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Preface

The 2010 edition of the European Conference on Computer Vision was held in 
Heraklion, Crete. The call for papers attracted an absolute record of 1,174 
submissions. We describe here the selection of the accepted papers: 

Thirty-eight area chairs were selected coming from Europe (18), USA and 
Canada (16), and Asia (4). Their selection was based on the following 
criteria: (1) Researchers who had served at least two times as Area Chairs 
within the past two years at major vision conferences were excluded; (2) 
Researchers who served as Area Chairs at the 2010 Computer Vision and 
Pattern Recognition were also excluded (exception: ECCV 2012 Program 
Chairs); (3) Minimization of overlap introduced by Area Chairs being former 
student and advisors; (4) 20% of the Area Chairs had never served before in 
a major conference; (5) The Area Chair selection process made all possible 
efforts to achieve a reasonable geographic distribution between countries, 
thematic areas and trends in computer vision. 

Each Area Chair was assigned by the Program Chairs between 28–32 papers. 
Based on paper content, the Area Chair recommended up to seven potential 
reviewers per paper. Such assignment was made using all reviewers in the 
database including the conflicting ones. The Program Chairs manually 
entered the missing conflict domains of approximately 300 reviewers. Based 
on the recommendation of the Area Chairs, three reviewers were selected per 
paper (with at least one being of the top three suggestions), with 99.7% being 
the recommendations of the Area Chairs. When this was not possible, senior 
reviewers were assigned to these papers by the Program Chairs, with the 
consent of the Area Chairs. Upon completion of this process there were 653 
active reviewers in the system. 

Each reviewer got a maximum load of eight reviews––in a few cases we had 
nine papers when re-assignments were made manually because of hidden 
conflicts. Upon the completion of the reviews deadline, 38 reviews were 
missing. The Program Chairs proceeded with fast re-assignment of these 
papers to senior reviewers. Prior to the deadline of submitting the rebuttal by 
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  the authors, all papers had three reviews. The distribution of the reviews was 
the following: 100 papers with an average score of weak accept and higher, 
125 papers with an average score toward weak accept, 425 papers with an 
average score around borderline. 

For papers with strong consensus among reviewers, we introduced a 
procedure to handle potential overwriting of the recommendation by the Area 
Chair. In particular for all papers with weak accept and higher or with weak 
reject and lower, the Area Chair should have sought for an additional 
reviewer prior to the Area Chair meeting. The decision of the paper could 
have been changed if the additional reviewer was supporting the 
recommendation of the Area Chair, and the Area Chair was able to convince 
his/her group of Area Chairs of that decision. 

The discussion phase between the Area Chair and the reviewers was initiated 
once the review became available. The Area Chairs had to provide their 
identity to the reviewers. The discussion remained open until the Area Chair 
meeting that was held in Paris, June 5–6. Each Area Chair was paired to a 
buddy and the decisions for all papers were made jointly, or when needed 
using the opinion of other Area Chairs. The pairing was done considering 
conflicts, thematic proximity, and when possible geographic diversity. The 
Area Chairs were responsible for taking decisions on their papers. Prior to 
the Area Chair meeting, 92% of the consolidation reports and the decision 
suggestions had been made by the Area Chairs. These recommendations were 
used as a basis for the final decisions. 

Orals were discussed in groups of Area Chairs. Four groups were formed, 
with no direct conflict between paper conflicts and the participating Area 
Chairs. The Area Chair recommending a paper had to present the paper to the 
whole group and explain why such a contribution is worth being published as 
an oral. In most of the cases consensus was reached in the group, while in the 
cases where discrepancies existed between the Area Chairs’ views, the 
decision was taken according to the majority of opinions. 

The final outcome of the Area Chair meeting, was 38 papers accepted for an 
oral presentation and 284 for poster. The percentage ratios of submissions/ 
acceptance per area are the following: 
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Thematic area # submitted % over 
submitted

# accepted % over 
accepted

% acceptance 
in area

Object and Scene Recognition 192 16.4% 66 20.3% 34.4%

Segmentation and Grouping 129 11.0% 28 8.6% 21.7%

Face, Gesture, Biometrics 125 10.6% 32 9.8% 25.6%

Motion and Tracking 119 10.1% 27 8.3% 22.7%

Statistical Models and Visual
Learning

101 8.6% 30 9.2% 29.7%

Matching, Registration, Alignment 90 7.7% 21 6.5% 23.3%

Computational Imaging 74 6.3% 24 7.4% 32.4%

Multi-view Geometry 67 5.7% 24 7.4% 35.8%

Image Features 66 5.6% 17 5.2% 25.8%

Video and Event Characterization 62 5.3% 14 4.3% 22.6%

Shape Representation and 
Recognition

48 4.1% 19 5.8% 39.6%

Stereo 38 3.2% 4 1.2% 10.5%

Reflectance, Illumination, Color 37 3.2% 14 4.3% 37.8%

Medical Image Analysis 26 2.2% 5 1.5% 19.2%

We received 14 complaints/reconsideration requests. All of them were sent to the 
Area Chairs who handled the papers. Based on the reviewers’ arguments and the 
reaction of the Area Chair, three papers were accepted––as posters––on top of 
the 322 at the Area Chair meeting, bringing the total number of accepted papers 
to 325 or 27.6%. The selection rate for the 38 orals was 3.2%.The acceptance 
rate for the papers submitted by the group of Area Chairs was 39%.  

Award nominations were proposed by the Area and Program Chairs based on 
the reviews and the consolidation report. An external award committee was 
formed  comprising David Fleet, Luc Van Gool, Bernt Schiele, Alan Yuille, 
Ramin Zabih. Additional reviews were considered for the nominated papers 
and the decision on the paper awards was made by the award committee. We 
thank the Area Chairs, Reviewers, Award Committee Members, and the 
General Chairs for their hard work and we gratefully acknowledge Microsoft 
Research for accommodating the ECCV needs by generously providing the 
CMT Conference Management Toolkit. We hope you enjoy the proceedings. 

September 2010 Kostas Daniilidis  
Petros Maragos  
Nikos Paragios 
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Object Classification Using Heterogeneous Co-occurrence Features . . . . . 701
Satoshi Ito and Susumu Kubota

Converting Level Set Gradients to Shape Gradients . . . . . . . . . . . . . . . . . . 715
Siqi Chen, Guillaume Charpiat, and Richard J. Radke

A Close-Form Iterative Algorithm for Depth Inferring from a Single
Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729

Yang Cao, Yan Xia, and Zengfu Wang



Table of Contents – Part V XXIII

Learning Shape Segmentation Using Constrained Spectral Clustering
and Probabilistic Label Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743

Avinash Sharma, Etienne von Lavante, and Radu Horaud

Weakly Supervised Shape Based Object Detection with Particle
Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757

Xingwei Yang and Longin Jan Latecki

Geodesic Shape Retrieval via Optimal Mass Transport . . . . . . . . . . . . . . . . 771
Julien Rabin, Gabriel Peyré, and Laurent D. Cohen

Spotlights and Posters R2

Image Segmentation with Topic Random Field . . . . . . . . . . . . . . . . . . . . . . . 785
Bin Zhao, Li Fei-Fei, and Eric P. Xing

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799



Towards Computational Models of the Visual
Aesthetic Appeal of Consumer Videos

Anush K. Moorthy�, Pere Obrador, and Nuria Oliver

Telefonica Research, Barcelona, Spain

Abstract. In this paper, we tackle the problem of characterizing the

aesthetic appeal of consumer videos and automatically classifying them

into high or low aesthetic appeal. First, we conduct a controlled user

study to collect ratings on the aesthetic value of 160 consumer videos.

Next, we propose and evaluate a set of low level features that are com-

bined in a hierarchical way in order to model the aesthetic appeal of

consumer videos. After selecting the 7 most discriminative features, we

successfully classify aesthetically appealing vs. aesthetically unappealing

videos with a 73% classification accuracy using a support vector machine.

Keywords: Video aesthetics, video quality, subjective assessment.

1 Introduction

In today’s digital world, we face the challenge of developing efficient multime-
dia data management tools that enable users to organize and search multimedia
content from growing repositories of digital media. Increasing storage capabil-
ities at low prices combined with pervasive devices to capture digital images
and videos enable the generation and archival of unprecedented amounts of per-
sonal multimedia content. For example, as of May 2009, about 20 hours of video
footage – most of it user-generated – were uploaded on the popular video sharing
site YouTube every minute [1]. In addition, the number of user-generated video
creators is expected to grow in the US by 77% from 2008 to 2013 [2].

Text query-based image and video search approaches rely heavily on the sim-
ilarity between the input textual query and the textual metadata (e.g. tags,
comments, etc.) that has previously been added to the content by users. Rele-
vance is certainly critical to the satisfaction of users with their search results,
yet not sufficient. For example, any visitor of YouTube will attest to the fact
that the most relevant search results today include a large amount of user gen-
erated data of varying aesthetic quality, where aesthetics deal with the human
appreciation of beauty. Hence, filtering and re-ranking the videos with a measure
of their aesthetic value would probably improve the user experience and satis-
faction with the search results. In addition to improving search results, another
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challenge faced by video sharing sites is being able to attract advertisement to
the user generated content, particularly given that some of it is deemed to be
“unwatchable” [3], and advertisers are typically reluctant to place their clients’
brands next to any material that may damage their clients’ reputations [4]. We
believe that the analysis of the aesthetic value of videos may be one of the tools
used to automatically identify the material that is “advertisement worthy” vs.
not. Last, but not least, video management tools that include models of aes-
thetic appeal may prove very useful to help users navigate and enjoy their ever
increasing – yet rarely seen – personal video collections.

Here, we focus on building computational models of the aesthetic appeal of
consumer videos. Note that video aesthetic assessment differs from video quality
assessment (VQA) [5] in that the former seeks to evaluate the holistic appeal
of a video and hence encompasses the latter. For example, a low quality video
with severe blockiness will have low aesthetic appeal. However, a poorly lit un-
distorted video with washed-out colors may have high quality but may also be
aesthetically unappealing. Even though image aesthetic assessment has recently
received the attention of the research community [6,7,8,9,10], video aesthetic
assessment remains little explored [8].

To the best of our knowledge, the work presented in this paper represents the
first effort to automatically characterize the aesthetic appeal of consumer videos
and classify them into high or low aesthetic appeal. For this purpose, we first
carry out a controlled user study (Section 3) to collect unbiased estimates of the
aesthetic appeal of 160 consumer videos and thus generate ground truth. Next,
we propose low-level features calculated on a per-frame basis, that are correlated
to visual aesthetics (Section 4.1), followed by novel strategies to combine these
frame-level features to yield video-level features (Section 4.2). Note that previous
work in this area has simply used the mean value of each feature across the video
[8], which fails to capture the video dynamics and the peculiarities associated
with human perception [11]. Finally, we evaluate the proposed approach with
the collected 160 videos, compare our results with the state-of-the-art (Section
5), discuss the implications of our findings (Section 6) and highlight our lines of
future work (Section 7).

In sum, the main contributions of this paper are threefold: 1) We carry out
a controlled user study to collect unbiased ground-truth about the aesthetic ap-
peal of 160 consumer videos; 2) we propose novel low-level (i.e., frame-level)
and video-level features to characterize video aesthetic appeal; and 3) we quan-
titatively evaluate our approach, compare our results with the state-of-the-art
and show how our method is able to correctly classify videos into low or high
aesthetic appeal with 73% accuracy.

2 Previous Work

Aesthetic Appeal in Still Images: One of the earliest works in this domain
is that by Savakis et al. [12] where they performed a large scale study of the
possible features that might have an influence on the aesthetic rating of an im-
age. However, no algorithm was proposed to evaluate appeal. In [10], Tong et al.
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extracted features – including measures of color, energy, texture and shape –
from images and a two-class classifier (high vs. low aesthetic appeal) was pro-
posed and evaluated using a large image database with photos from COREL
and Microsoft Office Online (high aesthetic appeal) and from staff at Microsoft
Research Asia (low aesthetic appeal). One drawback with this approach is that
some of the selected features lacked photographic/perceptual justification. Fur-
thermore, their dataset assumed that home users are poorer photographers than
professionals, which may not always be true.

Datta et al. [6] extracted a large set of features based on photographic rules.
Using a dataset from an online image sharing community, the authors discovered
the top 15 features in terms of their cross validation performance with respect to
the image ratings. The authors reported a classification (high vs. low aesthetic
appeal) accuracy of 70.12%. Ke et al. [7] utilized a top-down approach, where
a small set of features based on photographic rules were extracted. A dataset
obtained by crawling DPChallenge.com was used and the photo’s average rating
was utilized as ground truth. In [8], Luo and Tang furthered the approach pro-
posed in [7] by extracting the main subject region (using a sharpness map) in
the photograph. A small set of features were tested on the same database as in
[7], and their approach was shown to perform better than that of Datta et al. [6]
and Ke et al. [7]. Finally, Obrador recently proposed a region-of-interest based
approach to compute image aesthetic appeal [9] where the region-of-interest is
extracted using a combination of sharpness, contrast and colorfulness. The size
of the region-of-interest, its isolation from the background and its exposure were
then computed to quantify aesthetic appeal with good results on a photo dataset
created by the author.

Aesthetic Appeal in Videos: To the best of our knowledge, only the work in
[8] has tackled the challenge of modeling video aesthetics, in which their goal was
to automatically distinguish between low quality (amateurish) and high quality
(professional) videos. They applied image aesthetic measures – where each fea-
ture was calculated on a subset of the video frames at a rate of 1 frame per
second (fps) – coupled with two video-specific features (length of the motion of
the main subject region and motion stability). The mean value of each feature
across the whole video was utilized as the video representation. They evalu-
ated their approach on a large database of YouTube videos and achieved good
classification performance of professional vs. amateur videos (≈ 95 % accuracy).

3 Ground Truth Data Collection

Previous work in the field of image aesthetics has typically used images from
online image-sharing websites [13]. Each of these photo-sharing sites allows users
to rate the images, but not necessarily according to their aesthetic appeal. A few
websites (e.g. Photo.net) do have an aesthetic scale (1-7) on which users rate
the photographs. However, the lack of a controlled test environment implies that
the amount of noise associated with the ratings in these datasets is typically
large [14]. In addition, users are influenced in their aesthetic ratings by factors
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such as the artist who took the photograph, the relation of the subject to the
photographer, the content of the scene and the context under which the rating is
performed. Hence, a controlled study to collect aesthetic rating data is preferred
over ratings obtained from a website. As noted in [13], web-based ratings are
mainly used due to a lack of controlled experimental ground truth data on the
aesthetic appeal of images or videos. In the area of image aesthetics, we shall
highlight two controlled user studies [9,12], even though neither of these datasets
was made public.

To the best of our knowledge, the only dataset in the area of video aesthetics
is that used by Luo and Tang [8]. It consists of 4000 high quality (professional)
and 4000 low quality (amateurish) YouTube videos. However, the authors do
not explain how the dataset was obtained or how the videos were ranked. The
number of subjects that participated in the ranking is unknown. It is unclear
if the videos were all of the same length. Note that the length of the video has
been shown to influence the ratings [15]. The content of the videos is unknown
and since the rating method is undisclosed, it is unclear if the participants were
influenced by the content when providing their ratings. Finally, the authors do
not specify if the rated videos had audible audio or not. It is known that the
presence of audio influences the overall rating of a video [16].

In order to address the above mentioned drawbacks and to create a publicly
available dataset for further research, we conducted a controlled user study where
33 participants rated the aesthetic appeal of 160 videos1. The result of the study
is a collection of 160 videos with their corresponding aesthetic ratings which
was used as ground truth in our experiments. In this section, we detail how the
videos were selected and acquired, and how the study was conducted.

Video Selection: Since the focus of our work is consumer videos, we crawled
the YouTube categories that were more likely to contain consumer generated
content: Pets & Animals, Travel & Events, Howto & Style, and so on. To collect
the videos, we used popular YouTube queries from the aforementioned cate-
gories (i.e., text associated with the most viewed videos in those categories), for
instance, “puppy playing with ball” and “baby laughing”. In addition and in
order to have a wide diversity of video types, we included semantically different
queries that retrieved large numbers (>1000) of consumer videos, such as “Rio
de Janeiro carnival” and “meet Mickey Mouse Disney”. In total, we downloaded
1600 videos (100 videos × 16 queries). A 15 second segment was extracted from
the middle part of each of the videos in order to reduce potential biases induced
by varying video lengths [15]. Each of the 1600 videos was viewed by two of
the authors who rated the aesthetic appeal of the videos on a 5-point Likert
scale. The videos that were not semantically relevant to the search query were
discarded (e.g, “puppy playing with ball” produced videos which had children
and puppies playing together or just children playing together); videos that were
professionally generated were also discarded. A total of 992 videos were retained
from the initial 1600. Based on the mean ratings of the videos – from the two

1 Each video received 16 different ratings by a subset of 16 participants.
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sets of scores by the authors after converting them to Z-scores [17], 10 videos
were picked for each query such that they uniformly covered the 5-point range
of aesthetic ratings. Thus, a total of 160 videos – 10 videos × 16 queries – were
selected for the study. The selected videos were uploaded to YouTube to ensure
that they would be available for the study and future research.

User Study: An important reason for conducting a controlled study is the role
that content (i.e., ”what” is recorded in the video) plays in video ratings. As
noted in [13], the assessment of videos is influenced by both their content and
their aesthetic value. We recognize that these two factors are not completely
independent of each other. However in order to create a content-independent
algorithm that relies on low-level features to measure the aesthetic value of a
video, the ground truth study design must somehow segregate these two factors.
Hence, our study required users to rate the videos on two scales: content and
aesthetics, in order to reduce the influence of the former in the latter.

A total of 33 participants (25 male) took part in the study. They had been re-
cruited by email advertisement in a large corporation. Their ages ranged from 24
to 45 years (μ = 29.1) and most participants were students, researchers or pro-
grammers. All participants were computer savvy and 96.8 % reported regularly
using video sharing sites such as YouTube. The participants were not tested for
acuity of vision, but a verbal confirmation of visual acuity was obtained. Par-
ticipants were not paid for their time, but they were entered in a $USD 150
raffle. The study consisted of 30 minute rating sessions where participants were
asked to rate both the content and the aesthetic appeal of 40 videos (10 videos
× 4 queries). Subjects were allowed to participate in no more than two rating
sessions (separated by at least 24 hours).

The first task in the study consisted of a short training session involving 10
videos from a “dance” query; the data collected during this training session was
not used for the study. The actual study followed. The order of presentation
of queries for each subject followed a Latin-square pattern in order to avoid
presentation biases. In addition, the order in which the videos were viewed within
each query was randomized. The videos were displayed in the center of a 17-inch
LCD screen with a refresh rate of 60 Hz and a resolution of 1024 × 768 pixels,
on a mid-gray background, and at a viewing distance of 5 times the height of
the videos [18]. Furthermore, since our focus is visual appeal, the videos were
shown without any audio [16].

Before the session began, each participant was instructed as follows. You will
be shown a set of videos on your screen. Each video is 15 seconds long. You have
to rate the video on two scales: Content and Aesthetics from very bad (-2) to
very good (+2). By content we mean whether you liked the activities in the video,
whether you found them cute or ugly for example.2 You are required to watch each
video entirely before rating it. We were careful not to bias participants toward
any particular low-level measure of aesthetics. In fact, we left the definition fairly

2 Each video was embedded into the web interface with two rating scales underneath:

one for content and the other for aesthetics. The scales were: Very Bad (-2), Bad

(-1), Fair (0), Good (1), Very Good (2).



6 A.K. Moorthy, P. Obrador, and N. Oliver

(a) (b)

Fig. 1. (a) Histogram of aesthetic MOS from the user study. (b) Proposed 2-level

pooling approach, from frame to microshot (level 1) and video (level 2) features.

open in order to allow participants to form their own opinion on what parameters
they believed video aesthetics should be rated on.

During the training session, participants were allowed to ask as many ques-
tions as needed. Most questions centered around our definition of content. In
general, subjects did not seem to have a hard time rating the aesthetics of the
videos. At the end of each query, participants were asked to describe in their own
words the reasons for their aesthetic ratings of the videos. With this question-
naire, we aimed to capture information about the low-level features that they
were using to rate video aesthetics in order to guide the design of our low-level
features. Due to space constraints, we leave the analysis of the participants’
answers to these questions for future work.

The study yielded a total of 16 different ratings (across subjects) of video aes-
thetics for each of the 160 videos. A single per-video visual aesthetic appeal score
was created: First, the scores of each participant were normalized by subtracting
the mean score per participant and per session from each of the participant’s
scores, in order to reduce the bias of the ratings in each session. Next, the aver-
age score per video and across all participants was computed to generate a mean
opinion score (MOS). This approach is similar to that followed for Z-scores [17].
Thus, a total of 160 videos with ground truth about their aesthetic appeal in
the form of MOS were obtained. Figure 1 (a) depicts the histogram of the aes-
thetic MOS for the 160 videos, where 82 videos were rated below zero, and 78
videos were rated above zero. Even though 160 videos may seem small compared
to previous work [8], datasets of the same size are common in state-of-the-art
controlled user studies of video quality assessment [19].

4 Feature Computation

The features presented here were formulated based on previous work, the feed-
back from our user study and our own intuition.

The main difference between an image and a video is the presence of the
temporal dimension. In fact, humans do not perceive a series of images in the
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same fashion as they perceive a video [5]. Hence, the features to be extracted from
the videos should incorporate information about this temporal dimension. In this
paper, we propose a hierarchical pooling approach to collapse each of the features
extracted on a frame-by-frame basis into a single value for the entire video,
where pooling [11] is defined as the process of collapsing a set of features, either
spatially or temporally. In particular, we perform a two-level pooling approach,
as seen in Fig. 1 (b). First, basic features are extracted on a frame-by-frame
basis. Next, the frame-level features are pooled within each microshot3 using 6
different pooling techniques, generating 6 microshot-level features for each basic
feature. Finally, the microshot-level features are pooled across the entire video
using two methods (mean and standard deviation), thus generating a set of 12
video-level features for each of the basic frame-level features.

In the following sections we describe the basic frame-level features and their
relationship (if any) to previous work, followed by the hierarchical pooling strat-
egy used to collapse frame-level values into video-level descriptors.

4.1 Frame-Level Features

Actual Frame Rate (f1, actual-fps): 29% of the downloaded videos contained
repeated frames. In an extreme case, a video which claimed to have a frame-
rate of 30 fps had an actual new frame every 10 repetitions of the previous
frame. Since frame-rate is an integral part of perceived quality [5] – and hence
aesthetics, our first feature, f1, is the “true” frame-rate of the video. In order to
detect frame repetition, we use the structural similarity index (SSIM) [20].

A measure of the perceptual similarity of consecutive frames is given by
Q = 1 − SSIM (small Q indicates high similarity), and is computed between
neighboring frames creating a vector m. To measure periodicity due to frame
insertions, we compute mth = {ind(mi)|mi ≤ 0.02}, where the set threshold al-
lows for a small amount of dissimilarity between adjacent frames (due to encod-
ing artifacts). This signal is differentiated (with a first order filter h[i] = [1− 1])
to obtain dm. If this is a periodic signal then we conclude that frames have
been inserted, and the true frame rate is calculated as: f1 = fps× MAX(dm)−1

Tm
,

where Tm is the number of samples in m corresponding to the period in dm.
Note that this feature has not been used before to assess video aesthetics.

Motion Features (f2, motion-ratio, and f3, size-ratio): The human visual sys-
tem devotes a significant amount of resources for motion processing. Jerky cam-
era motion, camera shake and fast object motion in video are distracting and
they may significantly affect the aesthetic appeal of the video. While other au-
thors have proposed techniques to measure shakiness in video [21], our approach
stems from the hypothesis that a good consumer video contains two regions: the
foreground and the background. We further hypothesize that the ratio of mo-
tion magnitudes between these two regions and their relative sizes have a direct
impact on video aesthetic appeal.
3 In our implementation a microshot is a set of frames amounting to one second of

video footage.
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A block-based motion estimation algorithm is applied to compute motion vec-
tors between adjacent frames. Since the videos in our set are compressed videos
from YouTube, blocking artifacts may hamper the motion estimates. Hence, mo-
tion estimation is performed after low-pass filtering and downsampling by 2 in
each dimension, each video frame. For each pixel location in a frame, the mag-
nitude of the motion vector is computed. Then, a k-means algorithm with 2
clusters is run in order to segregate the motion vectors into two classes. Within
each class, the motion vector magnitudes are histogrammed and the magnitude
of the motion vector corresponding to the peak of the histogram is chosen as a
representative vector for that class. Let mf and mb denote the magnitude of the
motion vectors for each of the classes, where mf > mb, and let sf and sb denote
the size (in pixels) of each of the regions respectively. We compute f2 = mb+1

mf +1

and f3 = sb+1
sf +1 . The constant 1 is added in order to prevent numerical instabili-

ties in cases where the magnitude of motion or size tends to zero. These features
have not been used before to characterize video aesthetics.

Sharpness/Focus of the Region of Interest (f4, focus): Sharpness is of
utmost importance when assessing visual aesthetics [9]. Note that our focus lies
in consumer videos where the cameras are typically focused at optical infinity,
such that measuring regions in focus is challenging. In order to extract the in-
focus region, we use the algorithm proposed in [22] and set the median of the
level of focus of the ROI as our feature f4.

Colorfulness (f5, colorfulness): Videos which are colorful tend to be seen as
more attractive than those in which the colors are “washed out” [23]. The col-
orfulness of a frame (f5) is evaluated using the technique proposed in [23]. This
measure has previously been used in [9] to quantify the aesthetics of images.

Luminance (f6, luminance): Luminance has been shown to play a role in the
aesthetic appeal of images [6]. Images (and videos) in either end of the luminance
scale (i.e., poorly lit or with extremely high luminance) are typically rated as
having low aesthetic value4. Hence, we compute the luminance feature f6 as the
mean value of the luminance within a frame.

Color Harmony (f7, harmony): The colorfulness measure does not take into
account the effect that the combination of different colors has on the aesthetic
value of each frame. To this effect, we evaluate color harmony using a variation of
the technique by Cohen-Or et al. [24] where they propose eight harmonic types
or templates over the hue channel in the HSV space. Note that one of these
templates (N-type) corresponds to grayscale images and hence does not apply
to the videos in our study. We compute the (normalized) hue-histogram of each
frame and convolve this histogram with each of the 7 templates5. The peak of the
convolution is selected as a measure of similarity of the frame’s histogram to a
particular template. The maximum value of these 7 harmony similarity measures

4 A video with alternating low and high luminance values may also have low aesthetic

appeal.
5 The template definitions are the same as the ones proposed in [24].
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Fig. 2. Rule of thirds: the head of the iguana is placed in the top-right intersecting

point

(one for each template) is chosen as our color harmony feature. Other color
harmony measures have been used to assess the aesthetic quality of paintings
[25], and photos and video [8].

Blockiness Quality (f8, quality): The block-based approach used in current
video compression algorithms leads to the presence of blocking artifacts in videos.
Blockiness is an important aspect of quality and for compressed videos it has
been shown to overshadow other artifacts [26]. The YouTube consumer videos
from our dataset are subject to video compression and hence we evaluate their
quality by looking for blocking artifacts as in [26]. Since this algorithm was
proposed for JPEG compression, it is defined for 8 × 8 blocks only. However,
some YouTube videos are compressed using H.264/AVC which allows for multiple
block sizes [27]. Hence, we modified the algorithm in [26] to account for multiple
block sizes. In our experiments, however, we found that different block sizes did
not improve the performance of the quality feature. Therefore, in our evaluation
we use the 8×8 block-based quality assessment as in [26] and denote this quality
feature as f8. We are not aware of any previously proposed aesthetic assessment
algorithm that includes a blockiness quality measure.

Rule of thirds (f9, thirds): One feature that is commonly found in the literature
on aesthetics and in books on professional photography is the rule of thirds [28].
This rule states that important compositional elements of the photograph should
be situated in one of the four possible power points in an image (i.e., in one of the
four intersections of the lines that divide the image into nine equal rectangles,
as seen in Figure 2). In order to evaluate a feature corresponding to the rule
of thirds, we utilize the region of interest (ROI) extracted as described above.
Similarly to [8], our measure of the rule of thirds (f9) is the minimum distance
of the centroid of the ROI to these four points.

4.2 Microshot and Video-Level Features

Once the 8 frame-level features (f2 to f9) have been computed on every frame,
they are combined to generate features at the microshot (i.e., 1 second of video
footage) level which are further combined to yield features at the video level.

We compute 6 different feature pooling techniques for each basic frame level
feature – mean, median, min, max, first quartile (labeled as fourth) and third
quartile (labeled as three-fourths) – in order to generate the microshot-level
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features, and we let our classifier automatically select the most discriminative
features. In this paper we pool microshot-level features with two strategies in
order to generate video-level features: average, computed as the mean (labeled
as mean) of the features across all microshots; and standard deviation (labeled
as std), again computed across all microshots in the video. Thus, a bag of 97
video-level features is generated for each video: 8 frame-level basic features × 6
pooling techniques at the microshot level × 2 pooling techniques at the video
level + f1.

In the remainder of the paper, we shall use the following nomenclature:
videoLevel-microshotLevel-basicFeature, to refer to each of the 97 features. For
example, the basic feature harmony (f7), pooled using the median at the mi-
croshot level and the mean at the video level would be referred as: mean-median-
harmony. The use of these pooling techniques is one of the main contributions of
this paper. Previous work [8] has only considered a downsampling approach at
the microshot level (at 1 fps), and an averaging pooling technique at the video
level, generating one single video level feature for each basic feature, which can-
not model their temporal variability.

5 Experimental Results

Even though one may seek to automatically estimate the aesthetic ratings of
the videos, the subjectivity of the task makes it a very difficult problem to solve
[13]. Therefore, akin to previous work in this area, we focus on automatically
classifying the videos into two categories: aesthetically appealing vs. aesthetically
unappealing. The ground truth obtained in our user study is hence split into
these two categories, where the median of the aesthetic scores is considered as the
threshold. All scores above the median value are labeled as appealing (80 videos)
and those below are labeled as unappealing (80 videos). In order to classify the
videos into these two classes, we use a support vector machine (SVM) [29] with
a radial basis function (RBF) kernel (C, γ) = (1, 3.7) and the LibSVM package
[30] for implementation.

We perform a five-fold cross-validation where 200 train/test runs are carried
out with the feature sets that are being tested. We first evaluate the classifi-
cation performance of each of the 97 video-level features individually. The best
performing 14 features in these cross-validation tests are shown in Table 1. The
classification performance of these features is fairly stable: the average standard
deviation of the classification accuracy across features and over the 200 runs is
2.1211 (min = 0.5397, max = 3.2779).

In order to combine individual features, we use a hybrid of a filter-based
and wrapper-based approach, similar to [6]. We only consider the video-level
features that individually perform above 50%. We first pick the video-level fea-
ture which classifies the data the best. All the other video-level features de-
rived from the same basic feature and pooled with the same video-level pooling
method (i.e., either mean or standard deviation) are discarded from the bag
before the next feature is selected. The next selected feature is the one that



Towards Computational Models of the Visual Aesthetic Appeal 11

classifies the data the best in conjunction with the first selected feature, and
so on. A 7-dimensional feature vector6 is thus formed. The selected features in
order of their classification performance after being combined with the previ-
ously selected features are: actual fps (acc=58.8%, σ = 1.5); mean-three-fourth-
colorfulness (acc=67%, σ = 1.8); std-median-thirds (acc=69.5%, σ = 1.9); mean-
fourth-focus (acc=69.6%, σ = 2.2); mean-max-luminance (acc=71%, σ = 1.9);
mean-fourth-quality (acc=72.0%, σ = 1.9); and std-median-focus (acc=73.0%,
σ = 2.0).

An overall classification accuracy of 73.03% is thus obtained. In order to pro-
vide a comparison with previous work, we implemented the algorithm proposed
in [8], achieving a classification accuracy of 53.5%. The poor performance of this
algorithm may be attributed to the fact that it was designed for professional
vs. amateur video classification rather than for classifying consumer videos into
high or low visual aesthetic appeal.

Table 1. Individual classification accuracy of the top 14-features in descending order

of performance

Feature Accura. Feature Accura.

1. actual-fps 58.77% 8. mean-mean-colorfulness 56.34%

2. mean-max-size-ratio 58.68% 9. mean-med-colorfulness 56.21%

3. std-fourth-motion-ratio 58.06% 10. mean-mean-quality 55.73%

4. mean-fourth-quality 57.67% 11. mean-three-fourth-quality 55.70%

5. mean-three-fourth-colorfulness 56.86% 12. mean-max-luminance 55.62%

6. mean-max-colorfulness 56.80% 13. std-three-fourth-motion-ratio 55.19%

7. mean-max-quality 56.62% 14. mean-three-fourth-luminance 55.16%

Personalization: Personalization has not been explored before in this area
even though it is known that certain aspects of aesthetic sensitivities depend
on individual factors [13]. In this section, we carry out a preliminary analysis
of the personalization of aesthetic ratings. Recall that two of the authors rated
the aesthetic value of 1600 videos. All videos which were semantically irrele-
vant or professionally generated were excluded from the analysis (608 videos or
38%). Video-level features were computed for the remaining 992 videos. Using
the 7-dimensional feature vector previously described, we obtain classification
accuracies of 61.66% (author 1) and 58.17% (author 2).

In order to evaluate the impact that personalization would have on this
dataset, we select the optimum feature combination – using the approach de-
scribed above – for each of the authors. Table 2 depicts the selected features and
their contributions to classification accuracy, yielding classification accuracies
of 63.24% (author 1) and 66.46% (author 2), significantly larger in the case of
author 2 than the accuracies obtained with the non-personalized feature vector.
6 The feature vector is restricted to 7-dimensions due to the relatively small number

of videos in the ground truth (160) and in order to prevent overfitting.
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Table 2. Classification accuracies with personalized feature vectors. Features selected

for each author and their contribution to accuracy - ’+’ indicates that the result was

obtained by combining this feature with the one right above it.

Author 1 Author 2

Feature Accura. StdDev Feature Accura. StdDev

actual-fps 58.4% 0.1 mean-fourth-luminance 58.0% 0.2

+ mean-mean-quality 60.2% 0.3 + mean-max-harmony 62.1% 0.5

+ mean-mean-size-ratio 61.2% 0.4 + std-max-quality 64.1% 0.6

+ mean-fourth-harmony 62.3% 0.7 + mean-median-size-ratio 65.0% 0.5

+ std-max-quality 63.2% 0.7 + mean-fourth-focus 66.0% 0.7

+ std-max-size-ratio 63.1% 0.7 + std-fourth-size-ratio 66.1% 0.6

+ mean-max-luminance 63.1% 0.8 + mean-max-thirds 66.4% 0.6

+ std-fourth-thirds 63.2 % 0.9 + std-mean-focus 66.5% 0.7

Aesthetics vs. Quality: As we mentioned in the introduction, quality does not
capture all aspects of the aesthetic appeal of a video, but a holistic definition of
aesthetics must include the quality of a video. In order to illustrate the role that
quality plays on aesthetics, we evaluate the performance of the quality features –
blockiness quality (f8) and actual frames-per-second (f1) – on the aesthetics clas-
sification. Hence, a quality feature vector is created by combining the actual fps
measure (f1) and the blocking quality pooling strategy that gives the best per-
formance (mean-fourth-quality). This vector when used for classification yields
an accuracy of 58.0%, which suggests that even though quality is an integral
part of aesthetics, the aesthetic value of a video encompasses elements beyond
traditional measures of quality. When adding the focus feature (f4), arguably a
quality feature also (particularly the std-median-focus feature) the overall per-
formance increases to 60.0%, still well below the performance obtained when
using the best performing 3 aesthetics features: 69.5%, as previously explained.

6 Discussion

Apart from the actual-fps feature (f1), the rest of the features that were au-
tomatically selected to classify the aesthetic value of videos correlate well with
previous research and intuition. For example, the third quartile of the colorful-
ness feature (f5) would indicate that the maximum colorfulness value is probably
noise, and the statistical measure of third quartile is a stable indicator of col-
orfulness. Again, the first quartile of the quality feature (f8) correlates with
research in image quality assessment [11]. Furthermore, quality features alone
do not seem to capture all the elements that characterize the aesthetic value of
consumer videos.

The standard deviation of the focus feature (f4) is again intuitive in the sense
that humans tend be more sensitive to changes in focus rather than its absolute
value. This is also true for the rule-of-thirds feature (f9), which is a measure
of how well the main subject is framed in the video. Even though the motion
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features that we computed were not selected in the final feature vector, on their
own these features performed well (see Table 1) and seemed to be useful for
personalization (Table 2). Given that the number of videos in the personalization
dataset is large and that motion features on their own seem to correlate well with
perception, we hypothesize that increasing the number of videos in the current
dataset (which we plan to undertake in the future) will result in a selection of
the motion features as well.

7 Conclusions and Future Work

In this paper, we have proposed a hierarchical approach to characterize the
aesthetic appeal of consumer videos and automatically classify them into high
or low aesthetic appeal. We have first conducted a controlled user study to
collect human ratings on the aesthetic value of 160 consumer videos. Next, we
have proposed 9 low-level features to characterize the aesthetic appeal of the
videos. In order to generate features at the video level, we have proposed and
evaluated various pooling strategies (at the microshot and video levels) based
on statistical measures. Based on the collected ground truth ratings, we have
automatically selected 7 features at the video-level and have classified the videos
into high vs. low aesthetic appeal with 73% classification accuracy, compared to
53.5% classification accuracy of a state-of-the-art algorithm. The videos and the
subjective ratings have been made available publicly7.

We plan on increasing the number of videos in our ground truth database
and conduct a larger scale user study. Future work includes exploring temporal
models to characterize video aesthetics, investigating personalization techniques
and shedding light on which features of our aesthetics model may be universal
vs. person-dependent, and assessing the influence of audio in aesthetic ratings so
as to form a complete measure of audio-visual aesthetics. Finally, we also plan to
develop novel aesthetics-assisted hierarchical user interfaces to allow end users
to efficiently navigate their personal video collections.
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Abstract. In this paper, we propose an object detection/recognition al-

gorithm based on a new set of shape-driven features and morphological

operators. Each object class is modeled by the corner points (junctions)

on its contour. We design two types of shape-context like features be-

tween the corner points, which are efficient to compute and effective in

capturing the underlying shape deformation. In the testing stage, we

use a recently proposed junction detection algorithm [1] to detect corner

points/junctions on natural images. The detection and recognition of an

object are then done by matching learned shape features to those in the

input image with an efficient search strategy. The proposed system is

robust to a certain degree of scale change and we obtained encourag-

ing results on the ETHZ dataset. Our algorithm also has advantages of

recognizing object parts and dealing with occlusions.

1 Introduction

Recent progress for object detection/recognition has been mostly driven by us-
ing advanced learning methods [2,3,4,5,6] and designing smart feature/object
descriptors [7,8,9]. A detector is often trained on either a large number of fea-
tures [2] or SIFT like features in a bounding box[4]. Most of the resulting al-
gorithms, however, only tell whether an object is present or not in a bounding
box by sweeping an input image at all locations and different scales. Besides the
successes the field has witnessed for detecting rigid objects, such as frontal faces,
detecting non-rigid objects remains a big challenge in computer vision and most
of the systems are still not practical to use in general scenes [10].

Another interesting direction is using deformable templates [11] through
matching-based approaches. Typical methods include generalized Hough trans-
form [12], shape contexts [13], pyramid matching [14], pictorial structures
[15], codebook-based approaches [16,17], and hierarchical shape representations
[18,19,20]. These algorithms not only locate where an object appears in an im-
age, they also recognize where the parts are, either through direct template
correspondences or part representations. However, the performances of these al-
gorithms are still not fully satisfactory, in terms of both efficiency and accuracy.

Marr [21] laid out a path to object recognition with a series of procedures
including: (1) generic edge detection, (2) morphological operators such as edge

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 15–28, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. (a) is the original image, (b) is an edge map by [1], (c) shows automatically

detected junctions of (b), and (d) is our model with 8 junctions

linking and thinning, (3) shape matching on edges and object boundaries. This
direction recently becomes unpopular because it largely relies on obtaining
high quality edges; in addition, its object descriptors are too simplistic to han-
dle the level of complexity in natural images. It is now accepted that perfect
edge/feature detection does not exist [22] and it is hard to strictly separate the
high-level recognition process from the low-level feature extraction stage. Never-
theless, these type of traditional methods still offer many appealing perspectives
compared to modern approaches for being simple, generic, and without heavy
learning.

In this paper, we take a rather traditional route by performing junction ex-
traction first, followed by shape matching using a new set of feature descriptors.
Note that from the remainder of this paper, we refer to junctions as corner points
with more than one-degree connection. Given an object template described by
its boundary contour, we annotate several corner points of high curvature with
their order information; we then design two types of shape-context like features
for describing the junction points. Note that these features are different from the
standard shape context [13] since we only take into account the relevant junctions
on the boundary. This means that, in the detection stage, we need to perform
explicit search to exclude the background clutter. Fig. (1) shows an example of
an object template with its corresponding junction points. To detect/recognize
an object, we first apply a recently developed algorithm [1] to extract junc-
tion points from cluttered images; we then apply a pre-processing procedure
to clean the edges and junctions; shape matching is then performed between
the templates and the extracted junctions with an efficient search strategy. The
proposed system spends about 1 or 2 minutes on an image to recognize an ob-
ject (excluding another 1 or 2 minutes for extracting junctions). Our algorithm
also has advantages of recognizing object parts and dealing with occlusions. The
strength of this paper lies in: (1) the design of a new set of shape descriptors,
(2) the development of a promising matching-based object detection/recognition
system, (3) the achievement of significantly improved results on non-rigid objects
like those in the ETHZ dataset.
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There are several other related methods worth mentioning. Shotton et al. [23]
describes the shape of the entire object using deformable contour fragments and
their relative positions. Since their distance measure using improved Chamfer
Matching is sensitive to the noise, many training samples are required for boost-
ing the discriminative shape features. G. Heitz et al. [24] uses probabilistic shape
to localize the object outlines. Our method is different from [25]. (1) We design
two types of SC-like features of junctions and edges on actively searched contours
whereas [25] uses geometric features of connected contours; (2) we emphasize a
sparse representation on junctions whereas [25] uses dense points for object de-
tection. Other works [26,27,18,28] decompose a given contour of a model shape
into a group of contour parts, and match the resulting contour parts to edge
segments in a given edge image.

2 Junction Features

We use junction points as the basic elements to describe the object contour, and
thus, our shape model could be considered as a simplified polygon with junction
points being the vertices. In general, a majority of the junctions are the high
curvature corner points of degree 2. There are also some junction points with
degree 3 or 4, depending upon the image complexity. However, there are rarely
junctions with degree higher than 4. We adopt a recently developed algorithm
[1] to detect the junction points. and Fig. (1.c) shows an example. In Fig. (1.d),
an object template with 8 junction points is displayed. As we can see, due to the
presence of image clutter, it is not an easy task to match the template to the
object even with reliable low-level features.

Given a contour C of n junction points, we denote C = (J1, J2, ..., Jn), where
Ji is the ith junction on C. Note that we preserve the clockwise order of each
junction as the ordering is important in our model. In our current implementa-
tion, we assume multiple templates for each object type have the same number
of junctions. However, clustering can be used to obtain different clusters of the
same object type.

2.1 Junction Descriptors

We design two types of features, which are called F1 and F2 respectively. For
each junction point Ji, we compute the feature F1(Ji) based on its connected
contour segments using a shape context like approach. Unlike the traditional
shape context approaches [13] where all the points within the context radius are
taken into account, we only use those points on the contour segments.

The two contour segments ei−1,i and ei,i+1 between (Ji−1 and Ji) and (Ji

and Ji+1) respectively are called path to Ji, denoted as P (Ji). We then use
path P (Ji) to characterize Ji and compute the corresponding feature F1(Ji).
Fig. (2.a) gives an example. We sample 10 points at equal space on P (Ji) and
call them path points as (p(i)

1 ...p
(i)
10 ) (see green points in Fig. (2.b)). Here t is the

index along the path from Ji−1 to Ji+1. Note that these 10 points are on the
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Fig. 2. The illustration for the feature (F1) for characterizing the junction points. The

red ones in (a) are the junction points. The green dots in (b) are sampled path points on

which shape-context like features are computed. (c) shows the densely sampled points

for the green dots in (b) to compute shape context information.

path altogether and ei−1,i and ei,i+1 may not have 5 points each since they do
necessarily have the same length. For each path point pt, we compute its feature
h(pt) based on 50 densely sampled points on path P (Ji) at equal space. Fig.
(2.c) gives an illustration. The parameter setting for computing the histogram
of shape context is the same as that in [13]: 5 distance scales and 12 angle scales.
Thus, each h(pt) can be viewed as a feature vector of length 60. Finally, we are
ready to describe F1(Ji) as:

F1(Ji) =
(
h(p(i)

1 ), ..., h(p(i)
10 )

)T
, (1)

which is of length 60 × 10 = 600.
Next, we show how to compute feature F2 to characterize the shape infor-

mation about a contour segment ei,i+1. The approach is similar to the way F1

Fig. 3. The illustration for the feature (F2) for characterizing the contour segments

between junction points. The red ones in (a) are the junction points. The green dots in

(b) are those on which shape-context like features are computed. (c) shows the densely

sampled points for the green dots in (b) to compute shape context information.
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is computed. We sample 10 segment points at equal space on ei,i+1 and denote
them as (p(i,i+1)

1 ...p
(i,i+1)
10 ); for each p

(i,i+1)
t , we compute its shape context fea-

ture based on 50 equally sampled points on ei−1,i, ei,i+1, and ei+1,i+2 altogether;
the parameter setting for computing the shape context is the same as that in
computing F1. This means that the features for ei,i+1 also takes into account its
immediate neighboring segments. Thus,

F2(ei,i+1) =
(
h(p(i,i+1)

1 ), ..., h(p(i,i+1)
10 )

)T
, (2)

which is also of length 60 × 10 = 600. Fig. (3) shows an illustration.

2.2 Junction Descriptors for Edge Maps

Due to the background clutter in natural images, the low-level edge/junction
detection algorithms are always not perfect. We briefly describe some pre-
processing steps in our algorithm. First, standard edge linking methods [29]
are applied on extracted edge maps [1] using morphological operators. Fig. (4)
gives an illustration. Fig. (4.a) shows the original edge segments by [29], which
removes many background clutters. The remaining edges are used to connect
the junction points also by [1].

Fig. 4. The linking process for the segments around a junction

Given an input image I in the detection stage, we use method in [1] to extract
the edges and junction points, and apply a software package [29] to perform edge
linking. We call a junction point detected in a test image, J ′. Next, we discuss
how to compute its corresponding feature, F1(J ′). The idea is to search for the
other two most plausible junctions J ′

− and J ′
+ for J ′ to be adjacent on the object

contour. The junctions on the template are selected based on the guideline to
have high curvature; the search strategy echoes this but without using any shape
matching strategy at this stage.

We first discuss the case where the degree of J ′ is 2. The problem is that the
nearest junctions to J ′, J ′

−(0) and J ′
+(0) from the low-level edge/junction extrac-

tion process, might not be the desirable ones. We propose a simple deterministic
procedure to perform the search:

1) Given a junction J ′, we find its nearest junctions J ′
−(0), J ′

+(0) along the
edges.
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2) Let S = {s1, s2, ..., s|S|} denote the adjacent junctions of J ′
−(t) on the edge

map (the junctions on the path between J ′ and J ′
−(t) are not included in S).

Let x and x−(t) be the coordinates of J ′ and J ′
−(t) respectively. Let xl denote

the coordinates of sl. We compute the angle as:

θl = arccos(
(x − x−(t)).(x−(t) − xl)
|x − x−(t)||x−(t) − xl|

). (3)

3) Then we find a l∗ that satisfy:

l∗ = arg min
l=1,2,...,|S|

θl. (4)

If θl∗ is smaller than a given threshold ξ = 0.175, let t = t + 1, set sl∗ as J ′
−(t)

and go back to step 2). Else, output the J ′
−(t) as the final J ′

−.
The above procedures determine the junction J ′

−, and the procedures to de-
termine J ′

+ are the same. Fig. (5) shows an example when the degree of junction
is 2. In Fig. 5(a), point J ′

1 is a junction and the proposed procedure searches for
the most plausible J ′

−/J ′
+, then the path between point 6 (J−) and point 1 is

chosen for computing feature F1. Fig. (5.b) shows the path between 1 and 6.

Fig. 5. An illustration for finding the path from junction J ′
1 (point 1) to its J ′

−
(point 6)

Once J ′
− and J ′

+ are determined, we then obtain a path P (J ′) from J ′
− to J ′

+

(passing J ′) that is used for computing the feature F1(J ′). Fig. 5(c) gives two
examples on a real image: the two points in yellow are two junctions, and the
red segments denotes the paths used for computing F1 of them separately. We
can also view our algorithm as designed for finding the salient contour segments,
which might be useful in other vision applications.

When the degree of J ′ is higher than 2, we then compute multiple features
F1 for J ′ corresponding different possible paths passing through J ′. Let d(J ′)
denote the degree of J ′. There are d(J ′) junctions that are adjacent to J ′, which
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means there are D = C2
d(J′) paths Pq (q = 1, ..., D) that will pass J ′ ( D pairs

of J−/J+ can be estimated). In order to keep the same with the 2-degree case,
we consider J ′ as D different 2-degree junctions J ′

(q)(q = 1, ..., D) with the same
position and different paths (different F1 feature):

F1(J ′
(q)) = F1(Pq). (5)

Fig. 6 shows an example when the degree of a junction is 3. Point 1 in Fig. (6.a)
can have three possible paths as separately shown in Fig. (6.b,c,d).

Fig. 6. An illustration for junctions with degree higher than 2

3 Detection

Once the junctions are determined, we then proceed to the detection/recognition
stage by matching the features on the junctions and segments to those in the
templates. A two-layer detection framework is proposed: In the first layer, we
classify all the junctions in a edge map M using a kNN classifier; based on the
junction classification results, we use the shortest path to find the order of these
junctions along the contour on M in the second layer; then we localize the object
position. Our goal is to to find a sequence of junctions most similar to the training
sequence, which is similar to shape matching with Dynamic Programming.

3.1 Junction Classification

Recall that for each object type, all templates have the same number of junction
points. For example, for the bottle templates, there are 8 junctions. Given a set
of training templates, we compute the corresponding F1(J) for each junction.
The problem of computing how likely a junction J ′ in a test image belongs to
a specific junction on the bottle becomes a classification problem. Each F1(J)
is a 600 dimension feature and we simply learn a kNN classifier to classify J ′

int {1, 2, ..., 8} classes of junction points. In training a kNN classifier, the most
important thing is to define the distance measure:
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Let f denote a vector value of F1, then we define the distance function dis in
the same manner of SC [13]:

dis(F1(J), F1(J ′)) =
1
2

600∑
i=1

(fi − f ′
i)

2

fi + f ′
i

. (6)

The class label L∗ corresponding to the maximum is output by the algorithm:

L∗ = arg max
i=1,...,n

p(Li|F1(J ′)) (7)

3.2 Graph Model

On the edge/junction map M(I) of image I, we classify all the junctions into n
groups G′

i, based on the trained kNN classifier. Our next goal is to localize the
object boundary using a polygon with junctions as the vertices, which can be
solved by finding the shortest path on a graph. As shown in Fig. (8), we construct
a connected graph model (V,E) in which the vertices V represent junctions in
a test image. Let e(j,k) denote the edge between two junction nodes J ′

j , J
′
k from

adjacent groups G′
i and G′

i+1 respectively. Let wj,k denote the weight of the
edge e(j,k). We set two dummy node Ns and Ne (in red) as the source node
and the target node respectively. The weights of the edges connecting with the
two dummy points are set as zero. The intuition is that all the critical junctions
on the object should lie on the shortest path between Ns and Ne. We use the
shortest path algorithm to solve this problem.

The edge weight wj,k is computed with dissimilarity between the edge e(j,k)

and the edges et
i,i+1(t = 1, ...,M) from the training templates. We use F2 feature

to measure this dissimilarity:

wj,k =
1
M

M∑
t=1

dis(F2(e(j,k)), F2(et
i,i+1)) (8)

Notice that the way for computing F2 feature on a edge map is different from
the case for training template, since we do not know the adjacent junctions on a
edge map. For junctions J ′

j and J ′
k, we can obtain their related paths P (J ′

j) and
P (J ′

k) (as shown Fig. 7 (a)) respectively using the search algorithm proposed in
Section 2.2 firstly. Then we sample the straight segment between J ′

j and J ′
k into

ten points p
(j,k)
t (t = 1, .., 10) at equal space (see Fig. 7 (b)); For each p

(j,k)
t , we

compute its shape contexts feature on 50 equally sample points (see Fig. 7 (c))
on P (J ′

j) and P (J ′
k) together. Finally, the F2(e(j,k)) is described as:

F2(e(j,k)) =
(
h(p(j,k)

1 ), ..., h(p(i,k)
10 )

)T
, (9)

For the shortest path on our graph model, the linear programming has the special
property that is integral. A * search algorithm [19] which uses heuristics to try
to speed up the search can be applied to solve the optimization problem. The
confidence for a detection is the sum of all the edge weights on the shortest path,
which is used for the categories classification.
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Fig. 7. The illustration for computing F2 feature on a edge map

Fig. 8. The illustration for the graph model

4 Experiments

We tested the proposed method on ETHZ shape dataset [16], which contains
5 different shape-based classes (apple logos, bottles, giraffes, mugs, and swans)
with 255 images in total. Each category has significant variations in scale, intra-
class pose, and color which make the object detection task challenging. To have
a fair comparison with [28], we use 1/3 positive images of each class as training
samples, same to [28]. Fig. 9 shows a few training contour templates (the red

Fig. 9. Two training templates for each class from the ETHZ dataset [16]
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points denote the junctions of each contour), which are extracted from the binary
masks of the ETHZ dataset.

Initially, we extracted the gPb-based edge maps and junctions [1]. In an image
of average complexity, there are on average 100 junctions. We take the binary
mask annotation as the training templates. The results under PASCAL criterion
of our method are reported in Fig. (10) with precision vs. recall curve. We
also compare it to the latest results in [28,26] . Fig. (10) shows P/R curves for
the Kimia’s method based on skeletal shape model [28] in red and for contour
selection [26] in blue. Our method significantly outperforms [28] on the four
categories of apple logos, bottles, mugs and swans, and a little better than [28]
in the category of giraffe. This demonstrates that our junction model can well
capture the intra-class variations of objects. Our result is also better than [26] on
all the categories. We also compare the precision at the same recall to [28,26,30].

As Table 1 shows, our method works better than [28] and [30], particularly
in the category of apple logos. This is because our junction features take into
consideration of both local and global structures. Even though our method is

Fig. 10. Precision/Recall curves of our method compared to [28] and [26] for 5 classes

of ETHZ dataset

Table 1. Comparison of the precision at the same recall

Apple logos Bottles Giraffes Mugs Swans

Our method 52.9/86.4 69.8/92.7 82.4/70.3 28.2/83.4 40.0/93.9
Zhu et al. [26] 49.3/86.4 65.4/92.7 69.3/70.3 25.7/83.4 31.3/93.9

Trinh&Kimia [28] 18.0/86.4 65.1/92.7 80.0/70.3 26.3/83.4 26.3/93.9

Ferrari et al. [30] 20.4/86.4 30.2/92.7 39.2/70.3 22.7/83.4 27.1/93.9
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Fig. 11. The detection results of ETHZ dataset

just slightly better than [28] in the category of giraffe, our method does not need
multi-scale shape skeletons as our method is based on junctions that are more-
or-less scale-invariant. Fig. (11) shows some detection results by the proposed
method. The points and segments in red are the junction points and the poly-
gons that use the detection junctions as the vertices. We also show the contour
segments (in green) related to each junction in these images; we observe that
our method not only can detect the object position robustly but also have good
localization of the object contour, benefiting from the junctions.

The last row in Fig. (11) shows a few false detections. It’s very interesting
that we detected a girl when detecting a bottle in the first image (last row); in
the second image, we detected a photo frame when detecting a mug; in the third
image, we detected a mug when detecting a swan; the fourth and fifth images



26 B. Wang et al.

Fig. 12. The curves about detection rate (DR) at 0.3 FPPI vs. the percentage of miss

contours for 5 classes of ETHZ dataset

Fig. 13. The detection results for partial contour detection with the proposed method

(last row) show two examples about false positives. Notice that even we could
not detect a swan in the fourth image, the segments detected out are very similar
to a swan, which is a graceful failure.

Our method is not limited to detect the whole contour of objects. It can also
be used to detect object parts. For detecting a contour part, we only use a group
of consecutive junctions from J t

i to J t
i+m(m < n) on the training templates.

We randomly choose the start junction and end junction with a fixed length
percentage for training, and to make a clear evaluation of performance, we use
detection rate vs false positive per image(DR/FPPI). Fig.12 reports the average
detection rate at 0.3 FPPI for five classes of ETHZ dataset. In Fig. 12, we observe
that our detection rates can still reach above 0.4 at 0.3 FPPI when 50% of the
training contours are missing. This demonstrates that the proposed junction
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features are stable and effective for recognizing shapes in clutter images. Fig. 13
shows a few detection results with only parts detected.

5 Conclusions and Future Work

In this paper, we have introduced a shape-based object detection/recognition
system and showed its advantage on detecting rigid and non-rigid objects, like
those in the ETHZ dataset. Our method follows the line of template matching
by defining contour templates with a set of junction points. We found the de-
signed shape descriptors to be informative and our system outperforms many
contemporary approaches using heavy learning and design. We anticipate junc-
tion features to be useful for other vision tasks. In the future, we plan to combine
the shape features with appearance information to provide more robust results.
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Abstract. We propose a method for object category localization by par-

tially matching edge contours to a single shape prototype of the category.

Previous work in this area either relies on piecewise contour approxima-

tions, requires meaningful supervised decompositions, or matches coarse

shape-based descriptions at local interest points. Our method avoids

error-prone pre-processing steps by using all obtained edges in a partial

contour matching setting. The matched fragments are efficiently sum-

marized and aggregated to form location hypotheses. The efficiency and

accuracy of our edge fragment based voting step yields high quality hy-

potheses in low computation time. The experimental evaluation achieves

excellent performance in the hypotheses voting stage and yields compet-

itive results on challenging datasets like ETHZ and INRIA horses.

1 Introduction

Object detection is a challenging problem in computer vision. It allows local-
ization of previously unseen objects in images. In general, two main paradigms
can be distinguished: appearance and contour. Appearance-based approaches
form the dominant paradigm using the bag-of-words model [10], which analyzes
an orderless distribution of local image features and achieves impressive results
mainly because of powerful local image description [11].

Recently, the contour-based paradigm has become popular, because shape
provides a powerful and often more generic feature [12] since an object contour
is invariant to extreme lighting conditions and large variations in texture or color.
Many different contour-based approaches exist and the research falls mainly into
four categories. The works of [1,2] focus on the aspect of learning edge codebooks,
where chamfer matching is used to evaluate local shape similarity. Other research
uses piecewise approximations of the edges by short segments [13,4] or supervised
decompositions [8]. In [5,6,14] the problem is cast as a matching between shape-
based descriptors on local interest points.
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Fig. 1. Overview of related work: Our approach relaxes the piecewise approximations

and local neighborhoods. We use partial matching to find contour fragments belonging

to the foreground rather than discarding entire edges. See Section 2 for details.

The main motivation for our work is that ”connectedness is a fundamen-
tal powerful driving force underexploited in object detection” [3]. Viewing edge
contours as connected sequences of any length instead of short segment approxi-
mations or local patches on interest points provides more discrimination against
background cutter. In our contributions we focus on the partial matching of
noisy edges to relax the constraints on local neighborhoods or on assigning en-
tire edges as background disregarding local similarities. We formulate a category
localization method which efficiently retrieves partial edge fragments that are
similar to a single contour prototype. We introduce a self-containing descriptor
for edges which enables partial matching and an efficient selection and aggrega-
tion of partial matches to identify and merge similar overlapping contours up to
any length. A key benefit is that the longer the matches are, the more they are
able to discriminate between background clutter and the object instance. In this
way we lift standard figure / ground assignment to another level by providing
local similarities for all edges in an image. We retrieve these partial contours
and combine them directly in a similarity tensor and together with a clustering-
based center voting step we hypothesize object locations. This greatly reduces
the search space to a handful of hypotheses and shows excellent performance
compared to state of the art in the voting stage. For a full system evaluation,
the hypotheses are further verified by a standard multi-scale histogram of gra-
dients (HOG) classifier.

2 Related Work

There exists a range of work in the contour-based paradigm which achieve state-
of-the-art performance for several object categories using contour information,
for an overview see Figure 1. The research falls into four main categories, namely
(i) learning codebooks of contour fragments, (ii) approximating contours by
piecewise segments, (iii) using local description of the contour at selected in-
terest points, or (iv) assigning entire edges to either foreground or background.
Additional techniques are used in each work, for example learning deformation
models, sophisticated cost functions or probabilistic grouping.



Partial Edge Contour Matching for Object Detection 31

Learning codebooks: Shotton et al. [1] and Opelt et al. [2] concurrently proposed
to construct shape fragments tailored to specific object classes. Both find matches
to a pre-defined fragment codebook by chamfer matching to the query image
and then find detections by a star-shaped voting model. Their methods rely on
chamfer matching which is sensitive to clutter and rotation. In both approaches
the major aspect is to learn discriminative combinations of boundary parts as
weak classifiers using boosting to build a strong detector.

Piecewise approximation: Ferrari et al. [15,3] build groups of approximately
straight adjacent segments (kAS) to work together in a team to match the
model parts. The segments are matched within a contour segmentation net-
work which provides the combinations of multiple simple segments using the
power of connectedness. In later work they also show how to automatically learn
codebooks [3], or how to learn category shape models from cropped training im-
ages [16]. In a verification step they use a thin-plate-spline (TPS)-based matching
to accurately localize the object boundary. Similar to this, Ravishankar et al. [4]
use short segments to approximate the outer contour of objects. In contrast to
straight segments, they prefer slightly curved segments to have better discrim-
inative power between the segments. They further use a sophisticated scoring
function which takes local deformations in scale and orientations into account.
However, they break the reference template at high curvature points to be able
to match parts, again resulting in disjoint approximations of the actual contour.
In their verification stage, the gradient maps are used as underlying basis for
object detection avoiding the error-prone detection of edges.

Shape-based interest points: This category uses descriptors to capture and match
coarse descriptions of the local shape around interest points. Leordeanu et al. [17]
use simple features based on normal orientations and pairwise interactions be-
tween them to learn and detect object models in images. Their simple features
are represented in pairwise relations in category specific models that can learn
hundreds of parts. Berg et al. [14] formulate the object detection problem as
a deformable shape matching problem. However, they require hand-segmented
training images and do not learn deformation models in training. Further in
the line are the works of Maji and Malik [5] and Ommer and Malik [6] which
match geometric blur features to training images. The former use a max-margin
framework to learn discriminative weights for each feature type to ensure max-
imal discrimination during the voting stage. The latter provide an interesting
adaptation of the usual Hough-style center voting. Ommer and Malik trans-
form the discrete scale voting to a continuous domain where the scale is another
unknown in the voting space. Instead of multiple discrete center vectors, they
formulate the votes as lines and cluster these to find scale-coherent hypotheses.
The verification is done using a HOG-based fast SVM kernel (IKSVM).

Figure / ground assignment: Similar in concept but not in practice are the
works of Zhu et al. [8] and Lu et al. [9]. They cast the problem as figure / ground
labeling of edges and decide for a rather small set of edges which belong to
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the foreground and which are background clutter. By this labeling they reduce
the clutter and focus on salient edges in their verification step. Lu et al. use
particle filters under static observation to simultaneously group and label the
edge contours. They use a new shape descriptor based on angles to decide edge
contour similarity. Zhu et al. use control points along the reference contour to find
possible edge contour combinations and then solve cost functions efficiently using
linear programming. They find a maximal matching between a set of query image
contours and a set of salient contour parts from the reference template, which
was manually split into a set of reference segments. Both assume to match entire
edge contours to the reference sets and require long salient contours. Recent
work by Bai et al. [7] is also based on a background clutter removal stage called
shapeband. Shapeband is a new type of sliding window adapted to the shape
of objects. It is used to provide location hypotheses and to select edge contour
candidates. However, in their runtime intensive verification step they iteratively
compute shape context descriptors [18] to select similar edge contours. Another
recent approach by Gu et al. [19] proposes to use regions instead of local interest
points or contours to better estimate the location and scale of objects.

We place our method in between the aforementioned approaches. We use edge
contours in the query image and match them at any length from short contour
segments up to full regions boundaries using partial shape matching. In such a
setting the similarity to the prototype shape decides the complexity and length
of the considered contours.

3 Partial Shape Matching for Object Detection

In the following sections we describe our proposed approach to detect objects
by computing partial similarities between edge contours in a query image and a
reference template. For the sake of clarity, we will now define some terms used
throughout the paper, see Figure 2 for a visual illustration. We use the term
fragment to denote a part of an edge contour. Edge contours can be arbitrarily
long, contain irrelevant parts or may also be incomplete due to missing edge
detector responses or occlusions which make parts of the object invisible. The
query contours are the connected edge contours found by the detector and sub-
sequent 8-neighborhood linking. The reference contour is a single hand-drawn
model of the object’s outer boundary. A valid matched fragment is defined as a
part of an edge contour that is similar to a part of the reference contour.

Our goal is to identify matches from fragments of arbitrary length (contained
within the query edges) to the reference contour, by analyzing a self-contained
representation and description of the shape of the detected edge contours. We
want to build a representation that contains the whole as well as any part of a
contour, which enables matching independently from the remaining parts.

Our detection method consists of three parts: First, edges are extracted from
an image and represented as lists of coordinates. This representation is the basis
for the self-containing contour descriptor. Second, the matching is a vital com-
ponent which allows the efficient retrieval of contour fragments similar to a given
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Fig. 2. Illustration of 2D angle description and matching. a-b) An angle is measured

between any two sampled points bi and bj , which define a fragment inside an edge

contours, c) shows partial matches in an occluded edge to a reference contour.

reference prototype. Third, for each matched fragment we calculate a center vote
to estimate the location of the searched object and aggregate coherent fragments
based on their voting, scale and correspondence to the reference.

3.1 Fragment Description

Our goal is to exploit the connectedness of an edge contour implicitly yet allowing
to retrieve parts of an edge as fragments. Many different methods have been pro-
posed for partial contour matching. Angular representations are a natural choice
due their direct encoding of geometric layout. For example, Turney et al. [20] use
the slope θ and arc length s as local representation for boundaries, however only
on a small set of images. In a more recent work Brendel and Todorovic [21]
find matching fragments in complex images using circular dynamic time warp-
ing with a runtime of 200ms per match. Chen et al. [22] proposed an efficient
matching, however their descriptor only measures local shape and ignores global
contour similarity. Felzenszwalb et al. [23] proposed a hierarchy of deformable
shapes where only a single contour can be matched in subtrees and matching
two contours requires 500ms. A recent hierarchical approach by Kokkinos and
Yuille [24] formulates the task as image parsing and provide fast coarse to fine
matches. Lu et al. [9] developed a shape descriptor based on a 3D histogram of
angles and distances for triangles connecting points sampled along the contours.
They do not allow partial matching and the descriptor requires high computa-
tional costs. Donoser et al. [25] developed a descriptor which can be seen as a
subset of [9], where angles between any two points and a fixed third point on a
closed contour are analyzed. They demonstrate efficient matching between two
closed shapes within a few milliseconds.

Inspired by the high quality of hierarchical approaches, we adopt the de-
scriptor from Donoser et al. [25], which was designed for matching whole object
silhouettes, to handle the requirements of object detection in cluttered images.
First, partial matching of the cluttered edges must be possible. Since there are
no closed contours around a cluttered object after standard edge detection, we
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design a novel self-containing descriptor which enables efficient partial matching.
Second, similar to hierarchies the descriptor encodes coarse and fine contour in-
formation. Different sampling of the descriptor enables direct access to different
levels of detail for the contour, whereas the full descriptor implicitly contains all
global and local contour information.

The method in [25] proposed an efficient matching step to describe and then
retrieve all redundant and overlapping matching combinations. Their brute force
algorithm delivers good results on clean silhouette datasets. However, for an ob-
ject detection task this is not feasible due to the prohibitive combinators (mul-
tiple scales, multiple occlusions and hundreds of edges per image). Additionally,
slightly shifted matches at neighboring locations contradict each other and do
not provide coherent object location hypotheses. Therefore, in contrast to [25],
we propose an efficient summarization scheme directly in an obtained 3D sim-
ilarity tensor. Such an approach has several strong benefits like selection and
aggregation of only coherent center vote matches, longer merged matches out
of indiscriminate shorter segments and further an immense speedup due to the
reduction of the number of returned matches. The main motivation is to exploit
the connectedness of edge contours instead of using individual interest points or
short piecewise approximations of edge contours.

As a first step we sample a fixed number N of points from the closed reference
contour that can be ordered as R = {r1, r2, . . . , rN}. As next step we have
to extract connected and labeled edge contours from the query image. Edge
detection and linking in general is a quite challenging task [26]. We apply the
Pb edge detector [27] and link the results to a set of coordinate lists. For the
obtained query contours, points are sampled at equal distance, resulting in a
sequence of points B = {b1, b2, . . . , bM} per contour. The sampling distance
d between the points allows to handle different scales. Sampling with a larger
distance equals to a larger scale factor, and vice versa. For detecting objects in
query images we perform an exhaustive search over a range of scales, which is
efficiently possible due to the properties of our descriptor and matching method.

We use a matrix of angles which encode the geometry of the sampled points
leading to a translation and rotation invariant description for a query contour.
The descriptor is calculated from the relative spatial orientations between lines
connecting the sampled points. In contrast to other work [9,25], we calculate
angles αij between a line connecting the points bi and bj and a line to a third
point relative to the position of the previous two points. This angle is defined

αij =

⎧⎪⎨⎪⎩
�(bibj, bjbj−Δ) if i < j

�(bibj, bjbj+Δ) if i > j

0 if abs(i− j) ≤ Δ

, (1)

where bi and bj are the ith and jth points in the sequence of sampled points of
the contour and Δ is an offset parameter of the descriptor (5 for all experiments).
See Figure 2 for an illustration of the choice of points along the contour. The
third point is chosen depending on the position of the other two points to ensure
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that the selected point is always inside the contour. This allows us to formulate
the descriptor as a self-containing descriptor of any of its parts.

The angles αij are calculated between every pair of points along a contour. In
such a way a contour defined by a sequence of M points is described by an M×M
matrix where an entry in row i and column j yields the angle αij . Figure 3 illus-
trates the descriptors for different shape primitives. The proposed descriptor has
four important properties. First, its angular description makes it translation and
rotation invariant. Second, a shift along the diagonal of the descriptor handles
the uncertainty of the starting point in edge detection. Third, it represents the
connectedness of contours by using the sequence information providing a local
(close to matrix diagonal) and global (far from matrix diagonal) description.
And most importantly, the definition as a self-containing descriptor allows to
implicitly retrieve partial matches which is a key requirement for cluttered and
broken edge results.

Fig. 3. Visualization of descriptors for selected contour primitives. Middle row shows

descriptors from [25] and bottom row shows our descriptors. Note how each fragment

is included in its respective closed contours (square and circle) in our version, which is

not fulfilled for [25] since it was designed for closed contour matching.

3.2 Fragment Matching and Merging

Matching and merging partial contours is an important part of our approach
and is based on the 2D edge contour descriptors introduced in the previous sec-
tion. For any two descriptors representing two contours, the aim of matching is
to identify parts of the two contours which are similar to each other. In terms
of comparing corresponding descriptor matrices, one has to compare all sub-
blocks of the descriptor matrices to find all matching possibilities and lengths.
For efficient calculation of all similarity scores, we apply the algorithmic opti-
mization using integral images as proposed in [25] to access the partial descriptor
differences in constant time, which returns the similarities (differences between
our angle descriptors) for all matching triplets {r, q, l} stored in a 3D similarity
and correspondence tensor Γ(r,q,l). The first two dimensions identify the starting
points of the match in the reference (r) and query edge contour (q) and the third
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dimension defines the length (l) of the match. Note that this tensor fully defines
all possible correspondences between the reference and the edge contour. Figure 4
shows the similarity tensor for the partial matching example in Figure 2. The
two matched fragments correspond to the peaks (a) in the tensor, here a single
slice at a fixed length l = 11 is shown.

A main issue is redundancy within the tensor as there may be many over-
lapping and repetitive matches. This poses a problem for object detection in
cluttered images. Our goal is to find the longest and most similar fragments
and merge repetitive matches instead of retrieving all individual matches. This
is an important part of this work. First, it is necessary to outline some of the
properties of our 3D similarity and correspondence tensor Γ(r,q,l).

I. A fragment (r, q, l) is assigned a similarity (Euclidean distance between an-
gular descriptors) by Γ(r,q,l).

II. Length variations (r, q, l2) with l2 < l define the same correspondence, yet
shorter in length.

III. Diagonal shifts in the indices (r + 1, q + 1, l) also represent the same match,
yet one starting point later.

IV. Unequal shifts (r + 1, q, l) define a different correspondence, however very
similar and close.

V. Due to occlusions or noise, multiple matches per edge contour may exist.
The example in Figure 2 is a shifted match much later (r + 13, q + 32, l)
defining the same correspondence, yet skipping (32-13=19) points of noise.

VI. Matches near to the end of each contour (if not closed) have a maximal
length given by the remaining points in each contour sequence.

Perfect matches would result in singular peaks in a slice. However due to these
small shifts along the same correspondence or with an unequal offset, matches
result in a hill -like appearance of the similarity, see Figure 4a. Given these prop-
erties we now define a matching criterion to deliver the longest and most similar
matches, i.e. finding the peaks not once per slice but for the entire 3D tensor.
This summarization is made of three steps: (a) finding valid correspondences
satisfying the constraints on length and similarity, (b) merging all valid corre-
spondences to obtain the longest combination of the included matches (property
II) and (c) selecting the maximal similarity of matches in close proximity (prop-
erty IV). The steps are in detail as following:

First, we define a function L(r, q, l) which gives the lengths at any given valid
correspondence tuple r, q as

L(r, q, l) =

{
l if Γ(r,q,l) ≤ slim and l ≥ llim

0 else
, (2)

where the value at L(r, q, l) is the length of a valid fragment. A valid fragment
has a similarity score below the limit slim and a minimal length limit of llim.
This function is used to define a subset of longest candidates by
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Ψ(r,q) = ∀r,q : arg max
l∈min(N,M)

L(r, q, l), (3)

where Ψ(r,q) is a subset of Γ(r,q,l) containing the longest matches at each corre-
spondence tuple (r,q). This set contains matches for every possible correspon-
dence given by the constraints on similarity and matching positions (see property
II, VI). However, we further want to reduce this to only the local maxima (con-
serving property IV). Since the set can now be considered as a 2D function, we
find the connected components C satisfying Ψ(r,q) > 0. The final set of candidates
are the maxima per connected component and is defined as

Υ(r,q,l) = ∀ci ∈ C : argmax
Γ(r,q,l)

(Ψ(r,q) ∈ ci), (4)

where Υ(r,q,l) holds the longest possible and most similar matches given the
constraints on minimum similarity slim and minimal length llim. In the example
shown in Figure 2 and 4 the final set contains two matches, which are the longest
possible matches. Note that shorter matches in the head and back are possible,
but are directly merged to longer and more discriminative matches by analyzing
the whole tensor. Furthermore, obtained matches are local maxima concerning
similarity scores. This provides an elegant and efficient summarization leading
to coherent and discriminative matches and reduced runtime.
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Fig. 4. Illustration of the similarity and correspondence tensor Γ(r,q,l) at length l = 11

for example shown in Figure 2(c): (a) the two peaks correspond to the matches found.

Matching uncertainty results in multiple peaks in a hill -like appearance. (b) shows the

same similarity in a flat view, where red signals high similarity and dark blue defines

invalid matches due to length constraints. Best viewed in color.

3.3 Hypothesis Voting

Matching as described in the previous section provides a set of matched frag-
ments for the query edges, which have to be combined to form object location
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hypotheses. In the following we describe how matched fragments are grouped
for object locations hypotheses and scores are estimated.

Fragment Aggregation. Up to this point we have a set Υ(r,q,l) of matched
parts of edge contours detected in a query image which are highly similar to the
provided prototype contour. Every match has a certain similarity and length.
Further, we can map each matched contour to its reference contour and estimate
the object centroid from the given correspondence tuple. The aggregation of the
individual fragments identifies groups of fragments which compliment each other
and form object location hypotheses.

For this step we cluster the matched fragments analyzing their corresponding
center votes and their scale by mean-shift mode detection with a scale-dependent
bandwidth. The bandwidth resembles an analogy to the classical Hough accu-
mulator bin size, however with the added effect that we combine the hypotheses
locations in a continuous domain rather than discrete bins.

Hypothesis Ranking. All obtained hypotheses are ranked according to a con-
fidence. For this purpose we investigate two ranking methods. The first is based
on the coverage of detected fragments, where ζCOV is a score relative to the
amount of the reference contour that is covered by the matched fragments, de-
fined as

ζCOV :=
1
N

N∑
i=1

(fi × Si), (5)

where fi is the number of times the i-th contour point has been matched and
Si is the corresponding weight of this point. This is normalized by the number
of contour points N in the reference contour. The coverage score ζCOV provides
a value describing how many parts are matched to the reference contour for the
current hypothesis. We use a uniform weight of Si = 1. However, for example
weights given by the contour flexibility [28] would be an interesting aspect.

As a second score, we use a ranking as proposed by Ommer and Malik [6].
They define the ranking score ζPMK by applying an SVM classifier to the image
windows around the location hypotheses. The kernel is the pyramid match kernel
(PMK) [29] using histograms of oriented gradients (HOG) as features. Positive
samples for each class are taken from the ground truth training set. Negative
samples are retrieved by evaluating the hypotheses voting and selecting the false
positives. The bounding boxes are resized to a fixed height while keeping me-
dian aspect ratio. Since the mean-shift mode detection may not deliver the true
object location, we sample locations in a grid of windows around the mean-shift
center. At each location we evaluate the aforementioned classifier and retrieve
the highest scoring hypothesis as new detection location.

4 Experiments

We demonstrate the performance of our proposed object category localization
method on two different reference data sets: ETHZ (Section 4.1) and INRIA
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Table 1. Hypothesis voting, ranking and verification stages show competitive detection

rates using PASCAL criterion for the ETHZ shape database [15] compared to related

work. For the voting stage our coverage score increases the performance by 6.5% [6],

8.5% [5] and 16.1% [13] leading to state-of-the-art voting results at reduced runtime.

Voting and Ranking Stage (FPPI=1.0) Verification Stage (FPPI=0.3/0.4)

ETHZ Hough M2HT wac Our PMK Our M2HT PMK KAS System Our
Classes [13] [5] [6] work [6] work [5] [6] [3] Full [13] work

Apples 43.0 80.0 85.0 90.4 80.0 90.4 95.0/95.0 95.0/95.0 50.0/60.0 77.7/83.2 93.3/93.3

Bottles 64.4 92.4 67.0 84.4 89.3 96.4 92.9/96.4 89.3/89.3 92.9/92.9 79.8/81.6 97.0/97.0

Giraffes 52.2 36.2 55.0 50.0 80.9 78.8 89.6/89.6 70.5/75.4 49.0/51.1 39.9/44.5 79.2/81.9

Mugs 45.1 47.5 55.0 32.3 74.2 61.4 93.6/96.7 87.3/90.3 67.8/77.4 75.1/80.0 84.6/86.3

Swans 62.0 58.8 42.5 90.1 68.6 88.6 88.2/88.2 94.1/94.1 47.1/52.4 63.2/70.5 92.6/92.6

Average 53.3 63.0 60.9 69.4 78.6 83.2 91.9/93.2 87.2/88.8 61.4/66.9 67.2/72.0 89.3/90.5

horses (Section 4.2). We significantly outperform related methods in the hy-
potheses generation stage, while attaining competitive results for the full system.
Results demonstrate that exploiting the connectedness of edge contours in a par-
tial contour matching scenario enables to accurately localize category instances
in images in efficient manner. Note also that we only use binary edge information
for the hypothesis voting and do not include edge magnitude information, which
plays important roles in other work [3,4,6,5].

Our proposed object localization method is not inherently scale invariant. We
analyze 10 scales per image, where scale is defined by the distance between the
sampled points. Localization of an object over all scales (!) requires on average
only 5.3 seconds per image for ETHZ in a Matlab implementation.

4.1 ETHZ Shape Classes

Results are reported on the challenging ETHZ shape dataset consisting of five
object classes and a total of 255 images. All classes contain significant intra-class
variations and scale changes. The images sometimes contain multiple instances
of a category and have a large amount of background clutter.

Unfortunately direct comparison to related work is quite hard since many dif-
ferent test protocols exist. Foremost, on the ETHZ dataset there exist two main
methods for evaluation. First, a class model is learned by training on half of the
positive examples from a class, while testing is done on all remaining images (half
of positive examples and all other negative classes) averaged over five random
splits. Second, the ETHZ dataset additionally provides hand-drawn templates
per class to model the categories. This step requires no training and has shown
to provide slightly better results in a direct comparison [13]. Further, the detec-
tion performance may be evaluated using one of the two measures, namely the
stricter PASCAL or the 20%-IoU criterion, which require that the intersection
of the bounding box of the predicted hypotheses and the ground truth over the
union of the two bounding boxes is larger than 50% or 20% respectively. Ad-
ditional aspects in the evaluation are the use of 5-fold cross validation, aspect
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ratio voting and most influential the use of features. Using strong features in-
cluding color and appearance information naturally has a benefit over gradient
information and again over pure binary shape information. This spectrum of
features has the benefit to complement each other. Thus in our approach we use
the hand-drawn models to match only binary edges in an query image and for
a full system we further verify their location using a standard gradient-based
classifier trained on half of the positive training samples.

Class-wise results for ETHZ using the strict PASCAL criterion are given in
Table 1. The focus of this work lies on hypothesis voting stage, where we can
show excellent results of 69.4% and 83.2%, without and with a PMK classifier
ranking. The PMK ranking increases the scores for three classes (bottles, giraffes
and mugs). The reason is that the classifier is better able to predict the instance
of these classes, especially for mugs, where our system produces twice as many
hypotheses compared to the other classes (on average 20 for mugs compared to
8 for the other classes). The coverage score performs better on compact object
classes (applelogos and swans). Please note, the other methods do not use hand-
drawn prototypes. We achieve an overall improvement over related work ranging
from 6.5% [6], 8.5% [5] to 16.1% [13] without classifier ranking, and 4.6% over [6]
using a classifier ranking. We also achieve competitive results after verification
of 90.5% compared to 66.9% [3], 72.0% [13], 88.8% [6] and 93.2% [5] at 0.4 FPPI.

Due to the lack of hypothesis voting results for other approaches, we also
provide a range of comparisons with previous work using the full system. We
evaluate our method using the 20%-IoU criterion and summarize the results
in Table 2. Compared to related work we also achieve excellent results using
this criterion. Note again, that direct comparison has to be seen with caution,
since methods either use hand-drawn or learned models. See Figure 5 for some
exemplary successful detections and some failure cases.

Table 2. Average detection rates for related work on hand-drawn and learned models

ETHZ shape classes: Verification Stage (FPPI = 0.3/0.4) using 20%-IoU

Method Supervised Template Template Template Codebook Learned Template+Learned

Lu [9] Ravishankar [4] Ferrari [15] Ferrari [16] Ferrari [3] Ferrari [16] Our work
Average 90.3/91.9 93.0/95.2 70.5/81.5 82.4/85.3 74.4/79.7 71.5/76.8 94.4/95.2

4.2 INRIA Horses

As a second dataset we use the INRIA horses [13], which consists of 170 im-
ages with one or more horses in side-view at several scales and cluttered back-
ground, and 170 images without horses. We use the same training and test split
as [13] of 50 positive examples for the training and test on the remaining images
(120+170). We again use only a single reference template which was chosen from
the pixel-wise segmentation of a random horse from the training set. For this
dataset the performance is 83.72% at FPPI=1.0 and thus is better than recent
results 73.75% by [16], 80.77% by [3] and almost as good as 85.27% by [5], which
additionally vote for aspect ratios. Presumably this would also increase our recall
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Fig. 5. Results on ETHZ shape classes and INRIA horses (also see additional material)

for the strongly articulated horses since we detect the partial matches, however
a single rigid reference template does not capture the centroid change.

5 Conclusion

We have presented a new approach in the paradigm of contour-based object
detection based on partial contour matches to a reference template and show
competitive results on state-of-the-art datasets like ETHZ shape and INRIA
horses. Complementary to related work, we demonstrated that we can relax the
approximations by piecewise segments by providing partial matching of contours
instead of selecting or ignoring complete contours as well as extending the search
beyond local neighborhoods of interest points. Our system implicitly handles
parts of a contour and thus does not require grouping long salient curves or
harmful splitting of contours to be able to match parts. Though a verification
stage is a vital part for a full object detection system, we believe the focus should
lie on better reflecting the hypotheses voting space, since this has a direct effect
on the speed and accuracy of the full detector performance. In future work we
will investigate learning discriminating weights [1,5] and interactions between
contour fragments [17,3].
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Abstract. This paper presents a new object representation, Active

Mask Hierarchies (AMH), for object detection. In this representation,

an object is described using a mixture of hierarchical trees where the

nodes represent the object and its parts in pyramid form. To account for

shape variations at a range of scales, a dictionary of masks with varied

shape patterns are attached to the nodes at different layers. The shape

masks are “active” in that they enable parts to move with different dis-

placements. The masks in this active hierarchy are associated with his-

tograms of words (HOWs) and oriented gradients (HOGs) to enable rich

appearance representation of both structured (eg, cat face) and textured

(eg, cat body) image regions. Learning the hierarchical model is a latent

SVM problem which can be solved by the incremental concave-convex

procedure (iCCCP). The resulting system is comparable with the state-

of-the-art methods when evaluated on the challenging public PASCAL

2007 and 2009 datasets.

1 Introduction

The difficulty of object detection is because objects have complex appearance
patterns and spatial deformations which can all occur at a range of different
scales. Appearance patterns can be roughly classified into two classes: (i) struc-
tural (e.g., the head of a cat) which can be roughly described by the inten-
sity edges and their spatial relations (e.g. by histogram of oriented gradients
(HOGs)), and (ii) textural (e.g., the fur of a cat) which can be modeled by his-
tograms of image features or words (e.g., histogram of words (HOWs)). Moreover
these patterns can deform spatially both by translation – i.e., an entire image
patch move – and/or by being partially masked out. The approach in this pa-
per develops a novel Active Mask Hierarchy (AMH) which combines both types
of appearance cues (HOWs and HOGs), allows subparts of the object to move
actively and use a variety of different masks to deal with spatial deformations,
and represents these appearance and geometric variations at a range of scales
by a hierarchy.

Our work relates to two recent object representations which have made a
significant impact in computer vision: (i) spatial pyramids [1], and (ii) part-
based model [2]. But both approaches have strengths and weaknesses in the way
that they deal with appearance variations and shape deformations. In this paper
we seek an object representation which combines their strengths.
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Fig. 1. (a) A spatial pyramid where the cells are bound together. (b) An Active Mask

Hierarchy is represented by a tree structure where nodes are connected between con-

secutive layers and allowed to move object parts with displacements at different scales.

(c) Shape masks include 11 generic shapes, such as vertical and horizontal bars, ori-

ented L’s, etc. The white regions show the “valid” areas, where features are computed,

while the black regions are “invalid”. The first mask is the rectangle used in standard

spatial pyramids. (d) The train image example. A rectangle is used at the top layer to

represent the entire object including some background. (e) Another (diagonal) mask is

also used at the top layer to describe the train. (f) Four masks at the second level can

be translated actively to better describe the object shape.

Spatial pyramids were proposed in [3] for scene classification and applied to
object detection by [1]. A spatial pyramid is a three-layer pyramid, as shown in
figure 1.(a), where cells at different levels of the grid specify histograms of words
(HOWs) located in the corresponding spatial domain yielding a coarse-to-fine
representation. HOWs are particularly successful at modeling textured regions
(e.g., a cat’s body), but are not well suited for describing structured regions (e.g.,
a cat’s face). Some papers [4,1] use complementary descriptors, ie, histograms of
oriented gradients (HOGs) [5], to account for other appearance variations. But
two limitations still remain in the pyramid framework: (i) the cells are tightly
bound spatially and are not allowed to move in order to deal with large spatial
deformations of object parts (although pyramid of HOWs do tolerate a certain
amount of spatial deformation). (ii) the cells have a rigid rectangular form and
so are not well suited for dealing with partial overlaps of the object and its
background. For example, the bounding box for the train in figure (1.d) includes
cluttered background which makes HOWs less distinguishable.

Part-based models [2] are two-layer structures where the root node represent
the entire object while the nodes at the second layers correspond to the parts.
Unlike spatial pyramids, the nodes are allowed to move to account for large
deformations of object parts. But part-based models also have two limitations.
Firstly, the appearance models of the parts, which is based on HOGs [2], is
not suitable for regions with rich texture properties where gradients are not
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very informative. Secondly, the shallow structure (i.e., lack of a third layer)
limits the representation of detailed appearance of the object and prevents the
representation of small scale shape deformations.

This paper presents a new representation, called “Active Mask Hierarchies
(AMH)”, which offers a richer way to represent appearance variations and shape
deformations. Our approach combines spatial pyramids and part-based models
into a single representation. First observe that an active mask hierarchy can
be considered as a spatial pyramid with relaxed bonds – hence “active” (see
fig. 1.(b)). It can be represented by a tree structure where nodes at consecutive
layers are vertically related, and assigned latent position variables to encode
displacements of parts. Similarly active mask hierarchies can be thought of as
a three-layer part-based model where “parts” together with their connections
are simply designed as the active cells at different layers which are organized
in a form of multi-level grids. As a result, the complicated procedure of part
selection [2] is avoided. We will show that the multi-level grid design does not
prevent us from achieving good performance.

Cells at different levels of the active mask hierarchy have appearance features
based on HOGs and HOWs so as to model both structured and textured regions.
Moreover, we assign a dictionary of masks with various binary shape patterns
(fig. 1.(c)) to all nodes which enable the part to deal with variations in the
shape (i.e., overcome the restriction to regular rectangular templates). The fea-
tures are only measured in the white areas specified by the masks. For example,
masks (fig. 1.(d) and 1.(e)) at the top layer give the coarse descriptions of the
boundary of the entire object. The active masks at the lower layers (fig.1.(f))
with displacements combine to represent the object parts more accurately. The
selection of masks is performed by weighting their importance.

Learning the hierarchical model is a latent structural SVM problem [6] which
can be solved by the concave-convex procedure (CCCP). CCCP has been suc-
cessfully applied to learning models for object detection [7,8]. In order to reduce
the training cost we use the variant called incremental concave-convex procedure
(iCCCP) first reported in [8]. iCCCP allows us to learn hierarchical models using
a large-scale training set efficiently.

Our experimental results demonstrate that the active mask hierarchies achieve
state-of-the-art performance evaluated on the challenging public PASCAL 2007
and 2009 datasets [9, 10]. As we show, the proposed method performs well at
detecting both structured objects and textured objects.

2 Related Work

Hierarchical decomposition has also been explored in object recognition and
image segmentation, such as [11, 12, 13]. Our use of shape masks is partially
inspired by Levin and Weiss’s fragments [14], Torralba et al. ’s spatial mask [15]
and by Zhu et al.’s recursive segmentation templates [16]. But [14,16] are applied
to segmentation and not to object detection. The masks used in [15] are not
associated with latent postion variable. The idea of “active” parts is similar in
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spirit to Wu et al.’s active basis model [17], which does not involve a hierarchy.
Schnitzspan et al.’s [18] uses a hierarchical models, but does not contain the
shape masks.

There has been much related work on object detection, including [1,2,8,19,20].
[1,2,8] focus on the modeling of objects. Vedaldi et al. [1] present multiple kernel
learning applied to spatial pyramids of histograms of features. They use a cascade
of models and non-linear RBF kernels. Felzenszwalb et al. [2] propose latent
SVM learning for part-based models and explore the benefit of post-processing
(eg, incorporating contextual information). As we will show in the experiments,
our system gives better performance without needing these “extras”. We use
the iCCCP learning method developed in [8], but [8] does not use shape masks
or HOWs (which give significant performance improvement as reported in the
experimental section).

Instead of improving the representation of objects, both [19] and [20] focus
on using global contextual cues to improve the performance of object detection.
Desai et al. [19] make use a set of models from different object categories. [20]
considers global image recognition and local object detection jointly.

3 Active Mask Hierarchies

In this section, we first formulate object learning as a latent structural SVM
learning problem and then describe the active mask hierarchy representation.
Finally, we briefly smmarize the optimization method for training and the infer-
ence algorithm for detection.

3.1 Active Mask Hierarchies and Latent Structural SVM

The goal of the AMH model is to detect whether an object with class label y is
present in an image region x. The AMH model has latent variables h = (V,p)
(i.e. not specified in the training set), where V labels the mixture component
and p specifies the positions of the object masks.

The AMH is specified by a function w · Φ(x, y, h) where w is a vector of
parameter weights (to be learnt) and Φ is a feature vector. Φ has two types
of terms: (i) appearance terms ΦA(x, y, h) which relate features of the image
x to object classes y, components V , and mask positions p; (ii) shape terms
ΦS(y, h) which specify the relationships between the positions of different masks
and which are independent of the image x.

The inference task is to estimate the class label y and the latent states h by
maximizing the discriminant function (assuming w is known):

Fw(x) = argmax
y,h

[w · Φ(x, y, h)] (1)

The learning task is to estimate the optimal parameters w from a set of train-
ing data (x1, y1, h1),...,(xN , yN , hN). We formulate the learning task as latent
structural SVM learning. The object labels {yi} of the image regions {xi} are
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known but the latent variables {hi} are unknown (recall that the latent variables
encode the mask positions p and the model component V ). The task is to find
the weights w which minimize an objective function J(w):

J(w) =
1
2
||w||2 + C

N∑
i=1

[
max
y,h

[w · Φi,y,h + Li,y,h] − max
h

[w · Φi,yi,h]
]

(2)

where C is a fixed number, Φi,y,h = Φ(xi, y, h) and Li,y,h = L(yi, y, h) is a
loss function. For our object detection problem L(yi, y, h) = 1, if yi = y, and
L(yi, y, h) = 0 if yi �= y (note L(.) is independent of the latent variable h).

Solving the optimization problem in equation (2) is difficult because the ob-
jective function J(w) is non-convex (because the fourth term −maxh[w ·Φi,yi,h]
is a concave function of w). Following Yu and Joachims [6] we use the concave-
convex procedure (CCCP) [21] which is guaranteed to converge at least to a local
optimum. We note that CCCP has already been applied to learning models for
object detection [7, 8]. We briefly describe CCCP and its application to latent
SVMs in section 3.3.

In practice, the inner product in the discriminative function in equation (1)
can be expressed as a summation of kernel functions [1]:

w · Φ(x, y, h) =
∑

i,y′,h′
αi,y′,h′K(Φi,y′,h′ , Φx,y,h) (3)

where αi,y′,h′ are weights for support vectors obtained by solving equation (2)
and K(Φi,y′,h′ , Φx,y,h) is a positive definite kernel, which can be represented by
a linear (convex) combination of kernels:

K(Φi,y′,h′ , Φx,y,h) =
∑

k

dkKk(Φi,y′,h′ , Φx,y,h) (4)

where Kk(Φi,y′,h′ , Φx,y,h) correspond to the appearance and shape kernels and
dk are their weights. We will introduce these kernels in section (3.2).

3.2 The Representation: Hierarchical Model and Feature Kernels

An AMH represents an object class by a mixture of two 3-layer tree-structured
models. The structure of the model is shown in fig. 1.(b). The structure used
in our experiments is slightly different, but, for the sake of simplicity, we will
use this structure to illustrate the basic idea and describe the difference in
section 4.5 .

The first layer has one root node which represents the entire object. The root
node has four child nodes at the second layer in a 2 × 2 grid layout where each
cell represents one fourth of an object. Each node at the second layer has 4 child
nodes at the third layer which contains 16 nodes in a 4×4 grid layout. There are
21 (1 + 2 × 2 + 4 × 4) nodes in total. Note that the cells in the spatial pyramid
(figure 1.(a)) are not connected.
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Fig. 2. The top three panels show the Histogram of Oriented Gradients (HOGs). The

bottom three panels show the Histogram Of Words (HOWs) extracted within different

cells. The visual words are formed by using SIFT descriptors. The columns from left

to right correspond to the top to bottom levels of the active hierarchy.

The numbers of layers and nodes are the same for different object classes
and mixture components. But their aspect ratios may be different. Each tree
model is associated with latent variables h = (V,p). V ∈ {1, 2} is the index
of the mixture components and p = ((u1, v1), (u2, v2), ..., (u21, v21)) encodes the
positions of all nodes. For an object class, let y = +1 denote object and y = −1
denote non-object. Let a ∈ {1, ..., 21} index the nodes. b ∈ Ch(a) indexes the
child nodes of node a.

The feature vector for each mixture component V is defined as follows:

Φ(x, y,p) =
{

(ΦA(x,p), ΦS(p)) if y = +1
0 if y = −1 (5)

where ΦA(x,p) is a concatenation of appearance feature vectors ΦA(x,pa) which
describe the image property of the corresponding regions specified by pa. ΦS(p)
is a concatenation of shape feature vectors ΦS(pa,pb) which encode the parent-
child spatial relationship of the nodes (pa,pb). Note for different components V ,
we maintain separate feature vectors.

The appearance features consist of two types of descriptors (see fig. 2): (i)
Histograms of Oriented Gradients (HOGs) ΦHOG(x,p) [5] and (ii) Histograms
of Words (HOWs) ΦHOW (x,p) [4] extracted from SIFT descriptors [22] which
are densely sampled. These two descriptors are complementary to each other for
appearance representation. HOGs are suitable for structured regions where the
image patches with specific oriented gradients (like car wheels, cat eyes, etc.) are
located at certain position. On the other hand, HOW’s advantages specialize at
the textured regions where the small image patches encoded by visual words (like
texton patches in cat body) appear randomly in a spatial domain. We followed
the implementations of [2] to calculate the HOG descriptors, and [1] for the SIFT
descriptors. Visual words are extracted by K-means using SIFT descriptors.

The HOW features are a vector of features calculated within the valid regions
specified by the 11 shape masks, i.e.,

ΦHOW (x,p) =< Φ1
HOW (x,p), Φ2

HOW (x,p)..., Φ11
HOW (x,p) > (6)
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Fig. 3. We illustrate the role of the mask and spatial variability (“active”) of the most

important HOW feature at the top level of the AMH. Figure (a) plots the maximum

response (for all masks) of visual word over the horse dataset. Observe that the response

is peaked but has big spatial variability so that the AMH can adapt to spatial position

and deformation of the objects. Figure (b), the most successful mask is the horizontal

bar – mask 5, see figure (1.c) – which has, for example, twice as high kernel values as

mask 1 (the regular rectangle).

The shape masks associated with node a are located by the latent position
variable pa. They are forms of varied binary shape patterns (fig. 1.(c)) which
encode large shape variations of object and parts in a coarse-to-fine manner.
The regions activated for the feature calculations are the white areas specified
by the masks. For instance, the masks (fig. 1.(d) and 1.(e)) at the top layer give
the coarse descriptions of the boundary of the entire object. The active masks at
the lower layers (fig. 1.(f)) with displacements combine to represent the object
parts more accurately. The patterns of shape masks are designed so that the
histograms of words within the masks can be calculated efficiently using integral
image.

ΦS(h) is a concatenation of shape features ΦS(pa,pb), ∀a, b ∈ Ch(a), which en-
code the parent-child pairwise spacial relationship. More precisely, the shape fea-
tures for a parent-child pair (a, b) are defined as ΦS(pa,pb) = (Δu,Δv,Δu2, Δv2)
where (Δu,Δv) is the displacement of node b relative to its reference position
which is determined by the position of the parent node a. Our 3-layer model has
80 (4 × 4 + 4 × 16) shape features in total.

Now we have complete descriptions of the appearance and shape features. The
kernel in equation (4) which combines the appearance and shape kernels is given
by (note we only consider the nontrivial case, i.e., y = +1 ):

K(Φi,y′,h′ , Φx,y,h) = KA(Φ(xi,p
′), Φ(x,p)) + KS(Φ(p′), Φ(p)) (7)

where KS(Φ(p′), Φ(p)) is the shape kernel which is a simple linear kernel, i.e.
KS(., .) =< Φ(p′), Φ(p) >. KA(Φ(xi,p

′), Φ(x,p)) is the appearance kernel which
is given by the weighted sum of two types of appearance kernels:

d1K1(ΦHOG(xi,p
′), ΦHOG(x,p)) + d2K2(ΦHOW (xi,p

′), ΦHOW (x,p)) (8)

where d1, d2 are weights for two appearance kernels respectively. K1(., .) is a
simple linear kernel, i.e., K1(., .) =< ΦHOG(xi, p

′), ΦHOG(x,p) > . K2(., .) is
a quasi-linear kernel [1], i.e., K2(., .) = 1

2 (1 − X 2(ΦHOW (xi,p
′), ΦHOW (x,p))),

which can be calculated efficiently using the technique proposed in [23]. Note
that unlike [1], the non-linear RBF kernels are not used here.
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Figure (3) shows how the appearance kernels of the HOWs and the shape
masks work. Recall that each HOW is computed for 11 masks, and the positions
of these masks vary depending on the input image. Firstly, we explore the spatial
variation of the maximum response of the HOW feature (for all masks) for the
horse dataset. Our results, see figure (3.a) show that the maximum response is
spatially peaked in the lower center of the image window containing the object.
But the position of the response varies considerably due to the variation in shape
and location of the object. Secondly, by examining the mask kernel values, we
see that mask 5 (horizontal bar) is the most effective when evaluated on this
database and, see figure (3.b), has kernel value which is twice as high as mask 1
(regular rectangle).

The free parameter in equation (8) is the ratio r of two weights d1 : d2. In
our experiments, the ratio r is selected by cross validation as explored in [4]. It
is possible to improve the performance using more recent technique on feature
combination [24]. We leave it as future work.

Now we have a complete description for the representation of active mask
hierarchies.

3.3 Optimization by CCCP

Learning the parameters w of the AMH model requires solving the optimization
problem specified in equation (2). Following Yu and Joachims [6], we express the
objective function J(w) = f(w)− g(w) where f(.) and g(.) are convex functions
given by:

f(w) =

[
1
2
||w||2 + C

N∑
i=1

max
y,h

[w · Φi,y,h + Li,y,h]

]

g(w) =

[
C

N∑
i=1

max
h

[w · Φi,yi,h]

]
(9)

The concave-convex procedure (CCCP) [21] is an iterative algorithm which con-
verges to a local minimum of J(w) = f(w) − g(w). When f(·) and g(·) take
the forms specified by equation (9), then CCCP reduces to two steps [6] which
estimate the latent variables and the model parameters in turn (analogous to
the two steps of the EM algorithm):

Step (1): Estimate the latent variables h by the best estimates given the
current values of the parameters w: h∗ = (V ∗,p∗) (this is performed by the
inference algorithm described in the following section).

Step (2): Apply structural SVM learning to estimate the parameters w using
the current estimates of the latent variables h:

min
w

1
2
||w||2 + C

N∑
i=1

[
max
y,h

[w · Φi,y,h + Li,y,h] − w · Φi,yi,h∗
i

]
(10)

We perform this structural SVM learning by the cutting plane method [25] to
solve equation (10).
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In this paper, we use a variant called incremental CCCP (iCCCP) first re-
ported in [8]. The advantage of iCCCP is that it uses less training data and
hence makes the learning more efficient. The kernel in equation (7) is applied
without changing the training algorithm.

3.4 Detection: Dynamic Programming

The inference task is to estimate Fw(x) = argmaxy,h[w · Φ(x, y, h)] as specified
by equation (1). The parameters w and the input image region x are given.
Inference is used both to detect objects after the parameters w have been learnt
and also to estimate the latent variables during learning (Step 2 of CCCP).

The task is to estimate (y∗, h∗) = argmaxy,h[w·Φ(x, y, h)]. The main challenge
is to perform inference over the mask positions p since the remaining variables
y, V take only a small number of values. Our strategy is to estimate the p by
dynamic programming for all possible states of V and for y = +1, and then take
the maximum. From now on we fix y, V and concentrate on p.

First, we obtain a set of values of the root node p1 = (u1, v1) by exhaustive
search over all subwindows at different scales of the pyramid. Next, for each
location (u1, v1) of the root node we use dynamic programming to determine the
best configuration p of the remaining 20 parts. To do this we use the recursive
procedure:

F (x,pa) =
∑

b∈Ch(a)

max
pb

{F (x,pb) + w · ΦS(pa,pb)} + w · ΦA(x,pa) (11)

where F (x,pa) is the max score of a subtree with root node a. The recursion
terminates at the leaf nodes b where F (x,pb) = ΦA(x,pb). This enables us
to efficiently estimate the configurations p which maximize the discriminant
function F (x,p1) = maxp w · Φ(x,p) for each V and for y = +1.

The bounding box determined by the position (u1, v1) of the root node and
the corresponding level of the image pyramid is output as an object detection if
the score F (x,p1) > is greater than certain threshold.

In our implementations, w · ΦA(x,pa) is replaced by the appearance kernel
KA(Φ(xi,p

′), Φ(x,p)) described in equation (8).

4 Experiments

The PASCAL VOC 2007 [9] and 2009 [10] datasets were used for evaluation and
comparison. The PASCAL 2007 is the last version for which test annotations are
available. There are 20 object classes which consist of 10000 images for training
and testing. We follow the experimental protocols and evaluation criteria used
in the PASCAL Visual Object Category detection contest 2007. A detection is
considered correct if the intersection of its bounding box with the groundtruth
bounding box is greater than 50% of their union. We compute precision-recall
(PR) curves and score the average precision (AP) across a test set.
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Table 1. Comparisons of performance on the PASCAL 2007 dataset. The numbers

are the average precisions per category obtained by different methods. “UoCTTI-1”

and “UoCTTI-2” report the results from [2] with and without special post-processing,

respectively. “MKL-1” and “MKL-2” show the results obtained by [1] using quasi-linear

kernels and RBF kernels, respectively.

Methods Active Mask no mask UoCTTI-1 UoCTTI-2 MKL-1 MKL-2 [19] [20] [18]
Hierarchies [8] [2] [2] [1] [1]

comments HOG+HOW HOG Part-Based + context pyramid +RBF
Ave. Precision .338 .296 .268 .298 .291 .321 .271 .289 .275

Table 2. Performance Comparisons on the 20 PASCAL 2007 categories [9]. “Active

Mask Hierarchies” refers to the proposed method in this paper. “UoCTTI-1” and

“UoCTTI-2” report the results from [2] with and without special post-processing, re-

spectively. “MKL-1” and “MKL-2” show the results obtained by [1] using quasi-linear

kernels and RBF kernels, respectively. “V07” is the best result for each category among

all methods submitted to the VOC 2007 challenge. Our method outperforms the other

methods in 11 categories. The average APs per category of all methods are shown in

the second column which have the corresponding numbers in table (1).

class Ave. aero bike bird boat bottle bus car cat chair cow
Active Mask Hierarchies (AMH) .338 .348 .544 .155 .146 .244 .509 .540 .335 .206 .228

Hierarchy without masks [8] .296 .294 .558 .094 .143 .286 .440 .513 .213 .200 .193
UoCTTI-1 (Part-based) [2] .268 .290 .546 .006 .134 .262 .394 .464 .161 .163 .165
UoCTTI-2 (Part-based) [2] .298 .328 .568 .025 .168 .285 .397 .516 .213 .179 .185
MKL-1 (Pyramid-based) [1] .292 .366 .425 .128 .145 .151 .464 .459 .255 .144 .304
MKL-2 (Pyramid-based) [1] .321 .376 .478 .153 .153 .219 .507 .506 .300 .173 .330

V07 [9] — .262 .409 .098 .094 .214 .393 .432 .240 .128 .140

Ave. table dog horse mbike person plant sheep sofa train tv
Active Mask Hierarchies .338 .344 .241 .556 .473 .349 .181 .202 .303 .413 .433

Hierarchy without masks [8] .296 .252 .125 .504 .384 .366 .151 .197 .251 .368 .393
UoCTTI-1 (Part-based) [2] .268 .245 .050 .436 .378 .350 .088 .173 .216 .340 .390
UoCTTI-2 (Part-based) [2] .298 .259 .088 .492 .412 .368 .146 .162 .244 .392 .391
MKL-1 (Pyramid-based) [1] .292 .190 .160 .490 .460 .215 .110 .245 .264 .426 .408
MKL-2 (Pyramid-based) [1] .321 .225 .215 .512 .455 .233 .124 .239 .285 .453 .485

V07 [9] — .098 .162 .335 .375 .221 .120 .175 .147 .334 .289

4.1 The Detection Results on the PASCAL Dataset

We compared our approach with other representative methods reported in the
PASCAL VOC detection contest 2007 [9] and other more recent work [2, 1, 19,
20,18]. Table (1) reports the Average Precisions per category (averaged over 20
categories) obtained by different methods. The comparisons in table (1) show
that the active mask hierarchies (AMH) outperform other methods including
state-of-the-art systems, i.e., [1] and [2].

It is important to realize that our result (0.338 AP) is obtained by a single
model while all other methods’ final results rely on combining multiple models.
For instance, “MKL-2” [1] (0.321 AP) uses cascade of models where non-linear
RBF kernels and more features are used. “UoCTTI-2” [2] (0.298 AP) combines
the detections output by models of all categories to access contextual informa-
tion. It is clear that the additional processing improves the performance. For



Active Mask Hierarchies for Object Detection 53

Table 3. Performance Comparisons on the 20 PASCAL 2009 categories [10]. The

approaches in the first column are described in table (2).

class Ave. aero bike bird boat bottle bus car cat chair cow
Active Mask Hierarchies (AMH) .293 .432 .404 .135 .141 .271 .407 .355 .330 .172 .187

UoCTTI-2 (Part-based) [2] .279 .395 .468 .135 .150 .285 .438 .372 .207 .149 .228
MKL-2 (Pyramid-based) [1] .277 .478 .398 .174 .158 .219 .429 .277 .305 .146 .206

Ave. table dog horse mbike person plant sheep sofa train tv
Active Mask Hierarchies .293 .227 .219 .371 .444 .398 .129 .207 .247 .434 .342

UoCTTI-2 (Part-based) [2] .279 .087 .144 .380 .420 .415 .126 .242 .158 .439 .335
MKL-2 (Pyramid-based) [1] .277 .223 .170 .346 .437 .216 .102 .251 .166 .463 .376

example, the model with RBF kernels [1] improves by 0.03 AP and the post-
processing used in [2] contributes 0.03 AP.

To give a better understanding how significant the improvement made by
AMH is, three other recent advances are listed for comparisons. All of them
explore the combination of multiple models as well. They achieve 0.271 ( [19]),
0.289 ( [20]) and 0.275( [18]). [19] makes use of multiple models of different cat-
egories. [20] considers the recognition and detection jointly. [18] seeks to rescore
the detection hypotheses output by [2].

In table (3), we report the performance evaluated on the PASCAL 2009
dataset. It also shows that our method is comparable with “MKL-2” [1] and
“UoCTTI-2” [2]. In summary, our system built on a single model outperforms
other alternative methods. It is reasonable to expect that our method with ad-
ditional processing (e.g., RBF kernels, contextual cues, etc.) as used in other
methods will achieve even better performance.

4.2 Active Mask Hierarchies, Spatial Pyramid and Part-Based
Model

As we discussed before, spatial pyramid and part-based model can be unified in
the representation of active mask hierarchies (AMH). It is of interest to study
how differently (or similarly) each method performs in specific classes which
have different scales of shape deformation and appearance variations. We show
the detailed comparisons of the results on 20 object classes (PASCAL2007) in
table (2). Our method obtains the best AP score in 11 out of 20 categories while
MKL-2 using RBF kernels achieves the best performance in 4 categories. In order
to show the advantage of the representation of AMH, it is more appropriate to
compare AMH with MKL-1 which uses the same quasi-linear kernel of spatial
pyramid, and “UoCTTI-1” which uses a part-based model only. Note AMH
outperforms “UoCTTI-1” by 0.07 AP , “MKL-1” by 0.05 AP and [8] by 0.04
AP. Therefore, the improvement made by AMH is significant.

4.3 Benefit of Shape Masks

Table (1) shows that the active mask hierarchies (AMH) with both HOGs and
HOWs outperform [8] by 0.04 AP. The detailed comparisons on 20 object classes
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(PASCAL 2007) are shown in table (2). Recall that [8] uses HOGs only, and
does not contain the shape masks and the HOW features. We quantify the gain
contributed by HOWs and the shape masks. Figure (4) shows the PR curves of
the three models using HOGs only [8], AMH (HOGs+HOWs) attached with one
shape mask (regular rectangle), and AMH (HOGs+HOWs) with a dictionary of
shape masks, respectively. HOWs improve the performance for bus by 0.03AP
and horse by 0.01AP, but degrade the performance for car by less than 0.01AP.
Adding shape masks makes improvement by 0.07, 0.03, 0.05 APs, for bus, car
and horse, respectively.
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Fig. 4. The benefit of shape masks. “HOG” and “HOG+HOW” refer to the simple

active hierarchy models without shape masks using HOGs only, and both HOGs and

HOWs, respectively. “AMH” is the active shape hierarchy with both HOGs and HOWs.

Three panels show the precision-recall curves evaluated on the bus, car, horse datasets.

4.4 Weights of HOGs and HOWs

The ratio of weights of appearance kernels for HOGs and HOWs is selected
by cross validation. Three values of the ratio r, i.e., d1 : d2 = 0.5, 1.0, 2.0 are
tested. Figure (5) shows the PR curves of the models obtained by the appearance
kernels with three values of r. For car, the result is less sensitive for the ratio,
but for motorbike and horse, the maximum differences of performance are about
0.07 AP and 0.10 AP, respectively. The training cost is affordable if only one
parameter needs to be selected. If more parameters are used, [24] can be used
to learn the combination of appearance features in an efficient way.

4.5 Implementation Details

All experiments are performed on a standard computer with a 3Ghz CPU. C is
set to 0.005 for all classes. The detection time per image is 50 seconds. There
are 300 visual words which are extracted by k-means where the color SIFT
descriptors are used. The structure of the hierarchy used in our experiment is
slightly different from the one shown in figure 1. In our implementations, the
number of nodes at from top to bottom levels are 1(1 × 1), 9(3 × 3), 36(6 × 6).
The nodes are organized in regular multi-level grids. The HOW features ΦHOW

at different layers of the pyramid are associated with fixed weights, i.e., 6:2:1,
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Fig. 5. We compare the performance of AMHs with different ratios of weights of HOGs

and HOWs. Three panels plot the precision-recall curves for the bus, car and horse

datasets.

for all categories. As suggested by [4], other settings might further improve the
performance. The settings of all free parameters used in the PASCAL 2007 and
2009 datasets are identical.

5 Conclusion

This paper describes a new active mask hierarchy model for object detection.
This active hierarchy enables us to encode large shape deformation of object
parts explicitly. The dictionary of masks with varied shape patterns increases our
ability to represent shape and appearance variations. The active mask hierarchy
uses histograms of words (HOWs) and oriented gradients (HOGs) to give rich
appearance models for structured and textured image regions. The resulting
system outperforms spatial pyramid and part-based models, and comparable
with the state-of-the-art methods by evaluation on the PASCAL datasets.
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Abstract. This paper presents an approach to object discovery in a given un-
labeled image set, based on mining repetitive spatial configurations of image
contours. Contours that similarly deform from one image to another are viewed
as collaborating, or, otherwise, conflicting. This is captured by a graph over all
pairs of matching contours, whose maximum a posteriori multicoloring assign-
ment is taken to represent the shapes of discovered objects. Multicoloring is con-
ducted by our new Coordinate Ascent Swendsen-Wang cut (CASW). CASW uses
the Metropolis-Hastings (MH) reversible jumps to probabilistically sample graph
edges, and color nodes. CASW extends SW cut by introducing a regularization
in the posterior of multicoloring assignments that prevents the MH jumps to ar-
rive at trivial solutions. Also, CASW seeks to learn parameters of the posterior
via maximizing a lower bound of the MH acceptance rate. This speeds up multi-
coloring iterations, and facilitates MH jumps from local minima. On benchmark
datasets, we outperform all existing approaches to unsupervised object discovery.

1 Introduction

This paper explores a long-standing question in computer vision, that of the role of
shape in representing and recognizing objects from certain categories occurring in im-
ages. In psychophysics, it is widely recognized that shape is one of the most categorical
object properties [1]. Nevertheless, most recognition systems rather resort to appearance
features (e.g., color, textured patches). Recent work combines shape with appearance
features [2,3], but the relative significance of each feature type, and their optimal fusion
for recognition still remains unclear.

Toward answering this fundamental question, we here focus on the problem of dis-
covering and segmenting instances of frequently occurring object categories in arbitrary
image sets. For object discovery, we use only the geometric properties of contour lay-
outs in the images, deliberately disregarding appearance features. In this manner, our
objective is to show that shape, on its own, without photometric features, is expressive
and discriminative enough to provide robust detection and segmentation of common
objects (e.g, faces, bikes, giraffes, etc.) in the midst of background clutter. To this end,
we develop an approach to mining repetitive spatial configurations of contours across
a given set of unlabeled images. As demonstrated in this paper, our shape mining in-
deed results in extracting (i.e., simultaneously detecting and segmenting) semantically
meaningful objects recurring in the image set.

To our knowledge, this paper presents the first approach to extracting frequently
occurring object contours from a clutter of image contours without any supervision,

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 57–70, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Overview: Given a set of unlabeled images (left), we extract their contours (middle left),
and then build a graph of pairs of matching contours. Contour pairs that similarly deform from
one image to another are viewed as collaborating (straight graph edges), or conflicting (zigzag
graph edges), otherwise. Such coupling of contour pairs facilitates their clustering, conducted
by our new algorithm, called Coordinate Ascent Swendsen-Wang cut (CASW). The resulting
clusters represent shapes of discovered objects (right). (best viewed in color).

and without any help from appearance features. Existing work that uses only shape
cues for recognition in real-world images requires either a manually specified shape
template [4, 5], or manually segmented training images to learn the object shape [6].
Also, all previous work on unsupervised object-category discovery exploits the pho-
tometric properties of segments [7, 8], textured patches [9], and patches along image
contours [10]. In our experiments, we outperform all these appearance-based, unsuper-
vised approaches in both object detection and segmentation on benchmark datasets.

Approach: Our approach consists of three major steps, illustrated in Fig. 1. Step 1:
Given a set of unlabeled images, we detect their contours by the minimum-cover algo-
rithm of [11]. Each contour is characterized as a sequence of beam-angle descriptors,
which are beam-angle histograms at points sampled along the contour. Similarity be-
tween two contours is estimated by the standard dynamic time warping (DTW) of the
corresponding sequences of beam-angle descriptors. Step 2 builds a weighted graph
of matching contours, aimed at facilitating the separation of background from object
shapes in Step 3. We expect that there will be many similarly shaped curves, belong-
ing to the background in the images. Since the backgrounds vary, by definition, similar
background curves will most likely have different spatial layouts across the image set.
In contrast, object contours (e.g., curves delineating a giraffe’s neck) are more likely
to preserve both shape and layout similarity in the set. Therefore, for object discov-
ery, it is critical that we capture similar configurations of contours. To this end, in our
graph, nodes correspond to pairs of matching contours, and graph edges capture spatial
layouts of quadruples of contours. All graph edges can be both positive and negative,
where their polarity is probabilistically sampled during clustering of image contours,
performed in the next step. Positive edges support, and negative edges hinder the group-
ing of the corresponding contour pairs within the same cluster, if the contours jointly
undergo similar (different) geometric transformation from one image to another. This
provides stronger coupling of nodes than the common case of graph edges being only
strongly or weakly “positive”, and thus leads to faster convergence to more accurate
object discovery. Step 3 conducts a probabilistic, iterative multicoloring of the graph,



From a Set of Shapes to Object Discovery 59

by our new algorithm, called Coordinate-Ascent Swendsen-Wang (CASW) cut. In each
iteration, CASW cut probabilistically samples graph edges, and then assigns colors to
the resulting groups of connected nodes. The assignments are accepted by the standard
Metropolis-Hastings (MH) mechanism. To enable MH jumps to better solutions with
higher posterior distributions, we estimate parameters of the posterior by maximizing a
lower bound of the MH acceptance rate. After convergence, the resulting clusters rep-
resent shapes of objects discovered, and simultaneously segmented, in the image set.

Contributions: Related to ours is the image matching approach of [12]. They build a
similar graph of contours extracted from only two images, and then conduct multicolor-
ing by the standard SW cut [13,12]. They pre-specify the polarity of graph edges, which
remains fixed during multicoloring. Also, they hand-pick parameters of the posterior
governing multicoloring assignments. In contrast, our graph is designed to accommo-
date transitive matches of many images, and we allow our graph edges to probabilis-
tically change their polarity, in every MH iteration. We introduce a new regularization
term in the posterior, which provides a better control of the probabilistic sampling of
graph edges during MH jumps. Finally, we seek to learn parameters of our posterior via
maximizing a lower bound of the MH acceptance rate. Our experiments show that this
learning speeds up MH iterations, and allows jumps to solutions with higher posteriors.

Sec. 2 specifies our new shape descriptor. Sec. 3 describes how to build the graph
from all pairs of image contours. Sec. 4 presents our new CASW cut for multicoloring
of the graph. Sec. 5–6 present experimental evaluation, and our concluding remarks.

2 Image Representation Using Shapes and Shape Description

This section presents Step 1 of our approach. In each image, we extract relatively long,
open contours using the minimum-cover algorithm of [11], referred to as gPb+ [11].
Similarity between two contours is estimated by aligning their sequences of points by
the standard Dynamic Time Warping (DTW). Each contour point is characterized by
our new descriptor, called weighted Beam Angle Histogram (BAH). BAH is a weighted
version of the standard unweighted BAH, aimed at mitigating the uncertainty in contour
extraction. BAH down-weights the interaction of distant shape parts, as they are more
likely to belong to different objects in the scene.

The beam angles, θij , at contour points Pi, i = 1, 2, . . . , are subtended by lines
(Pi−j ,Pi) and (Pi,Pi+j), as illustrated in Fig. 2. Pi−j and Pi+j are two neighbor-
ing points equally distant by j points along the contour from Pi, j = 1, 2, . . . . BAH
is a weighted histogram, where the weight of angle θij is computed as exp(−κj),
j = 1, 2, . . . (κ = 0.01). BAH is invariant to translation, in-plane rotation, and scale.
Experimentally, we find that BAH with 12 bins gives optimal and stable results.

Table 1 compares BAH with other popular shape descriptors on the task of contour
matching. We match contours from all pairs of images belonging to the same class in the
ETHZ dataset [3], and select the top 5% best matches. True positives (false positives)
are pixels of the matched contour that fall in (outside of) the bounding box of the target
object. The ground truth is determined from pixels of the initial set of detected contours
that fall inside the bounding box. For matching, we use DTW, and Oriented Chamfer
Distance [2]. Tab. 1 shows that our BAH descriptor gives the best performance with all
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Fig. 2. BAH is a weighted
histogram of beam angles
θij at contour points Pi,
i=1, 2, ...

Table 1. Contour matching on the ETHZ image dataset [3]. Top
is Precision, bottom is Recall. The rightmost column shows
matching results of Oriented Chamfer Distance [2], and other
columns show DTW results. Descriptors (left to right): our BAH,
unweighted BAH, Shape Context [14], and SIFT [15].

Contour detectors BAH BAH-U [14] [15] [2]

Canny
0.23±0.01 0.21 0.18 0.15 0.21

0.59±0.02 0.57 0.48 0.48 0.52

[3]
0.32±0.03 0.30 0.25 0.18 0.29

0.78±0.03 0.75 0.62 0.61 0.72

gPb+ [11]
0.37±0.02 0.34 0.26 0.20 0.34

0.81±0.03 0.78 0.63 0.61 0.74

contour detectors, and the highest accuracy with gPb+ [11]. Also, DTW with our BAH
outperforms Oriented Chamfer Distance.

3 Constructing the Graph of Pairs of Image Contours

This section presents Step 2 which constructs a weighted graph, G = (V,E, ρ), from
contours extracted from the image set. Nodes of G represent candidate matches of con-
tours, (u, u′)∈V , where u and u′ belong to different images. Similarity of two contours
is estimated by DTW. We keep only the best 5% of contour matches as nodes of G.

Edges of G, e = ((u, u′), (v, v′)) ∈ E, capture spatial relations of corresponding im-
age contours. If contoursu and v in image 1, and their matches u′ and v′ in image 2 have
similar spatial layout, then they are less likely to belong to the background clutter. All
such contour pairs will have a high probability to become positively coupled in G. Oth-
erwise, matches (u, u′) and (v, v′) will have a high probability to become negatively
coupled in G, so that CASW could place them in different clusters. This probabilis-
tic coupling of nodes in G is encoded by edge weights, ρe, defined as the likelihood
ρ+

e ∝ exp(−w+
δ δe), given the positive polarity of e, and ρ−e ∝ exp(−w−

δ (1−δe)), given
the negative polarity of e. w+

δ and w−
δ are the parameters of the exponential distribution,

and δe ∈ [0, 1] measures a difference in spatial layouts of u and v in image 1, and their
matches u′ and v′ in image 2. We specify δe for the following two cases. In Cases 1 and
2, there are at least two contours that lie in the same image. This allows establishing
geometric transforms between ((u, u′), (v, v′)). Note that this would be impossible, in
a more general case, where ((u, u′), (v, v′)) come from four distinct images.

Case 1: (u, u′) and (v, v′) come from two images, where u and v are in image 1, and
u′ and v′ are in image 2, as illustrated in Fig. 3a. We estimate δe in terms of affine
homographies between the matching contours, denoted as Huu′ , and Hvv′ . Note that
if u, v in image 1 preserve that same spatial layout in image 2, then Hvv′=HvuHuu′ .
Since the estimation of Hvu between arbitrary, non-similar contours u and v in image 1
is difficult, we use the following strategy. From the DTW alignment of points along u
and u′, we estimate their affine homography Huu′ . Similarly, for v and v′, we estimate
Hvv′ . Then, we project u′ to image 1, as u′′=Hvv′u′, and, similarly, project v′ to im-
age 1 as v′′=Huu′v′ (Fig. 3a right). Next, in image 1, we measure distances between
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Image 1 Image 2 u’ and s’ projected in image 1

Image 2 Image 1 Image 3

Fig. 3. (a) Case 1: Estimating δ(u,u′,v,v′) when contours u and v are in image 1, and their matches
u′ and v′ are in image 2. We use the affine-homography projection of u′ and v′ to image 1,
u′′ = Hvv′u′ and v′′ = Huu′v′, and compute δ as the average distance between u and u′′, and
v and v′′. As can be seen, pairs (u, s′) and (v, v′) do not have similar layouts in image 1 and
image 2. (b) Case 2: Estimating δ(u,u′,v,v′) when u and v are in image 1, and their matches u′

and v′ are in image 2 and image 3. We use multiple affine-homography projections of u′ and v′

to image 1 via auxiliary, context contours s′ and t′ in a vicinity of u′ and v′.

corresponding points of u and u′′, where the point correspondence is obtained from
DTW of u and u′. Similarly, we measure distances between corresponding points of v
and v′′. δe is defined as the average point distance between u and u′′, and v and v′′.

Case 2: (u, u′) and (v, v′) come from three images, where u and v belong to image 1,
u′ is in image 2, and v′ is in image 3. In this case, we can neither use Hvv′ to project
u′ from image 2 to image 1, nor Huu′ to project v′ from image 3 to image 1. Instead,
we resort to context provided by auxiliary contours s′ in a vicinity of u′, and auxiliary
contours t′ in a vicinity of v′. For every neighbor s′ of u′ in image 2, we find its best
DTW match s in image 1, and compute homographyHss′ . Similarly, for every neighbor
t′ of v′ in image 3, we find its best DTW match t in image 1, and compute homography
Htt′ . Then, we use all these homographies to project u′ to image 1, multiple times, as
u′′

s=Hss′u′, and, similarly, project v′′ to image 1, multiple times, as v′′t =Htt′v
′. Next,

as in Case 1, we measure distances between corresponding points of all u and u′′
s pairs,

and all v and v′′t pairs. δe is defined as the average point distance.

4 Coordinate-Ascent Swendsen-Wang Cut

This section presents Step 3. Given the graph G = (V,E, ρ), specified in the previ-
ous section, our goal is to perform multicoloring of G, which will partition G into two
subgraphs. One subgraph will represent a composite cluster of nodes, consisting of a
number of connected components (CCPs), receiving distinct colors, as illustrated in
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Fig. 4. This composite cluster contains contours of the discovered object categories.
Nodes outside of the composite cluster are interpreted as the background. All edges
e ∈ E can be negative and positive. A negative edge indicates that the nodes are con-
flicting, and thus should not be assigned the same color. A positive edge indicates that
the nodes are collaborative, and thus should be favored to get the same color. If nodes
are connected by positive edges, they form a CCP, and receive the same color (Fig. 4).
A CCP cannot contain a negative edge. CCPs connected by negative edges form a com-
posite cluster. The amount of conflict and collaboration between two nodes is defined
by the likelihood ρ, defined in Sec. 3.

For multicoloring of G, we formulate a new Coordinate Ascent Swendsen-Wang cut
(CASW) that uses the iterative Metropolis-Hastings algorithm. CASW iterates the fol-
lowing three steps: (1) Sample a composite cluster from G, by probabilistically cutting
and sampling positive and negative edges between nodes of G. This results in splitting
and merging nodes into a new configuration of CCPs. (2) Assign new colors to the re-
sulting CCPs within the selected composite cluster, and use the Metropolis-Hastings
(MH) algorithm to estimate whether to accept this new multicoloring assignment of G,
or to keep the previous state. (3) If the new state is accepted, go to step (1); otherwise,
it the algorithm converged, re-estimate parameters of the pdf’s controlling the MH iter-
ations, and go to step (1), until the pdf re-estimation does not affect convergence.

CASW is characterized by large MH moves, involving many strongly-coupled graph
nodes. This typically helps avoid local minima, and allows fast convergence, unlike
other related MCMC methods. In comparison with [12], our three key contributions
include: (a) the on-line learning of parameters of pdf’s governing MH jumps; (b) en-
forcing stronger node coupling by allowing the polarity of edges to be dynamically
estimated during the MH iterations; and (c) regularizing the posterior of multicolor-
ing assignments to help MH jumps escape from trivial solutions. In the following, we
present our Bayesian formulation of CASW, inference, and learning.

Bayesian Formulation: Multi-coloring of G amounts to associating labels li to nodes
in V , i=1, . . . , |V |, where li ∈ {0, 1, . . . ,K}. K denotes the total number of target ob-
jects, which is a priori unknown, and (K + 1)th label is the background. The multicol-
oring solution can be formalized as M=(K, {li}i=1,...,|V |). To find M, we maximize
the posterior distribution p(M|G), as

M∗ = argmax
M

p(M|G) = argmax
M

p(M)p(G|M). (1)

Let N denote the number of nodes that are labeled as background li = 0. Also, let
binary functions �li �=lj and �li=lj indicate whether node labels li and lj are different,
and the same. Then, we define the prior p(M) and likelihood p(G|M) as

p(M) ∝ e−wKKe−wN N , (2)

p(G|M) ∝
∏

e∈E+ ρ+
e

∏
e∈E− ρ−e

∏
e∈E0(1 − ρ+

e )�li �=lj · (1 − ρ−e )�li=lj , (3)

where p(M) penalizes large K and N . wK and wN are the parameters of the exponen-
tial distribution. E+ and E− denote positive and negative edges present in the composite
cluster, and E0 denotes edges that are probabilistically cut (i.e., not present in the solu-
tion). Our p(G|M), defined in (3), differs from the likelihood defined in [12]. In [12],
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(a) State A (b) State B

p(G|M=A)=(ρ−
7 ρ

−
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+
9 )
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7 ρ

+
8 )(1−ρ

+
9 )
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−
1 )(1 − ρ

+
2 )(1−ρ

−
3 )

(1−ρ
+
4 )(1−ρ

−
5 )(1−ρ

+
6 )

q(Vcc |B)=(1−ρ
+
1 )(1 − ρ

−
2 )(1−ρ

−
3 )
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+
4 )(1−ρ

−
5 )(1−ρ

−
6 )

(c) Probabilities for this example

Fig. 4. (a) In state A, probabilistically sampled positive (straight bold) and negative (zigzag bold)
edges define composite cluster Vcc={CCP3, CCP4, CCP5} (cut edges are dashed). The cut is
a set of edges (red) that have not been probabilistically sampled, which would otherwise connect
Vcc to external CCPs. (b) The coloring of CCPs within Vcc is randomly changed, resulting in
new state B. This also changes the type of edges ρ1, ρ2, ρ6, ρ8, since the positive (negative) edge
may link only two CCPs with the same (different) label(s). (c) Probabilities in states A and B.

nodes can be connected by only one type of edges. They pre-select a threshold on edge
weights, which splits the edges into positive and negative, and thus define the likelihood
as p(G|M) ∝

∏
e∈E+ ρ+

e

∏
e∈E− ρ−e . Since we allow both types of edges to connect ev-

ery pair of nodes, where the right edge type gets probabilistically sampled in every MH
iteration, we enforce a stronger coupling of nodes. As shown in Sec. 5, this advanced
feature of our approach yields faster convergence and better clustering performance.
This is because our formulation maximizes the likelihood p(G|M) when every two
nodes with the same label are (i) connected by a strong positive edge (e ∈ E+, and ρ+

e

large), or (ii) remain unconnected, but the likelihood that these nodes should not have
the same label is very low (e ∈ E0, and ρ−e small). Similarly, our likelihood p(G|M)
is maximized when every two nodes with different labels are (i) connected by a strong
negative edge (e ∈ E

−, and ρ−e large), or (ii) remain unconnected, but the likelihood
that these nodes should have the same label is very low (e ∈ E0, and ρ+

e small).

Inference: We here explain the aforementioned iterative steps (1) and (2) of our CASW
cut. Fig. 4 shows an illustrative example. In step (1), edges of G are probabilistically
sampled. If two nodes have the same label, their positive edge is sampled, with likeli-
hood ρ+

e . Otherwise, if the nodes have different labels, their negative edge is sampled,
with likelihood ρ−e . This re-connects all nodes into new connected components (CCPs).
The negative edges that are sampled will connect CCPs into a number of composite
clusters, denoted by Vcc. This configuration is referred to state A. In step (2), we choose
at random one composite cluster, Vcc, and probabilistically reassign new colors to the
CCPs within Vcc, resulting in a new state B. Note that all nodes within one CCP receive
the same label, which allows large moves in the search space.

The CASW accepts the new state B as follows. Let q(A → B) be the proposal
probability for moving from state A to B, and let q(B → A) denote the reverse. The
acceptance rate, α(A→B), of the move from A to B is defined as

α(A → B) = min

(
1,

q(B → A)p(M = B|G)
q(A → B)p(M = A|G)

)
. (4)
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Note that complexity of each move is relatively low, since computing q(B→A)
q(A→B) involves

only those edges that are probabilistically cut around Vcc in states A and B — not all
edges. Also, p(M=B|G)

p(M=A|G) accounts only for the recolored CCPs in Vcc — not the entire

graph G. Below, we derive q(B→A)
q(A→B) and p(M=B|G)

p(M=A|G) , and present a toy example (Fig. 4).
q(A → B) is defined as a product of two probabilities: (i) the probability of gener-

ating Vcc in state A, q(Vcc|A); and (ii) the probability of recoloring the CCPs within
Vcc in state B, where Vcc is obtained in state A, q(B(Vcc)|Vcc, A). Thus, we have
q(B→A)
q(A→B)=

q(Vcc|B)q(A(Vcc)|Vcc,B)
q(Vcc|A)q(B(Vcc)|Vcc,A) . The ratio q(A(Vcc)|Vcc,B)

q(B(Vcc)|Vcc,A) can be canceled out, because

the CCPs within Vcc are assigned colors under the uniform distribution. Let Cut+A and
Cut−A (Cut+B and Cut−B) denote positive and negative edges which are probabilistically
“cut” around Vcc in state A (state B). Since the probabilities of cutting the positive and
negative edges are (1−ρ+

e ) and (1−ρ−e ), we have

q(B→A)
q(A→B)

=
q(Vcc|B)
q(Vcc|A)

=

∏
e∈Cut+B

(1−ρ+
e )
∏

e∈Cut−B
(1−ρ−e )∏

e∈Cut+A
(1−ρ+

e )
∏

e∈Cut−A
(1−ρ−e )

. (5)

For the example shown in Figure 4, we compute q(B→A)
q(A→B) = (1−ρ+

1 )(1−ρ−
2 )(1−ρ−

6 )

(1−ρ−
1 )(1−ρ+

2 )(1−ρ+
6 )

.

Also, p(M=B|G)
p(M=A|G) = p(M=B)p(G|M=B)

p(M=A)p(G|M=A) can be efficiently computed. p(M = B) can

be directly computed from the new coloring in state B, and p(G|M=B)
p(G|M=A) depends only

on those edges that have changed their polarity. For the example shown in Fig.4, we

compute p(M=B|G)
p(M=A|G)=

ρ+
8

ρ−
8

.

When α(A → B) has a low value, and new state B cannot be accepted by MH,
CD-SW remains in state A. In the next iteration, CD-SW either probabilistically selects
a different Vcc, or proposes a different coloring scheme for the same Vcc.

Learning: Our Bayesian model is characterized by a number of parameters that we
seek to learn from data. We specify that learning occurs at a standstill moment when
MH stops accepting new states (we wait for 100 iterations). In that moment, the previ-
ous state A is likely to have the largest pdf in this part of the search space. By learning
new model parameters, our goal is to allow for larger MH moves, and thus facilitate
exploring other parts of the search space characterized by higher posterior distributions
p(M|G). Since the moves are controlled by α(A→B), given by (4), we learn the pa-
rameters by maximizing a lower bound of α(A→B). If this learning still does not result
in accepting new states, we conclude that the algorithm has converged.

