1
2Q


]
Ψ
ψ(x) (5)

Let ω �
[√
t( 1

t δS − 1
me)GQ(QGQ)−

1
2Q


]
, thus the conclusion holds. ()

The complexity of the above procedure is low sincem! n where n is the sam-
ple count of the whole database (e.g., m = 200 ∼ 1000 and n is probably on the
order of million or billion). From the property of p-stable distribution, for samples
x, y, projection difference |p(x)−p(y)| =

∣∣∑m
i=1 ω(i)κ(x, xi)−

∑m
i=1 ω(i)κ(y, xi)

∣∣
sustains their distance in the implicit RKHS induced by κ(·, ·), which makes the
LSH algorithms mentioned in Section 2.1 feasible.

3.2 Discriminative RLSV (D-RLSV)

Denote the ensemble of all feature bags as B = {bi}, where each bag bi =
{xi1 , . . . , xin}. In the supervised case, a unique label yi is assigned to bag bi. For
tractability, we adopt the same assumption to [7], i.e., assuming all features in
a bag share the same label. Recall that the scheme in subsection 2.3 is totally
random. A possible improvement is to sequentially select an optimal hashing
vectors from a candidate pool according to pre-specified label-oriented crite-
rion, which motivates the Discriminative RLSV (D-RLSV) here. The proposed
method works as follows: suppose k hashing vectors have been generated and
denote the resulting visual words as Vk = {wi, i = 1 . . . nk} (nk is the vocabulary
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size). To choose the (k+ 1)-th hashing vector, for each candidate h̃ we calculate
a score based on the Shannon entropy as suggested in [20], defined as:

Sk+1(h̃) =
1
nk

nk∑
i=1

2 · Ii(h̃)
HC(ωi) +HS(h̃, ωi)

, (6)

where HC
i (h̃) denotes the entropy of the class distribution in the i-th visual

word. Note that adopting h̃ will split each of the existing visual words into two.
HT

i (h̃) describes the split entropy of the i-th visual word. Formally,

HC(ωi) = −
∑
l∈L

nl

n
log2

nl

n
, and HS(h̃, ωi) = −

2∑
p=1

np

n
log2

np

n
. (7)

The maximum of HT
i (h̃) is reached when the two partitions have equal size.

Based on the entropy of a given visual word, the impurity can be calculated by
the mutual information of the split, i.e.,

Ii(h̃) = HC(ωi) − n+

n
HC(ω+

i ) − n−
n
HC(ω−

i ), (8)

where ω+
i , ω−

i are the split of ωi by h̃, and n+, n− denote the number of features
belonging to each new visual word respectively. Finally, the optimal hashing
vector for the (k+1)-th iteration can be determined via h∗ = arg maxh̃ Sk+1(h̃).

4 Evaluation

In this section, we evaluate the proposed RLSV and its extensions on real-world
data sets under three different task settings, i.e., action recognition in video,
object recognition, and near-duplicate video detection. Our main concerns in-
clude: 1) time used to construct visual vocabularies. 2) memory storage used to
keep vocabulary-related information. 3) performance in terms of accuracy. All
the experiments are conducted on our common PC with Due-core 3.0Ghz CPU
and 8GB physical memory. We choose two representative methods, i.e., Hierar-
chical K-means and ERC-Forest [7] for comparison. For the former, we adopt
a tree branching factor of 2. All statistics are obtained by averaging multiple
independent runs.

Experiment-1: KTH Video Database

The KTH video database was developed by Schuldt et al. [21] in 2004 and is one
of the popular benchmarks for human action recognition. It contains six differ-
ent actions captured with appearance variations and mild camera motions such
as zooming in and zooming out. The actions are performed by 25 subjects in 4
different scenarios. Each video clips are segmented into 4 sub-clips, resulting in
2400 video sequences in total. See Fig. 2 for the illustration of KTH video clips.
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Fig. 2. Top: Example frames from KTH video database. Bottom Left: Averaged
recognition rates. Bottom Right: Storage cost for each visual word. RLSV
can consistently achieve comparable performance (with little deviation) with ERC,
while consuming less memory. By comparison, k-means is worse in both performance
and space efficiency. Please refer to the color pdf for better view.

We use the same dataset splitting as in [21], which contains a training set (8
persons), a validation set (8 persons) and a test set (9 persons). For local fea-
ture descriptors, we describe each video segment using Space-time interest points
(STIP) as in [21], around which histogram of gradient (HOG) and histogram of
flow (HOF) features are extracted. Both of the counts of independent vocabu-
laries in RLSV or trees in ERC-Forest are set to be 50. Recognition accuracies
are presented on the bottom left of Fig. 2. RLSV algorithm family demonstrates
comparable discriminating ability to ERC-Forest, but both are obviously better
than K-means. D-RLSV reaches a peek performance of 91.4% with around 4000
visual words, which is in sync with the setting and results reported in [22]. In
the bottom right of Fig. 2, we illustrate the averaged memory storage for the
vocabulary-related information per visual word, which well validates our previ-
ous complexity analysis.

Experiment-2: Caltech-101

Caltech-101 is constructed to test object recognition algorithms for semantic cat-
egories of images. The data set contains 101 object categories and 1 background
category, with 40 to 800 images per category. As pre-processing, the maximum
dimension of each image is normalized to be 480-pixel. Most objects contained
in the images are of similar scale and orientation. However, considering the large
inter-category variation on appearance, lighting and occlusion, the recognition
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task on Caltech-101 is still challenging and well suitable to testing various local
features and visual vocabularies.

For fair comparison between different vocabularies, we guarantee that they
share the same type of features, and any post-processing on them. Specifically,
we extract 3000 SIFT descriptors from each image. Unlike the traditional dense
sampling strategy on a uniform 2-D image grid, we determine both the locations
and scales of each SIFT feature in a random way [23], ignoring more complex
and effective sampling schemes such as [24]. However, the experimental results
for such a simple scheme are amazingly good, as shown in Fig. 3.
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Fig. 3. Left: Performance with 15 training samples per category. Our RLSV
family shows consistently (with little deviation) comparable or even better per-
formance than the other methods. Right: Vocabulary sizes under varying num-
ber of hashing vectors in RLSV or tree depth in ERC-Forest. Please refer to the
color pdf for better view.

We test the proposed method in two settings, either with 15 or 30 training
samples per category. Here we only present the former due to the space con-
straint and also the observation that the latter case concurs with the former in
terms of algorithmic behaviors as compared to other methods. The peak perfor-
mance (41.4% for 15 training samples per class) appears with roughly 700 visual
words. The performance drastically decreases with extremely smaller or larger
vocabularies, which is consistent with previous study in computer vision and our
experimental settings. For parameter setting, we use 20 independent visual vo-
cabularies for RLSV and its extensions, and 20 trees for the ERC-Forest. In the
classification stage, we regress the histogram feature of the testing sample on the
column space spanned by all the training samples in each category, and measure
the distance with the regression residue. The overall distance is computed as the
summation over individual visual vocabularies or random trees. Classification
methods like SVM or NN produce similar yet slightly worse results. As seen in
Fig. 3, the accuracies produced by RLSV-related methods and ERC-Forest are
comparable, and all are superior to hierarchial K-means. Moreover, it is also
observed that the vocabulary sizes roughly linearly increase with respect to the
number of hashing vectors in RLSV and tree depth in ERC-Forest or K-means,
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although the increasing rate of RLSV-related methods are much smaller than
others.

An interesting comparison is between k-means and random projection (into
a 60-dimensional lower space) followed by k-means (RP-kmeans). The random
projection is meant to be a lightweight replacement of the PCA for dimensional-
ity reduction as suggested in [3]. And the simple scheme consistently outperforms
the simple k-means for all vocabulary sizes. This can be partially explained by
the property of reduced eccentricity exhibited by the random projection dis-
cussed in [3]. Nevertheless, there are still significant performance gaps between
RP-kmeans and RLSV or ERC-Forest methods. Moreover, there is no funda-
mental change in the time and space complexity.
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Fig. 4. Left: Performance evolution curve with respect to the number of hash
tables in RLSV. Right: Time spent to construct visual vocabularies for various
approaches.

A random vocabulary as in RLSV or ERC-Forest is very easy to generate,
but yet a single one typically performs inferiorly even as compared with k-means
in the classification phase. However, we argue that the ensemble of independent
“weak” vocabularies significantly outperforms a single elaborately-designed vo-
cabulary, in the same spirit to the bagging algorithm developed in machine
learning. We plot the performance evolution curve w.r.t. the number of hashing
vectors for RLSV on the left of Fig. 4. As can been seen, the performance of
RLSV ensemble hikes rapidly and overruns k-means with only a small number
of weak vocabularies.

Fig. 4 (right) also provides an illustration of the time cost for vocabulary con-
struction consumed by various methods. Time spent on vocabulary construction
roughly follows a log-linear rule. Among them, RLSV and K-RLSV are order-
of-magnitude faster as compared to others.

Experiment-3: Near-Duplicate Video Detection

We also validate the proposed RLSV method for detecting near-duplicate video
clips. Being intrinsically unsupervised, ERC-Forest and D-RLSV are not suit-
able. For such applications, RLSV beats K-means owing to its fast speed and
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high flexibility. The near duplicate video benchmark is provided by Wu [25]. The
benchmark comprises 12876 video clips, divided into 24 sets. The groundtruth
of each video set is manually labeled, and the most relevant video is treated as
the query video. The task is to distinguish near-duplicate videos to the query
among each video set.

Video
#1744

Video
#3779

Fig. 5. Selected video clips from Wu’s near-duplicate detection database

Table 2. Comparison of different approaches on near-duplicate video detection

K-means RLSV K-LSV

Mean Average Precision (MAP) 0.9280 0.9411 0.9442

Time for vocabulary construction (in second) 7.76 2.29 × 10−4 1.53

Time for code generation (in second) 1.85 × 10−2 3.4 × 10−3 2.09 × 10−2

We adopt a key frame based approach. Each video is first segmented and one
key frame is taken from a segment, resulting in 30 key frames per video clip on
average. We extract a simple HSV color histogram from each key frame. The 24
dimensional HSV color histogram is concatenated with 18 bins for Hue, 3 bins
for Saturation and 3 bins for Value as described in [25]. As seen in Figure 5,
the HSV histogram can greatly vary among different key frames, thus the bag-
of-feature model well fits this scenario. We test the Mean Average Precision
(MAP) over all 24 queries, and together provide a comparison between time
spent on vocabulary construction and code generation of each video clip. A K-
RLSV method is also included in the experiment, where the Chi-Square kernel
is applied. Table 2 indicates RLSV is a good tradeoff between MAP and speed.

5 Conclusion

We have presented a simple yet effective algorithm for visual vocabulary con-
struction combining the idea of LSH and RF. It avoids the severe problems oc-
curring in most existing methods, such as the slow training (e.g., in K-means),
or huge storage (e.g., in ERC-Forest). The proposed method strikes a good bal-
ance between accuracy and efficacy, and is supposed to be applicable to many
real-world applications in computer vision. Moreover, extensions to kernerlized
and supervised cases are also presented. We plan to extend the work to on-
line settings. Moreover, currently our method is not advantageous in terms of
query complexity. This motivates us to investigate the possibility of synergizing
construction and query process towards higher efficiency.
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Abstract. Most existing graph-based semi-supervised classification

methods use pairwise similarities as edge weights of an undirected graph
with images as the nodes of the graph. Recently several new graph con-

struction methods produce, however, directed graph (asymmetric similar-

ity between nodes). A simple symmetrization is often used to convert a

directed graph to an undirected one. This, however, loses important struc-

tural information conveyed by asymmetric similarities. In this paper, we

propose a novel symmetric co-linkage similarity which captures the essen-

tial relationship among the nodes in the directed graph. We apply this new

co-linkage similarity in two important computer vision tasks for image cat-

egorization: object recognition and image annotation. Extensive empirical

studies demonstrate the effectiveness of our method.

