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Preface

The 2010 edition of the European Conference on Computer Vision was held in

Heraklion, Crete. The call for papers attracted an absolute record of 1,174

submissions. We describe here the selection of the accepted papers:

Thirty-eight area chairs were selected coming from Europe (18), USA and
Canada (16), and Asia (4). Their selection was based on the following
criteria: (1) Researchers who had served at least two times as Area Chairs
within the past two years at major vision conferences were excluded; (2)
Researchers who served as Area Chairs at the 2010 Computer Vision and
Pattern Recognition were also excluded (exception: ECCV 2012 Program
Chairs); (3) Minimization of overlap introduced by Area Chairs being former
student and advisors; (4) 20% of the Area Chairs had never served before in
a major conference; (5) The Area Chair selection process made all possible
efforts to achieve a reasonable geographic distribution between countries,
thematic areas and trends in computer vision.

Each Area Chair was assigned by the Program Chairs between 28-32 papers.
Based on paper content, the Area Chair recommended up to seven potential
reviewers per paper. Such assignment was made using all reviewers in the
database including the conflicting ones. The Program Chairs manually
entered the missing conflict domains of approximately 300 reviewers. Based
on the recommendation of the Area Chairs, three reviewers were selected per
paper (with at least one being of the top three suggestions), with 99.7% being
the recommendations of the Area Chairs. When this was not possible, senior
reviewers were assigned to these papers by the Program Chairs, with the
consent of the Area Chairs. Upon completion of this process there were 653
active reviewers in the system.

Each reviewer got a maximum load of eight reviews—in a few cases we had
nine papers when re-assignments were made manually because of hidden
conflicts. Upon the completion of the reviews deadline, 38 reviews were
missing. The Program Chairs proceeded with fast re-assignment of these
papers to senior reviewers. Prior to the deadline of submitting the rebuttal by
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the authors, all papers had three reviews. The distribution of the reviews was
the following: 100 papers with an average score of weak accept and higher,
125 papers with an average score toward weak accept, 425 papers with an
average score around borderline.

For papers with strong consensus among reviewers, we introduced a
procedure to handle potential overwriting of the recommendation by the Area
Chair. In particular for all papers with weak accept and higher or with weak
reject and lower, the Area Chair should have sought for an additional
reviewer prior to the Area Chair meeting. The decision of the paper could
have been changed if the additional reviewer was supporting the
recommendation of the Area Chair, and the Area Chair was able to convince
his/her group of Area Chairs of that decision.

The discussion phase between the Area Chair and the reviewers was initiated
once the review became available. The Area Chairs had to provide their
identity to the reviewers. The discussion remained open until the Area Chair
meeting that was held in Paris, June 5-6. Each Area Chair was paired to a
buddy and the decisions for all papers were made jointly, or when needed
using the opinion of other Area Chairs. The pairing was done considering
conflicts, thematic proximity, and when possible geographic diversity. The
Area Chairs were responsible for taking decisions on their papers. Prior to
the Area Chair meeting, 92% of the consolidation reports and the decision
suggestions had been made by the Area Chairs. These recommendations were
used as a basis for the final decisions.

Orals were discussed in groups of Area Chairs. Four groups were formed,
with no direct conflict between paper conflicts and the participating Area
Chairs. The Area Chair recommending a paper had to present the paper to the
whole group and explain why such a contribution is worth being published as
an oral. In most of the cases consensus was reached in the group, while in the
cases where discrepancies existed between the Area Chairs’ views, the
decision was taken according to the majority of opinions.

The final outcome of the Area Chair meeting, was 38 papers accepted for an
oral presentation and 284 for poster. The percentage ratios of submissions/
acceptance per area are the following:
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Thematic area # submitted % over # accepted % over % acceptance
submitted accepted in area
Object and Scene Recognition 192 16.4% 66 20.3% 34.4%
Segmentation and Grouping 129 11.0% 28 8.6% 21.7%
Face, Gesture, Biometrics 125 10.6% 32 9.8% 25.6%
Motion and Tracking 119 10.1% 27 8.3% 22.7%
Statistical Models and Visual 101 8.6% 30 9.2% 29.7%

Learning
Matching, Registration, Alignment 90 7.7% 21 6.5% 23.3%
Computational Imaging 74 6.3% 24 7.4% 32.4%
Multi-view Geometry 67 5.7% 24 7.4% 35.8%
Image Features 66 5.6% 17 5.2% 25.8%
Video and Event Characterization 62 5.3% 14 4.3% 22.6%
Shape Representation and 48 41% 19 5.8% 39.6%
Recognition

Stereo 38 3.2% 4 1.2% 10.5%
Reflectance, lllumination, Color 37 3.2% 14 4.3% 37.8%
Medical Image Analysis 26 2.2% 5 1.5% 19.2%

® We received 14 complaints/reconsideration requests. All of them were sent to the
Area Chairs who handled the papers. Based on the reviewers’” arguments and the
reaction of the Area Chair, three papers were accepted—as posters—on top of
the 322 at the Area Chair meeting, bringing the total number of accepted papers
to 325 or 27.6%. The selection rate for the 38 orals was 3.2% .The acceptance
rate for the papers submitted by the group of Area Chairs was 39%.

® Award nominations were proposed by the Area and Program Chairs based on
the reviews and the consolidation report. An external award committee was
formed comprising David Fleet, Luc Van Gool, Bernt Schiele, Alan Yuille,
Ramin Zabih. Additional reviews were considered for the nominated papers
and the decision on the paper awards was made by the award committee. We
thank the Area Chairs, Reviewers, Award Committee Members, and the
General Chairs for their hard work and we gratefully acknowledge Microsoft
Research for accommodating the ECCV needs by generously providing the
CMT Conference Management Toolkit. We hope you enjoy the proceedings.

September 2010 Kostas Daniilidis
Petros Maragos
Nikos Paragios
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Learning a Fine Vocabulary

Andrej Mikulik, Michal Perdoch, Ondfej Chum, and Jifi Matas

CMP, Dept. of Cybernetics, Faculty of EE, Czech Technical University in Prague

Abstract. A novel similarity measure for bag-of-words type large scale image
retrieval is presented. The similarity function is learned in an unsupervised man-
ner, requires no extra space over the standard bag-of-words method and is more
discriminative than both L2-based soft assignment and Hamming embedding.

We show experimentally that the novel similarity function achieves mean av-
erage precision that is superior to any result published in the literature on a num-
ber of standard datasets. At the same time, retrieval with the proposed similarity
function is faster than the reference method.

1 Introduction

Recently, large collections of images have become readily available [[1H3] and image-
based search in such collections has attracted significant attention of the computer
community [4-8]. Most, if not all, recent state-of-the-art methods build on [4] that rep-
resents the image by a histogram of “visual words”, i.e. discretized SIFT descriptors
[9]. The bag-of-words representation possesses many desirable properties required in
large scale retrieval. If stored in inverted files, it is compact and supports fast search.
It is sufficiently discriminative and yet robust to acquisition “nuisance parameters” like
illumination and viewpoint change as well as occlusior.

The discretization of the SIFT features is necessary in large scale problems as it is
neither possible to compute distances on descriptors efficiently nor feasible to store all
the descriptors. Instead, only (the identifier of) the vector quantized prototype for visual
word is kept. After quantization, Euclidean distance in a high (128) dimensional space
is approximated by a 0—oco metric - features represented by the same visual word are
deemed identical, else they are treated as “totally different”. The computational conve-
nience of such a crude approximation of the SIFT distance has a detrimental impact on
discriminative power of the representation. Recent methods like soft assignment and in
particular the Hamming embedding aim at a better space-speed-accuracy trade off.

In this paper, unsupervised learning on a large set of images is exploited to improve
on the 0—oco metric. First, an efficient clustering process with spatial verification estab-
lishes correspondences within a huge (>5M) image collection. Next, a fine-grained vo-
cabulary is obtained by hierarchical approximate nearest neighbour. The automatically
established correspondences are then used to define a similarity measure on the basis
of a probabilistic relationships of visual words; we call it the PR visual word similarity.

! We only consider and compare with methods that support queries that cover only a (small) part
of the test image. Global methods like GIST [10] achieve a much smaller memory footprint at
the cost of allowing whole image queries only.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 1£14]2010.
(© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. An example of corresponding patches. A 2D PCA projection of the SIFT descriptors (left);
two most distant patches in the SIFT space and the images where they were detected (right); a set
of sample patches (bottom). The average SIFT distance within the cluster is 278, the maximum
distance is 591.

When combined with a 16 million word vocabulary (one or two orders of magnitude
larger than commonly used), the PR similarity has the following desirable properties:

(i) it is more accurate, i.e. it is more discriminative, than both standard 0—oo metric
and Hamming embedding.

(ii) the memory footprint of the image representation for PR similarity calculation
is roughly identical to the standard method and smaller than that of Hamming
embedding.

(iii) search with PR similarity is faster than the standard bag-of-words.

As a main contribution of the paper, we present a novel similarity measure that is
learned in an unsupervised manner, requires no extra space (only O(1)) in compari-
son with the bag-of-words and is more discriminative than both O—oco and L2-based soft
assignment.

2 Related Work

In this section, approaches to vocabulary construction and soft assignment suitable for
large-scale image search are reviewed and compared.

In [4], the ‘bag of words’ approach to image retrieval was introduced. The vocabulary
(the number of visual words = 10%) is constructed using a standard k-means algorithm.
Adopting methodology from text retrieval applications, the image score is efficiently
computed by traversing inverted files related to visual words present in the query. The
inverted file related to a visual word W is a list of image ids that contain the visual
word W. It follows that the time required for scoring the documents is proportional to
the number of different visual words in a query and the average length of an inverted
file.

Hierarchical clustering. The hierarchical k-means and scoring of Nistér and Stewenius
5] is the first image retrieval approach that scales up. The vocabulary has a hierarchical
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(@) (b) (d

Fig. 2. Different approaches to the soft assignment (saturation encodes the relevance): (a) hierar-
chical scoring [5] — the soft assignment is given by the hierarchical structure; (b) soft clustering
[[11] assigns features to r nearest cluster centers; (c) hamming embedding [[12] — each cell is di-
vided into orthants by a number of hyperplanes, the distance of the orthants is measured by the
number of separating hyperplanes; (d) the set of alternative words in the proposed PR similarity
measure.

structure which allows efficient construction of large and discriminative vocabularies.
The quantization effect are alleviated by the so called hierarchical scoring. In such a
type of scoring, the scoring visual words are not only located in the leafs of the vo-
cabulary tree. The non-leaf nodes can be thought of as virtual or generic visual words.
These virtual words naturally score with lower idf weights as more features are as-
signed to them (all features in their sub-tree). The advantage of the hierarchical scoring
approach is that the soft assignment is given by the structure of the tree and no addi-
tional information needs to be stored for each feature. On the downside, experiments
in [11] show that the quantization artifacts of the hierarchical k-means are not fully
removed by hierarchical scoring, the problems are only shifted up a few levels in the
hierarchy. An illustrative example of the soft assignment performed by the hierarchical
clustering is shown in Fig.[2(a).

Lost in quantization. In [[11], an approximate soft assignment is exploited. Each fea-
ture is assigned to n = 3 (approximately) nearest visual words. Each assignment is
2

weighted by ¢ 302 where d is the distance of the feature descriptor to the cluster
center.

The soft assignment is performed on features in the database as well as the query
features. This results in n times higher memory requirements and n? times longer run-
ning time — the average length of the inverted file is n times longer and there are up to
n times more visual words associated with the query features. For an illustration of the
soft assignment, see Fig. 2Ib).

Hamming embedding. Jégou et al. [[12] have proposed to combine k-means quantiza-
tion and binary vector signatures. First, the feature space is divided into relatively small
number of Voronoi cells (20K) using k-means. Each cell is then divided by n inde-
pendent hyper-planes into 2™ subcells. Each subcell is described by a binary vector of
length n. Results reported in [[12] suggest that the hamming embedding provides good
quantization. The good results are traded off with higher running time requirements and
high memory requirements.
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The higher running time requirements are caused by the use of coarse quantization
in the first step. The average length of an inverted file for vocabulary of 20K words is
approximately 50 times longer than the one of 1M words. Recall that the time required
to traverse the inverted files is given by the length of the inverted file. Hence 50 times
smaller vocabulary results in 50 times longer scoring time on average. Even if two
query features are assigned to the same visual word, the relevant inverted file has to be
processed for each of the features separately as they will have different binary signature.

While the reported bits per feature required in the search index ranges from 11 bits
[8] to 18 bits [11]], hamming embedding adds another 64 bits. The additional informa-
tion reduces the number of features that can be stored in the memory by a factor of
6.8.

Summary. All approaches to soft clustering mentioned above are based on the distance
(or its approximation) in the descriptor (SIFT) space. It has been observed that the Eu-
clidian distance is not the best performing measure. Learning a global Mahalanobis
distance [[13, |14]] showed that the matching is improved and / or the dimensionality
of the descriptor is reduced. However, even in the original work on SIFT descriptor
matching [9] it is shown that the similarity of the descriptors is not only dependent on
the distance of the descriptors, but also on the location of the features in the feature
space. Therefore, learning a global Mahalanobis metric is suboptimal and a local simi-
larity measure is required. For examples of corresponding pathes where SIFT distance
does not predict the similarity well, see Figures[Tl Bl and 4l

3 The Probabilistic Relation Similarity Measure

Consider a feature in the query image with descriptor D € D C R®. For most ac-
curate matching, the query feature should be compared to all features in the database.
The contribution of the query feature to the matching score should be proportional to
the probability of matching the database feature. It is far too slow, i.e. practically not
feasible, to directly match a query feature to all features in a (large) database. Also, the
contribution of features with low probability of matching is negligible.

The success of fast retrieval approaches is based on efficient separation of (poten-
tially) matching features from those that are highly unlikely to match. The elimina-
tion is based on a simple idea — the descriptors of matching patches will be close in
some appropriate metric (L2 is often used). With an appropriate data structure, enu-
meration of descriptors in proximity is possible in time sub-linear in the size of the
database. All bag-of-words based methods use partitioning {WW; } of the descriptor space
UWs =D, WinNnWy = (). The partitions are then used to separate features that
are close (potentially matching) from those that are far (non-matching).

In the case of hard assignment, features are associated with the quantized visual
word defined by the closest cluster center. In the scoring that evaluates the query and
database image match, only features with the same visual word as the query feature are
considered.

We argue that the descriptor distance is a good indicator of patch similarity only
up to a limited distance, where the variation in the descriptors is caused mostly the
imaging noise. In our approach, we abandon the assumption that the descriptor distance



Learning a Fine Vocabulary 5

provides a good similarity measure of patches observed under different viewing angles
or under different illumination conditions. Instead, we propose to exploit the matching
probability between a feature observed in the query image and a database feature. Since
our aim is to address retrieval in web-scale databases where storage requirements are
critical, we constrained our attention to solution that store no extra information per
feature, or more exactly, that have a minimum overhead in comparison with the standard
inverted file representation.

The proposed approach. We propose to use a fine partitioning of the descriptor space
where the partitions only compensate for imagining noise (or even less). Even though
the fine partitioning is learned in a data dependent fashion (as in the other approaches),
the fine partitioning unavoidable separates matching features into a number of clusters.

For each partition (visual word) we learn which other partitions (called alternative
visual words) are likely to contain descriptors of matching features. This step is based
on the probability of observing visual word W; in a matching database image when
visual word W, was observed in the query image

P(W;[We). (1)

The probability (eqn.[) is estimated from a large number of matching patches.

A simple generative model, independent for each feature, is adopted. In the model,
image features are assumed to be (locally affine) projections of a (locally close to pla-
nar) 3D surface patches Z,. Hence, matching features among different images are those
that have the same pre-image Z;. To estimate the probability P(W;|W,) we start with
(a large number of) sets of matching features, each set containing different projections
of a patch Z;. Using the fine vocabulary (partitioning) the sets of matching features are
converted to sets of matching visual words. We estimate the probability P(w;|wg) from
the feature tracks as

P(W;|W,) ZPZ|W P(W;|Zy). 2)

For each visual word W, a fixed number of alternative visual words that have the
highest conditional probability (eqn.[2)) is recorded.

3.1 Learning Stage

The first step of our approach is to obtain a large number of matching image patches.
The links between matching patches are consequently used to infer links between quan-
tized descriptors of those patches, i.e. between visual words. As a first step towards
unsupervised collection of matching image patches, called (feature) tracks, clusters of
matching images are discovered. Within each cluster, feature tracks are found by a wide-
baseline matching method. This approach is similar to [[15], where the feature tracks are
used to produce 3D reconstruction. In our case, it is important to find a larger variety
of patch appearances rather than precise point locations. Therefore, we adopt a slightly
different approach to the choice of image pairs investigated.



6 A. Mikulik et al.

Image clusters. We start by analyzing connected components of the image matching
graph (graph with images as vertices, edges connect images that can be matched) pro-
duced by a large-scale clustering method [16,17]. Any matching technique is suitable
provided it can find clusters of matching images in a very large database. In our case, an
image retrieval system was used to produce the clusters of spatially related images. The
following structure of image clusters is created. Each cluster of spatially related images
is represented as an oriented tree structure (the skeleton of the cluster). The children of
each parental node were obtained as results of an image retrieval using the parent image
as a query image. Together with the tree structure, an affine transformation (approxi-
mately) mapping child image to its parent are recorded. These mappings are later used
to guide (speed-up) the matching.

Feature tracks. To avoid any kind of bias (by quantization errors, for example), in-
stead of using vector quantized form of the descriptors, the conventional image match-
ing (based on the full SIFT [9]) has to be used. In principle, one can go back even to
the pixel level [IL8, [19], however such an approach seems to be impractical for large
volumes of data.

It is not feasible to match all pairs of images in image clusters, especially not in
clusters with a large number of images (say more than 1000). It is also not possible to
simply follow the tree structure of image clusters because not all features are detected
in all images (in fact, only a relatively small portion of features is actually repeated).
The following procedure, that is linear in the number of images in the cluster, is adopted
for detection of feature tracks that would exhibit as large variety of patch appearances
as possible. For each parental node, a sub-tree of height two is selected. On images in
the sub-tree, a 2k-connected graph called circulant graph [20] is constructed. Algorithm
for construction of minimal 2k-connected graph is summarized in Algorithm 1. Images
connected by an edge in such a graph are then matched using standard wide-baseline
matching. Since each image in the image cluster participates in at most 3 sub-trees (as
father, son and grand-son), the number of edges is limited to 65N, where NN is the size
of the cluster. Instead of using epipolar geometry as a global model, a number of close-
to-planar (geometrically consistent) structures is estimated (using affine homography).
Unlike the epipolar constraint, such a one-to-one mapping enables to verify the shape
of the feature patch. Connected components of matching and geometrically consistent
features are called feature tracks.

Tracks that contain two different features from a single image are called inconsistent
[L5]. These features clearly cannot have a single pre-image under perspective projection
and hence cannot be used in the process of 3D reconstruction. Such inconsistent tracks
are often caused by repeated patterns. Inconsistent feature tracks are (unlike in [[15])
kept as they provide further examples of patch appearance.

Large vocabulary generation. To efficiently generate a large visual vocabulary we
employ a hybrid approach - approximate hierarchical k-means. A hierarchy tree of two
levels is constructed, each level has 4K nodes. In the assignment stage of k-means,
approximate nearest neighbour, FLANN [21]], is used for efficiency reasons.
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Input: K - requested connectivity, /N - number of vertices
Output: V a set of vertices, £ C V' x V aset of edges of 2K connected graph
(V.E).

1.if 2K > N — 1 then
return fully connected graph with IV vertices.
end
2.5 :=arandom subset of {2,..., [V, ' |}, [S| =K — 1
3.V = {’Uo, . ,val}
4. E = {(vi,vj) |vi,v; € V,5=(i+ 1) mod N}

5.fors e S
6. E:=EU{(vi,v;)|vi,v; € V,j = (i +s) mod N}
7.end

Algorithm 1. Construction of the 2K connected graph with a minimal number of edges as a
union of circulants

First, a level one approximate k-means is applied to a random sub-sample of 5 mil-
lion SIFT descriptors. Then, a two pass procedure on 10,713 million SIFTs (from almost
6 million images) is performed. In the first pass, each SIFT descriptor is assigned to the
level one vocabulary. For each level one visual word a list of descriptors assigned to it
is recorded. In the second pass, approximate k-means on each list of the descriptors is
applied. The whole procedure takes about one day on a cluster of 20 computers.

Balancing the tree structure. For the average speed of the retrieval, it is important that
the vocabulary is balanced, i.e. there is approximately the same number of instances of
each visual word in the database.

There are two options how to balance the proposed structure. The level one structure
can be balanced so that the branches are of approximately equal weight by constraining
the length of the mean vectors (this stems from the fact that SIFT features live approx-
imately on a hyper-sphere). Balancing can be also achieved by un-even splitting at the
second level — proportional to the weight of the branch. In our implementation, we have
used the former.

The imbalance measure [[12] for our vocabulary is 1.17 for the training image set
(>5M images) and 1.33 for the Oxford 105k (compared to 1.21 in [12]).

Computing the conditional probability. To compute the conditional probability (eqn.2)
from the feature tracks, an inverted file structure is used. The tracks are represented as
forward files (named Z;), i.e. lists of matching SIFT descriptors. The descriptors are as-
signed their visual word from the large vocabulary. Then, for each visual word wy, a list
of patches Z; so that P(Z;|wy) > 0 (the inverted file) is constructed. The sum (eqn.[2)
is evaluated by traversing the relevant inverted file.

Statistics. Over 5 million images were clustered into almost 20 thousand clusters cov-
ering 750 thousand images. Out of those 733 thousand were successfully matched in
the wide-baseline matching stage. Over 111 million feature tracks were established,
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Fig. 3. A 2D PCA projection of a feature track of SIFT descriptors (left); the most distant patches
and their images (right); sample of feature patches from the track. The distance of the most distant
SIFT descriptors is 542 and is caused by an enormous change in the viewpoint.

Fig. 4. A 2D PCA projection of a feature track of SIFT descriptors (left); the most distant patches
and their images (right); sample of feature patches from the track. The distance of the most distant
SIFT descriptors is 593 and is caused by the viewpoint and scale change.

out of which 12.3 millions are composed of more than 5 features. In total, 564 million
features participated in the tracks, 319.5 million features belong to tracks of more than
5 features. Some examples of feature tracks are shown in Figures[3] and [6]

Memory and time efficiency. For the alternative words storage, only constant space is
required, equal to the size of the vocabulary times the number of alternative words. The
pre-processing consists of image clustering ([IE] reports near linear time in the size of
the database), intra-cluster matching (linearity enforced by the 2k-connected circulant
matching graph), and of the evaluation of expression eqn. @) for all visual words. The
worst case complexity of the last step is equal to the number of tracks (correspondences)
times the size of the vocabulary squared. In practice, due to the sparsity of the repre-
sentation, the process took less than an hour for the dataset of over 5 million images
mentioned above.

3.2 Retrieval Stage

The implementation of the retrieval stage is fairly standard, using inverted files [4]
for candidate image selection which is followed by fast spatial verification and query
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expansion [6]. The modifications listed below are the major differences in our retrieval
implementation.

Unique matching. Despite being assigned to more than one visual word, each query
feature is a projection of a single physical patch. Thus it can match only at most one
feature in each image in the database. We find that applying this uniqueness constraint
adds negligible computational cost and improves the mean average precision (mAP) by
approximately 1%.

Weights of alternative words. Contribution of each visual word is weighted by the idf
weight [22]. A number of re-weighting schemes for alternative words have been tried,
none of them affecting significantly the results of the retrieval.

4 Experiments

We have evaluated the performance of the PR similarity on a standard retrieval dataset
Oxford 105KA. The experiments focus on retrieval accuracy and speed. Since both our
training set of 6 million images and the Oxford dataset were downloaded from FLICKR,
we have explicitly removed all images from the training set that appear (or their scaled
duplicate) in the test dataset.

4.1 Retrieval Quality

We follow the protocol of 55 queries (11 landmarks, 5 queries each) defined in [23]
and use the mean average precision as a measure of retrieval performance. We start by
studying the properties of the PR similarity for a visual vocabulary of 16 million words.

In the first experiment, the quality of the retrieval as a function of the number of al-
ternative words was measured, see Figure[7l The plots show that performance improves
monotonically for plain retrieval without query expansion and almost monotonically
when it is used for post-processing.

The second experiment studies the effects of the vocabulary size, the number of
alternative words and compares the PR similarity with soft assignment. The left-hand
part of Table [Tl shows results obtained with the 16M vocabulary with three different
settings ‘std’ — standard tf-idf retrieval with hard assignment of visual words; ‘5L’ and
‘161" — retrieval using alternative words (4 and 15 respectively). The righthand part
presents results of reference state-of-the-art results [[8] obtain with a vocabulary of 1M
visual words learned on the PARIS datasef. Two version of the reference algorithm are
tested, without (“std”) and with the query soft assignment to 3 nearest neighbours (“SA
3NN”).

The experiments supports the following observations:

(i) For a hard assignment to a single visual word, 1M dictionary outperforms the 16M
one. For the 0—oco metric, the 16M visual word dictionary is too fine.

(ii) Similarity calculation with the learned alternative words increases significantly the
accuracy of the retrieval, both with and without query expansion.

2 http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
3 http://www.robots.ox.ac.uk/~vgg/data/parisbuildings/
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Fig. 5. Three examples of feature tracks of size 50. Five selected images and all 50 patches of the
track. Even though the patches are similar, the SIFT distance of some pairs is over 500.



Learning a Fine Vocabulary 11

Fig. 6. Three examples of feature tracks of size 20. Images and corresponding patches, note the

variation in appearance.

0.9

0.5

Fig.7. The quality of the retrieval, expressed as mean average precision (mAP), increases with
the number of alternative words. The mAP after (upper curve) and before (lower curve) query

expansion is shown.
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Table 1. Mean average precision for selected vocabularies on the Oxford 105k data-set

16M std 16M L5 16M L16 PARIS IM std PARIS 1M SA 3NN

plain 0.554 0.650 0.674 0.574 0.652
QE 0.695 0.786  0.795 0.728 0.772

Table 2. Average execution time per query in sec

16M std 16M L5 16M L16 PARIS 1M std
Oxford 105K  0.071 0.114  0.195 0.247

(iii) The PR similarity outperforms soft SA in term of precisions, yet does not share
the drawbacks of SA.
(iv) The PR similarity outperforms the Hamming embedding approach combined with
query expansion, Jegou et al. [12, 24] report the mAP of 0.692 on this dataset.
(v) The mAP result for 16M L16 is superior to any result published in the literature
on the Oxford 105k dataset.

4.2 Query Times

To compare the speed of the retrieval, an average query time over the 55 queries de-
fined on the Oxford 105K data set was measured. Running times recorded for the same
methods and parameter settings as above are shown in Table 2

The plot showing dependence of the query time on the number of alternative words
is depicted in Figure[§] The times for the references PARIS 1M std method and the 16M
L16 are of the same order. This is expected since the average length of inverted files is
of the same order for both methods. The proposed method is about 20% faster, but this
might be just an implementation artefact.

1
FS
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w
:

s
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T
I
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o
N

1 5 8 12 16 20 24 28 32

Fig. 8. Dependence of the query time on the number of alternative words

Finally, we looked at the dependence of the speed of the proposed method as a func-
tion of the number alternative words. The relationship shown in Fig. Bl is very close
to linear plus a fixed overhead. The plot demonstrates that speed-accuracy trade-off is
controllable via the number of alternative words.
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4.3 Results on Other Datasets

The proposed approach has been tested on a number of standard datasets. These include
Oxford, INRIA holidays (with manually corrected orientation of images, where the
correct (sky-is-up) orientation is obvious), and Paris datasets. In all cases (Table [3)),
the use of the alternative visual words improves the results. On all datasets except the
INRIA holidays the method achieves the state of the art results.

Table 3. Results (mAP) of the proposed method on a number of publicly available datasets.

Dataset 16M std 16M L16 16M QE 16M L16 QE
Oxford 5k 0.618 0.742  0.740 0.849
Paris 0.625 0.749  0.736 0.824

Paris + Oxford 100k 0.533  0.675  0.659 0.773
INRIA holidays rot  0.742  0.749  0.755 0.758

5 Conclusions

We presented a novel similarity measure for bag-of-words type large scale image re-
trieval. The similarity function is learned in an unsupervised manner using geometri-
cally verified correspondences obtained with an efficient clustering method on a large
image collection.

The similarity measure requires no extra space in comparison with the standard bag-
of-words method. We show experimentally, that the novel similarity function achieves
mean average precision that is superior to any result published in the literature on a
number of standard datasets. At the same time, retrieval with the proposed similarity
function is faster than the reference method.

Acknowledgement. The authors are grateful for the support from EC project FP7-
ICT-247022 MASH, Czech Government research program MSM6840770038, GACR
project 102/09/P423, and Google.
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Abstract. Time synchronization of video sequences in a multi-camera
system is necessary for successfully analyzing the acquired visual infor-
mation. Even if synchronization is established, its quality may deterio-
rate over time due to a variety of reasons, most notably frame dropping.
Consequently, synchronization must be actively maintained. This paper
presents a method for online synchronization that relies only on the video
sequences. We introduce a novel definition of low level temporal signals
computed from epipolar lines. The spatial matching of two such tem-
poral signals is given by the fundamental matrix. Thus, no pixel corre-
spondence is required, bypassing the problem of correspondence changes
in the presence of motion. The synchronization is determined from reg-
istration of the temporal signals. We consider general video data with
substantial movement in the scene, for which high level information may
be hard to extract from each individual camera (e.g., computing trajec-
tories in crowded scenes). Furthermore, a trivial correspondence between
the sequences is not assumed to exist. The method is online and can be
used to resynchronize video sequences every few seconds, with only a
small delay. Experiments on indoor and outdoor sequences demonstrate
the effectiveness of the method.

1 Introduction

Applications of multiple camera systems range from video surveillance of large
areas such as airports or shopping centers, to videography and filmmaking. As
more and more of these applications utilize the information obtained in the
overlapping fields of view of the cameras, precise camera synchronization and its
constant maintenance are indispensable. Given enough video time, however, syn-
chronization will be violated because of technical imperfections that cause frame
dropping or incorrect timing between sequences. The tendency to use mostly in-
expensive components makes such violations a certainty in many video systems.
Manual synchronization is out of the question, as it is labor-intensive and cannot
be performed constantly; thus, it cannot handle arbitrary frame-dropping. Pre-
cise time synchronization via satellite, as in GPS systems, may be too expensive
or limited in indoor environments. Using distributed protocols for clock syn-
chronization methods depends on the properties of the communication network

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part 11T, LNCS 6313, pp. 15[28]2010.
© Springer-Verlag Berlin Heidelberg 2010
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and is sensitive to communication failures. Obvious alternative sources of time
information are the video streams themselves, which often provide sufficient and
reliable information for automatic synchronization. In this work we address the
problem of computing and maintaining the temporal synchronization between a
pair of video streams with the same frame rate, relying only on the video data.

Previous Work

Synchronization can be achieved using visual information by correlating spatio-
temporal features or events viewed by two or more cameras. Several synchro-
nization methods considered moving cameras viewing a static scene [T0J12] or
a scene with relatively little motion [8l6]. Our method considers static cameras
acquiring a moving scene. Previous attempts to synchronize such sequences can
be classified by the choice of features used for matching. The most straight-
forward approach is finding both spatial and temporal correspondence between
point features at frames taken in all possible time shifts between the two video
streams. Such approaches are vulnerable to correspondence ambiguities and re-
quire a large search space. A method for reducing the complexity of the search
was suggested in [I]. Higher level features that contain temporal information
also assist to reduce the matching ambiguity and the search complexity. Motion
trajectories of features [T4IT2I2I6/TT] or objects [I3I3] could be used to this end.
The computation of the trajectories and its quality strongly depend on the scene
and can often be hard to compute as in the video considered in this paper. Since
the motion of the objects may be 3D, matching the observed 2D trajectories in
each sequence is ill posed. Several directions were considered for overcoming this
problem, for instance, assuming the existence of a homography transformation
that aligns the two trajectories [2], or using a three-or-more camera system and
3D tensors [13/6]. Another direction assumed an affine projection and used a lin-
ear combination approach in order to avoid exact point correspondence [T4JIT].
Highly discriminative action recognition features were also proposed for synchro-
nization [4]. Naturally, such high-level features are limited to scenes for which
these actions appear and can be detected.

In an effort to avoid complex computations such as tracking and action recog-
nition, an approach based on brightness variation over the entire image was sug-
gested in [2]. However, this method requires spatial alignment of the sequences
(e.g., using Homography transformation), that is not necessarily exist between
the views. Another approach suggested using statistics over low level space-time
interest points in each of the sequences [15]. This concept steers clear of com-
puting point-to-point, trajectory, or action correspondence. However, since the
statistics are computed over the entire image, the approach is strongly sensi-
tive to the overlapping regions of the two views and the relative viewing angle.
The limitations of these two approaches motivate the solution suggested in this

paper.
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Proposed Approach

We present a method for obtaining online time synchronization of a pair of video
sequences acquired by two static cameras, possibly in a wide-baseline setup. The
fundamental matrix between each pair of sequences, which provides epipolar line-
to-line correspondence, is assumed to be known. (It can be computed directly
from static corresponding features of the videos when there is no motion in
the scene.) This is the only spatial correspondence required by our method. We
consider sequences of general 3D scenes which contain a large number of mov-
ing objects, focusing on sequences for which features or object trajectories may
be hard to compute due to occlusions and substantial movement (see Fig. [I]).
Furthermore, trivial correspondence (e.g., alignment by a homography trans-
formation) between the sequences is not assumed. The temporal misalignment
is considered to be only a translation, i.e., the sequences have the same frame
rate. Therefore, we do not detect sub-frame time shifts, as we are correcting
synchronization errors as frame-drops.

Our method is based on matching temporal signals defined on epipolar lines
of each of the sequences. Hence, the spatial matching is given by the funda-
mental matrix. The temporal matching is performed using a probabilistic op-
timization framework; independent simultaneous motion occurring on different
epipolar lines improve our synchronization. Failure to find such a matching (de-
spite the observed motion in the scene) indicates that the epipolar geometry
is incorrect. In a general scene, the correspondence between pixels at different
time steps changes due to 3D motion of objects in space. Therefore, the synchro-
nization cannot rely on corresponding pixels. For overcoming this problem, the
temporal signal is defined as an integration of the information along an epipolar
line, during a sufficient interval of time. A simple background subtraction algo-
rithm is used as an input to the integration. Integrating the information along
epipolar lines rather than considering signals at the pixel level not only avoids
the search for correspondence but allows the handling of general moving scenes.

The main contribution of this paper is the use of low level temporal events
along corresponding epipolar lines for video synchronization. Our method does
not require high level computation such as tracking, which may be hard to com-
pute in crowded scenes as the ones considered in our experiments. Furthermore,
we bypass the need to compute point-to-point correspondences between pixels
[5]. Finally, our method can be used in an online framework, because it detects
the synchronization errors (e.g., frame drops) in a matter of seconds, as they
occur in the video.

2 Method

Given a pair of color (or gray-level) sequences and a fundamental matrix, we
achieve synchronization by time registration of temporal signals from the two
sequences. We first present our novel definition of temporal signals of a sequence,
followed by a probabilistic approach for registering two of them. The summary
of the algorithm flow is presented in Algorithm [I] and Algorithm
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Set 1 Set 2 Set 3

Fig. 1. Example of two frames from each video pairs. The two rows show frames from
the first and second view of each pair, respectively; the images contain an exemplary
subset of the used epipolar lines, each set of lines for each video pair.

2.1 A Temporal Signal

To define the temporal signals, we make unconventional use of epipolar geometry
of a pair of images. Given the fundamental matrix F' for a pair of images, a set
of epipolar lines £ = {¢,} and £ = {{.} and their correspondence, ¢, < £,
are computed [5]. The correspondence of a given point p € ¢, is constrained
to lie on the epipolar line @T = F'p in its synchronized frame (the points and
the lines are given in homogeneous coordinates). Traditionally, this property is
used for constraining the correspondence search in stereo or motion algorithms.
Pixel correspondence is not guaranteed to remain the same over time due to
3D motion. However, two corresponding epipolar lines in both sequences will
continue to correspond. (The only possible exception is a major occlusion on
one of the views.) Using this observation, we define the signals on the entire
epipolar line, avoiding not only the problem caused by the change of pixels
correspondence over time but also the general challenge of computing spatial
correspondence between frames.

A background subtraction algorithm is used for defining the temporal sig-
nal of each sequence. The base of the motion signal is the Euclidean distance
between the data frame and the selected background frame for each pixel. For
each epipolar line, a motion indicator is taken to be the sum of these distances
of the line’s pixels. The temporal signal of an epipolar line, the line signal, is
defined to be the set of motion indicators on an epipolar line as a function of
time. Formally, let I(p,t) and B(p,t) be the intensity values of a pixel p € ¢,., in
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Fig. 2. (a),(b) are examples of temporal signals S and S’ of two sequences, containing
130 epipolar lines for a time period of 8 seconds (200 frames). Each pixel in the signal
is the motion indicator of an epipolar line at a time point. (c¢) is the matching result for
those signals with a high-confidence peak at the correct time shift of At = —1 frames.

some video frame and corresponding background fram, respectively. The line
signal of that epipolar line, S, (t), is defined to be the distance between the two
vectors:

Sr(t) = Xper, (¢, p) — B(t,p)|- (1)

The collection of line signals for all the epipolar lines in a video, is the temporal
signal of the video sequence. The temporal signals of two considered sequences
are represented by matrices S and S’ (Fig. 2], where each row r of this matrix
consists of a line signal, S,. That is, S, is the motion indicator of an epipolar
line ¢r at a time step t. Only a few dozen epipolar lines from each frame, a few
pixels apart, are considered.

2.2 Signal Registration

In this section we present the time registration of a given pair of temporal sig-
nals of the video sequences. For robust results, and in order to combine informa-
tion from different line signals, the matching is determined using a probabilistic
framework, utilizing a maximum a posteriori estimation. The time shift is de-
tected by finding a maximum likelihood value for the two signals, with different
time shifts applied to the second signal. A sliding window in a predefined range
is used to determine At.

Let S and &’ be a pair of line signals, extracted from corresponding epipolar
lines in two video sequences. At this stage, assume a single consistent time shift
between the two sequences and no frame drops in any of them. We begin with
considering the probability distribution of a time shift At of &’ to match S.
Applying Bayes’ law we obtain:

y P(S,8 |At)P(At)
P(At|S,S8) = P(S.S) . (2)

LB, (p,t) is a function of ¢, because in the general case an adaptive background sub-
traction can be used.
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The denominator term, P(S,S’), is an a priori joint probability distribution of
S and &’. A uniform distribution is assumed. In general, prior knowledge of the
overlapping regions of the two sequences can be used for computing this prior.
Extracting such knowledge is out of the scope of this paper. The term P(At) is
another prior, in this case on the probability distribution of At. Use of this prior
is discussed in the experimental part.

For estimating the likelihood term, P(S,S’ |At), we apply a simple stochastic
model to the temporal signals. For relating the two line signals, a commonly
used assumption of additive white Gaussian noise is used:

S(t) = S'(t+ At) + N(p, 0®), 3)

where At is the correct time shift between the two signals, and p is the difference
between the averages of both.

In a somewhat simplified representation, different photometric parameters
of the camera, as well as the object foreshortening on corresponding epipolar
lines, will cause difference of gain and offset between the two line signals. By
subtracting the average p from each line signal, we eliminate the offset effect.
In the rest of the paper each line signal S is used after this average subtraction.
The gain component between the signals is not eliminated, as we assume that it
will not affect the search for the optimal shift.

Using this model assumption, the likelihood of two line signals, given At, is
obtained by:

(S(t) = S'(t+ At))?

-3, 002 ’ @

1
/

L(S,S', At) /2 e
This representation has a hidden assumption of independence between the mo-
tion indicators in a single line signal. In reality, adjacent indicators are expected
to be correlated to some degree, because the objects captured in the video have
finite speed, relative to the sampling frame rate. Despite these simplifications,
the results are satisfying, as demonstrated by our experiments.

The desired time shift At is the one maximizing the value of P(At |S,S’),
which is identical to that maximizing the value of P(S,S’ |At)P(At):

(S(t) = S'(t + At))?

-2
20° (5)

1
/
argmA%XP(At IS, S") = argmAatXP(At) /2 e
As defined above, each row in S and S’ represents a line signal for an epipolar line
£, € L. We consider those signals to be independent, due to the spatial distance
between the selected epipolar lines. Therefore, computing the likelihood can be
extended to sequence signals S and S’ by taking the product of the likelihoods
of all the line signals. Up to this point, this method assumed a single consistent
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Algorithm 1. Temporal signal update
The algorithm is triggered for every new frame acquired.
Input: two new frames from the video sequences

1. Perform background subtraction
2. For each epipolar line ¢,: calculate the motion indicators (Eq. ).
3. Update the matrices S and S'.

time shift between S and §’. In order to incorporate it into an online framework,
the algorithm must work on a finite time interval at each iteration. Thus, the
synchronization at a given time step, tg, is determined only from a k interval of
the sequence signal, taken from tg— k up to tg . Furthermore, the sought for At is
bounded by some finite range —c¢ < At < ¢. (In our experiments, k corresponds
to roughly 4 to 8 seconds and ¢ corresponds to 1 to 3 seconds). Inserting all
of the above into Eq. Bland Eq. B we obtain:

argmax P(At |S,S') = argmax P(At) H P(At |S,,S)) (6)
At At
£reL(t)

Ly 3 S
202
=arg max P(At)e reL(t) t=to—k

—e<At<c

where £ C £ is the subset of epipolar lines participating in the computation
(defined in 23)), and S, and S!. are signals of corresponding epipolar lines /,..

The time shift At that yields maximal likelihood according to Eq. [ is the
correct time shift for the two given video sequences (Fig. [2(c)). The actual value
of the likelihood is used as a confidence level of the resulting At. This value is
taken after a normalization step, which ensures that the probability distribution
of At in the range —c < At < ¢ sums up to 1. The higher the probability is, the
more robust the answer is. In the online synchronization framework, only the
high-confidence results will be taken into account.

2.3 Epipolar Line Filtering

Registration of only a subset of the line signals is sufficient for synchronization.
Moreover, line signals that contain negligible motion information may insert
noise into the registration process, and are therefore removed from the compu-
tation. We next define the subset of epipolar lines £ C £, that participate in
the computation for a given time step ¢ (see Eq. [6). The signals are removed
on the basis of both sequences considered. We test for motion information only
at short time interval. We do so by computing the temporal gradient along an
epipolar line, taking into consideration some noise estimation of such a gradient.
The noise at each image pixel is assumed to be additive white Gaussian noise
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Algorithm 2. Synchronization iteration

The algorithm is triggered every 0.8 seconds.
Input: two temporal signals S and §’.

. Extract the data corresponding to the time interval k from S and S'.

. Compute L by filtering ¢, € L for the current time step (Sec. 23).

. For each £, € L subtract its average .

. Compute the likelihood for each —c < At < ¢ using Eq.

Apply the prior for P(At).

. Normalize the distribution of resulting probability such that it sums up to 1.
. Find the maximal value of the probability.

N O UL W

with some variance o2,. Hence, we determine significant motion on the epipolar
line r only if the residual information on the time gradient along the epipolar
line goes beyond the estimated noise threshold. In case of no real motion, this
time gradient yields only noise. Formally, the motion probability at a given time
t, for an epipolar line £, is given by:

(I(t,p) — I(t —1,p))?

1 _Zpel’.r 2
207, ) (7)

e
Jm\/27r

The subset £ consists only of epipolar lines with motion probability over some
threshold. This simple filtering process compensates for the background sub-
traction algorithms, which are not ideal, and eliminates any wrongly detected
residual motion caused by them.

Pmotion (‘e'r‘a t) =

3 Experiments

We conducted a number of experiments to test the effectiveness of our method.
The input for each is a pair of video sequences taken with the same frame rate.
In addition, a fundamental matrix (computed manually) and a rough synchro-
nization (up to an error of 50 frames) are assumed to be given. The method
was implemented in Matlab. The corresponding epipolar lines of each pair of
sequences were computed using a standard rectification method. A naive back-
ground subtraction was used where the background consists of an empty frame,
subtracted from all the other frames in the video stream. The framework triggers
the synchronization computation every 0.8 seconds of the video.

Three sequences were taken, as shown in Fig.[Il Set 1 is an indoor scenario of a
dense crowd — around 30 people — walking about. The cameras were placed at an
elevation of approximately 6 meters. The cameras’ fields of view have a relatively
large overlap. Set 2 is similar to Set 1. In addition to the density of the crowd,
the challenge in this sequence is in the large difference in the viewing angles and
the small overlapping fields of view. Both videos consist of 5000 frames (3.33
minutes) and were recorded at 25 fps, with a frame size of 640 x 480. Set 3is an
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outdoor scenario with only few people walking around. The challenges in this set
are the small amount of motion along epipolar lines and the dark illumination.
The cameras were located at an elevation of about 6 meters, the videos were
recorded at 15 fps, with a frame size of 640 x 512 pixels. In the indoor video
sequences a flicker effect is evident, caused by fluorescent lighting in the scene.
In order to avoid distractions to the synchronization algorithm, the flicker was
removed by a temporal low-pass filtering of the video. All the results of the
experiments, including video clips, are available on the web.

3.1 Basic Results

The presented tests were performed on the three sets. The interval size was taken
to be k = 140, no prior on P(At) was used (i.e., uniform distribution is assumed
on P(At)). The value of o for Set 1 and Set 2 was set to 1300, and for Set 3
to 600. (Setting the values of o is discussed bellow.) The results consist of a set
of time shifts between two video streams with a probability (confidence) value
for each shift. Each of the time-shifts for Set 1, Set 2, and Set 3 are represented
by a single dot in Fig. [B(a), Fig. Blb), and Fig. d(a), respectively. The z-axis is
the computed time shift and the y-axis is the confidence in the computed result.
Ideally, we would like the dots to align along the correct time shift, and to have
high confidence. The correct time shift, computed by hand, is At = —1 frames
for all sets.

To evaluate the percentage of correct results, it is necessary to set a threshold
on the confidence value. The threshold 0.7 is considered in the analysis of the
three data sets. A result is considered to be correct if it is in the range of +1
frames from the correct synchronization.

Using this threshold on Set 1, approximately 50% of the obtained results have
high levels of confidence, and 95% pecent of them are correct. That is, the system
yields, on average, a high-confidence result each 1.6 seconds.

The percentage of the correct high-confidence results obtained for Set 2 is
100%. However, only 12% of the obtained results had high confidence(> 0.7).
It is mostly due to the relatively small overlapping field of view of the two
cameras, resulting in a small number of epipolar lines that can participate in
the registration. As the working area is small, the algorithm analyses long time
periods without motion, which yield low-confidence results.

For Set 3, the percentage of correct results is 100% with only 13% of the
results having high confidence. In addition, the low confidence results consist of
a relatively large amount of errors. This is due to the small number of moving
objects in the scene and objects moving along the direction of epipolar lines.
Note that a movement along an epipolar line is not expected to produce good
synchronization, since it induces ambiguities, as discussed in Sec. @l The effect
of a non-uniform prior on P(At) when incorporated into this set is discussed in
Sec.

To summarize, our method constantly and reliably maintains the time syn-
chronization between the two sequences. It is important to note that tracking
objects or features in the crowded scene of Set 1 and Set 2 from a single camera
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Fig.3. Each of the 250 computed time-shifts for (a) Set 1 and (b) Set 2, one for
each 0.8 seconds, are represented by a single dot. Each dot in the graph represents the
computed time shift for a single time step. Low confidence results are marked in blue,
correct and incorrect high confidence results are marked by green and red, respectively.
The z-axis is the computed time shift and the y-axis is the confidence in the computed
result.

is considered to be an extremely difficult task due to substantial movement and
a large number of occlusions. Hence, synchronization studies that rely on tra-
jectories detected by each of the cameras (e.g., [BII3]) are not adequate in this
case. Furthermore, the scene consists of a genuine 3D structure and the distance
between the cameras is non-negligible. Hence, a homography transformation of
the pair of sequences cannot be used to match pixels or trajectories (as in [2]).

3.2 Frame Dropping

Frame dropping is expected in a simple commercial system when it operates over
a long period of time. The need to detect frame dropping and resynchronize is
one of the main motivations for an online synchronization algorithm. To test
the robustness of our method in the presence of frame dropping, we applied our
algorithm to Set 1 where 3 frame drops occurred during the video. That is, the
correct time shift changed from —1 to 16, then to —8 and finally, back to —1.
The rest of the experiment setup was identical to the basic one. The results are
presented in Fig. B(b), where the detected time shift is plotted as a function of
time. The result demonstrates that the correct time shift is detected, and the
reaction time to the drop is approximately 7-8 seconds. This reaction time is
due to the interval of 140 frames, which, in addition to the search range ¢ = 30,
corresponds to 8 seconds. During this time period the two registered temporal
signals contain inconsistent information with a frame drop in it. Hence, the
results are incorrect and have low confidence.
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Fig. 4. Each of the 60 computed time-shifts, one for each 0.8 seconds, are represented
by a single dot computed fot Set 3. (a) without prior and (b) with a prior. The axes
description and color codes interpretation are as in Fig. Bl

3.3 Using a Prior on P(At)

In an online framework, a non-uniform probability distribution on At can be
applied, using the result of the previous synchronization iteration. It is assumed
that the time synchronization rarely changes during the video, and the changes
are of a few frames only (due to frame dropping). We tested our method using
a Gaussian distribution of P(At) with o = 2 and a mean set to the previously
detected high-confidence time shift (starting with 0). Comparing the results with
(Fig.E(a)) and without (Fig.[d(b)) use of the prior, shows that the prior reduces
the instability of the low-confidence results. We tested the effect of using a prior
on Set 1 (with and without frame dropping) and on Set 2. In all these tests the
results remain the same. Hence we can conclude that on the one hand the prior
can reduce errors for unstable results, and on the other hand it does not impair
other results.

3.4 Setting the Parameters

In addition to the confidence threshold, there are two parameters that have to
be set. The time interval k controls the number of frames that participate in the
signal registration procedure. Longer intervals will lead to more robust results,
especially for areas and times with limited motion. According to our tests, in a
video pair with a lot of motion, an interval of k = 20 frames (0.8 seconds) is
sufficient for robust synchronization results. However, for limited and sporadic
motion, such an interval yields a somewhat noisy output, therefore k& = 140
frames was used in all our experiments. The downside of large intervals is the
increase in computation time and the slower reaction time in the presence of
frame drops. The reaction time to such changes can, in the worst case, be as
long as the interval time, as discussed in Sec.
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Fig.5. (a) A graph showing the success rate as a function of the confidence threshold
for three different values of o (see Eq. [B). The blue, red and green lines represent
o = 1600, 1300, and 1000, respectively. (b) Frame dropping example, drop reaction
time = 7 seconds. The green and the red dots represent high and low confidence,
respectively. The vertical blue lines indicate the time at which the frame drop occurred.
The black line is the correct time shift.

The other parameter is the o in Eq. BHEl This value serves as a normalization
factor in the probability calculations. In general, it depends on photometric
parameters of the used cameras, as well as on their relative location. In the
experiments, the value of o was set empirically. This factor affects the numerical
outcome of the confidence for each time shift, as demonstrated in Fig.[Bl(a). High
values of o suppress the confidence, hence flatten the probability distribution of
P(At|S,8’), causing indecisiveness and noisy output. However, lower values of
o increase the confidence of all the measurements, and as a result, the confidence
of incorrect time shifts increases as well. Thus, in order the preserve the correct
output of the framework, the final confidence threshold must be selected in
accordance to the value of o. It is left for future study the automatic setting of
this parameter.

3.5 Verification of Calibration

The main goal of our method was to compute synchronization between a pair of
sequences, while the camera calibration (i.e., the epipolar geometry) is assumed
to be given to the system. Incorrect epipolar geometry causes motion indicators
on corresponding epipolar lines to be uncorrelated. In particular, the confidence
of all the possible synchronization results is expected to be low. An experiment
for demonstrating this observation was conducted, simulating a scenario of a
small tilt in one of the cameras. The tilt causes calibration failure, as it breaks
the correspondence of the epipolar lines. This leads to a total synchronization
failure. Consequently, it is impossible to use our method when the system is out
of calibration. Yet, this property of our method can be used to verify calibration,
i.e., to distinguish between correct and incorrect calibration of the cameras.
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Although it cannot be used in a straightforward manner for camera calibration,
because the search space for a fundamental matrix is too large, it does serve as
an essential first step towards recalibration, following calibration failure.

3.6 Additional Tests

We discussed in the introduction and the method sections why we choose to
use epipolar lines signals rather than point signals. Here we challenge our choice
to use epipolar line signals rather than a similar signal defined by a motion
indicator based on the entire frame (similar to the approach taken by [I5]). When
the temporal signal is defined on the entire frame, any spatial correspondence
between motion indicators is neglected. We modified our method to sum the
motion indicators on the entire frame in order to obtain the motion signal. As
expected, the obtained result cannot be used for sequence synchronization. Such
an approach fails in the presence of complex motion in the scene.

To verify that our method works properly on other video sequences used in the
literature, we have performed the synchronization of a pair of short videos used
in [2]. The sequences contain a single car moving in a parking lot[] The success
rate of our method on this sequence is 100% with the parameters: confidence
threshold of 0.6, ¢ = 400 and k& = 80.

4 Conclusion

We presented a novel method for synchronizing a pair of sequences using only
motion signals of corresponding epipolar lines. Our method is suitable for detect-
ing and correcting frame dropping. Its simplicity is in bypassing the computation
of spatial correspondence between features, tracked trajectories or image points,
which may be hard to compute in the scenes considered in our experiments.
The only spatial correspondence required is between epipolar lines, which are
computed directly from the given fundamental matrix of the sequence pairs.
The relatively low computational effort will enable our algorithm to be incor-
porated into real-time systems, after a short optimization cycle. Furthermore,
it can detect the synchronization errors (e.g., frame drops) in a matter of sec-
onds, as they occur in the video. Thus, it can be used in an online framework.
Finally, the method can be used for detecting calibration failures, as a first step
in recalibration.

Our method requires sufficient motion in the overlapping regions of the two
sequences in order to compute the correct time shift between the two sequences.
However, when the entire motion is strictly along epipolar lines, the temporal
matching is expected to yield the same probability for all time shifts. There-
fore, no high-confidence result will be obtained and the time-shift will not be
computed. This problem can be resolved when a system with more than two
cameras is considered, and other pairs of epipolar lines are expected to produce

! http://www.wisdom.weizmann.ac.il/~vision/VideoAnalysis/Demos/Seq2Seq/
Seq2Seq.html
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the required confidence. We intend to study the extension of the proposed ap-
proach to handle more than two sequences. Such extension should be natural
due to the probabilistic properties of the algorithm. Another case that should be
considered is when motion occurs on non-overlapping regions of epipolar lines.
In this case, the method may produce an incorrect result if accidental correlation
between motion at different times occurs. More likely, such motion reduces the
confidence of the correct result. In order to overcome this problem, it is worth
exploring a method for detecting overlapping regions of cameras, as in e.g. [7].

Acknowledgment. This work was partially supported by the VULCAN project
of the Israeli Ministry of Industry.
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Abstract. PatchMatch is a fast algorithm for computing dense approx-
imate nearest neighbor correspondences between patches of two image
regions [1]. This paper generalizes PatchMatch in three ways: (1) to find &
nearest neighbors, as opposed to just one, (2) to search across scales and
rotations, in addition to just translations, and (3) to match using arbi-
trary descriptors and distances, not just sum-of-squared-differences on
patch colors. In addition, we offer new search and parallelization strate-
gies that further accelerate the method, and we show performance im-
provements over standard kd-tree techniques across a variety of inputs. In
contrast to many previous matching algorithms, which for efficiency rea-
sons have restricted matching to sparse interest points, or spatially prox-
imate matches, our algorithm can efficiently find global, dense matches,
even while matching across all scales and rotations. This is especially
useful for computer vision applications, where our algorithm can be used
as an efficient general-purpose component. We explore a variety of vi-
sion applications: denoising, finding forgeries by detecting cloned regions,
symmetry detection, and object detection.

1 Introduction

Computing correspondences between image regions is a core issue in many
computer vision problems, from classical problems like template tracking and
optical flow, to low-level image processing such as non-local means denoising and
example-based super-resolution, to synthesis tasks such as texture synthesis and
image inpainting, to high level image analysis tasks like object detection, image
segmentation and classification. Correspondence searches can be classified as
either local, where a search is performed in a limited spatial window, or global,
where all possible displacements are considered. Correspondences can also be
classified as sparse, determined only at a subset of key feature points, or dense,
determined at every pixel or on a dense grid in the input.

For efficiency, many common algorithms only use local or sparse correspon-
dences. Local search can only identify small displacements, so multi-resolution
refinement is often used (e.g., in optical-flow [3]), but large motions of small ob-
jects can be missed. Sparse keypoint [4, 5] correspondences are commonly used
for alignment, 3D reconstruction, and object detection and recognition. These
methods work best on textured scenes at high resolution, but are less effective

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part ITI, LNCS 6313, pp. 29/43.]2010.
© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Denoising using Generalized PatchMatch. Ground truth (a) is corrupted by
Gaussian noise (b). Buades et al. [2] (¢) denoise by averaging similar patches in a small
local window: PSNR 28.93. Our method (d) uses PatchMatch for nonlocal search,
improving repetitive features, but uniform regions remain noisy, as we use only k = 16
nearest neighbors: PSNR 29.11. Weighting matches from both algorithms (e) gives the
best overall result: PSNR 30.90.

in other cases. More advanced methods [6, 7] that start with sparse matches and
then propagate them densely suffer from similar problems. Thus, such methods
could benefit from relaxing the locality and sparseness assumptions. Moreover,
many analysis applications [8-11] and synthesis applications [12-15] inherently
require dense global correspondences for adequate performance.

The PatchMatch algorithm [1] finds dense, global correspondences an order
of magnitude faster than previous approaches, such as dimensionality reduction
(e.g. PCA) combined with tree structures like kd-trees, VP-trees, and TSVQ.
The algorithm finds an approximate nearest-neighbor in an image for every small
(e.g. 7x7) rectangular patch in another image, using a randomized cooperative
hill climbing strategy. However, the basic algorithm finds only a single nearest-
neighbor, at the same scale and rotation. To apply this algorithm more broadly,
the core algorithm must be generalized and extended.

First, for problems such as object detection, denoising, and symmetry
detection, one may wish to detect multiple candidate matches for each query
patch. Thus we extend the core matching algorithm to find k nearest neighbors
(k-NN) instead of only 1-NN. Second, for problems such as super-resolution,
object detection, image classification, and tracking (at re-initialization), the
inputs may be at different scales and rotations, therefore, we extend the matching
algorithm to search across these dimensions. Third, for problems such as object
recognition, patches are insufficiently robust to changes in appearance and
geometry, so we show that arbitrary image descriptors can be matched instead.

The resulting generalized algorithm is simple and fast despite the high dimen-
sional search space. The difficulty of performing a 4D search across translations,
rotations, and scales had previously motivated the use of sparse features that
are invariant to some extent to these transformations. Our algorithm efficiently
finds dense correspondences despite the increase in dimension, so it offers an
alternative to sparse interest point methods. Like the original PatchMatch algo-
rithm, our generalized algorithm is up to an order of magnitude more efficient
than kd-tree techniques. We show how performance is further enhanced by two
improvements: (1) a new search technique we call “enrichment” that generalizes
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“coherent” or locally similar matches from spatial neighborhoods to neighbor-
hoods in nearest neighbor space and (2) a parallel tiled algorithm on multi-core
machines. Finally, for k-NN and enrichment, there were many possible algo-
rithms, so we performed extensive comparisons to determine which worked best.

In summary, our main contributions are: (1) an extended matching algorithm,
providing k nearest neighbors, searching across rotations and scales, and descrip-
tor matching (Section 3.2-Section 3.5); (2) acceleration techniques, including a
new search strategy called “enrichment” and a parallel algorithm for multi-core
architectures (Section 3.3, Section 3.6) We believe this Generalized PatchMatch
algorithm can be employed as a general component in a variety of existing and
future computer vision methods, and we demonstrate its applicability for image
denoising, finding forgeries in images, symmetry detection, and object detection.

2 Related Work

When a dense, global matching is desired, previous approaches have typically
employed tree-based search techniques. In image synthesis (e.g., [16]), one
popular technique for searching image patches is dimensionality reduction (using
PCA) followed by a search using a kd-tree [17]. In Boiman et al [18], nearest-
neighbor image classification is done by sampling descriptors on a dense grid
into a kd-tree, and querying this tree. Other tree structures that have been
employed for querying patches included TSVQ [19] and vp-trees [20]. Another
popular tree structure is the k-means-tree that was successfully used for fast
image retrieval [21]. The FLANN method [22] combines multiple different tree
structures and automatically chooses which one to use according to the data.
Locality-sensitive hashing [23] and other hashing methods can be used as well.
Each of these algorithms can be run in either approximate or exact matching
mode, and find multiple nearest neighbors. When search across a large range
of scales and rotations is required, a dense search is considered impractical due
to the high dimensionality of the search space. The common way to deal with
this case is via keypoint detectors [4]. These detectors either find an optimal
local scale and the principal local orientation for each keypoint or do an affine
normalization. These approaches are not always reliable due to image structure
ambiguities and noise. The PatchMatch algorithm [1] was shown to find a
single nearest neighbor one to two orders of magnitude faster than tree-based
techniques, for equivalent errors, with running time on the order of seconds
for a VGA input on a single core machine. This paper offers performance
improvements and extends it to dense k-NN correspondence across a large range
of scales and rotations. The Generalized PatchMatch algorithm can operate on
any common image descriptors (e.g., SIFT) and unlike many of the above tree
structures, supports any distance function. Even while the algorithm naturally
supports dense global matching, it may also be constrained to only accept
matches in a local window if desired.

Section 4 investigates several applications in computer vision, and prior work
related to those applications is mentioned therein.
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3 Algorithm

This section presents four generalizations of the PatchMatch algorithm suitable
for a wide array of computer vision problems. After reviewing the original
algorithm [1], we present our extensions, including k-nearest neighbors, matching
across rotations and scale, and matching descriptors. We finally show how
performance can be improved with a new search strategy called “enrichment,”
and a parallel tiled algorithm suitable for multi-core architectures.

3.1 The PatchMatch Algorithm

Here we review the original PatchMatch algorithm as proposed by Barnes et al. [1].
It is an efficient randomized approach to solving the following problem: for every
p X p patch in image A, find the approximate nearest neighbor patch in image
B, minimizing the sum-squared difference between corresponding pixels.

A nearest-neighbor field (NNF) is a function f : A — R2, defined over all
possible patch coordinates (locations of patch centers) in image A, for some
distance function D between two patches. Given patch coordinate a in image A
and its corresponding nearest neighbor b in image B, f(a) is simply b.} We refer
to the values of f as mearest neighbors, and they are stored in an array whose
dimensions are those of A.

Note that the NNF differs from an optical flow field (OFF). The NNF uses
no smoothness constraints and finds the best match independent of neighboring
matches. The OFF is defined by ground truth motion and is often computed
with smoothness constraints.

The randomized algorithm works by iteratively improving the nearest-
neighbor field f until convergence. Initially, the nearest neighbor field is filled
with random coordinates, uniformly sampled across image B. Next, the field is
iteratively improved for a fixed number of iterations, or until convergence. The
algorithm examines field vectors in scan order, and tries to improve each using
two sets of candidates: propagation, and random search.

The propagation trials attempt to improve a nearest neighbor f(x) using
the known nearest neighbors above or to the left. The new candidates for
f(x) are f(x — A,) + A,, where A, takes on the values of (1,0) and (0,1).
Propagation takes a downhill step if either candidate provides a smaller patch
distance D. (On even iterations, propagation is done in reverse scan order, and
candidates below and to the right are examined, so information propagates up
and left.) Propagation converges very quickly, but if used alone ends up in a
local minimum. So a second set of trials employs random search: a sequence of
candidates is sampled from an exponential distribution, and f(x) is improved
if any of the candidates has smaller distance D. Let v be the current nearest
neighbor f(x). The candidates u; are constructed by sampling around vq at
an exponentially decreasing distance: u; = v + wa'R;, where R; is a uniform
random in [—1,1] x [-1,1], w is the maximum image dimension, and « is a

! Our notation is in absolute coordinates, vs relative coordinates in Barnes et al. [1]
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ratio between window sizes (o« = 1/2 was used). The index i is increased from
1 = 0,1,2,...,n until the search radius wa" is below 1 pixel. For more details,
see Barnes et al. [1].

3.2 k-Nearest Neighbors

For problems such as denoising, symmetry detection, and object and clone
detection, we wish to compute more than a single nearest neighbor at every
(z,y) position. This can be done by collecting k nearest neighbors for each
patch. Thus the NNF f is a multi-valued map, with k values. There are many
possible modifications of PatchMatch to compute the k-NN. We have compared
the efficiency of several of these against a standard approach: dimensionality
reduction with PCA, followed by construction of a kd-tree [17] with all patches of
image B projected onto the PCA basis, then an independent e-nearest neighbor
lookup in the kd-tree for each patch of image A projected onto the same basis.

Since each of these algorithms can be tuned for either greater accuracy or
greater speed, we evaluated each across a range of settings. For PatchMatch, we
simply computed additional iterations, and for kd-trees we adjusted the € and
PCA dimension parameters. The relative efficiency of these algorithms is plotted
in Figure 2. We also compare with FLANN [22], a package that includes kd-tree,
k-means tree, a hybrid algorithm, and a large number of parameters that can be
tuned for performance.

Heap algorithm. In the most straightforward variant, we associate k nearest
neighbors with each patch position. During propagation, we improve the nearest
neighbors at the current position by exhaustively testing each of the k nearest
neighbors to the left or above (or below or right on even iterations). The new
candidates are f;(x—A,)+A,, where A, takes on the values (1,0) and (0, 1), and
t =1...k. If any candidate is closer than the worst candidate currently stored
at x, that worst candidate is replaced with the candidate from the adjacent
patch. This can be done efficiently with a max-heap, where the heap stores
the patch distance D. The random search phase works similarly: n samples
are taken around each of the k nearest neighbors, giving nk samples total.
The worst element of the heap is evicted if the candidate’s distance is better.
When examining candidates, we also construct a hash table to quickly identify
candidates already in our k list, to prevent duplicate entries.

Details of the additional strategies tested can be found in supplementary
material. Briefly, they include variants of the heap algorithm in which fewer
than k samples are taken from the neighbor list for propagation and/or search
(“P best,” “P random”, “RS best”, “RS random”, “P varying”, “RS varying”);
variants of the heap algorithm where k is changed over time (“Increase k”,
“Decrease k”); and modifications of the original INN algorithm in which no heap
is used but the sequence of candidates is retained (“List 1-NN”, “Run 1-NN k&
times” ). Some of these algorithms complete single iterations faster than the basic
heap algorithm described above, but convergence is slower as they propagate less
information within an iteration. In general, the original heap algorithm is a good
choice over a wide range of the speed/quality curve.
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Fig. 2. Left: Performance of k-PatchMatch variants, with & = 16, averaged over all
images in Figure 4, resized to 0.2MP, and matched against themselves. Error is average
L? patch distance over all k. Points on each curve represent progress after each iteration.
Right: Comparison with kd-tree and FLANN, at 0.3 MP, averaged over the dataset.

We find the basic heap algorithm outperforms kd-tree over a wide range
of k and image sizes: for example, our algorithm is several times faster than
kd-tree, for £k = 16 and input images of 0.1 to 1.0MP. In our comparisons
to the kd-tree implementation of Mount and Arya [17] and FLANN [22], we
gave the competition the benefit of the doubt by tuning all possible parameters,
while adjusting only the number of iterations for our heap algorithm. FLANN
offers several algorithms, so we sampled a large range of algorithmic options
and parameters, indicated by the + marks in Figure 2. FLANN can also
automatically optimize parameters, but we found the resulting performance
always lies within the convex hull of our point-sampling. In both cases, this
extensive parameter-tuning resulted in performance that approached — but
never exceeded — our heap algorithm. Thus, we propose that the general k-
PatchMatch heap algorithm is a better choice for a wide class of problems
requiring image patch correspondence. With additional optimization of our
algorithm, the performance gap might be even greater.

3.3 Enrichment

In this section we propose one such optimization for improving PatchMatch
performance further. The propagation step of PatchMatch propagates good
matches across the spatial dimensions of the image. However, in special cases we
can also consider propagating matches across the space of patches themselves:
For example, when matching an image A to itself — as in non-local-means
denoising (Section 4.1) — many of a patch’s k nearest neighbors will have the
original patch and some of the other £ — 1 patches in their own k-NN list.

We define enrichment as the propagation of good matches from a patch to its
k-NN; or vice versa. We call this operation enrichment because it takes a nearest
neighbor field and improves it by considering a “richer” set of potentially good
candidate matches than propagation or random search alone. From a graph-
theoretic viewpoint, we can view ordinary propagation as moving good matches
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Effect of Enrichment on Convergence Convergence for Rotations and Scales
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Fig. 3. Left: Comparison of the heap algorithm with and without enrichment. As in
Figure 2, times and errors are averaged over the dataset of Figure 4 at 0.2 megapixels
and k£ = 16 neighbors. Right: Searching across all rotations and scales.

along a rectangular lattice whose nodes are patch centers (pixels), whereas
enrichment moves good matches along a graph where every node is connected to
its k-NN. We introduce two types of enrichment, for the special case of matching
patches in A to other patches in A:

Forward enrichment uses compositions of the function f with itself to
produce candidates for improving the nearest neighbor field. The canonical case
of forward enrichment is £2. That is, if f is a NNF with &k neighbors, we construct
the NNF f2 by looking at all of our nearest neighbor’s nearest neighbors: there
are k2 of these. The candidates in f and f2 are compared and the best k overall
are used as an improved NNF f’. If min() denotes taking the top k& matches, then
we have: f' = min(f, f?). See the supplementary material for other variants.

Similarly, inverse enrichment walks the nearest-neighbor pointers back-
wards to produce candidates for improving the NNF. The canonical algorithm
here is f~'. That is, compute the multi-valued inverse f~! of function f. Note
that f~!(a) may have zero values if no patches point to patch a, or more than
k values if many patches point to a. We store f~! by using a list of varying
length at each position. Again, to improve the current NNF, we rank our cur-
rent k best neighbors and all neighbors in f~!, producing an improved NNF f”’:
f” = min(f, f~!). Note that in most cases the distance function is symmetric, so
patch distances do not need to be computed for f~!. Finally we can concatenate
inverse and forward enrichment, and we found that f~! followed by f2 is fastest
overall. The performance of these algorithms is compared in Figure 3.

In the case of matching different images A and B, inverse enrichment can be
trivially done. Forward enrichment can be applied by computing nearest neighbor
mappings in both directions; we leave this investigation for future work.

3.4 Rotations and Scale

For some applications, such as object detection, denoising or super-resolution, it
may be desirable to match patches across a range of possible rotations or scales.



36 C. Barnes et al.

Without loss of generality, we compare upright unscaled patch a in image A,
with patch b in image B that is rotated and scaled around its center.

To search a range of rotations 6 € [y, 3] and a range of scales s € [s1, s2], we
simply extend the search space of the original PatchMatch algorithm from (x, y)
to (z,y,0,s), extending the definition of our nearest-neighbor field to a mapping
f : R? — R% Here f is initialized by uniformly sampling from the range of
possible positions, orientations and scales. In the propagation phase, adjacent
patches are no longer related by a simple translation, so we must also transform
the relative offsets by a Jacobian. Let T(f(x)) be the full transformation defined
by (z,y,6,s): the candidates are thus f(x — A,) + T'(f(x — A,))A,. In the
random search phase, we again use a window of exponentially decreasing size,
only now we contract all 4 dimensions of the search around the current state.

The convergence of this approach is shown in Figure 3. In spite of searching
over 4 dimensions instead of just one, the combination of propagation and
random search successfully samples the search space and efficiently propagates
good matches between patches. In contrast, with a kd-tree, it is nontrivial to
search over all scales and rotations. Either all rotations and scales must be added
to the tree, or else queried, incurring enormous expenses in time or memory.

3.5 Matching with Arbitrary Descriptors and Distance Metrics

The PatchMatch algorithm was originally implemented using the sum-of-squared
differences patch distance, but places no explicit requirements on the distance
function. The only implicit assumption is that patches with close spatial
proximity should also be more likely to have similar best-nearest-neighbors,
so that PatchMatch can be effective at propagating good nearest neighbors
and finding new ones. This turns out to be true for a variety of descriptors
and distance functions. In fact, the algorithm can converge even more quickly
when using large-area feature descriptors than it does with small image patches,
because they tend to vary relatively slowly over the image. In general, the
“distance function” can actually be any algorithm that supplies a total ordering,
and the matching can even be performed between entirely different images —
the rate of convergence depends only on the size of coherent matching regions.
Thus, our matching is quite flexible.

In this paper we explore several examples. In Section 4.3 we implement
symmetry detection with a modified L? patch distance that is robust to changes
in luminance. In Section 4.4, we perform label transfer by sampling a SIFT
descriptor at every pixel. Our matching algorithm performs a global search, so
two matched objects can be present in different regions of the image.