From (3) and (4), and the definitions of edge likelihoods ρ+
e and ρ−e given in Sec. 3,

we derive a lower bound of log(α(A → B)) as

log(α(A → B)) ≥ φTw , (6)

where w =
[
wK , wN , w+

δ , w
−
δ

]T
, and φ = [φ1, φ2, φ3, φ4]T is the vector of observed

features, defined as φ1 = KA−KB, φ2 = NA−NB , φ3 =
∑

e∈E
+
A
δe−

∑
e∈Ẽ

+
B
δe,

and φ4 =
∑

e∈E
−
A
(1−δe)−

∑
e∈Ẽ

−
B
(1−δe). Ẽ

+
B denotes all edges in state B whose

likelihood is ρ+, Ẽ
+
B = E

+
B ∪ Cut+B ∪ E

0−
B , and Ẽ

−
B denotes all edges in state B whose
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likelihood is ρ−, Ẽ
−
B = E

−
B ∪ Cut−B ∪ E

0+
B . From (6), we formulate learning as the

following linear program

max
w

φTw , s.t. ‖w‖2 = 1 , (7)

which has a closed-form solution [16], w = 1
‖φ+‖φ+, where (φ)+ = max(0,φ).

5 Results

Given a set of images, we perform object discovery in two stages, as in [9, 17, 10]. We
first coarsely cluster images based on their contours using CASW cut, and then again
use CASW to cluster contours from only those images that belong to the same coarse
cluster. The first stage serves to discover different object categories in the image set,
whereas the second, fine-resolution stage serves to separate object contours from back-
ground clutter, and also extract characteristic parts of each discovered object category.

We use the following benchmark datasets: Caltech-101 [18], ETHZ [3], LabelMe
[19], and Weizmann Horses [20]. In the experiments on Caltech-101, we use all Cal-
tech images showing the same categories as those used in [9]. Evaluation on ETHZ and
Weizmann Horses uses the entire datasets. For LabelMe, we keep the 15 first images
retrieved by keywords car side, car rear, face, airplane and motorbike. ETHZ and La-
belMe increase complexity over Caltech-101, since their images contain multiple object
instances, which may: (a) appear at different resolutions, (b) have low contrasts with
textured background, and (c) be partially occluded. The Weizmann Horses are suitable
to evaluate performance on articulated, non-rigid objects.

We study two settings S1 and S2. In S1, we use only ETHZ to generate the input
image set. The set consists of positive and negative examples, where positive images
show a unique category, and negative ones show objects from other categories in ETHZ.
In S2, the image set contains examples of all object categories from the considered
dataset. S1 is used for evaluating particular contributions of our approach, and S2 is
used for evaluating our overall performance.

In the first stage of object discovery, CASW finds clusters of images. This is evalu-
ated by purity. Purity measures the extent to which a cluster contains images of a single
dominant object category. When running CASW in the second stage, on each of these
image clusters, we use Bounding Box Hit Rate (BBHR) to verify whether contours de-
tected by CASW fall within the true foreground regions. The ground truth is defined as
all pixels of the extracted image contours that fall in the bounding boxes or segments
of target objects. A contour detected by CASW is counted as “hit” whenever the con-
tour covers 50% or more of the ground-truth pixels. Since we discard contours that are
less than 50 pixels, this means that at least 25 ground-truth pixels need to be detected
within the bounding box. Our accuracy in the second clustering stage depends on the
initial set of pairs of matching contours (i.e., nodes of graph G) input to CASW. This
is evaluated by plotting the ROC curve, parameterized by a threshold on the minimum
DTW similarity between pairs of matching contours which are included in G.

Evaluation in S1: We present three experiments in S1. Experiment 1 in S1: We eval-
uate the merit of: (a) using pairs of contours as nodes of G, and (b) accounting for
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Fig. 5. Evaluation in S1 on the ETHZ dataset. (a): We evaluate five distinct formulations of
object discovery, explained in the text, by computing False Positive Rate (FPR) at Bounding
Box Hit Rate BBHR=0.5. Our approach G+CASW gives the best performance. (b): Precision
and Recall as a function of the number of positive examples in the input image set. Perfor-
mance increases with more positive examples, until about 20 positive images. (c): Evolution of
log(p(M)p(G|M) estimated by our CASW (magenta), and standard SW [12] (cyan) on all pos-
itive examples of class Giraffes, and the same number of negative examples from ETHZ.

spatial configuration of contours as edge weights of G, against the more common use
of individual contours as graph nodes, and contour similarities as edge weights. To this
end, we build three weighted graphs G1, G2 and G3 of contours extracted only from
all positive examples of a single object category in the ETHZ dataset (i.e., the set of
negative examples is empty). Nodes of G1 are individual contours, edges connect can-
didate matches (u, u′), and edge weights suu′ represent the DTW similarity of contours
u and u′. In G2 and G3, nodes are instead pairs of contours (u, u′). In G2, each edge
((u, u′), (v, v′)) receives weight (suu′+svv′)/2. In G3, edges can only be positive and
receive weights ρ+

e , defined in Sec. 3. For all three graphs, we apply the standard PageR-
ank algorithm, also used in [9,17,10], to identify the most relevant contours, which are
then interpreted as object contours. False Positive Rate (FPR) is computed for BBHR
= 0.5, and averaged across all categories in the ETHZ dataset. Fig. 5(a) shows that
G2+PageRank decreases the FPR of G1+PageRank by 3.2%. However, G2+PageRank
still yields a relatively high value of FPR, which suggests that accounting only for shape
similarity and ignoring the spatial layout of contours may not be sufficient to handle the
very difficult problem of object discovery. Using G3+PageRank significantly decreases
FPR, which motivates our approach. We also run our CASW on graph G3, and on
G, specified in Sec. 3. In comparison with G3+CASW, our approach G+CASW addi-
tionally allows the negative polarity of graph edges. Fig. 5(a) shows that G3+CASW
outperforms G3+PageRank, and that G+CASW gives the best results.

Experiment 2 in S1: We test performance in object detection as a function of the number
of positive examples in the input image set. The total number of images M = 32 is set
to the number of images of the “smallest” class in the ETHZ dataset. In Fig.5(b), we
plot the ROC curves when the number of positive images increases, while the number
of negative ones proportionally decreases. As expected, performance improves with the
increase of positive examples, until reaching a certain number (on average about 20 for
the ETHZ dataset).

Experiment 3 in S1: Finally, we test our learning of pdf parameters. Fig.5(c) shows the
evolution of log(p(M)p(G|M)) in the first stage of object discovery in the image set
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Table 2. Mean purity of category discovery for Caltech-101 (A:Airplanes, C: Cars, F: Faces, M:
Motorbikes, W: Watches, K: Ketches), and ETHZ dataset (A:Applelogos, B: Bottles, G: Giraffes,
M: Mugs, S: Swans)

Caltech categories Our method [10] [9] [17]
A,C,F,M 98.62±0.51 98.03 98.55 88.82

A,C,F,M,W 97.57±0.46 96.92 97.30 N/A
A,C,F,M,W,K 97.13±0.42 96.15 95.42 N/A

ETHZ categories Our method [10]
A,B,G,M,S (bbox) 96.16±0.41 95.85

A,B,G,M,S (expanded) 87.35±0.37 76.47
A,B,G,M,S (entire image) 85.49±0.33 N/A

FACES AIRPLANESALL CLASSES
CASW [9] [10]

A 0.11±0.01 0.21 0.17
F 0.12±0.01 0.30 0.15
K 0.06±0.003 0.19 0.08
M 0.04±0.002 0.11 0.07
W 0.02±0.003 0.08 0.03

GIRAFFES MUGSALL CLASSES
CASW [9] [10]

A 0.15±0.02 N/A 0.18
B 0.18±0.01 N/A 0.20
G 0.16±0.01 0.32 0.18
M 0.23±0.04 N/A 0.27
S 0.09±0.002 N/A 0.11

Fig. 6. Bounding Box Hit Rates (BBHR) vs False Positive Rates (FPR). Top is Caltech-101,
bottom is ETHZ. Left column is our CASW on all classes, and middle and right columns show
a comparison with [9, 10] on a specific class (lower curves are better). The tables show FPR
at BBHR=0.5. Caltech-101: A: Airplanes, F: Faces, K: Ketches, M: Motorbikes, W: Watches.
ETHZ: A: Applelogs, B: Bottles, G: Giraffes, M: Mugs, S: Swans. (best viewed in color)

consisting of all positive examples of class Giraffes, and the same number of negative
examples showing other object categories from the ETHZ dataset. We compare our
CASW with the standard SW of [12], where the pdf parameters are not learned, but
pre-specified. Since these parameters are unknown, to compute both the ground-truth
value and the value produced by [12] of log(p(M)p(G|M)), we use the pdf parameters
learned by our approach after CASW converged. As CASW and SW make progress
through iterative clustering of the images, Fig. 5(c) shows that CASW yields a steeper
increase in log(p(M)p(G|M)) to higher values, closer to the ground-truth. Notice that
CASW avoids local minima and converges after only few iterations.

Evaluation in S2: We evaluate the first and second stages of object discovery in S2.
First Stage in S2: We build a graph whose nodes represent entire images. Edges be-
tween images in the graph are characterized by weights, defined as an average of DTW
similarities of contour matches from the corresponding pair of images. A similar char-
acterization of graph edges is used in [9, 10]. For object discovery, we apply CASW to
the graph, resulting in image clusters. Each cluster is taken to consist of images showing
a unique object category. Unlike [9, 10], we do not have to specify the number of cate-
gories present in the image set, as an input parameter, since it is automatically inferred
by CASW. Evaluation is done on Caltech-101 and the ETHZ dataset. Table 2 shows
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that our mean purity is superior to that of [9, 17, 10]. On Caltech-101, CASW succes-
sively finds K = 4, 5, 6 clusters of images, as we gradually increase the true number
of categories from 4 to 6. This demonstrates that we are able to automatically find the
number of categories present, with no supervision. On ETHZ, CASW again correctly
finds K = 5 categories. As in [10], we evaluate purity when similarity between the im-
ages (i.e., weights of edges in the graph) is estimated based on contours falling within:
(a) the bounding boxes of target objects, (b) twice the size of the original bounding
boxes (called expanded in Table 2), and (c) the entire images. On ETHZ, CASW does
not suffer a major performance degradation when moving from the bounding boxes, to
the challenging case of using all contours from the entire images. Overall, our purity
rates are high, which enables accurate clustering of contours in the second stage.

Second Stage in S2: We use contours from all images grouped within one cluster in
the first stage to build our graph G, and then conduct CASW. This is repeated for all
image clusters. The clustering of contours by CASW amounts to foreground detec-
tion, since the identified contour clusters are taken to represent parts of the discov-
ered object category. We evaluate BBHR and FPR on Caltech-101, ETHZ, LabelMe,
and Weizmann Horses. Fig.6 shows that our BBHR and FPR values are higher than
those of [9, 10] on the Caltech and ETHZ. CASW finds K = 1 for Airplanes, Cars
Rear, Faces, Ketches, Watches in Caltech-101, Apples, Bottles, Mugs in ETHZ, and Car
rear, Face, Airplane in LabelMe. These objects do not have articulated parts that move
independently, hence, only one contour cluster is found. On the other hand, it finds
K = 2 for Giraffes, Swans in ETHZ, Cars side, Motorbikes in Caltech and LabelMe,
and K = 3 for Weizmann Horses. In Fig.7, we highlight contours from different clus-
ters with distinct colors. Fig.7 demonstrates that CASW is capable not only to discover
foreground objects, but also to detect their characteristic parts, e.g., wheels and roof for
Cars side, wheels and seat for Motorbikes, head and legs for Giraffes, etc. The plot in
Fig.7 evaluates our object detection on LabelMe and Weizmann Horses. Detection ac-
curacy is estimated as the standard ratio of intersection over union of ground-truth and
detection bounding boxes, (BBgt ∩ BBd)/(BBgt ∪ BBd), where BBd is the small-
est bounding box that encloses detected contours in the image. The average detection
accuracy for each category is: [Face(F): 0.52, Airplane(A): 0.45, Motorbike(M): 0.42,
Car Rear(C): 0.34], whereas [10] achieves only [(F): 0.48, (A): 0.43, (M): 0.38, (C):
0.31]. For Weizmann Horses, we obtain P recision and Recall of 84.9%±0.68% and
82.4%±0.51%, whereas [8] achieves only 81.5% and 78.6%.

Remark: The probability of contour patterns that repeat in the background increases
with the number of images. On large datasets, CASW is likely to extract clusters of
those background patterns. However, the number of contours in these clusters is rela-
tively small, as compared to clusters that contain true object contours, because the fre-
quency of such patterns is, by definition, smaller than that of foreground objects. There-
fore, these spurious clusters can be easily identified, and interpreted as background. For
example, in setting S1, when the input image set consists of only positive, 100 images
of Weizmann Horses, we obtain K = 3 very large clusters (Fig.7), and 9 additional
clusters with only 5 to 10 background contours.
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Fig. 7. Unsupervised detection and segmentation of objects in example images from LabelMe
(top left), ETHZ (top right), and Weizmann Horses (bottom right). For LabelMe and ETHZ, each
row shows images that are grouped within a unique image cluster by CASW in the first stage.
Contours that are clustered by CASW in the second stage are highlighted with distinct colors
indicating cluster membership. CASW accurately discovers foreground objects, and delineates
their characteristic parts. E.g., for LabeMe Cars sideview CASW discovers two contour clusters
(yellow and magenta), corresponding to the two car parts wheels and roof. (bottom left) ROC
curves for LabelMe and Weizmann Horses, obtained by varying the minimum allowed DTW
similarity between pairs of matching contours which are input to CASW. (best viewed in color)

Implementation. The C-implementation of our CASW runs in less than 2 minutes on
any dataset of less than 100 images, on a 2.40GHz PC with 3.48GB RAM.

6 Conclusion

We have shown that shape alone is sufficiently discriminative and expressive to provide
robust and efficient object discovery in unlabeled images, without using any photomet-
ric features. This is done by clustering image contours based on their intrinsic geo-
metric properties, and spatial layouts. We have also made contributions to the popular
research topic in vision, that of probabilistic multicoloring of a graph, including: (a) the
on-line learning of pdf parameters governing multicoloring assignments; (b) enforcing
stronger positive and negative coupling nodes in the graph, by allowing the polarity of
graph edges to dynamically vary during the Metropolis-Hastings (MH) jumps; and (c)
regularizing the posterior of multicoloring assignments to help MH jumps escape from
trivial solutions. These extensions lead to faster convergence to higher values of the
graph’s posterior distribution than the well-known SW cut.
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Abstract. Image classification is a critical task for both humans and

computers. One of the challenges lies in the large scale of the semantic

space. In particular, humans can recognize tens of thousands of object

classes and scenes. No computer vision algorithm today has been tested

at this scale. This paper presents a study of large scale categorization

including a series of challenging experiments on classification with more

than 10, 000 image classes. We find that a) computational issues be-

come crucial in algorithm design; b) conventional wisdom from a couple

of hundred image categories on relative performance of different classi-

fiers does not necessarily hold when the number of categories increases;

c) there is a surprisingly strong relationship between the structure of

WordNet (developed for studying language) and the difficulty of visual

categorization; d) classification can be improved by exploiting the se-

mantic hierarchy. Toward the future goal of developing automatic vision

algorithms to recognize tens of thousands or even millions of image cat-

egories, we make a series of observations and arguments about dataset

scale, category density, and image hierarchy.

1 Introduction

Recognizing categories of objects and scenes is a fundamental human ability
and an important, yet elusive, goal for computer vision research. One of the
major challenges is the sheer scale of the problem, both in terms of the very
high dimensional physical space of images, and the large semantic space humans
use to describe visual stimuli. In particular, psychologists have postulated that
humans are able to categorize at least tens of thousands of objects and scenes [1].

The breadth of the semantic space has important implications. For many real
world vision applications, the ability to handle a large number of object classes
becomes a minimum requirement, e.g. an image search engine or an automatic
photo annotator is significantly less useful if it is unable to cover a wide range
of object classes. Even for tasks in restricted domains, e.g. car detection, to be
effective in the real world, an algorithm needs to discriminate against a large
number of distractor object categories.

Recent progress on image categorization has been impressive and has intro-
duced a range of features, models, classifiers, and frameworks [2,3,4,5,6,7,8,9,10].
In this paper we explore scaling up the number of categories considered in recog-
nition experiments from hundreds to over 10 thousand in order to move toward

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 71–84, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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reducing the gap between machine performance and human abilities. Note that
this is not simply a matter of training more and more classifiers (although that
is a challenging task on its own). With such large numbers of categories there
is a concomitant shift in the difficulty of discriminating between them as the
categories sample the semantic space more densely. The previously unexplored
scale of the experiments in this paper allow this effect to be measured.

Recognition encompasses a wide range of specific tasks, including classifica-
tion, detection, viewpoint understanding, segmentation, verification and more.
In this paper we focus on category recognition, in particular the task of assign-
ing a single category label to an image that contains one or more instances of a
category of object following the work of [11,12,13,14].

We conduct the first empirical study of image categorization at near human
scale. Some results are intuitive – discriminating between thousands of categories
is in fact more difficult that discriminating between hundreds – but other results
reveal structure in the difficulty of recognition that was previously unknown.
Our key contributions include:

– The first in-depth study of image classification at such a large scale. Such
experiments are technically challenging, and we present a series of techniques
to overcome the difficulty. (Sec. 5)

– We show that conventional wisdom obtained from current datasets does not
necessarily hold in some cases at a larger scale. For example, the ordering
by performance of techniques on hundreds of categories is not preserved on
thousands of categories. Thus, we cannot solely rely on experiments on the
Caltech [13,14] and PASCAL [12] datasets to predict performance on large
classification problems. (Sec. 6)

– We propose a measure of similarity between categories based on WordNet[15]
– a hierarchy of concepts developed for studying language. Experiments show
a surprisingly strong correlation between this purely linguistic metric and the
performance of visual classification algorithms. We also show that the cate-
gories used in previous object recognition experiments are relatively sparse
– distinguishing them from each other is significantly less difficult than dis-
tinguishing many other denser subsets of the 10,000 categories. (Sec. 7)

– Object categories are naturally hierarchical. We propose and evaluate a tech-
nique to perform hierarchy aware classification, and show that more infor-
mative classification results can be obtained. (Sec. 8)

2 Related Work

Much recent work on image classification has converged on bag of visual word
models (BoW) [16] based on quantized local descriptors [17,3,4] and support vec-
tor machines [3,2] as basic techniques. These are enhanced by multi-scale spatial
pyramids (SPM) [4] on BoW or histogram of oriented gradient (HOG) [18,4]
features. In the current state-of-the-art, multiple descriptors and kernels are
combined using either ad hoc or multiple kernel learning approaches [19,5,20,21].
Work in machine learning supports using winner-takes-all between 1-vs-all
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classifiers for the final multi-class classification decision [22]. We choose SPM
using BoW because it is a key component of many of the best recognition re-
sults [19,5,20,21] and is relatively efficient. Recent work allows fast approxima-
tion of the histogram intersection kernel SVM, used for SPM, by a linear SVM
on specially encoded SPM features [23]. See Appendix for the modifications nec-
essary to allow even that very efficient solution to scale to very large problems.

There are very few multi-class image datasets with many images for more
than 200 categories. One is Tiny Images [6], 32x32 pixel versions of images
collected by performing web queries for the nouns in the WordNet [15] hierarchy,
without verification of content. The other is ImageNet [24], also collected from
web searches for the nouns in WordNet, but containing full images verified by
human labelers. To date there have been no recognition results on large numbers
of categories published for either dataset1. Fergus et al . explore semi-supervised
learning on 126 hand labeled Tiny Images categories [25] and Wang et al . show
classification on a maximum of 315 categories (< 5%) [26].

Recent work considering hierarchies for image recognition or categorization
[27,28,29,30] has shown impressive improvements in accuracy and efficiency, but
has not studied classification minimizing hierarchical cost. Related to classifica-
tion is the problem of detection, often treated as repeated 1-vs-all classification
in sliding windows. In many cases such localization of objects might be useful
for improving classification, but even the most efficient of the state of the art
techniques [7,20,31] take orders of magnitude more time per image than the
ones we consider in this study, and thus cannot be utilized given the scale of our
experiments.

3 Datasets

The goals of this paper are to study categorization performance on a significantly
larger number of categories than the current state of the art, and furthermore
to delve deeper toward understanding the factors that affect performance. In
order to achieve this, a dataset with a large number of categories spanning a
wide range of concepts and containing many images is required. The recently
released ImageNet dataset consists of more than 10,000,000 images in over 10,000
categories organized by the WordNet hierarchy [24]. The size and breadth of
this data allow us to perform multiple longitudinal probes of the classification
problem. Specifically we consider the following datasets:

– ImageNet10K. 10184 categories from the Fall 2009 release of ImageNet [32],
including both internal and leaf nodes with more than 200 images each (a
total of 9 million images).

– ImageNet7K. 7404 leaf categories from ImageNet10K. Internal nodes may
overlap with their descendants, so we also consider this leaf only subset.

– ImageNet1K. 1000 leaf categories randomly sampled from ImageNet7K.

1 Previous work on Tiny Images [6] and ImageNet [24] shows only proof of concept

classification on fewer than 50 categories.
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– Rand200{a,b,c}. Three datasets, each containing 200 randomly selected
leaf categories. The categories in Rand200a are sampled from ImageNet1K
while Rand200b and Rand200c are sampled directly from ImageNet7K.

– Ungulate183, Fungus134, Vehicle262. Three datasets containing all the
leaf nodes that are descendants of particular parent nodes in ImageNet10K
(named by the parent node and number of leaves).

– CalNet200. This dataset serves as a surrogate for the Caltech256 dataset –
containing the 200 image categories from Caltech256 that exist in ImageNet.

Note that all datasets have non-overlapping categories except ImageNet10K.
Following the convention of the PASCAL VOC Challenge, each category is ran-
domly split 50%-50% into a set of training and test images, with a total of 4.5
million images for training and 4.5 million images for testing. All results are
averaged over two runs by swapping training and test, except for ImageNet7K
and ImageNet10K due to extremely heavy computational cost. In all cases we
provide statistical estimates of the expected variation. The number of training
images per category ranges from 200 to 1500, with an average of 450.

4 Procedure

The main thrust of this paper is image classification: given an image and K
classes, the task is to select one class label. We employ two evaluation measures:

Mean accuracy. The accuracy of each class is the percentage of correct pre-
dictions, i.e. predictions identical to the ground truth class labels. The mean
accuracy is the average accuracy across all classes.

Mean misclassification cost. To exploit the hierarchical organization of object
classes, we also consider the scenario where it is desirable to have non-uniform
misclassification cost. For example, misclassifying “dog” as “cat” might not be
penalized as much as misclassifying “dog” as “microwave”. Specifically, for each
image x(k)

i ∈ X, i = 1, . . . ,m from class k, we consider predictions f(x(k)
i ) : X →

{1, . . . ,K}, where K is the number of classes (e.g. K = 1000 for ImageNet1K)
and evaluate the cost for class k as Lk = 1

m

∑m
i=1 Cf(x

(k)
i ),k

, where C is a K×K

cost matrix and Ci,j is the cost of classifying the true class j as class i. The
mean cost is the average cost across all classes. Evaluation using a cost based on
the ImageNet hierarchy is discussed in Sec. 8.

We use the following four algorithms in our evaluation experiments as samples
of some major techniques used in object recognition:
– GIST+NN Represent each image by a single GIST [33] descriptor (a com-

monly accepted baseline descriptor for scene classification) and classify using
k-nearest-neighbors (kNN) on L2 distance.

– BOW+NN Represent each image by a histogram of SIFT [17] codewords and
classify using kNN on L1 distance, as a baseline for BoW NN-based methods.

– BOW+SVM Represent each image by a histogram of SIFT codewords, and train
and classify using linear SVMs. Each SVM is trained to distinguish one class
from the rest. Images are classified by the class with largest score (a 1-vs-all
framework). This serves as a baseline for classifier-based algorithms.
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– SPM+SVM Represent each image by a spatial pyramid of histograms of SIFT
codewords [4]. Again a 1-vs-all framework is used, but with approximate
histogram intersection kernel SVMs [23,3,4]. This represents a significant
component of many state of the art classifiers [19,5,20,21].

5 Computation Matters

Working at the scale of 10,000 categories and 9 million images moves com-
putational considerations to the forefront. Many common approaches become
computationally infeasible at such large scale.

As a reference, for this data it takes 1 hour on a 2.66GHz Intel Xeon CPU
to train one binary linear SVM on bag of visual words histograms (including
a minimum amount of parameter search using cross validation), using the ex-
tremely efficient LIBLINEAR [34]. In order to perform multi-class classification,
one common approach is 1-vs-all, which entails training 10,000 such classifiers –
requiring more than 1 CPU year for training and 16 hours for testing. Another
approach is 1-vs-1, requiring 50 million pairwise classifiers. Training takes a sim-
ilar amount of time, but testing takes about 8 years due to the huge number of
classifiers. A third alternative is the “single machine” approach, e.g. Crammer &
Singer [35], which is comparable in training time but is not readily parallelizable.
We choose 1-vs-all as it is the only affordable option.

Training SPM+SVM is even more challenging. Directly running intersection ker-
nel SVM is impractical because it is at least 100× slower ( 100+ years ) than
linear SVM [23]. We use the approximate encoding proposed by Maji & Berg [23]
that allows fast training with LIBLINEAR. This reduces the total training time
to 6 years. However, even this very efficient approach must be modified because
memory becomes a bottleneck 2 – a direct application of the efficient encoding of
[23] requires 75GB memory, far exceeding our memory limit (16GB). We reduce
it to 12G through a combination of techniques detailed in Appendix A.

For NN based methods, we use brute force linear scan. It takes 1 year to run
through all testing examples for GIST or BOW features. It is possible to use
approximation techniques such as locality sensitive hashing [36], but due to the
high feature dimensionality (e.g. 960 for GIST), we have found relatively small
speed-up. Thus we choose linear scan to avoid unnecessary approximation.

In practice, all algorithms are parallelized on a computer cluster of 66 multi-
core machines, but it still takes weeks for a single run of all our experiments. Our
experience demonstrates that computational issues need to be confronted at the
outset of algorithm design when we move toward large scale image classification,
otherwise even a baseline evaluation would be infeasible. Our experiments sug-
gest that to tackle massive amount of data, distributed computing and efficient
learning will need to be integrated into any vision algorithm or system geared
toward real-world large scale image classification.

2 While it is possible to use online methods, e.g . stochastic subgradient descent, they

can be slower to converge [34].
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Fig. 1. Given a query image, the task of “image classification” is to assign it to one

of the classes (represented by a stack of images) that the algorithm has learned. Left:
Most traditional vision algorithms have been tested on a small number of somewhat dis-

tinct categories. Middle: Real world image classification problems may involve a much

larger number of categories – so large that the categories can no longer be easily sep-

arated. Right: Mean classification accuracy of various methods on Rand200{a, b, c},

ImageNet1K, ImageNet7K and ImageNet10K.

6 Size Matters

We first investigate the broad effects on performance and computation of scaling
to ten-thousand categories. As the number of categories in a dataset increases,
the accuracy of classification algorithms decreases, from a maximum of 34% for
Rand200{a,b,c} to 6.4% for ImageNet10K (Fig. 1 right). While the performance
drop comes at no surprise, the speed of decrease is slower than might be expected
– roughly a 2× decrease in accuracy with 10× increase in the number of classes,
significantly better than the 10× decrease of a random baseline.

There is a surprise from k-nearest-neighbor (kNN) classifiers, either using GIST
features or BoW features. For Rand200{a,b,c}, these techniques are significantly
worse than linear classifiers using BoW features, around 10% lower in accuracy.
This is consistent with the experience of the field – methods that do use kNN
must be augmented in order to provide competitive performance [2,37]. But the
picture is different for ImageNet7K or ImageNet10K categories, where simple
kNN actually outperforms linear SVMs on BoW features (BOW+SVM), with 11-16%
higher accuracy. The small absolute gain in mean accuracy, around 0.5%, is made
significant by the very small expected standard deviation of the means 0.1% 3.
A technique that significantly outperforms others on small datasets
may actually underperform them on large numbers of categories.

This apparent breakdown for 1-vs-all with linear classifiers comes despite a
consistent line of work promoting this general strategy for multi-class classifica-
tion [22]. It seems to reveal issues with calibration between classifiers, as the ma-
jority of categories have comparable discriminative power on ImageNet7K and
Rand200a (Fig 2 left), but multi-way classification is quite poor for ImageNet7K
3 Stdev for ImageNet7K and ImageNet10K are estimated using the individual category

variances, but are very small cf standard error and the central limit theorem.
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the 200 categories in Rand200a when trained and evaluated against themselves(x-axis)

and when trained and evaluated against ImageNet7K(y-axis). Right: Histograms of

accuracies for the same 200 categories in Rand200a, ImageNet1K, and ImageNet7K,

example categories indicated with colored markers.

(Fig 2 right). One explanation is that for the one-against-all approach, a correct
prediction would require that the true classifier be more confident than any other
classifiers, which becomes more difficult with a larger number of classes as the
chance of false alarms from others greatly increases. Then the behavior starts to
resemble kNN methods, which are only confident about close neighbors.

Looking in more detail at the confusion between the categories in ImageNet7K
reveals additional structure (Fig. 3). Most notable is the generally block diagonal
structure, indicating a correlation between the structure of the semantic
hierarchy (by WordNet) and visual confusion between the categories.
The two most apparent blocks roughly align with “artifacts” and “animals”,
two very high level nodes in WordNet, suggesting the least amount of confusion
between these two classes with more confusion within. This is consistent with
both computational studies on smaller numbers of classes [30] and some human
abilities [38]. Sections of the confusion matrix are further expanded in Fig. 3.
These also show roughly block diagonal structures at increasingly finer levels
not available in other datasets. The pattern is roughly block diagonal, but by
no means exact. There is a great deal of noise and a fainter “plaid”, oscillating
pattern of stripes, indicating that the ordering of categories in WordNet is not
completely in agreement with the visual confusion between them.

The block patterns indicate that it is possible to speed up the classification by
using a sublinear number of classifiers in a hierarchy, as Griffin & Perona have
demonstrated on Caltech256 [30]. They built a hierarchy of classifiers directly
from the confusion matrix. Here we confirm their findings by observing a much
stronger pattern on a large number of classes. Moreover we note that such a
grouping may actually be directly obtained from WordNet, in which case, the
output of an internal classifier in the hierarchy would be semantically meaningful.

Also of note is that in scaling to many classes, only a small subset of the
distractor classes are truly distracting, possibly explaining the smaller than
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Left: Downsampled 7404 × 7404 confusion matrix, each pixel representing max con-

fusion over 4 × 4 entries. Middle: Zoom-in to two sub-matrices ( top: 949 × 949;

bottom: 1368 × 1368 ), each pixel 2 × 2 entries. One row of the matrix is plotted be-

low each matrix (corresponding to red outlined images). The correct class is indicated

by a red triangle. Examples of other classes are also shown. Right: Further zoom-in

(top: 188×188; bottom: 145×145), each pixel representing the confusion between two

individual categories.

expected performance drop. For example, to classify “German shepherd”, most
of the distractor classes are “easy” ones like “dishrag”, while only a few semanti-
cally related classes like “husky” add to the difficulty. It suggests that one key to
improving large scale classification is to focus on those classes, whose difficulty
correlates with semantic relatedness. We quantify this correlation in Sec. 7.

7 Density Matters

Our discussion so far has focused on the challenges arising from the sheer number
of categories. Figure 3 reveals that the difficulty of recognition varies significantly
over different parts of the semantic space. Some classifiers must tackle more se-
mantically related, and possibly visually similar, categories. Accurate classifi-
cation of such categories leads to useful applications, e.g. classifying groceries
for assisting the visually impaired, classifying home appliances for housekeeping
robots, or classifying insect species for environmental monitoring [39]. We refer
to sets of such categories as dense and study the effect of density on classification.

We begin by comparing mean classification accuracy for classifiers trained
and tested on each of the small datasets – Fungus134, Ungulate183, Vehicle262,
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measured by mean distance in WordNet (see Sec. 7).

CalNet200, Rand200 – across descriptors and classifiers in Fig. 4. Note that while
SPM+SVM produces consistently higher accuracies than the other approaches, the
ordering of datasets by performance is exactly the same for each approach4.
This indicates that there is a significant difference in difficulty between
different datasets, independent of feature and classifier choice.

Next we try to predict the difficulty of a particular dataset by measuring the
density of the categories, based on the hierarchical graph structure of WordNet.
We define the distance, h(i, j), between categories i and j, as the height of their
lowest common ancestor. The height of a node is the length of the longest path
down to a leaf node (leaf nodes have height 0). We measure the density of a
dataset as the mean h(i, j) between all pairs of categories – smaller implies
denser. See Fig. 5 for an illustration and for examples of pairs of categories from
each dataset that have distance closest to the mean for that dataset. There is a
very clear correlation between the density in WordNet and accuracy
of visual classification; denser datasets predict lower accuracy (Fig. 4).
This is despite the fact that WordNet was not created as a visual hierarchy!

Classification accuracy on 200 randomly chosen categories (Rand200{a,b,c})
is more than 3 times higher than on the 134 categories from Fungus134. The large
gap suggests that the methods studied here are not well equipped for classifying
dense sets of categories. In fact, there have been relatively few efforts on “dense
classification” with some notable exceptions, e.g. [40,41,39]. The results seem
to call for perhaps more specialized features and models, since it is one key to
improving large scale classification performance as discussed in Sec. 6

Also of note is that the Caltech256 categories that occur in ImageNet (Cal-
Net200) have very low density and relatively high accuracy – in almost exactly
the same range as random sets of categories. The Caltech categories are very
sparse and do not exhibit the difficulty of dense sets of categories,

4 Ordering of datasets is consistent, but ordering of methods may change between

datasets as noted in Sec. 6 where BOW+SVM and the kNN approaches switch order.
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Fig. 5. Left: Illustration of the inter-class distance (indicated by the numbers) be-

tween “sailboat” and other classes, as defined in Sec. 7. Any descendant of ship is

further from sailboat than gallon but closer than those in aircraft. Note that one step

up the hierarchy may increase the distance by more than one as the tree height is the

length of the longest path to a leaf node. Right: Each row shows a pair of example

categories from the dataset indicated in the center column. The pairs are chosen to

have distance near the mean distance in WordNet (Sec. 7) between categories in the

dataset, indicated by the bars in the center column.

making Caltech-like datasets incomplete as an evaluation resource to-
wards some of the real-world image classification problems.

Finally we note that our WordNet based measure is not without limitations,
e.g. “food tuna” and “fish tuna” are semantically related but belong to “food”
and “fish” subtrees respectively, so are far away from each other. Nonetheless as
a starting point for quantifying semantic density, the results are encouraging.

8 Hierarchy Matters

For recognition at the scale of human ability, categories will necessarily overlap
and display a hierarchical structure [11]. For example, a human may label “red-
shank” as “shorebird”, “bird”, or “animal”, all of which are correct but with a
decreasing amount of information. Humans make mistakes too, but to different
degrees at different levels – a “redshank” might be mistaken as a “red-backed
sandpiper”, but almost never as anything under “home appliance”.

The implications for real world object classification algorithms are two fold.
First a learning algorithm needs to exploit real world data that inevitably has
labels at different semantic levels. Second, it is desirable to output labels as
informative as possible while minimizing mistakes at higher semantic levels.

Consider an automatic photo annotator. If it cannot classify “redshank” reli-
ably, an answer of “bird” still carries much more information than “microwave”.
However, our classifiers so far, trained to minimize the 0-1 loss 5, have no incen-
tive to do so – predicting “microwave” costs the same as predicting “bird”.

5 The standard loss function for classification, where a correct classification costs zero

and any incorrect classification costs 1.
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at each height, indicating the effective log-scale for hierarchical cost.

Here we explore ways to make classifiers more informative. We define a hier-
archical cost Ci,j for classifying an image of class j as class i as Ci,j = 0 when
i = j or when i is a descendant of j, and Ci,j = h(i, j), the height of their lowest
common ancestor in WordNet, otherwise. This cost definition directly measures
the semantic level at which a misclassification occurs – a more informative clas-
sifier, one able to discriminate finer details, would have lower cost. It also takes
care of the overlapping categories – there is penalty for classifying an image in
an internal node as its (more general) ancestor but no cost for classifying it as
any of its (more specific) descendants. As an example, in Fig. 5 left, for an im-
age labeled as “sailboat”, classifying it as “catamaran” or any other descendant
incurs no cost 6 while classifying as any descendant of “aircraft” incurs cost 6.

We can make various classification approaches cost sensitive by obtaining
probability estimates (Appendix). For a query image x, given posterior proba-
bility estimates p̂j(x) for class j, j ∈ {1, . . .K}, according to Bayesian decision
theory, the optimal prediction is obtained by predicting the label that minimizes
the expected cost f(x) = arg mini=1,...,K

∑K
j=1 Ci,j p̂j(x).

Comparing the mean hierarchical cost for the original (flat) classifier with
the mean cost for the cost sensitive (hierarchical) classifier, we find a consistent
reduction in cost on ImageNet10K(Fig. 6). It shows that the hierarchical classifier
can discriminate at more informative semantic levels. While these reductions may
seem small, the cost is effectively on a log scale. It is measured by the height in
the hierarchy of the lowest common ancestor, and moving up a level can more
than double the number of descendants (Fig. 6 right).

The reduction of mean cost on its own would not be interesting without a
clear benefit to the results of classification. The examples in Fig. 7 show query
images and their assigned class for flat classification and for classification us-
ing hierarchical cost. While a whipsnake is misclassified as ribbon snake, it is
still correct at the “snake” level, thus giving a more useful answer than “sun-
dial”. It demonstrates that classification based on hierarchical cost can
be significantly more informative.

6 The image can in fact be a “trimaran”, in which case it is not entirely correct to

predict “catamaran”. This is a limitation of intermediate level ground truth labels.
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Fig. 7. Example errors using a flat vs. hierarchical classifier with SPM+SVM on Ima-

geNet10K, shown in horizontal groups of three: a query, prediction by a flat classifier

(minimizing 0-1 loss), and by a hierarchical classifier (minimizing hierarchical cost).

Numbers indicate the hierarchical cost of that misclassification.

9 Conclusion

We have presented the first large scale recognition experiments on 10,000+ cat-
egories and 9+ million images. We show that challenges arise from the size
and density of the semantic space. Surprisingly the ordering of NN and Linear
classification approaches swap from previous datasets to our very large scale ex-
periments – we cannot always rely on experiments on small datasets to predict
performance at large scale. We produce a measure of category distance based on
the WordNet hierarchy and show that it is well correlated with the difficulty of
various datasets. We present a hierarchy aware cost function for classification and
show that it produces more informative classification results. These experiments
point to future research directions for large scale image classification, as well as
critical dataset and benchmarking issues for evaluating different algorithms.
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max side length of 300, and a 1000 codebook from KMeans on 10 million SIFT
vectors. We use the same codewords to obtain spatial pyramid histograms (3
levels), φ2 encoded [23] to approximate the intersection kernel with linear SVMs.
Due to high dimensionality (21k), we only encode nonzeros (but add a bias term).
This preserves the approximation for our, non-negative, data, but with slightly
different regularization. We found no empirical performance difference testing up
to 1K categories. To save memory, we use only two bytes for each entry of encoded
vectors (sparse) by delta-coding its index (1 byte) and quantizing its value to
256 levels (1 byte). We further reduce memory by only storing every other entry,
exploiting redundancy in consecutive entries. We use LIBLINEAR [34] to train
linear SVMs, parameter C determined by searching over 3 values (0.01, 0.1, 1 for
ImageNet10K) with 2-fold cross validation. We use smaller weight for negative
examples(100× smaller for ImageNet10K) than positives. We obtain posterior
probability estimates by fitting a sigmoid function to the outputs of SVMs [43],
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Abstract. Can we model the temporal evolution of topics in Web im-
age collections? If so, can we exploit the understanding of dynamics to
solve novel visual problems or improve recognition performance? These

two challenging questions are the motivation for this work. We propose a

nonparametric approach to modeling and analysis of topical evolution in

image sets. A scalable and parallelizable sequential Monte Carlo based

method is developed to construct the similarity network of a large-scale

dataset that provides a base representation for wide ranges of dynam-

ics analysis. In this paper, we provide several experimental results to

support the usefulness of image dynamics with the datasets of 47 top-

ics gathered from Flickr. First, we produce some interesting observations

such as tracking of subtopic evolution and outbreak detection, which can-

not be achieved with conventional image sets. Second, we also present

the complementary benefits that the images can introduce over the asso-

ciated text analysis. Finally, we show that the training using the temporal
association significantly improves the recognition performance.

1 Introduction

This paper investigates the discovery and use of topical evolution in Web image
collections. The images on the Web are rapidly growing, and it is obvious to
assume that their topical patterns evolve over time. Topics may rise and fall in
their popularity; sometimes they are split or merged to a new one; some of them
are synchronized or mutually exclusive on the timeline. In Fig.1, we download
apple images and their associated timestamps from Flickr, and measure the
similarity changes with some canonical images of apple’s subtopics. As Google
trends reveal the popularity variation of query terms in the search volumes, we
can easily observe the affinity changes of each subtopic in the apple image set.

The main objectives of this work are as follows. First, we propose a non-
parametric approach to modeling and analysis of temporal evolution of topics
in Web image collections. Second, we show that understanding image dynamics
is useful to solve novel problems such as subtopic outbreak detection and to im-
prove classification performance using the temporal association that is inspired
by studies in human vision [2,19,21]. Third, we present that the images can be a
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Fig. 1. The Google trends-like visualization of the subtopic evolution in the apple im-

ages from Flickr (fruit : blue, logo: red, laptop: orange, tree: green, iphone: purple). We

choose the cluster center image of each subtopic, and measure the average similarity

with the posterior (i.e. a set of weighted image samples) at each time step. The fruit
subtopic is stable along the timeline whereas the iphone subtopic is highly fluctuated.

more reliable and delicate source of information to detect topical evolution than
the texts.

Our approach is motivated by the recent success of the nonparametric meth-
ods [13,20] that are powered by large databases. Instead of using sophisticated
parametric topic models [3,22], we represent the images with timestamps in the
form of a similarity network [11], in which vertices are images and edges con-
nect the temporally related and visually similar images. Thus, our approach is
able to perform diverse dynamics analysis without solving complex inference
problems. For example, a simple information-theoretic measure of the network
can be used to detect subtopic outbreaks, which point out when the evolution
speed is abruptly changed. The temporal context is also easily integrated with
the classifier training in a framework of the Metropolis-Hastings algorithm.

The network generation is based on the sequential Monte Carlo (i.e. particle
filtering) [1,9]. In the sequential Monte Carlo, the posterior (i.e. subtopic dis-
tribution) at a particular time step is represented by a set of weighted image
samples. We track similar subtopics (i.e. clusters of images) in consecutive pos-
teriors along the timeline, and create edges between them. The sampling based
representation is quite powerful in our context. Since we deal with unordered
natural images on the Web, any Gaussian or linearity assumption does not hold
and multiple peaks of distributions are unavoidable. Another practical advan-
tage is that we can easily control the tradeoff between accuracy and speed by
managing the number of samples and parameters in the transition model. The
proposed algorithm is easily parallelizable by running multiple sequential Monte
Carlo trackers with different initialization and parameters. Our approach is also
scalable and fast. The computation time is linear with the number of images.

For evaluation, we download more than 9M images of 47 topics from Flickr.
Most standard datasets in computer vision research [7,18] have not yet consid-
ered the importance of temporal context. Recently, several datasets have intro-
duced spatial contexts as fundamental cues to recognition [18], but the support
for temporal context has still been largely ignored. Our experiments clearly show
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that our modeling and analysis is practically useful and can be used to under-
stand and simulate human-like visual experience from Web images.

1.1 Related Work

The temporal information is one of the most obvious features in video or au-
ditory applications. Hence, here we review only the use of temporal cues for
image analysis. The importance of temporal context has long been recognized in
neuroscience research [2,19,21]. Wide range of research has supported that the
temporal association (i.e. liking temporally close images) is an important mecha-
nism to recognize objects and generalize visual representation. [21] tested several
interesting experiments to show that temporally correlated multiple views can
be easily linked to a single representation. [2] proposed a learning model for 3D
object recognition by using the temporal continuity in image sequences.

In computer vision, [16] is one of the early studies that use temporal context
in active object recognition. They used a POMDP framework for the modeling of
temporal context to disambiguate the object hypotheses. [5] proposed a HMM-
based temporal context model to solve scene classification problems. For the
indoor-outdoor classification and the sunset detection, they showed that the
temporal model outperformed the baseline content-based classifiers.

As the Internet vision emerges as an active research area in computer vision,
timing information starts to be used in the assistance of visual tasks. Surpris-
ingly, however, the dynamics or temporal context for Web images has not yet
been studied a great deal, contrary to the fact that the study of the dynamic
behaviors of the texts on the Web has been one of active research areas in data
mining and machine learning communities [3,22]. We briefly review some notable
examples using timestamp meta-data for visual tasks. [6] developed an annota-
tion method for personal photo collections, and the timestamps associated with
the images were used for better correlation discovery between the images. [12]
proposed a landmark classification for an extremely large dataset, and the tem-
poral information was used for the constraints to remove misclassification. [17]
also used the timestamp as an additional feature to develop an object and event
retrieval system for online image communities. [10] presented a method to geolo-
cate a sequence of images taken by a single individual. Temporal constraints from
the sequence of images were used as a strong prior to improve the geolocation
accuracy.

The main difference between their work and ours is that they considered the
temporal information as additional meta-data or constraints to achieve their
original goals (i.e. annotations in [6], classification and detection in [12,17], and
the geolocation of images in [10]). However, our work considers the timestamps
associated with images as a main research subject to uncover dynamic behav-
iors of Web images. To our best knowledge, there have been very few previous
attempts to tackle this issue in computer vision research.
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2 Network Construction by Sequential Monte Carlo

2.1 Image Description and Similarity Measure

Each image is represented by two types of descriptors, which are spatial pyramids
of visual words [14] and HOG [4]. We use the codes provided by the authors of
the papers. A dictionary of 200 visual words is formed by K-means to randomly
selected SIFT descriptors [14]. A visual word is densely assigned to every pixel
of an image by finding the nearest cluster center in the dictionary. Then visual
words are binned using a two-level spatial pyramid. The oriented gradients are
computed by Canny edge detection and Sobel mask [4]. The HOG descriptor
is then discretized into 20 orientation bins in the range of [0◦,180◦]. Then the
HOG descriptors are binned using a three-level spatial pyramid. The similarity
measure between a pair of images is the cosine similarity, which is calculated by
the dot product of a pair of L2 normalized descriptors.

2.2 Problem Statement

The input of our algorithm is a set of images I = {I1, I2, ..., IN} and associated
tags of taken time T = {T1, T2, ..., TN}. The main goal is to generate an N ×N
sparse similarity network G = (V , E ,W) by using the Sequential Monte Carlo
(SMC) method. Each vertex in V is an image in the dataset. The edge set E
is created between the images that are visually similar and temporally distant
with a certain interval that is assigned by the transition model of the SMC
tracker (Section 2.3). The weight set W is discovered by the similarity between
descriptors of images (Section 2.1). For sparsity, each image is connected to its
k-nearest neighbors with k = a logN , where a is a constant (e.g. a =10).

2.3 Network Construction Using Sequential Monte Carlo

Algorithm 1 summarizes the proposed SMC based network construction. For
better readability, we follow the notation of condensation algorithm [9]. The
output of each iteration of the SMC is the conditional subtopic distribution (i.e.
posterior) at every step, which is approximated by a set of images with relative
importance denoted by {st,πt} = {s(i)

t , π
(i)
t , i = 1, . . . ,M}. Note that our SMC

does not explicitly solve the data association during the tracking. In other words,
we do not assign a subtopic membership to each image in st. However, it can be
easily obtained later by applying clustering to the subgraph of st.

Fig.2 shows a downsampled example of a single iteration of the posterior
estimation. At every iteration, the SMC generates a new posterior {st,πt} by
running transition, observation, and resampling.

The image data are severely unbalanced on the timeline. (e.g. There are only
a few images within a month in 2005 but a large number of images within even
a week in 2008). Thus, in our experiments, we bin the timeline by the number
of images instead of a fixed time interval. (e.g. The timeline may be binned by
every 3000 images instead of a month). The function τ(Ti,m) is used to indicate
the timestamp of the m-th image later from the image at Ti.
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Fig. 2. An overview of the SMC based network construction for the jaguar topic. The

subtopic distribution at each time step is represented by a set of weighted image samples

(i.e. posterior) {st, πt}. In this example, a posterior of the jaguar topic consists of image

samples of animal, cars, and football subtopics. (a) The transition model generates new

posterior candidates s′t from st−1. (b) The observation model discovers π′
t of s′t and the

resampling step computes {st, πt} from {s′t, π′
t}. Finally, the network is constructed

by similarity matching between two consecutive posteriors st−1 and st.

Initialization. The initialization samples the initial posterior s0 from the prior
p(x0) at T0. p(x0) is set by a Gaussian distribution N(T0, τ

2(T0, 2M/3)) on the
timeline, which means that 2M numbers of images around T0 have nonzero
probabilities to be selected as one of s0. The initial π0 is uniformly set to 1/M .

Transition Model. The transition model generates posterior candidates s′t
rightward on the timeline from the previous {st−1,πt−1} (See Fig.2.(a) for an
example). Each image s

(i)
t−1 in st−1 recommends mi numbers of images that are

similar to itself as candidates set s′t for the next posterior. A more weighted image
s
(i)
t−1 is able to recommend more images for s′t. (

∑
i mi = 2M and mi ∝ π

(i)
t−1).

At this stage, we generate 2M candidates (i.e. |s′t| = 2M), and the observation
and resampling steps reduce it to be |st| = M while computing weights πt.

Similarly to condensation algorithm [9], the transition consists of deterministic
drift and stochastic diffusion. The drift describes the transition tendency of the
overall s′t (i.e. how far the s′t is located from the st−1 on the timeline). The
diffusion assigns a random transition of an individual image. The drift and
the diffusion are modeled by a Gaussian distribution N(μt, σ

2) and a Gamma
distribution Γ(α, β), respectively. The final transition model is the product of
these two distributions [8] in Eq.1. The asterisk of P

(i)∗
t (x) in Eq.1 means that it

is not normalized. Renormalization is not required since we will use importance
sampling to sample images on the timeline with the target distribution (See the
next subsection with Fig.3 for the detail).

P
(i)∗
t (x) = N(x;μt, σ

2) × Γ(x;α(i)
t−1, β

(i)
t−1) (1)
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Algorithm 1. The SMC based network generation
Input: (1) A set of images I sorted by timestamps T . (2) Start time T0 and end time

Te. (3) Posterior size M . (4) Parameters for drift : (�Mμ, σ2).

Output: Network G
Initialization:

1: draw s
(i)
0 ∼ N(T0, τ

2(T0, 2M/3)), π
(i)
0 = 1/M for i = 1, . . . , M .

while μt < Te, (μ0 = T0 and μt = μt−1 + τ (μt−1,�Mμ)). do
[Transition]

for all s
(i)
t−1 ∈ st−1 with x(i) = ∅ do

repeat
3: draw x ∼ N(x; μt, σ

2)×Γ(x; α
(i)
t−1, β

(i)
t−1) (α

(i)
t−1 ∝ 1/π

(i)
t−1, β

(i)
t−1 = μt/α

(i)
t−1).

4: x(i) ← x with probability of w(s
(i)
t−1, x).

until |x(i)| = mi = 2M × π
(i)
t−1. Then, s′t ← x(i).

end for
[Observation]

4: Compute self-similarity graph Wt of s′t. Row-normalize Wt to W̃t.

5: Compute the stationary distribution π′
t by solving π′

t = W̃
T

t π′
t.

[Resampling]
6: Resample {st, πt}M

i=1 from {s′t, π′
t} by systematic sampling and normalize πt.

7: G ← Wt(st, st),Wt−1,t(st−1, st), and then convert G into a k-NN graph.

end while

In sum, for each s
(i)
t−1, we sample an image x using the distribution of Eq.1,

which constrains the position of x on the timeline. In addition, x is required
to be visually similar to its recommender. Thus, the sample x is accepted with
probability of w(s(i)

t−1, x), which is the cosine similarity between the descriptors
of s(i)

t−1 and x. This process is repeated until mi number of samples are accepted.
In Eq.1, the mean μt of N(μt, σ

2) is updated at every step as μt = μt−1 +
τ(μt−1,
Mμ) where 
Mμ is the control parameter for the speed of the tracking.
The higher 
Mμ, the further st is located from st−1 and the fewer the steps are
executed until completion. The variance σ2 of N(μt, σ

2) controls the spread of
st along the timeline. A higher σ2 results in a st that includes images with a
longer time range.

A Gamma distribution Γ(α, β) is usually used to model the time required for
α occurrences of events that follow a Poisson process with a constant rate β.
In our interpretation, given an image stream, we assume that the occurrence of
images of each subtopic follows the Poisson process with β. Then, Γ(α(i)

t−1, β
(i)
t−1)

of Eq.1 indicates the time required for the next α images that have the same
subtopic with s

(i)
t−1 in the image stream. Based on this intuition, the α

(i)
t−1 for

each s
(i)
t−1 is adjustively selected. A smaller α

(i)
t−1 is chosen for the image s

(i)
t−1

with higher π
(i)
t−1 since the similar images to a more weighted s

(i)
t−1 are likely to

occur more frequently in the dataset. The mean of Gamma distribution of each
s
(i)
t−1 is aligned with the mean of the sample set μt. Therefore, β(i)

t−1 = μt/α
(i)
t−1

since the mean of Gamma is αβ.
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Fig. 3. An example of sampling images on the timeline during (a) the initialization

and (b) the transition. From top to bottom: The first row shows the image distribu-

tions along the timeline. The images are regarded as the samples ({x(r)}R
r=1) from a

proposal distribution Q∗(x). They are equally weighted (i.e. Q∗(x(r)) = 1). The sec-

ond row shows the target distribution P ∗(x). (e.g . Gaussian in (a) and the product

of Gaussian and Gamma in (b)). The third row shows the image samples weighted by

P ∗(x(r))/Q∗(x(r)). The fourth row shows the images chosen by systematic sampling [1].

The main reason to adopt the product model rather than the mixture model
in Eq.1 is as follows. The product model only has a meaningful probability for an
event when none of its component distribution has a low probability. (i.e. if one
of two distributions has zero probability, their product does as well). It is useful
in our application that the product with the Gaussian of the drift prevents the
sampled images from severely spreading along the timeline by setting almost
zero probability for the image outside the 3σ from μt.

Sampling Images with Target Distribution. In the initialization and the
transition, we sample a set of images on the timeline from a given target distri-
bution P ∗(x). (e.g. Gaussian in the initialization and the product of Gaussian
and Gamma in the transition). Fig.3 shows our sampling method, which can be
viewed as an importance sampling [15]. The importance sampling is particularly
useful for the transition model since there is no closed form of the product of
Gaussian and Gamma distributions and its normalization is not straightforward.

Observation Model. The goal of the observation model is to generate weights
π′

t for the s′t. First, the similarity matrix Wt of s′t is obtained by computing
pairwise cosine similarity of s′t. The π′

t is the stationary distribution of Wt

by solving π′
t = W̃

T

t π′
t where W̃t is row-normalized from Wt so that w̃ij =

wij/
∑

k wik.

Resampling. The final posterior {st,πt} = {s(i)
t , π

(i)
t }M

i=1 is resampled from
{s′t,π′

t} by running the systematic sampling [1] on π′′
t . Then πt is normalized so

that their sum is one. The network G stores Wt(st, st) and the similarity matrix
Wt−1,t(st−1, st) between two consecutive posteriors st−1 and st. As discussed
in section 2.2, each vertex in G is connected to only its k-nearest neighbors.
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3 Analysis and Results

3.1 Flickr Dataset

Table 1 summarizes 47 topics of our Flickr dataset. The topic name is identical
to the query word. We downloaded all the images containing the query word.
They are the images shown when a query word is typed in Flickr’s search box
without any option change. For the timestamp, we use the date taken field of
each image that Flickr provides.

We generate the similarity network of each topic by using the proposed SMC
based tracking. The runtime is O(NM) where M is constant and M � N (i.e.
1000 ≤ M ≤ 5000 in our experiments). The network construction is so fast that,
for example, it took about 4 hours for the soccer topic with N = 1.1 × 106

and M = 5, 000 in a matlab implementation on a single PC. The analysis of
the network is also fast since most network analysis algorithms depend on the
number of nonzero elements, which is O(N logN).

3.2 Evolution of Subtopics

Fig.4 shows the examples of the subtopic evolution of two topics, big+ben and
korean. As we discussed in previous section, the SMC tracker generates the pos-
terior sets {s0, . . . , se}. Five clusters in each posterior are discovered by applying
spectral clustering to the subgraph Gt of each st in an unsupervised way. Ob-
viously, the dynamic behavior is one of intrinsic properties of each topic. Some
topics such as big+ben are stationary and coherent whereas others like korean
are highly diverse and variant.

Outbreak Detection of Subtopics. The outbreak detection is important
in Web mining since it reflects the change of information flows and people’s
interests. We perform the outbreak detection by calculating an information-
theoretic measure of link statistics. Note that the consecutive posterior sets are

Table 1. 47 topics of our Flickr dataset. The numbers in parentheses indicate the

numbers of downloaded images per topic. 9,751,651 images are gathered in total.

Nation brazilian(119,620), jewish(165,760), korean(254,386), swedish(94,390),
spanish(322,085)

Place amazon(160,008), ballpark(340,266), big+ben(131,545), grandcanyon(286,994),
pisa(174,591), wall+street(177,181), white+house(241,353)

Animal butterfly+insect(69,947), cardinals(177,884), giraffe+zoo (53,591), jaguar(122,615),
leopard(121,061), lobster(144,596), otter(113,681), parrot(175,895),
penguin(257,614), rhino(96,799), shark(345,606)

Object classic+car(265,668), keyboard(118,911), motorbike(179,855), pagoda(128,019),
pedestrian(112,116), sunflower(165,090), television(157,033)

Activity picnic(652,539), soccer(1,153,969), yacht(225,508)
Abstract advertisement(84,521), economy(61,593), emotion(119,899), fine+art(220,615),

horror(157,977), hurt(141,249), politics(181,836)
Hot topic apple(713,730), earthquake(65,375), newspaper(165,987), simpson(106,414),

starbucks(169,728), tornado(117,161), wireless(139,390)
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Fig. 4. Examples of subtopic evolution of korean and big+ben topics. Each column

shows the clusters of each st. From top to bottom, we show top three out of five clusters

of each st with average images (the first row) and top-four highest ranked images in the

cluster (the second row). The big+ben is relatively stationary and coherent whereas

the korean topic is highly dynamic and contains diverse subtopics such as sports, food,

buildings, events, and Korean War Memorial Park.

linked in our network. (i.e. st−1 is connected to st, which is linked to st+1.) The
basic idea of our outbreak detection is that if the subtopic distributions at step
t− 1 and t+1 are different each other, then the degree distribution of st to st−1

(ft,t−1) and the degree distribution of st to st+1 (ft,t+1) are dissimilar as well.
For example, suppose that the dominant subtopic of st−1 is fruit apple but the
dominant one of st+1 is iphone. Then, the degree of a fruit apple image i in st

has high ft,t−1(i) but low ft,t+1(i). On the other hand, an iphone image j in st

has high ft,t+1(j) but low ft,t−1(i). Both ft,t−1 and ft,t+1 are |st|×1 histograms,
each element of which is the sum of edge weights of a vertex in st with st−1 and
st+1, respectively. In order to measure the difference between ft,t−1 and ft,t+1,
we use Kullback-Leibler (KL) divergence in Eq.2.

DKL(ft,t+1 ‖ ft,t−1) =
∑
i∈st

ft,t+1(i) log
ft,t+1(i)
ft,t−1(i)

(2)

Fig.5.(a) shows an example of KL divergence changes along the 142 steps of apple
tracking. The peaks of KL divergence indicate the radical subtopic changes from
st−1 to st+1. We observed the highest peak at the step t∗ = 63, where st∗ is
distributed in [May-2007, Jun-2007]. Fig.5.(b) represents ten subtopics of st∗−1,
st∗ , and st∗+1, which are significantly different each other.

3.3 Comparison with Text Analysis

In this section, we empirically compare the image-based topic analysis with the
text-based one. One may argue that the similar observations can be made from
both images and the associated texts. However, our experiments show that the
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Fig. 5. The outbreak detection of subtopics. (a) The variation of KL divergences for

the apple topic. The highest peak is observed at the step t∗=63 ([May-2007, Jun-2007]

with the median of 11-Jun-2007). (b) The subtopic changes around the highest peak.

Ten subtopics of st∗−1, st∗ , and st∗+1 are shown from top to bottom. In each set, the

first row shows average images of top 15 images and the bottom row shows top four

highest ranked ones in each subtopic. In st∗−1 and st∗ , several subtopics about Steve
Jobs’s presentation are detected but disappear in st∗+1. Rather, crowds in street (i.e.

1st ∼ 4th clusters) and iphone (i.e. 6,8,10-th clusters) newly emerge in st∗+1.

associated texts do not overshadow the importance of information from the im-
ages. First of all, 13.70% of images in our dataset have no tags. It may be natural
since the Flickr is oriented toward image sharing and thus text annotations are
much less cared by users. In order to compare the dynamic behaviors detected
from images and texts, we apply the outbreak detection method in previous sec-
tion to both images and their associated tags. The only difference between them
is the features: the spatial pyramids of SIFT and HOG for images and term
frequency histograms for texts. Fig.6.(a) shows an example of outbreak detec-
tion using images and texts for the grandcanyon topic, which is one of the most
stationary and coherent topics in our dataset (i.e. no matter when the images
are taken, the majority of them are taken for the scene of the Grand Canyon).
The image-based analysis is able to successfully detect its intrinsic stationary
behavior. However, the text tags are highly fluctuated mainly because tags are
subjectively assigned by different users with little consensus. This is a well-known
noise source of the images from the Web image search, and our result can be its
another supporting example from the dynamics view.

Another important advantage of image-based temporal analysis is that it con-
veys more delicate information that is hardly captured by text descriptions.
Fig.6.(b) shows two typical examples about periodic updates of objects and
events. For example, when a new iphone is released, the emergence of the iphone
subtopic can be detected in the apple via both images and texts. However, the
images can more intuitively reveal the upgraded appearance, new features, and
visual context around the new event.
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Fig. 6. The comparison between the topical analysis on the images and associated

text tags. (a) The variation of KL divergences for the grandcanyon topic. The KL

divergences of images are stationary along the timeline whereas those of texts are

highly fluctuated. (b) The subtopic changes around the two highest peaks A (05-Nov-

2007) and B (16-Aug-2009). Five subtopics of st∗−1, st∗ , and st∗+1 are shown from

top to bottom. Very little visual variation is observed between them. (c) 15 selected

images tagged by apple+new+iphone (the first row) and whitehouse+christmas (the

second row). They are sorted on the timeline.

3.4 Temporal Association for Classification

As pointed in neuroscience research [19,21], human perception tends to strongly
connect temporally smoothed visual information. Inspired by these studies, we
perform preliminary tests to see whether it holds in Web images as well; The sub-
topics that consistently appear along the timeline can be more closely related to
the main topic rather than the ones that are observed for only a short period.
For example, the fruit apple is likely to consistently exist in the apple image set,
which may be a more representative subtopic of the apple rather than a specific
model of an early Mac computer. In this experiment, we generate two training
sets from the extremely noisy Flickr images and compare their classification
performance; The first training set is constructed by choosing the images that
are temporally and visually associated, and the other set is generated by the
random selection without temporal context.

Since our similarity network links temporally close and visually similar im-
ages, dominant subtopics correspond to large clusters and their central images
map to hub nodes in the graph. The stationary probability is a popular ranking
measure, and thus the images with high stationary probabilities can be thought
of temporally and visually strengthened images. However, the proposed network
representation is incomplete in the sense that images are connected in an only
local temporal space. In order to cope with this underlying uncertainty, we gen-
erate training sets by the Metropolis-Hasting (MH) algorithm.
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We first compute the stationary probability πG of the network G. Since a
general suggestion for a starting point in the MH is to begin around the modes
of the distribution, we start from an image θo that has the highest πG(θ). From
a current θ vertex, we sample a next candidate point θ∗ from a proposal distri-
bution q(θ1, θ2) that is based on a random surfer model as shown in Eq.3; the
candidate is chosen by following an outgoing edge of the θ with probability λ,
but restarting it with probability 1− λ according to the πG. A larger λ weights
more the local link structure of the network while a smaller λ relies on πG more.
The new candidate is accepted with probability α in Eq.3 where w̃ij is the ele-
ment (i, j) in the row-normalized adjacency matrix of G. We repeat this process
until the desired numbers of training samples are selected.

α = min
(

πG(θ∗)q(θ∗, θt−1)
πG(θt−1)q(θt−1, θ∗)

, 1
)

where q(i, j) = λw̃ij + (1 − λ)πG(j) (3)

Fig. 7. Comparison of the binary classification performance between Temporal train-

ing and Random training. (a) Classification accuracies of selected 20 topics. (b) Cor-

responding Precision-Recall curves. The number (n, m) underneath the topic name

indicates the average precision of (Random, Temporal).
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We perform binary classification using the 128 nearest neighbor voting [20] in
which we use the same descriptors and the cosine similarity in section 2.1. We
generate the positive training set of each topic in two different ways; We sample
256 images by the MH method (called Temporal training) and randomly choose
the same number of images (called Random training). For the negative training
images, we randomly draw 256 images from the other topics of Flickr dataset.
For the test sets, we downloaded 256 top-ranked images for each topic from
Google Image Search by querying the same word in Table 1. The Google Image
Search provides relatively clean images in the highest ranking. Since we would
like to test whether the temporally associated samples are better generalization
of the topic, the Google test sets are more suitable to our purpose than the
images from the noisy Flickr dataset. In the binary classification test of each
topic, the positive test images are the 256 Google images of the topic and the
negative test images are 256 Google images that are randomly selected from the
other topics. Note that in each run of experiment, only the positive training
samples are different between Temporal and Random tests. The experiments are
repeated ten times, and the mean scores are reported.

Fig.7 summarizes the comparison of recognition performance between Tempo-
ral and Random training. Fig.7.(a) shows the classification rates for the selected
20 topics. The accuracies of Temporal training are higher by 8.05% on average.
Fig.7.(b) presents the corresponding precision-recall curves, which show that the
temporal association significantly improves the confidence of classification. The
Temporal training is usually better than the Random training in performance,
but the improvement is limited in some topics; In highly variant topics (e.g.
advertisement and starbucks), the temporal consistency is not easily captured.
In stationary and coherent topics (e.g. butterfly+insect and parrot), the random
sampling is also acceptable.

4 Discussion

We presented a nonparametric modeling and analysis approach to understand
the dynamic behaviors of Web image collections. A sequential Monte Carlo based
tracker is proposed to capture the subtopic evolution in the form of the similarity
network of the image set. In order to show the usefulness of the image-based
temporal topic modeling, we examined subtopic evolution tracking, subtopic
outbreak detection, the comparison with the analysis on the associated texts,
and the use of temporal association for recognition improvement. We believe that
this line of research has not yet fully explored and various challenging problems
still remain unsolved. In particular, more study on the temporal context for
recognition may be promising.
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Abstract. This work focuses on characterizing scenery images. We se-

mantically divide the objects in natural landscape scenes into background

and foreground and show that the shapes of the regions associated with

these two types are statistically different. We then focus on the back-

ground regions. We study statistical properties such as size and shape,

location and relative location, the characteristics of the boundary curves

and the correlation of the properties to the region’s semantic identity.

Then we discuss the imaging process of a simplified 3D scene model and

show how it explains the empirical observations. We further show that

the observed properties suffice to characterize the gist of scenery images,

propose a generative parametric graphical model, and use it to learn and

generate semantic sketches of new images, which indeed look like those

associated with natural scenery.

1 Introduction

By age 5 or 6 children develop a set of symbols to create a landscape that
eventually becomes a single variation repeated endlessly. A blue line and
sun at the top of the page and a green line at the bottom become symbolic
representations of the sky and ground. From: Drawing on the Right Side
of the Brain. Betty Edwards, 1979 [1].

When we think of “scenery” or “natural landscape” images, we typically imagine
a photograph or a painting, with a few horizontal background regions, each
spanning the frame. The highest region would usually be the sky, while the
lower regions might include mountains, trees, flowers, water (lake/sea), sand,
or rocks. This work examines whether this intuition is justified, by analyzing
image statistics and by modeling the 3D world and analyzing its 2D projections
as imaged in typical scenery photography. We semantically divide the objects
in natural landscape scenes into background and foreground and show that the
shapes of the regions associated with these two types are statistically different.
We then focus on the background regions. We study statistical properties such as
size and shape, location and relative location, the characteristics of the boundary
curves and the correlation of the properties to the region’s semantic identity.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 99–112, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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These properties, which could be characterized as common world knowledge,
have been used, in part, to enhance several computer vision algorithms. Nonethe-
less, they have not, to the best of our knowledge, been explicitly expressed,
summarized, or computed.

This paper makes three contributions: First, we make several observations
about image region properties, and collect empirical evidence supporting these
observations from annotated segmentations of 2D scenery images (Section 2).
Second, we discuss the imaging process of a simplified 3D scene model and show
how it explains the empirical observations (Section 3). In particular, we use
slope statistics inferred from topographic maps to show why land regions whose
contour tangents in aerial images are statistically uniformly distributed appear
with a strong horizontal bias in images taken from ground level. Third, we show
that the observed properties suffice to characterize the gist of scenery images:
In Section 4 we propose a generative parametric graphical model, and use it to
learn and generate semantic sketches of new images, which indeed look like those
associated with natural scenery. The novel characteristics analyzed in this work
may improve many computer vision applications. In Section 5 we discuss our
future intentions to utilize them for the improvement of top-down segmentation,
region annotation, and scene categorization.

1.1 Related Work

Statistics of natural images play a major role in image processing and computer
vision; they are used in setting up priors for automatic image enhancement and
image analysis. Previous studies in image statistics (e.g., [2,3,4,5]) mostly charac-
terized local low-level features. Such statistics are easy to collect as no knowledge
about high-level semantics is required. Lately, computer-vision groups have put
effort into collecting human annotations (e.g., [6,7,8]), mostly in order to obtain
large ground-truth datasets that enable the enhancement and validation of com-
puter vision algorithms. The availability of such annotations enables the infer-
ence of statistics on semantic characteristics of images. A first step was presented
in [6] where statistics on characteristics of human segmentation were collected.
In [7] a few interesting statistics were presented, but they mainly characterize the
way humans segment and annotate. We follow this direction relying on human
annotations to suggest characteristics that quantify high-level semantics.

The importance of context in scene analysis was demonstrated a while ago [9]
and used intensively in recent years for improving object detection by means of
cues pertaining to spatial relations and co-occurrence of objects [10,11,12], an-
notated segments [13], or low-level scene characteristics and objects [14,15]. Part
of the work presented here focuses on the co-occurrence of and spatial relations
between background objects. Objects are semantically divided into background
and foreground, implying that image analysis applications may benefit from
treating objects of these two classes differently. This is related to the stuff vs.
things concept [16].

We found that the background-region boundary characteristics correlate
with the identity of the lower region. This observation is consistent with the
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observation made in figure-ground assignment studies, that of the two regions
meeting in a curve, the lower region is more likely to be the ”figure”, i.e., of
lower depth [17,18]. Our work is also related to the recent successful approach
which uses learning to model the relation between image properties and the
corresponding 3D structure (e.g., [19,20,21]). The approach in [21], for exam-
ple, associates the images with particular classes of geometrically specified 3D
structures. We focus here on the wide class of scenery images with a variety of
semantically specified regions, and provide an image model (supported by 3D
scene analysis) characterizing the large scale image properties.

2 Observations and Evidence

In this section we present some observations on the appearance of background
regions in landscape images. After showing how the statistics of their general
shape differ from those of foreground objects, we discuss their relative location
and characteristics of their contours.

We use fully annotated landscape images included in the Labelme toolbox [7].
Of the images used in [22], where outdoor images were divided into eight cate-
gories, we used all the images of the three natural landscape categories: coast,
mountain, and open country (for a total of 1144 256X256 images).

With the Labelme toolbox, a Web user marks polygons in the image and
freely provides a textual annotation for each. This freedom encourages the use of
synonyms and spelling mistakes. Following [7], synonyms were grouped together
and spelling mistakes were corrected.(For details see [23].)

2.1 The General Shape of Background vs. Foreground Objects

We semantically divide the annotated objects into two sets: background objects
and foreground objects. The background set includes all objects belonging to the
following list: sky, mountain, sea, trees, field, river, sand, ground, grass, land,
rocks, plants, snow, plain, valley, bank, fog bank, desert, lake, beach, cliff, floor.
Foreground objects are defined as those whose annotation does not belong to that
list. (Note that while trees, rocks, and plants are considered background objects,
tree, rock, and plant are considered foreground objects.) For a summary of the
occurrence of each of the background and foreground labels see [23]. Differences
in the distribution of the size and aspect ratios of the bounding box of these two
classes give rise to the following observations:

Observation 1: Many background objects exceed the image width.
The background objects are often only partially captured in the image. See
Fig. 1(a) and Fig. 1(b) for background vs. foreground object width statistics.
Note the sharp bimodality of the distribution.

Observation 2: The background objects are wide and of low height
while foreground objects’ shape tend to be isotropic.
Although the entire background object width is usually not captured, the height
of its annotated polygon is usually small relative to the height of the image. See
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Fig. 1. Bounding boxes of imaged background objects are usually low height horizontal

rectangles, while those of imaged foreground objects tend to be squares: (a) width den-

sity estimation (by kernel smoothing) of annotated objects from the Labelme dataset

(where width is the difference in pixel units between the rightmost and the leftmost

points in the annotated polygon. All images are 256 × 256); (b) width density estima-

tion of background and foreground objects taken separately; (c) width minus height

density estimation of annotated objects; (d) width minus height density estimation of

background and foreground objects taken separately. The distributions in (a),(c) were

generated by an equal number of foreground and background objects. A random subset

of background objects was used to compensate for the larger number of background

objects in this dataset.

Fig. 1(c) and Fig. 1(d): the width and height difference of foreground objects
is distributed normally with zero mean, while the width and height difference
of background objects significantly favors width. This implies that bounding
boxes of imaged background objects are low height horizontal rectangles, while
bounding boxes of imaged foreground objects tend to be squares. (Note that all
the images in this dataset are squares, so the horizontal bias is not due to the
image dimensions.) See further analysis and discussion on the horizontalness of
background regions in Section 3.

2.2 The Top-Down Order of Background Objects

Because background objects tend to be wide—frequently spanning the image
horizontally though not vertically—each landscape image usually includes a few
background regions, most often appearing one on top of the other.

Observation 3: The relative locations of types of background are often
highly predictable.
It is often easy to guess which background type will appear above another. For
instance, if an (unseen) image includes sky and ground, we know that the sky will
appear above the ground. Here we extend this ostensibly trivial ”sky is above”
observation and test above-and-below relations for various pairs of background
types. Let I denote the set of all landscape images. Let A − B denote that
background type A appears above background type B in image I ∈ I (e.g.,
A=trees, B = mountain). We estimate the probability for A to appear above B
(or B to appear above A), given that we know both appear in an image:

pA−B = p(A−B|A,B ∈ I) � |{I ∈ I|A,B ∈ I, A−B}|
|{I ∈ I|A,B ∈ I}| . (1)
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Fig. 2. Expected relative location of background regions. For most background type

pairs, there is a strong preference for one type to appear above the other. (a) The

probability for a background region of identity A to appear above a background region

with identity B, summarized in a histogram for various background identity pairs.

(b) Topological ordering of background identities can be defined: this DAG (Directed

Acyclic Graph) is associated with the reachability relation R : {(A, B)|pA−B > 0.7}.

See Fig. 2 for a histogram of pA−B for A and B being two background iden-
tities, A �= B. The histogram is symmetric as pA−B + pB−A = 1. There are
22 background categories. Out of 231 possible pairs, only 116 appear at least
once in the same image. The histograms consider only pairs that coappeared at
least 5 times (83 pairs). Most pairs show a clear preference for the more likely
relative location. The most obvious is sky, which appears above all other back-
ground categories. However, some examples for pairs for which pA−B > 0.9 are
mountain-lake, trees-plants, mountain-beach, trees-rocks, plain-trees. For 84%
of the pairs, max(pA−B, pB−A) > 0.7. The dominant order relations induce a
(partial) topological ordering of the background identities and can be described
by a DAG (Directed Acyclic Graph). The DAG in Fig. 2(b) is associated with
the reachability relation R : {(A,B)|pA−B > 0.7}, i.e., there is a directed path
in the graph from A to B if and only if A appears above B in more than 70% of
the images in which they coappear. As evident here, learning the typical relative
locations of background regions is informative.

2.3 Contours Separating Background Regions

If a background region A appears above a background region B, it usually means
that B is closer to the photographer and is partly occluding A [17,18]. Hence, we
can say that a contour separating background regions is usually the projection of
the closer (lower) background region’s silhouette, and usually has characteristics
that can be associated with this background type.

Observation 4: The characteristics of a contour separating two back-
ground regions correlates with the lower region’s identity.
Consider Fig. 3. The curves in Fig. 3(b-d) are associated with the background
object classes ‘mountain’, ‘trees’, and ‘grass’, respectively. See also Fig. 3(e)-
(g), for contours associated with different background objects. When the lower
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Fig. 3. Characteristics of background region boundaries. (a)-(d) An image and its hand

segmentation [6]. (e)-(g) A few sample contour segments associated with background

object classes ‘mountain’, ‘sea’, and ‘trees’ (from Labelme). (h) Classification accuracies

for two-class background identity, based only on the appearance of the region’s upper

boundary. The accuracy of classification is displayed in linear gray scale (black for all

values below 0.5 and white for all values above 0.8).

background object is of type sea, grass or field, the boundary is usually smooth
and horizontal, resembling a DC signal. For background objects such as trees
and plants, the boundary can be considered as a high frequency 1D signal.
For background objects of type ‘mountain’, the associated boundaries usually
resemble 1D signals of rather low frequency and high amplitude.

Adopting a signal representation, we checked how informative the contours
are for discriminating between background identities: The Labelme landscape
images were randomly divided into equally sized training and validation sets.
For each background labeled region, the upper part of its contour was extracted
and cut to chunks of 64-pixels length. Each chunk was FFT transformed, and
the norms of 32 coefficients (2-33) were added to a training or validation set
associated with the background label. Only labels for which the training set
included at least 30 ‘signals’ were further considered. For each pair of labels we
checked whether the two associated classes could be distinguished using ONLY
the upper part of their boundary. We used an SVM classifier with an RBF kernel.
(To avoid bias due to different class size, which would have made discrimination
easier, we took equal sized training sets and validation sets from the two classes,
by randomly selecting some members of the larger set.) Fig. 3(h) summarizes
the accuracies of the two-class classifiers. While the information in the contour’s
shape cue discriminates well between several pairs of background types, it cannot
discriminate between all pairs. Better results may be obtained by adding local
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properties as discussed in Section 5. In Section 4 we show that the contour
shape information together with the relative location may be used to specify a
generative model that captures the gist of scenery images.

3 Why Are Background Regions Horizontal? A 3D
Analysis

In Section 2 we have statistically shown that imaged land region boundaries have
a strong horizontal bias. To account for this empirical finding, we model the 3D
world and analyze its 2D projections imaged in typical scenery photography. We
start by a simplified ‘flatland’ model, continue by considering also land coverage
(e.g., vegetation), and finally terrain elevation. In all these cases, we show why
land regions whose contour tangents in aerial images are uniformly distributed
appear with a strong horizontal bias in scenery filmed on the ground.

3.1 Flatland

Place a penny on the middle of one of your tables in Space ... look down
upon it. It will appear a circle....gradually lower your eyes ... and you
will find the penny becoming more and more oval to your view.... From
Flatland, by Edwin A. Abbott, 1884 [24].

We first consider a natural terrain in a flat world with no mountains, no valleys,
and vegetation of zero height. This terrain may be divided into a few regions, each
with different “clothing”, as depicted from an aerial view in Fig. 4(a). Consider
the contour lines dividing the different regions. Let Θ be the set of tangent angles
for all such contours, measured relative to some arbitrary 2D axis on the surface.
It is reasonable to assume that the angles in Θ are uniformly distributed in the
range [0◦, 360◦). Now consider a person standing on that surface at an arbitrary
point, taking a picture. Let Θ′ be the set of angles that are the projections of
the angles in Θ on the camera’s image plane. How is Θ′ distributed?

For simplicity, we adopt the pinhole camera model. Let a point p on a contour
line be located at (x,−h, z) in a 3D orthogonal coordinate system originating
at the camera pinhole. (See Fig. 4(b).) Redefine θ as the angle of the tangent to
the contour line at p, relative to the 1st axis. The angle θ′, associated with the
projected contour on the camera’s sensor is

tan θ′ =
h tan θ

z − x tan θ
. (2)

For details see [23]. See Fig. 4(c) for a plot of the distribution of Θ′. The strong
peak around 0◦ explains why background regions tend to be wide and horizontal
in scenery images (as statistically shown in Section 2.1).
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Fig. 4. The tangents of background object contours when imaging a flat terrain. (a)

A schematic illustration of an aerial image; (b) a view from height h. A point p that

lies on a land region boundary is located at (x,−h, z) relative to a 3D orthogonal co-

ordinate system originating at the camera pinhole; (c) the distribution of the tangent

of boundary lines in such an image, assuming that the tangents of aerial image bound-

aries are uniformly distributed, θ ∼ U [0, 180), h = 2[m], z ∼ U [0[m], 1000[m]], and

x ∼ U [0[m], 500[m]].

3.2 Land Cover

Now we extend the flatland model and consider a flat terrain with protruding
coverage, e.g., sand, gravel, or rock covered regions, fields of flowers, or even
forests. Each such region’s cover is often of approximately equal height. Then,
the profile of this land (slicing through any vertical plane) can be considered as
a piecewise constant function.

Consider again the photographer at an arbitrary point on the flat terrain. First
consider the case where the cover is lower than the camera (e.g., bushes, pebbles).
The cover of a raised region would occlude part of the more distant regions. The
distribution of angles associated with the tangents of imaged contours describing
the upper contour of such cover is even more concentrated near the origin, as the
height difference of points on the cover and the pinhole is smaller compared to
the height difference in flatland. When the land cover is higher than the camera
(e.g., forest), the region cannot be viewed from above and only the side facing
the camera will be captured. Angles on the upper contour, at height H project
to image angles, θ′, where tan θ′ = (H−h) tan θ

z−x tan θ . Typically, trees are only a few
meters high while the viewing distance z for landscape images is usually much
larger. Therefore, the statistical shortening of the contour angles still holds.

Naturally, the land cover height is not constant, but characterized by some
nominal value with small local perturbation. These perturbations may signif-
icantly change the local projected angle but not the general direction of the
contour, which stays close to horizontal.

3.3 The World Is Wrinkled: Ground Elevation and Slope Statistics

Obviously, the earth’s terrain is not flat. Its surface is wrinkled by mountains,
hills and valleys. To approximately express how ground elevations affect the
appearance of background object contours in images, we rely on a slope statistics
database [25]. This dataset includes histograms over 8 variable size bins for each
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land region of about 9 square kilometers. (The bins are nonuniform and are
specified between the slope limits of 0%, 0.5%, 2%, 5%, 10%,15%, 30%, 45%, and
infinity.) We use the average histogram. To get a distribution, we approximate
the slope distribution within the bin as uniform. See Fig. 5(b). We also use a
histogram of the maximum slope over the land regions (Fig. 5(c)).

The slope statistics affect two landscape image contour types: (1) The con-
tours of mountains associated with occluding boundaries (e.g., skylines). (2) The
contours between different types of regions on the terrain.

The distribution depicted in Fig. 5(c) provides a loose upper bound for the
expected distribution of projected tangent angles associated with the former set.
Even so, the horizontal bias is apparent.

To account for the effect of ground elevation on the latter type of background
contours, we extend the analysis suggested in Section 3.1. Instead of considering
an angle θ lying on a flat terrain, we consider θ to lie on an elevated plane with
slope gradient angle ϕ. See Fig. 5(a). The plane is rotated relative to the image
plane, forming an angle ω with the X1 axis. The point p is at height H relative
to the camera height. The projected tangent angle θ′ is given by

tan θ′ =
H(cosθ sinω + sin θ cosϕ cosω) − z sin θ sinϕ

x(cosθ sinω + sin θ cosϕ cosω) − z(cos θ cosω − sin θ cosϕ sinω)
.(3)

For details see [23]. To get an idea how θ′ is distributed, we make several rea-
sonable assumptions: θ is uniformly distributed as before, ϕ is distributed as the
slope angle distribution (Fig. 5(b)), and ω is uniformly distributed U [−90◦, 90◦].
The distribution of H was estimated by sampling an elevation map [25], using
the height difference between pairs of locations up to 9km apart. See an analytic
plot of the distribution of θ′ in Fig. 5(d).

The above analysis isn’t perfect from either a geometrical, a topographical,
or an ecological point of view; e.g., we do not account for the roundness of
the world, we assume that the camera is levelled with the ground, we assume
independency between the slope steepness and the imaging height difference,
and we do not consider dependencies between the steepness of slopes and the
location of different land regions. For instance, the slope of a lake is always zero.
Nevertheless, we believe the horizontal bias of background contours, as observed
empirically, is sufficiently accounted for by the simplified analysis described here.

4 A Generative Model

The observations and the statistical quantification presented in Section 2 enable
us to propose the following generative model for scenery image sketches. See, e.g.,
Fig. 3(a)-(d). Our model considers the top-down order of background regions,
the relative area covered by each, and the characteristics of their boundaries,
and assigns a probability for each possible annotation sequence.

Let S = (h1, ...hn, S1, S2, ..., Sn−1) be the description of a background seg-
mentation for an image divided into n background segments, ordered from the
highest in the image (i = 1) to the lowest (i = n). hi is the mean height of region
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Fig. 5. Distribution of background object contour angles in a “wrinkled” world. (a) A

point p lies on a boundary between land regions. It is located on an elevated slope with

gradient angle ϕ. The infinitesimal plane is rotated at an angle ω relative to X1 axis. (b)

Estimated terrain slope distribution using the IIASA-LUC dataset [25]. (c) Estimated

distribution of the maximum slope over land regions, each covering approximately 9

square kilometers. (d) The distribution of the tangents of imaged boundaries, following

the analysis in the text.

i,
∑

i hi = 0. Si describes a ‘1-D signal’ associated with the boundary between
i and i+ 1. Let l = (l1, ..., ln) be a labeling sequence, where li ∈ L, and L is the
set of background labels. We shall use the approximated distribution

P (l|S) =
P (S|l)P (l)∑

l∈Ln P (S|l)P (l)
∝ P1(l)

∏
i=1,...,n

P2(hi|li)
∏

i=1,...,n−1

P3(Si|li+1) .

(4)
This approximation assumes that the height of a region depends only on its
identity, and that a boundary’s characteristics depend only on the identity of
the corresponding lower region. Other dependencies are ignored.

The next three sections discuss the distributions P1, P2 and P3.

4.1 A Markov Network for Modeling the Top-Down Label Order

P1 is the probability of a scenery image annotation. We use a Markov network
to represent possible label sequences. Let m = |L| be the number of possible
background labels. The network has m + 2 nodes (statuses). The first m are
associated with the members of L. In addition, there is a starting status de-
noted ‘top’ and a sink status denoted ‘bottom’. Let M be the transition matrix.
M(li, lj) is the probability to move from status associated with label li to status
associated with lj , i.e., that a region labeled li appears above a region labeled
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lj in an image. M(top, li) and M(li, bottom) are the probabilities that a region
with label li is at the top/bottom of an image, respectively. Then:

P1(l = (l1, ..., ln)) = M(top, l1)
∏

i=1,...,n−1

M(li, li+1) M(ln, bottom) , (5)

i.e., the probability for a labeling sequence (l1, ..., ln) is equal to the probability
for a random walk starting at the initial network state to go through the states
corresponding with (l1, ..., ln), in that order, and to then continue to the sink
status. We use a dataset of images for which the sequences of background labeling
are known, e.g., the Labelme landscape images, and set the parameters of the
model (i.e., the matrix M) by counting the occurrences of the different ‘moves’.

4.2 A Normal Distribution for the Height Covered by Each Region

P2 models the distribution of the relative height of an image region associated
with a certain label. Here we simply use a normal distribution, learning the mean
and variance of each region type’s relative height.

4.3 Modeling Background Contours with PCA

P3(Si|lk) is the probability of a contour with appearance Si to separate two back-
ground regions, the lower being of type lk. In Section 2.2 we have shown that Si

and lk are correlated (observation 4). To estimate the probability from examples
we use PCA approximation (Principle Component Analysis [26]). Given a train-
ing set of separation lines associated with background type lk, each separation
line is cut to chunks of 64-pixel length1. Each chunk’s mean value is subtracted,
and PCA is performed, resulting in the mean vector μ̄, the first κ principle com-
ponents Φ (a 64xκ matrix) and the corresponding eigen values λ̄ = (λ1, ..., λκ).
κ is chosen so that 95% of the variation in the training set is modeled.

The PCA modeling allows both computation of the probability of a new sepa-
rating line Si, cut to chunks Si1, ..., Sim, to belong to the learned distribution Ω,
and generation of new separating lines belonging to the estimated distribution.

4.4 Generative Model Demonstration

We can now use this model to generate sketches of new images. To generate a
sketch, a sequence of labels is first drawn from a random walk on the transition
matrix (P1). Then, heights are randomly picked from the normal distributions
(P2) and normalized. Finally, for each separating line indexed i, four 64-length
chunks Si,1, ..., Si,4 are generated by G = μ̄ + b̄ · Φ, where bj ∼ N(0,

√
λj),

j = 1, ..., κ. (Each chunk is generated independently, ignoring appearance de-
pendencies between chunks of the same line.) The leftmost point of chunk Si,1

1 Cutting the ‘signals’ into chunks also allows us to use separating lines from the

training set that do not horizontally span the entire image or that are partly occluded

by foreground objects. Moreover, it enlarges the training set, by obtaining a few

training items (up to 4 chunks) from each separating contour.



110 T. Avraham and M. Lindenbaum

Fig. 6. A random sample of ‘annotated’ landscape images generated by our model. The

regions are colored with colors associated with their annotation (sky regions are colored

in blue, ground regions are colored in brown, etc.) Best viewed on a color computer

screen.
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is placed at image coordinate (0,
∑i

j=1 hj) (where (0, 0) is the top-left image
corner). Chunk’s Si,m (m = 2, 3, 4) leftmost point is connected to the rightmost
part of Si,m−1. See Fig. 6 for a random sample of ‘annotated’ scenery landscape
image sketches generated by the model.

To evaluate the generated, annotated images, we took a random sample of 50
and asked two participants naive to this research, aged 7 and 37, to say whether
they seem to be the annotations of real landscape photos. The first participant
answered ‘yes’ for 37 images, ‘no’ for 5, and was not sure about 8. The second
participant answered ‘yes’ for 44 images, ‘no’ for 3 and ‘not sure’ for 3.

5 Discussion

This work focused on characterizing scenery images. Intuitive observations re-
garding the statistics of co-occurrence, relative location, and shape of background
regions were explicitly quantified and modeled, and 3D reasoning for the bias to
horizontalness was provided.

Our focus was on non-local properties. The generated image sketches, which
seem to represent a wide variety of realistic images, suggest that the gist of such
images is described by those properties. The proposed model provides a prior on
scenery image annotation. In future work we intend to integrate local descriptors
(see e.g. [27,28]) into our model and to then apply automatic annotation of
segmented images. The large scale model introduced here should complement the
local information and lead to better annotation and scene categorization [27].
Relating the contour characteristics to object identity can be useful for top-
down segmentation (e.g., [13]). Specifically, it may address the “shrinking bias”
of graph-cut-based methods [29].

A more complete model of scenery images may augment the proposed back-
ground model with foreground objects. Such objects may be modeled by loca-
tion, size, shape, and their dependency in the corresponding properties of other
co-occurring foreground objects and of the corresponding background regions.

One immediate application would be to use the probabilistic model to au-
tomatically align scenery pictures, similar to the existing tools for automatic
alignment of scanned text. Some would find an artistic interest in the generated
scenery sketches themselves, or may use them as a first step to rendering.
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Abstract. Sparse coding of sensory data has recently attracted notable

attention in research of learning useful features from the unlabeled data.

Empirical studies show that mapping the data into a significantly higher-

dimensional space with sparse coding can lead to superior classification

performance. However, computationally it is challenging to learn a set of

highly over-complete dictionary bases and to encode the test data with

the learned bases. In this paper, we describe a mixture sparse coding

model that can produce high-dimensional sparse representations very

efficiently. Besides the computational advantage, the model effectively

encourages data that are similar to each other to enjoy similar sparse

representations. What’s more, the proposed model can be regarded as an

approximation to the recently proposed local coordinate coding (LCC),

which states that sparse coding can approximately learn the nonlinear

manifold of the sensory data in a locally linear manner. Therefore, the

feature learned by the mixture sparse coding model works pretty well

with linear classifiers. We apply the proposed model to PASCAL VOC

2007 and 2009 datasets for the classification task, both achieving state-
of-the-art performances.

Keywords: Sparse coding, highly over-complete dictionary training,

mixture model, mixture sparse coding, image classification, PASCAL

VOC challenge.

1 Introduction

Sparse coding has recently attracted much attention in research of exploring
the sparsity property in natural signals for various tasks. Originally applied to
modeling the human vision cortex [1] [2], sparse coding approximates the input
signal, x ∈ Rd, in terms of a sparse linear combination of an over-complete bases
or dictionary B ∈ Rd×D, where d < D. Among different ways of sparse coding,
the one derived by �1 norm minimization attracts most popularity, due to its
coding efficiency with linear programming, and also its relationship to the NP-
hard �0 norm in compressive sensing [3]. The applications of sparse coding range
from image restorations [4] [5], machine learning [6] [7] [8], to various computer
vision tasks [9] [10] [11] [12]. Many efficient algorithms aiming to find such a
sparse representation have been proposed in the past several years [13]. Several

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 113–126, 2010.
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empirical algorithms are also proposed to seek dictionaries which allow sparse
representations of the signals [4] [13] [14].

Many recent works have been devoted to learning discriminative features via
sparse coding. Wright et al. [10] cast the recognition problem as one of finding a
sparse representation of the test image in terms of the training set as a whole, up
to some sparse error due to occlusion. The algorithm utilizes the training set as
the dictionary for sparse coding, limiting its scalability in handling large training
sets. Learning a compact dictionary for sparse coding is thus of much interest
[6] [15], and the sparse representations of the signals are used as the features
trained later with generic classifiers, e.g., SVM. These sparse coding algorithms
work directly on the objects, and are thus constrained to modeling only simple
signals, e.g., aligned faces and digits. For general image classification, such as
object recognition and scene categorization, the above sparse coding scheme will
fail, i.e., it is computationally prohibitive and conceptually unsatisfactory to
represent generic images with various spatial contents as sparse representations
in the above way.

For generic image understanding, hierarchical models based on sparse coding
applied to local parts or descriptors of the image are explored. Ranzato et al. [16]
proposed a neural network for learning sparse representations for local patches.
Raina et al. [17] described an approach using sparse coding applying to image
patches for constructing image features. Both showed that sparse coding can cap-
ture higher-level features compared to the raw patches. Kavukcuoglu et al. [18]
presented an architecture and a sparse coding algorithm that can efficiently learn
locally-invariant feature descriptors. The descriptors learned by this sparse cod-
ing algorithm performs on a par with the carefully engineered SIFT descriptors
as shown in their experiments. Inspired by the Bag-of-Features model and the
spatial pyramid matching kernel [19] in image categorization, Yang et al. [11]
proposed the ScSPM method where sparse coding is applied to local SIFT de-
scriptors densely extracted from the image, and a spatial pyramid max pooling
over the sparse codes is used to obtain the final image representation. As shown
by Yu et al. [7], sparse coding is approximately a locally linear model, and thus
the ScSPM method can achieve promising performance on various classification
tasks with linear SVM. This architecture is further extended in [12], where the
dictionary for sparse coding is trained with back-propagation to minimize the
classification error.

The hierarchical model based on sparse coding in [11] [12] achieves very
promising results on several benchmarks. Empirical studies show that using
larger dictionary for sparse coding to map the data into higher dimensional
space will generate superior classification performance. However, the computa-
tion of both training and testing for sparse coding can be prohibitively heavy
if the dictionary is highly over-complete. Although nonlinear regressor can be
applied for fast inference [18], the dictionary training is still computationally
challenging. Motivated by the work in [7] that sparse coding should be local
with respect to the dictionary, we propose an efficient sparse coding scheme with
highly over-complete dictionaries using a mixture model. The model is derived
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Fig. 1. A simplified schematic illustration of the image encoding process using the

mixture sparse coding scheme. (a) local descriptor extraction; (b) mixture modeling

in the descriptor space; (c) sparse coding and feature pooling. Within each mixture, a

small dictionary for sparse coding can be applied, thus speeding up the coding process.

via a variational approach, and the coding speed can be improved approximately
at the rate of the mixture number. Fig. 1 illustrates the simplified version of the
image encoding process. The mixture modeling allows a much smaller dictionary
for describing each mixture well, and thus the sparse coding computation can
be effectively boosted.

The reminder of this paper is organized as follows: Section 2 talks about
two closely related works and the motivations; Section 3 presents the proposed
model and a practical algorithm for learning the model parameters; in Section 4,
classification results on PASCAL VOC 2007 and 2009 datasets are reported and
compared with the existing systems; and finally Section 5 concludes our paper
with discussions and future work.

2 Related Works and Motivations

2.1 Sparse Coding for Image Classification

We review the ScSPM system for image classification using sparse coding pro-
posed in [11]. Given a large collection of local descriptors randomly extracted
from training images X = [x1, x2, ..., xN ], where xi ∈ Rd×1 is the ith local
descriptor in column manner and N is the total number of local descriptors se-
lected, the ScSPM approach first concerns learning an over-complete dictionary
B ∈ Rd×D by

min
B,{αi}N

i

N∑
i

‖xi −Bαi‖2
2 + λ‖αi‖
1

s.t. ‖B(m)‖2
2 ≤ 1,m = 1, 2, ..., D,

(1)

where �1-norm is used for enforcing sparsity, λ is to balance the representation
fidelity and sparsity of the solution, and B(m) is the mth column of B. De-
note A = [α1, α2, ..., αN ], Eq. 1 is optimized by alternating between B and A.
Fixing B, A is found by linear programming; and fixing A, optimizing B is a
quadratically constrained quadratic programming.
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Given a set of local descriptors extracted from an image or a sub-region of
the image S = [x1, x2, ..., xs], we define the set-level feature over this collection
of local descriptors in two steps:

1. Sparse coding. Convert each local descriptor into a sparse code with respect
to the trained dictionary B:

Âs = min
A

‖S −BA‖2
2 + λ‖A‖
1 , (2)

2. Max pooling. The set-level feature is extracted by pooling the maximum
absolute value of each row of Âs:

βs = max(|Âs|). (3)

Note that Âs contains the sparse codes as columns. Max pooling extracts
the highest response in the collection of descriptors with respect to each
dictionary atom, yielding a representation robust to translations within the
image or its sub-regions.

To incorporate the spatial information of the local descriptors, spatial pyramid
is employed to divide the image into different spatial sub-regions over different
spatial scales [19]. Within each spatial sub-region, we collect its set of local
descriptors and extract the corresponding set-level feature. The final image-level
feature is constructed by concatenating all these set-level features.

2.2 Local Coordinate Coding

Yu et al. [7] proposed a local coordinate coding (LCC) method for nonlinear
manifold learning in high dimensional space. LCC concerns learning a nonlinear
function f(x) on a high dimensional sparse x ∈ Rd. The idea is to approximate
the nonlinear function by locally linear subspaces, to avoid the “curse of dimen-
sionality”. One main result of LCC is that the nonlinear function f(x) can be
learned in a locally linear fashion as stated in the following lemma:

Lemma 1 (Linearization). Let B ∈ Rd×D be the set of anchor points on the
manifold in Rd. Let f be an (a, b, p)-Lipschitz smooth function. We have for all
x ∈ Rd:∣∣∣∣∣f(x) −

D∑
m=1

α(m)f(B(m))

∣∣∣∣∣ ≤ a‖x − γ(x)‖2 + b

D∑
m=1

|α(m)|‖B(m) − γ(x)‖1+p

where B(m) is the mth anchor points in B, γ(x) =
∑D

m=1 α(m)B(m) is the
approximation of x, and we assume a, b ≥ 0 and p ∈ (0, 1]. Note that on the
left hand side, a nonlinear function f(x) is approximated by a linear function∑D

m=1 α(m)f(B(m)) with respect to the coding α, where {f(B(m))}D
m=1 is the

set of function values on the anchor points. The quality of this approximation is
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bounded by the right hand side, which has two terms: the first term ‖x− γ(x)‖
means x should be close to its physical approximation γ(x), and the second
term means that the coding should be local. Minimizing the right hand side will
ensure good approximation for the nonlinear function. Note that this minimiza-
tion differs from the standard sparse coding in the regularization term, where
a weighted �1 norm is employed to encourage localized coding. Nevertheless, as
shown by the experiments in [7], in the high dimensional space with unit fea-
ture normalization, empirically the standard sparse coding well approximates
the local coordinate coding for classification purposes.

2.3 Motivation

It should be easy to see that the ScSPM approach [11] works as an approximation
to the LCC in modeling the manifold of the local descriptor space. If linear SVM
is used, the nonlinear function values {f(B(m))}D

m=1 are simply determined by
the weights of the classifier. The final classification score is thus an aggregation
of these function values. The ScSPM model shows promising classification results
on generic images with linear classifiers. Nevertheless, there are two limitations
with the ScSPM framework:

1. Standard sparse coding does not include locality constraints explicitly, and
thus may be inaccurate in modeling the manifold, especially when the dic-
tionary is not big enough;

2. The computation of sparse coding increases to be unaffordable when a large
dictionary is necessary to fit the nonlinear manifold well.

To make a concrete argument, we show the ScSPM computation time for encod-
ing one image as well as the performance (in Average Precision) for dictionaries
of different sizes on PASCAL VOC 2007 dataset [20], where 30,000 local descrip-
tors are extracted from each image. As shown, the performance keeps growing
as the dictionary size increases, as well as the computation time, which increases
approximately linearly. In our experiment, training dictionaries beyond size 8192
is almost infeasible. The local coordinate coding (LCC) work suggests that the
sparse coding should be local and the bases far away from the current encoding
point can be discarded. This motivates our local sparse coding scheme induced
by a Mixture Model, where local sparse coding within each mixture can be very
fast (Refer to Fig. 1). For comparison, using 1024 mixtures with dictionary size
256 for each mixture, the effective dictionary size is 1024 × 256 = 262, 144, and
our proposed approach can process one image (with 30,000 local descriptors) in
about one minute.

3 Sparse Coding Using a Mixture Model

The proposed approach partitions the descriptor space via a mixture model,
where within each mixture a small over-complete dictionary is used to fit the
local sub-manifold. An variational EM approach is applied to learn the model
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Table 1. The relationships between the dictionary size and the computation time as

well as the performance on PASCAL VOC 2007 validation dataset. The computation

time reported is an approximate time needed for encoding one image.

Dictionary Size 512 2048 8192 32,768

Computation Time 1.5 mins 3.5 mins 14 mins N/A

Performance 45.3% 50.2% 53.2% N/A

parameters. Because of the descriptor space partition and dictionary sharing
within each mixture, we can ensure that the sparse coding is local and similar
descriptors have similar sparse codes. The image feature is finally constructed
by pooling the sparse codes within each mixture.

3.1 The Model

We describe the image local descriptor space using a K-mixture model, where
the local distribution of each mixture is further governed by an over-complete
dictionary. Let X = {xn}N

n=1 be the N independent and identically distributed
observation points, and z = {zn}N

n=1 be the corresponding N hidden variables,
where zn ∈ {1, 2, ...,K} is a random variable indicating the mixture assignments.
Denote the mixture model parameters as Θ = {B,w}, where B = {Bk}K

k=1 is
the set of over-complete dictionaries, where Bk ∈ Rd×D, and w = {wk}K

k=1 is the
set of prior weights for the mixtures. We desire to learn the model by maximizing
the likelihood

P (X|Θ) =
N∏

n=1

P (xn|Θ) =
N∏

n=1

K∑
zn=1

wznp(xn|Bzn) (4)

where we let

p(xn|Bzn) =
∫

p(xn|Bzn , α
zn
n )p(αzn

n |σ)dαn (5)

be the marginal distribution of a latent-variable model with a Laplacian prior
p(αzn

n |σ) on the latent variable αzn
n , and p(xn|Bzn , α

zn
n ) is modeled as a zero-

mean isotropic Gaussian distribution regarding the representation error xn −
Bznα

zn
n .

Learning the above model requires to compute the posterior P (z|X , Θ). How-
ever, under this model, this distribution is infeasible compute in a close form.
Note that approximation can be used for the marginal distribution p(xn|Bzn)
(introduced later in Eq. 9) in order to compute the posterior. This requires
evaluating the mode of the posterior distribution of the latent variable for each
data point, which, however, is computationally too slow. We thus develop a fast
variational approach, where the posterior p(zn|xn, Θ) is approximated by

q(zn = k|xi, Λ) =
xT

nAkxn + bT
k xn + ck∑

k′ xT
nAk′ xn + bT

k′ xn + ck′
(6)
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where Λ = {(Ak, bk, ck)}, Ak is a positive definite matrix, bk is a vector, and
ck is a scalar. For computational convenience, we assume Ak to be diagonal. Λ
is a set of free parameters, determining the mixture partition in the descriptor
space. Then the learning problem can be formulated as

min
Θ,Λ

N∑
n=1

K∑
zn=1

[−q(zn|xn, Λ) log p(xn, zn|Θ) + q(zn|xn, Λ) log q(zn|xn, Λ)] (7)

which minimizes an upper bound of the negative log-likelihood−
∑N

i=1 log p(xi|Θ)
of the model [21].

3.2 Learning Algorithm

The learning problem in Eq. 7 can be cast into a standard variational EM algo-
rithm, where we optimize Λ to push down the upper bound to approximate the
negative log-likelihood at E-step, and then update Θ in the M-step to maximize
the approximated likelihood. Let the first term in the object be formulated into

N∑
n=1

K∑
zn=1

g(zn|xn, Λ) log p(xn, zn|Θ)

=
N∑

n=1

K∑
zn=1

g(zn|xn, Λ) log p(xn|Bzn) +
N∑

n=1

K∑
zn=1

g(zn|xn, Λ) logwzn

(8)

Note that the marginal distribution p(xn|Bzn) is difficult to evaluate due to the
integration. We then simplify it by using the mode of the posterior distribution
of αn:

− log p(xn|Bzn) ≈ min
αzn

n

{− log p(xn|Bzn , α
zn
n ) − log p(αzn

n |σ)}

= min
αzn

n

‖xn −Bznα
zn
n ‖2

2 + λ‖αzn
n ‖1

(9)

which turns the integration into a standard sparse coding (or LASSO) problem.
We then have the following updates rules for learning the model

1. Optimize Λ

min
Λ

N∑
n=1

K∑
zn=1

{q(zn|xn, Λ) [− log p(xn|Bzn) − logwzn + log q(zn|xn, Λ)]}

(10)
2. Optimize B

min
B

−
N∑

n=1

K∑
zn=1

q(zn|xn, Λ) log p(xi|Bzn) (11)

where each column of the dictionaries {Bk}K
k=1 is constrained to be of unit

�2 norm. The optimization is again a quadratically constrained quadratic
programming problem, similar to the procedure of updating B in Eq. 1.
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3. Optimize w

min
w

−
N∑

n=1

K∑
zn=1

q(zn|xn, Λ) logwzn

s.t.

K∑
zn=1

wzn = 1

(12)

which always leads to wzn = 1
N

∑N
n=1 q(zn|xn, Λ) using the Lagrange multi-

plier.

By alternatively optimizing over Λ, B and w, we are guaranteed to find a local
minimum for the problem of Eq. 7. Note that B = [B1, B2, ..., BK ] ∈ Rd×KD is
the effective highly over-complete dictionary (KD � d) to learn for sparse cod-
ing. The above mixture sparse coding model leverages the learning complexity
by training Bk (k = 1, 2, ...,K) separately and independently in Step 2 given
the posteriors from Step 1. On the other hand, since we specify all the mixture
dictionaries Bk to be of the same size, their fitting abilities for each data mixture
will affect the mixture model parameters in Step 1, and thus the mixture weights
in Step 3. Therefore, the above training procedure will efficiently learn the highly
over-complete dictionary B, while ensuring that the mixture dictionaries can fit
each data mixture equally well 1.

3.3 Practical Implementation

The above iterative optimization procedures can be very fast with proper ini-
tialization for Λ, B, and w. We propose to initialize the model parameters by
the following:

1. Initialize Λ and w: fit the data X into a Gaussian Mixture Model (GMM)
with K mixtures. The covariance matrix of each mixture is constrained to
be diagonal for computational convenience.

p(X|v,Σ,w) =
N∏

n=1

K∑
k=1

vkN (xn|μk, Σk). (13)

The above Gaussian Mixture Model can be trained with standard EM algo-
rithm. Initialize Ak, bk, ck and wk with Σ−1

k , −2Σ−1
k μk, μT

k Σ
−1
k μk and vk

respectively.
2. Initialize B: Sample the data X into K clusters {Xk}K

k=1, according to the
posteriors of the data points calculated from the above GMM. Train the corre-
sponding over-complete dictionaries {B0

k}K
k=1 for those clusters using the pro-

cedure discussed for Eq. 1. Initialize B with this trained set of dictionaries.

1 In [22], a Gaussian mixture model is proposed for image classification. Instead of

using Gaussian to model each mixture, we use sparse coding, which can capture the

local nonlinearity.
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3.4 Image Encoding

The proposed model can be regarded as a good approximation to the LCC theory
[7]: i) the mixture clustering ensures the locality of the sparse coding; ii) and
the highly over-complete dictionary provides sufficient anchor points for well
approximation of the nonlinear manifold. Similar to case in Sec. 2.1, suppose we
have a set of local descriptors S = [x1,x2, ...,xS ] extracted from an image or its
sub-region, the set-level feature is defined on the latent variables (sparse codes)
{αzn

n }. Specifically, the local descriptors are first assigned to multiple mixtures
according to the posteriors, and then the sparse codes are extracted with the
corresponding dictionaries. We pool these sparse codes using a weighted average
within each mixture and stack them into a super-vector:

fs = [
√
w1μ

α
1 ;

√
w2μ

α
2 ; ...;

√
wKμα

K ] (14)

where

μα
k =

∑N
n=1 q(zn = k|xn, Λ)αzn

n∑N
n=1 q(zn = k|xn, Λ)

(15)

is the weighted average of the sparse codes with their posteriors for the kth mix-
ture. The super-vector feature representation Eq. 14 has several characteristics
that are not immediately obvious:

– The feature constructed in Eq. 14 is based on the locally linear model as-
sumption, and thus is well fitted to linear kernels.

– The square root operator on each weight wk corresponds to the linearity of
the feature.

– In practice, the posteriors {p(zn = k|xn, Λ)}K
k=1 are very sparse, i.e., each

data point will be assigned to only one or two mixtures. Therefore, Eq. 15
is very fast to evaluate.

– The effective dictionary size of the sparse coding is K ×D. However, in our
mixture sparse coding model, the nonlinear coding only involves dictionaries
of size D, improving the computation approximately by K times (typically
we choose K ≥ 1024).

Again, to incorporate the spatial information, we make use of the philosophy of
spatial pyramid [19] to divide the image into multiple sub-regions over different
configurations. The final image feature is then built by concatenating all the
super-vectors extracted from these spatial sub-regions.

4 Experimental Validation

4.1 PASCAL Datasets

We evaluate the proposed model on the PASCAL Visual Object Classes Chal-
lenge (VOC) datasets. The goal of this challenge is to recognize objects from a
number of visual object classes in realistic scenes (i.e., not pre-segmented ob-
jects). It is fundamentally a supervised learning problem in that a training set
of labeled images is provided. Totally there are twenty object classes collected:
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aeroplane bicycle bird boat bottle

bus car cat chair cow

diningtable dog horse motorbike person

pottedplant sheep sofa train tv/monitor

Fig. 2. Example images from Pascal VOC 2007 dataset

– Person: person
– Animal: bird, cat, cow, dog, horse, and sheep
– Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, and train
– Indoor: bottle, chair, dining table, potted plant, sofa, and tv/monitor

Two main competitions for the PASCAL VOC challenge are organized:

– Classification: for each of the twenty classes, predicting presence/absence
of an example of that class in the test image.

– Detection: predicting the bounding box and label of each object from the
twenty target classes in the test image.

In this paper, we apply our model for the classification task to both PASCAL
VOC Challenge 2007 and 2009 datasets.

The PASCAL VOC 2007 dataset [20] consists of 9,963 images, and PASCAL
VOC 2009 [23] collects even more, 14,743 images in total. Both datasets are split
into 50% for training/validation and 50% for testing. The distributions of images
and objects by class are approximately equal across the training/validation and
test sets. These images range between indoor and outdoor scenes, close-ups and
landscapes, and strange viewpoints. These datasets are extremely challenging
because all the images are daily photos obtained from Flickr where the size,
viewing angle, illumination, etc appearances of the objects and their poses vary
significantly, with frequent occlusions. Fig. 2 shows some example images for the
twenty classes from PASCAL VOC 2007 dataset.

The classification performance is evaluated using the Average Precision (AP)
measure, the standard metric used by PASCAL challenge, which computes the
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area under the Precision/Recall curve. The higher the score, the better the per-
formance.

4.2 Implementation Details

Local descriptor. In our experiments, we only use single descriptor type HoG
as the local descriptors, due to its computational advantage over SIFT via in-
tegral image. These descriptors are extracted from a regular grid with step size
4 pixels on the image plane. At each location, three scales of patches are used
for calculating the HoG descriptor: 16 × 16, 24 × 24 and 32 × 32. As a result,
approximately 30,000 local descriptors are extracted from each image. We then
reduce the descriptor dimension from 128 to 80 with PCA.

Mixture modeling. For the VOC 07 dataset, K = 1024 mixtures are used and
the size of the dictionary D for each mixture is fixed to be 256. Therefore, the
effective dictionary size is 1024×256 = 262144. Recall from Tab. 1 that working
directly on a dictionary of this size is impossible. Using our mixture model, we
only need to perform sparse coding on dictionaries of size 256, with little extra
efforts of computing the posteriors for each descriptor, leveraging the computa-
tion time for encoding one image below a minute. For the VOC 09 dataset, we
increase the mixture number to 2048. K and D are chosen empirically, balancing
the performance and computational complexity.

Spatial pyramid structure. Spatial pyramid is employed to encode the spatial
information of the local descriptors. As suggested by the winner system of VOC
2007 [24], we use the spatial pyramid structure shown in Fig. 3 for both datasets.
Totally 8 spatial blocks are defined, and we extract a super-vector by Eq. 14 from
each spatial block and concatenate them with equal weights.

Layer 1 Layer 2 Layer 3

Fig. 3. Spatial pyramid structure used in both PASCAL VOC 2007 and 2009 datasets

Feature normalization. Since our feature is based on the linear model as-
sumption, we use Linear Discriminant Analysis (LDA) to sphere the features,
and then linear SVM or Nearest Centroid is applied for classification. In practice,
we always observe some improvements from this normalization step.
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4.3 Classification Results

We present the classification results on the two datasets in this section. The
precisions for each object class and the Average Precision (AP) are given by
comprehensive comparisons.

PASCAL VOC 2007 dataset. For VOC 2007 dataset, the results we have
are obtained by training on the training set and testing on the validation set.
We report our results in Tab. 2, where the results of the winner system of VOC
2007 [24] and a recent proposed algorithm LLC [25] on validation set are also
provided as reference. As the detailed results for Winner’07 and LLC are not
available, we only cite their APs. Note that the Winner’07 system uses multiple
descriptors beside dense SIFT, and the multiple kernel weights are also optimized
for best performance. The LLC algorithm, similar to our system, only employs
single kernel based on single descriptor. In both cases, our algorithm outperforms
Winner’07 and LLC by a significant margin of about 5% in terms of AP.

Table 2. Image classification results on PASCAL VOC 2007 validation dataset

Obj. Class aero bicyc bird boat bottle bus car cat chair cow

Winner’07 - - - - - - - - - -

LLC [25] - - - - - - - - - -

Ours 78.5 61.6 53.0 69.8 31.69 62.2 81.0 60.5 55.9 41.8

Obj. Class table dog horse mbike person plant sheep sofa train tv AP

Winner’07 - - - - - - - - - - 54.2

LLC [25] - - - - - - - - - - 55.1

Ours 59.3 50.3 75.4 72.9 82.1 26.1 36.1 55.7 81.6 56.3 59.6

PASCAL VOC 2009 dataset. Tab. 3 shows our results and comparisons with
the top systems in VOC 2009. In this table, we compare with Winner’09 sys-
tem (from NEC-UIUC team), and two honorable mention systems UVAS (from

Table 3. Image classification results on PASCAL VOC 2009 dataset. Our results are

obtained based on single local descriptor without combining detection results.

Obj. Class aero bicyc bird boat bottle bus car cat chair cow

Winner’09 88.0 68.6 67.9 72.9 44.2 79.5 72.5 70.8 59.5 53.6

UVAS 84.7 63.9 66.1 67.3 37.9 74.1 63.2 64.0 57.1 46.2

CVC 83.3 57.4 67.2 68.8 39.9 55.6 66.9 63.7 50.8 34.9

Ours 87.7 67.8 68.1 71.1 39.1 78.5 70.6 70.7 57.4 51.7

Obj. Class table dog horse mbike person plant sheep sofa train tv AP

Winner’09 57.5 59.0 72.6 72.3 85.3 36.6 56.9 57.9 85.9 68.0 66.5

UVAS 54.7 53.5 68.1 70.6 85.2 38.5 47.2 49.3 83.2 68.1 62.1

CVC 47.2 47.3 67.7 66.8 88.8 40.2 46.6 49.4 79.4 71.5 59.7

Ours 53.3 59.2 71.6 70.6 84.0 30.9 51.7 55.9 85.9 66.7 64.6
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University of Amsterdam and University of Surrey) and CVC (from Computer
Vision Centre Barcelona ). The Winner’09 system obtains its results by com-
bining the detection scores from object detector. The UVAS system employs
multiple kernel learning over multiple descriptors. The CVC system not only
makes use of the detection results, but also unites multiple descriptors. Yet, our
algorithm performs close to the Winner’09 system, and improves by a notable
margin over the honorable mention systems.

5 Conclusion and Future Work

This paper presents an efficient sparse coding algorithm with a mixture model,
which can work with much larger dictionaries that often offer superior classifi-
cation performances. The mixture model softly partitions the descriptor space
into local sub-manifolds, where sparse coding with a much smaller dictionary
can fast fit the data. Using 2048 mixtures, each with a dictionary of size 256,
i.e, effective dictionary size is 2048× 256 = 524, 288, our model can process one
image containing 30,000 descriptor in about 1 minutes, which is completely im-
possible for traditional sparse coding. Experiments on PASCAL VOC datasets
demonstrate the effectiveness of the proposed approach. One interesting finding
we have is that although our method maps each image into an exceptionally
high dimension space, e.g., the image from VOC 2009 dataset is mapped to a
2048× 256× 8 = 4, 194, 304 dimensional space (spatial pyramid considered), we
haven’t observe any evidence of overfitting. This is possibly owing to the locally
linear model assumption from LCC. Tighter connections with LCC will be inves-
tigated in the future, regarding the descriptor mixture modeling and the sparse
codes pooling.
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Abstract. This paper studies the one-shot and zero-shot learning prob-

lems, where each object category has only one training example or has no

training example at all. We approach this problem by transferring knowl-

edge from known categories (a.k.a source categories) to new categories

(a.k.a target categories) via object attributes. Object attributes are high

level descriptions of object categories, such as color, texture, shape, etc.

Since they represent common properties across different categories, they

can be used to transfer knowledge from source categories to target cat-

egories effectively. Based on this insight, we propose an attribute-based

transfer learning framework in this paper. We first build a generative

attribute model to learn the probabilistic distributions of image features

for each attribute, which we consider as attribute priors. These attribute

priors can be used to (1) classify unseen images of target categories (zero-

shot learning), or (2) facilitate learning classifiers for target categories

when there is only one training examples per target category (one-shot

learning). We demonstrate the effectiveness of the proposed approaches

using the Animal with Attributes data set and show state-of-the-art per-

formance in both zero-shot and one-shot learning tests.

1 Introduction

In this paper, we focus on the one-shot learning [1] and the zero-shot learning
[2] of object categories where there is only one training example per category
or even no training example. Under these circumstances, conventional learning
methods can not function due to the lack of training examples. To solve this
problem, knowledge transfer becomes extremely important [3]: by transferring
prior knowledge obtained from source categories (i.e. known categories) to tar-
get categories (i.e. unknown categories), we equivalently increase the number of
training examples of the target categories. Thus, the difficulties raised by the
scarcity of training examples can be greatly alleviated.

This paper present a transfer learning framework that utilizes the semantic
knowledge of the object attributes. Object attributes are high-level descriptions
about properties of object categories such as color, texture, shape, parts, context,
etc. Human beings have a remarkable capability in recognizing unseen objects
purely based on object attributes. For example, people who have never seen a
zebra still could reliably identify an image of zebra if we tell them that “a zebra

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 127–140, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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is a wild quadrupedal with distinctive white and black strips living on African
savannas”. Since they have prior knowledge about the related object attributes,
e.g., quadrupedal, white and black strips, African savannas, they can transfer
them to facilitate prediction of unseen categories. The attribute-based transfer
learning framework is motivated by this insight. Figure 1 compares different
learning process of conventional learning approaches and attribute-based transfer
learning approaches: while conventional learning approaches treat each category
individually and train each classifier from scratch, the attribute-based transfer
learning approaches can help improve the learning of target classifiers using
the attribute prior knowledge learned from source categories. Therefore, we are
able to learn target classifiers with much fewer training examples, or even no
examples. In the following, we will explore three key components in an attribute-
based transfer learning system: attribute models, target classifiers and methods
to transfer attribute priors. The main contributions of our paper are:

1) We present a generative attribute model that offers flexible representations
for attribute knowledge transfer.

2) We propose two methods that effectively employ attribute priors in the
learning of target classifiers and combine the training examples of target cat-
egories when they are available. Thus the attribute priors can help improving
performance in both zero-shot and one-shot learning task.

3) We show state-of-the-art performance of our transfer learning system on
the Animal with Attributes [2] data set.

(a) (b)

Fig. 1. Comparison of the learning process between conventional learning approaches

(a) and attribute-based transfer learning approaches (b)

The rest of this paper is organized as follows: Section 2 discusses the related
work; Section 3 describes the attribute model, the target classifer and two ap-
proaches of knowledge transfer in details; we present the experimental results in
Section 4 and conclude this paper in Section 5.

2 Related Work

Roughly, the methods of knowledge transfer for object categorization can be
divided into three groups [3]: knowledge transfer by sharing either features [4,5],
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model parameters [1,6] or context information [7]. Most of the early work re-
lies on bootstrap approaches to select features or parameters to be transferred
[4,5,1]. A very recent study [6] suggests that an explicit and controllable transfer
of prior knowledge can be achieved by considering the ontological knowledge of
object similarity. For example, horse and giraffe are both quadrupeds and share
common topologies, so a full model can be transferred from horse to giraffe. The
work presented in this paper integrates a broader ontological knowledge, i.e.,
object attributes, which can transfer knowledge either among similar categories
(e.g., horse and giraffe), or among different categories that share common at-
tributes(e.g., both German shepherd and giant panda have the attribute black).

Several recent studies have investigated the approach employing the object
attributes in recognition problems [2,8,9,10]. Among them, our work is most
related to [2,10]. However, as both studies focused on attribute prediction for
zero-shot learning task, they did not attempt to combine attribute priors with the
training examples of target categories. Thus, although useful, their applications
in one-shot learning task are still limited. Since the framework presented in this
paper (Figure 1.b) includes the route for both attribute priors and the training
examples of target categories, we can benefit from these two domains whichever
is available in learning a new target category. Compared to the existing work
in [2,10], our contribution is a more complete framework for attribute-based
transfer learning, which enables us to handle both zero-shot learning and one-
shot learning problems. The approaches in [8,9] are also related to ours. However,
their methods need attributes annotated for each image. Although this type
of image-level attribute annotation will benefit intra-class feature selection [8]
and object localization [9], it requires substantially human efforts to label each
image. Thus their scalability to a large number of categories is greatly restricted
compared to the category-level attribute annotations advocated in [2,10] and
this paper.

3 Algorithms

3.1 Background

In the proposed approaches, the category-attribute relationship is represented
by a category-attribute matrix M, where the entry at the m-th row and the �-th
column is a binary value indicating whether category m has the �-th attribute.
Figure 3.a illustrates an example of M. Each object category thus has a list of
attributes whose corresponding values in M equal to “yes”. Given an object cat-
egory, the list of associated attributes a is deterministic. Take the category cow in
Figure 3 for example, we have a = {black, white, brown, spots, furry, domestic}.
This information is supposed to be available for both source categories and target
categories.

In our approach, the attribute model and the target classifier belong to an
extension of topic models, which constitute an active research area in the machine
learning community in recent years [11,12,13]. Computer vision researchers have
extended them to deal with various vision problems [14,15,16,17]. In a topic
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model, a document w is modeled by a mixture of topics, z’s, and each topic z is
represented by a probability distribution of words, w’s. In the computer vision
domain, a quantized image feature is often analogous to a word (a.k.a “visual
words” [14]), a group of co-occurred image features to a topic (a.k.a “theme”
[17]), and an image to a document. In Section 4, we will visualize visual words
and topics using examples in the test data set. In this paper, we use the bag-of-
features image representation [18]: the spatial information of image features is
discarded, and an image is represented as a collection of orderless visual words.

3.2 Attribute Model and Target Classifier

The attribute model we employed is the Author-Topic (AT) model (Figure 2.a)
[13]. The AT model is originally designed to model the interests of authors from
a given document corpus. In this paper, we extend the AT model to describe the
distribution of image features related to attributes. To our best knowledge, this
is the first attempt of this kind. Indeed, authors of a document and attributes of
an object category have many similarities, which allow us to analogize the latter
to the former: a document can have multiple authors and an object category
can have multiple attributes; an author can write multiple documents and an
attribute can be presented in multiple object categories. Nevertheless, there is
also noticeable difference between them: each document can have a distinct list
of authors, while all images within an object category share a common list of
attributes.

(a) (b) (c)

Fig. 2. Graphical representations of the Author-Topic (AT) model (a), the Category-

Topic (CT) model (b) and the CT model with informative Dirichlet priors over π and

φ (c). See text for detailed discussions of these models.

The AT model is a generative model. In this model, an image j has a list of
attributes, denoted by aj . An attribute � in aj is modeled by a discrete distri-
bution of K topics, which parameterized by a K-dim vector θ
 = (θ
1, ..., θ
K)
with topic k receiving weight θ
k. The topic k is modeled by a discrete distribu-
tion of W codewords in the lexicon, which is parameterized by a W -dim vector
φk = (φk1, ..., φkW ) with codeword v receiving weight φkv . Symmetric Dirich-
let priors are placed on θ and φ, with θ
 ∼ Dirichlet(α), and φk ∼ Dirichlet(λ),
where α and λ are hyperparameters that affect the sparsity of these distributions.
The generative process is outlined in Algorithm 1.



Attribute-Based Transfer Learning for Object Categorization 131

Algorithm 1. The generative process of the Author-Topic model
1: given the attribute list aj and the desired number of visual words in image j, Nj

2: for i = 1 to Nj do
3: conditioning on aj , choose an attribute xji ∼ Uniform(aj)

4: conditioning on xji, choose a topic zji ∼ Discrete(θxji ), where θ� defines the

distribution of topics for attribute x = �
5: conditioning on zji, choose a visual word wji ∼ Discrete(φzji), where φk defines

the distribution of visual words for topic z = k
6: end for

Given a training corpus, the goal of inference in an AT model is to identify
the values of φ and θ. In [13], Rosen-Zvi et al. presented a collapsed block
Gibbs sampling method. The “collapse” means that the parameters φ and θ
are analytically integrated out, and the “block” means that we draw the pair
of (xji, zji) together. The pair of (xji, zji) is drawn according to the following
conditional distribution

p(xji = �, zji = k|wji = v,Ω) ∝
α/K + Nk


,\ji

α +
∑K

k′=1 N
k′

,\ji

λ/W + Cv
k,\ji

λ +
∑W

v′=1 C
v′
k,\ji

, (1)

where Ω ≡ {aj , z\ji,x\ji,w\ji, α, λ}, the subscript ji represents the i-th visual
word in image j, xji = � and zji = k represent the assignments of current visual
word to attribute � and topic k respectively, wji = v represents the observation
that the current visual word is the v-th codeword in the lexicon, z\ji and x\ji

represent all topic and attribute assignments in the training corpus excluding the
current visual word, Nk


,\ji is the total number of visual words that are assigned
to attribute � and topic k, excluding wji, and Cv

k,\ji is the total number of visual
words with value v that are assigned to topic k, excluding wji.

To run the Gibbs sampling algorithm, we first initialize x and z with random
assignments. In each Gibbs sampling iteration, we draw samples of xji and zji for
all visual words in the training corpus according to the distribution in Equation
(1) in a randomly permuted order of i and j. The samples of x and z are
recorded after the burn-in period. In experiments, we observe 200 iterations
are sufficient for the sampler to be stable. The posterior means of θ and φ can
then be estimated using the recorded samples as follows:

θ̂
k =
α/K + Nk




α +
∑K

k′=1 N
k′



, φ̂kv =
λ/W + Cv

k

λ +
∑W

v′=1 C
v′
k

, (2)

where Nk

 and Cv

k are defined in a similar fashion as in Equation (1), but without
excluding the instance indexed by ji.

If there is only one attribute in each image and the attribute is the object
category label, the AT model can be used in object categorization problems [16].
In this paper, we call this approach Category-Topic (CT) model (Figure 2.b)
and use it as the target classifier in the proposed transfer learning framework.
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It worth to note that the proposed transfer learning framework as illustrated
in Figure 1.b is an open framework in that we can also employ other type of
attribute models and target classifiers. For example, we evaluate SVM as a target
classifier in this paper. Nevertheless, our experiments show that the CT model
can outperform discriminative classifiers such as SVM by a large margin.

The inference of a CT model can be performed in a similar way to the AT
model. In the Gibbs sampling, we draw samples zji according to the following
conditional distribution

p(zji = k|wji = v, cj = m,Ω) ∝
β/K + Mk

m,\ji

β +
∑K

k′=1 M
k′
m,\ji

λ/W + Cv
k,\ji

λ +
∑W

v′=1 C
v′
k,\ji

, (3)

where Ω ≡ {z\ji,w\ji, β, λ}, Mk
m,\ji is the number of visual words in images of

category m assigned to topic k, excluding the current instance. The posterior
mean of π can be estimated as follows:

π̂mk =
β/K + Mk

m

β +
∑K

k′=1 M
k′
m

, (4)

and the posterior mean of φ is the same as in Equation (2).
After learning a CT model, we can use it to classify a test image wt =

{wt1, ..., wtNt} by choosing the target classifier that yields the highest likelihood,
where the likelihood for category c = m is estimated as

p(wt|c = m,Dtrain) ≈
Nt∏
i=1

K∑
k=1

φ̂kwti π̂mk. (5)

If the attribute list is unique in each category, an AT model can also be used
to classify a new image by the maximum likelihood criterion. Suppose we have
learned θ
 for every � = 1, ..., A from the source categories, we can then use them
in classifying an image of a target category using the approximate likelihood

p(wt|c = m, am,Dtrain) ≈
Nt∏
i=1

K∑
k=1

φ̂kwti

(
1
Am

∑

∈am

θ̂
k

)
≡

Nt∏
i=1

K∑
k=1

φ̂kwti π̃mk,

(6)
where am is the attribute list associated to a target category c = m, Am the
length of am. In the above equations, we have constructed a pseudo weight
for the category-specified topic distribution of a new category from θ̂
, i.e.,
π̃mk ≡

(
1

Am

∑

∈am

θ̂
k

)
. This pseudo weight can be viewed as the prior of

πm before we see the real training examples of the new category. Although the
unique-attribute-list assumption does not hold in general, it is necessary for
attribute-only classifiers, including the AT model discussed in this paper and
the approaches in [2,8], to predict unseen categories. The data set tested in this
paper satisfies this assumption.

While the AT model can be used to deal with the zero-shot learning problem,
it is ineffective for the one-shot learning problem. One may conjecture to add the
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training examples of target categories to those of source categories and then re-
train the AT model. However, this naive approach will not work well in practice
because the number of training examples of source categories is usually higher
than the one of target categories by several orders. Consequently the AT model
can not well represent the new observations in the training examples of target
categories. Thus we need approaches to control the balance between the prior
information from source categories and the new information in target categories.
We will propose two approaches to achieve this goal in the rest of this section.

3.3 Knowledge Transfer by Synthesis of Training Examples

The first knowledge transfer approach is to synthesize training example for target
categories. The idea is as follows: first, we learn the attribute model from the
training examples of the source categories; second, for each target category, we
run the generative process in Algorithm 1 to produce S synthesized training
examples using the estimated θ̂ and φ̂ as well as the attribute list associated
to this target category. Each synthesized training example contains N̄ visual
words, where N̄ is the mean number of visual words per image in the source
categories. In this procedure, the number of synthesized training example, S,
represent our confidence about the attribute priors. We can use it to adjust the
balance between the attribute priors and new observations from the training
images of target categories.

Since we adopt the bag-of-features representation, the synthesized example
is actually composed of a set of image features without spatial information. So
they are indeed “artificial” examples in that we can not visualize them like a
real image. This is different from the image synthesis approaches in the literature
[19,20], which output viewable images. Nevertheless, since our goal is to generate
training examples for the target categories to assist the learning process, this is
not an issue providing the classifiers take these bag-of-features as inputs.

3.4 Knowledge Transfer by Informative Parameter Priors

The second knowledge transfer approach is to give parameters of the CT model
in the target classifiers informative priors. Figure 2.c illustrates the complete
CT model, where π and φ are given Dirichlet distributions as priors. In these
Dirichlet distributions, μ and η are base measurements that represent the mean
of φ and π, and λ and β are scaling parameters that control the sparsity of
the samples drawn from the Dirichlet distribution. When we have no clue about
the prior of φ and π, we usually give symmetric Dirichelt priors, whose base
measures are uniform distributions. The graphical representations of CT models
often neglect such uniform distributed base measures and only retain the scaling
parameters λ and β, as shown in Figure 2.b. This rule also applies to the AT
model. In this paper, these scaling parameters are given vague values when doing
Gibbs sampling, λ = W , α = β = K.

However, after we learn the attribute model from source categories, our un-
certainty about the φ and π of target categories will be greatly reduced. Our
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knowledge on these parameters are represented by the estimated φ̂ in Equation
(2) and π̃ in Equation (6). Since E(φk) = μk and E(πm) = ηm, now we can
give informative priors to φ and π by setting μk = φ̂k and ηm = π̃m. The basic
equation of Gibbs sampling of the CT model with informative prior the becomes

p(zji = k|wji = v,Ω) ∝
βπ̃mk + Mk

m,\ji

β +
∑K

k′=1 M
k′
m,\ji

λφ̂kv + Cv
k,\ji

λ +
∑W

v′=1 C
v′
k,\ji

, (7)

where Ω ≡ {cj = m, z\ji,w\ji, βη, λμ}. The posterior means of π and φ in
Equation (4) and (2) are updated accordingly. The value of λ and β represent
our confidence on these priors, which can be used to control the balance between
attribute priors and the new observations of training images of target categories.
In the experiments, we set λ = β = N̄S, where N̄ and S are defined as in
Section 3.3.

By comparing Equation (7) and Equation (3), we can appreciate the im-
portance of informative priors for the zero-shot learning task. If we have no
prior knowledge about π, we can only give it a symmetric Dirichlet prior where
ηmk = 1/K. In this scenario, the CT model have to see some training examples
of target categories; otherwise, πmk will be assigned to vague value 1/K, which is
useless for categorization tasks. Thus the CT model can not be used in zero-shot
learning task. With the attribute knowledge, we can give π informative priors
ηmk = π̃mk, which permits us to perform zero-shot learning task using the CT
model. Similar impact of the informative priors can be observed in the one-shot
learning task.

4 Experiments

4.1 Data Set and Image Features

In the experiments, we use the “Animals with Attributes” (AwA) data set
described in [2]. This data set includes 30475 images from 50 animal cate-
gories, and 85 attributes to describe these categories. The category-attribute
relationship is labeled by human subjects and presented in a 50× 85 matrix M.
Figure 3.a illustrates a subset of this matrix. 40 categories are selected as source
categories and the rest 10 categories are used as target categories. The divi-
sion of source and target categories is the same as in [2]. The 85 attributes can
be informally divided into two groups: visual attributes such as black, furry,
big, arctic, etc., and non-visual attributes such as fast, weak, fierce, domes-
tic, etc. Totally there are 38 non-visual attributes (attribute No.34 to No.64
and attribute No.79 to No.85) and 47 visual attributes. While non-visual at-
tributes are not directly linked to visual features, it turns out that the non-
visual attributes have strong correlation to the visual attributes, as shown in
Figure 3.b. Take the attribute fast as an example, the top three most related
visual attributes are furry (P (furry|fast) = 0.833), tail (P (tail|fast) = 0.833)
and ground (P (ground|fast) = 0.786).
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(a) (b)

Fig. 3. (a): examples of ontological knowledge represented by the binary

category-attribute values; (b): the probability of nonvisual attributes con-

ditioned on visual attributes measured by P (visual|nonnon-visual) ≡
N(visual, non-visual)/N(nonnon-visual), where N(·) denote the number of cat-

egories that have the particular attributes in the given data set. Images and attributes

are from the “Animals with Attributes” data set [2].