Keywords: Directed graph learning, Co-linkage similarity, Multi-label

classification, Object Recognition, Image annotation.

1 Introduction

Many computer vision problems, such as image categorization including object
recognition and image annotation, are often solved by semi-supervised classifi-
cation algorithms due to the lack of enough labeled training data. Most, if not
all, existing graph-based semi-supervised classification algorithms learn on an
undirected graph [21,20,6,19,16] with images as the nodes and pairwise image
similarities as edge weights. The edge weights of the graph are typically assessed
using traditional graph construction functions, such as Gaussian kernel simi-
larity. Such graph-based semi-supervised classification performance is sensitive
to parameter variances, and there is no reliable way to determine the optimal
parameter value especially when the amount of labeled data is small [20,15,3,18].

In order to tackle this parameter sensitivity problem, several robust graph
construction methods have been proposed recently such as [15,3,18,8]. A common
aspect of these methods, however, is that their immediate output is a directed
graph (asymmetric similarity between nodes). In order to make use of existing
graph-base semi-supervised classification algorithms, they convert the directed
graph to an undirected one through a simple symmetrization step. To be more
specific, the weight of an edge on the converted undirected graph is assigned by
the average of the two weights on both directions of the same edge in the original

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 762–775, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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directed graph. Consequently, the important structural information conveyed
by edge directions are simply discarded, and the benefits of these methods are
impaired.

In this work, employing four basic second order processes of directed graph,
co-citation, co-reference, and passage as shown in Fig. 2, we propose a novel
co-linkage similarity (CS) to measure the pairwise similarity between any two
vertices in a directed graph, by which the valuable structural information from
directed pairwise relationship between vertices is preserved. Besides, motivated
by Hypertext Induced Topic Selection (HITS) algorithm [10] and PageRank
algorithm [13] but different from them, our CS symmetrically normalizes both in-
links and out-links of a directed graph in a balanced manner, such that effective
mutual link reinforcement can be achieved. As a result, the pairwise relationships
among the vertices are enhanced and the topological structure turns out more
lucid, such that the performance of subsequent classifications on the induced
undirected graph is improved.

We first show an example that demonstrates the effectiveness of the proposed
CS. Fig. 1 shows part of the directed graph generated by the method from [18]
using UIUC car data [1]. Vertices e and l are positive training samples, i.e., a
car exists in the picture; vertices b and c are negative training samples, i.e., no
car exists in the picture; the rest are testing images. The goal is to predict the
label of testing image z. Previous methods symmetrize the directed graph to
an undirected one. Because the immediate training in-neighbors of z is c, which
dominates the label assignment of z, the cars in picture z can not be detected. In
our method, the positive co-reference between e and z, together with the positive
co-citation between l and z, overwhelms the negative co-reference between b and
z, therefore z is correctly assigned with a positive label.

We apply the proposed CS to two important computer vision tasks for image
categorization, object recognition and image annotation, using semi-supervised
classification algorithms. Promising experimental results demonstrate the effec-
tiveness of our proposed CS.

2 Backgrounds

We first define necessary notations used in the discussions in the sequel.

Semi-supervised learning notations. Suppose we have n = nl + nu data
points {xi}n

i=1 corresponding to n images, where the first nl data points are al-
ready labeled by {yi}nl

i=1 forK target classes. Here, xi ∈ R
p and yi ∈ {−1,+1}K,

such that yi (k) = +1 if xi belongs to the k-th class, and −1 otherwise. Our task
is to learn the classification {yi}n

i=nl+1 for those unlabeled data.

Graph notations. Given the input data as above, we may construct either an
undirected graph or a directed graph to capture the pairwise relationships among
the data points for succeeding graph-based semi-supervised classification.

Pairwise similarities between data objects are usually described as an undi-
rected graph Gu with a symmetric weight matrix W ∈ R

n×n.
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Fig. 1. Part of directed graph generated by L1G method [18]. Vertices e and l are

positive training samples, i.e., a car exists in the picture; vertices b and c are negative

training samples, i.e., no car exists in the picture; the rest are testing samples. For the

test picture z, only our CS measure can correctly detect the existence of the cars.

Suppose Gd = (V , E) is an unweighted directed graph with vertex set V and
edge set E ⊆ V × V . Gd is described by the asymmetric adjacency matrix L =
{0, 1}n×n, such that |V| = n, and Lij = 1 if there is an edge i → j from vertex
i to vertex j, and Lij = 0 otherwise. The edge i → j is an ordered pair, and
we say j is the out neighbor of i, or i is the in-neighbor of j. The number of
out-neighbors of i is the out-degree of i, given by d+i =

∑
k Lik. Similarly, the

number of in-neighbors of j is the in-degree of j, given by d−j =
∑

k Lkj . Let
Dout be a diagonal matrix and Dout (i, i) = d+i , and Din be a diagonal matrix
and Din (i, i) = d−i .

A weighted directed graph is described by a weight matrix R ∈ R
n×n when

there exists a function r : E → R
+, which associates a positive value Rij = r(i, j)

with every edge i → j ∈ E . Here we use R for directed graph to distinguish
from W for undirected graph. An unweighted directed graph is a special case of
weighted directed graphs when R = L. For a weighted directed graph, the out-
degree is defined as d+i =

∑
kRik, and the in-degree is defined as d−i =

∑
k Rkj .

When it is clear from context, we use W and Gu interchangeably, and same
for R (or L) and Gd.

2.1 Traditional Undirected Graph for Semi-supervised Learning

Traditional graph construction scheme comprises two steps: adjacency construc-
tion and graph weight calculation. For the former, there exist two widely used
methods [2]: ε ball and K-Nearest Neighbor methods. For the latter, although
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there exist other methods, Gaussian kernel similarity (GKS) defined as following
is the most frequently used one [2]:

Wij =

{
exp

(−‖xi − xj‖2/σ2
)
, ∀ (xi,xj) ∈ E ,

0, otherwise .
(1)

Unfortunately, classification performance using GKS in Eq. (1) heavily depends
on the selection of σ, and satisfactory results are not easy to achieve [15].

2.2 Directed Graph for Robust Semi-supervised Learning

Recently, based on sparsity representations, several robust graph construction
methods have been proposed [3,18,8]. Graph is a gathering of pairwise relations,
while the relation among visual images is essentially an estimation by human
cognition system. It has been proved [14] in neural science that the human vi-
sion system seeks a sparse coding for the incoming image using a few words in
a feature vocabulary. Wright et al. [17] demonstrated that the 	1 linear recon-
struction error minimization can naturally lead to a sparse representation for
human facial images. In other words, a graph for image data can be naturally
constructed in a parameter free way through sparse representation. During the
	1 minimization for the optimal sparse representation, the direction of edges and
the graph weights are generated [18].

Sparse representation assumes that [3] any feature vector in a class can be
represented as a linear combination of some other feature vectors in the same
class. Also, given a feature vector, its sparsest representation is achieved when all
the basis feature vectors belong to the same class as the feature vector. Formally,
let X = {x1, . . . ,xn} denote all data vectors (images). For any given xi ∈ X ,
it can be decomposed as a sparse linear combination of the rest of the feature
vectors in X . We denote Fî = [x1, . . . ,xi−1,xi+1, . . . ,xn], thus the circumflex
notation î means “not i”. Then the linear representation of xi can be written
as:

xi = Fîsi ∈ R
m, (2)

where si ∈ R
n−1 is a coefficient vector whose nonzero entries are excepted to

be as few as possible. Because in image categorization, m ! n − 1, the system
equation xi = Fîsi is underdetermined, its solution is not unique. Conventionally,
this difficulty can resolved by choosing the minimum 	2 norm solution:

(P1) argmin
si

‖si‖�2 , subject to xi = Fîsi, (3)

While this optimization problem can be easily solved (via the pseudo-inverse of
Fî), the solution si is not especially informative for categorizing xi. si obtained
by Eq. (3) is generally dense, with large nonzero entries corresponding to many
training samples [17]. To tackle this problem, we seek the sparsest solution of
xi = Fîsi by solving the following optimization problem:

(P1) argmin
si

‖si‖�0 , subject to xi = Fîsi, (4)
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where ‖·‖�0 denotes the 	0 norm, which counts the number of nonzero entries in
a vector. Although P1 is NP-hard and even difficult to approximate, in light of
the emerging theory of compressed sensing in signal processing, it can solved as
following 	1 minimization problem if si is sparse enough [17]:

(P2) argmin
si

‖si‖�1 , subject to xi = Fîsi, (5)

where ‖·‖�1 denotes the 	1 norm. si can be considered as the descriptor of image
xi using the rest images as basis. Directed graphs can be constructed using two
following methods: Sparsity Induced Similarity (SIS) [3] or 	1 graph (L1G) [18]:

SIS graph: Rij =
max {si (j) , 0}∑N

k=1,k �=i max {si (k) , 0} , L1G graph: Rij = |si (j) | . (6)

Other directed graph construction methods are also available such as [8,17].
Note that, by the construction in Eq. (6), Rij �= Rji, i.e., a directed graph Gd

is constructed with R as weight matrix. Apparently, R is parameter free.
Besides using sparsity representation, there also exist other mechanisms for

robust graph construction, such as linear neighborhood propagation method [15],
which also yields a directed graph as immediate output.

In order to work with existing graph-based semi-supervised learning methods,
a simple symmetrization step has been used to convert the directed graph R to
an undirected graph W [15,3,18] using

Wij = (Rij +Rji) /2 . (7)

Obviously, structural information conveyed by edge directions are discarded.

3 Co-linkage Similarity of a Directed Graph

In this section, we will introduce a method to measure similarities in a directed
graph. We consider the second order process on a directed graph. We first study
the four basic processes and later emphasize the importance of edge weight nor-
malization. This work is motivated by previous works in link analysis [10,13,5,7].

3.1 Co-linkage Similarity from Second Order Random Walk
Processes

On a directed graph, we consider the random walk process. If from node i, the
random walker has a large probability walks to j, we say there is a large similarity
between i, j. We consider the second order process as shown in Fig. 2. There are
four type of processes: co-citation, co-reference, passage (i → j) and passage
(j → i) to as illustrated in Fig. 2. It is sufficient to use these four basic process
to describe a directed graph.
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Fig. 2. Four fundamental second order processes on a directed graph. 1st figure: vertices

i and j are co-cited by vertex k. 2nd figure: vertices i and j co-reference vertex k. 3rd

figure: passage from vertices i to j. 4th figure: passage from vertices j to i.

Co-citation. If two vertices i and j are co-cited by many other vertices, such
as k in Fig. 2 (1st figure), i and j are likely to be related in some sense. Thus
co-citation is a similarity measure, and defined as the number of vertices that
co-cite i and j:

W
(c)
ij =

∑
k

LkiLkj =
(
LTL

)
ij
. (8)

Co-reference. On the other hand, if two vertices i and j co-reference several
other vertices, such as k in Fig. 2 (2nd figure), i and j are supposed to have
certain commonality. Co-reference also measures similarity between vertices:

W
(r)
ij =

∑
k

LikLjk = (LLT )ij . (9)

Passage. If there is a path between two vertices i and j through a vertex (such
as k), i and j can commute each other and have certain similarity. Because the
path could have two different directions, there are two types of passage links as
shown in 3rd and 4th figures of Fig. 2. Passage(i→ j) is computed as

W
(p)
i→j =

∑
k

LikLkj = (LL)ij (10)

Passage(j→ i) is computed as

W
(p)
j→i =

∑
k

LkjLki = (LTLT )ij (11)

All co-citation, co-reference, and passage define the similarity between vertex
pairs on a directed graph, therefore we define the co-linkage similarity as follow-
ing:

W = LTL+ LLT + LL+ LTLT . (12)

where we assume that co-citation and co-reference are equally important.

3.2 Link Normalization

On the web, a vertex/webpage with bigger out-degree has greater influence than
another vertex/webpage with smaller out-degree. However, since these out-links
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can be arbitrarily added by the webpage designer, and the importance of this
webpage can be arbitrarily increased.