3.6 Parallel Tiled Algorithm

Barnes et al. proposed a parallel variant of PatchMatch using “jump flooding” for
the propagation phase [1]. This algorithm was intended for GPU usage. However,
on the CPU, this approach is less effective than serial propagation and converges
more slowly in each iteration.
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Fig. 4. Dataset of 36 input images for denoising

On a multi-core architecture, we propose parallelizing PatchMatch by divid-
ing the NNF into horizontal tiles, and handling each tile on a separate core.
Because the tiles are handled in parallel, information can propagate vertically
the entire length of a tile in a single iteration. To ensure information has a chance
to propagate all the way up and down the image, we synchronize using a critical
section after each iteration. To prevent resource conflicts due to propagation
between abutting tiles, we write back the nearest neighbors in the last row of
the tile only after synchronization. Note that both propagation/random search
and forward enrichment can be parallelized using this tile scheme.

We observe a nearly linear speed-up, on our 8 core test machine. Our timing
values in this paper use only one core unless otherwise indicated. See the
supplementary material for details.

4 Vision Applications

This section investigates several possible applications for the generalized Patch-
Match algorithm: denoising, clone detection, symmetry detection, and object
detection.

4.1 Non-local Means Denoising

For image denoising, Buades et al. [2] showed that high-quality results could
be obtained by non-local means denoising: finding similar patches within an
image and then averaging these. Subsequent work [24, 25] showed that this patch-
based method could be extended to obtain state-of-the-art results by performing
additional filtering steps. While Buades et al. [2] searched for similar patches only
within a limited search window, Brox et al. [26] showed that a tree-based method
could be used to obtain better quality for some inputs. However they do increase
the distance to far away patches so searching is still limited to some local region.

Our kNN algorithm can be used to find similar patches in an image, so it
can be used as a component in these denoising algorithms. We implemented the
simple method of Buades et al. [2] using our kNN algorithm. This method works
by examining each source patch of an image, performing a local search over all
patches within a fixed distance r of the source patch, computing a Gaussian-
weighted L? distance d between the source and target patch, and computing a
weighted mean for the center pixel color with some weight function f(d).

To use our kNN algorithm in this denoising framework, we can simply choose
a number of neighbors k, and for each source patch, use its k-NN in the entire
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image as the list of target patches. To evaluate this algorithm, we chose 36 images
as our dataset (Figure 4). We corrupted these images by adding to each RGB
channel noise from a Gaussian distribution with o = 20 (out of 256 grey levels).
If the dataset is denoised with Buades et al (using an 11x11 search window) the
average PSNR is 27.8. Using our kNN algorithm gives an average PSNR of 27.4,
if the number of neighbors is small (k = 16). Counterintuitively, our algorithm
gives worse PSNR values because it finds better matches. This occurs because
our algorithm can search the entire image for a good match, therefore in uniform
regions, the patch’s noise pattern simply matches similar noise.

One solution would be to significantly increase our k. However, we found
that Buades et al and our algorithm are complementary and both are efficient.
Therefore, we simply run both algorithms, and list all target patches found
by each, before averaging the patches under a weight function f(d). We train
the weight function on a single image and then evaluate on the dataset. This
combined algorithm has an average PSNR of 28.4, showing that our kNN
matching can improve denoising in the framework of Buades et al. The best
results are obtained on images with repeating elements, as in Figure 1.

We also compared our results with the state-of-the-art BM3D algorithm [24].
For our dataset, BM3D produced an average PSNR of 29.9, significantly out-
performing our results. However, we intentionally kept our denoising algorithm
simple, and hypothesize that more advanced algorithms [24,25] that are based
on local search for speed, could do even better with our kNN algorithm.

4.2 Clone Detection

One technique for digitally forging images is to remove one region of an image by
cloning another region. For example, this can be done using Adobe Photoshop’s
clone brush. Such forgeries have been a concern in the popular press of late, as
fake photos have been published in major newspapers.

Methods of detecting such forgeries have been proposed recently [11,27].
These methods propose breaking the image into either square or irregularly
shaped patches, applying PCA or DCT to discard minor variations in the image
due to noise or compression, and sorting the resulting blocks to detect duplicates.

We can apply our kNN algorithm for the purposes of detecting cloned regions.
Rather than sorting all blocks into a single ordered list, we can consider for each
patch, its k-NN as potentially cloned candidates. We identify cloned regions by
detecting connected “islands” of patches that all have similar nearest neighbors.

Specifically, we construct a graph and extract connected components from
the graph to identify cloned regions. The vertices of the graph are the set of
all (z,y) pixel coordinates in the image. For each (z,y) coordinate, we create a
horizontal or vertical edge in the graph if its kNN are similar to the neighbors
at (r+1,y) or (z,y+ 1), respectively. We call two lists A and B of kNN similar
if for any pair of nearest neighbors (ax,ay) € A and (bz,by) € B, the nearest
neighbors are within a threshold distance T of each other, and both have a patch
distance less than a maximum distance threshold. Finally, we detect connected
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Fig. 5. Detecting image regions forged using the clone Fig. 6. Symmetry detec-
brush. Shown are (a) the original, untampered image, (b) tion using a regular lattice
the forged image, (c) cloned regions detected by our kNN (superimposed white dots)
algorithm and connected components. Imagery from [11]

components in the graph, and consider any component with an area above a
minimum cloned region size C' (we use C = 50) to be a cloned region.

Examples of our clone detection implementation are shown in Figure 5. Note
that cloned areas are correctly identified. However, the area of the clone is not
exactly that of the removed objects because our prototype is not robust to noise,
compression artifacts, or feathering. Nevertheless, we believe it would be easy to
adapt the algorithm to better recover the complete mask.

4.3 Symmetry Detection

Detecting symmetric features in images has been of interest recently. A survey
of techniques for finding rotational and reflective symmetries is given by
Park et al. [28]. Methods have also been developed for finding translational
symmetries in the form of regular lattices [8].

Because our kNN algorithm matches repeated features non-locally, it can
be used as a component in symmetry detection algorithms. Symmetries have
been detected using sparse interest points, such as corner detectors or SIFT
or edge interest points [28]. In contrast to sparse methods, our algorithm can
match densely sampled descriptors such as patches or SIFT descriptors, and
symmetries can be found by examining the produced dense correspondence field.
This suggests that our algorithm may be able to find symmetric components even
in the case where there are no sparse interest points present.

To illustrate how our method can be used for symmetry detection, we propose
a simple algorithm for finding translational symmetries in the form of repeated
elements on a non-deformed lattice. First we run our kNN algorithm. The
descriptor for our algorithm is 7x7 patches. We calculate patch distance using
L? between corresponding pixels after correcting for limited changes in lighting
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Fig. 7. Detecting objects. Templates, left, are matched to the image, right. Square
patches are matched, searching over all rotations and scales, as described in Section 3.4.
A similarity transform is fit to the resulting correspondences using RANSAC.

by normalizing the mean and standard deviation in luminance to be equal. We
find k¥ = 16 nearest neighbors, and then use RANSAC [29] to find the basis
vectors vi and vy that form the lattice. We classify as inliers the coordinates
where the distance between the lattice and all of the kNN is small. A result of
our symmetry detection is shown in Figure 6.

4.4 Object Detection

Methods for object detection include deformable templates [30], boosted cas-
cades [31], matching of sparse features such as SIFT [5], and others. Our algo-
rithm can match densely sampled features, including upright patches, rotating
or scaled patches, or descriptors such as SIFT. These matches are global, so that
correspondences can be found even when an object moves across an image, or
rotates or scales significantly. Provided that the descriptor is invariant to the
change in object appearance, the correct correspondence will be found.

In Figure 7 we show an example of object detection. Similar to the method
of Guo and Dyer [32], we break the template into small overlapping patches.
We query these patches against the target image, searching over all rotations,
and a range of scales, as per Section 3.4. A similarity transform is fit from the
template to the target using RANSAC. We calculate patch distance using L?,
after correcting for lighting as we did in symmetry detection. The result is that
we can find objects under partial occlusions and at different rotations and scales.

For greater invariance to lighting and appearance changes, a more complex
local appearance model is needed. However it is straightforward to incorporate
more complex models into our algorithm! For example, suppose we have
photographs of two similar objects with different appearance. We might wish
to propagate labels from one image to the other for all similar objects and
background. The SIFT Flow work [33] shows that this can be done using
SIFT features correspondence on a dense grid combined with an optical-flow like
smoothness term. The resulting field is solved using a coarse-to-fine approach
and global optimization (belief propagation). Like most optical flow methods,
SIFT Flow assumes locality and smoothness of the flow and thus can fail to
align objects under large displacements. As shown in Figure 8, we can correctly
transfer labels even when objects move a large amount. We do this by densely
sampling SIFT descriptors and then matching these as described in Section 3.5.
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Fig. 8. Label transfer using our method with SIFT descriptors. (a) car A; (b) car B;
(c) labeled A; (d) A warped to match B using SIFT Flow [33] as well as the transferred
label mask in (e); (f) A warped to B using our method and the transferred label mask
in (g). Our flow is globally less smooth but can handle arbitrarily large motions.

5 Discussion and Future Work

This paper generalizes the PatchMatch algorithm to encompass a broad range of
core computer vision applications. We demonstrate several prototype examples,
but many more are possible with additional machinery. For example, example-
based super-resolution can use PatchMatch, using a single [34] or multiple [12]
images. Section 4.4 shows an example of transferring labels using correspon-
dences without a term penalizing discontinuity, but in other settings a neigh-
borhood term is necessary for accurate optical flow [3,6]. Finally, although we
demonstrate object detection, our speed is not competitive with the best sparse
tracking methods. It is possible that some variations of this approach using fewer
iterations and downsampled images could be used to provide real-time tracking.
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Abstract. Ultra-High Resolution Optical Coherence Tomography is a
novel imaging technology that allows non-invasive, high speed, cellular
resolution imaging of anatomical structures in the human eye, including
the retina and the cornea.

A three-dimensional study of the cornea, for example, requires the seg-
mentation and mutual alignment of a large number of two-dimensional
images. Such segmentation has, until now, only been undertaken by hand
for individual two-dimensional images; this paper presents a method
for automated segmentation, opening substantial opportunities for 3D
corneal imaging and analysis, using many hundreds of 2D slices.

Keywords: OCT, UHROCT, cornea, non-invasive imaging, statistical
modelling, segmentation, reconstruction.

1 Introduction

Optical Coherence Tomography is an optical imaging technique that allows for
non-invasive (non-contact), micrometer-scale imaging of transparent objects and
biological tissue. Some of the most advanced medical applications of OCT are
in the field of ophthalmology for non-invasive imaging of healthy and diseased
human retina and cornea [1-4].

The human cornea, which is the application focus of our research, consists of
five distinct layers of variable thickness: Epithelium (~50pm), Bowman’s mem-
brane (~15um), Stroma (~500um), Descemet’s membrane (~10um) and En-
dothelium (~5um), labeled in Figure [l Identifying individual corneal layers in
OCT tomograms and the precise measurement of their thicknesses is essential
in the evaluation of corneal disease, for example to study the progression and
treatment of Keratitis, Keratoconus, Fuchs’ dystrophy, and Hypoxia |5-8], as
these corneal diseases transform the shape and layer thickness of the cornea.

Until now, corneal layer segmentation has only been undertaken by hand
for individual 2D images, greatly limiting the types of problems or number of
patients who could be studied, and making completely impractical any 3D study
based on the segmentation and registration of hundreds of 2D images.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 44 2010.
© Springer-Verlag Berlin Heidelberg 2010
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This paper presents a method for automated segmentation, opening substan-
tial opportunities for 3D corneal imaging and analysis. The proposed segmenta-
tion method is the first fully automated algorithm, to the author’s knowledge,
that can segment the five corneal layers based on Optical Coherence Tomogra-
phy images. Since both boundaries of the Descemet’s membrane are less than
the imaging resolution, the Descemet’s Endothelium complex is represented by
a single boundary instead. The data in this paper were acquired with an Ul-
traHigh Resolution Optical Coherence Tomography (UHROCT) system, which
allows for non-invasive imaging of a human cornea with 3um axial resolution
and an acquisition rate of 47,000 2D scans per second |[9].

(_J_ Endothelium

| t Descemet's Endothelium

complex

}‘— Stroma
i

“'--“—"—'5-:_:'._%_;—-— <J— Bowman's membrane
L Epithelium

Fig. 1. UHROCT image of the cornea containing labeled layer boundaries

The Background section discusses existing 3D corneal reconstruction tech-
niques and segmentation algorithms. The Reconstruction Method section de-
scribes the novel 2D segmentation algorithm, developed in this paper, applied
to multiple cornea images, leading to the development of an approach for 3D
reconstruction.

2 Background

The proposed method intends to extend existing reconstruction techniques so
that a 3D model can be obtained from a series of noisy UHROCT images. The
following sections describe existing reconstruction methods and several segmen-
tation methods that can be used to facilitate corneal reconstruction.

2.1 3D Reconstruction

Existing medical imaging techniques can be utilized for imaging large organs,
such as the brain using MRI, or imaging small cells using electron microscopy.
Depending on the scale of the object, different reconstruction algorithms are
applied to the data collected from the imaging process.

When performing gross medical imaging, a series of 2D images might be
stacked together if the object motion and the imaging system motion is
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negligible compared to the overall dimensions of the object. For example, when
performing ultra-sound to image large organs, the vibrations of the ultra-sound
probe and the small motion of muscles surrounding the organs are insignificant
due to the relative scale of the object being imaged [10]. In addition, stacking
can be acceptable if a stationary object reference is visible in each frame. When
performing a brain MRI, the stationary bone structure of the skull can be used
to translate the 2D scans for the registration process |[11].

Although on the smaller scale, electron microscopy is used to image cells. In
these cases, the vibrations and motions of the cells are significant. However, like
in gross medical imaging, electron microscopy can use reference points that are
present in multiple 2D images [12]. Single-particle analysis [13, [14] attempts to
identify macromolecules in each view and attempts to determine the orientation
of each macromolecule in the particle.

Scarpa presents a method to reconstruct a cornea from confocal microscope
imaging [15]. A region of interest is identified in each sequential set of images,
then a normalized correlation method [16] is applied to the region of interest
to find correspondences between the image frames. The images in the stack
are translated to align the correspondences in consecutive images. The process,
however, does not directly utilize the corneal layer boundaries for reference. The
process also relies on a stack of images instead of using images perpendicular to
the stack to assist with alignment.

Li applied confocal microscopy through focusing to measure the central layer
thickness of the Epithelium, Bowman’s layer, and total corneal thickness [17].
Although the approach is limited to manually measuring the central thickness,
it was the first technique to obtain measurements for three of the five corneal
layers. The proposed algorithm automates the manual process and extends the
segmentation to all five corneal layer boundaries.

Currently, corneal OCT images may be aligned using a software package from
Amira. Amira provides a suit of tools that can be used to align a stack of OCT
images by comparing the direct image intensity and any salient features con-
tained in sequential images |18, [19]. The software also allows the users to man-
ually align the images. Unfortunately, the package does not use the structural
properties of the cornea in the reconstruction process, preventing a suitable 3D
reconstruction, and the 3D reconstructions generated failed to yield the accuracy
necessary for corneal layer thickness research.

The proposed method attempts to automate and extend the 3D reconstruc-
tion process by utilizing the corneal layer boundaries and orthogonal UHROCT
images to establish accurate point correspondences.

2.2 Segmentation

The proposed 3D reconstruction algorithm requires the segmentation of the
corneal layer boundaries within the 2D UHROCT images.

Snakes and active contours are curves designed to surround lines and shapes
that may be present in the image [20-24]. The active contour converges when the
sum of internal (prior) and external (measurement) forces are minimized, such
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that the internal forces prefer contour smoothness (or some other prior shape),
and the external forces prefer a fit to the given image, normally related to the
image gradient.

The concept of intelligent scissors ﬂﬁ] allows the user to semi-manually seg-
ment the image. By placing points on the image, the user guides the intelligent
scissor algorithm, which snaps to the image gradient as the algorithm fits a curve
through the user-defined points. The advantage of this algorithm is that the user
can specify a few points on each corneal layer boundary while the algorithm fits
a curve to the image gradient that follows the layer boundaries. When applied to
a smooth image gradient, the algorithm can fit a curve to the gradient with little
user interaction. However, when applied to the UHROCT images, the intelligent
scissors fit the noise obscured the otherwise smooth gradient preventing the ef-
fective segmentation of the boundaries. Figure illustrates the performance
of the algorithm despite having the user generate 20 to 30 points for each layer.

Fig. 2. UHROCT segmentation results for (left) geometric active contour and (right)
intelligent scissors. Neither method produces accurate segmentation results.

Fig. 3. Comparison of retinal (left) and corneal (right) UHROCTSs. Unlike corneal
layers, each retinal layer has a visibly distinct intensity compared to adjacent layers.
In contrast, corneal layers contain a visible thin, dark boundary between each layer.

While many well developed retinal OCT imaging techniques exist to iden-
tify layer boundaries of the retina, corneal imaging provides different challenges.
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Garvin proposes the use of a general graph-based approached that attempts to
reconstruct the retinal images into a 3D model and isolate the surfaces that cor-
respond to the retinal layers [26]. In addition, Mishra developed a method using
image gradient information and a kernel function to successfully compensate for
the speckle noise, present in OCT images, and efficiently segments retinal lay-
ers [27]. The major difference between retinal and corneal segmentation is due
to composition of the layers. As shown in Figure[3] unlike the cornea, the retinal
layers have different mean intensities for each layer. The retinal methods are
good at finding the edge between these layers. In contrast, corneal layers have
a similar mean intensity, but are separated by low-contrast, discontinuous, thin
layer boundaries instead. As a result, retinal methods were able to find the high
contrast outer layers, but could not locate the inner layers.

3 Reconstruction Method

A variety of active contours, including parametric, geometric, and edge-free,
were implemented and tested on UHROCT images. Not one of the implemented
methods was able to segment the cornea; Figure‘@ illustrates a typical example
of the final state of a geometric active contour |28]. In many ways this failure is
unsurprising: the images are noisy, the contours have frequent breaks, and the
active-contour methods have only a weak prior (smoothness) which knows very
little about corneal structure.

The failure of existing algorithms to segment the corneal layer boundaries
motivated the development of a method to perform 2D corneal segmentation.
The proposed method imposes a corneal model on the data to allow the corneal
layer boundaries to be segmented, despite the presence of noise and imaging
artefacts.

The reconstruction process consists of two major steps. The 2D UHROCT
images are first segmented so that each of the five layer boundaries can be
obtained and the layers are subsequently used as markers to for a second step,
the 3D reconstruction. These two respective steps are described in the following
two sections.

3.1 2D Reconstruction

The 2D reconstruction uses a corneal model to locate the internal layers of the
cornea. The starting point is to observe that the upper and lower corneal layers
have sufficient contrast, due to the high refractive index at the interface between
the cornea and the surrounding fluid, to segment these layers robustly. The
model then asserts that all internal layers can be derived using the curvature
information from the upper and lower corneal layers.

Let the data acquired from the UHROCT imaging device be a 2D greyscale
image I(z,y). During the imaging process, a higher contrast endothelium layer
can be obtained by focusing the UHROCT system on the endothelium layer in-
stead of the epithelium layer. Since the epithelium layer boundary is the interface
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between air and the cornea, the refractive index can produce sufficient contrast
for the segmentation algorithm. The focusing emphasizes the contrast of the en-
dothelium layer. However, as a consequence the cornea becomes inverted on the

image plane, as seen in Figure

(a) (b)

Fig. 4. (a) The original UHROCT image obtained from the imaging system. (b) The
result of preprocessing applied to the original UHROCT image, to improve contrast to
robustly find the upper and lower layers.

The UHROCT layer boundaries appear quite noisy. The boundaries are about
one to two pixels thick, have a varying pixel intensity, and are surrounded by
what appears to be speckle or correlated noise, actually due to the distribution
of cells within the cornea. To improve segmentation accuracy in the presence
of noise, image preprocessing is undertaken by applying contrast-limited adap-
tive histogram equalization HE] to normalize pixel intensities across the image,
morphological operators to enhance arc structures, and a Gaussian blur filter to
smooth the remaining noise. The resulting preprocessed image, Ipe(x,y), shown
in Figure contains sufficient contrast to clearly separate the cornea from
the surrounding fluid.

As a most basic segmentation of cornea from fluid, a Prewitt edge detector
is applied to find horizontal edges fragments in I,..(x,y), producing edge map
Ieqge(x,y), containing edges that correspond to the upper and lower boundaries,
as shown in Figure Candidate endothelium / epithelium pixel locations are
determined by locating those edges stronger than some threshold in the upper
/ lower half of I.qgc.

Manually-segmented boundaries were available for a limited number of images,
making it possible to learn a model and as ground truth in assessing the learned
layers. Then an optimization problem is formulated to fit a quadratic curve,
Qena(s) over arc-length s, to the upper layer boundary. An initial quadratic
polynomial, Qcna4(s), based on statistics from the manual boundaries, was used
to specify an initial curve for the optimization algorithm, as shown in Figure

where
ST [minlp — Qena(s)ll] 1)

VpePend
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is minimized, minimizing the Euclidean distance from the curve to all thresh-
olded edge points.

The quadratic is robust, but not a terribly good fit to the anatomy of the
cornea. Various polynomials were tested to find the lowest order that could best
model the corneal curvature. Since the difference between 5th and 4th-order
polynomials was insignificant a 4th-order polynomial was selected to model the
data. Having found the optimal quadratic fit, outlier rejection was performed by
point trimming and the best 4th-order polynomial fit Q% ,(s) was found. The
preceding process was applied, unchanged, to the bottom half of the edge points
to find the best-fit curve to the epithelium Q7 (s).

Both curves, £2% ,(s) and 2} ,(s), are illustrated in Figure

ept

()

Fig.5. (a) Edge detection applied to the preprocessed OCT Image. (b) The initial
model of the upper and lower curves are independent of UHROCT image. (c¢) The
segmentation of the upper and lower layer boundaries.

The model asserts that a continuous transformation exists that maps the
Endothelium to the Epithelium; consequently, the curves representing the three
internal layer boundaries are expressed as a low-dimensional parameterized func-
tion that uses the upper and lower curves as a basis:

0°70s) = Qepi(s —s0)  2°7H(s) = Qpals — 1) (2)

The parameterized corneal model is illustrated in Figure[6l Any of the five corneal
layers can be represented by the parameterized curve 2%(s), where parameter
« provides a mechanism to continuously transition between the upper and lower
curves:

02%(s) = (1 = )2°7(s) + af2°7'(s) 3)
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Fig. 6. Corneal model parametrization. s indexes along the arc, whereas « is essentially
an interpolation parameter between the bottom (« = 0) and top (o = 1) curves.

where the parameters sg and s; are required to establish point correspondences
between the upper and lower curves, established by the medial axis transform.
All five corneal layer boundaries are detected using a process essentially based
on the generalized Hough transform @] The mean pixel intensity, po of the
UHROCT image, I(z,y), is sampled along the curve 2%(s) as a function of «:

e (= (), () 8

An example of u, for a particular UHROCT is shown in Figure[ll The proposed
algorithm applies a peak detector that identifies the peaks with the largest dif-
ference between the proximate maximum and minimum. In this example the five
most significant peaks occur at o = [0.0930, 0.0138, 0.1227, 0.9917, and 0.9598],
which correspond to the five corneal layers.

Figure [@ illustrates six examples of segmenting the five layers overlaid onto
the original UHROCT image and illustrates the robustness of the algorithm
when applied to UHROCT data containing imaging artifacts. It needs to be
emphasized that the method is fully automated and that, to this point, no such
algorithm has existed which is able to perform such a segmentation. The results
are accurate, and robust in the presence of significant imaging artifacts.

0.56 T T T

054}
3
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o 02 0.4 06 0.8 1
alpha

Fig. 7. A plot of the generalized Hough projection p., projecting along corneal arcs,
to identify prospective layers
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3.2 3D Reconstruction

The novelty and performance of the 2D segmentation from the previous section
is already a highly significant step in ophthalmologic research. Our ideal goal,
however, is 3D reconstruction.

A 3D reconstruction of the cornea can be obtained from an ensemble of 2D
segmented images either imaged in parallel or, preferably, in two orthogonal
directions, as illustrated in Figure [ Parallel imaging requires some sort of
model regarding cross-plane behaviour, whereas perpendicular planes can be
fused without prior assumptions, by using the intersections of the image planes
as reference points for alignment. Since the primary source of alignment error
is due to eye motion and camera vibration, it is reasonable to assume that the
dominant inter-plane offsets are translational, rather than rotational or changes

in scale. The local coordinates |x y01 W, for the parallel images, and |.Z‘ y0 1|I

for the perpendicular images are mapped to the global coordinates |X Y Z 1|T
using the linear transformations

X x| | X T
Y oyl (Y| 0lY
z| = Hilo| |z| =il (5)
1 1H 1 1L
where
100z, 001 2,
o_ 010y, o 1010y,
Hi=10012| 1= 100z, (6)
000 1 0001

The framework can be extended to six degrees of freedom by manipulating the
homogeneous transformation matrices, where (Bl transforms the local coordi-
nates of 2%(s) into global coordinates generating 3D coordinates for each layer
boundary.

Fig. 8. Orientation of image planes for 3D Reconstruction, superimposed on the no-
tional layers of a cornea

The intersection of the i*" parallel plane with the j** perpendicular plane
produces a line on both image planes. The intersection of this line with the layer
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boundaries can produce point correspondences for each image. An optimization
problem can be formulated to minimize the total FEuclidean distance, in 3D
space, between all of the corresponding points. The intersection of two lines
can be derived by relating the coordinates the it parallel plane with the j**
perpendicular plane

T T zi—x{;
Yl _ |y YT Yo — Y
0 _HiO w4 al -2 (7)
1. 1|, 1
J )

using a homogeneous transformation, H},

0012 —a

i (poN-Lly0  pigo_ [010yl—yl
Hz’ _(HJ_) HH _HO HH - 100xz'o_zg' (8)
000 1

The sequence of steps, below, in (), defines the distance d; ; between the bound-
ary layer defined by a; on the i*" image plane and the corresponding boundary
defined by «; on the j!* image plane:

x; =2 —at
solve (£277(8i)z = T4, Si)
yi = (2 (§i)y ,
Yi =Y + Y, — Y,

;= z) — )
solve ((Z;” (8))e = xj, sj)

a7 ; = (s —’JZ?j(Sj)y)z

The method is extensible to the general case, including rotations to allow six
degrees of freedom, however the intersection line becomes significantly more
complicated.

4 Results

The 2D segmentation algorithm has been tested on 2,050 UHROCT images
obtained from 12 healthy subjects. The images were also manually segmented
to provide ground truth. The proposed algorithm located the Epithelium and
Endothelium boundaries to within about 2.5 pixels of the manually segmented
images for all of the images, with a standard deviation of about 1.3 and 3.2
pixels, respectively. Table [I] contains the results in pixels and a approximation
of um for the other layers. These results can also be immediately improved
by compensating for the segmentation bias. Each boundary is statistically too
high in the image by between 0.7 to 3.7 pixels depending on the boundary. The
boundaries can be systematically adjusted to reduce the error.
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Fig. 9. Six examples of applying 2D corneal segmentation to OCT images. The model
accomplishes exact segmentation, despite significant noise and varying corneal layer
location within the image. The prominent imaging artifacts result from the high reflec-
tively of the cornea when imaging near the apex.

b

Fig. 10. Nine 3D Corneal reconstructions from the segmentation and mutual alignment
of 2D UHROCT images. The images are taken from three subjects, one on each row.
The segmentation results are superimposed on the underlying UHROCT data, which
can be seen to have significant noise and artifacts.
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Table 1. Segmentation Experimental Results

Error
Layer Bias [pixels] Std.Dev [pixels] Bias [pixels] [um] Std.Dev [um]
epi 1.32 1.26 3.92 4.38
bow 0.709 10.7 4.59 5.38
str 2.56 5.19 2.86 3.50
des 3.68 4.69 5.94 6.07
end 2.52 3.25 6.52 7.11

The 3D reconstruction algorithm used the results of the 2D segmentation
algorithm applied to 3 healthy human subjects. Although four datasets were
collected from each human subject, initial problems with the imaging procedure
prevented the use of some data because the cornea moved out of the imaging
plane as the subjects were being scanned. Figure[[Qlillustrates the 3D reconstruc-
tion obtained from the algorithm. Notice that the reconstruction for subject 2,
image panes (d-f), contains sparse data due to the aforementioned imaging prob-
lem (since corrected). The figure visually shows how well the 3D reconstruction
process aligned all of the layer boundaries, and supplementary material provided
with this paper includes video, rotating the results in 3D to better illustrate how
well the layers are aligned.

During the study, 442 UHROCT tomograms were successfully segmented for
all three subjects. The segmentation process required approximately eight hours
using MATLAB on a dual-core 2.5GHz laptop (if these layers were manually seg-
mented, at an average rate of 15 minutes per image, it would take an experienced
user about 110 hours). The advantage of the segmentation algorithm is that it
is immune to fatigue and, given multiple processors, can segment UHROCT im-
ages in parallel. With such segmentation quality and reconstruction rates, the
inference and clinical use of 3D corneal layer boundaries becomes quite feasible.

5 Conclusions

The method proposed in this paper is capable of automatically producing two-
dimensional segmentations and three-dimensional reconstructions of a human
cornea.

The proposed segmentation algorithm was applied to over two-thousand im-
ages, segmenting each automatically, a performance so far unmatched in any
published method.

The three-dimensional corneal reconstruction is based on the simultaneous co-
alignment of segmented two-dimensional frames, with each frame permitted trans-
lational degrees of freedom, to be optimized. The resulting three-dimensional re-
construction was successfully applied to three test subjects.

The ability to produce large, three-dimensional corneal reconstructions opens
significant clinical and research opportunities. Collaborators in science and
optometry are eager to continue refining the methodology, to allow future work
in revealing details of corneal and retinal anatomy.
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Further work can introduce additional degrees of freedom in the perpendicular
planes to account for variance in planar orientation. Although perpendicular
planes were proposed, there is no inherit requirement in the algorithm prohibiting
planes of arbitrary orientation. Perpendicular planes were selected for imaging
convenience.
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Abstract. The homography between pairs of images are typically com-
puted from the correspondence of keypoints, which are established by
using image descriptors. When these descriptors are not reliable, either
because of repetitive patterns or large amounts of clutter, additional
priors need to be considered. The Blind PnP algorithm makes use of
geometric priors to guide the search for matches while computing cam-
era pose. Inspired by this, we propose a novel approach for homography
estimation that combines geometric priors with appearance priors of am-
biguous descriptors. More specifically, for each point we retain its best
candidates according to appearance. We then prune the set of poten-
tial matches by iteratively shrinking the regions of the image that are
consistent with the geometric prior. We can then successfully compute
homographies between pairs of images containing highly repetitive pat-
terns and even under oblique viewing conditions.

Keywords: Homography estimation, robust estimation, RANSAC.

1 Introduction

Computing homographies from point correspondences has received much atten-
tion because it has many applications, such as stitching multiple images into
panoramas [I] or detecting planar objects for Augmented Reality purposes [2/J3].
All existing methods assume that the correspondences are given a priori and usu-
ally rely on an estimation scheme that is robust both to noise and to outright
mismatches. As a result, the best ones tolerate significant error rates among the
correspondences but break down when the rate becomes too large. Therefore,
in cases when the correspondences cannot be established reliably enough such
as in the presence of repetitive patterns, they can easily fail. In this paper, we
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(b)

Fig. 1. Detecting an oblique planar pattern. (a) PROSAC fails due to high number of
outliers caused by the extreme camera angle. (b) Our approach can reassign correspon-
dences as the homography space is explored and can recover the correct homography.

introduce an estimation scheme that performs well even under such demanding
circumstances.

We build upon the so-called Blind PnP approach [4] that was designed to
simultaneously establish 2D to 3D correspondences and estimate camera pose.
To this end, it exploits the fact that, in general, some prior on the camera pose
is often available. This prior is modeled as a Gaussian Mixture Model that is
progressively refined by hypothesizing new correspondences. Incorporating each
new one in a Kalman filter rapidly reduces the number of potential 2D matches
for each 3D point and makes it possible to search the pose space sufficiently fast
for the method to be practical.

Unfortunately, when going from exploring the 6-dimensional camera-pose
space to the 8-dimensional space of homographies, the size of the search space
increases to a point where a naive extension of the Blind PnP approach fails
to converge. This is in part because this approach is suboptimal in the sense
that it does not exploit image-appearance, which can be informative even in
ambiguous cases. In general, any given 2D point can be associated to several po-
tentially matching 2D points with progressively decreasing levels of confidence.
To exploit this fact without having to depend on a prori correspondences, we
explicitly use similarity of image appearance to remove both low confidence po-
tential correspondences and pose prior modes that do not result in promising
match candidates. We further improve convergence rates by ignoring potential
matches that are least likely to reduce the covariances of the Kalman filter.

As a result, our algorithm performs well even in highly oblique views of pla-
nar scenes containing repetitive patterns such as the one of Fig.[Il In such scenes,
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interest point detectors exhibit very poor repeatability and, as a result, even such
a reliable algorithm as PROSAC [5] fails because a priori correspondences are
too undependable. We will use benchmark data to quantify the effectiveness of
our approach. We will also show that it can be used to improve the convergence
properties of the original Blind PnP.

2 Related Work

Correspondence-based approaches to computing homographies between images
tend to rely on a RANSAC-style strategy [7] to reject mismatches that point
matchers inevitably produce in complex situations. In practice, this means se-
lecting and validating small sets of correspondences until an acceptable solution
is found. The original RANSAC algorithm remains a valid solution, as long as
the proportion of mismatches remains low enough. Early approaches [8l9] to in-
creasing the acceptable mismatch rate, introduced a number of heuristic criteria
to stop the search, which were only satisfied in very specific and unrealistic situ-
ations. Other methods, before selecting candidate matches, consider all possible
ones and organize them in data structures that can be efficiently accessed. In-
dexing methods, such as Hash tables [I0/T1] and Kd-trees [I2], or clusters in the
pose space [I3J14] have been used for this purpose. Nevertheless, even within
fast access data structures, these methods become computationally intractable
when there are too many points.

Several more sophisticated versions of the RANSAC algorithm, such as Guided
Sampling [15], PROSAC [5], and ARRSAC [I6] have been proposed and they
address the problem by using image-appearance to speed up the search for con-
sistent matches. However, when the images contain repetitive structure resulting
in unreliable keypoints and truly poor matches such as in Fig. [, even they can
fail. In those conditions, simple outlier rejection techniques [25] also fail.

In the context of the so-called PnP problem, which involves recovering camera
pose from 3D to 2D correspondences, the Softposit algorithm [I7] addresses this
problem by iteratively solving for pose and correspondences, achieving an effi-
cient solution for sets of about 100 feature points. Yet, this solution is prone to
failure when different viewpoints may yield similar projections of the 3D points.
This is addressed in the Blind PnP [4] by introducing weak pose priors, that con-
strain where the camera can look at, and guide the search for correspondences.
Although achieving good results, both these solutions are limited to about a hun-
dred feature points, and are therefore impractical in presence of the number of
feature points that a standard keypoint detector would find in a high resolution
textured image.

In this paper, we show that the response of local image descriptors, even when
they are ambiguous and unreliable, may still be used in conjunction with geomet-
ric priors to simultaneously solve for homographies and correspondences. This
lets us tackle very complex situations with many feature points and repetitive
patterns, where current state-of-the-art algorithms fail.
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3 Algorithm Overview

We next give a short overview of the algorithm we propose to simultaneously
recover the homography that relates two images of a planar scene and point
correspondences between them. We achieve this by

— Introducing a Geometric prior: We first define the search space for the
homography. It can cover the whole homography space or depending on the
application can be constrained to cover a smaller space, for example to limit
the range of rotations or scales. We generate random homography samples in
this search space, as we detail in Section @l We then fit a Gaussian Mixture
Model (GMM) to these samples using the Expectation Maximization (EM)
algorithm. The modes of this GMM forms the geometric prior.

— Introducing an Appearance prior: For cach keypoint pair (x;,x;), we
define the appearance prior as the similarity score s4(x;,x;) given by a local
matching algorithm.

— Iteratively solving for correspondences and homography: We explore
the modes of the geometric prior until enough consistent matches and the
corresponding homography are found. Section Bl gives the details, we provide
a brief overview here. This prior exploration starts at each prior mode mean
with the covariance matrices estimated by EM. Each model point is trans-
fered using the homography, while the projection of its covariance defines a
search region for potential matches. We use the appearance prior to limit
number of correspondences as explained in Section 3 The homography
estimate and its covariance are iteratively updated by a Kalman filter that
uses the best correspondences as measurements until the covariance becomes
negligible.

4 Priors on the Search Space

In this section we give details on how both geometric and appearance priors are
built, and on the pruning strategies we define to robustly reduce the number
of keypoints and eliminate unnecessary geometric priors. As we will show in
Section [ this lets us to handle highly textured images with a large number of
interest points.

4.1 Parameterization of Homographies

To define a search space for the homography, we first need to select a parame-
terization for the homography. Then we can randomly sample these parameters
to obtain homography samples from the search space. A natural choice is to
decompose the homography as

x'=A'(R—tvl) A 'x,

where A and A’ are the intrinsic parameters of the cameras, R and t their
extrinsic transformation, v, is the unit normal to the scene plane, x’ is a point
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on the target image, and x is a point on the model image. However this is an
over-parameterization and has even more than 8 parameters. Therefore we look
for a direct parameterization of the 8 DOF of a homography:

x' = Hx,
Once such possibility is to consider its action on a unit square centered around
the origin. We can therefore parameterize the homography with the coordinates
of the resulting quadrangle as H(uq, v1, ua, va, us, v3, ug, v4). Given the 2D cor-
respondences between the four vertices of the quadrangle, we can find the cor-
responding homography as the solution of the linear system

MH=0, (1)

where M is a 8 x9 matrix made of the vertices coordinates, H = [Hyy, ..., Has|T,
H;; are the components of the matrix H, and 0 is a vector of zeros. We can also
work out its Jacobian evaluated at (uy, vy, ug, va, us, vs, Ug, V4)

5H11 5H12 6H33
5U1 (5u1 tee (5u1

Ju=| © R
5H11 5H12 6H33
duy Sug """ dua

which we will need when computing the projection of covariances defining the
search space for correspondences. Therefore, we can propagate a covariance as-
signed to the prior modes to the model image as follows

Ew = JquHEungJZU

and J,, stands for the Jacobian of the homography evaluated for the image
point (u’,v"). It can be written as

Juw = 6u//6h = 20 xT —o'xT (2)

1 l:XT 0 —u XT:|
where ' = (u/,v")T = (2'/2,y'/2')T are the inhomogeneous coordinates.

4.2 Geometric Prior

To define the geometric prior, we use a set of homography samples representing
the set of all possible deformations of the image plane. If an estimate of the
internal parameters is available, it can be parametrized directly by the camera
rotation and translation. We apply all deformations obtained in this way to
the unit square and obtain a set of sample parameter values corresponding to
coordinates of the deformed square. Using EM we fit a GMM to these samples,
which yields G Gaussian components with 8-vectors {hy,...,h,} for the means,
and 8 x 8 covariance matrices {ZF, ..., EZ}. Note that it is possible to use a
larger or smaller set of deformations to define the geometric prior depending on
the constraints imposed by the application.
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Fig. 2. Pruning based on appearance. Left: For the projected model point on the
image, a direct adaptation of the Blind PnP would select every point within the uncer-
tainty ellipse as a correspondence candidate. Considering appearance, our algorithm
only selects a small subset of them. Right: We plot the residual re-projection error for
each prior mode. Modes with lower indexes have higher rank and are explored first. A
residual error of ‘Inf’ denotes a mode that does not converge to a good homography. A
blind approach explores the modes following the EM ranking therefore spending time
on ones that eventually do not result in good pose hypotheses. We use appearance to
rank the modes and explore a smaller subset without missing out the good ones.

4.3 Appearance Prior

To compute the similarity score between keypoint pairs, we have chosen to work
with the Ferns keypoint classifier [I8] since it is fast and directly outputs a
probability distribution for each keypoint. However, our approach can use other
state-of-the-art keypoint descriptors such as SIFT [19] or SURF [20], provided
that we can assign a similarity score to each hypothetical correspondence. We
exploit the computed score in two ways.

Pruning keypoints. Using appearance, we are able to reduce for each model
point, the whole set of potential candidates to a small selection of keypoints.
The probability of finding a good match remains unaltered but the computa-
tional cost of the algorithm is highly reduced. Fig. 2] shows the effect of pruning
keypoints. Note that it significantly reduces the number of potential matches.
Additionally, we select only the most promising model keypoints that have a
high scoring correspondence given by Ferns posterior distributions.

Pruning prior modes. To avoid exploring all modes of the geometric prior,
we assign an appearance score to each one and eliminate the ones with lower
scores. To compute the appearance score S4 for each mode hy, we transform
the set of model keypoints x; only once using the corresponding homography
given by the mode, pick the ones that has only one potential candidate, and
sum their similarity scores as

M
Sa(hy) = 25(Xz‘ € C1) - sa(xi,x;), (3)
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where s4(x;,x;) is the similarity score of x; and its corresponding target key-
point x;, C; is the set of model keypoints with exactly one match candidate, and
4(.) is the indicator function that returns 1 if its argument is true or 0 otherwise.
Fig. @ depicts an example with G = 100 pose prior modes.

5 Estimating Correspondences and Homography

At detection time, we are given a set of M 2D points {x;} on the model image
and a set of N keypoints {x;} on the target image. Some of the model keypoints
correspond to detected features and some do not. Similarly, the homography may
transfer some of the model points to locations without any nearby keypoints.
Our goal is to find both the correct homography H and as many point-to-point
correspondences as possible. Let M be a set of (x;, X;) pairs that represents these
recovered correspondences and N,,g be the subset of points for which no match
can be established. We want to find the correct homography H and matches M
by minimizing

Error(H) = Z |Ix; — Hx;[|* + 7| Nnal » (4)
(xi,x5)EM

where 7 is a penalty term that penalizes unmatched points.

Pose Space Ezxploration. We sequentially explore the pose prior modes by
picking candidate correspondences (x;,x;) and by updating the mode mean h,
and covariance X, using the standard Kalman update equations,

h;_ = hg —|— K (Xj — ngi) 3
>t = (I-KJ(x;)) 2

g’

where H, is the homography corresponding to the mean vector hy, K is the
Kalman Gain, and I is the Identity matrix.

Candidate Selection. We use the covariance 2;} to restrict the number of
potential of matches between the points of the two images, by transferring the
model points x; using the homography to target image coordinates u; and the
projected covariances 7. Error propagation yields

=i = JI(xi)Bgd(xi), ()

where J(x;) = J,J i is the Jacobian of the transfer by homography H,x; that
we derived in Section [4l This defines a search region for the point x;, and we

only consider the detected image features u} such that

(i — )" E} (u; —u)) <77 (6)

as potential matches for x; and only if they have a high enough similarity score
sa(ug, u;) 7T is a threshold chosen to achieve a specified degree of confidence,
based on the cumulative chi-squared distribution.
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Fig. 3. Pose space exploration. (a) Exploration of a prior mode starts by picking
correspondences with small projected covariance hence high confidence. (b) In the
third iteration, covariances are much smaller. Also the selected candidate has larger
covariance than the 3 model points indicated with yellow ellipses. Their locations will
not be updated and they will not be considered for future Kalman updates. (¢) The
fourth point is picked despite its large uncertainty since the other points close to the
center will not help to reduce covariance as much. (d) The covariances are very small
as four points have already been used to update the homography. We can still use a
fifth point to remove the uncertainty close to the borders.

Blind PnP selects the point with minimum number of potential candidates
inside the threshold ellipse. When the number of potential candidates is high
(n =~ 5) this works just fine because it minimizes the number of possible combi-
nations. In our case, taking advantage of the appearance, n becomes very small
and most of the points have either zero or one potential candidate. In this case,
this blind selection process becomes random and the updates may not converge
to a good homography.

Another way to select the point to introduce into the Kalman Filter is the
one proposed by [2T22] that selects at each iteration the most informative point,
which would make the algorithm converge quickly to the optimal solution. How-
ever, this method is sensitive to outliers and the optimal solution may be hard
to find if it is found at all.

As none of the preceding methods was suitable, we implemented a new
approach for candidate selection. Instead of trying to converge as fast as pos-
sible, we choose the point which has the minimum number of correspondences,
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Fig. 4. Candidate selection. Left: A blind selection of candidates for Kalman filter-
ing can not recover homographies due to increased number of pose space dimensions.
Adding appearance with or without mutual information solves this problem. Right:
Although it has almost no effect on final performance, using mutual information during
candidate selection speeds up convergence considerably.

has small projected covariance and also has a high similarity score so that it
maximizes
dist(u;, u})
ij = h 7| %A
| J(xi) 28T (x)7 |

This leads to a small and robust step towards the solution. We then remove
all other model points with smaller covariance from the list of potential points
to introduce into the Kalman Filter. This is motivated by the observation that
they will have even smaller covariance after the update and they can not reduce
the uncertainty significantly since a low covariance indicates a low Mutual Infor-
mation with the pose. As a result, we avoid making unnecessary computations
while decreasing the number of iterations. Figure Blillustrates this selection and
pruning of model point projections as we iterate using the Kalman filter. Note
that at first low covariance candidates are preferred and during the iterations we
select candidates that lie progressively farther away from the plane center that
has the least uncertainty. Figured shows that this candidate selection using both
mutual information and appearance outperforms the blind selection method or
appearance alone. The time values are given for our MATLAB implementation.

s (u'j]u;). (7)

Homography Refinement. After performing four updates on a prior mode,
the covariance becomes very small, so we can directly transform model keypoints
and match them to the closest target keypoint. Finally, the homography needs
to be refined using all available information.

We tried directly using DLT [23] with all recovered correspondences to es-
timate a refined homography but this did not yield satisfactory results as the
estimated homography is not always close and the number of correspondences
is not large enough. Instead we use a PROSAC [5] algorithm as follows:

— For each model keypoint, we establish potential correspondences without us-
ing the similarity scores but only the projected covariances. This significantly
increases the number of correct matches that can be recovered.
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Fig.5. Pose Refinement. Left: The Kalman Filter output refined by DLT using all
available correspondences. The result is inaccurate since the appearance scores are too
ambiguous leading to a low number of correct matches. Right: The correct homography
is recovered, using a robust estimator that can re-assign correspondences.

— During PROSAC iterations each model point is considered as an inlier only
for one of its potential correspondences.

Since potential matches are obtained using the result of the Kalman Filter, this
refinement is constrained enough to let us efficiently re-assign correspondences
with ambiguous appearance scores. Fig. Bl shows the results after refinement.

6 Results

We demonstrate the effectiveness of our approach using synthetic experiments,on
standard benchmark datasets as well as on a new sequence especially captured to
show robustness against repetitive textures. Finally, we show that appropriately
using appearance can significantly speed up the original Blind PnP approach for
camera pose estimation.

6.1 Synthetic Experiments

We used a synthetic scenario to evaluate the algorithm under the effects of
clutter, occlusions and different values for the sensor noise. More specifically, we
performed experiments varying the principal parameters such as the percentage
of noise in the images, the percentage of clutter points in the detected image,
the percentage of detected model points, and the Depth of the distribution of
the inlier correspondences. The Depth parameter represents the position that
the match candidate occupies, in a list of candidate points ordered according
appearance information. For instance, a model point with Depth = 5, means that
its true match corresponds to its fifth best candidate according to appearance
alone. Note that, the more repetitive patterns contains an scene, the depth values
for their features points will be higher, and hence, solving the matching will be
a more complex task.

We repeat the experiment 5 times for each set of parameters. We compare the
results with PROSAC and we show that our algorithm outperforms it when deal-
ing with occlusions while showing a similar robustness against cluttered images.
Our algorithm is not affected by the degradation in the probability distributions
of inlier matches as the experiment shows that depth affects PROSAC only.
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Fig. 6. a) Probability distribution function used to assign scores to the correspon-
dences. b) The experiment shows that our method is correctly estimating the solution
when the correct match is between the first 5 correspondences while PROSAC fails. c)
Algorithm robustness against clutter and d) occlusions.

The probability distribution functions used to assign appearance scores to the
correspondences and the results obtained in the experiments are shown in Fig. [6l

6.2 Homography Estimation

To test the method in real images, we have used images from various sources.
First, we tested our algorithm in some of the image datasets presented in [24].
In particular, we present the results obtained by experiencing on marked as
structured datasets like Graffiti (Figlll) and textured datasets like Wall (FigB).
We also have built our own set of images showing a building wall with repetitive
texture as the viewpoint changes.

In all the experiments, the number of model points is M = 200, while the
number of detected keypoints is fixed at N = 3000 for the Graffiti and Wall
datasets and to N = 1500 for the rest. We considered a depth of correspondence
hypothesis below N’ = 10 in all of the sequences and the number of model points
kept has been fixed to M’ = M/3. For every dataset, G = 300 homography prior
modes was computed by EM from which we only keep a subset of G’ = 30 at
the end of prior pruning by the appearance score.

From the bottom histograms of Figs. [l B and [@ it can be clearly seen that
as the viewpoint goes towards extreme angles, the repeatability of the feature
detector decreases, as the percentage of the correct ground truth matches do,
and it becomes more and more difficult to extract the correct homography with-
out considering hypotheses at higher Depth value. Observe how our algorithm
can manage to correctly retrieve the homography in most of experiments, while
PROSAC requires a large number of inliers with Depth = 1. Obviously it fails
when in extreme cases where there are no inliers with a Depth value < 10, such
as the right-most image in Fig. B

6.3 Camera Pose Recovery with an Appearance Prior

The Blind PnP approach uses only a geometric prior to recover 2D-to-3D cor-
respondences and also the camera pose with respect to the scene. In a final
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Fig. 7. Graffiti sequence. PROSAC fails to extract the homography when the simple
keypoint detector we use can not repeatedly detect the most keypoints visible in the
frontal view. Since it also relies on the geometric prior our algorithm continues to work.
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Fig. 8. Wall sequence. The highly ambiguous texture on the wall rapidly reduces the
matches that can be obtained using only the appearance. Our algorithm can still recover
the correct homography even after PROSAC starts to fail.

experiment we used the appearance prior of Section 3] to limit the number
of 2D-3D correspondences and also to search only priors with high appearance
scores given by Eqn. Bl Figure [0 shows that this speeds up the algorithm signif-
icantly since the computational complexity of Blind PnP is linear in the number
of 3D points and prior modes. Again, time values are obtained using our MAT-
LAB implementation.
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Fig. 9. Building sequence. Due to the repeated texture on the building first appearance
matches are incorrect even if the keypoint detector responds strongly in the correct
location. This is reflected in the distribution of inliers as we consider up to first 7
matches. While PROSAC works only with the first match, our approach is able to
utilize correct matches from several levels and recover the correct homography.
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Fig. 10. PnP using an appearance prior. The curves show the time and speed up for
different number of 3D and 2D points kept, denoted respectively by M and N. The
algorithm recovers the correct camera pose in all cases. Left: Run-time of the algorithm
using appearance to remove potential correspondences. Right: Gain in speed compared
to using on a geometric prior.

7 Conclusion

We have presented a novel approach to simultaneously estimate homographies
and solve for point correspondences by integrating geometric and appearance
priors. The combination of both cues within a Kalman filter framework that
iteratively guides the matching process, this yields an approach that is robust to
high numbers of incorrect matches and low keypoint repeatability. We show this
by testing thoroughly in synthetic and real databases of complex images with
highly repetitive textures.

The formulation of our approach is fairly general, and allows integrating addi-
tional features. As part of future work, we consider exploiting motion coherence
and use the method for tracking homographies in real time.
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Real-Time Spherical Mosaicing
Using Whole Image Alignment
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Abstract. When a purely rotating camera observes a general scene,
overlapping views are related by a parallax-free warp which can be esti-
mated by direct image alignment methods that iterate to optimise photo-
consistency. However, building globally consistent mosaics from video has
usually been tackled as an off-line task, while sequential methods suitable
for real-time implementation have often suffered from long-term drift. In
this paper we present a high performance real-time video mosaicing algo-
rithm based on parallel image alignment via ESM (Efficient Second-order
Minimisation) and global optimisation of a map of keyframes over the
whole viewsphere. We present real-time results for drift-free camera rota-
tion tracking and globally consistent spherical mosaicing from a variety
of cameras in real scenes, demonstrating high global accuracy and the
ability to track very rapid rotation while maintaining solid 30Hz opera-
tion. We also show that automatic camera calibration refinement can be
straightforwardly built into our framework.

Keywords: Real-time tracking, spherical mosaicing, SLAM,
auto-calibration.

1 Introduction

A set of images can be fused into a mosaic if there is no parallax between them,
and this is the case either when a generally moving camera browses a plane or
when a general 3D scene is observed by a camera which only rotates. There is a
great deal of literature on building mosaics from multiple images or video (see
the tutorial by Szeliski [I]). The emphasis has been on methods which operate
off-line, consisting of pair-wise image registration achieved either with features
(e.g. [2] using SIFT matching, or [3]) or whole image alignment (e.g. []), and
global optimisation. Meanwhile, methods that were able to operate from video
in real-time such as [5] achieved accurate local registration but were subject to
drift over longer periods due to the lack of explicit global optimisation.

The core issue of mosaicing is to accurately estimate the motion of the camera,
and if globally consistent mosaics are to be constructed from video in real-time
this motion estimation must be drift-free over arbitrarily long time periods. Like
any case of estimating the motion of an outward-looking sensor in a previously
unknown environment, mosaicing can be considered as a Simultaneous Local-
isation and Mapping (SLAM) problem. This is important, because in SLAM

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 73|86, P010.
© Springer-Verlag Berlin Heidelberg 2010
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research, originating in the mobile robotics area, there has been great attention
paid to developing algorithms which run sequentially in real-time but are also
able to generate globally consistent scene models.

The predominant early approaches to SLAM were based on sequential prob-
abilistic filtering algorithms, most importantly the Extended Kalman Filter
(EKF), to jointly estimate the positions of both the moving sensor and the fea-
tures which it observed. This methodology was recently successfully applied to
image mosaicing by Civera et al. [6], in the first work which was able to demon-
strate drift-free mosaicing at frame-rate from a rotating camera. The computa-
tional cost of the EKF backbone of this technique, however, scales badly with
the number of features kept in the map state, and this meant that only around
10-15 features (matched using 11x11 pixel patches) could be tracked per frame;
all but 3% of every image was ignored for the purposes of image alignment, and
this sets a limit on the mosaicing quality which can be achieved.

Recently in real-time 3D camera tracking, methods based not on filtering
but parallel pose estimation relative to keyframes and global optimisation have
enabled large amounts of image correspondence information to be used in all
frames. This approach was pioneered by Klein and Murray’s Parallel Tracking
and Mapping (PTAM) system [7] where hundreds of feature points are tracked
per frame and built into a globally consistent 3D model of a workspace. Impor-
tantly, PTAM demonstrated that only tracking relative to the nearest keyframe
is necessarily required to run at frame-rate to maintain live operation. The
global optimisation component of PTAM (bundle adjustment of scene points
and keyframes) runs in a parallel thread and repeats only as often as processing
resources allow at a fraction of frame-rate.

This decoupling of local motion tracking from building a consistent global
world model has become a dominant methodology in more generic SLAM re-
search in robotics, since the pioneering work of Lu and Milios [§] and the first
full implementation of a sequential mapping algorithm combining local tracking
with interleaved global optimisation by Gutmann and Konolige [9], in this case
with 2D laser scan data. With this interleaved approach, one is free to choose raw
data alignment methods for the local tracking component, and the SLAM ‘map’
consists of the historically estimated sensor poses rather than feature locations.

In our work, we adapt this parallel tracking/optimisation approach to live
video mosaicing, and make use of a state of the art whole image alignment
method both for local rotation tracking and at the heart of a parallel optimisation
thread for globally consistent alignment of a set of keyframes spanning the whole
viewsphere. We are also able to refine estimates of camera intrinsic parameters in
this global optimisation. Whole image alignment, as opposed to feature tracking,
densely makes use of all of the texture in the images to permit registration which
is as accurate as possible. Further, we show that a hierarchical implementation
via an image pyramid permits the tracking to be efficient while maintaining a
wide basin of convergence allowing very rapid camera rotation to be tracked.

Still one of the most widely used methods for estimating the warp between
images, the Lucas-Kanade [I0] method is based on the iterative minimisation of
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a cost function related to how well one reference image matches that of a warped
comparison image. The parameters of the warp define the dimensionality of this
space. By computing the derivative of the cost function with respect to the warp
parameters, the parameter space gradient can be ‘surfed’ to a minimum, which
may or may not be the global minimum.

Within our system, we make extensive use of the technique proposed by Malis,
named Efficient Second-order Minimisation (ESM) [I1] which instead finds the
second order minimiser of the cost function while using only first order terms.
This provides stable convergence in fewer iterations than the Lucas-Kanade
method.

2 Method

Our algorithm is split into two tasks which run as parallel threads on a multi-core
PC: a) tracking from a known map, and b) global map maintenance and optimi-
sation (see Figure[ll), an approach inspired by PTAM [7]. In the first ‘tracking’
thread, we use the direct, whole image second order optimisation method ESM
of Malis [I1], with further contributions from Mei et al. [12], which we implement
on graphics hardware for high-quality real-time tracking relative to our map. In
the second parallel thread, we run a global optimisation procedure also based
on ESM which adjusts the estimated orientations of all keyframes of our map
and camera intrinsics simultaneously. This allows us to produce globally consis-
tent mosaics in real-time. We remove radial distortion from all live frames as
they enter our system, and deal only with perspective images from then on. We
use a third party tool to establish the distortion parameters. Additionally, we
describe an automatic method for relocalisation if tracking should fail, allowing
the current mosaic to be re-joined without corruption.

Keyframe Map. Within our system, we store a collection of key historic camera
poses with associated image data, which we call keyframes. Keyframes within

Tracking Thread Global Map Optimisation Thread

Hrl — KRU/T'I'Rle—l
AY
L)

Live Camera [
Rw!

Optimise R*! to
. . . . k:z .

align live camera Reference Keyframe r thlmlse K,RY i € {1,N} to

to nearest keyframe RWT improve global alignment

Fig. 1. System overview showing separation of tracking and mapping
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our map are related to one another by a 3DOF rotation. We store the current
estimate of a keyframe’s pose as a rotation matrix R* relating the camera’s
local frame of reference, k, to that of the world, w.

Tracking. When tracking commences, we set the first live image to be our first
keyframe, ko with pose R”%° set to the identity. For each subsequent live frame,
we use the previous live pose to select the closest keyframe from our map. We
estimate the current pose by considering the image warp between this keyframe
and the current image, which in turn allows us to estimate the relative motion.

Exploration. As tracking continues, we create new keyframes and add them to
the map if the overlap between our current image and closest keyframe becomes
too small and falls below a threshold. Keyframes which we add inherit the pose
of the live camera at that time.

2.1 Local Motion Estimation

For local motion estimation, we update our current pose estimate, R"¢, by con-
sidering the live image and a reference keyframe r with known pose, R*".

For two cameras in a general configuration observing a plane, we can de-
scribe pixel correspondence within their images by a plane induced homography.
Cameras which purely rotate, however, allow us to disregard the scene entirely.
Defining H%® as the homography that transfers points imaged in camera a to the
equivalent points in camera b, we can write H*® as a function of R?®:

HP® = KRYK 1 | (1)

where K is the 3 x 3 camera intrinsic calibration matrix:

fu 0 ug
K= 0 fv vo | - (2)
001

This enables us to generate views from rotated ‘virtual’ cameras by warping an
existing image. Our frame to frame tracking problem is then to find an update
to the parameters of the plane induced homography H” which best reflects the
warp between reference keyframe r and our live camera (.

Following the method of Malis [11]], we parametrise updates to our pose using
the Lie Algebra. The class of 3 x 3 rotation matrices belong to the Lie Special
Orthogonal group SO(3). This group can be minimally parametrised around the
identity by a three-vector belonging to the associated Lie Algebra so0(3). This
parametrisation is locally Euclidean about 0, which is important for the ESM
method. An element x € s0(3) is related to a member R(zx) € SO(3) through
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the matrix exponential map, where elements of x form coefficients for the group
generators, A;,i € [1,2,3]:

3
R(z) = exp (Z .TZ‘AZ‘> . (3)

Given a current estimate of the rotation, R'", and an update parametrised by
x € 50(3), R'"(z), we update our estimate using the following rule:

ﬁlr - ﬁerlr(x)’ (4)

We can now define an objective function describing the sum of squared differences
between pixels in the live and reference images related by the homography, itself
a function of the current rotation estimate R, and the update :

=y

prE€82;

T (H (RZTR(SE)")pr) ~I" (pr)] : (5)

Z" and Z' represent the reference keyframe and live image respectively. The sum
is formed from each pixel p,. in the set of pixels {2, defined in the reference image.

It can be shown that, up to second order, this function is minimised at
zo (Equation [6]), where + is the pseudo-inverse and J the Jacobian relating
change in parameters to changes in the cost function (Equation [7) [12]:

zo = —JTf(0) (6)

2

The reader is asked to refer to [IIT2JT3] for details, including the definition
of these Jacobians. The special formulation of these Jacobians taken about the
reference and current images and the subsequent minimisation of this objective
function is what is referred to as Efficient Second-order Minimisation (ESM).

If we instead write f(z) explicitly as the norm of a residual difference vector
d (Equation [§]), where each row corresponds to a pixel in £2,. (Equation [)), we
see that the size of the system can be reduced by solving instead its normal
equations (Equation [I0):

J= <JI’ + JI"‘) TuJiJn . (7)

fa) = ) @) (®)
dy, () = T' (1 (R"R" (@) pr ) = 7" (pr) (9)
xg = —(JTJ)"LIT£(0). (10)

Since J has dimensions num pizels x3, J*J (a 3 x 3 matrix) is significantly
smaller than J, and can be computed by summing the individual outer products
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of rows of J. We progress by iteratively solving this non-linear least squares
system, applying the update R = RI"RI" (x() until convergence.

Upon convergence, R represents the transformation between the live and
reference cameras. Applying this to consecutive frames from a video sequence
could form the basis for a visual odometry system. Here, instead, we match the
current live image against the ‘closest’ keyframe in our map.

2.2 Global Map Optimisation

Joint global optimisation of all keyframes of the map and camera intrinsics
occurs concurrently in a separate thread. We apply the ESM method to a more
general objective function. We parametrise updates to pose through the Lie
Algebra as before, but formulate updates to the camera intrinsic parameters by
a vector, k € R*, through exponentiation. Thus, k = O represents no change to
the intrinsics. The update rule becomes:

fu fue;:o
1
fo - fve ) (11)
Ug uoe’“2
(o) voek?’

For N keyframes, our update vector x can be decomposed into rotation param-
eters, r; € 50(3), and intrinsic parameters: x = (k,r1,72,...rn). The objective
function which we now wish to minimise includes all pairs of overlapping images:

2

@)= ) S ST (6 w) - T () (12)
J i pjEL;

HY (x) = RK(k)RYRY (r;, 7, ) (KK(k)) ™! (13)

RIRY (ry, 1)) = (RVRY(r)RRY 1), (14

We calculate the incremental minimiser of this function xy using exactly the same
machinery as before. Iterations of this minimisation take place continuously,
helping to improve the map consistency.

Auto-calibration of camera intrinsics is particularly well posed in the case
of a camera which only rotates [I4]. In our system, the expected performance
of calibration refinement is much further enhanced by our ability to match im-
ages automatically around full 360° panoramas, giving the potential for accurate
calibration even for cameras with a narrow field of view.

2.3 Recovery from Tracking Loss

We have provided our SLAM system with a straightforward relocalisation ca-
pability similar in spirit to the ‘small blurry image’ method of PTAM [7] but
which directly takes advantage of the main ESM pose estimate algorithm. If



Real-Time Spherical Mosaicing Using Whole Image Alignment 79

the camera becomes ‘lost’ then we aim to recover a pose estimate by simply
attempting ESM pose estimation from a number of seed locations visible in our
current mosaic, starting at the smallest image size in an image pyramid. Of the
estimated warp parameters obtained, we refine the most photo-consistent esti-
mate by performing more ESM iterations at higher resolutions in the pyramid.
We use the poses of our keyframes as seed locations, but indeed any regular
sample would be equally valid.

Computation time for relocalisation is proportional to the number of seed
locations. For spherical mosaics, relocalisation need not be costly. When lost
(measured using observed photoconsistency between the current keyframe and
live camera), we run the relocalisation procedure on one in ten frames. This
method operates well in environments with low perceptual aliasing.

3 Implementation

To achieve real-time performance, we make extensive use of commodity graphics
hardware and the parallelism that this can afford. Graphics cards usually have
a number of very simple, high throughput shaders that are ideal for stream
processing tasks; taking quantities of data which are largely independent of each
other and transforming this data in some way.

We use the portable graphics language Cg, which can run on the majority
of today’s PCs and laptops. In this section, we will outline some of the more
interesting implementation details of our system.

3.1 Real-Time Hierarchical ESM for Local Tracking

Our local tracking ESM implementation is split into three very simple stages
targeting the graphics card, described below.

Hierarchical Construction. After a frame is received from the video camera,
it is uploaded as a texture on the GPU. Once in graphics memory, a fragment
shader is invoked once for each desired level in a power-of-two reduction pyramid.

The fragment shader, which operates per pixel, simply takes the value of the
average of the corresponding 4-block from the level above. This gets rendered
back into a different texture of half the size. Typically, we use five levels in our
pyramid which correspond to four invocations of this fragment shader. The indi-
vidual levels of the pyramid are left on the graphics card and never downloaded
to the CPU.

By first estimating the warp parameters between images at the smallest resolu-
tion in the pyramid, we benefit from a wider parameter-space convergence basin
and lower processing costs. By assuming that per-pixel derivatives are meaning-
ful at each of the levels, we are able to reuse our estimated warp parameters in the
next highest resolution image and repeat. We can tune for performance/accuracy
by setting how many iterations to perform at various levels.
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Construction of Least Squares System Elements. For every step in the
ESM method, Jacobian terms common to all pixels are computed on the CPU
(Jk, Jr, Jz). This leaves the data-centric terms (Jy,, Jzt, Jzr) to be computed
on the GPU. Jz: and Jz- are computed by central difference. The 9 x 3 matrix
Jr Jrd: is loaded onto the GPU as parameters to a fragment shader in three
3 x 3 blocks, which are supported as primitives in the Cg language.

Invoking the fragment shader runs a simple Cg function per pixel p” that
enables us to compute the appropriate row of J, J,~ and the residual d,-. This
shader function also computes the outer product J.J,- and product Jj.dpr.
Since J;Jpr is symmetric, it has 6 unique elements; J;; d,- has 3. The shader
function returns these 9 values as pixel ‘colours’ across three floating point RGBA
textures stored on the GPU. We use OpenGL framebuffers to enable this.

Reduction to Linear System. Given our three textures, where a channel of
each image, for every pixel p”, corresponds to elements of J;. J,r and J-d,r, we
wish to compute J*J and J"d. This involves summing the channels of each pixel,
which we perform in two stages. The first is a vertical reduction in another Cg
fragment shader. This shader is invoked on an output set of images containing
a single row. For each pixel, this shader sums the pixels of the input images in
the same column.

Finally, we download these three row images to the CPU, where the final
horizontal reduction takes place to a single vector, which is unpacked into the
appropriate matrix and vector. Here, it is solved using an efficient Cholesky
decomposition.

3.2 Rendering

Two common approaches to visualising rotational mosaics are spherical and
cylindrical projection. A spherical mosaic is visualised from within the center
of a view-sphere, where images are projected to the sphere surface. Cylindrical
projections are instead projected on to a cylinder, which we can then unwrap
into a single image, visualising all of the mosaic at once.

We again make use of Cg shaders to enable us to visualise the full quality,
blended mosaic live, and for correctly sampling from the constituent keyframes.

Spherical Panorama. For rendering a spherical panorama, we treat our vir-
tual (OpenGL) camera much like a keyframe, positioned at the origin and
parametrised by the camera to world transform R*¢. We can map image space
coordinates from our OpenGL viewport to a keyframe k& by composing the ho-
mography H¥¢ = KRWK RweR—1,

We use a shader which we invoke once for each keyframe within the field of
view of the virtual camera, passing in as a parameter the homography H*¢ which
enables us to place the keyframe within the viewport. This shader, operating
per-pixel, simply adds the keyframe’s colour value to the colour already in the
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frame buffer associated with the viewport. Additionally, it adds 1.0 to the alpha
channel for the pixel which serves as a counter.

Finally, we invoke another normalisation shader, which simply divides the
Red, Green and Blue channels by the alpha channel. The result is a panorama
where each keyframe is displayed blended with equal weight. One of the nice
aspects of this method is that image fusion occurs in the space of the viewport.
This means that each keyframe, whose pixel data is not sampled to the same
‘grid’ in viewport space, gets mixed to form an image of higher resolution of
the constituent images. Dependent on the quality of image registration, this can
enable ‘super resolution’ images to be displayed at frame rate.

Cylindrical Panorama. To create cylindrical panoramas, we use similar ma-
chinery as for spherical panoramas. Within the shader, the u and v viewport
coordinates are interpreted as yaw (1) and pitch (#) in the range [—m, +7] and
[—7,+7] respectively.

For each keyframe, we invoke the shader, where, for each pixel we then com-
pute the desired image ray described by the unit vector r,

# = (cos @ cosp,sinf, cosfsinep)” . (15)

This is transferred into the frame of reference of the keyframe using the virtual
camera to keyframe rotation matrix, R*¢, which is uploaded as a parameter to
the shader. Finally, the camera intrinsic matrix can be used to map this to
keyframe image-space coordinates. Given this correspondence, we proceed as
with the spherical panorama.

4 Results

We wish to evaluate our system against two criteria; how accurately local motion
is estimated, and how consistently frames are registered into a final mosaic.

In all of the results, as our submitted video also highlights, mosaics were
computed incrementally and rendered live at frame rate, a solid 30fps. We cap
per frame ESM iterations to 48 at the 5! level of the pyramid, 16 at the 4"
8 at the 37¢, 4 at the 2"¢, and 2 at the 1. We use any remaining time to
perform iterations at the 0 level which corresponds to the original image —
this typically is one, two or three iterations. We drop new keyframes when less
than 80% of the current keyframe is visible.

4.1 Local Motion Estimation and Dynamics

To test the ability of our method to track dynamic local motion, we have com-
pared the angular velocity output of our method against a solid state gyroscope
bolted to the back of the camera, which was mounted on a tripod and oscillated
to produce increasingly rapid motion (up to around 5 cycles per second) about
each of its axes in turn.
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Sample Sequence 1: Rotation about y-axis

&6 hbownao o

Angular Velocity (rad s™!)

Time (s)

Sample Sequence 2: Rotation about x-axis, sample failure

Angular Velocity (rad s™!)
bbb bon s oo

b b hbown s o e

Angular Velocity (rad s~!)

Camera Gyroscope -
Fig. 2. Graphs illustrating high dynamic tracking performance; the plots show angular
velocity estimates from our vision system compared with the output from a gyroscope
as the camera was vigorously oscillated about each of the three camera-oriented axes
in turn (y axis pan; x elevation, z cyclotorsion)

The characteristics of estimation are somewhat different depending on the axis
of rotation, as the plots of Figure[2lillustrate. Angular velocity about the z-axis
(cyclotorsion) is estimated very accurately. Note that the truncated peaks of the
gyroscope data show that the tracking limits of the device were exceeded while
visual tracking still continued accurately — our system was able to maintain
fidelity about this axis in excess of 7 rads™!, which is significantly faster than a
camera would normally move in a tracking scenario.

Angular velocity about the y-axis, corresponding to camera pan, tracks the gy-
roscope data closely, with a very slight systematic under-estimation. We suspect
that camera calibration may be the predominant cause, or a slight misalignment
between the camera and gyroscope frames of reference.

The plot showing rotation about the x-axis, corresponding to camera eleva-
tion, demonstrates a failure case of visual tracking caused by extreme motion.
The tracking under-shoots, and takes several oscillations to re-acquire corre-
spondence with the keyframe against which it is tracking. If the motion was
non-cyclic, it would be harder for the system to recover to an orientation fixed
in the global frame without resorting to relocalisation. The system is least stable
about this axis. We suggest that this is due to the narrower vertical field of view.
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4.2 Global Consistency and Intrinsics Refinement

For evaluation of global registration, we present several cylindrically projected
360° panoramas (Figures Bl B captured with two different cameras, and with
two different lenses for each camera. They are constructed by blending every
keyframe of the map with equal weight, as described in Section B2 enabling us
to visualise the quality of their alignment.

For areas of the mosaic formed from multiple images, pixel noise is significantly
reduced, and the mosaic appears smoother. The different sampling pattern of
keyframes and sub-pixel accuracy we achieve in alignment combine to create a
super-sampling, or ‘super-resolution’ image, efficiently rendered in real-time on
the graphics card.

Figure @ demonstrates the importance of our joint estimation of camera in-
trinsic parameters, even for pre-calibrated cameras. Starting with intrinsics esti-
mated from a third party camera calibration tool, and continuing with no intrin-
sics optimisation, the first mosaic in this figure appears fuzzy. Upon inspection
we can see that the estimated loop length is longer than the actual length (in
pixels), causing the images to bunch up (the enlargement of the whiteboard
helps to convey this point). This is caused by intrinsic parameters which are
wider than the actual camera. The second mosaic in this figure is the result of
allowing our algorithm to optimise intrinsics as well as pose parameters (from
the starting point of the first mosaic).

The mosaics in Figure (] were generated from three different lenses, all at
640 x 480 resolution, and initialised with ‘Generic’ intrinsic calibration (nearest
10° FOV and central principal point). Table 2 shows the initial horizontal field
of view, which was based on our knowledge of the lens, and the converged field
of view estimate after a full loop was completed for these sequences.