All images are resized such that the longest side has 300 pixels. From each im-
age, we extract four types of image features: SIFT [21], rgSIFT [22], local color his-
togram and local self-similarity histogram (LSS) [23]. Then for each type of feature,
we build a visual lexicon of size 1000 by applying K-means clustering algorithms
over features from 250 images randomly selected from source categories. Code-
words from four type of features are combined into a single lexicon with 4000 code-
words. Features in all images are quantized into one of the codewords in this lexi-
con. On average, there are about 5000 features in each image. So we set N̄ = 5000
in the approaches of attribute knowledge transfer in Section 3.3 and Section 3.4. In
[2], color histogram (CH) and PHOG features are also extracted from 21 cells of a
3-level spatial pyramids. In our experiments, we did not use these features because
the topic model can not discover sensible patterns of co-occurrence of CH/PHOG
from the sparse 21 CH/PHOG features in each image.

4.2 Experiment Setup and Implementation Details

Baseline Algorithms. In the experiments, we use Direct Attribute Prediction
(DAP) [2] and SVM as baselines in the zero/one-shot learning tasks.

The DAP is selected as a baseline because it is the state-of-the-art approach
for zero-shot learning on the AwA data set. DAP uses a SVM classifier that is
trained from source categories to predict the presence of each attribute in the
images of target categories. Then the attribute predictions are combined into a
category label prediction in an MAP formulation. The original DAP can only
perform zero-shot learning. For one-shot learning, we use predicted attributes
as features and choose a 1NN classifier following the idea in [8]. We call this
classifier as “DAP+NN” in this paper.

When we use the synthesized training examples to transfer attribute knowl-
edge, many existing classifiers can be used as the target classifier. We choose
SVM as a baseline in this case, mainly because SVM is one of the state-of-the-
art classifiers with bag-of-features image representation [24].
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Implementation Details. The AT model has K0 = 10 unshared topics per
attribute in all tests. When using synthesized training examples, the CT model
has 100 topics; when using informative priors, the number of topics in the CT
model is the same as the total topics in the AT model. The SVM in the target
classifiers is implemented using the C-SVC in LIBSVM with a χ2 kernel. The
kernel bandwidth and the parameter C are obtained by cross-validation on a
subset of the source categories.

Evaluation Methodology. In the zero-shot learning scenario, both AT and
DAP are trained using the first 100 images of each source category. Then we
use the AT model to generate S = {10, 20, 100} synthesized examples for each
target category. The CT and SVM classifiers will be trained using these synthe-
sized examples. We denote them as “CT+S” and “SVM+S” respectively in the
reported results. Also we use the learned φ̂ and π̃ in the AT model as informative
priors for the CT model as described in Section 3.4, where we set S = {2, 5, 10}.
We denote it as “CT+P” in the reported results.

In the one-shot learning scenario, CT and SVM classifiers are trained with
the synthesized training examples/informative priors obtained in the zero-shot
learning test plus the first M = {1, 5, 10} images of each target category. The
AT model is trained with the first 100 images of each source category plus the
first M images of each target category. DAP+NN uses the attribute predictions
of the first M images of each target category as training data points to classify
new images of target categories based on the nearest neighbor criterion.

In both zero-shot and one-shot learning tests, all classifiers are tested over
the last 100 images of each target category and the mean of the diagonal of the
confusion matrix is reported as the measurement of performance.

4.3 Results

Test 1: Overall Performance of Zero/One-Shot Learning. The overall
performance of zero/one-shot learning are presented in the top row of Figure 4.
These results show that the proposed approach outperforms the baseline algo-
rithms in the following three aspects:

1. We have proposed a better attribute model for knowledge transfer. In both
zero/one-shot learning tests, the AT model surpasses DAP and DAP+NN by
5.9% to 7.9%. Furthermore, all target classifiers that employ the prior knowledge
from the AT model (SVM+S, CT+S and CT+P) achieve higher accuracy than
DAP and DAP+NN. These results clearly show the advantages of the AT model
in the attribute-based transfer learning framework.

2. We have proposed better methods of knowledge transfer for one-shot learn-
ing. In the one-shot learning test, the performance of the AT model does not
improve compared to the zero-shot learning test. It is not a surprise: there are
total 4000 images of source categories while only 10 images of target categories
in training the AT model, thus the learned AT model will be almost the same
as the one trained only with the 4000 source images. This result shows that
the naive method of knowledge transfer will not work for the one-shot learning
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Fig. 4. Results of zero-shot and one-shot learning in Test 1 (top row, using all at-

tributes), Test 2 (middle row, using visual attributes only) and Test 3 (bottom row,

using randomly selected attributes) for SVM+S (column 1), CT+S (column 2) and

CT+P (column 3) respectively. The x-axis represents the number of real examples,

M , and the y-axis represents the mean classification accuracy, i.e., the mean of the

diagonal of the confusion matrix.

task. The proposed CT+S and CT+P approaches achieve better balance be-
tween the prior attribute knowledge and the real example of target categories,
and the additional single training example improves their accuracies by 0.9%-
3% (CT+S) and 0.4%-1.4% (CT+P) respectively compared to their zero-shot
learning results.

3. We have proposed a better target classifier. In both the zero-shot and one-
shot learning tasks, the CT models (CT+S and CT+P) consistently exceed the
baseline SVM classifier and thus the advantage of CT over SVM in the zero/one-
shot learning tasks is confirmed.

In addition to the above conclusion, we also have the following observations.
4. CT+S generally outperforms CT+P. CT+P can be viewed as an online

version of CT+S, where the informative priors are equivalent to the initial val-
ues estimated from the synthesized examples in the initialization stage. Thus,
samples drawn with CT+P are not distributed according to the true posterior
distribution P (zji|z\ji,w), which includes all the synthesized and real training
examples. As a result, the categorization performance is degraded.

5. With the increasing number of real training examples, the improvement on
classification due to the prior knowledge decreases accordingly. This suggests that
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Fig. 5. Illustrations of three attribute models for black, ocean and fast from the top

to the bottom. Column 1: the distribution of the 10 topics assigned to a particular

attribute; Column 2: the distribution of codewords for a particular attribute; Column

3-6: examples of images from source categories (Column 3-5) and target categories

(Column 6), superposed with the top 100 most likely codewords (solid red dots) for

the attributes of the same row. Figures are best viewed in color.

the attributes do not contain all the information in target categories. Further-
more, some attributes may be difficult to learn and some are less informative to
the categories. Thus when we have sufficient number of real training examples,
the prior knowledge behaves more and more like noise and inevitably degrade
the classification performance. We can thus derive a practical guideline from this
observation to select an appropriate parameter S: when there is no or only one
real training example, we can set a large value of S, e.g., 100; when more and
more real training examples are available, we then gradually reduce the value of
S to zero.

Illustrations of the Attribute Models. We show three attribute models for
black, ocean and fast in Figure 5. Though we employ the bag-of-features image
representation and discard the spatial information in the image representation,
the visual features related to two visual attributes, black and ocean, roughly lo-
calize the regions of interest. As discussed in Section 4.1, the non-visual attribute,
fast, is most correlated to visual attributes furry, tail and ground. So the visual
features related to these visual attributes are implicitly linked to fast. Visual
examples in Figure 5 support this assumption. The influence of the non-visual
attributes on the classification performance will be evaluated quantitatively in
Test 2.

Test 2: The Influence of the Non-visual Attributes in the Transfer
Learning. In this experiment, we remove the non-visual attributes from the
class-attribute matrix and repeat the above tests. Results are illustrated in the
middle row of Figure 4. Clearly, the absence of non-visual attributes degrades
the classification performance enormously for all classifiers in both zero-shot and
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one-shot learning scenarios. This test illustrates the importance of the non-visual
attributes in the transfer learning approaches.

Test 3: The Effectiveness of the Knowledge of Attribute in the Trans-
fer Learning. In this experiment, we use the AT model learned from source
categories to generate synthesized training examples or compute informative pri-
ors following randomly selected attributes for each target category, where the
number of random attributes are the same as that of the true attributes in each
target category. The results show that the classification performance is at the
chance level in the zero-shot learning tasks. In the one-shot learning task, the
prior knowledge from the randomly selected attributes does not improve the
classification performance compared to those not using attribute priors. This
experiment highlights the effectiveness of the knowledge of the attribute.

5 Conclusion and Future Work

In this paper, we proposed a transfer learning framework that employs object
attributes to aid the learning of new categories with few training examples. We
explore a generative model to describe the attribute-specified distributions of im-
age features and two methods to transfer attribute priors from source categories
to target categories. Experimental results show that the proposed approaches
achieve state-of-the-art performance in both zero-shot and one-shot learning
tests.

There are several areas to improve this work. First, we will evaluate our ap-
proaches using more data sets in the future, especially the FaceTracer data set
[10] and the PASCAL+Yahoo data set [10]. We will also compare the attribute-
based transfer learning approaches to those not using attributes, such as [4,5,1].
Second, we employ the bag-of-features image representation in this work, which
discards valuable spatial information. In the future work, we will enhance the
current model by including spatial constraints, such as regions [15] or vicinity
[16]. By this way, we can localize attributes more accurately and subsequently
improve the categorization performance. Finally, it would be highly valuable to
formally study the influence of different visual attributes and select informative
attributes for particular categories.
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Abstract. This paper introduces a new framework for image classifi-

cation using local visual descriptors. The pipeline first performs a non-

linear feature transformation on descriptors, then aggregates the results

together to form image-level representations, and finally applies a clas-

sification model. For all the three steps we suggest novel solutions which

make our approach appealing in theory, more scalable in computation,

and transparent in classification. Our experiments demonstrate that the

proposed classification method achieves state-of-the-art accuracy on the

well-known PASCAL benchmarks.

1 Introduction

Image classification, including object recognition and scene classification, re-
mains to be a major challenge to the computer vision community. Perhaps one
of the most significant developments in the last decade is the application of lo-
cal features to image classification, including the introduction of “bag-of-visual-
words” representation that inspires and initiates a lot of research efforts [1].

A large body of work investigates probabilistic generative models, with the
objective towards understanding the semantic content of images. Typically those
models extend the famous topic models on bag-of-word representation by further
considering the spatial information of visual words [2][3].

This paper follows another line of research on building discriminative models
for classification. The previous work includes SVMs using pyramid matching ker-
nels [4], biologically-inspired models [5][6], and KNN methods [7][8][9]. Over the
past years, the nonlinear SVM method using spatial pyramid matching (SPM)
kernels [4][10] seems to be dominant among the top performers in various im-
age classification benchmarks, including Caltech-101 [11], PASCAL [12], and
TRECVID. The recent improvements were often achieved by combining differ-
ent types of local descriptors [10][13][14], without any fundamental change of the
underlying classification method. In addition to the demand for more accurate
classifiers, one has to develop more practical methods. Nonlinear SVMs scale
at least quadratically to the size of training data, which makes it nontrivial to
handle large-scale training data. It is thus necessary to design algorithms that
are computationally more efficient.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 141–154, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



142 X. Zhou et al.

1.1 Overview of Our Approach

Our work represents each image by a set of local descriptors with their spatial
coordinates. The descriptor can be SIFT, or any other local features, computed
from image patches at locations on a 2D grid. Our image classification method
consists of three computational steps:

1. Descriptor coding:
Each descriptor of an image is nonlinearly mapped to form a high-dimensional
sparse vector.We propose anovel nonlinear coding method calledSuper-Vector
coding, which is algorithmically a simple extension of Vector Quantization
(VQ) coding;

2. Spatial pooling:
For each local region, the codes of all the descriptors in it are aggregated
to form a single vector, then vectors of different regions are concatenated to
form the image-level feature vector. Our pooling is base on a novel proba-
bility kernel incorporating the similarity metric of local descriptors;

3. Image classification:
The image-level feature vector is normalized and fed into a classifier. We
choose linear SVMs, which scale linearly to the size of training data.

We note that the coding-pooling-classification pipeline is the de facto frame-
work for image scene classification. One notable example is the SPM kernel ap-
proach [4], which applies average pooling on top of VQ coding, plus a nonlinear
SVM classifier using Chi-square or intersection kernels.

In this paper, we propose novel methods for each of the three steps and formal-
ize their underlying mathematical principles. The work stresses the importance
of learning good coding of local descriptors in the context of image classifica-
tion, and makes the first attempt to formally incorporate the metric of local
descriptors into distribution kernels. Putting all these together, the overall im-
age classification framework enjoys a linear training complexity, and also a great
interpretability that is missing in conventional models (see details in Sec. 2.3).
The most importantly, our method demonstrates state-of-the-art performances
on the challenging PASCAL07 and PASCAL09 image classification benchmarks.

2 The Method

In the following we will describe all the three steps of our image classification
pipeline in detail.

2.1 Descriptor Coding

We introduce a novel coding method, which enjoys appealing theoretical prop-
erties. Suppose we are interested in learning a smooth nonlinear function f(x)
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defined on a high dimensional space Rd. The question is, how to derive a good
coding scheme (or nonlinear mapping) φ(x) such that f(x) can be well approxi-
mated by a linear function on it, namely w
φ(x). Our only assumption here is
that f(x) should be sufficiently smooth.

Let us consider a general unsupervised learning setting, where a set of bases
C ⊂ R

d, called codebook or dictionary, is employed to approximate any x,
namely,

x ≈
∑
v∈C

γv(x)v,

where γ(x) = [γv(x)]v∈C is the coefficients, and sometimes
∑

v γv(x) = 1. By
restricting the cardinality of nonzeros of γ(x) to be 1 and γv(x) ≥ 0, we obtain
the Vector Quantization (VQ) method

v∗(x) = argmin
v∈C

‖x− v‖,

where ‖ · ‖ is the Euclidean norm (2-norm). The VQ method uses the coding
γv(x) = 1 if v = v∗(x) and γv(x) = 0 otherwise. We say that f(x) is β Lipschitz
derivative smooth if for all x, x′ ∈ Rd:

|f(x) − f(x′) −∇f(x′)
(x− x′)| ≤ β

2
‖x− x′‖2.

It immediately implies the following simple function approximation bound via
VQ coding: for all x ∈ Rd:∣∣∣f(x) − f

(
v∗(x)

)
−∇f

(
v∗(x)

)
(
x− v∗(x)

)∣∣∣ ≤ β

2
‖x− v∗(x)‖2

. (1)

This bounds simply states that one can approximate f(x) by f
(
v∗(x)

)
+

∇f
(
v∗(x)

)
(
x − v∗(x)

)
, and the approximation error is upper bounded by the

quality of VQ. It further suggests that the function approximation can be im-
proved by learning the codebook C to minimize this upper bound. One way is
the K-means algorithm

C = argmin
C

{∑
x

min
v∈C

‖x− v‖2

}
.

Eq. (1) also suggests that the approximation to f(x) can be expressed as a linear
function on a nonlinear coding scheme

f(x) ≈ g(x) ≡ w
φ(x),

where φ(x) is called the Super-Vector (SV) coding of x, defined by

φ(x) =
[
sγv(x), γv(x)(x − v)


]

v∈C

(2)

where s is a nonnegative constant. It is not difficult to see that w =
[ 1sf(v),∇f(v)]v∈C , which can be regarded as unknown parameters to be esti-
mated. Because γv(x) = 1 if v = v∗(x), otherwise γv(x) = 0, the obtained φ(x)
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a is highly sparse representation, with dimensionality |C|(d + 1). For example,
if |C| = 3 and γ(x) = [0, 1, 0], then

φ(x) =

⎡⎢⎣0, . . . , 0︸ ︷︷ ︸
d+1 dim.

, s, (x− v)
︸ ︷︷ ︸
d+1 dim.

, 0, . . . , 0︸ ︷︷ ︸
d+1 dim.

⎤⎥⎦



(3)

(1) (2) (3)

Fig. 1. Function f(x) approximated by w�φ(x)

As illustrated in Figure 1, w
φ(x) provides a piece-wise linear function to
approximate a nonlinear function f(x), as shown in Figure 1-(2), while with
VQ coding φ(x) = [γv(x)]
v∈C , the same formulation w
φ(x) gives a piece-wise
constant approximation, as shown in Figure 1-(3). This intuitively suggests that
SV coding may achieve a lower function approximation error than VQ coding.
We note that the popular bag-of-features image classification method essen-
tially employs VQ to obtain histogram representations. The proposed SV cod-
ing is a simple extension of VQ, and may lead to a better approach to image
classification.

2.2 Spatial Pooling

Pooling. Let each image be represented as a set of descriptor vectors x that fol-
lows an image-specific distribution, represented as a probability density function
p(x) with respect to an image independent back-ground measure dμ(x). Let’s
first ignore the spacial locations of x, and address the spacial pooling later. A
kernel-based method for image classification is based on a kernel on the proba-
bility distributions over x ∈ Ω, K : P × P �→ R. A well-known example is the
Bhattacharyya kernel [15]:

Kb(p, q) =
∫

Ω

p(x)
1
2 q(x)

1
2 dμ(x).

Here p(x) and q(x) represent two images as distributions over local descriptor
vectors, and μ(x) is the image independent background measure. Bhattacharyya
kernel is closely associated with Hellinger distance, defined as Dh(p, q) = 2 −
Kb(p, q), which can be seen as a principled symmetric approximation of the
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Kullback Leibler (KL) divergence [15]. Despite the popular application of both
Bhattacharyya kernel and KL divergence, a significant drawback is the ignorance
of the underlying similarity metric of x, as illustrated in Figure 2. In order to
avoid this problem, one has to work with very smooth distribution families that
are inconvenient to work with in practice. In this paper, we propose a novel
formulation that explicitly takes the similarity of x into account:

Ks(p, q) =
∫

Ω

∫
Ω

p(x)
1
2 q(x′)

1
2 κ(x, x′)dμ(x)dμ(x′)

=
∫

Ω

∫
Ω

p(x)−
1
2 q(x′)−

1
2κ(x, x′)p(x)q(x′)dμ(x)dμ(x′)

where κ(x, x′) is a RKHS kernel on Ω that reflects the similarity structure of x.
In the extreme case where κ(x, x′) = δ(x−x′) is the delta-function with respect
to μ(·), then the above kernel reduces to the Bhattacharyya kernel.

(1) (2)

Fig. 2. Illustration of the drawback of Bhattacharyya kernel: in both cases their density

kernels Kb(p, q) remain to be the same, equal to 0

In reality we cannot directly observe p(x) from any image, but a set X of
local descriptors. Therefore, based on the empirical approximation to Ks(p, q),
we define a kernel between sets of vectors:

K(X,X ′) =
1

NN ′

∑
x∈X

∑
x′∈X′

p(x)−
1
2 q(x′)−

1
2 κ(x, x′) (4)

where N and N ′ are the sizes of the descriptor sets from two images.
Let κ(x, x′) = 〈φ(x), φ(x′)〉, where φ(x) is the SV coding defined in the pre-

vious section. It is easy to see that κ(x, x′) = 0 if x and x′ fall into different
clusters. Then we have

K(X,X ′) =
1

NN ′

|C|∑
k=1

∑
x∈Xk

∑
x′∈X′

k

p(x)−
1
2 q(x′)−

1
2 κ(x, x′)
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where Xk is the subset of X fallen into the k-th cluster. Furthermore, if we
assume that p(x) remains constant within each cluster partition, i.e., p(x) gives
rise to a histogram [pk]|C|

k=1, then

K(X,X ′) =
1

NN ′

|C|∑
k=1

〈
1

√
pk

∑
x∈Xk

φ(x),
1

√
qk

∑
x′∈ X′

k

φ(x′)

〉

The above kernel can be re-written as an inner product kernel of the form
K(X,X ′) = 〈Φ(X), Φ(X ′)〉, where

Φ(X) =
1
N

|C|∑
k=1

1
√
pk

∑
x∈Xk

φ(x).

Therefore functions in the reproducing kernel Hilbert space for this kernel has
a linear representation f(X) = w
Φ(X). In other words, we can simply employ
Φ(X) as nonlinear feature vector and then learn a linear classifier using this fea-
ture vector. The effect is equivalent to using nonlinear kernel K(X,X ′) between
image pairs X and X ′.

Finally, we point out that weighting by histogram pk is equivalent to treating
density p(x) as piece-wise constant around each VQ basis, under a specific choice
of background measure μ(x) that equalizes different partitions. This representa-
tion is not sensitive to the choice of background measure μ(x), which is image
independent. In particular, a change of measure μ(·) (still piece-wise constant in
each partition) leads to a rescaling of different components in Φ(X). This means
that the space of linear classifier f(x) = w
Φ(X) remains the same.

Spatial Pyramid Pooling. To incorporate the spatial location information
of x, we apply the idea of spatial pyramid matching [4]. Let each image be
evenly partitioned into 1 × 1, 2 × 2, and 3 × 1 blocks, respectively in 3 different
levels. Based on which block each descriptor comes from, the whole set X of an
image is then organized into three levels of subsets: X1

11, X2
11, X2

12, X2
21, X2

22,
X3

11, X
3
12, and X3

13. Then we apply the pooling operation introduced in the last
subsection to each of the subsets. An image’s spacial pyramid representation is
then obtained by concatenating the results of local pooling

Φs(X) =
[
Φ(X1

11), Φ(X2
11), Φ(X2

12), Φ(X2
21), Φ(X2

22), Φ(X3
11), Φ(X3

12), Φ(X3
13)
]

2.3 Image Classification

Image classification is done by applying classifiers based on the image repre-
sentations obtained from the pooling step. Here we consider the task of finding
whether a particular category of objects is contained in an image or not, which
can be translated into a binary classification problem. We apply a linear SVM
that employs a hinge loss to learn g(X) = w
Φs(X). We note that the function
is nonlinear on X since Φs(X) is a nonlinear operator.
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Interestingly, the image-level classification function is closely connected to a
real-valued function on local descriptors. Without loss of generality, let’s assume
that only global pooling is used, which means Φs(X) = Φ(X) in this case.

g(X) = w
Φ(X) =
1
N

|C|∑
k=1

1
√
pk

∑
x∈Xk

w
φ(x) =
1
N

|C|∑
k=1

1
√
pk

∑
x∈Xk

g(x) (5)

where g(x) = w
φ(x). The above equation provides an interesting insight to the
classification process: a patch-level pattern matching is operated everywhere in
the image, and the responses are then aggregated together to generate the score
indicating how likely a particular category of objects is present. This observa-
tion is well-aligned with the biologically-inspired vision models, like Convolution
Neural Networks [16] and HMAX model [6], which mostly employ feed-forward
pattern matching for object recognition.

This connection stresses the importance of learning a good coding scheme
on local descriptors x, because φ(x) solely defines the function space of g(x) =
w
φ(x), which consequently determines if the unknown classification function
can be well learned. The connection also implies that supervised training of φ(x)
could potentially lead to further improvements.

Furthermore, the classification model enjoys the advantages of interpretability
and computational scalability. Once the model is trained, Eq. (5) suggests that
one can compute a response map based on g(x), which visualizes where the
classifier focuses on in the image, as shown in our experiments. Since our method
naturally requires a linear classifier, it enjoys a training scalability which is linear
to the number of training images, while nonlinear kernel-based methods suffer
quadratic or higher complexity.

3 Discussion and Further Improvement

Our approach is along the line of recent works on unsupervised feature learning
for image classfiication, especially, learning sparse representations e.g., [17][5][18]
[19] [20]. In theory our work is more related to local coordinate coding (LCC)
[19], which points out that in some cases a desired sparsity of φ(x) should come
from a locality of the coding scheme. Indeed, the proposed SV coding leads to a
highly sparse representation φ(x), as defined by Eq. (2), which activates those
coordinates associated to the neighborhood of x. As the result, g(x) = w
φ(x)
gives rise to a local linear function (i.e., piece-wise linear) to approximate the
unknown nonlinear function f(x). But, the computation of SV coding is much
simpler than sparse coding approaches.

Our method can be further improved by considering a soft assignment of x to
bases C. Recall that the underlying interpretation of f(x) ≈ w
φ(x) is the the
approximation

f(x) ≈ f
(
v∗(x)

)
+ ∇f

(
v∗(x)

)
(
x− v∗(x)

)
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which essentially uses the unknown function’s Taylor expansion at a nearby
location v∗(x) to interpolate f(x). One natural idea to improve this is using
several neighbors in C instead of the nearest one. Let’s consider a soft K-means
that computes pk(x), the posterior probability of cluster assignment for x. Then
the function approximation can be handled as the expectation

f(x) ≈
|C|∑
k=1

pk(x)
[
f
(
vk

)
+ ∇f

(
vk

)
(
x− vk

)]
Then the pooling step becomes a computation of the expectation

Φ(X) =
1
N

[
1

√
pk

∑
x∈X

pk(x)(x − vk + s)

]|C|

k=1

where pk = 1
N

∑
x∈X pk(x), and s comes from Eq. (2). This approach is dif-

ferent from the image classification using GMM, e.g., [21][22]. Basically, those
GMM methods consider the distribution kernel, while ours incorporates non-
linear coding into the distribution kernel. Furthermore, our theory requires the
stickiness to VQ – the soft version requires all the components share the same
isotropic diagonal covariance. That means a much less number of parameters

Table 1. Comparison of different coding methods, on PASCAL VOC 2007 test set

AP (%) VQ GMM SV SV-soft

aeroplane 39.9 74.4 77.5 78.9

bicycle 44.0 57.9 67.2 68.4

bird 27.7 45.7 47.0 51.9

boat 53.8 68.9 73.9 71.5

bottle 15.8 26.2 27.2 29.8

bus 48.5 63.0 66.9 70.3

car 63.4 77.2 81.4 81.6

cat 38.6 54.6 61.1 60.2

chair 45.8 53.0 53.7 54.5

cow 27.4 42.7 49.3 48.2

dining table 32.7 46.9 55.1 56.8

dog 36.0 43.1 44.6 44.9

horse 66.7 77.7 77.7 80.8

motorbike 43.6 60.2 66.2 68.8

person 73.1 83.6 84.8 85.9

potted plant 25.9 28.2 28.5 29.6

sheep 22.8 42.3 46.7 47.7

sofa 41.9 51.2 56.1 57.7

train 60.0 75.6 79.2 81.7

tv/monitor 27.0 44.1 51.1 52.9

average 41.7 55.8 59.8 61.1
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to estimate. Our experiment confirms that our approach leads to a significantly
higher accuracy.

4 Experiments

We perform image classification experiments on two datasets: PASCAL VOC
2007 and PASCAL VOC 2009. The images in both datasets contain objects
from 20 object categories and range between indoor and outdoor scenes, close-
ups and landscapes, and strange viewpoints. The datasets are extremely chal-
lenging because of significant variations of appearances and poses with frequent
occlusions. PASCAL VOC 2007 consists of 9,963 images which are divided into
three subsets: training data (2501 images), validation data (2510 images), and
test data (4952 images). PASCAL VOC 2009 consists of 14,743 images and corre-
spondingly are divided into three subsets: training data(3473 images), validation
data(3581 images), and testing data (7689 images).

All the following experiment results are obtained on the testing datasets,
except the comparison experiment for different codebook sizes |C| (Table 4),
which is performed on PASCAL VOC 2007 validation set. We use the PASCAL
toolkit to evaluate the classification accuracy, measured by average precision
based on the precision/recall curve.

Table 2. Comparison of our method with top performers in PASCAL VOC 2007

AP (%) QMUL TKK XRCE INRIA(flat) INRIA(GA) Ours

aeroplane 71.6 71.4 72.3 74.8 77.5 79.4

bicycle 55.0 51.7 57.5 62.5 63.6 72.5

bird 41.1 48.5 53.2 51.2 56.1 55.6

boat 65.5 63.4 68.9 69.4 71.9 73.8

bottle 27.2 27.3 28.5 29.2 33.1 34.0

bus 51.1 49.9 57.5 60.4 60.6 72.4

car 72.2 70.1 75.4 76.3 78.0 83.4

cat 55.1 51.2 50.3 57.6 58.8 63.6

chair 47.4 51.7 52.2 53.1 53.5 56.6

cow 35.9 32.3 39.0 41.1 42.6 52.8

dining table 37.4 46.3 46.8 54.9 54.9 63.2

dog 41.5 41.5 45.3 42.8 45.8 49.5

horse 71.5 72.6 75.7 76.5 77.5 80.9

motorbike 57.9 60.2 58.5 62.3 64.0 71.9

person 80.8 82.2 84.0 84.5 85.9 85.1

potted plant 15.6 31.7 32.6 36.3 36.3 36.4

sheep 33.3 30.1 39.7 41.3 44.7 46.5

sofa 41.9 39.2 50.9 50.1 50.6 59.8

train 76.5 71.1 75.1 77.6 79.2 83.3

tv/monitor 45.9 41.0 49.5 49.3 53.2 58.9

average 51.2 51.7 55.6 57.5 59.4 64.0
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Table 3. Comparison of our method with top performers in PASCAL VOC 2009

AP (%) LEOBEN LIP6 LEAR FIRSTNIKON CVC UVASURREY OURS

aeroplane 79.5 80.9 79.5 83.3 86.3 84.7 87.1

bicycle 52.1 52.3 55.5 59.3 60.7 63.9 67.4

bird 57.2 53.8 54.5 62.7 66.4 66.1 65.8

boat 59.9 60.8 63.9 65.3 65.3 67.3 72.3

bottle 29.3 29.1 43.7 30.2 41.0 37.9 40.9

bus 63.5 66.2 70.3 71.6 71.7 74.1 78.3

car 55.1 53.4 66.4 58.2 64.7 63.2 69.7

cat 53.9 55.9 56.5 62.2 63.9 64.0 69.7

chair 51.1 50.7 54.4 54.3 55.5 57.1 58.5

cow 31.3 33.8 38.8 40.7 40.1 46.2 50.1

dining table 42.9 43.9 44.1 49.2 51.3 54.7 55.1

dog 44.1 44.6 46.2 50.0 45.9 53.5 56.3

horse 54.8 59.4 58.5 66.6 65.2 68.1 71.8

motorbike 58.4 58 64.2 62.9 68.9 70.6 70.8

person 81.1 80.0 82.2 83.3 85.0 85.2 84.1

potted plant 30.0 25.3 39.1 34.2 40.8 38.5 31.4

sheep 40.2 41.9 41.3 48.2 49 47.2 51.5

sofa 44.2 42.5 39.8 46.1 49.1 49.3 55.1

train 74.9 78.4 73.6 83.4 81.8 83.2 84.7

tv/monitor 58.2 60.1 66.2 65.5 68.6 68.1 65.2

average 53.1 53.6 56.9 58.9 61.1 62.1 64.3

In all the experiments, 128-dimensional SIFT vectors are extracted over a
grid with spacing of 4 pixels on three patch scales (16x16,25x25 and 31x31).
The dimension of descriptors is reduced to 80 by applying principal component
analysis (PCA). The codebooks C are trained on one million randomly sampled
descriptors. The constant s is chosen from [0, 10−4, 10−3, 10−2, 10−1] via cross-
validation on the training set.

4.1 Comparison of Nonlinear Coding Methods

Our first experiment investigates image classification using various nonlinear
coding methods. The goal is to study which coding method performs the best
under linear SVM classifiers. These methods are: (1) VQ coding – using Bhat-
tacharyya kernel on spatial pyramid histogram presentations; (2) GMM – the
method described in [22]; (3) SV – the super-vector coding proposed by this
paper; (4) SV-soft – the soft version of SV coding, where [pk(x)]k for each x is
truncated to retain the top 20 elements with the rest elements being set zero.

Table 1 shows the experiment results with different coding methods on PAS-
CAL VOC 2007 test dataset. In all the cases |C| = 512 bases/components are
used for coding. SV and SV-soft both significantly outperform other two com-
petitors. SV-soft is slightly better than SV. In the rest of the experiments we
apply SV-soft for classification.
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Table 4. The influence of codebook sizes |C|, on PASCAL VOC 2007 validation set

AP (%) |C| =256 |C| =512 |C| =1024 |C| =2048

aeroplane 77.7 77.9 77.9 78.7

bicycle 55.6 57.2 58.2 58.7

bird 51.0 53.5 54.4 54.0

boat 66.3 66.9 67.1 68.9

bottle 25.5 29.8 31.5 31.9

bus 56.2 59.7 60.9 60.0

car 78.8 79.6 79.8 80.5

cat 59.5 61.4 62.3 62.4

chair 56.4 56.6 56.8 58.0

cow 40.0 43.6 45.6 44.3

dining table 52.7 58.8 61.1 60.7

dog 42.3 46.5 48.7 47.1

horse 72.5 72.1 72.2 74.4

motorbike 65.7 68.7 70.1 70.5

person 79.8 81.0 81.6 81.7

potted plant 23.3 22.9 22.5 23.2

sheep 30.2 33.9 35.5 32.0

sofa 52.2 54.7 55.9 57.3

train 80.2 81.2 81.4 82.5

tv/monitor 55.0 56.4 57.2 57.9

average 56.0 58.1 59.0 59.2

4.2 Comparison with State-of-the-Art Results

In this section we compare the performance of our method with reported state-of-
the-art results on the PASCAL VOC 2007 and 2009 benchmarks. In both cases,
we train the classifier on the training set plus the validation set, and evaluate
on the test set, with |C| fixed as 2048. Table 2 compares the experiment results
by our approach with the top performances in PASCAL VOC 2007 dataset,1

while Table 3 compares our results with the top results in PASCAL VOC 2009
dataset.2 In both cases, our method significantly outperforms the competing
methods on most of the object categories. We note that most of those compared
methods extend the SPM nonlinear SVM classifier by combing multiple visual
descriptors/kernels, while our method utilizes only SIFT features on gray images.
This difference highlights the significant success of the proposed approach. Note
that in Table 3 we do not compare with the winner team NEC-UIUC’s result,
because as far as we know, they combined an object detection model, i.e. using
the information of the provided bounding boxes, to achieve a higher accuracy.

1 http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/workshop/

everingham cls.pdf
2 http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2009/workshop/

everingham cls.pdf
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Fig. 3. Visualization of the learned patch-level function g(x) on image examples from

PASCAL-09. The relationship between g(x) and the image classification function g(X)

is shown in Eq. 5. The figures show that g(x) has a good potential for object detection.
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4.3 Impact of Codebook Size

In this section we report further experimental results on PASCAL VOC 2007
validation set, to show the impact of codebook size |C| on classification perfor-
mance. As shown in Table 4, as we increase |C| from 256, to 512, 1024, and
2048, the classification accuracy keeps being improved. But the improvement
gets small after |C| goes over 1024.

4.4 Visualization of the Learned Patch-Level Function

As suggested by Eq. 5, a very unique perspective of our method is the “trans-
parency” of the classification model. Once the image classifier is trained, a real-
valued function g(x) is automatically obtained on the local descriptor level.
Therefore a response map of g(x) can be visualized on test images. In Figure 3,
we show the response map (with kernel smoothing) on a set of random images
from the PASCAL VOC 2009 test set. In most of the cases, the results are quite
meaningful – the target objects are mostly covered by high-valued responses
of g(x). This observation suggests a potential to extend the current framework
toward joint classification and detection.

5 Conclusion

This paper introduces a new method for image classification. The method follows
the usual pipeline but introduces significantly novel methods for each of the
steps. We formalizes the underlying mathematic principles for our methods and
stresses the importance of learning a good coding of local descriptors in image
classification. Compared to popular state-of-the-art methods, our approach is
appealing in theory, more scalable in computation, transparent in classification,
and produces state-of-the-art accuracy on the well-known PASCAL benchmark.

Acknowledgments. The main part of this work was done when the first author
was a summer intern at NEC Laboratories America, Cupertino, CA.
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Abstract. We present a discriminatively trained model for joint mod-

elling of object class labels (e.g. “person”, “dog”, “chair”, etc.) and their

visual attributes (e.g. “has head”, “furry”, “metal”, etc.). We treat at-

tributes of an object as latent variables in our model and capture the

correlations among attributes using an undirected graphical model built

from training data. The advantage of our model is that it allows us to in-

fer object class labels using the information of both the test image itself

and its (latent) attributes. Our model unifies object class prediction and

attribute prediction in a principled framework. It is also flexible enough

to deal with different performance measurements. Our experimental re-

sults provide quantitative evidence that attributes can improve object

naming.

1 Introduction

What can we say about an object when presented with an image containing it,
such as images shown in Fig. 1? First of all, we can represent the objects by
their categories, or names (“bird” “apple” “chair”, etc). We can also describe
those objects in terms of certain properties or attributes, e.g. “has feather” for
(a), “red” for (b), “made of wood” for (c) in Fig. 1.

In the computer vision literature, most work in object recognition focuses
on the categorization task, also known as object naming, e.g. “Does this image
window contain a person?” or “Is this an image of a dog (versus cat, chair,
table, ...)?”. Some recent work [7,19] proposes to shift the goal of recognition
from naming to describing, i.e. instead of naming the object, try to infer the
properties or attributes of objects. Attributes can be parts (e.g. “has ear”),
shape (e.g. “is round”), materials (e.g. “made of metal”), color (e.g. “is red”),
etc. This attribute-centric approach to object recognition provides many new
abilities compared with the traditional naming task, e.g. when faced with an
object of a new category, we can still make certain statements (e.g. “red” “
furry” “has ear”) about it even though we cannot name it.

The concept of attributes can be traced back (at least) to the early work
on intrinsic images [1], in which an image is considered as the product of char-
acteristics (in particular, shading and reflectance) of a scene. Conceptually, we
can consider shading and reflectance as examples of semantically meaningful

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 155–168, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



156 Y. Wang and G. Mori

properties (or attributes) of an image. Recently there has been a surge of in-
terest in the computer vision community on learning visual attributes. Ferrari
and Zisserman [9] propose a generative model for learning simple color and tex-
ture attributes from loose annotations. Farhadi et al. [7] learn a a richer set of
attributes including parts, shape, materials, etc. Vaquero et al. [18] introduce
a video-based visual surveillance system which allows one to search based on
people’s fine-grained parts and attributes, e.g. an example could be “show me
people with bald head wearing red shirt in the video”.

The attribute-centric approach certainly has great scientific value and practi-
cal applications. Some attributes (e.g. “red”) can indeed be recognized without
considering object names, and it is possible for people to infer attributes of ob-
jects they have never seen before. But object naming is clearly still important
and useful. Consider the image in Fig. 1(a), we as humans can easily recognize
this object has the attribute “eye”, even though the “eye” corresponds to a very
tiny region in the image. Although it is not entirely clear how humans achieve
this amazing ability, it is reasonable to believe that we are not running an “eye”
detector in our brain in order to infer this attribute. More likely, we infer the
object “has eye” in conjunction with recognizing it as a bird (or at least an
animal). The issue becomes more obvious when we want to deal with attributes
that are less visually apparent. For example, we as humans can recognize the
images in Fig. 1(b,c) have the attributes “being edible” and “being able to sit
on”, respectively. But those attributes are very difficult to describe in terms of
visual appearances of the objects – we infer those attributes most likely because
we recognize the objects. In addition, the functions of objects cannot always
easily be inferred directly from their visual attributes. Consider the two images
in Fig. 1(d,e). They are similar in terms of most of their visual attributes – both
are “blue”, “made of metal”, “3D boxy”, etc. But they have completely different
functions. Those functions can be easily inferred if we recognize Fig. 1(d) as a
mailbox and Fig. 1(e) as a trash can.

(a) (b) (c) (d) (e)

Fig. 1. Why cannot we forget about object naming and only work on inferring at-

tributes? Look at the image in (a), it is very hard to infer the attribute “has eye” since

“eye” is a very tiny region. But we as humans can recognize it “has eyes” most likely

because we recognize it is a bird. Other attributes are difficult to infer from visual

information alone, e.g. “edible” for (b) and “sit on” for (c). Meanwhile, objects with

similar visual attributes, e.g. (d) and (e), can have different functions, which can be

easily inferred if we can name the objects.
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Our ultimate goal is to build recognition systems that jointly learnobject classes
and attributes in a single framework. In this paper, we take the first steps toward
this goal by trying to answer the following question: can attributes help object
naming? Although conceptually the answer seems to be positive, there have only
been limited cases supporting it in special scenarios. Kumar et al. [11] show that
face verification can benefit from inferring attributes corresponding to visual ap-
pearances (gender, race, hair color, etc.) and so-called simile attributes (e.g. a
mouth that looks like Barack Obama). Attributes have also been shown to be use-
ful in solving certain non-traditional recognition tasks, e.g. when training and test
classes are disjoint [7,6,12]. However, when it comes to the traditional object nam-
ing task, there is little evidence showing the benefit of inferring attributes. The
work in [7] specifically mentions that attribute based representation does not help
significantly in the traditional naming task. This is surprising since object classes
and attributes are two closely related concepts. Attributes of an object convey a
lot of information about the object category, e.g. an object that “has leg” “has
head” “furry” should be more likely to be a dog than a car. Similarly, the name
of an object also conveys a lot of information about its possible attributes, e.g. a
dog tends to “have leg”, and is not likely to “have wing”. The work on joint learn-
ing of visual attributes and object classes by Wang and Forsyth [19] is the closest
to ours. Their work demonstrates that attribute classifiers and object classifiers
can improve the performance of each other. However, we would like to point out
that the improvement in their work mainly comes from the fact that the training
data are weakly labeled, i.e. training data are only labeled with object class labels,
but not with exact locations of objects in the image. In this case, an object classi-
fier (say “hat”) and an attribute classifier (say “red”) can help each other by trying
to agree on the same location in an image labeled as “red” and “hat”. That work
does not answer the question of whether attributes can help object naming with-
out this weakly labeled data assumption, e.g. when an image is represented by a
feature vector computed from the whole image, rather than a local patch defined
by the location of the object.

Our training data consist of images with ground-truth object class labels (e.g.
“person”, “dog”, “chair”, etc.) and attribute labels (e.g. “has torso”, “metal”,
“red”, etc.). During testing, we are given a new image without the ground-truth
attribute labels, and our goal is to predict the object class label of the test
image. We introduce a discriminative model for jointly modelling object classes
and attributes. Our model is trained in the latent SVM framework [8]. During
testing, we treat the attributes as the latent variables and try to infer the class
label of a test image.

The contributions of this paper are three-fold. Firstly and most importantly,
we propose a model clearly showing that attributes can help object naming. Our
model is also very flexible – it can be easily modified to improve upon many dif-
ferent performance measurements. Secondly, most previous work (e.g. [7,19])
assumes attributes are independent of each other. This is clearly not true.
An object that “has ear” is more likely to “has head”, and less likely to be
“made of metal”. An important question is how to model the correlations among
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attributes. We introduce the attribute relation graph, an undirected graphical
model built from training data, to capture these correlations. Thirdly, our model
can be broadly applied to address a whole class of problems which we call recogni-
tion with auxiliary labels. Those problems are characterized as classification tasks
with certain additional information provided on training data. Many problems in
computer vision can be addressed in this framework. For example, in pedestrian
detection, auxiliary labels can be the body part locations. In web image classi-
fication, auxiliary labels can be the textual information surrounding an image.
There has been work that tries to build recognition systems that make use of
those auxiliary labels, e.g. [17] for pedestrian detection and [20] for object image
classification. However, those work typically use a simple two-stage classification
process by first building a system to predict the auxiliary labels, then learning
a second system taking into account those auxiliary labels. Conceptually, it is
much more appealing to integrate these two stages in a unified framework and
learn them jointly, which is exactly what we do in this paper.

2 Model Formulation

A training example is represented as a tuple (x,h, y). Here x is the image itself.
The object class label of the image is represented by y ∈ Y, where Y is a finite
label alphabet. The attributes of the image x are denoted by a K-dimensional
vector h = (h1, h2, ..., hK), where hk ∈ Hk (k = 1, 2, ...,K) indicates the k-th
attribute of the image. We use Hk to indicate the set of possible configurations
of the k-th attribute. For example, if the k-th attribute is “2D boxy”, we will
have Hk = {0, 1}, where hk = 1 means this object is “2D boxy”, while hk = 0
means it is not. If the k-the attribute is “leg”, hk = 1 means this object “has
leg”, while hk = 0 means it does not. The datasets used in this paper only
contain binary-valued attributes, i.e. Hk = {0, 1} (k = 1, 2, ...,K). For ease of
presentation, we will simply write H instead of Hk from now on when there are
no confusions. But we emphasize that our proposed method is not limited to
binary-valued attributes and can be generalized to multi-valued or continuous-
valued attributes.

We assume there are certain dependencies between some attribute pairs
(hj , hk). For example, hj and hk might correspond to “head” and “ear”, re-
spectively. Then their values are highly correlated, since an object that “have
head” tends to “have ear” as well. We use an undirected graph G = (V , E), which
we call the attribute relation graph, to represent these dependency relations be-
tween attribute pairs. A vertex j ∈ V corresponds to the j-th attribute, and an
edge (j, k) ∈ E indicates that attributes hj and hk have a dependency. We only
consider dependencies of pairs of attributes in this paper, but it is also possible
to define higher-order dependencies involving more than two attributes. We will
describe how to obtain the graph G from training data in Sec. 5.

Given a set of N training examples {(x(n),h(n), y(n))}N
n=1, our goal is to learn

a model that can be used to assign the class label y to an unseen test image
x. Note that during testing, we do not know the ground-truth attributes h of
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the test image x. Otherwise the problem will become a standard classification
problem and can be solved using any off-the-shelf classification method.

We are interested in learning a discriminative function fw : X × Y → R

over an x image and its class label y, where w are the parameters of this func-
tion. During testing, we can use fw to predict the class label y∗ of the input
x as y∗ = argmaxy∈Y fw(x, y). Inspired by the latent SVM [8] (also called the
max-margin hidden conditional random field [21]), we assume fw(x, y) takes the
following form: fw(x, y) = maxh w
Φ(x,h, y), where Φ(x,h, y) is a feature vec-
tor depending on the image x, its attributes h and its class label y. We define
w
Φ(x,h, y) as follows:

w
Φ(x,h, y) = w

y φ(x) +

∑
j∈V

w

hj
ϕ(x) +

∑
j∈V

w

y,hj

ω(x)

+
∑

(j,k)∈E
w


j,kψ(hj , hk) +
∑
j∈V

vy,hj (1)

The model parameters w are simply the concatenation of the parameters in all
the factors, i.e. w = {whj ;wy,hj ;wj,k;wy; vy,hj}y∈Y,hj∈H,j∈V,(j,k)∈E . The details
of the potential functions in Eq. (1) are described in the following.

Object class model w

y φ(x): This potential function represents a standard

linear model for object recognition without considering attributes. Here φ(x) ∈
Rd represents the feature vector extracted from the image x, the parameter wy

represents a template for object class y. If we ignore other potential functions in
Eq. (1) and only consider the object class model, the parameters {wy}y∈Y can
be obtained by training a standard multi-class linear SVM.

In our current implementation, rather than keeping φ(x) as a high dimensional
vector of image features, we simply represent φ(x) as the score of a pre-trained
multi-class linear SVM. In other words, we first ignore the attributes in the
training data and train a multi-class SVM from {(x(n), y(n))}N

n=1. Then we use
φ(x; y) to denote the SVM score of assigning x to class y. Note that we explicitly
put y in the notation of φ(·) to emphasize that the value depends on y. We use
φ(x; y) as the feature vector. In this case, wy is a scalar used to re-weight the
SVM score corresponding to class y. This significantly speeds up the learning
algorithm with our model. Similar tricks have been used in [3,22].

Global attribute model w

hj
ϕ(x): This potential function is a standard linear

model trained to predict the label (1 or 0) of the j-th attribute for the image x,
without considering its object class or other attributes. The parameter whj is a
template for predicting the j-th attribute to have label hj. If we only consider this
potential function, the parameters {whj}hj∈H can be obtained via a standard
binary linear SVM trained from {(x(n), h

(n)
j )}N

n=1. Similarly, instead of keeping
ϕ(x) as a high dimensional vector of image features, we simply represent it using
a scalar ϕ(x; j, hj), which is the score of predicting the j-th attribute of x to be
hj by the pre-trained binary SVM.

Class-specific attribute model w

y,hj

ω(x): In addition to the global attribute
model, we also define a class-specific attribute model for each object class y ∈ Y.
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Here wy,hj is a template for the j-th attribute to take the label hj if the object
class is y. If we only consider this potential function, wy,hj (hj ∈ {0, 1}) for a
fixed y can be obtained by learning a binary linear SVM from training examples
of object class y. Similarly, we represent ω(x) as a scalar ω(x; y, j, hj), which is
the score of predicting the j-th attribute to be hj by an SVM pre-trained from
examples of class y.

The motivations for this potential function are two-fold. First, as pointed out
by Farhadi et al. [7], learning an attribute classifier across object categories is
difficult. For example, it is difficult to learn a classifier to predict the attribute
“wheel” on a dataset containing cars, buses, trains. The learning algorithm might
end up learning “metallic” since most of the examples of “wheels” are surrounded
by “metallic” surfaces. Farhadi et al. [7] propose to address this issue by learn-
ing a “wheel” classifier within a category and do feature selection. More specif-
ically, they learn a “wheel” classifier from a single object category (e.g. cars).
The “wheel” classifier learned in this fashion is less likely to be confused by
“metallic”, since both positive and negative examples (i.e. cars with or without
“wheel”) in this case have “metallic” attributes. Then they can select features
that are useful for differentiating “wheel” from “non-wheel” based on the clas-
sifier trained within the car category. The disadvantage of the feature selection
approach in [7] is that it is disconnected from the model learning and requires
careful manual tuning. Our class-specific attribute model achieves a goal similar
to the feature selection strategy in [7], but in a more principled manner since
the feature selection is implicitly achieved via the model parameters returned by
the learning algorithm.

Second, the same attribute might appear differently across multiple object
classes. For example, consider the attribute “leg”. Many object classes (e.g. peo-
ple, cats) can “have leg” . But the “legs” of people and “legs” of cats can be very
different in terms of their visual appearances. If we learn a “leg” attribute classifier
by considering examples from both people and cat categories, the learning algo-
rithm might have a hard time figuring out what “legs” look like due to the appear-
ance variations. By separately learning a “leg” classifier for each object category,
the learning becomes easier since the positive examples of “legs” within each cat-
egory are similar to each other. This allows the learning algorithm to use certain
visual properties (e.g. furry-like) to learn the “leg” attribute for cats, while use
other visual properties (e.g. clothing-like) to learn the “leg” attribute for people.

One might think that the class-specific attribute model eliminates the need
for the global attribute model. If this is the case, the learning algorithm will set
whj to be zero. However, in our experiment, both whj and wy,hj have non-zero
entries, indicating these two models are complementary rather than redundant.

Attribute-attribute interaction w

j,kψ(hj , hk): This potential function repre-

sents the dependencies between the j-th and the k-th attributes. Here ψ(hj , hk)
is a sparse binary vector of length |H| × |H| (i.e. 4 in our case, since |H| = 2)
with a 1 in one of its entries, indicating which of the four possible configurations
{(1, 1), (1, 0), (0, 1), (0, 0)} is taken by (hj , hk), e.g. ψ(1, 0) = [0, 1, 0, 0]
. The
parameter wj,k is a 4-dimensional vector representing the weights of all those
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configurations. For example, if the j-th and the k-th attributes correspond to
“ear” and “eye”. The entries of wj,k that correspond to (1,1) and (0,0) will prob-
ably tend to have large values, since “ear” and “eye” tend to appear together in
any object.

Object-attribute interaction vy,hj : This is a scalar indicating how likely the
object class being y and the j-th attribute being hj . For example, let y correspond
to the object class “people” and the j-th attribute is “torso”, then vy,1 will
probably have a large value since most “people” have “torso” (i.e. hj = 1).

3 Learning Objective

If the ground-truth attribute labels are available during both training and test-
ing, we can simply consider them as part of the input data and solve a standard
classification problem. But things become tricky when we want to take into ac-
count the attribute information on the training data, but do not want to “overly
trust” this information since we will not have it during testing. In this section,
we introduce two possible choices of learning approaches and discuss why we
choose a particular one of them.

Recall that an image-label pair (x, y) is scored by the function of the form
fw(x, y) = maxh w
Φ(x,h, y). Given the model parameter w, we need to solve
the following inference problem during testing:

h∗ = argmax
h

w
Φ(x,h, y) ∀y ∈ Y (2)

In our current implementation, we assume h forms a tree-structured model. In
this case, the inference problem in Eq. (2) can be efficiently solved via dynamic
programming or linear program relaxation [16,21].

Learning with latent attributes: Given a set of N training examples S =
{(x(n),h(n), y(n))}N

n=1, we would like to train the model parameter w that tends
to produce the correct label for an image x. If the attributes h are unobserved
during training and are treated as latent variables, a natural way to learn the
model parameters is to use the latent SVM [8,21] formulation as follows:

min
w,ξ

β||w||2 +
N∑

n=1

ξ(n)

s.t.max
h

w
Φ(x(n),h, y(n)) − max
h

w
Φ(x(n),h, y) ≥ Δ(y, y(n)) − ξ(n), ∀n, ∀y(3)

where β is the trade-off parameter controlling the amount of regularization, and
ξ(n) is the slack variable for the n-th training example to handle the case of soft
margin, Δ(y, y(n)) is a loss function indicating the cost of misclassifying y(n) as
y. In standard multi-class classification problems, we typically use the 0-1 loss
Δ0/1 defined as:

Δ0/1(y, y(n)) =
{

1 if y �= y(n)

0 otherwise
(4)
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Learning with observed attributes: Now since we do observe the ground-
truth attributes h(n) on the training data, one might think a better choice would
be to fix those values for y(n) rather than maximizing over them, as follows:

min
w,ξ

β||w||2 +
N∑

n=1

ξ(n)

s.t.w
Φ(x(n),h(n), y(n)) − max
h

w
Φ(x(n),h, y) ≥ Δ(y, y(n)) − ξ(n), ∀n, ∀y (5)

The two formulations Eq. (3) and Eq. (5) are related as follows. First, let us
define ĥ(n) as ĥ(n) = arg maxh w
Φ(x(n),h, y(n)). Then it is easy to show that
Eq. (3) is a non-convex optimization, while Eq. (5) is convex. In particular,
Eq. (5) provides a convex upper-bound on Eq. (3). The bound is tight if ĥ(n)

and h(n) are identical for ∀n.

Discussion: Even though Eq. (5) provides a surrogate of optimizing Eq. (3) as
its upper bound, our initial attempt of using the formulation in Eq. (5) suggests
that it does not work as well as that in Eq. (3). We believe the reason is the
optimization problem in Eq. (5) assumes that we will have access to the ground-
truth attributes during testing. So the objective being optimized in Eq. (5) does
not truthfully mimic the situation at run-time. This will not be an issue if the
bound provided by Eq. (5) is tight. Unfortunately, having a tight bound means
we need to set the parameters w to almost perfectly predict h given (x(n), y(n)),
which is obviously difficult.

This might be surprising given the fact that the formulation in Eq. (3) seems
to ignore some information (i.e. ground-truth attribute labels) during training.
At first glance, this argument seems to be reasonable, since Eq. (3) does not
require the ground-truth attributes h(n) at all. But we would like to argue that
this is not the case. The information provided by the ground-truth attributes on
training data has been implicitly injected into the feature vectors ϕ(x) and ω(x)
defined in the global attribute model and class-specific attribute model (see the
descriptions in Sec. 2), since ϕ(x) and ω(x) are vectors of SVM scores. Those
scores are obtained from SVM classifiers trained using the ground-truth attribute
labels. So implicitly, Eq. (3) already makes use of the information of the ground-
truth attributes from the training data. In addition, Eq. (3) effectively models
the uncertainty caused by the fact that we do not know the attributes during
testing and it is difficult to correctly predict them. So in summary, we choose
the learning with latent attributes (i.e. non-convex version) formulated in
Eq. (3) as our learning objective. But we would like to emphasize that the convex
version in Eq. (5) is also a reasonable learning objective. In fact, it has been
successfully applied in other applications [3]. We leave the further theoretical
and empirical studies of these two different formulations as future work.

4 Non-convex Cutting Plane Training

The optimization problem in Eq. (3) can be solved in many different ways.
In our implementation, we adopt a non-convex cutting plane method proposed
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in [4] due to its ease of use. First, it is easy to shown that Eq. (3) is equivalent
to minw L(w) = β||w||2 +

∑N
n=1 R

n(w) where Rn(w) is a hinge loss function
defined as:

Rn(w) = max
y

(
Δ(y, y(n)) + max

h
w
Φ(x(n),h, y)

)
− max

h
w
Φ(x(n),h, y(n))(6)

The non-convex cutting plane method in [4] aims to iteratively build an in-
creasingly accurate piecewise quadratic approximation of L(w) based on its
sub-gradient ∂wL(w). The key issue here is how to compute the sub-gradient
∂wL(w). Let us define:

h(n)
y = arg max

h
w
Φ(x(n),h, y) ∀n, ∀y ∈ Y

y∗(n) = argmax
y

(
Δ(y, y(n)) + w
Φ(x(n),h(n)

y , y)
)

(7)

As mentioned in Sec. 2, the inference problem in Eq. (7) can be efficiently solved
if the attribute relation graph forms a tree. It is easy to show a sub-gradient
∂wL(w) can be calculated as follows:

∂wL(w) = 2β · w +
N∑

n=1

Φ(x(n),h(n)

y∗(n) , y
∗(n)) −

N∑
n=1

Φ(x(n),h(n)

y(n) , y
(n)) (8)

Given the sub-gradient ∂wL(w) computed according to Eq. (8), we can mini-
mize L(w) using the method in [4]. In order to extend the algorithm to handle
more general scenarios involving multi-valued or continuous-valued attributes,
we can simply modify the maximization over h in Eq. (6,7) accordingly. For
example, arg maxh will be replaced by some continuous optimization in the case
of continuous attributes.

5 Attribute Relation Graph

We now describe how to build the attribute relation graph G = {V , E}. In order
to keep the inference problem in Eq. (2) tractable, we will assume G is a tree-
structured graph. Our approach is inspired by the Chow-Liu algorithm [2] for
learning Bayesian network structures.

A vertex j ∈ V corresponds to the j-th attribute. An edge (j, k) ∈ E means
the j-th and the k-th attributes have dependencies. In practice, the dependencies
between certain attribute pairs might be weaker than others, i.e. the value of one
attribute does not provide much information about the value of the other one.
We can build a graph that only contains edges corresponding to those strong de-
pendencies. The graph G could be built manually by human experts. Instead, we
adopt an automatic process to build G by examining the co-occurrence statistics
of attributes in the training data. First, we measure the amount of dependency
between the j-th and the k-th attributes using the normalized mutual infor-
mation defined as NormMI(j, k) = MI(j,k)

min{H(j),H(k)} , where MI(j, k) is the mutual
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information between the j-th and the k-th attributes, and H(j) is the entropy
of the j-th attribute. Both MI(j, k) and H(j) can be easily calculated using the
empirical distributions p̃(hj), p̃(hk) and p̃(hj , hk) estimated from the training
data.

A large NormMI(j, k) means a strong interaction between the j-th and the
k-th attributes. We assign a weight NormMI(j, k) to the connection (j, k), then
run a maximum spanning tree algorithm to find the edges E to be included
in the attribute relation graph G. Similar ideas have been used in [13] to find
correlations between video annotations. The attribute relation graph with 64
attributes built from our training data is shown in Fig. 2.
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Fig. 2. Visualization of the attribute relation graph learned from the training data

from the a-Pascal dataset

6 Other Loss Functions

This paper mainly deals with multi-class classification problems, where the per-
formance of an algorithm is typically measured by its overall accuracy. It turns
out we can modify the learning approach in Sec. 3 to directly optimize other
performance measurements. In this section, we show how to adapt the learning
objective so it optimizes a more sensible measurement for problems involving
highly skewed class distributions.

First we need a new interpretation of Eq. (3). From Eq. (3), it is easy to
show ξ(n) ≥ Δ(y∗(n), y(n)), where y∗(n) = argmaxy fw(xn, y) is the predicted
class label of x by the model fw. So ξ(n) can be interpreted as an upper bound
of the loss incurred on x(n) by the model. The cumulative loss on the whole
training data is then upper bounded by

∑N
n=1 ξ

(n). In the case of 0-1 loss, the
cumulative loss is exactly the number of training examples incorrectly classified
by the model, which is directly related to the overall training error. So we can
interpret Eq. (3) as minimizing (an upper bound of) the overall training error,
with a regularization term β||w||2.

If the distribution of the classes is highly skewed, say 90% of the data are of a
particular class, the overall accuracy is not an appropriate metric for measuring
the performance of an algorithm. A better performance measure is the mean per-
class accuracy defined as follows. Let npq (p, q ∈ Y) be the number of examples
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in class p being classified as class q. Define mp =
∑

q npq, i.e. mp is the number
of examples with class p. Then the mean per-class accuracy is calculated as
1/|Y| ×

(∑|Y|
p=1 npp/mp

)
.

We can define the following new loss function that properly adjust the loss
according to the distribution of the classes on the training data:

Δnew(y, y(n)) =
{ 1

mp
if y �= y(n) and y(n) = p

0 otherwise
(9)

It is easy to verify that
∑N

n=1 Δnew(y∗(n), y(n)) directly corresponds to the mean
per-class accuracy on the training data. The optimization in Eq. (3) with Δnew

will try to directly maximize the mean per-class accuracy, instead of the overall
accuracy. This learning algorithm with Δnew is very similar to that with Δ0/1.
All we need to do is use Δnew in Eq. (3).

Our learning approach can also be extended for detection tasks [8]. In that
case, we can adapt our algorithm to directly optimize other metrics more appro-
priate for detections (e.g. F-measure, area under ROC curve, or the 50% over-
lapping criterion in Pascal VOC challenge [5]) using the technique in [10,15].
We omit the details due to space constraints. The flexibility of optimizing dif-
ferent performance measurements is an important advantage of the max-margin
learning method compared with other alternatives, e.g. the hidden conditional
random fields [14].

7 Experiments

We test our algorithm on two datasets (called a-Pascal and a-Yahoo) intro-
duced in [7]. The first dataset (a-Pascal) contains 6340 training images and 6355
test images collected from Pascal VOC 2008 challenge. Each image is assigned
one of the 20 object class labels: people, bird, cat, cow, dog, horse, sheep, aero-
plane, bicycle, boat, bus, car, motorbike, train, bottle, chair, dining table, potted
plant, sofa, and TV/monitor. Each image also has 64 binary attribute labels, e.g.
“2D boxy”, “has hair”,“shiny”, etc. The second dataset (a-Yahoo) is collected
for 12 object categories from Yahoo images. Each image in a-Yahoo is described
by the same set of 64 attributes. But the object class labels in a-Yahoo are
different from those in a-Pascal. Object categories in a-Yahoo are: wolf, zebra,
goat, donkey, monkey, statue of people, centaur, bag, building, jet ski, carriage,
and mug.

We follow the experiment setup in [7] as close as possible. However, there is
one caveat. These two datasets are collected to study the problem of attribute
prediction, not object class prediction. Farhadi et al. [7] use the training images
in a-Pascal to learn their model, and test on both the test images in a-Pascal and
images in a-Yahoo. We are interested in the problem of object class prediction, so
we cannot use the model trained on a-Pascal to predict the class labels for images
in a-Yahoo, since they have different object categories. Instead, we randomly
split a-Yahoo dataset into equal training/testing sets, so we can train a model
on a-Yahoo training set and test on a-Yahoo test set.
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We use the training images of a-Pascal to build the attribute relation graph
using the method in Sec. 5. The graph is shown in Fig. 2. We use the exact
same graph in the experiments on the a-Yahoo dataset. In order to do a fair
comparison with [7], we use exactly the same image features (called base feature
in [7]) in their work. Each image is represented as a 9751-dimensional feature
vector extracted from information on color, texture, visual words, and edges.
Note that since the image features are extracted from the whole image, we have
essentially eliminated the weakly labeled data assumption in [19].

Figure 3 (left) shows the confusion matrix of our model trained with Δ0/1

on the a-Pascal dataset. Table 1 summarizes our results compared with other
baseline methods. Since this dataset is heavily biased toward “people” category,
we report both overall and mean per class accuracies. Here we show the results
of our approach with Δ0/1 and Δnew. The baseline algorithm is to train an SVM
classifier based on the base features. To make a fair comparison, we also report
results of SVM with Δ0/1 and Δnew. We also list the result of the baseline algo-
rithm taken from [7] and the best reported result in [7]. The best reported result
in [7] is obtained by performing sophisticated feature selection and extracting
more semantic attributes. We can see that both of our models outperform the
baseline algorithms. In particular, the mean per class accuracies of our models
are significantly better. It is also interesting to notice that models (both our
approach and SVMs) trained with Δnew achieve lower overall accuracies than
Δ0/1, but higher mean per class accuracies. This is exactly what we would ex-
pect, since the former optimizes an objective directly tied to the mean per class
accuracy, while the latter optimizes one directly tied to the overall accuracy.
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Fig. 3. Confusion matrices of the classification result of our approach with Δ0/1 on the

a-Pascal (left) and a-Yahoo (right) datasets. Horizontal rows are ground truths, and

vertical columns are predictions. Each row is normalized to sum to 1. The mean per

class accuracy is calculated by averaging the main diagonal of this matrix. Dark cells

correspond to high values.

The results on a-Yahoo are summarized in Table 2. Here we compare with
baseline SVM classifiers using the base features. Farhadi et al. [7] did not perform
object category prediction on this dataset, so we cannot compare with them. On
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this dataset, the performances of using Δ0/1 and Δnew are relatively similar.
We believe it is because this dataset is not heavily biased toward any particular
class. So optimizing the overall accuracy is not very different from optimizing the
mean per-class accuracy. But the results still show the benefits of attributes for
object classification. Figure 3(right) shows the confusion matrix of our approach
trained with Δ0/1 on this dataset.

Table 1. Results on the a-Pascal dataset. We report both overall and mean per class

accuracies, due to the fact that this dataset is heavily biased toward “people” category

method overall mean per-class

Our approach with Δ0/1 62.16 46.25
Our approach with Δnew 59.15 50.84

SVM with Δ0/1 58.77 38.52

SVM with Δnew 53.74 44.04

[7] (base features+SVM) 58.5 34.3

[7] (best result) 59.4 37.7

Table 2. Results on the a-Yahoo dataset. Similarly, we report both overall and mean

per class accuracies

method overall mean per-class

Our approach with Δ0/1 78.67 71.45
Our approach with Δnew 79.88 73.31

SVM with Δ0/1 74.43 65.96

SVM with Δnew 74.51 66.74

8 Conclusion

We have presented a discriminatively trained latent model for joint modelling of
object classes and their visual attributes. Different from previous work [7,19], our
model encapsulates the correlations among different attributes via the attribute
relation graph built from training data and directly optimize the classification
accuracy. Our model is also flexible enough to be easily modified according to
different performance measurements. Our experimental results clearly demon-
strate that object naming can benefit from inferring attributes of objects. Our
work also provides a rather general way of solving many other classification tasks
involving auxiliary labels. We have successfully applied a similar technique to
recogize human actions from still images by considering the human poses as
auxiliary labels [22].
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Abstract. The people in an image are generally not strangers, but

instead often share social relationships such as husband-wife, siblings,

grandparent-child, father-child, or mother-child. Further, the social re-

lationship between a pair of people influences the relative position and

appearance of the people in the image. This paper explores using familial

social relationships as context for recognizing people and for recognizing

the social relationships between pairs of people. We introduce a model

for representing the interaction between social relationship, facial ap-

pearance, and identity. We show that the family relationship a pair of

people share influences the relative pairwise features between them. The

experiments on a set of personal collections show significant improve-

ment in people recognition is achieved by modeling social relationships,

even in a weak label setting that is attractive in practical applications.

Furthermore, we show the social relationships are effectively recognized

in images from a separate test image collection.

1 Introduction

Personal image collections now often contain thousands or tens of thousands of
images. Images of people comprise a significant portion of these images. Con-
sumers capture images of the important people in their lives in a variety of social
situations. People that are important to the photographer often appear many
times throughout the personal collection. Many factors influence the position
and pose of each person in the image. We propose that familial social relation-
ships between people, such as “mother-child” or “siblings”, are one of the strong
factors. For example, Fig. 1 shows two images of a family at two different events.
We observe that the relative position of each family member is the roughly the
same. The position of a person relative to another is dependent on both the iden-
tity of the persons and the social relationship between them. To explore these
ideas, we examine family image collections that have repeating occurrences of
the same individuals and the social relationships that we consider are family
relationships.

For family image collections, face recognition typically uses features based
on facial appearance alone, sometimes including contextual features related to
clothing [14,19,17]. In essence, that approach makes the implicit assumption that
the identity of a face is independent of the position of a face relative to others
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Fig. 1. Social relationships often exhibit certain visual patterns. For the two people in

a wife-husband relationship, the face that is higher in the image is more likely to be

the husband. The family members are in roughly the same position in the two images,

even though the images are of two different events on different days. The inclination of

people to be in specific locations relative to others in a social relationship is exploited

in this work for recognizing individuals and social relationships.

Fig. 2. In the training procedure, images are weakly labeled. Social relationships and

birth years are annotated as input for learning social relationship models. In the recog-

nition test procedure, the goal is to annotate faces present in images with names.

in the image. At its core, our work re-examines this assumption by showing that
face recognition is improved by considering contextual features that describe one
face relative to others in the image, and that these same features are also related
to the familial social relationship.

Our contributions are the following: we develop a probabilistic model for repre-
senting the influence between pairwise social relationships, identity, appearance
and social context. The experimental results show that adding social relation-
ships results in better performance for face annotation. With the learned rela-
tionship models, we can in turn discover social relationships from new image
collections where the social relationships are not manually annotated. To the
best of our knowledge, this is the first work that shows that explicitly modeling
social relationships improves person recognition. Further, this is the first work
that demonstrates classification of social relationships from a single image. It is
also important to note that our model is learned from an empirically attractive
setting of weakly labeled data.



Seeing People in Social Context 171

1.1 Related Work

Organizing consumer photo collections is a difficult problem. One effective solu-
tion is to annotate faces in photos and to search and browse images by people
names [12]. Automatic face annotation in personal albums is a hot topic and
attracts much attention [3,20]. There has been pioneering work on using social
cues for face recognition [6,11,18]. [18] works with strongly labeled data, and
only has one type of relationship: friend or not. In comparison, we deal with
weakly labeled images, and explicitly model a number of social relationships. In
[6], the authors uses the social attributes people display in pictures to better
recognize genders, ages and identities. However, [6] does not explicitly model
different social relationships between people or recognize specific individuals. In
[11], recognizing individuals improves by inferring facial attributes. We extend
these works by using social relationships as attributes for pairs of people in an
image for recognizing people and social relationships.

Weak labeling is an area related to our work. In image annotation, ambiguous
labels are related to generic object classes rather than names [1,8]. Berg et al.
[2] is an example where face recognition has been combined with weak labels.
In that work, face models are learned from news pictures and captions about
celebrities, but ordinary people and the social relationships between them are
not considered.

Certainly, the use of social relationships for recognition constitutes a type of
context. The social context is related to the social interactions and environment
in which an image is captured, and consequently it is not necessarily inferred
directly from image data. Our contextual features for describing the relative
positions between pairs of people in an image are similar to the contextual fea-
tures shown to be effective in general object recognition [4,9,15]. In these works,
pairwise features enforce priors that, for example, make it unlikely for cows to
appear in the sky. We show that our similar features are in fact also useful for im-
proving person recognition and for identifying social relationships. In our work,
social relationships act as a high-level context leveraged from human knowledge
or human behavior. In this sense, it is similar to the context of [5,16].

2 Approach

The common method for providing labeled samples to construct a model of
facial appearance for a specific individual involves asking a user to label a set
of training faces for each person that is to be recognized. Then, a face model
can be learned in a fairly straightforward manner. However, annotating specific
faces in a manual fashion is a time-consuming task. In practice, tools such as
Flickr, or Adobe Album are used by many consumers, but they only provide
weak labels that indicate the presence of a person but not that person’s location
in the image. Appearance models can still be learned in this scenario, but the
label ambiguity increases the learning difficulty. In our work, we assume this
realistic weak-labeling scenario, similar to that of [2], and our model is used
to disambiguate the labels, learn appearance models, and find the identity of
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persons in images that were not in the original training subset. Note also that
other frameworks exist for minimizing the effort of the user by using active
learning to suggest samples to label [19,10], and our model could be inserted
into one of these frameworks.

The procedure is illustrated in Fig. 2. For each image, we only know there are
N names annotated, which are written as {pi, i = 1, · · · , N}, but do not know
the positions or scales of the corresponding faces. Most of faces are automati-
cally detected from images, and we manually add missed faces since we are not
studying face detection in this work. Each face is represented by Fisher subspace
features. Features of faces are written as {wj , j = 1, · · · ,M}.

We train a face model for each individual. This requires establishing corre-
spondences between names and faces in each training image. Social relationships
are manually annotated by photo owners; the relationship between the ith and
jth people is written as rij , a discrete variable over the nine pairwise social rela-
tionships that we consider. The labeling of this social relationship is reasonable
and requires only a small amount of additional effort, because a given pairwise
social relationship need be annotated only once for the entire personal collec-
tion. There are N(N −1)/2 possible pairwise relationships in one album with N
people, but many pairs of people do not have direct relationships.

Table 1. The notation for our model

pi: the ith person name P : all names

wi: the feature representation of the ith face W : all face features

ti: the age of the ith person T : all ages

rij : the social relationship between the ith R: all annotated relationships

and the jth person

fij : the social relationship features between F : all social relationship features

the ith and the jth face

A: the hidden variable which assigns names to faces Ai = j: the ith name is assigned

θ: model parameters to the jth face

A specific social relationship usually exhibits common visual patterns in im-
ages. For example, in a “husband-wife” relationship, the husband is usually taller
than the wife due to physical factors (e.g., the average adult male is 176.8 cm
while the average female is 163.3 cm [13]). Of course, it is easy to find excep-
tions, and this is why our model relies not on “rules” that define the behavior
of an individual or a person in a family relationship, but rather on probabilistic
distributions of features f for particular social relationships.

We extract features that reflect social relationships for each pair of faces
i and j. The features describing the ith and jth face pair are written as fij .
This feature vector represents the “social context” in our model. Note that even
within a single social relationship, visual patterns are not time-invariant. For
example, for “child-mother” relationship, when the child is an infant and the
mother is in her 20s, the mother’s face is physically larger than and generally
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positioned above the child’s; but when the child grows, he or she may eventually
have a larger face, be physically taller, and will no longer sit on the mother’s
lap. To accommodate the evolving roles within a social relationship, we allow
the representation of social relationships for different age combinations. This
requires that the collection owner provides approximate birth years for each
person as illustrated in Fig. 2. In a training image, ages of people are written as
{ti, i = 1, · · · , N}.

pi pjwAi

ti tj

wAjrij

fij

N

N

Fig. 3. The graphical model. The notation is explained in Table 1.

Given the above defined notations, we then aim to maximize the conditional
probability of labels given image observations p(P, R, T | W,F ), which can be
rewritten as:

p(P, R, T,W, F )
p(W,F )

∼
∑
A

p(P, R, T,W, F | A)p(A) (1)

A is a hidden variable that defines the correspondence between faces and
names. Ai = j denotes the ith name is assigned to the jth face. Given a specific
A, the dependency between P, R, T,W and F is represented as shown in Fig.
3. We use a discriminative model to represent the appearance of each name
(here we use a weighted KNN classifier due to its robustness, but note that
a generative model such as a Gaussian mixture model is also applicable) and
generative models for social relationships.

According to the graphical model, (1) can be written as:

∑
A

N∏
i=1

p(pi | wAi)
N∏

i=1,j=1

p(fAiAj | rij , ti, tj)p(rij | pi, pj)p(A) (2)

where wAi denotes the features of the face that is associated with the name
pi. rij is annotated for each pair of names pi and pj , so p(rij | pi, pj) is 1 and
neglected from now on. p(pi | wAi) is calculated as:

p(pi | wAi) =
∑L

l=1 p(pi | w
NAi

l )∑N
i=1

∑L
l=1 p(pi | w

NAi

l )
(3)
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Where wNAi

l denotes the l nearest neighbor faces found for wAi in all the training
images. p(pi | w

NAi

l ) = 0 if the image containing w
NAi

l does not have the person
pi present.

∑
i p(pi | wj) = 1 is enforced in the training procedure.

fAiAj denotes the social relationship features extracted from the pair of faces
Ai and Aj . We extract five types of features to represent social relationships,
which are introduced in Section 3. The space of each feature is quantized to
several discrete bins, so we can model p(fk

AiAj
| rij , ti, tj) as a multinomial

distribution, where k denotes the kth type of relationship features. For simplicity,
these relationship features are assumed to be independent of each other, and
p(fAiAj | rij , ti, tj) could simply be calculated as the product of the probability
for each feature. However, we find that the features can be combined in smarter
ways. By providing a learned exponent on each probability term, the relative
importance of each feature can be adjusted. By learning the exponents with
cross-validation on training examples, better performance is achieved.

There are many possible ti and tj pairwise age combinations, but we may only
have a few training examples for each combination. However, visual features do
not change much without a dramatic change of age. So we quantize each age
ti into 5 bins. The quantization partition points are

[
0 2 17 35 60 100

]
years.

Consequently, there are 25 possible pairwise age bin combinations. For each,
we learn a multinomial distribution for each type of relationship feature. The
multinomial distribution parameters are smoothed with a Dirichlet prior.

2.1 Learning the Model with EM

Learning is performed to find the parameters θ̂:

θ̂ = argmaxθp(P, R, T | W,F ; θ) (4)

θ contains the parameters to define p(p | w) and p(f | r, t). This can not be
learned with maximum likelihood estimation because of the hidden variable.
Instead, we use the EM algorithm, which iterates between the E step and the
M step. Initialization is critical to the EM algorithm. In our implementation, we
initialize p(pi | wj) with the parameters produced by the baseline model that
omits the social relationship variables. The multinomial distribution is initialized
as a uniform distribution.

In the E step, we calculate the probability of the assignment variable A given
the current parameters θold. For a particular A∗, we calculate it as:

p(A∗ | P, R, T,W, F ; θold) =
p(P, R, T,W, F | A∗; θold)p(A∗; θold)∑

A p(P, R, T,W, F | A; θold)p(A; θold)
(5)

p(P, R, T,W, F,A∗; θold) can be calculated according to (2). The prior distribu-
tion of A is simply treated as a uniform distribution. This needs to be enumerated
over all the possible assignments. When there are a large number of people in
images, it becomes intractable. We only assign one pi to a wj when p(pi | wj) is
bigger than a threshold. In this way, we can significantly reduce the number of
possible A.
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In the M step, we update the parameters by maximizing the expected like-
lihood function, which can be obtained by combing (2) and (5). There are two
types of parameters, one to characterize p(p | w) and the other one to charac-
terize p(f | r, t). In the M step, when updating one type of parameters using
maximum likelihood estimation, the derivative doesn’t contain the other type of
parameters. Therefore, the updates of parameters for p(p | w) and p(f | r, t) are
separate. When running the EM algorithm, the likelihood values do not change
significantly after 5 to 10 iterations.

2.2 Inference

In the inference stage, we are given a test image containing a set of people
(without any name label information), we extract their face appearance features
W and relationship features F , then predict the names P . We use the relationship
models to constrain the labeling procedure, so the classification of faces is not
done based on facial appearance alone. This problem is equivalent to finding a
one-to-one constraint A� in the following way:

A� = argmaxAp(A | P, R,W, F, T ) (6)

Here, P denotes all the names in the dataset. There would be too many possible
A to evaluate and compare. We adopt a simple heuristic by only considering As
which assign a name p to a face w when p(p | w) is bigger than a threshold. This
heuristic works well in our implementation.

3 Implementation Details

In this section, we describe important implementation details. The appearance
of each face is represented by projecting the original pixel values into a Fisher
subspace learned from a held-out collection (containing no images in common
with either the training set or the test set). Each face is represented as a Fisher
discriminant space feature.

In our model, the social relationship variable rij is discrete over the space
of pairwise social relationships. We represent the following nine familial social
relationships between a pair of people:

mother-child father-child grandparent-child husband-wife siblings

child-mother child-father child-grandparent wife-husband

We consider relationships to be asymmetric (e.g., “mother-child” is different
from “child-mother”) because our objective is to identify the role of each per-
son in the relationship. We use the following five types of observed appearance
features to represent social relationships.
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Fig. 4. Pairwise facial features are dependent on social relationships. From these plots,

we see that parents’ faces are usually above childrens’ faces (a), that spouses’ faces

are usually about the same size, but are larger than children’s (b), and spouses tend

to be close together in an image(c). Note that we also model the changing nature of

family relationships over time: a mother’s face is larger than the child’s when the child

is young, but they are generally the same size when the child is an adult (d).

Height: the height difference is used as a feature. Very simply, we use the ratio
of the difference y-coordinates of the two people’s faces to the average face size
of the faces in the image. The ratio is quantized to six bins.

Face size ratio: this feature is the ratio of the face sizes. We quantize the ratio
to six bins.

Closeness: the distance of two people in an image can reveal something about
their social relationship. We calculate the Euclidean distance between pair of
people, normalized by the average face size. We quantize the distance to five
bins.

We train gender and age classifiers based on standard methods, following the
examples of [7,11]. Two linear projections (one for age and one for gender) are
learned and nearest neighbors (using Euclidean distance) to the query are found
in the projection space.

Age difference: we use our age predictor to estimate the ages of people. This
age difference, estimated purely from appearance, tells us some information
about the social relationship. We quantize age into five ranges, so the age differ-
ence between two people has nine possibilities. The age difference relationship
is modeled as a multinomial distribution over these nine bins.

Gender distribution: the appearance-based gender classifier helps to indicate
the role of a person in a social relationship. For example, gender estimates are
useful for distinguishing between a wife and husband (or more broadly a hetero-
sexual couple). For each pair of people, there are four possible joint combinations
of the genders.

Fig. 4 demonstrates evidence of the dependence between social relationships
and our features by showing the distribution of feature values given the social
relationships, as learned from our training collections.
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4 Experiments

In this section, we show experiments that support our assertion that modeling
social relationships provides improvements for recognizing people, and allows for
the recognition of pairwise social relationships in new images.

In Section 4.1, we examine the task of identifying people through experiments
on three personal image collections, each of which has more than 1,000 images
and more than 30 distinct people. We show that significant improvement is
made by modeling social relationships for face annotation on both datasets.
We also investigate how different social relationships features help to boost the
performance.

Furthermore, in Section 4.2, we show that learned social relationships models
can be transferred across different datasets. Social relationships are learned on a
personal image collection, and then social relationships are effectively classified
in single images from unrelated separate image collections.

4.1 Recognizing People with Social Relationships

In the first experiment, a subset of images from a personal image collection
is randomly selected as training examples, and weak name labels are provided
for the identities of the people in the images. The remaining images comprise a
test set for assessing the accuracy of recognizing individuals. Testing proceeds as
follows: First, the correspondence between the names and the faces of the training
images are found using the EM procedure from Section 2.1. Next, inference is
performed (Section 2.2) to determine the most likely names assignment for each
set of faces in each test image. The percentage of correctly annotated faces is used
as the measure of performance. This measure is used to evaluate the recognition
accuracy in the test set as well as in the training set.

The first collection has 1,125 images and contains 47 distinct people. These
people have 2,769 face instances. The second collection contains 1,123 images,
with 34 distinct people and 2,935 faces. The third collection has 1,117 images
of 152 individuals and 3,282 faces. For each collection, we randomly select 600
images as training examples and the others as test examples. Each image contains
at least two people. In total, these images contain 6,533 instances of 276 pairwise
social relationships.

Improvement made by modeling social relationships: For comparison
to our model that includes social relationships, we first perform experiments
without modeling social relationships. In the training procedure, we maximize:
p(P | W ) ∼

∑
A

∏N
i=1 p(pi | wAi)p(A). Likewise, the EM algorithm is employed

to learn model parameters.
Fig. 5 shows that all datasets show improved recognition accuracy in both

training and testing when social relationships are modeled. By modeling so-
cial relationships, better correspondence (i.e. disambiguation of the weak label
names) in the training set is established. In collection 1, training set accuracy
improves by 5.0% by modeling social relationships, and test set identification
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improves by 8.6% due to the improved face models as well as the social rela-
tionship models. Significant improvement is also observed in collection 2 in both
the training (improves by 3.3%) and test (improves by 5.8%) sets. Collection 3
also shows improvement (by 9.5% in training and by 1.8% in testing) although
the overall accuracy is lower, mainly because this collection contains many more
unique people (152 people versus 47 and 34 in collections 1 and 2).

Fig. 6 illustrates the improvement that modeling social relationships provides
for specific test image examples. The faces in green squares are instances that
are not correctly classified when the model ignores social relationships, but are
corrected by modeling social relationships. We can see that these faces are sur-
rounded by other people who have strong social relationships with, and the visual
patterns between people are what is typically expected given their roles in the
relationships. The faces in red squares are instances that are correctly classified
when appearance alone is considered, but get confused by incorporating social
relationships. This is because visual relationship patterns in these pictures are
atypical of what is observed in most of other pictures. mother, so she is misclas-
sified as her father, despite her childlike facial appearance.

Table 2. Person recognition accuracy in the test set improves for both collections by

modeling social relationships using more features. For example, “+height” means that

only relative height feature is used, and the other features are omitted.

without relationships +height +closeness +size +age +gender +all

Collection 1 0.560 0.621 0.628 0.637 0.635 0.630 0.646
Collection 2 0.537 0.563 0.560 0.583 0.573 0.584 0.595
Collection 3 0.343 0.361 0.359 0.362 0.362 0.362 0.361

Overall Mean 0.480 0.515 0.516 0.527 0.523 0.525 0.534

Effect of each social relationship feature: As described in Section 3, we
use five features to encapsulate social relationships. We show how each type of
relationship feature helps by in turn omitting all features except that one. The
results are shown in Table 2. We observe that relative face size is the most helpful
single feature, followed by age and gender. In general, including all features
provides significant improvement over using any single feature and adding any
single feature is better than using none at all. It is interesting to note that while
our results concur with [11] in that we achieve improved face recognition by
estimating age and gender.

4.2 Recognizing Social Relationships in Novel Image Collections

Our model explicitly reasons about the social relationships between pairs of
people in images. As a result, the model has applications for image retrieval
based on social relationships.

Social relationships are modeled with visual features such as relative face sizes
and age difference, which are not dependent on the identities of people. This
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Fig. 5. Modeling social relationships improves recognition accuracy. The plots show

the improvement in recognition accuracy for both the training set (left) and the test

set (right) for two different image collections.

Fig. 6. The faces in green squares are instances that are not correctly recognized with-

out modelling social relationships, but are corrected by modeling social relationships.

The faces in red squares are correctly recognized at first, but are misrecognized when

social relationships are considered. The mistakes are sometimes due to an improbable

arrangement of the people in the scene (e.g. the son on the father’s shoulders in the

lower right) that is not often observed in the training set. As another example, in the

middle image of the second row, the daughter (closer to the camera) appears taller and

has a bigger face size than her mother, so she is misclassified as her father, despite her

childlike facial appearance.

means social relationship models can be transferred to other image collections
with different people. Consequently, the models learned from one image collec-
tion can be used to discover social relationships in a separate unrelated image
collection with no labeled information at all. We perform two experiments to ver-
ify that we learn useful and general models for representing social relationships
in images.

In the first experiment, we learn social relationship models from the training
examples of collection 1, and classify relationships in collection 2. Because col-
lection 2 contains no “grandparent-child” relationships, we limit the classified
rij values to the other seven social relationships. The confusion matrix is shown
in Fig. 8. Each row of this confusion matrix shows an actual class.
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(a) social relationships classified as wife-husband

(b) social relationships classified as siblings

(c) social relationships classified as mother-child

Fig. 7. Social relationship classification is accomplished from single images with our

model, trained only with weak labels on a single, unrelated personal collection. Here,

the task is to distinguish between the “wife-husband”, “siblings”, and “mother-child”

relationships for each pair of circled faces. Incorrect classifications are outlined in red.
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Fig. 8. The confusion matrix of social relationships classification. Left: We learn social

relationship models from collection 1 and test on the images of collection 2. Right:
We apply the learned social relationship models to a set of images from Flickr, and la-

beled as one of five social relationships. Both experiments show that social relationship

models learned from one collection and transferable and useful for classifying social

relationships in images containing strangers.

The averaged value of diagonals is 50.8%, far better than random perfor-
mance (14.3%). We can see that the mistakes are reasonable. For example,
“child-mother” is usually misclassified as “child-father” because the primary
visual difference between “mother” and “father” is the gender, which may not
be reliably detected from consumer images.
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In a second experiment, we perform social relationship recognition experi-
ments on the publicly released group image dataset [6]. First, we manually la-
beled relationships between pairs of people. A total of 708 social relationships
were labeled, at most one relationship per image, and each of the three social
relationships has over 200 samples. This dataset is used solely as a test set.
The social relationship models are learned from collection 1 in the same weakly
supervised learning fashion as before. The confusion matrix is shown in Fig. 8.
The overall social relationship classification accuracy in this experiment is 52.7%,
again exceeding random classification 20.0%. This performance is significant in
that the entire model is trained on a single personal image collection with weak
labels. Images classification results from the model are shown for three social
relationships in Fig. 7.

5 Conclusions

We introduce a model that incorporates pairwise social relationships such as
husband-wife or mother-child for representing the relationship between people
in a personal image collection. This model is motivated by the observation that
the joint appearance between people in an image is associated with both their
identities and the social relationship between the pair. We show experimentally
several advantages of this representation. First, the model allows for establish-
ing the correspondence between faces and names in weakly labeled images. Sec-
ond, the identification of unknown faces in test images is significantly improved
when social relationship inference is included. Third, social relationships models
learned from the weakly labeled data are used to recognize social relationships
in single previously unseen images. This work is believed to represent the first
attempt at explicitly modeling the pairwise social relationships between people
in single consumer images.
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Abstract. Even a relatively unstructured captioned image set depict-

ing a variety of objects in cluttered scenes contains strong correlations

between caption words and repeated visual structures. We exploit these

correlations to discover named objects and learn hierarchical models of

their appearance. Revising and extending a previous technique for finding

small, distinctive configurations of local features, our method assembles

these co-occurring parts into graphs with greater spatial extent and flex-

ibility. The resulting multipart appearance models remain scale, transla-

tion and rotation invariant, but are more reliable detectors and provide

better localization. We demonstrate improved annotation precision and

recall on datasets to which the non-hierarchical technique was previously

applied and show extended spatial coverage of detected objects.

1 Introduction

Computer vision tasks from image retrieval to object class recognition are based
on discovering similarities between images. For all but the simplest tasks, mean-
ingful similarity does not exist at the level of basic pixels, and so system design-
ers create image representations that abstract away irrelevant information. One
popular strategy for creating more useful representations is to learn a hierarchy
of parts in which parts at one level represent meaningful configurations of sub-
parts at the next level down. Thus salient patterns of pixels are represented by
local features, and recurring configurations of features can, in turn, be grouped
into higher-level parts, and so on, until ideally the parts represent the objects
that compose the scene. The hierarchical representations are inspired by and in-
tended to reflect the compositional appearance of natural objects and artifacts.
For instance, each level of the Leaning Tower of Pisa appears as a ring of arches
while the tower as a whole is composed of a (nearly) vertical stack of levels.

With this strategy in mind, we build upon the approach of [1] to produce a
system with more accurate image annotation and improved object localization.
Given images of cluttered scenes, each associated with potentially noisy cap-
tions, our previous method [1] can discover configurations of local features that
strongly correspond to particular caption words. Our system improves the overall

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 183–196, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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distribution of these local configurations to optimize the overall correspondence
with the word. While individual learned parts are often sufficient to indicate the
presence of particular exemplar objects, they have limited spatial extent and it
is difficult to know whether a collection of part detections in a particular image
are from multiple objects or multiple parts of a single object. Our system learns
meaningful configurations of parts wherever possible, allowing us to reduce false
annotations due to weak part detections and provide a better indication of the
extent of detected objects. Figure 1 illustrates how low-level features are assem-
bled in stages to form a multipart model (MPM) for the Leaning Tower. MPMs
are more robust to occlusion, articulation and changes in perspective than a flat
configuration of features. While the instantiated system uses exemplar-specific
SIFT features, the framework can support more categorical features.

(a) pixels (b) local features (c) parts (d) multipart models

Fig. 1. Object model detection and learning progresses in stages. Gradient patterns

in the original image (a) are grouped into local features (b). Configurations of local

features with strong word correspondence are captured as part models (c). Finally, we

represent meaningful configurations of part models as multipart models (d).

2 Related Work

A number of researchers have studied the problem of automatic image anno-
tation in recent years [2,3,4,5,6,1]. Given cluttered images of multiple objects
paired with noisy captions, these systems can learn meaningful correspondences
between caption words and appearance models.

In many automatic annotation systems, the main component of the appear-
ance model is a distribution over colors and textures. This kind of representation
is a good fit for relatively structureless materials such as grass, sand or water
and is relatively robust to grouping or segmentation errors. However, objects
such as buildings and bicycles often lack a distinctive color or texture, and re-
quire representations that can capture a particular configuration of individually
ambiguous parts. Most of these automatic annotation systems do not focus on
learning such feature configurations. Often, appearance is modeled as a mixture
of features (e.g., [5,3,6]) in which common part configurations are reflected in



Discovering Multipart Appearance Models from Captioned Images 185

co-occurrence statistics but without spatial information. Similarly, the Markov
random field model proposed by Carbonetto et al. [4] can represent adjacency
relationships but not spatial configurations.

In contrast, the broader object recognition literature contains many methods
for grouping individual features into meaningful configurations and even arrang-
ing features into hierarchies of parts. For instance, Fergus et al. [7] and Crandall
and Huttenlocher [8] look for features and relationships that recur across a col-
lection of object images in order to learn object appearance models consisting of
a distinctive subset of features and their relative positions. A natural strategy
to improve the flexibility and robustness of such models is to organize the object
representation as a parts hierarchy (e.g., [9,10,11,12,13,14]). The part hierar-
chy can be formed by composing low-level features into higher and higher level
parts (e.g. Kokkinos and Yuille [9], Zhu et al. [10]) or by decomposing larger-
scale shared structures into recurring parts (e.g., Epshtein and Ullman [13]). The
composition and learning method of parts at different levels of the hierarchy may
be highly similar (e.g., Bouchard and Triggs [11], Fidler et al. [12]) or hetero-
geneous (e.g., Ommer and Buhmann [14]). Some of these methods can learn an
appearance model from training images with cluttered backgrounds, sometimes
without relying on bounding boxes. However, unlike most automatic annotation
work, they are not designed for images containing multiple objects and multiple
annotation words.

In [1], we describe an automatic annotation system that can capture explicit
spatial configurations of features while retaining the ability to learn from noisy,
unstructured collections of captioned images. Guided by correspondence with
caption words, the system iteratively constructs appearance graphs in which ver-
tices represent local features and edges represent spatial relationships between
them. However, the learned appearance models usually have limited spatial ex-
tent, with each model typically describing only a distinctive portion of an object.
There is no way to determine whether a set of detections in a given image repre-
sents multiple objects or different parts of the same object. Our system addresses
these limitations by using the appearance models as parts in larger hierarchical
object models.

3 Images, Parts and Multipart Models

Our system learns multipart appearance models (MPMs) by detecting recurring
configurations of lower-level ‘parts’ that together appear to have a strong corre-
spondence with a particular caption word. Though our overall approach could
be appropriate for a variety of part features, in this paper our parts are local
configurations of interest points as in [1].

In [1], an image is represented as a set of local interest points, I = {pm|m =
1 . . . |I|}. These points are detected using Lowe’s SIFT method [15], which defines
each point’s spatial coordinates, xm, scale λm and orientation θm. A PCA-SIFT
[16] feature vector (fm) describes the portion of the image around each point. In
addition, a vector of transformation-invariant spatial relationships rmn is defined
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between each pair of points, pm and pn, including the relative distance between
the two points (Δxmn), the relative scale difference between them (Δλmn) and
the relative bearings in each direction (Δφmn, Δφnm).

A part appearance model describes the distinctive appearance of an object
part as a graph G = (V,E). Each vertex vi ∈ V is composed of a continuous
feature vector fi and each edge eij ∈ E encodes the expected spatial relation-
ship between two vertices, vi and vj . Model detections have a confidence score,
Confdetect(O,G) ∈ [0, 1], based on the relative likelihood of an observed set of
points O and the associated spatial relations being generated by the part model
G versus unstructured background.

Multipart models are very similar in structure to the local appearance models
described in [1]. As shown in Figure 2, a multipart model is a graph H = (U,D)
where vertices uj, uk ∈ U are part appearance model detections and each edge
djk ∈ D encodes the spatial relationships between them, using the same rela-
tionships as in the part model: djk = (Δxjk, Δλjk, Δφjk, Δφkj).

H
u1 u2

uj
uk

uk

v1

vi

v2

vs
djk

d12 e12

eis

Fig. 2. A multipart model H is a graph with parts uj ∈ U and spatial relationships

djk ∈ D, where each part is a graph G with local features vi ∈ V and spatial relation-

ships eis ∈ E

4 Discovering Parts

Multipart models are composed of the same type of individual appearance models
that were discovered in [1]. However, models trained to maximize stand-alone de-
tection performance are generally not ideal as parts of a larger appearance model.
Singleton appearance models need to act as high-precision detectors while MPM
parts can be individually more ambiguous and rely on the MPM layer to weed
out false-positive detections by imposing co-occurrence and spatial constraints.
Therefore, when learning MPM parts, we can accept some loss of precision in ex-
change for better recall and better spatial coverage of the object of interest. We
implement this shift toward weaker parts with better coverage by replacing the
part initialization process in [1] with our own improved process and by limiting
the size of learned part models to eight vertices.
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4.1 Model Initialization through Image Pair Sampling

We replace the clustering-based model initialization method of [1] with an ap-
proach that makes earlier use of language information. The system in [1] sum-
marizes the visual information within each neighborhood of an image set as a
quantized bag-of-features descriptor called a neighborhood pattern and then uses
clustering to group similar neighborhood patterns. Next, the system checks for
promising correspondences between the occurrence patterns of each neighbor-
hood cluster and each word. Finally, clusters with the best correspondences for
each word are used to extract initial two-vertex appearance models.

This clustering approach has several drawbacks. The neighborhood patterns
are noisy due to features quantization and detector errors. Therefore a low sim-
ilarity threshold is needed to reliably group similar appearances. However, this
allows unrelated neighborhoods to join the cluster. Especially on large image
sets, this can add substantial noise to the cluster occurrence pattern, obscuring
its true word correspondences. Therefore recurring visual structure correspond-
ing to rarer object views is often overlooked.

Our initialization method avoids feature quantization and uses word labels
early-on in the process. Instead of using a neighborhood pattern, we compare
visual features directly. Rather than cluster visual structure across the entire
training set, we look for instances of shared appearance between pairs of images
with the same word label. For a given word w, the system randomly samples
pairs of images IA and IB from those with captions containing w and identifies
neighborhoods in the two images that share visual structure.

We identify shared neighborhoods in three steps. First, the system looks for
uniquely-matching features that are potential anchors for shared neighborhoods.
Following [15], we identify matching features that are significantly closer to each
other than to either feature’s second-best match, i.e., features fm ∈ IA and
fn ∈ IB that satisfy equations 1 and 2:

|fm − fn|2 ≤ ψu|fm − fk|2, ∀fk ∈ {IB − fn} (1)

|fm − fn|2 ≤ ψu|fl − fn|2, ∀fl ∈ {IA − fm} (2)

where ψu < 1 controls degree of uniqueness of anchor matches. For each pair of
uniquely-matching features, the system checks for supporting matches in the sur-
rounding neighborhood. These supporting matches aren’t required to be unique,
so the corresponding uniqueness quantifier ψs > 1. For each supporting match
pair fi ∈ IA and fj ∈ IB , the system then verifies that the spatial relationships
between the unique feature and the supporting feature in the two images (rmi

and rnj) are consistent. A shared neighborhood has a pair of unique matches
and at least two spatially consistent supporting matches.

Given this evidence of shared visual structure, we construct a set of two-vertex
part models, each with one vertex based on the unique match and the other
on a strong supporting match. These two-vertex models represent shared visual
structure between two images labeled with word w. To check whether the models
correspond with w, the system detects each model G across the training image
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set and compares its occurrence pattern with that of w. Below, we explain how
we sample image pairs and filter the resulting initial part models to maximize
overall coverage of the object.

4.2 Part Coverage Objective

In [1], the system develops the n neighborhood clusters with the best correspon-
dence with w into full appearance models. This approach concentrates parts on
the most common views of an object, neglecting less common views and appear-
ances associated with w. Our method instead selects initial part models so that,
as a group, they have good coverage of w throughout the training set.

Ideally, a set of part models G would have multiple, non-overlapping detections
in every training set image annotated with word w and no detections elsewhere.
We represent the distribution of model detections throughout the k training im-
ages with the vector Qw = {Qwi|i = 1, . . . , k}. If ni is the number of independent
model detections in image i, Qwi = 1 − νni , ν < 1. With multiple detections,
Qwi approaches 1, but each successive detection has a smaller effect.

We evaluate how well G approximates the ideal by evaluating the correspon-
dence between Qw and a vector rw indicating images with w in the caption
using an F-Measure, F (rw,Qw). The part initialization process greedily grows
and modifies a collection of non-overlapping two-vertex part models G to max-
imize F (rw,Qw). At each iteration, it draws a pair of images from the sample
distribution sw and uses them to generate potential part models. Qw influences
the sample distribution: sw ∼ 1 − Qw. This focuses the search for new models
in images that do not already contain several model detections. The algorithm
calculates, for each potential model, the effects on the correspondence score F
of adding the model to the current part set, of replacing each of the models in
the current set and of rejecting the model. The algorithm implements the option
which leads to the greatest improvement in correspondence. The process stops
once no new models have been accepted in the last Npairs image-pair samples.

Besides optimizing the explicit objective function, the initialization system
also avoids redundant models with many overlapping detections. Two models
are considered to be redundant when their detections overlap nearly as often as
they occur separately. When a new two-vertex model is considered, if selected it
must replace any models that it makes redundant.

5 Building Multipart Models

After learning distinctive part models, but before assembling them into multipart
models, we perform several stages of processing. Algorithm 1 summarizes both
the preprocessing steps and the MPM initialization and assembly process, with
reference to the subsections below that explain the steps of the algorithm.
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Algorithm 1. Uses parts associated with word w to assemble multipart models.
ConstructMPMs(w)

1. For each part G associated with w, find the set OG of observations of G in training images.
2. Identify and remove redundant parts (section 5.1).
3. For each G, set the spatial coordinates of each observation OG ∈ OG (section 5.2):

– Choose representative vertex vc to act as center of G.
– For each vi ∈ vG, find average relationship, r̄ic, between co-occurences of (vi, vc) ∈ OG.
– For each OG ∈ OG, and each observed vertex pi ∈ OG calculate expected position of xc

based on (r̄ic, xi). Part spatial coordinate xG is the average expected center x̄c.
4. Sort parts by Confcorr(G, w).
5. For each G:

– Skip expansion if most OG ∈ OG are already incorported into existing MPMs (section 5.3).
– Iteratively expand G into an MPM H using same method as part models (section 5.4):

• Expand MPM H to H∗ by adding new part or spatial relationship.
• Detect H∗ across the training image set (section 5.5).
• If new MPM–word correspondence, Confcorr(H

∗, w) > Confcorr (H, w), H ⇐ H∗.
– If at least NMPM multipart models have been created, return.

5.1 Detecting Duplicate Parts

Our initialization method avoids excessive overlap of initial part models. How-
ever, during model refinement, two distinct part models can converge to cover the
same portion of an object’s appearance. Near-duplicate parts must be pruned
or they could complicate the search for multipart models since they could be
interpreted as a pair of strongly co-occurring, independent parts.

Rather than detect near-duplicates by searching for partial isomorphisms be-
tween part models, we look for groups of parts that tend to be detected in the
same images at overlapping locations. If a vertex vAi in model GA maps to the
same image point as vertex vBj in model GB in more than half of detections, then
we draw an equivalence between vAi and vBj . If more than half of the vertices
in either part are equivalent, we remove the part with the weakest word–model
correspondence confidence Confcorr (G,w).

5.2 Locating Part Detections

The parts described in [1] encode spatial relationships among local interest
points; we construct multipart models by discovering spatial relationships be-
tween such detected parts. However, while a local interest point detector provides
that point’s scale, orientation and location, the part detector does not. We there-
fore set the spatial coordinates for each part detection based on the underlying
image points in a way that is robust to occlusion and errors in feature detection.

For each part we select a central vertex and for each detection we estimate
the center’s spatial coordinates. The center vertex need not be observed in every
detection, since each observed vertex contributes to a weighted estimate of the
center’s coordinates. Figure 3 illustrates this approach. We use the estimated
location and orientation of the center and multiply the estimated scale of the
center vertex by a part-specific factor so that the detected part scale reflects the
normal spread of the part’s vertices.
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Fig. 3. The spatial coordinates of a part detection are tied to a central vertex c. We

estimate c’s coordinates based on observed vertices, even if c itself is not observed.

5.3 Choosing Initial Multipart Models

Our system uses the most promising individual part models as seeds for con-
structing multipart models. Parts that have good correspondence with a word
are likely to co-occur with other parts in stable patterns from which large MPMs
with good spatial coverage can be constructed. However, if only the strongest
part models are expanded, the resulting MPMs may be too clustered around
only the most popular views of the object. This would neglect views with weaker
individual parts where MPMs can make the biggest difference in precision.

Therefore initial model selection proceeds as follows. Part models are evalu-
ated in the order of their correspondence with a word w. A model is expanded
if at least half of its ‘good’ detections (in images labeled with w) have not been
incorporated into any of the already-expanded MPMs. Selective expansion con-
tinues until the list of part models is exhausted or NMPM distinct multipart
models have been trained for a given word.

5.4 Refinement and Expansion of Multipart Models

In order to expand the multipart models, we take an approach very similar to [1],
in that we use the correspondence strength Confcorr (H,w) between a multipart
model H and word w to guide the expansion of these two-vertex graphs into
larger multipart models. Introduced in [1], the correspondence score reflects the
amount of evidence, available in a set of training images, that a word and a part
model are generated from a common underlying source object, as opposed to
appearing independently.

Each iteration of the expansion algorithm begins by detecting all instances
of the current multipart model in the training set (section 5.5) and identifying
additional parts that tend to co-occur with a particular spatial relationship rel-
ative to the multipart model. We propose an expansion of the MPM H either by
adding a new part model and spatial relationship from among these candidates
or by adding a new edge between existing vertices. The proposal is accepted if it
improves Confcorr(H,w) (starting a new iteration), and rejected otherwise. The
expansion process continues until potential additions to H have been exhausted.
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5.5 Detecting Multipart Models

As in part model detection, multipart detection must be robust to changes in
viewpoint, occlusion and lighting that can cause individual part detections to
be somewhat out of place or missing entirely. We use a simple generative model
illustrated in Figure 4 to explain the pattern of part detections both in images
that contain a particular multipart model and those that do not.

Each image i has an independent probability P (hi = 1) of containing the
multipart model H . Given hi, the presence of each model part is determined
independently (P (uij = 1|hi)). The foreground probability of a model part be-
ing present is relatively high (P (uij = 1|hi = 1) = 0.95), while the background
probability, P (uij = 1|hi = 0), is equal to its normalized frequency across the
training image set. If a part is present, it tends to have a higher observed de-
tection confidence, oij (p(oij |uij = 1) = 2oij , p(oij |uij = 0) = 2(1 − oij)). If
the multipart model is present (hi = 1) and contains an edge rjk, and the parts
uij and uik are present, then the observed spatial relationship sijk between the
two parts has a relatively narrow distribution centered at the edge parameters.
Otherwise, all spatial relationships follow a broad background distribution.

i h

u1 uj uk u|U|... ... ...

o1 oj ok o|U|
sjk

Fig. 4. A graphical model of the generative process with multipart model indicator h,

part indicators u, part detection confidences o and observed spatial relations s

In any given image, there may be many possible assignments between multi-
part model vertices and observed part detections. We choose assignments in a
greedy fashion in order to maximize P (hi = 1|oi, si). First we choose the best-fit
assignment of two linked vertices, then one by one we choose the vertex assign-
ment that makes the largest improvement in P (hi = 1|oi, si) and is consistent
with existing assignments.

The prior probability P (hi = 1) depends on the complexity of the MPM, with
more complex multipart models having a lower prior probability. Specifically:

P (hi = 1) = α|U| · β|D|. (3)

where α, β < 1 and |U | and |D| are, respectively, the number of vertices and edges
in H . The constants α and β were selected based on detection experiments on
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random synthetic MPMs with a wide range of sizes in order to prevent large,
complex models from being detected when only a tiny fraction of their vertices
are present.

6 Results

Once we have discovered a set of individual part models and learned multipart
models from configurations of the parts, we can use these learned structures
to annotate new images. We begin by detecting all part models in the image
(even those that are relatively weakly detected or have relatively low individual
correspondence confidence). Based on these part observations, we then evaluate
detection confidence for all learned MPMs. Following [1], our annotation confi-
dence for both parts and multipart models is the product of detection confidence,
Confdetect(i,H), and correspondence confidence Confcorr (H,w). Overall anno-
tation confidence is the maximum annotation confidence over word w’s detected
models in image i.

For ease of comparison, we ran our system on three image sets described in [1].
In all three cases, the changes to part initialization combined with the addition
of MPM models improve the precision and recall of annotation on new images
compared to the system in [1]. The degree of improvement seems to depend on
the scale and degree of articulation of named objects.

In experimentation on the small toys image set, we find that the particular
values of our system parameters do not have a significant effect on our results.
The same parameter values chosen based on the toys set results are carried
over to the two larger and more significant sets without modification. We set
uniqueness factors ψu = 0.9 and ψs = 1.2. Npairs = 50 allows a large number
of failed pair samples before ending initial model search. ν = 0.75 allows Qwi to
build gradually. We set the maximum number of MPMs per word, NMPM = 25,
more than the number of distinct views available for individual objects in these
image collections. Finally, we choose MPM detection parameters α = 0.25 and
β = 0.33 based on experiments on synthetic data.

The first set, toys, is a small collection of 228 images of arrangements of
children’s toys captured and annotated by the authors of [1]. For the sake of
completeness, we report our results on this set while focusing on the larger and
more natural hockey and landmark sets. Without MPMs, our new model
initialization method modestly improves recall on the toys set while slightly
lowering overall precision. Including MPMs corrects precision, resulting in a net
improvement in recall of about 3% at 95% precision.

6.1 Experiments on the HOCKEY Data Set

The hockey set includes 2526 images of National Hockey League (NHL) play-
ers and games, with associated captions, downloaded from a variety of sports
websites. It contains examples of all 30 NHL teams and is divided into 2026
training and 500 test image–caption pairs. About two-thirds of the captions are
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(a) Red Wings and Stars (b) Stars and Canucks (c) Lightning and Panthers

(d) Maple Leafs and Islanders (e) Maple Leafs (f) Stars

Fig. 5. Sample detections of objects in the hockey test set. Part detections are drawn

in yellow, supporting interest points in red and spatial relationships in blue.

full sentence descriptions, whereas the remainder simply name the two teams
involved in the game.

Figure 5 shows sample multipart model detections on test-set images and the
associated team names. Compared to MPMs in the toy and landmark sets,
most MPMs in the hockey set are relatively simple. They typically consist of
2 to 4 parts clustered around the team’s chest logo. Since the chest logos are
already reasonably well covered by individual part models, there is little reward
for developing extensive MPMs. In principle, MPMs could tie together parts
that describe other sections of the uniform (socks, pants, shoulder insignia) like
those shown in Figure 5(e), but this type of MPM (seen in Figure 5(f)) is quite
rare. There may be too much articulation and too few instances of co-occurrence
of these parts in the training set to support such MPMs.

Figure 6(a) indicates that our new approach for initializing part models leads
to about a 12% improvement in recall. Considering the barriers to achieving
high recall on the hockey set (discussed in [1]), this represents a substantial
gain. Our initialization system is better able to identify regions of distinctive
appearance than the approach in [1]. For instance, one of the best-recognized
NHL teams using our method was completely undetected in [1]. On the other
hand, the addition of MPMs does not improve annotation performance at all.
This is probably due to the relatively small size of distinctive regions in the
hockey images combined with a degree of articulation and occlusion that make
larger models unreliable.
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(a) hockey set (b) landmark set

Fig. 6. A comparison of precision–recall curves over the hockey (a) and landmark
test sets, for three systems: MPMs with our new initialization, our new initialization

alone and the system described in [1]. Our initialization system substantially improves

overall recall in both image sets. MPMs have little effect in the hockey set, where

the distinctive portions of a player’s appearance are of limited size and do not tend

to co-occur in repeating patterns. In contrast, MPMs significantly improve precision

for the landmark set, perhaps because distinctive portions of landmarks more often

co-occur with stable spatial relationships.

6.2 Experiments on the LANDMARK Data Set

The landmark data set includes images of 27 famous buildings and locations
with some associated tags downloaded from the Flickr website, and randomly
divided into 2172 training and 1086 test image–caption pairs. Like the NHL
logos, each landmark appears in a variety of perspectives and scales. Compared
to the hockey logos, the landmarks usually cover more of the image and have
more textured regions in a more stable configuration. On the other hand, the
appearance of the landmarks can vary greatly with viewpoint and lighting, and
many of the landmarks feature interior as well as exterior views.

Figure 7 provides some sample detections of multipart models in the land-
mark test set. The MPMs can integrate widely-separated part detections,
thereby improving detection confidence and localization. However, many of the
models still display a high degree of part overlap, especially on objects such as
the Arc de Triomphe with a dense underlying array of distinctive features. In
addition, MPM coverage of the object, while better than individual parts, is not
as extensive as it could be. For instance, the system detects many more parts on
the western face of Notre Dame than are incorporated into the displayed MPM.
In the future, we may wish to modify the MPM training routine to explicitly
reward spatial coverage improvements. Finally, MPMs often seem to have one
or two key parts with a large number of long-range edges. This edge structure
may unnecessarily hamper robustness to occlusion.

Regardless of their limitations, Figure 6(b) indicates that MPMs can signif-
icantly improve annotation precision. The new initialization system improves
overall recall by about 10%, and the addition of MPMs lifts the precision of the
curve towards the 100% boundary. The structures on which our system achieved
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(a) Notre Dame (b) Christo Redentor (c) Statue of Liberty

(d) Taj Mahal (e) Mount Rushmore (f) Arc de Triomphe

Fig. 7. Sample detections of objects in the landmarks test set

the poorest results were St. Peter’s Basilica, Chichen Itza and the Sydney Opera
House. The first two of these suffer from a multiplicity of viewpoints, with train-
ing and test sets dominated by a variety of interior viewpoints and zoomed
images of different parts of the structure. The Sydney Opera House’s expres-
sionist design has relatively little texture and is therefore harder to recognize
using local appearance features.

7 Conclusions

Our initialization method and multipart models are designed to work together
to improve annotation accuracy and object localization over the approach in
[1]. Our initialization mechanism boosts recall and part coverage by detecting
potential parts that would have been overlooked by the system in [1], providing
for a better distribution of parts over the image set and including more indi-
vidually ambiguous parts. The MPM layer boosts precision and localization by
integrating parts that may be individually ambiguous into models that can cover
an entire view of an object.

Together, our new methods significantly improve annotation accuracy over
previous results on the experimental data sets, with the amount of improvement
strongly dependent on the image set. Our improvements to part initialization and
training have significantly increased recall, though sometimes at the expense of
precision. For objects with recurring patterns of distinctive parts, the MPM layer
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can filter out bad detections, resulting in a substantially improved precision–
recall curve.

Our initialization mechanism and the development of multipart models also
improves object localization. Parts have less spatial overlap than in [1], they
cover portions of the object that are less individually distinctive and they are
better-distributed across object views. MPMs tie together recurring patterns
of parts, allowing us to distinguish between the presence of multiple parts and
multiple objects. Future work could further improve localization by ensuring that
MPMs use all available parts to maximize spatial coverage and are themselves
well-distributed across object views.

References

1. Jamieson, M., Fazly, A., Dickinson, S., Stevenson, S., Wachsmuth, S.: Using lan-

guage to learn structured appearance models for image annotation. IEEE PAMI 32,

148–164 (2010)

2. Barnard, K., Duygulu, P., Forsyth, D., de Freitas, N., Blei, D., Jordan, M.: Match-

ing words and pictures. Journal of Machine Learning Research 3, 1107–1135 (2003)

3. Carneiro, G., Chan, A., Moreno, P., Vasconcelos, N.: Supervised learning of se-

mantic classes for image annotation and retrieval. IEEE PAMI 29, 394–410 (2007)

4. Carbonetto, P., de Freitas, N., Barnard, K.: A statistical model for general con-

textual object recognition. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS,

vol. 3021, pp. 350–362. Springer, Heidelberg (2004)

5. Monay, F., Gatica-Perez, D.: Modeling semantic aspects for cross-media image

indexing. IEEE PAMI 29, 1802–1817 (2007)

6. Quattoni, A., Collins, M., Darrell, T.: Learning visual representations using images

with captions. In: CVPR (2007)

7. Fergus, R., Fei-Fei, L., Perona, P., Zisserman, A.: Learning object categories from

Google’s image search. In: CVPR (2005)

8. Crandall, D.J., Huttenlocher, D.P.: Weakly supervised learning of part-based spa-

tial models for visual object recognition. In: Leonardis, A., Bischof, H., Pinz, A.

(eds.) ECCV 2006. LNCS, vol. 3951, pp. 16–29. Springer, Heidelberg (2006)

9. Kokkinos, I., Yuille, A.: HOP: Hierarchical object parsing. In: CVPR (2009)

10. Zhu, L., Lin, C., Huang, H., Chen, Y., Yuille, A.: Unsupervised structure learning:

Hierarchical recursive composition, suspicious coincidence and competitive exclu-

sion. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS,

vol. 5303, pp. 759–773. Springer, Heidelberg (2008)

11. Bouchard, G., Triggs, B.: Hierarchical part-based visual object categorization. In:

CVPR (2005)

12. Fidler, S., Boben, M., Leonardis, A.: Similarity-based cross-layered hierarchical

representation for object categorization. In: CVPR (2008)

13. Epshtein, B., Ullman, S.: Feature hierarchies for object classification. In: ICCV

(2005)

14. Ommer, B., Buhmann, J.: Learning the compositional nature of visual object cat-

egories for recognition. IEEE PAMI 32, 501–516 (2010)

15. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60,

91–110 (2004)

16. Ke, Y., Sukthankar, R.: PCA-SIFT: A more distinctive representation for local

image descriptors. In: CVPR (2004)



Voting by Grouping Dependent Parts

Pradeep Yarlagadda, Antonio Monroy, and Björn Ommer

Interdisciplinary Center for Scientific Computing, University of Heidelberg, Germany
{pyarlaga,amonroy,bommer}@iwr.uni-heidelberg.de

Abstract. Hough voting methods efficiently handle the high complexity of multi-
scale, category-level object detection in cluttered scenes. The primary weakness
of this approach is however that mutually dependent local observations are in-
dependently voting for intrinsically global object properties such as object scale.
All the votes are added up to obtain object hypotheses. The assumption is thus
that object hypotheses are a sum of independent part votes. Popular represen-
tation schemes are, however, based on an overlapping sampling of semi-local
image features with large spatial support (e.g. SIFT or geometric blur). Features
are thus mutually dependent and we incorporate these dependences into prob-
abilistic Hough voting by presenting an objective function that combines three
intimately related problems: i) grouping of mutually dependent parts, ii) solving
the correspondence problem conjointly for dependent parts, and iii) finding con-
certed object hypotheses using extended groups rather than based on local obser-
vations alone. Experiments successfully demonstrate that state-of-the-art Hough
voting and even sliding windows are significantly improved by utilizing part de-
pendences and jointly optimizing groups, correspondences, and votes.

1 Introduction

The two leading methods for detecting objects in cluttered scenes are voting approaches
based on the Hough transform [19] and sliding windows (e.g. [33,12]). In the lat-
ter case, rectangular sub-regions of a query image are extracted at all locations and
scales. A binary classifier is evaluated on each of these windows before applying post-
processing such as non-max suppression to detect objects. The computational com-
plexity of this procedure is critical although techniques such as interest point filtering,
cascade schemes [33], or branch-and-bound [20] have been presented to address this
issue. Rather than using a single, global descriptor for objects, Hough voting avoids the
complexity issues by letting local parts vote for parametrized object hypotheses, e.g.
object locations and scales. Generalizations of the Hough transform to arbitrary shapes,
exemplar recognition [23], and category-level recognition [22,16,29,30,28,25,18] have
successfully demonstrated the potential of this approach, and its wide applicability. De-
spite the current popularity of the method, Hough voting has two significant weaknesses
that limit its performance: i) (semi-)local parts are independently casting their votes for
the object hypothesis and ii) intrinsically global object properties such as object scale
[28] have to be estimated locally. Consequently, current voting approaches to object
detection, e.g. [22,16,25,18], are adding all local votes in a Hough accumulator and are,
thus, assuming that objects are a sum of their parts. This assumption is against the fun-
damental conviction of Gestalt theory that the whole object is more than the sum of its

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 197–210, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. a) Outline of the processing pipeline. b) The three terms of the cost function dT ν from
Eq. (7).

parts. And indeed, popular semi-local feature descriptors such as SIFT [23] or geomet-
ric blur [5] have a large spatial support so that different part descriptors in an image are
overlapping and thus mutually dependent. To avoid missing critical image details, a re-
cent trend has been to even increase sampling density which entails even more overlap.
However, observing the same image region N times does not provide N independent
estimates of the object hypothesis. Models with richer part dependencies (see section 2)
such as constellation models [15] or pictorial structures [14] have been proposed to ad-
dress these issues, however these methods are limited by their complexity (number of
parts and the number of parameters per part). Without grouping, [5] transform a com-
plete query image onto a training image. Therefore, this method is constrained to few
distractors (e.g. little background clutter) and the presence of only one object in an im-
age. In [16] Hough voting precedes the complex transformation of the complete object
from [5] to limit the hypothesis space and reduce the influence of background clutter.
However, the voting is limited by assuming independent part votes.

To establish reliable group votes, we incorporate dependencies between parts into
Hough voting [22] by

– grouping mutually dependent parts,
– solving the correspondence problem (matching parts of the query image to model

parts of training images) jointly for all dependent parts, thereby utilizing their in-
formation on each other,

– letting groups of dependent parts vote for concerted object hypotheses that all con-
stituents of the group agree upon,

– integrating grouping, correspondence, and voting into a single objective function
that is jointly optimized, since each subtask is depending on the remaining ones.

Outline of the Approach
Object detection in a novel image (c.f. Fig. 1) starts by first computing a probabilistic
edge map (using [24]). A uniform sampling of edge pixels yields points where local fea-
tures are extracted on a single scale (we use geometric blur features [5]). Each descriptor
is mapped to similar features from training images. In standard Hough voting, all points
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are then independently voting for an object hypothesis in scale space, i.e. object location
and scale, before adding up all these votes in a Hough accumulator. Consequently, de-
pendencies between points are disregarded and for each point, unreliable local estimates
of global object properties such as object scale are required. To correctly model the de-
pendencies between features, we group related points and estimate object hypotheses
jointly for whole groups rather than independently for all of their constituents. This
results in three intimately related problems: i) Grouping mutually dependent points,
ii) letting groups of dependent points vote for a concerted object hypothesis, and iii)
finding correspondences for each point in a group to training samples. We jointly find
a solution to all of these three subtasks by formulating them in a single cost function
and solving it using a single clustering algorithm. That way, all related points influence
each others voting and correspondences and their voting influences their grouping, in
turn. To obtain an initial grouping, we perform pairwise clustering of edge points. The
necessary pairwise affinities are obtained by measuring the cooccurrence of points in
different levels of the hierarchical segmentation of the initial probabilistic edge map
from [24].

2 Voting Methods and Object Detection

Category-level object detection requires models that represent objects based on local
measurements in an image. A broad variety of models with widely differing represen-
tation complexity have been proposed. These range from bag-of-features approaches
[11] and latent topic models without spatial relationships [31] to richer spatial repre-
sentations such as hierarchical models [7,17,2], k-fans [10], and latent scene models
[32]. Complex spatial representations have been described by a joint model of all local
parts (constellation model) [15], shape matching [5], pictorial structures [14], and by
rigid template-like models [12,21]. The compositional nature of our visual world has
been utilized by [27] to build hierarchical object representations.[26] describes a Ten-
sor voting approach to form perceptually meaningful groups which can then be used
for object recognition. The voting paradigm [22,16,28,25,18], which is central to this
paper, effectively handles the complexity of large-scale part-based models.

2.1 Hough Voting with Independent Parts

Hough voting makes part-based object models with large numbers of parts feasible by
letting all parts independently cast their votes for object hypotheses [22]. All these lo-
cally estimated object hypotheses are summed up in a Hough accumulator Hpnt(c,x, σ)
over scale space. Here, x and σ are the location and scale of an object hypothesis and
c denotes its category. Moreover, a local part detected at location xQ

i ∈ R2 in a query
image incorporates a feature vector fQ

i ∈ RN and a local estimate σQ
i ∈ R of object

scale. The key assumption of Hough voting is that all parts are independently casting
their votes for the object hypothesis so that the overall object hypothesis is indepen-
dently obtained from dependent parts,

Hpnt(c,x, σ) ∝
∑

i

p
(
x, σ

∣∣c, fQ
i ,xQ

i , σ
Q
i
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Let fT
j denote the j-th codebook vector or the j-th training sample, depending on

whether vector quantization or a nearest neighbor approach is used. Without loss of
generality we can assume that the training object is centered at the origin so that the
location xT

j ∈ R2 of fT
j is the shift of the feature from the object center. Moreover, all

training images are assumed to be scale normalized, i.e. they are rescaled so that objects
are the same size. Summation over fT

j and xT
j then yields

Hpnt(c,x, σ) ∝
∑
i,j

p
(
x − [xQ

i − σQ
i xT

j ], σ − σQ
i ) × p(c|fT

j ) p(fT
j |fQ

i ) (2)

Details of this derivation can be found in [22,28].

2.2 Key Points of Our Method

Hough voting methods (e.g. [22,16,28,25,18]) let all parts independently cast their votes
for the object hypothesis, thereby neglecting part dependence. In contrast to this, our
approach models the dependencies between parts by establishing groups and letting all
parts in a group jointly find a concerted object hypothesis. In detail, we are differing
from voting methods to detection in the following ways:

Grouping of Dependent Parts: Rather than considering all parts to provide indepen-
dent votes (e.g. [22,16,28,25,18]), we segment a scene into groups of mutually depen-
dent parts. Thus multiple strongly related features (e.g. due to overlapping descriptors)
are not considered as providing independent information.

Joint Voting of Groups of Dependent Parts: Mutually dependent parts in a group as-
sist each other in finding compatible correspondences and votes, rather than estimating
these independently as in standard Hough voting. Thus groups yield votes with signif-
icantly less uncertainty than the individual part votes (c.f. Fig. 5). Intrinsically global
parameters such as object scale are then obtained by global optimization rather than
by local estimates (such as local scale estimation in [22,8]). [28] could only model the
uncertainty of each local part. Based on a grouping of parts, we can however obtain
reliable estimates.

Joint Optimization of Grouping, Voting, and Correspondences: Identifying and
grouping dependent parts, computing joint votes for complete groups, and solving the
part correspondence problem are mutually dependent problems of object detection. We
tackle them jointly by iteratively optimizing a single objective function. Rather than
letting each of these factors influence the others, [8] finds groups before using them
to optimize correspondences in a model where parts are grouped with their k nearest
neighbors. Estrada et al. [13] pursue the simpler problem of exemplar matching by only
dealing with grouping and matching consecutively. Several extensions have been pro-
posed to the standard Hough voting scheme, but the critical grouping of dependent parts
has not been integrated into voting in any of those approaches. [29] extend the Implicit
Shape Model by using curve fragments as parts that cast votes. Without incorporat-
ing a grouping stage into their voting, parts are still independently casting their votes.
Amit et al. [3] propose a system limited to triplet groupings. In contrast to such rigid
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groupings, our approach combines flexible numbers of parts based on their vote consis-
tency and geometrical distortion. In contrast to hierarchical grouping approaches, where
later groupings build on earlier ones, our method does not require any greedy decisions
that would prematurely commit to groupings in earlier stages but rather optimizes all
groupings at the same time.

Linear Number of Consistency Constraints: In contrast to Berg et al. [5] who need a
quadratic number of consistency constraints between all pairs of parts, grouping reduces
this to a linear number of constraints between parts and the group they belong to, see
section 3.

Flexible Model vs. Rigid Template: Template-like descriptors such as HoG [12] or
[21] have a rigid spatial layout that assumes objects to be box-shaped and non-
articulated. Moreover, they require a computationally daunting search through hypoth-
esis space although approximations such as branch-and-bound [20] have been proposed
to deal with this issue. On the other end of the modeling spectrum are flexible parts-and-
structure models [15,14]. However, the modeling of part dependencies in [15] becomes
prohibitive for anything but very small number of points and [14] restrict the depen-
dencies to a single, manually selected reference part. In contrast to this, we incorporate
dependencies in the powerful yet very efficient Hough voting framework. Moreover, we
do not rely on pixel accurate labeling of foreground regions as in [22] but only utilize
bounding box annotations. In contrast to [16,5] who transform a query image onto train-
ing images using a complex, nonlinear transformation we decompose the object and the
background into groups and transform these onto the training samples using individual,
linear transformations. That way, unrelated regions do not interfere in a single, complex
transformation and regions of related parts can be described by simpler and thus more
robust, linear models.

3 Grouping, Voting, and Correspondences

Hough voting approaches to object detection let all local parts independently vote for
a conjoint object hypothesis. However, there are direct mutual dependencies between
features, e.g. due to their large spatial support and since interest point detection has
a bias towards related regions in background clutter [6]. Thus, multiple related fea-
tures yield dependent votes rather than independent evidence on the object. Rather than
adding up all those duplicates as is common practice in Hough voting approaches (eg.
[22,16,25,28]), a group of mutually dependent parts should actually jointly vote for a
concerted object hypothesis. That way, the correspondence problem of matching fea-
tures in a novel query image to features in training samples is jointly solved for a group
of dependent parts.

3.1 Joint Objective Function for Grouping, Voting, and Correspondences

To solve the grouping, voting, and correspondence problem jointly, we have to i) match
query features onto related training features, ii) find correspondences with low geomet-
rical distortion, and iii) minimize the overall scatter of all votes within a group. Let us
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now investigate each of these aspects in detail. Hough voting solves the correspondence
problem by matching the i-th part of a query image, fQ

i , to the training part or training
codebook vector fT

j that is most similar, i.e. for which

δ1(i, j) =
∥∥∥fQ

i − fT
j

∥∥∥
2

(3)

is minimal. Boiman et al. [6] have demonstrated the deficiencies of quantization and
codebook based representations. Therefore, we adopt a nearest neighbor approach,
where query features are mapped onto training features rather than mapping them onto
a quantized codebook. Let Cij ∈ {0, 1} denote a matching of the i-th query part to
the j-th training part, where Cij captures many-to-one-matchings,

∑
j Cij = 1. As

discussed above, the correspondence problem has to be solved jointly for all mutually
dependent parts, i.e. all related parts should undergo the same transformation T ν when

being matched to the training samples, xQ
i

!= T νxT
j . This implies that related parts i

and i′ are clustered into the same group ν by computing assignments Miν of parts to
groups, Miν ∈ {0, 1} ,

∑
ν Miν = 1.

Due to the relatedness of points in a group, transformations should be forced to be
simple, eg. similarity transformations

T ν =

⎛⎝σν
x cos(θ) −σν

y sin(θ) tνx
σν

x sin(θ) σν
y cos(θ) tνy

0 0 1

⎞⎠ (4)

In effect, we are decomposing heterogeneous objects into groups of dependent parts
so that piecewise linear transformations (one for each group) are sufficient rather than
using a complex nonlinear transformation for the whole scene as in [5,16]. Let Gν :=
{i : Miν = 1} denote all parts in a group ν and |Gν | =

∑
i Miν denote the number

of parts in the group. Then we have to find a transformation T ν that minimizes the
distortion

δ2
T ν (i, j) =

∥∥∥xQ
i − T νxT

j

∥∥∥
2

(5)

for each part in the group.
(5) is penalizing the distortions of correspondences to yield minimal group distortion.

The consistency of group votes is obtained by measuring the deviation of individual
votes from the average vote of the group. Minimal group distortion does not necessarily
guarantee consistent group votes. Hence we introduce a term that penalizes the scatter
of the group vote.

δ3
T ν (i, j) =

∥∥∥xQ
i − T νxT

j − (tνx, t
ν
y , 1)T

∥∥∥2

2
(6)

(6) is measuring the agreement of all parts in the group with respect to their object cen-
ter estimate (summing over all parts i in a group yields the variance of the group vote).
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This consistency constraint has a linear complexity in the number of image features
in contrast to Berg et al. [5] who proposed pairwise consistency constraints with a
quadratic complexity. This reduction in complexity is possible since dependent parts
are combined in groups, so we can penalize the scatter of the entire group. Without
the grouping, Berg et al. have to penalize the distortions of all pairs of parts under the
transformation.

Joint Cost Function
Groupings Miν of query parts, correspondences Cij between query parts and training
parts, and group transformations T ν are mutually dependent. Thus we have to combine
them in a single cost function

dT ν (i, j) = λ1δ
1(i, j) + λ2δ

2
T ν (i, j) + λ3δ

3
T ν (i, j) (7)

that is jointly optimized for each of these unknowns. The weightsλ1, λ2, λ3 are adjusted
by measuring the distribution of each distance term δ(.) in the training data. The weights
are then set to standardize the dynamic range of each term to the same range. The cost
for matching all the query parts i which belong to group ν to the corresponding training
parts j = C(i) is given by

R(Gν) =
1

|Gν |
∑

i

Miν

∑
j

Cij dT ν (i, j) (8)

3.2 Joint Optimization of Groups, Votes, and Correspondences

To find optimal groups, object votes, and correspondences, we need to minimize the
overall cost of all groups

∑
ν R(Gν). We seek optimal group assignments M∗, corre-

spondences C∗, and transformations T ∗ that minimize the summation of costs over all
the groups,

(M∗,C∗, T ∗) = argmin
M,C,T

∑
ν

R(Gν) . (9)

Since parts in a group are mutually dependent, each of these parameters depends on
the other two. Therefore we incorporate an alternating optimization scheme. To find the
optimal corresponding training part j = C(i) for query part i we have to minimize

C(i) = argmin
j

dT ν (i, j) . (10)

So for each i, we select the training part j with minimal cost. Optimal groupings are
obtained by finding assignments ν = Miν(i) for each part i,

Miν(i) = argmin
ν

dT ν (i,C(i)) = argmin
ν

[
λ2δ

2
T ν (i,C(i)) + λ3δ

3
T ν (i,C(i))

]
. (11)
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Thus for each i, the group ν with minimal distortion is chosen. Finally, the transforma-
tion of each group from the query image onto the training images has to be estimated

T ν = argmin
T

∑
i

Miν

∑
j

Cij ·
[
λ2δ

2
T ν (i,C(i)) + λ3δ

3
T ν (i,C(i))

]
. (12)

Optimal T ν in (12) is obtained by Levenberg-Marquardt minimization. These three op-
timization steps are alternated until convergence. In our experiments, the optimization
in Alg. 1 has usually converged after two or three iterations. We initialize ν by the out-
put of a bottom-up grouping that is outlined in section 3.4. Initialization of Cij for each
query part i is obtained by a nearest neighbour search for j using the distance function
δ1(i, j). T ν is initialized with the transformation that aligns the centroid of group ν
onto the centroid of the corresponding training parts.

3.3 Hough Voting with Groups

After finding optimal groupings, group transformations, and correspondences, the votes
from all groups have to be combined. In standard Hough voting, the votes of all parts
are summed up, thus treating them as being independent, c.f. the discussions in [34,1].
In our setting, all mutually dependent parts are combined in the same group. The joint
optimization of correspondences and transformations forces these dependent parts to
agree upon a joint overall vote.

(x, σ)
 = (xQ
i − T νxT

j C(i) + tν , σν)
 (13)

where tν and σν are the translation and scaling component of T ν . Evidently, all parts
in a group are coupled by using the same transformation matrix T ν and the jointly
optimized correspondences Cij . After jointly optimizing the votes of all dependent
parts, the group vote can be obtained by averaging over the part votes. The Hough
accumulator for the voting of groups is obtained by summing over independent groups
rather than over dependent parts as in standard Hough voting. Since groups are mutually
independent, their summation is justified. Analogous to (2) we obtain

(14)

Hgrp(c,x, σ) ∝
∑

ν

1
GνR(Gν )

×
∑
i∈Gν

∑
j

Cij · P (x − [xQ
i − T νxT

j + tν ], σ − σν)

where P (•) is obtained using the balloon density estimator [9] with Gaussian Kernel
K , Kernel bandwidth b, and distance function in scale space d : R3 × R3 �→ R,

P (x − [xQ
i − T νxT

j + tν ], σ − σν) = K

⎛⎝d
[
(x, σ)
; (xQ

i − T νxT
j + tν , σν)


]
b(σ)

⎞⎠
(15)
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Algorithm 1. Voting with groups of dependent parts: Joint optimization of groupings,
correspondences, and transformations.