In PageRank algorithm, every out-going hyperlinks from a vertex is inversely
weighted by its out-degree, thereby every vertex has the same total out-going
weight. This can be stated as Internet Democracy : every web site has a total of
one vote.

The hyperlink normalization and its importance are illustrated in Fig. 3. Ba-
sically, if a webpage has a large out-degree, the significance/uniqueness of its
cocitation is reduced. This points the necessity of out-degree normalization.

Generally speaking, the indegree of a document is not easily manipulated
and is therefore a good indicator of the importance of the webpage. But, when
counting co-reference between two webpages (see Fig. 3) as similarity between
the webpages, in-degree should also be normalized, because a webpage i with
large indegree lose the specificity of the those webpages pointing to i.

For the passage between i, j through k, the normalization is also needed. If
k has large in-degree and out-degree, then the information flow through k is
not special or specific, because many other pairs also pass through k. In other
words, the information flow between any two nodes has a large probability to
pass through k. Therefore, the passage through k is not statistically significant as
compared to another k′ with small in-degree and out-degree. A proper link weight
normalization on k will render the mediating power of k constant, independent
of the in-degree and out-degree of k.

i

j

k

m

n

p

q

k

m

n

p

q

i

j

Fig. 3. Importance of hyperlink normalization. Left: vertices i and j are co-cited by

vertices k, m and n. However, since vertex m also cites vertices p and q, the co-citation of

i and j by m is not as significant as that by either k or n. This fact can be compensated

by normalizing the weights on the out-bound links of a vertex, i.e., the co-citation of i
and j by m is then 2/4 = 50% as important as that by either k or n. Right: vertices i
and j co-reference vertices k, m and n. However, since vertex m is also referenced by

p and q, the co-reference of i and j by m is not as significant as that to either k or n.

This fact can be similarly compensated by normalizing the in-bound links of a vertex.

With these discussions, the reasonable choices of link normalizations are:

L→ D−1
outL, (13)

L→ LD−1
in , (14)

L→ D−1/2
out LD

−1/2
in (15)
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Normalization of Eq. (13) uses the out-degree and is used in the PageRank algo-
rithm which is essentially the transition probability of a random walk. Normal-
ization using out-degree is related to the concept of co-citation since co-citation
uses out-links from those webpages/nodes pointing to them. Normalization using
out-degree will balance the importance of each of these nodes.

Normalization of Eq. (14) uses the in-degree and can be viewed as the transi-
tion probability of a random walk on the inverse direction of the directed graph.
Normalization using in-degree is related to the concept of co-reference since
co-reference uses in-links from those webpages/nodes pointing to them. Normal-
ization using in-degree will balance the importance of each of these nodes.

Normalization of Eq. (15) can be viewed as a compromise between the above
two normalization. This is also symmetric among the in-degree and out-degree.
Considering the balance of in-degree and out-degree normalization and the bal-
ance among co-citation, co-reference, and passage, we adopt this symmetric nor-
malization in our work.

Replacing L with the symmetric normalization, we obtain the effective sim-
ilarity between two nodes on the directed graph

W = D− 1
2

in L
TD−1

outLD
− 1

2
in +D− 1

2
outLD

−1
in L

TD
− 1

2
out

+D− 1
2

outLD
− 1

2
in D

− 1
2

outLD
− 1

2
in +D− 1

2
in L

TD
− 1

2
outD

− 1
2

in L
TD

− 1
2

out . (16)

where the first term is for co-citation the second one is for co-reference and the
third and fourth are for the passages. It should be noted that co-citation and
co-reference are inherently symmetric as emphasized in [5] and the passages are
directional and naturally symmetrized by including both passage(i → j) and
passage(j → i). Eq. (16) is the main result of this work, and we call W as
co-linkage similarity (CS).

4 Empirical Studies

We apply our proposed co-linkage similarity (CS) defined in Eq. (16) into two im-
portant computer vision applications for image categorization, object recognition
and image annotation, which are often solved by graph-based semi-supervised
classification algorithms.

We evaluate our CS and compare to the following three graph construction
schemes. (1) Traditional GKS method as in Eq. (1). This is the most frequently
used graph construction method and produces a fully connected undirected
graph. In our experiments, σ is fine tuned upon data set to get best perfor-
mance. (2) Sparsity Induced Similarity (SIS) [3] and (3) 	1 graph (L1G) [18] as
in Eq. (6) are two recently published works and have demonstrated better perfor-
mance than other related methods. The immediate output of these two methods
is a directed graph, therefore the original papers used a simple symmetrization in
Eq. (7) before classification. For our method, we induce two undirected graphs
from the immediate outputs of SIS and L1G methods respectively, which are
denoted as CS-SIS and CS-L1G.
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4.1 Object Recognition Using Single-Label Classification

Data sets. We use the following three data sets in our evaluations, which are
commonly used for semi-supervised learning and object recognition experiments.

Cedar Buffalo binary digit data set [9]. The digits are preprocessed to re-
duce the size of each image down to a 16× 16 by down-sampling and Gaussian
smoothing, and the value of each pixel ranges from 0 to 255. Each digit is thus
represented by a 256-dimensional vector.

UIUC car training data set [1] consists of 1050 images of cars in side views
with resolution of 40(H)×100(W) pixels. For this data set, we use dense grids of
histogram-of-gradient features to represent each image [4], where 20 × 20 pixel
blocks, block stride of 10 pixels, and 8 orientation bins are used to obtain the
feature vector of 240 dimensions for each image.

ETH-80 data set [11] contains 8 object categories. In each category there are
10 different objects, and for each object there are 41 different poses. There are
8×10×41 = 3280 images in total. Here, similar to [11], we use the histogram of
the first derivatives DxDy with 48 dimensions over 3 different scales to represent
each image, and then all features are normalized.

Labeled and unlabeled samples. Similar to [21], for a given class, we ran-
domly pick up samples as labeled data, and the rest are used as unlabeled data.

Classification algorithm. We use the Green’s function semi-supervised learn-
ing framework [6] for classification, which is a state-of-the-art graph-based semi-
supervised classification method and has demonstrated superior performance
than several representative competing methods such as [21,20].

Evaluation criterion. We employ recognition accuracy to evaluate the perfor-
mance of the proposed CS in classification. Each recognition accuracy curve is
obtained by averaging the results over 10 different trials. For each trial, again,
we randomly select the labeled and unlabeled samples.

Classification performance. We compare the semi-supervised classification
performance on the five graphs using the three data sets. We use the same
experimental setup as in [3]. For Cedar Buffalo binary digit data set, we use
digits “1” and “2” for classification. For UIUC car training data set, two classes,
1050 images of cars and backgrounds, are used in evaluation. These two data
sets are used to evaluate binary classification performance. Then we use ETH-80
data set for multi-class classification performance. Three types of objects, apples,
pears and tomatoes, are used in our experiments since it is comparatively difficult
to distinguish these three categories in this data set [11].

Fgcap 4(a)–4(c) show the classification performance of five compared graph
construction methods. The x-axis is the number of labeled samples, and the y-
axis is the recognition accuracy. From these figures, we can see that SIS and L1G
always have similar performance. This is consistent with the theoretical back-
ground as they are derived in a similar way using similar mechanism, i.e., spar-
sity representation, as detailed in Section 2.2. Both of them are better than GKS
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(a) Cedar Buffalo binary digit data.
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(b) UIUC car data.
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(c) ETH-80 data.
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(d) Performance stability evaluation.

Fig. 4. 4(a)–4(c): Recognition accuracy on three data sets. 4(d): The performance

stability of different graph construction schemes for different number of labeled samples

method. Our method, as shown by “CS-SIS” and “CS-L1G” in the figures, gen-
erally outperforms other methods, sometimes significantly. These results clearly
demonstrate the effectiveness of our method.

Effectiveness of directed graph and CS. A careful examination at the clas-
sification results show that, many objects can be only correctly detected on our
CS induced graph, e.g., the apple of picture z in Fig. 5 for ETH-80 data and
the cars of picture z in Fig. 1 for UIUC car training data set. In these figures,
the training samples in the same class as the target testing sample (vertex z)
are labeled as positive, while other training samples are labeled as negative.

The undirected graph generated by GKS method for a small part of ETH80
data is first shown in Fig. 5(a), where the minor edges (weight less 0.1) are
removed for clear illustration. On this graph, picture z can not acquire a positive
label by the label propagation algorithm, i.e., the apple can not be detected. In
Fig. 5(b), the directed graph generated by L1G method shows that, although
the label of vertex z can be correctly inferred from its training neighbors a and
c, after the simple symmetrization in Eq. (7), it can only acquire an incorrect
negative label. By our CS method, because the co-reference between a and z is
stronger than the relationship between c and z due to mutual link reinforcement
and link normalization, picture z finally obtains a correct positive label.
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Fig. 5. Part of the graphs built from ETH-80 data set. Vertex a is a positive training

sample and c is a negative training sample, the rest are testing samples. Test picture

z can always be correctly classified on our CS induced graph. All other compared

methods fail to assign correct label.

In Fig. 1, we do not show the undirected graph generated by GKS method,
because the car in picture z can never be detected on GKS graphs. Considering
the fact that GKS method assigns an edge weight essentially upon the image
similarity using the Euclidean metric, and the sizes of the cars are relatively
small and the picture has a very strong background with trees and buildings,
this result is reasonable. For the directed graph generated by L1G method as in
Fig. 1, the immediate training in-neighbors of z is c, which dominates the label
assignment of z, therefore the cars again can not be detected. However, on our
CS induced graph, the positive co-reference between e and z together with the
positive co-citation between l and z overwhelm the negative co-reference between
b and z, hence z is correctly assigned with a positive label.

Both examples in Fig. 5 and Fig. 1 concretely demonstrate the advantage of
our method.

Classification stability. Same as in [15,3], we also study the performance
stability when the amount of labeled samples varies. We compare the stability
of our CS method to those of GKS method and SIS method. We do not show
the stability of L1G method as it is very similar to SIS method theoretically
and empirically. We use digits “1” and “2” in Cedar Buffalo binary digit data
set for illustration. We compare with two different labeled data size: 20 and
40. We repeat the experiments for 15 times, and the x-axis of Fig. 4(d) is the
index of different trials. The curve “GKS-20” denotes the recognition accuracy
obtained by classification on GKS graph with 20 labeled samples, similar for the
other curves. From Fig. 4(d), we can see that the proposed CS and SIS method
have very stable performance for different labeling data sizes, while GKS exhibits
relatively large performance fluctuations. Again, these results are consistent with
our theoretical analysis.
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4.2 Image Annotation Using Multi-label Classification

We also evaluate our proposed CS in image annotation applications. We use stan-
dard 5-fold cross validation to evaluate the performance of compared graph con-
struction methods. Because image annotation is a multi-label classification task,
we use multi-label correlated Green’s function (MCGF) method [16] for classi-
fication, which is an extension of the Green’s function semi-supervised learning
framework [6] to deal with multi-label problems. We set the parameter α in the
MCGF method as 0.1, which is same as in the original work.

Data sets. We use the following three benchmark multi-label image data sets
in our evaluations.

TRECVID 20051 data set contains 61901 images and labeled with 39 concepts
(labels). As in most previous works, we randomly sample the data such that each
concept has at least 100 images, same as in [16].

MSRC2 data set is provided by the computer vision group at Microsoft Re-
search Cambridge, which has 591 images annotated by 22 classes.

Barcelona data set3 contains 139 images with 4 categories, i.e., “building”,
“flora”, “people” and “sky”.

In order for a complete evaluation, we first use simple (natural) features of
these three image data sets. We divide each image into 64 blocks by a 8 × 8
grid and compute the first and second moments (mean and variance) of each
color band to obtain a 384-dimensional vector as features. In addition, we also
evaluate our methods using advanced image features. For MSRC data set and
Barcelona data set, 100-dimensional SIFT features (denoted as “SIFT features”
in Table 1) are extracted for classification. For TRECVID 2005 data set, SIFT
features can not be extracted on typical personal computers due to its big size.