Table 1. Calibration Refinement results for Different Cameras and Lenses. Calibration
initialised from Quoted Horizontal Field of View (FOV), and refined by mosaicing
cylindrical loops from 640 x 480 indoor sequences.

Camera Lens Lens Quality Initial FOV Estimate Refined FOV
Point Grey Flea2 Wide Angle Good 70° 69.42°
Point Grey Flea2 TV Lens Fair 50° 51.43°
Unibrain Standard Poor 50° 45.56°

4.3 Convergence to Global Minimum

The results from mosaicing based on poor initial intrinsics (Figure[3]) help to mo-
tivate that our system has useful convergence properties. By including intrinsics
in our optimisation, we help to enable loop closure by increasing the accuracy
of our pose estimate when we come to complete a loop. By completing a loop
too soon, or too early, we are more likely to fall into local minima — especially
if perceptual aliasing in this area is high.
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Fig. 3. 360° cylindrically-projected panoramas for three indoor sequences, taken with
different lenses. Point Grey Flea2, 70° FOV wide angle (top, close to full sphere in-
cluding full hemispherical upward coverage, 27 keyframes), 50° FOV TV Lens (middle,
single horizontal loop trajectory, 17 keyframes), and Unibrain 45° FOV Standard lens
(bottom, single horizontal loop trajectory, 19 keyframes).

Fig. 4. Mosaicing with fixed intrinsics estimated from a third party calibration tool
(top), compared against enabling live intrinsics estimation (middle). An enlargement
of the whiteboard from the two mosaics, emphasising improvement in alignment, is
shown at the bottom. The whiteboard is representative of several areas of the mosaic.
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Figure B shows an outdoor mosaic generated from rapid hand-held motion of a
Unibrain webcam with a wide angle lens. Note that in this experiment the pure
rotation assumption was approximately satisfied without a tripod due to the
large distance to the scene. This scene contains high perceptual aliasing in the
windows and building pillars, making loop closure difficult. For this sequence,
we were unable to converge to a globally consistent mosaic from our generic 80°
FOV calibration parameters. Instead, we started from the parameters estimated
from a third party calibration tool.

Fig.5. 360° Tower panorama from 21 keyframes (live hand held Unibrain webcam,
320%240 resolution), shown in horizontally and vertically-oriented cylindrical projec-
tion. Note the vertical hole due to poor texture and cloud movement in the sky.

Time to convergence is another important evaluation criterion. Each iteration
in our global minimisation is costly — forming the linear system from image
data dominates computational time. Actually solving this system is cheap since
spherical mosaics require only a relatively small number of keyframes. For this
reason, computation time scales linearly with the number of pairs of overlapping
pixels. For N keyframes, depending on keyframe alignment, this has a worst case
complexity of O(N 2). In practice, our system achieves convergence within time
in the order of seconds of completing a loop; often less than one second when a
wide angle lens means that the number of keyframes to span a loop is low.

5 Conclusions

We have presented an algorithm based on full image alignment which produces
accurate, globally consistent mosaics in real-time. Qur key contribution is to
show how state of the art image alignment can be used in a robust and accurate
real-time mosaicing system which combines the best of a visual gyroscope, with
its ability to track rapid motion, with the properties of a visual compass, able
to function without long-term drift. We also demonstrate convincing automatic
camera calibration refinement, and explain how real-time tracking and rendering
can be comfortably achieved using commodity graphics hardware.

The clear extension to our method which we plan to investigate is the capabil-
ity to track general motion viewing multi-planar scenes, such as building facades
and room interiors. We can enforce strong priors in such environments and hope
to demonstrate very fast, robust tracking and coarse model construction.
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Abstract. This paper addresses the problem of registering a 3D model, repre-
sented as a cloud of points lying over a surface, to a set of 2D deforming image
trajectories in the image plane. The proposed approach can adapt to a scenario
where the 3D model to register is not an exact description of the measured image
data. This results in finding the best 2D-3D registration, given the complexity
of having both 2D deforming data and a coarse description of the image obser-
vations. The method acts in two distinct phases. First, an affine step computes a
factorization for both the 2D image data and the 3D model using a joint subspace
decomposition. This initial solution is then upgraded by finding the best projec-
tion to the image plane complying with the metric constraints given by a scaled
orthographic camera. Both steps are computed efficiently in closed-form with the
additional feature of being robust to degenerate motions which may possibly af-
fect the 2D image data (i.e. lack of relevant rigid motion). Moreover, we present
an extension of the approach for the case of missing image data. Synthetic and
real experiments show the robustness of the method in registration tasks such as
pose estimation of a talking face using a single 3D model.

1 Introduction

The analysis of non-rigid motion has great relevance in many life science and engi-
neering tasks. This need arises from the observation that most of the natural shapes
are constantly modifying their topology. Such variations may appear smooth and tiny
as in the bending of the arm muscles or drastic and violent, as in the reactions taking
place at the molecular level. Such degrees of variation have consequently brought new
challenges in the Structure from Motion (SfM) [3112/2/1]] and image registration fields
[448/14]. The problem is made more difficult because the assumption of rigidity is now
broken and the classical metric constraints used in rigid SfM [11] are weakened if not
irremediably lost. Here specifically, we study the problem of registering a 3D model
to a set of 2D trajectories extracted from an image sequence. Our challenge is repre-
sented by the fact that the 3D model to register may not be an exact description of the
2D motion shown in the image sequence as exemplified in Figure [[lin a face analysis
domain. The aim is to provide a new set of tools which adapt to the new information
provided by the image sequence. This problem occurs more often thanks to the rapid

* This work was partially supported by FCT, under ISR/IST plurianual funding (POSC program,
FEDER) and grant MODI-PTDC/EEA-ACR/72201/2006. Thanks to J. Peyras and J. Xiao for
providing the image sequences and tracks.
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(a) Rigid sequence (b) Non-rigid 2D image sequence

Fig. 1. The figure shows an example of our problem. In the top row of figure (a), a 3D shape
can be recovered from a rigid image sequence with standard SfM algorithms. The model in the
bottom row has now to be registered to a new non-rigid image sequence (b) with 2D trajectories
extracted from a subject with different somatic traits. We seek the best registration given both 2D
and 3D data which satisfy the metric constraints of the shapes. White dots represent the 2D image
data and the red circles o our algorithm result.

advancements of the modern sensor technologies. Nowadays, it is a more likely occur-
rence to have available measurements coming from different devices. However, tempo-
rally evolving data is mainly restricted to 2D observation (e.g. video from cameras, MRI
and ultrasound images) while full 3D information is captured at sparser time instances
(e.g. scans given by CT and range sensors). For this reason, a robust 2D-3D registration
of data coming from different sources is more often required. Moreover such registra-
tion has to adapt to the given observed image motion, since it is likely that the given 3D
surface may not be an exact representation of the evolving shape.

This paper proposes a novel registration procedure that adapts the given 3D shape to
the 2D data. In order to solve the problem, a general two-step formulation is introduced.
First, a compact low-rank description is extracted from both the 2D measurements and
the 3D rigid shape. This first decomposition is up to a generic affine transformation.
Then, this solution is corrected by finding the best transformation that complies with
the metric constraints given the image motion and the shape to register. To the authors
knowledge, the closest work to the proposed algorithm is the one by Xiao et al.
where the scope of the authors was not only restricted to registration but also to the
inference of a full deformable model. Their closed form solution however makes use
of the assumption that there exists a set of independent basis shapes and results may
vary if this choice is not accurate as noted in [2/12]]. Full 3D reconstruction is out of
the scope of this paper since our main aim is to find the most appropriate rigid motion
describing the non-rigid image trajectories without any assumptions about the model
underlying the deformations.

1.1 Contributions and Paper Organization

We first introduce the mathematical framework and a standard solution for the 2D—
3D registration problem with rigid models. Such an algorithm however cannot cope
properly when the registration is done with inaccurate 3D observations such as the
one shown in Figure[Tb). The proposed method instead performs an affine registration
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procedure which is derived from the work of Del Bue [5]. The first contribution is a
new set of metric constraints which jointly force the projection constraints for the 2D
data and 3D data. This problem is then formulated by finding a corrective transform
which enforces the given constraints. This optimization can be solved either in closed
form with Least Squares (LS) or by defining the problem with a cost function which is
minimised using convex optimization. In this way, we consequently not only perform a
registration but also the reconstruction of a new rigid shape or deformable model which
adapts automatically to the image measurement and 3D shape geometric constraints.
This solution is particularly robust to degenerate 2D motion given this new set of metric
constraints. The second contribution is an iterative extension of the proposed approach
which deals with the likely event of missing data in the 2D image trajectory.

The paper is structured as follows. Section[2]introduces the problem and a first initial
solution. Section Bl presents the new approach when the 3D shape needs adaptation to
deal with the variations in the 2D data. In the case of missing data, Section[]provides an
iterative solution to the problem. Section[5] shows synthetic and real data while Section
points out the possible improvements and direction for future work.

2 Rigid and Non-rigid 2D-3D Registration

2.1 Rigid Registration with an Exact 3D Model

Consider first the problem of registering a single rigid shape to a set of 2D image tra-
jectories. The 2D image measurements are stored in a single matrix W of size 2F' x P
with the following structure:

w=l oo =] (1)

where F' and P are the total number of frames and the number of points respectively.
The 2-vector w;; = (u;; vi; )T stores the image coordinates at each frame ¢ and point j.
Given a known rigid shape B of size 3 x P our aim is then to compute the best projection
that aligns the 3D shape to the 2D data. In this work there are two main assumptions.
The assignments between the image trajectories in W and the 3D points in B are given
and that, initially, W does not contain missing data. However, this last assumption will
be relaxed later in this paper.

The image projection model considered here is a scaled orthographic model denoted
as a 2 X 3 matrix M; such that M; = ¢;R; with the orthogonality constraints given by
R;R] = I,. The 2D-3D registration problem can be then re-stated as the optimization
of the following cost function:

min || — MBJ||® )
R;RT =I5

where M is the matrix obtained by stacking all the sub-blocks M; for each frame as:

M;

Mg
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A solution to this problem satisfying the exact orthographic constraints can be obtained
in two steps. First, by finding an affine Maximum Likelihood (ML) solution using the
pseudoinverse of B giving M = WB” (BB”)~! and then forcing the orthogonality con-
straints in M. This final step is not performed globally for the collection of the 2 x 3
sub-blocks M; as done in the Tomasi-Kanade factorization [T1]]. Instead, the affine block
is projected into the closest scaled orthographic camera matrix ¢;R; as presented by
Marques and Costeira [7]] in a 3D reconstruction context. Such projection is given by:

R; =UVT and ¢ = (01 4 02)\2 (4)

where M; = UDV7 is the SVD of the affine motion matrix and g for d = 1,2 are
the singular values stored in D. Such projection is preferred to the global LS solution
which may not exactly comply with the scaled orthographic camera matrix constraints.
Differently, eq. (@) always gives a matrix R; that complies with the given constraints as
pointed out in [[7, Appendix B].

Note that the solution obtained in step 2 of Algorithm[T]is optimal with the assump-
tion of isotropic and zero-mean Gaussian noise affecting the measurements in W. Such
assumption is generally valid when accurate 2D measurements are obtained from the
image tracks of a rigid object. However, when trajectories are extracted from shapes
with consistent directional deformations, such assumption is violated as it was noticed
by Xiao et al. [[14] in a medical context.

Algorithm 1. Rigid registration with image projections
Require: The 2D image data W and the 3D shape B .
Ensure: A metric 2D-3D registration of the shape to the image measurements.
1: Compute the image centroid of t = 113w1 p and register the data as W = W — t1%
2: Estimate the affine motion M as M = wB” (BB” ) ..
3: Project each 2 x 3 sub-block M; to the closest scaled orthographic matrix using eq. @.

2.2 Registration Bias with Inexact Models

Deformation directionality is less noticeable when non-rigid motion is nearly isotropic
to the shape centroid or with strong symmetries. Figure [2] shows a case when a 2D
image of a cylinder is bending and the actual registration given Algorithm [I] with a
rigid 3D shape from the ground truth at rest. As expected, a consistent bias in the 2D—
3D registration appears when the shape is bending towards the direction of maximal
variation. In such cases, a rigid registration of a single B is unfit since it cannot deal
with the deformations. When the data is non-rigid we have at each frame that:

W; = ¢;R;X; with X; € §R3XP ®))

where X; represents the metric time-varying shape. For the whole set of 3D shapes, the
most popular representation used is to parameterize X; as a set of linear basis shapes [3]]
giving X; = >, 1;aSq. These linear bases are usually sufficient to represent a generic set
of deformations however they may require a high number of basis shapes when dealing
with non-linear deformations as to the bending cylinder in Figure 21
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Frame 1 Frame 120

Fig. 2. Black dots e represent the 2D measurements, red circles o a half-cylinder 3D shape regis-
tered by Algorithm[Iland blue crosses x the results by the proposed Algorithm[2] The image data
show the cylinder starting from a rest position in Frame 1 where the registration is perfect. The
cylinder is bending at the last 3 semi-circles and the registration at the maximum deformation is
strongly biased toward the deformation direction.

3 Adaptive Registration Using Joint Subspaces

Algorithm[Il may perform well when B represents a single instance of the deformations
appearing in the image sequence. However such a case is unlikely in many registration
scenarios and a method which encompasses some degree of adaptation may strongly
reduce the registration error. In the following, the given surface B is not a current obser-
vation of the 2D image trajectories (i.e. X; # B fori = 1... F'). This will consequently
affects the estimated motion parameters in Algorithm [Il giving an additional bias from
the unfitness of B. In order to reduce this effect we propose a different approach which
first finds an affine joint subspace belonging to the set {W,B} and then computes the
best solution to registration given the joint metric constraints.

3.1 Affine Joint Subspace Computation

The main idea here is to join the information contained in B with the available mea-
surements in W in order to extract an affine fit which is dependent on both components.
In order to do so, we follow the strategy used in [5] for a 3D reconstruction scenario.
A Generalised Singular Value Decomposition (GSVD) is used to compute a joint row
space between the image data and the model to register. In such a way, we decompose
both matrices with GSVD as:

W="UDy XT

B=VDy xT ©)

where X7 is a P x P matrix which spans the common row space of {W,B}, U is a
2F x 2F matrix with orthonormal columns (U7U = I) and V is a 3 x 3 matrix such that
VTV = I. The diagonal value matrices Dy and Dy of size 2F x P and 3 x P respectively
are given by:

Dy = [Zg (I)] andDy = [Zy 0]. (7
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The diagonal matrices &y = diag(o1,...,03) and &y = diag(p1, ..., ps) of size
3 x 3 are constrained such that £, + £2, = I and the diagonal entries ordered as:

0<o1<...<0o3<land1 > puy > ... > pug > 0.

In order to guarantee a well-conditioned decomposition a single scaling of the data is
performed imposing that ||W||?=||B||? [6]. Given the initial factorisation with GSVD, it
is possible after some matrix operations [9]] to arrange the different factors as:

. ~ B
W =M pxeSexp = [My] ] {B}]] )

B =N3x3Bs

where the .J subscript refers to the components obtained from the joint space of B and
W while the I refers to the remaining ones. The dimensionality of the joint row space
B depends directly on the dimension of the model to register. Thus, in the case of rigid
registration, the matrix B has size 3 x P and the » = (¢ — 3) dimension of B; depends
on the rank of the independent components. Such value can be estimated by inspecting
the singular values of the remaining 2D data and choosing a r which contains most of
the energy. Notice that this parameter is not important for the proposed approach since
it relies only on the joint components My and B ;.

3.2 Joint Metric Upgrade

The next step is to find a corrective transform for both the affine subspaces M; and N
which complies with the metric constraints of the 3D shape to register and the 2D image
trajectories. This results in computing a 3 x 3 transformation matrix Q which enforces
the metric constraints such that M;Q = M and NQ = Z where Z is a rotation matrix with
zz" = 13. The following problem is non-linear given the joint set of orthogonality con-
straints. However, a closed form solution can be computed if we consider the quadratic
form H = QQ” and forming the orthogonality constraints as:

mz;mem - mfiHmm =0
mfiHmm- =0
NHNT = I,

where m,,; and m,,; refer to the motion components of the horizontal and vertical image
coordinates respectively such that:

M1
m7,
My, = {m%] where My = . ©)]

v

Msr

As follows H is a symmetric matrix which can be computed with LS for the six unique
parameters by rearranging eq. (). Then, if H is positive semidefinite, the matrix Q is
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given by H 29, Q = Uy/A with Uand A being the eigenvectors and eigenvalues respec-
tively. On the contrary, if the matrix is not positive semidefinite, we estimate the closest
Q by defining:

M1Q ((u@)™)

F= and G = (10)

MpQ (MpQ)T)T
where Q is a SVD approximation of Q using the estimated H (i.e Q = UD if H = UDVT").
Then the closest Q given the metric constraints is computed as Q = Q\/ F\G where \
denotes the left matrix division.

Alternatively to this solution, we obtained more accurate results by solving the prob-
lem using Semi-Definite Programming (SDP). In this case we can compute explicitly H
such that H > 0. First we define the cost function by separating the joint motion matrix
M; in its horizontal and vertical image components such that:

51 m/;
My, = and My, = (11)

T T
muf m'uf

m

The problem is then re-formulated as the minimization of the following cost function:

ming { ||diag(M,HMD) || + ||diag(M, HME — 1, HMT) | (12)

+ ||NENT — IgH}
such that
H>0
m{legl =d

where the last constraint m’; Hm?, = d imposes an arbitrary value over the first frame
to avoid the zero solution. This problem can be solved efficiently with current SDP
toolboxes such as SeDuMi [10] since optimization is run over a small 3 x 3 matrix
independently from the size of W and B.

3.3 Registration Algorithm and Discussions

The full approach is finally summarized in Algorithm 2l The idea at the basis of this
procedure is to obtain the best possible registration even if the 3D shape to register
is not an exact description of the image data. In this sense, given the first initial 3D
shape B, we search for a common representation of the set {W,B} using GSVD. This
representation is then used to find the best metric solution given a joint set of metric
constraints. This not only solves for the registration, but also compute a new metric
shape B given the contribution of both data.

Enforcing the metric constraints for both the 2D measurements and the 3D shape
give robustness to degenerate motion in W. This happens often in non-rigid motion anal-
ysis whenever a non-rigid shape is not performing enough rigid motion compared to the
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Algorithm 2. Rigid registration using a joint subspace
Require: The 2D image data W and the 3D shape B .
Ensure: A metric 2D-3D registration of the shape to the non-rigid image measurements.
1: Compute the image centroid of t = 113w1 p and register the data as W = W — t1%
2: Estimate the joint affine motions M and N together with the joint shape B s as in Section 3.1}
3: Given the affine solution, compute the best metric motion and shape as shown in Section[3.2]
such that:

Wp=MQQ 'S, =MB (13)
B=NQQ!'S;=Z8 (14)

4: Project each 2 x 3 sub-block N; to the closest scaled orthographic matrix using eq. ().

variations given by the deformations. In such cases, obtaining a reliable estimation of
the depth of the shape is rather complex since, without rotation, it is very ambiguous to
compute reliable estimates.

4 Registration with Missing Data

If the 2D image trajectories are interrupted due to occlusions or tracking failures, we
have to additionally solve for the missing entries in W. In such a task, the cost function
to optimise is the following:

min  ||D® (W — MB)]|? (15)

RRI =I5

where D is a 2f x p mask matrix with either 1 if the 2D point is present or 0 if it
is missing. Given the missing entries, it is not possible to solve for the cost function
in closed form. Thus we revert to an iterative approach. Provided an initialisation of
the missing entries, the approach first computes an affine solution with GSVD for M
given S. After a projection to the correct orthographic camera matrices, missing entries
in W are filled given the 3D shape estimated with the joint subspaces provided by the
GSVD. The algorithm stops when the updated values have minimal variations from one
iteration to the other. Regarding the initialisation, best results were achieved by filling
the missing entries at each trajectory with the mean value computed from the known
trajectory points in W. Note that in this case we have also to estimate the shape 2D
centroid t at each iteration of the algorithm since it depends on the estimated missing
data. The algorithm is resumed in the table for Algorithm[3l

5 Experiments

5.1 Synthetic Data

The algorithm performance are evaluated with the following synthetic experimental
setup. The 2D data is created from a randomly generated cloud of 20 points Syeqn
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Algorithm 3. Rigid registration with missing data
Require: An initialisation for the 2D image data W and the 3D shape B .
Ensure: A metric 2D-3D registration of the shape to the non-rigid image measurements.

1: Compute the image centroid from the current estimate of Was t = 113W1 P.

2: Given W = W — t17 and B, estimate the joint affine motions M and N together with the joint
shape B as in Section[3.1]
Given the affine solution, compute the best metric motion and shape with Algorithm 2.
Project each 2 x 3 sub-block M; to the closest scaled orthographic matrix using eq. ).
Given the metric solution M and B, input the missing entries as W = M B.
Iterate until the update on the 2D missing data points is less then a given threshold.

AR

sampled inside a sphere of radius one. Deformations were constructed with a set of K
random linear basis S; . .. Sk. Each time-varying shape X; was computed by the linear
combination of random linear weights giving X; = Spean + Zle l;4S4. In order to
control the deformation intensity, the Deformation Power ratio (D Pr) is defined as:
DPr = ||fSmeanl| \ || Z{Zl Zle 1;aS4||- Finally, 50 random orthographic camera
matrices R; and translation t; are used to form the 2D measurements onto the image
plane. The generation of the shape to register is made by selecting an initial random
X; = B. Then, in order to simulate distortion in B, random affine transformation A
are applied to B such that: B = AB. In more detail, this distortion was computed as
A = I3+ N where X was a 3 x 3 matrix of Gaussian noise with variance oy. To
conclude, zero-mean Gaussian noise with variance of oy image pixel was added to the
measurements stored in Wyggx20. The 2D data was finally scaled in order to fit into a
320 x 240 image frame. In the following tests the root mean squared (rms) error was
always used to compute the 2D registration error in pixels per point and the rotation
misalignment in degrees given the known ground truth.
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Fig. 3. Results for a synthetic sequence with DPr = 0.15. Top two figures show the result for
the rotation error in degrees. The two figures at the bottom present the rms 2D error in image
pixel per point.

Figure 3 shows a test result obtained by fixing DPr = 0.15 and after running 200
trials for each configuration of noise and affine distortion A (i.e. 25 configurations in
total). The results show that both algorithms are relatively robust to the added image
Gaussian noise however a difference is noticeable when evaluating the 2D and rotation
error at increasing distortions rates for the 3D shape B. An important fact to keep in mind
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Fig. 4. Results for a synthetic sequence with DPr = 0.45. Top two figures show the result for
the rotation error in degrees. The two figures at the bottom present the rms 2D error in image
pixel per point.

when evaluating the 2D errors is that we are evaluating a registration of a rigid shape to
a non-rigid sequence. Thus there is always a constant residual when plotting the error
(bottom plots in Figure[3). In contrast, here we put more emphasis on the worsening of
the error with the increase of the affine distortion A. In such case, Algorithm[2lis rather
robust for both 2D and rotation error due to the distortions R until the last level of noise
where the algorithm starts to perform worse. Algorithm [l reports a very high 2D error
up to 18 pixels rms for the stronger distortion (out of the plot scale). This is expected as
the shape is fixed. More interesting is the plot showing the rotational error, indicating
slightly better results for tiny distortions in respect to Algorithm 2] but then diverging
again up to 5 degrees for higher distortions. Figure [ shows analogous behaviors for
both algorithms but in the case of stronger deformations in the image measurements
(DPr = 0.45). Algorithm [2] shows decreased the performance as expected but still
maintains reasonable values. Differently, Algorithm [Tl reaches a misalignment up to 9
degrees.

iy
AT gy S ‘

Fig. 5. Real sequence 2D-3D registration with a 3D shape as in Figure [[(b). In the top row,
white dots show the 2D tracks extracted from the sequence. Red circles o shows the registration
with Algorithm[Il Yellow circles -~ show the registration with Algorithm 2] which achieves better
reprojection error especially in the eyeborow, mouth and temple areas. Bottom row shows frontal,
top and side view of the joint 3D shape B obtained from the registration algorithm.
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5.2 Real Data

The scenario here considered is the registration of a 3D face model to a set of 2D
image trajectories obtained from an AAM tracker [13]. Notice that the 3D model that
represents our B of size 3 x 48 was computed from a subject with different somatic traits
as it was shown in Figure[I(a). The model building of B was performed using 2D points
obtained from nearly rigid motion of the subject followed by a rigid 3D reconstruction
using factorization [L1]]. The target 2D sequence came from a different video footage
as presented in Figure 8l Results for both registration algorithms are shown in Figure[3]
with the reprojected image tracks. Algorithm 2| shows its properties of adaptation by
registering and computing a joint shape closer to the new subject traits. This can be
noticed especially in the different eyebrow shape compared with the registration of the
original B obtained by Algorithm[Il Finally for this test, bottom row of Figure Bl shows
three views of the reconstructed joint 3D shape B which qualitatively describe well the
3D shape of the subject.

A further test presents the performance of the algorithms in the case of a degenerate
talking face sequence. This test is especially aimed to show the relevance of the joint
metric constraints in this type of image sequences. We used the same rigid shape as
the previous example and plotted the registration over the image sequence in Figure [6l
Again the subjects presented different physical traits from the reference 3D model B.
Figure [Bla) shows a side and top view of the joint shape B computed with the joint
metric constraints as in Section[3.2] Figure[6(b) instead presents the same computation
omitting the cost term HNHNT — I3 H in eq. (I2). The resulting 3D shape is geometrically
distorted and it is not representing the correct metric characteristics.

o

A ;
Image sequence with registration (a) Joint metric (b) 2D metric

Fig. 6. The figure shows the registration results for Algorithm 1 (red circles o) and Algorithm 2
(yellow circles ). The top three figures show the image sequence of a subject talking and per-
forming minimal rigid motion. Registration is made with the 3D shape as shown in Figure[Tlb).
Bottom line shows first (a) two views of the shape B extracted using the joint metric constraints
and figure (b) the distorted shape obtained from the metric constraints of the 2D data alone.

A final experiment shows the algorithm behavior on the IMM database [9] which
contains a set of 240 manually annotated face images. The dataset is divided in 6 dif-
ferent poses for 40 subjects. Among those six poses, 2 of them are showing non-rigid
motion. Each face is manually annotated with 58 points as shown in Figure[7l A global
mean 3D shape is reconstructed from all the subjects by running a rigid Tomasi and
Kanade [11]] factorization on the first, third and fourth pose of each subject. These
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frames were showing predominant rigid motion thus they were appropriate for the task.
Figure[7] shows as well three views of the 3D rigid reconstruction.

This mean shape was then registered to every image in the database using
Algorithm 1 and Algorithm 2 as presented in the paper. Note that in this case we have 40
sequences for each subject composed by six frames. Figure 8 shows the results on 2 sub-
jects. White dots show the 2D tracks manually extracted from each short sequence. Red
circles o shows the registration with Algorithm 1. Yellow circles ~ show the registration
with Algorithm 2. Again the proposed algorithm shows its adaptation capabilities when
dealing with a large set of people with different somatic traits.

Wit : -

Fig. 7. a) A subject from the database. The white dots represent the manually annotated 2D points.
b) Front, top and side views of the mean 3D shape reconstructed from the database.

Fig. 8. Four selected frames from subject §22 and £35 in the IMM database

5.3 Evaluation with Missing Data

The performance of Algorithm 3] was initially tested with synthetic data as showed in
the previous setup. Given the same amount of points and image frames, The affine
distortion was fixed to oy = .20 and DPr = 0.25. The evaluation included 25 tests
for each configuration of missing data and noise level (225 tests in total) Experiments
were made with increasing percentages of missing data and showed a robustness of the
approach until 40% ratio as shown in Figure[0l The maximum number of iterations was
fixed to 50 and a stop criteria was fixed at 10~% on the update of the reprojection error
of the missing 2D points. Note here that, even if the reprojection error is minimised
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Fig.9. Results for a synthetic sequence with DPr = 0.25 using Algorithm [3] and randomly
generated noise and missing data

Image sequence with registration Joint 3D shape

Fig. 10. The figures on the top show the image sequence together with the registration given by
Algorithm B with 30% of missing data. White dots show the available 2D data while the yellow
circles - represent the estimated registration. The three images on the bottom present front, top
and side view of the joint 3D shape.

for the case of 50% missing data, the error in degrees is around 10 units thus we can
consider the registration compromised. For higher levels of missing data, the algorithm
fails to obtain a reliable registration and thus results are not presented in the plots.

The real test shown in Figure [[0l presents the results on the sequence in Figure
where occlusions were randomly created up to a 30% ratio. The algorithm converged
after 74 iterations with a threshold on the 2D points update of 10~°. The registration
quality is barely degraded still showing a reasonable estimate of face side and frontal
profiles. We realised that most of the misalignement were present when the shape was
turning on the side. It is possible to notice that now there is less symmetry in the recon-
structed 3D shape with a wider gap in the side view corresponding to points lying on
the upper jaw. Still most of the depth of the shape was estimated reliably.

6 Conclusions

This paper presented a new approach to the 2D-3D registration problem in the case
of non-rigid 2D image trajectories and a shape represented as a set of 3D points. The
method is designed for the case when the shape is not an exact description of the 2D
trajectories and it can deal with degeneracies in the 2D motion. This solution is targeted
for the face analysis and medical registration scenario where often single 3D observa-
tions have to be fit to a set of 2D trajectories. The formulation, given the joint subspace
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may also give some intuition on how to solve the greatest crux of these methods; the
matching problem between the 3D shape and the 2D image points. This will represent
the starting point for future investigations together with the application of the proposed
joint metric constraints to the tracking and non-rigid 3D reconstruction domains.
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Abstract. Occlusions provide critical cues about the 3D structure of
man-made and natural scenes. We present a mathematical framework
and algorithm to detect and localize occlusions in image sequences of
scenes that include deforming objects. Our occlusion detector works un-
der far weaker assumptions than other detectors. We prove that occlu-
sions in deforming scenes occur when certain well-defined local topologi-
cal invariants are not preserved. Our framework employs these invariants
to detect occlusions with a zero false positive rate under assumptions of
bounded deformations and color variation. The novelty and strength of
this methodology is that it does not rely on spatio-temporal derivatives
or matching, which can be problematic in scenes including deforming
objects, but is instead based on a mathematical representation of the
underlying cause of occlusions in a deforming 3D scene. We demonstrate
the effectiveness of the occlusion detector using image sequences of nat-
ural scenes, including deforming cloth and hand motions.

1 Introduction

Inherent in the exhaustive work done on edge detection is the belief that discon-
tinuities in image intensity provide valuable clues about scene structure. Edges
resulting from occlusions are of special interest since they correspond to loca-
tions in an image where one surface is closer to the camera than another, which
can provide critical cues about the 3D structure of a scene. Occlusion detec-
tion is used in numerous applications including shape extraction, figure-ground
separation, and motion segmentation, e.g. [1-6]. The purpose of this paper is to
present a completely local, bottom-up approach to detect and localize occlusions
in order to provide this powerful low-level information to higher-level reasoning
methods. Our approach is applicable to image sequences including deforming
objects, which can present difficulties to classical methods.
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Fig. 1. The figure illustrates the inability of motion flow inconsistency to correctly
identify occlusions in scenes with deforming objects. Consider two images (right col-
umn) obtained at times ¢t and ¢ + 1 after a paper in 3D is folded along a crease (left).
Observe that this transformation is in fact not rigid and that there is no occlusion
in either image. Assuming perfect motion estimation from the images on the right
we would find that the gray colored checkerboard portion is moving to the left and
the white colored checkerboard portion is moving to the right, which would seem to
indicate the presence of a non-existent occlusion.

Traditional occlusion detectors rely almost entirely on spatiotemporal deriva-
tives or matching to detect the artifacts of occlusions. These artifacts fall into
two categories: motion flow inconsistency across an edge and the T-junction.
Unfortunately, both methods are effective only under restrictive assumptions
about the scene. The motion flow inconsistency approach implicitly assumes
that only rigid transformations take place, such as a foreground and background
layer moving in distinct directions. Due to this implicit assumption, motion in-
consistencies do not necessarily imply an occlusion, as illustrated in Figure [II
Numerous methods are available to find T-junctions, but they all make assump-
tions about the orientations of the occluding contour. Moreover, even after a
T-junction has been detected, an occlusion may not be present. Our method to
detect occlusions works under far weaker assumptions than other methods. In
particular, we only assume a weak bound on the magnitude of deformation on
objects viewed by a camera and a bound on the color variations between frames.

In contrast to prior methods, we model the cause of occlusion, under a local
deformation model, and show that the proper measurement of certain topological
invariants serves as a definitive indicator to the presence of an occlusion. Prior
approaches do not give any analytical guarantee on the validity of their detec-
tions, only experimental results. Our approach, in contrast to existing methods,
is proven to yield a zero false positive rate as long as the required motion and
color variation bounds are satisfied. The strength of our framework is that it is
able to operate at different scales providing information that may otherwise be
unavailable while not relying on noisy derivatives, not making strict assumptions
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Fig. 2. The results of the occlusion detector presented in this paper applied to a se-
quence of images that depict a piece of cloth being folded. Observe the existence of
a self-occlusion. Frames of a sequence are shown (first three columns) and the corre-
sponding occlusion detections centered at time ¢1 (right).

about the orientation of occluding contours, not building complex appearance
models, and not performing any matching. In Figure Bl we apply our method
to an image sequence of a cloth deforming in 3D, creating a self occlusion. Our
method successfully detects the occlusion while producing no false positives.
Note that these local detections can be fed into a global process such as graph
cut in order to segment objects as is done in @]

The contributions of this work are three-fold. First, in Section Bl we prove that
under a deformation model occlusions occur when there does not exist homeo-
morphisms between pairs of images in an image sequences. Second, in Section [,
we define local topological invariants to detect an occlusion within an image.
Finally, in Section [, we demonstrate the applicability of our occlusion detector
including some preliminary results on foreground/background segmentation.

2 Related Work

As described earlier, traditional approaches to occlusion detection can be di-
vided into two categories: those that attempt to detect motion inconsistencies
and those that detect T-junctions. Detecting motion inconsistencies is inspired
by the classic work of Horn and Schunck ﬂ] and the observation that the mo-
tion between the two sides of an occluding edge are generally dissimilar. This
argument implicitly assumes that the objects being imaged undergo rigid trans-
formations. This argument is inapplicable if the projection is instead allowed
to transform in a more general fashion, as illustrated in Figure [l and can re-
sult in false positives. The algorithms in this domain can be classified by the
varying level of assumptions used in order to make the motion estimate robust.
The presence of T-junctions in a contour has been shown to be a strong local
cue for occlusion E] Unfortunately, not all T-junctions are occlusions, which
can introduce false positives. Most algorithms in the T-junction domain can be
classified according to the methodology they employ to detect and classify them.

At one extreme of motion estimation is the class of layered motion segmen-
tation algorithms which employ a parametric model that is restricted to near-
planar, rigidly-moving regions for each layer to segment regions based on the
consistency of motion Eﬂ] Incorporating a variety of techniques to estimate
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these models, these algorithms assume a fixed number of layers in the scene,
which does not scale well as the number of layers increases. Instead of relying
on this requirement, we argue that the low-level reasoning done by an occlu-
sion detector with a deformation model provides appropriate cues to high-level
reasoning algorithms like those performing layered motion segmentation.

At the other extreme of motion estimators are those that make the motion
estimate robust by smoothing the velocity field spatially or temporally |13, [14].
Regrettably, this has the unintended consequence of making the motion estimate
inaccurate at boundaries where occlusions occur. An alternative to this smooth-
ing approach is the use of an implicit model, either learned from local motion
cues estimated from training data or based on some fixed model of the distribu-
tion of motion cues in the vicinity of occluding boundaries [15-18]. Though these
approaches are appealing because they rely on well-defined statistical models,
they remain sensitive to deviations of the actual data from the trained model.

T-junction detection has a rich history. Until recently, there have been two
predominant approaches to T-junction detection: gradient or filter-based ap-
proaches [19-22] and model-based template matching |23]. These approaches
work singularly to detect the T-junctions rather than distinguish an occlud-
ing T-junction from a non-occluding T-junction. More recently, others define
what they call a proper T-junction as a T-junction at which an occlusion takes
place [|3]. They detect these proper T-junctions by exploiting a rank constraint on
a data matrix of feature tracks that would normally be classified as outliers in a
multiple-view geometry problem. Although mathematically correct, the method
can be overly sensitive to even slight deviations from the given rank condition.
Inspired by this work, other alternatives have exploited a discriminative frame-
work to classify these proper T-junctions [Il, [2]. Unfortunately, these methods
utilize 2D spatiotemporal slices instead of volumes which mean that detections
can only be made in fixed orientations.

In contrast to prior work, we prove that, under a deformation model, oc-
clusions occur when pairs of images are not equivalent via deformation. We
construct local topological invariants which exploit this result to localize oc-
clusions in an image. Our method applies under weaker assumptions than the
aforementioned detectors.

3 Modeling Scenes and Images

In this section, we describe our scene model. We let objects in R? correspond
to sets in the space. Each point on the surface of an object at a given time
is assigned a color. We initially assume that the color at a given point on the
surface of an object does not change over time, but we allow the object to de-
form via a homeomorphism. For simplicity, this model ignores lighting, shadows,
and specularities while extensions to account for such effects are discussed in
Section

The motion of an object is determined via a continuous family of homeomor-
phisms: F(z,t) : R® x R — R3 where F(-,t) is a homeomorphism from R? to
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R3 for each t. The camera is located at the origin of our coordinate system. The
image domain, (2, is defined to be a sphere of radius 1 centered at the origin,
S2. We employ an omni-directional camera model in order to avoid occlusions
at the boundaries of the field of view. We consider the effect of boundaries and
the case of directional cameras in the next section. Throughout our analysis, we
assume for convenience that the camera is static and the world is moving. Fortu-
nately, our analysis applies to situations where the camera and the environment
are moving and changing simultaneously. We also assume objects in the scene
remain outside the unit sphere at all times.

A color image, 7 : 2 — R, and depth image, D : 2 — R?, are defined
for every point s € (2 via a ray drawn from the origin passing through s. We
consider 1D color images (i.e. grayscale) for simplicity. The depth value assigned
to s is obtained by finding the point in R® at which the ray beginning at the
origin through s first intersects. The color value at s is defined similarly. The
set of occluding contours in an image is the set of points at which the depth
image is discontinuous. The following result connects the homeomorphisms in
R? to homeomorphisms in 2.

Proposition 1. If there are no occluding contours for an ordered set of depth
images indexed by t in [0,1], then Di(s) provides a homeomorphism between (2
and Dy(2) C R® which implies that f(s,t) := Dy *(F(Dy(s),t)) is a continuous
family of image homeomorphisms for which T, (f(s,t1)) = i, (f(s, t2)) for all
t1 and ty € [0,1}.

We refer to the existence of a family of continuous image homeomorphisms for
which Zy1 (f(s,t1)) = Zia(f (s, t2)) as the Image Homeomorphism Criterion.
If this criterion is violated, then using the previous theorem we conclude that an
occluding contour exists. Though this argument guarantees the existence of an
occlusion, it does not help us localize the occluding contour either temporally or
spatially. The reader may wonder if the converse of Proposition [Ilis valid. The
following observation provides an important partial converse to the proposition:

Proposition 2. If the Image Homeomorphism Criterion is satisfied by a set of
color images, then there exists a realization of an object in R3 that generates the
same color images with no occluding contours.

One such realization corresponds to forming a sphere of radius 2 centered at the
origin and coloring the sphere according to the color image. The motion homeo-
morphism F(x,t) for R? is then just the extension of the color image homeomor-
phism f(s,t). This result verifies that the Image Homeomorphism Criterion is in
fact the best achievable result to guarantee the existence of occlusions without
making additional assumptions.

4 Localizing Occlusions

In this section, we introduce an approach to locally detect occlusions in image
sequences over discrete time by extending the ideas in Section [Bl This is done
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by introducing an additional constraint on the size of deformations in R3. Then,
we generalize the concepts for image sequences in which color information also
varies. Finally, we focus on the case in which the image homeomorphisms can
be decomposed into a translational and deformation component.

4.1 Local Detections without Color Variation
To begin, we introduce a constraint on the size of deformations in R3:

Definition 1. A family of homeomorphisms F(z,t) : R? x R — R? is said to be
Lipschitz if for all z € R3, t; and ty € R

|F (2, t1) — F(x, t2)]] < Kty — 2

for some constant K that is independent of x, t1 and to. The smallest such K
1s called the Lipschitz constant.

From now on, we require that the continuous family of homeomorphisms, F|,
that R3 transforms under be Lipschitz, and the Lipschitz constant, K, gives an
upper bound on the size of these deformations. In practice, this requirement
demands bounding the speed of objects in R® based on the rate at which the
camera captures images. If no occluding contours are present, then the induced
image homeomorphism is also Lipschitz with the same constant, K, since all
objects are required to remain outside of S2.

In order to verify if the Image Homeomorphism Criterion has been violated,
we study changes to topological invariants of the set Z~1([a, b]), where [a, b] C R.
In particular, we focus on the number of connected components. To illustrate the
problem with naively comparing the number of connected components to detect
local occlusions, consider the sets in Figure Bla) and corresponding neighbor-
hoods drawn in the rest of the figure. The first neighborhood, F,, is a square
with a side of length 2r drawn in Figure Bl(b). The second neighborhood E, ;i
has a side of length 2(r + K) drawn in Figure [8(c). E, has 6 connected com-
ponents while F, | x has 5 connected components suggesting that some set has

(@ (b) {© (d)

Fig. 3. Illustration of how to count connected components for neighborhoods F, and
E.1 k. (a) The original image before any window is applied. Counts of connected com-
ponents: (b) 6 in E,; (¢) 5 in Er1k; and (d) 5 in F, after identification using Er4oxk.
Without identification we would erroneously conclude that the Image Homeomorphism
Criterion is violated and that there is an occlusion.
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disappeared and that the Image Homeomorphism Criterion has been violated.
However, there are no occlusions in this instance. The problem arises because
we count the same set twice in the smaller neighborhood. We remedy this prob-
lem by identifying sets in E,. that correspond to the same connected component
in E,;9x. This solution inspires the construction of a sort of local topological
invariant.

Definition 2. Given a color image I over the image domain {2, two collection
of intervals, B = {[ax, bi]}n"?, and B' = {[a},b},]}~",, the histogram of con-
nected components in a neighborhood F C 2 given the bins B is defined
as the vector ap(Z|B) = (ay)n?,, where

ok = cc (T ([a, b)) N E),

and cc(A) is the number of connected components in the set A. Under the as-
sumption that E C E' and [ay,by] C [a},b},] for all k, the histogram of
connected components in E identified with the neighborhood E’ given
the bins B and B, denoted ag g/ (Z|B,B'), is computed in the same way ex-
cept the connected components in T~ (lak,br]) N E are identified (i.e. treated
as the same connected component) if they correspond to the same component in
I Yal, b)) N E".

Definition 3. The color support in a neighborhood FE given the bins 5
is the vector og(Z|B) = (o%)n?,, where oy is 0 if T ([ax,br]) N E = 0 and 1
otherwise.

Employing this new method to calculate connected components, guarantees that
under Lipschitz image homeomorphisms, the histogram of connected components
in a neighborhood FE, identified with the neighborhood E,. ;o is always less than
the histogram of connected components in a neighborhood FE, k. If we apply
this procedure to the example in Figure[3 and compare the number of connected
components, we find that the Image Homeomorphism Criterion is not violated
(the number of connected components in F, after identification is 5 which is the
number of components in E, i ). The following result proves that this argument
can be used to identify local violations of the Image Homeomorphism Criterion,
which allows us to define a local occlusion detector.

Theorem 1. Given bins B, neighborhoods E,., E, 1 i, and E,. 1 o centered around
a common point s, and color images Iy, and I, where |t; — to| = 1, if either

QF,.|Eryokx (Iﬂ‘ng) < aET+K(It2|B) (1)

or
0B,k (Zi2|B) < 0, 5 (T11|B) (2)

1s violated, where the inequality is checked element wise, then the Image Home-
omorphism Criterion is not satisfied between Ty; N Ey. and Tyo N Erq k.
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The argument for the proof proceeds as follows: For a scene deforming under
a Lipschitz homeomorphism, if a set is in the interior of the neighborhood F,.,
then it is in the interior of E, k. If two sets in E, are connected in E, g
then the path connecting them is in F, sk which explains why identification
using F,, ok guarantees the condition in Equation [l The second condition just
specifies that the colors observed in F,. g are present in F, oK.

At this point, we make two additional remarks. First, the previous theorem
allows us to consider occlusion detection in the case of directional cameras in
a straightforward manner. Second, observe that Theorem [I] works both forward
and backward in time so that appearance and disappearance events, which are
each just types of occlusions, can be identified locally.

4.2 Generalizing to Color Variation

In this section, we generalize our model to include color variations in the im-
ages. These variations may include soft shadows and slow lighting variations.
However, we do not claim to solve the problem for strong shadows and specu-
larities which are a challenge for all occlusion detection algorithms. In order to
quantify the amount of uncertainty allowed, we consider color variations that
are Lipschitz over time with constant K.. That is, if f(s,t) is a family of image
homeomorphisms, we must have

Ze1 (f (55 1)) — Zea(f (s, t2))| < Kelts —to

instead of Z(f(s,t1)) = Z(f(s,t2)) (i-e. K. =0) as was assumed in the previous
section. From now on, we require that the color variations be Lipschitz with
constant K.

We generalize the results of Theorem [ to incorporate color variations.

Theorem 2. Assume the same setup as in Theorem [ with Lipschitz color im-
ages with Lipschitz constant K. Define B¢ := {[a, — ¢, by, + C}}évfl forc>0.If
either

QB |Erjok (Itl |B’ Ban) < OE, |k (It2 ‘BKC) (3)

or
OE, ik (It2‘BKC) < OE, 42K (It1|BzKC) (4)

1s violated, then the Image Homeomorphism Criterion under color variation is
not satisfied between Tyy N E, and Tyo N Eyy k.

Figuredlillustrates this process where an object is moved behind a book resulting
in an occlusion detection. The sets Z;;" ([ax, bx]) N E, are shown in white on the
middle row for increasing k from left to right, the sets Z;;* (Jax — 2K, by +2K.])N
E, oK are also shown in gray on the middle row, and the sets Itgl([ak — K¢, b+
K.]) N E,; g are shown on the bottom row. The images in this example are of
size 240 x 240, B = {[40(k — 1),40k]}]_,, r = 40, K = 10, and K, = 5. The
outcome for this example is

A, By (Tn|B, B ) =[1012000]"
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tO | 1

k=1 k=2

1
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k=3

Fig. 4. Demonstration of our local topological occlusion detector. Three images cor-
responding to an object moving behind a book (top). The sets Z,;' ([ak, bx]) N B, and
T  ([ar — 2K, by, +2K.]) N Ert2x are shown in white and gray respectively (middle).
The sets 1;21 ([ax — Ke, bk + K.]) N Er4 i are shown on the bottom row. Our framework
detects an occlusion since the condition in Equation [3is violated.

and
g, (T|BX)=10021100]".

Since the condition in Equation [3]is not satisfied, we conclude that an occlusion
has occurred.

4.3 Estimating Translational Component

Theorem [2] gives a mechanism to detect occlusions in situations in which the
motions and deformations of objects in 3D are unknown. In certain situations,
it may be convenient to take advantage of this structure and decompose the
homeomorphism into a translational and pure deformation component.

In this section, we assume that the image homeomorphism can be locally
decomposed as follows:

f(svt) = ft(svt) + fd(svt)’

where f; is a translation and f; is a deformation with Lipschitz constants K;
and Ky, respectively. Using the framework developed in the previous section,
we would need to compare the connected components in E, and E,4x,1+k,. If
K >> K, then E, i, 1k, would be a large set which would decrease the utility
of our algorithm to detect occlusions.

In order to take advantage of our knowledge about the translation components
of the homeomorphism, we would like to split B, i, i, into N? evenly spaced
regions that cover E, 1k, k,. The diameter of the decomposed regions needs to
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be sufficiently larger in order to guarantee that the conditions in Theorem [2] are
fulfilled by at least one of the subregions whenever the Image Homeomorphism
Criterion is satisfied. Figure [l illustrates this situation. In order to guarantee
that a deformed neighborhood E.. is found in the interior of at least one of the
decomposed regions, an overlap of greater than 2(r + K ;) between the regions is
required. If we let 2(r + D) be the length of the side of the decomposed regions,
then the minimum length required corresponds to:

K
D=K .
d+Nt (5)

Solving for the spacing d required between centers of the regions, we obtain

d= 5 K (6)

Hence, given that we have decomposed the neighborhood E, ik, k, into N?
regions of length 2(r + D) with centers spaced d units away, then the Image
Homeomorphims Criterion between regions E, at time ¢; and E,ix,+x, at
time to is violated if the conditions in Equations [3] and @ are not satisfied by
any of decomposed regions. This result is used in Section (] to identify occlusions
between objects with large translational components. Note that this decompo-
sition approach can be used to estimate motion flow between regions without
direct tracking or differential operators applied to the images.

1
E, :
| o e
-« 1
o —— : = 242K
| N 20+2D
| ! ]
| : 1
______________ (S S IR ¥
- >
(a) (b) (c) 242K, + 2K,

Fig. 5. Choosing an appropriate length for the coveraging sets of E, 4 i, 4+ x, with Ny =
2. (a) Given a region E,, and bounds K; and Ky, our objective is to obtain a cover
that guarantees that E, can be found within one of the covering sets. (b) A coverage
in which F, is not contained within any of the covering sets since the coverage does
not have enough overlap. The dark square corresponds to one of the regions in the
coverage. (¢) Given that the overlap between the region is greater than 2r + 2K, then
the neighborhood E,. can be found in at least one of the covering sets. The length of
the sets needed to guarantee this fact are labeled 2r + 2D.
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5 Experiments

In this section, we present experimental results for occlusion detection applying
Theorem 2] to make local detections. We also briefly consider how to utilize these
results to perform foreground segmentation.

5.1 Implementation

The implementation of our approach takes the following image deformation pa-
rameters: the Lipschitz constants K., K; and Ky. It also requires the following
algorithmic parameters: the radius for the base regions r, the color bins B, and
the number of subsections N; in which each local neighborhood is decomposed.
For simplicity we take N; to be odd. Note that any choice of the algorithmic
parameters is appropriate (e.g. different choices of radius r may yield different
detections, but still no false positives). The algorithm takes a base image Ty
and marks detections against image Z;o.

We define a grid of points evenly spaced by a distance d (as defined by Equa-
tion ). For each of the points in Zy; we compute ag, g, ., (Za|B,B2) and
OB, 2p (L11|B?5<), where D is given by Equation[5l For each of the points in Ty,
we compute ag,, , (Zi2|BX<) and o, , , (Zi2| BKe).

For a fixed location z in the grid, let F, be the neighborhood centered at x
in image Z;; and let E,4 i, +k, be the neighborhood centered at = in image Z:».
We test the conditions in Theorem [2] by comparing the histogram of connected
components of E, against each of the histograms from the resulting N2 regions
in which E, k,+k, is decomposed. If the conditions are not satisfied by any of
the regions then position z at time ¢; is marked as an occluded location.

5.2 Detecting Occluding Contours

To begin, we consider results on real images. Figures [2] and [ illustrate the re-
sults of applying our algorithm on a variety of image sequences: a deforming
cloth, a walking person, a closing hand, and a folding colored Macbeth board.
The first three columns correspond to frames from the sequence and the last
column is the detection results corresponding to the frame at time ¢;. Ani-
mations of the image sequences and the detected occlusions can be found at:
http://www.cs.unc.edu/ ron/research/ECCV2010/.

See the supplementary materials for animations of the image sequences and
the detected occlusions.

Our method successfully detected occlusions without introducing any false
positives. Note that several occluding contours were not highlighted in our de-
tections due to our unconstrained assumptions about the scene (i.e. we made
no prior assumptions about the environment and allowed for any type of defor-
mations). To illustrate this point, consider the image sequence with the closing
hand (second row in Figure [f]). Though there are occluding contours along the
edges near the palm of the hand, the hand’s movement does not reveal the exis-
tence of any local occlusions here which means that the Image Homeomorphism
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Fig. 6. Detection results for image sequences of a walking person, a closing hand, and
a folding colored Macbeth board. Sample frames are displayed (first three columns)
and the occluding contours corresponding to the frames at time ¢; (right column).

Criterion is never violated. Proposition P implies that there exists a 3D realiza-
tion of each image in this sequence around this edge that does not contain an
occlusion. By applying more global reasoning, one could hope to recover these
type of detections, which is the focus of future research.

The method presented in this paper is not directly comparable to other ap-
proaches in the literature since our goal is to obtain local detections in uncon-
strained deforming scenes, an area that has not previously been explored. In
future work, we plan to integrate local detections into consistent occluding con-
tours for deforming scenes, which requires a new dataset of deforming scenes for
evaluation and comparison of approaches.

5.3 Foreground/Background Segmentation

In this section, we briefly consider how one can employ the presented occlu-
sion detector to do foreground versus background segmentation. We assume
that there are two objects each with distinguishable color distributions, one per-
forming the occluding (the foreground) and the other being occluded (the back-
ground). When an occlusion occurs, the neighborhood E,. contains samples of a
set that becomes occluded and the neighborhood F,; x contains samples of the
set that perform the occlusion. We can use this elementary information to learn
the color distribution of the foreground and background. After this distribution
has been learned, we can test to which segment a given pixel belongs. Figure [
illustrates this approach applied to a synthetic (top row) and real (bottom row)
image sequences.
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Fig. 7. Foreground/background segmentation results for a synthetic sequence of a ball
moving through a room with multicolored tiles (top) and a real sequence of a hand
moving in front of a checkerboard (bottom). Sample frames from the sequences (first
two columns). Occlusion detections in white and segmentation by learning color distri-
bution in red (right column) centered at time ¢;.

6 Conclusion

In this paper, we present a mathematical framework to detect and localize oc-
clusions in image sequences of scenes that can include deforming objects. The
method works by measuring changes in a local topological invariant, which guar-
antees a zero false positive rate when certain motion and color variation bounds
are satisfied. Our occlusion detector works under far weaker assumptions than
other detectors. If the 3D scene transforms in a more restrictive fashion, the
method presented in this paper can be viewed as complementary to traditional
detectors. We also presented preliminary results on extending the detections to
perform figure-ground separation when the model undergoes Lipschitz defor-
mations. Most current such algorithms employ a fixed statistical model for the
variation allowed in the background, but the framework presented here is more
general and can work in tandem with a statistical model.

As future research, we plan to study how to integrate this local information
in order to come up with global solutions to problems such as segmentation and
matching. The descriptors that we used for identifying occlusions can also be
thought of as topological features which are robust to deformations. Integrating
the information from these local descriptors could lead to the development of
new matching and recognition techniques.

The generality of our framework can benefit applications such as tracking in
medical applications which involve soft, deformable tissues. For example, knowl-
edge of occlusions could help in the reconstruction of surgical scenes and in
performing foreground/background segmentation in scenes with soft tissue.
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2.5D Dual Contouring: A Robust Approach to
Creating Building Models from Aerial LIDAR
Point Clouds

Qian-Yi Zhou and Ulrich Neumann*

University of Southern California

Abstract. We present a robust approach to creating 2.5D building mod-
els from aerial LiDAR point clouds. The method is guaranteed to produce
crack-free models composed of complex roofs and vertical walls connect-
ing them. By extending classic dual contouring into a 2.5D method, we
achieve a simultaneous optimization over the three dimensional surfaces
and the two dimensional boundaries of roof layers. Thus, our method can
generate building models with arbitrarily shaped roofs while keeping the
verticality of connecting walls. An adaptive grid is introduced to simplify
model geometry in an accurate manner. Sharp features are detected and
preserved by a novel and efficient algorithm.

1 Introduction

Three dimensional building models are very useful in various applications such as
urban planning, virtual city tourism, surveillance, and computer games. The ad-
vance of acquisition techniques has made aerial LIDAR, (light detection and rang-
ing) data a powerful 3D representation of urban areas, while recent research work
(e.g.,[T0UTH]) has introduced a successful pipeline to extract individual building
point clouds from city-scale LIDAR data.

The aerial LiDAR point clouds are 2.5D data, i.e., the LIDAR sensor captures
the details of roof surfaces, but collects few points on building walls connecting
roof boundaries. In addition, manually created building models (Figure [2) also
show a 2.5D characteristic. Nearly all of them consist of complex roofs (green
faces) connected by vertical walls (white faces). Thus, we desire a 2.5D modeling
method with the following properties:

— Accuracy: The method should produce simple polygonal models fitting the
input point clouds in a precise manner.

— Robustness: Regardless of the diversity and complexity of building roof
shapes, the method should always generate crack-free models, even with the
existence of undesired elements such as residual sensor noise and small roof
features.

* The authors would like to thank Airborne 1 Corp. for providing data sets. The
authors acknowledge Mark Pritt of Lockheed Martin for his support. The authors
thank Tao Ju, Suya You, and anonymous reviewers for their valuable comments.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I1I, LNCS 6313, pp. 115-28]12010.
© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Various kinds of building models are created using 2.5D dual contouring
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Fig. 2. Manually created models [3] show the 2.5D nature of building structures

— 2.5D characteristic: The method should create 2.5D polygonal models
composed of detailed roofs and vertical walls connecting roof layers.

Most of the previous research work is based on the detection of some pre-defined
roof patterns, such as planar shapes [RIIOTIIT5] or a small set of user-given
primitives [BII2/T3IT4]. These methods work well for buildings composed of pre-
defined shapes, but lose accuracy and robustness when dealing with arbitrary
roof shapes such as those shown in Figure[Ill Another way to attack this problem
is with traditional data-driven approaches. Polygonal models are first generated
directly from input data using rasterization or delaunay triangulation, then sim-
plified with general mesh simplification algorithms. The latter step significantly
reduces triangle number while preserving a low fitting error. However, since the
general simplification algorithms are usually ‘blind’ to the 2.5D nature of the
problem, they can hardly produce models satisfying our 2.5D requirement.

We propose a novel, data-driven approach to solve this problem, named 2.5D
dual contouring. Like the classic dual contouring [4], we use an adaptive grid as
the supporting data structure, and reconstruct geometry in each grid node by
minimizing the quadratic error functions known as QEFs. Model simplification
is easily achieved by merging grid nodes and combining QEF's.

In order to represent the detailed roof surfaces, our approach works in a 3D
space. However, unlike the classic 3D dual contouring, we use a 2D grid as our
supporting data structure. We generate a hyper-point in each grid cell, which
contains a set of 3D points having the same x-y coordinates, but different z
values. They can be regarded as a set of points intersected by a vertical line
and multiple roof layers. Hence, the consistency between boundary footprints of
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different roof layers is guaranteed, and vertical walls are produced by connecting
neighboring hyper-points together.

Given that our method is built on some of previous work, we explicitly state
our original contributions as follows:

1. We propose a new robust method to create 2.5D building models from aerial
point clouds. We demonstrate how to simplify geometry in a topology-safe
manner and construct polygons within a 2.5D framework. Our results are
guaranteed to be accurate watertight models, even for buildings with arbi-
trarily shaped roofs.

2. We propose an algorithm to detect sharp roof features by analyzing the QEF
matrices generated in 2.5D dual contouring. The analysis result is then used
to preserve such features in polygon triangulation.

3. Benefiting from a post-refinement step, our algorithm has the ability to pro-
duce building models aligning with principal directions, as defined in [14].

2 Related Work

We review the related work on two aspects: building reconstruction methods and
volumetric modeling approaches.

2.1 Building Reconstruction from Aerial LIDAR

Many research efforts have addressed the complex problem of modeling cities
from aerial LIDAR data. Recent work (e.g., [RITOJTTIT4I5]) introduced an auto-
matic pipeline with the following characteristics: trees and noises are removed
via a classification algorithm, and a segmentation module splits the remaining
points into individual building patches and ground points. The building patches
are then turned into mesh models by a modeling algorithm.

In the last step, these methods first apply a plane fitting algorithm to extract
planar building roofs, then employ different heuristics to guide the modeling pro-
cess. For example, Matei et al.[8] regularize roof outlines by estimating building
orientations. Poullis and You [10] create simple 3D models by simplifying bound-
aries of fitted planes. Verma et al.[11] employ a graph-based method to explore
the topology relationships between planar roof pieces. Zhou and Neumann [I4]
learn a set of principal directions to align roof boundaries and this principal
direction learning procedure is further extended to city-scale data sets in [15].

To alleviate the problem that only planar shapes can be handled well, primitive-
based methods are developed to reconstruct complex building roofs. Lafarge et
al.[5] propose a two-stages method to find the optimal combination of parametric
models based on a RIMCMC sampler. You et al.[I2] and Zhou and Neumann [14]
show the usage of primitives with the help of user-interaction. Zebedin et al.[L3]
detect planes and surfaces of revolution. However, as mentioned previously, all of
these methods are limited by the user-defined primitive libraries, thus lose accu-
racy and robustness when dealing with arbitrary roof shapes.
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Fig. 3. Robust building modeling pipeline: (a) the input point cloud; (b) a 2D grid
with surface Hermite data (gold arrows) and boundary Hermite data (red arrows)
attached; (c) hyper-points (turquoise balls connected by red lines) generated by min-
imizing QEFs; (d) mesh model reconstructed via 2.5D dual contouring; and (e) final
model with boundaries snapped to principal directions

2.2 Volumetric Modeling Approaches

Volumetric methods [T/47] have proved to be a robust way of generating crack-
free models: input points are first scan-converted into a regularized grid; then
geometry and topology are created respectively. For example, the dual contouring
method [4] creates one mesh vertex in each minimal grid node by optimizing a
quadratic error function, and constructs polygons during a traversal over the
adaptive grid. Based on this work, Fiocco et al.[2] develop a modeling method
combining aerial and ground-based LiDAR.

Nevertheless, these volumetric approaches all work for regular 2D or 3D grids.
None of them have the same 2.5D characteristic as our approach.

3 Pipeline Overview

Given a building point cloud as input, our modeling process executes four steps
as illustrated in Figure

1. Scan conversion: We embed the point cloud in a uniform 2D grid. Sur-
face Hermite data samples (gold arrows) are generated at grid points and
boundary Hermite data samples (red arrows) are estimated on grid edges
connecting different roof layers (Figure B(b)). This 2D grid is also regarded
as the finest level of our supporting quadtree.

2. Adaptive creation of geometry: In each quadtree cell, we compute a
hyper-point by minimizing a 2.5D QEF. Geometry simplification is achieved
in an adaptive manner by collapsing subtrees and adding QEFs associated
with leaf cells (Figure Bl(c)).
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3. Polygon generation: We reconstruct a watertight mesh model by connect-
ing hyper-points with surface polygons (turquoise triangles) and boundary
polygons (purple triangles), which form building roofs and vertical walls,
respectively (Figure Bl(d)).

4. Principal direction snapping: The roof boundaries are refined to follow
the principal directions defined in [14] (Figure B{e)).

4 Scan Conversion

The first step of our modeling algorithm converts the input point cloud into a
volumetric form, by sampling Hermite data (in the form of point-normal pairs)
over a 2D supporting grid. With elements being considered as their infinite exten-
sions along the vertical direction, this 2D grid has a 3D volumetric connotation.
E.g., a grid cell represents an infinite three dimensional volume, while a grid
point corresponds to a vertical line containing it.

4.1 Surface Hermite Data

Given a 2.5D point cloud as input, we first segment it into multiple roof layers
using a local distance-based region growing algorithnﬂ, as shown in Figure[dl(a).
Ideally, each vertical line passing through a grid point intersects with one and
only one roof layer. The intersection point is taken as a surface Hermite data
sample, and estimated by averaging the heights and normald? of its k-nearest
input points within the same roof layer, illustrated as points marked with blue
or purple outlines (taking k = 4) in Figure [(a).

The only difficulty in this process is to robustly detect the right roof layer
crossing the vertical line. Intuitively, we say a roof layer L covers a grid point g
iff each of g’s four neighboring cells contains at least one input point p belonging
to L or a higher cluster L'. E.g., in Figure d{(a), point A is covered by no roof
layers, and thus is assigned as ground; point B is only covered by and assigned
to the dark-grey layer; covered by both the dark-grey layer and the light-grey
layer, point C' is assigned to the highest covering layer, i.e., the light-grey layer.

4.2 Boundary Hermite Data

While surface Hermite data captures the surface geometry of building roofs, the

shapes of roof boundaries are represented by the boundary Hermite data.
Considering a grid edge e connecting two grid points with surface Hermite

data samples {sg,s1} on different roof layers sg € Lg,s1 € Llﬁ the vertical

! The roof layers are always segmented in a local area, as global segmentation may
erase local features such as those shown in Figure[Bc). Specifically, the segmentation
for grid point g is applied to all the input points in g’s four neighboring cells.

? Point normals are pre-computed using covariance analysis [14].

3 To avoid ambiguity, roof layers are determined again by a local segmentation over
{s0,51} U P, where P is the input point set within e’s two adjacent cells.
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Fig. 4. Generating (a) surface Hermite data samples on grid points: the sample is
assigned to the highest roof layer which covers the grid point; (b,c) boundary Hermite
data samples on grid edges: we find the maximum margin line (thin black lines) to
divide the lower surface Hermite data sample from the higher roof layer

wall connecting Lo and L should split their projection images on the x-y plane.
Inspired by the 2D support vector machine algorithm, we find the maximum-
margin line [ which separates Ly and L; on the x-y plane, and estimate the
boundary sample by intersecting line [ and edge e.

In practice, with the existence of residual sensor noise, the projections of
different roof layers may overlap on the x-y plane. Since our data is collected
from a top view, we give more saliency to the higher roof layer L; (assuming
height(Log) < height(Ly)), and thus take the maximum-margin line ! which
separates {so} and L; while maximizing distance(so, ), shown as the thin black
lines in Figure @{(b,c). Empirically, we find this method more robust than other
methods including that using a maximum-soft-margin line dividing Ly and L;.

5 Adaptive Creation of Geometry

Given a quadtree cell ¢ (not necessarily being a finest-level leaf cell), we denote
the set of surface Hermite data samples on the grid points in ¢ as S, and the
set of boundary Hermite data samples on atomic grid edges in ¢ as B. The roof
layers in ¢ are then determined by segmenting S into k clusters S = S1U---USk.
Intuitively, if an atomic grid edge in ¢ has no boundary sample attached, it con-
nects two surface samples of the same roof layer. Thus, we use an agglomerative
clustering algorithm via repeatedly combining surface sample sets connected by
edges without boundary samples.

Now our task is to generate k vertices for the k roof layers, denoted as a hyper-
point x = {x1,...,2;}. To maintain the consistency of roof layer boundaries,
we require these k vertices to have the same projection onto the x-y plane, i.e.,
they should have the same x-y coordinates, but different z values. Thus x can be
expressed as a k+2 dimensional vector x = (z,v, 21, . . ., zk). We let o = (z,y,0)
for convenience in following discussions.
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5.1 2.5D QEF

The hyper-point x is optimized by minimizing a 2.5D QEF defined as the linear
combination of 2D boundary quadratic errors and 3D surface quadratic errors:

Ex\)= Y (wn-(@o—p)*+ Y. > (n-(z—p)? (1)
i=1

(p,n)eB sk (Pv")esi

where w is a user-given weight balancing between boundary samples and surface
samples. Empirically, a weight between 1 ~ 4 satisfies most of our experiments.

Due to the horizontality of boundary sample normals, the third coordinates of
p and xg do not affect the 2D error term. However, we choose to write all these
variables uniformly in 3D, in order to express the energy function in a matrix
product form:

E(x) = (Ax —b)"(Ax —b) (2)

where A is a matrix whose rows come from normals in B, Sy, ..., Sk, with those
in B multiplied by w. The x-y values of each normal are placed in the first two
columns, while the z values of normals in S; are placed in the (i 4+ 2)-th column.
The remaining entries in A are padded with zeros. b is a vector composed of
corresponding inner products n - p with the first |B| entries multiplied by w.

We employ the QR decomposition proposed in [4] to improve numerical sta-
bility during QEF optimization, i.e.,

where @ is an orthogonal matrix and Equation [2] can be rewritten as:
E(x) = (Ax — b)"QQ" (Ax — b) = (Ax — b)" (Ax — b) + 1. (4)

Thus, E(x) is minimized by solving Ax—b = 0. To handle the possible singularity
of A, we follow the solutions in previous methods [4/6] by applying an SVD
decomposition:

A=UxvT, (5)

truncating small singular values in X' with a magnitude of less than 0.1, and
using the pseudo-inverse X T to compute the hyper-point y as:

x=x—+VETUT(b— Ay) (6)

where Y is a guessed solution whose first two coordinates come from the centroid
of B, and the (i + 2)-th coordinate is the mean height of samples in S;. If B is
empty, the first two coordinates equal to those of the centroid of S.
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Fig. 5. (a,b) Creating surface polygons (colored hollow polygons) and boundary poly-
gons (colored semitransparent polygons) around hyper-point A. Viewing from top, (c)
surface polygons are generated at grid points, while (d) boundary polygons are pro-
duced for grid edges which exhibit a roof layer gap.

5.2 Quadtree Simplification with QEF's

Taking a quadtree with QEF matrices pre-computed for all the finest-level cells,
we simplify the geometry by collapsing leaf cells into parent cells and combining
QEFs in a bottom-up manner. A user-given tolerance § controls the simplification
level by denying sub-tree collapse when the residual is greater than 6.

Combining four regular 3D QEFs can be simply achieved by merging the
rows of their upper triangular matrices to form a 16 x 4 matrix [4]. We follow
this method to combine our 2.5D QEF matrices, yet with the consideration of
association between matrix columns and roof layers: as roof layers in leaf cells
merge into one roof layer in the parent cell, corresponding matrix columns are
placed in the same column of the combined matrix. Specifically, we redo the roof
layer segmentation in the parent cell before merging matrices. Assuming the i-th
roof layer in a leaf cell belongs to the j-th roof layer in the parent cell, we put
the (i 4+ 2)-th column of the leaf cell matrix into the (j + 2)-th column of the
combined matrix. 0-columns are used to pad the leaf cell matrices where no roof
layers belong to certain roof layers in the parent cell.

Once again, the merged matrix is brought to the upper triangular form via a
QR decomposition. Due to the orthogonality of involved transformation matri-
ces, it represents the 2.5D QEF in the parent cell.

6 Polygon Generation

Given the simplified quadtree with hyper-points estimated in each leaf cell, our
next task is to create polygons connecting these hyper-points into a mesh. In
particular, we generate two kinds of polygons to satisfy our 2.5D characteristic.

1. Surface polygons: At each grid point p, we generate a surface polygon by
connecting vertices in the hyper-points on the same roof layer as p in its
neighboring cells.

2. Boundary polygons: At each minimal quadtree edge e, we create a bound-
ary polygon connecting two hyper-point segments in the adjacent cells.
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Fig. 6. Triangulation without (left) and with (right) our sharp feature preserving al-
gorithm. The colors of input points represent the squared distances from the mesh.

Figure Bl shows an example of polygon generation around a hyper-point A. The
surface polygons and boundary polygons are highlighted with colored outlines
and colored semitransparent polygons respectively. To avoid cracks generated
within a hyper-point, we make a boundary polygon sequentially pass through
the vertices in hyper-point segment in height ascending or descending order.
E.g., the dark-blue boundary polygon in Figure [l goes through all the three
vertices in hyper-point A, from the top vertex to the bottom vertex.

Our method is guaranteed to produce crack-free models, which can be derived
from the fact that except for the border edges created around the entire grid,
the other mesh edges are contained by an even number of polygons. Proof is
straightforward: a non-vertical mesh edge is either contained by two surface
polygons, or by one surface polygon and one boundary polygon. As for the
vertical mesh edges created within a hyper-point, we consider all the boundary
polygons around this hyper-point (e.g., the colored semitransparent polygons
shown in Figure Bla,b)). They go up and down though this hyper-point and
finally return to the start vertex, forming up a closed edge loop. Thus, each
vertical mesh edge in this hyper-point appears even times.

6.1 Sharp Feature Preserving Triangulation

By minimizing QEFs, 2.5D dual contouring has the ability to produce vertices
lying on sharp features, which are a common pattern in building roofs. However,
we find that a poor triangulation of surface polygons can spoil this advantage,
as shown in Figure [(] left. To solve this problem, we propose an efficient sharp
feature detection algorithm and preserve these features once detected.

In a grid cell ¢ containing only one roof layer, we apply covariance analysis
over the normals of all surface samples, i.e., to get the eigenvalues of matrix:

1
C’:NZni-nZT, (7)
and use Equation [Bl and [ to simplify it since ¢ has no boundary samples:
1 1 s 1
= ATA= _ATA= vyTsyT,
C N N N v v (8)

Thus, the diagonal of matrix 11/2712 gives the eigenvalues of C', while the
columns of V' are corresponding eigenvectors. As Pauly [9] suggests, the smallest
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Fig. 7. Comparison between topology-unsafe simplification (left) and topology-safe
simplification (right). Undesired features can be created by merging leaf cells in a
topology-unsafe manner.

eigenvalue \g and the middle eigenvalue A; estimate the minimal and maximal
curvatures, as the corresponding eigenvectors vg,v; point to the curvature di-
rections. Therefore, we find ridges and valleys by detecting vertices with small
Ao and fairly large A1, and use vy as the feature direction. Since the involved
matrices have all been computed in previous steps, the additional overhead of
this algorithm is trivial.