Input: • parts from query image:fQ
i , xQ

i ,
• UCM-connectivity [4] Āii′

• parts from all training images: fT
j , xT

j

Init: • pairwise clustering on Āii′ → Miν()
1 do
2 C(i) ← argminj dT ν (i, j)

3 Miν(i) ← argminν dT ν (i, C(i))
4 T ν ← argminT

∑
i Miν

∑
j Cij(λ2δ

2
T ν (i,C(i)) + λ3δ

3
T ν (i,C(i)))

5 until convergence
6 Hgrp(c,x, σ) ← Eq. (14)
7

{
(xh, σh)�

}
h
← Local minima of Hgrp

3.4 Bottom-Up Grouping

Object detection in a query image starts by computing a probabilistic edge map [4] and
uniformly sampling edge points. Next, we perform a bottom-up grouping on the proba-
bilistic edges which serves as an initialization for ν in section 3.1. Two edge points i, i′

are considered to be connected on level s of the hierarchical ultrametric contour map of
[4], if they are on the boundary of the same region on this level. Let 1 = As

ii′ ∈ {0, 1}
denote this case. Averaging over all levels, Āii′ ∝

∑
s As

ii′ , yields a similarity measure
between points and pairwise clustering (using Ward’s method) on this similarity matrix
produces a grouping Miν which we use to initialize the optimization of (9).

3.5 Hypothesis Verification

Due to intra-class variations and noise, the votes of all parts in a group cannot be brought
into perfect agreement. As is common practice in voting approaches, we employ a ver-
ification stage, where a SVM classifies histograms of oriented gradients (extracted on
regular grids on 4 different resolutions and 9 orientations) using pyramid match kernels
(PMK). To train the SVM, positive examples for a category are the groundtruth bound-
ing boxes, rescaled to the average bounding box diagonal length of the class. Negative
samples are obtained by running our group voting on the positive training samples and
selecting false positive hypotheses, i.e. the most confused negative samples. In the ver-
ification stage, the SVM classifier is evaluated in a local 3 × 3 neighbourhood around
each voting hypothesis. This local search refines the voting hypotheses from the groups.

4 Experiments

We evaluate our approach on ETHZ Shape and INRIA Horses Datasets. These two
datasets feature significant scale changes, intra-class variation, multiple-objects per im-
age, and intense background clutter. We use the latest experimental protocol of Ferrari
et al. [16]: For ETHZ shape dataset, detectors are trained on half the positive samples of
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a category. No negative training images are used and all remaining images are used for
testing. For INRIA shape dataset, 50 horse images are used for training and the remain-
ing 120 horse images plus 170 negative images are used for testing. In all experiments,
the detection performance is measured using the PASCAL VOC criterion [16] (requir-
ing the ratio of intersection and union of predicted and groundtruth bounding box to be
greater than .5).

4.1 ETHZ Shape Dataset – Performance Analysis

Fig. 2 compares our approach with state-of-the-art voting methods on ETHZ. Voting
with our groups of dependent parts outperforms all current voting based approaches.
We achieve a gain of 27% over the Hough voting in [16], an improvement of 19%
over [25], and 17% higher performance than [28], see Tab. 1. Even compared with
the local sliding window classification in [28] (PMK re-ranking) we obtain a slightly
higher performance (1.4%). The PMK re-ranking is a separate classifier that performs
verification of votes. Thus our voting method alone not only improves current Hough
voting approaches, but also produces results beyond those of the verification stage of
some of the methods.

The primary focus of this paper is to improve Hough voting by modeling part depen-
dence. Nevertheless, we also investigate the combined detector consisting of voting and
a verification stage. The results are shown in Fig. 2. Our results compare favourably with
sliding window classification in [28]. This approach has to search over 104 hypotheses
whereas our approach produces on the order of 10 candidate hypotheses. Consequently,
the gain in computational performance of our approach is between two and three orders
of magnitude. Compared to preprocessing steps such as extraction of probabilistic edge
maps and computation of geometric blur, our grouping, voting and correspondence op-
timization has insignificant running time. Nevertheless, we obtain a gain of 3.68% over
sliding windows at 0.3 fppi. Compared to the best verification systems [25], we obtain
a gain of 0.68% at 0.3 fppi.

Fig. 3 compares the supervised methods of [35] against our detector (which only
needs training images with bounding boxes). Without requiring the supervision infor-
mation of [35], we are dealing with a significantly harder task. [16] showed a perfor-
mance loss of 15% at 0.4 fppi.Nevertheless, we perform better on 3 out of 5 categories.
(actual values of [35] are unavailable).

Let us now compare the reliability of votes from individual parts with the reliabil-
ity of object hypotheses produced by our groupings. Therefore, we map object query
features (features from within the groundtruth bounding box) onto the positive training
samples and we do the same for background query features. By comparing the match-
ing costs we see how likely positive query features are mistaken to be background and
vice versa. Then we are doing the same for groups, i.e. groupings (11) from the object
and from the background are mapped onto positive training samples. Fig. 5 shows that
groups have a significantly lower error rate R (30% vs. 77%) to be mapped onto wrong
training samples. Thus group votes are significantly more reliable. Fig. 4 shows the vot-
ing of parts before and after optimization. Voting with groups produces concerted votes
whereas independent parts(singleton groups) produce votes with significant clutter.
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Fig. 2. Detection performance. On average our voting approach yields a 27% higher performance
than standard Hough voting and improves line voting [28] by 17%.

Fig. 3. Comparing our voting+verification with the supervised approach [35]. [16] has shown that
our training scenario is significantly harder and yields 13% lower recall at .4 FPPI

4.2 INRIA Horse Dataset – Performance Analysis

Figure Fig. 6 shows the performance of voting with groups and the overall detector
(voting + verification). Voting with groups significantly outperforms the best voting
methods so far (M2HT detector), e.g., roughly 12% gain at 3 fppi. In terms of overall
performance, we have a detection rate of 87.3% at 1 fppi compared to the state of the
art results of 85.27% for M2HT + IKSVM and 86% for sliding windows (IKSVM).
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Table 1. Comparing the performance of various methods. Detection rates (in [%]), PASCAL
criterion .5 overlap. The approach of [25] use positive as well as negative samples for training
whereas we use only positive samples for training. Our voting yields a 27% higher performance
than the Hough voting in [16], 19% gain over max-margin Hough voting [25], and 17% gain over
line voting [28], thus significantly improving the state-of-the-art in voting.

Voting Stage (FPPI = 1.0 ) Verification Stage (FPPI = 0.3 / 0.4)

Cat Hgrp Hough
[16]

M2HT
[25]

voting
[28]

Hgrp vo-
ting+verif

Full
system

[28]

Sliding
Windows

Full syst
[16]

M2HT+
IKSVM

[25]

Apples 84.0 43.0 85.0 80.0 95.83 / 95.83 95.0 / 95.0 95.8 / 96.6 77.7 / 83.2 95.0 / 95.0
Bottles 93.1 64.4 67.0 92.4 96.3 / 96.3 89.3 / 89.3 89.3 / 89.3 79.8 / 81.6 92.9 / 96.4
Giraffes 79.5 52.2 55.0 36.2 81.82 / 84.09 70.5 / 75.4 73.9 / 77.3 39.9 / 44.5 89.6 / 89.6
Mugs 67.0 45.1 55.0 47.5 94.87 / 96.44 87.3 / 90.3 91.0 / 91.8 75.1 / 80.0 93.6 / 96.7
Swans 76.6 62.0 42.5 58.8 94.12 / 94.12 94.1 / 94.1 94.8 / 95.7 63.2 / 70.5 88.2 / 88.2

Avg 80.0 53.3 60.9 63.0 92.58 / 93.35 87.2 / 88.8 88.9 / 90.1 67.2 / 72.0 91.9 / 93.2

Fig. 4. Left plot in panels (a) and (b) shows standard Hough voting which assumes mutual inde-
pendence between features. Right plot in panels (a) and (b) shows the voting after joint optimiza-
tion of correspondences, groups, and votes.

Fig. 5. Reliability of parts (singleton groups), left plot vs. groups, right plot. The plots show the
misclassification rate of groups and parts for different matching cost R. The optimal error rate
for parts is 77%, for groups 30% thereby underlining the increased reliability of groups.
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Fig. 6. Detection plots on INRIA Horses dataset. Left plot compares the M2HT detector for differ-
ent parameters with our group voting. Voting with groups is superior to all. Right plot compares
the overall detection results obtained from voting with groups plus verification with sliding win-
dows (IKSVM) and state-of-the-art methods. At 1.0 FPPI we achieve a detection rate of 87.3%

compared to the state of the art result of 86% (IKSVM) [25]

5 Discussion

We have tackled the primary weakness of Hough voting methods, the assumption of
part independence, by introducing the grouping of mutually dependent parts into the
voting procedure. Therefore, we have formulated voting-based object detection as an
optimization problem that jointly optimizes groupings of dependent parts, correspon-
dences between parts and object models, and votes from groups to object hypotheses.
Rather than using uncertain local votes from unreliable local parts we utilize their de-
pendences to establish extended groups that reliably predict global object properties
and are thus producing reliable object hypotheses. Compared to the sliding window
paradigm, our voting approach reduces the number of candidate hypotheses by three
orders of magnitude and improves its recall. Our model of part dependence in voting
has demonstrated that it significantly improves the performance of probabilistic Hough
voting in object detection.

Acknowledgements. This work was supported by the Excellence Initiative of the Ger-
man Federal Government, DFG project number ZUK 49/1.
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Abstract. Many methods for object recognition, segmentation, etc.,

rely on a tessellation of an image into “superpixels”. A superpixel is

an image patch which is better aligned with intensity edges than a rect-

angular patch. Superpixels can be extracted with any segmentation al-

gorithm, however, most of them produce highly irregular superpixels,

with widely varying sizes and shapes. A more regular space tessellation

may be desired. We formulate the superpixel partitioning problem in

an energy minimization framework, and optimize with graph cuts. Our

energy function explicitly encourages regular superpixels. We explore

variations of the basic energy, which allow a trade-off between a less reg-

ular tessellation but more accurate boundaries or better efficiency. Our

advantage over previous work is computational efficiency, principled opti-

mization, and applicability to 3D “supervoxel” segmentation. We achieve

high boundary recall on images and spatial coherence on video. We also

show that compact superpixels improve accuracy on a simple application

of salient object segmentation.

Keywords: Superpixels, supervoxels, graph cuts.

1 Introduction

Many vision applications benefit from representing an image as a collection of su-
perpixels, for example [1,2,3,4,5,6,7,8], to cite just a few. While the exact defini-
tion of a superpixel is not feasible, it is regarded as a perceptually meaningful
atomic region. A superpixel should contain pixels that are similar in color, tex-
ture, etc., and therefore are likely to belong to the same physical world object.
The atomic region notion is old, but a popular term superpixel has been coined
recently [1].

The assumption that all pixels in a superpixel belong to the same object leads
to the advantage of superpixel primitives over pixel primitives. The first advan-
tage is computational efficiency. If one needs to compute a property that stays
approximately constant for an object, then superpixel representation is more ef-
ficient since the total number of primitives is greatly reduced [9]. Computational
efficiency also comes from a reduction in the number of hypothesis. Instead of

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 211–224, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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exhaustive examining of all rectangular patches [10], an alternative is to examine
only superpixels [1,2,4,5,6,7]. In addition to efficiency, superpixels are used for
computing features that need spatial support [3].

To obtain superpixels, one often uses image segmentation algorithms such as
meanshift [11], graph based [12], normalized cuts [13]. To increase the chance
that superpixels do not cross object boundaries, a segmentation algorithm is run
in an oversegmentation mode. However, most segmentation algorithms produce
regions of highly irregular shape and size, for example the meanshift [11] and
the graph-based [12], see Fig. 1, first two images. The boundaries are also highly
irregular, since there is no explicit constraints on length. A large superpixel with
a highly irregular shape is likely to straddle more than one object.

Fig. 1. From left to right: meanshift [11], graph based [12], turbopixels [14], NC super-

pixels [1]. Implementation was obtained from the authors’ web sites.

There are advantages to superpixels with regular shapes and sizes, such as
those in Fig. 1, right. A regular shape is less likely to cross object boundaries,
since objects rarely have wiggly shapes. If a superpixel does cover more than one
object, if its size is not too large, the error rate is likely to be controlled.

The normalized cuts algorithm [13] can be adapted to compute superpixels
that are regular in size and shape [1], see Fig. 1. Many methods that need regular
superpixels use normalized cuts [9,1,2,4,5]. However, NC superpixels [1] are very
expensive, and have the following unappealing property, noticed by [14]. The
smaller is the size of target superpixels, the longer the computation takes.

Our work was inspired by the turbopixel algorithm [14], Fig. 1. It is based
on curve evolution from seeds placed regularly in the image, which produces a
regular “turbopixel” space tessellation. Using various constraints during curve
evolution, they encourage a uniform space coverage, compactness of superpix-
els in the absence of image edges, and boundary alignment when image edges
are present. They have to devise a collision detection mechanism to insure no
turbopixels overlap. The algorithm runs in seconds on the images in Berkeley
dataset [15], as compared to minutes with NC superpixels [1].

We propose a principled approach to compute superpixels in an energy mini-
mization framework. Our method is simple to understand and implement. The
basic algorithm, illustrated in Fig. 2, is similar in spirit to texture synthesis [16].
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Fig. 2. Overview of our algorithm. Left: the original image overlayed with square

patches. For clarity, only some patches are shown. Middle: result of patch stitching.

Right: superpixel boundaries.

An image is covered with overlapping square patches of fixed size, Fig. 2, left.
Each pixel is covered by several patches, and the task is to assign a pixel to
one of them. If two neighboring pixels are assigned to the same patch, there is
no penalty. If they belong to different patches, then there is a stitching penalty
that is inversely proportional to the intensity difference between the pixels. In-
tuitively, we are stitching patches so that the seams are encouraged to align
with intensity edges. The stitching result is in Fig. 2, middle, and superpixel
boundaries are in Fig. 2, right. Boundaries are regularized due to the stitching
energy function. A superpixel cannot be too large, not larger than a patch size.
Small superpixels are discouraged because they contribute a higher cost to the
stitching energy. Thus the sizes of superpixels are also regularized. We extend
this basic algorithm to other formulations, which allow a trade-off between a less
regular space tessellation but more accurate boundaries or better efficiency.

Our work has several advantages over turbopixels [14]. First, we have an ex-
plicit energy, and a principled way to optimize it. In contrast, the method in [14]
is described only procedurally. Our approach is simpler to understand and ana-
lyze. Unlike [14], we do not need a collision detection mechanism, overlap is not
allowed by design. Since we have an explicit energy function, we can change its
terms to encourage different superpixel types. One modification we add is a term
that encourages intensity homogeneity inside a superpixel, not something that
is easy to include explicitly into [14]. Another advantage is optimization. Tur-
bopixels are based on level set evolution [17], which is known to have numerical
stability issues. We optimize with graph cuts [18], which is known to perform
well [19]. Our running time is better. Last, but not least, our approach naturally
transfers to 3D for “supervoxel” segmentation of video.

An interesting work on superpixels is in [20,21]. Their goal is somewhat differ-
ent from ours. They seek superpixels conforming to a grid, which has storage and
efficiency advantages. The work in [20] is based on greedy optimization, and [21]
uses a more global approach, which, like our work, is also based on graph cuts.
However, the formulation in [20,21] poses restrictions on superpixel shapes: the
boundary between superpixels cannot “turn back” on itself.
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We evaluate our approach on Berkeley dataset [15] and show that we achieve
high boundary recall and low undersegmentation error, similar or better than
that of [1,14]. We also show that our supervoxels have a high spatial coherence
on 3D volumes constructed from video. To show that compact superpixels are
more appropriate for some applications, we compare the performance of our su-
perpixels vs. those of [12] on a simple application of salient object segmentation.

2 Superpixel Segmentation

In this section we give a detailed description of our superpixel segmentation
approach. We review graph cut optimization in Sec. 2.1. Then we explain the
basic “compact” superpixel algorithm is in Sec. 2.2. In Sec. 2.3 we show how
to incorporate variable patch size. The resulting algorithm is called “variable
patch” superpixels. Variable patch superpixels are more efficient computation-
ally, and their boundary recall does not suffer a performance loss. However they
do have more widely varying sizes. Lastly, in Sec. 2.4 we show how to incorporate
intensity constancy constraints, and the resulting algorithm is called “constant
intensity” superpixels. Constant intensity superpixels perform better on bound-
ary recall, but, again, have more widely varying sizes.

2.1 Energy Minimization with Graph Cuts

We now briefly review the graph-cut optimization approach [18]. Many problems
in vision can be stated as labeling problems. Given a set of pixels P and a finite
set of labels L, the task is to assign a label l ∈ L to each p ∈ P . Let fp denote
the label assigned to pixel p, and let f be the collection of all label assignments.
There are two types of constraints. Unary constraints Dp(l) express how likely
is a label l for pixel p. Binary constraints Vpq(l1, l2) express how likely labels l1
and l2 are for neighboring pixels p and q. An energy function is:

E(f) =
∑
p∈P

Dp(fp) + λ
∑

{p,q}∈N
wpq · Vpq(fp, fq), (1)

In Eq. (1), the first and the second sums are called the data and the smooth-
ness terms, and N is a collection of neighboring pixel pairs. We use 8-connected
grid, and Potts model Vpq(fp, fq) = min(1, |fp − fq|). The coefficients wpq are
inversely proportional to the gradient magnitude between p and q, encouraging
discontinuities to coincide with intensity edges. This energy is NP-hard to opti-
mize. We use the expansion algorithm from [18], which guarantees a factor of 2
approximation. For the max-flow/min-cut algorithm, we use [22].

2.2 Compact Superpixels

First recall the intuitive explanation, Fig. 2. We cover an image with overlapping
square patches of fixed size, equal to the maximum allowed superpixel size. We
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(a) Three patches (b) Their optimal stitching (c) In the final stitching

Fig. 3. A simple illustration of patch stitching. Left: orange, green, and purple patches.

Middle: their optimal stitching. Right: their optimal stitching in the final result.

seek a stitching of the patches, or, in other words, an assignment of each pixel to
a unique patch. The stitches cost cheaper if they coincide with intensity edges. A
simple illustration is in Fig. 3. Suppose only three patches in Fig. 3(a) participate.
There is a strong intensity gradient on the lip boundary, and therefore the cut
between the patches aligns to the lip boundary, Fig. 3(b). Fig. 3(c) shows the
shape of these patches in the final stitching, with all patches participating.

We now formalize the problem in the energy minimization framework. We
number allowed patches with consecutive integers 1, ..., k, where k is the number
of allowed patches. We identify ith patch with an integer label i, therefore L =
{1, 2, ..., k}. Even though L is ordered, this order has no meaning. Let S(l) denote
the set of the pixels contained in patch l ∈ L. For example, in Fig. 3(a), if l is
the “orange” label, then S(l) is the set of pixels covered by the orange square.
Label l can be assigned only to pixels in S(l). Therefore the data term is:

Dp(l) =
{

1 if p ∈ S(l)
∞ otherwise (2)

We have to decide how many patches to use and how to spread them out in the
image. We address these issues after the energy function is completely specified.

We now discuss the smoothness term. To better approximate Euclidean met-
ric [23] we use 8-connected N . Vpq is Potts model with wpq from [24]: wpq =
exp(− (Ip−Iq)2

dist(p,q)·2σ2 ). Here Ip is the intensity of pixel p, and dist(p, q) is the Eu-
clidean distance between p and q.

Observe that with Dp as defined in Eq. (2), the data term in Eq. (1) is equal
for all finite energy labelings. This implies that parameter λ in Eq. (1) has no
effect on optimization, so we set λ = 1. Usually λ is an important parameter
to choose correctly as it controls the relative weight between the data and the
smoothness terms, and, therefore, the length of the boundary. Parameter λ is
often set by hand through a tedious trial and error process. In our case the
parameter that controls the boundary length is the patch size. Larger patches
lead to fewer boundaries in the optimal labeling. Patch size is in some sense a
more “natural” parameter since it is chosen by the user to control the size of the
maximum superpixel, as appropriate for an application.

We now address the question of how many patches to place in the image.
Observe that only some labels (patches) are present in the final labeling. It is
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clear from our energy function that the more patches we have, the lower is the
final energy, since adding patches only helps to discover better stitches. Thus for
the best stitching, we should use a dense strategy, i.e. put a patch at every image
pixel. The dense strategy is too expensive. In practice we obtain good results by
spreading patches at intervals four times less than the length of the square side.

We use the expansion algorithm [18] for optimization. It does not guarantee
an optimum but finds an approximation within a factor of two. We initialize
by randomly picking a label l, and assigning l to pixels in S(l) until there are
no uninitialized pixels. An intuitive optimization visualization is as follows. An
expansion for label l improves the boundaries under the patch S(l) and its border.

In addition to the maximum size, the minimum superpixel size is also con-
trolled. Suppose that there is a small superpixel A. Then for any neighboring
superpixel B, there is no label l s.t. the patch S(l) completely covers A and
B. Otherwise, an expansion on l would obtain a smaller energy by assigning l
to pixels in A ∪ B, since the boundary between B and A disappears and no
new boundary is created. The smaller is A, the less likely it is that there is no
neighboring superpixel B s.t. A and B are covered completely by some patch.

Despite a large number of labels, for our energy the expansion algorithm is
very efficient. An expansion on label l needs to be performed only for pixels in
S(l). This is both memory and time efficient. We run the expansion algorithm
for two iterations, and it takes about 5 seconds for Berkeley images [15]. Our
algorithm would be easy to implement on multiple processors or GPU.

To summarize, the properties of compact superpixels are as follows. In the
presence of large image gradient, superpixel boundaries are encouraged to align
with image edges. In the absence of large gradient, superpixels tend to divide
space into equally sized regular cells. Superpixel sizes tend to be equalized, and
their boundaries are encouraged to be compact by the energy function.

2.3 Variable Patch Superpixels

In the previous section we assumed that the patch size is fixed. This helps to
ensure that the superpixel sizes are equalized. If one is willing to tolerate a wider
variance in superpixel sizes, then it makes sense to allow larger superpixels in
the areas with lower image variance.

We develop a simple approach to variable patch superpixels. We allow a vari-
able set of square patches, with the smallest side of size kmin and the largest of
size kmax. Let S be a be a patch centered at pixel p. Let C(S) be the square
patch of side twice less than the side of S also centered at p, i.e. C(S) is the
“central” part of S. Let P (S) be the set of pixels contained in S but not in
C(S). As a measure of quality of S we take Q(S) = var(C(S)) − var(P (S)) .
Here var(S) measures the intensity variance in the patch S. The lower is Q(S),
the better is the quality of a patch. That is we want the central part of a patch
to be of low variance and the periphery to have a high variance. The expectation
is that the inside part of patch S is not going to contain stitches, and therefore
should be uniform in intensity. The cuts are encouraged to lie in the periphery
of the patch S, therefore this part is encouraged to have a high variance.
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We measure the quality of all possible patches of sizes in the range from kmin

to kmax. This can be done efficiently using integral images [10]. After this, we
sort all patches in terms of quality and select the m best ones so that each pixel
is contained in at least 4 patches. We found experimentally that variable patch
superpixels do not worsen the boundary recall compared to compact superpixels,
while improving efficiency by about a factor of 2.

2.4 Constant Intensity Superpixels

Since we formulate superpixel segmentation in the energy minimization frame-
work, we can change certain properties of superpixels by simply changing the
energy function. We now address one useful change. In the energy for compact
superpixels, Sec. 2.2, there is no explicit encouragement that superpixels have
constant intensity. Consider a grey and white rectangles adjacent to each other
in front of a black background. If there is a patch that covers both rectangles,
they will be assigned to the same superpixel, since there is no incentive to split
them across two superpixels, regardless of their difference in intensity.

We can explicitly encourage constant intensity inside a superpixel but at the
price of obtaining superpixels that are less equalized in terms of size. Let c(l) be
the pixel at the center of patch S(l). We change the data term to:

Dp(l) =
{
|Ip − Ic(l)| if p ∈ S(l)
∞ otherwise (3)

Fig. 4. Two enlarged pieces overlayed over original superpixel images. Left: Compact

superpixels, part of the boundaries between elephant legs and on top are missed. Right:

constant intensity superpixels, these boundaries are captured.

Now each pixel that is assigned label l is encouraged to be of the same intensity
as the center of patch S(l). To ensure this new energy is not increasing during
optimization, we have to make sure that that if p is assigned label l, then the
center of the patch c(l) is also assigned l. We can easily do this with addition of
the following new term Tnew(f) to the energy in Eq. (1):
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Tnew(f) =
∑
p∈P

W (fp, fc(fp)), (4)

where W (α, β) = ∞ if α �= β and 0 otherwise.
See Fig. 4 for an example where intensity constancy constraint helps to get

more accurate boundaries. The cost is that approximately 20% more superpixels
are found for the same patch size, some being quite small.

3 Supervoxel Segmentation

Our approach naturally extends to segmenting “supervoxels” in 3D space. A
voxel has three coordinates (x, y, t), with t being the third dimension. A su-
pervoxel is a set of spatially contiguous voxels that have similar appearance
(intensity, color, texture, etc.). Notice that the slices of a voxel at different val-
ues of the coordinate t do not necessarily have the same shape. Segmentation
of volumes into supervoxels can be useful, potentially, for medical image and
for video processing. In particular, for video processing, there is an interest in
coherent 3D segmentation for video abstraction and animation [25,26].

First we create a 3D volume by stacking the frames together, Fig. 5, left.
Analogously to the 2D case, we cover the 3D volume by overlapping 3D blocks.
For clarity, in Fig. 5 we show only a few non-overlapping blocks. The depth of a
block can be different from its width and height. The larger the depth, the more
temporal coherency is encouraged. As before, each block corresponds to a label.
N is now 16-connected and contains neighbors between the frames. Just as in
the 2D case, we place blocks overlapping in step size equal to a quarter of the

Fig. 5. Supervoxels. Left: video frames are stacked into a 3D volume and covered by a

set of 3D blocks. Right: supervoxels, shown separately in each frame. Three supervoxels

are highlighted with color (red, yellow, light blue). This figure is better viewed in color.
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size of the block (in each dimension). The algorithm is efficient, since we only
need to work on a little more than a single block at a time.

Fig. 5, right, shows the results on four consecutive frames of the “tennis”
video sequence. We show the section of supervoxels with each frame separately.
Notice the high degree of spatial coherency between the frames.

4 Experimental Results

First we evaluate how well superpixel boundaries align to image edges. We use
Berkeley database [15] that has ground truth provided by human subjects. We
use the same measure of boundary recall as in [1,14]. Given a boundary in the
ground truth, we search for a boundary in superpixel segmentation within a
distance of t pixels. For experiments we set t = 2. Recall is the percentage of
ground truth boundary that is also present in superpixel segmentation (within a
threshold of t). Fig. 6(a) plots the dependency of boundary recall on the number
of superpixels. The smaller is the number of superpixels, the less boundaries
there are, and the worse is the recall. These results were obtained by averag-
ing over 300 images in the database. We compare our compact (OursCompact)
and constant intensity (OursIntConstant) superpixels with turbopixels (Turbo),
method from [12] (FH), and NC superpixels (NC) [1]. Our variable patch super-
pixels have performance similar to compact superpixels, so we omit them from
Fig. 6 for clarity. From the plot, it is clear that our constant intensity superpix-
els have a comparable performance to FH and NC methods, and are superior
to turbopixels, at least for lower superpixel number. For high superpixel num-
ber, all methods have similar performance. Our constant intensity superpixels
are superior to compact superpixels for any number of superpixels. The running
time of our algorithm is better than that of Turbopixel and NC algorithms.

In Fig. 6(b) shows the undersegmentation error from [14]. Given a ground
truth segment and a superpixel segmentation of an image, undersegmentation

Fig. 6. Performance vs. number of superpixels. Left: boundary recall vs. number of

superpixels. Right: undersegmentation error vs. number of superpixels.
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Fig. 7. Top: compact superpixels, bottom: constant intensity superpixels

error measures what fraction of pixels leak across the boundary of a ground
truth segment. The FH algorithm [12] is particularly susceptible to this error
because it produces segments of highly variable shapes. Our normalization is
slightly different from that in [14], so the vertical axis is on a different scale.

The running times of our algorithms for the images in Berkeley dataset are, on
average, as follows. The variable patch superpixels take 2.7 seconds to compute.
The compact superpixels take from 5.5 to 7.4 seconds to compute, depending on
the patch size. A larger patch size corresponds to a slightly longer running time.
The constant intensity superpixels take from 9.7 to 12.3 seconds to compute,
again depending on the patch size. Patch sizes are from 20 by 20 to 90 by 90.
The turbopixel algorithm [14] takes longer to compute, on average 21.3 seconds.
The average running time of NC superpixels [1] is 5.7 minutes.

We now compare the dense strategy of using all patches with the sparse patch
placement described in Sec. 2.2. In both cases, we run the expansion algorithm
for two iterations. Since the dense strategy is expensive, we ran the experiment
for 20 images chosen at random from the Berkeley database [15]. To compare
energies across different images, we measure the relative energy difference. For
an image I, let Ed(I) be the energy with dense patch placement, and Es(I) be
the energy with the sparse patch placement. Then the relative percent difference
in energy is 100 · Es(I)−Ed(I)

Ed(I)
. The mean running time for the dense strategy

was 123.5 seconds, whereas for the sparse strategy it was 5.8 seconds. The mean
energy difference is 13%, with standard deviation of 0.8%. It makes sense to gain
a factor of 21 in computational efficiency while worsening the energy by 12%.

Fig. 1 and Fig. 2 can be used to visually compare our results with turbopix-
els [14] and NC superpixels [1]. Visually the results are similar, except the NC
superpixels appear to have smoother boundaries. This is because in [1] they use
a sophisticated boundary detector from [27]. We could incorporate this too in
our framework, but it is rather expensive, it takes approximately 30 seconds to
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compute boundaries for one image. In Fig. 7, we show some of our segmentations.
The top row is compact and the bottom row is intensity constant superpixels.

Fig. 5(b) shows the results on four frames of the “tennis” video sequence.
We show the section of supervoxels with each frame separately. Notice the high
degree of spatial coherency, even in the areas that are not stationary. Between
the first and the last frames shown, the ball moves by about 5 pixels, and the
hand by about 8 pixels in the vertical direction. The fingers and the ball are
segmented with a high degree of temporal coherency between the frames. We
highlight 3 different supervoxels: the one on the ball with red, on the hand with
light blue, and on the wall with yellow. The wall is stationary and the supervoxel
shape is almost identical between the time slices. The ball and hand are moving,
but still the supervoxels slices have a high degree of consistency.

The results of supervoxel segmentation are best to be viewed in a video pro-
vided in the supplementary material. We show the original “tennis” sequence
and the result of supervoxel segmentation. For visualization, we compute the
average intensity of each supervoxel and repaint the video with the average
supervoxel intensity. To appreciate the degree of temporal coherence in the su-
pervoxel segmentation, we also perform superpixel segmentation on each frame
of the “tennis” sequence separately, using the algorithm in Sec. 2.2. We display
the results by painting superpixels with their average intensity. The result of
segmentation on each frame separately has much less temporal coherence, as
expected. We also provide several other video sequences.

The code for superpixel segmentation will be made available on our web site.

5 Application to Salient Object Segmentation

To show that regular superpixels are useful, we evaluated them for salient object
segmentation, similar to [28]. The goal is to learn to segment a salient object(s)
in an image. We use Berkeley dataset [15], 200 images for training and 100 for
testing. Using human marked boundaries as a guide, we manually select salient
object(s). Of course, our ground truth is somewhat subjective.

We segment images using rectangular boxes, FH superpixels [12], and our
compact superpixels. For boxes, we found that different sizes with overlap give
better results. We used 4 different box sizes, from 80 by 80 to 20 by 20. For
segmentation, we choose parameters that give the best results on the training
data. From each box/superpixel, we extract features similar to those used in [3].
We use features based on color, position (relative to the image size) in the image,
and texture. We use gentleboost [29] for training1.

The testing error is as follows. Our compact superpixels: 20.5%, FH superpix-
els [12]: 27.4%, rectangular boxes: 24.0%. Thus performance with our superpixels
is significantly better than that of boxes and of FH superpixels [12]. With boxes,
the size is controlled, but boxes do not align well to object boundaries. With FH
superpixels [12], boundaries are reasonable, but segment size is not controlled,
1 The implementation by A. Vezhnevets downloaded from

graphics.cs.msu.ru/ru/science/research/machinelearning/adaboosttoolbox.
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some segments are very large. Thus it appears to be important that our compact
superpixels have both regularized size and boundary alignment. We expect that
we would have gotten performance similar to ours using turbopixels [14] or NC
superpixels [1], but our computational time is much better. Our results in this
section are consistent with those of [6], who show that having more accurate
spatial support (more accurate superpixels) improves object segmentation.

We also investigate whether the results from classification can be further im-
proved by spatial coherence. We apply the binary segmentation algorithm of [24]
to separate an image into the salient object and background components. For the
data term, we use the confidences provided by boosting. Using confidences only
can smooth results, but will not help to rectify large errors. Additional informa-
tion is gathered from the histogram of pixels with a high confidence either the
object or background class. Thus the data term is computed from quantized color
histogram weighted by class confidences. After binary graph cut segmentation
the errors are as follows. Our compact superpixels: 21.1%, FH superpixels [12]
25.6%, rectangular boxes 28.4%. Interestingly, the results for FH superpixels [12]
improve, results for our superpixels slightly worsen, and results for boxes worsen
significantly. Fig. 8(a) shows some results after graph cut segmentation. While
what exactly constitutes a salient object may be arguable, our results most often

(a) Left column: results with our su-

perpixels, middle column: results

with FH superpixels [12], last col-

umn: results with boxes.

(b) Worst failures. Top row: results

with our superpixels. Bottom row: first

result is with boxes, the other two are

with FH superpixels [12]

Fig. 8. Some results for salient object segmentation
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correspond to recognizable object(s) occupying a significant portion of a scene,
with minimal holes. For most images, results with our superpixels are better or
comparable than that of boxes and superpixels of [12]. However sometimes there
are significant failures, the worst of them are in Fig. 8(b).

6 Future Work

In the future, we plan to investigate more variations on the “basic” energy func-
tion to produce superpixels with other interesting properties, such as certain pre-
determined orientations, etc. We can also use our algorithm to integrate results
from different segmentation algorithms, taking advantages or their respective
strengths.
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Convex Relaxation for Multilabel Problems
with Product Label Spaces
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Abstract. Convex relaxations for continuous multilabel problems have

attracted a lot of interest recently [1,2,3,4,5]. Unfortunately, in previous

methods, the runtime and memory requirements scale linearly in the total

number of labels, making them very inefficient and often unapplicable for

problems with higher dimensional label spaces. In this paper, we propose

a reduction technique for the case that the label space is a product

space, and introduce proper regularizers. The resulting convex relaxation

requires orders of magnitude less memory and computation time than

previously, which enables us to apply it to large-scale problems like optic

flow, stereo with occlusion detection, and segmentation into a very large

number of regions. Despite the drastic gain in performance, we do not

arrive at less accurate solutions than the original relaxation. Using the

novel method, we can for the first time efficiently compute solutions to

the optic flow functional which are within provable bounds of typically

5% of the global optimum.

1 Introduction

1.1 The Multi-labeling Problem

A multitude of computer vision problems like segmentation, stereo reconstruc-
tion and optical flow estimation can be formulated as multi-label problems. In
this class of problems, we want to assign to each point x in an image domain
Ω ⊂ R

n a label from a discrete set Γ = {1, . . . , N} ⊂ N. Assigning the label
γ ∈ Γ to x is associated with the cost cγ(x) ∈ R. In computer vision applica-
tions, the local costs usually denote how well a given labeling fits some observed
data. They can be arbitrarily complex, for instance derived from statistical mod-
els or complicated local matching scores. We only assume that the cost functions
cγ lie in the Hilbert space of square integrable functions L2(Ω). Aside from the
local costs, each possible labeling g : Ω → Γ is penalized by a regularization term
J(g) ∈ R. The regularizer J represents our knowledge about which label con-
figurations are a priori more likely. Frequently, it enforces some form of spacial
coherence. In this paper, we are above all interested in regularizers which penal-
ize proportionally to the length of the interface between regions with different
labels γ, χ and a metric d(γ, χ) between the associated labels.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 225–238, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. The proposed relaxation method can approximate the solution to multi-labeling

problems with a huge number of possible labels by globally solving a convex relaxation

model. This example shows two images and the optic flow field between the two, where

flow vectors were assigned from a possible set of 50× 50 vectors, with truncated linear

distance as a regularizer. The problem has so many different labels that a solution

cannot be computed by alternative relaxation methods on current hardware. See Fig. 7

for the color code of the flow vectors.

The goal is to find a labeling g : Ω → Γ which minimizes the sum of the total
costs and the regularizer, i.e.

argmin
g∈L2(Ω,Γ )

J(g) +
∫

Ω

cg(x)(x)dx . (1)

1.2 Discrete Approaches

It is well known that in the fully discrete setting, the minimization problem (1)
is equivalent to maximizing a Bayesian posterior probability, where the prior
probability gives rise to the regularizer [6]. The problem can be stated in the
framework of Markov Random Fields [7] and discretized using a graph represen-
tation, where the nodes denote discrete pixel locations and the edges encode the
energy functional [8].

Fast combinatorial minimization methods based on graph cuts can then be
employed to search for a minimizer. In the case that the label space is binary and
the regularizer submodular, a global solution of (1) can be found by computing
a minimum cut [9,10]. For multi-label problems, one can approximate a solution
for example by solving a sequence of binary problems (α-expansions) [11,12],
or linear programming relaxations [13]. Exact solutions to multi-label problems
can only be found in some special cases, notably [14], where a cut in a multi-
layered graph is computed in polynomial time to find a global optimum. The
construction is restricted to convex iteraction terms with respect to a linearly
ordered label set.

However, in many important scenarios the label space can not be ordered, or
a non-convex regularizer is more desireable to better preserve discontinuities in
the solution. Even for relatively simple non-convex regularizers like the Potts
distance, the resulting combinatorial problem is NP-hard [11]. Furthermore, it
is known that the graph-based discretization induces an anisotropy, so that the
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solutions suffer from metrication errors [15]. It is therefore interesting to inves-
tigate continuous approaches as a possible alternative.

1.3 Continuous Approaches

Continuous approaches deal with the multi-label problem by transforming it
into a continuous convex problem, obtaining the globally optimal solution, and
projecting the continuous solution back onto the original discrete space of labels.
Depending on the class of problem, it can be possible to obtain globally optimal
solutions to the original discrete minimization problem.

As in the discrete setting, it is possible to solve the two-label problem in a
globally optimal way by minimizing a continuous convex energy and subsequent
thresholding [2]. In the case of convex interaction terms and a linearly ordered
set of labels, there also exists a continuous version of [14] to obtain globally
optimal solutions [3]. For the general multi-label case, however, there is no re-
laxation known which leads to globally optimal solutions of the discrete problem.
Currently the most tight relaxation is [4]. The theoretical basis of the reduction
technique introduced in this paper is the slightly more transparent formulation
introduced in [5] and further generalized in [1], but it can be easily adapted to
the framework [4] as well.

The convex relaxation described in [1,5] works as follows. Instead of looking
for g directly, we associate each label γ with a binary indicator function uγ ∈
L2(Ω, {0, 1}), where uγ(x) = 1 if and only if g(x) = γ. To make sure that a
unique label is assigned to each point, only one of the indicator functions can
have the value one. Thus, we restrict optimization to the space

UΓ :=

⎧⎨⎩(uγ)γ∈Γ : uγ ∈ L2(Ω, {0, 1}) and
∑
γ∈Γ

uγ(x) = 1 for all x ∈ Ω

⎫⎬⎭ .

(2)
Let 〈·, ·〉 denote the inner product on the Hilbert space L2(Ω), then problem (1)
can be written in the equivalent form

argmin
u∈UΓ

J(u) +
∑
γ∈Γ

〈uγ , cγ〉 , (3)

where we use bold face notation u for vectors (uγ)γ∈Γ indexed by elements in Γ .
We use the same symbol J to also denote the regularizer on the reduced space.
Its definition requires careful consideration, see Section 3.

1.4 Contribution: Product Label Spaces

In this work, we discuss label spaces which can be written as a product of a
finite number d of discrete spaces, Γ = Λ1 × · · · × Λd. Let Nj be the number
of elements in Λj , then the total number of labels is N = N1 · ... · Nd. In the
formulation (3), we optimize over a number of N binary functions, which can
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Fig. 2. The central idea of the reduction technique is that if a single indicator function

in the product space Γ takes the value 1, then this is equivalent to setting an indicator

function in each of the factors Λj . The memory reduction stems from the fact that

there are much more labels in Γ than in all the factors Λj combined.

be rather large in practical problems. In order to make problems of this form
feasible to solve, we present a further reduction which only requires N1+ · · ·+Nd

binary functions - a linear instead of an exponential growth.
We will show that with our novel reduction technique, it is possible to effi-

ciently solve convex relaxations to multi-label problems which are far too large
to approach with previously existing techniques. A prototypical example is optic
flow, where a typical total number of labels is around 322 for practical problems,
for which we only require 64 indicator functions instead of 1024. However, the
proposed method applies to a much larger class of labelling problems. A con-
sequence of the reduction in variable size is a disproportionately large cut in
required runtime, which also makes our method much faster.

2 Relaxations for Product Label Spaces

2.1 Product Label Spaces

As previously announced, from now on we assume that the space of labels is a
product of a finite number d of discrete spaces, Γ = Λ1×· · ·×Λd, with |Λj| = Nj .
To each label λ ∈ Λj , 1 ≤ j ≤ d, we associate an indicator function uj

λ. Thus,
optimization will take place over the reduced space of functions

U×
Γ :=

{
(uj

λ)1≤j≤d,λ∈Λj : uj
λ ∈ L2(Ω, {0, 1}) and∑

λ∈Λj

uj
λ(x) = 1 for all x ∈ Ω, 1 ≤ j ≤ d

}
.

(4)
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(a) Product function m(x1, x2) = x1x2
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fied versions for different ε

Fig. 3. Product function and its mollified convex envelope for the case d = 2

We use the short notation u× for a tuple (uj
λ)1≤j≤d,λ∈Λj . Note that such a

tuple consists indeed of exactly N1 + ... + Nd binary functions. The following
proposition illuminates the relationship between the function spaces UΓ and U×

Γ .

Proposition 1. A bijection u× �→ u from U×
Γ onto UΓ is defined by setting

uγ := u1
γ1

· ... · ud
γd
,

for all γ = (γ1, ..., γd) ∈ Γ .

This is easy to see visually, Figure 2. A formal proof can be found in the appendix.
With this new function space, another equivalent formulation to (1) and (3) is

argmin
u×∈U×

Γ

J(u×) +
∑
γ∈Γ

〈
u1

γ1
· ... · ud

γd
, cγ

〉
. (5)

Note that while we have reduced the dimensionality of the problem considerably,
we have introduced another difficulty: the data term is not convex anymore, since
it contains a product of the components. Thus, in the relaxation, we need to take
additional care to make the final problem again convex.

2.2 Convex Relaxation

Two steps have to be taken to relax (5) to a convex problem. In a first step, we
replace the multiplication function m(u1

γ1
, ..., ud

γd
) := u1

γ1
· ... · ud

γd
with a convex

function. In order to obtain a tight relaxation, we first move to the convex
envelope co (m) of m. Analyzing the epigraph of m, Fig. 3(a) shows that

co (m) (x1, ..., xd) =

{
1 if x1 = ... = xd = 1,
0 if any xj = 0.

(6)
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This means that if in the functional, m is replaced by the convex function co (m),
we retain the same binary solutions, as the function values on binary input are
the same. We lose nothing on first glance, but on second glance, we forfeited
differentiability of the data term, since co (m) is not a smooth function anymore.

In order to be able to solve the new problem in practice, we replace co (m)
again by a mollified function co (m)ε, where ε > 0 is a small constant. We
illustrate this for the case d = 2, where one can easily write down the functions
explicitly. In this case, the convex envelope of multiplication is

co (m) (x1, x2) =

{
0 if x1 + x2 ≤ 1
x1 + x2 − 1 otherwise.

This is a piecewise linear function of the sum of the arguments, i.e symmetric in
x1 and x2, see Fig. 3(b). We smoothen the kink by replacing co (m) with

co (m)ε (x1, x2) =

⎧⎪⎨⎪⎩
0 if x1 + x2 ≤ 1 − 4ε
1

16ε (x1 + x2 − (1 − 4ε))2 if 1 − 4ε < x1 + x2 < 1 + 4ε
1 if x1 + x2 ≥ 1 + 4ε

This function does not satisfy the above condition (6) exactly, but only fulfills
the less tight

co (m)ε (x1, . . . , xd)

{
= 1 if x1 = · · · = xd = 1,
≤ ε if any xj = 0.

(7)

The following Theorem shows that the solutions of the smoothened energy con-
verge to the solutions of the original energy as ε → 0. After discretization, this
means that we obtain an exact solution to the binary problem if we choose ε
small enough, since the problem is combinatorial and the number of possible
configurations finite.

Theorem 1. Let ε > 0 and co (m)ε satisfy condition (7). Let u×
0 be a solution

to problem (5), and

u×
ε ∈ argmin

u×∈U×
Γ

J(u×) +
∑
γ∈Γ

〈
co (m)ε (u1

γ1
, ..., ud

γd
), cγ

〉
. (8)

Then ∣∣Eε(u×
ε ) − E(u×

0 )
∣∣ ≤ |Ω|

∑
γ∈Γ

‖cγ‖∞ ε , (9)

where E and Eε are the energies of the original problem (5) and smoothened
problem (8), respectively.

The proof can be found in the appendix. The key difference of (8) compared
to (5) is that the data term is now a convex function.

In the second step of the convex relaxation, we have to make sure the do-
main of the optimization is a convex set. Thus U×

Γ is replaced by its convex
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hull co
(
U×

Γ

)
. This just means that the domain of the functions (uj

λ) is extended
to the continuous interval [0, 1]. The final relaxed problem which we are going
to solve is now to find

argmin
u×∈co(U×

Γ )
J(u×) +

∑
γ∈Γ

〈
co (m)ε (u1

γ1
, ..., ud

γd
), cγ

〉
. (10)

2.3 Numerical Method

With a suitable choice of convex regularizer J , problem (10) is a continuous
convex problem with a convex and differentiable data term. In other relaxation
methods, one usually employs fast primal-dual schemes [16,17] to solve the con-
tinuous problem. However, those are only applicable to linear data terms. For-
tunately, the derivative of the data term is Lipschitz-continuous with Lipschitz
constant L = 1

8ε

∑
γ ‖cγ‖2. If we take care to choose a lower semi-continuous J ,

we are thus in a position to apply the FISTA scheme [18] to the minimization
of (10). It is much faster than for example direct gradient descent, with a prov-
able quadratic convergence rate. The remaining problems are how to choose a
correct regularizer, and how to get back from a possibly non-binary solution of
the relaxed problem to a solution of the original problem.

2.4 Obtaining a Solution to the Original Problem

Let û× be a solution to the relaxed problem (10). Thus, the functions ûj
λ might

have values in between 0 and 1. In order to obtain a feasible solution to the
original problem (1), we just project back to the space of allowed functions. The
function ĝ ∈ L2(Ω,Γ ) closest to û× is given by setting

ĝ(x) = argmax
γ∈Γ

û1
γ1

(x) · ... · ûd
γd

(x) ,

i.e. we choose the label where the combined indicator functions have the highest
value.

We cannot guarantee that the solution ĝ is indeed a global optimum of the
original problem (1), since there is nothing equivalent to the thresholding theo-
rem [2] known for this kind of relaxation. However, we still can give a bound how
close we are to the global optimum. Indeed, the energy of the optimal solution
of (1) must lie somewhere between the energies of û× and ĝ.

3 Regularization

The following construction of a family of regularizers is analogous to [1], but
extended to accomodate product label spaces. An element u× ∈ U×

Γ can be
viewed as a map in L2(Ω,Δ×), where

Δ× = Δ1 × ...×Δd ⊂ R
N1+...+Nd
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and

Δi =

⎧⎨⎩x ∈ {0, 1}Ni :
Ni∑
j=1

xj = 1

⎫⎬⎭ .

is the set of corners of the standard (k− 1)-simplex. As shown previously, there
is a one-to-one correspondence between elements in Δ× and the labels in Γ .

We will now construct a familiy of regularizers J : co
(
U×

Γ

)
→ R and after-

wards demonstrate that it is well suited to the problem at hand. For this, we
impose a metric d on the space Γ of labels. A current limitation is that we can
only handle the case of separable metrics, i.e. d must be of the form

d(γ, χ) =
d∑

i=1

di(γi, χi), (11)

where each di is a metric on Δi. We further assume that each di has an Euclidean
representation. This means that each label λ ∈ Δi shall be represented by an ri-
dimensional vector ai

λ ∈ Rri , and the distance di defined as Euclidean distance
between the representations,

d(λ, μ) = |aλ − aμ|2 for all λ, μ ∈ Δi . (12)

The goal in the construction of J is that the higher the distance between labels,
the higher shall be the penalty imposed by J . To make this idea precise, we
introduce the linear mappings Ai : co

(
Δi
)
→ Rri which map labels onto their

representations,
Ai(λ) = ai

λ for all λ ∈ Δi .

When the labels are enumerated, then in matrix notation, the vectors ai
γ become

exactly the columns of Ai, which shows the existence of this map.
We can now define the regularizer as

J(u×) :=
d∑

i=1

TVi
v(Aiu

i) , (13)

where TVi
v is the vectorial total variation on L2(Ω,Rri). The following theorem

shows why the above definition makes sense.

Theorem 2. The regularizer J defined in (13) has the following properties:

1. J is convex and positively homogenous on co
(
U×

Γ

)
.

2. J(u×) = 0 for any constant labeling u×.
3. If S ⊂ Ω has finite perimeter Per(S), then for all labels γ, χ ∈ Γ ,

J(γ1S + χ1Sc) = d(γ, χ) Per(S) ,

i.e. a change in labels is penalized proportional to the distance between the
labels and the perimeter of the interface.
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The theorem is proved in the appendix. More general classes of metrics on
the labels can also be used, see [1]. For the sake of simplicity, we only included
the most important example of distances with Euclidean representations. This
class includes, but is not limited to, the following special cases:

– The Potts or uniform distance, where di(λ, μ) = 1 if and only if λ = μ, and
zero otherwise. This distance function can be achieved by setting ai

λ = 1
2eλ,

where (eλ)λ∈Λi is an orthonormal basis in RNi . All changes between labels
are penalized equally.

– The typical case is that the ai
λ denote feature vectors or actual geometric

points, for which |·|2 is a natural distance. For example, in the case of optic
flow, each label corresponds to a flow vector in R2. The representations
a1

λ, a
2
μ are just real numbers, denoting the possible components of the flow

vectors in x and y-direction, respectively. The Euclidean distance is a natural
distance on the components to regularize the flow field, corresponding to the
regularizer of the TV-L1 functional in [19].

The convex functional we wish to minimize is now fully defined, including the
regularizer. The ROF type problems with the vectorial total variation as a reg-
ularizer, which are at the core of the resulting FISTA scheme, can be minimized
with algorithms in [20]. For the also required backprojections onto simplices
we recommend the method in [21]. Thus, we can turn our attention towards
computing a minimizer in practice. In the remaining section, we will apply the
framework to a variety of computer vision problems.

4 Experiments

We implemented the proposed algorithm for the case d = 2 on parallel processing
GPU architecture using the CUDA programming language, and performed a
variety of experiments, with completely different data terms and regularizers.
All experiments were performed on an nVidia Tesla C1060 card with 4GB of
memory.

When the domain Ω is discretized into P pixels, the primal and dual variables
required for the FISTA minimization scheme are represented as matrices. In
total, we have to store P · (N1 + ...+Nd) floating point numbers for the primal
variables, and Pn · (r1 + ...+ rd) floating point numbers for the dual variables. In
contrast, without using our reduction scheme, this number would be as high as
P ·N1 · ... ·Nd for the primal variables and Pn · r1 · ... · rd for the dual variables,
respectively. For the FISTA scheme, we need space for four times the primal
variables in total, so we end up with the total values shown in Fig. 4. Thus,
problems with large number of labels can only be handled with the proposed
reduction technique.

4.1 Multi-label Segmentation

For the first example, we chose one with a small label space, so that we can
compare the convergence rate and solution energy of the previous method [1]
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# of Pixels # Labels Memory [Mb] Runtime [s]
P = Px × Py N1 × N2 Previous Proposed Previous Proposed

320 × 240 8 × 8 112 28 196 6
320 × 240 16 × 16 450 56 ∗ 21
320 × 240 32 × 32 1800 112 ∗ 75
320 × 240 64 × 64 7200 225 - 314
640 × 480 8 × 8 448 112 789 22
640 × 480 16 × 16 1800 224 ∗ 80
640 × 480 32 × 32 7200 448 - 297
640 × 480 64 × 64 28800 900 - 1112  0
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Fig. 4. The table shows the total amount of memory required for a FISTA implemen-

tation of the previous and proposed methods depending on the size of the problem.

Also shown is the total runtime for 15 iterations, which usually suffices for convergence.

Numbers shown in red cannot be stored within even the largest of todays CUDA capa-

ble cards, so an efficient parallel implementation is not possible. Failures marked with

a “∗” are due to another limitation: the shared memory is only sufficient to store the

temporary variables for the simplex projection up until dimension 128. In the graph,

we see a comparison of the convergence rate between the original scheme and the pro-

posed scheme. Despite requiring significantly less memory and runtime, the relaxation

is still sufficiently tight to arrive at an almost similar solution.

with the proposed one. We perform a segmentation of an image based on the
HSL color space. The hue and lightness values of the labeling are taken from the
discrete sets of equidistant labels Λ1 and Λ2, respectively. Their size is |Λ1| =
|Λ2| = 8, so there are 64 labels in total, which can still be handled by the old
method as well, albeit barely. The labels shall be as close as possible to the
original image values, so the cost function penalizes the L1-distance in HSV
color space. We choose the regularizer so that the penalty for discontinuities is
proportionally larger in regions with higher lightness. The relaxation constant ε
is reduced from 0.2 to 0.05 during the course of the iterations. The result can be
seen in Fig. 5, while a comparison of the respective convergence rates are shown
in the graph in Fig. 4. The proposed method, despite requiring only a fraction of
the memory and computation time, achieves a visually similar result with only
a slightly higher energy. Note that the runtime of our method is far lower, since
the simplex projection becomes disproportionally more expensive if the length
of the vector is increased.

4.2 Depth and Occlusion Map

In this test, we simultaneously compute a depth map and an occlusion map for
a stereo pair of two color input images IL, IR : Ω → R3. The occlusion map
shall be a binary map denoting wether a pixel in the left image has a matching
pixel in the right image. Thus, the space of labels is two-dimensional with Λ1

consisting of the disparity values and a binary Λ2 for the occlusion map. We use
the technique in [1] to approximate a truncated linear smoothness penalty on
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Fig. 5. Results for the multi-label segmentation. The input image on the left was

labelled with 8× 8 labels in the hue and lightness components of HSL color space. The

label distance is set so that smoothing is stronger in darker regions, which creates an

interesting visual effect.

Fig. 6. The proposed method can be employed to simultaneously optimize for a dis-

placement and an occlusion map. This problem is also too large to be solved by alter-

native relaxation methods on current GPUs. From left to right: (a) Left input image

IL. (b) Right input image IR. (c) Computed disparity and occlusion map, red areas

denote occluded pixels.

the disparity values. A Potts regularizer is imposed for the occlusion map. The
distance on the label space thus becomes

d(γ, χ) = s1 min(t1, |γ1 − χ1|) + s2 |γ2 − χ2| , (14)

with suitable weights s1, s2 > 0 and threshold t1 > 0. We penalize an occluded
pixel with a constant cost cocc > 0, which corresponds to a threshold for the
similarity measure above which we believe that a pixel is not matched correctly
anymore. The cost associated with a label γ at (x, y) ∈ Ω is then defined as

cγ(x, y) =

{
cocc if γ2 = 1,
‖IL(x, y) − IR(x − λ1, y)‖2 otherwise.

(15)

The result for the “Moebius” test pair from the Middlebury benchmark is shown
in Fig. 6. The input image resolution was scaled to 640× 512, requiring 128 dis-
parity labels, which resulted in a total memory consumption which was slightly
too big for previous methods, but still in reach of the proposed algorithm. Total
computation time required was 597 seconds.
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First image I0 Second image I1 Flow field and color code

Fig. 7. When employed for optic flow, the proposed method can successfully capture

large displacements without the need for coarse-to-fine approaches, since a global op-

timization is performed over all labels. In contrast to existing methods, our solution is

within a known bound of the global optimum.

4.3 Optic Flow

In the final test, we compute optic flow between two color input images I0, I1 :
Ω → R3 taken at two different time instants. The space of labels is again two-
dimensional, with Λ1 = Λ2 denoting the possible components of flow vectors in
x and y-direction, respectively. We regularize both directions with a truncated
linear penalty on the component distance, i.e.

d(γ, χ) = smin(t, |γ1 − χ1|) + smin(t, |γ2 − χ2|) , (16)

with a suitable weight s > 0 and threshold t > 0. The cost function just compares
pointwise pixel colors in the images, i.e.

cγ(x, y) = ‖I0(x, y) − I1(x + γ1, y + γ2)‖2 . (17)

Results can be observed in Fig. 1 and 7. Due to the global optimization of a
convex energy, we can successfully capture large displacements without having
to implement a coarse-to-fine scheme. The number of labels is 50×50 at an image
resolution of 640×480, so the memory requirements are so high that this problem
is currently impossible to solve with previous convex relaxation techniques by
a large margin, see Fig. 4. Total computation time using our method was 678
seconds. A comparison of the energies of the continuous and discretized solution
shows that we are within 5% of the global optimum for all examples.

5 Conclusion

We have introduced a continuous convex relaxation for multi-label problems
where the label space is a product space. Such labeling problems are plentiful in
computer vision. The proposed reduction method improves on previous methods
in that it requires orders of magnitude less memory and computation time, while
retaining the advantages: a very flexible choice of distance on the label space, a
globally optimal solution of the relaxed problem and an efficient parallel GPU
implementation with guaranteed convergence.
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Because of the reduced memory requirements, we can successfully handle spe-
cific problems with very large number of labels, which could not be attempted
with previous convex relaxation techniques. Among other examples we presented
a convex relaxation for the optic flow functional with truncated linear penalizer
on the distance between the flow vectors. To our knowledge, this is the first
relaxation for this functional which can be optimized globally and efficiently.
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Appendix

Proof of Proposition 1. In order to proof the proposition, we have to show
that the mapping induces a point-wise bijection from Δ× onto

Δ =

⎧⎨⎩x ∈ {0, 1}N :
N∑

j=1

xj = 1

⎫⎬⎭ .

We first show it is onto: for u(x) in Δ, there exists exactly one γ ∈ Γ with
uγ(x) = 1. Set ui

λ(x) = 1 if λ = γi, and ui
λ(x) = 0 otherwise. Then u(x) =

u1(x) · ... · ud(x), as desired. To see that the map is one-to-one, we just count
the elements in Δ×. Since Δi contains Ni elements, the number of elements in
Δ× is N1 · ... ·Nd = N , the same as in Δ. �
Proof of Theorem 1. The regularizers of the original and smoothened problems
are the same, so because of condition (7),

∣∣Eε(u×
ε ) − E(u×

0 )
∣∣ ≤

∣∣∣∣∣∣
∑
γ∈Γ

∫
Ω

εcγ dx

∣∣∣∣∣∣ ≤ |Ω|
∑
γ∈Γ

‖cγ‖∞ ε . (18)

This completes the proof. �
Proof of Theorem 2. The first two claims are basic properties of the total
variation. For the last claim, we combine Corollary 1 in [1] with the definition
of the metric in equations (11) and (12) to find

J(γ1S + χ1Sc) =
d∑

i=1

TVi
v(Ai(γ1S + χ1Sc)) =

d∑
i=1

∣∣ai
γ − ai

χ

∣∣
2
Per(S)

= d(γ, χ) Per(S).

(19)

This completes the proof. �
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Abstract. Markov and Conditional random fields (CRFs) used in computer vi-
sion typically model only local interactions between variables, as this is compu-
tationally tractable. In this paper we consider a class of global potentials defined
over all variables in the CRF. We show how they can be readily optimised us-
ing standard graph cut algorithms at little extra expense compared to a standard
pairwise field.

This result can be directly used for the problem of class based image segmen-
tation which has seen increasing recent interest within computer vision. Here the
aim is to assign a label to each pixel of a given image from a set of possible ob-
ject classes. Typically these methods use random fields to model local interactions
between pixels or super-pixels. One of the cues that helps recognition is global
object co-occurrence statistics, a measure of which classes (such as chair or mo-
torbike) are likely to occur in the same image together. There have been several
approaches proposed to exploit this property, but all of them suffer from different
limitations and typically carry a high computational cost, preventing their ap-
plication on large images. We find that the new model we propose produces an
improvement in the labelling compared to just using a pairwise model.

1 Introduction

Class based image segmentation is a highly active area of computer vision research
as is shown by a spate of recent publications [11,22,29,31,34]. In this problem, every
pixel of the image is assigned a choice of object class label, such as grass, person, or
dining table. Formulating this problem as a likelihood, in order to perform inference, is a
difficult problem, as the cost or energy associated with any labelling of the image should
take into account a variety of cues at different scales. A good labelling should take
account of: low-level cues such as colour or texture [29], that govern the labelling of
single pixels; mid-level cues such as region continuity, symmetry [23] or shape [2] that
govern the assignment of regions within the image; and high-level statistics that encode
inter-object relationships, such as which objects can occur together in a scene. This
combination of cues makes for a multi-scale cost function that is difficult to optimise.

Current state of the art low-level approaches typically follow the methodology pro-
posed in Texton-boost [29], in which weakly predictive features such as colour, location,
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and texton response are used to learn a classifier which provides costs for a single pixel
taking a particular label. These costs are combined in a contrast sensitive Conditional
Random Field CRF [19].

The majority of mid-level inference schemes [25,20] do not consider pixels directly,
rather they assume that the image has been segmented into super-pixels [5,8,28]. A
labelling problem is then defined over the set of regions. A significant disadvantage
of such approaches is that mistakes in the initial over-segmentation, in which regions
span multiple object classes, cannot be recovered from. To overcome this [10] proposed
a method of reshaping super-pixels to recover from the errors, while the work [17]
proposed a novel hierarchical framework which allowed for the integration of multiple
region-based CRFs with a low-level pixel based CRF, and the elimination of inconsistent
regions.

These approaches can be improved by the inclusion of costs based on high level
statistics, including object class co-occurrence, which capture knowledge of scene se-
mantics that humans often take for granted: for example the knowledge that cows and
sheep are not kept together and less likely to appear in the same image; or that mo-
torbikes are unlikely to occur near televisions. In this paper we consider object class
co-occurrence to be a measure of how likely it is for a given set of object classes to
occur together in an image. They can also be used to encode scene specific information
such as the facts that computer monitors and stationary are more likely to occur in of-
fices, or that trees and grass occur outside. The use of such costs can help prevent some
of the most glaring failures in object class segmentation, such as the labelling of a cow
as half cow and half sheep, or the mistaken labelling of a boat surrounded by water as a
book.

(a) (b) (c) (a) (b) (c)

Fig. 1. Best viewed in colour: Qualitative results of object co-occurrence statistics. (a) Typical
images taken from the MSRC data set [29]; (b) A labelling based upon a pixel based random
field model [17] that does not take into account co-occurrence; (c) A labelling of the same model
using co-occurrence statistics. The use of co-occurrence statistics to guide the segmentation re-
sults in a labelling that is more parsimonious and more likely to be correct. These co-occurrence
statistics suppress the appearance of small unexpected classes in the labelling. Top left: a mis-
taken hypothesis of a cow is suppressed Top right: Many small classes are suppressed in the
image of a building. Note that the use of co-occurrence typically changes labels, but does not
alter silhouettes.
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As well as penalising strange combinations of objects appearing in an image, co-
occurrence potentials can also be used to impose an MDL1 prior that encourages a
parsimonious description of an image using fewer labels. As discussed eloquently in the
recent work [4], the need for a bias towards parsimony becomes increasingly important
as the number of classes to be considered increases.

Figure 1 illustrates the importance of co-occurrence statistics in image labelling.
The promise of co-occurrence statistics has not been ignored by the vision commu-

nity. In [22] Rabinovich et al. proposed the integration of such co-occurrence costs that
characterise the relationship between two classes. Similarly Torralba et al. [31] pro-
posed scene-based costs that penalised the existence of particular classes in a context
dependent manner. We shall discuss these approaches, and some problems with them in
the next section.

2 CRFs and Co-occurrence

A conventional CRF is defined over a set of random variables V = {1, 2, 3, . . . , n}
where each variable takes a value from the label set L = {l1, l2, . . . , lk} corresponding
to the set of object classes. An assignment of labels to the set of random variables will
be referred to as a labelling, and denoted as x ∈ L|V|. We define a cost function E(x)
over the CRF of the form:

E(x) =
∑
c∈C

ψc(xc) (1)

where the potential ψc is a cost function defined over a set of variables (called a clique)
c, and xc is the state of the set of random variables that lie within c. The set C of cliques
is a subset of the power set of V , i.e. C ⊆ P (V). In the majority of vision problems, the
potentials are defined over a clique of size at most 2. Unary potentials are defined over a
clique of size one, and typically based upon classifier responses (such as ada-boost [29]
or kernel SVMs [27]), while pairwise potentials are defined over cliques of size two and
model the correlation between pairs of random variables.

2.1 Incorporating Co-occurrence Potentials

To model object class co-occurrence statistics a new term K(x) is added to the energy:

E(x) =
∑

ψc(xc) + K(x). (2)

The question naturally arises as to what form an energy involving co-occurrence terms
should take. We now list a set of desiderata that we believe are intuitive for any co-
occurrence cost.

(i) Global Energy: We would like a formulation of co-occurrence that allows us
to estimate the segmentation using all the data directly, by minimising a single cost
function of the form (2). Rather than any sort of two stage process in which a hard
decision is made of which objects are present in the scene a priori as in [31].

1 Minimum description length.
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(ii) Invariance: The co-occurrence cost should depend only on the labels present
in an image, it should be invariant to the number and location of pixels that object
occupies. To reuse an example from [32], the surprise at seeing a polar bear in a street
scene should not not vary with the number of pixels that represent the bear in the image.

(iii) Efficiency: Inference should be tractable, i.e. the use of co-occurrence should
not be the bottle-neck preventing inference. As the memory requirements of any con-
ventional inference algorithm [30] is typically O(|V|) for vision problems, the memory
requirements of a formulation incorporating co-occurrence potentials should also be
O(|V|).

(iv) Parsimony: The cost should follow the principle of parsimony in the following
way: if several solutions are almost equally likely then the solution that can describe
the image using the fewest distinct labels should be chosen. Whilst this might not seem
important when classifying pixels into a few classes, as the set of putative labels for
an image increases the chance of speckle noise due to misclassification will increase
unless a parsimonious solution is encouraged.

While these properties seem uncontroversial, no prior work exhibits property (ii).
Similarly, no approaches satisfy properties (i) and (iii) simultaneously. In order to sat-
isfy condition (ii) the co-occurrence cost K(x) defined over x must be a function de-
fined on the set of labels L(x) = {l ∈ L : ∃xi = l} present in the labelling x; this
guarantees invariance to the size of an object:

K(x) = C(L(x)) (3)

Embedding the co-occurrence term in the CRF cost function (1), we have:

E(x) =
∑
c∈C

ψc(xc) + C(L(x)). (4)

To satisfy the parsimony condition (iv) potentials must act to penalise the unexpected
appearance of combinations of labels in a labelling. This observation can be formalised
as the statement that the cost C(L) monotonically increasing with respect to the label
set L i.e. :

L1 ⊂ L2 =⇒ C(L1) ≤ C(L2). (5)

The new potential C(L(x)) can be seen as a particular higher order potential defined
over a clique which includes the whole of V , i.e. ψV (x).

2.2 Prior Work

There are two existing approaches to co-occurrence potentials, neither of which uses
potentials defined over a clique of size greater than two. The first makes an initial hard
estimate of the type of scene, and updates the unary potentials associated with each
pixel to encourage or discourage particular choices of label, on the basis of how likely
they are to occur in the scene. The second approach models object co-occurrence as a
pairwise potential between regions of the image.

Torralba et al. [31] proposed the use of additional unary potentials to capture scene
based occurrence priors. Their costs took the form:

K(x) =
∑
i∈V

φ(xi). (6)
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While the complexity of inference over such potentials scales linearly with the size of
the graph, they are prone to over counting costs, violating (ii), and require an initial
hard decision of scene type before inference, which violates (i). As it encourages the
appearance of all labels which are common to a scene, it does not necessarily encourage
parsimony (iv).

A similar approach was seen in the Pascal VOC2008 object segmentation challenge,
where the best performing method, by Csurka [6], worked in two stages. Initially the
set of object labels present in the image was estimated, and in the second stage, a label
from the estimated label set was assigned to each image pixel. As no cost function K(·)
was proposed, it is open to debate if it satisfied (ii) or (iv).

Method
Global energy

(i)
Invariance

(ii)
Efficiency

(iii)
Parsimony

(iv)

Unary [31] � � � �
Pairwise [22,9,32] � � � �
Csurka [6] � — � —
Our approach � � � �

Fig. 2. A comparison of the capabilities of existing image co-occurrence formulations against our
new approach. See section 2.2 for details.

Rabinovich et al. [9,22], and independently [32], proposed co-occurrence as a soft
constraint that approximated C(L(x)) as a pairwise cost defined over a fully connected
graph that took the form:

K(x) =
∑

i,j∈V
φ(xi, xj), (7)

where φ was some potential which penalised labels that should not occur together in
an image. Unlike our model (4) the penalty cost for the presence of pairs of labels, that
rarely occur together, appearing in the same image grows with the number of random
variables taking these labels, violating assumption (ii). While this serves as a functional
penalty that prevents the occurrence of many classes in the same labelling, it does not
accurately model the co-occurrence costs we described earlier. The memory require-
ments of inference scales badly with the size of a fully connected graph. It grows with
complexity O(|V|2) rather than O(|V|) with the size of the graph, violating constraint
(iii). Providing the pairwise potentials are semi-metric [3], it does satisfy the parsimony
condition (iv).

To minimise these difficulties, previous approaches defined variables over segments
rather than pixels. Such segment based methods work under the assumption that some
segments share boundaries with objects in the image. This is not always the case, and
this assumption may result in dramatic errors in the labelling. The relationship between
previous approaches and the desiderata can be seen in figure 2.
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Two efficient schemes [7,12] have been proposed for the minimisation of the num-
ber of classes or objects present in a scene. While neither of them directly models
class based co-occurrence relationships, their optimisation approaches do satisfy our
desiderata.

One such approach was proposed by Hoiem et al. [12], who used a cost based on
the number of objects in the scene, in which the presence of any instance of any object
incurs a uniform penalty cost. For example, the presence of both a motorbike and a bus
in a single image is penalised as much as the presence of two buses. Minimising the
number of objects in a scene is a good method of encouraging consistent labellings, but
does not capture any co-occurrence relationship between object classes.

In a recent work, appearing at the same time as ours, Delong et al. [7] proposed the
use of a soft cost over the number of labels present in an image for clustering. While the
mathematical formulation they propose is more flexible than this, they do not suggest
any applications of this increased flexibility. Moreover, their formulation is less general
than ours as it does not support the full range of monotonically increasing label set
costs.

3 Inference on Global Co-occurrence Potentials

Consider the energy (4) defined in section 2.1. The inference problem becomes:

x∗ = argminx∈L|V|
∑

c∈C ψc(xc) + C(L(x))

s.t. x ∈ L|V|, L(x) = {l ∈ L : ∃xi = l}. (8)

In the general case the problem of minimising this energy can be reformulated as an in-
teger program and approximately solved as an LP-relaxation [16]. This LP-formulation
can be transformed using a Lagrangian relaxation into a pairwise energy, allowing al-
gorithms, such as Belief Propagation [33] or TRW-S [14], that can minimise arbitrary
pairwise energies to be applied [16]. However, reparameterisation methods such as
these perform badly on densely connected graphs [15,26].

In this section we show that under assumption, that C(L) is monotonically increasing
with respect to L, the problem can be solved efficiently using αβ-swap and α-expansion
moves [3], where the number of additional edges of the graph grows linearly with the
number of variables in the graph. In contrast to [22], these algorithms can be applied to
large graphs with more than 200, 000 variables.

Move making algorithms project the problem into a smaller subspace in which a
sub-problem is efficiently solvable. Solving this sub-problem proposes optimal moves
which guarantee that the energy decreases after each move and must eventually con-
verge. The performance of move making algorithms depends dramatically on the size
of the move space. The expansion and swap move algorithms we consider project the
problem into two label sub-problem and under the assumption that the projected energy
is pairwise and submodular, it can be solved using graph cuts. Because the energy (4)
is additive, we derive graph constructions only for term C(L(x)). Both the application
of swap and expansion moves to minimise the energy, and the graph construction for
the other terms proceed as described in [3].
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3.1 αβ-Swap Moves

The swap and expansion move algorithms can be encoded as a vector of binary variables
t ={ti, ∀i ∈ V}. The transformation function T (xp, t) of a move algorithm takes the
current labelling xp and a move t and returns the new labelling x which has been
induced by the move.

In an αβ-swap move every random variable xi whose current label is α or β can
transition to a new label of α or β. One iteration of the algorithm involves making
moves for all pairs (α, β) in L2 successively. The transformation function Tαβ(xi, ti)
for an αβ-swap transforms the label of a random variable xi as:

Tαβ(xi, ti) =
{

α if xi = α or β and ti = 0,
β if xi = α or β and ti = 1.

(9)

Consider a swap move over the labels α and β, starting from an initial label set L(x).
We assume that either α or β is present in the image. Then, after a swap move the labels
present must be an element of S which we define as:

S = {L(x) ∪ {α} \ {β}, L(x) ∪ {β} \ {α}, L(x) ∪ {α, β}} . (10)

Let Vαβ be the set of variables currently taking label α or β. The move energy for
C(L(x)) is:

E(t) =

⎧⎨⎩
Cα = C(L(x) ∪ {α} \ {β}) if ∀i ∈ Vαβ , ti = 0,
Cβ = C(L(x) ∪ {β} \ {α}) if ∀i ∈ Vαβ , ti = 1,
Cαβ = C(L(x) ∪ {α, β}) otherwise.

(11)

Note that, if C(L) is monotonically increasing with respect to L then, by definition,
Cα ≤ Cαβ and Cβ ≤ Cαβ .

Lemma 1. For a function C(L), monotonically increasing with respect to L, the move
energy can be represented as a binary submodular pairwise cost with two auxiliary
variables zα and zβ as:

E(t) = Cα + Cβ − Cαβ + min
zα,zβ

[
(Cαβ − Cα)zβ + (Cαβ − Cβ)(1 − zα)

+
∑

i∈Vαβ

(Cα,β − Cα)ti(1 − zβ) +
∑

i∈Vαβ

(Cαβ − Cβ)(1 − ti)zα)
]
. (12)

Proof. See appendix. This binary function is pairwise submodular and thus can be
solved efficiently using graph cuts.

3.2 α-Expansion Moves

In an α-expansion move every random variable can either retain its current label or
transition to label α. One iteration of the algorithm involves making moves for all α in
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L successively. The transformation function Tα(xi, ti) for an α-expansion move trans-
forms the label of a random variable xi as:

Tα(xi, ti) =
{

xi if ti = 0
α if ti = 1.

(13)

To derive a graph-construction that approximates the true cost of an α-expansion move
we rewrite C(L) as:

C(L) =
∑
B⊆L

kB, (14)

where the coefficients kB are calculated recursively as:

kB = C(B) −
∑

B′⊂B

kB′ . (15)

As a simplifying assumption, let us first assume there is no variable currently taking
label α. Let A be set of labels currently present in the image and δl(t) be set to 1 if
label l is present in the image after the move and 0 otherwise. Then:

δα(t) =
{

1 if ∃i ∈ V s.t. ti = 1,
0 otherwise.

(16)

∀l ∈ A , δl(t) =
{

1 if ∃i ∈ Vl s.t. ti = 0,
0 otherwise.

(17)

The α-expansion move energy of C(L(x)) can be written as:

E(t) = Enew(t) − Eold =
∑

B⊆A∪{α}
kB

∏
l∈B

δl(t) − C(A).

Ignoring the constant term and decomposing the sum into parts with and without terms
dependent on α we have:

E(t) =
∑
B⊆A

kB

∏
l∈B

δl(t) +
∑
B⊆A

kB∪{α}δα(t)
∏
l∈B

δl(t). (18)

As either α or all subsets B ⊆ A are present after any move, the following statement
holds:

δα(t)
∏
l∈B

δl(t) = δα(t) +
∏
l∈B

δl(t) − 1. (19)

Replacing the term δα(t)
∏

l∈B δl(t) and disregarding new constant terms, equation
(18) becomes:

E(t)=
∑
B⊆A

kB∪{α}δα(t)+
∑
B⊆A

(kB+kB∪{α})
∏
l∈B

δl(t)=k′
αδα(t)+

∑
B⊆A

k′
B

∏
l∈B

δl(t),

(20)
where k′

α =
∑

B⊆A kB∪{α} = C(B ∪ {α}) − C(B) and k′
B = kB + kB∪{α}.
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E(t) is, in general, a higher-order non-submodular energy, and intractable. However,
when proposing moves we can use the procedure described in [21,24] and over-estimate
the cost of moving from the current solution. If k′

B ≥ 0 the term kB

∏
l∈B δl(t) is

supermodular, and can be over estimated by a linear function EB(t) such that EB(A) =
k′

B

∏
l∈B δl(A) and EB(t) ≥ k′

B

∏
l∈B δl(t) i.e. :

EB(t) = k′
B

∏
l∈B

δl(t) ≤ k′
B

∑
l∈B

ρB
l δl(t), (21)

where ρB
l ≥ 0 and

∑
l∈B ρB

l = 1. While ρB
l can always be chosen such that the moves

proposed are guaranteed to outperform any particular αβ swap [24], in practise we set
ρB

l = 1/|B|.
For k′

B ≤ 0 we overestimate:

k′
B

∏
l∈B

δl(t) ≤ k′
B − k′

B

∑
l∈B

(1 − δl(t)) = (1 − |B|)k′
B + k′

B

∑
l∈B

ρB
l δl(t), (22)

where ρB
l = 1. Both of these over-estimations are equal to the original move energy for

the initial solution. This guarantees that the energy after the move will not increase and
must eventually converge. Ignoring new constant terms the move energy becomes:

E′(t) = k′
αδα +

∑
B⊆A

k′
B

∑
l∈B

ρB
l δl(t) = k′

αδα +
∑
l∈A

δl(t)
∑

B⊆A\{l}
k′

B∪{l}ρ
B∪{l}
l

= k′
αδα +

∑
l∈A

k′′
l δl(t), (23)

where k′′
l =

∑
B⊆A\{l} k′

B∪{l}ρ
B∪{l}
b . Coefficients k′′

l are non-negative, as

∀B ⊆ A, l ∈ B : k′
B∪{l}ρ

B∪{l}
l ≥ 0, while coefficient k′

α is non-negative for all C(L)
that are monotonically increasing with respect to L.

Lemma 2. For all C(L) monotonically increasing with respect to L the move energy
can be represented as a binary pairwise graph with |A| auxiliary variables z as:

E′(t) = min
z

[
k′

α(1−zα)+
∑
l∈A

k′′
l zl+

∑
i∈V

k′
α(1−ti)zα+

∑
l∈A

∑
i∈Vl

k′′
l ti(1−zl)

]
, (24)

where Vl is the set of pixels currently taking label l.

Proof. See appendix. This binary function is pairwise submodular and thus can be
solved efficiently using graph cuts.

For co-occurrence potentials monotonically increasing with respect to L(x) the prob-
lem can be modelled using one binary variable zl per class indicating the presence of
pixels of that class in the labelling, infinite edges for xi = l and zl = 0 and hyper-
graph over all zl modelling C(L(x)). The derived α-expansion construction can be
seen as a graph taking into account costs over all auxiliary variables zl for each move
and over-estimating the hyper-graph energy using unary potentials. Note that the energy
approximation is exact, unless existing classes are removed from the labelling. Conse-
quentially, the only effect our approximation can have on the final labelling is to over
estimate the number of classes present in an image. In practice the solutions found by
expansion were generally local optima of the exact swap moves.
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Fig. 3. Graph construction for αβ-swap and α-expansion move. In αβ-swap variable xi will
take the label α if corresponding ti are tied to the sink after the st-mincut and β otherwise. In
α-expansion variable xi changes the label to α if it is tied to the sink after the st-mincut and
remains the same otherwise. Colours represent the label of the variables before the move.

(a) (b) (c) (a) (b) (c)

Fig. 4. Best viewed in colour: (a) Typical images taken from the VOC-2009 data set [29]; (b)
A labelling based upon a pixel based random field model [17] that does not take into account
co-occurrence; (c) A labelling of the same model using co-occurrence statistics. Note that the co-
occurrence potentials perform in a similar way across different data sets, suppressing the smaller
classes (see also figure 1) if they appear together in an uncommon combination with other classes
such as a car with a monitor, a train with a chair or a dog with a bird. This results in a qualitative
rather than quantitative difference.
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4 Experiments

We performed a controlled test evaluating the performance of CRF models both with
and without co-occurrence potentials. As a base line we used the segment-based CRF

and the associative hierarchical random field (AHRF) model proposed in [17] and the
inference method [26], which currently offers state of the art performance on the MSRC

data set [29]. On the VOC data set, the baseline also makes use of the detector potentials
of [18]. The costs C(L) were created from the training set as follows: let M be the
number of images, x(m) the ground truth labelling of an image m and

z
(m)
l = δ(l ∈ L(x(m))) (25)

an indicator function for label l appearing in an image m. The associated cost was
trained as:

C(L) = −w log
1
M

(
1 +

M∑
m=1

∏
l∈L

z
(m)
l

)
, (26)

where w is the weight of the co-occurrence potential. The form guarantees, that C(L)
is monotonically increasing with respect to L. To avoid over-fitting we approximated
the potential C(L) as a second order function:

C′(L) =
∑
l∈L

cl +
∑

k,l∈L,k<l

ckl, (27)

where cl and clk minimise the mean-squared error between C(L) and C′(L).
On the MSRC data set we observed a 3% overall and 4% average per class increase

in the recall and 6% in the intersection vs. union measure with the of the segment-
based CRF and a 1% overall, 2% average per class and 2% in the intersection vs. union
measure with the AHRF. The comparison on the VOC2009 data set was performed on the
validation set, as the test set is not published and the number of permitted submissions
is limited. Performance improved by 3.5% in the intersection vs. union measure used in
the challenge. The performance on the test set was 32.11% which is comparable with
current state-of-the-art methods. Results for both data sets are given in tables 5 and 6.

By adding a co-occurrence cost into the CRF we observe constant improvement in
pixel classification for almost all classes in all measures. In accordance with desiderata
(iv), the co-occurrence potentials tend to suppress uncommon combination of classes
and produce more coherent images in the labels space. This results in a qualitative
rather than quantitative difference. Although the unary potentials already capture tex-
tural context [29], the incorporation of co-occurrence potentials leads to a significant
improvement in accuracy.

It is not computationally feasible to perform a direct comparison between the work
[22] and our potentials, as the AHRF model is defined over individual pixels, and it
is not possible to minimise the resulting fully connected graph which would contain
approximately 4× 1010 edges. Similarly, without their scene classification potentials it
was not possible to do a like for like comparison with [31].

Average running time on the MSRC data set without co-occurrence was 5.1s in com-
parison to 16.1s with co-occurrence cost. On the VOC2009 data set the average times
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were 107s and 388s for inference without respectively with co-occurrence costs. We
compared the performance of α-expansion with LP relaxation using solver given in
[1] for general co-occurrence potential on the sub-sampled images [16]. Both methods
produced similar results in terms of energy, however α-expansion was approximately
42, 000 times faster.
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Segment CRF 77 64 70 95 78 55 76 95 63 81 76 67 72 73 82 35 72 17 88 29 62 45 17
Segment CRF with CO 80 68 77 96 80 69 82 98 69 82 79 75 75 81 85 35 76 17 89 25 61 50 22
Hierarchical CRF 86 75 81 96 87 72 84 100 77 92 86 87 87 95 95 27 85 33 93 43 80 62 17
Hierarchical CRF with CO 87 77 82 95 88 73 88 100 83 92 88 87 88 96 96 27 85 37 93 49 80 65 20

Fig. 5. Quantitative results on the MSRC data set, average per class recall measure, defined as
True Positives

True Positives + False Negatives . Incorporation of co-occurrence potentials led to a constant improvement
for almost every class.
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Hierarchical CRF 27.3 77.7 38.3 9.6 24.0 35.8 31.0 59.2 36.5 21.2 8.3 1.7 22.7 14.3 17.0 26.7 21.1 15.5 16.3 14.6 48.5 33.1

Hierarchical CRF with CO 30.8 82.3 49.3 11.8 19.3 37.7 30.8 63.2 46.0 23.7 10.0 0.5 23.1 14.1 22.4 33.9 35.7 18.4 12.1 22.5 53.1 37.5

Fig. 6. Quantitative analysis of VOC2009 results on validation set, intersection vs. union mea-
sure, defined as True Positive

True Positive + False Negative + False Positive . Incorporation of co-occurrence potential led
to labellings, which visually look more coherent, but are not necessarily correct. Quantitatively
the performance improved significantly, on average by 3.5% per class.

5 Conclusion

The importance of co-occurrence statistics has been well established [31,22,6]. In this
work we have examined the use of co-occurrence statistics and how they might be incor-
porated into a global energy or likelihood model such as a conditional random field. We
have discovered that they can naturally be encoded by the use of higher order cliques,
without a significant computational overhead. Our new framework provides significant
advantages over state of the art approaches including efficient scalable inference. We
performed a controlled test evaluating the performance of CRF models both with and
without co-occurrence potentials and the incorporation of these potentials results in
quantitatively better and visually more coherent labellings.
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Appendix

Lemma 1 Proof. First we show that:

Eα(t) = min
zα

[
(Cαβ − Cβ)(1 − zα) +

∑
i∈Vαβ

(Cαβ − Cβ)(1 − ti)zα

]

=
{

0 if ∀i ∈ Vαβ : ti = 1,
Cαβ − Cβ otherwise.

(28)

If ∀i ∈ Vαβ : ti = 1 then
∑

i∈Vαβ
(Cαβ − Cβ)(1 − ti)zα = 0 and the minimum cost

cost 0 occurs when zα = 1. If ∃i ∈ Vαβ , ti = 0 the minimum cost labelling occurs
when zα = 0 and the minimum cost is Cαβ − Cβ .

Similarly:

Eβ(t) = min
zβ

[
(Cαβ − Cα)zβ +

∑
i∈Vαβ

(Cα,β − Cα)ti(1 − zβ)
]

=
{

0 if ∀i ∈ Vαβ : ti = 0,
Cαβ − Cα otherwise.

(29)

By inspection, if ∀i ∈ Vαβ : ti = 0 then
∑

i∈Vαβ
(Cα,β − Cα)ti(1 − zβ) = 0 and

the minimum cost cost 0 occurs when zβ = 0. If ∃i ∈ Vαβ , ti = 1 the minimum cost
labelling occurs when zβ = 1 and the minimum cost is Cαβ − Cα.

For all three cases (all pixels take label α, all pixels take label β and mixed labelling)
E(t) = Eα(t) + Eβ(t) + Cα + Cβ − Cαβ . The construction of the αβ-swap move is
similar to the Robust PN model [13]. ��
See figure 3 for graph construction.
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Lemma 2 Proof. Similarly to the αβ-swap proof we can show:

Eα(t) = min
zα

[
k′

α(1 − zα) +
∑
i∈V

k′
α(1 − ti)zα

]
=
{

k′
α if ∃i ∈ V s.t. ti = 0,
0 otherwise.

(30)

If ∃i ∈ Vs.t.ti = 0, then
∑

i∈V k′
α(1− ti) ≥ k′

α, the minimum is reached when zα = 0
and the cost is k′

α.
If ∀i ∈ V : ti = 1 then k′

α(1− ti)zα = 0, the minimum is reached when zα = 1 and
the cost becomes 0.

For all other l ∈ A:

Eb(t) = min
zl

[
k′′

l zl +
∑
i∈Vl

k′′
l ti(1 − zl)

]
=
{

k′′
l if ∃i ∈ Vl s.t. ti = 1,
0 otherwise.

(31)

If ∃i ∈ Vl s.t. ti = 1, then
∑

i∈Vl
k′′

l ti ≥ k′′
l , the minimum is reached when zl = 1 and

the cost is k′′
l .

If ∀i ∈ Vl : ti = 0 then
∑

i∈Vl
k′′

l ti(1 − zl) = 0, the minimum is reached when
zl = 1 and the cost becomes 0.

By summing up the cost Eα(t) and |A| costs El(t) we get E′(t) = Eα(t) +∑
l∈A El(t). If α is already present in the image k′

α = 0 and edges with this weight
and variable zα can be ignored. ��
See figure 3 for graph construction.
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Abstract. We present an extension of the classical Ambrosio-Tortorelli
approximation of the Mumford-Shah approach for the segmentation of
images with uncertain gray values resulting from measurement errors and
noise. Our approach yields a reliable precision estimate for the segmen-
tation result, and it allows to quantify the robustness of edges in noisy
images and under gray value uncertainty. We develop an ansatz space for
such images by identifying gray values with random variables. The use
of these stochastic images in the minimization of energies of Ambrosio-
Tortorelli type leads to stochastic partial differential equations for the
stochastic smoothed image and a stochastic phase field for the edge set.
For their discretization we utilize the generalized polynomial chaos ex-
pansion and the generalized spectral decomposition (GSD) method. We
demonstrate the performance of the method on artificial data as well as
real medical ultrasound data.

Keywords: Image processing, segmentation, uncertainty, stochastic im-
ages, stochastic partial differential equation, polynomial chaos, general-
ized spectral decomposition.

1 Introduction

In many applications images are used for quantitative measurements, e.g. to de-
termine the size or distance of objects. As image acquisition itself (e.g. by digital
camera, CT, MR or Ultrasound) involves measurements of physical or chemical
quantities or properties it is good scientific practice that these measurements
are equipped with error estimates and that these error estimates are propagated
through all analysis steps, including quantitative image processing. The goal is
a reliable precision estimate for the final result. In quantitative medical imag-
ing this for example can support the evaluation of the treatment response in
chemotherapy. There the growth or shrinkage of tumors must be detected ro-
bustly on base of noisy contrast enhanced CT scans. As a matter of fact small
measurement errors due to noise and uncertainty in the gray values can result in
huge variations in the computed tumor volume, thus being a source for erroneous
therapy-response indications.

Quantitative image processing is often related to the segmentation of an object
inside an image. The main idea is to detect the shape of an object inside an image

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 254–267, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. From left to right: The first mode (=mean), second mode, fifth mode and the
variance of a stochastic image are shown

and to separate it from the background. In the past, a multitude of methods
based on PDEs have been developed. Among them are level set (sharp interface)
and phase field (diffuse interface) approaches, which use implicit representations
of the object boundaries that are computationally much easier to handle than
explicit representations.

In [10] a speed function for the level set evolution is proposed, which depends
on the image gradient. The evolution stops when the level set reaches an edge
inside the image. This method was improved by Caselles et. al. [4] by introducing
an additional term, which forces the level set to stay at the boundary. The idea
of the Chan and Vese approach [5] is to segment homogeneous regions inside an
image. An evolution equation is solved until the level set separates homogeneous
regions of the image. This allows to segment objects with and without sharp
edges. The well known Mumford-Shah approach [12] is based on the minimization
of an energy functional, which measures the smoothness of the segmented objects
as well as the length of the object boundaries. An often used regularization of
the Mumford-Shah functional is the method proposed by Ambrosio-Tortorelli [1]
leading to a phase field model for the description of object boundaries.

Error propagation is very difficult for classical image processing algorithms
and in particular for the level set or phase field segmentation methods mentioned
above. In the literature a lot of authors deal with error estimates, which have
several restrictions: Weber et. al. [17] presented a method were the input data
is presumed to be Gaussian distributed. Nestares et. al. [13] were able to derive
bounds for the error and Bruhn et. al. [2] derived confidence measures for the
error. In [15] a method is presented, which assumes values of the image pixels
not to have fixed gray values but distributions of gray values. Thus, pixels are
random variables (RVs), which model the errors in the image acquisition process.
An image containing such RVs as pixels/voxels is then called a stochastic image.
A few modes of a stochastic image are pictured in Fig. 1.

In the work presented here we extend this approach of stochastic images
and combine it with Mumford-Shah segmentation in the spirit of the Ambrosio-
Tortorelli phase field approximation. For an input image with uncertain gray
values our approach provides a stochastic edge representation in the form of a
stochastic phase field as well as a stochastic image as the representation of the
smoothed input image. It allows for precise error estimates beyond the assump-
tion of Gaussian gray value distributions. In fact, the evaluation of the stochastic
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modes of the phase field allows e.g. to estimate the variance of the edge location
or the confidence for the presence of edges at certain locations for arbitrary noise
models and distributions of gray values.

The use of the notion of stochastic images in variational image processing
leads to stochastic partial differential equations (SPDE). The numerical solution
of SPDEs is a challenging problem, because intrusive methods like the stochastic
finite element method (SFEM) [8] lead to high dimensional systems of equations,
which are difficult to treat on contemporary hardware. We utilize the recently
developed generalized spectral decomposition (GSD) [14], which allows to break
down the systems of equations into a series of smaller systems by choosing op-
timal small subspaces in the stochastic dimension. This results in an enormous
speedup of the computation, a saving of memory, and in an algorithm, which is
much faster than classical sampling techniques like Monte Carlo.

2 Stochastic Images

It is popular in PDE based image processing to model an image f : D → IR on
a domain D ⊂ IRd, d = 2, 3 using a finite element space and a representation

f(x) =
∑

i∈I
f iPi(x) , (1)

where f i ∈ IR is the value of the i-th pixel from the pixel set I and Pi the shape
function (e.g. tent-function) of the i-th pixel. In a stochastic image a single
pixel has no longer a fixed value. Instead it depends on a vector of RVs ξ(ω) =
(ξ1(ω), . . . , ξn(ω)) and on a random event ω ∈ Ω. Here Ω denotes an event
space, A ⊂ 2Ω a σ-algebra and Π a probability measure. Note that the concept
of stochastic images can also be combined with other spacial discretizations,
e.g. finite difference schemes.

2.1 Polynomial Chaos Expansion

Based on the fundamental work of Wiener [18], Xiu and Karniadakis [20] devel-
oped the generalized polynomial chaos (gPC) expansion for the representation
of a RV with finite second-order moments by a polynomial basis.

Following Cameron/Martin [3], every RV X(ω) ∈ L2(Ω,A, Π) can be repre-
sented by

X(ω) =
∑∞

α=1
aαΨα(ξ̂(ω)) , (2)

where ξ̂ = (ξ1, ξ2, . . .) is a sequence of RVs with known probability density func-
tion ρj and Ψα are polynomials in ξ̂ forming a basis of L2(Ω,A, Π). For the
numerical treatment an approximation with prescribed polynomial degree p and
a fixed number of RVs ξ = (ξ1, . . . , ξn) is chosen, thus

X(ω) ≈
∑N

α=1
aαΨα(ξ(ω)) . (3)
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This representation involves a mapping ξ : Ω → Γ of events ω ∈ Ω to ξ(ω) ∈ Γ ,
where Γ =×n

j=1ξj(Ω) is finite dimensional.
The number N of basis functions depends on the number n of RVs and the

maximal polynomial degree p of the approximation. As usual for a polynomial
basis the number of basis functions is given by N =

(
n+p

p

)
. Thus, the number

of basis functions grows rapidly with the number of RVs n and the polynomial
degree p of the approximation.

It is most convenient to choose polynomials Ψα which are pairwise orthogo-
nal with respect to the corresponding probability measure of the ξj . Thus, in
the case of Gaussian RVs ξj the Ψα are products of one-dimensional Hermite
polynomials. In the case of uniformly distributed RVs the Ψα are products of
Legendre polynomials. In our work presented here we use uniformly distributed
RVs ξj involving Legendre polynomials. For arithmetic operations needed for the
use of the gPC expansion in numerical schemes we use the methods from [6].

The expectation, variance and analogously higher stochastic moments of the
approximated RV X(ω) are evaluated as

E(X) ≈
∫
Γ

N∑
α=1

aαΨα(ξ) dΠξ , Var(X) ≈
∫
Γ

(
N∑

α=1

aαΨα(ξ) − E(X)

)2

dΠξ , (4)

where dΠξ =
∏n

j=1 ρj(ξj) dξj is the transformed probability measure.

2.2 Polynomial Chaos for Stochastic Images

Following [15], the representation of an image whose pixels values are RVs is
obtained from (1) by replacing the fixed f i by RVs f i(ξ), thus

f(x, ξ) =
∑

i∈I
f i(ξ)Pi(x) . (5)

Note that here and in the following we omit denoting the dependence of ξ on
ω for reasons of simplicity of the presentation. The gPC expansion (3) allows
to approximate any second order RV f i(ξ) by a weighted sum of orthogonal
multidimensional polynomials. This leads to

f(x, ξ) =
∑

i∈I

∑N

α=1
f i

αΨα(ξ)Pi(x) (6)

as the representation of a stochastic image, i.e. an image whose gray values are
RVs. For fixed α we call the coefficient f i

α a stochastic mode of the pixel i. The
set {f i

α}i∈I collects the stochastic modes of all pixels for fixed α. This set can
be visualized as a classical image, which is done in Fig. 1 where three modes of
a sample image are shown.

From the gPC expansion (6) it is straight forward to compute stochastic
moments of the images. With the use of our orthogonal set of basis functions,
the Legendre Polynomials, we have E(Ψ1) = 1 and E(ΨαΨβ) = 0 if α �= β. Thus,
the mean and the variance of a stochastic image are computed as

E (f(xi, ·)) = f i
1 , Var (f(xi, ·)) =

∑N

α=2

(
f i

α

)2
E

(
(Ψα)2

)
. (7)
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Other stochastic moments are obtained in a similar way. In Fig. 1 the mean and
the variance of a stochastic image are shown.

Note that the representation of stochastic images presented here differs from
the one discussed in [15]. There, an image space is used in which every pixel
depends on one RV only. However, for many image acquisition processes and
image processing methods the assumption that the noise is independent for every
pixel is not true, thus we let every pixel depend on a vector of RVs ξ.

2.3 From Samples to Input Distributions

To use the notion of stochastic images developed in the previous sections for
image processing, we need to obtain the coefficients of the representation (6) for
our image undergoing the analysis. Let u(1), . . . , u(M), with u(k) ∈ IRr, r = |I|,
denote sample images, e.g. resulting from repeated acquisition. The goal is to
identify these image samples as the samples of some vector of independent RVs
X. To this end the empirical Karhunen-Loeve decomposition [9] yields

u(k) = ū +
∑r

j=1

√
sjUjX

(k)
j , (8)

where ū is the mean of the input samples. The pairs (sj , Uj) for j = 1, . . . , r are
the eigenpairs sorted in descending order of the r × r covariance matrix

C :=
1

M − 1

∑M

k=1
(u(k) − ū)T (u(k) − ū) . (9)

Moreover, the
X

(k)
j = (sj)−1/2UT

j (u(k) − ū) (10)

are samples of the desired vector of RVs X = (X1, . . . , Xn), where n < r.
The estimation of the coefficients of the gPC expansion (3) of the random

vector X from these samples can be achieved by inverting the discrete empirical
cumulative distribution function (CDF) FXj , which is based on the samples X

(k)
j .

This leads to a staircase-like approximation of the RV Xj . Following [16] we get
Xj,α from the projection on Ψα via

Xj,α = E(XjΨ
α) =

∫
Γ

F−1
Xj

(Fξ(y)) Ψα(ξ(y))dΠξ(y) . (11)

Note that the assumption of independence allows us to work with those basis
functions, which depend on one RV only, i.e. Ψα(ξ) = Ψα(ξ). The empirical CDF
and the empirical inverse of the CDF are obtained by

FXj (x) =
1
M

M∑
k=1

I
(
X

(k)
j ≤ x

)
,

F−1
Xj

(y) = min
{

x ∈
{

X
(k)
j

}M

k=1

∣∣FXj (x) ≥ y

}
,

(12)
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where I is the indicator function attaining value 1 for true arguments and 0 else.
Note that the RVs Xj are related to the eigenpairs (sj , Uj) of the Karhunen-
Loeve decomposition via (10). Using the expression for the inverse F−1

Xj
together

with a numerical quadrature associated with the measure Πξ allows to compute
the gPC expansion coefficients Xα

j independently from each other.
We emphasize that the assumption of independence of the RVs Xj is very

strong and in general not true. However, following [16] in particular for the case
of few input samples this assumption is reasonable.

Also note that the estimation of the typically dense covariance matrix is only
feasible for images of low dimension r. For large image dimensions we must model
the gray value distribution using characteristics of the acquisition process and
not via the analysis of samples. This noise modeling is part of ongoing work.

3 A Phase Field Model for Segmentation on Stochastic
Images

We now focus on the combination of the notion of stochastic images with the
segmentation approach in the spirit of Ambrosio and Tortorelli [1].

3.1 Classical Mumford-Shah and Ambrosio-Tortorelli Segmentation

For a given initial image u0 on the domain D Mumford and Shah [12] proposed to
obtain an edge set K ⊂ D and a smooth representation u of u0 as the minimizers
of the energy

EMS(u, K) :=
∫

D\K

(u − u0)2dx + μ

∫
D\K

|∇u|2dx + νHd−1(K) , (13)

where μ and ν are positive weights, and Hd−1(K) the d−1-dimensional Hausdorff
measure. Roughly speaking, the minimizer u must be an image, which is close to
the initial u0 away from the edges (then

∫
D\K(u − u0)2dx is small) and smooth

away from the edges (then
∫

D\K
|∇u|2dx is small). Moreover the length of edges

K must be small (then Hd−1(K), measuring the length of the edge set, is small).
Ambrosio and Tortorelli [1] proposed to approximate the edge set by a phase

field φ : D → IR, i.e. a smooth function that is zero on edges and one away from
the edges. To this end they define the energy

EAT(u, φ) := Efid(u) + Ereg(u, φ) + Ephase(φ)

:=
∫

D

(u(x) − u0(x))2 dx +
∫

D

μ
(
φ(x)2 + kε

)
|∇u(x)|2 dx

+
∫

D

ν ε |∇φ(x)|2 +
ν

4ε
(1 − φ(x))2 dx .

(14)

The first integral ensures closeness of the smoothed image to the original u0.
The second integral measures smoothness of u apart from areas where φ is small,
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and enforces φ to be small in the vicinity of edges. The parameter kε ensures
coerciveness of the differential operator and thus existence of solutions, because
φ2 may vanish. The third integral drives the phase field towards one and ensures
small edge sets via the term |∇φ|2. The parameter ε allows to control the scale
of the detected edges.

For the numerical determination of a minimizing pair (u, φ) the Euler-La-
grange equations of (14) are solved. Thus we seek u, φ ∈ H1(D) as the weak
solutions of

−div
(
μ(φ2 + kε)∇u

)
+ u = u0 , −εΔφ +

(
1
4ε

+
μ

2ν
|∇u|2

)
φ =

1
4ε

. (15)

In an implementation both equations can be solved alternately letting either u
or φ vary until a fixed point as the joint solution of both equations is reached.

3.2 Ambrosio-Tortorelli Segmentation on Stochastic Images

For the segmentation of stochastic images by the phase field approach of Ambro-
sio and Tortorelli we replace the deterministic u and φ by their corresponding
stochastic analogs. The stochastic energy components are then defined as the
expectations of the classical components, i.e.

Es
fid(u) := E(Efid) =

∫
Γ

∫
D

(u (x, ξ) − u0 (x, ξ))2 dx dΠξ

Es
reg(u, φ) := E(Ereg) =

∫
Γ

∫
D

μ
(
φ (x, ξ)2 + kε

)
|∇u(x, ξ)|2 dx dΠξ

Es
phase(φ) := E(Ephase) =

∫
Γ

∫
D

ν ε |∇φ(x, ξ)|2 +
ν

4ε
(1 − φ (x, ξ))2 dx dΠξ

(16)
and we define the stochastic energy as the sum of these, i.e.

Es
AT (u, φ) = Es

fid(u) + Es
reg(u, φ) + Es

phase(φ) . (17)

The Euler-Lagrange equations of the energy are obtained from the first vari-
ation of the above integrals. Since the stochastic energies (16) are just the ex-
pectations of the classical energies (14) the computations are straight forward
and completely analog to the deterministic case. For example, we get for a test
function θ : D × Γ → IR

d

dt
Es

fid(u+t θ)
∣∣∣
t=0

=
d

dt

∫
Γ

∫
D

(
u(x, ξ) + tθ(x, ξ) − u0(x, ξ)

)2

dx dΠξ

∣∣∣
t=0

=
∫

Γ

∫
D

2
(
u(x, ξ) − u0(x, ξ)

)
θ(x, ξ) dx dΠξ .

(18)
With analog computations for the remaining energy contributions we arrive at
the following system of stochastic partial differential equations: We seek for
u, φ : D × Γ → IR as the weak solutions of
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−div
(
μ(φ(x, ξ)2 + kε)∇u(x, ξ)

)
+ u(x, ξ) = u0(x, ξ)

−εΔφ(x, ξ) +
(

1
4ε

+
μ

2ν
|∇u(x, ξ)|2

)
φ(x, ξ) =

1
4ε

.
(19)

This system is analog to the classical system (15) in which images have been
replaced by stochastic images.

3.3 Weak Formulation and Discretization

The system (19) contains two elliptic SPDEs, which are supposed to be inter-
preted in the weak sense. To this end we multiply the equations by a test function
θ : D × Γ → IR, integrate over Γ with respect to the corresponding probabil-
ity measure and integrate by parts over the physical domain D. For the first
equation in (19) this leads us to∫

Γ

∫
D

μ
(
φ (x, ξ)2 + kε

)
∇u(x, ξ) · ∇θ(x, ξ) + u(x, ξ)θ(x, ξ) dx dΠξ

=
∫
Γ

∫
D

u0(x, ξ)θ(x, ξ) dx dΠξ

(20)

and to an analog expression for the second part of (19). Here we assume Neu-
mann (natural) boundary conditions for u and φ such that no boundary terms
appear in the weak form. For the existence of solutions for these SPDEs, the con-
stant kε is supposed to ensure the positivity of the diffusion coefficient μ(φ2+kε).
In fact, there must exist cmin, cmax ∈ (0,∞) such that

P
(
ω ∈ Ω

∣∣ μ
(
φ (x, ξ(ω))2 + kε

)
∈ [cmin, cmax] ∀x ∈ D

)
= 1 . (21)

Finally, solutions u and φ will be random fields, i.e. RVs, which are indexed by a
spatial coordinate and such that u(·, ξ), φ(·, ξ) ∈ H1(D) almost sure. Thus, for
almost every realization (in the sense of the measure Πξ) the stochastic images
u and φ have weak derivatives in L2(D).

The weak system (20) is discretized with a substitution of the gPC expansion
(6) of the image and the phase field. As test functions products Pj(x)Ψβ(ξ)
of spatial basis functions and stochastic basis functions are used. Denoting the
vectors of coefficients by Uα = (ui

α)i∈I ∈ IR|I| and similarly for the phase field
φ and the initial image u0 we get the fully discrete systems

N∑
α=1

(
Mα,β+Lα,β

)
Uα =

N∑
α=1

Mα,β(U0)α ∀β ∈ {1, . . . , N}

N∑
α=1

(
εSα,β+T α,β

)
Φα =

N∑
α=1

Aα ∀β ∈ {1, . . . , N}
(22)

where Mα,β, Lα,β, Sα,β and T α,β are the blocks of the system matrix, defined as(
Mα,β

)
i,j

= E(ΨαΨβ)
∫

D

Pi Pj dx ,
(
Sα,β

)
i,j

= E(ΨαΨβ)
∫

D

∇Pi·∇Pjdx (23)
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and (
Lα,β

)
i,j

=
∑

k

∑
γ

E(ΨαΨβΨγ) (φ̃2)k
γ

∫
D

∇Pi · ∇PjPk dx ,

(
T α,β

)
i,j

=
∑

k

∑
γ

E(ΨαΨβΨγ) uk
γ

∫
D

PiPjPk dx .

(24)

Here, (φ̃2)k
γ denotes the coefficients of the gPC expansion of the Galerkin pro-

jection of φ2 onto the image space (cf. [6]). Finally, the right hand side vector is
defined as

(Aα)i =
∫

Γ

Ψαdξ

∫
D

1
4ε

Pi dx =

⎧⎨⎩
∫

D

1
4ε

Pi dx if α = 1,

0 else .
(25)

Note that the expectations of the products of stochastic basis functions involved
above can be precomputed in advance, since these do only depend on the choice
of basis functions. Analog to the classical finite element method the systems of
linear equations can be treated by an iterative solver like the method of conjugate
gradients.

3.4 Generalized Spectral Decomposition

A significant speedup of the solution process and an enormous reduction of the
memory requirements are achieved by selecting suitable sub-spaces and a special
basis which captures the dominant stochastic effects. In the GSD [14] the solution
u (analogously φ) is approximated by

u(x, ξ) ≈
∑K

j=1
λj(ξ)Vj(x) , (26)

where Vj is a deterministic function, λj a stochastic function and K the number
of modes of the decomposition. Thus, the GSD allows to compute a solution
where the deterministic and the stochastic basis functions are not fixed a priori.
The flexible basis functions allow to find a solution, which has significant less
modes, i.e. K � N , but has nearly the same approximation quality.

In [14] it is shown how to achieve the modes of an optimal approximation in
the energy norm ‖ · ‖A of the problem, i.e. such that∥∥∥∥u −

∑K

j=1
λjVj

∥∥∥∥2

A

= min
λ,U

∥∥∥∥u −
∑K

j=1
λjVj

∥∥∥∥
A

. (27)

Details about the GSD method, proofs for the optimality of the approximation,
implementation details and numerical tests can be found in [14] and in the
supplementary material of this contribution. In our implementation the power-
type GSD presented in [14] is used.
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4 Results

In the following we demonstrate the performance of our stochastic segmentation
approach. Our first input image data set consists of M = 5 samples from the
artificial "street sequence" [11], the second dataset consists of M = 45 sample
images from ultrasound (US) imaging of a structure in the forearm, acquired
within 2 seconds. Note that we do not consider the street sequence as an image
sequence here, instead we use 5 consecutive frames as samples of the noisy and
uncertain acquisition of the same object. From the samples we compute the gPC
representation using n = 10 (US), respectively n = 4 (street scene) RVs with
the method described in Section 2.3. Our images have a resolution of 100× 100
pixels. We use a maximal polynomial degree of p = 3 leading to a gPC dimension
N = 286 (US) and N = 35 (street scene), respectively. For the reduction of the
complexity by the GSD we set K = 6. Furthermore, we use ν = 0.00075 and
kε = 2.0h in all computations, where h is the grid spacing. To show the influence
of the RVs, we have also used the US data using the mean value only (n = 0).

4.1 Street Image Data Set

Between the samples of the street sequence the camera position and the position
of the car differs, thus the edge detection using (17) should show a high variance
at edges close to the camera (thus moving much) and around the moving car.
The results depicted in Fig. 2 match with these expectations. Indeed, in the

Samples E(φ) Var(φ)
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M
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Fig. 2. Results of the segmentation of the street scene
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Fig. 3. Left: Denotation of image regions. The image shows a structure in the forearm.
Right: Probability density function of a single pixel from the resulting phase field.

Table 1. Comparison of the computation times of different methods for the discretiza-
tion of SPDEs (measured for the street scene)

Numerical method Computation time Number of samples
MonteCarlo about 35 hours 10000
Stochastic Collocation about 7 hours about 2000
GSD about 2 hours n/a

region around the wheels of the car and around the right shoulder of the person
the edge detection is most influenced by the moving camera, respectively the
varying gray values between the samples at the edges. Also around the edges in
the background the variance is increased due to the moving camera. A compari-
son of the results of our GSD implementation with a simple Monte Carlo method
with 10000 sample computations shown in Fig. 2 reveals that both approaches
lead to similar results. In Table 1 we report the execution times on a typical
desktop PC for the Monte Carlo sampling, a more sophisticated sampling using
stochastic collocation [19] and the GSD method discussed here. We see that the
GSD implementation is about 20 times faster as the classical sampling, however
the intrusive GSD needs more implementational effort than the non-intrusive
sampling techniques, which can reuse existing deterministic code, because sam-
pling techniques solve the classical Ambrosio-Tortorelli model for every sample
and compute stochastic quantities like the variance afterwards from the results
on the samples.

4.2 Ultrasound Samples

The conversion of the input samples into the gPC expansion as described in Sec-
tion 2.3 leads to the representation of the stochastic ultrasound image in a 286-
dimensional space. Thus, the only meaningful way of visualizing this stochastic
image is via stochastic moments like mean and variance. Fig. 4 shows the mean
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10 RVs mean only
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Fig. 4. The mean and variance of the resulting image and phase field for different
parameter settings and numbers of RVs using the ultrasound data

and the variance of the phase field φ and the smoothed image u for different set-
tings of the smoothing coefficient μ and the phase field width ε. The algorithm
needs about 100 iterations, i.e. alternate solutions of (19) for u and φ. However,
in the first steps the convergence is very fast and already after about 10 itera-
tions no visible difference in u and φ can be seen (cf. movie in the supplementary
material that shows the solution iterations).

From the variance image of the phase field the identification of regions where
the input distribution has a strong influence on the segmentation result (areas
with high variance) is straight forward. A benefit of our new stochastic edge
detection via the phase field φ is that it allows for an identification of edges in
a way that is robust with regard to parameter changes. Indeed, in particular
within the four regions marked in the left picture of Fig. 3 the expectation of
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the phase field is highly influenced by the choice of μ and ν as can be seen in
Fig. 4. The blurred edge at position 1 is seen in the expectation of the phase field
only when a narrow phase field is used. In region 2 we have a different situation
in which the edge can be identified only using a widish phase field. Also the
edges at positions 3 and 4 can be identified using adjusted parameters. However,
note that in case one of these edges is not seen in the expectation of φ because
of a particular choice of parameters, a high variance of φ indicates the possible
existence of an edge. This is in particular obvious for the regions 1 and 2.

Moreover, our algorithm can estimate the reliability of detected edges: A low
mean phase field value and a low variance indicate, that the edge is robust and
not influenced by the noise and uncertainty of the acquisition process. This is for
example true for the edges on the top of the structure shown here. In contrast
to that a high variance in regions with a high or low mean phase field value
(e.g. the labeled regions 1-4) indicates regions, where the detected edge is highly
sensitive to the noise and uncertain acquisition process.

Also, we can easily extract the distribution of the gray values for any pixel
location inside the image and the phase field from the gPC expansion obtained
via GSD. In Fig. 3, right, we show the probability density function of a pixel
from the phase field computed via the GSD.

5 Conclusions

We have presented an extension of the well known Ambrosio-Tortorelli phase
field approximation of the Mumford-Shah functional to stochastic images. Our
approach allows us to propagate information about the distribution of the gray
values in the input image, which result from noise or erroneous measurements,
through the segmentation process, leading to a segmentation result that contains
information about the reliability of the segmentation. The resulting SPDEs are
discretized by the generalized polynomial chaos approach and a generalized spec-
tral decomposition method. We have shown the application of the segmentation
to artificial sample images as well as to noisy ultrasound image samples. In an
ongoing work we investigate the use of our algorithm on the basis of noise models
instead of multiple input image samples.

In particular for medical applications of quantitative image processing we en-
visage that our approach can be a basis for superior results, since it allows to
measure the size of lesions including reliability estimates. But also other appli-
cations, e.g. material science, quality control, geography etc. can benefit from
the reliability estimates. In the future we plan to investigate a stochastic exten-
sion of edge linking methods [7] for the Mumford-Shah functional. Also, we will
study stochastic extensions of sharp interface segmentation methods like level
set based approaches.

Acknowledgements. We acknowledge R.M. Kirby from the University of Utah,
USA for fruitful discussions and D. Ojdanic from Fraunhofer MEVIS, Bremen,
Germany for providing the ultrasound data set.
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Abstract. Multiple Hypothesis Video Segmentation (MHVS) is a

method for the unsupervised photometric segmentation of video se-

quences. MHVS segments arbitrarily long video streams by considering

only a few frames at a time, and handles the automatic creation, continu-

ation and termination of labels with no user initialization or supervision.

The process begins by generating several pre-segmentations per frame

and enumerating multiple possible trajectories of pixel regions within a

short time window. After assigning each trajectory a score, we let the

trajectories compete with each other to segment the sequence. We de-

termine the solution of this segmentation problem as the MAP labeling

of a higher-order random field. This framework allows MHVS to achieve

spatial and temporal long-range label consistency while operating in an

on-line manner. We test MHVS on several videos of natural scenes with

arbitrary camera and object motion.

1 Introduction

Unsupervised photometric video segmentation, namely the automatic labeling of
a video based on texture, color and/or motion, is an important computer vision
problem with applications in areas such as activity recognition, video analytics,
summarization, surveillance and browsing [1,2]. However, despite its significance,
the problem remains largely open for several reasons.

First, the unsupervised segmentation of arbitrarily long videos requires the
automatic creation, continuation and termination of labels to handle the free flow
of objects entering and leaving the scene. Due to occlusions, objects often merge
and split in multiple 2D regions throughout a video. Such events are common
when dealing with natural videos with arbitrary camera and object motion. A
complete solution to the problem of multiple-object video segmentation requires
tracking object fragments and handling splitting or merging events.

Second, robust unsupervised video segmentation must take into account spa-
tial and temporal long-range relationships between pixels that can be several
frames apart. Segmentation methods that track objects by propagating solu-
tions frame-to-frame [3,4] are prone to overlook pixel relationships that span
several frames.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 268–281, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Results from the on-line, unsupervised, photometric segmentation of a video

sequence with MHVS. Top: original frames. Bottom: segmented frames. MHVS keeps

track of multiple possible segmentations, collecting evidence across several frames be-

fore assigning a label to every pixel in the sequence. It also automatically creates and

terminates labels depending on the scene complexity and as the video is processed.

Finally, without knowledge about the number of objects to extract from an im-
age sequence, the problem of unsupervised video segmentation becomes strongly
ill-posed [5]. Determining the optimal number of clusters is a fundamental prob-
lem in unsupervised data clustering [5].

Contributions. MHVS is, to the best of our knowledge, the first solution to the
problem of fully unsupervised on-line video segmentation that can effectively
handle arbitrarily long sequences, create and terminate labels as the video is
processed, and still preserve the photometric consistency of the segmentation
across several frames.

Although the connections between tracking and video segmentation are well
discussed in e.g. [6,3,7,4,8], we present the first extension of the idea of deferred
inference from Multiple Hypothesis Tracking (MHT) [9,10] to the problem of
unsupervised, multi-label, on-line video segmentation. MHVS relies on the use of
space-time segmentation hypotheses, corresponding to alternative ways of group-
ing pixels in the video. This allows MHVS to postpone segmentation decisions
until evidence has been collected across several frames, and to therefore operate
in an on-line manner while still considering pixel relationships that span multiple
frames. This extension offers other important advantages. Most notably, MHVS

can dynamically handle the automatic creation, continuation and termination of
labels depending on the scene complexity, and as the video is processed.

We also show how higher-order conditional random fields (CRFs), which we
use to solve the hypothesis competition problem, can be applied to the problem
of unsupervised on-line video segmentation. Here, we address two important
challenges. First, the fact that only a subset of the data is available at any time
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Fig. 2. Left: MHVS labels a video stream in an on-line manner considering several

frames at a time. Right: For each processing window, MHVS generates multiple pre-

segmentations per frame, and finds sequences of superpixels (shown as colored regions)

that match consistently in time. Each of these sequences, called a superpixel flow, is

ranked depending on its photometric consistency and considered as a possible label for

segmentation. The processing windows overlap one or more frames to allow labels to

propagate from one temporal window to the next.

during the processing, and second, that the labels themselves must be inferred
from the data. A working example of MHVS is illustrated on Fig. 1.

Previous work. Some of the common features and limitations found in previous
work on video segmentation include:

1. The requirement that all frames are available at processing time and can
be segmented together [6,11,12,13]. While this assumption holds for certain
applications, the segmentation of arbitrarily long video sequences requires the
ability to segment and track results in a continuous, sequential manner (we
refer to this as on-line video segmentation). Unfortunately, those methods
that can segment video in an on-line manner usually track labels from frame
to frame [3,7,4] (i.e., they only consider two frames at a time), which makes
them sensitive to segmentation errors that gradually accumulate over time.

2. The user is often required to provide graphical input in the form of scribbles,
seeds, or even accurate boundary descriptions in one or multiple frames to
initiate or facilitate the segmentation [14,11]. This can be helpful or even
necessary for the high level grouping of segments or pixels, but we aim for an
automatic method.

3. The assumption that the number of labels is known a priori or is constant
across frames [15,16,17,18,12,14] is useful in some cases such as foreground-
background video segmentation [18,12,14], but only a few methods can adap-
tively and dynamically determine the number of labels required to photo-
metrically segment the video. Such ability to adjust is especially important
in on-line video segmentation, since the composition of the scene tends to
change over time.
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Recently, Brendel and Todorovic [6] presented a method for unsupervised photo-
metric video segmentation based on mean-shift and graph relaxation. The main
difference between their work and MHVS is that our method can operate in an
on-line manner and consider multiple segmentation hypotheses before segment-
ing the video stream.

2 An Overview of MHVS

The three main steps in MHVS are: hypotheses enumeration, hypotheses scoring,
and hypotheses competition.

A hypothesis refers to one possible way of grouping several pixels in a video,
i.e., a correspondence of pixels across multiple frames. More specifically, we
define a hypothesis as a grouping or flow of superpixels, where a superpixel
refers to a contiguous region of pixels obtained from a tessellation of the image
plane without overlaps or gaps. This way, each hypothesis can be viewed as a
possible label that can be assigned to a group of pixels in a video (see Fig. 2).

Since different hypotheses represent alternative trajectories of superpixels,
hypotheses will be said to be incompatible when they overlap; that is, when one
or more pixels are contained in more than one hypothesis. In order to obtain a
consistent labeling of the sequence, we aim for the exclusive selection of only one
hypothesis for every set of overlapping hypotheses (see an example in Fig. 3).

Depending on the photometric consistency of each hypothesis, we assign them
a score (a likelihood). This allows us to rank hypotheses and compare them in
probabilistic terms. The problem of enumeration and scoring of hypotheses is
discussed in Section 3. Once hypotheses have been enumerated and assigned
a score, we make them compete with each other to label the video sequence.
This competition penalizes the non-exclusive selection between hypotheses that
are incompatible in the labeling. In order to resolve the hypotheses competition
problem, MHVS relies on MAP estimation on a higher-order conditional random
field (CRF). In this probabilistic formulation, hypotheses will be considered as
labels or classes that can be assigned to superpixels on a video. Details about
this step are covered in Section 4.

For the segmentation of arbitrarily long video sequences, the above process of
hypotheses enumeration, scoring and competition is repeated every few frames
using a sliding window. By enumerating hypotheses that include the labels from
the segmentation of preceeding windows, solutions can be propagated sequen-
tially throughout an arbitrarily long video stream.

3 Enumeration and Scoring of Hypotheses

The enumeration of hypotheses is a crucial step in MHVS. Since the number of all
possible space-time hypotheses grows factorially with frame resolution and video
length, this enumeration must be selective. The pruning or selective sampling of
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Fig. 3. Two hypotheses that are incompatible. The hypotheses (shown in green and

red) overlap on the first two frames. The segmentation of the sequence should ensure

their exclusive selection. MHVS ranks hypotheses photometrically and penalizes the

non-consistent selection of the most coherent ones over time.

hypotheses is a common step in the MHT literature, and it is usually solved via
a “gating” procedure [19].

We address the enumeration and scoring of hypotheses in two steps. First,
we generate multiple pre-segmentations for each frame within the processing
window using segmentation methods from the literature, e.g., [20], [21]. Then,
we match the resulting segments across the sequence based on their photometric
similarity. Those segments that match consistently within the sequence will be
considered as hypotheses (possible labels) for segmentation.

The above approach can be modeled with a Markov chain of length equal
to that of the processing window. This allows us to look at hypotheses as time
sequences of superpixels that are generated by the chain, with the score of each
hypothesis given by the probability of having the sequence generated by the
chain.

We formalize this approach as follows. Given a window of F consecutive frames
from a video stream, we build a weighted, directed acyclic graph G = (V, E) that
we denote as a superpixel adjacency graph. In this graph, a node represents a su-
perpixel from one of the pre-segmentations on some frame within the processing
window, and an edge captures the similarity between two temporally adjacent
superpixels (superpixels that overlap spatially but belong to two different and
consecutive frames). Edges are defined to point from a superpixel from one of the
pre-segmentations on time t to a superpixel from one of the pre-segmentations
on t + 1. Fig. 4 shows an illustration of how this graph is built.

The above graph can be thought as the transition diagram of a Markov chain
of length F [22]. In this model, each frame is associated with a variable that
represents the selection of one superpixel in the frame, and the transition prob-
abilities between two variables are given by the photometric similarity between
two temporally adjacent superpixels. By sampling from the chain, for example,
via ancestral sampling [22] or by computing shortest paths in the transition
diagram, we can generate hypotheses with strong spatio-temporal coherency.
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Fig. 4. Construction of the superpixel adjacency graph for the enumeration of hy-

potheses (flows of superpixels). (a) For each processing window, MHVS generates P
pre-segmentations on each frame. Each of them groups pixels at different scales and

according to different photometric criteria. The nodes in the graph represent super-

pixels from some of the pre-segmentations on each frame, and the edges capture the

photometric similarity between two temporally adjacency superpixels. (b) Two super-

pixels are considered to be temporally adjacent if they overlap spatially but belong to

two different and consecutive frames.

More specifically, for a given window of F frames, and the set of all superpixels
V = {V1, . . . , VF } generated from P pre-segmentations on each frame, we can
estimate the joint distribution of a sequence of superpixels (z1, . . . , zF ) as

p (z1, . . . , zF ) = p (z1) ·
t=F∏
t=2

At−1,t
j,k , (1)

where the transition matrices At−1,t
j,k capture the photometric similarity between

two temporally adjacent superpixels zt−1 = j and zt = k, and are computed from
the color difference between two superpixels in LUV colorspace, as suggested
in [23]. In order to generate hypotheses that can equally start from any superpixel
on the first frame, we model the marginal distribution of the node z1 as a uniform
distribution. Further details about the generation of pre-segmentations and the
sampling from the Markov chain are discussed in Section 5.

Once a set of hypotheses has been enumerated, we measure their temporal
coherency using the joint distribution of the Markov chain. Given a set of L
hypotheses H = {H1, . . . , HL}, we define the score function s : H → [0, 1] as:

s (Hk) = N1 · p (z1 = v1, . . . , zF = vF ) =
F∏

t=2

At−1,t
vt−1,vt

, (2)

where (v1, . . . , vF ) is a sequence of superpixels comprising a hypothesis Hk and
N1 is the number of superpixels on the first frame.
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Fig. 5. We define our higher-order conditional random field on a sequence of fine grids

of superpixels S = {S1, . . . SF }. Each grid St is obtained as the superposition of the P
tessellations that were generated for the enumeration of hypotheses. The mapping gt

takes superpixels vt from one of the pre-segmentations to the superposition St. Each

superpixel in St is represented in our CRF with a random variable that can be labeled

with one of the hypotheses {H1, . . . , HL}.

Propagation of solutions. The above approach needs to be extended to also
enumerate hypotheses that propagate the segmentation results from preceding
processing windows. We address this problem by allowing our processing win-
dows to overlap one or more frames. The overlap can be used to consider the
superpixels resulting from the segmentation of each window when enumerating
hypothesis in the next window. That is, the set of pre-segmented superpixels
V = {V1, . . . , VF } in a window w, w > 1, is extended to include the superpixels
that result from the segmentation of the window w − 1.

4 Hypotheses Competition

Once hypotheses have been enumerated and scored for a particular window of
frames, we make them compete with each other to label the sequence. We deter-
mine the solution to this segmentation problem as the MAP labeling of a random
field defined on a sequence of fine grids of superpixels. This framework allows us
to look at hypotheses as labels that can be assigned to random variables, each
one representing a different superpixel in the sequence (see Fig. 5).

Our objective function consists of three terms. A unary term that measures
how much a superpixel within the CRF grid agrees with a given hypothesis, a
binary term that encourages photometrically similar and spatially neighboring
superpixels to select the same hypothesis, and a higher-order term that forces
the consistent labeling of the sequence with the most photometrically coherent
hypotheses over time (See Fig. 6 for an illustration).

We formalize this as follows. For each processing window of F frames, we de-
fine a random field of N variables Xi defined on a sequence of grids of superpixels
S = {S1, . . . SF }, one for each frame. Each grid St is obtained as the superpo-
sition of the P pre-segmentations used for the enumeration of hypotheses, and
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ψi
ψi,j

ψHk

Xl

t

Fig. 6. The unary, pairwise and higher-order potentials, ψi, ψi,j and ψHk , respectively,

control the statistical dependency between random variables Xl, each one representing

a different superpixel within the processing window.

yields a mapping gt that takes every superpixel from the pre-segmentations to
the set St (see Fig. 5). The random variables Xi are associated with superpixels
from S , and take values from the label set H = {H1, . . . , HL}, where each hy-
pothesis Hk is sampled from the Markov chain described in the previous section.

A sample x = (x1, . . . , xN ) ∈ H N from the field, i.e. an assignment of la-
bels (hypotheses) to its random variables, is referred to as a labeling. From the
Markov-Gibbs equivalence, the MAP labeling x∗ of the random field takes the
form:

x∗ = arg min
x∈H N

∑
c∈C

αcψc (xc) , (3)

where the potential functions ψc are defined on cliques of variables c from some
set C , and αc are weighting parameters between the different potentials. The
labeling xc represents the assignment of the random variables Xi within the
clique c to their corresponding values in x.

We next define three different types of potentials ψc (representing penalties
on the labeling) for our objective function in Eq. 3. The potentials enforce the
consistent photometric labeling of the sequence. The unary potentials favor the
selection of hypotheses that provide a high detail (fine) labeling of each frame.
The pairwise potentials encourage nearby superpixels to get the same label,
depending on their photometric similarity. Finally, the higher-order potentials
force the exclusive selection of hypotheses that are incompatible with each other.

Unary potentials. The mappings g = (g1, . . . , gF ) between the pre-segmenta-
tions and the grids St (see Fig. 5) are used to define the penalty of assigning a
hypothesis xi to the random variable Xi representing the superpixel si as

ψi (xi) = 1 − d (si, g (xi)) , (4)

where g (xi) represents the mapping of the superpixels within the hypothesis xi

to the set of superpixels S . The function d (a, b) measures the Dice coefficient
∈ [0, 1] on the plane between the sets of pixels a and b (the spatial overlap
between a and b), and is defined as d (a, b) = 2|a ∩ b|/ (|a| + |b|). Since the set
of superpixels {S1, . . . SF } represents an over-segmentation on each frame (it
is obtained from a superposition of tessellations), the unary potential favors
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labelings of the sequence with spatially thin hypotheses, i.e. those with the
highest overlap with superpixels on the CRF grid, in the Dice-metric sense.

Pairwise potentials. We define the following potential for every pair of spa-
tially adjacent superpixels si, sj in each frame:

ψi,j (xi, xj) =

{
0 if xi = xj

b (i, j) otherwise,
(5)

where b (i, j) captures the photometric similarity between adjacent superpixels,
and can be obtained by sampling from a boundary map of the image. The above
potential guarantees a discontinuity-preserving labeling of the video, and penal-
izes label disagreement between neighboring superpixels that are photometrically
similar [24]. A discussion on the choice of b (i, j) is given in Section 5.

Higher-order potentials. As mentioned in Section 2, we penalize the non-
exclusive selection of hypotheses that are incompatible with each other. To do
this, we design a higher-order potential that favors the consistent selection of
the most photometrically coherent hypotheses over time. The notion of label
consistency was formalized by Kohli et al . in [25] and [26] with the introduction
of the Robust Pn model, which they applied to the problem of supervised multi-
class image segmentation. Here, we use this model to penalize label disagreement
between superpixels comprising hypotheses of high photometric coherency. For
each hypothesis Hk, we define the following potential:

ψHk
(xk) =

{
Nk (xk) 1

Qk
s(Hk) if Nk (xk) ≤ Qk

s(Hk) otherwise,
(6)

where xk represents the labeling of the superpixels comprising the hypothesis Hk,
and Nk (xk) denotes the number of variables not taking the dominant label (i.e.,
it measures the label disagreement within the hypothesis). The score function
s (Hk) defined in the previous section measures the photometric coherency of the
hypothesis Hk (see Eq. 2). The truncation parameter Qk controls the rigidity of
the higher-order potential [25], and we define it as:

Qk =
1 − s (Hk)

max
m∈[1,L]

(1 − s (Hm))
· |c|

2
. (7)

The potential ψHk
with the above truncation parameter gives higher penalties to

those labelings where there is strong label disagreement between superpixels that
belong to highly photometrically coherent hypotheses (the more photometrically
coherent a hypothesis is, the higher the penalty for disagreement between the
labels of the CRF superpixels comprising it). See Fig.7(a) for an example.

Labeling. Once we have defined unary, binary and higher-order potentials for
our objective function in Eq. 3, we approximate the MAP estimate of the CRF

using a graph cuts solver for the Robust Pn model [25]. This solver relies on a
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Fig. 7. (a) Higher-order penalty (y-axis) as a function of label disagreement within a

hypothesis (x-axis) for two overlapping hypotheses H1 and H2, with H1 being more

photometrically coherent than H2. The potential ψH1 strongly penalizes any label dis-

agreement within H1, while ψH2 tolerates significantly higher label disagreement within

H2. (b) The colored circles represent superpixels that were labeled in the preceding pro-

cessing window (each color being a different label). The groupings l1, l2 and l3 are the

result of the MAP labeling within the current processing window. Depending on the

selection of γ1 and γ2 (see text), l1 and l2 are considered as new labels or mapped to

the label depicted in red.

sequence of alpha-expansion moves that are binary, quadratic and submodular,
and therefore exactly computable in polynomial time [25]. From the association
between variables Xi and the superpixels in S, this MAP estimate also yields
the segmentation of all the pixels within the processing window.

Handling mergers and splits. The implicit (non-parametric) object boundary
representation provided by the random field [24] allows MHVS to easily handle
merging and splitting of labels over time; when an object is split, the MAP

labeling of the graph yields disconnected regions that share the same label. Since
labels are propagated across processing windows, when the parts come back in
contact, the labeling yields a single connected region with the same label. The
automatic merging of object parts that were not previously split in the video
is also implicitly handled by MHVS. This merging occurs when the parts of an
object are included within the same hypothesis (i.e. one of the pre-segmentations
groups the parts together).

In order to create new labels for parts of old labels, when the parts become
distinguishable enough over time to be tracked, a final mapping of labels is
done before moving to the next processing window. We handle this scenario by
comparing the spatial overlap between new labels (from the current processing
window) and old labels (from the preceding processing window). We check for
new labels l that significantly overlap spatially with some old label p, but barely
overlap with any other old label q. We can measure such overlaps using their
Dice coefficients, and we denote them by γp and γq. Then, if γp > γ1 and γq < γ2,
∀q �= p, for a pair of fixed parameters γ1, γ2 ∈ [0, 1], we map the label l to p,
otherwise l is considered a new label (see Fig. 7(b) for an example).
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5 Experimental Results
Most previous work on unsupervised photometric video segmentation has fo-
cused on the segmentation of sequences with relatively static backgrounds and
scene complexity [4,6,12,16]. In this paper, however, we show results from ap-
plying MHVS to natural videos with arbitrary motion on outdoor scenes. Since
existing datasets of manually-labeled video sequences are relatively short (often
less than 30 frames), and usually contain a few number of labeled objects (often
only foreground and background), we collected five videos of outdoor scenes with
100 frames each, and manually annotated an average of 25 objects per video
every three frames. The videos include occlusions, objects that often enter and
leave the scene, and dynamic backgrounds (see Figs. 1 and 8 for frame examples).

We compared MHVS with spatio-temporal mean-shift (an off-line method,
similar to [13]), and pairwise graph propagation (an on-line method with frame-
to-frame propagation, similar to [4]). In both methods we included color, texture
and motion features. For the test with mean-shift, each video was processed in
a single memory-intensive batch. For our MHVS tests, F was set to 5 frames
to meet memory constraints, but values between 3 and 10 gave good results in
general. The size of the processing window was also observed to balance MHVS’s

ability to deal with strong motion while preserving long-term label consistency.
We used an overlap of one frame between processing windows and generated
P = 30 pre-segmentations per frame using the gPb boundary detector introduced
by Maire et al . [21], combined with the OWT-UCM algorithm from [27].

As mentioned in Section 3, hypotheses can be obtained via ancestral sam-
pling [22] (i.e. sampling from the conditional multinomial distributions in the
topological order of the chain), or by computing shortest paths in the transition
diagram from each superpixel on the first frame to the last frame in the window
(i.e. computing the most likely sequences that start with each value of the first
variable in the chain). We follow this second approach. Neither guarantees that
every CRF superpixel is visited by a hypothesis. In our implementation, such
CRF superpixels opt for a dummy (void) label, and those that overlap with the
next processing window are later considered as sources for hypotheses. The pa-
rameters αe weighting the relative importance between the unary, pairwise and
higher-order potentials in Eq. 3 were set to 10, 2 and 55, respectively, although
similar results were obtained within a 25% deviation from these values. The
pairwise difference between superpixels b (i, j) was sampled from the boundary
map generated by OWT-UCM and the parameters γ1 and γ2 that control the
mapping of new labels to old labels were set to 0.8 and 0.2, respectively.

We measured the quality of the segmentations using the notion of segmen-
tation covering introduced by Arbeláez et al . in [27]. The covering of a human
segmentation S by a machine segmentation S′, can be defined as:

C (S′ → S) =
1
N

∑
V ∈S

|V | · max
V ′∈S′

d (V, V ′) (8)

where N denotes the total number of pixels in the video, and d (V, V ′) is the
Dice coefficient in 3D between the labeled spatio-temporal volumes V and V ′
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Fig. 8. Top to fourth row: Results from the on-line, unsupervised, photometric

segmentation of four video sequences of varying degrees of complexity with MHVS.