Evaluation criteria. The conventional classification performance metrics in
statistical learning, precision and F1 score, are used to evaluate the compared
methods. Precision and F1 score are computed for every class following the
standard definition for a binary classification problem. To address multi-label
classification, macro average and micro average are used to assess the overall
performance across multiple labels [12].

Classification performance. Table 1 presents the classification performance
comparison for five methods using 5-fold cross validation on three data sets.
From the results, we can see that our method is constantly better than the
other compared methods. We achieve about 10.56% improvements on average
for TRECVID 2005 data set, about 11.32% improvements on average for MSRC
data set and about 6.60% improvements on average for Barcelona data set.
Again, these results quantitatively support the theoretical advantages of our
proposed method.

1 http://www-nlpir.nist.gov/projects/trecvid
2 http://research.microsoft.com/en-us/projects/objectclassrecognition/

default.htm
3 http://mlg.ucd.ie/content/view/61

http://www-nlpir.nist.gov/projects/trecvid
http://research.microsoft.com/en-us/projects/objectclassrecognition/default.htm
http://research.microsoft.com/en-us/projects/objectclassrecognition/default.htm
http://mlg.ucd.ie/content/view/61
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Table 1. Performance evaluations of compared methods by 5-fold cross validations

Data sets Evaluation metrics
Compared methods

GKS SIS L1G CS-SIS CS-L1G

TRECVID

2005

Macro

average

Precision 0.249 0.258 0.260 0.292 0.293

F1 score 0.272 0.281 0.283 0.301 0.303

Micro

average

Precision 0.237 0.249 0.248 0.287 0.289

F1 score 0.270 0.279 0.280 0.295 0.298

MSRC

Macro

average

Precision 0.216 0.224 0.221 0.258 0.257

F1 score 0.285 0.297 0.296 0.322 0.320

Micro

average

Precision 0.214 0.221 0.220 0.254 0.253

F1 score 0.281 0.296 0.293 0.316 0.315

MSRC

(SIFT

features)

Macro

average

Precision 0.341 0.361 0.360 0.420 0.418

F1 score 0.391 0.402 0.404 0.457 0.453

Micro

average

Precision 0.324 0.351 0.350 0.424 0.423

F1 score 0.371 0.406 0.403 0.456 0.455

Barcelona

Macro

average

Precision 0.784 0.815 0.813 0.864 0.861

F1 score 0.724 0.757 0.753 0.811 0.810

Micro

average

Precision 0.781 0.812 0.811 0.859 0.853

F1 score 0.720 0.751 0.750 0.807 0.806

Barcelona

(SIFT

features)

Macro

average

Precision 0.795 0.836 0.835 0.885 0.883

F1 score 0.731 0.769 0.768 0.825 0.824

Micro

average

Precision 0.792 0.823 0.823 0.882 0.884

F1 score 0.730 0.767 0.763 0.827 0.825

5 Conclusions

In this paper, we presented a novel co-linkage similarity (CS) to describe a di-
rected graph in an undirected way. Besides preserving structural directionality
information of a directed graph, our CS method also enhances the pairwise re-
lationships among the data objects by taking into account both mutual link
reinforcement and symmetric in-links and out-links normalization. As a result,
directed graph data can be used in existing graph-based semi-supervised classifi-
cation algorithms with improved classification performance, which by design can
only work with undirected graph data. By applying our proposed CS into two
important computer vision problems for image categorization, object recognition
for single-label classification and image annotation for multi-label classification,
we conducted extensive empirical studies on six benchmark data sets to eval-
uate various aspects of our method. Clear improvements demonstrated in all
experimental results validate the performance of our proposed method.
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Abstract. Many learning tasks for computer vision problems can be

described by multiple views or multiple features. These views can be

exploited in order to learn from unlabeled data, a.k.a. “multi-view learn-

ing”. In these methods, usually the classifiers iteratively label each other

a subset of the unlabeled data and ignore the rest. In this work, we pro-

pose a new multi-view boosting algorithm that, unlike other approaches,

specifically encodes the uncertainties over the unlabeled samples in terms

of given priors. Instead of ignoring the unlabeled samples during the

training phase of each view, we use the different views to provide an ag-

gregated prior which is then used as a regularization term inside a semi-

supervised boosting method. Since we target multi-class applications, we

first introduce a multi-class boosting algorithm based on maximizing the

mutli-class classification margin. Then, we propose our multi-class semi-

supervised boosting algorithm which is able to use priors as a regular-

ization component over the unlabeled data. Since the priors may contain

a significant amount of noise, we introduce a new loss function for the

unlabeled regularization which is robust to noisy priors. Experimentally,

we show that the multi-class boosting algorithms achieves state-of-the-

art results in machine learning benchmarks. We also show that the new

proposed loss function is more robust compared to other alternatives.

Finally, we demonstrate the advantages of our multi-view boosting ap-

proach for object category recognition and visual object tracking tasks,

compared to other multi-view learning methods.

1 Introduction

In recent years, the development and design of classification algorithms has led
to significant progress in various computer vision domains. In most applications
supervised learning algorithms are applied. Usually, these methods require large
amounts of training samples along with their class labels in order to train a
classification function that yields low prediction errors. In practice, the class
� This work has been supported by the Austrian FFG project MobiTrick (825840) and
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labels are provided by a human labeler. As the tedious hand labeling cannot take
pace with the growing amount of data, e.g., digital images, web sites, research
has started to focus on semi-supervised learning (SSL) methods [1,2] that can
learn from a small set of labeled data and simultaneously a huge amount of
unlabeled data.

This paper deals with a special case of SSL called multi-view learning [3,4]. In
multi-view learning (MVL), the data can be expressed by several views or mul-
tiple features. For each view a classifier is trained on some labeled data. Then
the classifiers iteratively train each other on the unlabeled data. The underlying
assumption of MVL is that the unlabeled data can be exploited in a way that en-
forces the selection of hypotheses that lead to an agreement among the classifiers
on the unlabeled data while minimizing the training error on labeled data [5,6].
Overall, this leads to an increased classification margin and thus lower gener-
alization errors. MVL is especially interesting for many computer vision tasks
as multiple views are often naturally provided. For instance, in object detection
and categorization different features can be considered as different views [7,8].
Multi-view learning can also lead to more stable tracking results [9,10]. Also im-
ages collected from the web naturally provide different views, because additional
to the visual data text is also frequently provided [11].

Current multi-view methods work by primarily exchanging the information
via label predictions on a subset of the unlabeled data. However, this ignores
the uncertainty in each estimated label and ignores the information that each
view has over the entire set of unlabeled data. In this paper, we propose a novel
multi-view boosting algorithm that, on the one hand, performs MVL in the
classical sense; i.e., the classifiers provide each other labels for some selected
unlabeled samples. On the other hand, however, we regularize each classifier on
the rest of the unlabeled samples in a way that it encourages the agreement
between the views. In our algorithm, we use an aggregated prior that is set
up by the corresponding views; i.e., the iteratively trained classifiers serve each
other as priors in order to exploit the rest of the unlabeled samples. However,
since the priors can be wrong, we also propose a robust loss function for the
semi-supervised regularization which can handle noisy priors. Additionally, most
previous MVL methods mainly deal with two-classifier scenarios and are thus
mainly co-training variants. Our method is general enough to incorporate not
only two, but even an arbitrary number of views.

2 Multi-View Boosting with Priors

In the following sections, we first introduce the concept of multi-view learning
with priors. Next, we explain how we can develop multi-class semi-supervised
boosting which uses priors provided from multiple views as a regularization term.
Finally, we show how robustness can be incorporated into the learning algorithm
in terms of proper loss functions.
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2.1 Multi-View Learning with Priors

Assume we have a multi-class semi-supervised classification task where the prob-
lem domain can be split into V different views 1. Let x = [xT

1 | · · · |xT
V ]T be a data

sample which is constructed from V different views, each expressed by Dv-dim
feature vector xv ∈ R

Dv . In multi-view learning, we train a classifier per view
fv(xv) : R

Dv → R
K where K is the number of classes and F = {fv}V

v=1 is the set
of the classifiers. Let pv(k|xv) be the posterior estimate for classifying sample xv

in k-th class by the v-th learner. The goal of multi-view learning is to produce a
set of classifiers which have low mis-classification rates over the labeled samples
while having a high consensus over the unlabeled samples. One can express these
goals as the following optimization problem

F∗ = arg min
F

∑
(x∈Xl,y)

	(x, y;F) + γ
∑

x∈Xu

d(x;F). (1)

The first term expresses the loss 	(·) for the labeled samples where we have the
true class label y, while the last term is a measure of the agreement of views
over the unlabeled samples, and γ steers the effect of the unlabeled samples over
the entire optimization problem. In this work, we propose to use the posterior
estimates for defining the loss over the unlabeled samples. Assume we have a
function j(p‖q) for measuring the divergence between two probabilities p and
q. Using this divergence measure, we express the unlabeled loss as d(x;F) =∑V

v=1 dv(x;F) with

dv(x;F) = j(pv(xv)‖ 1
V − 1

∑
s�=v

ps(xs)), (2)

where pv(xv) = [pv(1|xv), · · · , pv(K|xv)]T . This loss function measures the di-
vergence of the posterior estimates by computing the distance of each view
to the average estimate of all other views. For example, if we use j(p‖q) =∑K

k=1(p(k|x) − q(k|x))2 the last term will measure the variance over different
views (the proof is omitted due to lack of space). As it will be shown later, we
use the Jensen-Shannon Divergence as j(p‖q) in our algorithm because of its
robustness to noise. We will also refer to

qv(k|xv) =
1

V − 1

∑
s�=v

ps(k|xs), ∀v ∈ {1, · · · , V }, k ∈ Y (3)

as the prior for the v-th view. In order to observe the advantages gained by using
this approach over the traditional multi-view learning where the consensus is only
encouraged by iterative labeling of the unlabeled data, we propose the following
algorithm:

1 For clarity, we always use the co-training settings [3] where the data is represented

by different views, while the algorithm can be applied to multiple-learners scenario

as well [4].
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1. For each view independently, optimize Eq. (1) by using Eq. (2) and using the

Eq. (3) as the priors.

2. Label a subset of unlabeled samples and add them to the labeled set.

3. Compute the posteriors and update the priors for each view.

4. If stopping condition is not satisfied, proceed to step 1, otherwise stop.

If we set γ = 0 in this procedure, then we obtain a classical multi-view learning
algorithm, similar to co-training [3]. Therefore, by observing the performance
of both of these algorithms, one can see the gain obtained by incorporating the
priors. For the second step where we label some unlabeled samples, we use the
following approach: 1) Each view proposes the N highest confident samples to
be included in the labeled set. 2) If there are disagreements over the label of a
sample between some of the views, we let the proposing views to vote with their
confidence for the label of this sample, and we select the resulting class which
has the highest aggregated confidence. Again, if we would have only two views,
this would be equivalent to the original co-training algorithm [3]. In the following
sections, we will develop a semi-supervised multi-class boosting algorithm which
can be used to solve the first step of this algorithm.