Specifically, for each diagonal e of a surface quad, we calculate:

Yo M) lvolp) el 9)

pE€e and Ao (p)<T

and choose the diagonal e* which maximizes this value to split the quad into
two triangles. Here 7 is a user given threshold. Our experiments take 7 = 0.01.

7 Topology-Safe Simplification

So far the quadtree simplification is completely built on QEFs, and the topology
of output models may change during this process. Undesired features can be
generated as shown in Figure[fleft. To solve this problem, we insert an additional
topology test right before sub-tree collapse happens; and reject collapse if the test
reveals a danger of topology change. Regarding multiple roof layers as multiple
materials, we use the topology test algorithm in [4], with an additional test (step
[B) which prevents different roof layers in one leaf cell (top-left cell in Figure[8(a))
from merging into a same roof layer in the coarse cell (Figure@|(b)). This situation
may cause removal of small vertical wall features (e.g., Figure §l(c)).

1. Test whether each leaf cell creates a manifold; if not, stop.
2. Test whether the coarse cell creates a manifold; if not, stop.
3. Test whether any two roof layers in a same leaf cell belong to two different
roof layers in the coarse cell; if not, stop.
4. Test whether the topology of the dual contour is preserved using following
criteria; if not, stop; otherwise, collapse.
(a) Test whether the roof layer on the middle point of each coarse edge
agrees with the roof layer on at least one of the two edge endpoints.
(b) Test whether the roof layer on the middle point of the coarse cell agrees
with the roof layer on at least one of the four cell corners.
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Fig. 8. An unsafe simplification case denied by the topology safety test step Bl Since
the center grid point has different roof layer assignments in these leaf cells, two different
layers in the top-left leaf cell (a) belong to the same roof layer in the coarse cell (b).
Unsafe merging may erase wall features such as the one shown in (c).
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Fig. 9. Roof layer boundaries (thick colored lines) are snapped to principal directions

8 Principal Direction Snapping

Our algorithm is completely data-driven, i.e., no pre-assumptions about the
roof shapes have been made. Thus our algorithm can handle complex roofs in a
robust manner. On the other hand, in some cases, prior knowledge of the urban
area is given and it is a desire to have building models concurring with such
knowledge. In this section, we show a post-processing refinement to our results
using the prior knowledge of principal directions, which are defined as the roof
edge direction preference in a local urban area [I4].

The idea is straightforward: once the boundaries of individual roof layers are
extracted, we snap them to the principal directions as much as possible without
exceeding a small error tolerance. In order to maintain the consistency between
boundaries of different layers, the boundaries are handled one by one in height-
descending order. I.e., when a roof layer boundary has been processed, the x-y
coordinates of the touched hyper-points are fixed, which are then considered as
constraints during the subsequent processing of lower roof layers. Figure[d shows
clean and simple roof boundaries generated by the principal direction refinement.

9 Experiment Results

Figure [0 shows an urban area of Los Angeles reconstructed from 26M LiDAR
points with 7 samples/sq.m. resolution. We employ the reconstruction pipeline
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Fig. 10. Building reconstruction for a 2KM-by-2.5KM urban area of Los Angeles

Squared
Distance

1.0

Fig. 11. Building models created using different approaches (from left to right): 2.5D
dual contouring, plane-based method proposed in [I4], general mesh simplification over
a rasterized DEM, and manual creation. Color bars under the models show the ratio
of points at different squared distance level.
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Table 1. Quantitative evaluation of experiments shown in Figure [IT]

2.5D dual Plane-based DEM simpli- Manual

Models in Figure [T] contouring method [I4] fication creation [3]

First row Triangle number2 214 76 198 78

(4679 points) Average distance 0.016 0.599 0.061 0.058
Outlier ratio 0.06% 12.37% 0.53% 0.83%

Second row Triangle number2 8009 6262 8000 1227
(684907 points) Average distance 0.037 0.465 0.035 7.780
Outlier ratio 0.44% 7.93% 0.87% 70.38%

Third row Triangle number2 12688 1619 12999 1558
(198551 points) Average distance 0.203 1.610 0.264 16.220
Outlier ratio 2.03% 21.15% 3.08% 68.28%

1=0.7m I=1.0m I=14m

Default grid configuration:
Grid size: I=1.0m
Grid orientation: 8=0°

33 MW .

Tri. #=688  Erraw=0.010 Tri. #=584 Errag=0.016

0=30°

Tri. #=688  Errag=0.010 Tri. #=688  Errag=0.010 Tri. #=878 Errag=0.016 Tri. #=937  Errag=0.024

Fig. 12. Models of similar quality are generated with the same point cloud embedded
into grids of different sizes or different orientations

proposed in [I5] to remove irrelevant parts such as noises, trees, vehicles and
even ground. We then test our 2.5D dual contouring on point clouds of individual
buildings to create 2.5D models with complex roofs. Our algorithm successfully
creates 1879 building models consisting of 857K triangles within 6 minutes on a
consumer-level laptop (Intel Core 2 1.8GHz CPU with 2GB memory).

To further demonstrate the ability of handling various kinds of building mod-
els, we test our method on a set of buildings from Atlanta, as illustrated in Figure
[ Figure [T shows a comparison between our method and previous methods. In
particular, we compare the average squared distance from input point sets to
the generated models, and the ratio of points with squared distances greater
than 1sq.m. In Figure [l point colors denote the squared distances, and the
colored bars show the percentage of points at different squared distance levels.
As the quantitative results in Table [l illustrate, our method (first column) is the
most accurate algorithm to produce 2.5D models. Plane-based approaches such
as [14] (second column) are unable to handle non-flat roofs (a,d) and small roof
features (b,e). Cracks often exist when fitting is unsuccessful (c,d). A general
mesh simplification over the DEM (third column) is competitive in the sense of
fitting quality. However, it cannot produce 2.5D models composed of roofs and
vertical walls. In addition, the fitting quality on roof boundaries is unsatisfac-
tory (f,g,h). The last column demonstrates point clouds aligning with manually
created models. Designed without knowledge from real-world data, they often
lack of accuracy even after registration to the input points.



128 Q.-Y. Zhou and U. Neumann

We finally demonstrate the influence of grid configuration in Figure As an
adaptive approach, our method is insensitive to the grid size (top row). In addi-
tion, 2.5D dual contouring has the ability to place vertices at optimal positions,
thus grid orientation affects the results insignificantly (bottom row).

10 Conclusion

We present a robust method to automatically creating building models from
aerial LIDAR point clouds. Our results are 2.5D models composed of complex
building roofs connected by vertical walls. By extending dual contouring into a
2.5D method, our algorithm optimizes the surface geometry and the boundaries
of roof layers simultaneously. The output models are guaranteed to be crack-free
meshes with small fitting error, faithfully preserving sharp features.
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Analytical Forward Projection for Axial
Non-central Dioptric and Catadioptric Cameras

Amit Agrawal, Yuichi Taguchi, and Srikumar Ramalingam

Mitsubishi Electric Research Labs (MERL), Cambridge, MA, USA

Abstract. We present a technique for modeling non-central catadioptric
cameras consisting of a perspective camera and a rotationally symmetric
conic reflector. While previous approaches use a central approximation
and/or iterative methods for forward projection, we present an analyt-
ical solution. This allows computation of the optical path from a given
3D point to the given viewpoint by solving a 6" degree forward pro-
jection equation for general conic mirrors. For a spherical mirror, the
forward projection reduces to a 4" degree equation, resulting in a closed
form solution. We also derive the forward projection equation for imag-
ing through a refractive sphere (non-central dioptric camera) and show
that it is a 10" degree equation. While central catadioptric cameras
lead to conic epipolar curves, we show the existence of a quartic epipolar
curve for catadioptric systems using a spherical mirror. The analyti-
cal forward projection leads to accurate and fast 3D reconstruction via
bundle adjustment. Simulations and real results on single image sparse
3D reconstruction are presented. We demonstrate ~ 100 times speed
up using the analytical solution over iterative forward projection for 3D
reconstruction using spherical mirrors.

1 Introduction

Catadioptric cameras allow large field of view 3D reconstruction and stable ego-
motion estimation from few images. As analyzed in [1], there are only a few
configurations that allow an effective single-viewpoint (central) catadioptric sys-
tem. Simple mirrors such as sphere as well as configurations when the camera
is not placed on the foci of hyperbolic/elliptical mirrors lead to a non-central
system. To handle such configurations, it is important to accurately model a non-
cental catadioptric camera. Approximations using a central model could lead to
inaccuracies such as skewed 3D estimation [2].

The projection of a scene point onto the image plane (Forward Projection)
requires computing the light path from the scene point to the perspective cam-
era’s center of projection (COP). Thus, the reflection point on the mirror needs
to be determined. This is considered to be hard problem and iterative solutions
are usually employed assuming there are no closed form solutions. In this paper,
we present an analytical solution to compute the forward projection (FP) for
conic catadioptric systems, where the mirror is obtained by revolving a conic
section around the axis of symmetry and the camera’s COP is placed on the

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 129 2010.
© Springer-Verlag Berlin Heidelberg 2010



130 A. Agrawal, Y. Taguchi, and S. Ramalingam

mirror axis. We show that for a given 3D point, the mirror reflection point can
be obtained by solving a 6! degree equation for a general conic mirror. Interest-
ingly, it reduces to solving a 4*" degree equation for a spherical mirror, resulting
in a closed form solution. We show how to use these analytical solutions for fast
3D reconstruction using bundle adjustment, achieving a two order of magnitude
speed up over previous approach [2].

Forward projection for imaging through a refractive sphere (non-central diop-
tric camera) is even more challenging due to two refractions. We show that the
optical path from a given 3D point to a given viewpoint via a refractive sphere
can be obtained by solving a 10"" degree equation. Thus, similar to mirrors,
refractive spheres can also be used for 3D reconstruction by plugging its forward
projection equation in a bundle adjustment algorithm. We believe that ours is
the first paper to analyze this problem and derive a practical solution.

The epipolar geometry for central catadioptric systems (CCS) and for several
non-central cameras (pushbroom, cross-slit, etc.) has been extensively studied.
However, analyzing the epipolar geometry for non-central catadioptric cameras
is difficult due to non-linear forward projection. We show the existence of a
quartic epipolar curve for catadioptric systems employing spherical mirror.
Contributions: Our paper makes the following contributions:

— We analyze forward projection for axial non-central dioptric/catadioptric
cameras with conic reflectors and refractive spheres, and show that analytical
solutions exist.

— We demonstrate that the back-projection for a spherical mirror can be for-
mulated as a matrix-vector product and that the corresponding epipolar
curves are quartic.

— We utilize the forward projection equations for fast sparse 3D reconstruction.

1.1 Related Work

Back-Projection and Epipolar Geometry: Baker and Nayar [1] presented
the complete class of central catadioptric systems. Svoboda et al. [3, 4] studied
the epipolar geometry for CCS and showed that the epipolar curves are conics.
Geyer and Daniilidis [5] showed the existence of fundamental matrix for para-
catadioptric cameras. A unified imaging model for all CCS was proposed by
Geyer and Daniilidis |6]. Using this model for forward /back-projection with sec-
ond order lifted image coordinates, Strum and Barreto |7] formulated the funda-
mental matrix for all CCS. For non-central cameras, Pless [8] introduced essential
matrix for the calibrated case. Rademacher and Bishop [9] described epipolar
curves for arbitrary non-central images. The epipolar geometry of cone-shaped
mirrors, when restricted to planar motions was derived by Yagi and Kawato [10].
Spacek [11] described the epipolar geometry for two cameras mounted one on
top of the other with aligned mirror axes.

Representing back-projection as a matrix-vector product for general
mirrors is typically difficult. Several non-central cameras can be modeled by
back-projection matrices operating on second order lifted image coordinates, re-
sulting in conic epipolar curves. These include linear pushbroom cameras [12],



Analytical Forward Projection for Axial Non-central Cameras 131

linear oblique cameras |13], para-catadioptric cameras [14], and all general linear
cameras (GLC) [15]. For the one-coefficient classical radial distortion model, the
epipolar curves are cubic |[16]. We show that for spherical mirror, back-projection
can be described as matrix-vector product using fourth order lifted image coor-
dinates, and thus the epipolar curves are quartic.

Forward projection for a non-central catadioptric camera is a hard problem,
since the point on the mirror where the reflection happens need to be determined.
In general, there is no closed-form solution for this problem, so non-linear opti-
mization have been proposed (as in [2,[17]). Gongalves and Nogueira [18] inves-
tigated quadric-shaped mirrors and reduced the problem to an optimization in
a single variable. Baker and Nayar |1] were unable to find a closed form solution
while analyzing mirror defocus blur and used numerical solutions. Their analysis
was in 3D, since the finite camera aperture requires considering viewpoints not
on the mirror axis. Vandeportaele [19] also analyzed forward projection for axial
case, but in 3D using intersection of quadrics. In contrast, we derive a much
simpler solution for the axial case in 2D with lower degree equation compared
to |19].

Spherical mirrors have been used for visual servoing and wide-angle 3D recon-
struction [2,117,120-23]. Both [22] and |2] state that computing forward projection
does not have a closed-form solution. In [22], a GLC approximation is used by
tessellating the captured multi-perspective image into triangles and associating
a GLC with each of them. In |2], an iterative method for forward projection
is used. Interestingly, for spherical mirror, forward projection corresponds to
the classical Alhazen’s problem with four solutions [24]. We show that our FP
equation for general quadric mirror reduces to a 4" order equation for spherical
mirror. Garg and Nayar [25] used a refractive sphere model for rain drops for
generating near-perspective images (environment at infinity). However, they did
not solve for the forward projection from a 3D point to compute the optical
path, which we describe.

2 Forward Projection: Conic Reflectors

We first derive the forward projection equation for conic catadioptric systems.
Let z axis be the mirror axis. A pinhole camera is placed at a distance d from
the origin on the mirror axis. Let P = [X,Y, Z]T be a 3D scene point. Since the
mirror is rotationally symmetric, the mirror reflection of P can be analyzed in
the plane 7 containing the mirror axis and P (Figure [ (left)). Let (z1,22) be
the local coordinate system of 7. In this plane, P has coordinates p = [u,v]
given by u = Ssinf and v = Z, where S = X2 +Y?2 + Z2 is the distance of
P from the origin and 6 = cos~1(Z/9) is the angle between the mirror axis and
the line joining the origin and the 3D point.

In plane 7, the mirror is parameterized as a 2D conic Az3 + 22 + Bzy = C.
This parametrization is used in [26] to handle spherical mirror along with other
mirrors for computing the caustics. Let m = [z, y}T be the reflection point on the
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Fig. 1. (Left) Reflection for conic catadioptric systems can be analyzed in the plane 7
containing the mirror axis and the 3D scene point. (Right) Imaging through a refractive
sphere can also be analyzed similarly.

mirror. Then z = :I:\/ C — By — Ay?. The incident ray vector v; and the normal
vector n at m are given by v; = [z, —d]” and n = [z, B/2 + Ay]”. Using the
law of reflection, the reflected ray vector v, = v; — 2n(n%v;)/(nTn). Since the
reflected ray should pass through P, v, x (p — m) = 0, where X denotes the

cross product. Solving using Matlab symbolic toolboxEl, we obtain a 6" order
forward projection (FP) equation in y
w?Ki(y) + K3 (y)(Ay* + By — C) =0, (1)

where K1 (y) and K3(y) are polynomials in y defined as

Ki(y) = Kiy® + Kioy? + Kizy + Kia,  Ko(y) = Kay® + Kooy + Kos,  (2)
and the individual terms are given by

Ki1 = 4A(1 — A), Kio =4B — 4A(d-|— Ad + ZB)
K13 = 8AC — 4Bd — 3B* — 4C — 4ABd, Kis = —dB? +4CB +4Cd
Ko = 4(A - 1)(A(d +v) + B), Koz = 8C + 2B* +4A(—2C + B(d + v) + 2dv)
Koz = B*(d+ v) + 4B(—C + dv) — 4C (v + d).
For a given P, solving () results in six solutions for y. The correct solution can

be found by checking the law of reflection for each real solution. Note that for
the correct solution vin = —vI'n. Using = = sign(u)\/C’ — By — Ay?, the 3D

T
mirror reflection point can be obtained as zz1/||z1|| + yz2/||z2] -

Spherical Mirror: Substituting A = 1, B = 0,C = r2, where r is the mirror
radius, results in a 4" order forward projection equation

u?(r2(d +y) — 2dy*)* — (r* — 4*)(r*(d + v) — 2dvy)* = 0. (3)

Thus, a close form solution for y can be obtained. Notice that for a spherical
mirror, the pinhole location is not restricted. For any pinhole location, a new axis

! Matlab code and intermediate steps are provided in the supplementary materials.
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Table 1. Degree of forward projection equation for central and non-central catadioptric
systems using conic reflectors

Mirror Shape Pinhole Placement Parameters Central System Degree
General On axis AB,C No 6
Sphere Any A=1,B=0,C>0 No 4
Elliptic On axis, At Foci B=0 Yes 2
Elliptic ~ On axis, Not at Foci B=0 No 6

Hyperbolic On axis, At Foci A<0,C<0 Yes 2
Hyperbolic On axis, Not at Foci A<0,C<0 No 6
Parabolic On axis, d = oo A=0,C=0 Yes 2
Parabolic On axis, Finite d A=0,C=0 No 5

joining the pinhole and the sphere center can be defined. In all other cases, the
pinhole needs to be on the mirror axis. Table [l shows the degree of FP equation
for spherical (A =1, B = 0,C > 0), elliptical (B = 0), hyperbolic (4 < 0,C < 0)
and parabolic (A = 0,C = 0) mirrors. Note that when the catadioptric system
is central, the degree of FP is two. This is intuitive, since the reflection point
can be obtained by intersecting the mirror with the ray joining the 3D point and
the effective projection center.

3 Back-Projection and Epipolar Curve for Spherical
Mirror

Now we show that back-projection equations for a non-central catadioptric sys-
tem using a spherical mirror can be written in matrix-vector form. By intersect-
ing the back-projected ray with a general 3D ray, we show the existence of a
quartic epipolar curve. Then we verify that the projection of points on the same
3D line onto the image plane using the FP equation results in the same curve.

Let C, = [0,0,—d]" be the COP and let the spherical mirror of radius 7 be
located at the origin (Figure B (left)). For an image point q, let s = K ~1q be
the ray direction, where K33 is the internal camera calibration matrix. The
intersection points b with the mirror are given by

Sd33 + /d2s2 — (d2 — r2)(sTs)

b=C,+ e

; (4)

where s3 is the third element of s. Note that b’b = 2 and the normal at b is
b/r. Since v; = b — C,, the reflected vector v, is given by

v, = (b—C,) —2b(b’(b—C,))/r? = =b—C, +2b(b"C,)/r?,  (5)

which intersects the mirror axis at m = [0,0,k]", where k = dr?/(2dbs + 2).
Thus, the Pliicker coordinates of the reflected 3D ray are given by L = (bT —
m7T, (b x m)T)T where x denotes the cross product. Similar to [7], we use L
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Fig. 2. (Left) Depicting back-projection. (Right) Epipolar curves, analytically com-
puted by Equation (8) (a) and numerically computed by using the FP equation (b) for
a known 3D line match.

and L_ to represent the reflected rays corresponding to the two intersections of
v; with the sphere (b and b_). We represent the two lines with a second-order
line complex C, described as a symmetric 6 x 6 matrix

C~ WL LT + L_LT)W, wn:(?é>, 6)
where ~ denotes the equality of matrices up to a scale factor. By substituting
b and m, we obtain a line complex C that includes quartic monomials of s. As
in [7], let veym(C) be the column-wise vectorization of the upper-right trian-
gular part of C (21-vector) and § denote double lifted coordinates of s in the
lexicographic order (15-vector). Then we obtain the back-projection equation in
a matrix-vector form:

Vsym(c) ~ Br,dé = Br,dkilév (7)

where B, 4 is a sparse 21 x 15 matrix depending only on r and d, as shown in
the supplementary materials.

Note that the difference between [7] and ours is that m = [0, 0, 0] in [7], since
the reflected ray passes through the center of an imaginary sphere that models
all central catadioptric systems [6]. For a non-central catadioptric system, m
becomes dependent on the image pixel q. Note that when the pinhole is on the
mirror axis, one can always find the intersection point m as [0, 0, k] for some k.

Epipolar Curve: Consider a 3D ray defined in the sphere-centered coordinate
system and represented with Pliicker coordinates as Lg. This ray intersects the
line complex C iff

LicLy, =o0. (8)

Since C includes quartic monomials of s (thus q), the constraint results in a 4"
order curve. The projection of Lg therefore appears as a quartic curve in the
image of spherical mirror, which means that spherical-mirror based catadioptric
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systems yield quartic epipolar curves. Our FP equation allows us to validate the
degree and shape of epipolar curves. Figure[2 (right) compares the epipolar curve
analytically computed from (B]) with the curve obtained by projecting 3D points
on Lg using the FP equation. We can observe that the shape of curves agree and
the numerical curve (using FP) is a continuous section of the analytical quartic
curve. Note that the image point converges as the 3D point goes to o0 on Ly.

Similar to perspective cameras, the quartic epipolar curve can be used to re-
strict the search space for dense stereo matching. Typically, approximations such
as epsilon-stereo constraint [22] are used, which assumes that the corresponding
match will lie approximately along a line. However, our analysis provides the
analytical 2D epipolar curve for non-central spherical mirror cameras. Note that
the FP equation for general conic mirrors simplifies the correspondence search
for other non-central conic catadioptric systems as well.

4 Sparse 3D Reconstruction Using Spherical Mirrors

We demonstrate the applicability of analytical forward projection (AFP) for
sparse 3D reconstruction using well-known bundle adjustment algorithm, and
compare it with iterative forward projection (IFP) method [2]. We choose a
simpler setup of a single perspective camera imaging multiple spherical mirrors
as shown in Figure @l We assume that the internal camera calibration is done
separately (off-line) and the sphere radius is known (we used high sphericity
stainless steel balls as spherical mirrors for real experiments). Thus, our opti-
mization involves estimating the sphere centers and the 3D points in the camera
coordinate system. Note that the FP equation can be easily applied to more gen-
eral calibration/3D reconstruction involving rotationally symmetric setups with
parabolic/hyperbolic mirrors |2]. For moving camera+mirror system, one may
require a central approximation to get the initial estimate of the relative camera
motion. However, AFP can replace IFP in subsequent bundle adjustment. In
addition, since AFP leads to a fast algorithm, we demonstrate in Section
that a central approximation is not required for iterative outlier removal.

4.1 Bundle Adjustment for Spherical Mirror Using AFP

Let C(i) = [ Cy(i), Cy (i), C’Z(i)]T ,i = 1...M be the sphere centers and P(j) =

[ Px(4), Py(4), Pz(j)]T7 j =1...N be the 3D points in the camera coordinate
system, when the pinhole camera is placed at the origin. First we rewrite the FP
equation (@) in terms of 3D quantities. For a given 3D point P(j) and mirror

center C(i), the orthogonal vectors z; and zs defining plane 7 are given by
\NT .

2, = —C(i) and 21 = P(j) — C(i) 1. Further, d = |||, u = |z, and

v = —C(i)T(P(j) — C(i))/||C(i)|. By substituting d, v and v in (@), the FP

equation can be re-written as

ay’ + ey’ + sy’ + cay + 5 = 0, 9)
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where each coefficient ¢; becomes a function of P(j) and C(7) only. In general,
when the scene point is outside the sphere and is visible through mirror reflection,
there are four real solutions. The single correct solution is found by checking the
law of reflection for each of them.

Using the solution, the 3D reflection point on the sphere is obtained as

Finally, the 2D image projection pixel is obtained as p(i,j) = fsz’&(])) + Cg,

q(i,j) = f’/y((z’g) + ¢y, where (fg, fy) and (cs, ¢y) are the focal length and the
principal point of the camera, respectively.

Let [p(i,7),d(i,7)]" be the image projection of the % 3D point for the i'"
sphere and [p(i, 7), q(3, j)]T denote their current estimates, computed from the
current estimates of sphere centers and 3D scene points. Each pair (4, j) gives a
2-vector error function F(i,5) = [p(¢,5) — p(4,5), q(i,5) — (j(i,j)]T, and the aver-
age reprojection error is given by E = !/ Zjvzl Zf\il | F(i,7)||*. We perform
bundle adjustment by minimizing E (using Matlab function 1sqnonlin), start-
ing from an initial solution. The initial 3D points are obtained as the center of
the shortest transversal of the respective back-projection rays. The initial sphere
centers are perturbed from their true positions (simulations) and obtained using
the captured photo (real experiments).

Jacobian Computation: AFP also enables the analytical Jacobian compu-
tation, which speeds up bundle adjustment. Let ¢ denote an unknown. Then

o y OXom (1) Xn(ir)) 0Zum (i
OF (i,j) [P0 [ful( g by Ot = Jmiid) 02m (00 "
or | odlin | = 1 OVlid) _ Yalls) o) | (11)
ot fy( . (4,7) ot Zm (i,5)2 ot )

Since X, Y, Zm depend on y, the above derivatives depend on 8 . Typically,
one would assume that a closed form expression for y is required to compute ggt;’
However, it can be avoided by taking the derivative of the FP equation (@) as
4 8c1 3 8cz 2 863 8C4 8C5
Oy _ %ty el HUT el e (12)
ot 4cly + 3coy? + 203y + C4
For a given 3D point P(j) and sphere center C(7), y can be computed by solving
the FP equation and thus can be substituted in above to obtain ¢ 8 . The gradient
of the reprojection error with respect to each unknown can be obtained using
Equations ({I0)), (), and ([@2)). Thus, we showed that the analytical FP equation
can be used to compute the Jacobian of the reprojection error, without obtaining
a closed-form solution for the mirror reflection point.

4.2 Simulations

We place a pinhole camera at the center of the coordinate system and M = 4
spheres (radius r = 0.5”) at a distance of 200 mm. N = 100 3D points were ran-
domly distributed in a hemisphere of radius 1000 mm surrounding the spheres
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Fig. 3. Bundle adjustment simulations using M = 4 spherical mirrors and N = 100
3D points for different image noise levels. (Left) Reprojection error. (Right) RMSE
of reconstructed 3D points. The IFP curve matches the AFP curve when sufficient
iterations are used.

Table 2. Comparison of bundle adjustment run time (in seconds) using IFP |2] and
our AFP for N 3D points and M = 4 spherical mirrors. The run times were obtained
by repeating bundle adjustment 20 times and averaging.

Run Time Iterative FP  AFP (Without Jacobian) AFP (With Jacobian)
N =100 470 6.6 4.0
N = 1000 4200 68 48

and their true image projections were computed using the FP equation. Gaussian
noise was added both to sphere centers (¢ = 0.5 mm) and true image projec-
tions (o = [0 — 1] pixels). We compare the reconstruction error using (a) AFP,
(b) central approximation (the projection center was fixed at 0.64r mm from
the sphere center as in [2]), and (c¢) IFP [2]. IFP first computes the initial im-
age projection of a 3D point using the central approximation and then performs
non-linear optimization to minimize the distance between the 3D point and the
back-projected ray. It required ~ 5 iterations to converge in the simulations.
Figure [B] compares the reprojection error and the root mean square error
(RMSE) in 3D points for different image noise levels. Note that only when suf-
ficient iterations are performed for IFP (referred to as ‘full iterations’), its error
reduces to that of AFP (same curve). The central approximation or smaller num-
ber of iterations for IFP lead to larger errors. In Figure Bl (right), the error due
to central approximation is too large (1.5 x 10* mm) to be shown in the graph.
Run time for projecting 10° 3D points with a single sphere was 1120 seconds
for IFP (full iterations) and 13.8 seconds for AFP (~ 80 times faster). Table
compares the bundle adjustment run time, which shows that AFP along with
analytical Jacobian computation achieves a speed up of ~ 100. While the number
of iterations in bundle adjustment was almost the same for IFP and AFP, IFP
takes much longer time due to iterative optical path computation for each 3D
point and mirror pair. Similar speed-ups were obtained for elliptic, hyperbolic,
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Plane 3

Fig. 4. Input images (left) and zoom-in of sphere images (middle and right) superim-
posed with extracted SIFT features. Red dots and green crosses respectively represent
inliers and outliers determined in the iterative bundle adjustment process. Top shows
rendered image using POV-Ray and bottom shows real photo captured using a camera.

and parabolic mirrors as well (projecting 10° 3D points took 1600-1800 seconds
for IFP and 22 seconds for AFP).

4.3 POV-Ray Simulations and Real Results Using Feature
Matching

In practice, the corresponding image points are estimated using a feature match-
ing algorithm such as SIFT, and invariably contain outliers and false matches.
We first show results using SIFT on sphere images rendered using POV-Ray,
which allows performance evaluation using available ground truth data.

Figure [ (top) shows a rendered image (resolution 2000 x 2000) of four spheri-
cal mirrors, placed at the center of a cube 1000mm on each side. The walls of the
cube consist of textured planes. We extract SIFT features and select correspond-
ing points that are consistent among the four sphere images. For initial sphere
centers, we add Gaussian noise (¢ = 0.3mm) to their ground truth locations.
Since the SIFT matches contains outliers, we perform robust reconstruction by
iterating bundle adjustment with outlier removal. After each bundle adjustment
step, we remove all 3D points whose reprojection error is greater than twice the
average reprojection error. Figure [} shows that by iterating bundle adjustment
and outlier removal, the reprojection error and RMSE of 3D points reduces sig-
nificantly for all planes (from ~ 460 mm to 6 mm). Figure [ also shows the
number of inliers after each bundle adjustment step. Note that since AFP signif-
icantly reduces bundle adjustment time, this simple procedure can be repeated
multiple times and is effective in handling outliers.
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Fig.5. 3D reconstruction results for the POV-Ray data. (Left) Reprojection error.
(Middle) Average distance of reconstructed 3D points from the ground-truth (GT)
planes. (Right) Number of inliers after each bundle adjustment/outlier removal step.
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Fig. 6. 3D reconstruction results for the real data. (Left) Reprojection error. (Middle)
Average distance of reconstructed 3D points from their fitted planes. (Right) Number
of inliers after each bundle adjustment/outlier removal step.

Real Results: We used four spherical mirrors (radius 0.75”) placed with an
interval of 3”, and captured a single photo using a Mamiya 645AFD camera,
as shown in Figure @ (bottom). Each sphere image in the captured photo has
1300x 1300 resolution. To determine initial sphere centers, we mark several points
on each sphere boundary, corresponding to the rays tangential to the sphere. We
find the central ray that makes the same angle a with all the tangential rays. The
sphere center is then at a distance of " along the central ray. Figure [fl shows
the reconstruction results. Since the ground truth is not available, we fit planes
to the set of 3D points corresponding to each plane in the scene (Planes 1-4 in
Figured]) and measure the average distance error of the 3D points from the plane.
Note that this error measure includes a bias, but validates that the reconstructed
3D points are aligned on a plane with small errors (Figure [ (middle)).

5 Forward Projection for Refractive Sphere

Now we derive the forward projection equation for imaging through a refractive
sphere, which results in a non-central dioptric system. The key idea is to use the
vector equation of the refracted ray [27], instead of directly applying Snell’s law.

Let a refractive sphere of radius r and constant refractive index p be placed
at the origin of the coordinate system. Let the COP be at distance d from the
origin. As before, we consider the plane containing the optical axis and the scene
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Fig. 7. Solving the FP equation for a refractive sphere with r =1, p = 1.5 and d = 5.
(Left) 8 real solutions. (Middle) 4 solutions after constraining y > r?/d. (Right) Correct
solution after testing Snell’s law.

point P. Let n; = [a:,y]T and ny = [xg,yg]T be refraction points on the sphere,
and v; — v — w3 represent the optical path from COP to P (Figure[Il (right)).
Then vy = [z,y — d}T and nTn; = nln, = 2. Given an incoming ray v; and
normal n at a surface separating mediums of refractive index p; and po, the

refracted ray v, can be written in vector form |27] as v, = av; + bn, where

oy i TR (i )Tty

o pi2(n"'n)

This gives vIn oc +1/p?(vIn)2 — (43 — p3)(vIvi)(nTn). The correct sign is
obtained by using the constraint that the signs of vI'n and v7'n should be the
same. Since the tangent ray from COP to the sphere occurs at y = r?/d, y > r?/d

for valid refraction point. This gives vin; = r? — dy < 0. Thus,

—V{Ill — \/(vfn1)2 —7r2(1— /ﬂ)(val)

2 . (14)

1
Vo = Vi+np
o
The second refraction point ny can be written as ny + Avs for some constant A,
which can be obtained as follows.

2 =ning =72 + Nvlve +2\ving, = A= —2vin;/vlv,. (15)
The outgoing refracted ray is given by vz = pve + bsng, for some bs. Note
that the symmetry of sphere results in Vg:l’lg = —vin; and viny = —vIn;.
Using these constraints, b3 is obtained as b3 = (—vin; — pvin;)/r?. Finally,
the outgoing refracted ray vs should pass through the scene point p = [u, U]T
Thus, vs X (p — na) = 0. By substituting all the terms, we get

0:V3 X (p_n2) :>0:Kl(x,y)+K2(.’E,y)\/A+K3(SL',y)A3/2, (16)

where A = d?p2r? — d?x? — 2dp®r?y + p?r*, and K, Ko and K3 are polynomials
in  and y (provided in the supplementary materials with Matlab code). After
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Fig. 8. Bundle adjustment simulations using M = 4 refractive spheres and N = 100
3D points for different image noise levels. (Left) Reprojection error. (Right) RMSE of
reconstructed 3D points.

removing the square root terms, substituting 22 = r2 — 32 and simplifying, we
finally obtain a 10" degree equation in 7.

Figure[fshows an example of solving the FP equation for refractive sphere. In
general, when the 3D point is not on the axis, only 8 out of 10 solutions are real.
Constraining y > r2/d further reduces to 4 solutions and the correct solution is
found by testing the Snell’s law for each of them. Figure [ demonstrates that
the FP equation can be used in a bundle adjustment algorithm for sparse 3D
reconstruction using refractive spheres, similar to catadioptric systems.

6 Discussions and Conclusions

We believe that our paper advances the field of catadioptric imaging both the-
oretically and practically. Theoretically, we have derived analytical equations
of forward projection for a broad class of non-central catadioptric cameras and
have shown existence of quartic epipolar curves for spherical-mirror based cata-
dioptric systems. We hope that our work will lead to further geometric analysis
of non-central catadioptric cameras for mirror defocus, epipolar geometry, and
wide-angle sparse as well as dense 3D reconstruction. Practically, the analytical
FP and Jacobian computation significantly reduce the bundle adjustment run
time. Thus, the computational complexity of using a non-central model becomes
similar to that of a central approximation. The FP equation may be useful for
reducing the search space in dense stereo matching and for auto-calibration via
projection of scene features such as lines. We have also shown sparse 3D recon-
struction using a dioptric non-central camera with refractive spheres, by deriving
its forward projection equation. Unlike a catadioptric system, the camera is not
visible in the captured image for a refractive setup. This could be a benefit in
certain wide-angle applications, replacing expensive fish-eye lenses.
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Abstract. In practice, rigid objects often move on a plane. The object
then rotates around a fixed axis and translates in a plane orthogonal
to this axis. For a concrete example, think of a car moving on a street.
Given multiple static affine cameras which observe such a rigidly mov-
ing object and track feature points located on this object, what can be
said about the resulting feature point trajectories in the camera views?
Are there any useful algebraic constraints hidden in the data? Is a 3D
reconstruction of the scene possible even if there are no feature point
correspondences between the different cameras? And if so, how many
points are sufficient? Does a closed-form solution to this shape from mo-
tion reconstruction problem exist?

This paper addresses these questions and thereby introduces the con-
cept of 5 dimensional planar motion subspaces: the trajectory of a feature
point seen by any camera is restricted to lie in a 5D subspace. The con-
straints provided by these motion subspaces enable a closed-form solu-
tion for the reconstruction. The solution is based on multilinear analysis,
matrix and tensor factorizations. As a key insight, the paper shows that
already two points are sufficient to derive a closed-form solution. Hence,
even two cameras where each of them is just tracking one single point
can be handled. Promising results of a real data sequence act as a proof
of concept of the presented insights.

Keywords: 3D reconstruction, shape from motion, matrix and tensor fac-
torizations, feature point trajectories, affine cameras, planar rigid motion.

1 Introduction and Related Work

Setting and Objective: Assume a rigid object is moving on a plane. The
object is therefore rotating around a fixed axis orthogonal to this plane and
translations are restricted to shifts inside that plane. Multiple stationary affine
cameras observe the moving object and track feature points located on this ob-
ject. Computing correspondences across a wide baseline is a difficult problem in
itself and sometimes even impossible to solve (think of two cameras which point
at two completely different sides of the rigid object). In our setting, each camera
therefore tracks its own set of feature points. There are no feature point cor-
respondences between the different cameras. The only available correspondence

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 144@, 2010.
© Springer-Verlag Berlin Heidelberg 2010
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between the cameras is the motion correspondence: all the cameras observe the
same planar motion. This paper presents a thorough analysis of the geometric
and algebraic structure contained in 2D feature point trajectories in the camera
image planes. A closed-form solution for the reconstruction problem based on
the motion correspondence is derived.

Motivation: The reasons why an analysis of planar motions is important are
at least three-fold. Firstly, rigid planar motions are an important special case
of rigid motions. Vehicles moving on the street, traffic surveillance and analy-
sis represent prominent examples. Even data from a camera rig mounted on a
moving car behaves according to the above described setting: the camera rig
can be considered as stationary and the whole surrounding world as a moving
rigid object. Because the car is moving on the ground plane, the motion is re-
stricted to a planar motion. Secondly, in a fully practical system, we have to
deal with missing data, i.e. lost feature tracks. It is unreasonable to assume in
a practical scenario having feature tracks over a long temporal sequence. Thus
in practice, we are limited to trajectories over a short period of time. However,
continuous motions over a short period can often be well approximated by a ro-
tation and translation in a plane. The third reason is theoretical curiosity. What
can be gained by using an affine rather than a projective camera model? What
multiple-view insights are hidden in 2D feature trajectories obtained under the
given setting? The elegance of a theoretical exact derivation of a closed-form
solution under the given assumptions should not be despised either.

Main Contributions: A thorough theoretical analysis of the important special
case of planar rigid motions observed by multiple stationary affine cameras is
presented. Specifically, any feature point trajectory seen by any camera is re-
stricted to a 5 dimensional subspace which is common amongst all the cameras.
A general framework for planar motions is proposed. This framework together
with the theoretical insights enables a reconstruction algorithm which provides
a closed-form solution as long as the total number of tracked points is larger
or equal than two. Hence, the two minimal cases of one single camera tracking
two points or two cameras where each of them is tracking only one point can be
handled by the algorithm. No correspondences between different camera views
are required. Moreover, the algorithm fuses the data of all the cameras in order
to compute a robust reconstruction.

Related Work: There is a long history in computer vision about factorizations
for the structure from motion problem under affine cameras. Due to lack of space,
the interested reader is also referred to references contained in the mentioned
related work. The initial work by Tomasi and Kanade [I] about monocular rigid
factorizations initiated many variations and extensions, such as deformable [2]
and articulated objects [3/4]. The concept of motion subspaces has also widely
been used for feature trajectory motion segmentation [5]. Factorization based
approaches with a projective camera model have been proposed in [6]. Some
methods have been suggested to handle missing data in the feature trajectories
due to occlusions or outliers [7I8]. The monocular structure from planar motion
problem has previously attracted some interest [9/10]. However, these approaches
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either resort to iterative solutions or require additional information, like e.g. the
relative position of the plane of rotation w.r.t. the camera.

Extensions of the factorization approach to the case of multiple cameras ob-
serving the same scene have also been proposed, even though less numerous.
Most of them [TTJ12] require feature point correspondences between the cam-
eras to be known. Methods which deal with non-overlapping camera views are
generally not based on factorization approaches (e.g. hand-eye-calibration [13]).
However, a separate reconstruction for each camera is usually computed and thus
strong assumption about the captured data are implicitly assumed. The classi-
cal factorization approach [I] has recently been extended to the multi-camera
case [14]. This extensions considers the same setting, except the rigid object is
assumed to move fully general in 3D space whereas we assume the object to
move on a plane. This minor distinction has far reaching consequences. For ex-
ample, we will see in Sec. [ that this requires the object to rotate around at
least 6 different axes of rotation, otherwise the 13 dimensional motion space is
only spanned partially. The 13 dimensional factorization will thus fail miserably
if applied to planar motions.

2 Rigid Planar Motions as Vectors in 5D Subspaces

This section presents how rigid planar motions can be embedded in linear sub-
spaces. The general case of non-planar rigid motions has already been inves-
tigated [I4]. In contrast to that work, where 13-dimensional subspaces were
required, planar motions only ask for 5D subspaces.

Some notational conventions have to be defined first. The orthogonal pro-
jection matrix onto the column space of a matrix A is denoted as Pa. The
projection matrix onto the orthogonal complement of the columns space of A
is IP’}& =1 — Pa. A matrix whose columns span the orthogonal complement of
the columns of matrix A is denoted as A . Concatenation of multiple matri-
ces indexed with a sub- or supscript i is represented with arrows. For example,
[{}; A;] concatenates all the matrices A; below each other, implicitly assuming
that each of them consists of the same number of columns. The Matlab® stan-
dard indexing notation is used for the slicing operation (cutting out certain rows
and columns of a matrix). Multiplication of a tensor 7 along its i-th mode with
the matrix A is denoted as 7 x; A. The matrix which results by flattening a
tensor along mode i is written as 7(;). We refer to [I5] for an introductory text
on multilinear algebra, tensor operations and decomposition.

The rotation around an axis a by an angle a can be expressed as a rotation
matrix Ra o = cosalz+(1—cosa)aal +sina[a], , where [a],, denotes the skew-
symmetric cross-product matrix. Rotation matrices Ra o around a fixed axis a
are thus restricted to a three dimensional subspace in nine dimensional Euclidean
ambient space vec (R) = [vec (I5) vec (aa®’) vec ([a], )] (cosa 1 — cosa sin a)T
where vec () vectorizes a matrix by stacking its columns below each other in a
column vector. Let the columns of V € R3*?2 denote an orthonormal basis for the
orthogonal complement of the rotation axis a, i.e. these columns span the plane
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orthogonal to the rotation axis. A rigid motion in this plane (i.e. the rotation is
around the plane normal and the translations are restricted to shifts inside the
plane) is then given by

Ra. Vt vec (Ra,a) vec (I3) vec (aaT) vec ([a]x) 09x2 1 ios(f;a
O1x3 1 & vee th) T | 03x1 031 03x1 \4 sina |» (1)
0 O1x2 t

which shows that any rigid motion in this plane is restricted to a five dimen-
sional subspace of 13-dimensional (or 16 if zero-entries are not disregarded)
Euclidean space. Interestingly, by noting that the space of symmetric rank-1
matrices vec (aaT) considered as a linear space is 6 dimensional, we see that
rotations around at least six different axes of rotation are required to span the
full 13-dimensional space (the vector space of skew-symmetric matrices [a], is 3
dimensional and thus rotations around 3 different axes already span this space).

3 Tensor Notation

Feature trajectories of points undergoing a planar rigid motion seen by different
cameras can be arranged as a 3'%-order tensor. Such a representation clearly
reveals the interplay between the three involved subspaces, namely the subspace
of the cameras, the points, and the planar rigid motion. The structure (homo-
geneous coordinates of the N feature points) is given by S € R*N | the K
affine cameras (each of them consisting of two camera axes) are described by
P ¢ R?X*4 and the motion over F frames will be described by the motion ma-
trix M € RF*X5, The projection matrix of camera k is denoted as P* € R2*4
the points tracked by this camera as S*¥ € R**Vr. The combined camera matrix
is thus P = [|}; P*], and the combined point matrix S = [= S*]. The axis of
rotation is denoted with the unit vector a and the two columns of V € R3*2 are
an orthonormal basis for the space orthogonal to the rotation axis. The image
coordinate Wiy, 7., of feature point n, at frame f, seen by camera axis k is thus

Rao, Vt
Wik, 0] = P,y [ o f} Siin) = VeC<

Ra.o, Vt;]\" -
O1xs 1 ! fD St ®Purg] , (2)

O1x3 1

where the Kronecker product property vec (AXB) = [BY @ A] vec (X) has been
used in the second step. The values W 7, are interpreted as a third order
tensor. In contrast to [14], planar rigid motions are restricted to a five rather
than a 13-dimensional space (as we have seen in Sec.[2]). Thus, the core tensor C €
R5*4x4 which captures the interactions between the three subspaces, becomes
in its flattened representation along the temporal mode

vec (I3)T 01><3 1
C .- |vec (aaT)T Oi1x3 1 Is ® [Is 03x1] Ogxa R5%16 3
£ = T 0 I € ( )
vec ([a], )" Oixs O 4x12 4
02x9 V7T 0251



148 R. Angst and M. Pollefeys

and the data tensor is described as a Tucker tensor [I5] decompositior[] W =
C x; P x; M x,, ST € REX2EXN These equations can be derived by arranging
the values of Eq. (@) in matrix form W = [Ufjk,n W[f,k,n]] , plugging in Eq. ()
for the planar rigid motions, using Eq. (8] to properly combine the rigid motion
matrix with the Kronecker product of the points and camera matrices, and
defining the motion matrix as

M= [y (cosaf,(l—cosaf),sinaf,t?)}. (4)

The resulting matrix is exactly the same as the data tensor flattened along the
temporal mode W = W) = MCy) [S ® PT]. The interested reader is referred
to related work [I4UI5] for more details on tensorial representations.

4 Ambiguities

t t .
Let Qp = Rp tr and Qg = Rs ts denote two affine transformations of
O1x3 1 O1x3 1
the global camera reference frame and the global point reference frame, respec-
tively. The factorization is obviously ambiguous

aa; Vg

_ R _
Wikt = P Qp'Qp {01“ 1 ] QsQ5'S( - (5)

In tensor notation, this equation looks like

W= (Cx,Qp xr Qum xn Q) x1 PQp' x; MQ}/ % (S7Q57),  (6)

where transformations Qp and Qg which are restricted to similarity transforma-
tions inside the plane of motion can be compensated by a corresponding trans-
formation Qp; of the reference frame of the motion. In mathematical terms,
the overconstrained system C X, Qp Xy Qur Xn Qg = C can be solved exactly
for Qur, i.e. Qar = Cyypy [le ® Q;T] z(f) where A* denotes the Moore-Penrose

pseudo-inverse. Since the first three columns of MQ&1 should still lead to proper
rotations, the scaling factor of the similarity transformations of the cameras and
points must cancel each other. A reconstruction inside the plane of rotation is
thus unique up to two similarity transformations with reciprocal scaling (one
for the cameras and one for the points). Similarity transformations with re-
ciprocal scalings seem to be the only transformations which allow a solution to
CxrQpxfQum ang = C. This fact will be important later on in our algorithm:
Given a reconstruction inside the plane of rotation with proper algebraic struc-
ture, we are guaranteed that such a reconstruction is unique up to a similarity
transformation.

Transformations of the points or cameras outside the plane of rotation can not
be compensated by a transformation of the motion. A out-of-plane transforma-
tion of the cameras has to be compensated directly by a suitable transformation

b, X s, and X, indicate the mode-i product along the mode corresponding to the
camera matrix, the motion matrix, and the point matrix, respectively.
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of the points. Let Z, ) = [V a] diag (I2, A) [V a]T be a scaling along the rota-
tion axis, R an arbitrary rotation matrix, and t| = a8 a translation along the
rotation axis. With the camera and point transformations

. RZ, —Rza,)\tH
Qr = 1

—1nT
and QS — l:za,AR t|:|
O1x3

Oi1xs 1 0
it can be shown that Ca v X Qp X5 QT = Cra,rv Where C, v denotes the core
tensor with rotation axis a and orthogonal complement V. Note that neither
the scaling nor the translation along the rotation axis influences the core tensor
or the motion matrix. Hence, there is a scaling and translation ambiguity along
the axis of rotation.

In the problem we are targeting, there are no point correspondences between
different cameras. In this situation there is a per camera scale and translation
ambiguity along the rotation axis. There is still only one global out-of-plane
rotation ambiguity: the transformation of the rotation plane is still linked to
the other cameras through the commonly observed planar motion, even in the
presence of missing correspondences. Fortunately, as we will see later, the scale
ambiguity along the rotation axis can be resolved by using orthogonality and
equality of norm constraints on the camera axes. The translation ambiguities
along the rotation axis however can not be resolved without correspondences
between different camera views. Nevertheless, by registering the centroids of the
points observed by each camera to the same height along the rotation axis, a
solution close to the ground truth can usually be recovered.

5 Closed-Form Solution

In contrast to a rank-13 motion subspace, one camera is sufficient in order to
span the complete 5 dimensional motion subspace of a planar motion. This leads
to the following idea: Intuitively, a separate reconstruction can be made for each
camera. These separate reconstructions are unique up to the ambiguities men-
tioned previously. This especially means that the reconstruction of each camera
restricted to (or projected onto) the plane of rotation is a valid similarity recon-
struction, i.e. the individual reconstructions are expressed in varying coordinate
reference frames which, however, only differ from each other by similarity trans-
formations. Using knowledge from the 5D-motion subspace, these reconstruc-
tions can then be aligned in a consistent world reference frame. If the additional
assumption is made that the two camera axes of each camera are orthogonal
and have equal norm (the norm can vary between different cameras) then the
coordinate frame of the reconstruction can be upgraded to a similarity frame in
all three dimensions. We thus end up with a consistent 3D-reconstruction.
There is a major drawback of the above algorithmic sketch. The fact that all
the cameras observe the very same rigid motion is only used in the final step
to align all the individual reconstructions. It is a desirable property that the
information from all the cameras should be fused right at the first stage of the
algorithm in order to get a more robust reconstruction. Furthermore, in order to



150 R. Angst and M. Pollefeys
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Fig. 1. Visual representation of the rank-5 factorization. Missing data entries due to
missing correspondences between different cameras are depicted transparently.

compute the initial reconstruction of a camera, this camera needs to track at least
two points. If the camera tracks only one feature point, a reconstruction based
solely on this camera is not possible: at least two points are necessary to span the
5D-motion subspace. The algorithm which is presented in the upcoming sections
on the other hand does not suffer from these shortcomings. The algorithm fuses
the information from all the cameras right at the first stage and works even
when each camera tracks only one single point. Last but not least, the algorithm
provides a closed-form solution.

5.1 Rank-5 Factorization

In a similar spirit to [I4], we can fuse the data from all the cameras in order
to compute a consistent estimate of the motion matrix. The data tensor W* €
REF*2xNe of each camera, is flattened along the temporal mode and the resulting
matrices Wk = W(kf) = MCS* ® P*" are concatenated column-wise in a

combined data matrix W = [=; WF]. A rank-5 factorization (e.g. with singular
value decomposition) of this combined data matrix reveals the correct column

span span (M) = span (M) of the motion matrix

W = MA = [i}f cosay 1 —cosay sinay ty 1 tf,2] C(f) [:Nc S* ®PkT} , (8)
< ~ N - 4

:MQ :Q—lA

where we have introduced the corrective transformation Q € R%*5 in order to
establish the correct algebraic structure. This factorization separates the tem-
porally varying component (the motion) from temporally static component (the
points and the cameras). The factorization is possible since all the cameras share
the same temporally varying component as all of them observe the same rigid
motion. If all the cameras only track two points in total, the combined data
matrix W will then only consist of four columns and thus a rank-5 factorization
is obviously impossible. Luckily, we know that the first two columns of the motion



5D Motion Subspaces for Planar Motions 151

matrix in Eq. @) should sum to the constant one vector. Hence, only a rank 4
factorization of the data matrix W is performed, the resulting motion matrix is
augmented with the constant one vector M «— [M, 15 x1] and the second factor is
adapted correspondingly A~ [AT, 02nx1]T. The rest of the algorithm remains
the same.

The corrective transformation is computed in a piecewise (or stratified) way.
Specifically, the corrective transformation is split into three separate transfor-
mations Q = ngQome;}mSl where the transformation Q;, establishes the
correct trigonometric structure on the first three columns of the motion matrix,
Qorient aligns the orientations of the cameras in a consistent similarity refer-
ence frame, and Qyrqns is related to correctly translate the reconstruction. The
individual steps are described in detail in the next sections.

5.2 Trigonometric Structure

The first three columns of Q = [q1,q2,q3, 44, gs] can be solved for in the fol-
lowing way: since M[fﬁ]qiqfl(/[%}’:] = M[N]z we have

Mg ((an + a2)(ar + q2) )M ;= (cosay + (1 —cosay))* =1 (9)
Mg (aia] + aqsaql )M{} ; = cos® ay + sin® ap = 1. (10)

These observations lead to F' constraints on symmetric rank-2 matrix qqu +
q3q7, symmetric rank-1 matrix (qi +q2)(q1 +q2)7, or symmetric rank-3 matrix
b(aiaf +asza3) + (1 = b)(a1 + q2)(a1 + q2)” with b € R:

1 =M (@ + q2)(ar + a2)" )M}y = Mg g(aal +qsaf )M, (11)
= Mz (b(aral +asad) + (1= b)(aia] +axa]))M]; (12)

These F equations are linear in the unknown symmetric matrices and result
in a one dimensional solution space (since there is a valid solution for any
b € R). [16] shows how to extract the solution vectors qi, g2, and q3 from
this one dimensional solution space. Once this is done, the corrective transfor-
mation Qg = [ql q2 g3 [q1 a2 qg] ] is applied to the first factor l\A/Ing
which establishes the correct trigonometric structure in the first three columns.
The inverse of this transformation is applied to the second factor A= ng
Note that the structure of the first three columns of the motion matrix should
not get modified anymore and hence any further corrective transformation must
have upper block-diagonal structure with an identity matrix of dimension 3 in
the upper left corner. The inverse of such an upper block-diagonal matrix has
exactly the same non-zero pattern, i.e.

Is Qsx2| | Iz Osx2 Is Qsx2
o Qurient = - . a3
Qéransi Qorient |:02><3 I } |:02><3 szz] |:02><3 Qax2 (13)
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5.3 FEuclidean Camera Reference Frame

No more information can be extracted from the motion matrix and thus, we turn
our attention to the second factor A which after applying a proper transforma-
tion should have the following algebraic form

0253 Qax2

This is a particularly tricky instance of a bilinear system of equations in Q3zx2,
Q2x2, S*, and P*. Based on our experiences, even algebraic computer software
does not succeed in finding a closed-form solution. Nevertheless, we succeeded
in deriving manually a solution using geometric intuition and reasoning.

A= {I?’ Q?’XQ}A Cs {:>kSk®PkT. (14)

Projection onto Plane of Rotation. Eq. (I4) together with the known ma-
- T
trix Cy) in Eq. (@) tells that A5, = {:ﬁg lixn, ® (Pﬁ,LS]VQ;fQ) }, which

means that the columns of Apy;5 ) contain the coordinates (w.r.t. the basis V)
of the projection of the rows of the camera matrices onto the plane of rotation.
These coordinates however have been distorted with a common, but unknown
transformation Q2. This observation motivates the fact to restrict the recon-
struction first to the plane of rotation. Such a step requires a projection of the
available data onto the plane of rotation. [I6] shows that this can be done by
subtracting the second from the first row and keeping the third row of Eq. (I4).

_é —01 (1):| A[l:S,:] + |:é _01 (1):| Q3><2 A[4:5’:] (15)
) :T\2,><2 i
[ vec (Pv)” . o
- vec ([a] )T [:>’“ (va[lczs,:]) ® (PVP[:J:S] ﬂ (16)
-veC(PV)T k -1 Tpk T
~ lvec ([a] )T |::>k: (va[m,:]) ® (VQazx2) <Q2x2V P13 ﬂ ) (17)

In the last step we have used Py = VQ2X2Q5X12VT and the parenthesis in the

last term should stress out that for for all the cameras the term Q1 , V' P[ 1. S]T

can be read off from A[4: 5,;]- The unknowns of this bilinear equation are the points
and the 2-by-2 transformations Toyo and Qaxo.

Per-Camera Reconstruction in the Plane of Rotation. Eq. (IT7) describes
a reconstruction problem in a plane which is still bilinear. As with any rigid
reconstruction, there are several gauge freedoms. Specifically, the origin and the
orientation of the reference frame can be chosen arbitrarilyld. In the planar case,

2 The first three columns of the motion matrix have already been fixed and the trans-
lation of the cameras has been lost by the projection step. Thus, there is only one
planar similarity transformation left from the two mentioned in Sec. @
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this means a 2D offset and the orientation of one 2D vector can be chosen freely.
In the following we will make use of the gauge freedoms in order to render
this bilinear problem in multiple sequential linear problems. The reconstruction
procedure described in the upcoming paragraphs could be applied to one single
camera. This would provide Taxo and Qax2 which could then be used to solve
for the points in the remaining cameras. However, increased robustness can be
achieved by solving the sequential linear problems for each camera separately
and aligning the results in a final step in a consistent coordinate frame. For each
camera, the gauge freedoms will be fixed in a different way which enables the
computation of a reconstruction for each camera. The reference frames of the
reconstructions then differ only by similarity transformations. This fact will be
used in the next section in order to register all the reconstructions in a globally
consistent reference frame.

In single camera rigid factorizations, the translational gauge freedoms are usu-
ally chosen such that the centroid of the points matches the origin of the coordi-
nate system, i.e. IbSlel = 0. We will make the same choice I\h Sklkal =0

on a per-camera basis. Let A* denote the columns of A corresponding to cam-
era k. By closer inspection of Eq. (T']) and with the Kronecker product property
[AB] ® [CD] = [A ® C] [B ® D] we get

1-10]| « - 1
HO 0 1] Aﬁi?w] + T2X2Afc4:5,:]} |:Nk In, 1 ® 12:|

vec (IP’V)T < X 1 ) -
- PvSpis,. 1 PvPy . =0 . 18
[vec ([a]x)T VOI1:3,] Ny Npx1 | ® ( vP[ 1.3 ) 9% 2 (18)

The last equation followed since the centroid has been chosen as the origin. The
above linear system consists of four linearly independent equations which can
readily be solved for the four unknowns in Toxo.

The remaining two gauge freedoms are due to the arbitrary choice of the
orientation of the coordinate frame inside the plane of rotation. These gauge
freedoms can be chosen s.t. the first row (1 0) Pﬁl:g}V of the k' camera matrix

equals the known row (1 0) Pﬁ 1::,)]VQQXTQ. Such a choice poses two constraints
on Qax2

(L0) P 1V = (10) (P} 1y vQsh) = (10) (P VQ:%) QL (19)

Knowing Toxo as well as the first row of Pﬁ 1::,)}V implies that the remaining

unknowns in every second column of AF (i.e. the columns which depend on
the first row) are only the points. This results in 2NV linear equations in the
2N} unknowns of the projected point coordinates PVSFI:S,:]' After solving this
system, only the entries of Qa2 are not yet known. The two linear constraints
of Eq. (I9) enable a reparameterization with only two parameters Qax2 = Qo +
A1 Q1+ A2Qa. Inserting this parameterization into Eq. (T and considering only
every other second column (i.e. the columns corresponding to the second row of
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the camera) leads to a linear system in A; and Ay with 2N} linear equations.
The linear least squares solution provides the values for A; and As.

The above procedure works fine as long as every camera tracks at least two
points. Otherwise the computation of A\; and Ay in the final step will fail because
of our choice to set the mean to the origin. The coordinates of the single point
are then equal to the zero vector and hence, this single point does not provide
any constraints on the two unknowns. In order to avoid this problem we use the
following trick: instead of choosing the origin as the mean of the points which are
tracked by the camera currently under investigation, the origin is rather fixed
at the mean of the points of another camera. Such a choice is perfectly fine as
the origin can be chosen arbitrarily. The computation of Toys for camera k is
therefore based on the data of another camera k' # k. This clever trick allows
to compute a reconstruction even for cameras which only track one single point.

Registration in a Common Frame Inside the Plane of Motion. After the
previous per-camera reconstruction a camera matrix is known for each camera.
Let P* denotes its first three columns whose projection onto the plane of rotation
is correct up to a registration with a 2-by-2 scaled rotation matrix A\yRy. On the
other hand, we also know the projections Pff’l::,)]VQQ_XT2 of the camera matrices
onto the plane of rotation up to an unknown distortion transformation Qaxo
which is the same for all the cameras. This implies f’kVRk)\k = Pﬁm]V and

thus
~ ~ _ _ T
PrVVIPRTAL = (Pﬁ,lzs]VszTz> Q.2Qzx2 (szlszPﬁ,lzs] ) - (20)

This is a linear system in the three unknowns of symmetric Q2. ,Qax2 and K
scale factors )\i which is again solved in the least squares sense. Doing so provides
a least squares estimate of the three unknowns of QI ,Qax2. An eigenvalue
decomposition EAET = QI ,Qax2 provides a mean to recover Qayxz = ETA:
which allows to express the projections of the camera matrices PF;,L?,]PV =

(Pﬁ,LS]VQ;XTQ) QL. , VT onto the plane in one single similarity frame.

Orthogonality and Equality of Norm Constraints. As has been previously
mentioned, the correct scaling along the rotation axis can only be recovered by
using additional constraints, like the orthogonality and equal norm constraints
on the two camera axes of a camera. These constraints will be used in the
following to compute the remaining projection of the camera matrix onto the
axis of rotation. Due to Pﬁ,l:?»] = Pﬁ,1;3] (Py +P,) and Py P, = 0 we get /\ilg =
k T _ pk kT k kT
PP g = PLugPVvPl 1y TP gPaPp 1
Thanks to the previous registration step, the projections PF;,L?,]PV are known
T T .
for all cameras. As Pﬁ,l:s]PaPﬁ,l:s] = Pﬁl:s]aaTPﬁ’l:?)] and replacing Pﬁl:?’]a
by w*, the unknowns of the above equation become \;, and the two components
of the vector w”*. This results in K independent 2"%-order polynomial system
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of equations with 3 independent equations in the three unknowns w* and .
Straight-forward algebraic manipulation will reveal the closed-form solution to
this system (see [16] for details). Once w* is recovered, the camera matrix is given
by solving the linear system Pﬁ,1:3] [Pv,a] = Pﬁ,I:S]IP’V,wk}. The solution of
the polynomial equation is unique up to the sign. This means that there is a
per-camera sign ambiguity along the axis of rotation. Note that this is not a
shortcoming of our algorithm, but this ambiguity is rather inherent due to the
planar motion setting. However, the qualitative orientations of the cameras w.r.t.
the rotation axis are often known. For example, the cameras might be known to
observe a motion on the ground plane. Then the axis of rotation should point
upwards in the camera images, otherwise the camera is mounted upside-down.
Using this additional assumption, the sign ambiguity can be resolved.

Using the orthogonality and equality of norm constraints, it is tempting to
omit the registration step in the plane of rotation and to directly set up the
system of equations

T T T
Ml =Pl 5Pl g =PligPvPl g +PligPaP" 1y (21)

_ _ T T
= <PE€:,1:3]VQ2>’<TZ> Q2TX2Q2x2 (QQ;ZVTPF:,LS] > + whw* (22)

in the three unknowns of QgXQngg, the 2K unknowns of w*, and the K
unknowns )\ﬁ. Interestingly, these constraints on the camera axes are insufficient
to compute a valid matrix Qa5 and valid vectors w*, even using non-linear local
optimization methods (there are solutions with residuum 0 which however turn
out to be invalid solutions). Moreover, experiments showed that this nonlinear
formulation suffers from many local minima. This observation justifies the need
for the registration step in the plane of motion.

Final Step. Once the first three columns of the camera matrices are known in
an Euclidean reference frame, the first three rows in Eq. (I4]) become linear in the
unknowns Qsx2, S, and the camera translations. A least squares approach again
provides the solutions to the unknowns of this overdetermined linear system. The
linear system has a 4 + K-dimensional nullspace in the noisefree case: 4 degrees
of freedom due to the planar translational ambiguities (planar translation of the
points or the cameras can be compensated by the planar motion) and K degrees
of freedom for the per-camera translation ambiguities along the axis of rotation.

6 Results

If synthetic data is generated with affine cameras and without noise, the algo-
rithm expectedly finds the exact solution in closed-form, even for the case of only
two cameras each of them tracking one single point. Based on our experience
with synthetic data according to a more realistic setting (i.e. projective cam-
era models with realistic internal parameters, some noise and plausible planar
motions) we concluded that the robustness of the algorithm strongly depends
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wae)

Fig. 2. Reconstruction of a planarly moving box: The right image shows a close-up
view of the reconstructed structure (tags tracked by one specific camera share the
same color)

on the observed motion. This is actually an expected behavior. If the motion
clearly spans the 5D motion subspace, the algorithm works robustly. However, if
a dimension of this subspace is not explored sufficiently, noise will overrule this
dimension and the reconstruction will deteriorate.

As a proof of concept the algorithm has been applied to a real data sequence.
Fig. 2 shows the results of a real sequence with four cameras observing the pla-
nar motion of a rigid box. The translation ambiguity along the rotation axis has
been resolved s.t. the centroids of the front-facing tags share the same coordi-
nate along the axis of rotation. A template based tracker [I7] has been used to
generate the feature trajectories. Each camera tracked between 10 to 20 points.
Even though some cameras actually tracked the very same points, the algorithm
was purposely not aware of these correspondences. Such hidden correspondences
allow to evaluate the accuracy of the reconstruction. Based on the overlapping
area of the 3D model of the tracked feature tags, we conclude that the algorithm
succeeds in computing an accurate reconstruction given the fact that the recon-
struction is based on the approximate affine camera model and the solution is
given in a non-iterative closed-form. The reprojection error of the closed-form

solution is \/F;:k N W —MC(y) [=k Sk ® PT] || r = 8.95 pixels (the resolution

of the cameras is 1920 x 1080). A successive nonlinear refinement step still based
on the affine camera model did not improve the reprojection error. This provides
evidence that most of the error is due to the discrepancy between the employed
affine camera approximation and the real projective cameras and not due to the
sub-optimal sequential steps of the closed-form solution.

7 Conclusions and Future Work

This paper presented an analysis of a planarly moving rigid object observed by
multiple static affine cameras. The theoretical insights gained thereby enabled
the development of an algorithm, which provides a closed-form solution to the
shape from motion reconstruction problem where no feature point correspon-
dences between the different camera views exist. The motion correspondence,
namely that all the cameras observe the same planar motion, was captured by a
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5D motion subspace. As future work, we plan to adapt the planar motion sub-
space constraint to a formulation with projective camera models. This probably
asks for iterative solutions for which the closed-form algorithm might provide a
good initialization. We also consider trying whether the rank-5 constraint could
be used as a means to temporally synchronize multiple camera streams.
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3D Reconstruction of a Moving Point from a
Series of 2D Projections
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Abstract. This paper presents a linear solution for reconstructing the
3D trajectory of a moving point from its correspondence in a collec-
tion of 2D perspective images, given the 3D spatial pose and time of
capture of the cameras that produced each image. Triangulation-based
solutions do not apply, as multiple views of the point may not exist at
each instant in time. A geometric analysis of the problem is presented
and a criterion, called reconstructibility, is defined to precisely charac-
terize the cases when reconstruction is possible, and how accurate it can
be. We apply the linear reconstruction algorithm to reconstruct the time
evolving 3D structure of several real-world scenes, given a collection of
non-coincidental 2D images.

Keywords: Multiple view geometry, Non-rigid structure from motion,
Trajectory basis, and Reconstructibility.

1 Introduction

Without making a priori assumptions about scene structure, it is impossible
to reconstruct a 3D scene from a monocular image. Binocular stereoscopy is a
solution used both by biological and artificial systems to localize the position
of a point in 3D via correspondences in two views. Classic triangulation used in
stereo reconstruction is geometrically well-posed as shown in Figure [[(a). The
rays connecting each image location to its corresponding camera center intersect
at the true 3D location of the point — this process is called triangulation as
the two rays map out a triangle with the baseline that connects the two camera
centers. The triangulation constraint does not apply when the point moves in the
duration between image capture, as shown in Figure[I{b). This case abounds as
most artificial vision systems are monocular and most real scenes contain moving
elements.

The 3D reconstruction of a trajectory is directly analogous to monocular
image reconstruction: it is impossible to reconstruct a moving point without
making some assumptions about the way it moves. In this paper, we represent the
3D trajectory of a moving point as a compact linear combination of a trajectory

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 158 2010.
© Springer-Verlag Berlin Heidelberg 2010
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1=AX+(I-A)C

73 ? col(®")

(a) Static point triangulation

X : Point trajectory col(+) : Column space
C : Camera trajectory @© : Trajectory basis
=) B : Coefficients f} : Estimated coefficient
(b) Point trajectory estimation (c) Geometry of 3D trajectory reconstruction

Fig. 1. (a) A point in projective space, P, is mapped to P2. From two views, the 3D
point can be triangulated. (b) From a series of images, a point trajectory, P3K also
imaged to P2. To estimate the trajectory, at least three projections are required when
the number of parameters describing the trajectory is 6 (2 for each coordinate, z, y,
and z). (¢) Geometric illustration of the least squares solution of Equation (#l). The
estimated trajectory @B is placed on the intersection between [ containing the camera
trajectory space and the point trajectory, and the p space spanned by the column space
of the trajectory basis matrix, col(®).

basis and demonstrate that, under this model, we can recover the 3D motion
of the point linearly, and can handle missing data. By posing the problem in
this way, we generalize the problem of triangulation, which is a mapping from
P3 — P2, to 3D trajectory reconstruction, as a mapping P>, — P2 where
3K is the number of the trajectory basis required to represent the 3D point
trajectory@.

The stability of classic triangulation is known to depend on the baseline be-
tween camera centers [3]. In this paper, we characterize an instability encoun-
tered when interference occurs between the trajectory of the point and the tra-
jectory mapped out by successive cameras centers. We demonstrate that the
accuracy of 3D trajectory reconstruction is fundamentally limited by the corre-
lation between the trajectory of the point and the trajectory of successive camera
centers. A measure called reconstructibility is defined which can determine the
accuracy of reconstruction, given a particular trajectory basis, 3D point trajec-
tory, and 3D camera center trajectory. The linear reconstruction algorithm, in
conjunction with this analysis, is used to propose a practical algorithm for the
reconstruction of multiple 3D trajectories from a collection of non-coincidental
images.

! Related observations have been made in [1, 2].
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2 Related Work

When correspondences are provided across 2D images in static scenes, the method
proposed by Longuet-Higgins [4] estimates the relative camera poses and triangu-
lates the point in 3D using epipolar geometry. In subsequent research, summarized
in |3,15,16], the geometry involved in reconstructing 3D scenes has been developed.
While a static point can be estimated by the triangulation method, in the case
where the point may move between the capture of both images the triangulation
method becomes inapplicable: the line segments mapped out by the baseline and
the rays from each camera center to the point no longer form a closed triangle
(FiguredI(b)).

The principal work in ‘triangulating’ moving points from a series of images is
by Avidan and Shashua [7], who coined the term trajectory-triangulation. They
demonstrated two cases where a moving point can be reconstructed: (1) if the
point moves along a line, or (2) if the point moves along a conic section. This
work inspired a number of papers such as the work by Shashua and Wolf [1], who
demonstrated reconstruction for points moving along planes, and the work by
Kaminski and Teicher |8] who extended to a general trajectory using the poly-
nomial representation. Wolf and Shashua [9] classified different manifestations
of related problems, analyzing them as projections from P to P2.

In this paper, we investigate the reconstruction of the 3D trajectory of a
moving point where the motion of the point can be described as a compact
combination of a linear trajectory basis. This generalization allows far more
natural motions to be linearly reconstructed. We demonstrate its application
in reconstructing dynamic motion of objects from a series of image projections
where no two image projections necessarily occur at the same time instant.

The reconstruction of dynamic motion from monocular sequences, or nonrigid
structure from motion, is one such domain. The seminal work of Bregler et al. [10]
introduced linear shape models as a representation for nonrigid 3D structures,
and demonstrated their applicability within the factorization-based reconstruc-
tion paradigm of Tomasi and Kanade |11]. Subsequently, numerous constraints
and techniques have been proposed to specify shape priors depending on models
such as facial expressions and articulated body motions [12-16]. In contrast to
these methods which represent the instantaneous shape of an object as a linear
combination of basis shapes, Akhter et al. [17] proposed analyzing each trajec-
tory as a linear combination of basis trajectories. They proposed the use of the
Discrete Cosine Transform as a basis, and applied factorization techniques to
estimate nonrigid structure. The primary limitation of these factorization-based
methods is: (1) the assumption of an orthographic camera, and (2) their inabil-
ity to handle missing information. Several papers have relaxed the constraint of
orthography, such as Hartley and Vidal [2] and Vidal and Abretske [18], and the
work by Torresani et al. |[L5] can handle missing data. However, these algorithms
remain unstable and have been demonstrated to work only for constrained data
like faces or motion capture; studies of this instability have been pursued by
Xiao et al. [12] and Akhter et al. [19].
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Unlike previously proposed methods, we do not pursue a factorization based
solution. Instead we propose a linear solution to reconstruct a moving point
from a series of its image projections inspired by the Direct Linear Transform
algorithm [3]. In conjunction with rigid structure from motion estimation, and
the trajectory based representation of points, this facilitates the first practical
algorithm for dynamic structure reconstruction. It is able to handle problems
like missing data (due to occlusion and matching failure) and estimation insta-
bility. An analysis is presented which geometrically describes the reconstruction
problem as fundamentally restricted by the correlation between the motion of
the camera center and the motion of a scene point trajectory. This analysis is
leveraged to estimate an optimized trajectory basis to represent scene point mo-
tion, given an estimated camera center trajectory. We will assume that scene
point correspondences have been provided, and that the relative locations of the
view-points have been estimated, and that the basis describing the trajectory
are pre-defined: these are reasonable assumptions that will be justified presently.