The examples show MHVS’s ability to adjust to changes in the scene, creating and

terminating labels as objects enter and leave the field of view. Fourth and fifth row:
Comparison between MHVS (fourth row) and pairwise graph propagation (similar

to [4]) (fifth row). The frames displayed are separated by 5-10 frames within the original

segmented sequences.

Table 1. Best segmentation covering obtained with MHVS, pairwise graph propagation

and mean-shift across five outdoor sequences that were manually annotated. Frame

examples from Video 1 are shown in Fig. 1, and from Videos 2 to 5 in Fig. 8, top to

bottom. Higher segmentation coverings are better.

Method Video 1 Video 2 Video 3 Video 4 Video 5

MHVS (multi-frame on-line) 0.62 0.59 0.45 0.54 0.42

Graph propagation (pairwise on-line) 0.49 0.37 0.36 0.39 0.34

Mean-shift (off-line) 0.56 0.39 0.34 0.38 0.44
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within S and S′, respectively. These volumes can possibly be made of multiple
disconnected space-time regions of pixels. Table 1 shows the values of the best
segmentation covering achieved by each method on our five videos.

6 Discussion and Future Work

In our tests, we observed that sometimes labels have a short lifespan. We at-
tribute this to the fact that it is difficult to find matching superpixels in pre-
segmentations of consecutive frames. The use of multiple pre-segmentations per
frame was introduced to alleviate this problem, and further measures, such as the
use of “track stitching” methods (e.g. see [28]) could help reduce label flickering
in future work.

Running time. The unary, pairwise and higher-order potentials of Eq. 3 are
sparse. Each random variable (representing an over-segmented superpixel) over-
laps few other hypotheses. No overlap makes the unary and higher-order terms
associated with the hypothesis zero. The pre-segmentations, enumeration of hy-
potheses and measuring of photometric similarities between superpixels can be
parallelized, and each processing window must be segmented (Eq. 3 solved) be-
fore moving to the next processing window. With this, in our tests, MHVS run
on the order of secs/frame using a Matlab-CPU implementation.

Conclusions. MHVS is, to the best of our knowledge, the first solution to
the problem of fully unsupervised on-line video segmentation that can segment
videos of arbitrary length, with unknown number of objects, and effectively man-
age object splits and mergers. Our framework is general and can be combined
with any image segmentation method for the generation of space-time hypothe-
ses. Alternative scoring functions, to the ones presented here, can also be used
for measuring photometric coherency or similarity between superpixels.

We believe our work bridges further the gap between video segmentation
and tracking. It also opens the possibility of integrating the problem of on-line
video segmentation with problems in other application domains such as event
recognition or on-line video editing. Future work could include extensions of
MHVS based on on-line learning for dealing with full occlusions and improving
overall label consistency.
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Abstract. Unsupervised learning requires a grouping step that defines

which data belong together. A natural way of grouping in images is the

segmentation of objects or parts of objects. While pure bottom-up seg-

mentation from static cues is well known to be ambiguous at the object

level, the story changes as soon as objects move. In this paper, we present

a method that uses long term point trajectories based on dense optical

flow. Defining pair-wise distances between these trajectories allows to

cluster them, which results in temporally consistent segmentations of

moving objects in a video shot. In contrast to multi-body factorization,

points and even whole objects may appear or disappear during the shot.

We provide a benchmark dataset and an evaluation method for this so

far uncovered setting.

1 Introduction

Consider Fig. 1(a). A basic task that one could expect a vision system to ac-
complish is to detect the person in the image and to infer his shape or maybe
other attributes. Contemporary person detectors achieve this goal by learning a
classifier and a shape distribution from manually annotated training images. Is
this annotation really necessary? Animals or infants are not supplied bounding
boxes or segmented training images when they learn to see. Biological vision
systems learn objects up to a certain degree of accuracy in an unsupervised way
by making use of the natural ordering of the images they see [1]. Knowing that
these systems exist, another objective of vision research must be to understand
and emulate this capability.

A decisive step towards this goal is object-level segmentation in a purely
bottom-up way. This step seems to be impossible given that such segmentation
is ambiguous in the very most cases. In Fig. 1 the contrast between the white
shirt and the black vest is much higher than the contrast between the vest and
the background. How should a bottom-up method know that the shirt and the
vest belong to the same object, while the background does not? The missing link
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Fig. 1. Left: (a) Bottom-up segmentation from a single input frame is ambiguous.

Right: (b) Long term motion analysis provides important information for bottom-up

object-level segmentation. Only motion information was used to separate the man and

even the telephone receiver from the background.

can be established as soon as objects move1. Fig. 1 shows a good separation of
points on the person versus points on the background with the method proposed
in this paper using only motion cues. As these clusters are consistently found for
the whole video shot, this provides rich information about the person in various
poses.

In this paper we describe a motion clustering method that can potentially
be used for unsupervised learning. We argue that temporally consistent clusters
over many frames can be obtained best by analyzing long term point trajectories
rather than two-frame motion fields. In order to compute such trajectories, we
run a tracker we developed in [2], which is based on large displacement optical
flow [3]. It provides subpixel accurate tracks on one hand, and can deal with the
large motion of limbs or the background on the other. Moreover, in contrast to
traditional feature point trackers, it provides arbitrarily dense trajectories, so it
allows to assign region labels far more densely. An alterative tracker that will
probably work as well with our technique is the one from [4], though the missing
treatment of large displacements might be a problem in some sequences.

With these long term point trajectories at hand, we measure differences in
how the points move. A key contribution of our method is that we define the
distance between trajectories as the maximum difference of their motion over
time. The person in Fig. 2 is sitting for a couple of seconds and then rising up.
The first part of the shot will not provide any motion information to separate
the person from the background. The most valuable cues are available at the
point where the person moves fastest. A proper normalization further ensures
that scenes with very large motion can be handled the same way as scenes with
only little motion.

1 Potentially even static objects can be separated if there is camera motion. In this

paper, however, we consider this case only as a side effect. Generally, active observers

will be able to either move themselves or objects of interest in order to generate the

necessary motion cues.
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Fig. 2. Frames 0, 30, 50, 80 of a shot from Miss Marple: Murder at the vicarage. Up

to frame 30, there is hardly any motion as the person is sitting. Most information is

provided when the person is sitting up. This is exploited in the present approach. Due

to long term tracking, the grouping information is also available at the first frames.

Given the pairwise distances between trajectories, we can build an affinity
matrix for the whole shot and run spectral clustering on this affinity matrix [5,6].
Regarding the task as a single clustering problem, rather than deciding upon a
single-frame basis, ensures that trajectories that belong to the same object but
did not exist at the same time become connected by the transitivity of the
graph. An explicit track repair as in [7] is not needed. Moreover, since we do not
assume the number of clusters to be known in advance and the clusters should
be spatially compact, we propose a spectral clustering method that includes a
spatial regularity constraint allowing for model selection.

In order to facilitate progress in the field of object-level segmentation in videos,
we provide an annotated dataset together with an evaluation tool, trajectories,
and the binaries of our approach. This will allow for quantitative comparisons
in the future. Currently the only reasonably sized dataset with annotation is
the Hopkins dataset [8], which is specialized for factorization methods (sparse,
manually corrected trajectories, all trajectories have the same length). The new
dataset will extend the task to a more general setting where (1) the given tra-
jectories are partially erroneous, (2) occlusion and disocclusion are a frequent
phenomenon, (3) shots are generally larger, (4) density plays a role (it will be
advantageous to augment the motion cues by static cues), and (5) the number
of clusters is not known in advance.

2 Related Work

The fact that motion provides important information for grouping is well known
and dates back to Koffka and Wertheimer suggesting the Gestalt principle of
“common fate” [9]. Various approaches have been proposed for taking this group-
ing principle into account. Difference images are the most simple way to let
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temporally changing structures pop out. They are limited though, as they only
indicate a local change but do not provide the reason for that change. This be-
comes problematic if many or all objects in the scene are subject to a change
(e.g. due to a moving camera). Much richer information is provided by opti-
cal flow. Numerous motion segmentation methods based on two-frame optical
flow have been proposed [10,11,12,13]. The quality of these methods depends
on picking a pair of frames with a clear motion difference between the objects.
Some works have combined the flow analysis with the learning of an appearance
model [14,15]. This leads to temporally consistent layers across multiple frames,
but comes along with an increased number of mutually dependent variables.
Rather than relying on optical flow, [16] estimates the motion of edges and uses
those for a reasoning of motion layers.

In order to make most use of multiple frames and to obtain temporally con-
sistent segments, a method should analyze trajectories over time. This is nicely
exploited by multi-body factorization methods [17,18,19,20]. These methods are
particularly well suited to distinguish the 3D motion of rigid objects by exploit-
ing the properties of an affine camera model. On the other hand, they have two
drawbacks: (1) factorization is generally quite sensitive to non-Gaussian noise,
so few tracking errors can spoil the result; (2) it requires all trajectories to have
the same length, so partial occlusion and disocclusion can actually not be han-
dled. Recent works suggest ways to deal with these problems [19,20], but as the
problems are inherent to factorization, this can only be successful up to a cer-
tain degree. For instance, it is still required that a sufficiently large subset of
trajectories exists for the whole time line of the shot.

There are a few works which analyze point trajectories outside the factor-
ization setting [7,21,22,23]. Like the proposed method, these techniques do not
require a dominant subset of trajectories covering the full time line, and apart
from [21], which analyzes trajectories but runs the clustering on a single-frame
basis, these methods provide temporally consistent clusters. Technically, how-
ever, they are very different from our approach, with regard to the density of
trajectories, how the distance between trajectories is defined, and in the algo-
rithm used for clustering.

Trajectory clustering is not restricted to the domain of object segmentation.
For instance, it has been used for learning traffic models in [24].

3 Point Tracking and Affinities between Trajectories

We obtain point trajectories by running the optical flow based tracker in [2] on
a sequence. Fig. 3 demonstrates the most important properties of this tracker.
Clearly, the coverage of the image by tracked points is much denser than with
usual keypoint trackers. This is very advantageous for our task, as this allows
us to assign labels far more densely than in previous approaches. Moreover, the
denser coverage of trajectories will enable local reasoning from motion similari-
ties as well as the introduction of spatial regularity constraints in the clustering
method.
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Fig. 3. From left to right: Initial points in the first frame and tracked points in

frame 211 and 400. Color indicates the age of the tracks. The scale goes from blue

(young) over green, yellow, and red to magenta (oldest). The red points on the right

person have been tracked since the person appeared behind the wall. The figure is best

viewed in color.

Fig. 3 also reveals that points can be tracked over very long time intervals.
A few points on the wall were tracked for all the 400 frames. The other tracks
are younger because almost all points in this scene have become occluded. The
person on the right appeared behind the wall and was initially quite far away
from the camera. The initial points from that time have been tracked to the last
frame and are visible as red spots among all the other tracks that were initialized
later due to the scaling of the person.

Clearly, trajectories are asynchronous, i.e., they cover different temporal win-
dows in a shot. This is especially true if the shot contains fast motion and large
occluded areas. If we only selected the set of trajectories that survived the whole
shot, this set would be very small or even empty and we would miss many dom-
inant objects in the scene. So rather than picking a fully compatible subset, we
define pairwise affinities between all trajectories that share at least one frame.
The affinities define a graph upon which we run spectral clustering. Due to tran-
sitivity, even tracks that do not share common frames can be linked up as long
as there is a path in the graph that connects them.

According to the Gestalt principle of common fate, we should assign high
affinities to pairs of points that move together. However, two persons walking
next to each other share the same motion although they are different objects.
We have to take into account that there are situations where we cannot tell
two objects apart. The actual information is not in the common motion but in
motion differences. As soon as one of the persons moves in another direction
from the other one, we get a very clear signal that these two areas in the image
do not belong together.

We define distances and affinities such that they best exploit this information.
Regarding two trajectories A and B, we consider the instant, where the motion
of the two points is most dissimilar:

d2(A,B) = maxt d
2
t (A,B). (1)

Pairwise distances can only compare the compatibility of trajectories on the
basis of translational motion models. To estimate the parameters of a more
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general motion model, we would have to consider triplets or even larger groups of
points, which is intractable. Another way is to estimate such models beforehand
using a RANSAC procedure to deal with the fact that we do not know yet
which points share the same motion model [7]. However, especially in case of
many smaller regions, one needs many samples to ensure a set of points without
outliers with high probability. Instead, we rely here on the fact that translational
models are a good approximation for spatially close points and introduce a proper
normalization in order to reduce the negative effects of this approximation.

We define the distance between two trajectories at a particular instant t as:

d2
t (A,B) = dsp(A,B)

(uA
t − uB

t )2 + (vA
t − vB

t )2

5σ2
t

. (2)

dsp(A,B) denotes the average spatial Euclidean distance of A and B in the
common time window. Multiplying with the spatial distance ensures that only
proximate points can generate high affinities. Note that due to transitivity, points
that are far apart can still be assigned to the same cluster even though their
pairwise affinity is small. ut := xt+5 − xt and vt := yt+5 − yt denote the motion
of a point aggregated over 5 frames. This averaging adds some further accuracy
to the motion estimates. If less than 5 frames are covered we average over the
frames that are available. Another important detail is the normalization of the
distance by

σt = mina∈{A,B}

5∑
t′=1

σ(xa
t+t′ , y

a
t+t′ , t + t′), (3)

where σ : R3 → R denotes the local flow variation field. It can be considered
a local version of the optical flow variance in each frame and is computed with
linear diffusion where smoothing is reduced at discontinuities in the optical flow.

The normalization by σt is very important to deal with both fast and slow
motion. If there is hardly any motion in a scene, a motion difference of 2 pixels
is a lot, whereas the same motion difference is negligible in a scene with fast
motion. As scaling and rotation will cause small motion differences even locally,
it is important to consider these differences in the context of the overall motion.
Considering the local rather than the global variance of the optical flow makes
a difference if at least three motion clusters appear in the scene. The motion
difference between two of them could be small, while the other differences are
large.

We use the standard exponential and a fixed scale λ = 0.1 to turn the distances
d2(A,B) into affinities

w(A,B) = exp(−λd2(A,B)) (4)

yielding an n × n affinity matrix W for the whole shot, where n is the total
number of trajectories.
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Fig. 4. From left to right, top to bottom: (a) Input frame. (b-h) The first 7 of

m = 13 eigenvectors. Clearly, the eigenvectors are not piecewise constant but show

smooth transitions within the object regions. However, discontinuities in the eigenvec-

tors correspond to object boundaries very well. This information needs to be exploited

in the final clustering procedure.

4 Spectral Clustering with Spatial Regularity

Given an affinity matrix, the most common clustering techniques are agglomera-
tive clustering, which runs a greedy strategy, and spectral clustering, which maps
the points into a feature space where more traditional clustering algorithms like
k-means can be employed. While the mapping in spectral clustering is a globally
optimal step, the successive step that yields the final clusters is like all general
clustering susceptible to local minima. We rely on the eigendecomposition of
the normalized graph Laplacian to obtain the mapping and elaborate on deriv-
ing good clusters from the resulting eigenvectors. The setting we propose also
includes model selection, i.e., it decides on the optimum number of clusters.

Let D be an n×n diagonal matrix with entries da =
∑

b w(a, b). The Laplacian
eigenmap is obtained by an eigendecomposition of the normalized Laplacian

V �ΛV = D− 1
2 (D −W )D− 1

2 (5)

and keeping the eigenvectors v0, ...,vm corresponding to the m + 1 smallest
eigenvalues λ0, ..., λm. As λ0 = 0 and v0 is a constant vector, this pair can
be ignored. We choose m such that we keep all λ < 0.2. The exact choice of
this threshold is not critical as long as it is not too low, since the actual model
selection is done in eigenvector space. Since m� n, the eigendecomposition can
be efficiently computed using the Lanczos method. We normalize all eigenvectors
vi to a range between 0 and 1.

In case of ideal data (distinct translational motion, no tracking errors), the
mapping yields m = k−1 piecewise constant eigenvectors and the k clusters can
be extracted by simple thresholding [5]. However, the eigenvectors are usually not
that clean, as shown in Fig. 4. The eigenvectors typically show smooth transitions
within a region and more or less clear edges between regions. Standard k-means



Object Segmentation by Long Term Analysis of Point Trajectories 289

cannot properly deal with this setting either, since smooth transitions get ap-
proximated by multiple constant functions, thus leading to an over-segmentation.
At the same time the optimum number of clusters K is by no means obvious as
clusters are represented by many eigenvectors.

As a remedy to both problems, we suggest minimizing an energy function
that comprises a spatial regularity term. Let va

i denote the ath component of
the ith eigenvector and va the vector composed of the ath components of all m
eigenvectors. Index a corresponds to a distinct trajectory. Let N (a) be a set of
neighboring trajectories based on the average spatial distance of trajectories. We
seek to choose the total number of clusters K and the assignments πa ∈ {1, ...,K}
such that the following energy is minimized:

E(π,K) =
∑

a

K∑
k=1

δπa,k‖va − μk‖2λ + ν
∑

a

∑
b∈N (a)

1− δπa,πb

|va − vb|22
(6)

The first term is the unary cost that is minimized by k-means, where μk de-
notes the centroid of cluster k. The norm ‖ · ‖λ is defined as ‖va − μ‖λ =∑

i(v
a
i − μi)2/λi, i.e., each eigenvector is weighted by the inverse of the square

root of its corresponding eigenvalue. This weighting is common in spectral clus-
tering as eigenvectors that separate more distinct clusters correspond to smaller
eigenvalues [25].

Clearly, if we do not restrictK or add a penalty for additional clusters, each tra-
jectory will be assigned its own cluster and we will get a severe over-segmentation.
The second term in (6) serves as a regularizer penalizing the spatial boundaries be-
tween clusters. The penalty is weighted by the inverse differences of the eigenvec-
tors along these boundaries. If there are clear discontinuities along the boundary of
two clusters, the penalty for this boundary will be very small. In contrast, bound-
aries within a smooth area are penalized far more heavily, which avoids splitting
clusters at arbitrary locations due to smooth transitions in the eigenvectors. The
parameter ν steers the tradeoff between the two terms. We obtain good results in
various scenes by fixing ν = 1

2 .
Minimizing (6) is problematic due to many local minima. We propose a heuris-

tic that avoids such local minima. For a fixed K, we first run k-means with 10
random initializations. Additionally, we generate proposals by running hierarchi-
cal 2-means clustering and selecting the 20 best solutions from the tree. We run
k-means on these 20 proposals and select the best among all 30 proposals. Up
to this point we consider only the first term in (6), since the proposals are gen-
erated only according to this criterion. The idea is that for a large enough K we
will get an over-segmentation that comprises roughly the boundaries of the true
clusters. In a next step we consider merging moves. We successively consider the
pair of clusters that when merged leads to the largest reduction of (6) including
the second term. Merging is stopped if the energy cannot be further minimized.
Finally, we run gradient descent to locally optimize the assignments. This last
step mainly refines the assignments along boundaries. The whole procedure is
run for all K ∈ {1, ..., 2m} and we pick the solution with the smallest energy.
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Fig. 5. Left: (a) Best k-means proposal obtained for K = 9. Over-segmentation due

to smooth transitions in eigenvectors. Center: (b) Remaining 5 clusters after choosing

the best merging proposals. Right: (c) Final segmentation after merging using affine

motion models. Another cluster boundary that was due to the fast 3D rotation of the

left person has been removed. The only remaining clusters are the background, the two

persons, and the articulated arm of the left person.

Finally, we run a postprocessing step that merges clusters according to the
mutual fit of their affine motion models. This postprocessing step is not abso-
lutely necessary, but corrects a few over-segmentation errors. Fig. 5 shows the
clusters obtained by k-means, after merging clusters of the k-means proposal,
and after the postprocessing step.

5 Experimental Evaluation

5.1 Dataset and Evaluation Method

While qualitative examples often reveal more details of a method than pure
numbers, scientific research always benefits from exact measurement. The task
of motion segmentation currently lacks a compelling benchmark dataset to pro-
duce such measurements and to compare among methods. While the Hopkins 155
dataset [8] has clearly boosted research in multi-body factorization, it is much
too specialized for these types of methods, and particularly the checkerboard se-
quences do not correspond to natural scenes. To this end, we have annotated 26
sequences, among them shots from detective stories and the 10 car and 2 people
sequences from Hopkins 155, with a total of 189 annotated frames. The anno-
tation is dense in space and sparse in time, with more frames being annotated
at the beginning of a shot to allow also for the evaluation of methods that do
not work well with long sequences. There are four evaluation modes. The first
three expect the methods to be run only on the first 10, 50, and 200 frames,
whereas for the last all available frames should be considered. It is planned to
successively extend the dataset by more sequences to avoid over-fitting issues in
the long run. An example of the annotation is shown in Fig. 6. This dataset is
publicly available.

The evaluation tool yields 5 numbers for each sequence, which are then aver-
aged across all sequences. The first number is the density of the points for which
a cluster label is reported. Higher densities indicate more information extracted
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Fig. 6. Frames 1, 110, 135, 170, 250 of a shot from Miss Marple: Murder at the vicarage
together with our clusters and the ground truth regions. There is much occlusion in this

sequence as Miss Marple is occluded by the passing inspector and then by the building.

Our approach can link tracks of partially occluded but not of totally occluded objects.

A linkage of these clusters is likely to be possible based on the appearance of the

clusters and possibly some dynamic model.

from the sequences and increase the risk of misclassifying pixels. The overall
clustering error is the number of bad labels over the total number of labels
on a per-pixel basis. The tool optimally assigns clusters to ground truth regions.
Multiple clusters can be assigned to the same region to avoid high penalties for
over-segmentations that actually make sense. For instance, the head of a person
could be detected as a separate cluster even though only the whole person is
annotated in the dataset. All points covering their assigned region are counted
as good labels, all others count as bad labels. In some sequences, objects are
marked that are easy to confuse due to their size or very little motion infor-
mation. A penalty matrix defined for each sequence assigns smaller penalty to
such confusions. The average clustering error is similar to the overall error
but averages across regions after computing the error for each region separately.
Usually the average error is much higher than the overall error, since smaller
objects are more difficult to detect, confused regions always pay the full penalty,
and not covering an object yields a 100% error for that region.

Since the above evaluation method allows for cheating by producing a severe
over-segmentation, we also report the over-segmentation error, i.e., the num-
ber of clusters merged to fit the ground truth regions. Methods reporting good
numbers with a very high over-segmentation error should be considered with
care.

As the actual motivation for motion segmentation is the unsupervised extrac-
tion of objects, we finally report the number of regions covered with less than
10% error. One region is subtracted per sequence to account for the background.
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5.2 Results

Table 1. Computation times for

the people1 sequence of the Hop-

kins dataset considering only the

first 10 frames. When running

ALC we randomly subsampled the

tracks by a factor 16 to have more

tractable computation times.

tracks time
our method 15486 497s
GPCA 12060 2963s
LSA 12060 38614s
RANSAC 12060 15s
ALC 957 22837s

Apart from the numbers of the proposed tech-
nique we also report numbers for General-
ized PCA (GPCA), Local Subspace Affinity
(LSA) [18], and RANSAC using the code pro-
vided with the Hopkins dataset [8]. We also
show results for the factorization method in
[19], which can deal with either incomplete or
corrupted trajectories (ALC). When running
these methods, we use the same trajectories as
for our own method. Except for ALC with in-
complete tracks, all these techniques require
the tracks to have full length, so we restrict
the available set of tracks accordingly. For this
reason, the density with these methods is con-
siderably smaller, especially when more frames are taken into account and the
areas of occlusion and disocclusion grow bigger. Moreover, all these methods ask
for the number of regions to be given in advance. We give them the correct num-
ber, whereas we select the model in our approach automatically. Since ALC gets
intractably slow when considering more than 1000 trajectories (see Table 1), we
randomly subsampled the tracks for this method by a factor 16. In Table 2 we
multiply the density again by this factor to make the results comparable.

Table 2. Evaluation results. The sequence marple7 was ignored in the entry marked

with ∗ as the computation took more than 800 hours.

Density
overall average over- extracted

error error segmentation objects

First 10 frames (26 sequences)

our method 3.34% 7.75% 25.01% 0.54 24

GPCA 2.98% 14.28% 29.44% 0.65 12

LSA 2.98% 19.69% 39.76% 0.92 6

RANSAC 2.98% 13.39% 26.11% 0.50 15

ALC corrupted 2.98% 7.88% 24.05% 0.15 26

ALC incomplete 3.34% 11.20% 26.73% 0.54 19

First 50 frames (15 sequences)

our method 3.27% 7.13% 34.76% 0.53 9

ALC corrupted 1.53% 7.91% 42.13% 0.36 8

ALC incomplete 3.27% 16.42% 49.05% 6.07 2

First 200 frames (7 sequences)

our method 3.43% 7.64% 31.14% 3.14 7

ALC corrupted 0.20% 0.00% 74.52% 0.40 1

ALC incomplete 3.43% 19.33% 50.98% 54.57 0

All available frames (26 sequences)

our method 3.31% 6.82% 27.34% 1.77 27

ALC corrupted 0.99% 5.32% 52.76% 0.10 15

ALC incomplete∗ 3.29% 14.93% 43.14% 18.80 5
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Fig. 7. From left to right: (a) Frame 40 of the cars4 sequence from the Hopkins

dataset. (b) The proposed method densely covers the image and extracts both the car

and the person correctly. (c) RANSAC (like all traditional factorization methods) can

assign labels only to complete tracks. Thus large parts of the image are not covered.

(d) ALC with incomplete trajectories [19] densely covers the image, but has problems

assigning the right labels.

Clearly, the more traditional methods like GPCA, LSA, and RANSAC do
not perform well on this dataset (which comprises a considerable number of
sequences from the Hopkins dataset). Even when considering only 10 frames,
i.e. there is only little occlusion, the error is much larger than for the proposed
approach. The 10-frame result for ALC with a correction for corrupted tracks is
quite good and comparable to ours with some advantages with regard to over-
segmentation and extracted objects. This is mainly due to the correct number
of regions given to ALC.

As the number of frames is increased, the density of ALC decreases and its
performance goes down. With more occlusions, ALC with incomplete tracks be-
comes interesting, as it is the only method in this comparison apart from ours
that can exploit all trajectories. However, its ability to handle sparse trajectories
is limited. ALC still needs a sufficiently large set of complete tracks in order to
extrapolate the missing entries, whereas the approach described in this paper
just requires some overlapping pieces of trajectories to cluster them together. We
see a larger over-segmentation error for the longer sequences, as occlusion intro-
duces ambiguities and makes the clustering problem generally harder, but at
the same time we obtain more information about the tracked objects. Moreover,
by considering more frames, objects that were static in the first frames can be
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extracted due to their motion in a later frame. We obtain the smallest overall
error and can extract the most objects when considering all the frames in a shot.

Fig. 7 highlights the qualitative differences between the types of methods. The
proposed method can densely cover the full image with cluster labels despite
significant occlusions, and errors in the trajectories are handled well. Recent
factorization methods like ALC with correction for corrupted tracks work quite
well for the subset of complete tracks, but they cannot produce labels for points
that are not visible in all frames. ALC for incomplete tracks can generally cover
the whole image with labels, but as this is achieved by extrapolating missing
entries, lots of errors occur. In case ALC cannot find the given number of regions,
it uses an MDL criterion, which leads to a very high over-segmentation error.

The density of our approach is still far from 100%. This is mainly due to
efficiency considerations, as the tracker in [2] could also produce denser trajec-
tories. However, the trajectories already cover the image domain without too
many larger gaps. In this paper, we did without static cues to keep the pa-
per uncluttered. Given these point labels, however, it actually should be quite
straightforward to obtain a dense segmentation by considering color or boundary
information.

6 Conclusions

We have presented a technique for object-level segmentation in a pure bottom-up
fashion by exploiting long term motion cues. Motion information is aggregated
over the whole shot to assign labels also to objects that are static in a large part of
the sequence. Occlusion and disocclusion is naturally handled by this approach,
which allows to gather information about an object from multiple aspects. This
kind of motion segmentation is far more general than most previous techniques
based on two-frame optical flow or a sparse subset of complete trajectories. We
believe that such a general setting is very relevant, as it will ultimately enable
unsupervised learning of objects from appropriate video data. We hope that by
providing a benchmark dataset that comprises a variety of easier and harder
sequences, we can foster progress in this field.
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Abstract. Many man-made and natural structures consist of similar elements
arranged in regular patterns. In this paper we present an unsupervised approach
for discovering and reasoning on repetitive patterns of objects in a single image.
We propose an unsupervised detection technique based on a voting scheme of
image descriptors. We then introduce the concept of latticelets: minimal sets of
arcs that generalize the connectivity of repetitive patterns. Latticelets are used for
building polygonal cycles where the smallest cycles define the sought groups of
repetitive elements. The proposed method can be used for pattern prediction and
completion and high-level image compression. Conditional Random Fields are
used as a formalism to predict the location of elements at places where they are
partially occluded or detected with very low confidence. Model compression is
achieved by extracting and efficiently representing the repetitive structures in the
image. Our method has been tested on simulated and real data and the quantitative
and qualitative result show the effectiveness of the approach.

1 Introduction

Man-made and natural environments frequently contain sets of similar basic elements
that are arranged in regular patterns. Examples include architectural elements such as
windows, pillars, arcs, or structures in urban environments such as equidistant trees,
street lights, or similar houses built in a regular distance to each other. There are at
least two applications where models of repetitive structures are useful pieces of infor-
mation: occlusion handling and data compression. For the former, pattern information
can be used to predict the shape and position of occluded or low confidence detections
of objects in the same scene. This introduces a scheme in which low-level detections
are mutually reinforced by high-level model information. For model compression, rep-
resenting the repetitive structure by a generalized object and pattern description makes
it possible to represent the structure of interest in the image very efficiently.

In this paper, we present a technique to find such repetitive patterns in an unsuper-
vised fashion and to exploit this information for occlusion handling and compression.
Specifically, we evaluate our method on the problem of building facade analysis.

The contributions of this paper are:

1. Unsupervised detection of mutually similar objects. Closed contours are extracted
and robustly matched using a growing codebook approach inspired by the Implicit
Shape Models (ISM) [1].
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2. Analysis of pattern repetitions by the concept of latticelets: a selected set of fre-
quent distances between elements of the same object category in the Cartesian
plane. Latticelets are generalizations of the repetition pattern.

3. A probabilistic method to geometrically analyze cyclic element repetitions. Using
Conditional Random Fields (CRF) [2], the method infers missing object occur-
rences in case of weak hypotheses. Element detection probability and geometrical
neighborhood consistency are used as node and edge features.

Our method is a general procedure to discover and reason on repetitive patterns, not
restricted to images. The only requirement is that a method for detecting similar objects
in a scene is available and that a suitable latticelet parameterization is available in the
space of interest, e.g. the image or Cartesian space.

To the authors’ best knowledge, there is no other work in the literature that pursues
the same goals addressing the problem in a principled way.

This paper is organized as follows: the next section discusses related work. Section 3
gives an overview of our technique while in Section 4, the process of element discovery
is explained. Section 5 presents the way we analyze repetitive patterns and Section 6
describes how to use CRFs for the task of repetitive structure inference. Section 7 shows
how to obtain an high-level image compression with the proposed method. In Section 8
the quantitative and qualitative experiments are presented followed by the conclusions
in Section 9.

2 Related Work

In this work we specifically analyze repetitions from a single static image. The work
of [3] uses Bayesian reasoning to model buildings by architectural primitives such as
windows or doors parametrized by priors and assembled together like a ’Lego kit’. The
work of [4] interprets facades by detecting windows with an ISM approach. A prede-
fined training set is provided. Both works address the problem with a Markov Chain
Monte Carlo (MCMC) technique. Unlike our approach, they do not exploit information
on the connectivity between the detected elements. Our work uses ISM in an unsu-
pervised fashion without a priori knowledge. We consider closed contours to create
codebooks that generalize the appearance of repeated elements. Thereby, we are able to
recognize such elements with high appearance variability thanks to the Hough-voting
scheme. In the field of computer graphics, grammar based procedural modeling [5,6,7]
has been formally introduced to describe a way of representing man-made buildings.
Most of these works do not discover patterns but reconstruct the 3D appearance of the
facade and require human intervention.

Approaches based on RANSAC [8] and the Hough transform [9] have been used to
find regular, planar patterns. More sophisticated methods relax the assumption of the
regular pattern using Near-Regular Textures (NRT) [10,11]. Similar to our work is [12]
in which the authors propose a method to find repeated patterns in a facade by using
NRT with MCMC optimization using rules of intersection between elements. They are
able to extract a single pattern based on a 4-connectivity lattice. Our approach allows
detection of arbitrary patterns without relying on a fixed model. Further, it can detect
multiple object categories and associate for each category multiple repetition patterns.



298 L. Spinello et al.

Fig. 1. Schematic overview of the algorithm

3 Overview

The first step of our algorithm (see Fig. 1) is to compute a set of standard descriptors
on a given input image. Then, we compute closed contours that represent the candi-
dates for repetitive objects such as windows or pillars. The key idea is that we do not
classify these objects using a model that was previously learned from training data, but
instead, obtain evidence of their occurrence by extracting similarities directly from the
given scene. The advantage of this is twofold: first, we are independent of a previously
hand-labeled training data set. Second, by grouping similar objects into categories and
considering only those categories with at least two object instances, we can filter out
outlier categories for which no repetitive pattern can be found. Our measure of mu-
tual similarity is based on the object detection approach by Leibe et al. [1]. In the next
step, we analyze repetitive patterns inside each category. This is done by analyzing the
Euclidean distances between elements in the image accumulated in a frequency map.
These relative positions are represented as edges in a lattice graph in which nodes rep-
resent objects positions. The most dominant edges by which all nodes in this graph can
be connected are found using a Minimum Spanning Tree algorithm and grouped into a
set that we call latticelet. For reasoning on higher-level repetitions we extract a set of
polygonal repetitions composed of latticelet arcs. Such polygonal repetitions are used
to build a graph for predicting the position of occluded or weakly detected elements.
An inference engine based on CRFs is used to determine if the occurrence of an object
instance at a predicted position is likely or not. In an image compression application,
we use a visual template of each object category, the medium background color and the
lattice structure to efficiently store and retrieve a given input image.

4 Extraction of Mutually Similar Object Instances

In this section we explain the process of discovering repetitive elements present in an
image based on closed contours. As first step of the algorithm, Shape Context descrip-
tors [13] are computed at Hessian-Laplace interest points. Contours are computed by
using the binary output of the Canny edge detector [14] encoded via Freeman chain
code [15]. We refer to the content in each contour as an object instance Oe. Matching
contours in real world images can be very hard due to shadows and low contrast areas.
We therefore employ an Implicit Shape Model-like (ISM) technique in which the con-
tours act as containers to define a codebook of included descriptors. This way, we can
robustly match objects. In summary, an ISM consists of a set of local region descriptors,
called codebook, and a set of displacements, usually named votes, for each descriptor.
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Fig. 2. Extraction of mutually similar objects. For each closed contour, a codebook of descriptors
is created that contains relative displacements to the object centers (votes). Then, the descriptors
of each object are matched against the descriptors in the image.

The idea is that each descriptor can be found at different positions inside an object and
at different scales. Thus, a vote points from the position of a matched descriptor to the
center of the object as it was associated in the codebook construction. In our case all
the descriptors found inside a contour are included in the codebook Ce as well as the
relative displacement of the respective interest points with respect to the center of the
contour. To retrieve objects repetitions we match objects in the following way:

1. All descriptors found in the image are matched against an object’s codebook Ce.
Those with a Euclidean distance to the best match in Ce that is bigger than a thresh-
old θd are discarded.

2. Votes casted by the matching descriptors are collected in a 2D voting space
3. We use mean shift mode estimation to find the object center from all votes. This is

referred to as an object hypothesis.

To select valid hypotheses we propose a quality function that balances the strength of
the votes with their spatial origin. Votes are accumulated in a circular histogram around
the hypothetical object center. The detection quality function is given by:

qi = wa ·
fh(αi,αe)
fh(αe,αe)

+ (1−wa) ·
si

se
qi ∈ [0,1] (1)

where αe is the vote orientation histogram of the object Ce; αi is the vote orientation
histogram of the hypothesis i; fh is a function that applies an AND operator between
the bins of two histograms and sums the resulting not empty bins. si,se are respectively
the score (number of votes received for the hypothesis) and the score of Oe. wa is the
bias that is introduced between the two members. This is a simplified version of the cost
function explained in [16]. Detected objects are selected by a simple minimum thresh-
old θq on the detection quality qi. All the objects matching with Oe constitute the object
category τ that is defined by a codebook composed by descriptors that contributed to
each match and all the entries of Ce. Thus, a more complete description of the visual
variability of the initial object instance Oe is achieved. It is important to notice that it
is not required that every object in the image has a closed contour as soon as there is
at least one of its category. In other words: if an image of a facade contains several
windows of the same type, only one of them is required to have a closed contour. In this
work we aim to match objects with the same scale. Same objects present at different
scales in the image are treated as different object categories.



300 L. Spinello et al.

As a last step we use an hierarchical agglomerative clustering with average linkage
to group visually similar categories by using a measure described by their codebook

entries d
(

τ i
C ,τ j

C

)
=

L
(

τ i
C ,τ j

C

)
min

(
|τ i

C |,|τ
j
C

) where L computes the number of corresponding de-

scriptors from the two codebooks with a Euclidean distance of less than θd and |τ i
C | the

number of codebook entries.

5 Analysis of Repetitive Objects

5.1 Latticelets

In this section we introduce the space frequency analysis for the discovered object cate-
gories. We name the detected object locations in the image as nodes. In order to analyze
the repetition pattern of each object category we build a complete graph that connects
all the nodes. Our aim is to select in this graph edges that have a repeated length and
orientation. Moreover, we require our arc selection to include all the nodes. Our pro-
posed solution is based on the use of a Minimum Spanning Tree (MST). From the
complete graph we build a frequency map (see scheme Fig. 3 and Fig. 4), in which we
store the distances |dx|, |dy| in pixels between nodes of the graph. The map represents
the complete distance distribution between the nodes. We therefore have to select from
this map the most representative modes. In order to estimate local density maxima in
the frequency map we employ a two dimensional mean shift algorithm, with a simple
circular kernel. Each convergence mode is expressed by a point in the map dx̂,dŷ and
its score repetitiveness that is given by the number of points contributing to the basin
of attraction. All the graph edges that contribute to each mode convergency are then
labeled with their associated distance. At the end of this process we have obtained a
graph in which the distances between the nodes have been relaxed by averaging similar
consistent distances/orientations. Each edge is tagged with its repetitiveness score.

Fig. 3. Latticelet discovery process. Objects of the same category are detected. A complete graph
is built and the relative distances are accumulated in the Cartesian plane.
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Fig. 4. Repetitive distances in x and y are clustered via mean-shift, the arcs are reweighed by their
mode convergency score. The solid and dotted lines in the latticelet figure represent the possible
directions espressed by the selected |dx| and |dy|.

As last step of this processing we employ Kruskal’s algorithm [17] to find the min-
imum spanning tree by using the nodes, their edge connectivity and the weight of the
arcs. The resulting tree represents the most repetitive arcs sufficient to connect all the
nodes. In order to compact the information we select each kind of arc just once. We call
it latticelet, the minimal set of repetitive arcs that are needed to represent the original
lattice. Each object category is associated to a latticelet that generalize its repetition
pattern. Our method is able to cope with small perspective distortions thanks to the re-
laxation step. For larger deviations from a fronto-parallel image view, the problem of
perspective estimation can be naturally decoupled from the one of analyzing repetitive
patterns. The problem of image rectification could be addressed with many existing
methods (e.g. [18]) that are far beyond the scope of this paper.

5.2 Cycles and Chains

Latticelets contain very local information, they explain the direction of a possible pre-
dicted element from a given position. In order to incorporate higher level knowledge of
the repetitive pattern of the neighborhood, we use cycles composed of latticelets arcs.
Our aim is to find minimal size repetitive polygons. They provide the effective object
repetition that is used in later stages to obtain prediction and simplification. For each
category we sort the the weight of its latticelet arcs and we select the one with highest
weight. We compose a new graph by using the selected arc to build connection between
nodes and compute the smallest available cycle by computing its girth (i.e. length) γ .

A cycle Γ is computed by using an approach based on a Breadth-first Search algo-
rithm. Starting from a node of choice in the graph, arcs are followed once, and nodes
are marked with their number of visits. A cycle is found as soon as the number of visits
for a node reaches two. This is done for all the nodes present in the object category
detection set. We then collect all the cycles, and we select the one with the smallest
number of nodes. We create a graph by using the connectivity offered by Γ and mark
as removed the nodes that are connected by it. Thus, we add another latticelet arc until
all the nodes are connected or all the latticelet arcs are used. We obtained a polygon
set composed of frequent displacements suitable to describe the object distribution in
the image (see scheme Fig. 5) and to generalize higher orders repetitions. An object
category is therefore associated to k small cycles: G = {Γ1, . . . ,Γk}.
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Fig. 5. From the graph created by an incremental set of latticelet’s arcs, small repetitive cycles Γ
are selected by using a Breadth-first Search algorithm. Chains are created on the remaining nodes
that have not been satisfied by any polygonal cycles G .

In addition to what has been explained above, the algorithm tries to represent with
chains the nodes that cannot be described with polygonal cycles. The procedure is anal-
ogous to the former one: chain arcs are selected by using the sorted latticelet set. The
procedure is run for each object category.

6 Structure Inference Using Conditional Random Fields

So far, we showed our method to detect objects represented as closed contours and to
find repetitive patterns in the occurrence of such objects. However, in many cases, ob-
jects can not be detected due to occlusions or low contrast in the image. In general,
the problem of these false negative detections can not be solved, as there is not enough
evidence of the occurrence of an object. In our case, we can use the additional knowl-
edge that similar objects have been detected in the same scene and that all objects of
the same kind are grouped according to a repetitive pattern. Using these two sources
of information, we can infer the existence of an object, even if its detection quality is
very low. We achieve this by using a probabilistic model: each possible location of an
object of a given category τ is represented as a binary random variable lτ(x) which is
true if an object of category τ occurs at position x and false otherwise. In general, the
state of these random variables can not be observed, i.e. they are hidden, but we can
observe a set of features z(x) at the given position x. The features z here correspond
to the detection quality defined in Eqn. (1). The idea now is to find states of all binary
variables lτ = {lτ(x) | x ∈X } so that the likelihood p(lτ | z) is maximized. In our for-
mulation we will not only reflect the dependence between the variables l and z, but also
the conditional dependence between variables lτ (x1) and lτ(x2) given z(x1) and z(x2),
where x1 and x2 are positions that are very close to each other. The intuition behind this
is that the occurrence probability of an object at position x1 is higher if the same object
already occurred at position x2. We model this conditional dependence by expressing
the overall likelihood p(lτ | z) as a CRF.

6.1 Conditional Random Fields

A CRF is an undirected graphical model that represents the joint conditional probability
of a set of hidden variables (in our case lτ ) given a set of observations z. A node in
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the graph represents a hidden variable, and an edge between two nodes reflects the
conditional dependence of the two adjacent variables. To compute p(lτ | z), we define
node potentials ϕ and edge potentials ψ as

ϕ(zi, lτi) = ewn·fn(zi,lτi) and ψ(zi,z j,yi,y j) = ewe·fe(zi,z j ,lτi,lτ j), (2)

where fn and fe are feature functions for the nodes and the edges in the graph (see
below), and wn and we are the feature weights that are determined in a training phase
from hand-labeled training data. Using this, the overall likelihood is computed as

p(lτ | z) =
1

Z(z)

N

∏
i=1

ϕ(zi, lτi) ∏
(i, j)∈E

ψ(zi,z j, lτi, lτ j), (3)

where Z is the partition function, N the number of nodes, and E the set of edges in the
graph. The computation of the partition function Z is intractable due to the exponential
number of possible states lτ . Instead, we compute the log-pseudo-likelihood, which
approximates log p(lτ | z).

In the training phase, we compute the weights wn and we that minimize the negative
log pseudo-likelihood together with a Gaussian shrinkage prior. In our implementation,
we use the Fletcher-Reeves method [19]. Once the weights are obtained, they are used
in the detection phase to find the lτ that maximizes Eq. (3). Here, we do not need
to compute the partition function Z, as it is not dependent on lτ . We use max-product
loopy belief propagation [20] to find the distributions of each lτi. The final classification
is then obtained as the one that is maximal at each node.

6.2 Node and Edge Features

As mentioned above, the features in our case are directly related to the detection qual-
ity obtained from Eqn. (1). In particular, we define the node features as fn(qi, lτ,i) =
1− lτ,i + (2lτ,i − 1)qi, i.e. if the label lτ,i is 1 for a detected object, we use its de-
tection quality qi, otherwise we use 1− qi. The edge feature function fe computes a
two-dimensional vector as follows:

fe(qi,q j, lτi, lτ j) =
{ 1

γ ( fe1 fe2) if lτi = lτ j

(0 0) else
with

fe1 = max(fn(qi, lτi), fn(q j, lτ j))
fe2 = maxG∈Gi j (fn(η(G), lτi)),

where Gi j is the set of (maximal two) minimum cycles Γ that contain the edge between
nodes i and j, and η(Γ ) is a function that counts the number of detected objects along
the cycle Γ , i.e. for which the detection quality is above θq.

6.3 Network Structure

The standard way to apply CRFs to our problem would consist in collecting a large
training data set where all objects are labeled by hand and for each object category τ a
pair of node and edge features is learned so that p(lτ | z) is maximized. However, this
approach has two major drawbacks:
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– For a given object category τ , there are different kinds of lattice structures in which
the objects may appear in the training data. This means that the connectivity of a
given object inside its network varies over the training examples. Thus, the impor-
tance of the edges over the nodes can not be estimated in a meaningful way.

– In such a supervised learning approach, only objects of categories that are present
in the training data can be detected. I.e., if the CRF is trained only on, say, some
different kinds of windows, it will be impossible to detect other kinds of objects that
might occur in repetitive patterns in a scene. Our goal however, is to be independent
of the object category itself and to infer only the structure of the network. In fact, the
object category is already determined by the similarity detection described above.

To address these issues, we propose a different approach. Considering the fact that from
the training phase we only obtain a set of node and edge weights wn and we, which
do not depend on the network geometry but only on its topology, we can artificially
generate training instances by setting up networks with a given topology and assigning
combinations of low and high detection qualities qi to the nodes. The advantage of this
is that we can create a higher variability of possible situations than seen in real data and
thus obtain a higher generalization of the algorithm. The topology we use for training
has a girth γ of 3 and is shown in Fig. 6 on the left. Other topologies are possible for
training, e.g. using squared or hexagonal cycles, but from experiments we carried out it
turns out that the use of such topologies does not increase the classification result. The
graph in Fig. 6 right illustrates that. It shows the true positive and the true negative rates
from an experiment with 100 test data sets, each consisting of networks with a total
of 5000 to 10000 nodes. The training was done once only with a triangular topology
(TriTop) and once also including square and hexagonal topologies (MixTop), which
represent all possible regular tessellations of the plane. As the graph shows, there is no
significant difference in the two classification results. In contrast to the topology, the
number of outgoing edges per node, i.e. the connectivity, has a strong influence on the
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Fig. 6. Left: Triangular lattice topology used for training the CRF. The numbers inside the nodes
show the connectivity of the nodes. Right: Comparison of CRF performances using TriTop and
MixTop datasets for training. True positive and the true negative rates are evaluated. The result
from the TriTop data are shown in box-and-whiskers mode, the MixTop result as dots. We can see
that using different topologies for learning gives no significant change in the classification result.
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learned weights. Thus, we use a training instance where all possible connectivities from
2 to 6 are considered, as shown in Fig. 6 left.

In the inference phase, we create a CRF by growing an initial network. From the
analysis of repetitive patterns described above, we obtain the set G for each category,
the topology and edge lengths of the lattice. By subsequently adding cycles from G to
the initial network obtained from the already detected objects, we grow the network
beyond its current borders. After each growing step, we run loopy belief propagation to
infer the occurrence of objects with low detection quality. The growth of the network is
stopped as soon as no new objects are detected in any of the 4 directions from the last
inference steps.

7 Model Compression

One aim of our work is to show that the information contained in an image (e.g. a fa-
cade) can be compressed using the proposed repetition detection technique. We reduce
the image to a simple set of detected object categories, their repetition scheme, and a
simplified background extraction. More in detail: each object category is stored as a
set of codebook descriptors and vote vectors, a rectangular colorscale bitmap result-
ing from averaging the image areas inside the detected elements bounding boxes. To
visually simplify the image background, we assume that the space between detected
elements in a category is covered by textures of the same kind. We sort object cate-
gories by their cardinality. Then, as a texture simplification, we compute the median
color between the elements by sampling squared image patches. This color is assigned
to a rectangle patch that extends from top to the bottom of each category. We iterate this
procedure until all the image is covered. Missing empty spaces are filled with the color
of the most populous group. Some examples are shown in the right part of Fig. 9.

An image compressed with our method can be used in a number of applications
such as visual based localization, in which information is extracted only from the re-
peated pattern, or low-bitrate storage for embedded systems (e.g. UAV) that have to
store/transmit large urban environments. In a more general fashion we consider that our
approach should be useful in all those cases where the main goal is to identify places
where repetitive patterns are present, although it is not as well suited to provide detailed
reconstructions of the represented objects.

8 Experiments

The goal of our experimental evaluation is to investigate to which extent the proposed
algorithm is capable to detect different categories of objects, to detect repetition rules
and to run inference based on that information.

In order to obtain rich statistics on a wide range of object categories we prepared an
image evaluation set composed of high contrast polygons at different sizes. 150 pictures
of 450× 150 pixels size have been computer generated, each one containing 2 to 8
different object categories. An object category is defined by a type of a polygon. It is
important to stress that such set evaluates not the detection capabilities but the capacity
of grouping similar elements, detecting latticelets and inferring high level cycles and
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Fig. 7. Samples from the evaluation data set
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Fig. 8. Left: Average difference between the number of detected categories and annotated cate-
gories. The algorithm tends to under-explain the data trying to not overfit single detections. Right:
Discovery only detection and discovery + CRF detection. The contribution of CRF for detecting
missing elements is particularly evident when a low detection rate is obtained. Graphs are plotted
with respect to the minimum detection quality θb needed for each node.

chains for model compression and completion. Polygons are described by few pixels
to introduce ambiguity in the description of repetitive elements. Fig. 7 shows some
samples from the evaluation dataset.

One of our goals is to assess the quality of object category distinction and grouping,
that is fundamental for the creation of the graph, as well as its analysis. It is important
to note that the angle difference between an hexagon and a pentagon is just 12◦ and
in small scales, due to pixel aliasing, this difference may not be easy to distinguish.
Fig. 8 left shows the average difference between the number of detected categories and
annotated categories. The graph is plotted with respect to the minimum detection quality
θb needed for each node. We can notice that the algorithm tends to under-explain the
data trying to not overfit single detections. This is the result of the soft detection and
grouping strategy we use that favors the merging of similar categories to the creation of
a new one.

Moreover, we evaluate the contribution of the CRF to the detection rate of repetitive
elements present in the image. We plot, in Fig. 8 right, this measure with respect to θb
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Fig. 9. Left Column: Extracted self-similar objects (red boxes). Note that often only a few number
of instances are found. Center Column: Final CRF lattice (dots and lines) and inferred position
of objects (boxes). Right Column: Reconstruction of images based on our model compression.
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and we overlay the results using CRF. The left side of the graph shows the CRF contri-
bution ( 4%) when many annotated objects have been already detected by the discovery
process, the right one shows the performance when just few elements are detected. In
the latter case, a sound 20% detection rate improvement is achieved: it suffices that a
small group of elements is detected for generating a set of G used for inferring many
missing aligned low-detection nodes. Important to mention is the average of false pos-
itives per image: 0.2. CRF therefore increases the true positive rate and it guarantees a
very low false positive rate.

We also performed a quantitative analysis of compression ratio for the images in the
evaluation set and the real-world images displayed in Fig. 9-right. The resulting com-
pressed image is very compact and it stores just one bitmap for each object category
and a list of 2D coordinates of elements locations. If we employ the ratio in bytes be-
tween the compressed image and the raw input image for the testing set images we
obtain 1.4% ratio, for the pictures displayed in Fig. 9 (top to bottom order), we ob-
tain: 2%,1.2%,2.3%,0.8%,2.8%,8%. Even though this method aggressively reduces
the amount of image details, the salient repetitive pattern is preserved.

A set of images of facades and other repetitive elements have been downloaded from
internet and treated as input for our algorithm, Fig. 9. On each of the examples the
difference from discovery and CRF-completed image is shown. It is interesting to notice
that the algorithm works also for not rectified facades and several kind of architectural
or repetitive elements. In the scope of this work it is evident that training on a simulated
data, sufficiently rich in variability, satisfies also real world examples.

9 Conclusions

In this paper we presented a probabilistic technique to discover and reason about repet-
itive patterns of objects in a single image. We introduced the concepts of latticelets,
generalized building blocks of repetitive patterns. For high-level inference on the pat-
terns, CRFs are used to soundly couple low-level detections with high-level model
information.

The method has been tested on simulated and real data showing the effectiveness of
the approach. From a set of synthetic images, it was verified that the method is able to
correctly learn different object categories in an unsupervised fashion regardless the de-
tection thresholds. For the task of object detection by model prediction and completion,
the experiments showed that the method is able to significantly improve detection rate
by reinforcing weak detection hypotheses with the high-level model information from
the repetitive pattern. This is especially true for large thresholds for which detection
only, without our method, tends to break down. For the task of model compression,
i.e. retaining and efficiently representing the discovered repetitive patterns, a very high
compression ratio of up to 98% with respect to the raw image has been achieved.

Beyond the tasks of model completion and compression, we see applications of this
method in image inpainting, environment modeling of urban scenes and robot naviga-
tion in man-made buildings.
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Abstract. We address the problem of large scale image retrieval in

a wide-baseline setting, where for any query image all the matching

database images will come from very different viewpoints. In such set-

tings traditional bag-of-visual-words approaches are not equipped to han-

dle the significant feature descriptor transformations that occur under

large camera motions. In this paper we present a novel approach that

includes an offline step of feature matching which allows us to observe

how local descriptors transform under large camera motions. These ob-

servations are encoded in a graph in the quantized feature space. This

graph can be used directly within a soft-assignment feature quantization

scheme for image retrieval.

Keywords: Wide baseline, image retrieval, quantization.

1 Introduction

In this paper we address the challenge of image retrieval from large databases.
While this is a classic problem in Computer Vision, we are interested in the
specific scenario of wide-baseline image retrieval. In this setting, we assume that
for most query images the closest matching (true matches) databases images are
of the same scene but from very different viewpoints, and thus have undergone
significant transformations relative to the query (see Figure 5 for an example).

We isolate the wide-baseline challenge because it has important practical im-
plications. For example, it is unrealistic in any real-world image retrieval sys-
tem that the databases will contain many images of all interesting locations,
so matching to a few images of a scene is important. Furthermore, the ability
to effectively match images from a wide-baseline means one can construct the
database accordingly, keeping fewer images of each scene than would otherwise
be needed. This would have an impact on both storage costs and retrieval time.

Much of the work for large scale image retrieval has been based on the bag-of-
visual-words (BOW) approach [1,2], which borrows ideas from the text-retrieval
community. To summarize briefly, forming an image representation can be broken
into three steps: (1) local feature detection and extraction (2) feature quantiza-
tion, and (3) tf-idf image representation. In our setting, the real challenges lie

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 310–323, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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within the first two steps. Much effort has been put into identifying local fea-
ture detectors and descriptors [3,4,5] suitable for correspondence problems, but
even these will not remain sufficiently invariant (either repeatability of detec-
tor or invariance of descriptor) when the camera undergoes very large motions.
Also, while feature quantization may mask small descriptor transformations, it
is unlikely to deal gracefully with larger transformations.

In this paper we aim to improve wide-baseline retrieval within the BOW
framework. To address the primary issue of feature deformations over large cam-
era motions, we perform unsupervised tracking of millions of points through
long image sequences in order to observe how corresponding descriptors trans-
form under significant camera motions. As an intermediate representation for
millions of feature tracks, we construct a weighted graph embedded in the quan-
tized feature space, where the edge weight between two words is related to the
number of tracks having descriptors mapped to both words. We will refer to
this graph as the track-graph. In a way the track-graph encodes how often we
have seen features that are mapped to one word transform into features that
are mapped to another word. Importantly, this graph construction provides a
purely data-driven way of encoding the observed feature transformations. We
avoid the difficult problem of explicitly modeling or parameterizing the space of
feature transformations, for example. We utilize the track-graph for the image
retrieval application by incorporating it into a soft-assignment scheme similar to
that of [6].

Our primary contribution can be summarized as a novel approach for image
retrieval that utilizes offline feature tracking to observe feature transformations
under large camera motions. To our knowledge this is the first method that
successfully incorporates such information within a BOW retrieval approach.
Furthermore, we examine properties of the track-graph in detail to understand
the added value of the information it encodes. Evaluation of the retrieval system
in a wide-baseline setting shows promising performance.

1.1 Related Work

Retrieval from large image collections is a well-studied problem in Computer
Vision. In 2003, Sivic and Zisserman [1] applied a text retrieval approach for
object retrieval, and many of the current state-of-the-art methods can be seen
as an extension of this BOW approach (a few examples are [2,7,8,9]).

At their core, these methods rely on a quantization of the feature space into
visual words to make large scale retrieval a tractable problem. To this end a
number of papers have explored various ideas related to partitioning and assign-
ment in the feature space. The baseline standard is k-means clustering to build
a vocabulary, and nearest-neighbor assignment of descriptors to words [1]. In
[2], a vocabulary tree (constructed with hierarchical k-means) is used for fea-
ture quantization and assignment, while [8] considers approximate k-means for
assignment, and [10] considers a fixed quantization for a vocabulary. More re-
cently, [7] have studied the effects of quantization and introduce a combination of
vector quantization and hamming embedding. In [11] kernel density estimation
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is applied to capture the uncertainty of assignment from features to words, thus
limiting the effects of hard assignment. Philbin et al [6] show the effects of quan-
tization can be remedied in part by a soft-assignment when mapping descriptors
to words. Our work is influenced by this last approach as we will incorporate our
observations of feature transformations into a similar soft-assignment scheme.
While the works above address the issue of feature quantization and assignment,
there has been little done to specifically address the challenges of image retrieval
under wide-baseline conditions. Efforts in landmark recognition are capable of
building rich 3D representations of landmarks or scenes given a sufficient number
of images [12,13,14,15]. These representations can be utilized for image matching
and retrieval. However, such approaches [13] still require the image database to
be populated with a large number of images of each landmark. This is in contrast
to our wide-baseline setting where we do not expect to have a large number of
matching images in the database for any query.

A central premise of our approach is that by tracking or matching features
through image or video sequences one can observe how image features transform
under large viewpoint changes. Utilizing this information should improve re-
trieval when query images come from unique viewpoints relative to the database
images. Prior related work includes [16], where Implicit Shape Models are con-
structed for object pose recognition. 3D descriptors are represented by a set of
2D image descriptors that were matched over a set of training images, however
manual correspondences (e.g. hand-selected feature matches) are required for
initialization. In [17], object level representations are formed by object regions
tracked within video shots, which provides viewpoint invariance for retrieval.
In [18], feature matching between images in the training set is used to identify
a set of “useful” features. This greatly reduces the number of features stored
from each image without loss in retrieval precision. Earlier work [19] explores
building invariant distance measures with a priori knowledge of patch transfor-
mations. In [20] invariance is incorporated into SVM classifiers by introducing
artificially transformed copies of support vectors. In [21], feature matching under
wide-baseline conditions is treated as a classification problem, where each class
corresponds to all views of a point. In the BOW approach of [6], one variation of
their soft assignment scheme involves generating multiple feature sets for an im-
age by applying small transformations directly to the image. While our work is
related to these last approaches, we note that in both [21] and [6] feature trans-
formations are generated by simulating image transformations. This is limited
in that one has to model and parameterize the space of patch transformations
(e.g. affine transformations), and it is unlikely such an approach can capture the
full spectrum of transformations that are observed from actual camera motions.
In our work we address this issue by tracking features through image sequences.

2 Bag-of-Visual-Words Image Retrieval

In this section we give a brief summary of our implementation of the traditional
baseline BOW model. We combine a Hessian-Affine interest point detector and
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SIFT descriptors [4,5], and starting with a collection of SIFT features from a
large dataset a visual vocabulary is constructed by partitioning the feature space
with k-means clustering. The ideal number of clusters depends on the dataset,
and so in this paper we experiment with vocabularies ranging from 2500 to
500000 in size. We denote a vocabulary as V = {v1, v2, v3, . . . }, where the visual
words vi are the cluster centers. Feature-to-word mapping assigns a descriptor
xi to the closest visual word x̂i = argmin

v
‖xi − v‖2. In practice, this mapping is

done with approximate nearest neighbors when the vocabulary size is large. The
final tf-idf image representation is simply a weighted histogram over the words
appearing in an image. For complete details see [1,22].

3 Constructing the Track-Graph

In this section we describe our process of constructing a graph in the quantized
space that encodes feature transformations observed from image sequences. Our
intermediate goal here is to develop a method that allows us to characterize how
feature descriptors transform under large camera motions. As with any data-
driven approach, we must be sure to collect a large number of samples in order
to be sure our observations have statistical significance. Our setup consists of 3
cameras on top of a vehicle that acquires images while driving through urban
city streets. The three cameras (c1, c2, and c3) are arranged to face the same
side of the street, but at different angles. Camera c2 is fronto-parallel to building
facades on the side of the street, while c1 and c3 are offset approximately 45◦

on either side of c2. Due to this arrangement, scene content that is observed
by camera c1 at time t is usually observed by c2 and c3 at a later time t′ > t.
Figure 1 shows a sequence of images from 7 consecutive time steps.

1 1 2 2 3 3 3

1116 1117 1118 1119 1120 1121 1122

Fig. 1. A sequence of seven consecutive frames from our acquisition system that il-

lustrates how the same scene content will be seen from multiple cameras over time

separated by a wide baseline. At each of the seven time steps (frames 1116 through

1122), the same scene content is observed from one of the three cameras (1, 2, or

3). With frame-to-frame feature matching we are more likely to generate tracks that

observe world points from very different viewpoints angles than if we tried to match

features directly between the extreme wide baseline image pairs.



314 A. Makadia

3.1 Feature Matching and Track Extraction

Since the sampling rate of the camera is too low to allow true feature tracking
between frames, we pursue discrete matching with RANSAC [23] to generate
correspondences that are consistent with a Fundamental matrix or Homography
transformation. Putative correspondences are obtained with nearest-neighbor
matching while discarding ambiguous candidates [5] (however all nearest
neighbor-matches are used to generate the final set of inliers after geometry
estimation). Since image acquisition is of minor cost, our matching thresholds
are fairly strict to protect against too many outliers. In total, we collected five
non-overlapping image sequences from the same city that contained a total of
45K image frames. Our matcher extracted 3.8M feature tracks having an average
duration of 5.8 frames (tracks shorter than 3 frames are discarded).1 Employing
discrete matching in place of pure tracking also serves a secondary purpose. It
is well known that repeatability of a feature detector is limited under viewpoint
changes, and so by generating tracks in this way we make sure to observe feature
transformations only for those features where the reliability of the detector is
certain.

3.2 Graph Construction

We define the track-graph as a weighted graph G = (V,E,w), where the vertices
are the set of visual words in the vocabulary. We would like the weight w(u, v)
to reflect the number of feature tracks whose descriptors have mapped to both
u and v. Let us represent a tracked feature t with its observed SIFT descriptors
t = {x1, x2, x3, . . . }, and let T be the collection of all feature tracks obtained
during the offline tracking process (T = {ti}). Figure 2 shows the few steps
required in constructing the weighted graph. To summarize, the edge weights
between vertices w(u, v) count exactly the number of tracks where at least one
descriptor mapped to word u and at least one descriptor mapped to word v.
Note that our construction process ignores self-edges (w(u, u) = 0, ∀u ∈ V ).2

3.3 Properties of the Track-Graph

The graph construction process described above can be seen as an iterative
process, where tracks are incorporated into the track-graph one after another
(in arbitrary order). The natural question that arises is how do we determine
the stability of the graph as we continue to incorporate more tracks (this can help
us determine if we have included enough observations to terminate construction).
To study this characteristic we evaluate how the graph changes as we continue

1 Figures depicting some tracking results can be seen at

http://www.cis.upenn.edu/~makadia/
2 We also considered post-processing the graph to account for the frequency in which

certain types of features were tracked. One such normalization was, for example,

w′(u, v) =
w(u,v)2∑

y w(u,y)
∑

y w(v,y)
. In practice, the few we tried all lowered performance.

http://www.cis.upenn.edu/~makadia/
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Input

1. Set of tracked features T , and a set of visual words V ,

and a weighted graph over the words G = G(V, E, w)

(initially w(u, v) = 0, ∀u, v ∈ V ).

Constructing G

1. For each track t ∈ T :

(a) t̂ = unique({x̂1, x̂2, x̂3, . . . }).

(b) For each pair of words (u, v) in t̂:
i. w(u, v) = w(u, v) + 1

ii. w(v, u) = w(v, u) + 1

2. Filter graph by setting all small weights (w(u, v) < τ ) to

zero. In practice we use τ = 5.

Fig. 2. Outline of track-graph construction. Here a track t is represented by the ob-

served feature descriptors t = {x1, x2, . . . }, and the notation x̂i refers to the visual

word assignment for feature xi.

to add more tracks. Given a graph G1, let us define the probability of seeing
an edge (u, v) as P ((u, v)) = w(u,v)∑

u,v∈V w(u,v) . Note for this task we ignore that
w(u, v) and w(v, u) represent the same link. Given two graphs G1 and G2, the
KL-divergence of PG2 from PG1 is used to measure their relative difference:

DKL(PG2‖PG1) =
∑

(u,v)∈V ×V

PG2((u, v)) log
PG2((u, v))
PG1((u, v))

(1)

For our purposes here G2 will always represent a graph obtained by integrating
more tracks into G1. The relative graph distance is not complete unless we
account for the relative “sizes” of the graphs. In other words, the relative change
in graphs should be normalized by the number of observations used to construct
the graphs. If we define the size of the graph as WG =

∑
u,v∈V w(u, v), we can

define the relative change between graphs as the KL-divergence scaled by the
relative change in graph size: D(PG2‖PG1) = DKL(PG2‖PG1)

WG1
WG2

. Table 1 shows
that the graph changes much less as more and more tracks are incorporated
(in this example the vocabulary size is 250000 words). This experiment was
performed on graphs before the small edges were filtered out (as per Figure 2),
which means the stability is observed even with possibly noisy edges present. The
second important consideration is whether or not the constructed track-graph
contains information that cannot be obtained from standard distance measures in
the feature space. If after constructing a graph from millions of tracked features
we find that the nearest neighbors in the graph (according to the edge weights)
mimic the neighbors produced with a traditional distance measure, this would
indicate that the track-graph will not contribute any orthogonal information. To
examine this property, we construct another graph that captures the proximity



316 A. Makadia

Table 1. Each column shows how the track-graph changes as a new collection of

tracks is incorporated. See the text for term definitions. The last row indicates that

as we incorporate more and more tracks into the graph, the relative change in the

graph continues to decrease. Note, in each column G2 represents a graph obtained

after incorporating more tracks into G1.

WG1 12M 20M 29M 36M

WG2 20M 29M 36M 41M
WG1
WG2

0.58 0.70 0.79 0.88

DKL(PG2‖PG1 ) 0.36 0.20 0.13 0.07

D(PG2‖PG1) 0.21 0.14 0.10 0.06

between visual words in the feature space using a standard distance measure
for SIFT features. We call this the L2-graph since the edge weight w(u, v) is
related to the Euclidean distance between u and v. To see how the track-graph
and L2-graph relate, we compare for each visual word its closest neighbors in
the track graph against its closest neighbors in the L2-graph. Figure 3 (left)
illustrates the average overlap between a visual word’s 10 closest neighbors in
the two graphs. Even for small vocabulary sizes there is less than 50% overlap
between the neighborhoods. A related experiment shown in Figure 3 (middle,
right) examines the actual Euclidean distance to a word’s k-th nearest neighbor
in the track and L2 graphs, respectively. The differences between the two graphs
is an indication that the track graph is capturing feature transformations that
may not occur smoothly in the feature space.

A final experiment on the graphs is a simple test of feature assignment. The
idea is to see how useful the track-graph weights might be in practice where cor-
responding features are often initially mapped to different words. Since our graph
weights are constructed to reflect this property exactly, in some sense this test
can be considered a cross-validation step. We collect feature tracks from an image
sequence that was not used during track-graph construction. From these tracks
we select 5000 wide-baseline feature pairs. We consider a feature pair (xi, xj) to
be wide-baseline if xi was observed in camera c1 and xj in c3 (or vice-versa).
Our measure of correct assignment is if x̂j is one of the k-nearest neighbors
of x̂i in the track/L2 graph. Figure 4 shows the results of this experiment for
different vocabulary sizes and for k ranging from 0 to 10 (k = 0 is just tradi-
tional hard assignment, and is thus the same for both the track and L2 graphs).
The experiments above depict valuable qualities of the track-graph. First, the

graph is relatively stable after incorporating 3.8M tracks (Table 1), which gives
us confidence we have included enough tracks during construction. Second, the
graph encodes some information about how feature descriptors transform that
cannot be observed with a traditional distance measure (Figure 3). Finally, ini-
tial experiments show the graph may be useful in practical correspondence tasks
(Figure 4).
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Fig. 3. The single plot on the left compares the overlap between a visual word’s 10

nearest neighbors in the track-graph and its neighbors in the L2-graph. We ignore

those words that did not have any tracked neighbors. The plot shows this neighborhood

overlap ratio for graphs constructed with 11 different vocabularies (ranging from 2500

to 500000 words). The two plots to the right compare the average distance of a visual

word to its k-th nearest neighbor (k = 1 on the left, k = 5 on the right).
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Fig. 4. Feature assignment results for the track and L2 graphs. Results are shown for

graphs constructed with three different vocabulary sizes: 2500 (left), 200000 (middle),

and 500000 (right). For each feature pair (xi, xj), assignment is considered correct if

x̂j is one of the k nearest neighbors of x̂i in the graph. In the plots k ranges between

0 and 10.

3.4 Image Retrieval with the Track-Graph

To utilize the track-graph in an image-retrieval engine, we develop a natural
feature quantization scheme that is motivated by the soft assignment approach
of Philbin et al [6]. To summarize [6] briefly, instead of quantizing feature x to its
closest word x̂, the vote for x in the tf-idf vector is distributed over the k-nearest
words to x. The weights given to each of these words is proportional to exp −d2

2σ2 ,
where d = ‖x− x̂‖2.

We utilize our track-graph in a similar way. Instead of assigning x to its closest
word x̂ (determined by L2 distance), the vote for x will be distributed between x̂
and the closest words to x̂ in the track graph. For k-nearest neighbor assignment,
for example, the weight for x will go to x̂ and the (k−1)-nearest neighbors of x̂ in
the track-graph (neighbors are determined by sorting the edge weights w(x̂, v) in
decreasing order). Here also the tf-idf weights are proportional to exp −d2

2σ2 . The
weights for each feature are scaled uniformly so the total tf-idf contribution is 1,
and σ is set identical to [6]. Note, we are only using the graph weights w(x̂, v)
for selecting a word’s neighbors, while the tf-idf weights are determined by L2
distances. The fundamental difference between our approach and [6] is that the
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track-graph provides a unique way of selecting the “closest” words to a feature.
The track-graph neighbors will be consistent with the feature transformations
observed in our offline tracking process rather than just L2 proximity in the fea-
ture space. For visual words that have fewer than k− 1 edges, the neighborhood
is supplemented with the original feature’s closest (L2) words. For example, if
a feature’s closest word x̂ has no track-graph neighbors, its assignment reduces
to the soft-assignment of [6]. For the track-graph constructed over 500000 visual
words, 36% of the words had no edges. At the other extreme, all words had some
neighbors for the graph constructed with the smallest vocabulary of 2500 words.
In the next section we evaluate our proposed approach for wide-baseline image
retrieval.

4 Evaluation

As we wish to evaluate image retrieval specifically in a wide-baseline setting,
we prepared a test scenario that reflects the relevant challenges. We begin by
collecting an image sequence in the same manner as described earlier. From this
sequence, we select 1374 non-overlapping test images, and the remaining images
form the database. All test images are chosen from either camera c1 or c3, so
that they are not oriented fronto-parallel to the building facades. To create a
sufficiently difficult challenge, only the wide-baseline matches are stored in the
database (6348 images). Figure 5 shows two test images and their true neighbors
in the database. Each test image has on average 4.6 true matches in the database.
We supplement the dataset with 247686 images collected from image sequences
that have no overlap with the test sequence. In total, we have 1374 test images
and 254034 database images.

We note that there is no overlap between the images used for vocabulary
and graph construction and the images used to build the evaluation dataset.
However, all images come from urban environments using the same image ac-
quisition scheme so the vocabulary and tracked features will still be relevant for
the application.

Query Closest matches in database Query Closest matches in database

Fig. 5. Challenging sample test images and their closest matching database images.

The significant camera motion between the queries and their matches makes for a

difficult retrieval task.
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Fig. 6. Top images retrieved for three queries using our track-graph method (Vocab-

ulary size 500000, 5-NN assignment). The leftmost image (highlighted in red) is the

query. The retrieval images are shown to the right of the query (correct matches high-

lighted in green). For all three queries, both [6] and traditional hard assignment failed

to retrieve any correct matches in the top 10.

4.1 Evaluation Criteria

Most image retrieval systems designed for practical large-scale use perform some
form of post-processing or re-ranking of the top results from the initial retrieval
(e.g. geometric verification, query expansion, see [8,24]). In this setting the most
important criteria is making sure as many correct results as possible appear in
the portion of the list that will be post-processed. In light of this we focus our
evaluation on the top returned images. Specifically, we will measure recall (at n),
which measures what fraction of the true matches appear in the top n results.
We will evaluate our track-graph based approach against the soft assignment of
[6], as well as the traditional BOW approach.3

4.2 Results

For our evaluation the two primary parameters are (1) the number of neigh-
bors used in k-NN feature-to-word assignment and (2) the cutoff n for which we
evaluate mean recall-at-n. Figure 7 shows results for n ∈ {10, 20, 50, 100}, and
k ∈ {3, 4, 5}. Of the 11 vocabulary sizes we have experimented with in previ-
ous sections (2500, 5000, 10000, 20000, 40000, 80000, 100000, 150000, 200000,
250000, and 500000), we select four of the larger vocabularies (100000, 150000,
250000, and 500000 words) for displaying results here (as expected, all three
algorithms performed their best on these larger vocabularies). While both our
track-graph approach and the soft assignment of [6] significantly outperform the
traditional hard assignment, the results also show the track-graph consistently
improving over [6], especially at the largest vocabularies. The improvements are

3 We attempted a variation of soft assignment based on simulating image patch trans-

formations [6], but due to the many implementation parameters our best results

underperformed the simple BOW baseline, thus those results are not included here.
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Fig. 7. Results of our track-graph approach (‘track’), soft assignment [6] (‘soft’), and

traditional assignment (‘hard’). Each plot shows a different combination of n (recall-

at-n) and k (k-NN assignment that is used in both our approach as well as [6]). n is

one of 10, 20, 50, or 100. k is one of 3, 4, or 5.

most noticeable at n = 50, while performance is closer at n = 100. For visual
examples, Figure 6 shows three queries where our approach succeeded in retriev-
ing at least one correct result in the top ten while both algorithms we compare
against fail to return any correct matches.

Looking at these results in a wider context, the final improvement in the
application setting of our method over the approach of [6] may seem modest
compared to the possible gains indicated by our earlier isolated experiments (see
Figure 4). One explanation for this is that, as mentioned earlier, our feature
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mapping reverts to [6] for those words where we have no tracking observations.
In the case of 500000 words we see that 36% of the words had no track-graph
neighbors. Furthermore, the earlier experiments isolate the comparison of tracked
neighbors and L2 neighbors, whereas the retrieval results in Figure 6 show the
results of an entire image retrieval engine, where naturally the differences within
a single component will be muted.

Regarding the cost to sparsity using our track-graph approach, we note that
for the 500000 word vocabulary, using 3−NN assignment, our approach gener-
ates 7% fewer nonzero entries in the tf-idf representation than the comparable
[6] (while simple hard assignment produces 66% fewer nonzero entries). Another
question is how does our constructed track-graph perform on image retrieval from
more general image collections? We emphasize that it is critical that the track-
graph encode the types of transformations expected in the retrieval problem (in
this paper we focus on wide-baseline camera motions exhibited by street-level
imagery). As we discuss in more detail in the following section, extending our
automatic tracking and graph construction process to address the types of trans-
formations observed in general collections (e.g. Web datasets) is non-trivial and
left to future work4.

5 Future Work

We have designed a novel data-driven approach to study how image features
transform under large camera motions and how such observations can be incor-
porated into a system targeting wide-baseline retrieval. While our results are
promising, we consider this preliminary work and note a number of areas re-
quiring future attention. Most notably is the generalization of our approach.
While our current approach encodes wide-baseline (specifically planar) motions
in the track-graph, going forward we would like to cover all possible transfor-
mations (e.g. descriptor transformations induced by general camera motions,
lighting and environment changes, changes in camera modality, etc.). This ex-
tension is non-trivial because our approach requires simple data collection and
fully unsupervised tracking to generate a large number of observations. However,
extending this approach will be challenging because controlling data collection
to observe a wide set of transformations, as well as automatically generating
sufficient ground-truth correspondences, is not a simple task. Another point for
future work is addressing the artifacts of quantization that remain in our devel-
opment. Our graph construction relies on hard assignment of tracked descriptors
to visual words, and similarly during tf-idf construction for identifying the word
from which track neighbors are selected. While our decisions here have been
motivated by sparsity and computation, we plan for future work to explore a
fully probabilistic soft assignment framework for graph construction as well as
4 However, as a validation of our intuition here we do provide an evaluation of our

wide-baseline tracks applied out of context to a general Web dataset. The supple-

mental material at http://www.cis.upenn.edu/~makadia/ shows performance on

the Oxford Buildings dataset [8].

http://www.cis.upenn.edu/~makadia/
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tf-idf generation. Another aspect of our work worth investigating further is the
application of our ideas to different problems. For example, we believe the track-
graph may be useful for improving correspondences in two views, and the offline
feature tracking can be used to build better visual vocabularies.

Acknowledgments. We thank Matthew Burkhart and Alexander Toshev for
helpful discussions, and the Google StreetView team for the data.
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Crowd Detection with a Multiview Sampler
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Abstract. We present a Bayesian approach for simultaneously estimat-

ing the number of people in a crowd and their spatial locations by sam-

pling from a posterior distribution over crowd configurations. Although

this framework can be naturally extended from single to multiview de-

tection, we show that the naive extension leads to an inefficient sampler

that is easily trapped in local modes. We therefore develop a set of novel

proposals that leverage multiview geometry to propose global moves that

jump more efficiently between modes of the posterior distribution. We

also develop a statistical model of crowd configurations that can han-

dle dependencies among people and while not requiring discretization of

their spatial locations. We quantitatively evaluate our algorithm on a

publicly available benchmark dataset with different crowd densities and

environmental conditions, and show that our approach outperforms other

state-of-the-art methods for detecting and counting people in crowds.

Keywords: Pedestrian detection; RJMCMC; Multiview geometry.

1 Introduction

Crowd detection is challenging due to scene clutter and occlusions among indi-
viduals. Despite advances in detecting and tracking people in crowds, monocular
techniques are limited by ambiguities caused by insufficient information from a
single view. Multiview approaches, on the other hand, can resolve ambiguities
using complementary information from different views of the same scene. For
example, two people totally overlapping in one view might be well separated in
another view, making detection easier.

We present a probabilistic approach to estimate the crowd configuration, i.e.
number of individuals in the scene and their spatial locations, regardless if people
are visible in one view or multiple views. Our approach uses a stochastic process,
specifically a Gibbs point process, to model the generation of multiview images
of random crowd configurations. The optimal crowd configuration is estimated
by sampling a posterior distribution to find the MAP estimate for which this
generative model best fits the image observations. An overview of our approach
is illustrated in Figure 1.

Our approach is motivated by the success of previous generative models for
people detection [1,2,3]. Due to the great flexibility offered by sampling-based in-
ference methods, our crowd model can accommodate inter-person dependencies
that otherwise would be intractable to infer because of their inherent combi-
natorics. Efficient sampling strategies are the key to performance in practice.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 324–337, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Our proposed method tests hypothesized crowd configurations in 3D space

against multiview observations (foreground masks) within a sampling framework

Although various data-driven proposals have been designed in the single view
context to guide hypothesis generation [2,3], to our knowledge we are the first
to explore multiview geometry constraints for efficient sampling.

Summary of Contributions

1. We extend generative sampling-based methods from single view to multi-
view, providing a unified framework for crowd analysis that successfully es-
timates 3D configurations in monocular and multiview input.

2. We introduce novel proposals based on multiview geometric constraints,
yielding a sampler that can effectively explore a multi-modal posterior distri-
bution to estimate 3D configurations despite occlusion and depth ambiguity.

3. Our global optimization does not require discretization of location and re-
spects modeled spatial dependencies among people, resulting in better de-
tection and localization accuracy than current state-of-the-art.

2 Related Work

Among monocular approaches for pedestrian detection [4,5,6,7,8,9], classifier-
based methods are very popular [7,8,9] and sampling-based methods have also
been shown effective for crowd detection [2,3,10] as well as generic object
detection[11,12]. Within the sampling framework, various efficient, data-driven
sampling strategies have been proposed. For example, Zhao and Nevatia [2] use a
head detector to guide location estimates and Ge and Collins [3] learn sequence-
specific shape templates to provide a better fit to foreground blobs. We extend
the sampling framework to a unified approach that can detect people visible in
a single view or in multiple views.
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Previous multiview detection methods differ not only in image features and
algorithms, but also camera layout. We confine our discussion to multiple cam-
eras with overlapping viewpoints, for we are primarily interested in resolving
ambiguities due to occlusion. Mittal and Davis [13] match color regions from all
pairs of camera views to generate a ground plane occupancy map by kernel den-
sity estimation. In Khan et.al. [14], foreground likelihood maps from individual
views are fused in a weighted average fashion based on field-of-view constraints.
Tyagi et.al. [15] develop a kernel-based 3D tracker that constructs and clusters
3D point clouds to improve tracking performance.

Among related approaches that estimate ground plane occupancy [1,16,17,18],
our work bears the closest resemblance to [1] in that we both take a generative
approach. However, they discretize the ground plane into a grid of cells, and
approximate the true joint occupancy probability of the grid as a product of
marginal probabilities of individual cells, under the assumption that people move
independently on the ground plane. Although our problem and framework are
similar, we use a sampling-based inference technique that allows us to use a more
flexible crowd model. Our model relaxes the independence assumption among
people and does not require discretization of spatial location nor a fixed size
for each person. We show in our results that these improvements lead to better
detection and localization accuracy as well as greater robustness to errors in
foreground estimation and camera calibration.

Our efficient sampling algorithm is inspired by previous work that seeks to
improve the mixing rate of a sampler by encouraging traversal between different
modes of the target distribution [19,20,21]. Dellaert et.al. [19] developed a chain
flipping algorithm to generate samples of feasible solutions for weighted bipartite
matching. Other methods such as the mode-hopping sampler [21] use knowledge
about the topography of the target distribution to speed up sampling. Although
inspiring, these methods are not directly applicable to our scenario because we
are searching a large configuration space with variable dimension. More relevant
is the data-driven MCMC framework [22] that uses various data-driven proposals
such as edge detection and clustering to speed up Markov chain sampling for
image segmentation.

3 A Gibbs Point Process for Crowd Detection

In this section we present a Bayesian statistical crowd model that accommodates
inter-person dependence, together with a baseline sampling algorithm that di-
rectly extends a single view detection approach to perform multiview inference.
We discuss the limitations of this baseline algorithm in Section 4 where we
present the motivation and strategies of our novel multiview proposals. Experi-
mental results on a public benchmark dataset are presented in Section 5.

3.1 Modeling

Our goal is to estimate a 3D crowd configuration based on image observations
from a surrounding set of fixed cameras. A crowd configuration is an unordered
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set of targets on = {o1, . . . , on}, i = 1, . . . , n, n ≥ 0. Each target represents
a person moving on a flat ground plane and is parameterized by an upright
cylinder o = (c, r, h), where c ∈W is a spatial coordinate in the centroid-plane,
a plane that is half the height of an average person above the ground, W is a
compact subset of R2 equipped with volume measure ν, and [r, h] specifies the
width (radius) and height of a person.

The configuration space is denoted as ΩN = {∅,∪N
i=1o

i}, which is a union
of subspaces with varying dimensions, including the empty set and up to N
people distributed over W . We model random configurations by a spatial point
process, specifically, the Gibbs point process [23]. Let μ(·) be the distribution
of a homogenous Poisson process of unit intensity, which is analogous to the
Lebesgue measure on Rd. The density of the Gibbs point process can be defined
with respect to this reference Poisson process. Formally,

p(o) =
f(o)∫

Ω
f(o)dμ(o)

, (1)

where the mapping f(o) : Ω → [0,∞) is an unnormalized density having the
Gibbs form f(o) = exp{−U(o)}.

The Gibbs process is very flexible for modeling prior knowledge about ob-
ject configurations. It often includes a unary data term to model object at-
tributes and higher-order interaction terms to model inter-object relationships.
Our model incorporates two types of inter-person dependency. The first one is
an avoidance strategy motivated by studies in social science showing that people
keep a ‘comfort zone’ around themselves. We incorporate this dependency by a
Strauss Model [23], which defines a pairwise potential interaction as

φ(oi, oj) =
{
η ‖ ci − cj ‖≤ r
0 ‖ ci − cj ‖> r

, (2)

where r is a parameter that controls the size of the comfort zone and η is set to
some large constant number.

The second modeled dependency is based on the principle of non-accidental
alignment. It penalizes configurations where people line up perfectly along a
viewing ray to claim the same foreground region. This is not a hard constraint:
certainly one person can be occluded by another in any view. However, each
person is unlikely to be occluded in every view. In general, we seek to penalize
configurations that require a large number of occlusions to explain the data.
Unfortunately, explicit occlusion analysis involves a combinatorial number of
interacting subsets. To keep the energy function linear in the number of targets,
we measure the degree of alignment in 3D by the amount of overlap among
projected rectangles in each image view. Formally, a ‘label’ image is computed
by pixel-wise disjunction as Sv(o) = ∪iHv(oi), where Hv is projection function
associated with camera v that maps a 3D person to a binary image that is zero
everywhere except for a rectangular area bounding the projected person and v ∈
[1, V ] where V is the number of camera views. Pixels in the label image covered
by at least one projected rectangle are labeled as foreground. For simplicity, we
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use Sv as a shorthand for Sv(o). For each object oi, Dv
i = |Hv(oi) ∩ Sv(o\oi)|

measures the amount of overlap between one target’s projection and the rest
of the targets in that view by counting the number of foreground pixels in the
intersection image. We define the overlap cost for oi as

Di =

{
Dv

i oi only visible in v
min

v
Dv

i otherwise .

This way, overlap in some views will not be penalized as long as the target is
clearly visible in other views. We encode prior knowledge about a general crowd
configuration in the total energy of a Gibbs process

U(o) =
∑
i,j

φ(oi, oj) +
∑

i

Di + γN, (3)

where N = |o| is the number of estimated people in 3D. The last term penalizes
spurious detections with a constant weight γ.

Under this probabilistic framework, the problem of crowd detection is solved
by finding the configuration that best explains the image observations (fore-
ground masks) from different views. Denote the binary foreground mask in view
v by Zv = {Zv

i }, Zv
i ∈ {0, 1}, i = 1, . . . ,mv, where mv is the number of pixels in

the image observed from view v. A likelihood function L is defined to measure
the probability of a configuration given the foreground masks by comparing two
sets of binary images, the mask images Z and label images S,

L(o;Z) = L(S;Z) = exp{−G(o)}, (4)

G(o) =
∑V

v=1

∑mv

i=1 I1(S
v
i , Z

v
i ) + β

∑N
j=1 I2(oj), (5)

I1(Sv
i , Z

v
i ) =

{
1 Sv

i �= Zv
i

0 o.w. , I2(oj) =

{
1 ∃v, s.t. |Hv(oi)∩Zv|

|Hv(oi)| < 0.1
0 o.w.

, (6)

This likelihood function contains two terms: I1 penalizes discrepancies between
hypothesized person detections and the image observations, and I2 imposes an
extra penalty on ‘ghosts’ – detections that cover mostly background pixels. β is
set to some large constant number.

Combining the prior (Eqn. 1) and the likelihood function (Eqn. 4), we define
the optimal crowd configuration as the MAP estimator

o∗ = argmax
o∈Ω

(P (o|Z)) = argmax
o∈Ω

(e−(U(o)+G(o)
)

C(Ω)
)
. (7)

Optimizing the above posterior directly is intractable because the normalizing
constant from the Gibbs prior, C(Ω) =

∫
Ω f(o)dμ(o), involves all possible con-

figurations in the combinatorial configuration space Ω. Moreover, pairwise po-
tentials in our crowd model make the inference harder than what can be handled
by approximation methods such as [1,18,24].
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3.2 Inference

We use reversible jump Markov Chain Monte Carlo (RJMCMC) to battle the
intractable normalizing constant in Eq. 7. MCMC is designed to generate sam-
ples from complicated target distributions, such as our posterior distribution,
by constructing a Markov chain with the desired target distribution as its equi-
librium distribution. RJMCMC [25] extends the classic algorithm to deal with
variable dimension models. It suits the crowd analysis problem well because the
number of people is not known apriori, and thus also needs to be estimated.

The RJMCMC sampler explores the configuration space by proposing per-
turbations to a current configuration. The general sampling framework is re-
viewed in the supplemental material1. The design of good proposal distributions
is the most challenging part of the sampling algorithm. Proposals that only
allow local perturbations may become trapped in local modes, leaving large por-
tions of the solution space unexplored, whereas global adjustments have less
chance to be accepted unless the target distribution is very smooth or tem-
pered to be so. To achieve a good balance of both local and global proposals,
we use proposals from a mixture of both types: Q(; ) =

∑C
c=1 pcQc(; ), where∑

c pc = 1,
∫
Qc(o′;o)μ(do′) = 1, and C is the number of different proposal

moves. Below we describe a baseline multiview sampler directly extended from
local birth, death, and update proposals commonly used in single view sam-
plers [2,3].

Birth/Death proposal. A birth proposal adds a 3D person to the current
configuration, i.e. o′ = o ∪ ob. A simple birth strategy might place a person
uniformly at random (u.a.r.) in the bounded region W . A death proposal removes
a person from the current configuration so that o′ = o\od, e.g. choosing od u.a.r.
from o. Both proposals involve a dimension change from |o| to |o′|. Instead of
blindly adding a person, we use a more informative data-driven proposal [22].
We sample ob’s location according to the birth probability Pb ∼ Pb(l)∑

l∈W̃
Pb(l)

,

where Pb(l) = 1
V

∑
v

|Hv(l)∩Zv |
|Hv(l)| is the fused occupancy likelihood of a particular

location l, computed as the sum of the percentage of foreground pixels within its
projected rectangles in all views, and W̃ is a discretization of the bounded region
of interest in the centroid-plane W . Our final detection results are not restricted
by this discretization because localization is adjusted by other proposals of the
sampler.

Update Proposal. The update proposal preserves the dimension of the current
configuration but perturbs its member’s attributes (location and size) to generate
a new configuration. We use a random walk proposal that selects a person ou

u.a.r. from o, and either proposes a new spatial placement by sampling from a
truncated normal distribution N (c′|cu, σ) centered at the current location cu, or
proposes a new size by sampling from a truncated normal centered at the size
of an average person, h = 1.7m and r = 0.4m.

1 http://vision.cse.psu.edu/projects/multiviewmcmc/multiviewmcmc.html



330 W. Ge and R.T. Collins

V6

phantom

V5
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V5

real person

Fig. 2. Common pitfalls in multiview crowd detection. Left: the phantom phenomenon.

A 3D phantom location (red circle) explains foreground pixels in different views that

actually belong to the projections of two different real people (red boxes). Right:
depth ambiguity for people visible in a single view can result in explanation of a single

foreground region by alternative detections of different sizes.

4 Multiview Proposals

The local proposals presented in the previous section yield satisfactory results
when people are well-separated in multiple views. However, when a person is visi-
ble only in one view, the inherent depth ambiguity coupled with noisy foreground
blobs leads to a significant performance drop, which has also been reported in
previous work [18,24]. Moreover, as occlusion becomes more frequent, we have
observed that the naive sampler often gets stuck in local modes because of the
‘phantom’ phenomenon. Phantoms are accidental intersections of viewing rays at
locations that are not occupied by any real person. Phantom hypotheses attempt
to explain foreground regions across multiple views that actually are projections
of different people in 3D. As shown in Figure 2, when a phantom gets accepted
in the current configuration, later proposals for the real person are less likely
to get accepted because the phantom already explains a large portion of their
foreground pixels, thus the new birth proposal will suffer a high overlap penalty.
Local random walk updates are also unlikely to escape from this local maximum.
Although increasing the step size of a random walk can alleviate the problem to
some extent, such blind exploration wastes time visiting mostly low probability
regions, leading to an inefficient sampler.

Inspired by long range mode-hopping MCMC proposals [19,20,21], we exploit
geometric constraints to design proposals that allow global changes that more ef-
fectively explore the configuration space. The motivation behind using geometric
constraints is that multiview geometry is consistent across views whereas image-
based appearance constraints (e.g. head detection for birth [2]) may conflict with
each other in different views.

Our multiview proposals are based on occupancy likelihood rays, or likeli-
rays for short. Recall that in our data-driven birth proposal, we have com-
puted a centroid-plane occupancy map by fusing foreground masks from all the
views in 3D. Likelirays are essentially polar coordinate transformations of the
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Fig. 3. Left: Likelirays from one viewpoint v, indexed by angle θ, define a set of 1D

distributions over potential person and phantom locations at different depths along

viewing rays in the centroid-plane. Right: Mode-hopping by sampling from a likeliray

ρv(θ). Green dots are samples from the depth move, which visits all significant modes

whereas the blue samples from a local random walk proposal stays in a single mode.

centroid-plane occupancy map with respect to each camera view v, indexed by
angle θ, i.e. ρv(θ). Different modes along each likeliray correspond to potential
real and phantom locations of people at different depths. The likeliray represen-
tation gives us a convenient way to generate proposals with respect to a single
camera view while taking into account fused information from all other camera
views. We now present two such multiview proposals.

Depth Move Proposal. A depth move first randomly selects a person om and
a camera view v from the list of views where om is visible. Let θ denote the angle
of the polar coordinate of om. A new 3D location is sampled with probability
proportional to the 1D likeliray distribution ρv(θ). Figure 3 shows that samples
from depth moves are able to visit different modes whereas samples from local
random walk proposals only cluster around the current location. The depth
proposal is a powerful and versatile mechanisim to handle the problems shown
in Figure 2. It can switch between a phantom and a real person hypothesis and
also can produce the effect of a large scale change of a single person by “sliding”
them in depth along a viewing ray, which is useful for correctly detecting people
visible only in a single view. Unlike random walk with large step size, a depth
move preserves some of the already covered foreground pixels. Depth moves
therefore tend not to cause large decreases in likelihood, so are more likely to be
accepted.

Merge/Split Proposal. When people are only visible in a single view and the
viewpoint is not very elevated, a large foreground region may become covered by
fragmented detections corresponding to pedestrian hypotheses scattered within
a small range of viewing angles at different distances from the camera may
be hypothesized to cover parts of a large foreground region (Figure 4). These
fragments create local modes that prevent explaining the entire region correctly
as one single person.
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C
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Fig. 4. Left: Merge Proposal. The top panel shows how the 3D merge proposal yields a

new hypothesis C that minimally covers both projections A and B in view v. The bot-

tom shows that the final results (right) correctly recover from fragmented hypotheses

(left). Right: Independent Update Proposal. The top panel shows localization error

(marked in red) in four views due to camera calibration and synchronization errors.

The bottom shows improved results using the independent update proposal.

We design a 3D merge/split move to ease the switch between the following two
hypotheses: multiple distant people versus a single, closer person. Let two people
oa and ob both be visible from a particular viewpoint, with polar coordinates
(θa, ra) and (θb, rb), θ ∈ (0, π). As illustrated in Figure 4, their angular extents
are [a1, a2] and [b1, b2]. A new merged person oc can be hypothesized from oa

and ob in two ways: 1) when one of the angular extents completely falls within
the other, we randomly move the person with the larger angular extent closer
to the camera and delete the other; 2) otherwise, without loss of generality,
assume a1 < b1 and a2 < b2, which includes the case of partial occlusion as
well as complete separation of the two. We create a new person in 3D whose
image projection minimally covers the projections of both merge candidates, thus
having an angular extent [a1, b2]. The corresponding polar coordinates (θc, rc)
of oc can be computed as θc = a1+b2

2 , rc = 0.5w
tan(0.5(b2−a1))

, where w is the width
of an average sized person.

A 3D merge move randomly chooses a view v in which to propose a merge.
Denoting all visible people in v as ov, a person oa is chosen u.a.r. from ov.
For each other person oi, i �= a, let ei be the angular extent of the candidate
blob that would result from merging oa and oi. We use these extents to define a
probability distribution over candidates i as pi = ẽi∑

j ẽj
, where ẽi = minj ej

ei
favors

merging two people with large angular overlap. A candidate person is proposed
for merging with oa by sampling from this distribution. If a newly merged person
is accepted, we store their components in a merge list. The reverse proposal is
a 3D split that randomly selects a person from the merge list and splits them
back into their stored original component detections.

Independent Update Proposal. So far, the four types of presented proposals,
birth/death, update, depth move, and merge/split, all hypothesize new person
locations/sizes in 3D and the corresponding projections in image views are de-
termined by the camera calibration information. To accommodate noisy input,
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e.g. errors in calibration, synchronization, or foreground estimation, we add an
independent update proposal that can perturb the 2D projection rectangle in
each image plane independently (demonstrated in Figure 4). The independent
update move works by randomly choosing a person oi and a camera view v from
the list of views where oi is visible. With equal probability, either the size or the
location of the projection box in view v is updated by sampling from a trun-
cated 2D normal distribution centered at the nominal image location and size
determined by the calibration matrices.

5 Experiments

We evaluate our algorithm on the PETS2009 dataset [26], a challenging bench-
mark dataset for multiview crowd image analysis containing outdoor sequences
with varying crowd densities and activities. We tested on two tasks: crowd de-
tection in a sparse crowd (sequence S2L1-1234) and crowd counting in a dense
crowd (sequence S1L1-1357). We generated foreground masks using an adap-
tive background subtraction algorithm similar to Zivkovic’s method [27], and
camera calibration information provided with each dataset was used to generate
the birth proposal map Pb as the average back-projection of foreground masks
from all views, as described in Section 3.2. Sample detection results are shown in
Figure 6. Our proposed method obtains superior results over other state-of-the-
art crowd detection methods, as will be shown through quantitative evaluation
below.

Sparse sequence S2L1: We used four camera views, including one elevated, far
field view (called View 1) and three low-elevation near field views with frequent,
severe occlusions (Views 5, 6, and 8). We compared our detection results against
the ASEF method, which is a detection method using convolution of learned
average of synthetic exact filters [5], and the POM+LP method, which is a multi-
target detection and tracking algorithm based on a probabilistic occupancy map
and linear programming [24]. We chose these two methods because they are the
current top-performers as reported in Winter-PETS2009 [26]. We also compared
against the Cascade [8] and Part-based [9] person detectors, trained according
to [5]. We performed ground-truth annotation of the sequence and evaluated
each algorithm based on the standard MODA and MODP metrics (details are
included in the supplemental material1). MODP measures localization quality
of the correct detections and MODA measures detection accuracy taking into
account false negatives/positives. For both metrics, larger values are better. A
detection is counted as correct if the overlap ratio between the annotated box
and the detection box is greater than some threshold τ . We systematically vary
this threshold and compute the evaluation metrics at each threshold. Correct
detections and false positives/negatives are determined by solving an assignment
problem between the annotations and the detection output.

Figure 5(A) shows averaged MODP and MODA scores across four views for
our method and POM+LP, and over the detections from View 1 for the three
classifier-based detectors (those are monocular methods that only have results
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Fig. 5. Evaluation results on S2L1 and S1L1. For S2L1, our algorithm (red curves)

consistently outperforms other methods in terms of MODA&MODP (A) and Preci-

sion&Recall metrics (B) at different overlap threshold levels without using temporal

or appearance information. For S1L1 (C), we achieve lower count errors in all three

target regions than current state-of-the-art methods.

reported for View 1). Our multiview MCMC method consistently outperforms
others (higher detection accuracy) at all overlap threshold levels. Addition-
ally, the prominent performance gap at the tighter end of the threshold levels
(larger τ) indicates that our method has better localization quality than other
methods. It is interesting to note that our method is the top performer even
though we do not use temporal consistency constraints across frames or discrim-
inative object appearance information. Our improved accuracy is due to use of a
more flexible generative model, made possible by the sampling-based inference,
and our novel multiview proposals that allow more efficient global exploration of
the posterior distribution. Since we are free from restrictions of discrete ground-
plane grids, fixed 3D person size, and independence among people, we achieve
better 3D localization than POM+LP, even with noisy input (Figure 6).

As the overlap threshold decreases, we see (as expected) an increase in MODA
and decrease in MODP, since more misaligned detections become classified as
correct. However, our MODP curve has a slower decreasing rate than others,
which again confirms that we achieve better localization accuracy. Figure 5(B)
shows results from a similar comparison but using precision/recall metrics. Our
method has higher recall and precision than other methods.

In Table 1, we compare our multiview MCMC method to the naive baseline
MCMC approach, introduced in Section 3.2, which does not use the new multi-
view proposals. The new multiview method outperforms the baseline approach
in all cases. In the same table, we also show that our method works well with
monocular sequences. For this experiment, we only use input observations from a
single view. As opposed to the significant performance drop of the POM method
reported in [24] in this situation, our single view detection results do not vary
dramatically from the multiview results, and continue to outperform the other
methods. These experiments indicate that our multiview proposals are effective
at dealing with depth ambiguity, even along viewing rays from a single camera.
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Table 1. MODP (1st column) and MODA (2nd column) in each view of S2L1 at

an overlap threshold τ of 0.5. Scores in bold indicate the top-ranked algorithm with

respect to score metric and view. The first three rows are variants of our sampling-based

approach and the bottom four are other state-of-the-art methods.

Method View 1 View 5 View 6 View 8

Multiview 0.6805 0.7532 0.6872 0.6998 0.6953 0.8162 0.7004 0.6941
Baseline 0.6791 0.6988 0.6872 0.5660 0.6936 0.6967 0.6967 0.5702

Singleview 0.6863 0.7052 0.6751 0.6415 0.6855 0.5333 0.6924 0.5357

POM+LP 0.5806 -0.1037 0.6071 0.2630 0.6467 0.3354 0.6344 0.2188

ASEF 0.6212 0.4116 -

Cascade 0.6150 0.3000 -

Parts 0.5927 0.1759 -
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Fig. 6. Sample detection results for S1L1 (top) and S2L1 (middle), overlaid on the

original images and foreground masks. The bottom row shows sensitivity of our method

to varying levels of noise in the foreground mask.

Dense sequence S1L1: The S1L1 sequence is captured from more elevated
camera viewpoints, but with a higher crowd density and more lighting changes
due to intermittent cloud cover. We annotated ground-truth person counts in all
three regions specified by the PETS evaluation for View 1, shown in Figure 6,
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and detect people using two camera views. The average count error for each
region over the whole sequence is reported in Figure 5(C). Our error rate is less
than 2 people per frame, better than the already remarkable results from Chan
using holistic properties [28], which are the best results reported so far. We also
compared against a 2D MCMC implementation [10] that performs birth, death
and update proposals within the 2D image plane of View 1.

In Figure 6 we show sensitivity of this approach to errors in foreground esti-
mation. This is an indoor sequence of 4 people walking [1]. On the left we see
that our approach is tolerant of typical levels of foreground noise. However, as
shown on the right, large areas of the image incorrectly labeled as foreground
(due, for example, to failures of background subtraction to handle rapid light-
ing changes), can lead to false positive detections. However, our framework can
be easily adapted to input data other than foreground masks, such as motion
information or pedestrian classifier score maps.

6 Conclusion

We extend monocular, sampling-based crowd detection methods to perform mul-
tiview detection to accurately localize people in 3D given single or multiview im-
ages. Our results on a challenging benchmark dataset for crowd analysis demon-
strate the advantage of our approach compared to other state-of-the-art methods.
We have designed novel proposals that leverage multiview geometric constraints
to effectively explore a combinatorial configuration space with varying dimen-
sion (numbers of people) while solving the problem of phantoms in multiview
sequences and depth ambiguity in monocular sequences. Our sampling-based
inference framework yields great flexibility in defining generative models that
enable accurate localization of individuals in crowds despite occlusions, noisy
foreground masks, and errors in camera calibration and synchronization.
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Abstract. The goal of this paper is to provide an accurate pixel-level

segmentation of a deformable foreground object in an image. We com-

bine state-of-the-art local image segmentation techniques with a global

object-specific contour model to form a coherent energy function over

the outline of the object and the pixels inside it. The energy function

includes terms from a variant of the TextonBoost method, which labels

each pixel as either foreground or background. It also includes terms

over landmark points from a LOOPS model [1], which combines global

object shape with landmark-specific detectors. We allow the pixel-level

segmentation and object outline to inform each other through energy

potentials so that they form a coherent object segmentation with glob-

ally consistent shape and appearance. We introduce an inference method

to optimize this energy that proposes moves within the complex energy

space based on multiple initial oversegmentations of the entire image.

We show that this method achieves state-of-the-art results in precisely

segmenting articulated objects in cluttered natural scenes.

1 Introduction

The task of figure-ground segmentation is well established in the computer vision
literature. There have generally been two types of approaches to this problem:
outline-based methods (e.g., [2,3,4,5]) that denote the foreground by the inte-
rior of an object outline; and pixel-level foreground annotation (e.g., [6,7,8])
that label each pixel directly as either foreground or background. In this paper
we combine these two approaches to achieve a superior and more refined ob-
ject segmentation. Our method provides both an object contour, which exploits
object-level information (such as shape), and a pixel annotation, which exploits
pixel-level feature information (such as color and texture). We leverage this com-
plementary relationship to improve the performance of each of these elements
over using them in isolation.

We do so through two main contributions: The first, presented in Section 5,
is the combination of the elements from two standard models for localization
(contour) and segmentation into a unified energy model that can be precisely
registered to a foreground object in a scene. Our model combines existing energy
terms for each separate task ([1,4]) with an interaction term that encourages
the contour and pixel-level segmentation to agree. Specifically, we introduce

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 338–351, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(a) (b) (c) (d)

Fig. 1. Contour and Segmentation. (a) Independent LOOPS outline. (b) Independent

TextonBoost segmentation. (c) Joint model outline. (d) Joint model segmentation.

landmark-segment masks that capture the local shape of the foreground object in
the vicinity of a single landmark or pair of landmarks along the object’s outline.
Importantly, the masks are oriented and scaled to be consistent with the full
object contour. This allows for a refined segmentation based on the articulated
contour, which is not possible using a single global mask for the entire object. We
also use the contour to construct an image-specific appearance model, which has
been used successfully in other settings, further tying the two models. Example
output for standard independent contour and segmentation models are shown
in Figure 1(a) and (b), respectively. While each task produces reasonable initial
results, our unified model leads to much improved figure-ground segmentation
results, as shown in Figure 1(c) and (d).

Our second main contribution, presented in Section 6, is a method for opti-
mizing the complex joint energy by proposing sets of moves within the entire
search space, which is intractable to navigate in full. We build on the techniques
of Gould et al. [9] by iteratively using the novel properties of our model to
restrict the search space and efficiently finding a good solution within that sub-
space. Furthermore, this procedure lends itself to model-aware dynamic updates
of the image-specific appearance model, which provides strong boosts in perfor-
mance. In Section 7, we present experimental results to validate our approach,
and show that we achieve both localized outlines and pixel-level segmentations
that outperform state-of-the-art methods.

2 Related Work

Among successful object-specific, contour-based methods for object outlining
are Ferrari et al. [5] (kAS) and Heitz et al. [1] (LOOPS). Our experimental
results outperform both of these methods, and indeed we build on the latter
to produce more accurate outlines. Among pixel annotation methods, the OBJ
CUT method of Kumar et al. [7] and the method of Levin and Weiss [8] are
two examples that, like our method, exploit both high-level shape cues and low-
level features. They use these cues, however, in a strictly feed-forward manner to
produce a segmentation. Our method propagates information both ways between
the shape and pixel models, which results in a superior result for each one. Leibe
et al. [6] do include a backprojection step that refines initial hypotheses. They
do not, however, utilize a global model of object shape, nor do they produce a
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single coherent result — their soft output allows cows to have more or less than
four legs, for example.

Image-specific appearance models for object recognition have been used by
Winn and Jojic [10], Kumar et al. [7], and Ramanan [11], among others. Our
implementation learns this appearance with the help of a LOOPS model. This
not only provides a particularly strong cue for using the correct pixels, but also
allows us to use the properties of LOOPS to select those pixels carefully. As we
describe in Section 4, we use the contour model to rate our uncertainty over
different locations in the image, which allows us to learn the appearance only
over pixels about which we are confident.

Our work is most similar to Bray et al. [12] and Chen et al. [13], which both
combine a CRF-based segmentation model with an object model, as we do. The
differences between our approach and theirs highlight our contributions. Bray
et al. [12] use a single distance function to relate the object skeleton to the
background segmentation. This is roughly equivalent to using masks as we do,
but in their case these masks are the same for each part of the object and are
restricted to the form of a distance function that does not capture outline detail.
Chen et al. [13] use a single mask for the entire object, which is problematic
for articulated objects since it cannot account for multiple configurations. In-
deed, they report results on classes from Caltech 101 [14] that have rigid shapes
and for which segmentation is easier than in cluttered scenes. In constrast, our
landmark-specific masks are different for each part of the object, have a general
form that can capture outline detail, and are learned from data to capture this
detail. This allows us to learn and preserve particular shapes in the segmentation
over different object parts such as the outline (and ears) of the head, even in the
presence of articulated skeletons such as those found in the Mammals dataset
[15], for which we report results. Furthermore, both [12] and [13] alternate be-
tween optimizing over the object and segmentation using coordinate ascent. We
present an efficient method for joint inference, which can avoid local minima
found in each task separately.

3 Localization and Segmentation Models

Our aim is to build a model that encompasses both the localization and the
segmentation task, and that incorporates the interactions between the two in
order to improve performance on each task. This model is specified by an energy
function Ψ that is an aggregation of individual energy terms over various compo-
nents of the model. In this section, we describe two approaches from the vision
literature for solving the two separate tasks, each of which yields individual en-
ergy terms. We describe how these tasks can be solved separately as baseline
methods, and in later sections we use these energy terms in our joint model. In
Section 4, we introduce an interaction from the localization component to the
segmentation component through image-specific features. In Section 5, we in-
troduce landmark-segmentation masks that tie the two main model components
together in a bidirectional manner.
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3.1 Outline Localization

The recent LOOPS model of Heitz et al. [1] treats object localization as a land-
mark correspondence problem, the solution to which defines a piecewise-linear
contour around the object in an image. We describe this model throughout this
section. Formally, the task is to assign each landmark Li to the appropriate pixel
on the object’s outline. We denote the full assignment to all landmarks by L.

Registering the landmarks to a test image requires optimizing an energy func-
tion ΨL(L) over the landmark assignments. This energy function is composed
of two types of terms over the landmark assignments. The first is a singleton
feature-based term that predicts the location of a specific landmark from a set
of image features. We let ψL

i = 〈θL
i , φ

L
i 〉, where φL

i is the response vector of a
boosted detector [16] for landmark i, and 〈·, ·〉 denotes the dot-product between
the model parameters θL

i and the landmark features φL
i .

The second term in ΨL is a global shape term that gives preference to the
landmarks forming a likely object shape. This term is a multivariate Gaussian
over all landmarks, which decomposes into pairwise terms:

δL
i,j = −1

2
(Li − μi)Σ−1

ij (Lj − μj), (1)

where μi is the mean location of landmark i and Σ is the covariance matrix that
relates the positions of all landmarks.

Figure 1(a) shows an example result of finding the optimal assignment over
the landmark variables of the entire landmark energy:

ΨL(L) = w1

∑
i

ψL
i + w2

∑
i,j

δL
i,j , (2)

where the weights w1 and w2 determine the relative influence of each term. The
parameters and weights can all be learned from supervised data, and the energy
can be optimized approximately in isolation using max-product message passing
algorithms (see Section 6).

3.2 Foreground Segmentation

We now turn to a standard technique for foreground-background segmentation.
This task amounts to assigning a variable Sk for each image pixel k to be either
foreground (Sk = 1) or background (Sk = 0). The full assignment to all pixels
is denoted by S. We use a variant of the TextonBoost algorithm [17] to per-
form this task. Since the datasets we consider in Section 7 generally consist of a
single foreground object on a background that is comprised of several common
categories (such as grass, sky, and trees), we train a separate binary boosted
classifier for each of these classes. The outputs of these classifiers are used as
features for a logistic classifier that predicts whether each pixel is foreground.
We use a pairwise binary conditional Markov random field (CRF) over the pix-
els in the image, where the singleton potentials are represented by the logistic
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classifier and the pairwise potentials encourage neighboring pixels with a similar
appearance to have the same label.

The CRF for foreground segmentation represents an energy ΨS(S) over the
pixel assignments that consists of a singleton term ψS

k and a pairwise term δS
k,l.

Given the outputs of the various boosted classifiers for each pixel k in feature
vectors φS

k , the first term takes the form ψS
k = 〈θS

sk
, φS

k 〉, where θS
sk

is the set
of logistic regression weights (shared between all pixels) associated with the
assignment Sk = sk. The pairwise term takes the form

δS
k,l =

{
exp

(
− ||ck−cl||22

2·c̄

)
, for (k, l) ∈ N (I) and Sk �= Sl

0 otherwise
, (3)

whereN (I) is the set of neighboring pixels in image I (in our implementation we
use 4-connected neighbors), ck is the vector of Lab color values at pixel k, || · ||22
is the L2 distance between such vectors, and c̄ is the mean such distance across
all neighboring pixels in the image. Note that the pairwise term is only non-
zero when neighboring labels that are not equal (i.e., at the boundary between
foreground and background), and thus penalizes neighboring pixels when their
labels are different and the contrast between them is low. The full segmentation
energy over S is given by

ΨS(S) = w3

∑
k

ψS
k + w4

∑
k,l

δS
k,l, (4)

where w3 and w4 weight the two terms. As with the landmark model, the clas-
sifiers and weights are learned from the labeled training set. The energy can be
optimized exactly in isolation using a graph cut [18] (see Section 6). Figure 1(b)
shows an example result for the image in Figure 1(a).

4 Image-Specific Appearance

Building an image-specific appearance model helps combat the fact that the vari-
ation across images in the appearance of both the object class and background
make it difficult or impossible to reliably separate the two. While the segmenta-
tion CRF models the fact that an object should have consistent appearance (at
least in neighboring pixels) through its pairwise terms, the singleton terms nev-
ertheless adhere to a single appearance model across the entire object class. We
therefore use the initial localized outline of the LOOPS model to construct an
image-specific appearance model to augment the class-level appearance model
within the segmentation CRF at test time.

Specifically, we build a naive Bayes classifier based on pixel color values that
will distinguish between the object in the image and the background particular
to the image. To estimate the parameters of the classifier, we split the image
pixels, each of which carries a class label of either foreground or background
based on the contour estimate, into three mutually-exclusive sets: E (excluded),
C (certain pixels), and U (uncertain pixels). Background pixels that are far
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Local appearance features. (a,d) Response maps of class-level boosted classifiers

for deer. (b,e) Initial LOOPS outlines. Highlighted pixels are those chosen as “confi-

dent” training examples for the local appearance. (c,f) Response maps of the resulting

appearance model.

away from the border of the localized contour are neither useful for training
nor important to consider relabeling, and hence belong in E. Certain pixels, C,
are non-excluded pixels (either foreground or background) for which the contour
model is sufficiently confident about their label (see below). The remaining pixels
belong in U. We train the naive Bayes model over only the pixels in C and U as
follows: (1) we seed the class labels for the pixels in C based on whether the pixel
is inside or outside the contour, (2) leave the class labels for U hidden, and (3) use
the EM algorithm [19] both to learn an appearance model for the foreground and
background, and to reinfer the class labels. The log of the posterior probability
of each pixel being the foreground is then used as a feature — alongside the
boosted classifier outputs (see Section 3) — for the logistic classifier component
of the segmentation CRF, which is retrained.

To determine which pixels belong in C, we note that we may be more confi-
dent about certain parts of the object than others; for example, the localization
method may be certain that it has localized the torso of the deer, but less cer-
tain about the particular placement of the legs. We determine the reliability of
each landmark separately by measuring how likely the localization method is to
have properly assigned that landmark. Let σi be the standard deviation of the
distance of the localized landmark Li to the true outline on the training data.
We compute a signed distance Dist(k) (also used in Section 5) of each pixel in
the test image to the localized outline, where the sign is positive if the pixel is
inside the contour and negative otherwise. Pixel k belongs to C if |Dist(k)| > σi

for the closest landmark i. Note that computing this score, as well as retraining
the CRF’s logistic classifier, requires running the localization method on the
training data. Figure 2 shows the responses of this naive Bayes classifier on a
test image. In the top row, despite the imperfect LOOPS outline, the learned
appearance model is still strong. However, as shown in the bottom row, even
with a good LOOPS outline, the local appearance is not always a perfect fea-
ture. In Section 7, we analyze the results of augmenting the segmentation task
in this way, which we refer to as ImgSpec.
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5 The Contour-Pixel Model

We now present a unification of the contour and pixel models in which we incor-
porate more information than pixel appearance. Importantly, this information
flows both ways. There is a natural agreement between localization and segmen-
tation in that the pixels inside the contour outlined by the landmarks L should
be labeled as foreground, and those outside should be labeled as background.

A naive way to combine the two signals is simply to merge the segmentation
CRF’s probability over each Sk with that pixel’s signed distance to the localized
contour. Let P0(Sk) be the posterior probability over Sk according to the CRF.
We define our new probability P1(Sk) to be the product of P0(Sk) and the
sigmoid of the signed distance Dist(k) (defined in Section 4), normalized to sum
to one.

As we show in Section 7, combining the models in this way (which we call
Product) does not lead to an improvement in performance. To fully exploit
these parallel signals, rather than post-processing their outputs, we would prefer
to allow each method to reoptimize its own variables in light of information
propagated from the other. We now describe a model that unifies the two tasks
in a single coherent model.

We introduce a new energy term ΨL,S(L,S) that encourages agreement be-
tween landmarks L and segmentation S. Since a LOOPS landmark is a consis-
tently located element of the object’s shape, the nearby pixel annotations should
follow a pattern particular to that part of the object. For example, the pixels
above the landmark corresponding to the stomach will generally belong to the
foreground, while those below it will generally be part of the background. For
each landmark Li, we build an “annotation mask” Mi of size N1 × N1 that is
a grid whose (a, b)-th entry indicates the probability that a pixel offset by (a, b)
from the location of Li is a foreground pixel. Each mask is learned from training
images by aggregating masks of size N1 around the groundtruth landmark loca-
tion in each training image, and the learned mask is simply the average of each
of these masks. Examples of landmark masks near the nose and leg of a deer are
shown in Figure 3. The energy term associated with this pairwise mask is

ψLS1
i,k = Sk logMi(a, b) + (1− Sk) log(1−Mi(a, b)). (5)

If the offset (a, b) between landmark i and pixel k extends beyond the size of
the mask (N1

2 ), then there is no pairwise energy term that relates Li to Sk. This
potential allows information to propagate between the contour model and the
segmentation model. A landmark Li with a high probability of appearing at a
given location will encourage the surrounding pixels to be annotated according
to the mask. This information can then propagate to the rest of the image pixels
via ΨS . Conversely, a pattern fitting the mask appearing in the pixel labels
encourages the landmark to assign itself in the appropriate nearby location, and
this can influence the rest of the landmarks via ΨL.

In addition to masks that capture the relationship between single landmarks
and their surrounding pixels, we introduce masks M ′

i,j that tie neighboring pairs
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Fig. 3. Landmark-segment masks. The green arrows indicate the mask associated with

various landmarks, which are marked as blue dots. The upper two masks are pairwise

masks between neighboring landmarks, and are reoriented and rescaled appropriately

— the red arrow indicates the “inside” direction of the mask.

of landmarks Li and Lj jointly to their surrounding pixels. These masks are
similar to M , but account for different orientations of consecutive landmarks.
Each adjacent pair of landmarks Li, Lj is associated with an oriented and scaled
mask M ′

i,j whose (a, b)-th entry is the foreground probability of the pixel offset
by (c, d) from the midpoint between Li and Lj , where (c, d) is found by rotating
the vector (a, b) by the angle of the segment Li −Lj and dividing by the length
of that segment. We learn these pairwise masks from training data similar to the
singleton masks above. The energy term associated with this mask is

ψLS2
i,j,k = Sk logM ′

i,j(a, b) + (1 − Sk) log(1−M ′
i,j(a, b)). (6)

Figure 3 shows an example of a such a mask for consecutive landmarks along
one of the deer’s hind legs. It clearly indicates that, regardless of the orientation
of the leg, pixels that are on the “inside” of the line segment on the neck are
more likely to be foreground.

Now that we have created the energy terms that tie together the variables of
our model, we define the energy of a full variable assignment (S,L) given the
image as

Ψ =
∑

t

wt · Ψ t(S,L), (7)

where t ranges over the types of energy terms. While weight ratios learned for
each model are kept fixed, the relative weights for all terms are learned using
cross-validation on the training set. Note that Ψ is composed of at most triple-
wise terms between the variables S and L. Having defined this CRF over S, L,
and input image I, we seek the single joint assignment to S and L that minimizes
the energy. That is, the MAP solution is (S�,L�) = argminS,L

∑
t wt · Ψ t(S,L).

6 Superpixel-Based Inference

6.1 Inference Challenges

We now consider the properties of our coherent energy function in deciding how
to optimize it. The pixel annotation terms (ΨS) can be optimized exactly using
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a graph cut [18] if considered independently, since there are regular pairwise
terms between binary-valued variables. However, the landmark location terms
(ΨL) cannot be optimized exactly even if considered independently, and in fact
performing inference with these terms proves to be a challenge. To complicate
matters, we have pairwise terms between pixels and landmarks (which can take
many values) and triplewise terms between pixels and pairs of landmarks. A
model with 50 landmarks in a 300 × 200 pixel image, for example, would have
3 million pairwise terms and 150 million triplewise terms. Thus, there is a great
deal of interconnectivity between the variables, and even constructing a graph
to represent the full joint energy may be intractable.

Coordinate Descent Baseline
One straightforward approach to inference would be to simply perform coordi-
nate descent on the full energy. This can be done by first optimizing ΨL over
L, then folding the potentials in ΨL,S evaluated at the fixed L into the sin-
gleton terms ψS

k , then optimizing ΨS separately over S (which, again, may be
done exactly and efficiently), then folding ΨL,S evaluated at the fixed S into the
singleton potentials of ΨL, and iterating back and forth in this manner. As we
show in Section 7, this approach (which we call Coord) succeeds in sharing the
signals between the two energies, but is susceptible to local minima and does
not allow the exploration of the full variable space.

6.2 Joint Inference

To overcome these inference issues, we develop a search strategy for dealing with
MAP inference in the face of such a complex and large search space by exploring
dynamically constructed discrete subspaces. We then use a final refined stage,
intialized from the result of the discrete stage, that uses the full search space.

Our joint inference algorithm proceeds as follows. We begin with an initial
assignment to all of the variables, and then find a naturally defined and much
smaller subspace through which we can explore the energy function. This sub-
space is defined by a set of proposal moves from the current assignment to
new assignments to the variables. After performing inference within the simpler
subspace, if the new assignment achieves an improved energy (note that since
inference is not exact, we cannot guarantee that we have found the optimal as-
signment within the subspace), we keep the new assignment, and otherwise revert
to the previous assignment. We then construct a new subspace and repeat.

Constructing Search Subspaces
We choose a subspace for each iteration in two ways. The first stems from the
observation that groups of nearby pixels tend to have the same label, and the
relationship between landmarks and nearby pixels tends to be the same for entire
groups of pixels. We therefore divide the image into superpixels (using the mean-
shift segmentation algorithm [20]) and define our proposal moves over superpixel
regions. Specifically, given a starting assignment, the proposal moves assign all
pixels within a superpixel to either background, foreground, or their current
assignment. This approach is similar to the search strategy proposed by Gould
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et al. [9]. The inference problem can thus be recast in terms of region variables
R that can take on one of three values rather than individual pixel variables S
that can take on two values (foreground or background).

To avoid committing to any single oversegmentation of image, we use a differ-
ent oversegmentation (by varying the paramaters of the mean-shift algorithm)
in each iteration. Each oversegmentation proposes a different set of moves within
the space of pixel assignments. For example, an oversegmentation with a small
number of large superpixels might propose assigning every pixel in the torso of
the deer to the foreground, while a finer-grained oversegmentation might propose
refining the pixel assignments around the edge of the torso.

The second simplification of the search space is a restriction on the values
of the landmarks, and corresponds to the pruning proposed in Heitz et al. [1]:
Rather than consider all pixels as possible assignments for the contour land-
marks, we choose a small subset (of size K = 25) of likely pixels as candidates
in each round. Performing multiple rounds of inference, however, allows for the
flexibility of choosing candidates for each round in a more dynamic and so-
phisticated way. In each round, we choose the landmark candidates to be the
most likely pixels according to the singleton feature energy terms, subject to
two restrictions that vary by round. First, we require that the candidates lie
on a superpixel border (recall that the oversegmentations change each round).
Second, we restrict each landmark to fall within two standard deviations of its
mean location given the location of all other landmarks from the previous round
of inference. Since the joint model over all landmarks is a Gaussian, computing
the conditional Gaussian is straightforward. This restriction allows us to take
advantage of the global shape information as well as cues from previous rounds.
By restricting the search space in these two ways, for a 50-landmark model in
a 300× 200 image that is split into 300 superpixels, the landmark search space
is reduced from 5060,000 to 50K and the segmentation task is reduced from a
binary problem over 60,000 variables to a ternary problem over 300 variables.

Inference Over Multiple Subspaces
Note that, although we construct a different inference model in each round, the
algorithm always optimizes a single, consistent energy function. What differs in
each round is the way in which the energy terms are combined and the set of
moves that may be taken.

Once we have constructed the simplified inference model over the search sub-
space, we use residual belief propagation (RBP) [21] to perform MAP inference.
The ability to do so efficiently depends on the important property of Ψ that
it is composed of at most triple-wise terms between the component variables
(the regions R and the landmarks L). Specifically, the decomposition of ΨL

presented in Section 3 uses only singleton and pairwise terms between the land-
marks L, and similarly the decomposition of ΨS uses only singleton and pairwise
terms between the pixel labels S, which translates into the same property over
the smaller set of region labels R. Finally, the landmark-pixel masks M result
in pairwise terms between a single landmark Li and a single region Rk, and
the oriented masks M ′ result in triplewise terms between a pair of neighboring
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landmarks and a single region. Consequently, RBP is able to converge quickly to
a joint solution over all variables L and R. We experimented with other inference
algorithms, such as dual decomposition [22], which generally achieved the same
energy solutions as RBP.

Final Refined Stage
Once this iterative process has converged, we reintroduce the full landmark do-
main and perform a final refined inference step as in LOOPS, allowing the con-
tour landmarks to lie anywhere in the image. As a post-processing step, since
our model defines a closed contour over the foreground object, we set all pix-
els outside the contour (with a buffer of size δ = 5 pixels) to be background.
Though this post-processing step operates outside of the framework of the uni-
fied energy, it is not a deficiency of the energy construction itself. It is necessary
to set pixels that are beyond the reach of the landmark masks to be part of the
background. In principle, if the mask sizes were large enough, this step would not
be necessary. However, the mask sizes must be kept reasonably small to avoid an
overly dense connectivity among the variables. As a result, there is no term in
the energy to discourage these faraway pixels from being set to the foreground.

7 Experimental Results

To validate our approach, we ran our method on several classes from the Mam-
mals [15] and Caltech [14] datasets. For each class, we average over five random
folds of the data with 20 images for training and the remaining (20-50) for test-
ing. We obtained groundtruth segmentation labels using Amazon’s Mechanical
Turk to augment existing contour labels for these datasets.

Because our task involves both locating the object landmark points and the
annotated foreground-background segmentation, we present several metrics to
evaluate the success of our method. The first is the simple pixel accuracy of
the segmentation (percent of total pixels accurately labeled as foreground or
background compared to the groundtruth segmentation). The second measures
the accuracy of the precise contour implied by the annotated segmentation. We
take the gradient of both the assigned segmentation and the groundtruth seg-
mentation, dilate each by 5 pixels, and then compute the Jaccard similarity
(intersection divided by union) between the two. The third metric is the sym-
metric outline-to-outline root-mean-squared (RMS) distance between the outline
created by the assigned landmarks and the groundtruth outline.

The first baseline for comparison with our model is the Independent model
that separately considers the landmark points and the annotated segmentation.
That is, this baseline uses the implementations of TextonBoost and LOOPS in
isolation as described in Section 3, utilizing neither the image-specific appearance
features nor the landmark-segmentation masks in ΨL,S. We are thus comparing
to a standard method for segmentation as well as a state-of-the-art method
for landmark localization. For the ImgSpec baseline, specified in Section 5, the
contour is used to learn the image-specific appearance, and the probability over S
according to the segmentation model is simply multiplied by a similar probability
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Table 1. Outlining and Segmentation Results. Best performance is in bold; multiple

results are in bold when the differences are statistically insignificant.

Pixel Accuracy Jaccard Similarity RMS Distance

Indep ImgSpec Joint Indep ImgSpec Joint Indep Joint

bison 96.6 96.3 96.4 78.6 79.0 81.2 4.0 3.9
elephant 90.5 92.2 93.3 71.7 70.8 76.1 4.7 4.7

llama 89.7 89.4 93.0 61.8 64.1 73.4 6.4 5.3
rhino 91.0 94.0 95.1 64.5 73.3 75.7 4.7 4.4
deer 88.7 89.5 92.1 56.9 54.8 61.6 8.9 7.0

giraffe 89.9 92.0 92.6 62.0 64.9 65.8 6.4 6.7

airplane 92.3 96.3 96.6 60.8 74.7 74.6 4.2 4.0
bass 92.5 92.5 93.5 58.4 60.1 60.5 10.7 9.5

buddha 84.4 86.0 91.9 42.2 44.7 56.8 10.8 10.6
rooster 91.3 92.1 95.5 57.9 61.1 63.6 10.8 9.4

according to the landmark contour. We refer to our method of optimizing the full
energy Ψ jointly over all variables, as well as using the image-specific appearance,
as Joint in the results that follow. Though we do not show the results here, the
Product baseline from Section 5 did not outperform Independent.

The results for the classes considered are presented in Table 1. Our Joint
method achieves a marked improvement over the Independent methods. It
achieves higher pixel accuracy than the baseline segmentation on all classes ex-
cept “bison,” for which the accuracy is statistically the same. All other differences
are statistically significant according to a paired t-test: the least significant dif-
ference was the “bass” class with a mean difference of 1.0% and p-value of 0.003.
For the outline similarity metric, out method was better on all classes, with
the least significant difference being the “bison” class with a mean difference of
2.6% and a p-value of 10−6. For the landmark-based RMS distance, our model
is statistically similar to the independent LOOPS on the “elephant” class, worse
on “giraffe,” and better on all other classes despite small differences for some
of them. The mean difference for the “bison” class is 0.1 pixels, but the paired
t-test yields a p-value of 0.028. All other classes had significant differences, with
the least significant p-value being 10−5.

Note that simply using the image-specific features (ImgSpec) gives a boost in
segmentation over the baseline, but does not achieve the same level of results as
using our full energy and inference. The full model’s pixel accuracy is superior on
7 out of the 10 classes, with all differences being statistically significant, while
there is no statistical difference between the other 3 classes. For the outline
similarity metric, the full model is superior on all classes except for “airplane,”
for which the instances have relatively uniform appearance so that our outline-
aided image-specific features account for all of the improvement in our method.

We also compared to the OBJ CUT method of Kumar et al. [7] and the kAS
Detector method of Ferrari et al. [5], using downloaded code to run on these
datasets. On the pixel accuracy, outline Jaccard similarity, and outline RMS
scores, our Joint model outperforms the kAS Detector by macro-averages
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Fig. 4. Three representative model segmentations. Each panel in the left column is

produced separately by the Independent methods and the right column is produced

by our Joint method.

over all classes of 3.2%, 1.5%, and 2.3 pixels, respectively. It outperforms OBJ
CUT by macro-averages of 4.7%, 3.2%, and 4.2, respectively. In addition, we
ran our Joint model on a single random fold of the Weizmann horses dataset [6]
and achieved 95% pixel accuracy (compared to 89% for Independent). This is
consistent with the performance of Levin and Weiss [8] and likely near the limit
of what methods of this type can achieve.

The results of the Coordinate approach described in Section 6 isolate the
contribution of the joint inference method that we introduced. This approach
was worse than Joint by macro-averages of 1%, 1%, and 0.2, demonstrating that
the inference routine does in fact contribute to the performance.

8 Discussion

This paper presented a new model that fuses methods for object localization
and segmentation into a coherent energy model in order to produce more accu-
rate foreground segmentations. The utility of the combined model lies in the use
of its outline model in learning the image-specific appearance for the segmen-
tation model, and the terms that encourage agreement between the two while
still allowing each the flexibility to reoptimize its own variables. We demon-
strated that this model is able to achieve both outlines and segmentations that
are superior to several state-of-the-art methods. One promising direction for fu-
ture work is integration with more sophisticated segmentation algorithms. For
example, the use of a robust multi-class segmentation method would allow for
class-aware landmark-segment masks that could capture that the giraffe head
is often surrounded by sky or trees, while the legs are often found in the grass.
Our modular energy function and novel optimization procedure would facilitate
such an extension while keeping inference tractable.
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Abstract. This paper presents a simple and effective nonparametric

approach to the problem of image parsing, or labeling image regions (in

our case, superpixels produced by bottom-up segmentation) with their

categories. This approach requires no training, and it can easily scale

to datasets with tens of thousands of images and hundreds of labels. It

works by scene-level matching with global image descriptors, followed by

superpixel-level matching with local features and efficient Markov ran-

dom field (MRF) optimization for incorporating neighborhood context.

Our MRF setup can also compute a simultaneous labeling of image re-

gions into semantic classes (e.g., tree, building, car) and geometric classes

(sky, vertical, ground). Our system outperforms the state-of-the-art non-

parametric method based on SIFT Flow on a dataset of 2,688 images and

33 labels. In addition, we report per-pixel rates on a larger dataset of

15,150 images and 170 labels. To our knowledge, this is the first complete

evaluation of image parsing on a dataset of this size, and it establishes

a new benchmark for the problem.

Keywords: scene understanding, image parsing, image segmentation.

1 Introduction

This paper addresses the problem of image parsing, or segmenting all the ob-
jects in an image and identifying their categories. The literature contains diverse
proposed image parsing methods, including ones that estimate labels pixel by
pixel [1,2], ones that aggregate features over segmentation regions [3,4,5,6], and
ones that predict object bounding boxes [7,8,9,10]. Most of these methods op-
erate with a few pre-defined classes and require a generative or discriminative
model to be trained in advance for each class (and sometimes even for each train-
ing exemplar [5]). Training can take days and must be repeated from scratch if
new training examples or new classes are added to the dataset. In most cases
(with the notable exception of [2]), processing a test image is also quite slow,
as it involves operations like running multiple object detectors over the image,
performing graphical model inference, or searching over multiple segmentations.
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Fig. 1. System overview. Given a query image (a) we retrieve similar images from our

dataset (b) using several global features. Next, we divide the query into superpixels (c)

and compute a per-superpixel likelihood ratio score for each class (d) based on nearest-

neighbor superpixel matches from the retrieval set. These scores, in combination with

a contextual MRF model, give a dense labeling of the query image (e).

While most existing methods thus remain trapped in a “closed universe”
recognition paradigm, a much more exciting paradigm of “open universe”
datasets is promising to become dominant in the very near future. For example,
the LabelMe dataset [11] is composed of complex, real-world scene images that
have been segmented and labeled (sometimes incompletely or noisily) by mul-
tiple users. There is no pre-defined set of class labels; the dataset is constantly
expanding as people upload new photos or add annotations to current ones. In
order to cope with such datasets, vision algorithms must have much faster train-
ing and testing times, and they must make it easy to continuously update the
visual models with new classes or new images.

Recently, several researchers have begun advocating nonparametric, data-
driven approaches to breaking out of the “closed universe” [12,13,14,15]. Such
approaches do not do any training at all. Instead, for each new test image, they
try to retrieve the most similar training images and transfer the desired infor-
mation from the training images to the query. Liu et al. [15] have proposed
a nonparametric image parsing method based on estimating “SIFT Flow,” or
a dense deformation field between images. This method requires no learning
and in principle, it can work with an arbitrary set of labels. However, inference
via SIFT Flow is currently very complex and computationally expensive. While
we agree with [15] that the nonparametric philosophy currently holds the most
promise for image parsing in large-scale, dynamic datasets, there is a lot of room
for improvement over their method in terms of efficiency.
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We set out to implement a nonparametric solution to image parsing that is as
straightforward and efficient as possible, and that relies only on operations that
can easily scale to ever larger image collections and sets of labels (see Figure 1 for
a system overview). Similarly to [15], our proposed method requires no training
(just some basic computation of dataset statistics), and makes use of a retrieval
set of scenes whose content is used to interpret the test image. However, unlike
the approach of [15], which works best if the retrieval set images are very similar
to the test image in terms of spatial layout of the classes, we transfer labels
at the level of superpixels, or coherent image regions produced by a bottom-up
segmentation method. The label transfer is accomplished with a fast and simple
nearest-neighbor search algorithm, and it allows for more variation between the
layout of the test image and the images in the retrieval set. Moreover, using
segmentation regions as a unit of label transfer gives better spatial support for
aggregating features that could belong to the same object [16].