2.2 Multi-class Boosting

Let Xl = {(x, y)|x ∈ R
D, y ∈ {1, · · · ,K}} to be the set of i.i.d. labeled training

examples from an unknown probability distribution P (y,x). Suppose we are
given a set of unlabeled samples Xu = {x|x ∈ R

D} which are also sampled
i.i.d. from the marginal distribution P (x) =

∑
y∈Y P (y,x). With X we refer

to the union of both labeled and unlabeled data samples. The data sample x is
represented as a D-dimensional feature vector and its label for a K-class problem
y is coming from the set of labels Y = {1, . . . ,K}. Boosting can be considered
as a meta-learning algorithm, which accepts another learning algorithm (often
known as base or weak learner) and constructs a new function class out of it,
i.e., by constructing additive models in form of

f(x; β) =
T∑

t=1

αt g(x; θt), (4)

where f(x) = [f1(x), · · · , fK(x)]T is the multi-class classifier2, β = [α|θ] is
the collection of model parameters, α are the parameters of boosting algorithm,
θ = {θt}T

t=1, and θt represents the parameters of the t-th base learner g(x; θt) ∈
G : R

D → R
K . Without loss of generality, we require the following symmetry

condition: ∀x :
∑

k∈Y fk(x) = 0. Many machine learning algorithms rely on the
notion of margin, popularized by support vector machines (SVMs). For a K-class
problem, the multi-class margin can be described as

m(x, y; f) = fy(x) −max
k �=y

fk(x). (5)

2 When the context is clear, we interpret f(x; β) and f(x) as the same representation

for a classifier.
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Note that for a correct classification via the decision rule c(x) = arg max
k∈Y

fk(x),

the margin should be positive m(x, y; f) > 0. In other words, a negative mar-
gin would result in a mis-classification. In this work, we introduce a boosting
algorithm which relies on maximizing the true multi-class margin. This is ac-
complished by minimizing a loss function which uses the multi-class margin. In
details, our boosting algorithm minimizes the following empirical risk

Remp(β) =
∑

(x,y)∈Xl

	(x, y; β), (6)

where 	(·) is a loss function. Since our learning strategy is based on functional
gradient descent technique, it is possible to use a lot of different loss functions
here [12]. The usual choices are Exponential loss [13], Logit loss [14], and Savage
loss [15]. Figure 1(a) plots the shape of these loss functions with respect to the
margin of an example. As it has been shown in previous studies, in the presence
of label noise, Savage and Logit loss perform significantly better than exponential
loss [14,15]. Since in this work, the multi-view algorithm might introduce noise
into the labeled set, we use the Savage loss function for the supervised loss, i.e.,
	(x, y; f) = 1

(1+e2m(x,y;f))2
.

2.3 Semi-supervised Boosting with Robust Loss Functions

We now focus on developing the multi-class semi-supervised boosting algorithms
based on the concept of learning from priors [16,17]. Assume we are given a prior
probability in form of q(·|x), e.g. Eq. (3). We model the posterior estimates of
the model by a multi-nomial logistic regression model defined as

p(k|x; β) =
efk(x;β)∑

j∈Y efj(x;β)
, (7)

where p(k|x; β) is the posterior probability of assigning sample x to the k-th
class, estimated by a model parameterized by β.

(a) Sup. Losses (b) Unsup. Losses: q+ = 0.5 (c) Unsup. Losses: q+ = 0.75

Fig. 1. (a) Common loss functions used for supervised boosting methods. (b, c) Di-

vergence measures used for prior regularization with two different priors: (b) q+ = 0.5
and (c) q+ = 0.75.
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We formulate the semi-supervised learning as an optimization problem with
two goals: 1) the model should attain low mis-classification errors on the labeled
data (e.g., by means of maximizing the margin), 2) the model should be able to
match the prior probability over the unlabeled training samples. From an em-
pirical risk minimization perspective, these goals can be written as the following
risk functional

Remp(β) =
∑

(x,y)∈Xl

	(x, y; β) + γ
∑

x∈Xu

j(x, q; β), (8)

where j is a loss function which measures the deviations of the model from
prior for a given sample x, and γ tunes the effect of semi-supervised regulariza-
tion. Since the goal of the regularization in Eq. (8) is to measure the deviations
between two probabilities, it is natural to use loss functions which measure the
divergence between two given distributions. In this work, we propose the Jensen-
Shannon Divergence for the regularization term in Eq. (8). The Jensen-Shannon
divergence for measuring the deviations of the model from the prior can be
expressed as

j(x, q; β) =
1
2
(DKL(q‖m) +DKL(p‖m)), (9)

where DKL(·‖·) is the Kullback-Leibler Divergence, m = 1
2 (p + q). Figure 1(b)

plots the shape of the Kullback-Leibler Divergence (KL), which has been used
previously by Saffari et al. [17] for developing a multi-class semi-supervised
boosting algorithm, together with the Jensen-Shannon Divergence (JS) for a
binary problem when the prior is 0.5 for both classes. Figure 1(c) shows the
same loss functions when the prior is 0.75 for the positive class. By comparing
these loss functions to the supervised loss functions in Figure 1(a), one can see
that KL resembles a behavior similar to the Logit loss while JS is very similar
to the Savage loss function. Therefore, we could expect the JS loss function to
be more robust when faced with noisy priors; i.e., the prior is wrong about the
label of an unlabeled sample.

2.4 Learning with Functional Gradient Descent

Given the loss functions from previous sections, the learning process for boosting
is defined by the Eq. (8). This requires finding the parameters of the base learners
θ together with their weights α. Finding a global solution for this problem
is hard, therefore, many boosting algorithms adopt an approximate solution
called stagewise additive modeling [14]. One of the commonly used techniques
is the functional gradient descent method [18]. This is a generalization of the
traditional gradient descent method to the space of functions. In details, at the t-
th iteration of boosting, we find the steepest descent direction as −∇Remp(βt−1),
where ∇ is the gradient operator. Then the optimization problem for learning
t-th weak learner can be written as

θ∗
t = argmax

θt

〈−∇Remp(βt−1),g(.; θt)〉, (10)
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where 〈, 〉 is the inner product operator. Since we have a risk which has labeled
and unlabeled samples, we need to compute the gradients for two different loss
functions.

Gradients for Labeled Samples. Using the chain rule, we can write the k-th
element of the gradient vector ∇Remp(βt−1) as 3

∂Remp(βt−1)
∂fk(x)

=
∂	(x, y; βt−1)
∂m(x, y; f)

∂m(x, y; f)
∂fk(x)

. (11)

Note that the margin term includes a max operator, therefore, the derivatives
of the margin can be written as

∂max
j �=y

fj(x)

∂fk(x)
= I(k �= y) I(k ∈ Sy(f(x))

|Sy(f(x))| , (12)

where I is the indicator function, and Sy(f(x)) = {k|fk(x) = max
j �=y

fj(x))} is the

set of classes which are the closest to the target class y. By using these results,
we compute the gradients of the margin as

∂m(x, y; f)
∂fk(x)

= I(k = y) − I(k �= y) I(k ∈ Sy(f(x))
|S(f(x))| . (13)

Now we only need to find the derivatives of the loss function with respect to the
margin term, which for the Savage loss can be written as

∂	(x, y; βt−1)
∂m(x, y; f)

= − 4e2m(x,y;ft−1)

(1 + e2m(x,y;ft−1))3
. (14)

Gradients for Unlabeled Samples. The Jensen-Shannon divergence for semi-
supervised part can be written as 4

j(x, q; β) ≈H(p,m) +H(q,m) −H(p) =

=− 2
∑
j∈Y

m(j|x; β) logm(j|x; β) +
∑
j∈Y

p(j|x; β) log p(j|x; β). (15)

where H(·, ·) is the cross-entropy between two distributions and H(·) is the
entropy. Note that since H(q) is fixed and does not depend on the model, it
is dropped from this equations. We will need to compute the gradients of the
posterior estimates in this equation, therefore, first we develop this term. We

3 For notational brevity, we simply write
∂	(x,y;f)
∂fk(x)

instead of the more correct form

∂	(x,y;f)
∂fk(x)

|f(x)=ft−1(x).
4 Note that we drop the 1

2
multiplier of the Eq. (9) as it can be incorporated into γ.
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write the gradients of the Eq.(7) as

∂p(j|x; β)
∂fk(x)

=
I(k = j)efj(x)

∑K
i=1 e

fi(x) − efj(x)efk(x)

(
∑K

i=1 e
fi(x))2

= (16)

=
efj(x)∑K
i=1 e

fi(x)
(I(k = j)− efk(x)∑K

i=1 e
fi(x)

) = p(j|x; β)(I(k = j) − p(k|x; β)).

Using this result, we compute the gradients of the prior regularization term as

∂j(x, q; β)
∂fk(x)

=p(k|x; β)
(
log

p(k|x; β)
m(k|x; β)

−
∑
j∈Y

p(j|x; β) log
p(j|x; β)
m(j|x; β)

)
= p(k|x; β)(log

p(k|x; β)
m(k|x; β)

−DKL(p‖m)). (17)

Learning with Multi-Class Base Classifiers. Given the gradients of the
loss functions, the learning process of the t-th base classifier in Eq.(10) can be
written as

θ∗
t = arg max

θt

−
∑
x∈X

∑
k∈Y

∂Remp(βt−1)
∂fk(x)

gk(x; θt). (18)

The solution of this problem will select a base function which has the highest
correlation with the steepest descent direction of the risk. Since we want to use
multi-class base learners, we have to develop a single label and a single weight
for each sample. The following theorem shows the best possible choices for the
weights and pseudo-labels.

Theorem 21. The solution of Eq.(18) using a multi-class classifier c(x; θt) ∈ Y
can be obtained by solving

θ∗
t = arg min

θt

∑
x∈X

wxI(c(x) �= ŷ) (19)

where

wx = max
k∈Y

− ∂Remp(βt−1)
∂fk(x)

and ŷx = arg max
k∈Y

− ∂Remp(βt−1)
∂fk(x)

(20)

are the weight and the pseudo-label for the sample x, respectively.

Proof. The proof is similar to the one presented by Saffari et al. [17].

The following lemmas show that for labeled and unlabeled samples, the weight
is positive or zero and the chosen label for the labeled samples is the true class
label. Note that this is an important step in boosting, as the derived weights
should always be positive for all the samples.
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Lemma 1. For the labeled samples, the pseudo-label given in Eq.(20) is the true
class label and the sample weight is positive.

Proof. From Eq. (13) and Eq. (14) we have that ∀k �= y : −∂Remp(βt−1)

∂fk(x) < 0 and

only for the target class −∂Remp(βt−1)

∂fy(x) > 0. This also means that the pseudo-label
is the true class.

Lemma 2. For the unlabeled samples, the sample weight given in Eq.(20) is
positive or zero.

Proof. First we show that the sum of the gradients for an unlabeled sample over
different classes is always zero. Note that

−
∑
k∈Y

∂Remp(βt−1)

∂fk(x)
= − γ

∑
k∈Y

p(k|x;β)(log
p(k|x;β)

m(k|x; β)
− DKL(p‖m)) =

=γ(DKL(p‖m) − DKL(p‖m)) = 0. (21)

Since the sum of the negative of the gradients is zero, therefore, either all the
gradients are equal to zero, or if there are some non-zero gradients, then their
maximum over different classes is positive, as it is not possible that the sum of
a set of negative terms is zero. Therefore,

wx = max
k∈Y

−
∂Remp(βt−1)

∂fk(x)
≥ 0. (22)

3 Experiments

3.1 Multi-class Boosting Experiments

We compare the performance of the proposed multi-class boosting algorithm
with other state-of-the-art methods on a set of multi-class machine learning
benchmark datasets obtained from UCI repository. In these experiments,
we compare with the following multi-class classifiers: Random Forests (RF) [19],
three multi-class formulations of AdaBoost namely SAMME [20],
AdaBoost.ECC [21], and the recent algorithm of AdaBoost.SIP [22]5. As the
last algorithm, we also compare with the multi-class support vector machine al-
gorithm. For Random Forests, we train 250 randomized trees. For the SVM we
use the RBF kernel and perform model selection by a grid search for selecting
the kernel width σ and capacity parameter C. For our GBoost algorithm, we
use 5 extremely randomized trees as weak learners, and set the number of weak
learners T = 50 and fix the shrinkage factor to ν = 0.05 for all the experiments.
We repeat the experiments for 5 times and report the average test error.

The results over DNA, Letter, Pendigit, and USPS datasets are shown in
Table 1. As it can be seen, our algorithm achieves results comparable to other
5 For these algorithms we report the results presented in [22].