3 Linear Reconstruction of a 3D Point Trajectory

For a static point in 3D projective space, correspondences across a pair of images
enable us to triangulate as shown in Figure[I[a). Traditional triangulation solves
for a 3D point from an overconstrained system because there are three unknowns
while the number of equations is 2F, where F' is the number of images. For a
3D point trajectory, if it can be represented by K parameters per coordinate,
the projection is P3( — P2 as shown in Figure [[(b). As was the case with
static point projection, if 2F > 3K, solving for a 3D trajectory becomes an
overconstrained problem. Using this observation, we develop a linear solution
for reconstructing a point trajectory given the relative poses of the cameras and
the time instances the images were captured.

For a given ith camera projection matrix, P; € R3*4, let a point in 3D,
X; = [Xi Y, Zi]T, be imaged as x; = [J;Z yi]T. The index ¢ used in this paper
represents the ith time sample. This projection is defined up to scale,

R R T

where []x is the skew symmetric representation of the cross product [3]. This
can be rewritten as an inhomogeneous equation,

{?} P;13X; =— {?] P4,
X X

where P; 1.3 and P; 4 are the matrices made of the first three columns and the
last column of P;, respectively, or simply as Q;X; = q;, where,

Qi = ([T] ) Pi,1:3> , Qi = ([T] ) Pz‘,4> ;
1:2 1:2
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and (-);., is the matrix made of two rows from (-). By taking into account all
time instants, a closed form for the 3D point trajectory, X, can be formulated
as,

Q: X qi
. Sl=1 ], orQX=aq, (2)
Qr | | Xr qr

where F' is the number of time samples in the trajectory. Since Equation (2))
is an underconstrained system (i.e. Q € R2¥*3F) there are an infinite number
of solutions for a given set of measurements (2D projections). There are many
ways to constrain the solution space in which X lies. One way is approximating
the point trajectory using a linear combination of any trajectory basis that can
describe it as,

X =[XT - XL]"~ @181 +...+ Osx 35 = OB, (3)

where ©; € R3% is a trajectory basis vector, @ = [@1 @31(] € RIMBK g
the trajectory basis matrix, 8 = [ﬁl ...ﬁgK]T € 3K are the parameters or
coeflicients of a point trajectory, and K is the number of bases per coordinate.

If the trajectory basis are known a priori [17], this linear map between the
point trajectory and basis enables us to formulate a linear solution. By plugging
Equation (@) into Equation (), we can derive an overconstrained system by

choosing K such that 2F > 3K,
QOB =q. (4)

Equation () is a linear least squares system for reconstructing a point trajectory,
3, which provides an efficient, numerically stable, and globally optimal solution.
3 is the coefficient of the trajectory based on measurements and known camera
poses embedded in Q and q and known trajectory basis, ©®.

4 Geometric Analysis of 3D Trajectory Reconstruction

Empirically, the point trajectory reconstruction approaches the ground truth
point trajectory when the camera motion is fast or random. On the other hand,
if the camera moves slowly or smoothly, the solution tends to deviate highly
from the ground truth. To explain these observations, we decompose the process
of solving the linear least squares system into two steps: solving Equation (2))
and solving Equation (@]).

4.1 Geometry of Point and Camera Trajectories

Let X and X be a ground truth trajectory and an estimated point trajectory,
respectively. The camera matrix can always be normalized by intrinsic and rota-
tion matrices, K and R, respectively, because they can be factored out without
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loss of generality (as all camera matrices are known), i.e. RiTKz.*lPi = [Ig -C; ] ,
where P; = K;R; [Ig —-C; ], C, is the camera center, and I5 is a 3 x 3 identity
matrix. This follows from the fact that triangulation and 3D trajectory recon-
struction are both geometrically unaffected by the rotation of the camera about
its center. All P; subsequently used in this analysis are normalized camera ma-
trices, i.e. P; = [Ig —Ci]. Then, a measurement is a projection of X onto the
image plane from Equation (IJ). Since Equation () is defined up to scale, the
measurement, x, can be replaced as follows,

[3]]n[¥] -

Pluggingin P; = [I3 —C; | resultsin, [X; — C;], ()A(Z — Ci> = 0, or equivalently,

[X; - Cil, Xi = [Xi], Ci. (6)
The solution of Equation (@) is
X = a;X; + (1 - a;)C;, (7)

where a; is an arbitrary scalar. Geometrically, Equation () is the constraint for
the perspective camera model due to the fact that it enforces the solution to lie
on the ray joining the camera center and the point in 3D. From Equation (@),
Equation (@) can be rewritten as @Zﬁ ~ a;X; + (1 — a;)C; where ,@ is the
estimated parameter and ©; is the matrix from © (3(;_1)41).3i-

Figure [[l(c) illustrates the geometry of the solution of Equation (). Let the
subspace, p, be the space spanned by the column space of the trajectory basis
matrix, col(®). The solution ©3, has to simultaneously lie on the hyperplane
[, which contains the camera trajectory and the point trajectory, and must lie
in col(®). Thus, ©F3 is the intersection of the hyperplane | and the subspace
p where A = D® IgE In the figure, note that the line and the plane are a
conceptual 3D vector space representation for the 3F-dimensional space. The
camera center trajectory, C = [CI C}]T, and the point trajectory, X, are
projected onto col(®) as OB and OBy, respectively. From this point of view,
we want @B to be as close as possible to ®3x.

4.2 Reconstructibility

When a point trajectory is identical to the camera trajectory, it is not possible
to estimate the point trajectory because a series of 2D projections is stationary.
This intuition results in the following theorem.

Theorem 1. Trajectory reconstruction using any linear trajectory basis is im-
possible if corr(X,C) = +18

2 ® is the Kronecker product and D is a diagonal matrix which consists of
{al, . ,aF}~

3 corr(X,Y) = E[(ng;‘lg*“y” where E[] is the expected value operator and p and
o are the mean and standard deviation, respectively.
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Proof. When corr(X,C) = £1, or X = ¢C +d where ¢ is arbitrary scalar and d

is arbltrary constant vector, we can transform X and C to X and C such that
= ¢C without loss of generahty This linearity causes the RHS of Equation ()

to be zero and the solution X to be the same as C up to scale. This results in
the scale ambiguity of X;. O

While Theorem [I] shows the reconstruction limitation due to the correlation
between the point trajectory and the camera trajectory, solving Equation (3)
with respect to 3 provides a measure of the reconstruction accuracy for a given
trajectory basis. Solving the least squares, X = @B minimizes the residual error,

argmin H@ﬂ AX —(I- CH (8)
B.A

Let us decompose the point trajectory and the camera trajectory into the column

space of ® and that of the null space, @~ as follows, X = @83« + @J-ﬁ)L(, C=
Ofc + @Lﬁé, where 31 is the coefficient for the null space. Let us also define
a measure of reconstructibility, n, of the 3D point trajectory reconstruction,

|8
o]
Theorem 2. As n approaches infinity, E approaches Bx.

Proof. From the triangle inequality, the objective function of Equation (§) is
bounded by,

OB - AOBx — (1~ A)Ofc ~ A® Bx — (1-A)©* 85| (10)
<||oB - A®Bx — (1- A) 8| + | A0 Bx | + |1- A) 04 58|
foi- a1 mosc| _a

H@L,@éH +HI_A|| . (11)

< WﬁéH

As n approaches infinity, ||A|| /n in Equation (IIJ) becomes zero. In order to
minimize Equation ([[I]), A = I because it leaves the last term zero and B = Bx
because it also cancels the first term. This leads the minimum of Equation (II])
to be zero, which bounds the minimum of Equation (I0)). Thus, as 7 approaches
infinity, /@ approaches Bx. O

Figure shows how reconstructibility is related to the accuracy of the
3D reconstruction error. In each reconstruction, the residual error (null com-

= , and the camera trajectory,

ponents) of the point trajectory, ex = H

ec = H@LﬁéH, are measured. Increasing ec for a given point trajectory en-

hances the accuracy of the 3D reconstruction, while increasing ex lowers accu-
racy. Even though we cannot directly measure the reconstructibility (we never
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know the true point trajectory in a real example), it is useful to demonstrate
the direct relation with 3D reconstruction accuracy. Figure illustrates that
the reconstructibility is inversely proportional to the 3D reconstruction error.

In practice, the infinite reconstructibility criterion is difficult to satisfy be-
cause the actual X is unknown. To enhance reconstructibility we can maximize
ec with constant ex. Thus, the best camera trajectory for a given trajectory
basis matrix is the one that lives in the null space, col(®1). This explains our
observation about slow and fast camera motion described at the beginning of
this section. When the camera motion is slow, the camera trajectory is likely
to be represented well by the DCT basis, which results in low reconstructibility
and vice versa. However, for a given camera trajectory, there is no deterministic
way to define a trajectory basis matrix because it is coupled with both the cam-
era trajectory and the point trajectory. If one simply finds an orthogonal space
to the camera trajectory, in general, it is likely to nullify space that also spans
the point trajectory space. Geometrically, simply changing the surface of p in
Figure [[[(c) may result in a greater deviation between ®3x and Of3. Yet, if we
have prior information of a point trajectory, we can enhance the reconstructibil-
ity. For example, if one is shooting video while walking, the frequency of the
camera trajectory will be concentrated at a certain frequency, say the walking
frequency, whereas that of a point trajectory is somewhere else. In such a case,
if we find a trajectory basis space that is orthogonal to the walking frequency
basis, the point trajectory can be estimated well, as long as it does not contain
that frequency. This process allows us to eliminate interference from the camera
trajectory.

5 Results

In this section, we evaluate 3D trajectory reconstruction on both synthetic and
real data. In all cases, the trajectory bases are the first K discrete cosine trans-
form (DCT) basis in order of increasing frequency. The DCT basis has been
demonstrated to accurately and compactly model 1D point trajectories [17]. If a
3D trajectory is continuous and smooth, DCT basis can represent it accurately
with relatively few low frequency components. We make the assumption that
each point trajectory is continuous and smooth and use the DCT basis as the
trajectory basis, ®@. We choose the value of K based on the number of visible
points on a trajectory such that the system is overconstrained and 2F > 3K.
We consider two choices of DCT bases: the original DCT basis set, and the
specialized DCT basis set. The specialized DCT is a projection of the original
DCT onto the null space of the camera trajectory. The idea here is to limit how
well the specialized DCT reconstructs the camera trajectory and improve the
reconstructibility.

5.1 Simulation

To quantitatively evaluate our method, we generate synthetic 2D images from
3D motion capture data and test it in three perspectives: reconstructibility,
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Fig. 2. (a) As the null component of the camera trajectory, ec, decreases, the closed
form solution of Equation () deviates from the real solution. (b) Reconstructibility, 7,
provides the degree of interference between the camera trajectory and the point tra-
jectory. (c) Comparisons of reconstruction accuracy of trajectories reconstructed with
the specialized and original DCT basis under various camera trajectories, and (d) tra-
jectories between the ground truth and the original and specialized DCT basis under
smooth camera trajectory. Black: the ground truth of the point trajectory, green: the
camera trajectory, and blue and red: reconstructed trajectory of the motion capture
marker from the original and specialized DCT basis, respectively. Comparisons of ro-
bustness between the original and specialized DCT basis with regard to (e) occlusion
and (f) frame rate.

robustness, and accuracy. For reconstructibility, we compare reconstruction from
the original DCT basis with the specialized DCT basis by increasing the null
component, ec, of the camera trajectory. Reconstruction error from the original
DCT basis is higher when there is small ec. For robustness, we test with miss-
ing data and lowered frame rates and we show that the specialized DCT basis
performs better. Finally, for accuracy, we compare our algorithm with state-of-
the-art algorithms by varying the perspectivity of projection. The results show
our method outperforms others, particularly under perspective projection.

Reconstructibility: Earlier, we defined the reconstructibility of a 3D tra-
jectory as the trade off between the ability of the chosen trajectory basis to
accurately reconstruct the point trajectory vs. its ability to reconstruct the cam-
era trajectory. To evaluate this effect empirically we generate camera trajecto-
ries by varying ec and measure the error in point trajectory reconstruction in
Figure Each trajectory is normalized to have zero mean and unit variance
so that errors can be compared across different sequences. When ec is low, there
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Fig. 3. (a) Quantitative comparisons of reconstruction accuracy with previous methods
regarding projection types, and qualitative comparisons of reconstruction errors using
the original DCT basis (blue) and the methods by Torresani et al. [15](dark green),
Paladini et al. [16](light green) and Akhter et al. |17](orange). (b-e): Qualitative com-
parison between the ground truth (black) and reconstructed trajectories (red) for each
method.

is an advantage in using the specialized DCT basis. This is expected as the orig-
inal DCT basis is able to reconstruct both camera and point trajectories well,
and the reconstructibility is lower. As ec increases, this becomes less of an is-
sue, and both original and specialized DCT perform approximately the same.
Figure shows the comparison of point trajectories reconstructed using the
original and specialized DCT basis compared to the ground truth. For this exam-
ple the reconstructibility using the specialized DCT is 2.45, and for the original
DCT basis it is 0.08.

Robustness: In this experiment, we evaluate the robustness of trajectory recon-
struction for smooth camera trajectories with missing 2D point samples. Missing
samples occur in practice due to occlusion, self-occlusion, or measurement fail-
ure. Figure shows the normalized trajectory reconstruction error for varying
amounts of occlusion (0% and 20% of the sequence) and different numbers of
DCT basis. A walking motion capture sequence was used and each experiment
was repeated 10 times with random occlusion. As long as the visibility of a point
in a sequence is sufficient to overconstrain the linear system of equations, the
closed form solution is robust to moderate occlusion. Figure evaluates ro-
bustness to the frequency of input samples, i.e. varying the effective frame rate
of the input sequence. Visibility of the moving points is important to avoid an
ill-posed condition of the closed form solution, and intuitively more frequent
visibility results in better reconstruction. The results confirm this observation.
In both robustness experiment, the specialized DCT basis perform better than
the original DCT basis for reduced number of bases. This is due to the (worst
case) smooth synthesized camera trajectories. This effect is reduced as the num-
ber of DCT basis increases and the reconstructibility of the sequence increases
accordingly.

Accuracy: We compare the accuracy of reconstructed trajectories against meth-
ods using shape basis reconstruction by Torresani et al. [15] and Paladini et al. [16]
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Fig. 4. Results of the rock climbing scene. Top row: sampled image input, second row:
five snap shots of 3D reconstruction in different views, and bottom row: reconstructed
trajectories (blue line) in different views.

and the method using trajectory basis reconstruction Akhter et al. ﬂﬁ] To val-
idate that our closed form solution is independent of the camera projection
model, we parameterize camera projection as the distance between image plane
and the camera center and evaluate across a range that moves progressively from
projective at one end to orthographic at the other. Note that we are given all
camera poses for the closed form trajectory solution, while the previous methods
reconstruct both camera poses and point trajectories simultaneously. We set K
to 10 for all methods and use the original DCT basis. Figure [3] compares the
normalized reconstruction accuracy for the walking scene under a random cam-
era trajectory. The other methods assume orthographic camera projection and
are unable to accurately reconstruct trajectories in the perspective case.

5.2 Experiments with Real Data

The theory of reconstructibility states that it is possible to reconstruct 3D point
trajectories using DCT basis precisely if a camera trajectory is random. An
interesting real world example of this case occurs when many independent pho-
tographers take asynchronous images of the same event from different locations.
A collection of asynchronous photos can be interpreted as the random motion
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Fig. 5. Results of the handshake scene. Top row: sampled image input, second and
third row: five snap shots of 3D reconstruction in different views.

Fig. 6. Results of the speech scene. Top row: sampled image input, and bottom row:
reconstructed trajectories (blue line) in different views.

Table 1. Parameters of real data sequences

F (sec) # of photos # of photographers K

Rock climbing 39 107 5 12
Handshake 10 32 3 6
Speech 24 67 4 14
Greeting 24 66 4 10

of a camera center. Using multiple photographers, we collected data in several
‘media event’ scenarios: a person rock climbing, a photo-op hand shake, public
speech, and greeting. The static scene reconstruction is based on the structure
from motion algorithm described in Hﬁ] We also extracted timing information
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Fig. 7. Results of the greeting scene. Top row: sampled image input, and bottom row:
reconstructed trajectories (blue line) in different views.

from image EXIF tags. Correspondences of moving points across images were
obtained manually.

The parameters for each scenario are summarized in Table Il The number of
bases was selected empirically for each case. We were able to use the original
DCT basis for all scenes. Figures El Bl B and [0 show some of input images
and reconstructed point trajectories. The reconstructed point trajectories look
similar to postures of the person.

6 Conclusion

In this paper, we analyze the geometry of 3D trajectory reconstruction and define
a measure called reconstructibility to determine the accuracy of 3D trajectory
reconstruction. We demonstrate that 3D trajectory reconstruction is fundamen-
tally limited by the correlation between the 3D trajectory of a point and the 3D
trajectory of the camera centers. Using this analysis, we propose an algorithm
to reconstruct the 3D trajectory of a moving point from perspective images.
By constraining the solution space using a linear trajectory basis, the dimen-
sionality of the solution space can be reduced so that an overconstrained linear
least squares system can be formulated. The linear algorithm takes as input the
camera pose at each time instant, and a predefined trajectory basis. These re-
quirements are met in our practical application, where we reconstruct dynamic
scene from collections of images captured by a number of photographers. We
estimate the relative camera pose by applying robust structure from motion to
the static points in the scene. The Discrete Cosine Transform is used as a pre-
defined basis. As the effective camera trajectory is quite discontinuous, we are
able to obtain accurate 3D reconstructions of the dynamic scenes.
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Abstract. This paper presents a novel manifold learning approach for high di-
mensional data, with emphasis on the problem of motion tracking in video
sequences. In this problem, the samples are time-ordered, providing additional
information that most current methods do not take advantage of. Additionally,
most methods assume that the manifold topology admits a single chart, which is
overly restrictive. Instead, the algorithm can deal with arbitrary manifold topol-
ogy by decomposing the manifold into multiple local models that are combined
in a probabilistic fashion using Gaussian process regression. Thus, the algorithm
is termed herein as Gaussian Process Multiple Local Models (GP-MLM).

Additionally, the paper describes a multiple filter architecture where standard
filtering techniques, e.g. particle and Kalman filtering, are combined with the
output of GP-MLM in a principled way. The performance of this approach is
illustrated with experimental results using real video sequences. A comparison
with GP-LVM [29] is also provided. Our algorithm achieves competitive state-of-
the-art results on a public database concerning the left ventricle (LV) ultrasound
(US) and lips images.

1 Introduction

There has been long standing interest in learning non-linear models to approximate
high-dimensional data, and specifically in reducing the dimensionality of the data, while
preserving relevant information. The scope of application is vast, including, e.g., mod-
eling dynamic textures in natural images, surface reconstruction from 3-D point clouds,
image retrieval and browsing, and discovering patterns in gene expression data.
Consider the example of an image sequence. In the absence of features such as con-
tour points or wavelet coefficients, each image is a point in a space of dimension equal
to the number of image pixels. When facing an observation space of possibly tens or
hundreds of thousands of dimensions, it is often reasonable to assume that the data is not
dense in such a space and that many of the measured variables must be dependent with
only a few free parameters that are embedded in the observed variables, frequently in a
nonlinear way. Assuming that the number of free parameters remains the same through-
out the observations, and also assuming spatially smooth variation of the parameters,
we have geometric restrictions which can be well modeled as a manifold. Learning this

* This work was supported by project the FCT (ISR/IST plurianual funding) through the PID-
DAC Program funds and by project “HEARTRACK” PTDC/EEA-CRO/098550/2008.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 172-{185,]2010.
(© Springer-Verlag Berlin Heidelberg 2010



Manifold Learning for Object Tracking with Multiple Motion Dynamics 173

manifold is a natural approach to the problem of modeling the data, with the advantage
of allowing nonlinear dimensionality reduction.

This paper proposes a new algorithm, named Gaussian Process with Multiple Lo-
cal Models (GP-MLM), that applies manifold learning ideas to the problem of motion
tracking, e.g., in video sequences. The emphasis in motion tracking means that, unlike
most manifold learning methods, the observations are assumed to be time-ordered. The
proposed methodology addresses the problem of estimating unknown dynamics on an
unknown manifold, from noisy observations. This leads to the simultaneous estima-
tion of a nonlinear observation model and a nonlinear dynamical system - a nonlinear
system identification type of problem, which has received some attention ([[11/29123]]),
but seldom in the context of manifolds, with a few recent exceptions [24]. While this
problem is ill-posed (see e.g. [[L1]), it can be advantageous to exploit information that
is common to both subproblems: the velocity vectors. Moreover, purely from a mani-
fold learning point of view, GP-MLM addresses some limitations of existing methods,
namely: (i) it is not limited to a simple coordinate chart - it can deal with arbitrary mani-
fold topology through multiple local models; (ii) it provides a computationally efficient
way to partition the manifold into multiple regions and compute the corresponding lo-
cal parameterizations; (iii) it offers a principled way of combining the estimates from
the multiple local models by using Gaussian process regression to compute the corre-
sponding likelihoods. From a tracking perspective, it will be shown that GP-MLM can
retrieve the contours with remarkable fidelity.

2 Background

Key concepts: A manifold [4] M is a set contained in R™, associated with a collection
of p one-to-one continuous and invertible functions g; : P; — U;, indexed by ¢ =
1,...,p with overlapping domains P; C M such that M is covered by the union of
the P; and where each I/; C R". For points y € P; N P; in the overlap between
patches ¢ and j, with images x; and x;, it is possible to define a transition function ¥;; :
gi(P;NP;) — g;(P;N'P;) which converts between the two local coordinate systems.
See Fig. [Tl for an illustration. Locally, M is “like” R™ and its intrinsic dimension is n.
The g; are called charts. It is assumed that M is compact, i.e., it can be covered with
p < oo charts. The inverse mappings h; = g; ! are parameterizations of the manifold.

Fig. 1. A manifold and its charts
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The U; are parametric domains and the P; are patches. Two charts g; and g; defined
in the overlapping region P; N P; should be compatible, that is, g;l (i (gi(y) =y.
For manifolds with arbitrary topology, there must be, in general, more than one chart
and, therefore, more than one patch in order to maintain the one-to-one property.

The fangent bundle [4] of an n-dimensional manifold M is another manifold, T'(M),
whose intrinsic dimension is 2n and whose members are the points of M and their tan-
gent vectors. That is, T'(M) = {(y,v) : y € M,v € Ty (M)} where Ty, (M) is the
tangent space of M at y. It is readily apparent that T}, (M) is the set of possible ve-
locity vectors of trajectories in M through y. Therefore, any dynamic system defined
in M must induce trajectories where both the velocities and their points of application
belong to T'(M).

A Gaussian process [22] is a real-valued stochastic process {YX}XE > Over an in-
dex set X, where the joint probability density function for any finite set of indices
{x1,...,xy} is Gaussian, with mean . € RY and covariance K € RV*¥ Note that,
in order to be a valid covariance matrix, K must be symmetric and positive semidef-
inite. This means that it can also be thought of as a valid Mercer kernel matrix. An
attractive feature of Gaussian processes is that they allow the computation, in closed
form, of probability densities in observation space.

Problem statement: Let yo.r—1 = {y, ¢t =0,...,7 — 1}, with discrete ¢ and y; €
R™, be a trajectory. Let Y = {yo.1;,—1,{ = 1,..., L} be a set of L such trajectories. It
is assumed that the trajectories in ) lie close to an unknown manifold M of intrinsic
dimension n (also unknown) embedded in R™, with n < m. Therefore, one or more
lower dimensional representations X; of the original set ) can be found, where each
X = {x01,—1,:,! = 1,..., L} represents all the trajectories in i-local coordinates,
with x;; € R™. Being assumed compact, M can be charted by p charts, where p is
unknown, and each & corresponds to one of the charts. It is intended to estimate M
and identify the dynamics in the lower dimensional coordinates given by the charts of
M, assuming that the trajectories are generated by one or more discrete state space
models of the form:

Xei = Fi(xe—1,) + wei (D
Vei = hi(Xe;) + Ve )

where w; ; and v, ; are noise variables. h; is the gt parametrization being used around
y¢, and f; defines the dynamics. In summary, given ), we wish to learn the state model
@) and (), thus capturing both geometrical and dynamical information about the tra-
jectories.

Prior work: Several manifold learning algorithms have emerged in recent years. Re-
cent advances include, on one hand, probabilistic methods such as the Generative To-
pographic Mapping (GTM) [2]], Gaussian process related algorithms, such as Gaussian
Process Latent Variable Models (GP-LVM) [18]] and Gaussian Process Dynamical Mod-
els (GPDM) [29]; on the other hand, graph spectral methods such as ISOMAP [27],
Locally Linear Embedding (LLE) [25]], Laplacian [1]] and Hessian Eigenmaps [[10], as
well as Semi-Definite Embedding [31130].
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Most methods assume that the manifold can be modeled using a single coordinate
patch, an assumption that fails for manifolds with topologies as simple as a sphere.
Also, spectral methods usually do not provide out-of-sample extension. Only a few
methods, such as [SI19], attempt to deal with multiple charts without assuming p known
somehow.

Estimating the intrinsic dimension n remains a challenge. The most common method
[L3] for estimating n is based on local Principal Component Analysis (PCA), relying
on a threshold to select the n most significant eigenvalues of local covariance matri-
ces. Other approaches can be found in [20/15] and the references therein. With either
type of algorithms, the estimate often suffers from high variance and bias, as well as de-
pendence on the unknown scale parameters for neighborhood analysis, as pointed out in
[15]. Hence, dimensionality estimation continues to be a challenging problem, although
some promising advances have recently been made using multiscale approaches [[16]].

Finally, while simultaneous dimensionality reduction and dynamical learning has
received some attention [23|11/14], many of these approaches are not formulated in
terms of manifolds. Some techniques that do explicitly use the manifold assumption are
[2421012]. In [24], the manifold is modeled as a mixture of local linear hyperplanes
(i.e., factor analyzers), while we use instead a mixture of nonlinear GP regressors. In
[21], a mapping from high-dimensional observations to latent states is estimated, both
not the inverse. In [12]] a manifold tracking method is used for learning nonlinear mo-
tion manifolds in the recovery of 3D body pose, but does not address the case when
significant dynamics changes are observed in the video sequence (i.e., multiple dynam-
ics). Other methods that, like ours, are based on Gaussian Processes include [2928]].
However, [29]] assumes one single chart and a priori fixed latent dimensionality, while
[28]] encourages certain topologies in a top-down manner, based on prior knowledge.
Our approach also somewhat resembles, in spirit, the Spatial GPCA method [3]], al-
though Spatial GPCA operates at the pixel level rather than extracting contours and
requires downsampling for computational reasons. Our main advantage resides in the
fact that we perform dimensionality reduction, avoiding the need to downsample. In
summary, our proposed method explicitly utilizes the manifold assumption, avoids the
need to perform alignment of multiple local coordinate systems and maintains topo-
logical flexibility. To summarize, the following main differences should be considered:
we consider arbitrary topologies with multiple nonlinear charts and multiple nonlinear
dynamics, while existing methods consider either: (i) single nonlinear charts/dynamics
[29]; (i1) multiple linear charts/dynamics [24]]; or (iii) predefined topologies [28]. Be-
sides, we do not marginalize over parameters and therefore can more easily perform
out-of-sample prediction, as well as sequential state estimation, while GPDM [29] and
[28] use batch inference.

3 GP-MLM Algorithm

The GP—MLM algorithm comprises the following steps: (i) estimation of intrinsic di-
mensionality and tangent subspaces; (ii) a nonparametric, nonlinear regression proce-
dure for partitioning the manifold and learning the charts. Each of the steps is described
here.
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Intrinsic dimension: In the spirit of [[13]], GP-MLM addresses the problem of dimen-
sionality estimation by automatically finding the “knee” of the eigenvalues A1, ..., A\,
of the local covariance Sy, = ‘Byj?“_l Zykegyj,e(yk - styj,‘)(Yk - IJJBy]_‘E)T,
using local PCA, but in GP-MLM this is done for all e-local neighborhoods By,
around each data point y ;. For each neighborhood, the eigenvalue immediately before
the greatest drop in value should correspond to the intrinsic dimension, estimated by
n; = argmax;=1,.._m—1 |Ai+1 — Ai|. The global estimate is 7 = medianj—1,. n(7;),
which is more robust than the mean. The advantage of this approach is that it takes
advantage of the potentially large number of local PCA neighborhoods.

Temporal information is also used to improve the estimates of the tangent subspaces.
We use the first differences Ay, = y; — y:—1, together with the observations y; for
performing local PCA, by augmenting By,  with s, + Ayg,fork =1,...,[By, |,
with the neighborhood centers 1By, . given by the sarjnple means

1By, . = | Bylj,e\ Zyke By, Yk Note that the velocities (of which the Ay, are rough

estimates), applied at the neighborhood centers, must live on the corresponding tangent
subspaces. This leads to an effective increase in the number of available points at each
neighborhood, from |By; | points to 2|By (| (or 2|By; .| — 1 if either the first or last
Ay, can not be computed).

Charts: At this stage, an estimate 7 of the intrinsic dimension is available. The tangent
bundle T'p¢ can, if approximated by some finite set of n-dimensional tangent linear
hyperplanes, form a convenient collection of local parametric domains upon which to
map the manifold points. We partition M into overlapping patches P1,...,Pp, find
p corresponding tangent hyperplanes, and estimate mappings back and forth between
the patches and the hyperplanes. It is important to find a partition which facilitates
subsequent estimation of the mappings. We follow the Tangent Bundle Approximation
(TBA) approach proposed in [26]] which is based on principal angles, a generalization
of the concept of angle to linear subspaces.

The idea is not to allow the maximum principal angle between the tangent sub-
spaces — spanned by matrices V; and V; of column eigenvectors found by local PCA
on neighborhoods ¢ and j — to vary more than a set threshold 7. The exact value of 7 is
not critical, as long as it is below g

Patches are found by an agglomerative clustering procedure, i.e., region growing.
Each patch grows by appending all neighboring (within an € radius) points where the
tangent subspace does not deviate, in maximum principal angle, more than a set thresh-
old from the tangent subspace at the initial seed. Any specific point may belong to more
than one patch. The final result is a covering of M by a finite number, p, of overlap-
ping patches. Within each patch, the curvature is controlled through 7, and the distance
test ensures that each patch is a connected set. Subsequently, we find the best fitting
hyperplane for each patch using PCA, providing local coordinate systems for differ-
ent manifold regions. The collection of hyperplanes approximates the tangent bundle.
Thus, PCA must be performed twice: first with local scope, in tight neighborhoods By
around each point, so that the principal angles can be controlled within the patch dur-
ing the partitioning procedure; and second, for all patch members, in order to find an
overall hyperplane for charting and the corresponding coordinate system. If Sp, is the
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covariance of the points in P;,i.e. Sp, = \Pi1|71 Zykepi (yi— NPi)(Yk —pp, )T’ then,
by performing the eigendecomposition Sp, = VplelV%,i, where Vp, is the matrix
whose columns are the eigenvectors of Sp, and Dp, = diag(A1, .. ., Ay, an orthonor-
mal basis is found in the columns of Vp,. Note that the patch mean Bp, does not, in
general, coincide with the patch seed. The added computational burden of patch-wide
PCA is negligible, compared to that of local PCA.

An important note is that GP—-MLM (like TBA) does not guarantee that the number
of patches is minimal - in fact, the followed approach usually leads to an overestimation
of the number of patches needed to cover a manifold. On the other hand, it should also
be noted that, since the principal angles only need to be computed between the data
and the seeds, and not between all pairs of data points, the overall complexity of the
partitioning algorithm is nor quadratic in N, but rather it is O(Np).

Gaussian process regression: Using the coordinate systems found above, and since
there are no folds in any patch (thanks to the angular restriction), the regression prob-
lem associated with the charts is significantly simplified. From the previously obtained
partition of the dataset into patches P;, with¢ = 1,.. ., p, itis now intended to estimate
the charts g;(y). Let a particular training point y, belonging to patch P;, be denoted
Y = [y1...ym]T, where y;,3 = 1,...,m refers to the 4™ coordinate. Projecting y
onto the subspace spanned by Vp, yields the i local representation x;. This can be
done according to X; = V7, (y — pp,) in which the intermediate quantity x; simply
corresponds to y in a new coordinate system with origin at pp, and versors given by
the columns of Vp,; the following step is

X; = [Ti1- - Zin)” = gily) (3

where x; denotes a truncated version of X; using only the first n components. This is the
chart. The inverse mapping, that is, the parametrization h;(x;) follows the expression

~ T
hy(x;) = Vo, [x hi(xi)] o, )

in which f}l must be estimated. The remaining m — n components of X; are approxi-
mated by h;(x;), and thus the nonlinear character of the manifold is preserved. In the
i™ local coordinates, the parametrization is x; — [x;  h;(x;)]7.

It is now necessary to estimate h. For a particular m — n-dimensional vector X;,
consider an independent Gaussian process for each scalar component ;, dropping the
4 subscript of the j™ coordinate for conciseness — the exposition will proceed, without
loss of generality, as if m —mn = 1. The regression problem is that of estimating h;, from
the set of available data .)E‘p = {Zk,i }x=1.p,| and the corresponding set of |P;| local
projections Xp, = {Xg; }x=1.p,|» all collected in x € R/Pil and X € R"*IPil respec-
tively. The estimate should be the one that best matches the model Xx = h;(Xy ;) +wk;
with noise wy ; ~ N(0,02), Vi. It is assumed that the joint pdf of x is Gaussian,
with zero mean (the data can be mean-subtracted) and with known covariance matrix
K € RIP:IxIP:l With this assumption, it is possible to derive the conditional density
p(%x|X). Furthermore, for any new set of inputs X* outside of the training set, the con-
ditional density p(x*|X*, X, X) is given [22] by

p(y*|X*7X’Y) = N(K(X*vx)K(va)_1Ya &)
K(X*, X*) — K(X*, X)K(X, X) 'K(X,X")).



178 J.C. Nascimento and J.G. Silva

For constructing K, we choose the RBF covariance function

k(xi,x;) = 01exp(— . |Ix; — x; %) + 6;;03 (6)

1
20,
and optimize the hyperparameters by maximizing the marginal likelihood, as proposed
in [22].

4 Dynamical Learning Using the Manifold Model

We now extend GP—MLM to deal with the simultaneous estimation of the data manifold
and dynamics. The idea is to start from the state model in (1)), @), assuming that, in the
observation equation, h is given by the manifold model found by the GP-MLM and
therefore fixed. We then tackle the following two subproblems: (i) Identification of the
dynamics f, given h; (ii) Estimation of the state at time ¢, given all information up
to time ¢. The first subproblem is called system identification and is solved offline, as
explained next.

System identification: We assume that the training trajectories have been mapped to
low dimensional points x; ; in patch P;, at instant ¢. For each 4, we form training pairs
(x¢—1,%¢). The subscript i has been dropped for conciseness, since it will be assumed
that the trajectory segment remains on patch ¢. This is no loss of generality, since in the
case when the original high dimensional {y; } ;—o.7—1 crosses patches ¢ and j (or more),
this simply results in multiple trajectory segments, {X; ; }+—0.1;—1 and {X¢ ; }+=0.7; 1,
which can be treated separately and which count towards the dynamics in patch P; and
‘P; respectively.

The regression procedure aims at finding the best f; that maps x;_; to x; in patch P;,
given the corresponding set X; of trajectory segments pertaining to P;. The generative
model is

Xt = £ (xe—1,i) + Wi (7

In the case when the dynamics are linear, and dropping the 7 subscript, (Z) turns into
Xy = Axy;—1 + wy, with A a n X n matrix. When, additionally, the w; are iid and
Gaussian, then this is a thoroughly studied case; identification consists of estimating A
from the pairs (x¢_1, X;), which can be done by the Least Mean Squares method.

When f is not a linear function of x, then we propose a nonparametric approach,
again based on Gaussian process regression using the RBF kernel (6)).

As in the geometrical step, but now with training pairs (x;_1,X;) arranged in matri-
ces =, X defined as X = [x1,...,x7r-1], & = [Xo, ..., X7_2], the regression proce-
dure yields, for any new x}_;, Gaussian conditional densities p(i‘gi) x; , =,eW) =

(T-1)

N(:uxgi) ) Ji“) ), foralli =1,...,n components of %; and with £ € R equal to

the i-th column of X7,

Filtering: The second subproblem is one of filtering. It is not desirable in general to
use one single observation to obtain the state, because simply inverting the observa-
tion equation (@) ignores the temporal dependence between successive data points. The
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Fig. 2. Block diagram of the mixture architecture for combining the local dynamic models

correct procedure is to estimate the state, at each instant ¢ using information about the
whole trajectory up to time ¢. This can be done online by a variety of filtering methods.
Note that GP-MLM is a multiple-model framework; thus, we employ one filter for
each patch, using different dynamics, observation models and coordinate systems. This
means that a procedure for combining the local estimates is required. Fig. Rlillustrates
how this is performed. Essentially, we make use of the predictive variance from each
local GP in order to compute patch posterior probabilities (mixture weights) inexpen-

sively, i.e., we set
P(6;]x, Vt) o< p(x|0;, V). (8)

The mixture weights provided by block G take the different dynamics into account.
Different strategies are possible: a “winner-take-all” rule, where only the output of the
model with the highest posterior probability is used, or a “blending” rule, where the
weighted average using all models is computed. In this paper we present results using
Kalman and particle filtering with the above mentioned rules.

5 Experimental Results

This section presents an experimental evaluation of GP-MLM in several data sequences.
The evaluation is done in two main situations: first, two ultrasound sequences of the left
ventricle (LV) of the heart, aiming at estimating the endocardium boundary. In both,
the object of interest undergoes changing motion dynamics. For all experiments, three
identification strategies are compared: (i) linear first order; (ii) linear second order and
(iii) Gaussian process (GP) first order. In the second experiment, lip sequences are con-
sidered. Two situations are presented: (i) speaking, and (ii), singing, where in the latter
the lips boundary exhibits a higher deformation. An objective evaluation is conducted
for all the experiments using several metrics proposed in the literature.

Heart tracking: This example consists of two ultrasound (US) images sequence. Each
US image displays a cross section of the left ventricle (LV) in the long-axis. The length
of the sequences is: 490 frames (26 cardiac cycles) and 470 frames (19 cardiac cycles).
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The heart motion is described by two dynamics: an expansion motion that occurs in di-
astole phase, and a contraction motion that characterizes the systole phase. To represent
the boundary of the LV, 21 contour points are used, which would require thousands of
manual clicks, if we were to obtain ground-truth by hand. Instead, an automatic proce-
dure is used [17]. The MMDA (Multiple Model Data Association) tracker is robust with
respect to outliers and capable of coping with different, abrupt motion dynamics. Thus,
we measure the performance of the GP-MLM with the respect to the MMDA tracking
output, which we treat as ground truth.

In this study, we go further in the attempt to find the best technique (i.e. Kalman vs
particle filtering; “winner-take-all” vs “blending” rules); at the same time we hope to
demonstrate the superiority of the non-linear GP 1st order model. To attain this goal
an objective evaluation between the MMDA contour estimates (taken as gold contours)
and the GP—MLM estimates is provided; several metrics proposed in the literature for
contours comparison are used. To accomplish this, a comparison between the contour
estimates provided by MMDA tracker (i.e. the ground-truth) and the GP-MLM esti-
mate is conducted. Five metrics are used in these tests: Hammoude distance (HMD)
[6]]; average distance (AV); Hausdorff distance (HDF); Mean sum of Square Distances
(MSSD); Mean Absolute Distance (MAD) (as in used in [9]); and the DICE metric.
Next, we briefly describe them.

Let X = {x1,X2,...,Xn,},and Y = {y1,y2,...,¥N,}. be two sets of points
obtained by sampling the estimated contour and the reference contour. The smallest
distance from a point x; to the curve ) is

d(xi,Y) = mjin lly; — xil| )

This is known as the distance to the closest point (DCP). The average distance between
the sets X, )V is

dav = 5 >0 d(xi,Y) (10)

where NNV, is the length of the X The Hausdorff distance between both sets is defined as
the maximum of the DCP’s between the two curves

dipp (¥, ) = max (max{d(x;, ¥)}, max{d(y;, ¥)}) (n

The Hammoude distance is defined as follows [|6]

#((Rx U Ry) — (Rx N Ry))
#(Rx U Ry)
where Ry represents the image region delimited by the contour X, similarly for Ry.
To define MSSD [7] and MAD [8] distances, let us consider the tracked sequence S;
with m contours {ci, 2, ..., ¢ }, Where each jth contour ¢; has n points {(x;,1,y;,1),-
(%j,2,Yj2); - (Tjn,Yjn)} the distances of sequence S; from other version of the se-
quence S} (which is the ground truth) are

dnissps = g Yorey ¢ Doy (@56 = 25 ) + (Y6 — ¥51)?) (13)

duvp (X,Y) = (12)

dviany = o S S @ = @07 e =) (14
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The overall performance measure for a particular method is the averaged distance on
the whole test set of L sequences:

1 L 1 L
dmssp = 1 ) _ieq dMSSD;, dMAD = | Y ;1 dMAD;

The DICE metric is also used, which is the mean perpendicular distance between esti-
mated contour and the ground-truth contour. We compute the average metric distance
for all points in the curve as follows

dpice = L Sm |Ixi — yillng (15)

where n; defines the normal vector at point i.

Table [Tl left, lists the MSE for the three identification strategies for each path found
by GP-MLM. In both sequences the GP consistently provide the best results comparing
with the remaining strategies. In these experiments, the data was split in two disjoint
training/test sets (50% for training and testing).

Objective evaluation: Table[Tlshows the fidelity in the representation of the LV contour
obtained in the two US sequences. These values correspond to the mean values of the
metrics. From this table and in both sequences and for the majority of the measures,
the best values are obtained when ones used particle filtering with the “blending” rule.
Although, the particle filtering with the “blending” rule provides the best results, what
is important to stress is that any tracking method can be incorporated in the framework
and the manifold is always well estimated.

In this study we carried out an additional experiment, we varied the number of frames
used in training-testing sets for both sequences, more specifically, we varied the number
of training images from 25%, 50% and 75%. Table 2l shows the Hammoude distance
using the particle filter with the blending rule (similar behavior is observed of the other
tracking versions). From the Table 2l what it is interesting to note is that changing
the number of training-test images, the manifold is always well estimated for both se-
quences, where a slight and negligible increase of this metric is shown.

Table 1. MSE for the three identification strategies obtained in both US sequences: linear 1st and
2nd order models and a non-linear GP model (left); objective evaluation considering five metrics.
The mean values are shown for the two US sequences(right).

Sequence # 1 MSE |

[
‘Patch #HLinear 1°5¢ order‘Linear 274 order‘GP 15% nrder‘ dump | dav| dupr | dussp| dvap| dpice
1 4.7826 6.9604 1.1440 KF-WTA|| 0.14 |3.08 | 5.48 13.23 3.09 2.52
2.5327 1.7007 0.4164
KF-BLD|| 0.14 |3.08 | 547 13.20 3.09 2.53
3 18318 14788 0.4199 Seq. 1
T =060 813 03520 PE-WTA|| 009 |212| 386 | 742 || 217 | 179
S 2.0454 4.2491 0.4662 PF - BLD 0.09 |2.02]| 3.63 6.22 2.04 1.70

w

equence 7 2 MSE
‘Patch #‘ Linear 1°* order‘Lineur 274 order‘GP 15 order
1 58521 53808 0.5788 Seq. 2
5.9573 3.6770 0.1379 PF-WTA|l 0.08 1.76 | 3.70 4.92 1.78 1.59

2
3 4.8241 4.5712 0.4720 PF-BLD|| 0.08 | 174 | 3.64 | 481 175 1.59
7 6.0068 4.9661 2.6763

KF-WTA|| 0.11 273 | 4.80 10.66 2.79 2.00
KF-BLD|| 0.11 2.81 | 4.89 11.33 2.89 2.04
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Table 2. Hammoude metric for two US sequences, varying the number of training images

dump 25% 50% 75%

Seq. 1 0.063 0.088 0.093

Seq. 2 0.077 0.081 0.090

Fig. 3. GP-MLM tracking estimates (yellow line), superimposed with MMDA tracker (red line)
taken as gold contours. First sequence (top row), and second sequence (bottom row).

Fig.[Blshows some snapshots for both LV sequences. The manifold results are shown
in yellow solid lines, and the ground truth is (output of the MMDA tracker).

Lip tracking: The second example consists of lip tracking in two different situations:
speaking and singing. We show results in seven speaking sequences and three singing
sequences. In the speaking sequences, each one has about 80 images, while in the
singing case the sequence are a bit longer (100 images). Comparing to the previous
example, the nonrigid object (lip boundary) exhibits an higher variability in the shape,
specially when a person is singing.

From this point on, and due to the lack of space we present the results using particle
filtering with the blending rule (other alternatives are, of course, possible to use as
previously illustrated).

In the following, the training and testing mechanism follows a leave-one-out strategy
(this can be also used in the case of the LV tracking, but there was no need to do this
due to the large extension of the LV sequences).

Table [3] (left) shows the results obtained for the speaking case. It can be seen that
the framework proposed herein maintain comparable results as in the previous case.
Recall that the Hammoude metric (XOR pixel wise operation between the ground truth
and the manifold estimates) is always below 15%. Comparing to the results obtained
for the singing sequences (see right of the Table 3), we see that a small decrease on
this distance, and the small increase of the metrics which penalizes maximum local
distances. This is somehow expected, since in this case, a large and sudden changes
in the lips boundary may be obtained in consecutive frames. For instance, in Fig.
(top row) the 2nd, 3rd and 7th, 8th frames are consecutive in the video frame. These
correspond to difficult situations where the GP-MLM is able to produce good results.

We also compare the GP-MLM approach with the Gaussian Process Latent Variable
Model GPLVM.[] To perform the comparison, we first used the reconstruction parameters

! The code is available from the authors atht tp : / /www.cs .man.ac.uk/~neill/gplvm/
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Table 3. Average distances and metrics obtained using the GP-MLM, for speaking sequences
(left) and singing sequences (right)

Speaking Sequences
duvp |dav |dupr |dvssp|dvap |dpice

Seql|| 0.08 [2.89| 580 | 12.58 | 3.06 | 2.14 Singing Sequences

Seq2|| 0.1 |368| 733 | 2244 | 407 | 329 dump |dav |dupF|dmssp |dvab |dpicE
Seq3|| 0.15 |462] 1029 | 4878 | 569 | 426 | |Seql|| 0.16 |5.19| 10.82 | 6862 | 660 | 452
Seqd|| 009 |3.74] 793 | 3999 | 418 | 3.04 | |Seq2|| 0.14 |431| 907 | 7153 | 524 | 4.19
Seqs|| 0.14 |436| 862 | 3519 | 471 | 391 | [Seq3|| 0.14 |495| 1007 | 54.79 | 548 | 433
Seq6|| 008 |323] 686 | 1531 | 333 | 2.53
Seqr|| 0.10 |3.67] 808 | 23.65 | 393 | 3.02

s M AT AN AT S

Fig. 4. GP-MLM tracking estimates for seven speaking sequences shown in red dots
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of the GPLVM (see [18] for details). We then applied the GPLVM (as we do for the
GP-MLM) using the particle filtering with the blending rule for contour tracking. We
illustrate the results by showing the Hammoude distance provided by both methods. As
previously, this metric is computed between the GP-MLM contour estimates with the
output of the MMDA (taken as the ground-truth); and the GPLVM estimates with the
MMDA. From the Table[d] we can see that comparable results are achieved. Recall that,
for sequences having a higher deformation (see the results in the singing sequences) the
GP-MLM exhibits good results.

~
¢
o
§

Fig.5. GP-MLM tracking estimates for three singing sequences shown in red dots
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Table 4. Comparison between the tracked contours provided by GP-MLM and the GPLVM in
terms of the Hammoude distance. The mean values of the distance are shown for each sequence.

Left Ventricle Speaking Singing

GP-MLM 0.088 0.081 0.104 0.079 0.142 0.092 0.150 0.084 0.113 0.157 0.141 0.145
GrLVM 0.091 0.088 0.091 0.081 0.112 0.095 0.140 0.084 0.127 0.177 0.151 0.156

6 Conclusions

A novel method for manifold learning has been proposed in this paper. This frame-
work employs a local and probabilistic approach to learn a geometrical model of the
manifold and thus reduce the dimensionality of the data. The GP-MLM uses the Gaus-
sian process regression as a way to find continuous patches. The decomposition of the
patches renders GP-MLM more flexible when dealing to arbitrary topology. A frame-
work was proposed for probabilistically combining the local patch estimates, based on
the output of Gaussian process regression. The optimization of the Gaussian process
hyperparameters is accomplished via standard gradient descent, which offers a suitable
and effective tool for model selection. Dynamical system identification and recursive
state estimation are tackled by using the multiple local models returned by the man-
ifold learning step. Identification is accomplished via Gaussian process regression. A
filter bank architecture (which uses the learned dynamics) was also developed, both for
Kalman and particle filters. A systematic comparative evaluation in several sequences
was conducted, combining both filtering techniques with different gating strategies. The
experimental evaluation provided indicates that the performance of the GP-MLM pro-
vides good results and it is competitive with the GPLVM approach.

Issues for future research include reducing the number of patches, as well as a way to
compute the scale parameter €. Reliable estimation of the intrinsic manifold dimension
also remains a difficult challenge, on its own right. Robust statistics may be a fruitful
direction of research for this problem.
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Abstract. In this paper, we tackle the problem of object detection and
tracking in a new and challenging domain of wide area surveillance. This
problem poses several challenges: large camera motion, strong parallax,
large number of moving objects, small number of pixels on target, sin-
gle channel data and low framerate of video. We propose a method that
overcomes these challenges and evaluate it on CLIF dataset. We use me-
dian background modeling which requires few frames to obtain a work-
able model. We remove false detections due to parallax and registration
errors using gradient information of the background image. In order to
keep complexity of the tracking problem manageable, we divide the scene
into grid cells, solve the tracking problem optimally within each cell us-
ing bipartite graph matching and then link tracks across cells. Besides
tractability, grid cells allow us to define a set of local scene constraints
such as road orientation and object context. We use these constraints as
part of cost function to solve the tracking problem which allows us to
track fast-moving objects in low framerate videos. In addition to that,
we manually generated groundtruth for four sequences and performed
quantitative evaluation of the proposed algorithm.

Keywords: Tracking, Columbus Large Image Format, CLIF, Wide Area
Surveillance.

1 Introduction

Recently a new sensor platform has appeared on the scene, allowing for persistent
monitoring of very large areas. The dataset examined in this paper is Columbus
Large Image Format or CLIF dataset. In CLIF, the sensor consists of six cameras
with partially overlapping fields of view, mounted on an aerial platform flying
at 7000 feet. All six cameras simultaneously capture 4016x2672 intensity images
at 2 frames per second. See Figure[Il(a) for an example of global camera mosaic.

CLIF dataset belongs to the domain of Wide Area Surveillance (WAS), which
could be used to monitor large urban environments, as an aid in disaster relief,
as well as traffic and accident management. Monitoring such a large amount of
data with a human operator is not feasible, which calls for an automated method
of processing the data. An initial step for such a system would be the detection

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 186-{199, |2010.
© Springer-Verlag Berlin Heidelberg 2010
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(@)

Fig. 1. (a) CLIF data - all six cameras. (b) top shows two consecutive frames overlayed
in two different color channels: red is frame ¢, green is frame ¢ + 1. (b) bottom shows
how far vehicles move between consecutive frames. Red boxes show vehicle positions
in previous frame and blue boxes show vehicle positions in next frame.

and tracking of moving objects such as vehicles moving on highways, streets and
parking lots.

Data obtained from such a sensor is quite different from the standard aerial
and ground surveillance datasets, such as VIVID and NGSIM, which have been
used in [II2], as well as aerial surveillance scenario [BJ4l5]. First, objects in WAS
data are much smaller, with vehicle sizes ranging from 4 to 70 pixels in grayscale
imagery, compared to over 1500 pixels in color imagery in the VIVID dataset.
Second, the data is sampled only at 2 Hz which when compared against more
common framerates of 15-30 Hz is rather low. Third, the traffic is very dense
comprising thousands of objects in a scene compared to no more than 10 objects
in VIVID and no more than 100 in NGSIM.

The first issue makes object detection difficult, but more importantly it dis-
allows the use of shape and appearance models for objects during tracking as in
[BIT56] and necessitates an accurate velocity model. However, issues two and
three make initialization of a velocity model extremely difficult. High speed of
vehicles on highway combined with low sampling rate of the imagery results in
large displacement of objects between frames. This displacement is larger than
spacing between objects, making proximity based initial assignment produce
incorrect labeling which results in incorrect velocity model.

Highspeed 60Hz cameras have been used to address this problem in dense
scenarios 78], where the high sampling rate makes initial proximity based as-
signment meaningful. Instead, we leverage structured nature of the scene to
obtain a set of constraints and use them in our tracking function. Specifically,
we derive road orientation and traffic context constraints to help with initial as-
signment. We cannot define context based on appearance of neighboring objects
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Inter Cell Handover
R

Fig. 2. This figure shows different stages of our pipeline. First, we remove global camera
motion using point based registration, then we model the background using a 10 frame
median image, perform background subtraction and suppress false positives due to
parallax and registration errors. We track objects within individual grid cells, then
perform handover of tracks between grid cells.

and background as has been done in [0], instead, we define a descriptor for the
geometric relationship of objects with their respective neighbors.

2 Method

Our proposed method consists of the following modules (see figure 2 for refer-
ence). First, we register images using a point correspondence based alignment
algorithm. Then we perform motion detection via a median image background
model. We perform gradient suppression of the background difference image to
remove motion detection errors due to parallax and registration. Once we have
moving object blobs, we divide the scene into a number of grid cells and opti-
mally track objects within each grid cell using Hungarian algorithm. The use
of overlapping cells is a novel idea which makes possible the use of O(n?®) Hun-
garian algorithm in a scene containing thousands of objects and provides a way
to define a set of structured scene constraints to disambiguate initialization of
the algorithm. The contribution of our paper is a method for performing object
detection and tracking in a new and challenging Wide Area Surveillance dataset
characterized by low framerate, fast camera motion and a very large number of
fast moving objects. In rest of the paper, we describe how we address all of the
challenges and provide details for the individual modules.

2.1 Registration

Prior to motion detection in aerial video, we remove global camera motion.
The structured man-made environment in these scenes and large amount of
detail yields itself nicely to a point-matching based registration algorithm. It is
also much faster than direct registration method. We detect Harris corners in
frames at time ¢ as well as at time ¢t + 1. Then we compute SIFT descriptor
around each point and match the points in frame ¢ to points in frame ¢+ 1 using
the descriptors. Finally, we robustly fit a homography Htt+1 using RANSAC,
that describes the transformation between top 200 matches. Once homographies
between individual frames have been computed, we warp all the images to a
common reference frame by concatenating the frame to frame homographies.
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Fig. 3. Left shows a background model obtained using mean which has many ghosting

artifacts from moving objects. Right shows background model obtained using median
with almost no ghosting artifacts.

2.2 Detection

After removing global camera motion, we detect local motion generated by ob-
jects moving in the scene.

To perform motion detection, we first need to model background, then moving
objects can be considered as outliers with respect to the background. Probabilis-
tic modeling of the background as in [I0] has been popular for surveillance videos.
However, we found these methods to be inapplicable to this data. In the para-
metric family of models, each pixel is modeled as either a single or a mixture of
Gaussians. First, there is problem with initialization of background model. Since
it is always that objects are moving in the scene, we do not have the luxury of
object-free initialization period, not even a single frame. Additionally, since the
cameras move, we need to build the background model in as few frames as
possible, otherwise our active area becomes severely limited. Furthermore, high
density of moving objects in the scene combined with low sampling rate makes
the objects appear as outliers. These outliers can be seen as ghosting artifacts
as shown in figure Bl In the case of single Gaussian model, besides affecting the
mean, the large number of outliers make the standard deviation high, allowing
more outliers to become part of the model, which means many moving objects
become part of the background model and are not detected.

A mixture of Gaussians makes background modeling even more complex by
allowing each pixel to have multiple backgrounds. This is useful when background
changes, such as in the case of a moving tree branch in surveillance video. This
feature, however, does not alleviate any of the problems we highlighted above.

Therefore, we avoid probabilistic models in favor of simple median image
filtering, which learns a background model with less artifacts using fewer frames
(figure B)). We found that 10 frame median image has fewer ghosting artifacts
than mean image. To obtain a comparable mean image, it has to be computed
over at least four times the number of frames which results in smaller field of
view and makes false motion detections due to parallax and registration errors
more prominent.

We perform motion detection in the following manner. For every 10 frames
we compute a median background image B, next we obtain difference image i.e.
I; = |I — BJ. Prior to thresholding the difference image, we perform gradient
suppression. This is necessary to remove false motion detections due to parallax
and registration errors. Since we fit a homography to describe the transformation
between each pair of frames, we are essentially assuming a planar scene. This
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Fig. 4. Left to right: Section of original image, gradient of the median image, motion
blobs prior to gradient suppression, motion blobs after gradient suppression. Bottom
row shows an area of image that has false motion detections due to parallax and
registration errors, top row shows a planar area of the image.

assumption does not hold for portions of the image that contain out of plane
objects such as tall buildings. Pixels belonging to these objects are not aligned
correctly between frames and hence appear to move even in aligned frames.
Additionally due to large camera motion, there may be occasional errors in the
alignment between the frames. An example of this is bottom row of figure @
where we show a small portion of an image containing a tall building (left). Due
to parallax error, the building produces false motion detections along its edges
(third image from the left). We suppress these by subtracting gradient of the
median image VB (second column) from the difference image i.e. I} = I; — VB.
The top row shows a planar section of the scene and contains moving objects.
As evident from figure 4, this procedure successfully suppresses false motion
detections due to parallax error without removing genuine moving objects. Also,
the method has the advantage of suppressing false motion detections due to
registration errors, since they too manifest along gradients. Note that above
method works under an assumption that areas containing moving objects will
not have parallax error which is valid for roads and highways.

2.3 Tracking

After detecting moving objects, we track them across frames using bipartite
graph matching between a set of label nodes (circled in blue) and a set of
observation nodes (circled in magenta). The assignment is solved optimally us-
ing the Hungarian algorithm which has complexity O(n?) where n is the number
of nodes. When we have thousands of objects in the scene, an optimal solution
for the entire scene is intractable. To overcome this problem, we break up the
scene into a set of overlapping grid cells (see figure [§). We solve the correspon-
dence problem within each grid cell independently and then link tracks across
grid cells. The use of grid has an additional advantage of allowing us to exploit
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Fig. 5. The figure shows an example of the bipartite graph that we solve at every
frame. Four different types of edges are marked with numbers.

local structured-scene constraints for objects within the grid cell, which will be
discussed later.

For each grid cell in every pair of frames we construct the following graph.
Figure[Blshows an example graph constructed for assigning labels between frames
t and t+ 1. We add a set of nodes for objects visible at ¢ to the set of label nodes.
A set of nodes for objects visible at ¢t + 1 are added to the set of observation
nodes, both types are shown in green. Since objects can exit the scene, or become
occluded, we add a set of occlusion nodes to our observation nodes, shown in
red. To deal with the case of reappearing objects, we also add label nodes for
objects visible in the set of frames between ¢ — 1 and ¢ — p, shown in . We
fully connect the label set of nodes to the observation set of nodes, using four
types of edges.

. Edge between label in frame t and an observation in frame ¢t + 1.

. Edge between label in frame ¢t — p and an observation in frame ¢ + 1.

. Edge between a new track label in frame ¢ and an observation in frame ¢+ 1.
. Edge between a label and an occlusion node.

=W N =

We define edge weights in the following manner. Weight for edge of type 3 is
simply a constant 6. Weights for edges of type 1 and 2 contain velocity orientation
and spatial proximity components. Spatial proximity component C,, is given by

™ 0 (k4 1) — 2t
Jsiess
where z is the position of the object, S, and S, are the dimensions of the
window within which we search for a new object and k is the time past since
last observation of the object.
Velocity orientation component C,, is given by

Cp=1- (1)

1 ,Ut . ,Ut+1
C’u = B 2
2 T gt ot @)
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Fig. 6. This figure shows the process of estimating road orientation within a grid cell.
Objects tracked in frame ¢ are shown in red, objects detected in frame t+1 are shown in
blue. (a) Obtain all possible assignments between objects in frame ¢ and frame ¢t +1. (b)
Obtain a histogram of resulting possible velocities. (¢) Take mean of velocities which
contributed to the histogram peak.

Fig. 7. Vehicles tracked at time ¢ are shown in red while vehicles detected in frame ¢+1
are shown in blue. White arrows indicate the assignment of labels to objects based on
proximity only and correspond to resulting velocities of objects. Yellow arrows indicate
the road orientation estimate for this particular grid cell. (a) shows a case where road
orientation estimate can be used to disambiguate the assignment of labels and (b) shows
where it is not useful. To handle cases such as (b), we introduce a new constraint for
context of each vehicle, shown in (c). At frames ¢ and ¢+ 1 we compute vectors between
vehicle of interest (green) and its neighbors (orange). We then compute a 2D histogram
of orientations and magnitudes of the vectors shown in (c).

where v? is the last observed velocity of an object, v**! is the difference between
2!t the position of observation in current frame, and z!~*, the last observed
position of object at frame t — k.

We define the weight for edges of type 1 and 2 as follows

w=aCy+ (1 —a)Cp. (3)

We found these to be sufficient when object’s velocity is available. If on the
other hand, velocity of the object is unavailable as in initial two frames or when
new objects appear in the scene, we use structured scene constraints to compute
weights for edges.

Assigning labels based simply on proximity between object centroids is not
meaningful in wide area scenario. Due to low sampling rate (2 Hz), high scene
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density and high speed of objects, proximity based assignment is usually incorrect
(see figure ). Therefore we use road orientation estimate and object context as
constraints from the structured scene.

Road orientaion estimate g is computed for each grid cell in the following
manner (see figure[f)). First, we obtain all possible assignments between objects
in frame ¢t and t+1. This gives us a set of all possible velocities between objects at
frames ¢t and t+ 1. Next, we obtain a histogram of orientations of these velocities
and take the mean of orientations that contributed to peak of the histogram.
See Algorithm [ for a formal description.

Algorithm 1. Algorithm to compute global Algorithm 2. Algorithm to compute context
velocity for each cell in grid of size m x n using $(Oy) for object a at frame ¢.
detections Dy and Dyy.

1: procedure cOMPUTEGLOBALVELOCITY 1: procedure cOMPUTECONTEXT
2 for i — 1, m do 2: for all ¢ do

3 for j — 1,n do 3:

4 o 4: if ||Of — Of]|2 < r then
5: for alld € D;’ do 5: 0 =tan~! (O — O%)
6: for all d’ € D;, do 6: d=]0§ — O%||2

7. 6 = tan~" (d' — d) T S=P+ N, X)

8 Store 0 in © 8: . > N centered on (d, 6)
9: end for 9: end if
10: end for 10:
11 11: end for
12 h = histogram(O) 12: end procedure
13: Find bin ¢ s.t. mode(h) € ¢
14: 0’ = mean(0]6 € 1)
15: G (i,7) = [cos(0) sin(0")]
16:
17: end for
18: end for

19: end procedure

Note that orientation of g essentially gives us orientation of the road along
which vehicles travel, it does not give us the direction along that road. However,
even without the direction, this information is oftentimes sufficient to disam-
biguate label assignment as shown in figure [f(a). When vehicles travel along
the road in a checkerboard pattern, proximity based assignment will result in
velocities which are perpendicular to g. That is not the case when a number
of vehicles are traveling in a linear formation as in Figure [[(b). Therefore, we
introduce an additional formation context constraint (see figures[fl(c) and [f(d)).
If we are trying to match an object O, in frame ¢ (or t — k) to an observation in
frame t 4+ 1, we compute object context as a 2 dimensional histogram of vector
orientations and magnitudes between an object and its neighbors.

In order to account for small intra-formation changes, when computing the
context histograms @, and @, we add a 2D Gaussian kernel centered on the
bin to which a particular vector belongs. Furthermore, since 0° and 360° are
equivalent, we make the kernel wrap around to other side of orientation portion
of the histogram.
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Fig. 8. (a) This figure shows an example frame with grid overlayed onto an image. (b)
shows the grid cell search procedure for handing over tracks. The bold colored lines
correspond to OLLeft, OLBottom, and OLRight, in counterclockwise direction. Only
colored grid cells are searched, white cells are ignored.

The road orientation constraint component is defined as

1, |g-o'tY
C,= _ + 4
9= 9 T gg| et “)

The purpose of this constraint is to prevent tracks from travelling across the
road. The context constraint is the histogram intersection between histograms
&, and Pyp:

Nbins Mbins

Ce= ) Y min(y", )" (5)
p q
Finally, weight for edge of type 3 is computed as follows,

w=a1Cy+ a2Cp + (1 — a1 — a2)C: (6)

We solve the resulting bipartite graph using Hungarian algorithm. We track all
objects within each grid cell by performing the above procedure for all frames.
Next, we find and link tracks that have crossed the cell boundaries, using Al-
gorithm [ utilizing the overlapping regions of the neighboring grid cells. (see
figure B for reference).

2.4 Handling Multiple Cameras

There can be several possible frameworks for tracking objects across overlap-
ping cameras which employ inter-camera transformations. One possible way is
to establish correspondences at the track level where objects are detected and
tracked in each camera independently, and afterwards, tracks belonging to the
same object are linked. But, this approach has a serious issue which arises from
the fact that background for a particular frame of a camera can only be modeled
on overlapping region of all frames used for background. This reduces the area
of region where objects can be detected. When objects are detected in cameras
separately, reduction in detection regions results in the loss of overlap between
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Algorithm 3. Algorithm for object handover across grid cells. The size of grid is m x n. S(i,7)

represents all tracks for the sequence in the cell at i*" row and j** column in grid.

1: procedure INTERCELLHANDOVER
2 for i — 1, m do
3 for j — 1,n do
4: Calculate OLLeft, OLRight and OLBottom > See figure [§
g: for all s’ € S(i,j) do
7 if 3k | s’ > OLRight then
8 completeTrack (s, S(i + 1, 5))
9: else if 3 k| s’ > OLRight A 3k |s;? > OLBottom then
10: completeTrack(s*7, S(i + 1,5 + 1))
11: else if 3k | s,/ > OLBottom then
12: completeTrack (s, S(i,5 + 1))
13: else if 3 k| s’ <OLLeft A3k]|s,’ > OLBottom then
14: completeTrack(s™9, S(i — 1,5 + 1))
15: end if
16:
17: end for
18: end for
19: end for
20: end procedure
1: procedure COMPLETETRACK(s, S) > s=track to complete, S=tracks in neighboring cell
2 for all s’ € S do
3: if 3 (I, m) | s;.detectionI D = s, .detectionID A s;.t = s, .t then
4: assign s and s’ unique label
5: end if
6 end for
7: end procedure

two cameras. While methods for matching objects across non-overlapping cam-
eras exist [IJTTT2/6], low resolution and single channel data disallow the use
of appearance models for object hand over, and reacquisition based on motion
alone is ambiguous. The increased gap between cameras arising from detection
adds further challenge to a data already characterized by high density of objects
and low sampling rate of video.

In order to avoid above problems, we perform detection and tracking in global
coordinates. We first build concurrent mosaics from images of different cameras
at a particular time instant using the Registration method in §2.0] and then
register the mosaics treating each concurrent mosaic as a single image.

One problem with this approach, however, is that cameras can have differ-
ent Camera Response Functions or CRFs. This affects the median background,
since intensity values for each pixel now come from multiple cameras causing
performance of the detection method to deteriorate. To overcome this issue, we
adjust the intensity of each camera with respect to a reference camera using the
gamma function [I3] i.e.

I/C(xvy) :ﬁjc(mvy)vv (7)

where Ic(x,y) is the intensity of the original image at location (z,y). We find
B, v by minimizing the following cost function:

argmin Z (101($7y) - I/C‘Q(xvy))Qv (8)

By (z,y)€lc1iNIce
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Fig. 9. This figure shows the result of multi-camera intensity equalization. Notice the
seam in image on left which in not visible in equalized image on right.

where I N Iog is the overlap between the two cameras. The cost function is
minimized using a trust region method for nonlinear minimization. The approx-
imate Jacobian matrix is calculated by using finite difference derivatives of the
cost function. Transformation in equation [ is then applied to each frame of
the camera before generating concurrent mosaics. Results for this procedure are
shown in figure [0

3 Results

We validated our method on four sequences from CLIF 2006 dataset. Sequences
1 to 3 are single camera sequences while sequence 4 has multiple cameras. The
average number of objects in these sequences are approximately 2400, 1000,
1200 and 1100 respectively. Objects in sequence 2 and 3 undergo merging more
often than objects in the other two sequences. This is primarily due to oblique
angle between highway and camera in these sequences as opposed to top view
in sequences 1 and 4. Figure [I0 shows some of the tracks from these sequences.

For quantitative evaluation, we manually generated ground truth for the four
sequences. Due the sheer number of objects, smaller size and similar appearance,
generating ground truth for each object is a daunting task. We selected one
region from sequence 1,3 and 4 and two regions from sequence 2 for ground
truth. Objects were randomly selected and most of them undergo merging and
splitting. The number of objects for which ground truth was generated are 34
for sequence 1, 47 and 60 for sequence 2 and 50 each for sequences 3 and 4.

Our method for evaluation is similar to [2] and measures performance of both
detection and tracking. We compute the following distance measure between
generated tracks and ground truth tracks:

1 a b2
D(T,,Gy) = E x; —x¢|%, 9
TG = o, a2 ot e =l ®)

where £2(T,,Gp) denotes the temporal overlap between Ty, and Gy, |.| denotes
cardinality while ||.|| is the Euclidean norm. A set of pairs are associated i.e.
(a,b) € Aiff T, and G, have an overlap. The optimal association,

A" = argmin E D(T,,Gy) subject to 2(T,,T:.) =0 V(a,b),(c,b) € A (10)
A
(a,b)eA
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is used to calculate the performance metrics. Abusing notation, we define
A(Gy) = {Tu|(a,b) € A}. (11)

The first metric Object Detection Rate, measures the quality of detections prior
to any association:

# correct detections

ODR = .
# total detections in all frames

(12)

We cannot compute ODR for each track and then average, because that would
bias the metric towards short tracks as they are more likely to have all detections
correct. Further notice that, it is not possible to detect false positives as the
number of ground truth tracks is less than number of objects. A related metric,
Track Completeness Factor,

> 2T, Ga)l

a T,eA(Ga)

> q |Gal ’
measures how well we detect an object after association. TCF will always be less
than or equal to ODR. The difference between ODR and TCF is the percentage
of detections that were not included in tracks. Finally, Track Fragmentation
measures how well we maintain identity of the track,

2 [A(Ga)]
{GalA(Ga) # 0}

Weighing the number of fragments in a track with length, we get Normalized
Track Fragmentation,

TCF = (13)

TF — (14)

S [Gal - JAG)]
NTF = ¢ . 15
S (Gl (15)

a|A(Gq)#0

which gives more weight to longer tracks as it is more difficult to maintain
identity for long tracks than short ones.

We compare our method with the standard bipartite matching using greedy
nearest-neighbor initialization. Initial assignment is done based on proximity
while linear velocity model is used for prediction. Standard gating technique is
used to eliminate unlikely candidates outside a certain radius. The same reg-
istration and detection methods were used for all experiments. The values of
parameters for our tracking method were o« = 0.5 (eq. B) and oy = as = 0.33
(eq. [Bl). Table [ shows the comparison between both methods:

As can be seen from table[I] our method achieved better TCF and TF because
unique characteristics of WAS demand the use of scene-based constraints which
were not leveraged by the standard bipartite matching. We derived road orien-
tation estimate and object context using only the image data, which allowed for
better initialization and tracking performance.
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Table 1. Quantitative Comparison

Our Method GreedyBIP

ODR TCF TF NTF TCF TF NTF
Seql 0.975 0.716 2.471 2.506 0.361 13.06 13.11
Seq2 0.948 0.714 2.894 2.895 0.489 12.55 12.55
Seq3 0.972 0.727 2.76 2.759 0.583 8.527 8.53
Seq4 0.984 0.824 1.477 1.48 0.638 6.444 6.443

Al

s

Fig. 10. This figure shows a number of results for different sequences. Top group is for
sequence 1, second group is for sequence 2. In the bottom group, first column is from
multiple camera sequence (camera boundary is shown in black), next two columns are
from sequence 4.
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Conclusion

We analyzed the challenges of a new aerial surveillance domain called Wide Area
Surveillance, and proposed a method for detecting and tracking objects in this
data. Our method specifically deals with difficulties associated with this new
type of data: unavailability of object appearance, large number of objects and
low frame rate. We evaluated proposed method and provided both quantitative
and qualitative results. These preliminary steps pave way for more in-depth
exploitation of this data such as scene modeling and abnormal event detection.

Acknowledgments. This work was funded by Harris Corporation.
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Abstract. We present a discriminative model that casts appearance modeling and
visual matching into a single objective for visual tracking. Most previous discrim-
inative models for visual tracking are formulated as supervised learning of binary
classifiers. The continuous output of the classification function is then utilized as
the cost function for visual tracking. This may be less desirable since the function
is optimized for making binary decision. Such a learning objective may make it
not to be able to well capture the manifold structure of the discriminative ap-
pearances. In contrast, our unified formulation is based on a principled metric
learning framework, which seeks for a discriminative embedding for appearance
modeling. In our formulation, both appearance modeling and visual matching
are performed online by efficient gradient based optimization. Our formulation is
also able to deal with multiple targets, where the exclusive principle is naturally
reinforced to handle occlusions. Its efficacy is validated in a wide variety of chal-
lenging videos. It is shown that our algorithm achieves more persistent results,
when compared with previous appearance model based tracking algorithms.