The current consensus among recognition researchers is that image parsing
requires context (see, e.g., [3,4,9,10]). However, learning and inference with most
existing contextual models is slow and non-exact. Therefore, due to our goal
of developing a scalable system, we restrict ourselves to efficient forms of con-
text that do not need training and that can be cast in an MRF framework
amenable to optimization by fast graph cut algorithms [17,18]. We show that
our system equipped with this form of context can achieve results comparable
to state-of-the-art systems based on more complex contextual models [3,6]. We
also investigate geometric/semantic context in the manner of Gould et al. [6].
Namely, for each superpixel in the image, we simultaneously estimate a seman-
tic label (e.g., building, car, person, etc.) and a geometric label (sky, ground, or
vertical surface) while enforcing coherence between the two class types.

Our system exceeds the results reported in [15] on a dataset of 2,688 images
and 33 labels. Moreover, to demonstrate the scalability of our method, we present
per-pixel and per-class rates on a subset of LabelMe with 15,150 images and 170
labels. To our knowledge, we are the first to report complete recognition results
on a dataset of this size. Thus, one of the contributions of this work is to establish
a new benchmark for large-scale image parsing. Our code, data, and output can
be found at http://www.cs.unc.edu/SuperParsing.

2 System Description

2.1 Retrieval Set

Similarly to several other data-driven methods [7,12,14,15], our first step in pars-
ing a query test image is to find a relatively small retrieval set of training images
that will serve as the source of candidate superpixel-level annotations. This is
done not only for computational efficiency, but also to provide scene-level con-
text for the subsequent superpixel matching step. A good retrieval set should
contain images of a similar scene type to that of the test image, along with
similar objects and spatial layouts. To attempt to indirectly capture this kind
of similarity, we use four types of global image features (Table 1(a)): spatial
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Table 1. A complete list of features used in our system

(a) Global features for retrieval set computation (Section 2.1)

Type Name Dimension

Spatial pyramid (3 levels, SIFT dictionary of size 200) 4200

Global Gist (3-channel RGB, 3 scales with 8, 8, & 4 orientations) 960

Tiny image (3-channel RGB, 16 × 16 pixels) 768

Color histogram (3-channel RGB, 8 bins per channel) 24

(b) Superpixel features (Section 2.2)

Mask of superpixel shape over its bounding box (8 × 8) 64

Shape Bounding box width/height relative to image width/height 2

Superpixel area relative to the area of the image 1

Location Mask of superpixel shape over the image 64

Top height of bounding box relative to image height 1

Texton histogram, dilated texton histogram 100 × 2

Texture/SIFT SIFT histogram, dilated SIFT histogram 100 × 2

Left/right/top/bottom boundary SIFT histogram 100 × 4

Color RGB color mean and std. dev. 3 × 2

Color histogram (RGB, 11 bins per channel), dilated hist. 33 × 2

Color thumbnail (8 × 8) 192

Appearance Masked color thumbnail 192

Grayscale gist over superpixel bounding box 320

pyramid [19], gist [20], tiny image [13], and color histogram. For each feature
type, we rank all training images in increasing order of Euclidean distance from
the query. Then we take the minimum of the per-feature ranks to get a single
ranking for each training image, and take the top 200 images as the retrieval
set. Taking the minimum of per-feature ranks amounts to taking the top fifty
matches according to each global image descriptor, and it gives us better re-
sults than, say, averaging the ranks. Intuitively, taking the best scene matches
from each of the global descriptors leads to better superpixel-based matches for
region-based features that capture similar types of cues as the global features.

2.2 Superpixel Features

We wish to label the query image based on the content of the retrieval set, but
assigning labels on a per-pixel basis as in [1,14,15] would be too inefficient. In-
stead, like [3,4,5], we choose to assign labels to superpixels, or regions produced
by bottom-up segmentation. This not only reduces the complexity of the prob-
lem, but also gives better spatial support for aggregating features that could
belong to a single object than, say, fixed-size square patches centered on every
pixel in the image. We obtain superpixels using the fast graph-based segmenta-
tion algorithm of [21] and describe their appearance using 20 different features
similar to those of [5], with some modifications and additions. A complete list
of the features is given in Table 1(b). In particular, we compute histograms of
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textonsand dense SIFT descriptors over the superpixel region, as well as that
region dilated by 10 pixels. For SIFT features, which are more powerful than
textons, we have also found it useful to compute left, right, top, and and bottom
boundary histograms. To do this, we find the boundary region as the differ-
ence between the superpixel dilated and eroded by 5 pixels, and then obtain the
left/right/top/bottom parts of the boundary by cutting it with an “X” drawn
over the superpixel bounding box. All of the features are computed for each
superpixel in the training set and stored together with their class labels. We as-
sociate a class label with a training superpixel if 50% or more of the superpixel
overlaps with the segment mask for that label.

2.3 Local Superpixel Labeling

Having segmented the test image and extracted all its features, we next obtain a
likelihood ratio score for each test superpixel and each class that is present in the
retrieval set. Making the Naive Bayes assumption that features are independent
of each other given the class, the likelihood ratio for class c and superpixel si is

L(si, c) =
P (si|c)
P (si|c̄)

=
∏
k

P (fk
i |c)

P (fk
i |c̄)

, (1)

where c̄ is the set of all classes excluding c, and fk
i is the feature vector of the

kth type for si. Each likelihood ratio P (fk
i |c)/P (fk

i |c̄) is computed with the help
of nonparametric density estimates of features from the required class(es) in the
neighborhood of fk

i . Specifically, let D denote the set of all superpixels in the
training set, and N k

i denote the set of all superpixels in the retrieval set whose
kth feature distance from fk

i is below a fixed threshold tk. Then we have

P (fk
i | c)

P (fk
i | c̄)

=
n(c,N k

i )/n(c,D)
n(c̄,N k

i )/n(c̄,D)
=

n(c,N k
i )

n(c̄,N k
i )
× n(c̄,D)

n(c,D)
, (2)

where n(c,S) (resp. n(c̄,S)) is the number of superpixels in set S with class label
c (resp. not c). To prevent zero likelihoods and smooth the counts, we add one
to n(c,N k

i ) and n(c̄,N k
i ). In our implementation, we use the �2 distance for all

features, and set each threshold tk to the median distance to the 20th nearest
neighbor for the kth feature type over the dataset. The superpixel neighbors N k

i

are currently found by linear search through the retrieval set.
At this point, we can obtain a labeling of the image by simply assigning to each

superpixel the class that maximizes eq. (1). As shown in Table 2, the resulting
classification rates already come within 1.5% of those of [15]. We are not aware
of any comparably simple scoring scheme reporting such encouraging results for
image parsing problems with many unequally distributed labels.

2.4 Contextual Inference

Next, we would like to enforce contextual constraints on the image labeling
– for example, a labeling that assigns “water” to a superpixel completely sur-
rounded by “sky” is not very plausible. Many state-of-the-art approaches encode
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such constraints with the help of conditional random field (CRF) models [1,6,4].
However, CRFs tend to be very costly both in terms of learning and inference.
In keeping with our nonparametric philosophy and emphasis on scalability, we
restrict ourselves to contextual models that require minimal training and that
can be solved efficiently. Therefore, we formulate the global image labeling prob-
lem as minimization of a standard MRF energy function defined over the field
of superpixel labels c = {ci}:

J(c) =
∑

si∈SP

Edata(si, ci) + λ
∑

(si,sj)∈A

Esmooth(ci, cj) , (3)

where SP is the set of superpixels, A is the set of pairs of adjacent superpixels and
λ is the smoothing constant. We define the data term as Edata = −wi logL(si, ci),
where L(si, ci) is the likelihood ratio score from eq. (1) and wi is the superpixel
weight (the size of si in pixels divided by the mean superpixel size). The smooth-
ing term Esmooth is defined based on probabilities of label co-occurrence:

Esmooth(ci, cj) = − log[(P (ci|cj) + P (cj |ci))/2]× δ[ci �= cj ] , (4)

where P (c|c′) is the conditional probability of one superpixel having label c given
that its neighbor has label c′, estimated by counts from the training set. We use
the two conditionals P (c|c′) and P (c′|c) instead of the joint P (c, c′) because they
have better numerical scaling, and average them to obtain a symmetric quantity.
Qualitatively, we have found eq. (4) to produce very reasonable edge penalties.
As can be seen from the examples in Figure 4 (d) and (f), it successfully flags im-
probable boundaries between “sea” and “sun,” and “mountain” and “building.”
Quantitatively, results with eq. (4) tend to be about 1% more accurate than
with the constant Potts penalty δ[ci �= cj ]. We perform MRF inference using the
efficient graph cut optimization code of [17,18,22]. On our large datasets, the
resulting global labelings improve the accuracy by 3-5% (Table 2).

2.5 Simultaneous Classification of Semantic and Geometric Classes

Following Gould et al. [6], we consider the task of simultaneously labeling regions
into two types of classes: semantic and geometric. Like [6], we use three geometric
labels – sky, ground, and vertical – although the sets of semantic labels in our
datasets are much larger. In this paper, we make the reasonable assumption that
each semantic class is associated with a unique geometric class (e.g., “building”
is “vertical,” “river” is “horizontal,” and so on) and specify this mapping by
hand. We jointly solve for the fields of semantic labels (c) and geometric labels
(g) by minimizing a cost function that is a simple extension of eq. (4):

H(c,g) = J(c) + J(g) + μ
∑

si∈SP

ϕ(ci, gi), (5)

where ϕ is the term that enforces coherence between the geometric and semantic
labels. It is 0 when the semantic class ci is of the geometric class type gi and
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Fig. 2. In the contextual MRF classification, the road gets replaced by “building,”

while “horizontal” is correctly classified. By jointly solving for the two kinds of labels,

we manage to recover some of the “road” and “sidewalk” in the semantic labeling. Note

also that in this example, our method correctly classifies some of the windows that are

mislabeled as doors in the ground truth, and incorrectly but plausibly classifies the

windows on the lower level as doors.

1 otherwise. The constant μ controls how strictly the coherence is enforced (we
use μ = 8 in all experiments). Note that we can enforce the semantic/geometric
consistency in a hard manner by effectively setting μ = ∞, but we have found
that allowing some tradeoff produces better results. Eq. (5) is in a form that can
be optimized by the α/β-swap algrithm [17,18,22]. The inference takes almost the
same amount of time as for the MRF setup of the previous section. Figure 2 shows
an example where joint inference over semantic and geometric labels improves the
accuracy of the semantic labeling. In many other cases, joint inference improves
both labelings.

3 Results

3.1 Large Datasets

The first large-scale dataset in our experiments (“SIFT Flow dataset” in the
following) is composed of the 2,688 images that have been throughly labeled by
LabelMe users. Liu et al .[15] have split this dataset into 2,488 training images
and 200 test images and used synonym correction to obtain 33 semantic labels.
In our experiments, we use the same training/test split as [15]. Our second
dataset (“Barcelona” in the following) is derived from the LabelMe subset used
in [7]. It has 14,871 training and 279 test images.1 The test set consists of street
scenes from Barcelona, while the training set ranges in scene type but has no
street scenes from Barcelona. We manually consolidated the synonyms in the

1 Russell et al. [7] use a test set of 560 images, 281 of which are office scenes. However,

the entire training set of 14,871 images only contains about 218 office scenes, so we

have excluded the office images from the test set.
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Fig. 3. (a) Label frequencies for the superpixels in the training set. The Barcelona

dataset has 170 labels, but we only show the ones that are in common with the SIFT

Flow dataset. (b) Per-class classification rates of our system.

label set to 170 unique labels. Note that [7] only gives detection curves for 12
categories on this dataset, so there are no previous baseline results for per-pixel
performance. Both datasets have very nonuniform label distributions, as shown
in Figure 3(a). Because of this, we report not only the per-pixel classification
rate, which mainly reflects performance on the few largest classes, but also the
average of per-pixel rates of all the classes.

Our system labels each superpixel of each test image by a semantic class (the
original 33 and 170 labels, respectively) and a geometric class of sky, ground,
or vertical (same as [6]). Because the number of geometric classes is small and
fixed for all datasets, we have trained a discriminative model for them using
a boosted decision tree classifier as in [3]. This classifier outputs a likelihood
ratio score that we can directly plug into our MRF framework, and it gives
us an improvement of about 1% in the accuracy for geometric classes over the
nearest-neighbor scheme of Section 2.3. Apart from this, local and contextual
MRF classification for geometric classes proceeds as described in Sections 2.3
and 2.4, and we also put the geometric and semantic likelihood ratios into a
joint contextual classification framework as described in Section 2.5.

Table 2 reports per-pixel and average per-class rates for semantic classifica-
tion of all three setups (local superpixel labeling, contextual MRF, joint MRF).
As compared to the local baseline, the contextual MRF improves overall per-
pixel rates on the SIFT Flow dataset by about 3% and on the Barcelona dataset
by about 4%. Average per-class rates drop slightly due to the MRF “smooth-
ing away” some of the smaller classes. Simultaneous geometric/semantic MRF
improves the results for both types of classes on the SIFT Flow dataset, but
makes little difference on the Barcelona dataset. Figure 3(b) shows that our per-
class rates on both datasets are comparable, with large changes due primarily
to differences in label frequency (e.g., there are no mountains in the Barcelona
test set). It also shows that, similarly to most other image labeling approaches
that do not train object detectors, we get much weaker performance on “things”
(people, cars, signs) than on “stuff” (sky, road, trees).
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Table 2. Performance of our system on the two large datasets. For semantic classes, we

show the per-pixel rate followed by the average per-class rate in parentheses. Because

there are only three geometric classes, we report only the per-pixel rate for them.

SIFT Flow dataset [15] Barcelona dataset [7]

Semantic Geometric Semantic Geometric

Baseline 74.75 [15] N/A N/A N/A

Local labeling (Sec. 2.3) 73.2 (29.1) 89.8 62.5 (8.0) 89.9

Superpixel MRF (Sec. 2.4) 76.3 (28.8) 89.9 66.6 (7.6) 90.2

Simultaneous MRF (Sec. 2.5) 76.9 (29.4) 90.8 66.9 (7.6) 90.7

Our final system on the SIFT Flow dataset achieves a classification rate of
76.9%. Thus, we outperform Liu et al .[15], who report a rate of 74.75% on the
same test set with a more complex pixel-wise MRF (without the pixel-wise MRF,
their rate is 66.24%). Liu et al .[15] also cite a rate of 82.72% for the top seven
object categories; our corresponding rate is 84.5%. Sample output of our system
on several SIFT Flow test images can be seen in Figure 4.

Next, we examine the effects of various components of our system. For each
of these tests, we only show the local labeling rates on the SIFT Flow dataset.
Table 3(a) shows the effect of different combinations of global features for com-
puting the retrieval set (Section 2.1). Similarly to [12], we find that combining
global features of unequal descriptive power gives better scene matches. Ta-
ble 3(b) shows classification rates of the system with ten superpixel features
added consecutively in decreasing order of their contribution to performance.
Notice that SIFT histograms constitute four of the top ten features selected.
The dilated SIFT histogram, which already incorporates some context from the
superpixel neighborhood, is our single strongest feature, and it effectively makes
the non-dilated SIFT histogram redundant. Also notice that SIFT and texton
histograms are complementary (despite SIFT being stronger), and that all six
feature categories from Table 1(b) are represented in the top ten.

Table 4(a) examines the effect of retrieval set size on classification rate. In-
terestingly, matching test superpixels against the entire dataset (last row of the
table) drastically reduces performance. Thus, we quantitatively confirm the intu-
ition that the retrieval set is not just a way to limit the computational compexity
of sub-image matching; it acts as a global image-level context by restricting the
superpixel matches to come from a small subset of related scenes. Table 4(b)
shows the effect of restricting the list of possible labels in a test image to differ-
ent “shortlists.” Effectively, the shortlist used by our system for each test image
is composed of all the classes present in the retrieval set (first row). To demon-
strate the effect of long-tail class frequencies, the second row of the table shows
the performance we get by classifying every superpixel in every test image to the
ten most common classes in dataset. This does not change the overall per-pixel
rate, but lowers the average per-class rate dramatically, thus underscoring the
importance of looking at both numbers. The third row of Table 4(b) shows the
results produced by restricting our shortlist to the ground truth labels in the



SuperParsing: Scalable Nonparametric Image Parsing with Superpixels 361

Table 3. Feature evaluation on the SIFT Flow dataset. (a) Results for local superpixel

labeling with different retrieval set feature combinations. (b) Performance with the

best retrieval set from (a) and top ten superpixel features added in succession.

(a)

Global Descriptor Rate

Gist (G) 70.8 (28.7)

Spatial Pyramid (SP) 70.0 (22.4)

Color Hist. (CH) 65.9 (22.1)

Tiny Image (TI) 65.4 (25.5)

G + SP 72.4 (27.6)

G + SP + CH 73.3 (28.8)

G + SP + CH + TI 73.3 (29.1)

(b)

Superpixel Feature Rate

Dilated SIFT hist. 44.8 (20.8)

+ Texton hist. 54.3 (21.1)

+ Top height 60.2 (23.2)

+ Color thumbnail 63.6 (25.0)

+ Dilated color hist. 66.4 (26.1)

+ Left boundary SIFT hist. 68.1 (26.8)

+ Right boundary SIFT hist. 69.4 (26.3)

+ SP mask over bounding box 69.8 (27.3)

+ Top boundary SIFT hist. 70.5 (27.9)

+ Color hist. 71.0 (27.9)

+ All remaining features 73.3 (29.1)

query image, giving us an upper bound for the performance of superpixel match-
ing. We can see that a perfect shortlist “oracle” would give us a boost of almost
8%. This suggests that to further improve system performance, we may get a
bigger payoff from more accurate scene-level label prediction, rather than from
more sophisticated edge potentials in the MRF. In fact, we have observed that
in many of our unsuccessfully labeled images, incompatible scene classes with
strong local support over large regions vie for the interpretation of the image,
and neighborhood context, though it may detect the conflict, has no plausible
path towards resolving it (Figure 4(f) is one example of this).

Finally, we analyze the computational requirements of our system. Our current
implementation is mostly in unoptimized and un-parallelized MATLAB (with
some outside C code for feature extraction and MRF optimization), and all our
tests are run on a single PC with dual Xeon 2.33 GHz quad core processors and
24 GB RAM. Table 5 shows a breakdown of the main stages of the computation.
On the SIFT Flow dataset, we are able to extract features and label images
in less than 10 seconds. In comparison, as reported in [15], to classify a single
query image, the SIFT Flow system required 50 alignment operations that took
30 seconds each, or 25 minutes total without parallelization.

Table 4. (a) Effect of retrieval set size on performance for the SIFT Flow dataset. (b)

Effect of restricting the set of possible classes in the test image to different “shortlists.”

(a)

Retrieval Set Size Rate

50 71.1 (30.1)

100 72.4 (29.7)

200 73.3 (29.1)

400 72.1 (27.2)

2,488 68.6 (19.1)

(b)

Shortlist Rate

Classes in retrieval set 73.3 (29.1)

10 most common classes 73.2 (20.4)

Perfect shortlist 81.0 (34.0)
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Fig. 4. Example results from the SIFT Flow test set (best viewed in color). In (c),

sidewalk is successfully recovered. In (d), the co-occurrence MRF and joint geomet-

ric/semantic classification remove the spurious classification of the sun’s reflection in

the water as “sun.” In (e), we find some windows (some of which are smoothed away

by the MRF) and plausibly classify the arches at the bottom of the building as doors.

In (f), parts of the building and the bare tree get initially classified as “mountain,”

and while the co-occurrence MRF does not like the boundaries between “building”

and “mountain,” it is not completely successful in eliminating the errors. For complete

results, see http://www.cs.unc.edu/SuperParsing.
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Table 5. Left: The average timing in seconds of the different stages in our system

(excluding file I/O). While the runtime is significantly longer for the Barcelona dataset,

this is primarily due to the change in image size and not the number of images. Right:

query time vs. number of superpixels in the query image.

SIFT Flow Barcelona

Training set size 2,488 14,871

Image size 256 × 256 640 × 480

Ave. # superpixels 63.9 307.9

Feature extraction ∼ 4 sec ∼ 5 min

Retrieval set search 0.04 ± 0.0 0.21 ± 0.0

Superpixel search 4.4 ± 2.3 34.2 ± 13.4

MRF solver 0.005 ± 0.003 0.03 ± 0.02

Total (excluding features) 4.4 ± 2.3 34.4 ± 13.4
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At present, our running time is actually dominated by our (wildly inefficient)
feature extraction code that can be easily sped up by an order of magnitude.
Our algorithm complexity is approximately quadratic in the average number of
superpixels per image in the dataset due to the need to exhaustively match every
test superpixel to every retrieval set superpixel. On the other hand, this time is
independent of the overall number of training images. Moreover, as our dataset
gets larger, we expect that target retrieval set size will stay the same or decrease,
as the top scene matches will become closer to the test image. For larger datasets,
the main bottleneck of our system will not be superpixel search, but retrieval
set search and file I/O for loading retrieval set superpixel descriptors from disk.
However, we expect to be able to overcome these challenges with appropriate
hardware, parallelization, and/or data structures for fast search.

3.2 Small Datasets

To further validate our superpixel-based feature representation, we tested it on
two small datasets: that of Gould et al. [6], which has 715 images with eight se-
mantic and three geometric classes, and the geometric context dataset of Hoiem
et al. [3], which has 300 images and seven surface layout classes (sky, ground,
and five vertical sub-classes). For the latter, we treat these seven classes as
the “semantic” classes, and the three geometric classes correspond to the main
classes of [3]. Because nearest neighbor search requires a large set of training im-
ages to perform well, and because the competing approaches use heavily trained
discriminative models, we train boosted decision tree classifiers similar to those
of [3] on all the semantic and geometric classes. To obtain initial labelings of test
images in these datasets, we do not use a retrieval set, but apply the boosted
tree classifier for each class to each superpixel and use its likelihood ratio score
in the same way as eq. (1). Table 6 shows the resulting performance, which is
comparable to the results of [3,6]. Moreover, our system is much simpler than the
competing approaches. Unlike [6], we do not need to learn classifiers over pairs
of geometric and semantic classes or optimize image regions in a complex CRF
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Table 6. A comparison of our system to [6,3] using five-fold cross-validation and the

same evaluation protocols as [6,3]

Gould et al . dataset [6] Geometric Context dataset [3]

Semantic Geometric Sub-classes Main classes

Gould et al . [6] 76.4 91.0 N/A 86.9

Hoiem et al . [3] N/A N/A 61.5 88.1

Local labeling 76.9 90.5 57.6 87.8

Superpixel MRF 77.5 90.6 61.0 88.2

Simultaneous 77.5 90.6 61.0 88.1

framework. Unlike [3], we do not need to search over multiple segmentations
with two tiers of features and a discriminative model of region homogeneity. In
fact, when restricted to just a single superpixel segmentation, Hoiem et al. [3]
report a sub-class rate of 53.5%, which we beat by 7.5% on the same superpixels.

4 Discussion

This paper has presented a superpixel-based approach to image parsing that
can take advantage of datasets consisting of tens of thousands of images anno-
tated with hundreds of labels. Our system does not need training, except for
basic computation of dataset statistics such as label co-occurrence probabilities,
and it relies on just a few constants that are kept fixed for all datasets. Our
experimental evaluation carefully justifies every implementation choice. Despite
its simplicity, our system outperforms state-of-the-art methods such as SIFT
Flow [15]. Like [15], our method is nonparametric and makes use of a retrieval set
of similar scenes, but unlike [15], it does not rely on an intricate optical flow-like
scene alignment model. Our underlying feature representation, based on mul-
tiple appearance descriptors computed over segmentation regions, is similar to
that of [3,5]. However, unlike [3], we do not search over multiple segmentations,
and unlike [5], we successfully combine features without learning class-specific
or exemplar-specific distance functions. That one can achieve good performance
without these costly steps is very encouraging for the prospect of successfully
scaling up image parsing algorithms.

There still remain areas to improve our system further. Because our represen-
tation makes it easy to “plug in” new features, any advances in feature extraction
are likely to give gains in performance. Also, while we have achieved promising
results with one bottom-up segmentation algorithm [21], it remains important
to examine the effect of segmentation quality on image parsing and to address
the problem of finding the right spatial support for objects.
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Abstract. In this paper we introduce a new salient object segmenta-

tion method, which is based on combining a saliency measure with a

conditional random field (CRF) model. The proposed saliency measure

is formulated using a statistical framework and local feature contrast in

illumination, color, and motion information. The resulting saliency map

is then used in a CRF model to define an energy minimization based seg-

mentation approach, which aims to recover well-defined salient objects.

The method is efficiently implemented by using the integral histogram

approach and graph cut solvers. Compared to previous approaches the

introduced method is among the few which are applicable to both still

images and videos including motion cues. The experiments show that

our approach outperforms the current state-of-the-art methods in both

qualitative and quantitative terms.

Keywords: Saliency measure, background subtraction, segmentation.

1 Introduction

Biological vision systems are remarkably effective in finding relevant targets from
a scene [1]. Identifying these prominent, or salient, areas in the visual field enables
one to allocate the limited perceptual resources in an efficient way. Compared
to biological systems, computer vision methods are far behind in the ability of
saliency detection. However, reliable saliency detection methods would be useful
in many applications like adaptive compression and scaling [2,3], unsupervised
image segmentation [4,5], and object recognition [6,7].

Perhaps the most common approach to reduce scene clutter is to detect mov-
ing objects against a static background [8,9,10]. These methods have been very
successful in many applications, but they have severe limitations in the case of
dynamic scenes or moving cameras. These circumstances have been addressed
by introducing adaptive background models and methods to eliminate camera
movements [11,12], but both of these are difficult problems and technically de-
manding. Moreover, the methods in this class are applicable only to video se-
quences, but not to still images where motion cues are not available.

A different approach is provided by supervised object detection techniques,
which are aimed at finding particular categories like persons, tables, cars, etc.
[13,14,15]. These methods have resulted in high performance, but the limitation
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Fig. 1. Example result achieved using the proposed approach. From left to right: origi-

nal image, saliency map, segmentation by thresholding, and segmentation by using the

CRF model.

is that the objects of interest must reside in the predefined categories from
which the training samples must be available. Furthermore, the training process
is rather extensive and the performance is dictated by the training data.

An alternative method is offered by general purpose saliency detectors. These
methods are inspired by the ability of human visual system to quickly focus on
general salient targets without preceding training. Such techniques are suitable
in situations where possible targets and imaging conditions are not known in
advance. Perhaps the first biologically plausible saliency detector was presented
in [16], where the key idea was based on contrast measurements using difference
of Gaussians filtering.

Since [16] several saliency detectors have been introduced. They are similarly
focusing on estimating local feature contrast between image regions and their
surroundings. Most methods implement this by local filtering or sliding win-
dow techniques [18,19,20,21,22]. Other methods apply Fourier transform [23,24],
mutual information formulation [25], or band-pass filtering [26].

The main limitation with many general saliency detection methods is their low
resolution, e.g. 64× 64 with the approaches in [23,24] and small fraction of the
image dimension with [16,17]. An exception to this is provided by sliding window
based methods [20,21,22] and the band-pass filtering approach [26], where the
output map has the same resolution as the input image. Another drawback is
that only few methods [22,24] are capable of incorporating motion cues in the
saliency map. Finally, large computational demands and variable parameters are
limiting the usage of several methods [16,18,19,22].

In the previous experiments the sliding window and band-pass filtering ap-
proaches have resulted in the best performance [26]. Based on this observation
we present a new saliency segmentation method, which is a composition of a
sliding window based saliency measure and a conditional random field (CRF)
segmentation model. The introduced saliency measure is based on a rigorous
statistical formulation enabling feature level information fusion and analysis of
the robustness properties.

In contrast to previous methods our approach is directly applicable to both
still images and videos including also motion cues in the saliency measure and the
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CRF model. The method which is the most similar to our saliency measure is the
approach in [21], but it differs in the formulation of saliency measure, informa-
tion fusion approach, and application of motion cues in estimation. Experiments
with the saliency segmentation test framework [26] show considerable improve-
ments in terms of both precision and recall. Current state-of-the-art methods are
outperformed slightly even by using a simple thresholding of the saliency map,
and with a clear margin when the proposed CRF model is used.

Contributions. We present a salient object segmentation method for images
and video sequences. The contributions of our paper include:

1. A rigorous statistical formulation of a saliency measure, which is based on
local feature contrast, and analysis of its properties under noisy data.

2. Feature level information fusion in the construction of saliency maps and
inclusion of motion cues by using optical flow.

3. CRF model for segmenting objects in images and videos based on informa-
tion in saliency maps.

2 Saliency Measure

In this section we describe the proposed saliency measure. The measure is based
on applying a sliding window to the image, and on comparing in each window
the contrast between the distribution of certain features in an inner window to
the distribution in the collar of the window. The basic setup for this saliency
measure was introduced in [21], but here we will modify it by taking into account
the properties 1 and 2 listed in the contributions above.

2.1 Definition of Saliency Measure

Consider an image in R2 and a map F which maps every point x to a certain
feature F (x) (which could be the intensity, the value in different color channels,
or information obtained from motion). The feature space is divided into disjoint
bins, with QF (x) denoting the bin which contains F (x).

We consider a rectangular window W divided into two disjoint parts, a rect-
angular inner window K (the kernel) and the border B (see Figure 2), and apply
the hypothesis that points in K are salient and points in B are part of the back-
ground. A similar hypothesis has also been used in [21,22]. Let Z be a random
variable with values in W , describing the distribution of pixels in W . Under the
stated hypothesis, the saliency measure of a point x ∈ K is defined to be the
conditional probability

S0(x) = P (Z ∈ K|F (Z) ∈ QF (x)). (1)

The saliency measure of x is always a number between 0 and 1. It follows from
the definition that a pixel x is salient (that is, S0(x) is close to 1) if the feature
at x is similar to the features at points of the inner window (and different from
points in the border).
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W

K

B

Fig. 2. Illustration of saliency map computation

The computation of S0(x) can be achieved through the Bayes formula
P (A|B) = P (B|A)P (A)/P (B). Using the abbreviations H0, H1, and F (x) for
the events Z ∈ K, Z ∈ B, and F (Z) ∈ QF (x), respectively, gives that

S0(x) =
P (F (x)|H0)P (H0)

P (F (x)|H0)P (H0) + P (F (x)|H1)P (H1)
. (2)

The computation of this measure is greatly simplified if we assume that Z has a
probability density function p which is constant on K and on B. In fact, given
p0 with 0 < p0 < 1, we take p(x) = p0/|K| for x ∈ K and p(x) = (1 − p0)/|B|
for x ∈ B. With this choice, the conditional probabilities in the last expression
for S0(x) become normalized histograms. For instance, for the set K we write

hK(x) = P (F (x)|H0) =
1

P (H0)

∫
K∩F−1(QF (x))

p(w) dw. (3)

Since p is constant on K, the discretized version of the last quantity is obtained
by just counting the number of points z in K for which F (z) is in QF (x), and by
dividing by the number of points in K. Defining similarly hB(x) = P (F (x)|H1),
the saliency measure may be written as

S0(x) =
hK(x)p0

hK(x)p0 + hB(x)(1 − p0)
. (4)

Clearly S0(x) is always a number between 0 and 1.

2.2 Regularized Saliency Measure

Note that a small change in the function F may change the bin of F (x), pos-
sibly resulting in a large change in the value of hK(x). Therefore the measure
S0(x) is not stable with respect to noise. To increase robustness we introduce a
regularized saliency measure. For computational purposes it is most convenient
to regularize the normalized histograms directly.
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Assume that the bins in feature space are indexed by integers j, and let j(x) be
such that F (x) lies in the bin Qj(x). Let also hA(j) = hA(x) for j = j(x). If α > 0

let gα(x) = cαe
− x2

2α be the Gaussian function with variance α, normalized so that∑∞
j=−∞ gα(j) = 1. Define the regularized histogram hK,α(j) =

∑∞
j=−∞ gα(j −

k)hK(k). With a similar definition for hB,α, the regularized saliency measure is
defined by

Sα(x) =
hK,α(j(x))p0

hK,α(j(x))p0 + hB,α(j(x))(1 − p0)
. (5)

It can be shown that for α > 0 and under certain assumptions, the continu-
ous analog of the measure Sα(x) is stable with respect to small changes in the
function F (more details in the on-line Appendix1). This indicates that the reg-
ularized measure is indeed quite robust. Another benefit of the regularization
is that by suitable choices for α it is possible to emphasize and de-emphasize
different features that are used for the function F . Having a larger α for a certain
feature will decrease the weight of that feature in the resulting saliency map.

2.3 Implementation

For the feature function F we will use the CIELab color values of an image,
and also motion information in the case of video sequences. For still images, if
L(x), a(x), and b(x) are the CIELab values at a point x, the feature map is
F (x) = (L(x), a(x), b(x)). In the case of frames in a video sequence we combine
the CIELab information for each frame with the magnitude of the optical flow
Y (x). The feature map is then F (x) = (L(x), a(x), b(x), Y (x)). All the values
are quantized, and the bins are the elements in the finite feature space.

To simplify the computations, we make the assumption that the random vari-
ables L(Z), a(Z), b(Z), Y (Z) are independent in any subwindow. This is rea-
sonable since the CIELab color space is constructed so that the intensity value
L is independent of the a and b coordinates, and also since in our experiments
using a joint distribution for a and b did not yield improved results compared
to the case where independence was assumed. It is also fair to assume that the
optical flow Y (Z) is independent of L(Z), a(Z), b(Z).

Using the independence, we have P (F (x)|H0) = hK(x) where hK(x) is the
product of normalized histograms ht

K(t(x)) (here t is one of L, a, b, Y ) and
ht

K(t0) is equal to the number of points z in K such that t(z) = t0 divided by
the number of points in K, etc. We define regularized histograms

ht
K,α(j) = N (

∑
k

gα(j − k)ht
K(k)), t is one of L, a, b, Y. (6)

Here N (f(j)) = 1∑
k f(k)f(j) is the normalization operator. The final saliency

measure is given by

Sα(x) =
hK,α(x)p0

hK,α(x)p0 + hB,α(x)(1 − p0)
. (7)

1 http://www.ee.oulu.fi/mvg/page/saliency

http://www.ee.oulu.fi/mvg/page/saliency
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Here hK,α(x) is equal to hL
K,α(L(x))ha

K,α(a(x))hb
K,α(b(x)) for still images and to

hL
K,α(L(x))ha

K,α(a(x))hb
K,α(b(x))hY

K,α(Y (x)) for frames in a video sequence, and
hB,α(x) is defined in a similar manner.

The saliency map for the entire image is achieved by sliding the window
W with different scales over the image, constructing the proposed feature his-
tograms for each window, smoothing the histograms, and then computing the
measure for each pixel in K at each window position and scale. The final saliency
value is then taken as the maximum over all windows containing a particular
pixel. Figure 2 shows an illustration of the process.

In practice it is enough to evaluate the measure only in a small subset of all
possible window positions and scales. In our experiments we used a regular grid
with step size equal to 1 percent of the largest image dimension. We applied four
scales with row and column sizes equal to {25, 10; 30, 30; 50, 50; 70, 40}percents of
the largest image dimension, respectively. An illustrative Matlab implementation
of our measure is available on-line2.

3 Salient Object Segmentation

In this section, we propose a bilayer segmentation method that estimates the
salient and non-salient pixels of an image or a video by minimizing an energy
function, which is derived from a conditional random field model that incorpo-
rates the pixelwise saliency measure of the previous section. The motivation for
using a CRF model is the fact that usually the goal of saliency detection is to
achieve an object-level segmentation rather than pixel-level segmentation. That
is, the user is more interested in objects which contain salient pixels than the
salient pixels themselves. Therefore, instead of considering pixels independently
and segmenting the saliency maps by simple thresholding, it is reasonable to
formulate the binary labeling problem in terms of a CRF based energy function,
whose exact global minimum can be computed via graph cuts [27,28]. In the
following, we describe the energy functions used in our experiments. The formu-
lations are inspired by several previous works which apply graph cuts for binary
segmentation problems, e.g. [29,30].

3.1 Segmentation Energy for Still Images

First, given an image with N pixels, we use the saliency measure Sα to compute
a saliency map s=(s1, . . . , sN ), which is an array of saliency values. Further, we
represent the image as an array c = (c1, . . . , cN ), where each cn = (Ln, an, bn)
is a Lab color vector for a single pixel. Our task is to find a binary labeling
σ = (σ1, . . . , σN ) so that σn ∈ {0, 1} indicates whether the pixel n belongs to a
salient object or not.

2 http://www.ee.oulu.fi/mvg/page/saliency

http://www.ee.oulu.fi/mvg/page/saliency
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The optimal labeling is computed by minimizing the energy function

EI(σ, c, s) =
N∑

n=1

(
wSU

S(σn, sn) + wCUC(σn, cn)
)

+
∑

(n,m)∈E
V (σn, σm, cn, cm),

(8)
which consists of two unary terms, US and UC , and a pairwise term V , which
depends on the labels of neighboring pixels.3 The weight factors wS and wC are
scalar parameters. The purpose of US is to penalize labelings which assign pixels
with low sn to the salient layer, whereas UC encourages such labelings where the
salient layer includes pixels which have similar colors as pixels for which sn is
high. The pairwise term V favors spatial continuity of labels. Overall, the energy
function (8) has the standard form [28], which is used in many segmentation
approaches [29] and can be statistically justified by using the well-known CRF
formulation [30]. The precise definitions for US , UC , and V are described below.

The unary saliency term US is defined by

US(σn, sn) = δσn,1(1− f(sn)) + δσn,0f(sn), (9)

where δ·,· is the Kronecker delta and f is defined by either

f(sn) = max(0, sign(sn − τ)) or f(sn) = (sn)κ . (10)

In probabilistic terms, one may think that US is an approximation to

− logP (Sn =sn|σn) = −δσn,1 log p1(sn)− δσn,0 log p0(sn), (11)

where p1 and p0 are the conditional density functions of sn given that pixel n
is salient or non-salient, respectively. Hence, loosely speaking, the ratio f(sn) :
(1−f(sn)) can be seen as a one-parameter model for the ratio of negative log-
likelihoods, (− log p0(sn)) : (− log p1(sn)).

The unary color term UC is defined by

UC(σn, cn) = − logP (Cn =cn|σn) = −δσn,1 log pc
1(cn)− δσn,0 log pc

0(cn), (12)

where the conditional density functions pc
1 and pc

0 are the color distributions
of salient and non-salient pixels, respectively. Given image c, we compute pc

1

and pc
0 as a product of two histograms, that is, pc

1(cn) = hL
1 (Ln)hab

1 (an, bn)
and pc

0(cn) = hL
0 (Ln)hab

0 (an, bn). The histograms hL
1 and hL

0 are computed as
weighted histograms of pixels’ intensity values, where the weights for pixel n
are f(sn) and (1 − f(sn)), respectively. The color histograms hab

1 and hab
0 are

computed in a similar manner using f(sn) and (1− f(sn)) as weights.
The pairwise prior V is

V (σn, σm, cn, cm) = γδσn,σme−||cn−cm||2Λ + ηδσn,σm , (13)

where γ and η are scalar parameters and || · ||Λ is a Mahalanobis distance with
diagonal matrix Λ. Both terms in (13) penalize neighboring pairs of pixels that
3 Set E contains pairs (n, m) for which n<m and pixels n and m are 4-connected.
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have different labels. However, the first term adds lower cost for such segmenta-
tion boundaries that co-occur with contours of high image contrast [30].

Given image c and saliency map s, we estimate σ by minimizing (8) via graph
cuts. The pixels labeled by 1 belong to salient objects and the rest is background.
Further, given test images with ground truth saliency maps where the pixels of
salient objects are manually labeled, we compare the two choices for f in (10)
by computing the corresponding ROC curves. That is, by changing the value
of parameter τ (or κ) from 0 to ∞ the labeling gradually changes from one
map to zero map, and we may draw a ROC curve by counting the number
of correctly and incorrectly labeled pixels at each parameter setting. Section 4
reports the results obtained with a publicly available dataset of 1000 images. For
the experiments, we determined the values of wS , wC , γ, and η by the approach
in [31]. All other parameters except τ and κ were set to manually predefined
values and kept constant during the experiments.

3.2 Segmentation Energy for Videos

Our CRF segmentation model for videos incorporates motion information indi-
rectly via the saliency measure Sα, as described in Section 2, but also directly
via an additional unary term, which is introduced below. In detail, the energy
function for videos is an augmented version of (8), i.e.

EV (σt, σt−1, σt−2, ct, ct−1, s) = EI(σt, ct, s) +
N∑

n=1

UT (σt
n, σ

t−1
n , σt−2

n , ct
n, c

t−1
n )

(14)
where σt is the segmentation of the current frame, σt−1 and σt−2 are the segmen-
tations of the two previous frames, ct is the current frame, ct−1 is the previous
frame, and UT is an additional unary term which improves temporal coherence.

The term UT has the following form,

UT (σt
n, σ

t−1
n , σt−2

n , ct
n, c

t−1
n ) = μ δσt

n,σt−1
n

e−||ct
n−ct−1

n ||2Γ − ν log pT (σt
n|σt−1

n , σt−2
n ),
(15)

where μ and ν are scalar parameters, || · ||Γ is a Mahalanobis distance with diag-
onal matrix Γ , and pT is the prior probability density function of σt

n conditioned
on σt−1

n and σt−2
n . Thus, since pT (σt

n =0|σt−1
n , σt−2

n )=1−pT (σt
n =1|σt−1

n , σt−2
n ),

pT is defined by four parameters which determine pT (σt
n = 1|σt−1

n , σt−2
n ) corre-

sponding to the following four cases: (σt−1
n , σt−2

n ) = {(0, 0), (0, 1), (1, 0), (1, 1)}.
The first term in (15) is an additional data-dependent cost for pixels which
change their label between frames (t−1) and t. This extra cost is smaller for
those pixels whose color changes a lot between the frames.

Given a video sequence, we compute the segmentation σt for frames t>2 by
minimizing (14) via graph cuts. For grayscale videos we use the grayscale version
of (14). In the experiments, the values of the common parameters were the same
for the grayscale and color versions. Further, we used the first choice for f in
(10) and all parameter values were kept constant in the experiments.
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4 Experiments

In this section, we assess the proposed approach in saliency segmentation exper-
iments. The performance is compared with the state-of-the-art methods using
the programs given by the authors [10,23,21,20,26] or our own implementation
with default parameters [24]. The experiments are divided into two parts, where
the first one considers still images and the second one video sequences.

4.1 Segmenting Salient Objects from Images

First, we run the publicly available saliency segmentation test, introduced in
[26]. The proposed method is compared to the band-pass approach in [26], which
was reported to achieve clearly the best performance among the several tested
methods [26] (note the erratum4). In addition we also include the approaches
from [21] and [24], since they were not evaluated in [26].

The experiment contains 1000 color images with pixel-wise ground truth seg-
mentations provided by human observers. First a saliency map is computed for
each test image and then a segmentation is generated by simply thresholding
the map by assigning the pixels above the given threshold as salient (white fore-
ground) and below the threshold as non-salient (black background). A precision
and recall rate is then computed using definitions:

precision = |SF ∩GF |/|SF |, recall = |SF ∩GF |/|GF |, (16)

where SF denotes the segmented foreground pixels, GF denotes the ground truth
foreground pixels, and | · | refers to number of elements in a set. By sliding the
threshold from minimum to maximum saliency value, we achieved the precision-
recall curves illustrated in Figure 3 (magenta, cyan, orange, and green).

The results show that the proposed saliency measure achieves the highest
performance up to a recall rate 0.9. Furthermore also the method from [21]
seems to outperform the state-of-the-art results in [26]. Notice that the precision-
recall curves of the proposed method and the method in [21] do not have values
for small recalls because several pixels reach the maximum saliency value and
they change labels simultaneously when the threshold is lowered below one. At
maximum recall all methods converge to 0.2 precision, which corresponds to a
situation where all pixels are labeled as foreground.

We continue the experiment by adding the CRF segmentation model from
Section 3 on top of our saliency measure. First, we perform the same experiment
as above, but refine the thresholded saliency maps using the CRF model (i.e. the
first choice is used for f in (10)). The resulting precision-recall-curve in Figure
3 (blue) illustrates a clear gain compared to thresholded saliency map in both
precision and recall. Finally, we replace the thresholded saliency maps in the
CRF by the soft assignment approach of Section 3 (i.e. the second choice for
f in (10)). Now, instead of sliding threshold τ we change the exponent κ, and

4 http://ivrg.epfl.ch/supplementary_material/RK_CVPR09/index.html

http://ivrg.epfl.ch/supplementary_material/RK_CVPR09/index.html
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Fig. 3. Left: Mean precision-recall curves using comparison methods and the proposed

approach. Right: Mean precision, recall, and F-measure values for comparison method

[26] (1), our method with thresholding (2), and our method with soft assignments (3).

Notice that β = 0.3 (used according to [26]) strongly emphasizes precision.

achieve the corresponding precision-recall-curve in Figure 3 (black), which shows
further improvement in performance.

In [26] the best results were achieved by combining the band-pass saliency
map with adaptive thresholding and the mean-shift segmentation algorithm.
The achieved precision, recall, and F-measure values were 0.82, 0.75, and 0.78,
respectively. The F-measure was computed from precision and recall by Fβ =
(1 + β2) (precision · recall) /

(
β2 · precision+recall

)
, where β = 0.3 was used

[26]. This corresponds to a point marked using by a cyan star in Figure 3.
This result remains lower than our results with both näıve thresholding and
soft mapping with CRF, which provide the same precision with recalls 0.79 and
0.87, respectively. These points are also marked in Figure 3 with correspondingly
colored stars. The maximum F-measure value we achieve is 0.85, which represents
9 percent improvement over [26]. The comparison of F-measures is shown in
Figure 3. A few results of the proposed saliency segmentation method are shown
in Figure 4 for subjective evaluation.

4.2 Segmenting Salient Objects from Video Sequences

Another set of experiments was performed using videos. The saliency maps were
computed as described in Section 2 by using both the CIELab color values (only
L in the case of gray-scale videos) and the magnitude of optical flow as features.
The optical flow was computed using a publicly available5 implementation [32],
which can provide real-time performance. The final salient segments were com-
puted using either direct thresholding or the CRF method of Section 3.

5 http://gpu4vision.org/

http://gpu4vision.org/


376 E. Rahtu et al.

Fig. 4. Examples of saliency maps and segmentations. Top row shows the original

image, second row shows the saliency maps, third row shows the segmentations using

threshold 0.7, and bottom row shows the segmentations using the CRF model.

The results are compared with methods in [24,21,20,10] from which the last
mentioned is a general background subtraction method. All comparison methods
used default parameters given by the authors. Further, in order to achieve best
possible performance with comparison methods, we also included all the postpro-
cessing techniques presented in the original papers. As test videos, we used the
publicly available image sequences originally used in [21] and [22]. The two se-
quences from [21] illustrate moving and stationary objects in the case of a fixed
and a mobile camera. Sequences from [22] show highly dynamic backgrounds
with targets of various size. The original results of [22] are available on-line and
are directly comparable to our results. Their experiments also include several
traditional background subtraction approaches.

Figure 5 illustrates characteristic frames from tested sequences. The results in-
clude original frames, saliency maps, and final segmentations. Full videos are also
available on-line6. The results illustrate the problems of traditional background
subtraction methods, which work well with stationary cameras and constantly
moving objects. However serious problems appear if the camera is moving and
targets may stop every once in a while. The poor resolution of [24] is visible in the
inaccurate segmentations and several missed objects. The method in [21] works
better, but the result is rather noisy and the segmentations are not accurate.
The missing motion information is also visible in the results with [21].

The proposed approach achieves the most stable results, where also the effect
of motion cues is clearly visible. The returned segments mostly correspond to
natural objects. Sometimes the method may return salient segments which a
human observer would classify as part of the background (e.g. grass between the
roads). However, like with all saliency detection methods this is difficult to avoid
if these objects are distinct from the background in terms of visual contrast.

6 http://www.ee.oulu.fi/mvg/page/saliency

http://www.ee.oulu.fi/mvg/page/saliency
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Fig. 5. Results of saliency detection from videos. Each group of eight images corre-

spond to one test sequence and they are organized as follows: Left column from top

to bottom consists of the original frame, the proposed saliency map, segmentation by

thresholding proposed saliency map, and segmentation using the proposed CRF model.

Right column from top to bottom consists of segmentations using the saliency maps

and full post processing of comparison methods [10], [24], [20], and [21], respectively.
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5 Conclusions

In this paper, we presented a new combination of a saliency measure and a
CRF based segmentation model. The measure was formulated using a proba-
bilistic framework, where different features were fused together in joint distribu-
tions. The sensitivity of the proposed measure was shown to be controlled by a
smoothing parameter, which can also be used to set the relative weights of the
features.

The resulting saliency map was turned into a segmentation of natural and
well-defined objects using the CRF model. The segmentations were constantly
improved and stabilized especially in the case of video sequences, where the
smoothness over frames was emphasized by the applied model. In addition we
proposed a technique to include optical flow motion cues into the saliency esti-
mation, which greatly improved the recall rate with videos.

The experiments with a publicly available dataset showed that our approach
yields clearly higher performance than the state-of-the-art in terms of both recall
and precision. The new method produces both more dicriminative saliency maps
and more accurate segmentations. The precision was improved especially at high
recalls, where previous results were rather poor. The experiments with video
sequences showed also consistent improvement over the tested methods.

The features used in our approach included Lab color values and optical flow,
which are both obtainable in real-time. The saliency measure itself was evaluated
using sliding windows and integral histograms. The processing takes about 8
seconds per image with our current Matlab implementation, but we believe that
this can be reduced to close to real time. The CRF energy minimization by
graph cuts took 1/20 seconds per image. In future, we aim to achieve a real time
implementation by using total-variation techniques instead of graph cuts.

Acknowledgments. The work has been supported by the Academy of Finland.
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Abstract. We propose a novel method for unsupervised class segmen-

tation on a set of images. It alternates between segmenting object in-

stances and learning a class model. The method is based on a segmen-

tation energy defined over all images at the same time, which can be

optimized efficiently by techniques used before in interactive segmenta-

tion. Over iterations, our method progressively learns a class model by

integrating observations over all images. In addition to appearance, this

model captures the location and shape of the class with respect to an

automatically determined coordinate frame common across images. This

frame allows us to build stronger shape and location models, similar to

those used in object class detection. Our method is inspired by inter-

active segmentation methods [1], but it is fully automatic and learns

models characteristic for the object class rather than specific to one par-

ticular object/image. We experimentally demonstrate on the Caltech4,

Caltech101, and Weizmann horses datasets that our method (a) trans-

fers class knowledge across images and this improves results compared

to segmenting every image independently; (b) outperforms Grabcut [1]

for the task of unsupervised segmentation; (c) offers competitive per-

formance compared to the state-of-the-art in unsupervised segmentation

and in particular it outperforms the topic model [2].

1 Introduction

Image segmentation is a fundamental problem in computer vision. Over the past
years methods that use graph-cut to minimize binary pairwise energy functions
have become the de-facto standard for segmenting specific objects in individual
images [1, 3, 4]. These methods employ appearance models for the foreground
and background which are estimated through user interactions [1, 3, 4].

On the one hand, analog approaches have been presented for object class
segmentation where the appearance models are learned from a set of training
images with ground-truth segmentations [5–7]. However, obtaining ground-truth
segmentations is cumbersome and error-prone.

On the other hand, approaches to unsupervised class segmentation have also
been proposed [2, 8–10, 12, 13]. In unsupervised segmentation a set of images
depicting different instances of an object class is given, but without information
about the appearance and shape of the objects to be segmented. The aim of an
algorithm is to automatically segment the object instance in each image.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 380–393, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Interestingly, most previous approaches to unsupervised segmentation do not
use energy functions similar to those in interactive and supervised segmentation,
but instead use topic models [2] or other specialized generative models [10, 12]
to find recurring patterns in the images.

We propose ClassCut, a novel method for unsupervised segmentation based on
a binary pairwise energy function similar to those used in interactive/supervised
segmentation. As opposed to those, our energy function is defined over a set
of images rather than on one image [1, 3–5]. Inspired by GrabCut [1], where
the two stages of learning the foreground/background appearance models and
segmenting the image are alternated, our method alternates between learning a
class model and segmenting the objects in all images jointly. The class model is
learned from all images at the same time, so as to capture knowledge about the
class rather than specific to one image [1]. Therefore, it helps the next segmen-
tation iteration, as it transfers between images knowledge about the appearance
and shape of the class. Thanks to the nature of our energy function, we can
segment all images jointly using existing efficient algorithms used in interactive
segmentation approaches [1, 3, 14, 15].

Inspired by representations successfully used in supervised object class detec-
tion [16, 17], our approach anchors the object class in a reference coordinate
frame common across images. This enables modeling the spatial structure and
shape of the class, as well as designing novel priors tailored to the unsupervised
segmentation task. We determine this reference frame automatically in every
image with a procedure based on a salient object detector [18].

At each iteration ClassCut updates the class model, which captures the ap-
pearance, shape, and location distribution of the class within the reference frame.
The final output of the method are images with segmented object instances as
well as the class model.

In the experiments, we demonstrate that our method (a) transfers knowledge
between images and this improves the performance over segmenting each image
independently; (b) outperforms the original GrabCut [1], which is the main inspi-
ration behind it and turns out to be a very competitive baseline for unsupervised
segmentation; (c) offers competitive performance compared to the state-of-the-
art in unsupervised segmentation; (d) learns meaningful, intuitive class models.
Source code for ClassCut is available at http://www.vision.ee.ethz.ch/˜calvin.

Related Work. We discussed in the introduction that our method employs
energy minimization techniques used in interactive segmentation [1, 3, 4, 14, 15],
and how it is related to supervised [5, 7, 19] as well as to unsupervised [2, 10–12]
class segmentation methods.

A different task is object discovery, which aims at finding multiple object
classes from a mixed set of unlabeled images [11, 29]. In our work instead, all
images contain instances of one class.

The two closest work to ours are [8, 9], which have a procedure iterating be-
tween updating a model and segmenting the images. In [8] the model is given
a set of class and non-class images and then it iteratively improves the fore-
ground/background labeling of image fragments based on their class likelihoods.
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Their method learns local segmentations masks for image fragments, while our
method learns a more complete class model, including appearance, shape and
location in a global reference frame.

Arora et al. [9] learn a template consistent over all images using variational
inference. Their template model is very different from our class model, and closer
to a constellation model [20]. Moreover, their method optimizes the segmentation
of the images individually rather than jointly.

Finally, our approach is also related to co-segmentation [21] where the goal is
to segment a specific object from two images at the same time. Here we try to go
a step further and co-segment a set of images showing different object instances
of an unknown class.

2 Overview of Our Method

The goal is to jointly segment objects of an unknown class from a set of images.
Analog to the scheme of GrabCut [1], ClassCut alternates two stages: (1) learn-
ing/updating a class model given the current segmentations (sec. 4); (2) jointly
segmenting the objects in all images given the current class model (sec. 3). It
converges when the segmentation is unchanged in two consecutive iterations.

Our segmentation model for stage (2) is a binary pairwise energy function,
which can be optimized efficiently by techniques used in interactive segmenta-
tion [1, 3, 22], but jointly over all images rather than on a single image [1]
(sec. 3).

In stage (1), learning the class model over all images at once enables cap-
turing knowledge characteristic for the class rather than specific to a particular
image [1]. As the class model is used in the next segmentation iteration it trans-
fers knowledge across images, typically from easier images to more difficult ones,
aiding their segmentation. For example, the model might learn in the first itera-
tion that airplanes are typically grayish and the background is often blue (fig. 1).
In the next iteration, this will help in images where the airplane is difficult to
segment (e.g. because of low contrast).

The class model we propose (sec. 3.2) consists of several components modeling
different class characteristics: appearance, location, and shape. In addition to a
color component also used in GrabCut [1], the appearance model includes a bag-
of-words [23] of SURF descriptors [24], which is well suited for modeling class
appearance. Moreover, we model the location (sec. 3.2) and shape (sec. 3.2)
of the object class w.r.t. a reference coordinate frame common across images
(sec. 5). Overall, our model focuses on knowledge at the class level rather than
at the level of one object as in the works it is inspired from [1, 4].

In addition to the class model, the segmentation energy include priors tailored
for segmenting classes (sec. 3.1). The priors are defined on superpixels [25], which
act as grouping units for homogeneous areas. Superpixels bring two advantages:
(i) they provide additional structure, i.e. the set of possible segmentations is
reduced to those aligning well with image boundaries; (ii) they reduce the com-
putational complexity of segmentation. We formulate four class segmentation
priors over superpixels and multiple images (sec. 3.1).
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Fig. 1. Overview of our method. The top row shows the input images, the auto-

matically determine reference frames and the initial location and shape models. The

bottom row shows how the segmentations evolve over the iterations as well as the final

location and shape models.

If a common reference frame on the objects is available, our method exploits
it to anchor the location and shape models to it and to improve the effectiveness
of some of the priors. We apply a salient object detector [18] to determine this
reference frame automatically (sec. 5). In sec. 6 we show how this detector im-
proves segmentation results compared to using the whole image as a reference
frame. Fig. 1 shows an overview of the entire method.

3 Segmentation

In the set of images I = {I1, . . . , IN} each image In (given either as a full
image or as automatically determined reference frame) consists of superpixels
{S1

n, . . . , S
Kn
n }. We search for the labeling L∗ =

(
(l11, . . . , l

K1
1 ), . . . , (l1n, . . . , l

Kn
n ),

. . . , (l1N , . . . , lKN

N )
)

that sets lkn = 1 for all superpixels Sk
n on the foreground and

ljn = 0 for all superpixels Sj
n on the background.

To determine L∗, we minimize

L∗ = arg min
L
{EΘ(L, I)} with EΘ(L, I) = ΦΘ(L, I) + ΨΘ(L, I) (1)

where Φ is the segmentation prior (sec. 3.1) and Ψ is the class model (sec. 3.2).
In sec. 3.3 we describe how to minimize eq. (1). Θ are the parameters of the
model.

3.1 Prior ΦΘ(L, I)

The prior Φ consists of four terms

ΦΘ(L, I) = wΛΛ(L, I) + wχχ(L, I) + wΓΓ (L, I) + wΔΔ(L, I) (2)

The scalars w are part of the model parameters Θ and weight the terms. Below
we describe the terms in detail.
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(a)

(b) (c)

Fig. 2. Priors. (a) The smoothness prior between two superpixels is weighted inversely

to the sum over the gradients along their boundary (shown in yellow and blue for

two pairs of superpixels). (b) The between image smoothness prior is weighted by

the overlap (yellow) of superpixels (shown for two pairs of superpixels (red/green) in

two images). (c) The border penalty assigns high values to superpixels touching the

reference frame boundary (dark=low values, bright=high values).

The Within Image Smoothness Λ is a smoothness prior for superpixels
which generalizes the pixel-based smoothness priors typically used in interactive
segmentation [1]. It penalizes neighboring superpixels having different labels.

Λ(L, I) =
∑

n

∑
j,k

δ(ljn �= lkn) exp(−grad(Sj
n, S

k
n)) (3)

where j, k are the indices of neighboring superpixels Sj
n, Sk

n within image In.
δ(ljn �= lkn) = 1 if the labels ljn, lkn are different and 0 otherwise. The gradient
grad(Sj

n, S
k
n) between Sj

n and Sk
n is computed by summing the gradient mag-

nitudes [26] along the boundary between Sj
n, Sk

n (fig. 2a) normalized w.r.t. the
length of the boundary. Thus, the penalty is smaller if the two superpixels are
separated by high gradients. This term encourages segmentations aligned with
the image gradients.
The Between Image Smoothness χ operates on superpixels across images.
It encourages superpixels in different images but with similar location w.r.t. the
reference frame to have the same label:

χ(L, I) =
∑
n,m

∑
j,k

δ(ljn �= lkm)
|Sj

n ∩ Sk
m|

|Sj
n ∪ Sk

m|
(4)

where n,m are two images and j, k superpixels, one in In, the other in Im.
This penalty grows with the overlap of the superpixels (measured as area of
intersection over area of union). Therefore only overlapping superpixels interact
(fig. 2b). This term encourages similar segmentations across all images (w.r.t.
the reference frame).
The Border Penalty Γ prefers superpixels at the image boundary to be
labeled background. Objects rarely touch the boundary of the reference frame.
Notice how the object would touch even a tight bounding-box around itself only
in a few points (e.g. fig. 2a). The border penalty

Γ (L, I) =
∑

n

∑
k

lkn
border(Sk

n)
perimeter(Sk

n)
(5)
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assigns a penalty proportional to the number of pixels touching the refer-
ence frame (border(Sk

n)) to each superpixel Sk
n normalized by its perimeter

(perimeter(Sk
n)). This term penalizes superpixels touching the border of the ref-

erence frame to be labeled foreground (fig. 2).
Γ is only meaningful on superpixels. If the segmentation is performed at the

pixel-level, the border penalty can be compared to a low prior on the boundary
pixels which may be propagated toward the image center using the smoothness
prior. This shows how superpixels introduce additional structure into the model.

The Area Reward Δ encourages a large foreground region in order to find
the entire recurring object and not just a small recurring object part. The term

Δ(L, I) =
∑

n

∑
m

−lmn
|Sm

n |
|In|

(6)

assigns to each superpixel a reward proportional to its area (normalized w.r.t.
the area of the reference frame).

The combined effects of Γ and Δ are similar to the (more complex) bounding-
box prior [4]: the foreground region should be as large as possible while not
crossing the boundary of the reference frame (here, touching it).

3.2 Class Model ΨΘ(L, I)

The class model ΨΘ(L, I) accounts for the appearance, shape, and location of
the objects:

ΨΘ(L, I) = wΩΩΘ(L, I) + wΠΠΘ(L, I) +
∑

f

wΥ f Υ f
Θ(L, I) (7)

The scalars w are part of the model parameters Θ and weight the terms. Below
we describe these models in detail. In sec. 4 we explain how they are initialized
and updated over the iterations.

The Location Model Ω accounts for the locations of objects w.r.t. the ref-
erence frames. We model the probability for a pixel s at its position to be
foreground pΩ(l|s) as the empirical probability in the reference frame. pΩ is
quantized to 32×32 locations within the reference frame.

To compute the energy contribution for a superpixel Sk
n labeled foreground,

we average over all positions in Sk
n and incorporate this into eq. (7) as

ΩΘ(L, I) =
∑

n

∑
k

1
|Sk

n|
∑
s∈Sk

n

− log pΩ(lkn|s) (8)

Fig. 3a shows a final location model obtained after convergence. The location
model encourages similar segmentations w.r.t. the reference frame in all images.

The Shape Model Π accounts for the global shape of the objects within the
reference frames. We model the global shape of the objects as the probability
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(a) (b)

Fig. 3. (a) Training the location model Ω. In each iteration, we segment all im-

ages and reestimate a location model specific to the current class using the current

segmentations. (b) Generic object location prior. The initial segmentation used to

initialize appearance models is drawn in white.

pΠ(boundary|s, β) that an object boundary with orientation β is at position
s. This is modeled as the empirical probability of oriented object boundaries
quantized into 5 orientations and 32×32 spatial bins.

For a pair of neighboring superpixels Sj
n, S

k
n in image In this probability is

accumulated along their boundary Sj
n � Sk

n to obtain the probability that one of
them is foreground and the other background as:

pΠ(ljn �= lkn|Sj
n, S

k
n) =

1
|Sj

n � Sk
n|

∑
s∈Sj

n
Sk
n

pΠ(boundary|s, βs) (9)

where βs is orientation of pixel s. This model is then incorporated in eq. (7) as:

ΠΘ(L, I) =
∑

n

∑
j,k

δ(ljn �= lkn)
(
μ− pΠ(ljn �= lkn|Sj

n, S
k
n)
)

(10)

where μ = 1
5·32·32

∑
s,β pΠ(boundary|s, β) is the mean probability of a boundary

over all locations and orientations.
Fig. 4 shows an initial shape model and a shape model after convergence. The

shape model encourages segmentations with similar shapes w.r.t. the reference
frame in all images.

The Appearance Models Υ f capture the visual appearance of the foreground
and background regions according to different visual descriptors f . As visual
descriptors f we use color distributions (col) and bag-of-words [23] of SURF
descriptors [24] (bow).

For a pixel s, the probability to be foreground (or background) pf(l|s) is
modelled using Gaussian mixtures for pcol(l|s), closely following [1], and using
empirical probabilities for pbow(l|s). It is incorporated into eq. (11) by averaging
over all pixels within a superpixel.

Note that our appearance model extends the model of GrabCut [1] by the bag
of SURF descriptor which is known to perform well for object classes.

Υ f
Θ(L, I) =

∑
n

∑
k

− 1
|Sk

n|

∑
s∈Sk

n

log pf (lkn|s) (11)



ClassCut for Unsupervised Class Segmentation 387

Fig. 4. The shape model. We initialize our shape model Π using only boundaries

between superpixels. The shape model after convergence is shown on the right.

The appearance models capture the appearance of foreground and background
region. The color model closely resembles those used in interactive segmentation
and together with the bag-of-SURF model captures class appearance.

3.3 Energy Minimization

As the energy (eq. (1)) is defined over binary variables and comprises only unary
(Γ,Δ,Ω, Υf ) and pairwise (χ,Λ,Π) terms, we minimize it using QPBO [22].
Since QPBO labels only those superpixels for which it is guaranteed to have
the global optimum, some superpixels might be left unlabeled. To label these
superpixels we use TRW-S [15]. TRW-S not only labels them but also computes
a lower bound on the energy which may be used to assess how far from the global
optimum the solution is.

Note that all pairwise terms except for the shape model are submodular. We
observed that on average only about 2% of the pairwise terms in the final model
(i.e. incorporating all cues) are non-submodular.

In our experiments, we observed that QPBO labels on average 91% of the
superpixels according to the global optimum.

Furthermore, we observed that the minimization problem is hardest in the
first few iterations and easier in the later iterations: over the iterations QPBO
labels more superpixels and the difference between the lower bound and the
actual energy of the solutions is also decreased.

4 Initializing and Updating the Class Model

We describe how to initialize the model and how to update the parameters of
the class models at each iteration.

4.1 Location Model

The location model Ω is initialized uniformly. At each iteration, we update the
parameters of the location model using the current segmentation of all images
of the current class according to the maximum likelihood criterion (fig. 3a): for
each cell in the 32×32 grid we reestimate the empirical probability of foreground
using the current segmentations.
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4.2 Shape Model

The shape model Π is initialized by accumulating the boundaries of all super-
pixels in the reference frame over all images. As the boundaries of superpixels
follow likely object boundaries, they will reoccur consistently along the true ob-
ject boundaries across multiple images. The initial shape model (fig. 4) already
contains a rough outline of the unknown object class.

At each iteration, we update the parameters of the shape model using the
current segmentation of all images according to the maximum likelihood crite-
rion: for each of the 5 orientations in the 32×32 grid, we reestimate the empirical
probability for a label-change at this position and with this orientation.

While the shape model only knows about the boundaries of an object but not
on which side is foreground or background, jointly with the location model (and
with the between-image smoothness) it will encourage similar shapes in similar
spatial arrangements to be segmented in all the images.

4.3 Appearance Model

The parameters of the appearance models Υf are initialized using the color/
SURF observations from all images using an initial segmentation. This initial
segmentation is obtained from a generic prior of object location trained on an
external set of images with objects of other classes and their ground-truth seg-
mentations (fig. 3b). From this object location prior, we select the top 75% pixels
as foreground; the remaining 25% as background. We observe that this location
prior is essentially a Gaussian in the middle of the reference frame.

In each iteration the Υf are updated according to the current segmentations
like the location and shape models.

If we are using automatically determined reference frames, the observations
for the background are collected from both pixels outside the reference frame
and pixels inside the reference frame but labelled as background.

5 Finding the Reference Frame

To find the reference frame, we use the objectness measure of [18] which quan-
tifies how likely it is for an image window to contain an object of any class.
Objectness is trained to distinguish windows containing an object with a well-
defined boundary and center, such as cows and telephones, from amorphous

Fig. 5. Finding the reference frame. Images with automatically determined refer-

ence frames (top) and the objectness maps (bottom).
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Fig. 6. Results on the Weizmann horses. From left to right: initial shape model,

shape model after convergence, location model after convergence, three example images

with their segmentations. The ground-truth segmentation is shown in red.

background windows, such as grass and road. Objectness combines several image
cues measuring distinctive characteristics of objects, such as appearing different
from their surroundings, having a closed boundary, and sometimes being unique
within the image.

We sample 1000 windows likely to contain an object from this measure, project
the object location prior (sec. 4.3) into these windows and accumulate into an
objectness map M (fig. 5, (bottom)). M will have peaks on the objects in the
image. We apply a fixed threshold to M and then determine a tight bounding-
box around the selected pixels, which we use as the reference frame in our method
(fig. 5 (top)).

In the experiments we demonstrate that this method improves the results of
unsupervised segmentation compared to using the full images (sec. 6).

6 Experiments

We evaluate the segmentation accuracy of our method as the percentage of pixels
classified correctly as either foreground (1) or background (0).

6.1 Datasets

We evaluate our unsupervised segmentation method on three datasets of varying
difficulty and compare the results to a single-image GrabCut and to other state-
of-the-art methods. In no experiment training images with segmentations of the
unknown class are used.

Setting Parameters. The general parameters to be determined for our model
are the weights w and the generic object location prior. These are determined on
external data, i.e. images showing objects of different classes than the one under
consideration for unsupervised segmentation (see below for the exact setups).
We find weights w by maximizing segmentation performance on this external
data. The weights are optimized using a grid-search on the weight space with
the option to switch off individual terms.

Weizmann Horses [8]. We use the experimental setup of [2]: given 327 im-
ages with a horse, segment the horse in each image without using any training
images with already segmented horses. Note that other approaches using the
Weizmann horses typically use ground-truth segmentations in some of the im-
ages for training, e.g. [7]. The weights and the generic object location prior
for these experiments are determined from the Caltech4 dataset (as discussed
above).
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airplanes cars faces motorbikes

Fig. 7. Results on Caltech4. Top row: the initial shape model as well as the shape

model and the location model after convergence. Below: for each class, two examples

and their segmentations. The ground-truth segmentation is shown in red.

Caltech4 [27]. We use the experimental setup of [9]: for the classes airplanes,
car (sideviews), faces, and motorbikes, we use the test images of [27] and segment
the objects using no training data1. Weights and generic object location prior
are set from the Weizmann Horses dataset.

Caltech101 [28]. We use an experimental setup similar to [2]: for 28 classes, we
randomly select 30 images each and determine the segmentations of the objects.
Note that [2] additionally uses 30 training images for each class and solves a joint
segmentation and classification task (not done here). Weights and generic object
location prior are set by leaving-one-out (setting parameters on 27 classes, and
testing on the remaining 1; do this 28 times).

Note that most papers on unsupervised segmentation [2, 8–10, 13] use variants
of these datasets. However, a few object discovery methods, e.g. [11, 29], evaluate
on the more difficult datasets.

6.2 Baselines and the State of the Art

We compare our method to GrabCut [1]. To initialize GrabCut, we train a
foreground color model from the central 25% of the area of the image and a
background model from the rest. Using these models, GrabCut is iterated until
convergence for each image individually. On Weizmann and Caltech4, we evalu-
ate GrabCut in two different setups: (1) using the full image (Tab. 1, line (c)),
(2) using the reference frame found by the method in sec. 5 instead of the full
image (Tab. 1, line (d)). On Caltech101, we always use the full image as the ob-
jects are rather centered. Notice how the automatic reference frame improves the
results of GrabCut from line (c) to (d) and how GrabCut is a strong competitor
for previous methods [2, 9] that were designed for unsupervised segmentation.

For the datasets for which results are available, we compare our approach to
Spatial Topic Models [2] (Tab. 1, line (a)) and to the approach of Arora et al. [9]
(Tab. 1, line (b)).
1 Ground-truth segmentations of the images for quantitative evaluation are taken from

the Caltech101 dataset

http://www.vision.caltech.edu/Image_Datasets/Caltech101/

http://www.vision.caltech.edu/Image_Datasets/Caltech101/
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bonsai butterfly euphonium schooner

Fig. 8. Results on Caltech101. Top row: the initial shape model as well as the

shape model and the location model after convergence for four example classes. Below:

for each of these classes, some examples with their segmentation. The ground-truth

segmentation is shown in red.

We also report the upper bound on the performance that ClassCut can obtain
using superpixels [25] (Tab. 1, line (g)). This upper bound corresponds to labeling
each superpixel by the majority ground-truth label of its pixels. As the upper
bound is always higher than any method we consider, the superpixels are not a
limiting factor for the segmentation accuracy of ClassCut.

6.3 ClassCut

We evaluate the ability of ClassCut to segment objects of an unknown class in a
set of images. Qualitatively, the weights determined show that all terms in our
model aid the segmentation process, as none was assigned weight 0. Furthermore,
the weights are similar across all setups.

Interestingly, on the Weizmann Horses the GrabCut baseline considering only
one image at a time (Tab. 1, line (c)) outperforms the (more complex) spatial
topic model [2] (line (a)). When GrabCut is applied within the automatically
determined reference frames (line (d)), the result is further improved. ClassCut
(line (f)) improves the result a little further. Note also, how ClassCut improves
its accuracy over iterations (line (e) to (f)), showing that it is properly learning
about the class.

On Caltech4, we compare to [9] (line (b)). Again, the GrabCut baseline is
improved when using the automatically determined reference frame rather than
the entire image (line (c)/line (d)). This holds even for the classes where the
automatically determined reference frames contain a considerable amount of
background (cars, faces). ClassCut (line (f)) considerably improves over GrabCut
(line (d)) for all classes and on average performs about as well as [9] (ClassCut:
90.6 / [9]: 90.9). Again, ClassCut improves over iterations (from (e) to (f)).

As described above, on Caltech101 we use the full images as reference frames.
Using ClassCut we obtain a segmentation accuracy of 83.6%, outperforming both
GrabCut (line (c)) and the spatial topic model [2] (line (a)).

Additionally, we evaluate our results using the normalized Chamfer distance to
assess how well the segmentation masks align with the shape of the objects. The
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Table 1. Results are reported as percentage of pixels classified correctly into either

foreground or background

Weizmann Caltech4 Caltech101

Method horses airp. cars faces motorb. average

(a) Spatial Topic Model [2] 81.8 – – – – 67.0

(b) Arora et al. [9] – 93.1 95.1 92.4 83.1 –

(c) GrabCut (full image) 83.9 84.5 45.1 83.7 82.4 81.5

(d) GrabCut (reference frames) 85.8 88.7 81.4 89.6 82.3 –

(e) ClassCut (init) 84.7 88.4 90.7 85.3 89.2 83.0

(f) ClassCut (final) 86.2 89.8 93.1 89.0 90.3 83.6

(g) upper bound 92.4 95.5 97.2 93.3 94.7 92.9

Chamfer distance measures the average distance of every point on the segmen-
tation outline to its closest point on the ground-truth outline, normalized by the
diagonal of the ground-truth bounding-box. Since neither [2, 9] use any such mea-
sure we compare to the GrabCut baseline. For Weizmann/Caltech4/Caltech101
datasets the Chamfer distance averaged over all images is 0.09/0.06/0.13 for
ClassCut and 0.20/0.27/0.23 for the corresponding GrabCut baselines. This
shows that the segmentations obtained using ClassCut are better aligned to
the ground-truth segmentation than those from GrabCut.

7 Conclusion

We presented a novel approach to unsupervised class segmentation. Our ap-
proach alternates between jointly segmenting the objects in all images and updat-
ing a class model, which allows to benefit from the insights gained in interactive
segmentation and object class detection. Our model comprises inter-image priors
and a comprehensive class model accounting for object appearance, shape, and
location w.r.t. an automatically determined reference frame. We demonstrate
that the reference frame allows to learn a novel type of shape model and aids
the segmentation process.
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Abstract. A number of recent papers have investigated reconstruction

under Manhattan world assumption, in which surfaces in the world are

assumed to be aligned with one of three dominant directions [1,2,3,4]. In

this paper we present a dynamic programming solution to the reconstruc-

tion problem for “indoor” Manhattan worlds (a sub–class of Manhattan

worlds). Our algorithm deterministically finds the global optimum and

exhibits computational complexity linear in both model complexity and

image size. This is an important improvement over previous methods

that were either approximate [3] or exponential in model complexity [4].

We present results for a new dataset containing several hundred manually

annotated images, which are released in conjunction with this paper.

1 Introduction

In this paper we investigate the problem of reconstructing simple geometric
models from single images of indoor scenes. These scene models can be used
to distinguish objects from background in recognition tasks, or provide strong
global contextual cues about the observed scene (e.g. office spaces, bedrooms,
corridors, etc.). Point clouds provided by structure–from–motion algorithms are
often sparse and do not provide such strong indicators. Compared to a full dense
reconstruction, the approach is computationally more efficient and is less sensi-
tive to large texture–less regions typically encountered in indoor environments.

The past few years have seen considerable interest in the Manhattan world
assumption [1,2,4,3,5], in which each surface is assumed to have one of three
possible orientations. Making this assumption introduces regularities that can
improve the quality of the final reconstruction [3]. Several papers have also in-
vestigated indoor Manhattan models [4,5,6] (a sub–class of Manhattan models),
which consist of vertical walls extending between the floor and ceiling planes.
A surprisingly broad set of interesting environments can be modelled exactly or
approximately as indoor Manhattan scenes [5]. It is with this class of scenes that
this paper is concerned.

The present work describes a novel and highly efficient algorithm to obtain
models of indoor Manhattan scenes from single images using dynamic program-
ming. In contrast to point cloud reconstructions, our algorithm assigns semantic

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 394–407, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



A Dynamic Programming Approach to Reconstructing Building Interiors 395

labels such as “floor”, “wall”, or “ceiling”. We show that our method produces
superior results when compared to previous approaches. Furthermore, our al-
gorithm exhibits running time linear in both image size and model complexity
(number of corners), whereas all previous methods that we are aware of [4,5] are
exponential in model complexity.

The remainder of the paper is organised as follows. Section 2 describes pre-
vious work in this area and section 3 outlines our approach. In section 4 we
pose the indoor Manhattan problem formally, then in section 5 we develop the
dynamic programming solution. We present experimental results in section 6,
including a comparison with previous methods. Concluding remarks are given
in the final section.

2 Background

Many researchers have investigated the problem of recovering polyhedral models
from line drawings. Huffman [7] detected impossible objects by discriminating
concave, convex, and occluding lines. Waltz [8] investigated a more general prob-
lem involving incomplete line drawings and spurious measurements. Sugihara [9]
proposed an algebraic approach to interpreting line drawings, while the “origami
world” of Kanade [10] utilised heuristics to reconstruct composites of shells and
sheets.

Hoiem et al. [11] and Saxena et al. [12] have investigated the single image
reconstruction problem from a machine learning perspective. Their approaches
assign pixel–wise orientation labels using appearance characteristics of outdoor
scenes. Hedau et al. [6] extend this to indoor scenes, though their work is limited
to rectangular box environments.

The work most closely related to our own is that of Lee et al. [4], which showed
that line segments can be combined to generate indoor Manhattan models. In
place of their branch–and–bound algorithm, our system uses dynamic program-
ming to efficiently search all feasible indoor Manhattan models (rather than just
those generated by line segments). As a result we obtain more accurate mod-
els, can reconstruct more complex environments, and obtain computation times
several orders of magnitude faster than their approach, as will be detailed in
Section 6.

Furukawa et al. [3] used the Manhattan world assumption for stereo recon-
struction. They make use of multiple calibrated views, and they search a different
class of models, so their approach is not comparable to ours.

Barinova et al. [13] suggested modelling outdoor scenes as a series of vertical
planes. Their models bear some similarity to ours but they cannot handle oc-
cluding boundaries, and their EM inference algorithm is less efficient that our
dynamic programming approach.

Felzenszwalb and Veksler [14] applied dynamic programming to a class of
pixel labelling problems. Because they optimise directly in terms of pixel labels
their approach is unable to capture the geometric feasibility constraints that our
system utilises.
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(a)

(b)

Fig. 1. (a) Three input images and the indoor Manhattan models we seek. Notice how

each image column intersects exactly one wall. (b) The mapping Hc→f transfers points

between the ceiling and floor.

3 Outline of Proposed Approach

Our goal is to reconstruct an indoor Manhattan model from a single image.
Three example images and the models we seek for them are shown in Figure 1a.
A perfectly uncluttered environment such as that shown in the third column of
Figure 1a could be represented exactly by an indoor Manhattan model, though
in general we expect to encounter clutter and our goal in such cases is to recover
the boundaries of the environment in spite of this distraction. That is, we aim
to completely ignore all objects within the room and reconstruct the bare room
boundaries, in contrast to most previous approaches that aim to reconstruct the
entire scene. This choice is due to our intention of using the models as input for
further reasoning.

The Manhattan world assumption states that world surfaces are oriented in
one of three mutually orthogonal directions [1]. The indoor Manhattan assump-
tion further states that the environment consists of a floor plane, a ceiling plane,
and a set of walls extending vertically between them [4]. Each wall therefore has
one of two possible orientations (ignoring sign), and each corner1 is either con-
cave, convex, or occluding, as depicted in Figure 3. Indoor Manhattan models
are interesting because they can represent many indoor environments approxi-
mately or exactly, yet they introduce regularities to the reconstruction problem
that makes possible a left–to–right decomposition of the scene, on which the
dynamic programming algorithm developed in this paper rests. Our approach
to reconstructing indoor Manhattan environments consists of the following five
steps:

1. Identify three dominant surface orientations. (Section 3.1)
2. Identify the floor and ceiling planes. (Section 3.2)
1 We use “corner” throughout this paper to refer to the intersection of two walls,

which appears as a line segment in the image.
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3. Rectify vertical lines. (Section 3.3)
4. Obtain weak orientation estimates. (Section 3.4)
5. Estimate the final model. (Sections 4 and 5)

3.1 Identifying Dominant Directions

We identify three dominant directions by estimating mutually orthogonal van-
ishing points in the image. Our approach is similar to Koseckà and Zhang [2], in
which k–means clustering provides an initial estimate that is refined using EM.
We assume that the vertical direction in the world corresponds to the vanish-
ing point with largest absolute y–coordinate, which we label vv. The other two
vanishing points are denoted vl and vr.

If the camera intrinsics are unknown then we construct the camera matrix
K from the detected vanishing points by assuming that the camera centre is
at the image centre and choosing a focal length and aspect ratio such that the
calibrated vanishing points are mutually orthogonal.

3.2 Identifying the Floor and Ceiling Planes

An indoor Manhattan scene has exactly one floor and one ceiling plane, both
with normal direction vv. It will be useful in the following sections to have
available the mapping Hc→f between the image locations of ceiling points and
the image locations of the floor points that are vertically below them (see Figure
1b). Hc→f is a planar homology with axis h = vl×vr and vertex vv [15] and can
be recovered given the image location of any pair of corresponding floor/ceiling
points (xf ,xc) as

Hc→f = I + μ
vvhT

vv · h
, (1)

where μ =< vv ,xc,xf ,xc × xf ×h > is the characteristic cross ratio of Hc→f .
Although we do not have a priori any such pair (xf ,xc), we can recover

Hc→f using the following RANSAC algorithm. First, we sample one point x̂c

from the region above the horizon in the Canny edge map, then we sample a
second point x̂f collinear with the first and vv from the region below the horizon.
We compute the hypothesis map Ĥc→f as described above, which we then score
by the number of edge pixels that Ĥc→f maps onto other edge pixels (according
to the Canny edge map). After repeating this for a fixed number of iterations
we return the hypothesis with greatest score.

Many images contain either no view of the floor or no view of the ceiling. In
such cases Hc→f is unimportant since there are no corresponding points in the
image. If the best Hc→f output from the RANSAC process has a score below a
threshold kt then we set μ to a large value that will transfer all pixels outside
the image bounds. Hc→f will then have no impact on the estimated model.
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3.3 Rectifying Vertical Lines

The algorithms presented in the remainder of this paper will be simplified if
vertical lines in the world appear vertical in the image. We therefore warp images
according to the homography

H =

⎛⎝ vv × e3

vv

vv × e3 × vv

⎞⎠ , e3 = [0, 0, 1]T . (2)

3.4 Obtaining Weak Orientation Estimates

Our algorithm requires a pixel–wise surface orientation estimate to bootstrap the
search. Obtaining such estimates has been explored by several authors [4,11,12].
We adopt the simple and efficient line–sweep approach of Lee et al. [4], which
produces a partial labelling of the image in terms of the three Manhattan surface
orientation labels (corresponding to the three Manhattan orientations in the
image). We denote this orientation map o : Z2 → {l, r, v, ∅} where ∅ represents
the case in which no label is assigned and l, r, and v correspond to the three
vanishing points {vl,vr,vv}.

Note that our algorithm is is not dependent on the manner in which o is
obtained; any method capable of estimating surface orientations from a single
image, including the work of Hoiem [11] or Saxena [12], could be used instead.

We generate three binary images Ba, a ∈ {l, r, v} such that Ba(x) = 1 if and
only if o(x) = a. We then compute the integral image for each Ba, which allows
us to count the number of pixels of a given orientation within any rectangular
sub–image in O(1) time. This representation expedites evaluation of the cost
function described later.

4 Formulation of Reconstruction Problem

Consider the indoor Manhattan scenes shown in Figure 1a. Despite the com-
plexity of the original images, the basic structure of the scene as depicted in the
bottom row is simple. In each case there is exactly one wall between any two
adjacent corners1, so any vertical line intersects at most one wall. This turns out
to be a general property of indoor Manhattan environments that arises because
the camera must be between the floor and ceiling planes. Any indoor Manhattan
scene can therefore be represented as a series of one or more wall segments in
order from left to right.

Given the warp performed in the Section 3.3, corners are guaranteed to appear
vertical in the image, so can be specified simply by an image column. Further-
more, given the mapping Hc→f from Section 3.2 the image location of either
the top or bottom end–point of a corner (i.e. the intersection of the wall with
the ceiling or floor respectively) is sufficient to specify both and thereby the line
segment representing that corner. Without loss of generality we choose to rep-
resent corners by their upper end–point. A wall segment can then be specified
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by its left and right corners, together with its associated vanishing point (which
must be either vl or vr), as illustrated in Figure 2a.

This leads to a simple and general parametrisation under which we represent
an indoor Manhattan model M as an alternating sequence of corners and walls
(c1,W1, c2,W2, ...,Wn−1, cn), ci < ci+1. Each corner ci is the column index at
which two walls meet, and each wall Wi = (ri, ai) comprises an orientation
ai ∈ {l, r}, which determines whether its vanishing point is vl or vr, and a
row index ri, at which its upper edge meets the corner to its left (see Figure
2b). Hence the upper–left corner of the ith wall is (ci, ri), which, together with
its vanishing point vai , fully specifies its location in the image. Clockwise from
top–left the vertices of the ith wall are

pi = [ci, ri, 1]T , qi = pi×vai×[1, 0,−ci+1]T , ri = Hc→fqi, si = Hc→fpi . (3)

A modelM generates for each pixel x a predicted surface orientation gM(x) ∈
{l, r, v} corresponding to one of the three vanishing points {vl,vr,vv}. We com-
pute gM by filling quads corresponding to each wall segment, then filling the
remaining area with the floor/ceiling label v.

Not all models M are physically realisable, but those that are not can be
discarded using simple tests on the locations of walls and vanishing points as
enumerated by Lee et al. [4]. The reader is referred to their paper for details;
the key result for our purposes is that a model is feasible if all of its corners
are feasible, and the feasibility of a corner is dependent only on the immediately
adjoining walls.

4.1 Formalisation

We are now ready to formalise the minimisation problem. Given an input image
of size W ×H and an initial orientation estimate o, the pixel–wise cost Cd(x, a)
measures the cost of assigning the label a ∈ {l, r, v} to pixel x. We adopt the
simple model,

Cd(x, a) =

{
0, if o(x) = a or o(x) = ∅
1, otherwise

. (4)

The cost for a modelM consisting of n corners is then the sum over pixel–wise
costs,

C(M) = nλ +
∑
x∈I

Cd(x,M(x)) (5)

where λ is a constant and nλ is a regularisation term penalising over–complex
models. We seek the model with least–cost

M∗ = argmin
M

C(M) . (6)

where implicit in (5) is the restriction to labellings representing indoor Manhat-
tan models, since only such labellings can be represented as models M. Figure
1a shows optimal models M∗ for three input images.
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(a) (b) (c)

Fig. 2. (a) The row/column indices ci, ci+1, ri, together with the vanishing point index

ai ∈ {l, r} are sufficient via the homology Hc→f to determine the four vertices defining

a wall. (b) An illustration of the model M = {c1, (r1, a1), ..., c4, (r4, a4), c5}. (c) A

partial model covering columns to c1 to c4 with several feasible (green dashed) and

infeasible (red dashed) wall segments.

5 Proposed Algorithm

In this section we present a dynamic programming solution to the minimisation
problem posed in the previous section. We develop the algorithm conceptually
first, then formalise it later.

We have already seen that every indoor Manhattan scene can be represented
as a left–to–right sequence of wall segments, and every image column intersects
exactly one wall segment. As a result, the placement of each wall is “conditionally
independent” of the other walls given its left and right neighbours. For example,
Figure 2c shows a partial model as well as several wall segments that could be
appended to it. Some of the candidates are feasible (green dashes) and some are
not (red dashes); however, note that once the wall segment from c3 to c4 is fixed,
the feasibility of wall segments following c4 is independent of choices made for
wall segments prior to c3.

This leads to a decomposition of the problem into a series of sub–problems of
the form “find the minimum–cost partial model that terminates2 at x = (c, r)”.
To solve this we enumerate over all possible walls W that have top–right corner
at x, then for each we recursively solve the sub–problems for the partial model
terminating at each x′, where x′ ranges along the left edge of W . This recursive
process eventually reaches the left boundary of the image since x′ is always strictly
to the left of x, at which point the recursion terminates. As is standard in dynamic
programming approaches, the solution to each sub–problem is cached to avoid
redundant computation. To solve the complete minimisation (6) we simply solve
the sub–problems corresponding to each point on the right boundary of the image.

We now formalise the dynamic programming algorithm. Let fin(x, y, a, k) be
the cost of a model M+ = {c1,W1, ...,Wk−1, ck} such that

1. ck = x (i.e. the model terminates at column x),
2. Wk−1 = (y, a) (i.e. the model terminates at row y with orientation a),
2 A model “terminates” at the top–right corner of its right–most wall.
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Fig. 3. Three models satisfying constraints 1–3 for the sub–problem fin(x, y, a, k). Only

one will satisfy the least–cost constraint.

3. M+ is feasible, and
4. M+ has minimal cost among all such models.

We show in the additional material that if a model

M = {c1,W1, ...,Wk−1, ck} (7)

is a solution to the sub–problem fin(ck, rk, ak, k), then the the truncated model

M′ = {c1,W1, ...,Wk−2, ck−1} (8)

is a solution to the sub–problem fin(ck−1, rk−1, ak−1, k − 1). In light of this we
introduce the following recurrence relation:

fin(x, y, a, k) = min
x′<x, y′,a′

(
fin(x′, y′, a′, k − 1) + Cw

)
, (9)

where Cw is the cost of the wall W = (y′, a′), computed by summing Cd over
columns x′ to x. The minimisation (9) is performed subject to feasibility con-
straints, so for each x′ < x, only a subset of y–coordinates are considered. Since
a model must have zero or more corners and a model with right–most corner at
x = 0 does not span any part of the image, we have the boundary conditions

fin(x, y, a, k) =

{
0, if x = 0
∞, if x �= 0 and k < 0

. (10)

Finally, the cost of the optimal model (6) is

C(M∗) = min
1≤y≤H

k≤K
a∈{l,r}

(
fin(W, y, a, k) + λk

)
. (11)

where K is a parameter specifying the maximum model complexity and λ is the
per–wall penalty.

We compute C(M∗) by recursively evaluating fin according to (9) until we
reach one of the boundary conditions (10). In line with standard dynamic pro-
gramming theory we cache each evaluation to avoid redundant computation. For
each cache entry we also store x′, y′, a′ corresponding to least–cost wall identified
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when evaluating (9), which allows the desired model M∗ to be reconstructed by
back–tracking once all evaluations are complete.

Complexity. Due to the caching scheme, (9) is evaluated at most once for each
unique set of parameters. There are 2WHK possible parameters and the com-
plexity of each evaluation is O(W 2H), since the minimisation in (9) is over
O(WH) terms and computing each marginal cost Cw requires O(W ) addi-
tions3. The overall complexity of the basic algorithm is therefore O(W 3H2K) =
O(L5K) where L = max(W,H).

5.1 Auxiliary Sub–problems

The basic algorithm described thus far involves minimising over all pixels to the
left of x for each pixel x, (i.e. the joint minimisation over x′ and y′ in (9)).
In the previous section we enforced feasibility by explicitly testing each (x′, y′)
and omitting any that would lead to an infeasible model from the minimisa-
tion (9). In this section we show that by introducing auxiliary sub–problems
that build feasibility into the core of the algorithm we can significantly reduce
computational complexity.

We introduce three new sub–problems fup, fdown, and fout. Each is identical
to fin except that constraint 2 is modified as follows:

fout appending W =(y, a) to M+ would produce a feasible model.
fup rk−1 ≤ y (i.e. the right–most wall terminates above row y)
fdown rk−1 ≥ y (i.e. the right–most wall terminates below row y)
Consider first the sub–problem fout(x, y, a, k), and suppose that the right–

most wall in its solution is W ′. Now W ′ terminates either above row y, below row
y, or exactly at row y, which correspond respectively to the sub–problems fup,
fdown, and fin. We also have two choices of orientation, making six possibilities
in total, from which we select the one with least cost,

fout(x, y, a, k) = min
a′∈{l,r}

min

⎧⎪⎨⎪⎩
fup(x, y − 1, a′, k)
fin(x, y, a′, k)
fdown(x, y + 1, a′, k)

, (12)

where either or both of the fup and fdown terms are omitted if such a wall would
be infeasible.

Similarly, suppose that the least–cost model that terminates at (x, y) (i.e. the
solution to fin(x, y, a, k)) has right–most wall W ′. Now W ′ must have its left
edge at some column x′ < x, and the portion of the model to the left of x′ must
be feasible when W ′ is appended. Hence we have

fin(x, y, a, k) = min
x′<x

(
fout(x′, y′, a, k − 1) + CW

)
, (13)

where y′ is the y–coordinate at which the line through va and (x, y) meets
column x′ and Cw is the cost of the wall W ′ = (y′, a′) exactly as in (9). Note
3 Here we use the integral images Bi.
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(a) (b) (c)

Fig. 4. (a) The bend introduced by rounding y′ to ŷ = 
y′ + 0.5�. (b) A line from x
to va with the distances d to nearby pixel centres (green dots). The starred pixel is

the first that satisfies d < ε. (c) A graph in which each node represents a sub–problem

and each edge is a dependence relation. Two columns are expanded; other column are

omitted for brevity. The green quad is a wall corresponding to a particular pair of

nodes in the graph.

that (13) consists of O(L) terms whereas in the previous section (9) consisted of
O(L2) terms.

Finally we may decompose the fup and fdown sub–problems each into two
cases,

fup(x, y, a, k) =

{
min

(
fin(·), fup(x, y − 1, a, k)

)
, if y ≥ 1

∞, otherwise
(14)

fdown(x, y, a, k) =

{
min

(
fin(·), fdown(x, y + 1, a, k)

)
, if y ≤ H

∞, otherwise
(15)

The dependencies between the sub–problems are illustrated as an evaluation
graph in Figure 4c.

5.2 From (L3K) to O(L2K)

Evaluating (13) remains an O(W ) operation due to the minimisation over x′. In
this section we to reduce this to O(1).

Consider the sub–problem fin(x, y, a, k) as formulated in the previous section.
Evaluating fin is like walking along each column x−1, x−2, ..., 1 and considering
two possibilities at each step: insert a corner or continue walking. The former cor-
responds to evaluating fout(x′, y′, a, k−1)+Cw; that is, we insert a wall between
x′ and x with cost Cw, then find the optimal model that occupies the remaining
space to the left of x′. The latter corresponds to evaluating fin(x′, y′, a, k)+Cw;
that is, we find the best model that terminates at (x′, y′) with orientation a and
extend its right–most wall to (x, y). But y′ is computed by intersecting the line
from va to (x, y) with image column x′, so in general y′ is not an integer. While
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it is sufficient to round y′ to the nearest integer ŷ = �y′ + 0.5� when evaluat-
ing fout, doing the same for fin would produce a bend in the wall as shown in
Figure 4a. In (13) we avoided this by evaluating fout for all x′ < x, but this is
unnecessarily wasteful. We now introduce a threshold ε and allow ŷ to replace
y′ whenever

|y′ − ŷ| < ε . (16)

When we encounter an image column satisfying (16) we evaluate fin as follows.
W consider adding a corner at x′ by evaluating fout(x′, y′, a, k − 1) + Cw as
in the previous section, then we consider the case that the wall continues past
column x′ by evaluating fin(x′, ŷ, a, k) + Cw, and we return the minimum of
the two values. At this point we need not consider any further columns to the
left of x′ since any such consideration are already captured in the evaluation of
fin(x′, ŷ, a, k). Hence rather than evaluating all x′ < x we need only walk as far
as the first x′ that satisfies (16), as shown in Figure 4b. The recurrence relation
for fin now becomes

fin(x, y, a, k) = min

{
minxp≤x′<x

(
fout(x′, y′, a, k − 1) + Cw

)
fin(xp, yp), a, k − 1) + Cw

. (17)

where xp < x is the closest column to x satisfying (16) and yp is the row at that
column meets the line from (x, y) to va. Empirically we have found that even
for ε = 0.01 pixels, we always encounter some x′ satisfying (16) within 20 steps
from any start point.

Complexity. Evaluating each sub–problem is now an O(1) operation, so the
overall complexity of the algorithm is given by the total number of unique sub–
problems, which is

O(KL2) . (18)

6 Results

We tested our system on a dataset of 634 manually annotated images of indoor
scenes. To expedite annotation we collected video sequences and used structure–
from–motion software to recover camera poses, allowing us to project a manually
specified floor plan into each view.

In each experiment we computed the fraction of pixels for which the orienta-
tion predicted by the output modelM agreed with the ground truth orientation.
Unless otherwise specified, the parameter settings for the experiments below are
ε = 0.01, K = 7, m = 4, λ = 100. Image sizes were 640 × 480 pixels. We found
our algorithm to be robust to all of these parameter values, as the following
experiments show.

We compared our results with the branch–and–bound approach of Lee et
al. [4]. In 138 of the images (21.7% of the dataset), their method was unable to
estimate a building model as there was no appropriate pair of line segments with
which to initialise their approach. In a pixel–wise evaluation their approach was
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Fig. 5. Models estimated by our algorithm. Each panel contains three images: the

original image, the initial orientation estimate, and the final model output by our

system. Best viewed in colour.

Fig. 6. Failure cases of our system. Best viewed in colour.

able to correctly label 54.3% of pixels, while our approach obtained an accuracy
of 79.7%. Omitting the images for which their approach was unable to estimate
a building structure, their approach obtained 68.1% accuracy. We believe that
the difficulty of our dataset (many occluding objects, many images without a
view of both floor and ceiling) accounts for the significantly lower performance in
comparison to that quoted in [4]. Side–by–side comparisons with their approach
are included in additional material.

6.1 Failure Cases

Figure 6 shows four representative failure cases of our approach. In the top–
left panel the occlusion relationship between two walls is incorrectly estimated,
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(a) (b)

Fig. 7. (a) Efficiency comparison with the branch–and–bound algorithm of Lee et al.
[4] (our implementation). Their approach scales exponentially with model complexity

whereas ours scales only linearly. (b) The line–jump parameter ε trades off accuracy

(diamonds) for computation time (crosses). Accuracy is computed relative to the base-

line ε = 0. Small values of ε achieve significant speedup with no perceivable degradation

in accuracy. Based on these results we set ε = 0.01 in our remaining experiments.

so the more distant wall is thought to be occluding the closer wall. This is
because the floor patch in the bottom centre of the image is missed in the initial
orientation estimate. In the top–right panel, too few line segments are detected
and the initial orientation estimate is very poor. The bottom–left panel shows
an example of a chair that is wrongly identified as part of a wall. The chair
is aligned with the wall behind it and this highlights the limitation of using
only line segments to estimate an initial orientation estimate. The bottom–right
panel shows how a deviation from the indoor Manhattan assumption causes an
incorrect model to be estimated. The exit sign represents a vertical surface that
does not extend from the the ceiling to the floor, which our approach is currently
unable to handle.

7 Discussion

We have shown that semantically meaningful models of indoor scenes can be
recovered efficiently for a range of Manhattan environments using dynamic pro-
gramming. Our approach is able to model complex scenes, which would be in-
tractable for previous methods that involved combinatorial searches in the space
of models. This work represents an important increment on the state–of–the art
both in terms of accuracy and efficiency.

An alternative approach might be to apply graph cuts to this problem. How-
ever, Kolmogorov and Zabih [16] showed that only regular functions (a subset
of sub–modular functions) can be minimised via graph cuts, and the cost (6)
is not regular because implicit in the minimisation is the hard constraint that
labellings must form an indoor Manhattan model, which induces complicated de-
pendencies between the pixels in each column. Even if an appropriate relaxation
of this constraint yielded a regular cost function, applying graph cuts would en-
tail using a technique such as α–expansion [16], which is both approximate and
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non–deterministic. In contrast, our approach is exact, deterministic, and highly
efficient.

Future work will investigate richer cues for obtaining the initial orientation
estimates as well as a probabilistic formulation of the cost function (4).
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Abstract. Object viewpoint classification aims at predicting an approx-

imate 3D pose of objects in a scene and is receiving increasing atten-

tion. State-of-the-art approaches to viewpoint classification use genera-

tive models to capture relations between object parts. In this work we

propose to use a mixture of holistic templates (e.g. HOG) and discrimi-

native learning for joint viewpoint classification and category detection.

Inspired by the work of Felzenszwalb et al 2009, we discriminatively

train multiple components simultaneously for each object category. A

large number of components are learned in the mixture and they are as-

sociated with canonical viewpoints of the object through different levels

of supervision, being fully supervised, semi-supervised, or unsupervised.

We show that discriminative learning is capable of producing mixture

components that directly provide robust viewpoint classification, signif-

icantly outperforming the state of the art: we improve the viewpoint

accuracy on the Savarese et al 3D Object database from 57% to 74%,

and that on the VOC 2006 car database from 73% to 86%. In addi-

tion, the mixture-of-templates approach to object viewpoint/pose has a

natural extension to the continuous case by discriminatively learning a

linear appearance model locally at each discrete view. We evaluate con-

tinuous viewpoint estimation on a dataset of everyday objects collected

using IMUs for groundtruth annotation: our mixture model shows great

promise comparing to a number of baselines including discrete nearest

neighbor and linear regression.

1 Introduction

One fundamental property of visual sensing is that it is a projection process
from a 3D world to a 2D image plane; much of the 3D information is lost in the
projection. How to model and re-capture the 3D information from 2D views has
been at the center of the computer vision research. One classical example is the
aspect graphs of Koenderink and van Doorn [1], where a 3D object is modeled
as a collection of inter-connected 2D views.

A complete understanding of objects in a visual scene comprises not only
labeling the identities of objects but also knowing their poses in 3D. Most of
the recent vision research has been devoted to the recognition problem, where

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 408–421, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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huge progresses have been made: the SIFT matching framework [2] and the HOG
models [3,4] are good representatives of how much object recognition capabilities
have progressed over the years. The 3D object pose problem have received much
less but still considerable attention. The series of work from Savarese and Fei-
Fei [5,6,7] are good examples of how people approach the 3D pose problem
in modern contexts, where large benchmarks are established and evaluated for
discrete viewpoint classification [5,8].

There have been, however, divergent trends between object recognition and
pose estimation. Latest progresses in object recognition employ discriminative
templates directly trained from image gradients [4]; latest 3D pose models group
features into parts and learn generative models of their relationships [6,7].

We believe the two problems should be one and identical, that a good frame-
work of object detection should be able to handle both category and viewpoint
classification. In particular, discriminative learning, which has seen great suc-
cesses in category classification, should readily apply to viewpoint classification.

In this work we present strong empirical proof that it is indeed the case: a
discriminatively learned mixture of templates, extending the latent HOG frame-
work of Felzenszwalb et al [4], is capable of representing a large number of
viewpoints (as components) and handling both category and viewpoint classi-
fication. A mixture-of-HOG model produces superior results for all the three
cases of supervised (with groundtruth view labels), semi-supervised (with a sub-
set of view labels) and unsupervised (no view labels) viewpoint learning (see
Figure 1). Furthermore, the mixture-of-templates approach has a natural exten-
sion to the continuous case: we propose a continuous viewpoint model which
linearly approximates local appearance variations at each discrete view. This
model is discriminatively trained, just as in the discrete case, and outputs a
continuous 3D viewpoint/pose.

We evaluate our approach on a number of 3D object databases, including
the 3DObject Database of Savarese [5], the VOC2006 car database [8], and
a dataset of our own for benchmarking continuous viewpoint estimation. We

Fig. 1. We propose to use a discriminative mixture of templates for object viewpoint

classification. We discriminatively learn a large mixture of templates using HOG [3,4]

and show that the templates correspond well to the canonical views of an object, which

are directly used for viewpoint classification and significantly outperform the state of

the art. We show that the mixture model works well when trained with complete view-

point labels (supervised), a subset of labels (semi-supervised), and no viewpoint labels

(unsupervised). We then extend the mixture model for continuous pose prediction,

again using a discriminative mixture of templates.
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show that we significantly outperform the state-of-the-art results on all these
challenging benchmarks: we improve the 8-way viewpoint classification accuracy
on the 3DObject database from 57% to 74%, and that on the VOC2006 cars from
73% to 85%. For the continuous case, we show that our discriminative mixture
model outperforms a number of baselines, including one using the closest discrete
viewpoint and one using linear regression on top of the viewpoints.

2 Related Work

Understanding 3D objects and scenes from 2D views is the fundamental task of
computer vision. In the early days vision researchers paid close attention to the
2D-to-3D correspondence, but many approaches were line-based and had many
difficulties dealing with real-life images. The aspect graph of [1] presents a theory
for modeling 3D objects with a set of inter-connected 2D views. This theory has
a sound psychological foundation (e.g. [16]) and has been very influential and
underlies most approaches to 3D object recognition.

Estimating the 3D pose of objects is a classical problem, and many solu-
tions have been developed using either local features (e.g. [17]) or shape outlines
(e.g. [18]), usually assuming perfect knowledge of the object. With the matu-
ration of local feature detection (as in SIFT and its variants), latest progresses
on pose estimation have mostly been local-feature based (e.g. [19,20]) and per-
formed fairly well on instances of objects, preferably with texture.

There has been an increasing interest lately in 3D object pose classification,
which aims at predicting a discrete set of viewpoints. A variety of approaches
have been explored (e.g. silhouette matching [10] or implicit shape models [9] or
virtual-training [13]). At the same time, many works on category-level classifi-
cation also address the issue of multiple views (e.g. [21,14]).

The series of work from Savarese and Fei-Fei [5,6,7] directly address the prob-
lem of 3D viewpoint classification at the category and are the most relevant
for us. They have developed a number of frameworks for 3D viewpoints, most
adopting the strategy of grouping local features into parts and learning about
their relations. Similar approaches have been adopted in a number of other works
(e.g. [12,22]) that show promising results. The 3DObject dataset of Savarese et
al [5] is a standard benchmark for viewpoint classification and has a system-
atic collection of object views. A number of categories from the PASCAL chal-
lenge [8], such as cars, are also annotated with viewpoints. We quantitatively
evaluate our approach on these datasets.

The most recent progress in object recognition sees the use of discriminatively
trained templates [3,4,23]. These techniques have been shown to perform very
well on real-life cluttered images. In particular, the work of [4] presents a way
to train mixture-of-components for object detection, and they illustrated the
procedure with two components on cars and pedestrians. The context-based
discriminative clustering work of [24] is similar in spirit. Our work is based on
the mixture-of-HOG approach but focuses on viewpoints instead of categories.
We explicitly handle viewpoints and train HOG models with a large number
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of viewpoints/components. We also develop approaches for semi-supervised and
unsupervised learning of viewpoints, and extend the discrete viewpoint model
to the continuous case.

3 Discrete Viewpoint Models

In this scheme, given an example object, the models for each category return a
confidence score of the object being in that category as well as a discrete view-
point label associated with a canonical pose of that category. In many cases, such
poses have semantic meanings, for instance, the frontal/side views of a car. We
design each of these models as a mixture of HOG-based templates corresponding
to multiple canonical poses of the category. We formulate the score function of
example x as

Sw(x) = max
v∈V

〈wv, ψv(x)〉 = max
v∈V

wT
v ψv(x) (1)

where w = {w1, w2, . . . , wV } are the learned mixture of templates, V =
{1, 2, . . . , V }, V is the number of canonical viewpoints in the model, and ψv(x)
is the feature representation of x under viewpoint label v. Since the dimensions
of templates can be different, ψv(x) is designed to match the dimension of wv.

Accordingly, the predicted viewpoint label of x is

ṽd(x) = arg max
v∈V

wT
v ψv(x) (2)

where the subscript d indicates a discrete label.
Features: We are in favor of HOG-based features because they encode spa-
tial layout of object shape and handle well with intra-class and intra-viewpoint
variations. We use the implementation of [4] for feature construction and nor-
malization.
Detection: We adopt the standard framework of multi-scale window scanning
for localizing objects in the image. The windows whose scores are higher than a
learned threshold are picked as candidate detections, and non-max suppression
is applied as postprocessing to remove redundant window detections.

3.1 Training

We extend the training algorithm of [4] to cope with viewpoint classifica-
tion. For each category, we learn a mixture of V -component templates w =
{w1, w2, . . . , wV } from a set of positive and negative training examples denoted
by {x1, x2, . . . , xP } and {z1, z2, . . . , zN}. Our learning framework attempts to
“match” every positive example with at least one of these templates, and every
negative example with none of the templates. Mathematically, the large margin
optimization of this scheme is formulated as

(w∗, λ∗) = argmin
w,λ

V∑
v=1

{
1
2
‖wv‖2 + CNeg

N∑
n=1

l
(
−wT

v ψv(zn)
)

+

CPos

P∑
p=1

λp
v · l

(
wT

v ψv(xp)
)}

(3)
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subject to λp
v ∈ {0, 1} and

∑V
v=1 λ

p
v = 1, ∀ p = 1, . . . , P . Here, λ are binary

component labels. l(s) = max(0, 1−s) is the hinge-loss function. CPos and CNeg

control the relative weights of the regularization term.
Our training procedure is directly based on [4]: each template wv is initial-

ized through a set of positive examples initially labeled as viewpoint v. In each
iteration, all templates are updated simultaneously through data-mining hard
negative examples and updating viewpoint labels λ of positive examples.

In [4], λ are considered as latent variables and thus the cost function does not
enforce λ to match their true values. Here, we solve a more general problem which
includes the scenarios when λ are partially or completely unknown. Furthermore,
model initialization in [4] is solely based on aspect ratio; it is not designed for
general viewpoint modeling and thus far from optimal for our problem. We will
show that a carefully designed initialization is necessary to learn reasonable
templates for canonical viewpoints.

Denote {vd(x1), vd(x2), . . . , vd(xP )} as the groundtruth viewpoint labels of
the positive examples. In the following, we consider three scenarios, where these
labels are completely known, partially known, and unknown. We name them
supervised, semi-supervised, and unsupervised cases, respectively.

3.2 Supervised Case

In the supervised case, each λp
v = 1 [v = vd(xp)] is fixed. The model is initialized

by partitioning the positive examples into groups based on the viewpoint labels
and learn one viewpoint template from each group. In the model update step,
the optimization is reduced to a linear SVM formulation.

We note that although we do not change component labels during the training
process, this is different from training each component independently, as the
training process uses a single regularization constraint and enforces the margin
on all the clusters simultaneously. This has proved to be critical in learning
mixture models that are balanced and accurate for viewpoint prediction.

3.3 Semi-supervised Case

In the semi-supervised case, we first build a multi-viewpoint classifier using the
positive examples that have known viewpoint labels. In practice, we use the
libsvm multi-class classification toolbox[25] on the HOG features. Once the rest
of the positive examples are classified, we initialize component templates based
on either known or estimated labels. In the model update step, we fix the labels
for those who have known viewpoint labels, and allow the others to change.

3.4 Unsupervised Case

In the unsupervised case, model initialization is crucial for accurate viewpoint
classification, because no explicit constraint in the later stage of optimization is
imposed on the viewpoint labels. [4] partitions positive examples into component
groups based on a simple aspect ratio criterion. We use a Normalized Cut-based
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clustering scheme for initialization. We define an appearance distance between
two positive examples xi and xj as

d(xi, xj) = α · χ2(ψ0(xi), ψ0(xj)) + (1− α) · ‖Asp(xi)−Asp(xj)‖2 (4)

where ψ0(xi) is the HOG descriptor of xi under a standard template size, and
Asp(xi) is the normalized aspect ratio of the bounding box of xi. Next, we con-
vert the distances into affinity measurements using the exponential function and
obtain the component groups by applying the Normalized Cut[26] algorithm on
the resulting affinity matrix. This provides us with relatively even partitionings
on the positive examples, which is important for good unsupervised performance.

In the model update step, since Eqn. 3 describes an integer-based non-convex
problem([24], [27]), one tractable solution is to iterate between optimizing w
given fixed labels λ and optimizing λ given fixed template weights w. The former
is an SVM and the latter optimization step is simply

λp
v = 1[v = argmax

s

(
wT

s xp

)
] ∀p = 1, . . . , P (5)

4 Continuous Viewpoint Models

In the continuous viewpoint case, we are interested in estimating the real-valued
continuous viewpoint angles of an example object in 3D, denoted by θ ∈ R3,
which uses the angle-axis representation. We assume that the camera projection
of the object is orthographic so that given a fixed orientation θ, the appearance
of the object only changes in scale.

To obtain θ for a test object x, we modify the mixture model in the discrete
viewpoint case and reformulate the score function as

Sw(x) = max
v∈V,Δθ

f(v,Δθ) = max
v∈V,Δθ

(wv + gvΔθ)T
ψv(x)− d(Δθ) (6)

θ(x) = θv∗ + Δθ∗ (7)

where w = {wv} and ψv(x) are the same as before. gv are the “gradients” of
the template wv over θ at discrete viewpoint v. Δθ are the offset viewpoint
angles of x with respect to the canonical viewpoint angles θv. d(·) is a quadratic
loss function that confines θ(x) to be close to θv. Denote Δθ by their elements
[Δθ1, Δθ2, Δθ3]T , then d(Δθ) =

∑3
i=1 di1Δθi + di2Δθ2

i . In Eqn. (7), v∗ and Δθ∗

are obtained when the score function reaches its maximum. The variables wv,
gv, θv and di1, di2 are learned from training data.

This continuous viewpoint model can be interpreted as follows: we partition
the continuous viewpoint space into small chunks where each chunk has a canon-
ical viewpoint. For every viewpoint in the same chunk, we approximate its tem-
plate as a linear deformation of the canonical template with respect to the dif-
ference of viewpoint angles from the canonical angles. We show that in practice,
this approximation is reasonable when the chunk size is relatively small, and
the model produces viewpoint classification performance superior to a number
of baseline methods.
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Detection: The multi-scale window scanning is again applied for localizing ob-
jects in the image. To find optimal v and Δθ in Eqn. (6) at a given location, we
first maximize Δθ over any fixed v

∂f(v,Δθ)
∂Δθi

= gv(i)Tψv(x) − di1 − 2di2Δθi = 0 (8)

Hence, we obtain

Δθi(v) =
(
gv(i)Tψv(x)− di1

)
/2di2 (9)

where gv(i) is the i’th column of gv. Next, we enumerate over the discrete variable
v with Δθi(v) and pick the pair with maximal score Sw(x).

4.1 Training

In training, for positive examples {x1, x2, . . . , xP }, their continuous viewpoint
groundtruth labels {θ1, θ2, . . . , θP } are given. Therefore, we rewrite the score
function in Eqn. (6) as

f(v,Δθ) = (wv + gvΔθ)T ψv(x)− d(Δθ) (10)
= w̃v

T ψ̃v(x) (11)

where

w̃v = [wv, gv(1), gv(2), gv(3), d11, d12, d21, d22, d31, d32]
ψ̃v(x) = [ψv, Δθ1ψv, Δθ2ψv, Δθ3ψv,−Δθ1,−Δθ2

1 ,−Δθ2,−Δθ2
2 ,−Δθ3,−Δθ2

3]

If all canonical viewpoint templates θv are known, ψv(x) are completely ob-
servable and we can substitute w̃v and ψ̃v(x) for wv and ψv(x) in the training
framework of the discrete viewpoint case. Now, θv are unknown, but we can ini-
tialize them from initial partitions of positive data (clustering on θ) and update
them in each training iteration based on maximizing the cost function.

5 Experimental Evaluation: Discrete Viewpoints

For discrete viewpoint classification, we evaluate our proposed models on two
standard and challenging databases: the 3DObject[5] and the VOC2006 cars[8].
The 3DObject dataset consists of 10 categories and 8 discrete viewpoint annota-
tions for each category. We exclude the head and the monitor categories as they
are not evaluated in previous work. Quantitative results on viewpoint and cat-
egory classification are evaluated by means of confusion matrix diagonals, and
averaged by 5-fold training/test partitions. On the other hand, the VOC2006 car
database consists of 469 car objects that have viewpoint labels (frontal, rear, left
and right). In the experiments we only use these labeled images to train mix-
ture viewpoint models, with the standard training/test partition. The detection
performance is evaluated through precision-recall curve. For both databases, we
try our best to compare with previous works that have the same complete set of
evaluations.

In the following sub-sections, we analyze our results in three different levels
of supervision on the training data: supervised, semi-supervised, unsupervised.
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Table 1. Supervised Case: viewpoint and category classification results (quantified

by averages of confusion matrix diagonals). For category detection performance on the

VOC2006 cars, we compare the precision-recall curves with [7] in Figure 2(d).

Database 3DObject VOC2006 cars

Method [5] Ours [6] [7] Ours

Viewpoint 57.2% 74.2 ± 0.9% 57.5% 73.0% 85.7%

Category 75.7% 85.3 ± 0.8% - - -

5.1 Supervised Case

Table 1 summarizes the viewpoint and category classification results when the
viewpoint labels of the positive training data are known. We significantly outper-
form [5], the state of the art on the 3DObject database, in both viewpoint and
category classification. We also show a significantly higher (4-view) viewpoint
classification rate on the VOC2006 car database compared to the earlier work
of [6] and [7]. Figure 2 shows a close look of our results.

Note that in (a), the main viewpoint confusion pairs in 3DObject are those
off by 180 degrees, for example, frontal vs. rear or left vs. right views. Cate-
gory confusion matrix is shown in (b). (c) illustrates the change of viewpoint
classification rate with object recall in VOC2006 cars. The curve suggests that
the viewpoint classification accuracy increases with lower recall (and thus higher
precision/category detection). (d) compares the precision-recall curves of [7] with
ours. Note that even our car mixture model only covers 4 views, it still produces
superior performance comparing to [7] in detection.

5.2 Semi-supervised Case

In the semi-supervised case, we are interested in knowing how much partial infor-
mation from positive training data is “sufficient” to build a reasonable viewpoint
model. Figure 3 (a, b) illustrate the viewpoint and category classification accu-
racies with changes in the proportion of training data having discrete viewpoint
annotations. Zero proportion means no annotation which corresponds to the
unsupervised case, whereas “proportion equals one” is the case of being totally
supervised. Note that the accuracy numbers here are evaluated on the whole test
set, not the set including only correct category prediction. We notice that even
a small proportion (30% in the 3DObject) of annotated data significantly im-
proves the viewpoint classification performance, while the category classification
performance remains roughly constant with change of the number of annotated
data. (We do not show the curve of category classification on the VOC2006 cars
as it is a detection task.)

5.3 Unsupervised Case

Evaluation Methodology. The upper half of Table 2 compares three model
initialization schemes in terms of the viewpoint and category accuracies. We
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Fig. 2. Supervised Case: viewpoint labels are all known for positive examples.

(a) (b) Average confusion matrices of the viewpoint and category classifications in

the 3DObject. (c) Viewpoint classification accuracy as a function of the object recall

in the VOC cars. (d) Precision-recall curves of car detection. Note that our car model

only trains on the 4-view cars and tests on the whole test images.

note that our proposed N-cut framework significantly outperformed the aspect
ratio criterion by [4] for viewpoint classification. We also compute how far we
can reach by computing an “upper bound” performance using the ground truth
viewpoint labels of training data in initialization, shown in the third column
of the first two databases. We see that the N-cut produces results close to and
sometimes even better than the “upper bounds”.

We quantitatively evaluate the quality of viewpoint clustering using the fol-
lowing statistics: purity, normalized mutual information, rank index, and F mea-
sure[28], shown in the bottom half of Table 2. All measurements of these statistics
exhibit consistent behavior as the basic evaluation.

Number of Model Components. The number of components V in the un-
supervised model is pre-determined. As a result, we are interested in knowing
the impact of this parameter on the viewpoint and category classification per-
formance. Figure 3(c) shows both accuracies with V on the 3DObject database.
Note that for viewpoint classification, the accuracy undoubtedly breaks down
when V is deficient (4) to explain the variety of data in viewpoint (8). It is,
however, surprisingly insensitive to V when it gets large. On the other hand, for
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Fig. 3. Semi-supervised/Unsupervised Cases: viewpoint and category classifica-

tion accuracies as a function of either the proportion of positive training data with view-

point annotations (semi-supervised) or the number of model components/templates

(unsupervised). (a): Semi-supervised model on the 3DObject. (b): Semi-supervised

model on the VOC2006 cars. For these semi-supervised cases, the category detection

performance is robust and largely independent of the availability of viewpoint labels.

Viewpoint classification is robust up to about 30% of labeling. (c): Unsupervised model

on the 3DObject dataset.

Table 2. Unsupervised Case: viewpoint and category classification accuracies as

well as four viewpoint clustering measurements[28] on two databases. We show com-

parison of 3 model initialization schemes ([4], N-cut, and Labels) on the 3DObject and

VOC2006 cars. Note that [4] performs poorly in viewpoint classification. The “N-cut”,

proposed in this paper where the numbers are bolded, produces significantly better

results than [4]. The “Labels” case uses the ground truth viewpoint labels to initialize

models, which are considered to produce the “upper-bound” results.

Database 3DObject VOC2006 cars

Method [4] N-cut Labels [4] N-cut Labels

Viewpoint 40.2% 51.5% 63.4% 47.0% 65.6% 65.3%

Category 86.5% 87.8% 87.2% - - -

Purity 0.42 0.53 0.65 0.58 0.77 0.76

NMI 0.43 0.55 0.61 0.41 0.52 0.50

Rank Index 0.77 0.83 0.86 0.71 0.80 0.80

F Measure 0.36 0.45 0.54 0.61 0.68 0.67

category classification, the accuracy breaks down when V is large, and insensitive
with small V .

6 Experimental Evaluation: Continuous Viewpoints

For continuous viewpoint estimation, there is no standard benchmark database
available, partly because it is considerably harder to establish groundtruth data
to cover arbitrary 3D rotations. [19] uses a selected set of translations and
rotations for (continuous) pose estimation. [29] does not use groundtruth but
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Fig. 4. Discrete viewpoint classification and category detection results. The yellow

bounding boxes indicate object detection, and the labels on the upper-right corners

show the predicted object category and viewpoint. The top 4 rows show results from

the 3D object category database, and the bottom row shows results from the PASCAL

VOC 2006 car database.

compare results using artificially distorted images. In the case of [30], rotation
is limited to in-plane rotation on the ground.

We believe that a good database with full 3D pose groundtruth is crucial
for the advances of pose estimation techniques, and we set to collect a 3D
pose database using commercially available IMUs: we use the Microstrain 3DM-
GX1 sensors and attach it to a PrimeSense video camera. The Microstrain pro-
vides gyro-stabilized full 3D orientation at about 80Hz, and the camera records
640x480 frames at 30Hz. The two streams are aligned manually.

We collect a continuous object pose database covering 17 daily objects with
a variety of shape, appearance and scale (Fig 5(a)). We put each object on
a turning table, let the object turn, while hand-holding the camera/IMU pair
and moving it at varying heights and orientations. We typically let each object
rotate for 4-5 circles and take about 2K video frames total. In our evaluation
experiments, we use all 17 objects and about 1K frames for each object. Frames
are evenly and randomly partitioned for training and testing. Object masks are
computed from background subtraction and are used to find bounding boxes.

We compare our continuous viewpoint model with two baseline methods. The
first one employs a nearest neighbor scheme. Each test example is assigned
the same continuous viewpoint label as that of the example’s closest mixture
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Fig. 5. Continuous viewpoint classification results on the new continuous viewpoint

dataset consisting of 17 daily objects (a), covering a wide range of shape and scale. We

place objects on a turning table and attach an IMU to a hand-held camera; groundtruth

orientations of objects relative to the camera are estimated from both the IMU readings

and turning table rotations (b). our discriminatively trained continuous pose model

constantly outperforms two baseline methods (assigning to nearest discrete pose, and

a linear regression on top of discrete poses). (c) shows the performance comparisons as

the number of discrete viewpoints varies in the mixture model. (d) shows the results for

each of the 17 objects, with the number of mixture components set to 8. We observe

that viewpoint prediction is challenging (and ill-defined for some of the symmetric

objects), and our discriminative approach consistently outperforms the baselines for

most objects.

template. The second one learns a linear regression model on the responses of
all mixture templates to infer viewpoint labels. The comparison of the results
is shown in Figure 5(c) where prediction errors are measured by the amount
of rotation it takes to go from the predicted pose to the groundtruth pose (in
degrees). Because the errors can sometimes be very large due to the symmetry
in the object shape and appearance, we use the median angular error as the
evaluation metric.

Our proposed continuous viewpoint model constantly outperforms both base-
lines under different numbers of mixture templates. The errors are reduced as the
numbers of templates increase which suggests that a sufficient number of canon-
ical viewpoints is needed to cover the entire viewpoint hemisphere. A closer
examination of the per-category performance is shown in Figure 5(d). The er-
rors are in general large for symmetric categories(e.g. plate, bowl) and small
for asymmetric ones which meets our intuition. As we see from the examples,
the database is challenging: even though the background is simple and so far
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instance-based, there is a lot of inherent ambiguity in inferring pose from shape,
and the improvement in accuracy using our continuous model is substantial.

7 Conclusion

In this work we have applied the discriminative template learning framework
for joint category and viewpoint classification. Our main contribution is to show
that a mixture-of-templates model discriminatively learned in a detection frame-
work capture the characteristics of different views and can be directly used for
viewpoint classification. Our results significantly outperform the state-of-the-art
on a number of standard 3D object databases. We have also shown that with
a good initialization (e.g. Normalized Cuts and discriminative clustering), we
are able to produce meaningful viewpoint clusters and promising classification
accuracy with a small amount of training labels.

In addition, we have extended the mixture-of-templates approach to the con-
tinuous viewpoint case. We use a linear model to capture local appearance varia-
tions at each canonical view, and these models are discriminatively trained as in
the discrete case. We have been building up a dataset with continuous viewpoint
groundtruth, and our model has shown promising performance comparing to a
number of baselines, including discrete nearest neighbor and linear regression.

Although our work is still in a preliminary stage, we believe that our results
are very important in proving the use of discriminative learning for viewpoint
classification. It is no coincidence that our results outperform the state of the
art on 3D object databases. Just as in the category case, discriminative learning
addresses the classification problem directly and is very powerful in exploring
noisy image data. There are many future opportunities in exploring the synergies
between object classification and viewpoint estimation.
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Abstract. Structure-from-motion (SfM) is an important computer vi-

sion problem and largely relies on the quality of feature tracking. In im-

age sequences, if disjointed tracks caused by objects moving in and out

of the view, occasional occlusion, or image noise, are not handled well,

the corresponding SfM could be significantly affected. In this paper, we

address the non-consecutive feature point tracking problem and propose

an effective method to match interrupted tracks. Our framework con-

sists of steps of solving the feature ‘dropout’ problem when indistinctive

structures, noise or even large image distortion exist, and of rapidly rec-

ognizing and joining common features located in different subsequences.

Experimental results on several challenging and large-scale video sets

show that our method notably improves SfM.

1 Introduction

Large-scale 3D reconstruction [1,2,3,4] is a very active research topic and finds
many practical applications in, for example, Google Earth and Microsoft Virtual
Earth. Recent work essentially relies on the SfM algorithms [5,6,7,4] to automat-
ically estimate 3D features given the input of image or video collections.

Compared to images, videos usually contain denser geometrical and struc-
tural information, and are the main source of SfM in the movie and commercial
industry. A common strategy for video SfM estimation is by employing feature
point tracking [8,9,10,11], which takes care of the temporal relationship among
frames. It is also a basic tool for solving a variety of computer vision problems,
such as automatic camera tracking, video matching, and object recognition.

In this paper, we discuss two critical and non-trivial problems of feature point
tracking, which could seriously handicap SfM especially for large-scale scene
modeling, and propose novel methods to address them. One problem is the high
vulnerability of feature tracking to object occlusions, illumination change, noise,
and large motion, which easily causes occasional feature dropout and distraction.
This problem makes developing a robust feature tracking system with the input
of long sequences very challenging.

The other problem is the inability of sequential feature tracking to cope with
feature matching over non-consecutive subsequences. To our best knowledge, this

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 422–435, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(a)

(b)

(d)(c)

Fig. 1. “Street” example. (a) The snapshots of the input videos containing around

23, 000 frames. (b) With the matched feature tracks, we register many 3D points and

camera trajectories in a large 3D system. The camera trajectories are differently color-

coded. (c) Close-up of the recovered trajectories and 3D points. (d) Superimposing the

recovered camera trajectories onto a satellite image from Google Earth.

impact has not yet been thoroughly studied in existing literatures. A typical sce-
nario is that the tracked object moves out and then re-enters the field-of-view of
the camera. This yields two discontinuous subsequences containing the same ob-
ject. Although there are common features in the two subsequences, they cannot
be matched and included in a single track using conventional tracking methods.
Addressing this issue can alleviate the drift problem of SfM, which in turn bene-
fits high-quality 3D reconstruction as demonstrated in our experimental results.
A näıve solution to this problem is to exhaustively search all features. But this
consumes much unnecessary computation as many temporally far away frames
simply share no content.

Our new feature tracking framework efficiently addresses the above prob-
lems in two phases, namely consecutive point tracking and non-consecutive track
matching. We demonstrate their significance for SfM estimation using a few chal-
lenging videos. Consecutive point tracking detects and matches invariant features
distributed over consecutive frames. A new two-pass matching strategy is pro-
posed to greatly increase the matching rate of the detected invariant features and
extend the lifetime of the tracks. Then in the non-consecutive track matching
phase, by rapidly computing a matching matrix, a set of disjointed subsequences
with overlapping content can be detected. The common feature tracks scattered
over these subsequences can also be reliably matched.
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Our method can naturally handle feature tracking in multiple videos and
register sequences in a large-scale 3D system. Fig. 1 shows a challenging example,
which contains 9 videos (about 23, 000 frames in total) in a large-scale scene (500
meters long). With our method, a set of long and accurate feature tracks are
efficiently obtained. The computation time is only 1.3 seconds per frame with
our software implementation (single working thread). Our system also greatly
improves SfM by registering videos in a 3D system, as shown in Fig. 1(b). The
accuracy of SfM is verified by superimposing the recovered camera trajectories
onto a satellite image from Google Earth, as shown in Fig. 1(d). Please refer to
our supplementary video 1 for the complete results.

2 Related Work

For video tracking, sequential matchers are used for establishing correspon-
dences between consecutive frames. Kanade-Lucas-Tomasi (KLT) tracker [8,9,12]
is widely used for small baseline matching. Other advanced methods [11,13,14,15]
detect image local features and match them with descriptors.

Both the KLT tracker and invariant feature algorithms depend on model-
ing feature appearance, and can be distracted by occlusion, similar structures,
noise, and image distortion. Generally, sequential matchers cannot match non-
consecutive frames under large image transformation. Scale-invariant feature de-
tection and matching algorithms [11,16,2] are effective in recognizing panoramas
and in matching wide-baseline images. But they are not easy to be used in con-
secutive point tracking due primarily to the global indistinctiveness and feature
dropout problems in matching, which yield many short tracks.

In addition, invariant features are sensitive to large image distortion. Although
variations, such as ASIFT [17], can improve the feature matching performance
under substantial viewpoint change, computational overhead significantly in-
creases owing to exhaustive simulation. In this paper, we propose a novel two-
pass matching method to solve this problem.

There is work using invariant features for object and location recognition in
images/videos [18,19,20,21,22]. These methods typically use the bag-of-words
technique to perform global localization and loop-closure detection in an image
classification scheme. To reduce the matching ambiguity, they generally sup-
press indistinctive features. This operation is not suitable for producing long
and accurate point tracks.

Engels et al. [23] propose integrating wide-baseline local features with the
tracked features to improve SfM. The method creates small and independent
submaps over short periods of time and links them together via feature recog-
nition. This approach generally cannot produce many long and accurate point
tracks. Only short tracks are found insufficient for drift-free SfM estimation in
our experiments. In comparison, our method is effective in high-quality point

1 The supplementary video can be downloaded from

http://www.cad.zju.edu.cn/home/gfzhang/
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track estimation. We also address the ubiquitous nondistinctive feature match-
ing problem in dense frames, and utilize track descriptors, instead of the feature
descriptors, to reduce computation redundancy.

3 Our Approach

Given a video sequence Î with n frames, Î = {It|t = 1, ..., n}, the objective of
our feature tracking method is to extract and match features in all frames in
order to form a set of feature tracks. A feature track X is defined as a series
of feature points in images: X = {xt|t ∈ f(X )}, where f(X ) denotes the frame
set spanned by track X . Each invariant feature xt in frame t is associated with
an appearance descriptor p(xt) [11] and we denote all description vectors in a
feature track as PX = {p(xt)|t ∈ f(X )}.

Table 1. Overview of Our Method

1. Detect invariant features over the entire sequence.

2. Consecutive point tracking (Section 4):

2.1 Match features between consecutive frames with descriptor comparison.

2.2 Perform the second-pass matching to extend track lifetime.

3. Non-consecutive track matching (Section 5):

3.1 Use hierachical k-means to cluster the constructed invariant tracks.

3.2 Estimate the matching matrix with the grouped tracks.

3.3 Detect overlapping subsequences and join the matched tracks.

Our method has two main steps, i.e., consecutive point tracking and non-
consecutive track matching. The algorithm overview is given in Table 1.

Step 2 in Table 1 suppresses the influence of image noise and distortion in
feature tracking, which usually cause spurious feature appearance variation and
feature dropout in matching. We locate missing features (as well as the un-
matched ones) by a constrained spatial search with planar motion segmentation
as described in Section 4.2.

Step 3 is a non-consecutive track matching process. It first uses a hierarchical
K-means method to cluster the obtained track descriptors. Based on it, over-
lapping confidence among non-consecutive frames is measured using a matching
matrix, which helps robustly join common features in subsequences. This step
is described in Section 5.

4 Two-Pass Matching for Consecutive Tracking

In the first place, we use the SIFT algorithm [11] to detect and describe image
features. We extract SIFT features from all frames in the input sequence and
match them among temporally adjacent frames. The matched features consti-
tute sequential feature tracks. Note that previous KLT methods typically detect
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features in the first frame and then track them down consecutively without the
invariant feature descriptor constraint. Our method, contrarily, obtains not only
a set of feature tracks, but also descriptors to represent tracks, which avail further
non-consecutive track matching.

We propose a two-pass matching strategy to efficiently reduce false matches
caused by structure similarity and feature dropout due to image noise and dis-
tortion. The first-pass matching is used to obtain high-confidence matches. In
the second pass, tracks are extended with planar motion segmentation and con-
strained spatial search.

4.1 First-Pass Matching by Descriptor Comparison

In this section, we discuss tracking a feature X from It to It+1. It can be gener-
alized to tracks spanning multiple frames. An invariant feature in It is denoted
as xt with descriptor p(xt). To determine if there is a corresponding feature
xt+1 with descriptor p(xt+1) in It+1, we employ the 2NN heuristic proposed by
Lowe [11].

Specifically, we search for the two nearest neighboring features of xt in It+1

with respect to the Euclidean distance of the descriptor vectors and denote them
as N t+1

1 (xt) and N t+1
2 (xt). Their corresponding descriptor vectors are denoted

as p(N t+1
1 (xt)) and p(N t+1

2 (xt)) respectively. The matching confidence between
xt and N t+1

1 (xt) is defined as

c =
||p(N t+1

1 (xt))− p(xt)||
||p(N t+1

2 (xt))− p(xt)||
, (1)

where c measures the global distinctiveness of one feature xt with respect to the
ratio of the smallest feature distance and the second smallest one. If c < ε, we
assign xt+1 = N t+1

1 (xt) and mark these detected features as globally distinctive.
In our experiments, ε is set to 0.7.

However, this metric is easily interfered by image noise, repeated structures,
and image distortion, which make it difficult to find matches for some features
even in the adjacent frames. This common problem usually results in breaking
a long track into several short ones. One example is shown in Fig. 2. Given
an image pair, we detect 1, 246 features. Only 50 features can be matched by
descriptor comparison, as shown in Fig. 2(a). In the next step, we propose a
spatial search method to help identify more matches.