Robust Multi-View Boosting with Priors 785

Table 1. Classification error on machine learning benchmark datasets. The bold-face

shows the best performing method, while the italic font shows the second best.

Dataset/Method GBoost RF SVM SAMME [22] AdaBoost.ECC [22] AdaBoost.SIP [22]
DNA 0.0582 0.0683 0.0559 0.1071 0.0506 0 .0548
Letter 0.0265 0.0468 0 .0298 0.4938 0.2367 0.1945
Pendigit 0 .0387 0.0496 0.0360 0.3391 0.1029 0.0602
USPS 0 .0524 0.0610 0.0424 N/A N/A N/A

(a) COIL (b) USPS

Fig. 2. Classification error for (a) COIL and (b) USPS dataset with noisy priors

multi-class classifiers. The best performing method is the SVM with RBF ker-
nel. However, our algorithm achieves these results without any need for model
selection (we use a fixed setting for all the experiments in this section and the
next two sections), and is considerably faster during both training and testing.
For example, for the Letter dataset with 15000 training and 4000 samples, our
unoptimized Python/C++ implementation6 finishes the training and testing in
54 seconds, while the training of the SVM using Shogun LibSVM interface [23]
takes around 156 seconds.

3.2 Robustness Experiments

In order to show the increased robustness experimentally, we compare our semi-
supervised boosting algorithm (GPBoost) with the RMSBoost [17] which uses
the Kullback-Leibler divergence. In these experiments, we use the hidden labels
of the unlabeled samples in order to produce a prior and then we introduce
random label noise into these priors and train both semi-supervised boosting
algorithms with the same settings. In order to make the comparison fair, we also
change the supervised loss function of the RMSBoost to Savage loss. For these
experiments, we choose two semi-supervised learning benchmark datasets [1].
The results averaged over 12 splits provided in the dataset for COIL and USPS
datasets are shown in Figure 2. As it can be seen, our algorithm retains lower
test errors compared to the RMSBoost. It should be noted that specially for the
COIL set which is multi-class dataset, the gap is larger from early on.

6 Code is available at

http://www.ymer.org/amir/software/multi-class-semi-supervised-boosting/

http://www.ymer.org/amir/software/multi-class-semi-supervised-boosting/
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3.3 Object Category Recognition

We evaluate various multi-view semi-supervised boosting algorithms on Cal-
tech101 object category recognition task. This dataset represent a challenging
task for the semi-supervised learners, since the number of classes is large and the
number of training samples per class is rather low. For these experiments, we
randomly choose up to 80 images from each class and label {5, 10, 15, 20, 25, 30}
images for each of them. We use the rest of the samples as the test set. Since
many of the classes do not have enough images to form a separate unlabeled
set, we resort to the transductive settings where the test set is used as the unla-
beled set. We repeat this procedure 5 times and report the average classification
accuracy per each class.

For feature extraction, we use the precomputed dense SIFT-based bag-of-
words and PHOG features from Gehler and Nowozin [24] to form different views.
In details, for BOW features, we use a vocabulary of size 300 extracted from
gray level and individual color channels. We use a level-2 spatial histogram to
represent these 2 views (BOW-grey and BOW-Color). Additionally, we use level-
2 PHOG features formed from the oriented (PHOG-360) and unoriented (PHOG-
180) gradients. Therefore, in total we have 4 different views for this dataset.

In these experiments, we use the Random Forests (RF), our supervised multi-
class boosting algorithm (GBoost), multi-view boosting using GBoost as the
basic learners (MV-GBoost), and our multi-view algorithm MV-GPBoost. Addi-
tionally, we extended the AgreementBoost algorithm [6] to cope with multi-class
problems and report the results for this algorithm as well.

If we set the γ = 0 in MV-GPBoost, we will end up in exactly the MV-
GBoost algorithm. Therefore, the performance gains seen here are totally due to
the incorporation of the prior regularization term. The settings for the RFs and
our boosting algorithms is exactly the same settings used for machine learning
benchmark experiments. For the multi-view algorithms, we iterate the learning
process for 10 iterations and label 100 unlabeled samples (1 from each class) in
each iteration. Since RFs and GBoost cannot use the views directly, we concate-
nate the features into a single feature vector.

Figure 3 shows the results for three different settings: (a) only using the two
views provided from BOW features, (b) using two views from PHOG features,
and (c) using all 4 views. The first observation is that the GBoost algorithm
successfully boosts the performance of the random forest and the accuracy gap
can be as high as 5%. Comparing the performance of the GBoost and the MV-
GBoost, we can see that in general the multi-view learning strategy by labeling
a subset of unlabeled samples iteratively, works and there is a clear performance
gain between these two algorithms. However, the highest accuracy is obtained by
MV-GPBoost which has a considerable gap in classification accuracy compared
to the MV-GBoost algorithm. Another observation here is that, as expected, the
combination of all 4 views achieves the highest performance, compared to us-
ing either two views from BOW or PHOGs. Furthermore, the performance of the
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(a) BOW views (b) PHOG views (c) PHOG and BOW views

Fig. 3. Caltech101 classification accuracy for: (a) BOW, (b) PHOG, and (c) BOW and

PHOG

Table 2. Classification accuracy on Caltech101 with kernel SVMs for 15 and 30 labeled

samples per class

Methods - Views BOW PHOG BOW+PHOG
# Labels 15 30 15 30 15 30
SVM 0.5545 0.6415 0.4612 0.5264 0.6123 0.6888
MV-GPBoost 0.5605 0.6805 0.4745 0.5411 0.6496 0.7158

AgreementBoost which uses the variance of the classifiers over different views to
regularize the training process of boosting is not comparable to the performance
of other learning methods.

Similar to [24], when we use χ2 kernels over each of the views and use SVMs
as the weak learners of the boosting classifiers, we improve the classification
accuracy on this dataset. These results are reported in Table 2.

3.4 Object Tracking

Recently, boosting-based methods have achieved high accurate tracking perfor-
mances running in real-time [25]. In these methods, usually an appearance-based
classifier is trained with a marked object at the first frame versus its local back-
ground. The object is then tracked by performing re-detection in the succeed-
ing frames. In order to handle rapid appearance and illumination changes, the
classifiers perform on-line self-updating [26]. However, during this self-updating
process it is hard to decide where to select the positive and negative updates.
If the samples are selected wrongly, slight errors can accumulate over time and
cause drifting. Therefore, recent approaches applied on-line extensions of boost-
ing that can handle the uncertainty in the update process, such as CoBoost [9],
SemiBoost [27] or MILBoost [28]. The main idea of these approaches is to de-
fine a region around the current tracking position and leave it up to the learner
which samples to incorporate as positives or negatives in order to stabilize the
tracking. In the following, we compare our method to the state-of-the-art.

We use eight publicly available sequences including variations in illumina-
tion, pose, scale, rotation and appearance, and partial occlusions. The sequences
Sylvester and David are taken from [29] and Face Occlusion 1 is taken from [30],
respectively. Face occlusion 2, Girl, Tiger1,Tiger2 and Coke are taken from [28].
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Table 3. Tracking results on the benchmark sequences measured as average center

location errors (in pixels) over 5 runs per sequence. Best performing method is marked

in bold face, while the second best is shown in italic.

Approach sylv david faceocc2 tiger1 tiger2 coke faceocc1 girl

MV-GPBoost 17 20 10 15 16 20 12 15
CoBoost 15 33 11 22 19 14 13 17
SemiBoost 22 59 43 46 53 85 41 52
MILBoost 11 23 20 15 17 21 27 32

All video frames are gray scale and of size 320 × 240. We report the tracking
accuracy in terms of average center location error in pixel to the groundtruth.

Since our method is a multi-view approach, it is straight-forward to use dif-
ferent feature information. However, this would make the comparison to other
methods that are based on single features unfair. So, in the following we report
tracking results only for Haar-features and it should be clear to the reader (also
by looking at previous experiments) that further improvement can be achieved
by adding additional feature queues. In particular, we use 30 selectors with each
30 weak learners. The different views are generated by random sub-sampling
from a large amount of Haar-features. In Table 3 we depict the results for all
tracking sequences, i.e., CoBoost [9], SemiBoost [27] and MILBoost [28]. As can
be seen, MV-GPBoost performs best on five tracking sequences. The resulting
tracking videos can be found in the supplementary material.

4 Conclusions

In this paper, we have introduced a new multi-view boosting algorithm. In con-
trast to previous approaches that select a subset of the unlabeled data and ignore
the rest, we use all unlabeled samples and, we use the different views to provide
an aggregated prior which regularizes a semi-supervised loss function. Since pri-
ors are noisy, we also propose a novel robust loss function for semi-supervised
boosting. Finally, our method is inherently multi-class and can handle more than
two views at the same time. We demonstrated the performance of our method on
machine learning benchmark sets, Caltech-101 object categorization and object
tracking.
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Abstract. Confronted with the high-dimensional tensor-like visual data,

we derive a method for the decomposition of an observed tensor into a

low-dimensional structure plus unbounded but sparse irregular patterns.

The optimal rank-(R1, R2, ...Rn) tensor decomposition model that we

propose in this paper, could automatically explore the low-dimensional

structure of the tensor data, seeking optimal dimension and basis for each

mode and separating the irregular patterns. Consequently, our method

accounts for the implicit multi-factor structure of tensor-like visual data

in an explicit and concise manner. In addition, the optimal tensor de-

composition is formulated as a convex optimization through relaxation

technique. We then develop a block coordinate descent (BCD) based

algorithm to efficiently solve the problem. In experiments, we show sev-

eral applications of our method in computer vision and the results are

promising.

1 Introduction

As the size of data and the amount of redundancy increase fast with dimension-
ality, the recent explosion of massive amounts of high-dimensional visual data
presents a challenge to computer vision. Most of the existing high-dimensional
visual data either has the natural form of tensor (e.g. multi-channel images and
videos) or can be grouped into the form of tensor (e.g. tensor face [1]). On one
side, one may seek a compact and concise low-dimensional representation of the
data, such as dimension reduction [2–4] or image compression [5]. On the other
side, one may seek to detect the irregular patterns of the data, such as saliency
detection [6] or foreground segmentation [7]. As a consequence, it is desirable
to develop tools that can find and exploit the low-dimensional structure in a
high-dimensional tensor-like visual data.

In the two-dimensional case, i.e. the matrix case, the “rank” plays an impor-
tant part in capturing the global information of visual data. One simple and
useful assumption is that the data lie near certain low-dimensional subspace,
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Fig. 1. Result of our method on a color facade (left). The method automatically seek

a low dimensional representation (middle) and separate the sparse irregular patterns

(right). Better viewed in color and zoom in for details.

which is closely related to the notation of rank. Although the “rank” itself is
nonconvex, it can be approximated by its convex envelop, namely the trace
norm. The validation of this approximation is justified in theory [8]. Among all
the trace norm minimization problems, matrix completion may be a well-known
one [8, 9]. Recently, [10] extends the matrix completion problem to the tensor
case and develops an efficient solution.

The “sparsity” is also a useful tool for visual data analysis. One common
observation is that the irregular patterns often occupy a small portion of the
data. This sparse prior has demonstrated a wide range of applications including
image denoising [11], error correction [12] and face recognition [13]. It was not
until very recently that had much attention been focused on the rank-sparsity
problem for matrix [14, 15], namely the Principal Component Pursuit (PCP) or
the Robust Principal Component Analysis (RPCA). These work seek to directly
decompose a matrix into a low-rank part plus a sparse part. Theoretic analy-
sis [15] shows that under rather weak assumptions, the problem can be solved
by the joint minimization of trace norm and l1 norm.