1 Introduction

Appearance based visual tracking has been an active research topic for decades [[1,12}/3}
4.15.6.7,i8]]. There are two essential tasks: the modeling task builds an appearance model
for the visual target; then the marching task matches the model with the source visual
data to recover the motion of the target objects. Appearance models can roughly be put
into two categories: generative models [21131/4L16] and discriminative models [[7,19,8L15]].
Generative models seek a compact model to account for as much visual variations of
the appearances as possible. Most often a set of training examples is leveraged either to
obtain a subspace model [6}2|3]] using embedding methods such as principle compo-
nent analysis (PCA) [6,13] or Gram-Schmidt decomposition [2]], or to learn a Gaussian
mixture model [1]] using the Expectation-Maximization (EM) algorithm [10].
Discriminative models aim at differentiating the appearances of the visual targets
from the background. Most previous works proposed to learn a binary classifier to dif-
ferentiate the visual target from the background by using, for example, support vector
machine (SVM) [7], Boosting [8]], linear discriminant analysis [9]], and multiple in-
stance Boosting [5)]. Compared to generative models, discriminative models may be
more desirable for tracking due to the discrimination of foreground and background.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part IIl, LNCS 6313, pp. 2004214.12010.
(© Springer-Verlag Berlin Heidelberg 2010



Discriminative Tracking by Metric Learning 201

After the classifier is learnt, most previous works utilize the continuous output of the
classification function as the objective for visual matching and tracking. This may be
less desirable since the classification functions are trained to be good mainly for making
binary decision. In other words, they may not be able to well capture the manifold
structure of the discriminative appearances, a vital factor for robust visual tracking.

Given the visual appearance model, different tracking algorithms [[11,12}13}[14}/15}
16] come with different optimization paradigm for matching. They can largely be clas-
sified into two. The first class [[11,12] takes a hypothesis generation and observation ver-
ification approach by probabilistic information fusion. Seminal works include Kalman
filter, probabilistic data association filter (PDAF) [[L1], and particle filter [12].

However, both Kalman filter and PDAF [[11] make the assumption that the visual
observations of the target can be obtained in certain ways, which may not be satisfied in
many cases. Although particle filter [[12] eliminates this assumption by taking a direct
verification approach, it needs sufficient number of particle hypotheses, and hence a lot
of computation resources for good performance. It is even worse when dealing with
high dimensional motions [[17,[18]]. This is why partitioned sampling [[17] and impor-
tance sampling [[18] are needed to effeciently utilize the limited particle budget.

The second class takes a direct optimization approach, where iterative gradient based
search [[13}/15]] is performed, or a linear program [[14,/16] is solved to obtain the tracking
results. Compared to the first class of tracking algorithms, direct optimization [14}13]]
usually does not make any additional assumptions about image observations, and the
gradient based optimization can be performed efficiently with modern nonlinear pro-
gram [[19]]. This renders them to be more applicable when certain assumptions do not
hold or the computational resource is constrained.

We propose a unified discriminative visual tracking framework for both appearance
modeling and visual matching. It is cast under a discriminative metric learning algo-
rithm proposed by Globerson and Roweis [20]. In our formulation, appearance mod-
eling is to identify a discriminative embedding, and visual matching performs an ex-
emplar based regression on such a manifold w.r.t. the motion parameters. Both steps
optimize the same objective function and are performed alternatively by efficient gradi-
ent search. Therefore, we achieve two tasks in an unified formulation.

Without requiring any additional efforts, our formulation can naturally deal with the
discriminative modeling and visual matching of multiple targets. Due to the mutual dis-
crimination of the multiple appearances, and the joint optimization of multiple motions
in our model, our tracking algorithm naturally reinforces the exclusive principle [21]].
Exclusive principle states that no two visual targets shall account for the same image
observations, which is vital to handle cross occlusions, as manifested in [21]].

Our unified formulation presents three benefits to previous works: firstly, it presents
a unified discriminative formulation where appearances modeling and matching are op-
timizing the same objective function. Secondly, the unified discriminative formulation
gracefully handles visual modeling and tracking of multiple targets where an exclu-
sive principle is naturally reinforced. This makes it to be robust to occlusions occurring
among the different visual targets. Thirdly, a principled criterion is derived from it to
select the optimal set of visual examples for online learning and matching.
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2 Discriminative Appearance and Motion Model

2.1 A Unified Formulation

We take a unified formulation for joint discriminative appearances modeling and visual
matching. More formally, suppose we have a set of labeled training examples Xy =
{x; € RN, y;}™ |, where y; = 1 means x; is among the n; foreground samples, and
y; = 0 implies that x; is one of the ng + 1 background samples, such that ny +ng+1 =
n. In our experiments, each x; is usually a w x h image patchand N = w x h.

We further denote I(m) to be the visual target we would like to track where m € R’
is the motion parameters we want to recover. Obviously, the label y of I(m) is 1, since it
represents the visual target. For ease of notation, we denote xo = I(m). Therefore, our
final labeled data set X = X, U {(x0, yo = 1) }. Following Globerson and Roweis [20],
we propose to learn a Mahalanobis form metric, i.e.,

dA(Xi,Xj) = (Xi —Xj)TA(Xi —Xj). (1)
where A is a positive semi-definite (PSD) matrix to be learnt. For each x; € X, define

eidA(xiaxj)

2

_ 1 —da(xi,%5) —
pA(XJ‘XZ) - Zie - Zk#? e*dA(xiaxk) ’

The ideal distribution of the optimal A shall collapse samples from the same class to
be a single point. Specifically, the ideal distribution shall take the following form,

1
pol(x; ;) = { ot 3)

where [ € {0, 1}. Recall that xo = I(m), we define

F(A,m) =" KL (po(xjlxi)llpa(x;[x:) = C+ Y ;Z (da(xi,x;) + log Z;)

=0 yi=y;=l
“4)
where C' = Zyi:yj:l ;L log ;L is a constant. To have pa (x;|x;) to be as close to
po(x;]x;) as possible, we only need to proceed to minimize f(A, m), i.e.,
min f(A, m) (5)
s.t. Vae RN, al Aa > 0. (6)

where the constraint in Eq. [6] confines A to be PSD. Solving the above optimization
problem would allow us to jointly obtain the optimal discriminative appearance model
defined by A, and track the motion of the target visual object, which is defined by m.
We solve both by efficient gradient based search, as presented in the following sections.

We shall emphasize here that we present our formulation and optimization in this
section with a single visual target for ease of presentation. We will extend the discussion
to present more details on how to deal with multiple objects tracking in Sec. 4l
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2.2 Appearance Model Estimation

In our unified formulation, discriminative appearance modeling refers to identifying the
optimal A, which defines the discriminative metric, and thus a discriminative embed-
ding. Assume that the motion parameter m is fixed, following [20], it is easy to figure
out that f(A, m) is a convex function of A. Taking the derivative of f(A,m) with
respect to A, we have

8f(811,m) = i;O(pO(XHXi) — pa(xi]x:)) (x5 — x:)(x; — x;)T (7

Similar to [20], we take a gradient projection algorithm [22] to obtain the optimal A.
Specifically the following two steps are performed:

1. GRADIENT DESCENT:A = A — ¢/ (8‘:’"‘), where € determines the step length for
gradient descent.
2. PSD PROJECTION: Compute the eigen-value decomposition of A, i.e., { Ay, ug }o_,

such that A = Z,]cvzl Apugul, set A = Z,]cvzl max(\g, 0)ugul.

The first step above performs gradient descent, and the second step reinforces the con-
straint to make A to be a positive semi-definite matrix. These two steps are iterated
until convergence. Since f(A, m) is a convex function of A given m. The iteration of
these two steps is guaranteed to find the optimal solution to A.

2.3 Motion Parameter Optimization

In this subsection, we fix the discriminative appearance model A, and develop the gra-
dient descent search for the motion parameters m. Not losing any generality, we assume
that m is a linear motion model, i.e.,

z ab| 2 e
o)=L ]+ 1 ®
where [27,]T is the canonical coordinates for the labeled examples, and [z, y]7 is the
coordinates in the target video frame. This linear motion model covers a wide variety of
motions such as translation, scaling, similarity, as well as full affine motion. We proceed
to derive the gradient based search for the full affine motion model.

Recall that xo = I(m) is the only term that involves the motion parameter m, ac-
cording to chain rule, we have

Of (A, m) _ Of (A, m) 0x¢

om Oxg Om ©)
With some mathematical manipulation, it can be shown that
1 n
A, = 2d , X log Z: + C(A 10
f(A,m) n Z A(x0 XJ)+ZOg i+ C(A) (10)

1 . ,
y;=1,j#0 J=0
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where C'(A) is a term which is independent of x¢ and thus independent of m. There-
fore, with some more mathematical manipulations, we have

Jf (A, m 4 -
P b ST Al —x0) — 2 (all) + palrolx, A Gro = x,).
y;=1,j70 Jj=1
Y
For any parameter £ € m, again, applying chain rule, we have
Oxg 0I(m) OI(m)Jdz  OI(m)dy (12)

= + R
3 2 NS y ¢
OI(m) OI(m) . . . . .
where and represents the image gradient in the target frame in horizontal
and vertical directions, respectively. For ease of notation, we denote them as I, and I,
respectively. Following Eq.[12] we have

8X0 ox

8X0 8X0
= I’I‘ /a
da ot

Iyy/7 86 = Iafv = Iy (13)

8X0

de

8X0 -
od

O — 1y, =12,

0b

Therefore, we may easily calculate the gradient of f(A, m) with respect to m by ap-
plying Eq.Qlto Eq. Then we can take a gradient descent step to recover the optimal
motion parameter m, i.e.,
of(A
m = m — 0 Am) (14)
Oom
where the step length 1 could be estimated, for example, by a quasi-Newton method

such as L-BFGS [19].

3 Online Matching and Model Estimation

One of the main challenges in appearance model based visual tracking is to robustly
adapt the model to the visual environment. This adaptation may be indispensable for
robust tracking since the target objects may go through drastic visual changes from
environmental conditions such as extreme lighting, occlusions, casting shadows, and
pose and view changes. The unified formulation we proposed in Eq. 5] enables us to
naturally fulfill this task. We proceed to present it in a more formal way.

Extended from the notation of Sec. Pl let X®) be the set of n labeled examples
we maintain at time instance ¢. We also let A; be the current discriminative appear-
ance model, and m; be the motion parameters we need to recover. Hence we have
X(()t) =1® (m;). At each time instant ¢, given X ) and A, we run the gradient descent
optimization algorithm outlined in Sec.[2.3]to obtain the optimal motion parameter m}.
This fulfills our visual matching and tracking task. Then we perturb m; to generate a

set of a negative samples Xftﬂ) to replace the oldest o negative sample subset Xft) in
X®)_ This results in the new labeled examples X *+1) ..,

XD = (0 a0y u ., (15)
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Since m; has been recovered, for ease of presentation, we abuse the notation to tem-
porally define x(()tH) = I*(m;). With X(**1) We can then run the gradient projection
optimization algorithms outlined in Sec. [2.2] to obtain the optimal A, ;. To proceed
with the next matching step to identify the optimal I'**(m;. ), with a fixed memory
budget, we need to retire one positive examples in the current X' (*1) | we propose a least
consistent criterion based on the contribution of each positive examples to the unified
cost function f (A1, m;). Indeed, fixing A;+q and my, f(As11, my) is a function of
XD e, f(Ary1, my) = g(XTHD). We can similarly define a g(-) function for any
subset of X' (*+1) based on Eq.H] Therefore, for each x € X**1) a consistent criterion
can be defined as

(%) =g (X(t“)) —g (X(t“) \ {x}) . (16)

It is easy to understand that the larger ¢(x) is, the more contribution x has made to
f(A¢iq, my). If the label y(x) = 1, a larger ¢(x) indicates that x is not very compatible
to the rest of the positive samples, and hence should be retired from the sample set. More
formally, we select

X" = argmaX,e y(e+1) 4 (x)=1¢(X) (17)

to retire from X'**1)_ In real operation, we only need to change the numbering of
th+1) = I'(m;) to the numbering of x*, then we reset x(()tH) = I'"*1(my 1) which is
unknown now to kick off the matching process for the optimal motion parameter my ;.

The above steps will be repeated from time instant ¢ to time instant ¢ 4+ 1. There-
fore we track the visual target and estimate the discriminative visual appearance model
simultaneously in an online fashion, which are all based on efficient gradient based opti-
mization. Most previous approaches resort to heuristics or the oldness of visual samples
to select the optimal set of online training examples. While our proposed selection cri-
terion for positive examples in Eq.[I7is derived directly from our unified cost function
in a principled fashion, an obvious benefit of our unified formulation.

To initialize the tracking algorithm, we can run an object detector if it applies, such as
a face detector [23]] or a human detector [24], if we are tracking a face or a person. Or we
can request the users to manually specify a tracking rectangle in the first frame. Then the
initialized tracking rectangle, either from a detector or manually specified, is perturbed
to form the initial set of labeled examples X'(1). More specifically, perturbed rectangles
with sufficient overlap with the initial rectangle are regarded as positive examples, while
those perturbed rectangles which are deviated too much from the initial rectangles are
deemed as negative examples. This bootstraps learning for the optimal discriminative
appearance model A, which is then adopted to obtain the optimal motion parameter
mo. This processes will be repeated as described above.

Last but not least, when maintaining the labeled example set X’ ), we fix a small
set of 3 negative and 3 positive examples extracted from the initialization frame in the
set, i.e., we never replace them with new examples. This treatment is very important to
keep some invariance to our discriminative appearance model and avoid it to be drifted
too drastically in the visual tracking process, a trick which has been adopted also in
previous work, such as [8].
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4 Modeling and Tracking Multiple Objects

Our unified formulation is natural to handle the tracking of multiple targets. To see this,
we assume y; = 0 indicates background, and y; = 1, ..., K indicates each of the K
visual targets we are intending to track. Let So = {(%o;,%0; = 0)};2, and also let
Si = {(xij,yi = 1)}y foranyi = 1,..., K, where Vi > 0, x;0 = I(m;) indicates
each of the visual targets we want to track in the current frame, where m; is represented
by {a;, b;, i, d;, e, fi}, as defined in Eq.[8 Following similar steps as we have derived
Eq.d denote M = {m;, mg, ..., mg},and X = {x;0} %, we have

f(AM)=C+ Z Z (da(xij, Xir) + log Zij) . (18)

=0 jthe1

where Z;; and da(-,-) are all defined similar to the corresponding terms defined in
Sec. 211 Here A captures the discriminative appearances information for all the K
visual targets, and m; represents the motion for the i*" visual target which, in our
experiments, are again the affine motion parameters defined in Eq.[8]

Following similar derivations as in Sec. and Sec. we can compute

K n; K mng

=D DD wn (kD (i — i) (xu — x55)” (19)

=0 j=0 k=0 [=0

where

wij (kl) = po(xpi|xi;) — pa(Xp|xi)- (20)
With this formula to compute the gradient, we can utilize similar Gradient projection
steps outlined in Sec.[2.2]to obtain the optimal A. Notice that here A captures both the

discriminative appearances among all the visual targets, as well as the discriminative
information between the visual targets and background. Similarly, we obtain that

K ng

Of(A, M) 4
py ZA xio = %) =2 > Bio(k)A(xio = xi). (21
k=11=0
where
Bio(kl) = pa (xki|xio0) + pa (Xio|xki) (22)
Following Eq.[13] we also have
Oxio -+ , Ox0 o ;0% - , Oxio . , Oxio - OXio
da; Loz, ob; Loy, oci Ly, od, Lyyi, dei L., of; I,. (23)
Following chain rules and with Eq. 23| we can easily calculate
A i A, 7
Of(A,mi) _ OF(A, M) g o

m; 8Xi0 m;

With Eq.[24] again, we use L-BFGS [19] to solve the nonlinear optimization problem
to obtain each set of motion parameters m; for the i*" visual target. Based on the above
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two gradient based optimization schemes for A and each m;, respectively, following
similar ideas as outlined in Sec.[3 we can further develop online appearances modeling
and updating algorithms and visual matching algorithms for robust visual tracking of
multiple objects. We shall not verbose on it since it follows quite similar steps as those
outlined in Sec

4.1 Discriminant Exclusive Principle

We argue that the proposed joint formulation for multiple object tracking naturally in-
corporates an exclusive principle [[17] in the matching process. Therefore it is robust to
handle occlusions among the different visual objects. The exclusive principle states that
no two visual tracker shall occupy the same image observation. Our proposed algorithm
naturally achieves it because of the joint discriminative appearance model A, which re-
inforces the mutual discrimination of the appearances between two visual targets I(m,)
and I(m;). To see this more clearly, given an optimal A, if I(m;) and I(m;) occupy
similar image regions (a.k.a, m; = m;), and thus have similar appearance, the mu-
tual discriminative information encoded in A would incur a large value for f(A, M).
Therefore, m; = m,; is not an optimal solution to M. In other words, the optimal mo-
tion parameter M is more likely to occur when V1 < i < j < K, m; # m,;. Therefore,
the exclusive principle among the different visual targets is naturally reinforced.

5 Experiments

We dub the name TUDAMM to the Tracker with Unified Discriminative Appearance
Modeling and Matching (TUDAMM). Comparing with the results of other state-of-
the-art trackers [2L|13]], we evaluate our TUDAMM using several challenging video
sequences including video clips from CAVIAR dataset [25]], and other real-world video
sequences downloaded from Internet.

5.1 Evaluation Criteria

Enlightened by the simplicity and the elegance of the Average Precision (AP) criterion
used in the PASCAL grand challenge [26] for object detection evaluation, we define
a simple measure for tracker evaluation, namely Average Tracking Precision (ATP).
More formally, for each tracking task, a ground truth mask for the object of interest is
labeled in each frame j. The mask is represented as a point set G;. The tracking result
is represented as a point set 7; at frame j. (z;,y;) € G; or 7; indicates that the pixel at
(x;, yi) is inside them. For an ideal tracker, Vi, G; = 7;.

For each frame j, the tracking precision r; is defined as: r; = |G; N 7;|/|G; U T;].
Noticing that r; € [0, 1], the ATP for a tracker of an object in a video clip is defined as:

1 N ‘g T
_ . J
ATP= ;:lrj = § 16, uT| (25)

where NN is the running length of the video clips in frame number. For an ideal tracker,
ATP = 1. We use it as the exclusive quantitative measure to compare the performance
of the TUDAMM with other state-of-the-art trackers.
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T

Fig.1. The sample key frames of the tracking results for CAVIAR dataset. Key frame NO.
443,455,467, 488,501, 772 are shown from left to right. First row: TUDAMM. Second Row:
Meanshift [13]]. Third row: Incremental Learning Tracker (ILT) [3].

5.2 Visual Tracking of Single/Multiple Target(s)

We firstly present the tracking results of TUDAMM for single target on a video se-
quence from the CAVIAR datasefll, where three persons are walking in the corridor of
a shopping mall in Portugal. We call this video sequence “ThreePerson”. We run the
proposed tracking algorithm to track one of the three persons individually. The tracking
task is challenging in several aspects: 1) the scales of the visual targets change dras-
tically; 2) the three persons walked across each other and thus induced occlusion; 3)
some other crossing person occluded the target person.

As shown in the first row of Fig. [l the TUDAMM tracker successfully tracked
the target person from beginning of the sequence to the end of the sequence with-
out any problem, which is more robust than both the mean-shift tracker [[13] (second
row) and the incremental PCA tracker [3] (third row). Both of these algorithms failed
to track the target after the person with red cloth occluded the target person, as dis-
played in the second and third row of Fig.[Il The robustness of our TUDAMM tracker
attributes to our unified discriminative formulation, which makes it more robust to
background clutter. For detailed video results, please check out our video demo file
“http://vision.ece.missouri.edu/demo/ECCV2010Tracking.avi”.

Quantitative comparisons to other work. Since the ThreePerson video in the CAVIAR
dataset has ground-truth labels of the bounding boxes of the walking persons in the
video sequence, we use the ATP criterion presented in Sec.[5.1] to quantitatively evalu-
ate the performances of the proposed TUDAMM tracker, the mean-shift tracker (Mean-
shift) [13]], and the incremental PCA tracker (ILT) [3]]. We present two such evaluation
results for tracking two different persons in the video in Fig. and Fig. respec-
tively. It is clear TUDAMM consistently presents more accurate tracking results than

"'Data set from EC Funded CAVIAR project/IST 2001 37540, downloaded at URL:
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.
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Fig. 2. (a) The performance comparison for the person tracked in figure [[l (b) The performance
comparison for tracking the black person at right to the red person at the starting frame.

Fig. 3. The top 12 eigenvectors (with the descent order from left to right) for the discriminative
matrix A

the other algorithms, which achieves an average tracking ATP of 75%. This demon-
strates the good performance of the gradient based matching algorithm to recover the
motion parameters.

Visualizing the appearance model A. As a matter of fact, the appearance model A
defines a discriminative embedding to differentiate the visual object from the back-
ground. Each eigenvector of A is corresponding to one basis vector of the embedding.
To have a better understanding of how the appearance model A functions, in Fig.[3l we
visualize the top 12 eigenvectors of an optimal A estimated at frame 436 when tracking
the person in red in the ThreePerson sequence. As we can clearly observe, these eigen-
vectors focusing on extracting the contour and thus encode the shape information of the
target person. They also tend to focus more on features inside the human contour while
suppress features outside the human contour. This indicates that our metric learning
framework really picks up the discriminative information for tracking.

Visualizing the gradient optimization processes. To gain a good understanding of
the gradient optimization process of both the discriminative appearance estimation as
well as the gradient based optimization process for visual matching, we visualize the
evolution of both optimization processes in frame 532 of the ThreePerson sequence,
as shown in Fig. @ and Fig. 3l respectively. The tracking target is the rightmost person
in this frame. Fig. @ visualizes how the tenth eigen-vector of the discriminative model
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Fig. 4. The evolution of the tenth Eigen vector of A during gradient optimization in the first 11
steps of gradient descent from left to right
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Fig. 5. The gradient optimization of objective function w.r.t. the motion parameters in frame 532
in the CAVIAR sequence. The tracking is initialized as the tracking result in frame 512 for better
visualization. Red rectangle in the left image is the final converged matching results. The figure
on the right displays how the objective function is minimized by gradient descent.

A evolves in the first 11 iterations. We start the optimization by initializing A as an
identity matrix, so the initialization of the tenth eigen-vector is a unit vector with the
tenth element to be one and all the other elements are zero, as shown in the first image
in Fig. [ As we can clearly observe, only after 8 steps of gradient descent the eigen-
vector has already been stabilized. From Fig.[3 we can clearly observe the effectiveness
of the gradient optimization process in the visual matching step. In only 4 steps of
gradient descent, the matching result is already converged. These figures demonstrate
the efficiency of the proposed gradient optimization process.

Tracking under various visual variations. We have also extensively tested the TU-
DAMM with other challenging videos used in previous works or downloaded from
YouTube with various challenging aspects. We highly recommend to check our demo
video for more details of all the tracking results.

More specifically, in Fig. |6l we present the tracking results of a human face from
the TUDAMM, the ILT [3]], and the Meanshift trackers [13], respectively. The ILT
tracker [3]] firstly reported results in this video, which is subject to drastic illumina-
tion changes and casting shadows. As we can clearly observe in Fig. |6l the TUDAMM
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Fig. 6. The sample key frames of the tracking results on the challenging face moving under
shadow with big illumination change video . Key frame NO. 201, 210, 220, 230, 240, 260 are
shown from left to right. First row: TUDAMM. Second Row: Meanshift. Third row: ILT.

Fig. 7. The sample key frames of the CrazyCarChasing tracking results of TUDAMM with large
scale zooming and camera motion.

robustly tracked the human face despite the dramatic shadows and illumination changes.
While both the ILT tracker and the Meanshift tracker failed with the drastic visual vari-
ations. The results video contains 71 frames.

In Fig.[7] we report the tracking results of TUDAMM on a car chasing video down-
loaded from YouTube. The video is subject to large scale change and drastic camera
motion since it was taken from a helicopter. Our tracking algorithm successfully tracked
the motion of the target car without any problem. The results video contains 578 frames.
In Fig.[8] we present the tracking results of a rabbit which underwent a lot of non-rigid
motions. TUDAMM successfully tracked the rabbit across the video, which contains
156 frames.

Tracking multiple targets with cross occlusion. To demonstrate the ability of TU-
DAMM in dealing with occlusions in multiple object tracking, we report results in two
video sequences, one is the ThreePerson video from the CAVIAR dataset, and the other
is a horse racing video downloaded from YouTube. Tracking results in sample video
frames are displayed in Fig[9] and Fig respectively. Three people are tracked in the
CAVIAR video, while five horse racers are tracked in the horse racing video. As we can
clearly observe, despite severe cross occlusion among the different visual targets, our
TUDAMM tracked all of them without any problem. This is attributed to the discrimi-
native appearance model induced from our unified discriminative formulation.
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Fig. 8. The sample key frames of the tracking results by TUDAMM on the RabbitRun video with
nonrigid motion

Fig.9. The sample key frames of the tracking results by multiple target TUDAMM on the
CAVIAR dataset

Tracking speed. Last but not least, with a PC of 2.3-GHz CPU in Windows XP, without
any code optimization in our C++ implementation, our tracker runs at 2 frames per
second for tracking a single target. It runs at 0.5 frames per second for tracking the
three people and 0.2 frames per second for tracking the 5 horses. We expect to have 10
times speed up with reasonable efforts on code optimization.

Fig. 10. Multiple Tracking results for a horse racing video. The order of the video frame is pre-
sented from top-left to bottom-right.

6 Conclusion and Future Work

In this paper, we present a unified discriminative framework based on metric learn-
ing for robust tracking of either single or multiple targets, where both the appearance
modeling and visual matching are optimizing a single objective with efficient gradient
based search. Our experimental results validate the efficacy of the proposed tracking al-
gorithm. When tracking multiple targets, our unified formulation encodes an exclusive
principle which naturally deals with cross occlusions among the multiple targets. This
has also been manifested in our experiments. Future research includes exploring means
of integrating our multiple target tracker with state-of-the-art surveillance systems to
handle the appearance of new targets and disappearance of old targets.
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Memory-Based Particle Filter
for Tracking Objects
with Large Variation in Pose and Appearance

Dan Mikami, Kazuhiro Otsuka, and Junji Yamato

NTT Communication and Science Laboratories

Abstract. A novel memory-based particle filter is proposed to achieve
robust visual tracking of a target’s pose even with large variations in tar-
get’s position and rotation, i.e. large appearance changes. The memory-
based particle filter (M-PF) is a recent extension of the particle filter,
and incorporates a memory-based mechanism to predict prior distribu-
tion using past memory of target state sequence; it offers robust target
tracking against complex motion. This paper extends the M-PF to a uni-
fied probabilistic framework for joint estimation of the target’s pose and
appearance based on memory-based joint prior prediction using stored
past pose and appearance sequences. We call it the Memory-based Par-
ticle Filter with Appearance Prediction (M-PFAP). A memory-based
approach enables generating the joint prior distribution of pose and ap-
pearance without explicit modeling of the complex relationship between
them. M-PFAP can robustly handle the large changes in appearance
caused by large pose variation, in addition to abrupt changes in moving
direction; it allows robust tracking under self and mutual occlusion. Ex-
periments confirm that M-PFAP successfully tracks human faces from
frontal view to profile view; it greatly eases the limitations of M-PF.

1 Introduction

Visual object tracking, one of the most important techniques in computer vision
[1], is required for a wide range of applications such as automatic surveillance,
man-machine interfaces [2/3], and communication scene analysis [4]. Target track-
ing has still been acknowledged as a challenging problem because the target’s
appearance changes greatly due to pose variation, occlusion, illumination change,
etc. For example, when an object rotates, its visible surface gradually becomes in-
visible, i.e. self-occlusion, and hidden surfaces becomes visible. Mutual occlusion,
the interjection of another object between the target and the camera, makes the
target’s visible surface invisible. Also, the target tracker needs to handle complex
motion, such as when the moving direction abruptly reverses, which can occur
with occlusions in real world situations.

Bayesian filter-based trackers have been acknowledged as a promising ap-
proach; they represent a unified probabilistic framework for sequentially esti-
mating the target state from an observed data stream [5]. At each time step, the
Bayesian filter computes the posterior distribution of the target state by using

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 215 2010.
© Springer-Verlag Berlin Heidelberg 2010
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observation likelihood and the prior distribution. One variant, the particle filter,
has been widely used for target tracking. It represents probability distributions
of the target state by a set of samples, called particles. Particle filter can po-
tentially handle non-Gaussian distribution and nonlinear dynamics/observation
processes; this contributes to robust tracking. For object tracking, an example
of target state is the position and orientation of the target.

We proposed the memory-based particle filter (M-PF) as an extension of the
particle filter [6]. M-PF eases the Markov assumption of PF and predicts the
prior distribution based on target’s long-term dynamics using past history of
the target’s states. M-PF realized robustness against abrupt object movements
and quick recovery from tracking failure without explicit modeling of target’s
dynamics. However, M-PF employs the same observation process as the tradi-
tional PF. The visual tracker in [0] uses a single template representing frontal
face, which is built at tracker initialization. Therefore, the M-PF-based tracker
can handle face rotation only so long as the initial frontal face remains visible;
[6] suggests that the horizontal limit is 50 degrees.

This paper extends M-PF to a unified probabilistic framework for joint estima-
tion of target’s position/pose and its appearance based on memory-based joint
prior distribution prediction using stored past pose-appearance pairs. We call it
the Memory-based Particle Filter with Appearance Prediction (M-PFAP). The
appearance of an object varies with its pose. By predicting appearance from pose,
M-PFAP enables robust tracking against changes in appearance. A memory-
based approach is proposed to generate the joint prior distribution of pose and
appearance; the complex relationship between them is not explicitly modeled.
M-PFAP can robustly handle the large changes in appearance caused by large
pose variation, in addition to abrupt changes in moving direction; it allows ro-
bust tracking under self and mutual occlusion. To the best of our knowledge,
M-PFAP is the first pose tracker that handles pose-appearance relationship as a
probabilistic distribution and that simultaneously predicts future pose and ap-
pearance in a memory-based approach. As the tracking target, this paper focuses
on the face and we implement the M-PFAP-based face pose tracker. Experiments
confirm that M-PFAP successfully tracks human faces from frontal view up to
profile view, i.e. 90 degrees horizontally; it far exceeds the limits of M-PF.

This paper is organized as follows. Section 2 overviews related works, Sect. 3
proposes M-PFAP, and Sect. 4 describes face pose tracking based on M-PFAP,
experiments, and results. Finally, Sect. 5 gives our conclusions.

2 Related Works

2.1 Template Matching-Based Tracking and Template Update

Template matching has been widely employed for visual target tracking; the
template represents the target’s appearance from the camera’s view. The target
position is the best-matched position of the template on the input image. To
cope with appearance change, the template is updated repeatedly over time
[7U8]. However, error in the estimates of position/pose yields erroneous templates
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and error accumulates, which results in tracking failure. It is called “drift”. To
suppress drift, two approaches have been proposed.

The first approach uses pose-invariant features extracted from the target. The
tracker of Matthews et al. [9] employs a set of invariant features from multiple
views of the target object; the tracker can keep track of the target even when its
pose changes. Jepson et al. [I0] proposed a WSL model which uses separate mod-
els for Stable, Wandering, and Lost situations; these models are mixed to predict
the target appearance by using the EM algorithm. Zelniker et al. [I1] combined
multiple features according to e.g. illumination condition. These methods can
be used only for position estimation, not for pose estimation.

The second approach is template updating through adaptive criteria. Morency
et al. [I2JI3] and Ross et al. [I4] proposed methods that use an initial template as
a supplement to avoid error accumulation; both the initial template and updated
template are used for matching. However, the use of the initial template limits
the pose range possible. In the example of [I3], a frontal face is used as the
initial template, and the horizontal rotation angle in their experiment was up to
50 degrees. Lefevre et al. [15] used view-based templates obtained online. Their
approach is to generate templates from not only frontal views but also from
profile views. This allows an appearance model to be generated by interpolation,
not by extrapolation. However, the trackable angle range is restricted by the
profile views.

M-PFAP provides a new approach to handling the large appearance changes
caused by pose change. It handles pose-appearance relationship as a probabilistic
distribution, and estimates pose and appearance simultaneously in the Bayesian
filter framework by using the memory-based approach.

2.2 Memory-Based Particle Filter (M-PF)

M-PF [6] realized robust target tracking without explicit modeling of target’s
dynamics even when a target moves quickly.

Figl outlines M-PF. M-PF keeps temporal sequence of past state estimates
X1.r = {X1,- -, X7} in memory. Here, X1.7 denotes a sequence of state estimates
from time 1 to time T, and X; denotes a pose estimate at time ¢. M-PF assumes
that the subsequent parts of past similar states provide the good estimates of
the current future.

M-PF introduced Temporal Recurrent Probability (TRP), which is a proba-
bility distribution defined in the temporal domain and indicates the possibility
that a past state will reappear in the future. To predict the prior distribution,
M-PF starts with TRP modeling. It then conducts temporal sampling based
on TRP. The sampled histories are denoted by blue dots in Fig.1. It retrieves
the corresponding past state estimates for each sampled time step, which are
denoted by pink dots in Fig.1. After that, considering the uncertainty in the
state estimates, each referred past state is convoluted with kernel distributions
(light green dist. in Fig.1), and they are mixed together to generate the prior
distribution (green dist. in Fig.1). Finally, a set of particles is generated accord-
ing to the prior distribution (black dots in Fig.1). M-PF-based face pose tracker
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Fig.1. M-PF employs past state se-
quences to predict a future state. First,
it calculates the reoccurrence possibility
of past state estimates (TRP). Past time
steps are then sampled based on TRP.
Past state estimates corresponding to the
sampled time steps are combined to pre-

Fig. 2. M-PFAP extends M-PF [6] to re-
alize robustness against large changes in
pose. We focus on the fact that the pose-
appearance relationship is not one-to-one
but stochastic. The key extension from M-
PF is prediction of joint prior distribution
of pose and appearance.

dict prior distribution. M-PF enables the
implicit modeling of complex dynamics.

in [6] estimates the position and rotation at each time step. M-PF uses the
same observation process as traditional PF, which uses a single template built
at initialization. This yields the 50 degree face rotation limit noted in [6].

M-PFAP extends M-PF. It adds appearance prior distribution prediction to
M-PF for enabling handling of large appearance changes while keeping the merits
of M-PF; robustness against abrupt movements and recoverability from tracking
failure.

3 Memory-Based Particle Filter with Appearance
Prediction (M-PFAP)

3.1 Formulation of M-PFAP

In this section, we define M-PFAP by extending the Bayesian filter formulation.
The Bayesian filter consists of two processes, update and prediction, as

(1)
(2)

where k; is a normalization term, zy.; = {21, -+ ,2:} and x1.4 = {x1, ", Xt}
denote a sequence of observation vectors and that of state vectors from time 1 to
t, respectively. Equation () corresponds to the update process that computes the
posterior distribution of the target state, and (2] corresponds to the prediction
process, which calculates the prior distribution for the next time step.

p(xt|z1:4) = ki - p(ze|xt) - p(xt|Z1:6-1),

p(Xt+1\Z1:t) = /p(Xt+1\Xl:t)p(Xl:t|Z1:t)dX1:t,
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M-PF replaced the prediction process in ([2]) with memory-based prior predic-
tion as written in (3.

p(Xt+At\Z1:t) = 7T(Xt+At|§1:t7 At)- (3)

M-PF obtains the prior distribution at time ¢t + At from the history of state
estimates X1.; and the lead time At.

M-PFAP adds appearance as the state vector in addition to position and ro-
tation. Hereafter, X; = (x¢, A;) denotes state vector at time ¢, where x; and A,
denote the position/rotation and the appearance at time ¢, respectively. Exam-
ples of appearance include a set of feature points and corresponding gray levels.
The posterior distribution and the prior distribution of M-PFAP are defined
below.

P(Xilz1:t) = ki - p(2e]xe, Ar) - (X, At|Z1:0-1), (4)
p(Xt+At|let) = W(XtJrAt‘Xl:ta At) = W(XtJrAta At+At|§1:ta Al:ta At)a (5)

where X1, = = {(X1, A1), , (X, A;)} denotes the sequence of pairs of estimated
pose X; and appearance At at time t. A1 4= {Al, At} denotes the sequence
of appearances from time 1 to time t. We define the joint prior distribution of
pose and appearance described in (5) as follows, by introducing a conditional
probability of a future appearance given a future pose m(Ar 4 at|Xe4At, X145 A\M)
and a past history of appearance and pose (X1, 121\1;,5).

Equation (5) = ﬂ-(xt+At‘§1:taA\1:ta At) 'W(AtJrAt\XtJrAt,ﬁl:t,A\l:t,At), (6)
= T(XetAt|Xnt, At) - T(Ars At Xet At Xnit, Arit)- (7)

The first part of (7) corresponds to prior distribution of pose x;ya¢. It assumes
that the pose at At time in the future x;1 A; is independent of the past history
of appearance A\l:t, in other words, the dynamics of object movement are inde-
pendent of the past appearance history. The last part of (7) corresponds to the
conditional probability for a given pose, x4 a¢; it assumes that the appearance
at At time in the future A;y o¢ depends on the pose at time T+ At, x4 a¢, and
is independent of lead time At. The first part of (7) is prior distribution of pose;
i.e. it equals the prior distribution of M-PF.

To define the conditional probability for a given pose, M-PFAP assumes that
the main determinant of appearance is pose. Note that there is no deterministic
one-to-one correspondence between them, i.e. significant uncertainty exists in
the relationship. This assumption is based on the following observations. First,
when the object rotates, its visible surface gradually becomes invisible and vice
versa. However, appearance is also influenced by various factors such as illu-
mination change and non-rigid deformation. Moreover, the explicit modeling of
the appearance changes caused by pose is difficult, because appearance exhibits
complex dynamics of high dimensionality.

Based on the above assumption, M-PFAP represents the relationship between
pose and appearance as a probability distribution, like in Fig.3. In Fig.3, the
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Fig. 3. An illustration of pose-appearance relationship; what we want to compute here
is the conditional prior distribution, p(A|x*("), for given the pose x**. We approxi-
mately represent the conditional distribution using past pose-appearance pairs. Each
selected past pair is geometrically transformed, f(-), to compensate the difference be-
tween desired pose and selected pose.

horizontal axis and vertical axis denote pose space and appearance space, re-
spectively. As seen in Fig.3, for a given pose, there is a distribution of possible
appearances and vise versa. M-PFAP handles such uncertainty within the M-
PF framework. It exploits the long-term history of the target state to predict
complex prior distribution. This paper proposes a memory-based algorithm that
jointly predicts appearance and pose.

3.2 Algorithm of the M-PFAP

M-PFAP sequentially estimates the target position and pose by repeating the
posterior distribution estimation in (4) and the prior distribution prediction in
(7). In the prior prediction step, M-PFAP predicts a joint prior distribution of
pose and appearance. In the posterior prediction step, the observation likelihood
of each particle is calculated by using the appearance estimated in the prior
prediction step. Then, point estimates of pose and appearance are obtained from
their joint posterior distribution. Next, the pair of pose and appearance is added
to the history. Prior distribution prediction, posterior distribution estimation,
and accumulation of history are described below.

Prior distribution prediction in M-PFAP

M-PFAP generates a set of particles, {(x*(M), A*1) ... (x*(N) A*(N))} which
represents a joint prior distribution of pose and appearance, by using a memory-
based mechanism and the stored history of them.

We focus on the fact that the joint distribution of pose and appearance de-
fined by (7) is the product of the prior distribution of pose and the conditional
probability of appearance (conditioned by pose). Therefore, we employ two step
solutions. In Step-1, a set of particles that represents a prior distribution of pose
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is created by the previous M-PF, which is described in Fig.1 and Sect.2.2. In
Step-2, the appearance that corresponds to each particle is generated. The pro-
cess is shown in Fig.2 and Fig.3. In Fig.2, the current time is denoted by T', and
prediction target is At time future state. Here, we assume we already have the
history of pose X1.7 and appearance Ay.7. Each step is detailed below.

Step-1. Generating pose prior samples

Step-1 generates a set of particles {x*(l), ‘e ,x*(N)} that represents the prior
distribution of pose at time 7'+ At in the same manner as M-PF. This step
corresponds to the first part of (7), (x4 at|X1.7, At).
Step-2. Prediction of appearance prior

Step-2 uses random sampleing according to w(Ariat|XT+ AL, X1.T, ELT),
which is the last part of (7), to generate a set of appearance samples. It gen-
erates appearances { A*(1) ... A*(N)1 corresponding to particles {x*(), ... |
x*(N )}, that are obtained from Step-1. Here, what we want to compute is
the conditional prior distribution p(A|x*(¥) for given the pose x*(*). The ba-
sic idea is that the appearance distribution can be obtained as a mixture of
past appearances whose associated poses are similar to pose condition x*().
Based on the idea, first, past pose-appearance pairs are sampled (Step-2-
1), and then the past sampled appearances are geometrically transformed
to fill in the gap between the desired pose x*(!) and past sampled pose X;
(Step-2-2). We define the conditional appearance distribution as

T
PARCD) = S w(r) (A~ FAD %), (®)

t=1

where f(-) denotes the geometric transformation, §(-) denotes the delta func-
tion, w(t) denotes the weight which is determined by the difference between
x*(") and %, and « is the normalization factor to make [ p(A[x*")dA = 1.
Random sampling with weight w(t) based on (8) generates the appearance
prior distribution. We name weight w(t) the history selection probability.
This is defined in the temporal domain based on pose similarity; the higher
the similarity between a pose in the history X; and that of the target particle,
x*(") becomes, the higher the history selection probability becomes. The un-
certainty that exists in the appearance-pose relationship can be represented
as random sampling from the past history. We expect that the mixture of
past appearances well reflects the uncertainty in the appearance-pose re-
lationship. This approach is simple but effective; it does not need explicit
modeling or stochastic learning
Step-2-1. Sampling history
This step samples a past history of pose that is similar to the parti-
cle x*(V) denoted by a black dot in the upper part of Fig.2 and in
Fig.3 on the horizontal line. More specifically, this paper samples one
past pose history, X;,t ~ w(t), this is because we use enough samples,
x*() (i=1,---,N), to create sufficient diversity in the appearance dis-
tribution. The sampled history is denoted by a blue dot in the upper
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part of Fig.2 and Fig.3. As the history selection probability, this paper
employs function w(t); this makes the probability proportional to the in-
verse of the Euclidian distance between the pose of target particle x*(?)
and that of history entry X, (¢t < T).

wlt) = B/ & — x0T - (% —x*), (9)

where, § is a normalization factor to realize Zthl w(t) = 1.

Step-2-2. Appearance prediction
Considering the gap between the pose of sampled X; and the target pose
X*(i)/,\Step—Q—Q predicts the appearance A*(Y) by geometrically transform-
ing A; based on the pose difference as written in

A D = (A xD %), (10)

Here, we assume that the local appearance difference caused by the small
difference in pose can be well predicted by local geometric transforma-
tion. See Sect. 4 for more details.

Posterior distribution estimation
As in (4), posterior distribution is defined by multiplying the prior distribution
by the likelihood function for the observation at time step t. In the PF approach,
the posterior distribution is represented by weighted particles. The weight is
calculated by using a likelihood function for given input image. This function
is calculated based on the matching error between the appearance and input
images.

In contrast to M-PF, which uses a fixed appearance model, M-PFAP uses
predicted appearance in the prior distribution for each particle.

Accumulation of history R R

At each time T, M-PFAP stores pose-appearance pairs Xy = (X1, Ar). From
the particle set that represents the joint posterior distribution of appearance
and pose, the point estimates of pose and appearance are calculated. For pose,
weight averaging is used, and appearance estimates are obtained from the latest
input image by using the target’s pose estimates and rough shape model on the
current image frame. See Sect.4 for more details.

4 Implementation of Face Pose Tracker

We create a variant of the Sparse Template Condensation Tracker (STCTracker)
[16], by using M-PFAP to implement particle filtering. Figure H shows the
flowchart of the implemented face pose tracker. This section describes some
details.

Pose parameter

Target position and pose are described by a vector of seven dimensions, x =
(Mg, My, 8,77, 7p, Ty, 1); 2-DOF translation, scale, 3-DOF rotation, and an illu-
mination coefficient.
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Fig. 4. Flowchart of face pose tracking Fig. 5. Interest points deployed for ini-
by using M-PFAP tial face

Sparse template representation of an appearance

M-PFAP employs sparse template matching, which uses a sparse template
as the appearance model, as same as [I6]. The sparse template consists of a
sparse set of pixels within the target region. Here, appearance A is denoted
by {(uz(l),uy(l),uz(l), baiy), - ,(uw(M),uy(M),uz(M),b(M))}, where M denotes
the number of interest points, (uz (), Uy iy u(;y) denotes the 3-D position of an
interest point, and b(;) denotes its gray level. The matching error is calculated
as the sum of differences between the gray levels of the interest points and those
of the corresponding points in the input image. Figure [ shows the 250 interest
points selected in the initialization step. These points are selected from edge
sides and from minimum or maximum points among 8 neighbor pixels.

Geometric transform for predicting appearance

As written in Step-2-2, M-PFAP uses geometric transformation to bridge the
gap between the sampled pose X; and the target pose x*(V. As the geometric
transformation, M-PFAP uses 3-DOF rotation. It transforms interest point’s

corrdinate [t, Uy, U.]T into desired pose, [u;(i),uz(i),uz(i)]T, as in (11).

. . 1T .
U;(Z) UZ(Z) Uz(Z)] = R(X*(l))R/(Xk) [Ux Uy uz]Ta (]‘]‘)

where R(-) and R/(-) denotes rotation matrix and inverse matrix of R(-), respec-
tively. Additionally, illumination change is assumed by uniform changes in gray
levels of a set of interest points. The gray level b*(*) corresponding to interest

point [u;(i), uz(i), uz(i)]T, is obtained by b*() = v@, where v ~ N(1,02%). N(1,0?)
2

denotes normal distribution with mean 1 variance o~.
Adding pose and appearance into history
At each time step, M-PFAP stores a pose-appearance pair. The pose estimate
X is obtained as the point estimate of marginal posterior distribution of pose.
Appearance Ar, which is a set of three dimensional interest points and corre-
sponding gray levels in this paper, is obtained from the point estimate of the
pose and the latest input image. R

M-PFAP employs two steps to obtain a new appearance Ar; interest point
detection and depth information extraction. First, interest points are detected
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from the input image. Then, corresponding depth values of interest points are
extracted from a rough shape model. As the rough shape model, we used a
laser-scanned averaged head shape (not a tracked person’s model).

M-PFAP stores pose-appearance pairs only when the tracking is stable to
prevent erroneous pairs from being stored. The stability of tracking is judged
by the maximum likelihood of particles. The maximum likelihood works well
in most cases, however, it is not perfect, and erroneous pairs may become held
in memory. If, however, the erroneous pairs are in the minority in memory,
the stochastic sampling from all past memory yields few erroneous samples and
the majority of samples are valid. This condition ensures that M-PFAP does
not suffer explosive error growth, which is a serious weakness of the traditional
template update scheme.

Additionally, to suppress memory usage and retrieval time, M-PFAP employs
the data structuring process. It stores a new pose-appearance pair only when
there are no pairs whose pose are very similar to the new pose.

5 Experiments and Results

Experiments in this paper targets face pose. This section describes the experi-
mental environment, the details of the experiments, and the results.

5.1 Experimental Environment

We used PointGreyResearch’s FLEA, a digital color camera, to capture 1024 x
768 pixel-size images at 30 frames per second. The tracking processes use only
gray images converted from color images. A magnetic-based sensor, Polhemus
FASTRAK was used to obtain quantitative ground truth data. The rotation
angles, pitch, roll, and yaw roughly correspond to shaking, nodding, and tilt-
ing actions, respectively. As shown in Figll two sensors were attached to both
temples of the subject. The number of particles was set to 2000.

Table[llsummarizes the proposed method and baseline methods. We employed
three baseline methods, all based on M-PF; the first one is the original M-PF,
it uses only one template without updating; the second one (LT) updates the
template and uses the latest template; the last one (NN) updates the template
and uses the template nearest to the target pose.

Table 1. Comparison between proposed method and comparative methods

template updating selection criterion of templates
ProposediM-PFAPj accumulating history Probabilistic selection
M-PF No initial template
LT Yes latest template
NN Yes nearest template
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(a)956 (deg) (b) 639 (deg) (c) 3 0 (deg) . (d) 686 (deg)

Fig.6. An example of face tracking; the proposed method can track against large
appearance changes

5.2 The Effective Tracking by the M-PFAP

To verify the effectiveness of M-PFAP, we used a test video sequence that in-
cluded a head that rotated from frontal view to profile view (=90 deg. in hor-
izontal direction). The target video includes profile faces. Figure [6 shows the
result of M-PFAP. The snapshots in Figlf] are listed in time order from left to
right. In Figlfl the white mesh represents the estimated position and rotation,
and the dots located around center of the face denote the prior distribution of
face pose, which only represent positions. The initial template surface is almost
invisible in profile view as in Figlfl (a) and (d) ; old trackers that use only frontal
view template cannot track the face anymore. In contrast, M-PFAP successfully
tracked the face in profile view.

5.3 Quantitative Evaluation of Tracking Accuracy

Three types of video were employed for this quantitative evaluation. Video-1
included a wide range of moderate rotations. This video was used for evaluating
basic performance. Video-2 included abrupt movements, such as abrupt reverse
of moving direction and abrupt shaking of the head. This video is used to ver-
ify that M-PFAP mirrors the robustness against such abrupt motion of M-PF.
Video-3 included occlusions such as the rotating head being hidden by a moving
arm. Occlusion recovery is another merit of M-PFAP inherited from M-PF.

Figll shows the tracking results of Video-1. The horizontal axis denotes time
and the vertical axis denotes horizontal rotation angle. Figure [7] shows that the
M-PFAP output closely followed the ground truth. M-PF, on the other hand,
became unstable when the rotation angle exceeds about 60 degrees. NN and LT
could not track correctly; they had worse performance than M-PF. We consider
that the updated template included errors and so the tracking drifted.

Fig® shows snapshots during tracking of the target face moved from left to
right abruptly (Video-2). The snapshots are listed from left to right in time
order. It was tracked correctly. Absolute average errors of face pose tracking
against Video-1 and Video-2 and variances are shown in Table 2l The proposed
method yielded improved tracking performance in both videos.
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Pitch angle [degree]

100 200 300 400 500 600
time (frame number)

Fig. 7. Head rotation angle in horizontal direction

(a) Frame = 750 . (b) Frame = 753 (c) Frame = 756 (d) Frame =759

Fig. 8. Snapshots of tracking the abrupt movements

Video-3 included occlusions. Snapshots of Video-3 during tracking are shown
in Fig. @ In this scene, the face turns from right to left, at the same time, an
arm moves from top to bottom causing an occlusion; the face turns and shifts
during the occlusion; so the face poses before and after occlusion are completely
different. Additionally, the profile face appears immediately after the occlusion;
it can not be tracked by the initial template. M-PFAP could recover tracking
even in this severe situation.

P

(b) Frame = 676 (c) Frame =699 (d) Frame =705

|

a) Frame = 664

Fig. 9. Snapshots of occlusion recovery

5.4 Past Appearance Used for Appearance Prediction

Fig shows the history entries that were selected to estimate the pose prior
distribution of Fig It can be observed that many entries were used for
appearance prediction. Each entry includes error to some extent. By using a
number of entries to estimate appearance, M-PFAP prevents the tracking from
accumulating errors and from drifting.
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Table 2. Absolute average errors [degree| in horizontal rotation; values in blacket show
corresponding variances

Proposed M-PF NN LT
Video-1 7.1 (35.0) 15.9 (182.7) 35.0 (1316.5) 38.7 (1448.1)
Video-2 8.5 (108.8) 14.3 (117.0) 16.7 (684.7) 31.2 (698.0)

(a) Target (b) Past appearance used for
face prediction

Fig. 10. Pose estimation target and past appearance used for the appearance prior
prediction

6 Summary and Future Works

This paper proposed M-PFAP; it offers robust visual tracking of the target’s
position and pose. M-PFAP is an extension of M-PF and represents a unified
probabilistic framework for the joint estimation of target position/pose and its
appearance based on memory-based joint prior prediction using stored past pose
and appearance sequences. Quantitative evaluations confirmed that M-PFAP
successfully tracks human faces in frontal view up to profile view, i.e. 90 degree
horizontal rotation; it thus completely overcomes the limitation of M-PF.

Future works include the following two points. First, we consider how to han-
dle appearance change due to illumination change. Among the various illumina-
tion changes, the current implementation of M-PFAP realizes robustness against
uniform illumination change since the state vector employs an illumination coef-
ficient. Also, M-PFAP potentially can handle non-uniform illumination change
by accumulating pose-appearance pairs under gradual changes in illumination.
We are going to evaluate the limits of robustness against various illumination
conditions and achieve further robustness.

Second, we will tackle GPU implementation. Our current CPU-based M-
PFAP does not work in real-time. We consider that M-PFAP suits GPU ac-
celeration, because it is an extension of M-PF and supports parallel processing
as does M-PF. M-PF processing was made 10 times faster by GPU implemen-
tation. For the GPU implementation, more effective way of storing memory to
save memory usage and to save retrieval time should be considered.
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Abstract. Recently, there has been an increasing number of depth cam-
eras available at commodity prices. These cameras can usually capture
both color and depth images in real-time, with limited resolution and
accuracy. In this paper, we study the problem of 3D deformable face
tracking with such commodity depth cameras. A regularized maximum
likelihood deformable model fitting (DMF) algorithm is developed, with
special emphasis on handling the noisy input depth data. In particular,
we present a maximum likelihood solution that can accommodate sensor
noise represented by an arbitrary covariance matrix, which allows more
elaborate modeling of the sensor’s accuracy. Furthermore, an ¢; regu-
larization scheme is proposed based on the semantics of the deformable
face model, which is shown to be very effective in improving the tracking
results. To track facial movement in subsequent frames, feature points
in the texture images are matched across frames and integrated into the
DMF framework seamlessly. The effectiveness of the proposed method is
demonstrated with multiple sequences with ground truth information.

1 Introduction

Tracking non-rigid objects, in particular human faces, is an active research area
for many applications in human computer interaction, performance-driven facial
animation, and face recognition. The problem is still largely unsolved, as usually
for 3D deformable face models there are dozens of parameters that need to be
estimated from the limited input data.

A number of works in the literature have focused on 3D deformable face
tracking based only on videos. There are mainly two categories of algorithms:
(1) appearance based, which uses generative linear face appearance models such
as active appearance models (AAMs) [I] and 3D morphable models [2] to capture
the shape and texture variations of faces, and (2) feature based, which uses active
shape models [3] or other features [4] for tracking. Appearance based algorithms
may suffer from insufficient generalizability of AAMs due to lighting and texture
variations, while feature based algorithms may lose tracking due to the lack of
semantic features, the occlusions of profile poses, etc.

Another large body of works considered fitting morphable models to 3D scans
of faces [BUGI7IRG]. These 3D scans are usually obtained by laser scanners or

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 229 2010.
© Springer-Verlag Berlin Heidelberg 2010
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(b) ©

Fig. 1. Data captured by a commodity depth camera. (a) Texture image; (b) depth
image; (c) enlarged face region rendered from another viewpoint.

structured light systems, which have very high quality. Fitting these high quality
range data with a morphable face model usually involves the well-known iterative
closest point (ICP) algorithm [I0] and its variants [I1], and the results are
generally very good. The downside, however, is that these capturing systems are
usually very expensive to acquire or operate.

Recently, depth cameras based on time-of-flight or other principles became
available at commodity prices, such as 3DV systems and Canesta. Fig. Il shows
some captured data from our test depth camera, which derives depth information
from infrared light patterns and triangulation. The camera is capable of recording
both texture and depth images with 640 x 480 pixels resolution at 30 frames per
second (fps). In general the depth information is very accurate, though a closer
look at the face region (Fig. dl(c)) shows that it is still much noisier than laser
scanned results.

In this paper, we propose a regularized maximum likelihood deformable model
fitting (DMF) algorithm for 3D face tracking with a commodity depth camera.
Compared with existing approaches, this paper has two major contributions.
First, unlike most previous works on DMF, we do not assume an identity covari-
ance matrix for the depth sensor noise. This leads to a more general maximum
likelihood solution with arbitrary noise covariance matrices, which is shown to
be effective for our noisy depth data. Second, the noisy depth data also re-
quire regularization in the ICP framework. We propose a novel ¢; regularization
scheme inspired by the semantics of our deformable face model, which improves
the tracking performance significantly.

2 Related Work

There is a large amount of literature in facial modeling and tracking. We refer
the reader to the survey by Murphy-Chutorian and Trivedi [12] for an overview.

Many models have been explored for face animation and tracking. Parametric
models use a set of parameters to describe the articulation of the jaw, eyebrow
position, opening of the mouth, and other features that comprise the state of
the face [13]. Physics-based models seek to simulate the facial muscle and tis-
sue [14]. Blanz and Vetter [2] discovered that the manifold of facial expression
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and appearance can be effectively modeled as a linear combination of exemplar
faces. This morphable model is computed from a large database of registered
laser scans, and this approach has proven useful for face synthesis [2], expression
transfer [8], recognition [5], and tracking [I5]. For tracking, a subject-specific
morphable model can be constructed [9], which requires each subject to un-
dergo an extensive training phase before tracking can be performed. In contrast,
we use a generic morphable model constructed by an artist, which is first fit
to the subject during initialization. Only a few frames with neutral faces are
required to automatically compute the subject-specific appearance parameters
before tracking.

Several approaches have used range data for face modeling and tracking. Zhu
and Fujimura [6] used range data as an additional image channel in optical flow-
based tracking. Methods that rely solely on visual appearance will be sensitive to
lighting conditions and changes, whereas many ranging techniques are unaffected
by lighting conditions. Many methods, such as that of Zhang et al. [7], used
structured light or other active ranging techniques. The structured light systems
in [78f9] required a camera, a projector, and in some cases synchronization
circuitry. This hardware is not uncommon, but still expensive to acquire and
operate. This paper will study deformable face tracking with a commodity depth
camera, which is projected to cost under $100 in the next few years, and has lower
resolution and less accuracy than structured light systems. A key part of our
method is thus to model the sensor noise and add regularization to improve the
tracking performance. Note uncertainty on measurements has been considered in
other contexts such as motion analysis for mobile robot navigation [16], though
we are not aware of similar work in the context of deformable face tracking.

Iterative closest point (ICP) is a common approach for aligning shapes, such
as range images of faces. Besl et al. [10] proposed the ICP algorithm for rigid
shape alignment, and variants have been proposed for nonrigid alignment [I1].
Lu and Jian [I7] used ICP for face matching, and applied ICP in deformable
model fitting as an intermediate step assuming the deformation is fixed. ICP
has also been used in face recognition [I8] and real-time tracking [9]. Note in
model fitting and tracking applications, regularization is a common technique
to stabilize the final results [11J9]. However, the ¢; regularization that will be
introduced in Section has not be used in previous works, and its performance
improvement is rather significant.

3 Linear Deformable Model

We use a linear deformable model constructed by an artist to represent pos-
sible variations of a human face [19], which could also be constructed semi-
automatically [2]. The head model is defined as a set of K vertices P and a set
of facets F. Each vertex py € P is a point in R3, and each facet f € F is a
set of three or more vertices from the set P. In our head model, all facets have
exactly 3 vertices. In addition, the head model is augmented with two artist-
defined deformation matrices: the static deformation matrix B and the action
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Fig.2. Example deformations of our 3D face model. (a)(b) Static deformations;
(c)(d)(e) action deformations.

deformation matrix A. According to weighting vectors s and r, they transform
the mesh linearly into a target head model Q as follows:

q1 P1 T S1
= : + A : +B : ) (1)
qK Pk N SMm

where M and N are the number of deformations in B and A, «,, < s, <
Bm,m = 1,--- M, and 0, <71, < ¢,,n = 1,---, N are ranges specified by
the artist. The static deformations in B are characteristic to a particular face,
such as enlarging the distance between eyes, or extending the chin. The action
deformations include opening the mouth, raising eyebrows, etc. Some example
deformations of our model are shown in Fig.

4 Regularized Maximum Likelihood DMF

4.1 Problem Formulation

Let P represent the vertices of our head model, and G represent the 3D points
acquired from the depth camera. We want to compute the rotation R and trans-
lation t between the head model and the depth camera, as well as the deformation
parameters r and s. We formulate the problem as below.

Following the procedure of ICP [10], let us assume that in a certain iteration, a
set of point correspondences between the deformable model and the depth image
is available. For each correspondence (pg,gx), gk € G, we have the equation:

R(pr + Axr + Bgs) +t = gi + xi (2)

where A and By represent the three rows of A and B that correspond to
vertex k. xj is the depth sensor noise, which can be assumed to follow a zero
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mean Gaussian distribution N (0, 2y, ). The maximum likelihood solution of the
unknowns R, t, r and s can be derived by minimizing:

J1(R,t,r,s) ZX{E "Xk, (3)

where x; = R(pr + Agr + Bgs) +t — gi. r and s are subject to inequality
constraints, namely, o, < sy < Bm,m = 1,---, M, and 0, < r, < ¢n,n =
1,---, N. Additional regularization terms may be added to the above optimiza-
tion problem, which will be discussed further in Section

A useful variation is to substitute the point-to-point distance with point-
to-plane distance [20]. The point-to-plane distance allows the model to slide
tangentially to the surface, which speeds up convergence and makes it less likely
to get stuck in local minima. Distance to the plane can be computed using
the surface normal, which can be computed from the head model based on the
current iteration’s head pose. Let the surface normal of point pjy in the head
model coordinate be n;. The point-to-plane distance can be computed as:

yr = (Rng)"'xx, (4)
The maximum likelihood solution is thus obtained by minimizing;:

K

TR, t,r,8) = i (5)
2 s Uy dy - K 0_2 )

k=1 Yk
where 0' (Rnk) Yk, (Rnyg), and oy < 8y < Bry,m =1,--+-, M, and 6,, <

Tn < (/ﬁn, n =1,---,N.

Given the correspondence pairs (pg, gk), since both the point-to-point and
the point-to-plane distances are nonlinear, we resort to a solution that solves for
r, s and R, t in an iterative fashion. For ease of understanding, we present the
solution for identity noise covariance matrix in Section first, and extend it
to arbitrary covariance matrix in Section E3l

4.2 Tterative Solution for Identity Noise Covariance Matrix

We first assume the depth sensor noise covariance matrix is a scaled identity
matrix, i.e., Xy, = 0213, where I3 is a 3 x 3 identity matrix. Further, let R =
R, t= Rt and

yi = Rxp = pr + Ayr + Bis + t — Rgj,. (6)

Since x} x; = (Ryx)” (Ryx) = y7 yx, the likelihood function can be written as:

J(Ratar S K QZkak_ Ko QZkak (7)
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Similarly, for point-to-plane distance, since yr = (Rng)'x; = nfRTRy; =
n’y, and o) = (Rny)TEy, (Rny) = 02, we have:

K
1
‘]2 (Ra ta r, S) = Ko? Z ygNkyk’ (8)
k=1

where Ny = nkng.

We may decompose the rotation matrix R into an initial rotation matrix Rg
and an incremental rotation matrix AR, where the initial rotation matrix can
be the rotation matrix of the head in the previous frame, or an estimation of
R obtained in another algorithm. In other words, let R = ARR. Since the
rotation angle of the incremental rotation matrix is small, we may linearize it

as:
1 —W3 W2

AR% w3 1 —w1 |, (9)
—Wy W1 1
where w = [wl,wg,w;;]T is the corresponding small rotation vector. Further,

let qr = Rogr = [qk1, g2, qr3]T, we can write the variable yy, in the form of

unknowns r, s, t and w as:

r
: ~ s
Y& = Pr+ Apr + Bys+t — ARqx ~ (Pr — ax) + [As, Br, I, [ar] <] | | (10)
w
where [qg]x is the skew-symmetric matrix of qy:
0 —ar3 qr2
[ar]x = | a3 0 —qu | . (11)
—qrk2 g1 0

~ T
Let Hy, = [Ag, By, I3, [qk]«], ux = P — qk, and z = [rT,sT,tT,wT] , we have:

v = u; + Hyz. (12)
Hence,
R R
_ T _ T
J1 = Ko? ;;:1 Yi¥k = peoo kEZI(uic +Hyz)" (ur + Hyz) (13)

K K
1 T 1 Z T
T2 = g ,;yk Nk = g ,ﬁ(“k +Hyz) Ni(up + Hez) - (14)

Both likelihood functions are quadratic with respect to z. Since there are linear
constraints on the range of values for r and s, the minimization problem can be
solved with quadratic programming [21].

The rotation vector w is an approximation of the actual incremental rotation
matrix. One can simply insert ARRg to the position of Rg and repeat the above
optimization process until it converges.
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4.3 Solution for Arbitrary Noise Covariance Matrix

When the sensor noise covariance matrix is arbitrary, again we resort to an
iterative solution. Note since y; = ka, we have Xy, = RExk . A feasible
solution can be obtained if we replace R with its estimation Ry, i.e.,

2, ~RoZ, RY, (15)

which is known for the current iteration. Subsequently,

M=

K
1 _ 1 _
J1 = e E ygxy’}yk = K (uk + HkZ)TEykl (llk —+ HkZ) (16)

E
I
—_

(ug + sz)TNk(uk + Hgz)

Jo
T
n, Xy ng

(17)

Z yiNeyr 1
Eyknk K

] >

k

1

We still have quadratic likelihood functions with respect to z, which can be
solved via quadratic programming. Again, the minimization will be repeated
until convergence by inserting ARR to the position of Ry in each iteration.

4.4 Multi-frame DMF for Model Initialization

In our tracking system, the above maximum likelihood DMF framework is ap-
plied differently in two stages. During the initialization stage, the goal is to fit
the generic deformable model to an arbitrary person. We assume that a set of L
(L <10 in the current implementation) neutral face frames are available. The
action deformation vector r is assumed to be zero. We jointly solve the static
deformation vector s and the face rotations and translations as follows.

Denote the correspondences as (pix, &), where | = 1,---, L represents the
frame index. Assume in the previous iteration, Ryo is the rotation matrix for
frame . Let qrz = Ryogix; Hix = [Bk,0,0,---, I3, [qix]x, - -, 0,0], where 0
represents a 3 X 3 zero matrix Let wy = pir — qik, and the unknown vector
z = [sT AT W tL,wL] Following Eq. (I6) and (), we may rewrite the
overall likelihood function as:

L K
1 T
Jinit1 = g ; ;(um +Hyz)" B¢ ) (wy + Hyyz) (18)
L K
1 (w + Hypz) TNy, (i, + Hygz)
T — 19
1nit2 KL ; kz:; nlj]; Ey,k,nlk 9 ( )

where gy is the surface normal vector for point p;i, Nk = nlknlk, and X, ~
RZOEx,leO X is the sensor noise for depth input gg.

The point-to-point and point-to-plane likelihood functions are used jointly
in our current implementation. A selected set of point correspondences is used
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for Jipit; and another selected set is used for Ji i1, (see Section .11 for more
details). The overall target function is a linear combination:

Jinit = MJinit1 T A2Jinita: (20)

where \; and Ay are the weights between the two functions. The optimization
is conducted through quadratic programming.

4.5 Regularization for Tracking

After the static deformation vector s has been initialized, we track the face
frame by frame, estimating the action deformation vector r and face rotation
and translation R and t, while keeping s fixed. Although our maximum likeli-
hood solution above can incorporate arbitrary sensor noise covariance matrices,
we found the expression tracking results are still very unstable. Therefore, we
propose to add additional regularization terms in the target function to further
improve the results.

A natural assumption is that the expression change between the current frame
and the previous frame is small. In our case, let the previous frame’s face action
vector be r'~!, we can add an f» regularization term as:

Jtrack =MANJ1+XoJo + /\3”1‘ — I‘t_lH%7 (21)

where J; and Js follow Eq. (I6) and ([I7). Similar to the initialization process,
J1 and Jy use different sets of feature points (see Section for more details);
It =72 = (r — ' HT(r — r*~ 1) is the squared /3 norm of the difference
between the two vectors.

The ¢5 regularization term works to some extent, though the effect is in-
significant. Note as shown in Fig. Bl each dimension of the r vector represents
a particular action a face can perform. Since it is hard for a face to perform all
actions simultaneously, we believe in general that the r vector shall be sparse.
This inspires us to impose an additional ¢; regularization term as:

Jirack = MJ1+ Aadz + Asllr — o' 7|3 + Aal[r| 1, (22)

where ||r||; = 22/:1 |7 | is the £1 norm. This regularized target function is now
in the form of an ¢;-regularized least squares problem, which can be reformulated
as a convex quadratic program with linear inequality constraints [21], which can
again be solved with quadratic programming methods.

Note for PCA-based deformable face models, the ¢; regularization term may
not be applied directly. One can identify a few dominant facial expression modes,
and still assume sparsity when projecting the PCA coefficients to these modes.

5 Implementation Details

5.1 Deformable Model Initialization

As described in Section 4] we use multiple neutral face frames for model ini-
tialization, as shown in Fig. Bl Note the likelihood function J;;,;; contains both
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Deformable model f}; N
projected onto the L',l;gjé el
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Fig. 3. The process of multi-frame deformable model initialization. (a) Multiple slightly
rotated frames with neutral faces as input; (b) face detection (top) and alignment
(bottom); (c) define correspondences for edge points around eyebrows, lips etc; (d)
DMF with both point-to-point and point-to-plane terms (top) and DMF with point-
to-plane term only (bottom).

point-to-point and point-to-plane terms (Eq. (20)). For the point-to-plane term
Jipita» the corresponding point pairs are derived by the standard procedure of
finding the closest point on the depth map from the vertices on the deformable
model [20]. However, the point-to-plane term alone is not sufficient, because our
depth images are very noisy and the vertices of the deformable model can drift
tangentially, leading to unnatural faces (Fig. Bl(d)). In the following we discuss
how to define the point-to-point term Jipi¢;-

For each initialization frame, we first perform face detection and alignment on
the texture image. The results are shown in Fig. B(b). The alignment algorithm
provides 83 landmark points of the face, which are assumed to be consistent
across all the frames. These landmark points are separated into four categories.
The first category contains the green points in Fig. Bl(b), such as eye corners,
mouth corners, etc. These points have clear correspondences pj; in the linear
deformable face model. Given the calibration information between the depth
camera and the texture camera, we simply project these landmark points to the
depth image to find the corresponding 3D world coordinate gy.

The second category contains the blue points on eyebrows and upper/lower
lips. The deformable face model has a few vertices that define eyebrows and
lips, but they do not all correspond to the 2D feature points provided by the
alignment algorithm. In order to define correspondences, we use the following
steps illustrated in Fig. Bl(c):

1. Use the previous iteration’s head rotation Ry and translation ty to project
the face model vertices pyi of eyebrows/lips to the texture image, vi;

2. Find the closest point on the curve defined by the alignment results to vy,
let it be v}, ;

3. Back project v}, to the depth image to find its 3D world coordinate gjj.

The third category contains the red points surrounding the face, which we refer
as silhouette points. The deformable model also has vertices that define these
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.~ Textureimage at time t-1 Texture image at time t

Fig. 4. Track feature points to build correspondences for the point-to-point function

boundary points, but there is no correspondence between them and the align-
ment results. Moreover, when back projecting the silhouette points to the 3D
world coordinate, they may easily hit a background pixel in the depth image.
For these points, we follow a similar procedure as the second category points,
but ignore the depth axis when computing the distance between p;x and gix.

The fourth category includes all the white points in Fig. B(b), which are not
used in the current implementation.

5.2 Tracking

During tracking, we again use both point-to-point and point-to-plane likelihood
terms, with additional regularization as in Eq. (22)). The point-to-plane term is
computed similarly as during model initialization. To reliably track face expres-
sions, the point-to-point term is still crucial. We rely on feature points detected
and tracked from the texture images to define these point correspondences, as
shown in Fig. @l Similar schemes have been adopted in deformable surface track-
ing applications such as [22].

The feature points are detected in the texture image of the previous frame
using the Harris corner detector. These points are then tracked to the current
frame by matching patches surrounding the points using cross correlation. One
issue with such detected and tracked feature pairs is that they may not corre-
spond to any vertices in the deformable face model. Given the previous frame’s
tracking result, we first represent the feature points with their barycentric coor-
dinates. Namely, as shown in Fig. @] for 2D feature point pair v,t;l and v}, we
obtain parameter 71,72 and 73, such that:

vy b =mpL !+ mep), ! + bl (23)

where 71 + 12 + 13 = 1, and f)ijl, f)fg;l and f)fg;l are the 2D projections of the
deformable model vertices px,, P, and pg, onto the previous frame. Similar to
Eq. @), we can have the following equation:

3
RZW (Pr; + Ap,r + By;s) +t = gr +xz, (24)

i=1

where gy, is the back projected 3D word coordinate of 2D feature point vf. Let
Pk = Y11 NPk Ak = Yooy Ay, and By = Y7, 0By, Eq. [24) will be in
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identical form as Eq. (@), thus tracking is still solved with Eq. (22]). Results on
the tracking algorithm will be reported in Section

5.3 Noise Modeling

Due to the strong noise in the depth sensor, we find it is generally beneficial to
model the actual sensor noise with the correct X, instead of using an identity
matrix for approximation. The uncertainty of 3D point gi has two major sources:
the uncertainty in the depth image intensity, which translates to uncertainty
along the depth axis, and the uncertainty in feature point detection/matching
in the texture image, which translates to uncertainty along the imaging plane.
Assuming a pinhole, no-skew projection model for the depth camera, we have:

Uk fz 0 ug | | ok
ze vk | =Kge= |0 fyvo| | uk (25)
1 001 2k

where v = [ug, vk]T is the 2D image coordinate of the feature point k in the
depth image, and g = |21, Yk, 2x]7 is the 3D world coordinate of the feature
point. K is the intrinsic matrix, where f, and f, are the focal lengths, and ug
and vy are the center biases.