4.2 Second-Pass Matching by Planar Motion Segmentation

With a few high-confidence matches in neighboring frames (It, It+1) computed
in the first step, we use the RANSAC algorithm [24] to estimate the funda-
mental matrix Ft,t+1 and remove outliers. For those unmatched features, it
is possible to search for their correspondences along the conjugate epipolar
line lt,t+1(xt) = Ft,t+1xt. However, if significant image distortion exists, naive
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(a) (b) (c) (d)

Fig. 2. Feature matching comparison. (a) First-pass matching by SIFT descriptor com-

parison. There are 1, 246 features detected; but only 50 matches are found. (b) Second-

pass matching by planar motion segmentation. 717 new matches are included; but quite

a number of them are outliers. (c) The final result with our outlier rejection. A total

of 343 matches are retained. (d) The matching result by ASIFT [17]. 220 matches are

found.

Algorithm 1. Second-Pass Matching
1. Use the inlier matches to estimate a set of homographies {Hk

t,t+1|k = 1, ..., N} by

Algorithm 2, and then use them to obtain a set of rectified images {Îk
t |k = 1, ..., N}.

2. for each unmatched feature xt in It do

for k = 1, ...., N do
Find the best match xk

t+1 by minimizing (2) with Hk
t,t+1.

end for
Find the best match xi

t+1 among {xk
t+1|k = 1, ..., N} which minimizes

Sk
t,t+1(xt). Further refine xi

t+1 to x∗
t+1 with the KLT tracking. If ||x∗

t+1−xi
t+1||

is large, reject this match.

end for

window-based matching becomes unreliable. Also, an exhaustive search is time-
consuming and ambiguous with many potential correspondences. To address
these problems, we propose a segmentation-based method (sketched in Algo-
rithm 1) to robustly identify missing matches.

We base our method on the observation that many feature points undergo sim-
ilar motion. This allows computing inlier matches to estimate a set of homogra-
phies {Hk

t,t+1|k = 1, ..., N}, which represent possible local image transformation,
as described in Algorithm 2. We then rectify images with their homographies.
This scheme is similar to that of [25] where a set of dominant scene planes are
extracted to generate a piecewise planar depth map. For an unmatched feature
in image It, if its transformation towards It+1 is coincident with any of these
homographies after rectification, a match in It+1 can possible be found. Incorrect
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Algorithm 2. Planar Motion Segmentation
1. Put all matches into a set Ω.

2. For k = 1, ...., Nmax, %Nmax is the maximum number of the homographies.

2.1 Use RANSAC to estimate homography Hk
t,t+1 that has the maximum inliers.

2.2 Remove the inliers from Ω. If the size of Ω is small enough, stop; otherwise,

continue.

homographies are unlikely to yield high-confidence matches. To handle illumi-
nation change, we estimate the global illumination variation Lt,t+1 between im-
ages It and It+1 by computing the average intensity ratio between the matched
features.

With the image transformation Hk
t,t+1, we rectify It to Îk

t such that Îk
t =

Hk
t,t+1(Lt,t+1 · It). Correspondingly, xt in image It is rectified to x̂k

t where
x̂k

t ∼ Hk
t,t+1xt in Îk

t . If x̂k
t largely deviates from the epipolar line (i.e.,

d(x̂k
t , lt,t+1(xt)) > 5.0), we reject Hk

t,t+1 since it does not describe the motion of
xt well. Otherwise, we search for the match along the epipolar line by minimizing
the matching cost

Sk
t,t+1(xt) = min

x′∈lt,t+1(xt)

∑
y∈W

||Îk
t (x̂k

t + y)− Ît+1(x′ + y)||2, (2)

where W is a 11 × 11 matching window, and x′ is in the local searching area
where ||x̂k

t − x′|| < r (usually r = 15 in our experiments). The best match is
denoted as xk

t+1. With the set of homographies {Hk
t,t+1|k = 1, ..., N}, we can

find several matches {xk
t+1|k = 1, ..., N}. Only the best one i = mink Sk

t,t+1(xt)
is kept.

In case the feature motion cannot be described by all of the homographies or
the feature correspondence is indeed missing in the other image, the computed
match is actually an outlier. Simply applying threshold Si

t,t+1(xt) < τ cannot
perform satisfactorily, as shown in Fig. 2(b). In addition, the best match may not
strictly lie on the epipolar line due to estimation error. We adopt the following
procedure to detect outliers.

Our strategy is to relax the epipolar geometry constraint and use the KLT
method instead to locally search the best match x∗

t+1. The intuition is that
true correspondence produces the minimum matching cost locally; so searching
with and without the epipolar constraint should return the same result. We thus
calculate the distance between x∗

t+1 and xi
t+1. If ||x∗

t+1 − xi
t+1|| is large (over

3.0 in our experiments), xi
t+1 is considered as an outlier; or else, x∗

t+1 is the
correspondence of xt and its descriptor is set to that of xt, i.e. p(x∗

t+1) = p(xt).
Applying this criterion effectively rejects most outliers, as shown in Fig. 2(c).

Compared to ASIFT [17], our method adaptively estimates a set of dominant
homographies, without exhaustively simulating all views. So the computation
is much less. Besides, it is hard to apply ASIFT to consecutive point tracking
because features, after the simulation of viewpoint change, are no longer the
original SIFT ones. Our method has no such problem.
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Most of the above steps can be performed hierarchically to yield high ef-
ficiency. For a pair of images (resolution 640 × 480) with 1, 196 features and 4
estimated homographies, the second-pass matching only requires 0.4 second with
our software implementation.

The two-pass matching can also produce many long tracks as shown in our
supplementary video. Each track has a group of description vectors, denoted as
PX = {p(xt)|t ∈ f(X )}. These descriptors must be similar to each other in the
same track due to the matching criteria. We compute an average of them and
denote it as track descriptor p(X ). It is used in the following non-consecutive
track matching.

5 Non-consecutive Track Matching

Given the invariant feature information encoded in tracks, we detect and match
features scattered over non-consecutive frames. The following process consists of
two main phases, namely matching matrix estimation and non-consecutive track
matching.

5.1 Fast Matching Matrix Estimation

To allow non-consecutive track matching, we first estimate a matching matrix
for the whole sequence to describe the frame overlapping confidence. Obviously,
exhaustive all-to-all frame matching is computationally expensive especially for
long sequences. We propose fast estimation of the matching confidence among
different frames with regard to the track descriptors.

In [26], extracted image descriptors are used to construct a vocabulary tree
for fast image indexing. Note that our consecutive point tracking has already
clustered matchable features in sequential frames. Instead of locating similar
features, we propose constructing a vocabulary tree based on track descriptors
for finding similar tracks. This approach can not only significantly reduce the size
of the tree, but improve the matching accuracy among non-consecutive frames
as well.

We use a hierarchical K-means approach to cluster the track descriptors. The
root cluster contains all the descriptors. It is partitioned into b subgroups by
the K-means method. Each sub-cluster consists of the descriptor vectors closest
to the center. The same procedure is recursively applied to all subgroups and
terminates when the variance of all descriptors in a final (leaf) cluster is less
than a threshold. The leaf clusters provide a detailed partition of all tracks.
We measure the overlapping confidence between any two frames based on the
descriptor similarity (depicted in Algorithm 3). The scores are stored in the
matching matrix M , which is with size n×n. n is the number of all frames. The
confidence value between images Ii and Ij is saved in M(i, j).

All elements in M are first initialized to zeros. In each iteration of Algorithm 3,
M(i, j) is increased by 1 if two features respectively in frames i and j are in the
same leaf node of the tree. With the objective of non-consecutive frame matching,
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Algorithm 3. Matching Matrix Estimation
1. Initialize M as a zero matrix.

2. For each track cluster Gk (k = 1, ..., K), % K is the number of the final clusters.

For each track pair (Xu,Xv) in Gk, if f(Xu) ∩ f(Xv) = ∅,

For any i ∈ f(Xu) and j ∈ f(Xv),

M(i, j) += 1,

M(j, i) += 1.

(a) (b)

1
51
101
151
201
251
301
351
401
451
501
551
601
651

1 51 101 151 201251301 351 401 451501551 601 651

1 51 101

151 201 251

301 351 401

451 501 551

601 651 701
701

701

(c) (d)

Fig. 3. Matching matrix estimation and non-consecutive track matching evaluation. (a)

Selected frames from the “wallpaper” sequence. (b) Computed matching matrix that

is linearly scaled for visualization. (c) Reconstruction result without non-consecutive

track matching. (d) With non-consecutive track matching, the 3D points and camera

motion are better estimated. The drift problem is also eliminated, as shown in our

supplementary video.

we exclude the cases that two tracks in the same group span common frames (i.e.,
f(Xu) ∩ f(Xv) �= ∅).

For acceleration, we only select long tracks in the confidence estimation. In
our experiments, for a sequence with 735 frames, the matching matrix esti-
mation only requires 6 seconds, with a total of 22, 573 selected feature tracks.
Fig. 3(b) visualizes the computed matching matrix from a video, beside which a
few selected frames are shown. Bright pixels indicate high confidence. It can be
observed that these bright pixels are clustered in different regions in the match-
ing matrix, reflecting the content similarity among subsequences in the input
video. The diagonal band has no value because we exclude track self-matching.

5.2 Non-consecutive Track Matching

We identify overlapped subsequences by detecting rectangular regions containing
the brightest pixels in the matching matrix. Suppose a rectangular region spans
[ub, ue] horizontally and [vb, ve] vertically, video subsequences with frame sets
φ1 = {ub, ..., ue} and φ2 = {vb, ..., ve} are correlated.

Since the matching matrix is symmetric, we only consider either the upper or
lower triangle. We use the following method to estimate [ub, ue] and [vb, ve]. In
the beginning, we search for the element Mij with the largest similarity value.
Then we search for the maximum range [ub, ue] such that ub < i < ue and for any
t ∈ [ub, ue], Mtj/Mij > δ, where δ is a threshold. [vb, ve] is computed similarly.
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Algorithm 4. Track Joining
1. Track Matching:

For i = ub, ..., ue, // one subsequence φ1

For j = vb, ..., ve, // another subsequence φ2

Match features in Ii and Ij and join their corresponding tracks.

2. Outlier Rejection:

For joined tracks Xs (in φ1) and Xt (in φ2), if any of their feature pair {(xs
i , x

t
j)|i ∈

f(Xs) ∩ φ1, j ∈ f(Xt) ∩ φ2} do not satisfy the epipolar geometry constraint, the

match is rejected.

Finally, we set φ1 = {ub, ..., ue} and φ2 = {vb, ..., ve} and set the corresponding
elements in the matrix M to zeros. So in the next round, we again select a new
Mij from the updated matrix M to detect another subsequence pair for track
matching. This process repeats until no high overlapping-confidence frames can
be found.

Given the estimated subsequence pair (φ1, φ2), we reliably join tracks scat-
tered over these frame sets (described in Algorithm 4). For each two frames, if
their two distinctive features xs

i and xt
j , belonging to Xs and Xt respectively, are

matched using the method described in Section 4.1, we join tracks Xs and Xt

as well. To reject outliers, we apply the geometric constraint to check whether
all features in Xs and Xt satisfy the epipolar geometry constraint, i.e., (xs

i ,x
t
j)

consistent with a fundamental matrix Fij estimated with the potential matches
between frame pair (Ii, Ij) by the RANSAC algorithm [24]. If the two tracks
qualify, they can be safely joined.

The example shown in Fig. 3 demonstrates the effectiveness of our non-
consecutive track matching. We perform feature tracking and use the SfM method
of [2] to recover camera poses together with sparse 3D points. In the first part
of the experiment, we only use sequential tracks to estimate SfM. It is shown in
Fig. 3(c) that this scheme produces erroneous camera pose estimate. Then we
perform non-consecutive track matching to automatically join common tracks. It
improves SfM, as shown in Fig. 3(d). The reconstruction quality can be assessed
by inserting a virtual object into the scene, as demonstrated in our supplemen-
tary video. When skipping the non-consecutive track matching, the drift problem
of the virtual object caused by inaccurate camera pose estimation is severe. In
comparison, no such problem is observable after non-consecutive track matching.

5.3 Tracks in Multiple Videos

To describe a large-scale scene, multiple videos can generally be obtained from
internet or be captured in different geographic regions but generally with over-
laps. How to efficiently match multiple videos and register them in a common 3D
system was seldom discussed in previous work. In our feature tracking system,
this can be naturally accomplished. We first track feature points for each video
independently and then detect overlap between each pair of the videos. The
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Table 2. Running time of a few examples

Datasets Resolution Frames Feature Tracking Time

Consecutive Non-Consecutive

Wallpaper 640 × 480 735 6 minutes 2 minutes

Circle 960 × 540 1, 991 30 minutes 12 minutes

Yard 960 × 540 3, 201 50 minutes 20 minutes

Street 960 × 540 ∼ 23, 000 6 hours 2 hours

algorithm described in Section 5.1 is used to rapidly estimate the matching ma-
trix such that related subsequences in different videos can be found. Afterwards,
we match the common tracks distributed in various subsequences using Algo-
rithm 4. This method quickly yields a matching graph for the collected videos,
which finally leads to a robust global 3D registration, as shown in Fig. 1(b).

6 Results

We have evaluated our method on several challenging sequences. All results are
generated using a PC with an Intel Core2Duo CPU 2.0GHz and 2GB memory.
Running time for feature tracking on the tested data is listed in Table 2.

As our consecutive point tracking can handle wide-baseline images, frame-by-
frame tracking is generally not necessary. In our experiments, the system extracts
one frame for every 5 ∼ 10 frames to apply feature tracking. The tracked features
are then propagated to other frames by simple KLT sequential tracking. This
trick saves a lot of running time and results in feature tracking in a video sequence
(1000 features per image and image resolution 640× 480) only taking about 0.5
second per frame with our software implementation (single working thread). The
running time of KLT2 is about 0.4 second per frame. Note that the camera pose
estimates from KLT could drift while our method avoids this problem because
the computed matches are with very high quality and large quantity.

We compare our method to the brute-force SIFT matching in the Bundler
software [27]. The brute-force SIFT matching method does not make use of image
ordering. It extracts the SIFT features in all frames and exhaustively compares
them. Although a K-d tree is used for matching speedup, the complexity is still
quadratic to the number of the processed frames. In contrast, the complexity of
our method is almost linear to the frame number.

For the “circle” example with 1991 frames. Performing the brute-force SIFT
matching in the whole sequence will take days using our desktop computer.
To save time, we pick out one frame for every 5, to compose a new sequence
containing only 399 frames. The brute-force SIFT matching spends 187 min-
utes (6 minutes for SIFT feature extraction) on it, while our method only re-
quires 25 minutes in total. When excluding the SIFT feature extraction time,

2 We use the CPU implementation downloaded from

http://www.ces.clemson.edu/∼stb/klt/.
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Fig. 4. Comparison with the brute-force SIFT matching. (a) Three selected frames

from the “circle” sequence. (b-c) The track length histograms of the brute-force SIFT

matching and our non-consecutive feature tracking, respectively. (d) The SfM result

using the feature tracks computed by brute-force SIFT matching. (e) The SfM re-

sult using the feature tracks computed by our method. (f) Superimposing the camera

trajectory in (d) to (e).

our method is about one order of magnitude faster. Figs. 4(a) and 4(b) show
the track length histograms to compare the tracking quality. Our method yields
many long feature tracks thanks to the effective two-pass matching and subse-
quence joining. The SfM results are shown in Figs. 4(d)-(f). The aligned two
camera trajectories (shown in Fig. 4(f)) are with average camera position differ-
ence 0.000425 (normalized w.r.t. the total length of the camera trajectory).

We tested our method on a challenging large-scale “street” example containing
a total of 9 videos, each of which has around 2000 ∼ 3000 frames. This example
has been shown in Fig. 1. The camera moved along a street and captured several
buildings. We first track feature points for each video independently, and then
use our non-consecutive track matching algorithm to detect and match common
feature tracks across different videos. We perform SfM estimation for each video
independently. By aligning the computed 3D points, we register these videos in a
3D system. There are as many as 558, 392 estimated 3D points in this example.
Superimposing the recovered camera trajectories onto a satellite image shows
the high accuracy of the results as all trajectories are on streets and are not
drifted.
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7 Conclusion and Discussion

We have presented a robust and efficient non-consecutive feature tracking sys-
tem for SfM, which consists of two main steps, i.e., consecutive point track-
ing and non-consecutive track matching. Different from the typical sequential
matcher (e.g. KLT tracker), we use the invariant features and propose a two-
pass matching strategy to significantly extend the track lifetime and reduce the
feature sensitivity to noise and image distortion. The obtained tracks contain
not only a set of 2D image positions, but also descriptors. They avail estimating
a matching matrix to detect a set of disjointed subsequences with overlapping
views. Our method can also handle tracking and registering multiple videos.
Experimental results demonstrate the significance for SfM in middle- and large-
scale scenes.

Our method is designed for SfM, and thus consider feature tracking only
on rigid (non-deforming) objects in this paper. Part of our future work is to
handle deforming or dynamic objects. Besides, although the proposed method is
based on the SIFT features, there is no limitation to use other representations,
especially in the general two-pass matching process. Further investigation will
be conducted.

Acknowledgements

The work described in this paper was supported by the 973 program of China
(No. 2009CB320804), NSF of China (Nos. 60633070 and 60903135), and the Re-
search Grants Council of the Hong Kong Special Administrative Region (Project
Nos. 413110 and 417107).

References

1. Pollefeys, M., Nistér, D., Frahm, J.M., Akbarzadeh, A., Mordohai, P., Clipp, B.,

Engels, C., Gallup, D., Kim, S.J., Merrell, P., Salmi, C., Sinha, S.N., Talton, B.,

Wang, L., Yang, Q., Stewénius, H., Yang, R., Welch, G., Towles, H.: Detailed

real-time urban 3d reconstruction from video. International Journal of Computer

Vision 78, 143–167 (2008)

2. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in

3d. ACM Trans. Graph. 25, 835–846 (2006)

3. Li, X., Wu, C., Zach, C., Lazebnik, S., Frahm, J.M.: Modeling and recognition of

landmark image collections using iconic scene graphs. In: Forsyth, D., Torr, P.,

Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 427–440. Springer,

Heidelberg (2008)

4. Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building rome in a

day. In: ICCV, pp. 72–79 (2009)

5. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd

edn. Cambridge University Press, Cambridge (2004) ISBN: 0521540518

6. Fitzgibbon, A., Zisserman, A.: Automatic camera tracking. In: Video Registration,

pp. 18–35 (2003)



Efficient Non-consecutive Feature Tracking for Structure-from-Motion 435

7. Zhang, G., Qin, X., Hua, W., Wong, T.T., Heng, P.A., Bao, H.: Robust metric

reconstruction from challenging video sequences. In: CVPR (2007)

8. Lucas, B.D., Kanade, T.: An iterative image registration technique with an appli-

cation to stereo vision. In: IJCAI, pp. 674–679 (1981)

9. Shi, J., Tomasi, C.: Good features to track. In: CVPR, pp. 593–600 (1994)

10. Georgescu, B., Meer, P.: Point matching under large image deformations and illu-

mination changes. IEEE Trans. Pattern Anal. Mach. Intell. 26, 674–688 (2004)

11. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision 60, 91–110 (2004)

12. Zach, C., Gallup, D., Frahm, J.M.: Fast gain-adaptive klt tracking on the gpu. In:

CVPR Workshop on Visual Computer Vision on GPU’s (CVGPU) (2008)

13. Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local

affine regions. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1265–1278 (2005)

14. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE

Trans. Pattern Anal. Mach. Intell. 27, 1615–1630 (2005)

15. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from

maximally stable extremal regions. Image Vision Comput. 22, 761–767 (2004)

16. Brown, M., Lowe, D.G.: Recognising panoramas. In: ICCV, pp. 1218–1227 (2003)

17. Morel, J.M., Yu, G.: ASIFT: A new framework for fully affine invariant image

comparison. SIAM J. Img. Sci. 2, 438–469 (2009)

18. Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching

in videos. In: ICCV, pp. 1470–1477 (2003)

19. Schaffalitzky, F., Zisserman, A.: Automated location matching in movies. Com-

puter Vision and Image Understanding 92, 236–264 (2003)

20. Ho, K.L., Newman, P.M.: Detecting loop closure with scene sequences. Interna-

tional Journal of Computer Vision 74, 261–286 (2007)

21. Schindler, G., Brown, M., Szeliski, R.: City-scale location recognition. In: CVPR

(2007)

22. Irschara, A., Zach, C., Frahm, J.M., Bischof, H.: From structure-from-motion point

clouds to fast location recognition. In: CVPR (2009)

23. Engels, C., Fraundorfer, F., Nistér, D.: Integration of tracked and recognized fea-

tures for locally and globally robust structure from motion. In: VISAPP (Workshop

on Robot Perception), pp. 13–22 (2008)

24. Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model

fitting with applications to image analysis and automated cartography. Commun.

ACM 24, 381–395 (1981)

25. Sinha, S.N., Steedly, D., Szeliski, R.: Piecewise planar stereo for image-based ren-

dering. In: ICCV, pp. 1881–1888 (2009)

26. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: CVPR,

Washington, DC, USA, pp. 2161–2168. IEEE Computer Society, Los Alamitos

(2006)

27. Snavely, N.: Bundler: Structure from motion for unordered image collections,

http://phototour.cs.washington.edu/bundler/

http://phototour.cs.washington.edu/bundler/


P2Π: A Minimal Solution for Registration of 3D Points
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Abstract. This paper presents a class of minimal solutions for the 3D-to-3D reg-
istration problem in which the sensor data are 3D points and the corresponding
object data are 3D planes. In order to compute the 6 degrees-of-freedom trans-
formation between the sensor and the object, we need at least six points on three
or more planes. We systematically investigate and develop pose estimation algo-
rithms for several configurations, including all minimal configurations, that arise
from the distribution of points on planes. The degenerate configurations are also
identified. We point out that many existing and unsolved 2D-to-3D and 3D-to-3D
pose estimation algorithms involving points, lines, and planes can be transformed
into the problem of registering points to planes. In addition to simulations, we also
demonstrate the algorithm’s effectiveness in two real-world applications: registra-
tion of a robotic arm with an object using a contact sensor, and registration of 3D
point clouds that were obtained using multi-view reconstruction of planar city
models.

1 Introduction and Previous Work

The problem of 3D-to-3D registration is one of the oldest and most fundamental prob-
lem in computer vision, photogrammetry, and robotics, with numerous application ar-
ease including object recognition, tracking, localization and mapping, augmented real-
ity, and medical image alignment. Recent progress in the availability of 3D sensors at
reasonable cost have further accelerated the need for such problems. The registration
problem can generally be seen as two subproblems: a correspondence problem, and a
problem of pose estimation given the correspondence. Both of these problems are inter-
twined, and the solution of one depends on the other. This paper addresses the solution
to both problems, although the major emphasis is on the second one.

Several 3D-to-3D registration scenarios are possible depending on the representation
of the two 3D datasets: 3D points to 3D points, 3D lines to 3D planes, 3D points to 3D
planes, etc. [1]. For the registration of 3D points to 3D points, iterative closest point
(ICP) and its variants have been the gold standard in the last two decades [2,3]. These
algorithms perform very well with a good initialization. Hence for the case of 3D points
to 3D points, the main unsolved problem is the initial coarse registration.

The registration of 3D lines to 3D planes and the registration of 3D points with nor-
mals to 3D planes were considered in [4,5]. (In this paper, we register 3D points with-
out normals to 3D planes.) Recently, there have been several registration algorithms
that focus on solving both the correspondence and pose estimation [4,6,7], primarily
by casting the correspondence problem as a graph theoretical one. The correspondence

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 436–449, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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problem maps to a class of NP-hard problems such as minimum vertex cover [8] and
maximum clique [9]. In this paper, we address the correspondence problem by formu-
lating it as a maximum clique problem.

The main focus of this paper is on solving for the point-to-plane registration given
the correspondence. Despite several existing results in 3D-to-3D registration problems,
the registration of points to planes has received very little attention. However, in prac-
tice many registration problems can be efficiently solved by formulating them as point-
to-plane. Iterative approaches exist for this problem [10,1]. In [1], the authors specifi-
cally mention that their algorithms had difficulties with point-to-plane registration and
pointed out the need for a minimal solution. The minimal solution developed here pro-
vides a clear understanding of degenerate cases of the point-to-plane registration.

The development of minimal solutions in general has been beneficial in several vi-
sion problems [11,12,13,14,15,16]. Minimal solutions have proven to be less noise-
prone than non-minimal algorithms, and they have been quite useful in practice as hy-
pothesis generators in hypothesize-and-test algorithms such as RANSAC [17]. Our min-
imal solution for the point-to-plane registration problem also comes with an additional
advantage: it dramatically reduces the search space in the correspondence problem.

To validate our theory we show an exhaustive set of simulations and two compelling
real-world proof-of-concept experiments: registration of a robotic arm with an object
using contact sensor, and registration of 3D point clouds obtained using multi-view
reconstruction on 3D planar city models.

Problem statement: Our main goal is to compute the pose (3D translation and 3D rota-
tion) of a sensor with respect to an object (or objects) for which a 3D model consisting
of a set of planes is already known. The sensor provides the 3D coordinates of a small
set of points on the object, measured in the sensor coordinate frame. We are given
N points P 0

1 , P
0
2 , P

0
3 , ..., P

0
N from the sensor data and M planes Π0

1 , Π
0
2 , Π

0
3 , ..., Π

0
M

from the 3D object. We subdivide the original problem into two sub-problems:

– Compute the correspondences between the 3D points in the sensor data and the
planes in the 3D object.

– Given these correspondences, compute the rotation and translation (Rs2w,Ts2w)
between the sensor and the object. We assume that the object lies in the world
reference frame, as shown in Figure 1.

In this paper, we explain our solution to the second problem (pose estimation given
the correspondences) in Section 2 before discussing the correspondence problem in
Section 3.

2 Pose Estimation

In this section, we develop the algorithms for pose estimation given the correspon-
dences between the 3D points and their corresponding planes. Here we assume that
the correspondences are already known—a method for computing the correspondences
is explained later, in Section 3. We systematically consider several cases in which we
know the distribution of the points on the planes (how many points correspond to each
plane), developing a customized pose estimation algorithm for each case. We denote
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each configuration as Points(a1, a2, ..., an) ↔ Planes(n), where n = {3, 4, 5, 6} is
the number of distinct planes in which the points lie, and ai is the number of points
that lie in the ith plane. The correspondence between a single point and a plane will
yield a single coplanarity equation. Since there are 6 unknown degrees of freedom in
(Rs2w,Ts2w), we need at least 6 point-to-plane correspondences to solve the pose es-
timation problem. There are also degenerate cases in which 6 correspondences are not
sufficient. Although the individual algorithms for the various cases are slightly differ-
ent, their underlying approach is the same. The algorithms for all cases are derived
using the following three steps:

– The choice of intermediate coordinate frames: We transform the sensor and the ob-
ject to intermediate coordinate frames to reduce the degree of the resulting polyno-
mial equations. In addition, if the transformation results in a decrease in the number
of degrees of freedom in the pose between the sensor and object, then the rotation
R and the translation T are expressed using fewer variables.

– The use of coplanarity constraints: From the correspondences between the points
and planes, we derive a set of coplanarity constraints. Using a linear system involv-
ing the derived coplanarity constraints, we express the unknown pose variables in
a subspace spanned by one or more vectors.

– The use of orthonormality constraints: Finally, we use the appropriate number of
orthonormality constraints from the rotation matrix to determine solutions in the
subspace just described.

2.1 The Choice of Intermediate Coordinate Frames

As shown in Figure 1, we denote the original sensor frame (in which the points reside)
and the world reference frame (where the planes reside) by S0 and W0, respectively.
Our goal is to compute the transformation (Rs2w,Ts2w) that transforms the 3D points
from the sensor frame S0 into the world reference frameW0. A straightforward appli-
cation of coplanarity constraints in the case of 6 points would result in 6 linear equations
involving 12 variables (the 9 elements of the rotation matrix Rs2w and the 3 elements of
the translation vector Ts2w). To solve for these variables, we would need at least 6 ad-
ditional equations; these can be 6 quadratic orthonormality constraints. The solution of
such a system may eventually result in a polynomial equation of degree 64 = 26, which
would have 64 solutions (upper bound as per Bezout’s theorem), and the computation
of such solutions would likely be infeasible for many applications.

To overcome this difficulty, we first transform the sensor and world reference frames
S0 and W0 to two new intermediate coordinate frames, which we call S andW . After
this transformation, our goal is to find the remaining transformation (R,T) between
the intermediate reference frames S and W . We choose S and W so as to minimize
the number of variables in (R,T) that we need to solve for. A similar idea has been
used in other problem domains [18]. We now define the transformations from the initial
reference frames to the intermediate frames and prove that these transformations are
always possible using a constructive argument.

Transformation from S0 to S. As shown in Figure 1, we represent the ith point in S0

using the notation P 0
i and the same point in S using Pi. We define the
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Fig. 1. The basic idea of coordinate transformation for pose estimation. It is always possible
to transform the sensor coordinate system such that a chosen triplet of points (P1, P2, P3) lie
respectively at the origin, on the X axis, and on the XY plane. On the other hand, the object
coordinate frame can always be transformed such that Π1 coincides with the XY plane and (Π2)
contains the X axis.

transformation (Rs,Ts) as the one that results in the points (P1, P2, P3) satisfying the
following conditions: (a) P1 lies at the origin, (b) P2 lies on the positive X axis, and
(c) P3 lies in the XY plane. Note that the points P 0

i are already given in the problem
statement, and the transformation to the points Pi can be easily computed using the
above conditions.

Transformation from W0 to W . We similarly represent the ith plane in W0 using
the notation Π0

i and the same plane in W using Πi. We define the transformation as
the one that results in the planes Πi satisfying the following two conditions: (a) Π1

coincides with the XY plane, and (b) Π2 contains the X axis.
Assume that Q0

1 and Q0
2 are two points on the line of intersection of the two planes

Π0
1 and Π0

2 . Let Q0
3 be any other point on the plane Π0

1 . Let Q1, Q2, and Q3 denote the
same 3D points after the transformation from W0 to W . The required transformation
(Rw,Tw) is the one that maps the triplet (Q0

1, Q
0
2, Q

0
3) to (Q1, Q2, Q3). Note that three

points Q0
i satisfying the description above can be easily determined from the planes

Π0
i , and the transformation from points Q0

i to points Qi can be computed in the same
way as the transformation described above from points P 0

i to points Pi.
We denote the 3D points after the transformation as follows:

P1 =

⎛⎝0
0
0

⎞⎠, P2 =

⎛⎝X2

0
0

⎞⎠, P3 =

⎛⎝X3

Y3

0

⎞⎠, and Pi =

⎛⎝Xi

Yi

Zi

⎞⎠ for i = {4, 5, 6}. (1)

We write the equations of the planes after the transformation as follows:

Z = 0 : Π1 (2)

B2Y + C2Z = 0 : Π2 (3)

AiX + BiY + CiZ + Di = 0 : Πi, for i = {3, 4, 5, 6} (4)

Point-to-plane assignment. Depending on the particular configuration
Points(a1, ..., an) ↔ Planes(n) of the points and planes, we choose which sensor
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points correspond to each of P1, P2, . . ., and which object planes correspond to each of
Π1, Π2, . . ., so as to minimize the number of variables in the transformation between
the intermediate frames.

In the remainder of this subsection, and in the following subsections 2.2 and 2.3, we
explain the method in the context of a particular example: namely, the configuration
Points(3, 2, 1) ↔ Planes(3). For this configuration, we may without loss of generality
assume the following correspondences between the points and the planes:

Π1 ⇐= {P1, P2, P3}, Π2 ⇐= {P4, P5}, Π3 ⇐= {P6}. (5)

As a result of this assignment, the plane corresponding to the three points {P1, P2, P3}
and the plane Π1 are both mapped to the XY plane. The final rotation (R) and trans-
lation (T) between the intermediate sensor coordinate frame S and the intermediate
object coordinate frameW must preserve the coplanarity of these three points and their
corresponding plane. Thus, the final transformation can be chosen so as to map all
points on the XY plane to points on the XY plane. In other words, the rotation should
be only along the Z axis and the translation along the X and the Y axes. There are two
pairs of rotation and translation that satisfy this constraint:

R1 =

⎛⎝ R11 R12 0

−R12 R11 0

0 0 1

⎞⎠ ,T1 =

⎛⎝T1

T2

0

⎞⎠ ; R2 =

⎛⎝R11 R12 0

R12 −R11 0

0 0 −1

⎞⎠ ,T2 =

⎛⎝T1

T2

0

⎞⎠ (6)

By choosing assignment (5) and separately formulating R1 and R2, we have minimized
the number of degrees of freedom to solve for in the transformation between the inter-
mediate frames of reference. Note that R1 and R2 are related to each other by a 180◦

rotation about the X axis. Below, we explain the algorithm for solving for R1 and T1.

2.2 The Use of Coplanarity Constraints

To explain our method’s use of coplanarity constraints (and orthonormality constraints),
we continue with the example of the specific configuration Points(3, 2, 1)↔ Planes(3).
We know that the points P4 and P5 lie on the plane Π2, whose equation is given by (3).
This implies that these points must satisfy the following coplanarity constraints:

B2(−R12Xi + R11Yi + T2) + C2Zi = 0, for i = {4, 5} (7)

Similarly, the constraint from the third plane Π3 is given below:

A3(R11X6 + R12Y6 + T1) + B3(−R12X6 + R11Y6 + T2) + C3Z6 + D3 = 0 (8)

Using the coplanarity constraints (7), (8), we construct the following linear system:

⎛⎝ B2Y4 −B2X4 0 B2

B2Y5 −B2X5 0 B2

A3X6 + B3Y6 A3Y6 − B3X6 A3 B3

⎞⎠
︸ ︷︷ ︸

A

⎛⎜⎜⎝
R11

R12

T1

T2

⎞⎟⎟⎠ =

⎛⎝ −C2Z4

−C2Z5

−C3Z6 − D3

⎞⎠ (9)
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The matrix A consists of known values and has rank 3. As there are 4 variables in the
linear system, we can obtain their solution in a subspace spanned by one vector:(

R11 R12 T1 T2

)T =
(
u1 u2 u3 u4

)T + l1
(
v1 v2 v3 v4

)T
, (10)

where the values ui, vi are known, and l1 is the only unknown variable.

2.3 The Use of Orthonormality Constraints

We can solve for the unknown variable l1 using a single orthonormality constraint
(R2

11 + R2
12 = 1) for the rotation variables.

(u1 + l1v1)2 + (u2 + l1v2)2 = 1 (11)

By solving the above equation, we obtain two different solutions for l1. As a result, we
obtain two solutions for the transformation (R1,T1). Since we can similarly compute
two solutions for (R2,T2), we finally have four solutions for (R,T). Using the ob-
tained solutions for (R,T), the transformation between the original coordinate frames
(Rs2w,Ts2w) can be easily computed.

Visualization of the four solutions. There is a geometric relationship between the
multiple solutions obtained for the transformation (R,T). For example, in Figure 2(a),
we show the four solutions derived above, for a special case in which the 3 planes are
orthogonal to each other. All of the solutions satisfy the same set of plane equations,
but they exist in different octants. Every solution is just a rotation of another solution
about one of the three axes by 180◦. If we slightly modify the planes so that they are no
longer orthogonal, the different solutions start to drift away from each other.

2.4 Other Variants

The example shown above is one of the easiest point-to-plane registration algorithms to
derive. Several harder configurations also arise from the distribution of 6 (or more) dis-
tinct points on 3 or more planes (see Table 1). We have solved every case using the same
intermediate transformation technique described above. All of the different scenarios,
the corresponding assignments of points and planes, and the number of solutions are
summarized in Table 1.

The key to solving each configuration is to determine a point-to-plane assignment
that minimizes the number of variables appearing in the transformation (R,T) be-
tween the intermediate frames. In general, such an optimal assignment can be found
by considering different point-to-plane assignments and checking the resulting copla-
narity constraint equations for the 6 points and their corresponding planes. For example,
in the configuration Points(3, 2, 1) ↔ Planes(3), the point-to-plane assignments given
in (5) minimize the number of unknowns in the equations (6) for (R,T). Please see the
Supplementary Materials for details of various configurations summarized in Table 1.

Special cases. If the points lie on the boundaries of the planes (i.e., every point lies on
two planes), then 3 points are sufficient to compute the pose. A careful analysis shows
that this problem is nothing but a generalized 3-point pose estimation problem [20].
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Table 1. Point-to-plane configurations and their solutions

Each row of the table presents a different configuration, in which n denotes the number of distinct
planes and each ai refers to the number of points that lie in the ith plane. The first two rows
show the degenerate cases for which there is an insufficient number of points or planes. The next
four rows consider non-minimal solutions using more than 6 points. The remaining rows show
several minimal configurations (each using exactly 6 points). The number of solutions is given,
followed by the average number of real (non-imaginary) solutions in parentheses based on 1000
computations from the simulation described in Section 5. Processing time was measured using a
MATLAB implementation on a 2.66 GHz PC; the symbol † indicates the use of Groebner basis
methods [19]. The Supplementary Materials explain the derivations of the various configurations.

n (a1, . . . , an) Assignment
# of

Solutions
Process

time (msec)

< 3 – – degenerate –
n

∑
ai < 6 – degenerate –

3 (3,3,3) Π1 ⇐ {P1, P2, P3}, Π2 ⇐ {P4, P5, P6}, Π3 ⇐ {P7, P8, P9} 2 (2) 5
3 (3,3,2) Π1 ⇐ {P1, P2, P3}, Π2 ⇐ {P4, P5, P6}, Π3 ⇐ {P7, P8} 2 (2) 5
3 (3,3,1) Π1 ⇐ {P1, P2, P3}, Π2 ⇐ {P4, P5, P6}, Π3 ⇐ {P7} 2 (2) 5
3 (3,2,2) Π1 ⇐ {P1, P2, P3}, Π2 ⇐ {P4, P5}, Π3 ⇐ {P6, P7} 2 (2) 5
3 (4,1,1) – degenerate –
3 (3,2,1) Π1 ⇐ {P1, P2, P3}, Π2 ⇐ {P4, P5}, Π3 ⇐ {P6} 4 (4) 6
3 (2,2,2) Π1 ⇐ {P5, P6}, Π2 ⇐ {P3, P4}, Π3 ⇐ {P1, P2} 8 (4.4) 140†

4 (3,1,1,1) Π1 ⇐ {P1, P2, P3}, Π2 ⇐ {P4}, Π3 ⇐ {P5}, Π3 ⇐ {P6} 4 (2.8) 6
4 (2,2,1,1) Π1 ⇐ {P5, P6}, Π2 ⇐ {P3, P4}, Π3 ⇐ {P2}, Π4 ⇐ {P1} 8 (3.6) 140†

5 (2,1,1,1,1) Π1 ⇐ {P5, P6}, Πi ⇐ {P6−i}, i = {3, 4, 5} 16 (5.8) 410†

6 (1,1,1,1,1,1) Πi ⇐ {P6−i+1}, i = {1, 2, 3, 4, 5, 6} 16 (5.8) 1200†

Degenerate cases. Table 1 includes several degenerate cases based on the number
of points and planes. In addition, degeneracies can occur based on the geometry of the
planes. In the case of 3 planes, if the 3×3 matrix consisting of all three normals has rank
less than 3 (e.g., if two of the three planes are parallel), it is a degenerate configuration.

3 The Correspondence Problem

In the previous section, we assumed that the point-to-plane correspondences were
known. In this section, we briefly describe a method to compute these correspondences.
The basic idea of the correspondence problem and the geometrical constraints involved
in identifying feasible correspondences are explained in detail in [5] using an interpre-
tation tree approach. The same problem can also be formulated as graph-theoretical
problems such as independent set, vertex cover and maximum clique [5,8,9].

Our goal in this section is to compute all of the feasible mappings (possible assign-
ments) between the 3D points in the sensor domain and planes in the object. Feasi-
ble mappings refer to correspondences that satisfy the many geometrical constraints
arising from the angles between the normals, pairwise distances, etc. [5]. Although
such constraints do not always guarantee the correctness of the mappings, a wrong
correspondence seldom exists satisfying all the constraints. In addition, since we use
them in hypothesize-and-test algorithms such as RANSAC, outliers can be detected and
removed.
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(a) (b) (c)

Fig. 2. (a) Right Visualization of 4 solutions for the points lying on 3 orthogonal planes. Left:
Correct solution. (b) The problem of finding correspondences between clusters of points Ci and
planes Πj . (c) This can be formulated as a maximum clique problem. Each node xij in this
graph represents a mapping between cluster Ci and plane Πj . An edge between two nodes is
a consistency edge, signifying that both of these mappings can occur simultaneously without
conflicting with the three constraints given in [5].

In what follows, we briefly explain our approach using the maximum clique problem
formulation. First, we cluster the points from the sensor into several planes, denoting
the ith cluster as Ci. Note that each cluster may contain multiple points or even just a
single point. As shown in Figure 2(b), our goal is to map these clusters to the corre-
sponding planes Πj in the object. In order to do this, we construct a graph as shown
in Figure 2(c). Every node in this graph xij represents a mapping between the cluster
Ci (from the sensor) and the plane Πj (from the object). An edge between xij and xkl

is referred to as a consistency edge that signifies that both these mappings can occur
simultaneously without conflicting with the three constraints given in [5]. The feasible
correspondences between points and planes can be obtained by finding the maximum
clique in the graph. A maximum clique for a graph refers to the largest subset of nodes
in which each pair of nodes in the subset is connected by an edge. In the graph we con-
structed, finding a maximum clique provides us a set of mappings in which all possible
pairwise consistencies are satisfied.

Several techniques can be used to solve these NP-hard problems [8,7]. Since we use
minimal approaches for our applications, we are not interested in the correspondences
for all of the points in the registration problem. Instead, we are concerned with iden-
tifying a small number of point-to-plane correspondences (sufficient to resolve issues
from degeneracies and outliers). In fact, one of the main advantages of the proposed
minimal solution is that it only requires correspondences for a small number of points.
This enabled us to use a simple tree-based search for finding the maximum cliques in
the real-world experiments described in Section 5.

4 A General Framework for Pose Estimation

We briefly sketch a unified pose estimation framework for most 2D-to-3D and 3D-to-
3D registrations by first transforming the given problem to a point-to-plane registration
problem. Several 2D-to-3D pose estimation algorithms have been proposed in the liter-
ature [6,18,10,1,21,5,4,20]. All of these pose estimation algorithms involve the registra-
tion of one set of geometrical entities (points, lines, or planes) to another. For example,
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Fig. 3. A general framework to transform a given registration problem to a point-to-plane prob-
lem. Left: In the sensor data, we transform all geometrical entities (points, lines and planes) to
points. A point is preserved as a point. In the case of lines and planes we sample two and three
arbitrary points, respectively. Right: In the object data, we convert all geometrical entities to
planes. A plane is preserved as a plane. Points and lines are parameterized using 3-plane and
2-plane representations, as shown.

in the case of generalized pose estimation, we register three 3D points to the corre-
sponding non-parametric projection rays from the cameras to compute the pose of the
object with respect to the camera [20]. In the case of 2D-to-3D pose estimation using
three lines, we can look at this problem as a registration of three interpretation planes
(each formed by two projection rays corresponding to a single line) on three lines [18].
In the case of 3D-to-3D line-to-plane registration, we register lines from the sensor data
to planes from the object [4]. In the case of 3D-to-3D point-to-point registration, we
register points from sensor data to points in the object [6]. One could also propose reg-
istration algorithm involving mixture of geometrical entities and thereby we could have
more than 20 2D-to-3D and 3D-to-3D registration scenarios. We emphasis that any of
these pose estimation algorithms involving any combination of geometrical entities to
any other combination could be transformed to a point-to-plane registration algorithm
and solved using the following simple algorithm.

1. In the sensor data, we transform all the geometrical entities (points, lines and
planes) to points. This is done using 2-point and 3-point representation of lines
and planes respectively as shown in Figure 3.

2. In the object data, we transform all the geometrical entities to planes. This is done
by 3-plane and 2-plane representations for points and lines, respectively. Note that
the 3 planes passing through a point need not be orthogonal. Similarly, we use 2
non-orthogonal planes to represent a line. The appropriate choice of these planes
plays a crucial role in obtaining an efficient pose estimation algorithm.

3. After these transformations, we can use our point-to-plane registration algorithm.

Details of the proposed generalized framework are given in the Supplementary Ma-
terials with examples on several registration problems.

5 Experimental Results

Simulations. We analyzed the performance of our minimal solutions in simulations by
generating 32 random planes inside a cube of side length 100 units. We randomly sam-
pled 320 points on these planes within the cube. A test set was created by transforming
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Fig. 4. Rotation and translation error for simulation data as a function of the level of noise in
the test set. The noise standard deviation is expressed as a percentage of the size of the object.
The legends list the configurations in order of decreasing error. (a,b) Results from our algorithm
for all non-degenerate configurations shown in Table 1. Note that minimal solutions using 6
points provide lower errors than non-minimal solutions, and solutions for configurations with
larger number of planes have lower errors. (b–j) Our minimal solutions compared to least square
methods (using 12 and 20 points) for the same number of planes n: (c,d) n = 3, (e,f) n = 4,
(g,h) n = 5, and (i,j) n = 6. Note that in the 3-plane case (b), least square methods completely
fail due to rank degeneracy.

all 320 points using a ground-truth rotation and translation, then adding Gaussian noise
to each point.

We randomly selected k points from the test set according to the point-to-plane con-
figuration of the algorithm, then computed the rotation and translation using the points
and the corresponding planes. The estimated transformation was then evaluated by us-
ing it to transform the other 320 − k points and computing the mean point-to-plane
distance between the transformed points and their correct corresponding planes. Each
trial consists of generating a test set, then repeating the selection of k points and trans-
formation estimation 100 times for this test set. Of the resulting 100 transformations,
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(a) (b)

Fig. 5. Real-world experiment with a 6-degrees-of-freedom robotic arm. (a) 3D contact position
data were collected for 100 points on the surface using a built-in contact detection function and
built-in encoders of the robotic arm. (b) Plane fitting of the 3D points and the correspondences of
the points to the planes in the CAD model using the method of Section 3.

the solution for the trial is the one transformation that provides the minimum mean
distance.

Figure 4 plots errors in estimated rotation and translation with varying noise levels.
For each configuration, the errors plotted are the average of 100 trials. For each number
of planes (n = 3, 4, 5, 6), we compare our minimal solutions for every possible con-
figuration of 6 points (as well as the non-minimal configurations for 3 planes that were
included in Table 1) to a least-squares solution for the same number of planes using
12 or 20 points without orthonormality constraints. In all cases, our minimal solutions
yield smaller errors than the least squares method. Note that the least squares method
completely fails in the case of three planes. Thus, our transformation is useful not only
for the minimal configurations but also in non-minimal configurations such as (3, 3, 3).

Contact Sensor. The first experiment, shown in Figure 5, was conducted using a 6-
degree-of-freedom robotic arm with a built-in contact detection function. We used as
the target object a partial surface of an icosahedron, of which four of the 20 faces are
measurable, as shown in Figure 5. The robot automatically measured 100 points (con-
tact positions) on the surface; each point was measured by first moving the probe to
a random x, y position and then moving down towards the surface (in the negative z
direction) until it sensed a contact. We clustered the points using a simple RANSAC-
based plane fitting algorithm. There were four main clusters corresponding to the four
planes of the icosahedron used in the experiment. Next, the method described in Sec-
tion 3 was used to find the correspondences between these clusters and the planes in the
3D model. Given these correspondences, we applied our point-to-plane algorithm using
several of the minimal 3-plane and 4-plane configurations. As in the simulations, we
repeated the following process to determine the solution: randomly selecting k points,
solving for the transformation, and evaluating the mean distance of the transformed re-
maining points to the 3D model. The final point-to-plane distance error for all of the
inliers was about 3% of the overall size of the scene. The least squares method failed
completely for the 3-plane case (similar to the results shown in Figure 4). In the 4-plane
case, the least-squares error was about 10 times larger than the error of the minimal
solutions.
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(a) (b) (c)

Fig. 6. (a) An input stereo pair of photos taken in Boston’s financial district, overlaid with the
points that we matched and reconstructed in 3D. (b) We identify four clusters in the reconstructed
3D points (a single point and three planar clouds of points) using a plane-fitting algorithm. (c)
The four planes in the 3D city model corresponding to the identified clusters shown in (b).

Registration of 3D point clouds to polyhedral architectural models. Given a plane-
approximated coarse 3D model of the city of Boston obtained from a commercial web-
site (http://www.3dcadbrowser.com/), we performed localization within the map using
a pair of images of a scene in Boston’s financial district. To obtain 3D points from
the image pair, we matched Harris features and applied standard structure-from-motion
algorithms.

Using a RANSAC-based plane fitting algorithm, we fit planes to the reconstructed
3D points. We computed 3 planes from the reconstructed points as shown in Figure 6.
A coarse initialization is manually provided and the nearest planes in the 3D model
are identified. All of the planes shown in Figure 6(c) (more than 10 planes) were used
from the 3D model of Boston. Using the method described in Section 3, we obtained the
correspondences between four clusters (a single point and three planar clouds of points)
and four planes in the 3D model. The plane corresponding to the ground had only one
3D point due to occlusion from pedestrians and cars. (Note that it was important to have
at least one point on the ground in order to determine the vertical translation.) Applying
our minimal algorithms for the 4-planes case yielded results with an error of just 0.05%
of the overall size of the scene.

Our point-to-plane registration algorithm can also be used for merging partial re-
constructions obtained from multi-view reconstruction techniques [22,23], as shown
in Figure 7. In order to obtain a 3D model from 30 images, we subdivide the images
into two clusters of 15 images each. We reconstruct 3D point clouds from each im-
age cluster and use the superpixel segmentation of a common image to register them.
The 3D points from the first cluster are reprojected onto the superpixel image and used
to compute the plane parameters for each superpixel. (We eliminate superpixels with
insufficient or non-planar points.) The superpixel segmentation of the common image
gives us the correspondences between the points in the second cluster and the planes
obtained from the first cluster. We obtain the 3D registration using a RANSAC frame-
work, in which we select three or more non-degenerate planes (See section 2.4) and the
corresponding minimum number of points.

Previous work merging partial 3D models obtained multi-view 3D reconstruction
has used non-minimal iterative approaches [24]. However, initializing with a minimal
solution, such as the one described here, may be critical for noisy 3D data. In addition,



448 S. Ramalingam et al.

(a) (b) (c) (d)

Fig. 7. Registering two point clouds, each generated by applying multi-view reconstruction tech-
niques to 15 images. (a) One of the images used in 3D reconstruction. (b) superpixel segmenta-
tion of the image shown in (a). (c) The 3D points from the first (blue) and second (red) clouds
are reprojected onto the superpixel image. The points from the first point cloud are used to com-
pute the superpixel plane parameters, while the second point cloud is preserved as points. The
correspondence between the points from the second cloud and the planes obtained from the first
cloud are determined by the underlying superpixel. (d) 3D model after merging the two partial
reconstructions from the two clusters. [Best viewed in color]

there are two general advantages of point-to-plane rather than point-to-point registra-
tion: (1) accuracy [25], (2) compact representation of the 3D models (about a million
3D points are represented using few hundred superpixel planes).

6 Discussion

The development of minimal algorithms for registering 3D points to 3D planes provides
opportunities for efficient and robust algorithms with wide applicability in computer
vision and robotics. Since 3D sensors typically do not perceive the boundaries of objects
in the same way as 2D sensors, an algorithm that can work with points on the surfaces,
rather than surface boundaries, is essential. In textureless 3D models, for example, it
is easier to obtain point-to-plane correspondences than point-to-point and line-to-line
correspondences.

Acknowledgments. We would like to thank Jay Thornton, Keisuke Kojima, John Barn-
well, and Haruhisa Okuda for their valuable feedback, help and support.
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Abstract. We propose a novel technique that significantly improves

the performance of oriented chamfer matching on images with cluttered

background. Different to other matching methods, which only measures

how well a template fits to an edge map, we evaluate the score of the

template in comparison to auxiliary contours, which we call normalizers.

We utilize AdaBoost to learn a Normalized Oriented Chamfer Distance

(NOCD). Our experimental results demonstrate that it boosts the de-

tection rate of the oriented chamfer distance. The simplicity and ease of

training of NOCD on a small number of training samples promise that

it can replace chamfer distance and oriented chamfer distance in any

template matching application.

1 Introduction

Chamfer matching has been widely used for edge based object detection and
recognition in computer vision. However, its performance is seriously limited in
cluttered images. One of the main drawbacks of chamfer matching is the fact
that a given template often fits better to a cluttered background than to the
location of a true target object. Oriented chamfer matching (OCD) [17] adds
orientation information, which significantly improves the performance of cham-
fer matching, but the problem still remains, as illustrated in Fig. 1. The proposed
approach provides a solution to this problem by comparing the matching score
of the template to normalizers, which are curve segments of varying but simple
shape. There are two key properties of the normalizers. (1) If the target template
matches well to a cluttered background, then very likely some of the normalizers
match well too. (2) If the template matches well to a true object location, it is
very unlikely for any normalizer to match well. Consequently, the normalized ori-
ented chamfer distance (NOCD) significantly improves the discriminative power
of OCD. Some examples are shown in Fig. 1.

Since it is hard if not impossible to satisfy (1) and (2) with a finite set of
normalizers for a given set of target templates, we treat normalized chamfer
distances as weak classifiers and employ AdaBoost to learn their weights. The
weights provide a soft way of selecting adequate normalizers for a given tem-
plate. As our experimental results demonstrate, AdaBoost is able to learn the
normalizer weights on a small set of training images, which makes the proposed
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Fig. 1. Example detection results on 250 test images from TU Darmstadt Pedestrian

Dataset. The first row shows the detection results of the proposed NOCD, while the

second row shows oriented chamfer matching results. The green rectangle denotes the

ground truth bounding box.

approach suitable for all practical applications currently based on (oriented)
chamfer matching.

The paper is structured as follows. In Section 3, we review basic definitions
of chamfer distance and oriented chamfer distance. The new concept of distance
normalization is introduced in Section 4. and AdaBoost learning of their weights
is described in Section 5. Section 6 describes a simple framework for object
detection. Finally, Section 7 introduces our set of normalizers. The performance
of our method is evaluated and compared to OCD in Section 8.

2 Related Work

There is a large number of applications of chamfer matching in computer vision
and in medical image analysis. Chamfer distance was first introduced by Barrow
et al. [2] in 1977 with a goal of matching two collections of contour fragments.
Until today chamfer matching is widely used in object detection and classifica-
tion task due to its tolerance to misalignment in position, scale and rotation.
Borgefors [16] introduced a modified chamfer matching method called hierar-
chical chamfer matching, which could be regarded as a coarse-to-fine process
by matching edge points using a resolution pyramid of the image. This method
focuses on alleviating the computational load for chamfer matching. Meanwhile,
chamfer matching meets the real-time system requirement due to fast imple-
mentations of distance transforms. Gavrila and Munder [3] performed template
matching based on chamfer distance transform as a core technique to construct
a real-time detection system of pedestrians.

Leibe et al. [4] used chamfer matching to detect pedestrian in crowded scenes,
and combined segmentation as a verification to prevent the false alarms that
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mostly lie in the cluttered background. Stenger et al. [6] introduced a tem-
plate hierarchy which is formed by bottom-up clustering based on the chamfer
distance. In [7], Opelt et al. used chamfer distance to score each boundary frag-
ment for selection of candidate contour fragments. Opelt et al. also compared
each boundary fragment from each category to all existing alphabet entries using
chamfer distance in [8]. Other methods that utilize chamfer distance as shape
similarity metric include [9,13,20]. Chamfer distance plays also an important role
in medical image analysis, e.g., [10,11,12].

However, methods that utilize chamfer distance to measure the similarity be-
tween the template and edge maps suffer from mismatching to the cluttered
background. It is generally agreed that main negative effect of using chamfer
distance is the potential risk of increasing false alarms occurring in background
with high level of clutter noise. Thayananthan et al. [14] compared the localiza-
tion performance of chamfer matching and shape context [15], and concluded
that chamfer matching is more robust in clutter than shape context matching
even though most failure cases in chamfer matching are still due to false positive
matches.

Recently, Shotton et al. [17] proposed an oriented chamfer distance (OCD)
that exploits edge orientation information in the form of edge gradients. OCD
linearly combines chamfer distance and orientation difference between template
points and their closest matches, which leads to reduction of mismatching cases
to the noisy background. Trinh and Kimia [25] proposed Contour Chamfer
Matching (CCM) to improve OCD. In this method, based on the observation
that the accidental alignment between a contour and the image edges always
forms a zig-zagging contour, after finding the corresponding points in edge map,
another orientation for edge points is computed based on the new generated
curve, and an additional term which is the difference in tangent direction is
taken into account when computing the Contour Chamfer Distance.

Since proposed method is not designed specifically for oriented chamfer dis-
tance, it could be also used to boost the performance of any distance metric
that aims to capture edge support for a model. In particular, it would be possi-
ble to apply the proposed method to Hausdorff distance and oriented Hausdorff
distance proposed in [26,27], which is also widely used in computer vision appli-
cations. However, in [17] experimental evidence is provide that OCD has better
performance than Hausdorff distance.

3 Oriented Chamfer Distance (OCD)

In this section we define chamfer distance and oriented chamfer distance (OCD),
which is a simple linear combination between distance and orientation terms.

Chamfer Distance. Chamfer distance was first proposed in [2] as an evaluation
of 2D asymmetric distance between two set of edge points. It is tolerant to slight
shape distortion caused by shift in location, scale and rotation. Given a template
T positioned at location x in an image I and a binary edge map E of the image
I, the basic form of chamfer distance is calculated as
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d
(T,E)
cham(x) =

1
|T |

∑
xt∈T

min
xe∈E

||(xt + x)− xe||2 , (1)

where ||.||2 is l2 norm and |T | denotes number of points in template T . Chamfer
distance can be efficiently computed as:

d
(T,E)
cham(x) =

1
|T |

∑
xt∈T

DTE(xt + x) , (2)

where DTE is a distance transform defined for every image point x ∈ I as

DTE(x) = min
xe∈E

||x− xe||2 . (3)

Meanwhile, in practice, distance transform is truncated to a constant τ [17]:

DT τ
E(x) = min(DTE(x), τ) (4)

This reduces the negative effective due to missing edges in E, and allows nor-
malization to a standard range [0, 1]:

d
(T,E)
cham,τ (x) =

1
τ |T |

∑
xt∈T

DT τ
E(xt + x) . (5)

Oriented Chamfer Distance (OCD). Shotton et al. [17] proposed an im-
proved chamfer distance called oriented chamfer distance (OCD), which adds
additional robustness by exploiting edge orientation information. To define it,
we first need a notation of an argument of a distance transform (ADT) that
gives the locations of a closest point.

ADTE(x) = arg min
xe∈E

||x− xe||2. (6)

To evaluate a mismatch in orientation, the difference in tangent directions is
computed

d
(T,E)
orient(x) =

2
π|T |

∑
xt∈T

|φ(xt)− φ(ADTE(xt + x))| , (7)

where φ(x) denotes tangent direction at point x and ranges between zero and π.
|φ(x1) − φ(x2)| gives the smallest circular difference between φ(x1) and φ(x2).
Using a simple linear combination between the distance and orientation terms,
oriented chamfer distance is defined as

OCD
(T,E)
λ (x) = (1− λ) · d(T,E)

cham,τ (x) + λ · d(T,E)
orient(x) . (8)

For clarity, we will omit E and λ below when possible, and use OCD(T, x) =
OCD

(T,E)
λ (x) to represent the oriented chamfer distance of template T at loca-

tion x ∈ I.
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4 Normalization of Oriented Chamfer Distance
Although oriented chamfer matching adds orientation term to avoid mismatch-
ing, cluttered background still may match much better to the template than
the real object contours. The reason is that cluttered background offers a large
variety of edge orientations, consequently, any shape has a large probability of a
good oriented chamfer score. This suggests that we need to compare the score of
the target template with scores of some random shapes. If both have good OCD
score at a given location, then the template match is most likely to be accidental.
Based on this insight, we introduce a normalizer as an auxiliary, random shape
to evaluate how well the template matches to the edge map at a certain loca-
tion. For a target template T , we propose to generate K normalizers, denoted
by N = {ηk| k = 1, . . . ,K}. A procedure to generate normalizes is described
in Section 7. Instead of only calculating OCD(T, x) at each location x, we also
compute OCD(ηk, x), and compare the ratios

Rk(T, x) =
OCD(T, x)
OCD(ηk , x)

. (9)

We call Rk(T, x) a normalized score.
Now we provide some details about the role of normalizers in improving cham-

fer score. The analysis is divided into three qualitative cases that illustrate an
intended correct behavior of the normalizers. In practice, not all normalizers will
behave in this way, which is addressed in Section 5.

Case 1: At a correct location containing a target object in a given image,
OCD(T, x) is small and OCD(ηk , x) is large, so that OCD(T, x) < OCD(ηk, x).
Consequently, Rk(T, x) will become comparatively smaller than OCD(T, x),
which better indicates a correct match.

Case 2: In a cluttered area in which the target object is not present, both
OCD(T, x) and OCD(ηk, x) are small, but OCD(T, x) > OCD(ηk, x), so
Rk(T, x) will become comparatively larger than OCD(T, x), which better in-
dicates a wrong match.

Case 3: In an area that is neither cluttered nor contains the target object,
both OCD(T, x) and OCD(ηk, x) are large, but OCD(T, x) > OCD(ηk, x),
so Rk(T, x) will become comparatively larger than OCD(T, x), which better
indicates a wrong match.

Cases 1 to 3 clearly demonstrate that normalizers increase the discriminate
power of OCD. However, they are based on an assumption that we have an ideal
set of normalizers {ηk| k = 1, . . . ,K} behaving as described in cases 1 to 3.
Even though it may not be possible to find normalizers satisfying cases 1 to 3
for a given template T , we propose to utilize machine learning methods to learn
which normalizers yield correct scores Rk(T, x) for a given template T . For a
given set of candidate normalizers, we use AdaBoost in Section 5 to learn the
weights of normalized scores Rk(T, x). Thus, we treat each normalized score as a
weak classifier. The weights provide a soft selection of a set of normalizers with
our intuition being that this selection best approximates the behavior described
in cases 1 to 3.
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5 Learning Normalized OCD with AdaBoost

The standard AdaBoost [18] allows us to select a set of normalizers by assigning
weights to their normalized scores and to combine them as a weighted linear
combination, which yields a more robust matching score. Given is a set of train-
ing images with positive and negative examples, i.e, a set of bounding boxes
containing the target object and a set of bounding boxes without the target
object. AdaBoost automatically learns the weight for each weak learner and
combine them to form a strong learner [21,22]. We use the ratios Rk(T, x) as
weak learners for k = 1, . . . ,K. To be precise, a weak learner is defined as

hk(T, x) =

{
1 for Rk(T, x) < thk

0 for otherwise.
(10)

In each iteration 1, . . . ,K, we search for a weak learner with the best detection
performance on the training set. During the search, the optimal threshold thk

for each weak learner is chosen to minimize the misclassification error (ME).
At each iteration of AdaBoost, each training example carries a classification
weight. ME is defined as the sum of the classification weights of misclassified
training examples (both positives and negatives). As the output we obtain a
strong learner

H(T, x) =
K∑

k=1

wk · hk(T, x) (11)

In the AdaBoost terminology, the value of the strong learner indicates how likely
a given image location x belongs to the class of template T . The larger the value
the most likely this is the case. We propose to replace the oriented chamfer
distance of T with the value of H(T, x). We define a Normalized Oriented
Chamfer Distance as NOCD(T, x) = H(T, x). While OCD is a distance in
that the smaller is OCD value the better, NOCD is a similarity measure, i.e., the
larger the NOCD value, the most likely the target object is present at location x.

We use a simple strategy to select training examples for AdaBoost. Given is a
set of training images with ground truth bounding boxes enclosing target objects.
For each training image we select only 5 positive and 5 negative examples. As 5
positive examples we randomly select 5 locations in a small neighborhood around
the ground truth locations. We select as negative examples 5 locations x with
locally smallest oriented chamfer distance OCD(T, x) such that the area of the
intersection of the bounding box centered at x with any ground truth bounding
box is less than 50%.

6 Object Detection with NOCD

In order to be able to evaluate the performance of NOCD, we describe a very
simple approach for object detection in this section. We keep it simple to allow
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for clear comparison to OCD. However, we use a flexible shape model in our
approach in order to be able to evaluate the performance of the proposed NOCD
on state-of-the-art test datasets.

Our flexible object model is denoted as M = {Bi| i = 1, . . . , N}, where Bi

is a part bundle composed of contour parts describing the same location on the
contour of a given shape class, e.g., human head or arm, and N is the number
of bundles in model M. Contour parts from bundle Bi are represented by cij ,
and hence Bi = {cij |j = 1, . . . ,Mi}. Since every part bundle Bi describes a
specific part of an object, we assume that Bi

⋂
Bj = ∅ if i �= j. Fig. 2 shows an

example of human model, here N = 4 and Mi = 5 for i = 1, 2, 3, 4. Our model
was manually constructed. Thus, our model contains the total of 20 contour
parts cij . Each part cij is treated as template T , and NOCD(cij , x) is learned
as describe in Section 5.

Fig. 2. Human model M composed of 4 part bundles B1, B2, B3, B4 representing head,

front, back, and leg parts, respectively. Each bundle has 5 contour parts.

For an input image I, we first use Canny edge detector to compute the edge
map E. For each location x in I, we use NOCD(cij , x) to represent the nor-
malized oriented chamfer distance of model contour part cij placed at point x.
With a simple but efficient sum-max framework, the model fit at point x ∈ I is
defined as:

SI(M, x) =
N∑

i=1

max
cij∈Bi

NOCD(cij , x) . (12)

Thus, we select from each bundle Bi the part with the largest NOCD score and
sum the maximal scores over the bundles in the shape model M. Using sliding
window we calculate SI(M, x) at each point x ∈ I. We define the model fit score
as
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SI(M) = max
x∈I

SI(M, x) (13)

and the detection center point as point x∗ ∈ I as

x∗ = argmax
x∈I

SI(M, x) (14)

The detection results for OCD follow the same framework, but with max re-
placed with min in the above formulas.

7 Normalizers

It remains to describe how we select a set of normalizers {ηk| k = 1, . . . ,K}. We
first observe that a good normalizer should be more likely to match to noise than
a given contour part. This implies that a normalizer should have a significantly
simpler shape than the contour parts of a target shape model. We also want that
a normalizer should be less likely to match to a true object edges in an image
than a given contour part. Consequently, normalizers should not be similar to
any contour parts in our shape models.

Fig. 3. Basic normalizers. Our set of basic normalizers contains 11 simple shapes.

We satisfy both constrains by first generating a small set of simple geometric
curves that are treated as a basic structuring elements to generate a set of nor-
malizers. A set of 11 basic shapes that we have selected is shown in Fig. 3. They
form the first 11 elements of our set of normalizers N = {ηk| k = 1, . . . ,K}.
We obtain further normalizers by pairwise combining the 11 structuring ele-
ments, where the combination is simply a union of their aligned images. Since
the normalizer combination is symmetric and we only combine different struc-
turing elements, we obtain 55 = (11×10)/2 additional normalizers. Fig. 4 shows
a complete set of K = 66 normalizers obtained this way. They are ordered
according to their weights obtained by the sum of AdaBoost weights of their
corresponding weak classifiers by training the AdaBoost strong classifiers on
the TU Darmstadt pedestrian dataset [1] (see Section 8 for more details). A
larger weight indicate that a given normalizer makes more contribution in help-
ing NOCD distinguish true positive from clutter background. The weight order
of the normalizers confirms the simplicity principle that guided our design of
normalizers in that simpler normalizers are usually more significant. However,
the weights of the normalizers are also influence by their ability to match well
to noise, which may be image class specific. For example, straight lines in hor-
izontal and vertical direction belong to a common background clutter in inner
city images as the images of the TU Darmstadt pedestrian dataset.
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Fig. 4. Our 66 normalizers displayed in order of their weights

For each contour part of a target model cij , we resize the normalizers to let
them have the same bounding box as the contour part cij . Consequently, the
resized normalizers cover the same area. Fig. 5 shows the resized normalizers
generated for each bundle of the human model.

Fig. 5. Human model normalizers. The resized normalizers for four part bundles

are shown in blue. The red curves are the original model parts for each bundle.

8 Experimental Evaluation of Detection Rate

In this section we compare object detection performance of the proposed normal-
ized oriented chamfer distance (NOCD) to the oriented chamfer distance (OCD)
and to chamfer distance on standard test datasets. The detection method is
described in Section 6. We use exactly the same flexible models and the same
experimental settings for both methods. In particular, for each image, the edge
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map was computed by the canny edge detector with the same threshold. The
chamfer distance was computed exactly as defined in formula (5). The same con-
stants τ and λ were used to truncate the distance transform and linearly combine
the distance and orientation terms when calculating the oriented chamfer dis-
tance. Results are quantified in terms of detection rate. We use the standard
PASCAL criterion to identify correct detections. A detection is regarded as cor-
rect if the area of the intersection of the bounding box containing the detected
object with the ground truth bounding box is at least 50% of the area of their
union.

TU Darmstadt Pedestrian Dataset. Human detection is very challenging for
shape-based matching methods, because in many poses the shape of human
contours is relatively simple. In surveillance images, there is often a complex
background, while humans are relatively small, which also increases the chance
for an accidental matching.

TU Darmstadt pedestrian dataset [1] consists of several series of video images
containing side-view humans. It provides two training datasets, one has 210
images and another has 400 images. In our experiment, we use training 400
dataset for the training of NOCD. After that, we test both NOCD and OCD
on the test dataset with 250 images. The 250 test images are significantly more
challenging than the 400 training images. To handle the variance of the human
shape caused by people walking in opposite directions, we flip our model with
respect to vertical axis, and take the best score of the original and flipped models.
Consistent with the results of the λ learning procedure reported in Shotton [17],
we also observed that detection accuracy of oriented chamfer distance increases
when λ becomes larger. In all human detection experiments, we used λ = 0.8 for
both OCD and NOCD, which was the best performing. As it is often the case
in AdaBoost applications, we discarded weak classifiers with very small weights.
After training phase, we retained only 37 normalizers with largest weights to
form the strong leaner for each model contour part. This allows us to reduce the
object detection cost complexity.

The detection rate is shown in Table 1. We observe that the proposed NOCD
nearly doubled the detection rate of OCD on the 250 test images. The improve-
ment is very significant given the fact that the detection rate of OCD is very
low: 35.2%.

Several detection results are displayed in Fig. 1. As they illustrate OCD fails
when the human contours are broken and distorted while at the same time the
background is cluttered. This is exactly when the proposed NOCD performs ex-
tremely well. We also report the performance of pure chamfer distance in Table 1.
in order to show that OCD performs significantly better than chamfer distance
on this dataset. Further, we include the detection rates of state-of-the-art ap-
proaches estimated form graphs reported in [1]. We observe that our detection
rate is compatible to a popular appearance based detector, HOG [23]. We stress
that our approach is still a matching approach. Andriluka et al. [1] obtained the
currently best performance on this dataset. It is obtained by an approach specif-
ically designed for pedestrian detection that utilizes a sophisticated statistical
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Table 1. Detection rate on Test 250 of the TU Darmstadt Pedestrian Dataset. The

proposed NOCD doubled the OCD detection rate with exactly the same contour model.

Chamfer distance 4.4% HOG [23] 72%

OCD 35.2% 4D-ISM [24] 81%

proposed NOCD 70% Andriluka et al. [1] 92%

Table 2. Detection rate on Cow Dataset

Chamfer distance 73.9% proposed NOCD 91.0%

OCD 73.9% Zhu et al. [19] 88.2%

inference framework and learning to handle articulations; both not present in
our approach. Similarly, the approach in [24] is designed to handle articulations
for pedestrian detection.

Cow dataset. This dataset [5] is from the PASCAL Object Recognition Database
Collection. There are 111 images in which cows appear at various positions. Since
no training part is provided, we divided the dataset into two parts. We used first
55 images to train our detector, and tested it on the remaining 56 images. Then
we trained on the second part, and tested on the first 55 images. This way we
are able to report our performance on the whole dataset. The detection rates
are shown in Table 2. Again we report a substantial increase in the detection
rate by over 17% of NOCD in comparison to OCD. Interestingly, OCD is not
able to improve the performance of pure chamfer distance. For this dataset, we
used λ = 0.2, which indicates that the orientation information is not particularly
useful. This is most likely due to a particular kind of background clutter present
in this dataset as can be seen in the example result images in Fig. 6. The areas
with dense vertical lines in the edge maps confused oriented chamfer matching.
Oriented chamfer matching could not tell the ground truth location from such
noise, since most of the false alarms appear in that area. The proposed NOCD
was able to learn the difference between such noise and the true targets. For
images with little clutter in the background, both OCD and NOCD performed
equally well.

The performance of NOCD on this dataset also compares favorably to a very
sophisticated learning and inference approach published very recently by Zhu
et al. [19]. This comparison may not be quite fair, since this approach uses
one-example learning, while our flexible cow model is constructed from 5 cow
contours. However, on the other hand our detection algorithm is a simple max-
sum. Thus, we do not employ any sophisticated inference in the detection process.

Infrared images. Without extra training, we use the same human model and the
same normalizers as for TU Darmstadt Pedestrian dataset to carry out several
tests on infrared images. In these images, humans are small, about 60×40 pixels,
which increase the possibility of misalignment to background. Some detection
results are shown in Fig. 7.
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Fig. 6. Example detection results on the cow dataset. Left column NOCD. Right col-

umn OCD. Green rectangle denotes the ground truth object location.

Fig. 7. Detection result for infrared images. The original images are in the first column.

The second column shows result of NOCD while the third column shows the results

of OCD. Blue and red dots represent the corresponding parts of the model. Green

rectangle denotes the ground truth bounding box. The edge map is overlaid in white

on the original images.

9 Conclusions

By adding the term of orientation in the evaluation of the score, oriented cham-
fer distance is more robust to accidental alignment to the background noise than
chamfer distance. However, as our experimental results clearly demonstrate this
still does not solve the problem of matching to cluttered background, which
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often leads to a better score than the score at true object location. The pro-
posed NOCD provides a solution to this problem by utilizing AdaBoost to learn
normalization of OCD. The key idea is to compare the chamfer matching score
of a given template to scores of a set of normalizers. The obtained ratios are
interpreted as weak learners, and the strong learner obtained by AdaBoost is
interpreted as a normalized OCD. Based on specific application, the proposed
method could be modified by replacing oriented chamfer distance with oriented
Hausdorff distance, or using sparse logistic regression instead of Adaboost in
training phase.
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Abstract. In this work we investigate an inverse geometry problem.

Given a light source, a diffuse plane and a caustic image, how must a

geometric object look like (transmissive or reflective) in oder to project

the desired caustic onto the diffuse plane when lit by the light source? In

order to construct the geometry we apply an analysis-by-synthesis ap-

proach, exploiting the GPU to accelerate caustic rendering based on the

current geometry estimate. The optimization is driven by simultaneous

perturbation stochastic approximation (SPSA). We confirm that this al-

gorithm converges to the global minimum with high probability even in

this ill-posed setting. We demonstrate results for precise geometry re-

construction given a caustic image and for reflector design producing an

intended light distribution.

1 Introduction

The automatic construction of geometric objects from a predetermined prop-
erty is an important engineering task. We address the problem of constructing a
transmissive or reflective surface, that, given a predefined light position, creates
an a priori defined caustic image. This task of creating a specific caustic occurs
in the design of headlights, of parabolic concentrators for solar cells or interior
design, see for example Figure 1. The same approach can also be used to recon-
struct the surface geometry of a real object given only an image of its caustic.
Even though this is an ill-posed problem we show how in many cases reasonable
reconstructions can be achieved.

The geometry estimation follows an analysis-by-synthesis approach. The pro-
cedure starts with an initial surface whose geometry is subsequently optimized
to minimize the mean squared error (MSE) between the target caustic and the
current caustic image. The MSE is the only measure applied to determine the
quality of the constructed geometry. A standard optimization algorithm for such
a problem would be the simulated annealing (SAN) algorithm [1, 2]. However,
our results show that the simultaneous perturbation stochastic approximation
(SPSA) optimization algorithm [3] is more robust and converges much faster in
this setting.

One contribution of our work is the use of SPSA as a global optimizer for
this kind of problem. For the evaluation of the objective function we present a
specialized and optimized implementation that exploits GPUs for a fast evalua-
tion. It efficiently renders single bounce reflections or refractions. The proposed

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 464–477, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. The left image shows four of our optimization targets for which we generated

geometry with our proposed optimization approach. The second and third image show

a physically correct light transport simulation illustrating the results. For the living

room scene we optimized a glass table to cast the predefined caustic. The letters E C

C V in the right image are caustics from parabolic reflectors with a small embedded

light source. The last image shows one half of such an optimized parabolic reflector.

optimization framework is flexible to work on connected or disconnected triangle
meshes and further can operate on C2 continuous B-spline surfaces. One unique
feature of our method compared to other methods like [4, 5] is the degree of
freedom we can deal with due to utilizing SPSA for optimization. In the case of
the parabolic reflectors in Figure 1 the B-spline patches have about 4000 con-
trol points which have to be optimized. We explore the use of our framework
for reflector design, for geometry reconstruction of water surfaces and for light
concentrating glass objects.

2 Related Work

A recent survey for various ways of reconstructing specular and transparent
geometry has been assembled by Ihrke et al. [6]. Direct geometry measurement
techniques are based on structured illumination [7, 8] and multiple input images.
They apply shape from distortion [9–11], shape from specular highlights [12, 13],
optical tomography [14], or inverse ray-tracing [15, 16]. Our reconstruction
method falls into the last category but uses a single intensity distribution image
as input and therefore requires optimization.

Morris et al. [17] demonstrated the reconstruction of a water surface by utiliz-
ing two cameras and a known pattern placed under the water surface. With some
restrictions to the setup, for instance secondary refractions or reflections have to
be suppressed, they were able to reconstruct the surface correctly. Reconstruct-
ing a water surface is not the scope of this work, nevertheless our methods could
be applied to this task.

Kutulakos et al. [18] investigate the theoretical background of reconstructing
arbitrarily-shaped specular scenes. They reduced the problem of 3D shape re-
construction to reconstruction of light paths that cross the image plane. They
showed, that it is impossible to reconstruct a light path when the light is reflected
or refracted more than twice. In all other cases, three viewpoints are enough for
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successful reconstruction. This insight limits the generality of our approach, as
a single caustic image allows us to consider a single surface interaction only. In
addition Ramamoorthi et al. [19] provides a theoretical framework for inverse
rendering problems.

Patow [20] and Patow et al. [21, 22] investigated the specific problem of re-
flector design to obtain surfaces that produce an intended light distribution for
a given light source position. They applied an analysis-by-synthesis approach
using a brute force search and SAN in order to optimize the reflector for the dis-
tribution. Early work on the reflector design problem was done by Neubauer [23],
Caffarelli et al. [24], and Wang [25, 26].

Recent approaches directly operating on NURBS-surfaces and utilizing an
analysis-by-synthesis approach are presented by Anson et al. [4] and Mas et al. [5].
However, the search space was restricted to only two dimensions and rotationally
symmetric reflectors, and four dimensions respectively.

Recently, Weyrich et al. [27] presented a method of fabricating micro geom-
etry with custom reflectance probability. They first computed a set of micro
facets which produces the selected reflectance distribution. However, the result-
ing micro facets are not connected, so they utilized a SAN optimization process
to arrange them in a (nearly) tileable way. Our approach generates compara-
ble results on disconnected meshes but is flexible enough to optimize watertight
surfaces as well. Beyond that, our SPSA-based system works efficiently for both
reflective and refractive surfaces.

3 Optimization Framework

Caustics occur when a specular or refractive object focuses light onto a diffuse
surface. Caustics are often caused by water surfaces, glass objects, such as lenses,
or concave mirrors as one finds them in headlights. In photo-realistic image
synthesis a common task is to simulate these caustics [28]. In this work, we ask for
the inverse problem: Given the caustic image, what is the geometry of the caustic
generating surface? During optimization we apply a simplified rendering system
(Section 5) which ignores multiple scattering inside the reflector or refractor.

We can not use methods as in [17, 18], because the directional information
of the incident light onto the diffuse surface is not available in a single caustic
image. Hence, we are not able to directly reconstruct the light paths which
would allow us to reconstruct a single reflective or refractive surface directly.
Furthermore, as the incident direction to the diffusor is unknown the problem is
not well-defined, even the simple case where all the light is focused on a single
point is not uniquely solvable. The solution could be a small lens directly in front
of the light source, or a huge lens further away from the light source.

Therefore, we use an analysis-by-synthesis approach to find an appropriate
solution. The reflecting or transmitting surface is represented as a triangle mesh
or in most examples as C2 continuous B-spline patch which is either initialized as
a planar surface, or a parabolic surface (mainly used for reflector optimization).
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The number of control points is arbitrary, for the results presented here we use
122 up to 642 control points. The control points are fixed in their xy-position,
only the z-coordinate is modified during optimization. Allowing for varying xy-
coordinates would not only increase the dimensionality of the problem, it would
also complicate the optimization process, i.e., preventing self occlusion would
not be trivial in such a setting. The B-spline patch is described by one state
vector θ, with dimensionality p equal to the number of control points. Hence,
we search for an optimal solution vector θ∗ in the problem space Θ ⊆ Rp. The
optimal solution is defined by the global minimum of the objective function L(·),
which in our case is the MSE between the current caustic image and the target
caustic image.

The missing pieces to fully describe our framework are the employed opti-
mization algorithm and the evaluation of the objective function which includes
the costly computation of the caustic. These points are discussed in the next
two sections.

4 Optimization Using SPSA

The optimization is carried out by performing a random walk on the problem
space Θ. In each iteration a new candidate solution θk+1 is computed by adding
a specific step vector to the current state vector θk. In contrast to simulated
annealing which takes a completely random approach, the SPSA algorithm com-
putes an approximate gradient to determine the best search direction in each
iteration.

The SPSA algorithm belongs to the family of stochastic approximation (SA)
algorithms [29]. The basic form of the SA algorithm when there is no ana-
lytic gradient available is the Kiefer-Wolfowitz finite-difference SA (FDSA) al-
gorithm [30, 31]. The disadvantage of this algorithm is that it needs 2p objective
function evaluations in order to approximate a gradient. Introduced by Spall [3],
the SPSA algorithm overcomes this disadvantage. It consumes only two objec-
tive function evaluations in each iteration in order to approximate a gradient
regardless of the dimensionality of the problem.

Gradient Approximation. The idea is to randomly perturb all elements of
θk to obtain two (probably noisy) measurements of the objective function. More
formally, let y(·) denote a noisy measurement of L(·), i.e., y(·) = L(·) + noise.
Each component i of the k-th approximate gradient gk(θk) is now determined
by,

gki(θk) =
y(θk + ckΔk)− y(θk − ckΔk)

2ckΔki
. (1)

A simple choice for the Δk random vector is to use a Bernoulli±1 distribu-
tion for each component Δki of the vector (with probability 1/2 for each ±1),
in general each Δki has to be independent and symmetrically distributed about
0 with finite inverse moments E(|Δki|−1) <∞ for all k, i [32]. The so-called gain
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Table 1. Choice of the gain sequences

ak a/(A + k + 1)α

α 0.602 (practically effective), 1.0 (asymptotically optimal)

A < 10% of maximum (expected) iterations

a a/(A + 1)α · g0(θ) ≈ smallest desired change among elements in θ

ck c/(k + 1)γ

γ 0.101 (practically effective), 1/6 (asymptotically optimal)

c small positive number ≈ standard deviation of the measurement

Δk Bernoulli±1 distribution

sequence ck controls the distance between the sample points. It is monotonically
decreasing in each iteration to ensure high quality gradients when approaching
the optimum.

The optimization is carried out by moving along this approximated gradient
gk, formally,

θk+1 = θk − akgk(θk) , (2)

where the ak is another gain sequence generating monotonically decreasing step
lengths.

The Gain Sequences. Unfortunately, there is no generally optimal choice
for the gain sequences ak and ck and the random vector Δk in practice, only
theoretically optimal choices are at hand. In [33], some suggestions are given
how to tune these parameters in order to improve convergence, for a summary
see Table 1. The specific choice of SPSA parameters for our purpose is discussed
in Section 6.

Convergence. In general, the order of the error is ε = O(k−1/3) [3, 34, 35]. This
is only the local convergence rate of the algorithm. But as pointed out in [36]
SPSA may work as global optimizer without adding an extra random vector to
the SA-recursion (Eq. 2) [37].

5 Caustic Rendering on the GPU

As the objective function has to be evaluated several thousand or even million
times, a fast implementation of the caustic rendering step is crucial. The main
part of the evaluation of the objective function is the synthesis of the caustic
(about 99% of the computation time is spent there).

The caustic is synthesized by Monte Carlo light transport simulation [28] ig-
noring multiple interactions. We can optimize this simulation specifically for our
task. The simple scene geometry allows for omitting self occlusion, and further
allows direct handling of the ground plane as accumulation buffer. For efficient
simulation we split the B-spline into multiple cubic Beziér patches [38] (see Fig-
ure 2b). The splitting computation is done on the CPU, the resulting Beziér
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Fig. 2. Illustration of the rendering process. In (a) the basic process is illustrated.

Starting from a light source, light rays are connected to the B-spline surface, refracted

(or reflected) and intersected with the ground plane accumulation buffer. (b) shows

how, for sampling purposes, the B-spline surface is split into multiple Beziér patches

and (c) shows 64 Hammersley points used to generate sample points on each Beziér

patch.

patches are than transfered to to GPU memory and the remaining computation
of the caustic is done on the GPU. The basic steps performed on the GPU are
the following (illustrated in Figure 2a):

We start a fixed number of threads (i.e. 64) on the GPU. The number of sam-
ples we take for each Beziér patch is also fixed and a multiple of the number of
threads (so each thread has to take #work = #samples/#threads samples).
For the generation of the sample points we use the Hammersley quasi-Monte
Carlo point set [39] (see Figure 2c). They are well distributed and very simple
to compute,

(x, y) = (i/n, (reverse bits)(i)/0x100000000LL) , (3)

where n = #samples, and i = sample index.
Each thread computes now:

I. initialize ground plane accumulation buffer with zeros
II. for each Bezier patch:

1. sample_index = k + thread_num * work,
where k in range (0,work)

2. compute point (x,y)
3. transform into 3D point on Bezier patch
4. connect point to light source and compute refraction ray
5. intersect with ground plane
6. accumulate contribution with correct weighting

Essential for the correctness of the simulation is the weighting of the samples.
As we directly sample points on the surface patches we have to weight them
according to the projected differential surface area and the squared distance r.
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The differential surface area is given by the length of the cross product of both
directional derivatives (length of the surface normal n), and the projection results
in an additional cosine factor (between normalized surface normal n̂ and direction
d̂ to the light source),

w =
1
r2
||n|| · | < n̂ · d̂ > | . (4)

Additional Optimization. The accumulation of the contribution in step 6
results in random memory read-write access. Further the different threads may
write to the same part of the accumulation buffer, which either leads to the need
of atomic writes or a falsified computation of the caustic. So we simply save
the contribution along with the pixel index in a consecutive array. The array is
transfered to the main memory and the final caustic image is then assembled by
the CPU. By asynchronously calling the CUDA kernel this computation along
with the additional memory transfer can be done mostly synchronous to the
GPU computation.

Efficiency of the method. For example the water surface (see Section 6)
the B-Spline is split into 81 Beziér patches, each patch is sampled with 2048
samples which results in 165888 samples per objective function evaluation. 1000
objective functions are evaluated in less than 4 seconds, which results in 30
minutes overall run time for convergence (System: Intel Core 2 Duo E6850 with
3 GHz and NVIDIA GeForce GTX 285).

6 Results

We apply our framework to a set of different scenarios.

Designing Reflective and Refractive Concentrators. In Figure 1, we de-
sign refractive and reflective surfaces to generate sharp, high contrast patterns at
a specific focus plane. The optimization clearly renders the letters for the glass
table and the parabolic reflector, but can only approximate the sharp transition.
Due to the C2 continuity, the optimized caustic cannot perfectly match the orig-
inal which leads to some background noise in those areas which are intended to
be black. The height variation necessary to produce the output is surprisingly
small compared to the object size.

Headlight Design. A real-world application is shown in Figure 3. Here, a
parabolic head light is optimized to cast a non-blinding, almost homogeneous
spot of predefined shape onto the street. Note the even intensity distribution
in the illuminated region which avoids the hot spot close to the light source
typically generated by headlights. Additional results can be seen in Figure 4.

Optimizing Reflectance Distributions. Inspired by Weyrich et al. [27], we
further investigate generating a specific radiance distribution of an almost planar,
reflective surface for directional illumination. We demonstrate the flexibility of
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Fig. 3. Headlamp Design – from left to right: Predefined shape of the light cone when

projected onto the street. Our resulting distribution after optimization. The difference

to the original distribution. Illustration of the result.

(a) (b) (c) (d) (e) (f)

Fig. 4. Results for parabolic reflector design, (a,d) show the target distribution, (b,d)

the distribution of the resulting reflector, and (c,f) the difference to the target distri-

bution.

Fig. 5. Results for the micro facet optimization. The first image shows the target

distribution, the second image the result by Weyrich et al. [27] with single disconnected

quads. The third image shows the result of applying our optimization approach to

disconnected quads and the last image on a connected triangle mesh. Note that Weyrich

et al. directly samples normals from the target distribution and generates corresponding

quads, hence there is no sample outside the target distribution. With our method it is

possible to directly optimize a closed triangle mesh. We improved our results by adding

a minimal Gauss-blur to the target distribution as it introduces a well-defined gradient

to the error function.

our framework and compare the performance for connected and unconnected
triangle meshes. As shown in Figure 5, optimizing unconnected quads yields
results slightly inferior to Weyrich et al., because in this case the normals can
be directly sampled from the target distribution and need not to be optimized.
However, with our approach it is possible to optimize a closed triangle mesh
which is not possible with their method.



472 M. Finckh, H. Dammertz, and H.P.A. Lensch

geometry

caustic

wavy rough very rough initialization

Fig. 6. Top: Visualization of the ground truth geometry for the global convergence

test. Bottom: Resulting caustics from the above geometry that where fed into the

optimization process. For these tests the optimization is alway initialized with a flat

surface, which results in an average grey caustic.

Geometry Reconstruction for Water Surfaces. In Figure 6, we show the
caustics generated by water surfaces of varying roughness. Our system generates
geometry that reproduces the caustics up to a small error. The Figures 8, 9,
and 10 demonstrate the relationship between the MSE of the caustic images and
the error of the geometry. The geometry error was computed by sampling the
surface at 10000 fixed locations and summing up the squared differences to the
original surface. The size of the surface is 10 by 10cm. The results show that the
optimized geometry most often corresponds well to the original surface.

7 Discussion

To generate the results we used SPSA with the standard gain sequences ak and
ck as given in Table 1 with α = 0.602 and γ = 0.101. The asymptotically optimal
values of α = 1.0 and γ = 1/6 would lead to faster local convergence, however, at
the cost of greatly reducing the probability of convergence to a global optimum.
The parameters a and c are adapted to each specific problem and are exper-
imentally chosen observing the beginning of the optimization. The choice of c
influences the gradient approximation and depends on the noise of the objective
function (Eq. 1). One has to trade off a noisy vs. artificially smoothed gradient
estimation. The value of a controls the step size and thus the convergence be-
havior. Often, if the initial curve of the MSE is too smooth, as it should be at
the end of an optimization, the algorithm directly converges to a nearby local
minimum. a needs to be increased to allow for a more random exploration of the
error landscape. Choosing a too large though will slow down convergence.

Global Convergence. The SPSA algorithm only guarantees a probabilistic
convergence to a global optimum [36]. For decent choices of parameters a and c,
most often, the global optimum in the water surface test cases was found with
the first sequence (see Figure 6, 8, 9, and 10). Whenever the final MSE was
still too large, as in the failure case in Figure 10, we restarted the optimization
with a different random seed, which was never required more than twice in all
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presented cases and could be automatized. Our experimental results verify that
SPSA is suitable for global optimization in our setting.

SPSA vs. Simulated Annealing. The good convergence probability of SPSA
is in contrast to SAN which rarely converged to a decent optimum in bearable
time. The drawback of SAN is that it does not explore the error landscape in a
controlled way. It randomly samples the neighboring space and can not walk into
a specific direction as it does not exploit any gradient information, not even an
approximation. The best results with SAN were achieved for the smooth test case
of Figure 6 where the initial solutions is already near the global optimum. With
SAN, we obtained decent results on the unconnected triangle mesh in Figure 5,
but it completely failed at optimizing the parabolic reflectors, probably due to
the complexity of the problem.

Manufacturing. We did not manufacture the reflectors and refractors we op-
timized, but we verified our results by the means of physical light transport
simulation (see Figure 1). We also simulated the precision of a typical milling
machine and randomly perturbed the estimated geometry (see Figure 7).

Fig. 7. Results for the precision simulation, from left to right: E-reflector with randomly

perturbed control points (+−0.02mm) and the difference to the result with no induced

error. Again the E-reflector now with a random perturbation of + − 0.2mm, the ”E”

nearly vanishes in the noise. The last two images show the SPSA optimization of the

very rough test case after 250000 iterations, the geometry error corresponds to an

average error of about 0.1mm.
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Fig. 8. On this input data the a parameter can be chosen arbitrarily out of a large

interval. The reason for this is, that the next nearby local optimum is identical to the

global optimum. However, with even smaller values for a the convergence rate of the

algorithm would be greatly reduced and with larger ones the algorithm might jump

over the global optimum. Note that the remaining difference in the geometric error is

extremely small and corresponds to an average error of less than 0.01mm.
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Fig. 9. SPSA and SAN applied to the very rough test case given in Figure 6. SPSA

converges to the correct result, SAN converges much slower. The left images show the

result after the optimization run (top) and the difference to the target caustic (bot-

tom). We can also see by comparing the objective function graph with the associated

geometry error graph that a smaller MSE of the objective function does not always

results in a smaller geometry error. This indicates local optima. Also note the smooth

MSE graph at the end of the optimization process, indicating local (and in this case

global) convergence.
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Fig. 10. Illustration of a failure case, where SPSA did not find the global optimum at

the first but the second run. In the left columns the top images show the optimization

result and bottom images the difference to the original caustic (compare to Figure 6).

Note the local minimum of the geometry error of the failure case at about 500000

and the monotonic decrease of the corresponding objective function. The algorithm is

clearly converging to a local minimum.

8 Conclusion

The proposed system successfully produces surface geometry that matches a
specific reflection or refraction distribution pattern. It can be used to reconstruct
geometry from a given caustic image or to shape special purpose reflectors.
Key aspects of our efficient optimization are the use of the SPSA algorithm
which ensures global convergence with high probability as well as the GPU
accelerated caustic rendering approach. Our framework can cope with various
surface representations, allowing for the flexibility of unconnected triangles or
for the slightly more restrictive but easy to manufacture continuous B-spline
surfaces.
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Currently, our framework is restricted to single reflective or refractive surfaces.
Adding solid objects with multiple scattering events results in a much more
complex evaluation of the objective function. It will be a challenge to deal with
the additional ambiguities which result in much more distinct local optima of the
objective function [18]. However, the optimization framework based on SPSA
is independent of the rendering technique and can be exchanged with other
methods.
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Abstract. We propose a novel restoration method for defects and miss-

ing regions in video sequences, particularly in application to archive film

restoration. Our statistical framework is based on random walks to ex-

amine the spatiotemporal path of a degraded pixel, and uses texture

features in addition to intensity and motion information traditionally

used in previous restoration works. The degraded pixels within a frame

are restored in a multiscale framework by updating their features (inten-

sity, motion and texture) at each level with reference to the attributes

of normal pixels and other defective pixels in the previous scale as long

as they fall within the defective pixel’s random walk-based spatiotem-

poral neighbourhood. The proposed algorithm is compared against two

state-of-the-art methods to demonstrate improved accuracy in restoring

synthetic and real degraded image sequences.

Keywords: Video Restoration; Random Walks; Multiscale Refinement.

1 Introduction

Archived films suffer damage and quality degradation often through inappropri-
ate storage and wear and tear, but sometimes even at the time of production.
The most common types of defects are blotches and scratches which usually ap-
pear in one or more (consecutive) frames as black, or white, or semi-transparent
regions. However, degrees of degradation and their shape and size can vary due
to their random appearance. Quality control and restoration is therefore neces-
sary before such films are broadcastable again and indeed the preferred route
to preservation and rebroadcasting is digitisation and automated restoration - a
more economical and reversible process compared to the manual and tiresome
course of restoration by chemical and physical means, considering the enormous
amount of archives there exists. Figure 1 shows an example of a restored frame
from a clip we call Cliff.

An automated restoration system is usually composed of two modules, defect
detection and defect removal. Defect detectors such as [19,15,22,24] provide not
only quantitative measures as evidence for quality control but also defect maps
which can be used by others to perform defect removal. Thus in this paper, our
focus is on restoration and defect removal using defect maps generated from any
defect detection work, such as [24].
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Fig. 1. A degraded frame before and after restoration by the proposed method

One approach to the recovery of a degraded pixel is to replace it with an orig-
inal corresponding pixel along its projected motion trajectory from (temporal)
neighbouring frames. This clearly involves an accurate estimation of the degraded
pixel’s motion through space and time and helps enforce a local consistency by
imposing features besides just image intensities, i.e. motion vectors (leading to
consistent optical flows). The chances of more accurate recovery can be increased
by recruiting more significant features, e.g. texture features such as the Local
Binary Pattern (LBP) [20] (leading to consistent region representation). Unlike
previous methods such as [19,23,16,10], we consider multiple features in an in-
tegrated fashion and show that this provides better restoration than treating
the features separately. The computational expense incurred due to the use of
more features is an affordable tariff in our archive restoration application where
accuracy is of paramount importance.

In order to locate the optimal replacement for a degraded pixel, we estab-
lish a region of candidate pixels formed by a number of 3D random walks on
the spatiotemporal domain, starting from the defective pixel. In [9], spatial-only
random walks were applied for noise reduction by taking a weighted average
over all spatial pixels visited by the random walks, whereas we select the opti-
mal pixel-exemplar as the pixel which has the maximum likelihood of being the
original pixel - as defined by its intensity, motion and texture characteristics -
from this dynamically generated spatiotemporal region. We perform this search-
and-replace procedure for each degraded pixel in the defect map in a multiscale
framework to refine the restored pixels from coarse to fine. This multiscale refine-
ment particularly helps with large degraded regions which are forced to implode
gradually through the propagation of reliable outer pixels into the region.

The contributions of our approach are therefore as follows. We present a novel
pixel-exemplar based restoration algorithm using spatiotemporal random walks.
In comparison to current state-of-the-art archive film restoration techniques,
our method is more accurate by using more reliable statistics produced during
the random walks. Also, in addition to intensity and motion features, we employ
a higher order texture feature, i.e. one that is more complex than raw intensities.
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Finally, degraded pixels within a frame are collectively restored in a multiscale
framework by updating all their features (intensity, motion and texture), which
leads to more effective searching for optimal replacements (and significantly helps
in the restoration of degraded regions that are considerably larger than typical
defects). This means that at each scale the attributes of a defective pixel are
updated with reference to the attributes of normal pixels and other defective
pixels updated in the previous higher scale as long as they fall within the defective
pixel’s random walk-based spatiotemporal neighbourhood. Thus, there are more
constraints to contribute to the restoration of intensities.

In Sect. 3, our proposed method is presented. First, the fundamentals of 3D
random walks are introduced in Sect. 3.1. Then, our restoration algorithm is
described in Sect. 3.2, and is followed by the multiscale restoration scheme which
is briefly reviewed in Sect. 3.3. Finally in Sect. 4, we compare and evaluate our
proposed method against two state-of-the-art methods, i.e. [15] and [10], on a
variety of artificially degraded and real films.

2 Background

The task of filling in missing regions in single or consecutive frames is often
referred to as Inpainting, which originates from restoration in the world of Art.
It was first introduced into digital image restoration by Bertalmı́o et al. [1] who
adapted the original idea of artistic inpainting by propagating the surrounding
colour and structure into the missing area. Since then, inpainting has become
a popular topic in computer vision and most of the research is concentrated on
mainly two directions, i.e. image structure (non-texture) propagation methods
and exemplar (texture) based methods.

Examples of methods developed to recover image structure information in
degraded regions are [3,8] for edges and [18,4] for level lines. These usually require
complex image models with high order partial differential equations or calculus
of variations. Although such methods have proven to be effective solutions to
restoring small gaps in degraded images, they suffer from blurring side-effects
when dealing with large missing areas, e.g. they can fail to restore textural details
within the missing regions they recover.

Exemplar based inpainting methods [2,5] attempt to overcome these side-
effects. In a similar fashion to texture synthesis methods, e.g. [14,6], Criminisi
et al. [5] performed the propagation of textures using a block-based sampling
process, pointing out that the order of the filling process is critical for achieving
simultaneous recovery of image structure and texture. Wexler et al. [25] and
Patwardhan et al. [21] extended the algorithm in [5] by enlarging the sampling
region to a number of temporal neighbouring frames (forwards and backwards)
and both methods are designed to fill in space-time holes in video sequences with
stationery background and moving foreground in periodic motions. Patwardhan
et al.[21] further considered scenes with restricted camera motions by includ-
ing a motion segmentation procedure. In [10], instead of using a global search
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as performed in [25,21], Gangal et al. limited their search region to temporal
motion compensated neighbourhoods. These three methods ([25], [21], and [10])
inherited the shortcomings of [5]: (a) it is difficult to choose the optimal size of
an exemplar patch, considering that a larger patch will possibly bring artifacts
while a smaller one may cause mismatching, and (b) a mismatching of patches in
early stages will cause an incremental effect to the detriment of the final results.

We now focus on algorithms developed to restore missing scene information in
archive films specifically. There is a class of methods that have used filter-based
techniques applied to the entire image regardless of a defect map, e.g. the LUM
filter [13], the ML3Dex filter [17] and the SMF filter [12]. These methods are able
to go a long way in eliminating the defects but result in artifacts elsewhere in
the image by removing texture detail. Recently, a series of methods [19,23,16,15]
have applied statistical modelling to preform the defect detection and removal
stages under a single framework. As the state-of-the-art, Kokaram’s Bayesian
framework [15] attempted to model noise and scratches, and perform motion
adjustment together. Three binary variables were used for each pixel to mark
if a pixel is degraded, forward occluded or backward occluded. These variables,
together with restored image intensities and motion vectors, were defined as
unknowns. Given the pixel values of degraded frames and initial motion estima-
tions, a two-stage procedure was designed to estimate the variables and image
intensities first and then adjust the motion vectors according to neighbouring
motion vectors, before repeating this process for a fixed number of iterations. It
is worth noting that in [15], to perform motion adjustment for a degraded pixel,
the method relies on the accuracy of the pixel’s surrounding motion vectors.
During the iterative processing, motion information is improved separately and
with no reference to the improved intensities. However as stated earlier, in our
work, we update the motion vectors of a defective pixel in a multiscale process
with reference to all attributes (i.e. intensity, motion and texture) of normal
pixels and other defective pixels (updated in the higher scale) as long as they
fall within its spatiotemporal random walk-based neighbourhood.

We assume defect maps D = {dx, dx ∈ {0, 1}} for an archive film sequence
are available using any reasonably accurate defect detection algorithm, e.g. the
HAFID-STC defect detector proposed by Wang and Mirmehdi [24]. The label
dx = 1 states that pixel x is degraded. The method proposed in [24] first trains
a Hidden Markov Model (HMM) for defect-free temporal pixel sequences across
a large number of frames which is then applied to unseen temporal pixel se-
quences to detect defects. However, this results in a considerable number of false
alarms, which are then eliminated in [24] through a two-stage removal process
based on (a) MRF modelling for false alarms that have strong correlation with
their neighbours and (b) localised feature tracking for those that can be traced
temporally. They achieved improved results in comparison to other techniques
such as [15] and [22] and hence their approach is used to generate the input to
our restoration process described here, although binary defect maps from any
other technique will also be applicable.
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3 Proposed Method

Traditional pixel-exemplar or patch-exemplar based restoration methods such
as [7,25,10], search for the optimal exemplar amongst a square or rectangular
region of pixels using sliding windows. A novel feature of our proposed method
is that for each defective pixel examined, we explore a dynamically generated,
random-walk based region of candidate pixel-exemplars to select the optimal
replacement from. Every pixel in this region shares a significant similarity with
the previous pixels in the region as defined by their features, i.e. intensity, motion
and texture. A random walk starts from a degraded pixel and stops when it
reaches a strong boundary in terms of a significant change in all the pixel features.
The size of the region is thus determined on-the-fly and is based on the length of
all the random walks (for the current defective pixel). We perform an empirically-
determined fixed number of random walks for a degraded pixel to form a region
(see Sect. 4 for details).

After building the region of candidate pixel-exemplars for a degraded pixel,
we assign to each of them a likelihood of being the optimal replacement for the
degraded pixel. This is obtained for each pixel-exemplar by first computing the
average (geometric mean) of transition probabilities during each random walk
which starts from the degraded pixel and visits the pixel-exemplar. Then the av-
eraged probabilities from these random walks are summed up to get a measure
of the similarity between the pixel-exemplar and the rest of the pixel-exemplars
in the region (recalling that the transition probabilities are an indication of pixel
similarities in a path). The higher this value, the higher is the similarity. This is
then weighted by a reliability value, which measures the degree of degradation
for each pixel-exemplar, to obtain its likelihood value. The pixel-exemplar with
the maximal likelihood will be selected to replace the target degraded pixel. This
means that the selected pixel is the optimal representation of the spatiotemporal
random walk-based region of candidates - with relatively low (to possibly no)
degree of degradation - to restore the current degraded pixel. The above pro-
cessing is performed in multiscale for all degraded pixels within a frame along
with their reliability values, refining the updated pixels’ features from coarse to
fine.

3.1 Preliminaries and Definitions

Next, we state the fundamentals of a 3D random walk on an image sequence
and then express the probability of a random walk sequence in the context
of our application. We define the input image sequence as an undirected and
weighted graph G = (V,E) with vertices (nodes) vx ∈ V and edges ex′ ,x′′ ∈
E ⊆ V × V . Each edge ex′ ,x′′ is assigned a weight wx′ ,x′′ where wx′ ,x′′ > 0 and
wx′ ,x′′ = wx′′ ,x′ . An image pixel x at location (i, j, t) (1 ≤ i ≤ Width, 1 ≤ j ≤
Height, 1 ≤ t ≤ Length) is represented as a node vx(vx ∈ V ) in graph G where
Width×Height× Length defines the image sequence volume.

A random walk sequence Path0,K = {x0,x1, . . . ,xK} with length K + 1 on
graph G is specified as a sequence of nodes (pixels) which is a Markov process.
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The probability of the transition p(xk|xk−1) between consecutive pixels xk−1

and xk is given as the weight wxk−1,xk on the edge exk−1,xk . According to the
Markov property of Path0,K , the probability of a Path0,K starting at pixel x0

is defined as

p(Path0,K) =
K∏

k=1

p(xk|xk−1) =
K∏

k=1

wxk,xk−1 , (1)

where P = {Pathm
0,Km

}M
m=1 is a set of M random walks on graph G, with each

walk starting from x0. Furthermore, we define the region of candidates or pixel-
exemplars Rx0 =

⋃M
m=1 Pathm

0,Km
as the set of all pixels visited by the random

walks in P . The neighbourhood for a pixel, the associated edge weights, and the
walk length are expressed as follows:

Neighborhood Nx: For each pixel x on a walk, we define a 3×3×3 spatiotempo-
ral motion compensated neighbourhood Nx centred at x. In Nx, we denote the
connection between pixel x and x′(x′ ∈ Nx,x′ �= x) as edge ex,x′ with a weight
wx,x′ . For each step in a random walk, a transition from the current pixel x to
one of its 26 direct neighbours x′(x′ ∈ Nx) is permitted.

Edge Weights: In the same fashion as previous graph-based methods, e.g. [11],
the edge weights are defined by a function that evaluates the similarity of two
consecutive pixels during a random walk so as to bias it to stop the walk when
a significant decrease in similarity is observed. Here, we define edge weights as
the probability of pixels x and x′ being identical, measured by using a number
of different pixel features,

wx,x′ =
1
T

Q∏
q=1

exp{−
ϕ2

q(x,x′)
2σ2

q

}, (2)

where T is a normalization constant, σq is the standard deviation for pixel fea-
ture q, and ϕq(·) measures the Euclidean distance between pixel x and x′ in
feature space Fq. A variety of pixel features can be used to measure the similar-
ity between two pixels and here we apply four (i.e. Q = 4); these are intensity,
forward and backward motion, and the local LBP texture pattern:

ϕ2
q(x,x

′) = 1
Jq

∑Jq

j=1 (Zj
q (x) − Zj

q(x′))2, (3)

where Zq = {I,Vf ,Vb,L} for q = {1..4}, I represents RGB intensity maps with
J1 = 3, Vf

x and Vb
x represent forward and backward motion vector maps with

J2 = J3 = 2 respectively, and L represents maps of 2D image LBP patterns in
a spatial 3 × 3 neighbourhood with J4 = 8. The addition of a texture feature,
along with a more integrated contribution of all the features used through (3),
and subsequently (5), is an essential improvement on other works in archive
film restoration, such as [15] and [10]. The extra texture feature is specifically
appropriate to enforce a constraint in textured regions to help select the pixels
that can be included in the region of candidates during the random walks.
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Walk Length. We control the length of a random walk by monitoring p(Path0,K)
in the same manner as proposed in [9]. Since we are preforming a biased random
walk by encouraging transitions between similar neighbours, the random walk
will be terminated if p(Path0,K) is smaller than a threshold. This will prevent
random walks from stepping across strong boundaries in terms of significant
changes of all pixel features. A walk will also be terminated if it hits a hard
boundary, i.e. the image boundaries on the spatial domain and the first and last
frames on the temporal axis.

3.2 Restoration of Degraded Pixels

We restore all pixel features of a degraded pixel by replacing the degraded pixel
with the optimal pixel-exemplar selected from its region of candidates, which
has the maximal likelihood of being the original pixel. The selection procedure
is as follows.

For each pixel-exemplar x in a degraded pixel’s region of candidates, i.e. Rx0 ,
the similarity between x and the rest of the pixel-exemplars in the region is
measured based on the probabilities of random walk paths which start from the
degraded pixel and visit the pixel-exemplar, represented as

Ax =
M∑

m=1

Km∑
k=1

(
p(Pathm

0,k)1/k · δ(xk = x)
)
, (4)

where δ(·) is the Dirac delta function. In order to measure the similarity among
all pixel-exemplars in a random walk path regardless of the length of the path,
we compute the geometric mean of their transition probabilities. Provided we
preform a sufficient number of spatiotemporal random walks, the sum of their
averaged probabilities suggests the similarity between the pixel-exemplar and
the rest of the pixel-exemplars in the region. This is influenced by the way
spatial random walks are used in [9] to examine the transition probabilities
(i.e. similarity) of pixels along a path in their image denoising application. The
reason why we use this value instead of using other measurements, e.g. a count
of random walks that visit the pixel-exemplar, is because this value indicates if
the pixel-exemplar provides random walks with a smooth transition from their
previous locations to this pixel-exemplar, e.g. if the probabilities of random walk
paths decrease significantly after they visit this pixel-exemplar, this value will
be probably small even though this pixel-exemplar has been visited by a large
number of random walks. The optimal pixel-exemplar is then selected as

x̂0 = arg max
x∈Rx0

(Ax · r(x)) , (5)

where r(·) indicates the reliability of a pixel-exemplar based on its degree of
degradation. For normal pixels, r(·) is 1 while a degraded pixel is initialised to
the likelihood of being identical to all its defect-free neighbours in Nx:

r(x) =

{
1∑

x′∈Nx
δ(dx′)

∑
x′∈Nx

wxx′δ(dx′) dx = 1
1 dx = 0

(6)
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Fig. 2. (from left) A sample image pyramid, the defect map pyramid, and the restored

results using the proposed method. The degraded regions are gradually recovered from

coarse to fine and from the boundaries to their inner part.

Note also that by this definition, a false alarm pixel is more likely to be initialised
with a high r(·) value, given it is likely to be more similar to its defect-free
spatiotemporal neighbours than to real degraded pixels. After a degraded pixel
is replaced with a specific pixel-exemplar, its reliability value is updated with:

r̂(x) =
1
|Nx|

∑
x′∈Nx

r(x′). (7)

During the multiscale updating algorithm (reviewed next), the r(·) value for
a degraded pixel will approach 1 after a number of updates. For a degraded
pixel near the boundary of a degraded region, the r(·) value will reach 1 faster
than an inner pixel considering it is surrounded by more reliable spatiotemporal
neighbours (normal pixels). Thus, during the multiscale refinement, a degraded
region will gradually implode through the propagation of more reliable outer
pixels in the region. For an example see Fig. 2.

Additionally, since a pixel in a false alarm region may be initialized with a
larger r(·) value (as noted above) than a real degraded pixel, then the false alarm
pixel is more likely to obtain an optimal replacement considering more reliable
candidates are present in its random walk-based neighbourhood.

3.3 Multiscale Refinement

Given an image sequence and its defect map, we build pyramids for each frame
and its corresponding defect map by downsampling the original by a factor of
2 after smoothing with a 5 × 5 Gaussian kernel. A sample image pyramid and
its associated defect pyramid are shown in Fig. 2. After restoring the degraded
pixels’ features on a current level of the pyramid, we upsample these pixels to
the next level and then update their corresponding pixels’ features in that level.
This level-by-level refinement and restoration process continues until it reaches
the lowest level of the pyramid (see Algorithm 1).
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Algorithm 1. The multiscale restoration algorithm
Build pyramids {Is}S

s=1 and {Ds}S
s=1;

Initialize scale s = 1: Compute motion vector maps Vf
1 , Vb

1, L1, and r1;

while s ≤ S do
if s > 1 then

Update Is, Vf
s , Vb

s, Ls by Is−1, Vf
s−1, Vb

s−1; /*Only on degraded sites*/

end if
(Is+1,Vf

s+1,Vb
s+1, Ls+1) = Restoration(Is, Vf

s , Vb
s, Ls, Ds);

Update rs+1 using equation (7);

if s < S then
Upsample Is+1,Vf

s+1,Vb
s+1,rs+1by factor 2; /*For every scale but the last*/

end if
s = s + 1;

end while

4 Experimental Results and Discussion
We present the restoration performance of the proposed algorithm on both arti-
ficially degraded and real sequences, and compare our results against two state-
of-the-art techniques: Kokaram’s Bayesian framework [15] and Gangal and Diz-
daroglu’s exemplar-based method [10], hereafter referred to as Kokaram04 and
GD06 respectively. The defect maps for both GD06 and the proposed method
were produced in advance using the HAFID-STC defect detector [24] while
Kokaram04 has an integrated defect detector. All methods were tuned for opti-
mal performance using constant parameter values across all experiments.

Synthetic defects - The proposed method was compared against Kokaram04
and GD06 on restoring five artificially degraded real sequences totalling 1500
frames, namely Mobile Calendar, Container, Foreman, News and Paris. The de-
graded sequences were produced by adding synthetic black and white defects of
sizes of between 1 and 6000 pixels on a random basis. For each method, the Mean
Square Error (MSE) to measure the difference between the original defect-free
frame F and the restored frame F̂ was computed:

MSE(F, F̂ ) =
1

Width×Height× 3

∑
x∈F

3∑
i=1

(F i
x − F̂ i

x)2 (8)

Columns 2 through to 5 in Table 1 show the MSEs for four randomly selected
sample frames from the Mobile Calendar, Container, Foreman, News and Paris
sequences respectively. The percentage of degraded pixels in each frame is listed
along with the frame number along the top row. The raw, unrestored frame
error rate is shown along the ‘Degraded’ row in each case. The last column
in Table 1 shows the average MSEs across all frames in each of the synthetic-
error sequences for each method; for example for the Foreman sequence, given
the average true MSE rate of 153.4, the proposed method resulted in the lowest
error at 44.7 compared to Kokaram04 and GD06 at 130.3 and 103.1 respectively.
The proposed method performed much better in all the experiments, avoiding
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the creation of too many artifacts (see e.g. Fig. 3) compared to Kokaram04 and
GD06, and was also more capable of restoring large defects (e.g. Frame 233 of
the News sequence). Note the introduction of artifacts during restoration by all
three methods, may lead to MSE errors that are larger than the raw original
whose MSE is only based on synthetic defects.

Real defects - We compared the three methods on restoring a variety of real
degraded image sequences, including greyscale and colour, indoor and outdoor
scenes, and slow and fast motions, and in all cases the proposed method produced
the best results. In the following, three sets of sample results are illustrated to
inspect three aspects of the proposed method, i.e. recovering a large degraded
region and substantially avoiding artifacts in Fig. 3, handling defect-free (false
alarm) pixels in Fig. 4, and correcting motions in Fig. 5.

Table 1. Comparison of MSEs on real sequences with synthetic errors

Mobile Calendar

Frame # 32 (0.07%) 58 (0.11%) 181 (3.47%) 233 (0.03%) Avg (0.62%)

Degraded 16.3 31.8 651.5 56.6 183.5

Kokaram04 210.6 89.9 293.6 92.5 157.3

GD06 128.7 80.7 196.8 123.5 135.9

Proposed 23.4 19.5 105.9 46.7 49.2

Container

Frame # 9 (0.06%) 23 (0.21%) 138 (2.44%) 210 (0.06%) Avg (0.60%)

Degraded 15.7 80.7 451.1 15.7 119.1

Kokaram04 7.6 3.5 93.4 2.8 33.9

GD06 0.9 0.8 96.3 3.2 23.8

Proposed 0.6 0.6 45.1 3.3 10.5

Foreman

Frame # 33 (0.12%) 65 (0.24%) 98 (0.23%) 199 (0.02%) Avg (0.55%)

Degraded 29.7 45.8 40.8 5.3 153.4

Kokaram04 70.5 155.32 89.84 74.0 130.3

GD06 95.3 149.12 95.87 68.5 103.1

Proposed 21.4 51.38 40.37 10.7 44.7

News

Frame # 113 (0.08%) 165 (0.05%) 233 (2.47%) 291 (0.21%) Avg (0.61%)

Degraded 31.5 15.2 751.5 66.9 154.5

Kokaram04 159.9 218.3 289.1 89.5 140.7

GD06 140.7 125.7 205.3 113.5 125.3

Proposed 49.5 27.7 119.8 54.4 54.2

Paris

Frame # 81 (0.16%) 123 (0.01%) 158 (1.34%) 280 (0.10%) Avg (0.60%)

Degraded 80.7 15.7 537.1 85.3 122.1

Kokaram04 30.5 25.6 107.1 11.3 63.9

GD06 21.8 27.9 122.3 15.4 83.8

Proposed 13.4 14.3 69.3 6.3 33.5
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Fig. 3. Cliff - Comparing large missing area recovery. Top: original frame and the defect

map in red; Middle: restoration results from Kokaram04, GD06, and the proposed

method; Bottom: enlargement of selected areas.

Fig. 3 shows the results on a sample degraded frame with a large missing area.
The original frame and the defect map (in red) are shown in the top row. The
results by Kokaram04, GD06, and the proposed method are in the middle row
and a close-up of the degraded area is shown in the bottom row. Kokaram04
results in a considerable number of artifacts in the restored frame because its
performance strongly depends on the accuracy of motion information. Its motion
correction procedure is not designed for such large missing areas, but rather for
small degraded areas with accurate motion information provided in their spatial
neighbouring regions. While GD06 is able to restore the outline of the man’s
head, it introduces some artifacts in the inner region due to the mismatching of
patches in an early stage. Although the proposed method still causes some small
artifacts, both the image structure and texture are recovered well.

In Fig. 4 we investigate the restoration performance of the three methods
on handling false alarm pixels. A sample degraded frame and its corresponding
defect map are in the top row, and restoration results from Kokaram04, GD06
and the proposed method follow in the bottom row. In this example all methods
do well in restoring the real degraded pixels. However, both Kokaram04 and
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Fig. 4. Policeman - Comparing restoration of false alarms. Top: original and its defect

map; Bottom: restoration results from Kokaram04, GD06, and the proposed method.

Fig. 5. Coffee - Comparing motion correction. (from left) Original frame with overlaid

defects, Original motion vectors, Corrected motion vectors from Kokaram04 and the

proposed method.

GD06 lose considerable detail, e.g. the policeman’s hand is missing in the frame
restored by Kokaram04, and artifacts are introduced across the telephone and
the policeman’s hand in the frame restored by GD06.

The final example presents a comparison between Kokaram04 and the pro-
posed method on correcting motions for degraded pixels. The motion vectors
overlaid on an original frame are shown in the second image from left in Fig. 5.
The correction results from Kokaram04’s integrated motion correction algorithm
and the proposed method follow this respectively. During Kokaram04’s iterative
process, motion information is improved separately and with no reference to
the improved intensities; this means its correction is limited by the accuracy
of initial motion estimations which are often inaccurate by the presence of de-
fects. The proposed method outperforms Kokaram04 by achieving more accurate
motion correction for each defective pixel by reference to their spatiotemporal
random-walk neighbours through the multiscale process.
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Performance and Implementation Issues - All methods were imple-
mented in MATLAB on a laptop with Intel Core Duo 2.4 GHz and 2GB RAM.
The average speed for a degraded frame of average size of 480 × 360 was 406
seconds for our proposed method, while Kokaram04 and GD06 needed 174 and
265 seconds respectively. Our proposed algorithm is slower but more accurate
than Kokaram04 and GD06, since it considers an extra feature and requires con-
siderable sampling by the random walks. We experimented with different values
of M by using different random seeds for each random walk. M = 800 was found
to provide stable results and reasonable computing costs. The number of steps
in each random walk often varied from 2 to 48. Since accuracy is critical for the
restoration of archive films, the extra computational burden is a tolerable cost.

5 Conclusion

We presented a novel pixel-exemplar based restoration algorithm using spa-
tiotemporal random walks. The random walks are formed by considering pixel
similarities using multiple features. The method is applicable given a defect map
generated by any archive film defect detection algorithm. While the use of mul-
tiple features adds to our computational costs, we obtain much more accurate
and artifact-free results than current state-of-the-art techniques.

Acknowledgments. We thank Great Western Research, ITV and Bristol Uni-
versity for funding this project.
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5. Criminisi, A., Pérez, P., Toyama, K.: Region filling and object removal by exemplar-

based image inpainting. IEEE Trans. IP 13(9), 1–13 (2004)

6. Efros, A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In:

Proc. SIGGRAPH, pp. 341–346 (2001)

7. Efros, A., Leung, T.: Texture synthesis by non-parametric sampling. In: Proc.

ICCV, vol. 2, pp. 1033–1038 (1999)

8. Esedoglu, S., Shen, J.: Digital inpainting based on the mumford-shah-euler image

model. Euro. J. App. Math. 13(4), 353–370 (2002)

9. Estrada, F., Fleet, D., Jepson, A.: Stochastic image denoising. In: Proc. BMVC

(2009)

10. Gangal, A., Dizdaroglu, B.: Automatic restoration of old motion picture films us-

ing spatiotemporal exemplar-based inpainting. In: Blanc-Talon, J., Philips, W.,

Popescu, D., Scheunders, P. (eds.) ACIVS 2006. LNCS, vol. 4179, pp. 55–66.

Springer, Heidelberg (2006)



Archive Film Restoration Based on Spatiotemporal Random Walks 491

11. Grady, L.: Random walk for image segmentation. IEEE Trans. PAMI 28(11), 1768–

1783 (2006)

12. Hamid, M.S., Harvey, N., Marshall, S.: Genetic algorithm optimization of multi-

dimensional grayscale soft morphological filters with applications in film archive

restoration. IEEE Trans. CSVT 13(5), 406–416 (2003)

13. Hardie, R., Boncelet, C.: Lum filters: a class of rank-order-based filters for smooth-

ing and sharpening. IEEE Trans. SP 41(3), 1061–1076 (1993)

14. Heeger, D.J., Bergen, J.R.: Pyramid-based texture analysis/synthesis. In: Proc.

SIGGRAPH, pp. 229–238 (1995)

15. Kokaram, A.: On missing data treatment for degraded video and film archives: a

survey and a new bayesian approach. IEEE Trans. IP 13(3), 397–415 (2004)

16. Kokaram, A., Godsill, S.: Mcmc for joint noise reduction and missing data treat-

ment in degraded video. IEEE Trans. SP 50(2), 189–205 (2002)

17. Kokaram, A., Morris, R., Fitzgerald, W., Rayner, P.: Interpolation of missing data

in image sequences. IEEE Trans. IP 4(11), 1509–1519 (1995)

18. Masnou, S., Morel, J.M.: Level lines based disocclusion. In: Proc. ICIP, vol. 3, pp.

259–263 (1998)

19. Morris, R.: Image Sequence Restoration using Gibbs Distributions. Ph.D. thesis,

Cambridge University (1995)

20. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation

invariant texture classification with local binary patterns. IEEE trans. PAMI 24(7),

971–987 (2002)

21. Patwardhan, K., Sapiro, G., Bertalmio, M.: Video inpainting of occluding and

occluded objects. In: Proc. ICIP, vol. 2, pp. II: 69–72 (2005)

22. Ren, J., Vlachos, T.: Efficient detection of temporally impulsive dirt impairments

in archived films. Signal Processing 87(3), 541–551 (2007)

23. Roosmalen, P.M.B.V.: Restoration of Archived Film and Video. Ph.D. thesis, Delft

University of Technology (1999)

24. Wang, X., Mirmehdi, M.: HMM based archive film defect detection with spatial

and temporal constraints. In: Proc. BMVC (2009)

25. Wexler, Y., Shechtman, E., Irani, M.: Space-time video completion. In: Proc.

CVPR, vol. 1, pp. 120–127 (2004)



Reweighted Random Walks for Graph Matching

Minsu Cho, Jungmin Lee, and Kyoung Mu Lee

Department of EECS, ASRI, Seoul National University, 151-742, Seoul, Korea

http://cv.snu.ac.kr

Abstract. Graph matching is an essential problem in computer vision

and machine learning. In this paper, we introduce a random walk view

on the problem and propose a robust graph matching algorithm against

outliers and deformation. Matching between two graphs is formulated as

node selection on an association graph whose nodes represent candidate

correspondences between the two graphs. The solution is obtained by

simulating random walks with reweighting jumps enforcing the match-

ing constraints on the association graph. Our algorithm achieves noise-

robust graph matching by iteratively updating and exploiting the con-

fidences of candidate correspondences. In a practical sense, our work is

of particular importance since the real-world matching problem is made

difficult by the presence of noise and outliers. Extensive and compara-

tive experiments demonstrate that it outperforms the state-of-the-art

graph matching algorithms especially in the presence of outliers and

deformation.

Keywords: graph matching, random walks, feature correspondence.

1 Introduction

Graph matching is an essential problem in theoretical computer science; it is
related to various research areas in computer vision, pattern recognition, and
machine learning [1]. The problem of graph matching is to determine a mapping
between the nodes of the two graphs that preserves the relationships between
the nodes as much as possible. In computer vision, it is widely known that
the fundamental problem of establishing correspondences between two sets of
visual features can be effectively solved by graph matching. Thus, graph match-
ing is used in various tasks, such as feature tracking, image retrieval, object
recognition, and shape matching. Many graph matching algorithms proposed in
the 1980s and 1990s focused on exploiting relatively weak unary and pair-wise
attributes and did not specifically aim at optimizing a well-defined objective
function [1]. Recent resurgence of combinatorial optimization approaches to fea-
ture matching [2,3,4,5,6,7,8] has changed the situation and firmly settled graph
matching formulations based on Integer Quadratic Programming (IQP), which
is a generalization of the classical graph matching problems. IQP explicitly takes
into consideration both unary and pair-wise terms reflecting the compatibilities
in local appearance as well as the pair-wise geometric relationships between the
matching features. Since IQP is known to be NP-hard, approximate solutions

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 492–505, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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are required. Our work provides a novel interpretation of graph matching in a
random walk view and relates it to the IQP formulation. Introducing an associ-
ation graph constructed with nodes as candidate correspondences and edges as
pair-wise compatibilities between candidate correspondences, we show that the
search for correspondences between the given two graphs can be cast as a node
ranking [9,10] and selection problem in the association graph. For this ranking,
we introduce an affinity-preserving random walk and derive a ranking based on
its quasi-stationary distribution, and prove its equivalence to the spectral relax-
ation [3] for the IQP formulation. Then, in this random walk view, we adopt
the personalization strategy of Web ranking algorithms [11] and propose the
reweighted random walk algorithm by reweighting jumps for the graph matching
constraints. It achieves noise-robust graph matching by simultaneously updating
and exploiting the confidences of candidate correspondences. In a practical sense,
our work is of particular importance since the real-world matching problem is
made difficult by the presence of deformation and outliers.

A myriad of algorithms have been proposed for graph matching, and those
closely related to ours are follows. Maciel and Costeira [12] formulated graph
matching as a constrained integer optimization problem with a concave optimiza-
tion scheme, but the complexity of its minimization was still non-polynomial.
Gold and Rangarajan [13] proposed the Graduated Assignment (GAGM) algo-
rithm to solve the IQP by relaxing the integer constraint. In their deterministic
annealing approach, GAGM gradually updates the derivative of the relaxed IQP
in the soft assignment step driven by an annealing schedule. The SPGM algo-
rithm proposed by van Wyk and van Wyk [14] iteratively updates the objective
function of IQP by projecting an approximation of the current matching matrix
onto the convex space of the matching constraints. Leordeanu and Hebert [3]
proposed a simple and efficient approximation to the IQP using spectral relax-
ation, which computes the leading eigenvector of symmetric nonnegative affinity
matrix. Their Spectral Matching (SM) ignored the integer constraints in the
relaxation step and induced them during the discretization step by a greedy ap-
proach. They also recently proposed an iterative matching method (IPFP) [8]
with climbing and convergence properties which optimizes the IQP in the dis-
crete domain. Cour et al. [4] extended SM[3] to Spectral Matching with Affine
Constraint (SMAC) by introducing affine constraints into the spectral decompo-
sition that encodes the one-to-one matching constraints. Lee et al. [15] presented
a Markov chain Monte Carlo algorithm to solve the IQP based on the spectral
relaxation. Zass and Shashua [6] showed that matching problems can be repre-
sented by a matrix constructed by Kronecker products, and also introduced a
probabilistic framework for hypergraph matching. Duchenne et al. [7] extended
the method of [3] to high-order graph matching which was formulated as a tensor
eigendecomposition problem. Our problem formulation is related to the previous
IQP formulations of [13,3,4,15], but we approached it from a random walk view.
Note that the previous random walk-based approaches [16,17] use the random
walk theory to find a signature for each node in a graph, and their problem
formulations are different from ours.
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This paper presents three main contributions. First, it establishes a novel ran-
dom walk view for graph matching and provides a basis for random walk interpre-
tations of recent spectral matching [3,4,7] and other iterative algorithms [13,6].
Second, in this view, we propose a powerful matching algorithm inspired by
the personalization strategy of Web ranking algorithms [11] and the Sinkhorn
method [18]. Third, it is extensively demonstrated against several state-of-the-
arts graph matching algorithms. The comparison not only reveals the superior
performance of our algorithm but also facilitates a comprehensive study of recent
graph matching algorithms.

2 Problem Formulation

The objective of graph matching is to determine the correct correspondences
between two attributed graphs GP = (V P , EP , AP ) and GQ = (V Q, EQ, AQ),
where V represents a set of nodes, E, edges, and A, attributes. Each node
vP

i ∈ V P or edge eP
ij ∈ EP has an associated attribute vector aP

i ∈ AP or
aP

ij ∈ AP . In feature correspondence problems, a node attribute aP
i usually de-

scribes a local appearance of feature i in an image P , and an edge attribute
aP

ij represents the geometric relationship between features i and j in the im-
age P . For each pair of edges eP

ij ∈ EP and eQ
ab ∈ EQ, there is an affinity

or compatibility Wia;jb = f(aP
i , aP

j , aP
ij , a

Q
a , aQ

b , aQ
ab) that measures the mu-

tual consistency of attributes between the pairs of candidate correspondences
(vP

i , vQ
a ) and (vP

j , vQ
b ). Thus, using a matrix form W, a non-diagonal element

Wia;jb contains a pair-wise affinity between two correspondences (vP
i , vQ

a ) and
(vP

j , vQ
b ), and a diagonal term Wia;ia represents a uanry affinity of a corre-

spondence (vP
i , vQ

a ). Representing the correspondence with an assignment or
permutation matrix X ∈ {0, 1}nP×nQ

is common, such that Xia = 1 implies
that node vP

i corresponds to node vQ
a , e.g., feature i in the image P is matched

to feature a in the image Q, and Xia = 0 otherwise. In this paper, we denote
x ∈ {0, 1}nP nQ

as a column-wise vectorized replica of X. The graph match-
ing problem can be formulated as an integer quadratic program (IQP), that is,
finding the indicator vector x∗ that maximizes the quadratic score function as
follows.

x∗ = argmax(xT Wx) (1)

s.t. x ∈ {0, 1}nP nQ

, ∀i
nQ∑
a=1

xia ≤ 1, ∀a
nP∑
i=1

xia ≤ 1,

where the two-way constraints refer to the one-to-one matching from GP to GQ.
In general, no efficient algorithm exists that can guarantee the optimality bounds
since the IQP is NP-hard, thus approximate solutions are required.
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3 Random Walks for Graph Matching

Basically, the problem of graph matching between the two graphs GP and GQ

can be interpreted in a random walk view by constructing an association graph
Grw = (V rw, Erw, Arw) as follows. Given the pair-wise affinity matrix W, we
consider each candidate correspondence (vP

i , vQ
a ) ∈ V P × V Q as a node via ∈

V rw, its associated weight Wia;jb as the attribute aia;jb ∈ Arw of the edge
eia;jb ∈ Erw. This is illustrated by an example in Fig.1(a). The original graph
matching problem between GP and GQ is equivalent to selecting reliable nodes
in the graph Grw since the selected nodes in Grw correspondends to graph or
subgraph matching between GP and GQ. To select the nodes in Grw, we adopt
the statistics of the Markov random walks which has been used to compute
the ranking or relevance of graphs in the Web environments [9,10]. Thus, graph
matching between GP and GQ can be transformed into the node ranking and
selection problem by random walks on Grw. In this view, we introduce an affinity-
preserving random walk algorithm in Sec.3.1, which paves the way for reweighted
random walk algorithm in Sec.3.2.

3.1 Affinity-Preserving Random Walks

The standard way to define a random walk on a graph is to allow a random
walker to take off on an arbitrary node and then successively visit new nodes
by randomly selecting one of the outgoing edges according to a Markov transi-
tion kernel of the graph. In general, in order to define the transition matrix on
weighted graphs, traditional random walk approaches convert affinity or weight
matrix W to the row stochastic matrix by P = D−1W, where D is a diagonal
matrix with entries Dii = di =

∑
j Wij . This normalization is required not only

for transforming W into a stochastic matrix, that is “stochasticizing”, but also
for other particular reasons in the applications. For example, in PageRank [10],
each out-going hyperlink from a node i is row-normalized by 1/di so that ev-
ery webpage has the same total out-going weights. We may state this idea as

(a) an association graph Grw from GP and GQ
(b) Augmented with an

absorbing node

Fig. 1. Association Graphs for Graph Matching by Random Walks
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Internet Democracy: each webpage has a total of one vote [19]. However, this
democratic normalization is problematic in our approach for graph matching
since in Grw some nodes correspond to false candidate correspondences (outlier
nodes) or more distorted ones than others. In such cases, the normalization can
strengthen the adverse effect of outliers and weak correspondences, and pervert
random walkers. For an example, consider Fig.1(a) where vP

1 and vP
2 correspond

to vQ
1 and vQ

2 , respectively. The democratic normalization on Grw scales up the
affinities of outgoing edges of outlier nodes such as v12, v13, v21, and v23 com-
pared with the affinities of two inlier nodes v11 and v22 because the affinity sum
of an outlier node is usually smaller than that of an inlier node.

How then can we preserve the original affinity relations while transforming
the affinity matrix into the stochastic transition matrix for random walks? We
define the maximum degree dmax = maxi di, and construct an augmented graph
Garw with an absorbing node vabs which soaks affinity dmax − di out of all the
nodes vi ∈ V rw as shown in Fig.1(b). We treat this graph as a special Markov
chain which has an absorbing node, i.e., a state which, once reached, cannot be
transitioned out of. Since each node in the affinity matrix of Garw has the same
degree of dmax, its normalized affinity matrix by 1/dmax results in a stochastic
matrix and corresponds to an absorbing Markov chain[20] which preserves the
relative affinity relations of the original graph Grw. We call this approach an
“affinity-preserving random walk”, and formulate its transition matrix P and
absorbing Markov chain as follows.

P =
(

W/dmax 1− d/dmax

0T 1

)
,
(
x(n+1)T x

(n+1)
abs

)
=
(
x(n)T x

(n)
abs

)
P, (2)

where W/dmax is the nPnQ × nPnQ substochastic matrix, and 1 is a nPnQ × 1
vector with all elements 1, and 0 with all elements 0. This absorbing Markov
chain has transient nodes of V rw from which its random walker is certain to
be absorbed into an absorbing node vabs. Its steady state distribution is always(
0T 1

)
, thus cannot be used for node ranking in the same way as PageRank [10].

For ranking on the absorbing Markov chain, we denote X(n) as the node where
a random walker in the absorbing Markov chain of Eq.(2) stays at time n, and
define the conditional distribution x̄(n) as

x̄(n)
ia = P (X(n) = via | X(n) �= vabs) =

xia
(n)

1− x
(n)
abs

, (3)

which refers to the distribution of unabsorbed random walkers at time n. If
x̄(n+1) = x̄(n) = x̄, we call x̄ a quasi-stationary distribution of the absorbing
Markov chain. This corresponds to a steady-state distribution in the Markov
chain without absorbing nodes. Following the approach of PageRank [10] based
on the steady-state distribution in ergodic Markov chains, we define the affinity-
preserving PageRank as follows.