We consider the decomposition of an observed tensor data into a low di-
mensional structure and an additive (sparse) irregular pattern. Analogy to the
PCP problem in the matrix case, the optimal rank-(R1, R2, ...Rn) tensor de-
composition model that we propose in the paper, could automatically explore
the low-dimensional structure of the tensor data, seeking optimal dimension and
basis for each mode and separating the irregular patterns (See Fig.1 for an ex-
ample and the core idea). Our method is an multilinear extension of the PCP
problem and subsumes the matrix PCP problem as a special case. The optimal
tensor decomposition is formulated as a convex optimization through relaxation
technique. In addition, we develop a efficient block coordinate descent (BCD)
based solution. We show several applications of our method in computer vision
and the results are promising.

The rest of the paper is organized as follows: Section 2 briefly reviews related
work. Section 3 provides the foundations of tensor algebra that are relevant to our
approach. Section 4 formulates our proposed optimal rank-(R1, R2, ..., Rn) tensor
decomposition model together with its solution. Section 5 reports experimental
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results of our algorithm for several computer vision tasks. Finally, Section 6
concludes the paper.

2 Related Work

Prior research on subspace analysis is abundant, including Principal Component
Analysis (PCA) [2], Linear Discriminant Analysis (LDA) [3], Locality Preserv-
ing Projection (LPP) [4], etc. These models are widely adopted in computer
vision problems. They usually treat an image as a vector and consider only one
factor of the problem (e.g. only the face identity is considered in face recogni-
tion task). Various researchers have attempted to overcome the shortcomings of
these methods by considering the image as a 2-mode tensor (i.e. matrix), includ-
ing 2DPCA [7], tensor subspace analysis (tensor LPP) [16], tensor LDA [17],
etc.

Much effort has been focused on the tensor representation and analysis of vi-
sual data. Vasilescu and Terzopoulos [1] introduce a multilinear tensor framework
to the analysis of face ensembles that explicitly accounts for each of the multi-
ple factors implicit in image formation. Possible applications of the multilinear
approach cover face recognition [18–20], facial expression decomposition [20, 21]
and face super-resolution [22]. These methods are based on the higher order sin-
gular value decomposition [23], i.e. the Tucker decomposition, leading to best
rank-(R1, R2, ...Rn) approximations of higher-order tensors (See Section 2 for
details).

Shashua and Levin [24] propose 3-way tensor decomposition for the images as
a 3D cube. They develop compression algorithms for images and video, that take
advantage of spatial and temporal redundancies. The method is further extended
to non-negative 3D tensor factorization [22] for the purpose of establishing a local
parts feature decomposition from an object class of images. The non-negative
tensor factorization is also applied to hypergraph clustering [25] to study a series
of vision problems including 3D multi-body segmentation and illumination-based
face clustering. These methods are based on the PARAFAC decomposition [26],
leading to best (non-negative) rank-R approximations of higher-order tensors.

The optimal rank-(R1, R2, ...Rn) tensor decomposition model that we propose
in the paper seeks a best n-rank condition for the tensor data, yielding a rather
different approach from previous work. Our model could simultaneously find the
optimal dimension and basis for each mode and separate the irregular patterns
in an automatic manner. As a result, by rather weak prior, our method can
account for the implicit multi-factor structure of tensor-like visual data in an
explicit and concise manner.

3 Tensor Basics

A tensor, or n-way array, is a higher-order generalization of matrix. We use lower
case letters (a, b,...) for scalars, bold lower case letters (a, b,...) for vectors, upper
case letters (A, B,...) for matrix, and calligraphic upper case letters (A, B,...) for
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higher order tensors. Formally, a n-mode tensor is defined as A ∈ RI1×I2×...×In ,
with its elements ai1 ...aik

...ain ∈ R. Therefore, a vector can be seen as a 1-mode
tensor and a matrix can be seen as a 2-mode tensor.

It is often convenient to flatten a tensor into a matrix, also called matricizing
or unfolding. The “unfold” operation along the kth mode on a tensor A is de-
fined as unfold(A, k) := A(k) ∈ RIk×(I1...Ik−1Ik+1...In). Accordingly, its inverse
operator fold can be defined as fold(A(k), k) := A. Moreover, the k-rank of
tensor A, denoted by rk, is defined as the rank of the matrix A(k):

rk = rankk(A) = rank(A(k)) (1)

The Frobenius norm of a tensor is defined as ‖A‖F :=(
∑

i1,i2,...in
|ai1ai2 ...ain |2) 1

2 .
Besides, denote the l0 norm ‖A‖0 as the number of non-zero entities in A
and the l1 norm ‖A‖1 :=

∑
i1,i2,...in

|ai1ai2 ...ain | respectively. Then, we have
‖A‖F = ‖A(k)‖F , ‖A‖0 = ‖A(k)‖0 and ‖A‖1 = ‖A(k)‖1 for any 1 ≤ k ≤ n.

A generalization of the product of two matrix is the product of a tensor
and a matrix. The mode-k product of a tensor A ∈ RI1×I2×...×In by a matrix
M ∈ RJk×Ik , denoted by A ×k M , is a tensor B ∈ RI1×...Ik−1×Jk×Ik+1×...×In

with its elements given by

bi1×...ik−1×jk×ik+1×...×in =
∑
ik

ai1×...ik−1×ik×ik+1×...×inmjkik
(2)

The mode-k product can be expressed in tensor notation, or in terms of flattened
matrix:

B = A×k M = fold(MA(k), k) (3)

The notion of rank for tensors with order greater than two is subtle. There are
two types of higher-order tensor decompositions, but neither of them has all the
nice properties of the matrix SVD. The PARAFAC decomposition [26] represents
the n-mode tensor A ∈ RI1×I2×...×In as the outer product of vectors uj

k ∈ RIk

(Fig.2).

A =
R∑

j=1

λju
j
1 ◦ uj

2 ◦ ... ◦ uj
n (4)

where uj
k are unit length vectors. Under mild conditions, the rank-R decompo-

sition is essentially unique [26]. The rank of a n-mode tensor A, is the mini-
mal number of R, indicating the optimal rank-R decomposition. It is a natural
extension of the matrix rank-R decomposition, but it does not compute the
orthonormal subspace associated with each mode.

The Tucker decomposition, in the other hand, does not reveal the rank of the
tensor, but it naturally generalizes the orthonormal subspaces corresponding to
the left/right singular matrix computed by the matrix SVD [23]. The n-mode
tensor A ∈ RI1×I2×...×In can be decomposed as

A = Z ×1 U1 ×2 U2, ...×k Uk...×n Un (5)
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Fig. 2. Comparison of different decomposition for 3D tensor; Top: Rank-R decompo-

sition. Bottom: Rank-(R1, R2,. . . RN ).

where Ui ∈ RIi×Ri are n orthogonal matrix. Ui spans the Ri dimensional sub-
space of the original RIi space, with its orthonormal columns as the basis. Ui

accounts for the implicit factor of the ith-mode dimension of tensor A. Z is the
(dense) core tensor associating each of the n subspace (Fig.2).

4 Optimum Rank-(R1, R2,. . . RN) Tensor Decomposition

4.1 The Model

To begin with, we give a brief introduction to the best Rank-(R1, R2,. . .RN )
approximation (decomposition) problem in [17, 20, 23]. Consider a real n-mode
tensor A ∈ RI1×I2×...×In , the best rank-(R1, R2,. . .RN ) approximation is to find
a tensor Ã ∈ RI1×I2×...×In with pre-specified rankk(Ã) = Rk, that minimizes
the least-squares cost function:

min
Ã

f(Ã) = ‖A− Ã‖2
F

s.t. ranki(Ã) = Ri ∀i
(6)

The n-rank conditions imply that Ã should have the Tucker decomposition as
(5): Ã = Z×1U1×2U2, ...×kUk...×nUn. The decomposition is discussed in [23]
and Higher Order Orthogonal Iteration (HOOI) has been proposed to solve the
problem.

HOOI requires strong prior knowledge of the tensor A ∈ RI1×I2×...×In , namely
ranki(A) = Ri, to find the (local) minimum solution. However, for visual data
in real applications (e.g. a video clip or CT data), such prior knowledge is hardly
available. Problem arises that if only weak prior knowledge is known (e.g. the
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configuration of the tensor data), can one design a method that could automat-
ically find the optimal n-rank condition of the given tensor A. To simplify the
problem, we consider a ideal model that the corruption is produced by additive
irregular patterns S.

A = L + S (7)

where A, L and S are n-mode tensors with identical size in each mode. A is the
observed data tensor. L and S represent the correspondent structured part and
irregular part, respectively.

The underlining assumption of (7) is that the tensor data A is generated by a
highly structured tensor L, and then corrupted by an additive irregular patterns
S. One straightforward assumption may be that the n-rank of L should be small
and the corruption S is bounded, leading to the formulation:

min
L

∑
i

λi ranki(L)

s.t. ‖L −A‖2
F ≤ ε2

(8)

where Ui ∈ RIi×ranki(L). Intuitively, the weights λi indicates the preference
towards different “unfold” operation, i.e. the configuration of the tensor. For
example, we would prefer to explain the tensor representation of a video as the
collection of frames.

(8) imposes constraints on the least square errors, suggesting that the corrup-
tion of the irregular patterns S is bounded. The constraint could be the case in
certain situations. However, the irregular patterns in real world visual data is
unknown and unbounded in general. A reasonable observation is that the irreg-
ular patterns S usually occupy only a small portion of the data. Therefore, we
could impose l0 norm penalization on S and form the problem as follows:

min
L,S

∑
i

λi ranki(L) + η‖S‖0

s.t. ‖L+ S −A‖2
F ≤ ε2

(9)

The constant η balances between the low-dimensional structure and sparse ir-
regularity. In addition, it is easy to check that (7) is a special case of (9) if we
force S = 0. Thus, we will focus on problem (9) in the rest of the paper.

When the optimal L is achieved, similar to the Tucker Decomposition, the
core tensor Z can be computed by [23]

Z = L ×1 U
T
1 ×2 U

T
2 ...×n U

T
n (10)

where Ui is the left singular matrix of Li. Accordingly, we can get the rank-(R1,
R2,. . .RN ) decomposition of L = Z ×1 U1 ×2 U2, ...×i Ui... ×n Un. We call the
correspondent decomposition in (11)

A ∼ Z ×1 U1 ×2 U2, ...×i Ui...×n Un (11)
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to be the optimal rank-(R1, R2,. . .RN) decomposition of tensor A under
the sense of l1 norm . The term “optimal” means that the model could auto-
matically exploit the low-dimensional structure of the n-mode tensor A, finding
optimal dimension and basis for each mode and separating the sparse irregular
patterns. The unknown support of the errors makes the problem more difficult
than the tensor completion problem that has been recently much studied [10]. In
the next section, we discuss the solution toward the optimization problem and
propose the rank sparsity tensor decomposition (RSTD) algorithm.

4.2 Simplified Formulation

Equation (9) provides a promise for simultaneously exploring the low-dimensional
structure and separating the irregular patterns of given tensor data A ∈
RI1×I2×...×In . However, (9) as the combination of two NP hard problem (matrix
rank and l0 norm), is highly nonconvex optimization. Given the fact that the
trace norm ‖L(i)‖tr and l1 norm ‖S‖1 are the tightest convex approximation of
ranki(L) and ‖S‖0 respectively, one can relax ranki(L) and ‖S‖0 by ‖L(i)‖tr

and ‖S‖1. Therefore, we could obtain a tractable optimization problem:

min
L,S

∑
i

λi‖L(i)‖tr + η‖S‖1

s.t. ‖L+ S −A‖2
F ≤ ε2

(12)

where the trace norm, or the nuclear norm of matrix L(i) is defined as the
sum of its singular values σj , i.e. ‖L(i)‖tr =

∑
j σj(L(i)). If rankiL ! Ii and

‖S‖0 ! Πn
i=1Ii, i.e. tensor L is highly structured and tensor S is sparse enough,

under rather mild conditions, the approximation can be highly accurate [8, 15].
Empirically, for general visual data with high redundancy, the approximation
produces good results.