For the depth camera, the uncertainty of up and vy is generally caused by
feature point uncertainties in the texture image, and the uncertainty in zy is due
to the depth derivation scheme. These two uncertainties can be considered as
independent to each other. Let ¢ = [ug, vk, 2], we have:

v, 0
S = [0 2 20
It is easy to find that:
Zk 0 Uk —UQ
Gy 2 08 _ |G o wlu | (27)
aCk fy fy
00 1
Hence as an approximation, the sensor’s noise covariance matrix shall be:
2., ~ GrpX, Gi. (28)

In our current implementation, to compute 3¢, from Eq. (26]), we assume X,
is diagonal, i.e., Xy, = 0215, where I is a 2 x 2 identity matrix, and o = 1.0
pixels in the current implementation. Knowing that our depth sensor derives

depth based on triangulation, following [23], the depth image noise covariance
2

oz, is modeled as:
2.4
2 0%k
ol = , (29)
2k f(%B2
where fq = fz;fy is the depth camera’s average focal length, oy = 0.059 pixels

and B = 52.3875 millimeters based on calibration. Note since ., depends on
Zk, its value depends on each pixel’s depth value and cannot be pre-determined.
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Fig. 5. Example tracking results using the proposed algorithm. From top to bottom
are sequence #1 (810 total frames), #2 (681 total frames) and #3 (300 total frames),
respectively.

6 Experimental Results

We tested the proposed algorithm with three sequences captured by our depth
camera. Both the color and the depth images are at 640 x 480 pixels resolution
and 30 fps. In each sequence the user sat about 3 ft from the depth camera, and
moved around with varying expressions. The head sizes in the images are about
100 x 100 pixels. Throughout the experiments, we set the weights of different
terms in Jj;¢ and Jirack to be \i = Ao = 1, A3 = 1076 and Ay = 10. All
sequences are initialized fully automatically and accurately with the multi-frame
DMF algorithm presented in Section 4] and Bl Initialization from 10 input
frames takes about 20 iterations and 6.7 seconds on an Intel 2.66 GHz computer,
while tracking usually converges in 2 iterations and can be done at about 10-12
fps without much code optimization.

We first show a few example tracking results using the proposed algorithm
in Fig. Bl which demonstrate the robustness of the proposed algorithm despite
large face pose and expression variations.

To provide some quantitative results, we manually labeled 12 feature points
around the eye and mouth regions of each face in every 3-5 frames of the three
sequences, as shown in Fig. [Bl(a). We then computed the average Euclidian dis-
tance from the 2D projections of their corresponding deformable model vertices
to the labeled positions. We compared various combinations of algorithms with
and without noise modeling, with and without the ¢ regularization, and with
and without the ¢; regularization. The results are summarized in Table [l Note
because some combinations could not track the whole sequence successfully, we
reported the median average error of all the labeled frames in Table [l It can
be seen that all three components improved the tracking performance. More
specifically, compared with the traditional scheme that adopts an identity co-
variance matrix for sensor noises and ¢s regularization (ID+/¢3), the proposed
scheme (NM+/2+/¢1) reduced the median average error by 25.3% for sequence
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Table 1. Comparison of median tracking error (in pixels) for various algorithms. The
suffix “L” indicates that the tracking algorithm lost the face and never recovered. “ID”
stands for using the identity covariance matrix for sensor noises, and “NM” stands for
using the proposed noise modeling scheme.

ID445 ID+41 ID+454+61 NM-+0o NM+41 NM+4-0o+44

Seq#1 (164 labeled frames) 3.56  2.88 2.78 2.85  2.69 2.66
Seq#2 (164 labeled frames) 4.48 3.78 3.71 4.30 3.64 3.55
Seq#3 (74 labeled frames) 3.98L 3.91 3.91 3.92L 391 3.50

Fig.6. (a) Face labeled with 12 ground truth feature points; (b)a few successfully
tracked frames with NM+/¢2+4¢1 (top) which were failed using the traditional approach
ID+/¢> (bottom); (c) two failure examples for the proposed algorithm.

#1 and by 20.8% for sequence #2. The traditional ID+¢5 scheme lost tracking
for sequence #3 after about 100 frames, while the proposed scheme successfully
tracked the whole sequence.

Fig. Bl(b) shows a few examples where the proposed algorithm tracked the
face successfully, while the traditional scheme failed. Nonetheless, our algorithm
may also fail, as shown in Fig. [(c). In the top frame, the head moved very
fast and the color image was blurry. In addition, the proposed algorithm is an
iterative scheme, and fast motion can cause poor initialization of the estimated
parameters. In the bottom frame, the face turned downward, which caused prob-
lems in tracking facial features in the color image. Currently we have not built
any recovery mechanism in the system such as adding key frames or occasional
re-initialization, which will be part of our future work.

7 Conclusions and Future Work

In this paper, we presented a regularized maximum likelihood DMF algorithm
that can be used to track faces with noisy input depth data from commodity
depth cameras. The algorithm modeled the depth sensor noise with an arbitrary
covariance matrix, and applied a new ¢; regularization term that is semantically
meaningful and effective. In future work we plan to work on 3D face alignment
that can re-initialize the tracking process at arbitrary face poses, thus further
improving the performance of the overall system.
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Abstract. We show that, from the output of a simple 3D human pose tracker one
can infer physical attributes (e.g., gender and weight) and aspects of mental state
(e.g., happiness or sadness). This task is useful for man-machine communication,
and it provides a natural benchmark for evaluating the performance of 3D pose
tracking methods (vs. conventional Euclidean joint error metrics). Based on an ex-
tensive corpus of motion capture data, with physical and perceptual ground truth,
we analyze the inference of subtle biologically-inspired attributes from cyclic
gait data. It is shown that inference is also possible with partial observations of
the body, and with motions as short as a single gait cycle. Learning models from
small amounts of noisy video pose data is, however, prone to over-fitting. To mit-
igate this we formulate learning in terms of domain adaptation, for which mocap
data is uses to regularize models for inference from video-based data.

1 Introduction

The fidelity with which one needs to estimate 3D human pose varies from task to task.
One might be able to classify some gestures based on relatively coarse pose estimates,
but the communication of many biological and socially relevant attributes, such as gen-
der, age, mental state and personality traits, necessitates the recovery of more subtle
cues. It is generally thought that current human pose tracking techniques are insuffi-
cient for this task. As a consequence, most previous work on action recognition, ges-
ture analysis, and the extraction of biometrics, has focused on 2D image properties, or
holistic spatiotemporal representations. On the contrary, we posit that it is possible to
infer subtle human attributes from video-based 3D articulated pose estimates. Further,
we advocate the inference of human attributes as a natural, meaningful way to assess
the performance of 3D pose tracking techniques.

In this paper, we consider the inference of gender, age, weight and mood from video-
based pose estimates. One key problem is the lack of suitable training data comprising
labeled image sequences with 3D pose estimates. To deal with this issue, our models are
bootstrapped from a substantial corpus of human motion capture data, and then adapted
using a simple form of inductive transfer learning. In particular, the adaptation accounts
for differences between the distributions of features derived from mocap and the video-
based pose tracking data. Ground truth gender, age and weight are provided with the
mocap and some video-based pose tracking data. We also consider models trained on
perceived attributes gathered from human perception experiments over the internet. For
various aspects of mental state, like mood (happiness), human perception is, at present,
our principal source of (ground truth) training data.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part ITI, LNCS 6313, pp. 2430257, b010.
(© Springer-Verlag Berlin Heidelberg 2010
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The inference of human attributes has myriad potential uses, ranging from human-
computer interaction to surveillance to clinical diagnostics. E.g., biometrics are of in-
terest in security, and retails stores are interested in shopper demographics. The range
of potential applications increases further as one considers a wider range of attributes,
including, for example, the degree of clinical depression [[L7], or levels of anxiety.

The goal of this paper is to demonstrate a simple proof-of-concept model for attribute
inference. We restrict our attention to walking motions, a generic 3D pose tracker, the
extraction of simple motion features, and a very basic set of attributes. Pose tracking
from two views is accomplished with an Annealed Particle Filter [8129]], with a like-
lihood derived from background subtraction and 2D point tracks. We avoid the use of
sophisticated activity-specific prior models (e.g., [18I30]]) that are prone to over-fitting,
thereby biasing pose estimates and masking useful information. Following [23[28/31133]]
our motion features are derived from a low-dimensional representation of joint trajec-
tories in a body-centric coordinate frame. We then use a regularized form of logistic
regression for classification. The experimental results show that one can infer attributes
from video pose estimates (at 60—90% accuracy depending on the attribute). We are
confident these results can be improved with advances in 3D pose tracking.

2 Background and Related Work

Perception of Biological Motion: Almost 40 years ago, Johansson [12]] showed that a
simple display with a small number of dots, moving as if attached to major joints of
the human body, elicits a compelling percept of a human figure in motion. Not only can
we detect people quickly and reliably from such displays, we can also retrieve details
about their specific nature. Biological motion cues enable the recognition of familiar
people [6432]], and the inference of attributes such as gender, age, mental state, actions
and intentions, even for unfamiliar people [3120/31]].

Humans reliably classify gender from point-light walkers with a hit rate (correct
classification rate) of 65 to 75%; frontal views are classified best [20J25,31]]. Studies
have focused on cues that mediate gender classification, such as the shoulder-hip ratio
[7] or the lateral sway of the upper body that is more pronounced in men [20]]. Interest-
ingly, depriving observers of kinematics degrades gender classification rates. When in
conflict, information conveyed by dynamic features dominates that of static anthropo-
metrics [20431]]. Using PCA and linear discriminants Troje [31] modeled such aspects of
human perception. Similar models have even been shown to convey information about
weight and mood and the degree of depression in clinical populations [[17].

Biometrics: Gait analysis is closely related to our task here. There is a growing liter-
ature on gait recognition, and on gender discrimination from gait (see [4] for a good
overview), and a substantial benchmark datasets exist for gait recognition ([27]). How-
ever, such datasets are not well suited for 3D model-based pose tracking as they lack
camera calibration and resolution is often poor. Indeed, most approaches to gait recog-
nition rely mainly on background subtraction and properties of 2D silhouettes. Very few
approaches exploit articulated models, either in 2D or 3D (although see [33l33]).

Like gait recognition, gender classification from gait is usually formulated in terms
of 2D silhouettes, often from sagittal views where the shape of the upper body, rather
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than motion, is the primary cue (e.g., [L6/19]). With multiple views some form of voting
is often used to merge 2D cues [[10]. The use of articulated models for gender discrim-
ination has been limited to 2D partial-body models. Yoo et al., [34] used a set of 19
features, including 2D joint angles, dynamics of hip angles, the correlation between
left and right leg angles, and the centre coordinates of the hip-knee cyclogram, with
linear and RBF SVMs, and a 3-layer feed-forward neural net for gender classification.
Samangooei and Nixon [26] consider video retrieval with physical attributes that in-
clude gender, age and weight. But they assume 2D sagittal views and a green screen to
simplify the extraction of silhouette-based gait signatures.

Unlike the gait recognition problem, inferring attributes of unfamiliar people does
not presuppose that test subjects exist in the training data. Further, by using 3D artic-
ulated tracking we avoid the need for view-based models and constrained domains (cf.
[[10426134]). The video sequences we use were collected in an indoor environment with
different (calibrated) camera locations, most of which did not include a proper sagittal
view. Finally, here we infer physical attributes as well as aspects of mental state, like
the mood of the subject. To our knowledge this is the first paper that attempts to address
recovery of such attributes collectively from video-based 3D pose estimates.

Action Recognition: Like biometrics, most work on action recognition has focused on
holistic space-time features, local interest points or space-time shapes (e.g., [O114121])),
in the image domain rather than with 3D pose in a body-centric or world frame. It is
widely believed that 3D pose estimation is sufficiently noisy that estimator bias and
variance will outweigh the benefits of such compelling representations. Nevertheless,
some recent methods have successfully demonstrated that this may not be the case (e.g.,
[22]). Unlike such work focused on classifying very different motion patterns, we tackle
the more subtle problem of inferring meaningful percepts from locomotion.

3D Pose Tracking: The primary benchmark for evaluating techniques for pose tracking,
HUMANEVA [29]], uses the 3D Euclidean distance between estimated and ground truth
(mocap) joint positions. Errors in joint positions and joint angles are easy to measure,
but it is not clear how they relate to task requirements. Will RMSE (root-mean-squared
error) of 70mm be sufficient to determine gender or mood, or for gesture recognition?
Some trackers with errors of 70mm might preserve the relevant information while oth-
ers may not. As such, task-specific measures, like attribute inference, complement con-
ventional RMSE measures. In particular, attribute inference is relatively complex as
it depends on subtle pose and motion information. Furthermore, unlike many activity
recognition tasks, which depend on motion and scene context (e.g., [[L5]), attribute in-
ference is mainly a function of information intrinsic to the agent or the perception of the
agent’s motion. Human attributes are of clear social significance, and may be directly
relevant to applications. That said, an extensive comparison of different pose trackers
based on attribute inference is beyond the scope of this paper.

3 Human Motion and Attribute Data

Models for different attributes are learned from a combination of partially labeled video
and motion capture data. Unfortunately, since we had video data from only 20 subjects,
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Gender Mood Weight Age
20| 20 20| 20|
10| 10| 10| 10|
male female happy sad light heavy  voung old
Attribute #Observers #Ratings 3 3
Gender 563 36524 20 20
Weight 694 44657 10 10
Age 67 4380
Mood 126 8093 65 8 105 15 25 35 45
(ka) (vears)

Fig. 1. Web Attribute Data: The top row shows histograms of average ratings from observers
for four attributes. The bottom row histograms show ground truth distributions of weight (kg) and
age (yrs). The numbers of observers and walkers rated for each attribute are given in the table.

models trained on video-based tracking data are prone to over-fitting. On the other hand,
models learned from mocap should not be applied blindly to tracking data because many
of the discriminative features in mocap data cannot be reliably estimated during pose
tracking. Therefore, as discussed below (Sec.d)), we train from a combination of mocap
and tracking data using a simple formulation of transfer learning.

3.1 Motion Capture Data: D,,,0cap

Our source mocap data comprises walking motions from 115 individuals. From 41
physical markers we estimate 15 3D “virtual markers” at major joints of the body, i.e.,
at shoulder joints, elbows, wrists, hip joints, knees, and ankles, and at the centers of
the pelvis, clavicles, and head. Each participant walked for several minutes within the
capture volume at their preferred speed, after which we began to record up to 4 trials of
walking. The data are also labelled with gender, age and weight (see Fig. [T)).

Human Subject Ratings: In addition to physical attributes we also consider perceived
attributes, i.e., what people perceive when viewing point-light displays of walking peo-
ple. With this data one can begin to explore biological cues that convey gender, age and
weight. More importantly, this provides us with labels about apparent mental state, such
as mood (happiness or sadness).

In a web-based experiment observers were asked to rate walkers using attributes of
their choosing. Each observer specified an attribute, and then rated up to 100 walkers (in
random order) on a scale of 1 to 6. They were also asked to enter two phrases to indicate
what ratings of 1 and 6 represent From ratings of over 4000 observers, each of whom
rated at least 20 walkers, we selected sessions for which the named attribute was one
of “gender”, “age” or “weight”, and the labels for ratings 1 and 6 were meaningful. For
“gender” we accepted “male-female” or “masculine-feminine”, for “age” they had to
contain “young” and “old” (or “elderly”), and for “weight”, “light” and “heavy”. We
accepted any of “mood”, “emotion”, “happy”, or “happiness” for the mood attribute,
and ratings 1 and 6 had to include the words “happy” and “sad”. The resulting numbers

! http://www.bilomotionlab.ca/Demos/BMLrating.html
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Fig.2. Video Pose Tracking: The APF tracker uses a background model and 2D tracked points
from two views (top row). Tracking output for three subjects are shown in the bottom three rows,
with average error in 3D joint locations of 63.7 (mm), 59.9 (mm), and 82.3 (mm) respectively.
Notice the differences in camera orientations and the background.

of subjects and trials are given in Fig.[Il For each of the 100 walkers displayed, we
computed the average rating, over all observers. Fig.[[lshows the distributions. Although
data from experiments like this are noisier than those collected under more controlled
conditions, they do reveal consistent perceptual interpretations.

3.2 Video Pose Tracking Data: D, ;4c0

In addition to the mocap above, we also have synchronized binocular video (30Hz) and
mocap (120hz). We captured 2-3 sequences for each of 20 subjects (10 male, 10 female)
walking, with different camera configurations, but usually with views that were within
30° of frontal and sagittal. Each sequence was approximately two gait cycles in length.

The 3D pose tracker was a modified version of an Annealed Particle Filter (APF)
[8129]. The likelihood used a combination of a probabilistic background model with
shadow suppression, and 2D point tracks (see Fig.[2|(top)). Point tracks were only
used for body parts that remain visible, the likelihood for which was formulated as a
truncated Gaussian (for robustness). The same likelihood was used for all subjects. We
used a 15-part body model comprising truncated cylinders, with 34 joint angles plus
global pose [29] (40 DOFs in total). The prior motion model was a smooth first-order
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Fig.3. Subspace Visualization: The distribution of motions in Dyocap in the first 2 principal
dimensions is shown. (Left) Males (blue +) and females (red o). (Middle) Weight is depicted
with blended colors: Heavy (red) and light (blue). (Right) Video pose tracks and mocap from 5
subjects in D4, are shown in 2 subspace dimensions: (color coded); circles indicate two video
trials, crosses corresponding tracks; (cyan — Dyyocap males, yellow — Diyocap females).

Markov model, with weak joint limits and inter-penetration constraints. The lack of an
activity-specific prior motion model was motivated by the desire to avoid biasing the
pose estimates towards a particular population. All experiments used the same APF
setup (200 particles/layer, 5 layers), requiring roughly 2 minutes/frame (Matlab). We
believe it is possible to estimate partial anthropometrics online while tracking [2]], but
for simplicity we assumed known anthropometrics.

The tracker performed well except when the legs were close; in rare cases the leg
identities were switched. In these cases we did not filter the results in any way. In fact
we report performance on all tracks obtained. We ran the tracker twice on every test
sequence (yielding 80 pose trajectories). Sample tracking results for three subjects are
shown in Fig. & in terms of the average Euclidean joint errors, the results are compa-
rable to state-of-the-art [29]]. The average Euclidean error in 3D joint locations over the
80 runs had a mean of 73mm and a standard deviation of 19mm.

Finally, note that pose data in Dy;gco and Di,ocqp have structual differences. To
facilitate video tracking the body model in D, ;4.0 had fewer degrees of freedom. Also
the mocap protocol used to estimate joint positions differed in Dyigeo and Dyyocap-

3.3 Motion Representation

Following [28l31] we represent each motion as a pose trajectory, i.e., a vector com-
prising the 15 3D joint positions at each time stepl] We exploit the periodic nature of
locomotion, expressing each motion as a Fourier series [23!31]; two harmonics are suf-
ficient for walking [31]. To represent each pose trajectory, we encode the mean (DC)
pose, along with the Fourier coefficients at the fundamental frequency and its second
harmonic. This yields a 225-D vector for each motion (i.e., 5 real-valued Fourier coef-
ficients for each of 15, 3D markers). This encoding is somewhat robust to the noise in

2 Initially all the walkers are aligned. The world frame is oriented so subjects are walking along
the X-axis. We remove slow trends in the forward and lateral directions, based on the motion
of the COM (i.e., the average of all 15 joint markers) the XY plane.



Human Attributes from 3D Pose Tracking 249

the 3D poses within a trajectory, allowing us to better deal with the poor SNR of the
video-based pose data.

Let the Fourier-based representation of these N motions be {m, }97:1, where m; ¢
R22%, Not surprisingly we find that the dimension of the representation can be reduced
significantly with PCA. Since the SNR of the mocap data is much higher than the track-
ing data, we compute the subspace basis from the mocap data (from the 115 subjects
described above in Sec.[3.1). Well more than 90% of the data variance is captured in 16
dimensions; in practice, using more than 16 dimensions does not improve the accuracy
of attribute prediction appreciably.

Let B = [by, ..., bk] denote the subspace basis, where K is usually 16 or below.
Further, let ¢; denote the subspace coefficients for mj; i.e., ¢; = BT (m; — m) where
m is sample mean of the motion data {m; }. Fig.[3depicts the distribution of gender and
weight in the first two principal directions. While not linearly separable, the attribute
structure is clearly evident.

Of course there are other possible motion features. For example, Yoo et al. [34] use
features of an articulated model extracted from a sagittal view of walking people, from
which they acheive good gender classification with SVMs. Based on their paper, our
implementation of their features with several different classifiers produces no better
than 75% correct gender classification on our mocap dataset Dy, ocqp, compared to hit
rates of 80%-90% obtained here (cf. Fig.[3).

4 Learning

Dmocap Provides a significant corpus of labeled mocap, but the subspace motion fea-
tures from D,y ocqp and D460 have different distributions. First, the pose data in Dyigeo
is based on a different joint parameterization (more suitable for video-based pose track-
ing). More importantly, the video tracking data has a lower SNR and is often biased
because certain parts of the body (e.g., the feet) are not tracked well. Indeed, some
features that are highly discriminative in D,;,ocqp Will be uninformative in Dy;g¢,. Con-
versely, learning models from the small corpus of noisy video data in D,;4c, iS prone
to over-fitting.

To mitigate these problems we formulate the learning problem as a form of trans-
fer learning, called domain adaptation. It is applicable when the source (D,,0cqp) and
target (D,;d4e0) domains share the same features, but have significantly different feature
distributions (e.g., see [24]). Intuitively, we learn source models from the mocap train-
ing data. The source models are then adapted to the video-feature domain through the
minimization of a loss function on the target data that is biased toward the source model
(e.g., [15]). The resulting models generalize much better than those learned from the
video-based pose data directly, and they produce much better results than the direct
application of models learned from Dy, 0cqp.

In more detail, we use logistic classifiers for the inference of binary attributes and
for predicting human ratings. A logistic model expresses the posterior probability of an
attribute, g € {0, 1}, as a sigmoidal function o(-) of distance from a planar decision
boundary, defined by parameters § = (w, b); i.e.,
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The weights that define the decision hyperplane are found by ML optimization. That is,
given source mocap data, {c3q 295 }évzl , the optimized parameters are found by minimiz-
ing the negative log likelihood of the data with respect to the weight vector w and the
bias offset b, i.e., ° = (w*®,b*) = arg min L, where

5

Ls(w,b) = logHoc w,b)% (1 —o(cs;w, b))% . (2)

J?

To adapt the model learned from D,y 0cqp to the target data D, iq¢0, following [S], we
learn a logistic model on the target training data with a Gaussian prior centered at the
source model. That is, we minimize a loss function that is a combination of the nega-
tive log likelihood of the video training data, {cj, g; } j=1» Nt < N, and a quadratic
regularizer:

Li(w,b) = —logHU(c w,b)% (1—o(ct;w, b))% + Nw —wi[|?. (3)

3 3
j=1

While this formulation assumes an isotropic prior, with variance 1/, the loss function

is easily generalized to an anisotropic prior that allows some weights to drift more than

others. The covariance for an anisotopic prior might be set according to the ratio of

variances in the subspace projections of D,,ocap and Diyiqe0 respectively. Nevertheless

the experiments reported below are based on an isotropic prior.

Cross-validation is used to determine \. Also, note that we do not regularize the bias
offset since it is often convenient to allow b to vary freely to account for any bias in the
tracking data. Minimization of £; is accomplished with Newton iterations to solve for
critical points, i.e.,

8Lt ol ¢ Ct. W —w?S
ow.b Z(U(CJ’W b) — g;) (f) + )\< 0 ) =0. 4)

j=1

One can generalize the approach to model the ratings data by replacing the ground
truth g in (B) with the average rating (scaled to (0, 1)). Treating the average rating as
the expected value of g over different observers, () can be interpreted as the expected
likelihood. Also, while the approach formulated here presupposes labelled target data,
it is also possible to extend the technique to the semi-supervised case where the target
video data is not labeled (e.g., [IL]).

In addition to simple classifiers for binary attributes, we also consider domain-adapted
least-squares (LS) regressors for real-valued attributes, such as age and weight. For ex-
ample, the adapted LS predictor for real-valued attribute ¢ minimizes

N

Lo(w,b) = S [(wheh+b) —al]” + Alw - wigl. (5)

j=1

where w$ ¢ is the LS optimal weight vector learned from the mocap data in Dy, ocqp-
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Fig.4. Effect of Subspace Dimension and Sequence Length: Leave-one-out cross validation
is used to asses the effect of subspace dimension on the correct-classification rate for the ground
truth gender classification (left) and the RMSE of the real-valued weight regressor (middle). The
right plot shows the dependence of gender classification on the duration (in gait cycles) of mocap
sequences (based again on leave-one-out cross-validation).

S Models and Analysis of Source Data: D,,,5cqp

We first learn models for the inference of different attributes using the labelled mocap
corpus, Dyyocap. We tried learning with several different loss functions, including Gaus-
sian class-conditional models and linear/RBF SVMs, but none generalized significantly
better than logistic or linear LS regression. In all cases we characterize the expected
performance of the classifier/regressor using leave-one-out cross-validation.

Figure M (left) shows how gender classification depends on the subspace dimension
of the motion representation. With fewer than 16 dimensions important information is
lost. Classification performance with more than 20 dimensions yields marginal gains;
with a 16D subspace the correct classification rate for gender is 90%. Fig. @] (middle)
shows the behaviour of a LS predictor for weight. The weights of our 115 walking
subjects ranged from 50 to 100 kg, while the RMSE of predictions (16D features and
leave-one-out cross-validation) is 5.4 kg. Fig. @ (right) shows that gender can be classi-
fied with as little as one gait cycle (consistent with human perception [13]]).

Normalized Models: To infer attributes from video pose estimates, we may not have ac-
cess to full 3D pose. For example, with monocular tracking one might be able estimate
3D pose only up to the overall scale of the subject. Many 3D pose trackers simply as-
sume the subject is average height (e.g., [2]). In extreme cases a pose tracker may have
no anthropometric knowledge whatsoever. To explore these cases we computed two fur-
ther subspace representations of the data in Dy, ocqp. First all walkers were normalized
to be the same height, and second, all anthropometrics are removed (by computing joint
angles and then using the mean anthropometrics to reconstruct the motions).

The first row of results in Fig. [5] gives the gender hit rate (i.e., correct classification
rate) and the RMSE of linear LS predictors for weight and age, all based on leave-one-
out (LOO) testing. One can see that the two normalized models are less informative than
using the full 3D data. Predictions from the height-normalized models are somewhat
better than the anthropometric-normalized models as expected. Also note that while
predictions of gender and weight are quite good, age is poorly predicted. The walking
subjects in this dataset ranged in age from roughly 18 to 35 years, while the RMSE for
age prediction is 6.9 years.
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Gender (% correct) Weight (RMSE kg) Age (RMSE yrs)

Full Height Motion Full Height Motion Full Height Motion
3D Norm. Only 3D Norm. Only 3D Norm. Only
Full 3D Pose 89.6 86.1 81.7 54 97 109 69 69 64
Upper 3D Body 87.8 86.1 80.9 59 99 110 7.0 7.1 63
Lower 3D Body 84.4 80.0 73.9 62 94 122 72 72 13
Frontal 2D Pose 87.0 80.0 76.5 55 96 108 7.0 71 69
Sagittal 2D Pose 809 83.5 79.1 99 115 122 7.1 7.0 6.7

Fig.5. Inference with D,,,ocqp Models: To assess performance, with and without missing data,
we build 3 models: Full 3D uses known anthropometrics and kinematics; Height Normalized is
learned from mocap that is height normalized; and Motion Only uses only kinematic information
(all walkers have the same limb lengths). The lack of anthropometrics degrades performance,
but the inference of gender and weight are above chance in all models. We also report how
performance varies with different subsets of markers (e.g., upper/lower body) or 2D projections.
Again, despite degradation in performance, the models continue to predict attributes well.

Gender Weight Age Mood

Full 3D 94 93 88 94
Height Normalized 93 93 86 93
Motion Only 93 94 86 93

Fig. 6. Inference of Perceived Attributes: We report the accuracy of predictions of human rat-
ings for gender, weight, age and mood, all from the source mocap dataset Dy, ocap. Perceived
attributes are quantized to one bit based on the average rating for each subject, and the output
of the logistic regressor is thresholded at 0.5. The table shows the fraction of subjects for which
the classifier matches the quantized rating. Notice that perceived attributes are generally better
predicted by the learned models than are ground truth attributes (cf. age in Fig.[3).

Incomplete Data: To infer attributes from video-based pose estimates, we must be able
to cope with missing data, since parts of the body may be partially or entirely occluded.
Let m € R?2? be a complete measurement vector (i.e., the Fourier coefficients for each
joint). Let the observed measurements be mg = Pm, where the matrix P comprises
only those rows of the identity matrix that correspond to the observed joints. It then
follows from the generative subspace model, i.e., m = Bc + m, that a LS pseudo-
inverse can be used to estimate the subspace coefficients ¢y from my, i.e.,

co = (BTPTPB) 'BT"PT(my — Pm) . (6)

The columns in Fig. [ report model performance when data from model joints of the
upper body, or from the lower body, are used. Also reported are results when one uses
2D data under orthographic projection from frontal or sagittal views. Interestingly, the
observation that frontal views are more informative than sagittal views is consistent
with studies of human perception [31].

Predicting Human Ratings: 1t is also interesting to consider how well one can predict
perceived attributes. This is a scientific curiosity for physical attributes like gender, age
and weight. For mood, however, we have no physical ground truth. Rather, the per-
ceived mood is our only labelled data source. For all attributes, because our perceptual
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rating data are noisy, we quantize ratings of each attribute to one bit; i.e., each walker is
(perceived to be) (1) male or female, (2) heavy or light, (3) young or old, and (4) happy
or sad. Then, the average attribute rating for a given training subject (scaled to (0, 1))
is taken to be the corresponding probability of being male, heavy, old, and happy, re-
spectively. We use logistic regression to predict these probabilities, with leave-one-out
measures of performance given in Fig.

It is striking that, in all cases, we can do a better job predicting human ratings than
ground truth. Human observers are, purportly using the available visual cues in a con-
sistent manner, even if it is inconsistent with the ground truth. In particular, while true
age is very hard to predict, perceived age is predicted well; it’s not how old you are,
it’s how old you look. While interesting, this also shows clearly that percevied attributes
may be biased, and therefore require qualification.

6 Attribute Inference from D,; 40

Given the source models learned from D,;,¢qp, We use domain adaptation to learn mod-
els for the test pose data in D,;4c0- Not only is this useful in generating models for the
video pose tracking data, it is also useful in building a classifier from the test mocap in
Dyideo- The reason is that the pose data in D,,;4., 1S noisier and is parameterized dif-
ferently from that in Dy,,0cqp. The mocap in Dy ocqp allows for variable joint locations,
while the parameterization of the tracker used in D,;q4c, has fixed joints. The tracker
also has a fewer DOFs. Hence there are structural differences even between the mocap
in Dypocap and that in Dy;geo.

Domain Adaptation: Figure[]](left) show the leave-one-out hit rates for gender classi-
fiers learned from D,;4., With domain adaptation from Dy, 4cqp. The curves show how
performance depends on adaptation from the source model, as a function of A (see (3)
in Sec.H). The highest hit rates occur with A between 103 and 10*. For comparison, the
crosses (x) depict the hit rate when there is no domain adaptation (i.e., with w® = 0
in @)). The circles (o) depict the hit rate when the classifiers are trained solely on
the source data D,;,ocqp (With no domain adaptation) and then tested on the mocap in
Dyideo- Remember that the body model in D,,;4¢, has fewer degrees of freedom and was
estimated using a different mocap protocol from that in the original mocap in Dy,ocap-
Hence even the mocap motion features in Dyy,0cqp and Dyiqe, are distributed differently,
and hence the value of domain adaptation.

Pose Tracking Data: Figure[7] (middle) shows leave-one-out hit rates for gender from
video-based 3D pose tracking data (two trials of the APF, for each of 2 walking se-
quences for each of 20 subjects). As above, the curves show the dependence on the
strength of the prior from the source model. The crosses (x) depict hit rates with no do-
main adaptation (from pose tracking data alone), and the circles (o) depict the hit rates
from classifiers trained solely on the source mocap data D, ocqyp. It is not clear why the
full 3D model with pose tracking data is much worse than that with mocap input.
Figure [7] (right) shows how predictions of weight from video-based 3D pose data
depends on domain adaptation. As above, the crosses (x) and the circles (o) show that
predictions are poor when based solely on the data in Dyy,0¢qp OF in Dyjigeo. With domain
adaptation the results improve significantly. The standard deviation of the weight among
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Fig.7. Domain Adaptation: (a) Gender classification from the mocap in D, iq4e, for 20 test
subjects (from leave-one-out performance), as a function of the strength of the prior A, for each
of 3 models (full 3D, height normalized, motion only). (b) Gender classification from the video-
based pose tracking data for 20 test subjects (leave-one-out performance). (¢c) RMSE of weight
estimates from pose tracking data, for 20 test subjects, as a function of the strength of the prior.

Gender - mocap Gender - tracking Weight - mocap  Weight - tracking
(% correct, A = 10%) (% correct, A = 10%) (RMSEkg, A = 10-°)  (RMSEkg, A = 10°)
Full Height Motion Full Height Motion Full Height Motion Full Height Motion
3D Norm. Only 3D Norm. Only 3D Norm. Only 3D Norm. Only
Crocap 75.0 65.0 625 538 575 475 57 109 6.6 514 42.1 427
Clrack 65.0 575 425 550 550 500 40 73 69 125 13.1 145
Cirackrr 775 700 675 613 738 613 36 7.6 60 106 109 124

Fig.8. Attributes from Mocap and Pose Tracking Data: The tables reports leave-one-out
performance on gender classification and weight prediction from test mocap and pose tracking
data in the target dataset D, iqe0 Of 20 subjects. There are 40 mocap sequences (2 walks/subject),
and 80 pose trajectories from video tracking (2 tracking trials per sequence). Results from 3
models are reported: Chocap is learned from the source mocap Dimocap; Ctrack is learned solely
from test data Dyideo; Cirackrr is learned with Dy;qeo and domain adaptation from Docap.

the test subjects is approximately 12kg. With domain adaptation, with A = 105, the
RMSE decreases to approximately 10.6. These results with tracking data are worse than
those based on training mocap data in Fig.[3] but we find them encouraging nonetheless.

Figure[8lgives numerical results for gender classification and weight prediction, from
both test mocap and test pose tracking data (like the plots in Fig.[Z). As above, we show
results from three models: Cy,ocap is learned solely from the source mocap Dpyocaps
Chrack 18 learned solely from test data Diyigeo; Chrackrr 18 learned with Dy;4e, and
domain adaptation from D,;,¢qp. Not surprisingly, the predictions of gender and weight
from on video tracking data are not as reliable as those from the mocap. They are,
however, encouraging. While not shown in the figure, we also note that errors in gender
classification are reasonably consistent between the test mocap and the test tracking
data. Approximately 85% of the motions classified from the pose tracking data are
concistent with classification from the corresponding mocap. Thus, while some of the
errors in Fig. [§ are due to noise in the pose tracking data, some are due to the fact that
indeed some females consistently walk like males and vice versa.



Human Attributes from 3D Pose Tracking 255

Gender Weight Age Mood
Ctrackrr (Full 3D) 83 79 93 86
Ctrackrr, (Height Normalized) 74 79 90 85

Fig. 9. Classification of Perceived Attributes with Respect to MoCap: The table reports con-
sistency of leave-one-out performance on perceived gender, weight, age and mood (happiness)
between test mocap and pose tracking data in the target dataset D,,;q4e0 0Of 20 test subjects. We use
predicted attribute values for test mocap as targets to train C',4cr7r binary classifiers (learned
with Dyigeo and domain adaptation from D,y ocap, all with A = 10%).

Inference of Perceived Attributes: Figure [9] reports leave-one-out hit rates in the pre-
diction of the perceived attributes. Like the above experiment in Fig. [0l we quantize
perceptual ratings to one bit and use logistic regression for classification (e.g., happy
vs. sad). For the purposes of this experiment we also consider the perceptual data as the
ground truth (indeed for perceived mental state, e.g., mood, that is our only source of
data label) and look at the consistency of predictions between the leave-one-out model
trained with mocap and with video tracking results from D, ;geo-

The consistency between the mocap and pose tracking is very good, with consistent
classification rates between 74% to 93%. It is interesting to note that we can recover the
mental state — mood (happiness), with 85% to 86% accuracy. Like the results reported in
Fig. [@l the perceived age is predicted well when compared to our models for predicting
true age.

7 Discussion

This paper demonstrates that one can, from the output of a video-based, 3D human
pose tracker, infer physical attributes (e.g., gender and weight) and aspects of mental
state (e.g.. happiness). The models are used to infer binary attributes (gender) and real-
valued attributes (weight). We also consider the prediction of perceived attributes based
on human perceptual experiments. This is useful for infering attributes such as mood
where human judgements are our source of ground truth. Learning is accomplished
using datasets comprising labelled mocap and video-based 3D pose estimates. These
sources of training data are combined with a simple for of domain adaptation.

To our knowledge, this is the first paper in the literature that attempted to infer such
perceptually and biologically meaningful attributes from 3D video-based pose esti-
mates. In the future we hope to collect large datasets and explore stronger tracking
prior models trained from large collections of mocap data. We also hope to be able to
test the inference of attributes with monocular pose tracking methods. While the results
reported here are interesting in their own right, we also suggest that tasks like this pro-
vide a natural way to assess the fidelity with which people trackers estimate 3D pose.
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Abstract. Visual tracking is one of the central problems in computer
vision. A crucial problem of tracking is how to represent the object. Tra-
ditional appearance-based trackers are using increasingly more complex
features in order to be robust. However, complex representations typi-
cally will not only require more computation for feature extraction, but
also make the state inference complicated. In this paper, we show that
with a careful feature selection scheme, extremely simple yet discrimi-
native features can be used for robust object tracking. The central com-
ponent of the proposed method is a succinct and discriminative repre-
sentation of image template using discriminative non-orthogonal binary
subspace spanned by Haar-like features. These Haar-like bases are se-
lected from the over-complete dictionary using a variation of the OOMP
(optimized orthogonal matching pursuit). Such a representation inherits
the merits of original NBS in that it can be used to efficiently describe
the object. It also incorporates the discriminative information to distin-
guish the foreground and background. We apply the discriminative NBS
to object tracking through SSD-based template matching. An update
scheme of the discriminative NBS is devised in order to accommodate
object appearance changes. We validate the effectiveness of our method
through extensive experiments on challenging videos and demonstrate
its capability to track objects in clutter and moving background.

1 Introduction

Visual object tracking in video sequences is an active research topic in computer
vision, due to its wide applications in video surveillance, intelligent user inter-
face, content-based video retrieval and object-based video compression. Over
the past two decades, a great variety of tracking methods have been brought
forward. Some of them include template/appearance based methods [T2I314lJ5],
layer based methods [6l/7], image statistics based methods [8[9/10], feature based
methods [I1IT2], contour based methods [13], and discriminative feature based
methods [I4/T5]. One of the most popular category of method is appearance
based approaches, these trackers represent the object to be tracked using an
appearance model and it is matched to each new frame to determine the object
state. In order to handle appearance variations, an appearance update scheme

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 258 2010.
© Springer-Verlag Berlin Heidelberg 2010
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is usually employed to adapt the object representation over time. Appearance
based trackers have shown to be very successful in many scenarios. However
they may not be robust to background clutter where the object is very similar
to the background. In order to handle this problem, more and more complicated
object representations that take into account color, gradients, texture are used.
However, extraction of the complicated features usually incurs more computa-
tion which slows down the tracker. Moreover, complex representation will make
the inference much more complicated. One natural question to ask is how com-
plicated feature is really needed to track an object? In this paper, we show that
with a careful feature selection scheme, extremely simple object representations
can be used to robustly track objects.

Essentially, object tracking boils down to the image representation problem
- what type of feature should be used to represent the object. Effective and ef-
ficient image representation not only makes the feature extraction process fast
but also reduces the computation for object state inference. Traditional object
representations for example raw pixels, color histograms are generative in nat-
ural, they are usually designed to describe the appearance of the object being
tracked while completely ignoring the background. Trackers using this represen-
tation may fail when the object appearance is very similar to the background. It
is worth noting that some appearance based trackers model both foreground and
background, for example in the layer tracker [7] the per-pixel layer ownership is
inferred by competing the foreground and background likelihoods.

Recently, discriminative methods have opened a promising new direction in
the tracking literature by posing tracking as a classification problem. Instead of
trying to build an appearance model to describe the object, discriminative track-
ers seek a decision boundary that can best separate the object and background.
The support vector tracker [I6] (denoted as SVT afterwards) uses an offline-
learned support vector machine as the classifier and embeds it into an optical
flow based tracker. Collins et al. [14] were perhaps the first to treat tracking as
a binary classification problem. A classifier is learnt in each frame to be used to
locate object in the next frame. A feature selection scheme using variance ratio
to select the most discriminative features is used to measure feature discrim-
inability and select the best feature for tracking. Avidan’s ensemble tracker [15]
combines an ensemble of online learned weak classifiers using AdaBoost to label
pixels in the next frame. After the data is labeled, the peak of the classification
score map is detected to be the object. To handle the object appearance changes
and maintain temporal coherence, in each frame some classifiers that do not
perform well or have existed longer than a fixed number of frames get removed
or pruned from the tracker, and new classifiers are trained to replace them. In
co-tracking [I7], two semi-supervised support vector machines are built for color
and gradient features. A co-training framework is used to update the classifiers.

Previous discriminative trackers generally have two major problems. First, the
tracker only relies on the classifier which can well separate the foreground and
background and does not have any information what the object is like. This makes
it hard to recover once the tracker makes a mistake. Second, discriminative
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trackers generally have a fixed image representation for all objects to be tracked
and this representation is not updated any more. However, adaptive objective rep-
resentation is more desirable in most cases because it can capture the character-
istics of particular object being tracked.

In this paper, we propose an extremely simple object representation using
Haar-like features that combines the advantage of generative trackers and dis-
criminative trackers. The representation is generative in nature in that it finds
the features that can best reconstruct the foreground object. It is also discrimina-
tive because only those features that make the foreground representation differ-
ent from background are selected. Our representation is based on the nonorthog-
onal binary subspace(NBS) method in [I8]. The original NBS tries to select from
an over-complete dictionary a set of Haar-like features that can best represent
the image. We extend the NBS method to incorporate discriminative information
by adding a discriminative background term. The new representation is called
discriminative non-orthogonal binary subspace. The discriminative nonorthogo-
nal binary subspace is a compact representation of an image which is spanned
by Haar-like rectangle base vectors. By approximating image patches with dis-
criminative NBS, the inner product between templates could be obtained very
fast using integral image trick. We show in this paper that such extremely simple
features can be used for effective object tracking even when the object is similar
to background.

The rest of this paper is organized as follows. In section 2, we briefly review
Haar-like features and the non-orthogonal binary subspace approach. The dis-
criminative nonorthogonal binary subspace is proposed in section 3. In section
4, the application of discriminative NBS to tracking is described. Afterwards, we
provide both qualitative and quantitative experimental results in section 5. The
paper is concluded in section 6.

2 Background: Nonorthogonal Binary Subspace

The original NBS [I§] tries to find a subset of Haar-like features from an over-
complete dictionary to span a subspace that can be used to reconstruct the
original image.

The Haar-like box function ¢ for NBS is defined as,

1, wg<u<ug+uw —1
o(u,v) = vo<v<wvg+h -1 (1)
0, otherwise ,

where w’ and h' represent the width and height of the box in the template.
(up,vp) is its top-left pixel. The advantage of such box functions is that the
inner product of the Haar-like base with any same-sized image template can
be computed with only 4 additions, by pre-computing the integral image of the
template.

Suppose that for a given image template x € RV of size W x H and the
selected binary box features are {c¢;, ¢;}(1 < i < K). ¢; is the coefficient of box
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function ¢;. The NBS approximation is expressed as x = Zfil c;¢; + €, where
¢ denotes the reconstruction error. We define ® x = {¢1, ¢2,..., 0K} as a base
matrix, each column of which is a chosen binary base vector. Note that, this base
set is non-orthogonal in general, hence the reconstruction vector of template x
is calculated as

Ry, (x) = ®x(®L @) '@Tx . 2)

The number of Haar-like box functions is W(W + 1)H(H + 1)/4, thus the dic-
tionary of base vectors is highly redundant. In previous work, the NBS is used
to approximate the image template. Thus, a specific small number of features
are chosen from the over-complete dictionary to optimize the function

argmin || x — Ra, (X) || - (3)
P

Since the dictionary is highly redundant, the optimal solution to Eq.(3]) is NP-
hard. It is shown in [I8/19] that a sub-optimal solution can be produced by a
greedy algorithm named the optimized orthogonal matching pursuit (OOMP).

3 Discriminative Nonorthogonal Binary Subspace

The NBS method has been successfully used for fast template matching and
face recognition [I8]. However, it only considers the information embodied in
the object image itself without any information about the rest of the image. In
the applications such as video object tracking, which is essentially a classification
problem, the background content should be taken into account in addition to the
object template. To account for this, we propose a discriminative NBS (D-NBS)
image representation that considers both foreground object and background.
The discriminative NBS method inherits the merits of the original NBS in that
it can well describe the object appearance, and at the same time, it captures the
discriminant information that can best separate the object from background.

3.1 Formulation

The objective of discriminative NBS is to construct an object representation that
can separate object from background. This will facilitate vision tasks such as
object tracking. In contrast to the original NBS, we formulate the discriminative
NBS by finding the bases such that the foreground can be well separated with
background for SSD based template matching.

The main idea behind discriminative NBS is that we want to select features
so that the reconstruction error for foreground is small while it is large for
background. Different from the original NBS formulation Eq.(3]) in which only
the foreground reconstruction is considered, in discriminative NBS formulation,
the objective function has foreground and background reconstruction terms.

Let @ be the discriminative NBS based vectors with K bases and Rg , (X)
be the reconstruction of X via @ using Eq.(2). Note that F = [fl, fo, ..., fo]
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is a matrix of Ny recent foreground samples. B = [b1,bs,...,by,] is a matrix
of N, sampled background vectors. The objective function for ® g is

. 1 A
mgnin{ 1P Rag(B) -0 1B RouB) 3] @)
where || - || p represents the Frobenius norm. The first term in the equation is to

make the foreground better approximated while the second one is to make the
representation far away from background. This formulation is a hybrid approach
in which the generative and discriminative items are balanced by A.

To make it more clear, Eq.( ) can be transformed to

argmpin lef Re, (£) |* - leb Ra, (b)) |* ¢ . (5)

It can be further simplified to

Ny Ny,
1 A
BN N, Z§:1<fi7R‘1§'K(fi)> TN, i§:1<bi7R‘}K(bi)> : (6)

3.2 Solution

It can be proved that Eq.() is a NP hard problem, even verification of a so-
lution is difficult. To optimize the objective function, we propose an extension
of OOMP (Optimized Orthogonal Matching Pursuit) [I8] called discriminative
OOMP. Similar to OOMP, discriminative OOMP is a greedy algorithm to com-
pute adaptive signal representation by iterative selection of base vectors from a
dictionary.

We assume that totally K base vectors are to be chosen from the base set
W = {¢1,%2,...,9nN, }. Ny is the total number of base vectors in the dictionary.
Suppose k—1 bases ®_1 = {¢1, P2, ..., dr—_1} have been selected, the k-th base
is chosen according to

Ny k N, k
arg max 1 - ‘<’YZ( )7€k—1(fj)>|2 _ A ° |<’Yz( )7€k—1(bj)>|2 (7)
. k k 5
e | N PP Ny ; 14 |2

where 7 =1; — Rs,_, (¢;) is the component of base vector v; that is orthog-
onal to the subspace spanned by ®;_1. €,_1(x) = x — Rs,_, (x) denotes the
reconstruction error using ®5_;.

In each iteration of the base selection, the algorithm needs to search all the dic-
tionary ; to compute %(k). Since the number of bases in dictionary is quadratic
to the number of pixels in image, this process may be slow for large templates.
We further analyze the above equation for simplification,

(3 eh_1(x)) = (i — R, (1), x — Ra,_, (X)) = (i, x — Rap_,(x)) . (8)
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Since v; is a box base, the inner product can be computed in O(1) time with
pre-computation of x — Rg,_, (X) using integral image. Because

on Pk, X)
Rq)k (X) = R‘Pk,—1 (X) + 2 (9)
I w |
where ¢, = ¢, — Ra,_, (dr) denotes the component of ¢, that is orthogonal to
the subspace spanned by ®;_1, we therefore have

Ck—1{Pk—1,03) 5 =1y 2 |{r—1,0i)?

175 112=]| s — Rasy_, (th1) — 1= 4D )2 - .
I = Ras (00) = 70 o 2 P

(10

The denominator for each base vector || %-(k) |? can be easily updated in each
iteration, because the inner product {pk, ;) can be quickly computed.

Note that the reconstruction for any x (i.e. Rg,(x)) can be efficiently com-
puted by pre-storing <I>k('1>£'1>k)*1. The calculation of @gx is the inner prod-
ucts between x and the base vectors, which can be accomplished in O(k) time.
Thus, computing the reconstruction simply costs O(kW H) time, where W, H
are respectively the width and height of the base template. As (pk,x) and
| x — Ra,_,(x) ||* can be pre-computed, the total computational complexity
is O(Ny K (Ny + Np)) with Ny, the number of features in dictionary.

3.3 Fast Search Using Coherence

As aforementioned, computation of the above algorithm is mainly spent on repet-
itive searching in the dictionary. Since, in the NBS framework, the size of base
dictionary is proportional to W?2-H?, the computational cost may increase dra-
matically as the template size increases. A natural way to accelerate it is to
reduce the number of bases to be searched in each iteration. We propose to
achieve this through basis filtering using coherence.

A p-coherent dictionary W has coherence p for 0 < p < 1, if | (¥5,95) |< 1
for all distinct v;,7; € ¥. A 0O-coherent base set is orthogonal. In general,
bases with high coherence are likely to be redundant in representing the vector
space. Coherence is used to reduce dictionary redundancy hence reducing the
computation. Using coherence our algorithm can be accelerated by pruning all
the base vectors with u-coherent (u is a given parameter) after each iteration of
base selection.

An example image and the selected Haar-like features using discriminative
NBS are shown in the left image of Figure [[I It is compared with the results
selected using original NBS in the right image. Figure 2 shows the number of
remaining bases for each coherence u after selection of the largest Haar base.
The template size is 50 x 50.

4 Tracking Using Discriminative NBS

With the discriminative NBS object representation, we locate object position
in the current frame through sum of squared difference (SSD)-based matching.
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Using discriminative NBS, the object is first compared with the possible locations
in an region around the object position detected in the previous frame. The
one with the minimum SSD value is the target object location. In order to
account for object appearance changes, the foreground and discriminative NBS
are automatically updated every few frames.

4.1 Object Localization

The tracker starts from the predicted object position in the previous frame
and searches the best matched template in an extended area around it. We
use SSD to match the template, due to its high efficiency of matching under
the discriminative NBS representation. In each frame ¢, we specify a rectangular
region surrounding the object position with a margin as the search window, in
which the templates are sequentially compared with the referenced foreground
x = Ry (£,

ref
Suppose that x is the object and y is a possible candidate object in the search
window. The SSD between them is,

SSD(x,y) =[x —y [I*=ll xI* + |y [I* —2(x.y) . (11)
where || - | represents the L?-norm and (-,-) denotes the inner product. x is
approximated by the discriminative NBS ®x (i.e. Ry (fr(;z) = Zfil cgt)(ﬁgt)) ,

K

built using the approach in Section Bl Eq.(II)) is then transformed to

K K K
SSD(Y "o, y) =1 S" et 12+ 1y 12 23 P00 y) . (12)

=1 i=1 i=1

The first term is the same for all the candidate locations in the current frame.
While the second and third ones can be computed rapidly with using integral
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image. The online computational complexity of Eq.([[2) is only O(K), where K
is the number of selected bases.

4.2 Subspace Update

Due to appearance changes of the object, the discriminative NBS built in the
previous frame might be unsuitable for the current frame. A strategy to dynam-
ically update the subspace is necessary. Here we update the subspace every 5
frames. Once a new subspace needs to be computed, we first use the updated
template and background samples from the current frame to compute the dis-
criminative NBS again as Eq.( ).

Template Update. The object template is also updated constantly to incorpo-
rate appearance changes, which serves as the new positive samples. As Eq. (),
NBS is constructed to better represent for a set of foreground templates. In-
tuitively, these sampled foregrounds should recently appear, in order to more
precisely describe the current status of the object. Many previous efforts have
been devoted to template update (see [20]). One natural way is to choose the
recent Ny referenced foregrounds. Another solution is to update the reference
template in each frame, but this may incur considerable error accumulation. Sim-
ply keeping it unchanged is also problematic due to object appearance changes.
A feasible way is to update the foreground by combining the frames using time-
decayed coefficients. Here, we propose to update the foreground reference for
every N, frames,

) _ fo t=0

fret = {yfr(etf(t_l)/N“JN“) + (1 —v)f  otherwise (13)
where fy is the foreground specified in the first frame and f; is the matched
template at frame ¢. - is the tradeoff, which is empirically set to 0.5 in our
experiments. | (¢t — 1)/N,|N, is the frame at which the current subspace was
updated. fr(eLf(t_l)/ NulNw s the object template at that frame. This means we
are updating the template periodically instead of at each frame, which is more
robust to tracking errors. This template updating scheme is compared with other
methods and results are shown in the experiments section.

Background Sampling. The background samples which closely resemble the
reference foreground often interfere with the stability and accuracy of tracker.
We sample the background templates which are similar to the current reference
object and take them as the negative data in solving the discriminative NBS.
We compute a distance map in a region around the object and those locations
that are very similar to the object are selected as the negative samples. Note
this process can be done very efficiently because the SSD distance map can be
computed very efficiently using Haar-like features and the integral image. Once
the distance map is computed, locations which are local minima together with
a non-minimal suppression are used to select negative samples.
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5 Experiments

We first discuss in this section several key parameters used in constructing the
discriminative NBS. Then we show qualitative tracking results of our approach
on challenging sequences with significant background clutter and camera mo-
tion. To demonstrate the advantages of our approach, our tracking results are
compared with three kinds of trackers: (1) a standard SSD tracker which uses
direct patch matching, (2) an NBS tracker which applies the original NBS for ob-
ject representation, and (3) a discriminative feature tracker proposed by Collins
et al. in [14].

5.1 Parameter Selection

Several parameters are used in the discriminative NBS. Parameters with different
settings will influence the accuracy of foreground reconstruction and tracking.
We discuss here the justification of selecting them.

The formulation of the discriminative NBS balances the influence of the fore-
ground and background reconstruction terms with a coefficient A. Intuitively, it
should be set to a small value to ensure the accuracy of foreground representa-
tion. To find the best value, we use several image sequences (mostly from PETS
2001 data set) with ground-truths to quantitatively evaluate how the parameter
changes the tracking result. The tracking performance is evaluated as the mean
distance error between the tracked location and the groundtruth object center.
The discriminative NBS-based tracker with varying A from 0 to 1 is applied to
this sequence. The curve plotted in Fig. Blshows the correlation of A and centroid
tracking error averaged over the whole sequence. Obviously, the centroid error
is relatively more stable and smaller when \ is set to 0.25.

Another parameter for discriminative NBS is the number of bases K used.
The selection of this parameter depends on image content. In general, the more
features, the more accurate tracking, but it will also incur more computation.
As a tradeoff, we set K = 30. Some other parameters we set empirically include:
the number of foreground template Ny to 1 and background ones Nj, to 3. These
parameters are fixed for all the experiments in this paper.

We also conducted experiments to show the effectiveness of our template up-
dating scheme. Here, we review several template updating methods mentioned
above by comparing their tracking error of video sequence browse. These updat-
ing methods include: 1) updating the current template with the previous one,
2) updating the current template with an average of previous 5 frames and our
updating method. All of the methods are initialized with the same bounding box
at the first frame and the error of object center is computed according to the
ground truth. Figure [ shows that the time-decaying approach is more robust
and stable.

5.2 Tracking Results

Qualitative Results. We apply our tracker to several challenging sequences
to show its effectiveness. We show some qualitative results on pedestrian videos
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Centroid Errors for 4 update schemes

No Update
Update with the last reference|

—tshirt PETS01(1500-1700)
car PETS01(1100-1250)
D i-coat PETS01(147-247)
——— female-blue-skirt PETSO01(2182-2400)

Avg of last 5 frames.
—— Our updating method

Centroid Error
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Parameter % Frame Number

Fig. 3. The influence of A\ on tracking er- Fig.4. Comparison for 4 template updat-
rors. The y-axis is logarithmically scaled. ing approaches

here to show that our tracker can handle background clutter, camera motion,
and object appearance variations. In the following figures, red boxes indicate
tracked object while blue boxes indicate the negative samples selected if there is
a subspace update in that frame. The subspace is updated every 5 frames and
if there is no update of subspace, no blue boxes (background samples) will be
showed.

Sequence Crosswalk (Figure Bl) has totally 140 frames, with two pedestrians
walking together along a crowded street with an extremely cluttered background.
The tracking result demonstrates the discriminative power of our algorithm. In
this sequence the hand-held camera is extremely unstable. The shaky nature of
the sequence makes it all the more difficult to accurately track the pedestrians.
Despite this, our algorithm is able to track the pedestrians throughout the entire
140 frames of the sequence. Shai Avidan mentions in [I5] that the Ensemble
Tracker is able to track for the first 80 frames of the sequence but does not
mention the performance for the remaining 60 frames.

Sequence Browse (Figure [@) is a video clip of frames 24-185 in Browsel.avi
derived from CAVIAR people (ECCV-PETS 2004)Dataset [21I]. This sequence
is obtained by a distorted camera. Each frame is 384 x 288 pixels and the object
is bounded by a 44 x 35 box. With significant distortion, the object can still be
tracked.

Sequence Courtyard (Figure [1) is a video clip from 134th to 267th frame
which records a person walking in the yard. The frame size is 720 x 480 and the
object is manually bounded at frame 134 with a 41 x 101 red box. With moving
background and variation of the object, our tracker can stably track the person.

Sequence Crowd (Figure [) is a video clip (250th to 338th frames) selected
from PETS 2007 Data set. In this sequence the background is very cluttered
with many distracters. As can be observed the object can still be well tracked.
The frame size is 720 x 576 and the object is initialized with a 26 x 136 bounding
box.
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Fig.5. Crosswalk sequence: The frames 0, 16, 50, 74, 105 and 139 are shown. The
red boxes are the tracked objects and the blue boxes at 5k frame are the sampled
backgrounds.

Fig. 6. Browse sequence: The frames 24, 45, 74, 115, 139, 185 are shown. The red
boxes are the tracked objects and the blue boxes at 5k + 4 frame are the sampled
backgrounds.

Comparative result between our DNBS tracker and another discriminative
tracker [I4] is showed in Fig. @l Sequence Female is a video clip in PETS 2007
data set. It starts from frame 826 to 870, each of which has 720 x 576 pixels. The
object is initialized at the 826th frame of size 26 x 106. Collins’ tracker drifts
away at frame 841, while our method still keeps track all along.
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S Bley

Fig. 7. Courtyard sequence: The frames 134, 153, 189, 205, 234, and 267 are shown.
The red boxes are the tracked objects and the blue boxes at 5k + 4 frame are the
sampled backgrounds.

Fig. 8. Crowd sequence: The frames 250, 267, 295, 306, 325, and 338 are shown. The
red boxes are the tracked objects and the blue boxes at 5k frame are the sampled
backgrounds.

Quantitative Evaluation. In order to quantitatively evaluate the performance
of our approach, we compare our results with the ground truth of the above two
sequences (Crosswalk and Browse). The error is measured as the distance be-
tween the tracked object center location and the groundtruth object location in
pixels. Figure[[lshows the results for three methods: (blue) SSD method, (green)
NBS method, (red) Discriminative NBS method, and (light blue) a discrimina-
tive feature tracker proposed by Collins et al. [T4]. The objects are initialized at
the same position at the first frames and the reference templates are updated in
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Fig. 9. Female sequence: The frames 826, 840, 854 and 870 are shown. The upper row
shows results for DNBS tracker and the second row shows results for Collins’ tracker.

Sequence Crosswalk

Centroid Error
3
Centroid Error

! f L L
0 20 40 60 80 100 120 140
Frame Number Frame Number

Fig. 10. Quantitative results for the Crosswalk and Browse sequence. The horizontal
axis is the frame number and the vertical axis is the tracking error between the tracked
object location and groundtruth.

the same way (with IV, = 5 and v = 0.5) as mentioned in this paper. As can be
observed, our approach is consistently better than these two methods.

6 Conclusions

We have proposed the discriminative NBS, a simple yet informative object rep-
resentation that can be solved using a variant of OOMP. Such a representation
incorporates the discriminate image information to distinguish the foreground
and background, making it suitable to be used in object tracking. We use SSD
matching built upon the discriminative NBS to efficiently locate object in video
frames. Our experiments on challenging video sequences show that the discrim-
inative NBS-based tracker can stably track the dynamic object. We intend to
explore the application of discriminative NBS on other vision and multimedia
tasks such as image copy detection in future.
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Abstract. We use a simple yet powerful higher-order conditional ran-
dom field (CRF) to model optical flow. It consists of a standard photo-
consistency cost and a prior on affine motions both modeled in terms
of higher-order potential functions. Reasoning jointly over a large set of
unknown variables provides more reliable motion estimates and a robust
matching criterion. One of the main contributions is that unlike pre-
vious region-based methods, we omit the assumption of constant flow.
Instead, we consider local affine warps whose likelihood energy can be
computed exactly without approximations. This results in a tractable,
so-called, higher-order likelihood function. We realize this idea by em-
ploying triangulation meshes which immensely reduce the complexity of
the problem. Optimization is performed by hierarchical fusion moves and
an adaptive mesh refinement strategy. Experiments show that we achieve
high-quality motion fields on several data sets including the Middlebury
optical flow database.

1 Introduction

Currently most methods for optical flow estimation can be roughly divided into
two groups: (i) variational methods based on the pioneering work of Horn and
Schunck [1], and (ii) discrete methods utilizing combinatorial optimization such
as graph-cuts [2]. Both approaches have their advantages and disadvantages.
While variational methods often yield very high accuracy, these methods depend
on rather local image properties and may also suffer from local minima during
optimization of the cost function. Combinatorial optimization is often able to
recover strong minima but only with respect to a rather sparse discretization of
the search space. Recently, methods have been proposed [34] which successfully
combine both worlds towards discrete-continuous optimization which is able to
avoid local minima and obtain highly accurate (continuous) flow estimates at the
same time. A rather comprehensive overview and comparison of latest optical
flow methods can be found in [5] and on the website of the Middlebury optical
flow databasdl.

!http://vision.middlebury.edu/flow/
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Still, a major limitation of existing algorithms is in the definition of the likeli-
hood (or data) term within the energy formulation. Often, a matching criterion
is defined pixel-wise for instance using squared differences on the intensities. In
general, such a formulation yields an ill-posed problem since two-dimensional
flow vectors have to be recovered from a one-dimensional signal (aperture prob-
lem). Ambiguities may arise for matching individual pixels independently. Here,
regularization plays an important role to render the problem well-posed such
that the optimization yields meaningful solutions.

In contrast, region-based approaches [6l7] use local image patches to estimate
point correspondences. Here, a matching criterion such as the correlation coef-
ficient (CC) is evaluated on the whole patch centered at a point for which the
motion is to be determined. The distribution of such points can be dense or
sparse (by employing a parameterization of the motion field) [8]. Region-based
approaches yield a more robust definition of the likelihood compared to pixel-
wise methods [9], but often introduce a rough approximation. In fact, in most
approaches it is assumed that all pixels within the patch move with constant
flow. However, except for pure translation within the patch, the assumption of
constant flow does not hold.

One may claim that an optimal definition of the likelihood should be (i) robust
and reliable, by considering a larger set of unknown variables simultaneously and
(ii) precise and tractable by modeling the various motions for the set of variables
beyond the assumption of constant flow. This leads us to our main contribution
in this paper, which we call higher-order likelihoods. In the following, we will
introduce the concept of higher-order likelihoods and their corresponding energy
in a conditional random field (CRF). We demonstrate how triangulation meshes
perfectly support our concept. The effectiveness of our approach is evaluated on
several datasets including the Middlebury optical flow database. We also revisit
the concept of motion layers [I0] which, when integrated in our framework,
enables us to handle occlusions in a natural way in form of overlapping meshes.
We conclude our paper by a discussion on future work.

1.1 Related Work

Conditional random fields are ubiquitous in computer vision. Their success can be
certainly attributed in large parts to the existence of powerful optimization meth-
ods which have been developed in the last decade. The most commonly used mod-
els in low-level vision applications are first-order CRF&@, which contain cliques of
size up to two. Here, the unary potentials play the role of the likelihood term eval-
uating how well a certain label fits to a variable w.r.t. to the observation, inde-
pendently of all other variables. The pairwise potentials are then used to enforce
smoothness by penalizing deviations of labelings between two neighboring vari-
ables. These models are quite intuitive due to their natural relationship to the
image grid itself. Additionally, first-order models are attractive due to efficient
optimization methods, which often guarantee to find the global optimum.

2 Note that an n-th order CRF contains cliques of size up to n + 1.
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Despite the popularity of first-order models, their modeling capabilities are
very limited. As already mentioned, a likelihood term based on unaries is ei-
ther not very reliable or rough approximations have to be used as in previous
region-based methods. In some works (e.g. in [TTJI2IT3]), the pairwise terms are
considered for the likelihood in order to model a conditional data-dependency
on a pair of variables which yields a more appropriate model for the problem at
hand.

Recent advances in CRF optimization allow the use of higher-order potentials
in an efficient and principled manner [T4/T5/T6]. A combination of fusion moves
[T7U18], reduction techniques [19], and the QPBO algorithm [20/21] allows to use
a second-order model in stereo [22], while a similar model is used for motion
in [23] employing belief propagation. Both works use a second-order prior de-
fined on triple-cliques to enforce smoothness based on second derivatives of the
disparity /motion field. Still, only unary terms are used for the likelihood.

Recently, many techniques have been developed for larger cliques of up to
several hundred variables, e.g. [I524] just to mention a few. In order to deal
with such large cliques in a tractable way , they must exhibit some internal
structure. For instance in [15] it is assumed that only a few (important) label-
configurations have a low energy and all remaining configurations a constant
(high) cost.

In the following, we will introduce our concept of higher-order likelihoods for
the task of optical flow. We will derive a likelihood term based on triple-cliques
which models the costs of local affine motions exactly without approximations.
Additionally, we propose two novel regularization terms, the first one being also
based on triple-cliques, and the second one based on quadruple-cliques.

2 Concept of Higher-Order Likelihoods

Consider a set V of variables i, ..., N. In optical flow, the variables correspond to
pixels and we seek for optimal assignments dE corresponding to two-dimensional
flow vectors. Additionally, we introduce the power set C containing all possible
cliques (subsets) ¢ of variables. We define the cost for a labeling d (i.e. every
variable is assigned a value d;) in terms of a general CRF energy as

E(d|9) = ch(dc|9) : (1)

ceC

The clique potential functions 1. evaluate the cost for assigning a sub-labeling
d. to a clique ¢ conditioned on the observation 6 (the image data). In first-order
models, the energy would then be simply the sum of unary potentials 1);(x;|6)
plus the sum of pairwise potentials 1;;(d;, d;|0). For simplicity, in the following
we will neglect 6 in the potential functions.

3 Depending on the context we will treat i, j, ... as random variables and as 2D coor-
dinates. Similarly, we treat labels d;, dj, ... also as 2D motion vectors.



Optical Flow with Triangulation-Based Higher-Order Likelihoods 275

Theoretically, reasoning jointly over all variables would be the best approach
for finding an optimal labeling. The energy would simply consist of one higher-
order potential for a clique containing all variables. Obviously, even for a small
number of variables this approach is doomed in practice regarding the compu-
tational complexity. A compromise has to be found between the clique size and
the tractability of the problem.

Let us concentrate on the problem of optical flow. Determining the flow vec-
tor of individual pixels is clearly not well defined due to the aperture problem
mentioned earlier. In contrast, solving for the flow for a group of pixels might
be more reliable. Assume we are seeking for the optimal flow vectors within a
discretized search space L (a set of labels). Then, for a clique of K pixels the
solution space for the labeling problem has the cardinality |L|%. Evaluating all
of the potential labelings is infeasible. We discuss two alternative solutions to
this dilemma. We realize one of these solutions in our practical system, which
we discuss in detail in Sec. 211

Let us first consider the alternative solution, which we only discuss theoreti-
cally. It is based on the recent work [I5], where higher-order cliques are modeled
by sparse higher-order representations. Only a few labelings have assigned the
correct higher-order cost and all other remaining labelings are assigned a con-
stant (high) cost, which approximates their true cost. The key question is now
which labelings should be modeled? Note that there is actually only one label-
ing, i.e. the mazimum a posteriori (MAP) labeling él, which has to be modeled.
This is the labeling which corresponds to the global optimum of the CRF energy,
which is obviously unknown. One approach is to design a data-driven prediction
function which has the observation as input and possible labelings as output.
Also, an iterative optimization procedure can be envisioned, where the higher-
order terms, which only approximate the current MAP labeling by a constant
cost, are redefined and thus improve the modeling of the MAP labeling in the
next iteration. However, such an approach might be computationally very ex-
pensive. In this paper, we present a simple yet powerful model overcoming this
limitation by exploiting inherent properties of optical flow.

2.1 Reduction of Complexity Using Triangulations

Optical flow estimation consists of recovering the apparent motion from two
dimensional images capturing a scene of three dimensional objects moving over
time. We make two observations: (i) often the scene contains mainly solid objects,
which might translate, rotate, and/or scale from one image to another, (ii) the
motion of non-solid objects (such as textiles) can be sufficiently represented
by several local affine motions. These observations are consistent with other
approaches previously proposed for optical flow [252627].

If we restrict the set of labelings to the ones representing affine motions only,
we already achieve an immense reduction of complexity. An affine motion in 2D
is fully defined by three two-dimensional points (i.e. six degrees of freedom). So,
estimating an affine motion from K (> 3) pixels is an over-determined problem
which allows further simplifications. Additional reduction of complexity can be
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Fig. 1. Left: the triangles (ijk) and (ijl) represent higher-order likelihoods and define
local affine warps when labels (d;, dj, di, d;) are assigned to the triangle points. Right:
illustration of the two different regularization terms. The ADP penalizes changes be-
tween initial angles (o, 3) and angles (o, ). The NAMP determines how well the
warp of one triangle describes the warp of the other one by computing the (normal-
ized) distance between the warped points k’,1" and their locations A;j(k), Aijr(l) if
warped by the neighboring triangle.

achieved by a parameterization of the cliques motion using a simple geometrical
transformation model in terms of triangulation. A triangle in 2D space defines
an affine warp. We propose to represent a clique of pixels by a single triangle.
Then, the task becomes to find the optimal displacements of the triangle points,
instead of seeking for individual displacements for each pixel. Let us now derive
the energy for this model.

2.2 Likelihood Term

First, we need to define a matching criterion. In this work, we consider the
correlation coefficient (CC). For two sets of measurements X and Y, the CC is
defined as

CC(X,Y) = Sz —2)(yi — ) _ cov(X,Y) @)

V@ - 22— 9?2 0w0y

where  and y are the two means and o, and o, the standard deviations. The
CC takes values from [—1,1], where 1 indicates a perfect linear relationship, 0
indicates no linear relationship, and —1 an inverse linear relationship. In order
to use the CC score within an energy minimization, we modify the original term
into CC' = (1 — CC) taking values from [0, 2].

Second, we formalize the local affine motion model based on a triangulation
mesh. Assume that a set of triangles covering the image domain is given. We
can define a local affine warp Tjji, of a point p = (z, y) T lying in a triangle (ijk)
as the sum of the products of the barycentric coordinates (w;,w;,ws) of p and
the three displacement vectors (d;, d;, dy) as

Tije(p) = p + wid; +wjd; + widy - (3)

This is a simple linear triangle interpolation. The warping is illustrated in Fig.
[M(left). Note that instead of expressing the local warp as a linear combination
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of the three displacements, we can equivalently define an affine transformation
matrix A;j;, as
az by cy
Aiji = | ay by ¢y |, (4)
001

which maps (homogeneous) image points to their new locations. The matrix can
be determined by solving a simple linear system of equations.

From A;;;, we can extract two linear functions P c(P) =azx+byy+c, and
P%k (p) = ayx + byy + ¢y, together defining the movement of point p. These
definitions are later used in one of our regularization terms.

For convenience, we define some further notation used in the following equa-
tions. Given an image I, then I’ denotes the warped image I o T'. Additionally,
I;;i. denotes the triangular sub-image containing only the pixels lying within the
triangle (ijk).

Based on the above matching criterion and the triangle motion model, and
given two images I and J (i.e. the two adjacent frames in an optical flow se-
quence), we can now define the higher-order likelihood in terms of triple-clique
potential functions

cov(Li, Jijk)

Viji(diy dj, di) = CC" (I, Jije) = 1 — (5)

011, O iz

In fact, any labeling (d;, d;, di) yields a potential affine warp and the resulting
matching cost is evaluated exactly (without approximations) for the set of pixels
within the triangular sub-image. One problem remains, which is that the space
of affine transformations also includes reflections. This type of transformations
should not be considered in case of optical flow. We can enforce this by a simple
modification on the likelihood term

T - 3 P — AN
Yij(di, dj, di) = {SC (Iijk"]z]k> if O, j, k) = O, 7, k) (6)

otherwise

where O(i, j, k) determines the orientation (i.e. clockwise or counter-clockwise)
of a triangle. Note that this is a very simple and efficient geometrical operation
to check whether a triangle warp constitutes a reflection. The assignment of the
maximum cost of 2 for reflections avoids such unwanted warps.

An energy based on the sum of such triple-clique potentials could be sufficient
for estimating the flow. It imposes some implicit regularization on the transfor-
mation since the cliques overlap at the common edge of neighboring triangles.
However, texture-less regions and small triangles might benefit from an explicit
regularization.

2.3 Regularization Term

Triangles covering homogeneous regions might lead to unreliable estimates. Reg-
ularization is needed such that discriminative triangles with reliable motion drive
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the less reliable triangles towards a good solution. There are several ways for em-
ploying a regularization on the mesh of triangles. Here, we propose two different
terms. Which of these two terms should be used depends on the application
and the motion we expect to be present in the image sequence. We evaluate the
performance of both terms later in our experiments.

The first regularization term is based on triple-clique potential functions and
we call it the angle deviation penalty (ADP). The ADP is defined as

Viji(dis dj, di) = ||(ai, aj, ar) — (af, ol af )| (7)

The term penalizes the change between the initial angles (a5, a;, ;) and the
angles of the warped triangle (o, a’;, ;) (see also Fig. [(right)). The ADP is
invariant to similarity transformations (i.e. all transformations containing only
translation, rotation, and isotropic scaling).

The second term is more general and defined on quadruple-cliques. It regular-
izes the motion between neighboring triangles (ijk) and (ijl). We call this term
non-affine motion penalty (NAMP) and define it as

0
Yigra(di, dj, di, dy) = ‘ 9’; , (8)
with
§(PZy, k, kL) ‘ Ha(m 1,1 ‘ |P(p) — vl
0: igh> "t 9: ik 0w 5P,, - 9
¢ Héuzzl,k,k;) P oy | CPPE e e o O

Intuitively, the term determines how well the warp of one triangle, represented
by the linear functions P* and PY, describes the motion of the other one. If
the two local warps A;;, and A;j; constitute an affine motion on the rectangle
(ijkl), then the penalty term evaluates to zero. A geometrical interpretation is
illustrated in Fig. [[l We adopted the NAMP from the closely related distances
from planes measure proposed in [28]. The NAMP can be seen as the multi-
variate extension.

The final energy of our higher-order CRF is then the weighted sum of the
likelihood energy and the regularization energy

E(d) = Elikelinood (d) + A Eregutarization(d) (10)

where A controls the influence of the regularization term.

3 Triangulation

So far, we have defined an energy model which enables us to use any triangula-
tion for estimating optical flow. Since there are various ways for obtaining such
triangulations, which might be more or less suitable for optical flow, we would
like to discuss some of them in the following, which are all based on the popular
Delaunay triangulation [29].
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(©) G (@ o

Fig. 2. Hlustration of different approaches for obtaining triangulations (cf. Sec. B]) for
an input image (a). Triangulation based on a regular mesh in (b), based on Canny
edges in (c,d), and based on segmentation in (e,f). Mesh refinement with and without
merging step in (g) and (h) (cf. Sec. B2).

The simplest way of defining a mesh of triangles is through a uniform dis-
tribution of nodes along the image domain (cf. Fig. [2(b)]). Such regular meshes
have been previously used for optical flow [8], and they can be represented by
a small number of parameters (e.g. number of nodes or node spacing). While
they have the advantage of simplicity, regular meshes have the drawback of
a missing relation to the underlying image data. Triangles might cover differ-
ent objects and thus probably different layers of motion. Here, data-dependent
triangulation (DDT) seems to provide more suitable triangulations. Low-level
data-dependence (e.g. using Canny edges as shown in Fig. would allow to
place triangle edges along image edges (cf. Fig. . However, image edges do
not necessarily follow motion boundaries. In [30], a method is proposed which
extracts occlusion boundaries from a single image. These boundaries might fol-
low the real motion boundaries more closely. Another approach could be based
on object segmentation. In Fig. we utilize a mean-shift color segmentatiorﬁ
to extract the shape of the teddybear. We perform a Delaunay triangulation for
boundary nodes and discard triangles outside the segmentation (cf. Fig. .
In all these examples, the nodes can be obtained with the Douglas-Peucker al-
gorithm for line simplification [31] from any given boundary or edge image.

3.1 Layered Representation

An elegant and promising approach for motion estimation is based on a multi-
layer representation, starting with the work of Wang and Adelson [10] and

4Thttp://www.caip.rutgers.edu/riul/research/code/EDISON/
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numerous ongoing developments, e.g. [32I33/12] just to name a few. However,
this approach has fallen a little bit into oblivion when reviewing the list of meth-
ods in the popular Middlebury optical flow ranking. In this work, we revisit a
simple but effective method for determining motion layers. We follow a similar
approach as described in [33]. Initially, we use a mean-shift color segmentation
on the first frame to obtain an over-segmentation. Then we estimate affine warps
in a least-squares sense from displacements of the pixels in each segment. The
displacements are taken from an initial motion field, which we compute in ad-
vance using our energy model and a regular mesh. Next, segments with similar
affine motions are grouped by spectral clustering. For that purpose we use the
end-point distance of warped image boundary points as a distance measure on
affine warps and a fixed value of 15 clusters. This approach allows us to define
independent meshes, one for each cluster, where each cluster represents a motion
layer. This also allows us to handle occlusions and preserve discontinuities be-
tween motion layers in a natural way. Whenever two meshes overlap, we consider
the mesh with a higher CC score in the overlap area to be in front of the other.

3.2 Mesh Refinement and Area Importance

As discussed earlier, larger triangles are in general more robust in providing
reliable flow estimates due to the larger set of pixels considered simultaneously.
Now, imagining two neighboring triangles where one of them is significantly
larger than the other one, we would trust more in the motion corresponding
to the energy minimum of the larger one. However, the actual energy value is
independent of the size of the triangles. To this end, we propose to add an area
weighting factor. The modified likelihood term becomes

A CC' (L Jige ) i 0,3, k) = O( ', )

Viji(di, dj, d) = {2 . (11)

ijk otherwise

where A;ji, is the area of the triangle (ijk). Similarly, we add a weighting factor
to the ADP regularization ternd.

Still, smaller triangles are more suitable for recovering local flow, in particular
for areas undergoing non-rigid motion. To this end, we propose a hierarchical
mesh refinement. Starting with an initial triangulation containing larger triangles
which will drive the estimation in the beginning, we subsequently refine the mesh
by inserting a node at the center of each edge and recompute the triangulation.
Each triangle will be separated into four smaller triangles all having the same
size. On this refined mesh we continue the optical flow estimation.

We demonstrate the effectiveness of this refinement strategy in a small ex-
periment on the RubberWhale sequence, for which the ground truth flow field
is available. In four different runs, we distribute triangles of same sizes — with
different initial sizes in each run — over the whole image domain. We run our
energy minimization over four to five levels of refinement (depending on the

5 The NAMP already has an inherent bias towards larger triangles.
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initial size), where in each level the motion of the triangles is initialized with
the motion from the previous level. The motion of inserted nodes is linearly
interpolated. We compute the average angular error for the estimated flow of
each level. In Fig. [B] we plot the progress of the error versus the triangle size.
The error decreases along with the level of refinement until a certain point where
the error increases in all four runs. There seems to be a critical point where the
triangle sizes are becoming too small to provide reliable motion estimates.

We conclude that a refinement of triangles im-
proves the result, while a certain size should be pre-
served. This is exactly the range, where all four runs
have their minimum error. In order to preserve these
sizes, while still refining triangles above this range,
we add a threshold on the edge length in the refine-
ment. Nodes are only inserted on edges having at
least a length of 15 pixels which results in minimum
triangles of sizes between 100 and 25px2.

In some cases the node insertion can lead to nodes ~ Fig. 3. Error versus Area.
lying very closely next to each other. To this end, Colors show different runs.
after each mesh refinement we identify nodes whose
initial position is located at almost the same position and replace the nodes by
one averaged node and compute its motion as the average motion of the replaced
ones. The refinement with and without this merging step is illustrated in Fig.
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4 Optimization

In order to optimize our CRF energy, we employ a discrete optimization over
hierarchical sets of displacement vectors. We generate a search space for each
optimization sweep by defining a maximum range and a sub-sampling of this
range by a fixed number of displacements along the eight main directions in 2D
(i.e. positive and negative horizontal, vertical, and diagonal direction). A similar
quantization strategy has been previously used in [13]. The energy minimization
is performed by subsequent sweeps using the QPBO-I algorithm [34], iteratively
over the set of displacements. Higher-order potential functions are transformed
into pairwise terms based on the reduction techniques for triple-cliques [19], and
quadruple-cliques [I6]. After an optimization sweep, the displacement set and
thus the search range is re-scaled by a user defined factor. This procedure is
repeated for a fixed number of sweeps, before we initiate a mesh refinement and
rerun the optimization on the refined mesh. Throughout this work, we use fixed
setting. We set the initial maximum range to 10 pixels and the number of sub-
sampling steps to 5 yielding 41 displacements (including the zero-displacement).
We perform 5 sweeps on one mesh level, and after each run we refine the dis-
placements by a factor of 0.66 while we use a total of 4 mesh levels.
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(a) (b)

Fig. 4. Experiment on regularization behavior of ADP and NAMP for different types
of transformations (cf. Sec. B.I]). We show the initial triangulation in (a), and in (b-e)
the warp applied on (a) in green and the results for ADP in red and for NAMP in blue.

5 Experiments

5.1 ADP versus NAMP

The purpose of this experiment is to investigate the behavior of the two differ-
ent regularization terms in a fully controlled setting. Remember, that ADP is
invariant to similarity transformations, while NAMP is invariant to affine trans-
formations. We define a triangulation on a test image (cf. Fig. where only
one triangle is covering a textured part of the image. The likelihood of this tri-
angle will be the driving force for the alignment to four different warped images.
The warped images are generated by applying warps to the initial image and
triangulation, i.e. an isotropic scaling, a rotation, an anisotropic scaling, and a
shearing (cf. Fig. |4(b)| to [4(e)). Except for the one triangle in the middle, the
motion of the other triangles will result only from the regularization term. We
find that both terms yield very good alignments for the outer triangles in case of
similarity transformations. For pure rotation, ADP performs even slightly bet-
ter, most probably due to the higher invariance of NAMP. In contrast, NAMP
yields accurate alignments in case of the two affine transformations, while here
ADP prevents a proper alignment of the outer triangles. We conclude that ADP
should be used, when mostly similarity transformations are expected. It is also
much more efficient w.r.t. to computational time than NAMP. Beyond this ex-
periment, we experienced that NAMP based on quadruple-cliques is currently
impracticable for triangulations with several thousands of triangles due to its
computational demands. In the following experiment, we will again use both
terms and measure the performance w.r.t. to computational time.

5.2 Giraffe

In this experiment, we perform a motion estimation on two frames of the Giraffe
sequence (180 x 144 pixels), where the Giraffe deforms considerably. Segmenta-
tions of the giraffe are available, so we can define two motion layers, one for the
giraffe and one for the background. We run the estimation with both regulariza-
tion terms, and each run with three levels of mesh refinement (=800 triangles
on the finest level). We find a large difference in the running time. While using
ADP, the optimization takes less than one minute, using NAMP takes almost
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(d)

Fig. 5. Experiment on Giraffe sequence. Target frame in (a), initial and final mesh in
(b) and (c), and the resulting flow field in (d) (cf. Sec. B.2)).

<. . E X

Fig. 6. Flow fields for the Army and Teddy sequence for the single-layer approach
using a regular mesh on the left, and results for the multi-layer approach on the right
(cf. Sec. B3). Please note the sharp transitions at motion boundaries in case of the
multi-layer approach.

ten minutes until convergence. We show the images, the initial and final meshes,
and the color-encoded flow field using ADP in Fig.[5l The NAMP yields a similar
result. Despite its more restrictive nature, we are able to obtain a high-accurate
flow field using ADP even for the giraffe layer with highly non-rigid motion.

5.3 Middlebury

Finally, we perform an evaluation on the datasets of the Middlebury database.
We compare two approaches for defining the triangulation. The first one is based
on a single regular mesh, and the second one is based on the layered represen-
tation described in Sec. Bl Here, the resulting flow fields of the first approach
are used for the affine motion clustering yielding the different motion layers.
Throughout the experiments we use the ADP regularization with A = 0.3. The
remaining optimization parameters correspond to those described in Sec. @ The
initial node distance for the regular mesh is set to 60 pixels and subsequently
refined to 30, 15, and 7.5. The initial motions of the multi-layer meshes are
interpolated from the single-layer result.

The single-layer approach yields already quite reasonable results ranked in
the midfield of the database. The multi-layer approach results in high-quality,
discontinuity preserving motion fields which are competing with the best meth-
ods currently listed in the ranking, including advanced variational methods. In
Fig. [l we show some visual results. The detailed quantitative evaluation can be
found online on the Middlebury website and in the supplementary material.
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The computationally expensive part of our method is the likelihood evalua-
tion, in particular on the finer mesh levels containing a large number of triangles
(>10,000). Since the computations are based on rather simple geometrical trian-
gle operations and linear interpolation, a tremendous speed-up might be achieved
by GPU implementation providing efficient, hardware-supported functionalities.

6 Conclusion

We propose a novel CRF model with higher-order likelihoods for the application
of optical flow beyond the assumption of constant flow. Likelihood terms are de-
fined on local pixel regions whose motions are constrained to local affine warps
through triangle-based parameterization. The energies are defined as triple-
cliques for the likelihood as well as the similarity invariant regularization term,
while non-affine motions can be penalized through quadruple-clique energies. To
our best knowledge, this is the first time that higher-order CRF likelihoods are
modeled in such a way. Here, the main advantage of our approach is that the
energies are evaluated exactly without approximations yielding a robust and re-
liable matching process. An interesting direction would be to integrate the whole
process of triangulation and motion layer definition into the optimization. A prior
on the maximum number of layers, as well as a flow-dependent mesh-refinement
could further improve the the results. A step beyond our current approach could
allow for the definition of higher-order likelihoods with arbitrary shapes and
without restrictions through the parametrization. We believe our model can be
seen as a building block for new directions in CRF modeling in computer vision,
which directly benefit from future advances in CRF optimization.
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Abstract. Given a set of points corresponding to a 2D projection of a
non-planar shape, we would like to obtain a representation invariant to
articulations (under no self-occlusions). It is a challenging problem since
we need to account for the changes in 2D shape due to 3D articulations,
viewpoint variations, as well as the varying effects of imaging process
on different regions of the shape due to its non-planarity. By modeling
an articulating shape as a combination of approximate convex parts con-
nected by non-conver junctions, we propose to preserve distances between
a pasr of points by (i) estimating the parts of the shape through approxi-
mate convex decomposition, by introducing a robust measure of convezity
and (i) performing part-wise affine normalization by assuming a weak
perspective camera model, and then relating the points using the inner
distance which is insensitive to planar articulations. We demonstrate
the effectiveness of our representation on a dataset with non-planar ar-
ticulations, and on standard shape retrieval datasets like MPEG-7.

Keywords: Shape representation, articulations, convex decomposition.

1 Introduction

Understanding objects undergoing articulations is of fundamental importance
in computer vision. For instance, human actions and hand movements are some
common articulations we encounter in daily life, and it is henceforth interesting
to know how different ‘points’ or ‘regions’ of such objects transform under these
conditions. This is also useful for vision applications like, inferring the pose of
an object, effective modeling of activities using the transformation of parts, and
for human computer interaction in general.

Representation and matching of articulating shapes is a well-studied problem,
and the existing approaches can be classified into two main categories namely,
those based on appearance-related cues of the object (eg. [1]), and those using
shape information which can be contours or silhouettes or voxel-sets (eg. |2-4]).
Our work corresponds to the latter category, wherein we represent an object by
a set of points constituting its silhouette. Although there are lots of work ([5-
7]) on deformation invariant ‘matching’ of shapes, there is relatively less work
on ‘representing’ a shape invariant to articulations, eg. [2, I8, 19]. Among the
above-mentioned efforts only |2] deals with 2D shapes and their representation

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 286 2010.
© Springer-Verlag Berlin Heidelberg 2010
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Part-wise affine normalization l
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(a) (b)

Proposed approach:

Fig. 1. @ Comparing distances across 2D projections of non-planar articulating
shapes. (L-R) Shape 1 and 2 belong to the same 3D object, whereas shape 3 is from a
different one. For a pair of points with same spatial configuration (yellow dots), Top:
Inner distance [2] yields ||di1 — diz2]|2 > ||di2 — di3]|2, whereas our method (bottom)
gives ||d21 —daz2l|2 < ||d22 —das]|2- @Keypoin‘cs with similar shape description obtained
from our method. Points were picked in the first frame, and their ‘nearest neighbors’
are displayed in other two frames. No holistic shape matching was done, emphasizing
the importance of a shape representation. (All figures are best viewed in color).

mainly addresses planar articulations. However, most articulating shapes, such
as a human, are non-planar in nature and there has been very little effort focusing
on this problem. This leads us to the question we are addressing in this work.

Given a set of points corresponding to a 2D projection of an articulating shape,
how to derive a representation that is invariant/insensitive to articulations, when
there is no self-occlusion? An example where this question is relevant is shown
in Figure [[l along with results from our proposed shape representation. Such
situations also arise when multiple cameras are observing a scene containing
non-planar objects, where the projection of a particular ‘region’ of an object
will depend on its relative orientation with the cameras. Accommodating for
such variations, in addition to articulations (for which, each object can have
different degrees of freedom) makes this a very hard problem.

Contributions: Under the assumption that a 3D articulating object can be ex-
pressed as a combination of rigid convex parts connected by non-rigid junctions
that are highly non-convex, and there exists a set of viewpoints producing 2D
shapes with all parts of the object visible; given one such instance of the 2D
shape, we are interested in obtaining an invariant representation across articu-
lations and view changes. We address this problem by,

1. Finding the parts of a 2D articulating shape through approximate convex
decomposition, by introducing a robust area-based measure of convexity.

2. Performing part-wise affine normalization to compensate for imaging effects,
under a weak perspective camera model, and relating the points using inner
distance to achieve articulation invariance (upto a data-dependent error).

After reviewing the prior work in Section 2l we formally define the problem
in Section Bl We then present our proposed method in Section @] by providing
detailed analysis on the model assumptions. We evaluate our shape descriptor
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in Section [l through experiments for articulation invariance on a dataset with
non-planar shapes, including both intra-class and inter-class studies, and for
standard 2D shape retrieval using the MPEG-7 |10] dataset. Section [ concludes
the paper.

2 Related Work

Representation and matching of shapes described by a set of N-dimensional
points has been extensively studied, and the survey paper by Veltkamp and
Hagedoorn [11] provides a good overview of the early approaches. More recently,
there have been advances in matching two non-rigid shapes across deformations.
For instance, Felzenszwalb and Schwartz 6] used a hierarchical representation
of the shape boundary in an elastic matching framework for comparing a pair
of shapes. Yang et al [12] used a locally constrained diffusion process to relate
the influence of other shapes in measuring similarity between a pair of shapes.
Registering non-rigidly deforming shapes has also been addressed by [7] and
[13]. Mateus et al [4] studied the problem of articulation invariant matching of
shapes represented as voxel-sets, by reducing the problem into a maximal sub-
graph isomorphism. There are also efforts, for instance by Bronstein et al [14],
on explaining partial similarity between the shapes.

Though there has been considerable progress in defining shape similarity met-
rics and matching algorithms, finding representations invariant to a class of non-
rigid transformations has not been addressed extensively. This is critical for
shape analysis because, rather than spending more efforts in matching, we stand
to gain if the representation by itself has certain desirable properties. Some works
towards this end are as follows. Elad and Kimmel [§] construct a bending invari-
ant signature for isometric surfaces by forming an embedding of the surface that
approximates geodesic distances by Euclidean distances. Rustamov 9] came up
with a deformation invariant representation of surfaces by using eigenfunctions
of the Laplace-Beltrami operator. However in this work, we are specifically inter-
ested in articulation insensitive representation of 3D shapes with the knowledge
of its 2D projection alone. A key paper that addresses this particular problem is
that of Ling and Jacobs |2]. They propose the inner distance, which is the length
of the shortest path between a pair of points interior to the shape boundary, as an
invariant descriptor of articulations when restricted to a set of translations and
rotations of object parts. But such an assumption is applicable only for planar
shapes, or when the shape is viewed using an ideal orthographic camera. Since
neither of these two settings hold true in most real world scenarios, representing
a 2D projection of a 3D non-planar shape invariant to articulations becomes an
important problem, which we formalize in the following section.

3 Problem Formulation

An articulating shape X C R3 containing n parts, {P;} ;, together with a set
of @ junctions, can be written as X = {U_; i} U{U,»;. 1<ij<n Qij}, Where
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1. Vi, 1 <4 <n, P, C R? is connected and closed, and P;(\P; = ¢,Vi # j, 1 <
,]<n

2. Vi #j,1<4,j<n,Q;; CR3, connected and closed, is the junction between
P; and P;. If there is no junction between P; and Pj, then Q;; = ¢. Other-
wise, Qi; (P # ¢, Qij (P # ¢. Further, the volume of @;; is assumed to
be small when compared to that of P.

Let A(.) be the set of articulations of X, wherein A(P;) € E(3) belong to the
rigid 3D Euclidean group, and A(Q;;) belong to any non-rigid deformation.
Further, let V' be the set of viewpoints, and M C (A x V) denote the set of
conditions such that the 2D projection of X, say S C R2, has all parts visible;
ie. Sy = {U~-, pik} Ui, 1<ij<n Gk}, Yk = 1 to M, where p;, C R? and
¢ijx C R? are the corresponding 2D projections of P; and Q;; respectively. The
problem we are interested now is, given an instance of S, say S1, how to obtain
a representation R(.) such that,

R(S1) = R(Sk), Vk=1to M (1)

4 Proposed Method

In pursuit of (1), we make the following assumptions. (i) X has approximate
convex parts P; that are piece-wise planar, and (ii) X is imaged using a weak-
perspective (scaled orthographic) camera to produce {Si}1L,. Let each Sy be
represented by a set of ¢ points {u}i_;. Given two such points w1, usg € Sk,
we would now like to obtain a distance D such that

D(uig, uog) = ¢,Vk=1to M (2)

where c is a constant, using which a representation R() satisfying () can be ob-
tained. Now to preserve distances D across non-planar articulations, we need to
account for (atleast) two sources of variations. First, we compensate for changes
in the 2D shape S due to changes in viewpoint V and due to the varying effect of
imaging process on different regions of a non-planar X, by performing separate
affine normalization to each part p;x € Si. Let T denote the transformation that
maps each part p;; to p},. Inherently, every point wuy, € Sk gets transformed as
T(uir) — ujy,, where the transformation parameters depend on the part to which
each point belongs. Next, to account for changes in Sy due to articulations A,
we relate the two points u),,u), € Sk using the inner distance ID [2] which is
unchanged under planar articulations. Essentially, we can write (2)) as

D(u1k, o) = ID(uly, uby), Yk =1 to M (3)
which, ideally, can be used to construct R (D). But, in general,

D(u1g,ugg) =c+ ek, Vk=1to M (4)

L A glossary of symbols used in this paper is given in the supplementary material.
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where,
€x = €p, +€p, +€s,,Ve=1to M (5)

is an error that depends on the data Si. ep, arises due to the weak perspective
approximation of a real-world full-perspective camera. ep, denotes the error in
the inner distance when the path between two points, w1 and usg, crosses the
junctions g;ji € Sk; this happens because the shape change of ¢;;1, caused by
an arbitrary deformation of the 3D junction @);;, can not be approximated by
an affine normalization. But this error is generally negligible since the junctions
gijr are smaller than the parts p;;. €g, is caused due to changes in the shape
of a part p;;, while imaging its original piece-wise planar 3D part P; that has
different shapes across its planes. An illustration is given in Figure

Under these assumptions, we propose the following method to solve for ().
By modeling an articulating shape S C R? as a combination of approximate
convex parts p; connected by non-convex junctions g;;, we

1. Determine the parts of the shape by performing approximate convex decom-
position with a robust measure of convexity.

2. Affine normalize the parts, and relate the points in the shape using inner
distance to build a shape context descriptor.

We provide the details in the following sub-sections.

4.1 Approximate Convex Decomposition

Convexity has been used as a natural cue to identify ‘parts’ of an object [15]. An
illustration is given in Figure where the object consists of two approximate
convex parts p; and po, connected by a non-convex junction gis. Since exact
convex decomposition is NP-hard for shapes with holes |16], there are many
approximate solutions proposed in the literature (eg. [17]). An important com-
ponent of this problem is a well-defined measure of convexity for which there
are two broad categories of approaches namely, contour-based and area-based.
Each has its own merits and limitations, and there are works addressing such
issues (eg. [18-20]). But the fundamental problems, that of the intolerance of
contour-based measures to small boundary deformations, and the insensitivity
of area-based measures to deep (but thin) protrusions of the boundary, have not
been addressed satisfactorily.

4.1.1 A New Area-Based Measure of Convexity

In this work, we focus on the problem with existing area-based measures. We
start from the basic definition of convexity. Given ¢ points constituting an N-
dimensional shape S’, the shape is said to be convex if the set of lines connecting
all pairs of points lie completely within S’. This definition, in itself, has been
used for convex decompositions with considerable success (eg. |21, 122]). What we
are interested here is to see if a robust measure of convexity can be built upon it.



Articulation-Invariant Representation of Non-planar Shapes 291

1 1

1 X 1

1. I\ 1

1 v L S 1

j/ m S ° :

Sl

S

ﬁ 912 Y
(a) (b) (d)

Fig. 2. @ Error eg, (B) illustrated by 2D projections, p;x, with the camera parallel to
planes 1 and 2. @ Our model of an articulating object with two approximate convex
parts p1 and p2, connected by a non-convex junction gia. Variation between ID
and ED for a pair of points (green dots). ID — ED is large for non-convex points, with
the yellow dots indicating junction regions. @ Information conveyed by (@) on the
potential convex neighbors of u;. The shape is enclosed by dashed red line. Color of
other points u,, is given by 1}31133((5[1::2)) , with value 1 (white) for convex neighbors and
tending towards O (black) for non-convex neighbors.

We make the following observation. Given two points uy,us € S’, let ID(uq,uz)
denote the inner distance between them, and ED(uy,u2) denote their Euclidean
distance. For a convex S’, ID = ED for any given pair of points, whereas for
a non-convex S’ this is not the case, as shown in Figure We can see that,
unlike the Euclidean distance, the inner distance inherently captures the shape’s
boundary and hence is sensitive to deep protrusions along it. Whereas, the differ-
ence between ID and ED is not much for minor boundary deformations. Using
this property, which significantly alleviates the core issue of the existing area-
based convexity measures, we propose a new measure of convexity as follows

1 ED(uy, um,)
TSI DI DR (Rerou) ®
2 _
(t t) Uy €S" U €S, m#L ID(U[, um)
where t is the number of points in S’, and 1 < I,m < t. For a perfectly convex
object, this measure will have a value one. We evaluate the robustness of this

measure in Section .3 and discuss how it conforms to the properties that a
convexity measure should satisfy in the supplementary material.

4.1.2 An Algorithm to Obtain Approximate Convex Segments

We now use (@) to segment an articulating shape S into approximate convex
regions p;. We first study if 1}35((311:322))7
and us belong to a convex region, can shed more information on the potential
‘convex neighbors’ of a particular point u;. We proceed by considering a 2D
shape S{ having two convex regions, shown in Figure and measure how

];Jg((ﬁll:)) from wuy to all other ¢ — 1 points in S} vary. We observe that for those

in addition to saying whether points u

points lying in the same convex region as u; this term has a value one, whereas
its value decreases for points that lie deeper into the other convex region. Hence
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([)) also gives a sense of ordering of convex neighbors around any specific point
of interest. This is a very desirable property. Based on this, we formulate the
problem of segmenting an articulating shape S C R? as,

wind > X (1= i) g

i=1 U €Pi U €Ps, UL FUm

where 1 < I, m < t, n is the desired number of convex parts, and p; are the cor-
responding convex regions. We then obtain approximate convex decomposition
of S by posing this problem in a Normalized cuts framework [23] and relating
all points belonging to S using the information conveyed by (@). The details are
provided in Algorithm [I which is applicable for any N-dimensional shape S’.

Given a set of points t corresponding to an N-dimensional articulating shape S’
(which can be a contour or silhouette or voxel-sets, for instance), an estimate
n(> 0) of the number of convex parts, and the desired convexity (a number
between 0 and 1) for the parts,

(i) Connect every pair of points (u;, um) € S’ with the following edge weight

L ED(upum)
=Dy um) 12
— 1 ti Uy 2
Wuyu,, = €Tp (#junctions(ug,um)) exp o2 "

—HID(Ué,um)“%
X if| ID(w, tm) = ED(ui,um) [|2< T (8)
0 otherwise

exp

(ii) Do: Number of segments from n — 1 to n + 7 (to account for possible
errors in junction estimates, see Figure for example)

(iii) Perform segmentation using Normalized cuts |23]

(iv) Until: The resulting segments satisfy the desired convexity (6l).

Algorithm 1. Algorithm for segmenting an N-dimensional shape into approxi-
mate convex parts

Estimate of the Number of Parts: We automatically determine the po-
tential number of parts n using the information contained in ([@). We do this
by identifying junctions g;;,% # j,1 < i,j < n, which are the regions of high
non-convexity. For those pair of points with I D # ED, we analyze the shortest
path SP using which their inner distance is computed. This SP is a collection
of line segments, and its intermediate vertice(s) represent points, which by the
definition of inner distance |2], bridge two potentially non-convex regions. This
is illustrated in Figure (see the yellow dots). We then spatially cluster all
such points using a sliding window along the contour, since there can be many
points around the same junction. Let the total number of detected junctions be
n;. The initial estimate of the number of parts n is then obtained by n = n; +1,
since a junction should connect at least two parts.
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With this knowledge, we define the edge weight between a pair of points in (g])
where the first two terms collectively convey how possibly can two points lie in
the same convex region, and the third term denotes their spatial proximity. Ts, o
and ox are thresholds chosen experimentally. T5 governs when two nodes need to
be connected, and is picked as the mean of I D(u;, ) —ED(uj, tm), 1 <1,m < t.
or and ox are both set a value of 5. We chose 7 = 2 and desired convexity of
0.85 in all our experiments. Sample segmentation results of our algorithm on
silhouettes and voxel data are given in Figure Bl

Fig. 3. Result of the segmentation algorithm (Section [LI.2]) on a 2D shape. Junc-
tion detection (yellow dots), initial segmentation, followed by the refined segmentation
using the desired convexity (=0.85 here) as the user input. |(b)| Results on shapes from
Brown [5] (Top row) and MPEG-7 [10] (Bottom row) datas Segmenting a shape
represented by voxel-sets using the same algorithm

4.2 Shape Representation Invariant to Non-planar Articulations

We now have an approximate convex decomposition of the articulating shape
ScR?ie S={U~, p} U{Uizj. 1<i j<n @ij}- Given aset of M 2D projections
of the 3D articulating shape X, {S;}4L, with all n parts visible, we want to find
a representation R that satisfies (). As before, let {wir}i_; be the number of
points constituting each Sk. Let wig,usr € Sk, be two such points. We now
compute a distance D(uyy,usy) satisfying (2) using a two step process,
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4.2.1 Affine Normalization

To compensate for the change in shape of S; due to the varying effect of the
imaging process on different parts of the non-planar X and due to the changes
in viewpoint V', we first perform part-wise affine normalization. This essentially
amounts to finding a transformation 7" such that,

T(pix) — Pig 9)

where T fits a minimal enclosing parallelogram [24] to each p;; and transforms
it to a unit square. Hence this accounts for the affine effects that include, shear,
scale, rotation and translation. This is under the assumption that the original
3D object X has piece-wise planar parts P; for which, the corresponding 2D part
pik € Sk can be approximated to be produced by a weak perspective camera.

4.2.2 Articulation Invariance

Let ), u5, be the transformed point locations after (d). As a result of T', we
can approximate the changes in S due to 3D articulations A, by representing
them as articulations in a plane. Hence, we relate the points uf,,u), using
inner distance (ID) and inner angle (I A) [2] that are preserved under planar
articulations. We then build a shape context descriptor [25] for each point uj,,
which is a histogram hy;, in log-polar space, relating the point u;, with all other
(t — 1) points as follows

i (2) = #{uppsm # 1,1 <m <t TD(ujp, ) X TA(ugg, ) € bin(z)} (10)

where z is the number of bins. We now construct the representation R(Sy) =
[hik hok . . hey] that satisfies () under the model assumptions of Section Hl

5 Experiments

We performed two categories of experiments to evaluate our shape descriptor
(0. The first category measures its insensitivity to articulations of non-planar
shapes on an internally collected datasetﬁ, since there is no standard dataset for
this problem. Whereas, the next category evaluates its performance on 2D shape
retrieval tasks on the benchmark MPEG-7 [10] dataset. We then validated the
robustness of our convexity measure (@) on the dataset of Rahtu et al [20].

For all these experiments, given a shape S C RZ, we model it as S =
{Uiz1 pit U{Uizj. 1<ij<n %5}~ We then sample 100 points along its contour,
by enforcing equal number of points to be sampled uniformly from each affine
normalized part p. Then to compute the histogram (I0l), we used 12 distance
bins and 5 angular bins, thereby resulting in total number of bins z = 60. The
whole process, for a single shape, takes about 5 seconds on a standard 2GHz
processor.

2 The dataset is available at
www.umiacs.umd.edu/~raghuram/Datasets/NonPlanarArt.zip
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5.1 Non-planar Articulations

We did two experiments, one to measure the variations in (I0)) across intra-class
articulations, and the other to recognize five different articulating objects.

5.1.1 Intra-class Articulations

We collected data of an articulating human, observed from four cameras, with
the hands undergoing significant out-of-plane motion. The silhouettes, shown in
Figure @, were obtained by performing background subtraction, where the parts
p; of the shape (from Section [L]]) along with some points having similar repre-
sentation (I0) are identified by color-codes.

o © ° o
o - B ° °

o . - o " o

o o F o °

o Y - N 1 LY
] o

n " intn o HLn
(a) (b)

Fig. 4. Dataset with non-planar articulations: Intra-class variations of an articulating
human. @ A set of actions observed from a single camera. @ A same action observed
from 4 cameras. The regions obtained from segmentation (Section 1)) along with the
points having similar shape representation (Section [£2]), are color-coded

We divided the dataset of around 1000 silhouettes, into an unoccluded part
of about 150 silhouettes (where there is no self-occlusion of the human) and an
occluded part, and compared our representation (0] with the inner distance
shape context (IDSC) [2] that is insensitive to articulations when the shape is
planar. We chose to compare with this method since, it addresses articulation
invariance in 2D shapes from the ‘representation’ aspect rather than matching.
We used dynamic programming to obtain point correspondences between two
shapes. Given in Table [ are the mean and standard deviations of the difference
(in Lo sense) of the descriptions (I0) of the matched points. We do this for every
pair of shapes in our dataset, with and without occlusion.

It can be seen that the matching cost for our descriptor is significantly less for
the unoccluded pair of shapes, and is noticeably lower than [2] for the occluded
pair too. This, in a way, signifies that our model assumptions (SectionH]) is a good
approximation to the problem of representing a shape invariant to non-planar
articulations (Section [3)).

5.1.2 Inter-class Variations

We now analyze how our representation (I0)) can be used for recognition across
the 2D shapes produced by different 3D non-planar articulating objects. We col-
lected silhouettes of five different objects, a human and four robots, performing
articulations observed from different viewpoints. There were ten instances per
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Table 1. Shape matching costs on the dataset with an articulating human. The cost
for our descriptor is around one-tenth of that of |2].

Method Matching cost (mean £ standard deviation)

Without occlusion With occlusion
IDSC [2]  0.48 £ 0.21 3.45 + 1.63
Ours 0.025 £ 0.0012 0.46 £+ 0.11

subject, with significant occlusion, leading to fifty shapes in total as shown in
Figure Bl We compared our algorithm with IDSC in both a leave-one-out recog-
nition setting by computing the Top-1 recognition rate, and also in a validation
setting using the Bulls-eye test that counts how many of the 10 possible correct
matches are present in the top 20 nearest shapes (for each of the 50 shapes).
We report the results in Table[2l It can be seen that our descriptor, in addition
to handling non-planar articulations, can distinguish different shapes. This vali-
dates the main motivation behind our work (Figure[I]). The errors in recognition
are mostly due to occlusions, which our model can not account for. It is an in-
teresting future work to see how to relax our assumptions to address the more
general problem stated in Section Bl

TERRELTAXR
AR RAARTDLY A
TARYTRY LY

ABEXXERNRADGD

Fig. 5. Dataset of non-planar articulations of different subjects. Four robots and hu-
man, with a total of 50 shapes.

Table 2. Recognition across inter-class non-planar articulations

Method Top-1 Recognition rate (in %) BullsEye score (in %)
IDSC [2] 58 39.4
Ours 80 63.8
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5.2 Shape Retrieval

We then evaluated our descriptor for 2D shape retrievall tasks to study its
ability in handling general shape deformations, in addition to pure articulations.
We used the benchmark MPEG-7 dataset [10], which contains 70 different shape
classes with 20 instances per class. This is a challenging dataset with significant
intra-class shape deformations. Some example shapes are given in Figure
The recognition rate is calculated using the Bulls-Eye test by finding the top
40 closest matches for each test shape, and computing how many of the twenty
possible correct matches are present in it. The retrieval rates are given in Table
Bl and we compare with the most recent and other representative methods.

Almost all shapes in this dataset are planar. So the least we would expect
is to perform as well as [2], since but for handling non-planar articulations our
representation resembles IDSC. The improvement using our representation is
mainly due to cases where the shapes have distinct part structure, and when the
variations in the parts are different. A part-driven, holistic shape descriptor can
capture such variations better. It is interesting to see that we perform better
than methods like [12, [26] that use sophisticated matching methods by seeing
how different shapes in the dataset influence the matching cost of a pair of
shapes. Hence through this study, we would like to highlight the importance of
a good underlying shape representation.

Table 3. Retrieval results on MPEG-7 dataset [10]

Algorithm BullsEye score (in %)
SC+TPS [25] 76.51
Generative models [27] 80.03
IDSC [2] 85.40
Shape-tree [6] 87.70
Label Propagation [26] 91.00
Locally constrained diffusion [12] 93.32
Ours 93.67

5.3 Experiment on the Convexity Measure

Finally, we performed an experiment to evaluate our convexity measure (@) by
comparing it with the recent work by Rahtu et al |20]. Since there is no standard
dataset for this task, we provide results on their dataset in Figure [(l We make
two observations. 1) For similar shapes (text in red and blue), the variation in
our convexity measure is much smaller than that of |20]. This reinforces the
insensitivity of our measure to intra-class variations of the shape, which is very
desirable. 2) It can also been seen that our convexity measure is very sensitive to
lengthy disconnected parts (text in green). This is mainly because, we compute
pair-wise variations in I D and ED for all points in the shape, which will be high
in such cases. These results, intuitively, are more meaningful than that of [20].

3 Evaluations on the Brown dataset |5] and some illustrations on incorrect retrievals
are provided in the supplementary material.
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DDDEDDB’IED

0.9999 / 0.9999 / 0.9958 / 0.9938 / 0.9779/ 0.9766 / 0.9660 / 0.9619/ 0.9583 / 0.9565 /
0.9998 0.9999 0. 9621 0.9735 0.9615 0.9609 0.9471 0.9463 0.9344 0.9610
0.9472/ 0.9428 / 0.9381 / 0.9361 / 0.8947 / 0.8593 / 0.8275/ 0.8012/ 0.8005/ 0.5483/
0.9011 0.9177 0.9204 0.9388 0.8613 0.8444 0.8564 0.7754 0.7812 0.3341

Fig. 6. Performance of our convexity measure on the dataset of @ Given at bottom
of each shape are the convexity measures of @] followed by ours (@). Our measure is
insensitive to intra-class shape variations (text in red and blue), and is more sensitive
when a part of the shape is disconnected from other parts (text in green).

6 Conclusion

We proposed a method to represent a 2D projection of a non-planar shape invari-
ant to articulations, when there is no occlusion. By assuming a weak perspective
camera model, we showed that a part-wise affine normalization can help pre-
serve distances between points, upto a data-dependent error. We then studied
its utility through experiments for recognition across non-planar articulations,
and for general shape retrieval. It is interesting to see how our assumptions can
be relaxed to address this problem in a more general setting.
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1-0638 from the Office of Naval Research. R.G. would like to thank Dr. Ashok
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Abstract. In this paper we propose a probabilistic framework that mod-
els shape variations and infers dense and detailed 3D shapes from a single
silhouette. We model two types of shape variations, the object pheno-
type variation and its pose variation using two independent Gaussian
Process Latent Variable Models (GPLVMs) respectively. The proposed
shape variation models are learnt from 3D samples without prior knowl-
edge about object class, e.g. object parts and skeletons, and are com-
bined to fully span the 3D shape space. A novel probabilistic inference
algorithm for 3D shape estimation is proposed by maximum likelihood
estimates of the GPLVM latent variables and the camera parameters that
best fit generated 3D shapes to given silhouettes. The proposed inference
involves a small number of latent variables and it is computationally ef-
ficient. Experiments on both human body and shark data demonstrate
the efficacy of our new approach.

1 Introduction

3D shape estimation from a single image has wide applications for graphics,
surveillance, HCI and 3D object recognition. Single view reconstruction is a
highly under-constrained problem and requires prior knowledge on 3D shapes of
an object class. Various approaches have been investigated with different con-
straints. While previous methods for general scenes/object categories find it
typically hard to capture complex 3D topology of objects, much of recent study
has tackled estimating detailed 3D shapes of specific categories, e.g., human
faces [11] and body shapes [I2IT3[T4T5]. In this work, we propose an approach
for both synthesizing and reconstructing dense 3D shapes of general object cat-
egories under articulations or deformations given a single image.

1.1 Literature Review

Below we give a brief overview of related work for general scenes/object cate-
gories and work designed specifically for human body.

Methods for general scene reconstruction have relied on primitive geometri-
cal constraints such as symmetry and yielded a coarse pop-up reconstruction:
e.g., Criminisi et al. [I7] have used vanishing points and projective geometry

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 3004313,]2010.
© Springer-Verlag Berlin Heidelberg 2010
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constraints and Hoiem et al. [2] assumed planar/ground-vertical scenes. Prasad
et al. [I] have tackled reconstruction of curved objects, requiring user interac-
tions to reduce down complexity of 3D object topology. Saxena et al. [I§] have
investigated to recover rough depth estimate from image features. Hassner and
Basri [19] have similarly inferred depth from image appearance. 3D geometries
having similar image appearance to that of a query object from a database
served as the shape prior. These view based methods require an exhaustive
number of samples. Some efforts have been made for 3D shape reconstruction
from 2D sketches or line drawings [20], where man-made objects are represented
by transparent edge-vertex graphs. Bayesian reconstruction of Han et al’s [3] is
limited to polyhedral objects, tree or grass only. An unified method to segment,
infer 3D shapes and recognise object categories proposed in [4] is based on a
voxel representation for the shape prior model and applied to object categories
such as a cup, mug, plate etc, all rather simple and rigid objects. Torresani et
al.’s [21] have attempted to recover non-rigid 3D object shape as in our work
but only up to sparse reconstruction using 2D point tracks. Their work falls into
a different topic, structure-from-motion.

More related study to ours is the work for estimation of detailed human body
shape [I3T4/T5]. Human body is an articulated object with a number of joint
angles. A fixed or deformable crude model based on skeleton, e.g. a cylinder
model has been widely exploited for human body pose estimation and tracking.
By fitting the model to images, joint angles and a rough 3D shape estimation are
obtained, e.g. [6]. Finer body models, e.g. using volumetric representations [7] or
generic deformable models [8] have been used to capture more subtle shape vari-
ations. These models, however, consider body parts independently and decouple
pose from shape variations, therefore not representing shape variations around
joints and pose-dependent shape deformations. Recently, a more detailed human
model called SCAPE (Shape Completion and Animation for PEople) has been
proposed [12]. SCAPE models 3D shape variations among different human bod-
ies in a canonical pose by Principal Component Analysis (PCA), and different
poses, i.e. articulation, by joint angles. The shape transfer from a source body
to target bodies is obtained by rigid rotations of the 13 body parts manually
defined and the pose-dependent deformations for subtle muscular deformation
around joints. Balan et al. [I3] have adopted this model for the detailed hu-
man body shape estimation from silhouettes and formulated the problem as
an optimisation over the SCAPE model parameters. However, the optimisation
of the SCAPE model is difficult due to uniform priors placed on a number of
parameters (joint angles and eigen-coefficients). Stochastic search in [13] is com-
putationally expensive and has initialisation problems. Sigal et al. [14] have used
a regression technique to help in initialising the SCAPE model parameters prior
to stochastic search and Guan et al. [I5] have incorporated more visual cues,
the shading cues and internal edges as well as silhouettes to facilitate fitting the
SCAPE model to images. Although these methods have shown detailed shape
recovery from a few silhouettes, using strong priors on a human body model, i.e.
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RS

Fig. 1. 3D shape recovery (blue meshes) of a human body (left) and a shark (right)
under pose change and their shapes in the canonical pose (gray meshes)

manually defined skeleton and body parts, makes it difficult to extend to other,
especially, free-form object categories without redesigning the representation.

1.2 Proposed Approach

In this work, we propose a probabilistic generative model for both learning and
inferring dense and detailed 3D shapes of a class of nonrigid objects from a single
silhouette. In contrast to prior-arts, we learn shape priors under a challenging
setting including pose variations and camera viewpoint changes, and we infer
more complex and general deformable 3D shapes from a single image (see Fig. ).

In our probabilistic framework the shape variations of objects are modeled by
two separate Gaussian Process Latent Variable Models (GPLVMs) [22], named
the shape generator and the pose generator. The former captures the phenotype
variation, which refers to the shape variation between objects: tall vs short, fat vs
thin, etc, while the latter captures the pose variation, which includes articulation
or other nonrigid self-deformation. They are learnt directly from 3D samples
without prior knowledge about object class. The GPLVM has been successfully
applied for human pose estimation by mapping a high-dimensional parameter
space, i.e., a number of joint angles, to a low dimensional manifold [9]. In our
work, it nonlinearly maps the complex 3D shape data into a low-dimensional
manifold, expressing detailed shape variations only by a few latent variables.
With both generators, arbitrary 3D shapes can be synthesized through shape
transfer [B], as shown in Fig.

We also propose a novel probabilistic inference algorithm for 3D shape esti-
mation from silhouettes. The shape estimate is obtained by maximum-likelihood
estimation of the latent variables of the shape and pose generators and cam-
era parameters that best match generated shapes to input silhouettes. Com-
pared to stochastic optimisation over a large parametric space, i.e. joint angles
in [7UI3IT4UT5], the proposed inference is computationally efficient as the latent
space has a very low dimension. Experiments on articulated human bodies and
sharks demonstrate efficacy of the proposed method for reconstructing detailed
shapes of general deformable object categories.
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Fig. 2. Synthesizing sharks (left) and human bodies (right) by shape transfer

The rest of this paper is structured as follows. Section [2] presents the proposed
probabilistic model; SectionBlexplains learning the shape and pose generator and
synthesizing new shapes by the shape transfer; Section [l presents probabilistic
inference algorithm; experimental results are shown in Section[B and discussions
conclusions are drawn in Section [ and [7 respectively.

2 Probabilistic Model for 3D Shape Estimation

The proposed shape estimation is done by: first, synthesizing 3D shapes from a
shape generator Mg that spans the phenotype variation, and a pose generator
M 4 that spans the pose variation; and then, matching the generated shapes with
the input silhouette(s). The proposed graphical model is shown in Fig.
In the formulation, we consider a more general k-views setting. Let Sy (k =
1,2,---, K) be the observed silhouettes in K distinct views, which are given
in the form of 2D point sets; V = [V1,Va,--- V] is a 3N-D vector which
represents the 3D shape with N sampling points on its surface; and Wy (k =
1,2,---, K) is the silhouette of V in the k-th view. The joint distribution can
be written as:

P({Ska Wk}i(:la Va u, V‘{’yk}i(zla XA,XS, M.A7 MS)

K
= ( H P(Sk|Wx)P(Wk|V, ’yk)> P(u|xa, MA)P(v|xs, Ms)P(V]u,v).(1)
k=1

In (), xa and xg are the latent coordinates of the corresponding models; u and
v are the respective latent feature vectors generated by M4 and Mg at xa
and xg; 7k = {Px,tk} (k=1,2,--- , K) are the camera parameters of K views.
Here, we assume an affine camera model, Py is a 3 x 2 projection matrix and
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tx is a 2 x 1 translation vector on the image plane. The terms P(Sx|Wy) and
P(Wx|V,%) (k= 1,2,--- , K) model the matching of 3D shapes V with the
observed silhouettes Si. The details of inferring shapes from silhouettes will be
presented in Section [l The last three terms P(u|xa, Ma4), P(v|xs, Ms), and
P(V|u,v) of (1) model the 3D shape synthesis from the pose generator M 4 and
the shape generator Mg given the new latent coordinates xa and xg, which will
be presented in detail in Section Bl

3 Shape Generation

3.1 Data Set and Shape Registration

In our approach, the shape generator Mg and the pose generator M 4 are mod-
eled by two independent GPLVMs [22], and trained separately on two data sets,
named shape data set and pose data set. The former contains different shape
instances in the canonical pose, while the latter is comprised of various poses of
a particular shape instance called zero shape.

In order to train the generators, we must build up vertex-wise correspondences
among training instances so that we can encode the phenotype variation and pose
variation in a vectorized form. For the pose data set, the correspondences are
straightforward as all the pose data are generated by animating the same 3D
instance in our experiment. Such correspondences are, however, not given for
the shape data set and shape registration is required.

In our implementation, every instance in the shape data set is registered with
the zero shape in the canonical pose. Firstly, we compute hybrid distances as
weighted averages of the spatial distance [24] and the x? distance of the 3D
shape contexts [23] between every paired sample points of two shapes, and then
use Hungarian algorithm to find the minimal cost matching. Secondly, we use
the thin-plate spline (TPS) model to recover point-wise displacements between
the pair of shapes using the correspondences established. After this, Principal
Component Analysis (PCA) is applied to reduce the dimension of input data
before training the pose and shape generators. We use the first m = 30 principal
components as the pose feature u and shape features v for training the GPLVMs.

3.2 Synthesizing New Shapes and Poses from GP

Given the new latent coordinates xa and xg, generating the pose vector u of
the zero shape and the shape vector v of the canonical pose from M 4 and Mg
can be formulated as the following Gaussian predictive likelihoods:

P(ulxa, M4) = N(U’ kT ()(A)KleA7 (ku(xa,Xxa) — kE(XA)K;JlkU(XA))I)
(u a(xa) aA(xA)I) (2)

P(v|xs, Ms) = N(v ky (xs)Ky'Ys, (kv (xs,xs) — ky (xs) Ky kv (xs))I)
= N(v;¥(xs),05(xs)I). (3)
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° Zero Shape (V©) Shape under a New Pose (V%)
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my J; m}
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Fig. 3. (a) The graphical model for the 3D shape inference. (b) Transforming local
triangle meshes during pose change.

In @) and @), Ya = [w]¥4 and Ys = [vi]5 are matrices which contain N4
and Ng training instances in columns for learning M 4 and Mg, respectively;
Ky = [ku(xai:xaj)] 1<isvai<icnae Kv = [kv(Xs,i, Xs j)]1<i<ng,1<j<Ns»
kU(XA) = [k;U(XAva,i)hSiSNAv kv(Xs) = [kV(XS’XSJ)hSiSNS are the cor-
responding non-linear kernel matrices/vectors. In this paper, ky and ky are
defined as the RBF+linear kernels [9].

3.3 Shape Transfer Using Jacobian Matrices

My or Mg only models the shape variation along one of two axes in the shape
space. To fully span the shape space, we present a shape synthesis method based
on shape transfer in this section.

For the convenience of formulation, we introduce two auxiliary variables VA
and VS to represent the shapes with only the pose variation/phenotype variation
imposed, respectively. See Fig.[2l Both of them are 3N-D vectors, which contain
the 3D spatial positions of N sampling vertices of the shape. VA and VS are
recovered from the m-D features u and v through linear combinations of the
PCA eigen-vectors as: VA = GA + AAu and VS = GS + ASv, where G# and
GS are the mean vectors, and A® and AS are 3N x m matrices containing the
first m eigen-vectors of the pose and shape data set, respectively; VO denotes
the zero-shape in the canonical pose.

The concept of transferring deformation from a source object to target objects
has been investigated in the previous work [5]. In our problem, an arbitrary shape
V is synthesized by applying the phenotype variation on the posed zero-shape
VA locally as follows:

V=VA 4+ AV fny, (4)

where AV’ = [AV{|Y, is a 3N-D concatenating displacement vector that
represents the pose-dependent local shape variation from V2, and ny is an
additional random variable modeled by the white Gaussian noise subjected to
N(0, J%InggN). We assume that the vertex-wise phenotype variations AV; and
AV! before and after the pose change are locally linear transforms as AV; =
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VS - VP and AV] = V; — VA (refer to Fig. ) and they can be related by the
3 x 3 local Jacobian matrix J;, similarly to [5]:

AV} = J;,AV;. (5)

We calculate the local Jacobian matrix at each single sampling vertex approxi-
mately from the mesh triangle it belongs to. Given a sampling vertex Vio on the
canonical-posed zero-shape (and its corresponding vertex VA in the new pose),
we can find their corresponding the mesh triangles as shown in Fig. Two

. 0,1 0,2 . .
in-plane vectors m; ", m;"’“ and one normal vector perpendicular to the trian-

1 1
gle plane mio’3 are computed for the mesh in the canonical pose and the same
mf"l, mf"2, miA’3 for the mesh in the new pose. The local Jacobian matrix Jj
can then be computed as:

J. = Al A2 A3
1= [mi ; My ; M

o o 0.3
i 1 my ’zami B (6)

Jim i

In the training stage, we compute the Jacobian matrix at every sampling point
for all the instances of the data set using the method described above. A weighted
average filtering over 8 nearest-neighbor sampling points is applied to Jacobian
matrices for smoothness. Finally, these matrices are vectorized and used to learn
the pose generator M 4 in junction with the vertex displacements. In the pre-
diction, the elements of Jacobian matrices can thus also be recovered from the
pose feature u using PCA mean GY and eigen-vectors AY as

vec(J) = G7 + Ay, (7)

where 9N-D vector vec(J) = [vec(J1), vec(J2), -, vec(In)] is the vectorized-
form of matrix J.

3.4 A Probabilistic Model for the Shape Synthesis

The last term P(V|u,v) of ([ models the synthesis of new 3D shapes from
the pose feature u and shape feature v, which are generated by GPLVMs in
Section B2l By combining (), (@), and () the shape synthesis can therefore be
formulated as the following equation:

V=VA&4+J. (VS -VO) 4ny
=G* + A*u+mat(G' + AMu) - (G5 +ASv—-VO) +ny, (8)
where J = diag(J1,J2, -+ ,In) is a 3N x 3N matrix, and mat(-) is an operator
which reshapes the 9N x 1 vector into a 3N x 3N block diagonal matrix.

We hope to formulate the posterior distribution of the synthesized shape V
explicitly given the latent coordinates xa and xg of the pose and shape genera-
tors M 4 and Mg. From the previous subsection, we know that the distributions
of VA V3 and vec(J) have Gaussian form, since they are linearly generated
from Gaussian-Process predictions u and v.

VAxa, Ma ~ N(VA; iya(xa), Sya(xa)), (9)
VE|xs, Ms ~ N(VZ; piys (xs), Svs(xs)), (10)
vec(J)|xa, Ma ~ N(vec(J); ug(xa), X3(xa)). (11)
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where

pva(xa) = G* + A%y, pys(xs) = G®+ ASuy,  pa(xa) = G7 + Ay,
Sva(xa) = 2AAAAT | Siys(xs) = 02ASAST| Sj(xa) = 02ATAT

According to (8), the synthesized shape V is the product of multi-variate Gaus-
sian VS and J, and it is non-Gaussian. However, we find its Gaussian projection
V with the same mean and covariance is very good approximation to the true
distribution of V, and this projection greatly helps the computation.

P(V|xa,xs, MaMs) =~ N (V; pv(xa,Xs), Ev(xa,Xs)), (12)
where
pv = pva + g (pys — VO)
Sv =021+ Sya + ySysiy + | [Tr(232,S:5)]

m,n=0,1,2

4,j=0,1,--- ,N—1
where fiy = mat(uy) represents 3N x 3N matrix shape of ,u; Sij=8(3i+1:
3i+3,3j+1:3j+3) is the 3 x 3 sub-matrix of the 3N x 3N matrix § = Xys +
(1vs = VO)(uys = V)T and S5 = 33 (9i43m+1:9i+3m+3,9j+3n+1:9j+3n+3) 15
the 3 x 3 sub-matrix of the 9N x 9N matrix Xj.

4 Inferring 3D Shapes from Silhouettes

The matching between the synthesized 3D shapes and input silhouettes is for-
mulated as a two-stage process in our approach. The first stage is the projection
stage, which models the procedure of projecting the 3D shape V into a silhouette
Wy in the k-th view, as shown in ([I3)).

P(Wy |V, %) = N(Wy; PV + £y, 02 1), (13)

where Py = Py @ My and §5 = ty ® 1y are the expanded version of projec-
tion matrix and the offset vector in the k-th view, respectively. Here, My =
[Mk,ij]1<i<N’1<jlegn 18 @ N’ X N binary masking matrix with element my, ;; = 1
if the projection of the i-th 3D sample points is on the boundary and my ;; = 0
otherwise. My selects the N’ silhouette points of the projection in the k-th view
and it is fully determined by Pj.

The second stage is the matching stage, which models how well the input
silhouette Sy fits the corresponding boundary projection Wy of the generated
shape in the k-th view. The observation likelihood is defined on the basis of
Chamfer matching, which provides more robustness to errors and outliers in the
input silhouettes as

P(Sk|Wy) = ;exp < — 2(172 DT§, (Wk))>, (14)

! For the convenience of notation, we sometimes omit the parameters of the mean and
covariance in the formulation. E.g., puy = py(xa).



308 Y. Chen, T.-K. Kim, and R. Cipolla

where DTZ(-) refers to the squared L2-distance transform of the silhouette S =
{si}liszll. For an arbitrary point set W = {wi}li‘:Nll, it is defined as DT3(W) =
Wl . S| . LT
2‘\1,\,‘ le':1| ming, e [|wi — si|% + 2|1S| 2‘3:‘1 minw,;ew ||w; — sj||2. To simplify the
computation, the normalization factor Z is approximated by a constant here.
As stated in the previous section, generating the 3D shapes V from Mg and
M4 can be approximately formulated as a Gaussian Process ([I2)). It follows
that the silhouette likelihood P(W|xa ,xs, M4, Mg, 7k) also has the Gaussian
form by combining ([2) with ([I3):

P(Wi|xa, x5, Ma, Ms, 1) = N (Wi; pw, (Xa,Xs, ), Bw, (XA, Xs, 1] )15)

where pw, = f’kuv + tx and Yw, = f’kEVf’E + o021

Our target is to find the 3D shape which best fits all the image evidences
Sk (k=1,2,--- | K) in K views, or equivalently, to find such latent positions
XA, Xs and the parameters v of K cameras. This can be done by finding
the maximum of the overall likelihood P({Sk} ||xa,xs, M4, Ms, {1}E )
(k =1,2,---,K). The likelihood has no closed form since the direct integral
over the terms with distance transform is not tractable, but it can be efficiently
optimised by the closed-form lower bound @ [16]:

P({Sk}r—i|xa, xs, Ma, Ms, {nctie1) = Q(xa,xs, {1} iey)
K

1 1 9
= H exp(— DTS (pw)). (16)
k=1 2k \/det (I + 013 Ewk) 203
Maximizing the lower bound @), or equivalently, minimizing — log ), gives a good
approximated maximum-likelihood estimate of the latent coordinate x}XIL, xg/IL,
and camera parameters Yy (k =1,2,---, K):
(X xg™ PR marg min o —log Q(xa,xs, {nchizy)- (17)

xa,xs, {1,

In our implementation, we minimize — log @) by adaptive-scale line search and
use multiple initializations to avoid local minima. The optimization alternates
between finding the latent coordinate (xa, xs) and correcting the camera pa-
rameters { v}, (and hence the masking matrices {My}£_ ). The convergence
usually comes fast, as the latent dimensions of GPLVMs are low. Consequently,
the corresponding maximum likelihood estimate of the 3D shape can be approx-
imately given as:

P(VMEQETE, x§™ MaMs) = N (VME g (T, x3™), B¢ (R, x3T18)
which gives the mean shape g and the uncertainty measurement X, .
5 Experimental Results

We have investigated two shape categories in the experiments: human bodies
and sharks. For the human data, we used Civilian American and European
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Shape Generator Pose Generator: Running

Fig. 4. Generation of new human body shapes in running pose. The shape and pose
latent spaces are shown in their first two dimensions. Shapes are spanned by the paired
coordinates.

Surface Anthropometry Resource (CAESAR) database as the shape data set,
which contains over 2000 different body shapes of North American and European
adults in the canonical pose. The pose data set was obtained by synthesizing
animations of different 3D poses, e.g, running (150 frames), walking (150 frames),
arm stretching and torso movements (250 frames), etc., using the 3D female
human model Sydney in Poser 7. For the shark data, the shape data set contains
eleven 3D shark models of different shark species available from Internet [19]. For
the pose data set, we used an animatable 3D MEX shark model to generate an
11-frame sequence of shark tail-waving motion. The mesh resolution of the zero-
shapes are: 3678 vertices/7356 faces for the human data, and 1840 vertices/3676
faces for shark data, respectively. To train M 4 and Mg, we empirically set the
latent space dimension dg = 6 for the human shape generator, dg = 3 for the
shark shape generator, and d4 = 2 for the pose generator for both data sets.

5.1 Shape Synthesis

A direct and important application of our framework is to synthesize a variety
of shapes in the category from the shape generator and the pose generator. We
visualize the process of synthesizing human shapes in running pose for the latent
coordinates of the pose and shape generators in Fig. @l To examine the synthesis
quality, we sampled 10 positions in both the shape and pose latent spaces along
the trajectories shown by numbers, and generated the human shapes by pairing
up the corresponding shape and pose coordinates. As shown in Fig. [ a wide-
range of body shapes and different stages in the running pose were synthesized.
We have also observed that the predictive variances (low variance indicated by
red in Fig. M) imply the quality of shape synthesis. The higher-quality shapes
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Data Precision Recall
22 sharks 0.8996 + 0.0481 0.9308 + 0.0380
" 20 human bodies 0.7801 + 0.0689 0.8952 + 0.0995

Fig. 5. (a) An example of variance estimates of the shark reconstruction; (b) Precision-
Recall ratios of the predicted shapes

(shapes 4 — 7 marked by the rectangle) were generated from the low variance
area of the shape latent space, where more training samples were presented.

5.2 3D Shape Reconstruction from Images

To verify the efficacy of our 3D shape inference framework, we have tested our
approach over 20 human images in tight-fitting clothes and 22 shark images
which were collected from Internet. These images involve different camera poses
and various object motions, including human running, walking, arm stretching,
and shark tail movement. We adopted GrabCut [25] to roughly segment the
foreground and extract the corresponding silhouettes. The goal is to infer the
reasonable 3D shapes implied by the pictures given the foreground region.

It is worth mentioning that the single-view reconstruction problem is inher-
ently ambiguous. The single silhouette often corresponds to multiple possible 3D
shapes mainly due to symmetry and viewpoint changes. Our software generates
multiple shape candidates to the silhouette and provides estimate variances for
each prediction (Fig[Bl(a)). For each image, the running time to predict 10 candi-
dates was about 10 - 15 minutes by our unoptimized c++ codes in 2.8GHz PC.
In the implementation, we randomly initialised the latent positions of the shape
and pose generators. However, we find it helpful to roughly initialise the camera
viewpoint. This will speed up the algorithm and greatly increase the possibility
of obtaining desired results.

We have evaluated the performance of the approach qualitatively (see Fig.

and [0), and quantitatively by the Precision-Recall (P-R) ratios as given in
n = ‘SFUSR‘
= "o,

and Recal , where S denotes the ground-truth foreground and Sp
represents the projection of our prediction. All the 3D results provided in Fig.
and [0 correspond to the highest likelihood values given the input silhouettes
and the shape priors. It shows that our approach captures both phenotype and
pose variations and gives accurate estimates on the camera viewpoint. Also, P-
R ratios on human data are of reasonable accuracy in comparison with those
generated by the human specific model [13], although it is not straightforward
to compare quantitatively due to different data sets and number of silhouettes.
The reconstructed human bodies are comparatively worse in both visual quality
and the P-R ratios than those of sharks because the more complex articulation
structure makes exact pose fitting difficult. For example, the pose generator fails
to explicitly model the closing hands in the first example of Fig. [, although the
arm and torso poses are well fit (see Section [@] for more discussions).

Fig Bl(b). Here, the precision and recall are defined as: Precisio
l _ |SFUSR‘
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Fig. 6. The qualitative results on shark images. Column 1, 4: input images; Column 2
and 5: the reconstructed shapes in contrast with the input silhouettes; Column 3 and
6: the reconstructed shapes at another viewpoint.

6 Discussion

Compared to previous parametric models [T2JT3], the proposed method has both
advantages and disadvantages. The benefits include: 1) requiring no strong class-
specific priors (parts and skeletons), which facilitates modeling general cate-
gories, 2) estimating a much smaller number of model parameters and thus be-
ing more efficient, and 3) providing a probabilistic intuition on the uncertainty
of shape generation and inference. However, the second benefit could be the
drawback at the same time. E.g. whereas the SCAPE allows all possible body
configurations by joint angles, our method generates poses similar to those in the
pose data set. When training instances are insufficient, the pose generator can
be limited in descriptive power (see the first example of Fig. [7]). However, the
pose generator is easily extendable by more pose data sets and is able to span
sufficient local pose variations (the same advocated for pose estimation in [9]).

It is interesting to compare the shape transfer stage in our approach with
that in parametric models. In the SCAPE, part-wise rigid rotations matrices
and pose-dependent deformation matrices together serve similar functions as
Jacobian matrices in our method do but incorporate joint angles. The shape
transfer in our method can also benefit when structure priors are available,
e.g. Jacobian matrices can be more reliably computed by enforcing part-wise
smoothness constraints.

Although our method exploits only silhouettes in the experiments, more visual
cues such as shading and internal edges could be used to improve matching
accuracy [I5]. More direct mapping from silhouettes to shapes could be learnt
by regression techniques [14] from the new shapes of new poses synthesized by
the proposed model. This would help initialising the proposed inference.
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Fig. 7. The qualitative results on human images: Row 1: input images; Row 2: the
reconstructed shapes in contrast with the input silhouettes; Row 3: the reconstructed
shapes at another viewpoint; Row 4: the body shapes in the canonical pose.

7 Conclusions

In this paper, we have proposed a probabilistic generative method that models
3D deformable shape variations and infers 3D shapes from a single silhouette.
The inference in the proposed framework is computationally efficient as it in-
volves a small number of latent variables to estimate. The method is easy to
extend to general object categories. It learns and recovers dense and detailed 3D
shapes as well as camera parameters from a single image with a little interaction
for segmentation. The proposed method can also serve as a good substitution or
approximation of a detailed parametric model especially when physical structure
of a category is not available.

As future work we shall perform experiments using multiple silhouette inputs
for higher precision and extend the framework to incorporate dynamic models
for inferring shapes from video sequences. Also, 3D object recognition or ac-
tion recognition can also be done by the pose-free 3D shape or shape-free pose
recovered by the proposed method respectively.
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Abstract. We address the problem of estimating human pose in a single
image using a part based approach. Pose accuracy is directly affected by
the accuracy of the part detectors but more accurate detectors are likely
to be also more computationally expensive. We propose to use multiple,
heterogeneous part detectors with varying accuracy and computation re-
quirements, ordered in a hierarchy, to achieve more accurate and efficient
pose estimation. For inference, we propose an algorithm to localize ar-
ticulated objects by exploiting an ordered hierarchy of detectors with
increasing accuracy. The inference uses branch and bound method to
search for each part and use kinematics from neighboring parts to guide
the branching behavior and compute bounds on the best part estimate.
We demonstrate our approach on a publicly available People dataset and
outperform the state-of-art methods. Our inference is 3 times faster than
one based on using a single, highly accurate detector.

Keywords: Human pose estimation, part based models, branch and
bound, message passing.

1 Introduction

We consider the problem of localizing 3-D articulated objects such as humans
in their 2-D images; the projected shape varies with the viewpoint and articu-
lations, we choose to model these variations as deformations. An intuitive and
widely accepted approach to model an articulated object is to decompose the
object into smaller objects (parts) and model the deformability by loose spa-
tial relationships between the parts. [1I, [2], [B], [], [5] used such part based
representations to detect and localize objects with large variations. The local-
ization accuracy increases with better part detectors but it comes at the cost of
increased computation. We enhance the part based model with multiple hetero-
geneous features for better detection accuracy, and propose a novel progressive
search based method for efficient inference.

A common model for part based object representation is that of pictorial
structures, which is a tree-structured graphical model that represents the kine-
matic relationships between the parts; pose is inferred by enforcing kinematics
constraints on part hypotheses that are obtained by applying part detectors.
Such part based approaches can be dense or sparse based on how parts are sam-
pled from the image. Dense sampling methods [1], [6], [7], [8] apply each part

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I1I, LNCS 6313, pp. 314}-327] 2010.
© Springer-Verlag Berlin Heidelberg 2010
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detector over all possible locations, orientations and scales; [I] presents exact and
efficient inference on densely sampled parts, however for better efficiency, these
methods tend to use part detectors that are generally weak. [7] shows that better
part detectors can significantly improve the performance accuracy; however bet-
ter part detectors are often more complex and computationally expensive. The
sparse sampling methods approximate the part likelihood using few hypotheses
and infer the pose from these hypotheses [9], [10], [2], [I1]. To avoid applying
the part detector over the entire space, these approaches obtain part hypothe-
ses from bottom up feature responses such as by using parallel line segments
[10], [2]. For inference, [9] uses non parametric belief propagation which is slow
due to its stochastic nature; [I0], [T1] use integer programming methods to infer
pose, but the size of the program grows rapidly with increase in the number of
candidate part hypotheses.

An alternate representation is to use hierarchical model in which multiple
levels represent the object at varying granularity [3], [12], [5]; parts need not
correspond to the natural object parts (such as limbs for human). [13] presented
a generic AND/OR graphical model for deformable objects, where the leaf nodes
are points on the boundary and the intermediate nodes represent different object
parts. [I4], [15], [16] use 2-level hierarchical models to find humans with a whole
object representation at higher level and subsequent parts at the lower level.
[16] used Poselets (tightly coupled local part configurations) at the lower level
to achieve more accurate detection. However, these methods use pose-restrictive
assumptions such as upright human where torso is above the legs.

We use a densely part sampled approach in this work and propose to use
multiple heterogeneous detectors for each part to achieve a higher detection
accuracy. More precisely, we use a linearly weighted combination of multiple
detectors for a part, and order the detectors by their discriminability and effi-
ciency. The combination weights are learnt in a discriminative framework using
Voted Perceptron [17], so that the combined detector has better accuracy than
the individual detectors. Further, the ordering of the detectors is selected such
that as we go up the order, the part detectors become more accurate and precise,
but also computationally more expensive.

For efficient inference over the graphical model with ordered heterogeneous
features, we propose a novel collaborative branch and bound algorithm. The key
idea is to use branch and bound search for each part, where the bounds on
the best part estimate are obtained by enforcing kinematic consistency between
the search branches of neighboring parts; thus, the kinematic constraints form
a collaboration model between part search branches. At each step, search space
is reduced by applying a more accurate detector for each part and pruning out
the subsets that are less likely to contain the best part estimate. The best part
estimate refers to the estimate otherwise obtained by dense sampling parts using
all the detectors, which is highly inefficient. We demonstrate our approach on a
commonly used dataset of complex human poses in cluttered backgrounds [6].
Our algorithm gives better than the state-or-art accuracy on the dataset and
inference is ~ 3 times faster than one using a single, highly accurate detector.
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In the rest of the paper, we first discuss the pictorial structure with multiple
part detectors in section 2 and the collaborative branch and bound algorithm in
section 3. Next, we present the parameter learning in section 4, followed by the
experiments in section 5 and conclusion in section 6.

2 Pictorial Structure with Multiple Part Detectors

We use pictorial structures [I] to model humans. Instead of part detectors with
one type of feature descriptor such 