Problem (12) is still hard to solve due to the interdependent trace norm and
l1 norm constraint. To simplify the problem, we introduce additional auxiliary
matrix Mi = L(i) and Ni = S(i). Thus, we obtain the equivalent formulation:

min
L,S,Mi,Ni

1
n

n∑
i=1

λi‖Mi‖tr +
η

n

n∑
i=1

‖Ni‖1

s.t. Mi = L(i) Ni = S(i) ∀i
‖Mi +Ni −A(i)‖2

F ≤ ε2 ∀i

(13)

In (13), the constrains Mi = L(i) and Ni = S(i) still enforce the consistency of
all Mi and Ni. Thus, we further relax the equality constrains Mi = L(i) and
Ni = S(i) by ‖Mi −L(i)‖F ≤ ε1 and ‖Ni −S(i)‖F ≤ ε2. Then, it is easy to check
that the dense noise term by ‖Mi +Ni −A(i)‖F ≤ ε3 corresponds to the stable
Principle Component Pursuit(sPCP) in the matrix case [27]. Then, we get the
relaxed form:
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min
L,S,Mi,Ni

1
n

n∑
i=1

λi‖Mi‖tr +
η

n

n∑
i=1

‖Ni‖1

s.t. ‖Mi − L(i)‖2
F ≤ ε21 ‖Ni − S(i)‖2

F ≤ ε22 ∀i
‖Mi +Ni −A(i)‖2

F ≤ ε23 ∀i

(14)

For certain αi, βi and γi, (14) can be converted to its equivalent form by Lagrange
multiplier.

min
L,S,Mi,Ni

F (L,S,Mi, Ni) =
1
2n

n∑
i=1

αi‖Mi − L(i)‖2
F +

1
2n

n∑
i=1

βi‖Ni − S(i)‖2
F

+
1
2n

n∑
i=1

γi‖Mi +Ni −A(i)‖2
F +

1
n

n∑
i=1

λi‖Mi‖tr +
η

n

n∑
i=1

‖Ni‖1

(15)

Intuitively, the weights αi, βi and γi indicate the preference towards different
“unfold” operation similar to λi. The optimization problem in (15) is convex but
nondifferentiable. Next, we show how to solve this problem.

4.3 The Proposed Algorithm

We propose to employ the alternating direction method (ADM) for the opti-
mization (15), leading to an block coordinate descent (BCD) algorithm. The
core idea of the BCD is to optimize a group of variables while fixing the other
groups. The variables in the optimization are N1,..., Nn,M1,...,Mn, L, S, which
can be divided into 2n+ 2 blocks. To achieve the optimal solution, we estimate
Ni, Mi, L and S sequentially, followed by certain refinement in each iteration.
For clarity, we first define the ”shrinkage” operator Dτ (x) with τ > 0 by

Dτ (x) =

⎧⎪⎨⎪⎩
x− τ if x > τ
τ − x if x < −τ
0 otherwise

(16)

The operator can be extended to the matrix or tensor case by performing the
shrinkage operator towards each element. Then, we introduce the solution to-
wards each subproblem.
Computing Ni: The optimal Ni with all other variables fixed is the solution to
the following subproblem

min
Ni

βi

2
‖Ni − S(i)‖2

F +
γi

2
‖Ni +Mi −A(i)‖2

F + η‖Ni‖1 (17)

By the well-known l1 minimization [28], the global minimum of the optimization
problem in (17) is given by

Ni
∗ = D η

βi+γi
(
βiS(i) + γi(A(i) −Mi)

βi + γi
) (18)

where Dτ is the “shrinkage” operation.
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Computing Mi: The optimal Mi with all other variables fixed is the solution
to the following subproblem:

min
Mi

αi

2
‖Mi − L(i)‖2

F +
γi

2
‖Mi +Ni −A(i)‖2

F + λi‖Mi‖tr (19)

As shown in [9], the global minimum of the optimization problem in (19) is given
by

Mi
∗ = UiD λi

αi+γi

(Λ)Vi
T (20)

where UiΛVi
T is the singular value decomposition given by

UiΛVi
T =

αiL(i) + γi(A(i) −Ni)
αi + γi

(21)

Computing Si: The optimal S with all other variables fixed is the solution to
the following subproblem

min
S

1
2

n∑
i=1

βi‖Ni − S(i)‖2
F (22)

It is easy to show that the solution to (22) is given by

Ŝ∗ =
∑n

i=1 βifold(Ni, i)∑n
i=1 βi

(23)

Computing Li: The optimal L with all other variables fixed is the solution to
the following subproblem

min
L

1
2

n∑
i=1

αi‖Mi − L(i)‖2
F (24)

Similar to (22), the solution to (24) is given by

L̂∗ =
∑n

i=1 αifold(Mi, i)∑n
i=1 αi

(25)

We choose the difference of L and S in successive iterations against a certain
tolerance as the stopping criterion. N∗

i ,M∗
i , L∗ and S∗ are estimated iteratively

until the convergence. We call the proposed algorithm Rank Sparsity Tensor
Decomposition (RSTD). The pseudo-code of RSTD is summarized in Algorithm
1. We can further show that accelerated BCD for RSTD is guaranteed to reach
the global optimum of (15), since the first three terms in (15) are differentiable
and the last two terms are separable [29].
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Algorithm 1. RSTD for Optimum Rank-(R1...RN ) Tensor Approximation

Input : n-mode tensor A
P arameters : α, β, γ, λ, η
Output : n-mode tensor L, S , Z, matrix Ui from 1 to n

1. Set L(0) = A, S(0) = 0, Mi = L(i), Ni = 0 , k = 1, t(0) = 1

2. while no convergence

3. for i = 1 to n

4. Ni
∗ = D η

βi+γi
(

βiS(i)+γi(A(i)−Mi)

βi+γi
)

5. Mi
∗ = UiD λi

αi+γi

(Λ)Vi
T where UiΛVi

T =
αiL(i)+γi(A(i)−Ni)

αi+γi

6. end for

7. S∗ =
∑n

i=1 βifold(Ni,i)∑n
i=1 βi

8. L∗ =
∑n

i=1 αifold(Mi,i)∑n
i=1 αi

9. end while
10. Z = L ×1 UT

1 ×2 UT
2 ... ×n UT

n

5 Experiments

5.1 Implementation Details

In the implementation, we adopt the Lanczos bidiagonalization algorithm with
partial reorthogonalization [30] to obtain a few singular values and vectors during
each iteration. The prediction rule for the dimension of the principal singular
space is the same as [15]. A major challenge of our method is the selection of
parameters. As the redundancy usually grows with the dimension, we simply
set α = β = γ = [I1/Imax, I2/Imax, ..., In/Imax]T for all experiments, where
Imax = max{Ii}. Similarly, we set λ = [sv1/svmax, sv2/svmax, ..., svn/svmax],
where svi is the 95% singular value of A(i) and svmax = max{svi}. Finally, we
choose η = 1/

√
Imax as suggested in [15]. During the experiments, we observe

that for most of the samples our implementation is able to converge in less than
100 iterations with a tolerance equal to 10−6.

5.2 Image Restoration

As shown in Fig.1, our algorithm can be used to separate unbounded sparse
noise in visual data. One straightforward application of our method is the image
restoration. However, we must point out that our algorithm assumes the tensor
be well structured. This assumption would not be reasonable for some natural
images, but it should be applicable for many visual data such as structured
object (e.g. the facade), CT/fMRI data, multi-spectral image, etc. Therefore,
we apply our algorithm on a set of MRI data including 181 brain images, which
is also used in [10]. We add different percent of unbounded random noise to the
image and demonstrate some of the results produced by our method in Fig.3.
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Fig. 3. Demonstration of the results produced by our algorithm (from left to right):

original image, 5% corrupted image, recovered image from 5% corrupted noise; 10%

corrupted image, recovered image from 10% noise; 30% corrupted image, recovered

image from 30% corrupted noise

Our algorithm is able to find the structured data and separate the noise
without the location of the corruption (about 30 percent of the data). Table.1
further provides quantitative results of our algorithm.

Table 1. Error correction for the brain MRI data

Percentage of Corruption 5% 10% 15% 20% 30%

Average PSNR (dB) 37.41 34.41 30.70 28.95 20.35

5.3 Background Subtraction

Another possible application of our algorithm is the background subtraction
problem. Background substraction establishes a background model (the struc-
tured part) and segments the foreground object (sparse irregular pattern). For
most of the video clip, redundancy is abundant. We conduct experiments on
several video clips. Fig.4 demonstrates some of our results in one of the highly
dynamic scenes. The results are comparable to the-state-of-art background sub-
traction algorithms.
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Fig. 4. Background subtraction by our method (no filter is performed on the results)

5.4 Face Representation and Recognition

By the TensorFace in [1], we test our algorithm on the CMU PIE dataset, which
contains 68 person under various viewpoints, expressions and illuminations. We
use the same data set as [16] with the resolution at 64× 64. For simplicity, only
the five near frontal view under 21 different illuminations (105 images) of one
person are used as training and the rest (65 images including the expressions)
is for testing. Thus, we get a 5 × 21 × 68 × 64 × 64 tensor. Then, the method
learns a 5 × 5 × 68 × 23 × 22 core tensor. Fig.5 compares the reconstructed
faces with the original ones. We can see that the shadows have been removed.
As a consequence, we achieve a competitive 94.3% accuracy by the recognition
method in [19].

Fig. 5. Original Face (left) v.s. Reconstructed Face (right): the shadow caused by

different illumination has been removed

6 Conclusion and Future Work

In this paper, we propose the optimal rank-(R1, R2, ...Rn) tensor decomposition
model. The model could automatically explore the low-dimensional structure of
the tensor data seeking optimal dimension and basis for each mode and sepa-
rating the irregular patterns. We are currently working on parameters and the



802 Y. Li et al.

optimization method of our model (e.g the proximal gradient), which may lead
to better efficiency. We would also like to further explore additional applications
and to investigate the theoretic side of our method in the future work.
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Köser, Kevin VI-266
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Lézoray, Olivier IV-638

Li, Ang III-258

Li, Chuan IV-694

Li, Hanxi II-608

Li, Hongdong IV-396

Li, Kai V-71

Li, Na V-631

Li, Ruonan V-547

Li, Yi VI-504

Li, Yin III-790

Li, Yunpeng II-791

Li, Zhiwei IV-157

Lian, Wei V-506

Lian, Xiao-Chen IV-157

Lim, Yongsub II-535

Lin, Dahua I-243

Lin, Liang III-342

Lin, Yen-Yu VI-84

Lin, Zhe VI-294

Lin, Zhouchen I-115, VI-490

Lindenbaum, Michael V-99

Ling, Haibin III-411

Liu, Baiyang IV-624

Liu, Ce III-706

Liu, Jun VI-504

Liu, Risheng I-115

Liu, Shuaicheng VI-323

Liu, Siying II-280

Liu, Tyng-Luh VI-84

Liu, Wenyu III-328, V-15

Liu, Xiaoming I-354

Liu, Xinyang III-594

Liu, Xiuwen III-594

Liu, Yazhou I-327

Livne, Micha III-243

Lobaton, Edgar III-101

Lourakis, Manolis I.A. II-43

Lovegrove, Steven III-73

Lu, Bao-Liang IV-157

Lu, Zhiwu VI-1

Lucey, Simon III-467

Lui, Lok Ming V-672

Luo, Jiebo V-169

Luo, Ping III-342

Ma, Tianyang V-450

Maheshwari, S.N. III-552

Mair, Elmar II-183

Maire, Michael II-450

Maji, Subhransu VI-168

Majumder, Aditi IV-72

Makadia, Ameesh V-310

Makris, Dimitrios VI-547

Malik, Jitendra VI-168, V-282

Manduchi, Roberto I-200

Mansfield, Alex I-143

Marcombes, Paul IV-171

Mario Christoudias, C. I-677

Marks, Tim K. V-436

Matas, Jǐŕı III-1
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Özuysal, Mustafa III-58, III-635

Packer, Ben V-338

Pajdla, Tomas I-748

Pajdla, Tomáš II-100
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