Definition 1. The affinity-preserving PageRank of a graph with affinity matrix
W is the quasi-stationary probability x̄ of Eq.(3) in affinity-preserving random
walks of Eq.(2).
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Theorem 1. The quasi-stationary distribution of the affinity-preserving ran-
dom walks of Eq.(2) is proportional to the left principal eigenvector of W.

Proof. According to Eq.(2),(
x(n+1)T x

(n+1)
abs

)
=
(
x(n)T W/dmax 1− x(n)T d/dmax

)
Thus, by Eq.(3),

x̄(n+1) =
x(n)T W
x(n)T d

=
x̄(n)T W
x̄(n)T d

Then, since x̄(n+1) = x̄(n) = x̄ for quasi-stationary distribution, x̄ must satisfy
λx̄T = x̄T W. If W is irreducible, and the elements of x̄ are non-negative, then it
follows from the extended Perron Frobenius theorem that λ is the real maximal
eigenvalue of W, and x̄ is a normalized non-negative left eigenvector of W corre-
sponding to the maximal eigenvalue. Therefore, the quasi-stationary distribution
x̄ is equivalent to the left eigenvector of W with non-negative components.

Interestingly, this affinity-preserving PageRank is the solution of a relaxed ver-
sion of the original IQP problem, and is equivalent to the spectral relaxation of
[3]. By dropping two-way matching constraints and relaxing integer constraints
from Eq.(1), the original IQP is approximated to a continuous problem as

x∗ = argmax(xT Wx) s.t. x ∈ [0, 1]n
P nQ

, (4)

which is interpreted as a classical Rayleigh quotient problem in [3], whose solu-
tion x∗ is obtained by the eigenvector associated with the largest eigenvalue of
W. The result is the same as the affinity-preserving PageRank in our random
walk view, and can also be computed efficiently by the power iteration method.
This view provides a basis for random walk interpretations of recent spectral
methods [3,4,7] and iterative algorithms [13,6] on graph matching problem. As-
suming that the solution of the relaxed problem is close to the optimal discrete
solution, the final solution is obtained by incorporating the matching constraints
on it. A greedy mapping [3] or the Hungarian algorithm [21] can be adopted for
the final discretization.

As demonstrated in our experiment in Sec.4, the affinity-preserving random
walk matching (equivalent to SM in Sec.4) consistently outperforms conventional
random walk matching (denoted by NRWM in Sec.4) which uses row-normalized
affinity matrix.

3.2 Reweighted Random Walks

In the previous affinity-preserving random walks, the matching constraints of
Eq.(1) are ignored and not reflected in the random walk process. Inducing the
matching constraints only as a post-processing discretization step like [3] leads
to a weak local optimum. How then can we reflect the two-way matching con-
straints in the affinity-preserving random walk? We adopts the personalization
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approach widely used in Web ranking methods [11,19], which strengthens the
effects of reliable nodes in random walks. This is achieved by adopting a jump
or teleport in the random walk: the random walker moves by traversing an edge
with probability α or by performing a jump to some constrained nodes with
probability 1 − α. α represents the bias between the two possible actions, i.e.,
following an edge or jumping. To address the lack of personalization or user’s
focus, Web ranking algorithms adopted this approach in topic-sensitive or query-
dependent variants [19]. In our formulation, adopting the personalized jump, the
probability distribution is updated using the following equation:(

x(n+1)T x
(n+1)
abs

)
= α

(
x(n)T x

(n)
abs

)
P + (1− α)rT , (5)

where a reweighting jump vector r is added to the affinity-preserving random
walk of Eq.(2). In this approach, we use the jumps for generating a biased ran-
dom walk to the matching constraints. One possible way is to use the result
of the discrete assignment mapping of current x as the jump vector r at each
iteration. However, this scheme is vulnerable to the discretization of the wrong
solution in early steps. Thus, we propose a robust reweighting scheme as de-
scribed in Algorithm.1. The reweighting procedure consists of two steps: inflation
and bistochastic normalization [18]. The inflation step of exp(βx/maxx) atten-
uates small values of x and amplifies large values of x. In this way, unreliable
correspondences contribute insignificantly through the individual exponentials
over the components of x. Then, for the two-way constraint that a node in the
graph GP must correspond to only one node in the graph GQ and vice versa,
the bistochastic normalization scheme of Sinkhorn [18] is applied as in [13],
which alternatively normalizes the rows and columns of X (matrix form of x).
Any square matrix whose elements are all positive is proven to converge to a
bistochastic matrix 1 just by the iterative process [18]. At each iteration, the
reweighting jumps are introduced on the transient part of the current affinity-
preserving random walking x(n)T W/dmax. Thus, the reweighted random walk is
formulated by(

x(n+1)T x
(n+1)
abs

)
= α

(
x(n)T x

(n)
abs

)
P + (1− α)

(
fC(x(n)T W)T 0

)
, (6)

where fC(·) denotes the reweighting function incorporating two-way constraints.
Note that this is a dynamic Markov chain whose jump distribution is dynami-
cally varying and dependent on the present distribution of x unlike conventional
jumps in random walks [11,19]. As the fC(·) generates a jump distribution close
to a good solution, the subsequent random walks strengthen the distribution and
move toward a integer solution. Its fast convergence is observed empirically in
all our experiments. To further tighten the random walks by the matching con-
traints, we enforce conflicting walk prevention which entails that random walks
to conflicting nodes are prevented according to the matching constraints. In the
1 A bistochastic matrix is a matrix whose elements are all positive and whose rows and

columns all add up to one: it may roughly be thought of as the continuous analog

of a permutation matrix allowing xi ∈ [0, 1].
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Algorithm 1. Reweighted Random Walk Graph Matching
1: Given the weight matrix W, the reweight factor α, and the inflation factor β
2: Prevent conflicting walks by setting Wia;jb = 0 for all conflicting match pairs

3: Set the maximum degree dmax = maxia

∑
jb Wia;jb

4: Initialize the transition matrix P = W/dmax, the starting probability x as uniform

5: repeat
6: ( Affinity-preserving random walking by edges )

7: x̄T = xT P
8: ( Reweighting with two-way constraints )

9: yT = exp(βx̄/ max x̄)

10: repeat
11: normalize across rows by yai = yai/

∑I
i=1 yai

12: normalize across columns by yai = yai/
∑A

a=1 yai

13: until y converges

14: y = y/
∑

yai

15: ( Affinity-preserving random walking with reweighted jumps)

16: xT = αx̄T + (1 − α)yT

17: x = x/
∑

xai

18: until x converges

19: Discretize x by the matching constraints

case of two-way constraints of Eq.(1), a random walker in node via is prohibited
to move to nodes ∀b �= a, vib and ∀j �= i, vja. This is easily implemented by
initially eliminating such conflicting elements in the affinity matrix W.

The quasi-stationary distribution of this reweighted random walk is efficiently
computed using the power iteration method as summarized in Algorithm.1. Its
computational complexity is O(|EP ||EQ|) per iteration, where |EP | and |EQ| are
the numbers of edges in the two graphs, respectively. In the final discretization
step, any linear assignment algorithm can be adopted, such as a greedy algorithm
in [3] or the Hungarian algorithm [21].

From an algorithmic point of view, our method has some resemblance to SM[3]
and GAGM[13]. Without the reweighting jumps, our affinity-preserving random
walking can be considered as the power iteration version of [3] as explained in
Sec.3.1. The Sinkhorn method [18] introduced in our reweighing jumps is also
adopted in the softassign step of GAGM [13]. However, our reweighting step
does not require a deterministic annealing schedule as GAGM and is designed
to effectively select reliable nodes for reweighted jumps. Our method provides
faster convergence to a better optimum by the balance of walks and jumps as
demonstrated in the experiments.

4 Experiments

We performed intensive experiments for the proposed method in three tasks: (1)
synthetically generated random graphs, (2) point matching task using the CMU
House image sequence2, and (3) feature matching using real images. These three
2 http://vasc.ri.cmu.edu/idb/html/motion/

 http://vasc.ri.cmu.edu/idb/html/motion/
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experiments are designed to evaluate the performance of our algorithm (RRWM)
on various graph matching tasks and to compare it with other state-of-the-art
methods: SM[3], SMAC[4], HGM[6], IPFP[8], GAGM[13], and SPGM[14]. We
additionally tested the performance of the random walk matching with conven-
tional row-wise normalization denoted by NRWM. For SMAC 3 and HGM 4,
the publicly available codes by authors were used, and SM, IPFP, and SPGM
were implemented by us. For GAGM, we revised and tuned the code based on
the implementation provided by Cour [4]. All methods were implemented using
MATLAB and tested on 2.40 GHz Core2 Quad desktop PC. For each trial in all
experiments, the same affinity matrix was shared as the input5 and the Hungar-
ian algorithm6 was commonly used at final discretization step for all methods.
Control parameters of GAGM and SPGM were based on the authors’ papers
and tuned for better performance. For our RRWM, we fixed α = 0.2, β = 30 in
all experiments. These settings allow us to quantify the accuracy and robustness
of all algorithms, and fairly compare them with one another.

4.1 Synthetic Random Graph Matching

In this experiment, following the experimental protocol of [13,4], we performed
a comparative evaluation on random graph matching problems. For each trial,
we constructed two graphs, GP with nP = nin + nP

out nodes and GQ with nQ =
nin +nQ

out nodes, each consisting of nin inlier nodes and the other outlier nodes.
The reference graph GP is generated with random edges of edge density ρ, where
each edge eP

ij ∈ EP was assigned a random attribute aP
ij distributed uniformly

in [0, 1]. We then created a perturbed graph GQ by adding noise on the edge
attributes between inlier nodes: aQ

ab = aP
p(i)p(j) + ε, where p(·) is a random

permutation function for inlier nodes. The deformation noise ε was distributed
using the Gaussian noise function N(0, σ2). All the other edges connecting at
least one of the outlier nodes are randomly generated as the same way in GP .
Thus, two graphs GP and GQ have a common and perturbed subgraph with size
nin. The affinity matrix W was computed by Wia,jb = exp(−|aP

ij − aQ
ab|2/σ2

s),
∀eP

ij ∈ EP , ∀eQ
ab ∈ EQ. The scaling factor σ2

s is set to 0.15 empirically to show
the best average performance of all the methods. The accuracy is measured by
the number of detected true matches divided by the total number of ground
truths, and the objective score by computing xT Wx of the IQP objective.

The results are shown in Fig.2. In our experimental setup, there were three
kinds of independent variables: outliers nP

out and nQ
out, deformation noise σ, and

3 http://www.seas.upenn.edu/~timothee/
4 http://www.cs.huji.ac.il/~zass/
5 The original code of HGM [6] uses a high-order affinity, but we edited it to compare

with the other methods given the same affinity matrix.
6 In the comparative experiments in [4], GAGM was commonly used as a post-

processing step for the final discretization, but we found that GAGM alone is a

strong IQP solver in our experiments. Thus, for observing the performance of each

algorithm, we used the Hungarian algorithm [21], the classic linear assignment solver,

for the discretization.

http://www.seas.upenn.edu/~timothee/
http://www.cs.huji.ac.il/~zass/
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(a) Outlier experiments: accuracy, objective score, and running time

(b) Deformation experiments: accuracy and score

(c) Edge density

experiments

Fig. 2. Synthetic Graph Matching Experiments

edge density ρ. Hence, we conducted three sub-experiments to show their in-
fluences on performance. For each parameter setting, we generated 100 differ-
ent matching problems and evaluated the average accuracy and objective score.
First, for the outlier experiment in Fig.2(a), the number of outliers nP

out = nQ
out

were varied from 0 to 20 by increments of 2, while fixing inlier number nin = 20,
deformation noise σ = 0, and edge density ρ = 1. Second, we experimented
on deformation by varying the deformation noise σ from 0 to 0.4 with incre-
ments of 0.05 as in Fig.2(b), while fixing the number of inliers nin = 20, outliers
nP

out = nQ
out = 0, edge density ρ = 1. Third, in Fig.2(c), we varied the edge den-

sity ρ from 0.3 to 1 by increments of 0.1, while the number of inliers nin = 20,
outliers nP

out = nQ
out = 10, deformation noise σ = 0.1. From all the plots in

Fig.2 with outlier, deformation and edge density variation, we can see that the
proposed RRWM outperforms all the other state-of-the-arts methods in both
accuracy and objective score. GAGM and SPGM are comparable to RRWM,
but with increasing outliers and deformation, RRWM shows consistently better
performance. Recent methods based on spectral relaxation and probabilistic in-
terpretation are still less robust to outlier and deformation than GAGM, SPGM,
and ours which incorporate the matching constraints in iterative optimizing pro-
cess. It indicates that tightening relaxation with the matching constraints is
an important factor for robust graph matching. As shown in the right plot of
Fig.2(a), RRWM achieves faster convergence than GAGM and SPGM with in-
creasing graph sizes and deformation although all the methods have the same
theoretical complexity. We did the same experiments adding outliers only to GQ

with nP
out = 0, and the results also show similar trends as in Fig.2 in all aspects.
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(a) A test pair example (b) RRWM (30/30) (c) SM (20/30)

(d) 30 pts to 30 pts (e) 25 pts to 30 pts (f) 20 pts to 30 pts

Fig. 3. The CMU House sequence experiments

Comparing the performance of SM with NRWM, we can observe the ef-
fect of affinity-preserving since SM is equivalent to affinity-preserving random
walk matching as proved in Sec.3.1. As shown in all the experiments, affinity-
preserving provides more robustness to outlier and deformation than conven-
tional row-normalization. It is consistently demonstrated also in the following
experiments.

4.2 Feature Point Matching across Image Sequences

In this section, we performed feature point matching on the CMU House sequence
which has been widely used in previous works [7,5] and compared with other
methods. In order to assess the matching accuracy, 30 landmark feature points
were manually tracked and labeled across all frames. This allows us to compare
the performance of the different algorithms over a varying temporal baseline:
the larger the temporal baseline between the frames, the larger the relative
deformation, and the more difficult the matching. We matched all possible image
pairs, total 560 pairs, spaced by 10, 20 , 30 , 40, 50 , 60 , 70, 80, 90, and 100 frames
and computed the average matching accuracy per sequence gap. Graph matching
problems for 3 different settings were generated with landmark points as nodes:
(nP , nQ) = (30, 30), (25, 30), and (20, 30). In the settings for subgraph matching
where nP < 30, we chose nP points randomly among 30 landmark points. The
affinity matrix is conducted by Wia,jb = exp(−|aP

ij − aQ
ab|2/σ2

s), where aP
ij was

assigned Euclidean distance between two points. We fixed the scaling factor
σ2

s = 2500 and the edge density ρ = 1. In this experiment, as nP decreases,
relative outlier nodes increases. As the sequence gap increases, deformation noise
increases. Figure.3 shows the performance curves for nP = 30, 25, and 20 with
respect to the sequence gap. RRWM, GAGM, and SPGM give best performances
in this experiment, and RRWM generated perfect matching in the 30 to 30
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(a) Input Images (b) 780 initial matches

(c) RRWM 23/24 (20816.4) (d) SM 12/24 (17010.9)

(e) GAGM 10/24 (19264.6) (f) SMAC 10/24 (12466.3)

(g) RRWM 14/20 (h) RRWM 23/25

Fig. 4. Some results of real image matching on our dataset. True matches are repre-

sented by cyan lines, and false matches by black lines.

problem. Note that as outliers or deformation increases, RRWM, GAGM, SPGM
shows larger performance gap from other methods, and RRWM converges faster
than both GAGM and SPGM as shown in Fig.2(a).

We also did extensive point matching experiments on random synthetic point
sets, and RRWM showed the best performance as similar to this experiments.

4.3 Real Image Matching

In this experiment we applied our method to challenging real image matching
problems using local feature detectors. We constructed a dataset of 30 image
pairs containing various images most of which are collected from Caltech-101 7

7 http://www.vision.caltech.edu/Image_Datasets/Caltech101/

http://www.vision.caltech.edu/Image_Datasets/Caltech101/
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and MSRC 8 datasets, and generated candidate correspondences using the MSER
detector [22] and the SIFT descriptor [23]. Using the distance of 128-dim SIFT
descriptor, all the possible candidate matches were collected if the feature pair
has closer distance in SIFT feature space than a loose threshold δ = 0.6, allowing
multiple correspondences for each feature.

To measure the dissimilarity between two candidate region correspondences
(i, a) and (j, b), we adopted the mutual projection error function dia;jb used in
[24], and set Wia;jb = max(50 − dia;jb, 0). The ground truths were manually
labeled for all candidate correspondences of each image pair, and the accuracy
and relative objective score were computed and compared with SM, SMAC, and
GAGM. The results are summarized in Table.1 and some representative exam-
ples are shown in Fig.4. In Fig.4(c)-(f), the algorithm, true matches per ground
truths, and objective scores are captioned. As shown in the examples, this ex-
periment and the dataset are designed for producing the challenging feature
matching problems where unary local features are very ambiguous. Our RRWM
clearly outperforms other methods both in accuracy and objective score as sum-
marized in Table.1. Note that the second best, GAGM was about ten times
slower than RRWM in this experiment as similar in the previous experiments.

For the full results of our comparative experiments and more information,
refer to our project site: http://cv.snu.ac.kr/research/~RRWM/

Table 1. Matching performance on the real image dataset (30 pairs)

Methods RRWM SM SMAC GAGM

Avg. of accuracy (%) 64.01 52.08 39.74 58.74

Avg. of relative score (%) 100 82.41 59.35 91.13

5 Conclusion

In this paper, we introduced a graph matching framework based on random
walks and proposed a novel graph matching algorithm inspired by the person-
alized random walks [10,11] and the Sinkhorn method [18]. The experiments
demonstrated that it outperforms the state-of-the-art methods [3,4,6,8,13,14]
in the presence of outliers and deformation. The comparison reveals that the
matching accuracy in the challenging situations largely depends on the effec-
tive exploitation of the matching constraints. Our random walk framework is
extendable to high-order graph matching adopting the tensor representation as
in [7,6]. In our future work, we will improve our framework and method for this
direction.
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Abstract. This paper presents a novel and efficient method for locat-

ing deformable shapes in cluttered scenes. The shapes to be detected

may undergo arbitrary translational and rotational changes, and they

can be non-rigidly deformed, occluded and corrupted by clutters. All

these problems make the accurate and robust shape matching very dif-

ficult. By using a new shape representation, which involves a powerful

feature descriptor, the proposed method can overcome the above difficul-

ties successfully, and it possesses the property of global optimality. The

experiments on both synthetic and real data validated that the proposed

algorithm is robust to various types of disturbances. It can robustly de-

tect the desired shapes in complex and highly cluttered scenes.

1 Introduction

Point matching is a fundamental yet challenging problem in computer vision,
pattern recognition and medical image analysis, while non-rigid point matching
is particularly difficult due to the large number of possible non-rigid transfor-
mations of the template [1]. In this paper, we will address the following problem
under the non-rigid point matching framework: locating a deformable shape in
cluttered scenes. The shape may undergo arbitrary translational and rotational
changes, and it may be non-rigidly deformed, occluded and corrupted by random
or structured outliers. All these difficulties make shape matching a formidable
task. To overcome these problems, different methods have been proposed [2],
which can be classified as those based on local search and those based on global
search.

Methods based on local search. The iterated closest point (ICP) method
[3,4] uses the closest points as the matched points, and it has variants [5,6].
The robust point matching (RPM) method [1] uses deterministic annealing [7]
to recover a continuously relaxed point correspondence. The method in [8] uses
constraint projection based on quadratic programming to gradually recover the
point correspondence and uses clustering for speedup. The covariance driven
� Corresponding author.
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correspondence (CDC) method [9] uses the covariance of the transformation
parameters to prune the possible false point correspondences. The methods in
[10,11] convert point set registration to an image registration problem. These
local search methods are generally not rotation invariant and not robust to
strong outlier disturbances.

Methods based on global search. These methods can be further classified as
those based on spatial mapping and those based on point correspondence. For
the first category, solution space searching techniques such as genetic algorithm
[12], particle filtering [13] and particle swarm optimization [14] can be used
to recover the transformation. These methods need no initial coarse alignment
and are robust against clutter, but they require an explicit modeling of the
transformation and may become computationally expensive when the number of
transformation parameters becomes high, which makes them unsuitable for non-
rigid matching. The method in [15] constructs a global convex approximation to
the matching function and thus the transformations can be optimally recovered.
But the number of constraints for the method is usually very high which is
circumvented by using interior point methods.

For the second category, linear programming was employed in [16,17] to min-
imize both the feature matching cost and geometric distortion. Ant colony op-
timization was employed in [18] for contour correspondence. Dynamic program-
ming (DP) was used to match chain-like or tree-like structures in [19,20]. In [21],
it was extended to match regions of a shape. Belief propagation was used in [22]
to match shapes where shapes with loops or holes are allowed.

Shape context (SC) [23] is a very informative feature descriptor. The SC of a
point is a measure of the distribution of other points relative to it. SC is very
discriminative and quite robust to various types of disturbances, which makes it
especially useful for non-rigid point matching. However, SC is rotation variant
in most applications (i.e. no significant rotations are allowed between two point
sets). Attempts at making SC rotation invariant are either susceptible to noise,
tend to degrade the discriminative power of SC (e.g. tangent directions were
used to determine the orientations of SCs in [23], distance between two SCs was
rendered rotation invariant by traversing all rotated versions of one of them and
retaining the minimum distance in [17] ) or imposing unnatural requirements on
point sets (e.g. the directions pointed at the mass center of a point set were used
as the orientations of SCs in [24]).

We propose in this paper a new approach to representing shapes and apply it
to rotation invariant non-rigid point matching. A shape is triangulated such that
the non-boundary edges are long enough and also DP can be used to find the best
embedding of the triangles in target point set. Then SC features are constructed
for vertices of the triangles whose orientations coincide with the directions of non-
boundary edges. The SC features constructed in this way are therefore rotation
invariant. To further improve our method’s robustness to outliers, we modify the
original SC distance measure in [23] such that the SC input belonging to the
template is used as a mask to reduce the influence of outliers on the SC input
belonging to the target.
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Compared with previous attempts at enabling SC rotation invariant, our ap-
proach retains the discriminative power of SC, is robust to orientation distur-
bances and appears natural. It shares similarities with the method in [21] in that
both approaches use triangulation to represent shapes and DP is used to find
the best embedding of triangles in target set. However, the method in [21] is for
deformable template matching in images, and the purpose of triangulation is to
introduce non-rigid deformation in template (constrained Delaunay triangula-
tion is adopted to achieve the maximum effect). In comparison, the purpose of
triangulation in our method is to render SC rotation invariant, where a differ-
ent triangulation approach is adopted with the aim that the orientations of SCs
should be as robust to disturbances as possible.

The remaining of the paper is organized as follows. Section 2 introduces briefly
the shape representation. Section 3 presents a new SC distance measure. Section
4 presents the energy function. Section 5 summarizes the algorithm. Section 6
presents extensive experimental results and section 7 concludes the paper.

2 Shape Representation

We restrict ourselves to the cases where the template point set can be represented
as a simple polygon, which is a polygon without holes. We call the polygon the
boundary of the set. For a general point set, we obtain its boundary by solving
the traveling salesman problem [25]. We triangulate the template set such that:
1) its boundary edges are retained; 2) a point is chosen as the reference and the
rest points are connected to it (the resulting edges will be called frame edges
hereafter). This results in a fan-shaped triangulation. Fig. 1 shows two examples
of such triangulation.

Fig. 1. Examples of fan-shaped triangulation. The boundaries of the shapes are high-

lighted in blue, and the frame edges are indicated in black.

We then compute oriented SC [23] for each point except for the reference point,
whose positive x-axis is directed at the reference point. Oriented SCs constructed
in this way are therefore rotation invariant. Due to the strong discriminative
nature of SC, our method’s robustness to various types of disturbances is greatly
enhanced.

Alternative ways of triangulation are possible, so why the fan-shaped trian-
gulation is preferred? The orientations of SCs coincide with the directions of
frame edges in our method. We know that the longer an edge is, the less likely
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its orientation will be affected by positional disturbances of the endpoints. More
specifically, assume the endpoints are xi = x̂i + Δxi, i = 1, 2, where x̂i denotes
the noise free position and Δxi denotes noise. The direction of the edge is

x2 − x1

‖x2 − x1‖
≈ x2 − x1

‖x̂2 − x̂1‖
=

x̂2 − x̂1

‖x̂2 − x̂1‖
+

Δx2 −Δx1

‖x̂2 − x̂1‖

The second term comes from noise. Therefore the larger the length ‖x̂2− x̂1‖ is,
the less influence the noise will impose on the direction of the edge. Fan-shaped
triangulation provides a simple and effective solution to ensuring that the edges
determining the orientations of SC are long enough. We have also tested several
alternative triangulations such as the greedy heuristic based method, where a
shape is iteratively divided into two halves by choosing the longest interior edge
as the splitting line, but our experimental results demonstrated that fan-shaped
triangulation is more robust for point matching.

Based on the same consideration, the reference point in fan-shaped trian-
gulation is chosen such that the average distance from it to the rest points is
maximized.

3 Outlier Resistant Shape Context Distance

The SC of a point is defined as the distribution of other points relative to it
in log-polar coordinate and is quantified as a histogram. Consider two points, i
in template set and j in target set, their SCs are histograms hi(k) and h′

j(k),
for k = 1, 2, . . . ,K, respectively. The χ2 test statistic was used to measure their
difference in [23]:

1
2

K∑
k=1

[hi(k)− h′
j(k)]2

hi(k) + h′
j(k)

(1)

This measure is effective when there are no outliers or the outliers are homoge-
neously distributed in target set. But it may become inadequate when there are
structured outliers in target set.

To tackle the above problem, based on the observation that the template
set is generally outlier free, let us consider the scenario where the only type of
disturbance is outliers in target set. If points i in template set and j in target set
correspond to each other, we would have hi(k) = h′

j(k) for all k if there were no
outliers. Since there are outliers in target set, intuitively we can use sign(hi(k))
as a mask to reduce the influence of outliers on h′

j(k), where

sign(x) =

{
1 if x > 0
0 if x = 0

This is accomplished by replacing h′
j(k) with ĥ′

j(k) = sign(hi(k)) · h′
j(k). We

then normalize ĥ′
j so that it can represent a distribution:

∑K
k=1 ĥ

′
j(k) = 1. We
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now define the outlier resistant shape context distance (ORSCD) between two
SCs hi and h′

j as:

1
2

K∑
k=1

[hi(k)− ĥ′
j(k)]2

hi(k) + ĥ′
j(k)

(2)

Our experimental results showed that, compared with the original SC distance
measure, ORSCD’s robustness to outliers is significantly improved while its ro-
bustness to non-rigid deformation is only slightly weakened.

4 Energy Function

Fan-shaped triangulation will result in a chain of connected triangles, where two
triangles are considered connected if they share a common edge, which meets
the prerequisite of DP. Therefore DP can be used to find the best embedding of
these triangles in target point set. In this section, we present the energy function
associated with the matching problem.

Suppose that the 2D template point set is X = {xi, 0 ≤ i ≤ n}, where the
sequence x0, x1, . . . , xn, x0 forms its closed boundary. Without loss of generality,
x0 is assumed to be the reference. Denote by Y = {yj, 0 ≤ j ≤ m} the point set
to be matched. The task of matching is to find a mapping φ : X → Y which
maps the ith point in X to the lith point in Y so that certain energy function
can be minimized.

The energy function used in our method is

E(φ) = Esc(φ) + λEbound(φ) + μEframe(φ) (3)

where the term Esc penalizes the SC distance between the matched points,
the term Ebound and Eframe require, respectively, that the lengths of boundary
and frame edges should be preserved during matching. The constants λ and μ
(λ ≥ 0, μ ≥ 0) serve to balance the weights of the three terms. (We assume that
the template point set is unit sized and choose λ = 1, μ = 0.5 in our method).
For non-rigid matching, a smaller μ allows for more non-rigid behavior of the
method.

The term Esc is defined as:

Esc(φ) =
n∑

i=1

Dsc[i, 0](li, l0) (4)

where Dsc[i, 0](li, l0) denotes the original SC distance [23] or ORSCD between
the oriented SC of xi and the oriented SC of yli . The positive x-axis of SC for
xi is directed at x0, and the positive x-axis of SC for yli is directed at yl0 . The
SC distances computed in this way are therefore rotation invariant.

The term Ebound is defined as:

Ebound(φ) =
n−1∑
i=0

Dbound[i, i + 1](li, li+1) (5)
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where Dbound[i, i+1](li, li+1) denotes the length difference between the boundary
edge (i, i + 1) in X and the candidate edge (li, li+1) in Y :

Dbound[i, i + 1](li, li+1) = |‖yli+1 − yli‖ − ‖xi+1 − xi‖| (6)

If the length of a boundary edge (i, i+ 1) in X is close to 0, which often occurs
in contour matching, Dbound can be further simplified as:

Dbound[i, i + 1](li, li+1) = ‖yli+1 − yli‖ (7)

The term Eframe is defined as:

Eframe(φ) =
n∑

i=2

Dframe[i, 0](li, l0) (8)

where Dframe[i, 0](li, l0) denotes the length difference between the frame edge
(i, 0) in X and the candidate edge (li, l0) in Y . We use the χ2 test statistic [23]
instead of the Euclidean distance to measure the length difference:

Dframe[i, 0](li, l0) =
|‖yli − yl0‖ − ‖xi − x0‖|2
‖yli − yl0‖+ ‖xi − x0‖

(9)

This is based on the fact that shorter edges are less distorted than longer edges
under a non-rigid deformation. Therefore the length differences of shorter edges
should be penalized more than those of longer edges.

5 Algorithm

During initialization, oriented SC is constructed for each point in X with x0

serving as the reference, which has time complexity O(n) and space complexity
O(n). Oriented SC is then constructed for each point in Y with all the rest
points serving as possible references, which has time complexity O(m2) and space
complexity O(m2). Finally, distances between oriented SC features in both point
sets are computed, which has time complexity O(nm2) and space complexity
O(nm2).

In practice, the time of computing SC features for a point in Y with all the
rest points serving as possible references can be reduced by quantizing orien-
tation into M evenly distributed angles (M = 50 is chosen in our method):
0, 1

M 2π, . . . , M−1
M 2π, and only computing SC features with these angles as the

possible orientations. Then the SC features with all the rest points being possible
references are substituted by these SC features based on orientation proximity.
With this heuristic, the complexity of the initialization is essentially O(nm).

SC distances are then used in the optimization. The algorithm is an instantia-
tion of the well known DP technique. We compute the cost of the best placements
lj for j = 1, . . . , i− 1 as a function of the placements l0 and li, which is stored
in V [i, 0](li, l0). The algorithm is summarized as follows.
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Algorithm 1. Find the best embedding of a shape in a point set

1. V [1, 0](l1, l0) = Dsc[1, 0](l1, l0) + λDbound[0, 1](l0, l1)
2. For i = 2, . . . , n, do

V [i, 0](li, l0) ← minli−1 V [i− 1, 0](li−1, l0) + λDbound[i− 1, i](li−1, li) ;
V [i, 0](li, l0) ← V [i, 0](li, l0) + Dsc[i, 0](li, l0) + μDframe[i, 0](li, l0)

3. Pick ln and l0 minimizing V [n, 0] and trace back to obtain the other
optimal locations.

The above procedure has time complexity O(nm3) and space complexity
O(nm2). We can speed it up based on two considerations: First, if the length
of a boundary edge (i − 1, i) in X is close to 0, given location li, the possible
candidates for li−1 should be those points near yli [21], because points that are
far from it will introduce too much distortion in the template (15 nearest points
are chosen in our method). Second, given location li, the possible candidates for
l0 should be those points which are close to the circle centered at yli and with
a radius equal to the length of the edge (i, 0) in X , because points that are far
from the circle will also introduce too much distortion in the template. With the
two heuristics, the complexity of the proposed algorithm is essentially O(nm).

6 Experimental Results

We compare our method with 3 state-of-the-art methods: the local neighborhood
structure preserving (LNSP) method in [24], the Viterbi algorithm (VA) based
method in [26], and the linear programming (LP) based method in [16] where
we choose SC as the feature descriptor. VA and LP are not rotation invariant.
We render them rotation invariant by running them on 12 evenly distributed
angles and retaining the result with the minimum cost. The code of our method
is available at http://www4.comp.polyu.edu.hk/~cslzhang/code.htm.

We implement the methods under Matlab version 7.6 on a PC with 2GHz
CPU and 2G memory. We use affine transformation to model a non-rigid spatial
mapping. Correspondence recovered by a method is used to solve for the affine
transformation. In the following, the transformed template point set is high-
lighted by red ∗ and point correspondences are indicated by black line segments.
First we use synthetic data to evaluate various aspects of the methods. Then we
compare the methods using data acquired from real images.

6.1 Experiments Using Synthetic Data

Synthetic data can be designed to test specific aspects of a method. First, we use
the Chui-Rangarajan synthesized data sets [1] to test the methods’ robustness
against non-rigid deformation, noise in position and outliers. In each test, the
template shape is subjected to one of the above distortions to create a target
point set (for the latter two test sets, a moderate amount of deformation is
present). Two shapes, a fish and a Chinese character, shown in the left column

http://www4.comp.polyu.edu.hk/~cslzhang/code.htm
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Fig. 2. The template point sets (left column) and examples of target point sets in the

deformation, noise and outlier tests respectively (right 3 columns)

of Fig. 2, are used as the template shape respectively. 100 random target point
sets were generated for each setting within each series. The right 3 columns of
Fig. 2 show examples of target point sets in the 3 series of tests respectively. We
use the original SC distance measure in our method.

The means and standard deviations of the errors of the methods are shown in
Fig. 3, where error is defined as the mean of the Euclidean distances between the
affinely transformed template points and their ground truth target points. It can
be seen that the matching error of our method is in average compared with the
other methods for the deformation and noise tests, while considerably lower than
others for the outlier test. This demonstrates our method’s robustness against
various types of disturbances, especially for outliers.

The average running times of the methods are listed in Table 1. It can be
seen that our method’s running time is low when the number of points is low,
but increases much when the number of points becomes high (i.e. in the case of
outliers).

Table 1. Average Running Time (second)

Deformation Noise Outliers

LNSP 4.0622 5.1435 28.0950

LP 35.1288 35.4172 67.1175

VA 6.9798 7.0181 25.2389

Our method 7.1719 7.0601 36.5388

We then test the methods’ robustness against complex clutters. Two shapes
similar to the template shape but with different poses (the most similar one is
indicated in red in the figure) are mixed together to generate the target point
sets. Random outliers are then added to the target point sets. The aim is to
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animate complex clutter. We use the original SC distance measure in our method.
Examples of shape matching by all the methods are shown in Fig. 4, It can be
seen that, in addition to non-rigid deformation and random outliers, the mixing
of similar shapes considerably complicates the matching problem. Despite the
difficulties, our method works much better at matching the template shapes to
the correct target shapes than the other methods, validating the robustness of
our method against complex clutters.
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Fig. 3. Comparison of our method (red ©) with VA (green �), LP (blue ∗) and LNSP

(black �) on the Chui-Rangarajan synthesized data sets. The error bars indicate the

standard deviation of the error over 100 random trials. Top row: fish tests. Bottom

row: Chinese character tests.

6.2 Experiments on Real Data

We finally test the methods’ performance using data acquired from images. Ex-
amples of matching results by the competing methods are shown in Fig. 5, where
the template shapes are further randomly rotated (not shown in the figure) with
the aim at testing the methods’ abilities for solving rotations. It can be seen that
our method using ORSCD can successfully match to the correct shapes for all the
tests, while our method using the original SC distance measure fails for the 3rd
and 4th tests where similar shapes coexist in the same picture. This demonstrates
ORSCD’s robustness against structured outliers compared with the original SC
distance measure. In comparison, LP fails for the 1st and 3rd tests, VA only
succeeds for the 2nd test, and LNSP fails for all the tests. This clearly shows
our method’s potential for rotation invariant non-rigid shape matching arising
from real problems.
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Fig. 4. Examples of point matching in case of complex clutter. The first row shows

the template shapes. The second row shows the mixture of two shapes which are

similar to the template shapes (the most similar ones are indicated in red) and random

outliers. The last 4 rows show the matching results by LNSP, LP, VA and our method

respectively.
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Fig. 5. Examples of point matching with data acquired from images. The first row

shows the images used to extract the template point sets (red ∗). The second row

shows the images used to extract the target point sets (blue +). Points are extracted

via Canny edge detector. The last 5 rows show the matching results by LNSP, LP, VA

and our method using the original SC distance measure and ORSCD respectively.
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7 Conclusion

We proposed a novel and efficient method for representing and matching non-
rigid shapes. The representation is invariant to translational and rotational
changes, and by using a powerful feature descriptor and a new feature distance
measure, it is also robust to non-rigid deformations and outliers. An algorithm
was then proposed to solve the point matching problem, which possesses global
optimality and is very robust against clutters. The proposed method was tested
by using both simulated and real data in comparison with 3 state-of-the-art
and representative methods. The results clearly demonstrated that the proposed
method has high capability in detecting and matching shapes in cluttered scenes.

In the future, we will apply the proposed method to matching other types of
rotation variant features such as local image patch and geometric blur.

Acknowledgements

This research is supported by the Hong Kong RGC General Research Fund
(PolyU 5351/08E) and the Hong Kong Polytechnic University Internal Fund
(A-SA08).

References

1. Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registra-

tion. Computer Vision and Image Understanding 89, 114–141 (2003)

2. Veltkamp, R.C., Hagedoorn, M.: State of the art in shape matching, pp. 87–119

(2001)

3. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans.

Pattern Analysis and Machine Intelligence 14, 239–256 (1992)

4. Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces.

International Journal of Computer Vision 13, 119–152 (1994)

5. Stewart, C.V., Tsai, C.L., Roysam, B.: The dual-bootstrap iterative closest point

algorithm with application to retinal image registration. IEEE Trans. Medical

Imaging 22, 1379–1394 (2003)

6. Fitzgibbon, A.W.: Robust registration of 2d and 3d point sets. Image and Vision

Computing 21, 1145–1153 (2003); British Machine Vision Computing 2001 (2001)

7. Yuille, A.L., Kosowsky, J.J.: Statistical physics algorithms that converge. Neural

Comput. 6, 341–356 (1994)

8. Lian, W., Zhang, L., Liang, Y., Pan, Q.: A quadratic programming based cluster

correspondence projection algorithm for fast point matching. Computer Vision and

Image Understanding 114, 322–333 (2010)

9. Sofka, M., Yang, G., Stewart, C.V.: Simultaneous covariance driven correspondence

(cdc) and transformation estimation in the expectation maximization framework.

In: IEEE Conf. Computer Vision and Pattern Recognition, pp. 1–8 (2007)

10. Tsin, Y., Kanade, T.: A correlation-based approach to robust point set registration.

In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 558–569.

Springer, Heidelberg (2004)

11. Jian, B., Vemuri, B.C.: A robust algorithm for point set registration using mixture

of gaussians. In: IEEE International Conference on Computer Vision, vol. 2, pp.

1246–1251 (2005)



518 W. Lian and L. Zhang

12. Silva, L., Bellon, O.R., Boyer, K.L.: Precision range image registration using a

robust surface interpenetration measure and enhanced genetic algorithms. IEEE

Trans. Pattern Analysis and Machine Intelligence 27, 762–776 (2005)

13. Sandhu, R., Dambreville, S., Tannenbaum, A.: Point set registration via parti-

cle filtering and stochastic dynamics. IEEE Trans. Pattern Analysis and Machine

Intelligence 32, 1459–1473 (2010)

14. Li, H., Shen, T., Huang, X.: Global optimization for alignment of generalized

shapes. In: IEEE Conf. Computer Vision and Pattern Recognition, pp. 856–863

(2009)

15. Taylor, C.J., Bhusnurmath, A.: Solving image registration problems using interior

point methods. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part

IV. LNCS, vol. 5305, pp. 638–651. Springer, Heidelberg (2008)

16. Jiang, H., Drew, M.S., Li, Z.N.: Matching by linear programming and successive

convexification. IEEE Trans. Pattern Analysis and Machine Intelligence 29, 959–

975 (2007)

17. Jiang, H., Yu, S.X.: Linear solution to scale and rotation invariant object matching.

In: IEEE Conf. Computer Vision and Pattern Recognition, pp. 2474–2481 (2009)

18. Kaick, O.v., Hamarneh, G., Zhang, H., Wighton, P.: Contour correspondence via

ant colony optimization. In: PG 2007: Proceedings of the 15th Pacific Conference

on Computer Graphics and Applications, pp. 271–280 (2007)

19. Scott, C., Nowak, R.D.: Robust contour matching via the order-preserving assign-

ment problem. IEEE Trans. Image Processing 15, 1831–1838 (2006)

20. Wang, J., Athitsos, V., Sclaroff, S., Betke, M.: Detecting objects of variable shape

structure with hidden state shape models. IEEE Trans. Pattern Analysis and Ma-

chine Intelligence 30, 477–492 (2008)

21. Felzenszwalb, P.F.: Representation and detection of deformable shapes. IEEE

Trans. Pattern Analysis and Machine Intelligence 27, 208–220 (2005)

22. Coughlan, J.M., Ferreira, S.J.: Finding deformable shapes using loopy belief prop-

agation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002.

LNCS, vol. 2352, pp. 453–468. Springer, Heidelberg (2002)

23. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using

shape contexts. IEEE Trans. Pattern Analysis and Machine Intelligence 24, 509–

522 (2002)

24. Zheng, Y., Doermann, D.: Robust point matching for nonrigid shapes by preserv-

ing local neighborhood structures. IEEE Trans. Pattern Analysis and Machine

Intelligence 28, 643–649 (2006)

25. http://en.wikipedia.org/wiki/Traveling_salesman_problem

26. Thayananthan, A., Stenger, B., Torr, P.H.S., Cipolla, R.: Shape context and cham-

fer matching in cluttered scenes. In: IEEE Conf. Computer Vision and Pattern

Recognition, vol. 1, pp. 127–133 (2003)

http://en.wikipedia.org/wiki/Traveling_salesman_problem


Loosely Distinctive Features for
Robust Surface Alignment

Andrea Albarelli, Emanuele Rodolà, and Andrea Torsello
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Abstract. Many successful feature detectors and descriptors exist for

2D intensity images. However, obtaining the same effectiveness in the

domain of 3D objects has proven to be a more elusive goal. In fact, the

smoothness often found in surfaces and the lack of texture information on

the range images produced by conventional 3D scanners hinder both the

localization of interesting points and the distinctiveness of their charac-

terization in terms of descriptors. To overcome these limitations several

approaches have been suggested, ranging from the simple enlargement of

the area over which the descriptors are computed to the reliance on ex-

ternal texture information. In this paper we offer a change in perspective,

where a game-theoretic matching technique that exploits global geomet-

ric consistency allows to obtain an extremely robust surface registration

even when coupled with simple surface features exhibiting very low dis-

tinctiveness. In order to assess the performance of the whole approach

we compare it with state-of-the-art alignment pipelines. Furthermore,

we show that using the novel feature points with well-known alternative

non-global matching techniques leads to poorer results.

1 Introduction

Feature detection and characterization is a key step in many tasks involving the
recognition, registration or database search of 2D and 3D data. Specifically, when
suitable interest points are available, all these problems can be tackled by work-
ing with the set of extracted features, rather than dealing with the less stable and
noisier information carried by the whole data. Of course, for an interest point to
be reliable it must exhibit two properties: repeatability and distinctiveness. A
feature is highly repeatable if it can be detected with good positional accuracy
over a wide range of noise levels and sampling conditions as well as different
scales and transformations of the data itself. Further, description vectors calcu-
lated over interesting points are said to be distinctive if they are well apart when
related to different features, yet coherent when associated to multiple instances
of the same point. These properties are somewhat difficult to attain since they
are subject to antithetical goals. In fact, to achieve good repeatability despite
of noise, larger patches of data must be considered. Unfortunately this leads
to a lower positional precision and a less sharp culling of uninteresting points.
Moreover, for descriptor vectors to be distinctive among different features, they

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 519–532, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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need to adopt a large enough basis, which, owing to the well known “dimen-
sionality curse”, also affects their coherence over perturbed versions of the same
feature. In the last two decades these quandaries have been addressed with great
success in the domain of 2D images where salient points are localized with sub-
pixel accuracy by detectors exploiting strong local variation in intensity, such as
Harris Operator [1] and Difference of Gaussians [2], or by using techniques that
are able to locate affine invariant regions, such as Maximally stable extremal
regions (MSER) [3] and Hessian-Affine [4]. Among the most used descriptors are
the Scale-invariant feature transform (SIFT) [5], the Speeded Up Robust Fea-
tures (SURF) [6] and Gradient Location and Orientation Histogram (GLOH)
[7]. While these approaches work well with 2D intensity images, they cannot be
easily extended to handle 3D surfaces since no intensity information is directly
available. Of course several efforts have been made to use other local measures,
such as curvature or normals. One of the first descriptor to capture the struc-
tural neighborhood of a surface point was described by Chua and Jarvis that
with their Point Signatures [8] suggest both a rotation and translation invari-
ant descriptor and a matching technique. Later, Johnson and Hebert introduced
Spin Images [9], a rich characterization obtained by a binning of the radial and
planar distances of the surface samples respectively from the feature point and
from the plane fitting its neighborhood. Given their ability to perform well with
both surface registration and object recognition, Spin Images have become one
of the most used 3D descriptors. More recently, Pottmann et al. proposed the
use of Integral Invariants [10], stable multi-scale geometric measures related to
the curvature of the surface and the properties of its intersection with spheres
centered on the feature point. Finally, Zaharescu et al. [11] presented a com-
prehensive approach for interest point detection (MeshDOG) and description
(MeshHOG), based on the value of any scalar function defined over the surface
(i.e. curvature or texture, if available). MeshDOG localizes feature points by
searching for scale-space extrema over progressive Gaussian convolutions of the
scalar function and thus by applying proper thresholding and corner detection.
MeshHOG calculates a histogram descriptor by binning gradient vectors with
respect to a rotational invariant local coordinate system.

In this paper we introduce a novel technique to detect and describe 3D in-
terest points and to use them for robust surface registration. Unlike previous
approaches we do not aim to obtain a very distinctive characterization. Instead,
we settle for very simple descriptors, named Surface Hashes, that span only 3 to
5 dimensions. As their name suggests, we expect Surface Hashes to be repeat-
able through the same feature point, yet to suffer a high level of clashing due to
their limited distinctiveness. In order to overcome this liability we avoid the use
of classical RANSAC-based matchers; rather we adopt a robust game-theoretic
inlier selector which exploits rigidity constraints among surfaces to guarantee a
global geometric consistency. The combination of these loosely distinctive fea-
tures and our robust matcher leads to an effective surface alignment approach. In
the experimental section we point out this symbiosis by showing that standard
matching techniques are not able to make the most of our descriptors.
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2 Game-Theoretic Matching

Before describing in detail the Surface Hashes features we need to introduce
some basic concepts about Evolutionary Game Theory and to present the idea
of a Matching Game, originally presented in [12] and exploited by our technique
both as an inlier selector and a robust matcher.

Evolutionary Game Theory [13] considers an idealized scenario where pairs of
individuals are repeatedly drawn at random from a large population to play a
two-player game. Each player obtains a payoff that depends only on the strategies
played by him and its opponent. Players are not supposed to behave rationally,
but rather they act according to a pre-programmed behavior, or mixed strategy.
It is supposed that some selection process operates over time on the distribu-
tion of behaviors favoring players that receive larger payoffs. More formally, let
S = {1, · · · , n} be the set of available strategies (pure strategies in the language
of game theory) and C = (cij) be a matrix specifying the payoff that an indi-
vidual playing strategy i receives against someone playing strategy j. A mixed
strategy is a probability distribution x = (x1, . . . , xn)T over the available strate-
gies S; being probability distributions, mixed strategies lie in the n-dimensional
standard simplex Δn = {x ∈ IRn : ∀i ∈ 1 . . . n xi ≥ 0,

∑n
i=1xi = 1} . The sup-

port of a mixed strategy x ∈ Δ, denoted by σ(x), is defined as the set of elements
chosen with non-zero probability: σ(x) = {i ∈ S | xi > 0}. The expected payoff
received by a player choosing element i when playing against a player adopting
a mixed strategy x is (Cx)i =

∑
j cijxj , hence the expected payoff received by

adopting the mixed strategy y against x is yTCx. The best replies against mixed
strategy x is the set of mixed strategies

β(x) = {y ∈ Δ | yTCx = max
z

(zTCx)} .

A strategy x is said to be a Nash equilibrium if it is the best reply to itself, i.e.,
∀y ∈ Δ, xTCx ≥ yTCx . This implies that ∀i ∈ σ(x) we have (Cx)i = xTCx
that is, the payoff of every strategy in the support of x is constant. A strategy x
is said to be an evolutionary stable strategy (ESS) if it is a Nash equilibrium and
∀y ∈ Δ xTCx = yTCx⇒ xTCy > yTCy . This condition guarantees that any
deviation from the stable strategies does not pay. The search for a stable state
is performed by simulating the evolution of a natural selection process. Under
very loose conditions, any dynamics that respect the payoffs is guaranteed to
converge to Nash equilibria [13] and (hopefully) to ESS’s; for this reason, the
choice of an actual selection process is not crucial and can be driven mostly
by considerations of efficiency and simplicity. We chose to use the replicator
dynamics, a well-known formalization of the selection process governed by the
following equation

xi(t + 1) = xi(t)
(Cx(t))i

x(t)TCx(t)

where xi is the i-th element of the population and C the payoff matrix.
Once the population has reached a local maximum, all the non-extinct pure

strategies (i.e. σ(x)) can be considered selected by the process.
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Following [12] and [14], we define a Matching Game as a non-cooperative
game where the set of strategies S is a subset of all the possible correspon-
dences, and the payoff cij between two strategies is proportional to some notion
of compatibility between correspondences. By using different sets to be matched
and alternative payoff functions, we are able to define games specially crafted
to solve specific problems. In the following section we will define more formally
two Matching Games. Respectively the first game will be dedicated to the local-
ization of interest points over a surface described by Surface Hashes, while the
second one will address the search for reliable correspondences between feature
points extracted from two different meshes.

3 Surface Hashes

Intuitively, a Surface Hash is a concise point feature descriptor which exhibit
the property of being highly repeatable at the cost of a relatively high proba-
bility of clashing. In practice this happens with any low-dimensional descriptor,
such as the Gaussian or Mean Curvature (1 dimension), the first two Princi-
pal Components of a patch (2 dimensions), or the normal vector associated to a
point (2 dimensions). While those descriptors could be used with our registration
pipeline, we prefer to introduce some multiscale Surface Hashes based respec-
tively on the dot product between normals and a local surface integral. Each of
our descriptors corresponds to a vector of scalar measures evaluated at different
scales. By increasing or reducing the number of scales, we are able to obtain
vectors of different length, thus being more or less distinctive. The Normal Hash
(see Fig. 1(a)) is obtained by setting as a reference the average surface normal
over a patch that extends to the largest scale (red arrow in figure) and then,
for each smaller scale, calculate the dot product between the reference and the
average normal over the reduced patches (blue arrows in figure). This measure
finds its rationale in the observation that at the largest scale the average normal
is more stable with respect to noise and that the dot product offers a concise
representation of the relation between the vectors obtained at various scales.
The Integral Hash (see Fig. 1(b)) is similar in spirit to the Normal Hash. In this
case we search for the best fitting plane (in the least squares sense) with respect

(a) Normal Hash (b) Integral Hash

Fig. 1. Example of the two basic Surface Hashes proposed in this paper
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(a) First dimension (b) Second dimension (c) Third dimension

(d) First pass (e) Second pass (f) Third pass

Fig. 2. Example of a 3-dimensional Normal Hash and the related detection process

to the surface patch associated to the largest scale. We calculate the volume
enclosed between the surface and such a plane. In practice, it is not necessary
to evaluate this volume accurately: even naive approximations, such as the sum
of the distances of the surface points from the plane, have shown to provide a
reasonable approximation in all the empirical tests. Note that Normal Hashes
evaluated over n scales yield descriptor vectors of length n− 1 (since the larger
scale is used only to calculate the reference normal), while Integral Hashes pro-
vide n-dimensional vectors. In Fig. 2 a Normal Hash of dimension 3 (respectively
from (a) to (c)) evaluated over 4 scales is shown. Note that the descriptor is not
defined on the points for which the larger support is not fully contained in the
surface, i.e., points close to the surface boundary.

3.1 Interest Points Detection

Given the large number of points contained in typical 3D objects, it is not practi-
cal for any matching algorithm to deal with all of them. In addition, the isolation
of a relatively small number of interest points can enhance dramatically the abil-
ity of the matcher to avoid false correspondences, usually due to a large number
of features with very common characterizations. This is particularly true when
using Surface Hashes, which are loosely distinctive by design. Paradoxically,
we use exactly this property to screen out features exhibiting descriptors that
are too common over the surface. This happens by defining a Matching Game
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where the strategy set S corresponds to the set of all the surface points and the
payoff matrix is defined by:

C(ij) = e−α|di−dj| , (1)

where di and dj are the descriptor vectors associated to surface point i and j,
and α is a parameter that controls the level of selectivity. Clearly, features that
are similar in terms of Surface Hashes will get a large mutual payoff and thus
are more likely to be selected by the evolutive process. In this sense, our goal is
to let the population evolve to an ESS and then remove from the set of interest
points the features that survived the evolutive process. At the beginning we can
initialize the set of retained features to the whole surface and run a sequence of
Matching Games until the desired number of points are left. At this point, the
remaining features are those characterized by less-common descriptors which are
more likely to represent good cues for the matching. It should be noted that by
choosing high values for α the payoff function decreases more rapidly with the
growth of the distance between the Surface Hashes, thus the Matching Game
becomes more selective and less points survive after reaching an ESS. In the
end this results in a blander decimation and thus in a larger ratio of retained
interest points. By converse, a low value for α leads to a more greedy filtering
and thus to a more selective interest point detector. In Fig. 2 (from (d) to (f))
we show three steps of the evolutive interest point selection with respect to the
3-dimensional Normal Hash shown from (a) to (c). In Fig. 2(d) we see that after
a single pass of the Matching Game most of the surface points are still considered
interesting, while after respectively two and three passes only very distinctive
points (belonging to areas with less common curvatures) are left.

3.2 Matching Surface Hashes

After obtaining a reduced set of interest points from the two surfaces, we could
proceed to align them using some robust algorithm such as a basic RANSAC
[15], that would use just the point locations and some initial match hypotheses,
or PROSAC [16], that could better exploit the prior expressed by the descriptors.
Unfortunately, Surface Hashes, despite the proposed filtering technique, are still
not distinctive enough to be used directly by such methods. For this reason
we define another Matching Game that ignores the information given by the
descriptors and takes advantage of the rigidity constraint to be enforced in the
surface registration problem. While this can sound counterintuitive, the main
idea of this approach is to limit the use of the weak features to the selection of
interest points and to use a more reliable global approach (that does not depend
on descriptors) for the registration itself.

Given a set of model interest points M and a set of data interest points
D we define the set of strategies for our Matching Game as all the possible
correspondences between them: S = {(a1, a2)|a1 ∈ M and a2 ∈ D}. Of course
for practical reasons it is perfectly reasonable to limit the size of S by including
only pairs that show similar descriptors.
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Once S has been selected, our goal becomes to extract from it the largest
subset that includes only correctly matched points: that is, strategies that as-
sociate a point in the model surface with the same point in the data surface.
To enforce this we assign to each pair of strategies a payoff that is inversely
proportional to a measure of violation of the rigidity constraint. This violation
can be expressed in several ways, but since all the rigid transformations preserve
Euclidean distances, we choose this property to express the coherence between
strategies.

Definition 1. Given a function π : S × S → R+, we call it a rigidity-enforcing
payoff function if for any ((a1, a2), (b1, b2)) and ((c1, c2), (d1, d2)) ∈ S×S we have
that ||a1 − b1| − |a2 − b2|| > ||c1 − d1| − |c2 − d2|| implies π((a1, a2), (b1, b2)) <
π((c1, c2), (d1, d2)). In addition, if π((a1, a2), (b1, b2)) = π((b1, b2), (a1, a2)), π is
said to be symmetric.

A rigidity-enforcing payoff function is a function that is monotonically decreasing
with the absolute difference of the Euclidean distances between respectively the
model and data points of the strategies compared. In other words, given two
strategies, their payoff should be high if the distance between the model points
is equal to the distance between the data points and it should decrease as the
difference between such distances increases.

Further, if we want matching to be one-to-one, we must put an additional
constraint on the payoffs, namely that mates sharing a point are incompatible.

Definition 2. A rigidity-enforcing payoff function π is said to be one-to-one if
a1 = b1 or a2 = b2 implies π((a1, a2), (b1, b2)) = 0.

Given a set of strategies S and an enumeration O = {1, ..., |S|} over it, a mating
game is a non-cooperative game where the population is defined as a vector
x ∈ Δ|S| and the payoff matrix C = (cij) is defined as cij = π(si, sj), where
si, sj ∈ S are enumerated by O and π is a symmetric one-to-one rigidity-enforcing
payoff function. Intuitively, xi accounts for the percentage of the population
that plays the i-th strategy. By using a symmetric one-to-one payoff function
in a mating game we are guaranteed that ESS’s will not include mates sharing
either model or data nodes (see [12]). Moreover, a mating game exhibits some
additional interesting properties.

Theorem 1. Given a set of model points M , a set of data points D = TM
that are exact rigid transformations of the points in M , and a set of strategies
S ⊆ M × D with (m,Tm) ∈ S for all m ∈ M , and a mating game over them
with a payoff function π, the vector x̂ ∈ Δ|S| defined as

x̂i =

{
1/|M | if si = (m,Tm) for some m ∈M ;
0 otherwise,

is an ESS and obtains the global maximum average payoff.

This theorem states that when matching a surface with a rigidly transformed
copy of itself the optimal solution (i.e., the population configuration that selects
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all the strategies assigning each point to its copy) is the stable state of maximum
payoff. Clearly, aligning a surface to an identical copy is not very useful in prac-
tical scenarios, where occlusion and measurement noise come into play. While
the quality of the solution in presence of noise will be assessed experimentally,
we can give some theoretical results regarding occlusions.

Theorem 2. Let M be a set of points with Ma ⊆ M and D = TMb a rigid
transformation of Mb ⊆ M such that |Ma ∩ Mb| ≥ 3, and S ⊆ Ma × D be
a set of strategies over Ma and D with (m,Tm) ∈ S for all m ∈ Ma ∩Mb.
Further, assume that the points that are not in the overlap, that is the points in
Ea = Ma\(Ma∩Mb) and Eb = Mb\(Ma∩Mb), are sufficiently far away such that
for every s ∈ S, s = (m,Tm) with m ∈Ma∩Mb and every q ∈ S, q = (ma, Tmb)
with ma ∈ Ea and mb ∈ Eb, we have π(q, s) < |Ma∩Mb|−1

|Ma∩Mb| , then, the vector
x̂ ∈ Δ|S| defined as

x̂i =

{
1/|M | if si = (m,Tm) for some m ∈Ma ∩Mb ;
0 otherwise,

is an ESS.

The result of theorem 2 is slightly weaker than theorem 1, as the face of the
simplex corresponding to the “correct” overlap, while being an evolutionary sta-
ble state, is not guaranteed to obtain the overall highest average payoff. This is
not a limitation of the framework as this weakening is actually due to the very
nature of the alignment problem itself. The inability to guarantee the maximal-
ity of the average payoff is due to the fact that the original object (M) could
contain large areas outside the overlapping subset that are perfectly identical.
Further, objects that are able to slide (for instance a plane or a sphere) could be
allowed to move between different mixed strategies without penalty. These situ-
ations cannot be addressed by any algorithm without relying on supplementary
information. However, in practice, they are quite unlikely extreme cases. In the
experimental section we will show that our approach can effectively register a
wide range of surface types.

In Fig. 3 we show a complete example of the evolutionary matching process. In
order to make the example easy to understand we restricted our focus to a detail
of a range scan of the Stanford “dragon”. In this example (and throughout all
the experimental section) S is built by including all the strategy pairs composed
by a feature point in the model and the 5 nearest feature points in the data in
terms of Surface Hash (in this example we used an Integral Hash with 3 scales).
In Fig. 3(g) we show, on a colored scale from 0 to 1, the payoff matrix of the rigid
enforcing function used (which is discussed in the experimental section). Note
that in the diagonal area of the matrix blocks of five strategies with reciprocal
0 payoff can be found: this is related to the way we built S. In fact we chose
to include for each model point 5 candidates in the data and they are mutually
non compatible as they share the same source point and we are looking for a
one-to-one match. In the top and bottom half of Fig. 3(d) we can see respectively
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(d) Initial matches (e) Matches in 1 round (f) Matches in 100 rounds
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Fig. 3. Example of a rigid enforcing payoff and of the evolution of the matching process

model and data feature points at the beginning of the matching process. After
just one round of replicator dynamics we see that many outliers have been peeled
off from the initial set S, but still some wrong matches are present. After 100
iterations only a few matches have been retained, but it is easy to see that
they are extremely coherent. Finally, in Fig. 3(h) and Fig. 3(i) we show the
(sorted) population histogram respectively after 1 and 100 iterations. The first
histogram shows that all the strategies are still played by a sizeable amount of
the population, while after 100 iterations most of the consensus is held by the
few surviving matches.

4 Experimental Results

In this section we study the behavior of the proposed surface registration tech-
nique with respect to different Surface Hashes and scales. In addition we evaluate
both the performance of the proposed feature descriptor with other matches and
the quality of the alignment obtained by comparison with other pipelines. The
rigidity-enforcing payoff function used throughout the experiments is defined as

π((a1, b1), (a2, b2)) =
min(|a1 − a2|, |b1 − b2|)
max(|a1 − a2|, |b1 − b2|)

(2)

where a1, a2, b1 and b2 are respectively the two model (source) and data (des-
tination) points in the compared mating strategies. The initial set of strategies
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Fig. 4. Comparison of different descriptors using real and synthetic objects

S was built by including all the pairs composed by a feature point in the model
and the 5 feature points in the data with the nearest descriptor.

4.1 Sensitivity to Noise, Occlusion, and Scale of the Descriptor

The performance of different descriptors was tested for various levels of noise and
occlusion applied to two surfaces obtained from real range scans (“armadillo”
and “dragon” from Stanford) and two synthetic surfaces designed to be chal-
lenging for coarse registration techniques (“fractal” and “wave”). The noise is
a positional Gaussian perturbation on the point coordinates with its level (σ)
expressed in terms of the percentage of the average edge length, while the oc-
clusion denotes the percentage of data and model surfaces removed. The RMS
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Fig. 5. Effect of scale on the matching accuracy

Ratio in the charts is the ratio of the root mean square error (RMS) obtained
after registration and the RMS of the ground truth alignment. The Normal and
Integral Hashes were calculated over 3 levels of scale and the “Mixed” Hash
is simply the juxtaposition of the previous two. In Fig. 4 we see that all the
descriptors obtain good results with real ranges and the registration “breaks”
only with very high levels of noise (on the same order of magnitude of the edge
length). It is interesting to observe that the Mixed Hash always obtains the best
performance, even with high level of noise: This higher robustness is probably
due to the orthogonality between the Normal and Integral Hashes. The behavior
with the “fractal” synthetic surface is quite similar, by contrast all the descriptors
seem to perform less well with the “wave” surface. This is due to the lack of
distinctive features on the model itself, which indeed represents a challenge for
any feature based registration technique. The performance obtained with respect
to occlusion is similar: all the descriptors achieve fairly good results and are
resilient to high levels of occlusion (note that 40 percent occlusion is applied both
to data and model). Overall the Mixed Hash appears to be consistently more
robust. Since we found that the descriptors calculated over 3 levels of scale break
at a certain level of noise, we were interested in evaluating if their performance
can be improved by increasing their dimension. In Fig. 5 we present the results
obtained with different levels of scale for the Mixed Hash. The graphs show the
average over all the surfaces and the associated RMS. It is interesting to observe
that by reducing the scale level the technique becomes less robust, whereas its
performance increases dramatically when the number of scales increases. With
a scale level of 5 our approach can deal even with surfaces subject to Gaussian
positional noise of σ greater than the edge length. Unfortunately this enhanced
reliability comes with a drawback: by using larger levels of scale the portion of
boundary that cannot be characterized grows. In the right half of Fig. 5 the
shrinking effect is shown for scale levels from 2 to 5.
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Fig. 6. Comparison of the performance obtained with different matchers

4.2 Comparisons with Other Matchers

Our goal in this set of experiments is to study if Surfaces Hashes can be used
successfully with matchers alternative to the Matching Game described in Sec-
tion 3.2. Specifically, we compared our full pipeline with standard DARCES [17]
and with a DARCES variant that adopts PROSAC instead of plain RANSAC to
take advantage of our descriptors as prior. To this end, we sorted the initial cor-
respondence hypotheses by descriptor similarity and operated a PROSAC-like
selection starting from an initial set of high-ranked matches and enlarging it pro-
gressively. In Fig. 6 we show the results of this test. As expected, RANSAC-based
DARCES yields the worst results. Our PROSAC based variant obtains slightly
better average registrations, but, the additional information provided by the de-
scriptors is not distinctive enough to boost this technique to performance levels
of the Matching Game that relies only on the global rigidity constraints.

4.3 System-Level Comparisons

Since our alignment approach does not need any initial estimate of the motion
between surfaces, it can be classified as a coarse registration technique. For
this reason we found appropriate to compare it with other widely used coarse
registration methods. To this extent, we chose to use the Spin Images based
approach proposed by Johnson [9] and the MeshDOG/MeshHOG combination
suggested by Zaharescu [11]. The latter was selected because it adopts short
descriptors very similar to the one proposed in this paper. In Fig. 7 we see
that both techniques perform worse than the one based on Surface Hashes, even
at low noise and occlusion levels. Surprisingly MeshDOG/MeshHOG obtains
the worst results, probably because of the combination of a weak descriptor
with a greedy matcher. Finally, we used the coarse registrations obtained with
each approach to initialize a fine registration made with a best-of-breed ICP
variant similar to the one proposed in [18]. Point selection is based on Normal
Space Sampling [19], and point-surface normal shooting is adopted for finding
correspondences, distant mates, candidates with back-facing normals, or matings
established on the boundary of the mesh are rejected. In the leftmost plot of
Fig. 8 we histogram the frequency of RMS ratio intervals obtained after the
coarse registration. The histogram is based on bins of exponentially increasing
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Fig. 8. Comparison of the performance between complete pipelines

size. In the rightmost chart the distribution change after a full round of ICP
refinement can be seen. We can observe that while ICP is able to correct some
wrong registrations with lower RMS Ratio, our approach still reaches the optimal
alignment with a frequency that is almost double of the one obtained by the
closest competitor. Regarding the computational complexity, it should be noted
that the algorithm is quadratic in the number of strategies and thus the number
of feature correspondences. Nevertheless, the initial interest points selection and
the correspondences filtering by means of the descriptors, allow us to keep the
computational time within a few seconds in all of our experiments.

5 Conclusions
In this paper we introduced a novel surface registration technique that uses
very simple descriptors to create several weak correspondence hypotheses that
are further optimized by a robust game-theoretic matcher. A theoretical result
exposed the correspondence between optimal alignments and evolutionary equi-
libria, and the approach was validated on a wide range of experiments showing
its greater robustness with respect to noise and occlusion in comparison with
other well-known techniques.
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Abstract. Random hypothesis generation underpins many geometric

model fitting techniques. Unfortunately it is also computationally expen-

sive. We propose a fundamentally new approach to accelerate hypothesis

sampling by guiding it with information derived from residual sorting. We

show that residual sorting innately encodes the probability of two points

to have arisen from the same model and is obtained without recourse

to domain knowledge (e.g. keypoint matching scores) typically used in

previous sampling enhancement methods. More crucially our approach is

naturally capable of handling data with multiple model instances and ex-

cels in applications (e.g. multi-homography fitting) which easily frustrate

other techniques. Experiments show that our method provides superior

efficiency on various geometric model estimation tasks. Implementation

of our algorithm is available on the authors’ homepage.

1 Introduction

Random hypothesis sampling is central to many state-of-the-art robust esti-
mation techniques. The procedure is often embedded in the “hypothesise-and-
verify” framework commonly found in methods such as Random Sample Consen-
sus (RANSAC) [1] and Least Median Squares (LMedS) [2]. The goal of sampling
is to generate many putative hypotheses of a given geometric model (e.g. fun-
damental matrix, homography) from randomly chosen minimal subsets of the
input data. The hypotheses are then scored in the verification stage according
to a robust criterion (e.g. number of inliers, median of squared residuals).

The underlying principle of random hypothesis sampling is to “hit” at least
one all-inlier subset corresponding to a particular genuine instance of the geo-
metric model. Unfortunately the total number of hypotheses required such that
this happens with significant chance scales with the fraction of outlier contami-
nation. For heavily contaminated data hypothesis generation easily becomes the
computational bottleneck. Moreover in data with multiple instances of the geo-
metric model (also called “structures” [3]) the inliers of one structure behave as
pseudo-outliers to the other structures, thus further compounding the problem.

Due to the widespread usage of robust estimators in Computer Vision there
have been many innovations [4–9] to speed-up random hypothesis generation.
These methods aim to guide the sampling process such that the probability of
hitting an all-inlier subset is improved. The trick is to endow each input datum
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(a) Input data (b) Density using our method (c) Top view of (b)
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Fig. 1. Given the input data in (a) where there are 4 lines with 100 points per line and

100 gross outliers, we sample 100 line hypotheses using the proposed method, uniform

sampling (à la the original RANSAC [1]) and PROSAC [7], yielding the parameter

space density plotted respectively in (b), (d) and (f). Notice that the hypotheses of

our method are concentrated on the correct models yielding 4 distinct peaks. Results

from uniform sampling and PROSAC however contain many false peaks and irrelevant

hypotheses. As Sec. 4 shows, in multi-structure data our method can successfully “hit”

all true models using considerably less time than previous techniques.

a prior probability of being an inlier and to sample such that data that have
high probabilities are more likely to be simultaneously selected. Such prior prob-
abilities are often derived from domain-specific knowledge. For example Guided-
MLESAC [6] and PROSAC [7] concentrate the sampling effort on correspon-
dences with higher keypoint matching scores, the rationale being that inlier
correspondences originate from confident keypoint matches (recall that in geom-
etry estimation one correspondence consists of two matching points in different
views). SCRAMSAC [9] further imposes a spatial consistency filter so that only
correspondences which respect local geometry get sampled. Other works assume
that inliers form dense clusters [5] or lie in meaningful image segments [8].

A crucial deficiency of previous methods lies in regarding the inlier probability
of a datum to be independent of the other data. This is untrue when there are
multiple structures. Given that an inlier of one structure is chosen, the probabil-
ity that a second datum is an inlier (and thus should be chosen as well) depends
on whether the second datum arose from the same structure. In other words, it
is very possible that two correspondences with high keypoint matching scores are
inliers from different valid structures. Methods that ignore this point are bound
to wastefully generate many invalid cross-structure hypotheses. Our results on
real and synthetic data (see Fig. 1) prove that this is indeed the case.
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We also argue that the domain knowledge used in previous guided sampling
techniques do not translate into convincing prior inlier probabilities. For exam-
ple, inliers of a valid homography relation do not necessarily cluster together,
while false or irrelevant correspondences can have high matching scores especially
on scenes with repetitive textures. In the general case it is often questionable
whether some usable and reliable domain knowledge is always available.

In this paper we propose a fundamentally novel technique to accelerate ran-
dom hypothesis generation for robust model fitting. Our guided sampling scheme
is driven only by residual sorting information and does not require domain- or
application-specific knowledge. The scheme is encoded in a series of inlier prob-
abilities which are updated on-the-fly. Most importantly our inlier probabilities
are conditional on the selected data and thus encourages only inliers from the
same structure to be simultaneously chosen for estimation. As our results demon-
strate (see Sec. 4), our technique provides superior sampling efficiency especially
on multi-structure data where other methods simply breakdown.

The rest of the paper is organised as follows: Sec. 1.1 surveys related work to
put this paper in the right context. Sec. 2 describes the basic principles leading to
our novel hypothesis generation scheme in Sec. 3. Sec. 4 outlines our experimental
results and Sec. 5 draws conclusions.

1.1 Related Work

Many previous enhancements on the hypothesise-and-verify framework occur
in the context of the RANSAC method. A recent survey [10] categorises them
roughly into three groups. The first group of methods [4–9] aim to improve the
random hypothesis sampling routine such that the chances of hitting an all-inlier
sample is increased. In LO-RANSAC [4] an inner RANSAC loop is introduced
into the main RANSAC body such that hypotheses may be generated from the
set of inliers found so far, thus improving the consensus score more rapidly.
Guided-MLESAC [6] and PROSAC [7] focus the sampling on more promising
data based on keypoint matching scores, and this is extended to include spatial
verification in SCRAMSAC [9]. In [5] sampling is concentrated on neighbour-
ing correspondences, and in a similar spirit GroupSAC [8] focusses sampling
on groups of data obtained using image segmentation. We emphasise that our
work belongs to this category with the novelty of being domain-independent and
optimised for accelerated hypothesis sampling in multi-structure data.

The second group of innovations [11–14] speed-up the hypothesis verification
stage by minimising the time expended for evaluating unpromising hypotheses.
The Td,d test [11] evaluates a hypothesis on a small random subset of the input
data. This may mistakenly reject good hypotheses thus a much larger number of
samples are required. However the overall time can potentially be reduced since
the verification now consumes less time. Bail-Out test [12] and WaldSAC [13, 14]
respectively apply catch-and-release statistics and Wald’s theory of sequential
decision making to allow early termination of the verification of a bad hypothesis.

The third category [10, 15] considers RANSAC in a real-time setting. The
goal is to find the best model from a fixed number of hypotheses afforded by
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the allotted time interval. Given a set of hypotheses, Preemptive RANSAC [15]
scores them in a breadth-first manner such that unpromising hypotheses can
be quickly filtered out from the subsequent passes. ARRSAC [10] performs a
partially breadth-first verification such that the number of hypotheses may be
modified according to the inlier ratio estimate while still bounding the runtime.

We are also aware of recent work [16, 17] that side-steps the hypothesise-and-
verify framework and solves robust estimation directly as a global optimisation
problem. While providing globally optimal solutions, these methods require con-
siderably more time than RANSAC, especially for higher order geometric models.
Our concern in this paper is to efficiently fit a geometric model onto noisy data
with minimal loss to accuracy, and therefore our aims are different to [16, 17].
We also note that these methods [16, 17] currently cannot handle multi-structure
data which make up a significant proportion of practical problems.

2 Inlier Probabilities from Sorting Information

We first describe how inlier probabilities can be derived from residual sorting
information. Let X := {xi}N

i=1 be a set of N input data. Under the hypothesise-
and-verify framework, a series of tentative models (or hypotheses) {θ1, . . . , θM}
are generated from minimal subsets of the input data where M is the number
of hypotheses generated. For each datum xi we compute its absolute residuals
as measured to the M hypotheses to form the residual vector

r(i) := [ r(i)
1 r

(i)
2 · · · r

(i)
M ]. (1)

Note that the hypotheses do not lie in any particular order except the order in
which they are generated. We then find the permutation

a(i) := [ a(i)
1 a

(i)
2 · · · a(i)

M ] (2)

such that the elements in r(i) are sorted in non-descending order, i.e.,

p < q =⇒ r
(i)

a
(i)
p

<= r
(i)

a
(i)
q

. (3)

The sorting a(i) essentially ranks the M hypotheses according to the preference
of xi; the higher a hypothesis is ranked the more likely xi is an inlier to it.

Intuitively, two data xi and xj will share many common hypotheses at the top
of their preference list a(i) and a(j) if they are inliers from the same structure.
This is independent of whether xi and xj coexist in the same neighbourhood or
whether they are correspondences with high keypoint matching scores.

To illustrate this, first let a
(i)
1:h be the vector with the first-h elements of a(i).

We define the following function as the “intersection” between xi and xj :

f(xi,xj) :=
1
h

∣∣∣a(i)
1:h ∩ a

(j)
1:h

∣∣∣ , (4)
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where |a(i)
1:h∩a

(j)
1:h| finds the number of identical elements shared by a

(i)
1:h and a

(j)
1:h.

Window size h with 1 ≤ h ≤ M specifies the number of leading hypotheses to
take into account. Note that f(xi,xj) ranges between 0 and 1 and is symmetric
with respect to its inputs. Also f(xi,xi) = 1 for all i.

The window size h controls the discriminability of the intersection score given
by (4). It is found empirically that across a wide range of h values this score is
discriminative. For the data in Fig. 1(a) where M = 100 we obtain the responses
of f(xi,xj) while h is varied from 1, . . . ,M . Fig. 2(a) plots the mean of the
responses which are separated according to whether the two input data are inliers
from the same structure (denoted “SS”) or otherwise (denoted “DS”). The result
clearly shows that inliers from the same structure have higher intersection values
relative to other possible pairs of inputs. Based on the result in Fig. 2(a), we
set h = �0.1 × M� by default for the intersection function unless mentioned
otherwise.

We then obtain the N ×N matrix K where the element at the i-th row and
j-th column is simply f(xi,xj). Fig. 2(b) displays the matrix K by rearranging
the points according to their structure membership, i.e., x1 to x100 are inliers
from structure 1, x101 to x200 are inliers from structure 2 and so on. The gross
outliers are x401 to x500. This makes visible a block diagonal pattern which
confirms that strong mutual support occur among inliers of the same structure.
We emphasise that such an arrangement is purely to aid in presentation and is
unnecessary for f(xi,xj) or our subsequent steps to work.
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Fig. 2. (a) Average intersection values for the data in Fig. 1(a) while h is varied.

(b) Matrix K of size 100 × 100 corresponding to h = 10.

We further analyse the results by plotting in Fig. 3 the values of selected rows
of K. Unsurprisingly at a row corresponding to an inlier the significant values
concentrate mostly on other inliers from the same structure, while for a gross
outlier the values are generally low and appear to be randomly distributed.
Therefore, given that a datum is selected, our idea is to use the intersection
values of the datum as weights to sample a second datum. This yields inlier
probabilities that encourages sampling within coherent structures. We emphasise
that this phenomenon or idea is independent of the type of the geometric model.
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Fig. 3. Values at rows of K corresponding to an inlier from structure 1 (Top), an inlier

from structure 2 (Center) and a gross outlier (Bottom)

More generally the observations in Figs. 2 and 3 indicate considerable po-
tential in residual sorting information. This concept has been pursued in con-
structing statistical learning-based model fitting [18] and robust clustering meth-
ods [19]. In the next section we illustrate how residual sorting can be exploited
to drive a very efficient hypothesis generation scheme.

3 Guided Sampling for Multi-structure Data

We use the similarity function (4) to design a guided sampling scheme (Multi-GS,
Algorithm 1.) that is optimised for multi-structure data.

The Weighting Function Assume M model hypotheses have been generated
so far and we wish to sample the next hypotheses (in a guided fashion). Let the
model to be fitted be determined by a minimal subset S := {sk}p

k=1 ⊆ X of p
data, where sk are indexed by the order in which they are sampled. The first
datum s1 is selected randomly. We then define a basis weighting function

w(xi,xj) :=

{
f(xi,xj) if xi �= xj,

0 otherwise,
(5)

where f is the intersection function (4). Given the first selection s1, the condi-
tional probability P (xj |s1) of selecting xj as the second datum in the current
minimal subset is then determined by the following monotonic relation:

w1(xm) ≥ w1(xn) =⇒ P (xm|s1) ≥ P (xn|s1), (6)
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where w1(·) is a weighting function conditioned on s1

w1(·) := w(·, s1). (7)

The monotonic relation (6) says that data that are consistent with s1 (according
to the intersection score (4)) are more likely to be selected. Effectively w1(xj)
for j = 1, . . . , N is a set of sampling weights to choose the second datum.

The remaining members (i.e., s3, s4, . . . , sp) are also chosen conditionally on
the data that are already drawn into the current minimal subset. Specifically
the sampling weights for the (k + 1)-th member of the minimal subset is

wk(xj) :=
k∏

i=1

w(xj , si). (8)

This is the element-wise multiplication of the rows of matrix K (see Fig. 2(b))
corresponding to data that have already been selected s1, . . . , sk. The conditional
probability P (xj |s1, · · · , sk) of selecting xj then follows from the rule

wk(xm) ≥ wk(xn) =⇒ P (xm|s1, · · · , sk) ≥ P (xn|s1, · · · , sk). (9)

This continues until p data have been selected. The (M+1)-th hypothesis is then
estimated from the new minimal subset. Note that since (5) imposes wk(sk) = 0
a datum cannot be chosen more than once into the same minimal subset.

Updating of Sampling Weights. Theoretically the sampling weights (8) are
updated as soon as a new hypothesis is produced since (5) uses all available

Algorithm 1. Guided-Sampling for Multi-structure Robust Fitting (Multi-GS)
1: input input data X , total number of hypotheses T , size of a minimal subset p > 0

and block size b > 0.

2: output a set Θ of T model hypotheses.

3: for t := 1, 2, · · · , T do
4: if t <= b then
5: randomly sample p data and store as S
6: else
7: select a datum s1 from X and initialise S := {s1}
8: for k := 1, 2, · · · , (p − 1) do
9: sample sk+1 from X by following the rule (9)

10: S := S ∪{sk+1}
11: end for
12: end if
13: Θ := Θ∪{Hypothesis instantiated from S}
14: if t >= b and mod(t, b) == 0 then
15: update the permutation a(i) (2) for all data

16: end if
17: end for
18: return Θ
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hypotheses. From a computational standpoint this is inefficient because a single
new hypothesis does not add much information about inlier probabilities. Our
proposed algorithm thus updates the weighting function only after a block (of
size b) of new hypotheses are generated; see Step 14–16 in Algorithm 1..

The weighting function is practically updated by modifying the permutations
a(i) to account for the new hypotheses. We propose an efficient strategy to per-
form this step. Firstly, assume that we have the absolute residuals {r(i)}N

i=1 for
the M hypotheses sampled so far. Each of these is sorted increasingly to obtain
the permutation vectors {a(i)}N

i=1 of which only the top-h elements {a(i)
1:h}N

i=1

partake in the computation of the sampling weights. The key to efficient updat-
ing is to fully retain {r(i)}N

i=1 and {a(i)}N
i=1. After b new hypotheses become

available their absolute residuals to the dataset are computed and inserted using
binary search into the sorted {r(i)}N

i=1. The new leading hypotheses {a(i)
1:h}N

i=1

are then extracted from the updated sorting. A binary search insertion into a vec-
tor of length M scales as O(logM) and we have b of these per datum. Therefore
the total cost of updating a(i) for N data is O(Nb logM).

On the surface it seems that the somewhat higher computational cost con-
stitutes a weakness. However our algorithm conducts a more informed sampling
given a unit of time in comparison to other techniques. The result is that we
require less total CPU time to hit at least one all-inlier subset of all valid struc-
tures in the data; this is validated by our experiments in Sec. 4. In contrast the
other methods are much slower because they unproductively generate many in-
valid cross-structure hypotheses. In single structure data the proposed algorithm
performs comparably to other guided sampling techniques.

4 Experiments

We evaluated the performance of the proposed method (Multi-GS, Algorithm 1.)
on both synthetic and real image datasets. We compared against other state-of-
the-art sampling enhancement schemes: LO-RANSAC [4], proximity sampling [5,
20] (denoted “Exp”), Guided-MLESAC [6], and PROSAC [7]. Uniform random
sampling as in the original RANSAC [1] (denoted “Random”) is used as the
baseline. We implemented all algorithms in MATLAB. All experiments were
run on a Linux machine with 2.67GHz Intel quad core processors and 4 GB of
RAM.

In all experiments the inlier threshold required by LO-RANSAC was set to
the average residual of inliers as measured to their corresponding structures; TN

in PROSAC was set to 5× 104. The scale parameter of Exp (σ2 as in Equation
1 in [20]) was set to twice the squared average nearest neighbour distance. We
implemented Guided-MLESAC such that data points with higher quality scores
(e.g. keypoint matching scores) are given higher probabilities to be drawn. For
our method we consistently fixed the block size b = 10 and the window size
h = �0.1× t�, t being the number hypotheses generated so far.
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Fig. 4. The performance of various sampling methods on 2D geometric data. The left

column shows the generated inliers. The centre and right columns respectively show

the median number of sampling steps and total CPU seconds needed to hit at least

one all-inlier subset in each structure as the number of gross outliers is varied.

4.1 Multiple Line and Circle Fitting

We first compare our algorithm against previous methods on multiple line and
circle fitting in 2D. Fig. 4 (left column) depicts the synthetically generated inliers
(respectively 7 lines and 5 circles). We also add random gross outliers to increase
the difficulty of the problem. The inlier noise scale and the number of inliers
per structure were fixed to 10−2 and 50, respectively. PROSAC and Guided-
MLESAC require each datum to be associated with a quality score; we simulate
this by probabilistically assigning inliers with higher scores than gross outliers.

Each method is given 20 random runs. The centre and right columns in Fig. 4
respectively show the median of sampling steps (i.e., number of hypotheses) and
total CPU seconds required to recover at least one all-inlier minimal subset for
each structure vs the number of gross outliers in the data. It can be seen that
our method is the most efficient in terms of the required sampling steps for both
lines and circles. For instance, in the case of circle fitting, Multi-GS typically
takes no more than half of the sampling steps needed by the other methods.
In terms of total time expended Multi-GS still require less CPU seconds than
the others, especially so for circle fitting. This suggests that the performance
gap between our method and previous approaches would widen for higher order
geometric models. Indeed, we demonstrate this in the next two experiments.

4.2 Homography Estimation

Our second set of experiments involve estimating planar homographies on real
image data.1 Putative keypoint correspondences and their corresponding scores
1 http://www.robots.ox.ac.uk/~vgg/data

http://www.robots.ox.ac.uk/~vgg/data
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(a) Left: College-1. Right: College-2.

(b) Left: College-3. Right: College-4.

Fig. 5. Images pairs used in the experiments of Sec. 4.2 with marked inlier keypoints

were obtained by SIFT matching [21].2 Fig. 5 shows the image pairs used in our
experiments with marked keypoints. Note that for clarity we show only the true
inliers in Fig. 5; there actually exist a large number of false correspondences
(ranging between 20 to 100 depending on the images) which represent gross
outliers due to incorrect SIFT matches. We use 4 correspondences to estimate
a homography via Direct Linear Transformation (DLT, [22]). For each method,
50 random runs were performed, each for 60 CPU seconds.

Our experiments start with a relatively easy task which involves estimating a
single homography for the planar structure marked in the College-1 image pair
(Fig. 5, top left). The data contain 70 inlier correspondences with an approx-
imately 41% inlier ratio. As can be seen in Table 1, by leveraging the SIFT
matching scores, PROSAC hits an all-inlier sample at the very first iteration,
costing nearly zero CPU time, whereas Exp and Guided-MLESAC perform bet-
ter than the others in terms of the total number of all-inlier samples found within
the given time budget. Overall, the performance of all methods are comparable
on this simple single structure recovery task.

We now move to the setting of multi-structure fitting. The performance of
various sampling methods was evaluated on the image pairs that contain 2–4
planar structures (Fig. 5, top right and bottom rows). Table 1 shows that the
proposed Multi-GS is superior in terms of CPU seconds required to hit at least
one all-inlier subset from all structures. For instance, on College-3 and College-
4, Multi-GS requires around 80% less time than the best performing competing
method. Moreover, within the given CPU time limit the total number of all-
inlier subsets found by our method is typically much more than that of other
methods.

2 We used the code given on http://www.vlfeat.org/~vedaldi/code/sift.html

http://www.vlfeat.org/~vedaldi/code/sift.html
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Table 1. Performance of various sampling methods over 50 random runs, each for 60

CPU seconds. We report the median of CPU time (CPU) (resp. sampling steps (Iter))

that is required to find at least one all-inlier minimal subset for each structure present

in the data in Fig. 5. The average number of all-inlier samples found within 60 CPU

seconds is listed separately for each structure I-i, i = 1, 2, · · · . The number of inliers

and the inlier ratio for each I-i is given in the parenthesis. The top result with respect

to each performance measure are boldfaced.

Data
Random LO-RAN Exp Guided- PROSAC Multi-

SAC MLESAC GS

College-1

CPU 0.06 0.02 0.02 0.01 < 10−3 0.02

Iter 33 13 7 7 1 13

I-1 (70, 41%) 978 1012 2782 3591 1380 1119

College-2

CPU 1.39 0.47 0.65 0.39 0.14 0.11
Iter 836 261 354 229 77 47
I-1 (70, 34%) 450 438 1183 1164 576 867

I-2 (36, 17%) 30 29 63 96 43 350

College-3

CPU 1.03 0.75 0.62 0.67 0.69 0.14
Iter 592 418 336 374 374 54
I-1 (71, 22%) 72 71 140 134 96 292
I-2 (80, 24%) 116 115 266 401 166 494
I-3 (78, 24%) 101 100 199 82 88 286

College-4

CPU 5.23 5.34 2.42 3.49 1.62 0.31
Iter 3060 3105 1309 2029 897 113
I-1 (42, 15%) 18 17 47 29 24 160
I-2 (42, 15%) 17 17 37 49 25 171
I-3 (47, 17%) 28 27 57 60 39 237
I-4 (42, 15%) 15 17 42 26 19 91

4.3 Fundamental Matrix Estimation

We also applied our sampling method to accelerate the estimation of fundamental
matrices. Images of multiple moving objects were obtained from the web.3 The
keypoint correspondences and matching scores were obtained by SIFT matching.
Hypotheses were generated from 7 keypoint correspondences via the standard
7-point estimation method [23].4 For each method, 50 random runs were per-
formed, each for 60 CPU seconds. Table 2 summarizes the performance of all
methods on the three image pairs in Fig. 6. Again note that for clarity we only
show the true inliers in Fig. 6. There exist from incorrect SIFT matchings many
false correspondences which constitute gross outliers in the data.

Similar to the previous set of experiments, existing sampling methods are
effective in sampling from single-structure data (cf. results on the Book data in
Table 2), while they fail disastrously when more than one structure is present.
Along with their inability to distinguish keypoint correspondences from different

3 http://www.iu.tu-darmstadt.de/datasets
4 http://www.robots.ox.ac.uk/~vgg/hzbook/code/

http://www.iu.tu-darmstadt.de/datasets
http://www.robots.ox.ac.uk/~vgg/hzbook/code/
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(a) Book (b) Desk

(c) Office

Fig. 6. Image pairs used in the experiments of Sec. 4.3 with marked inlier keypoints

Table 2. Performance of various sampling methods on image pairs in Fig. 6 (50 random

runs with 60 CPU seconds per run). The same notations as used in Table 1 are used.

In addition, we record the number of times a method fails to find at least one all-inlier

sample for each structure within the given 60 CPU seconds (Fail). The reported median

of CPU time (resp. sampling steps) is taken over successful runs only.

Data
Random LO-RAN Exp Guided- PROSAC Multi-

SAC MLESAC GS

Book

CPU 0.03 0.01 0.01 < 10−3 < 10−3 0.02

Iter 11 4 4 3 1 8

I-1 (28, 58%) 1426 1429 5879 9152 1778 184

Fail 0 0 0 0 0 0

Desk

CPU 19.13 18.44 24.61 7.45 17.41 0.18
Iter 5716 5572 7604 2983 5458 41
I-1 (48, 27%) 7 7 79 40 8 355
I-2 (28, 16%) 1 1 2 5 1 175
Fail 47 47 15 2 44 0

Office

CPU 40.48 44.56 9.9 16.23 46.83 0.17
Iter 13883 15442 3456 5719 15861 38
I-1 (81, 24%) 2 2 10 6 2 167
I-2 (78, 23%) 2 2 9 3 2 234
I-3 (84, 24%) 2 3 10 6 3 193
Fail 35 22 0 7 23 0

structures, the increase in the size of the minimal subset (from 4 in homography
estimation to the current 7) makes the sampling from multi-structure data an
extremely challenging task for previous methods. For instance, random sampling,
LO-RANSAC, and PROSAC fail to find an all-inlier subset for each structure
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in 44%-94% of the 50 random runs. As can be seen in Table 2, Multi-GS dra-
matically outperforms other methods in terms of all performance measures on
the two multi-structure data: Desk and Office. It hits at least an all-inlier subset
in each structure over an order of magnitude faster in terms of both CPU time
and sampling steps. Moreover, within the given time limit, the overall all-inlier
subsets found by our methods are up to over two orders of magnitude more than
that obtained by other methods.

5 Conclusions

We propose a fundamentally new approach to accelerate hypothesis generation
by guiding information derived from residual sorting. In contrast to existing
sampling techniques, our approach is naturally capable of handling data with
multiple structures. We also do not require potentially confusing domain knowl-
edge needed by other techniques. We demonstrated, and compared our method
on various multi-structure geometric modelling tasks. Our results show that the
proposed method significantly outperforms previous techniques in terms of the
total CPU time required to recover all valid structures in multi-structure data.

Acknowledgements

This work is supported by the Australian Research Council grant DP0878801.

References

1. Fischler, M.A., Bolles, R.C.: RANSAC: A paradigm for model fitting with appli-

cations to image analysis and automated cartography. Comm. of the ACM 24,

381–395 (1981)

2. Rousseeuw, P.J., Leroy, A.M.: Robust regression and outlier detection. Wiley,

Chichester (1987)

3. Stewart, C.V.: Robust parameter estimation in Computer Vision. SIAM Review 41,

513–537 (1999)

4. Chum, O., Matas, J., Kittler, J.: Locally optimized RANSAC. In: Michaelis, B.,

Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 236–243. Springer, Heidelberg

(2003)

5. Kanazawa, Y., Kawakami, H.: Detection of planar regions with uncalibrated stereo

using distributions of feature points. In: BMVC (2004)

6. Tordoff, B.J., Murray, D.W.: Guided-MLESAC: Faster image transform estimation

by using matching priors. TPAMI 27, 1523–1535 (2005)

7. Chum, O., Matas, J.: Matching with PROSAC- progressive sample consensus. In:

CVPR (2005)

8. Ni, K., Jin, H., Dellaert, F.: GroupSAC: Efficient consensus in the presence of

groupings. In: ICCV (2009)

9. Sattler, T., Leibe, B., Kobbelt, L.: SCRAMSAC: Improving RANSAC’s efficiency

with a spatial consistency filter. In: ICCV (2009)



546 T.-J. Chin, J. Yu, and D. Suter

10. Raguram, R., Frahm, J.M., Pollefeys, M.: A comparative analysis of RANSAC

techniques leading to adaptive real-time random sample consensus. In: Forsyth,

D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 500–

513. Springer, Heidelberg (2008)

11. Matas, J., Chum, O.: Randomized RANSAC with td,d test. In: Image and Vision

Computing (2004)

12. Capel, D.: An effective bail-out test for RANSAC consensus scoring. In: BMVC

(2005)

13. Matas, J., Chum, O.: Randomized RANSAC with sequential probability ratio test.

In: ICCV (2005)

14. Chum, O., Matas, J.: Optimal randomized RANSAC. TPAMI 30, 1472–1482 (2008)

15. Nister, D.: Preemptive RANSAC for live structure and motion estimation. In:

ICCV (2003)

16. Enqvist, O., Kahl, F.: Two view geometry estimation with outliers. In: BMVC

(2009)

17. Li, H.: Consensus set maximization with guaranteed global optimality for robust

geometry estimation. In: ICCV (2009)

18. Chin, T.J., Wang, H., Suter, D.: Robust fitting of multiple structures: The statis-

tical learning approach. In: ICCV (2009)

19. Chin, T.J., Wang, H., Suter, D.: The ordered residual kernel for robust motion

subspace clustering. In: NIPS (2009)

20. Toldo, R., Fusiello, A.: Robust multiple structures estimation with j-linkage. In:

Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302,

pp. 537–547. Springer, Heidelberg (2008)

21. Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV 60, 91–

110 (2004)

22. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cam-

bridge University Press, Cambridge (2003)

23. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd

edn. Cambridge University Press, Cambridge (2004) ISBN: 0521540518



Aligning Spatio-Temporal Signals on a Special
Manifold

Ruonan Li and Rama Chellappa

Center for Automation Research, University of Maryland

College Park, MD, 20742, USA

{liruonan,rama}@umiacs.umd.edu

Abstract. We investigate the spatio-temporal alignment of videos or

features/signals extracted from them. Specifically, we formally define an

alignment manifold and formulate the alignment problem as an opti-

mization procedure on this non-linear space by exploiting its intrinsic

geometry. We focus our attention on semantically meaningful videos or

signals, e.g., those describing or capturing human motion or activities,

and propose a new formalism for temporal alignment accounting for ex-

ecuting rate variations among realizations of the same video event. By

construction, we address this static and deterministic alignment task in a

dynamic and stochastic manner: we regard the search for optimal align-

ment parameters as a recursive state estimation problem for a particular

dynamic system evolving on the alignment manifold. Consequently, a

Sequential Importance Sampling iteration on the alignment manifold is

designed for effective and efficient alignment. We demonstrate the per-

formance on several types of input data that arise in vision problems.

1 Introduction

In this paper, we consider the problem of aligning two spatio-temporal signals
(i.e., videos, their filtered versions, or spatio-temporal features extracted from
them.) which come from the same dynamic scene or the same category of dy-
namics. The misalignment between the two signals, captured by distinct cam-
eras at the same time or by the same camera at different times, may result from
the differences in view points, view angles, internal calibration parameters, as
well as temporal shifts and scaling. Previous work on video sequence alignment
mostly used feature-based approaches [1–7] or direct approaches [8–10]. In the
former class, features like two-frame correspondences of interest points or trajec-
tories of tracked objects were used as inputs to the alignment algorithm, while
in the latter, intensity, color, or other pixel/patch level appearance attributes
were used. The spatial aspect of the misalignment was mostly modeled as one
of the transforms including affine, homography, and perspective ones between
the image plane coordinates of the two signals, based on different assumptions
made regarding imaging conditions. The temporal misalignment, on the other
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hand, mainly took frame rate and shift synchronization into account, modeled
as a 1-D affine transform along the time axis. The algorithms were designed
for parametric representations of the particular transforms to achieve optimal
alignments. The warping parameters were then obtained using a numerical op-
timization method which is typically an exhaustive search or a greedy method
such as gradient descent.

The first step taken in this work is to revisit the issue of temporal misalign-
ment, which comes not only from the camera aspect (frame-rate and temporal
shift), but also from the observed dynamics. We look into semantically mean-
ingful visual dynamics beyond plain spatio-temporal volumes: one of the ex-
amples of semantically meaningful visual signals is videos recording human ac-
tions/activities. The same class of activities (e.g., walking) may contain realiza-
tions executed at varying rates, though the essential characterization for that
activity category is rate independent. This rate change is in fact a temporal
misalignments among realizations (signals) and is described by a non-affine time
warping [11, 12]. Therefore, a complete description of the temporal misalignment
regarding these signals should include time warping as well. A second concern
is about the spatial aspect of the alignment algorithm, which usually pertains
particularly to either feature-based methods or direct methods and sticks to the
parametric spatial transform assumed. Existing algorithms are far from being
scalable and flexible to easily adapt to different parametric model and different
inputs. Moreover, it is always crucial to strike a balance between computational
complexity and convergence towards global optimum.

Taking all these factors into account, we reformulate the spatio-temporal
alignment problem and provide a general framework and associated computa-
tional algorithms. Specifically, we propose the concept of the alignment manifold,
which is the nonlinear space of all possible spatio-temporal transformations with
an intrinsic geometric characterization. We detail the construction of the align-
ment manifold and discuss basic manipulations of the elements on it. The spatio-
temporal signal alignment, consequently, becomes an optimization procedure on
the manifold, regardless of whether the inputs are features or appearances, pro-
vided that an objective function is properly defined to measure the misalignment
of the two signal under a spatio-temporal transformation model. In particular, we
present a Bayesian optimization algorithm on the manifold based on Sequential
Importance Sampling (SIS) [13] , to achieve both efficiency and better conver-
gence to the global optimum. The key idea is to regard the optimal alignment as
a static state to be recursively estimated from the observed misalignment such
that the posterior probability density of the estimated state reaches maximum
at the true optimal alignment.

In short, the contributions of this paper are (1) we present a general frame-
work for spatio-temporal alignment, incorporating temporal warping and various
parametric spatial transforms as well as inputs; (2) we introduce the alignment
manifold, a manifold tuned to the alignment task; and (3) a SIS algorithm is
specifically designed for the alignment manifold to generate the numerical solu-
tion to the alignment problem.
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2 The Framework of Alignment Problem

Given 3-dimensional spatio-temporal signals S1 and S2, whose elements are de-
noted as S1(x, y, t) and S2(x, y, t) respectively, the spatio-temporal alignment
problem aims to solve the following optimization problem

min
p∈M

J(S1, S2,p) (1)

where p is the parameter vector specifying the alignment transform, M is the
alignment manifold, i.e., the space of all feasible p’s, and J is a measure of mis-
alignment to be minimized by an optimal p. As in previous efforts, we assume
the relative internal and external parameters of the two cameras to be fixed
but unknown, i.e., both stationary or jointly moving. As a result, the spatial
misalignment and temporal misalignment become decoupled. In other words,
we may split p into two components as p = [pT

S ,p
T
T ]T , so that the spatial

and temporal misalignment can be independently handled. (Cameras with rela-
tive motion and coupled spatio-temporal misalignment are important situations
though beyond the scope of this work.) The alignment manifold M is accordingly
decomposed into the Cartesian product of two submanifolds as M = MS ×MT ,
where pS ∈ MS and pT ∈ MT . The explicit analytical form of J depends on
the specific spatial and temporal transform involved, as well as the measure of
misalignment. We give three examples for illustrative purposes.

Example 1. S1 and S2 are grey-level videos, the spatial displacement is 2-D
affine, and temporal transform is 1-D affine. The misalignment is measured as
the pixel-wise mean square error. In this case, J(S1, S2,p) =

∑
x,y,t(S

1(x, y, t)−
S2(x + u, y + v, t + w))2, and

⎡⎣ u
v
w

⎤⎦ =

⎡⎣a11 a12 0 b1
a21 a22 0 b2
0 0 a b

⎤⎦
⎡⎢⎢⎣
x
y
t
1

⎤⎥⎥⎦ . (2)

The corresponding alignmentparameter vectors arepS=(a11, a12, a21, a22, b1, b2)T

and pT = (a, b)T with MS to be the 2-D affine group A(2) and MT to be R+×R.

Example 2. S1 and S2 are color videos,i.e., Si contain three channels Si
j , j =

1, 2, 3, spatial transform is 2-D homography, and the temporal transform is a non-
linear time warping. The misalignment is measured as the pixel-wise mean square
error of the intensity. In this case, J(S1, S2,p) =

∑
j αj

∑
x,y,t(S

1
j (x, y, t) −

S2
j (x′, y′, t′))2, x′ = h11x+h12y+h13

h31x+h32y+h33
, y′ = h21x+h22y+h23

h31x+h32y+h33
, and t′ = W (t), where

αj ’s are the weights for the channels and W (t) is the time warping function.
If we denote H = [hi,j ]3×3 to be the homography matrix with the constraint
of unit determinant (i.e. detH = 1, without loss of generality), then we have
pS = H , pT = W , MS is the 3 × 3 special linear group SL(3), and MT is the
set of all possible time warpings.
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Example 3. S1 and S2 contain N spaces-time point trajectories respec-
tively, i.e., Si = {T i

j}j=1,2,··· ,N and T i
j = {(xi

j(t), y
i
j(t))}t, where (x1

j (t), y
1
j (t))

(x2
j (t

′), y2
j (t′)) are assumed to come from the jth tracked interest point corre-

sponding to the same 3-D point, captured by two pinhole cameras. Then con-
sidering perspective misalignment of the trajectories we have J(S1, S2,p) =∑

j

∑
t ‖[x1

j(t), y
1
j (t), 1]F[x2

j (W (t)), y2
j (W (t)), 1]T ‖2. Here F is the 3 × 3 funda-

mental matrix, and we may regard pS = F and MS to be the set of all possible
fundamental matrices.

3 The Alignment Manifold

In this section we look into the alignment manifold M = MS × MT , whose
elements characterize the alignment transforms under consideration. As the spa-
tial and temporal factors are considered independently in this work, we are in a
position to discuss them separately.

3.1 The Spatial Alignment Submanifold

The previous examples imply that the spatial alignment manifold MS is usually
identical to a Riemannian manifold of the transformation/constraint matrices.
Affine group A(2) and special linear group SL(3) both belong to the matrix
Lie group, which possesses several intrinsic geometric properties. We list a few
used in this work: the geodesic (intrinsic) distance between two elements V1,V2

on the matrix Lie group is d(V1,V2) = || log(V−1
1 V2)||. The exponential map

Evm : Tvm → G, which maps v′ in the tangent space TVm at Vm onto the
group G, is given by EVm(V′) = Vm exp(V−1

m V′). The logarithmic map LVm :
G → TVm , meanwhile, is LVm(V) = Vm log(V−1

m V). The matrix exponential
and logarithmic operation used here are defined as exp(X) =

∑∞
i=0

1
i!X

i and

log(X) =
∑∞

i=1
(−1)i−1

i (X− I)i.
The space of fundamental matrices - F’s, as in Example 3, is the space of those

matrices with rank 2. To get a parameterization for this manifold, we employ
the singular value decomposition F = U1ΣUT

2 , where U1 and U2 are both 3×2
orthogonal matrices and Σ is 2×2 diagonal positive. It is known that the spaces
of all 3× 2 orthogonal matrices is Stiefel manifold V2,3 [14] and thus the spatial
alignment manifold MS = V2,3 ×R+ ×R+ ×V2,3. For two elements V1,V2 on
V2,3, an intrinsic distance is d(V1,V2) =

√
2− tr(VT

1 V2). The tangent vectors
at Vm, denoted as V′’s, can be represented as V′ = VmA + (I − VmVT

m)B,
where A is skew-symmetric and B is arbitrary. The exponential map from V′

to V, meanwhile, can be obtained as

V = [Vm,Q] exp
([

VT
mV′ −RT

R 0

])[
I
0

]
(3)

where Q and R are the QR-decomposition of (I−VmVT
m)V′.
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3.2 The Temporal Alignment Submanifold

As pointed out earlier, in this work we not only account for the temporal mis-
alignment due to synchronization problem and differences in frame rates of
the cameras, but also exploit the rate variations within observed dynamic in-
stances of the same category. Rate variation within a fixed time span, i.e.,[0,1],
with global frame rate (scaling) and shift eliminated, is well modeled as a dif-
feomorphism γ from [0,1] to [0,1] with γ(0) = 0 and γ(1) = 1 [11]. Then,
any time warping or misalignment W (t) under consideration can be written
as W (t) = k2γ( t−l1

k1
) + l2, where k1, k2 are the positive global scaling factors

and l1, l2 are the shift factors, defined for l1 ≤ t ≤ k1 + l1. Obviously, when we
take γ(t) = t, W (t) reduces to the temporal affine transformation. Denoting the
space of all possible γ’s as �, we can now formally define the temporal alignment
submanifold as MT = R+×R+×R×R× �, where R+×R+ accounts for k1, k2

and R× R accounts for l1, l2.
If we let ψ =

√
γ̇ and the space of all ψ’s to be  , then under Fisher-Rao

metric (See [15, 16]), the intrinsic distance between ψ1 and ψ2 are d(ψ1, ψ2) =
cos−1(< ψ1, ψ2 >) where < ψ1, ψ2 >=

∫ 1

0 ψ1(t)ψ2(t)dt. The exponential map
Eψm : Tψm →  for ψ′ ∈ Tψm is defined as Eψm(ψ′) = cos(< ψ′, ψ′ >

1
2 )ψm +

sin(<ψ′,ψ′>
1
2 )

<ψ′,ψ′>
1
2

ψ′. The logarithmic map Lψm :  → Tψm , which is actually the

inverse map of exponential map, is then given by Lψm(ψ) = arccos(<ψ,ψm>)

<ψ∗,ψ∗>
1
2

ψ∗,

where ψ∗ = ψm− < ψ,ψm > ψ. Since we have used ψ instead of γ, the temporal
alignment submanifold can also be equivalently represented as MT = R+×R+×
R× R× .

4 Sequential Importance Sampling on the Manifold for
Optimal Alignment

It is now clear that the alignment problem (1) becomes an optimization problem
on the alignment manifold M. This problem differs from previous works where
exhaustive or greedy strategies are employed pertaining to a specific spatio-
temporal parameter space, which is usually treated as Euclidean. Meanwhile,
the gradient or Newton methods as used previously will tend to fall into local
optimum as J defined on M is normally non-convex and multi-modal. In sum, it
is desirable to find an algorithm that accounts for the non-linear manifold of the
arguments, converges to the global optimum, and has reasonable computational
complexity.

Let us consider the following time-varying state-space model:[
pS,h

pT,h

]
=
[

EpS,h−1(uS,h)
EpT,h−1(uT,h)

]
(4)

yh = J(S1, S2,ph)− vh. (5)
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where ph = [pT
S,h,p

T
T,h]T is the parameter state at step h. We assume that p∗, the

optimal alignment, is not directly observable, while at step t we observe yt. More-
over, we let uS,h ∼ N (0, (σS/h)2I), uT,h ∼ N (0, (σT /h)2I), where σ2

S and σ2
T are

both small numbers. By construction (details below) we may let vh to be an non-
negative random variable with an appropriate density function (e.g., exponential
E(λ) in this work). Equivalently, we may represent the state transition and ob-
servation model as p(pS,h|pS,h−1) ∼ exp(− d2(pS,h,pS,h−1)

2(σT /h)2 ), p(pT,h|pT,h−1) ∼
exp(− d2(pT,h,pT,h−1)

2(σT /h)2 ), where p(ph|ph−1) ∼ p(pS,h|pS,h−1)p(pT,h|pT,h−1), and
p(yh|ph) ∼ exp(λ(yh − J(S1, S2,ph))).

The motivation as to why we formulate a state space model is to be able to
recursively compute the Maximum A Posterior (MAP) estimate of the param-
eter state p(ph|yh,yh−1, · · · ,y0). From the recursion p(ph|yh,yh−1, · · · ,y0) ∝
p(yh|ph)

∫
p(ph|ph−1)p(ph−1|yh−1,yh−2, · · · ,y0)dph−1, we know that the pos-

terior probability of the alignment p(ph|yh,yh−1, · · · ,y0) is equal to the poste-
rior probability at the previous step p(ph−1|yh−1,yh−2, · · · ,y0) smoothed by the
state transition probability p(ph|ph−1) and weighted by the likelihood p(yh|ph).
Therefore, by constructing a decreasing sequence {yh}h=0,1,··· and letting σS , σT

be small, p(ph|yh,yh−1, · · · ,y0) is expected to be continuously increasing and
peaking at the the optimal alignment p∗. In other words, the MAP estimate of
the parameter state will give the optimal alignment.

The above Bayesian recursive estimation is realized in a Monte Carlo manner.
In particular, the construction of appropriate observation sequence {yh}h=0,1,···
come up naturally from the Monte Carlo samples. We propose the SIS algo-
rithm on the alignment manifold as follows. Note that the proposed algorithm
handles states evolving on the Riemannian manifold rather than the conven-
tional Euclidean space, thus is different from most existing particle filters and
their variations. Bayesian recursive filtering using particles has been proposed
for specific manifolds in the context of tracking [17–20], while the following ap-
proach is generally applicable for various alignment manifolds. Furthermore, we
formulate the static optimization problem into a dynamic state space model,
which provides insight on applications of SIS to new problems beyond tracking.

Algorithm. SIS on the alignment manifold.

1) Initialization. Specify an initial distribution p0 defined on M and draw i.i.d.
samples {pk

0}K
k=1 from p0. Let h = 1.

2) Importance Sampling. Sample p̂k
h from p(pk

h|pk
h−1). For this purpose, gen-

erate uk
S,h from N (0, (σS/h)2I) and uk

T,h from N (0, (σT /h)2I). Then apply ex-
ponential maps p̂k

S,h = Epk
S,h−1

(uk
S,h) and p̂k

T,h = Epk
T,h−1

(uk
T,h).

3) Constructing observation. Let

yh = min
k

J(S1, S2, p̂k
h). (6)

If yh > yh−1, yh ←− yh−1.
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4) Weighting. Approximate the new posterior probability by

qh(ph) =
K∑

k=1

wk
hδ(ph − p̂k

h), (7)

where δ is the Kronecker delta, wk
h ∝ p(yh|p̂k

h) and
∑K

k=1 w
k
h = 1.

5) Importance resampling. Draw i.i.d. samples {pk
h}K

k=1 from qh(ph).
6) Stop if a stopping criteria is satisfied; Otherwise, h←− h+ 1 and go to 2).

Step 3) follows from the observation equation in the proposed state-space model,
and this construction of observation yh plays an important role in the above al-
gorithm. By letting yh to be the minimum value of the alignment cost function,
Monte Carlo samples that lead to a lower cost will receive higher importance
weights when applying the weighting step. Consequently, the Monte Carlo sam-
ples (particles) will tend to concentrate around the minima of the alignment cost
function, including the global minimum. With a proper initialization of samples
over M, the optimal p∗ will be located more and more accurately during the
coarse-to-fine particle propagation. The operation yh ←− yh−1 when yh > yh−1

guarantees non-increasing yh.
The initialization of the particles is case dependant. As an example for the

spatial alignment submanifold of A(2), we may generate independent, uniformly
distributed samples over the corresponding Lie algebra �(2) and exponentially
map them onto A(2). For the temporal alignment submanifold, we may also
generate uniform distributed samples over the tangent space at γ(t) = t together
with uniform samples from R+×R+×R×R. The stopping criteria, meanwhile,
can be flexible as well. 0 < yh−1−yh < ε is a useful one. The final MAP estimate
of p∗, can be simply taken as p̂∗ = argmink J(S1, S2, p̂k

h) after the algorithm
stops at step h.

5 Empirical Evaluation

We have applied the algorithm described above to three different datasets for the
same purpose of spatial-temporal alignment, while these datasets represent dif-
ferent spatio-temporal signals originated from videos. Specifically, we looked into
the alignment of point trajectories, deforming shape sequences, as well as videos
themselves. The alignment objectives and alignment manifolds corresponding
to each datasets vary, while the SIS procedure is the same for all. In each ex-
periment, we select appropriate state-of-art methods or design baseline(s) for
comparison, while the purpose of these comparisons is simply to show how the
inclusion of temporal warping submanifold, formulation of the aligning proce-
dure as a recursive estimation of the state-space model, and the Monte Carlo
approach help advance the state-of-art performance on practical data.

5.1 Evaluation with Point Trajectories

We first evaluate our method with point trajectories, which are essentially the in-
put to feature-based methods. In this paper we make use of the GaTech Football
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Multi-Trajectory Dataset [21, 22]. This dataset contains 55 sets of trajectories
and in each set there are eleven trajectories corresponding to the movements
of the eleven offensive players in a play. The sets are organized into categories,
each of which contains all realizations of the same play strategy (specified by
the playbook). In other words, trajectory sets in the same category are samples
of the same ‘activity’, thus resembling each other (on the ground plane) though
intra-category variations exist. However, they are observed in different viewpoint
and executed at different and varying rates. In each set the roles of players are
annotated and thus the trajectory correspondence between two sets is available
to us.

We model the spatial misalignments to be a planar homography and thus
the spatial alignment submanifold becomes SL(3). The misalignment cost J is
simply taken as the average distances between point pairs from all trajectory
pairs across the whole time span. We perform two types of experiments, in the
first of which we select a set of trajectories and transform it with a typical view
change (homography) and a specific time warping to get the other, and then
we align the two. We do so on all 55 sets. In the second type, we randomly
select a total of 40 pairs of sets, each pair being the samples of the same play
type (activity), and then we align these pairs. For comparative purposes, we
implemented two state-of-art methods [3, 7] that address similar task as ours.
The approach in [7] assumes affine temporal misalignment only, and the strategy
in [3] uses Dynamic Time Warping (DTW) to determine the non-linear tempo-
ral misalignment. The preprocessing modules of tracking and correspondence in
the two methods are unnecessary as the dataset has provided trajectory and
correspondence information, and thus a common basis is shared among all im-
plementations for comparison. Note that [7] mainly focus on temporal alignment,
and to add spatial alignment into it we simply estimate a planar homography
with the points from the temporally aligned trajectories. Meanwhile, when using
[3] we take alternations between DTW and gradient-descent-based homography
estimation (on all corresponding points collected from all temporally aligned
frames) to get the final alignment parameters. (Note that though DTW is glob-
ally optimal in 1-D temporal dimension, when placed into alternations between
spatial and temporal submanifolds the combined search may not necessarily be
so, and thus the alternating process is a greedy search.) For our method, we get
the initial particles by generating random samples in the tangent space at the
homography estimated from the first pair frames and in the tangent space at
γ(t) = t.

Samples of the results are shown in Figure 1, where in the first two columns
are the two trajectory sets to be aligned toward each other, and the following two
columns show alignment results using the state-of-art methods and our method.
Each of the three rows, meanwhile, represents a typical experimental setting: in
row (a) the target is a generated misaligned version of the reference, in row (b)
the reference and target are a real pair with similar realization but undergoing
significant misalignment, and in row (c) the two are a real pair with significant
variation from each other.
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(a-1) reference trajectories

(b-1) reference trajectories

(c-1) reference trajectories

(a-2) target trajectories

(b-2) target trajectories

(c-2) target trajectories

(a-3) result using [7]

(b-3) result using [7]

(c-3) result using [7]

(a-4) result using [3]

(b-4) result using [3]

(c-4) result using [3]

(a-5) result from our 
method

(b-5) result from our 
method

(c-5) result from our 
method

Fig. 1. Samples of the alignment results on point trajectories

To quantitatively understand the performance of the alignment methods, we
recorded the average distance of point pairs from aligned trajectory pairs, and
show the results in Table 1. Note that the statistics is from the 40 real pairs
rather than the generated ones.

Table 1. Average residual misalignments between the aligned trajectory pairs

mean standard deviation

Using [7] 15.9 8.6

Using [3] 13.1 6.8

Our method 10.0 3.6

5.2 Evaluation with Deforming Shape Sequences

Sequences of deforming shapes are typical mid-level features extracted from orig-
inal videos containing the deforming objects of interest. In this experiment we
use silhouette sequences from the USF Gait Database [23] to demonstrate the
performance of out method. We randomly select 20 sequence pairs, each with the
same shoe types, carrying conditions, surface types, and walking directions, but
observed at two different times. For efficiency, in each sequence we only consider
the segment of frames of the first two walking circles. The spatial misalignment
within each pair is modeled as affine and is actually less significant compared
to the GaTech Football Multi-Trajectory Dataset, and the main focus is on the
effect of taking non-linear rate warping into account in addition to linear scal-
ing and shift. For comparison, we implemented the gradient descent algorithm
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presented in [5] and designed one more baseline. The designed baseline alternates
between DTW (on all frames from spatial alignment) and gradient-descent-based
affine estimation (on all frame pairs temporally aligned), and thus is a greedy
search. The cost function is simply taken as the sum of pixel-wise absolute differ-
ences. For [5], the initial spatial parameter is estimated as a translation between
the leading frames and the initial temporal parameter is taken as γ(t) = t. For
our method, Monte Carlo samples are generated from Gaussians in the tangent
spaces at the initial parameters.

We show two sample results in Figure 2, where each of the five rows for each
sequence pair is explained in the caption of the figure. The average residual mis-
alignment errors (in pixels) for all 20 pairs are shown in Table 2. Note that all
three methods perform well due to mild spatial misalignment and near-affine
temporal misalignment, while our method achieves improvement over [5] by al-
lowing non-linear warping effect, and the improvement over alternating DTW
and affine estimation should be credited to better global convergency.

Table 2. Average residual misalignments between the pairs of shape sequences

mean standard deviation

Using [5] 23.5 6.4

Alternating DTW and affine estimation 26.7 6.8

Our method 21.3 7.1

5.3 Evaluation with Human Action Videos

In the third set of experiments, we work with human action videos directly.
We use the KTH database [24], in which the semantically meaningful signal is
human motion. We randomly select 30 pairs of sequences, each pair performing
the same action, but moderate variations in clothing, background, or view angle
exist within the pair. For efficiency, again for each sequence we only keep a
segment of frames including human motion but discard pure background frames.
The spatial misalignment within each pair is affine [10], and the misalignment
cost is the spatio-temporal correlation used by [10] but on optical flow extracted
from consecutive frames. For comparison, we implemented [10] and the method
that alternates between DTW and affine estimation as in previous section. The
initial spatial parameter, when necessary, is estimated as the translation between
the leading frames and the initial temporal parameter is taken as γ(t) = t.
Meanwhile, Monte Carlo samples are generated from Gaussians in the tangent
spaces at the initial parameters too.

We show three sample results in Figure 3, where each of the five rows for each
sequence pair has the same interpretation as in the previous section. Substan-
tial execution rate variations exist within every pair, and changes in clothing,
background, or view angle also exist. There is not a numerical criterion to eval-
uate the performance on aligning real videos, and by qualitative observation the
proposed method performs comparatively well as the baselines, and is visually
more close to the target when undergoing a larger view change (pair 3).
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(Pair 1)

(Pair 2)

(a)

(b)

(c)

(d)

(e)

(a)

(b)

(c)

(d)

(e)

Fig. 2. Samples of the alignment results on deforming shape sequences from USF Gait

Database. For each pair, (a) is the reference sequence and (b) is the target. (c), (d),

and (e) give the alignment results (transformed sequence overlaid onto target) using

our method, the method in [5], and the method that alternates between DTW and

spatial alignment. The black, dark shaded, light shaded, and white areas denote true

positive, false negative, false positive and true negative respectively. In other words, the

black and dark shaded areas constitute the silhouette of the target, while the black and

lighted shaded areas constitute the transformed silhouette. Therefore, a larger black

area implies a better alignment.
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(Pair 1)

(Pair 2)

(a)

(b)

(c)

(d)

(e)

(a)

(b)

(c)

(d)

(e)

(a)

(b)

(c)

(d)

(e)

(Pair 3)

Fig. 3. Samples of the alignment results on KTH dataset. For each pair, (a) is the

reference sequence and (b) is the target. (c), (d), and (e) give the alignment results

(transformed sequence overlaid onto target) using our method, the method in [10], and

the method of alternation between DTW and spatial alignment.
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As is true for many efforts involving particle filters, the proposed method is
computationally more demanding than greedy search, but much less expensive
than exhaustive approaches. This trade-off, however, leads to improved perfor-
mance as demonstrated in the previous subsections. The time complexity de-
pends on the number of particles used. The convergence, on the other hand,
turns out to be fast. In this section all results are obtained with 1000 parti-
cles and less than twenty iterations. Another issue is that � is by definition
infinitely dimensional, while in all experiments we approximated the γ’s with
non-decreasing sequences valued from 0 to 1 of length 20.

6 Discussion

This work assumes that the parametric manifolds are known a priori; alignment
problems without knowing the specific form of the manifolds deserve exploration
as well. It is also desirable to remove the assumption regarding relative station-
arity between cameras. Though we pursue global optimum in the algorithm
and empirically observe improved solution, we have not theoretically proved
any properties regarding asymptotic convergence. A theoretical study on geo-
metrical SIS method will be important. We will also look into other efficient
search schemes like stochastic gradient descent. By generalizing the considered
manifolds and cost functions, we will extend the proposed strategy of stochas-
tic optimization on geometric spaces for other problems (e.g. face alignment on
Grassmann manifold [25]). We hope this can bring new insights and improved
performance to a larger number of vision applications.

Acknowledgement. The authors thank the anonymous reviewers for valuable
comments and suggestions. This work was supported by the ONR Grant N00014-
09-1-0664.
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Abstract. In this paper, we propose a robust supervised label transfer

method for the semantic segmentation of street scenes. Given an input

image of street scene, we first find multiple image sets from the training

database consisting of images with annotation, each of which can cover

all semantic categories in the input image. Then, we establish dense cor-

respondence between the input image and each found image sets with

a proposed KNN-MRF matching scheme. It is followed by a matching

correspondences classification that tries to reduce the number of seman-

tically incorrect correspondences with trained matching correspondences

classification models for different categories. With those matching cor-

respondences classified as semantically correct correspondences, we infer

the confidence values of each super pixel belonging to different semantic

categories, and integrate them and spatial smoothness constraint in a

markov random field to segment the input image. Experiments on three

datasets show our method outperforms the traditional learning based

methods and the previous nonparametric label transfer method, for the

semantic segmentation of street scenes.

1 Introduction

Semantic segmentation of street scenes is an important and interesting research-
ing topic for scene understanding [1, 2] and image based modeling in cities and
urban areas[3–6]. Traditional methods to solve this problem, such as [7–11], typ-
ically work with a fixed-number of object categories and train generative or
discriminative models for each category. Recently, with the increasing availabil-
ity of image collections with annotation, large database-driven approaches have
shown the potential for nonparametric methods in several applications, such as
object and scene recognition [12] and semantic segmentation [13]. Instead of
training sophisticated parametric models, these methods try to reduce the infer-
ence problem for an unknown image to the problem of matching it to an existing
set of annotated images by exploiting local similarity between images, which is
addressed as label transfer in [13].

With scenes limited to street scenes, semantic segmentation is a suitable can-
didate for the application of the label transfer. Ideally, for an testing image, if

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 561–574, 2010.
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some high quality matches are contained in the training database with annota-
tion, and we have a proper way to find them, the label transfer method [13] can
work very well. However, in most cases, high quality matches are hardly available
[14], even in street scenes, with exponential number of different object combina-
tions within each scene. In addition, most existing methods for searching similar
images are based on holistic similarity between images, such as widely used GIST
descriptor [15]. They are computed on the layout of global content in images,
which does not care about the quality of local matches. Without garantee of
the local similarity between images, establishing semantically correct correspon-
dence between images become very challenging. On the other hand, traditional
methods [7–11] focus on local similarity for classifier training, and doesn’t care
about holistic image-level suitability.

This motivates us to investigate whether the combination of the traditional
learning based methods and the pure label transfer can improve the performance
of semantic segmentation of street scenes. In this paper, we propose a supervised
label transfer method for semantic segmentation of street scenes, which intro-
duces supervised classification models into the pure label transfer, to classify
obtained matching correspondences and reject those untrusted matching corre-
spondences.

The paper is structured as follows: a brief overview of our method is given in
Section 2. In Section 3 and 4, the proposed KNN-MRF matching scheme and
the supervised classification models for label transfer are introduced respectively.
Then, the confidence inference, generation of segmentation mask for the input
image and how to retrieve proper source for the supervised label transfer method
are explained in Section 5. Finally, we evaluate and compare our method with
related works in Section 6, and conclude in Section 7.

2 Overview

For a given input image, our method starts from finding some proper image
sets with annotation from an existing database, each of which contain multiple
images with annotation that cover all semantic categories in the input image.
As mentioned above, it is difficult to find a single overall good match for query
images. Some parts of the query image may be matched well, while some other
parts could be totally missed. Based on this observation, it is claimed that a
query image should be explained by a spatial composite of different regions taken
from different images [14]. Inspired by this idea, we propose a new matching
scheme for the label transfer that matches the given input image to each of the
retrieved image sets, instead of matching it to a single image like [13].

To be specific, we perform a matching scheme that we call KNN-MRF match-
ing between the input image and each of the retrieved image sets to establish
a dense correspondence on super-pixel level. Then, it is followed by a matching
correspondences classification step that uses some trained classification models
to classify the matching correspondences and discard correspondences that are
classified as semantically incorrect correspondences. Finally, with those match-
ing correspondences that are classified as semantically correct correspondences,
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we infer the confidence value of each basic matching element belonging to dif-
ferent categories, and then integrate these inferred confidence cues and spatial
smoothness constraint into a markov random field to segment the input image.
An outline of our method is given in Fig. 1. In the following section, we will first
introduce the KNN-MRF matching scheme for an input image and an image set.

KNN-MRF Matching 
correspondence 

classification

...... ...... ……

confidence inferenceAnnotated image set A

Annotated image set B

Testing  Image

Training Database

Output

Fig. 1. Outline of our supervised label transfer algorithm

3 KNN-MRF Matching

In order to transfer labels of annotated images to an input image, we need to
establish dense semantically correct correspondence between the input image
and the annotated images. To make the matching process efficient, we use super
pixel as basic matching element, instead of pixel as [13] did. As most super pixels
are semantically coherent, using super pixel as basic matching element would be
proper. For each image, a graph G = 〈V , E〉 is defined, with each vertex p ∈ V
in the graph denotes one super pixel in the image, while the edges E denotes
the neighboring relationship between super pixels. Then we could formulate the
matching problem as a simplified inexact graph matching problem [16]. More
formally, given two graphs GI = (VI , EI) and GA = (VA, EA) that denote the
input image and an retrieved image set for it respectively, the inexact graph
matching problem consists in searching for a mapping from VI → VA, with a
constraint that each node in VI will be matched to another node in VA. For the
retrieved image set, we simply combine the graph for each image of it together
to form a larger graph.

To solve this graph matching problem, we propose an efficient matching
scheme that we call KNN-MRF matching scheme, named by the way we solve
the problem. Given an input image I and an image set {Ai}N

i=1 with annota-
tion, we first find the K-Nearest-Neighbor(KNN) for each super pixel in I from
{Ai}N

i=1(in our implementation K = 5). Then we use a Markov random field
built upon the graph G defined for I with the following energy function:

E(C) =
∑
pi∈V

S(Ci) + α
∑

eij∈E
f(Ci, Cj) (1)
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The candidate label set {Ci}K
i=1for each super pixel in I consists of the index

set {1, 2, ...,K} for the corresponding K nearest neighbor from {Ai}N
i=1, and

E contains all the spatial neighborhood. In the energy function, S(Ci) denotes
the matching distance of each node to its Ci-th nearest neighbor. f(Ci, Cj) = 0
if the Ci-th nearest neighbor and Cj-th nearest neighbor of two neighboring
super pixels in I are also neighboring, else f(Ci, Cj) = 1. For neighboring super
pixels in I, by setting the smooth term with this way, matching to neighboring
nearest neighbor will be given more preference. The alpha expansion algorithm
[17] can be used to optimize the energy function and obtain a dense matching
configuration. An example with detailed explanation is given in Fig. 2.

3.1 Superpixel Descriptor

Visual word has already been proven to be powerful in many visual problems,
like object recognition and segmentation. We will combine it with super pixel
to describe an image. For each image, it is first decomposed into many coherent
regions, super pixels, by using the turbo pixel algorithm [18] which could make
the size of super pixels balanced. Then the visual word descriptor for each super
pixel is generated by quantizing features of pixels contained in the super pixel
with a hierarchical k-mean clustering tree. In our implementation, we use the
Texton feature [9] of pixels. To reduce time cost of searching the K nearest
neighbor, for each image in the database, the visual word descriptor for each
super pixel in it is precomputed and organized in a KD-tree for later reference.

3.2 Distance Metric

For the KNN-MRF matching between I and {Ai}N
i=1, the distance metric used

to retrieve the K-Nearest-Neighbor is defined as:

D(p, q) = ‖(Dp −Dq)‖2 + β(1− [Lq ∈ R]) (2)

where p and q are two super pixels in I and {Ai}N
i=1 respectively, Dp and Dq

are the feature descriptor of them. Lq is the label of q and known from the
annotation of {Ai}N

i=1, and R is the image level prior of the semantic categories
contained in I. The image level prior is incorporated into the distance metric,
and it has already been shown in [8], image level prior can improve semantic
segmentation performance. When no image level prior is available, we set β = 0.

4 Matching Correspondences Classification

For the super-pixel matching correspondences obtained by the KNN-MRF match-
ing between the input image I and the image set {Ai}N

i=1 with annotation, we
denote them as {〈Tj , DTj , LTj , Sj , DSj , LSj〉}. Tj and Sj are the super pixels
matched together in I and {Ai}N

i=1 respectively, DTj and DSj are the descrip-
tor for them, and LTj and LSj are the labels of them. To reduce the number
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A
B

C
D

P N1N2

Fig. 2. KNN-MRF Matching between an input image (a) and an image set that consists

of (b) and (c): for each super pixel P in (a), candidate label set for P in the energy

function (1) consists of the K nearest neighbor of P , {Ni} in (b) and (c); for neighboring

super pixels A and B, matching to neighboring super pixel C and D will be given more

preference by setting the smoothness term of the energy function (1) properly

of mismatch(LTj �= LSj), we train some matching correspondences classifica-
tion models with the extremely randomized forest [19] to classify the obtained
matching correspondences and discard those semantically incorrect matching
correspondences, or mismatches.

For each matching correspondence 〈Tj , DTj , LTj , Sj, DSj , LSj〉, LSj is known
from the annotation associated with {Ai}N

i=1, so to distinguish whether it is a
mismatch, we can reduce the problem to distinguish whether it is a mismatch
for the certain category LSj . Therefore, instead of training a general classi-
fication model for all matching correspondences, we train a unary matching
correspondences classification model for each category. The main advantage of
training multiple matching correspondences classification models is improved
performance, since certain cues and features are important for some categories
and not for others.

To generate training samples for the matching correspondences classification
model of a certain category L, we randomly select some image pairs {〈Am, An〉}
with annotation from the database, with both Am and An containing L. Then
for each super pixel in Am, we find a nearest neighbor in An. By doing this,
we can obtain many matching correspondences {〈Tk, DTk

, LTk
, Sk, DSk

, LSk
〉},

where LTk
and LSk

have already been known. For a matching correspondence
〈Tk, DTk

, LTk
, Sk, DSk

, LSk
〉, it is taken as a positive training sample, if LTk

=
LSk

= L , and a negative training sample if LTk
�= LSk

, LTk
= L or LTk

�=
LSk

, LSk
= L. In detail, given a correspondence 〈Tk, DTk

, LTk
, Sk, DSk

, LSk
〉, an

appearance difference vector

V = |DTk
−DSk

|

combined with a position feature, the offset of their centers normalized with
respect to the image width and height respectively.

offset = (|XTk
−XSk

|, |YTk
− YSk

|)

〈V, offset〉 is used as the feature vector for the training samples of the matching
correspondences classification model of category L.
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The testing of a matching correspondence 〈T,DT , LT , S,DS , LS〉 is similar.
Extract the feature vector 〈V, offset〉 first, then test it with the trained match-
ing correspondences classification model for category LS. If it is classified as a
mismatch, we discard this matching correspondence.

5 Confidence Inference and MRF Integration

5.1 Selection of Proper Image Sets for Label Transfer

Given an input image, the first thing we need to do is selecting some proper
image sets from the database, which can cover all semantic categories in the input
image. We use the following way to find these image sets. First, we predict the
image level prior R of the input image by retrieving the top K-nearest neighbor
from the database with GIST matching [15], which has been proven a good
way to predict the contents of images in [20]. Then we extract a subset V from
the database: for each category L ∈ R, we retrieve the top K-nearest neighbor
from the database with GIST matching and put them in V , with a constraint
that they should also contain the category L. With this subset V , to generate
an image set for matching, we randomly select some images from V until all
categories in R have already been covered in at least one of the selected images.
By repeating this process, we can get multiple image sets for the KNN-MRF
matching.

5.2 Confidence Inference

With the multiple image sets obtained, we perform the KNN-MRF matching
between the input image and each image set, followed by the matching correspon-
dences classification. With matching correspondences{〈T,DT , LT , Sn, DSn , LSn〉}
for each super pixel T in the input image, the confidence of T belonging to dif-
ferent categories are estimated as:

p(LT = l|T ) =
FT (l)W (l)∑L

j=1 FT (j)W (j)
, l = 1, 2, 3...K (3)

where FT (l) is the occurrence of {〈T,DT , LT , Sn, DSn , LSn : LSn = l〉}. In real
situation, the frequency of occurrence of different category {Pk, k = 1, 2, ...,K}
could be quite different, which could make the matching bias toward categories
with high frequency of occurrence. To overcome this problem, we introduce the
weight term W (l) = 1/Pk to balance the contribution of different categories.

5.3 Influence of Matching Correspondences Classification

In this part, we will analysis the influence of matching correspondences clas-
sification for the confidence inference. Suppose no matching correspondences
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classification is done after the KNN-MRF matching, then the confidence of T
belonging to different categories would be estimated as:

p′(LT = l|T ) =
F ′

T (l)W (l)∑L
j=1 F

′
T (j)W (j)

, l = 1, 2, 3...K (4)

where F ′
T (l) is the occurrence of {〈T,DT , LT , Sn, DSn , LSn : LSn = l〉} obtained

by KNN-MRF matching. Suppose the true label of T is i and the classifica-
tion precision of each matching correspondences classification model is pk, k =
1, 2, 3...K, so

E[FT (i)] = piE[F ′
T (i)] (5)

E[FT (j)] = (1 − pj)E[F ′
T (j)], i �= j (6)

where E denotes the mathematical expectation. With the matching correspon-
dences classification integrated, we have

p(LT = i|T ) ≈ piF
′
T (i)W (i)

piF ′
T (i)W (i) +

∑L
j=1,j �=i(1− pj)F ′

T (j)W (j)
(7)

When the precision of each matching correspondences classification model is
better than random guess, we have pk > 1/2, k = 1, 2, 3...K. It is easy to prove
that:

p′(LT = i|T ) < p(LT = i|T ) (8)

At the same time, we have
∑L

l=1 p
′(LT = l|T ) =

∑L
l=1 p(LT = l|T ) = 1, so it

means the matching correspondences classification can enhance the contribution
of correct matching correspondences in the confidence inference.

5.4 Markov Random Field Integration

Finally, we use a Markov random field to integrate the inferred confidence and
spatial smoothness constraint to segment the input image. A graph G = 〈V , E〉
is defined, with each vertex p ∈ V in the graph denotes one super pixel in the
input image, while the edges E denotes the neighboring relationship between
super pixels. Then we build a markov random field upon G, with the energy
function defined as:

E (L) =
∑
T∈V

ψi (Li) + ρ
∑

eij∈E
ψij (Li, Lj) (9)

data term ψi (Li) = p(Li|T ) and smooth term

ψij (i, j) = [Li �= Lj ]
1

1 + λ ‖ Di −Dj ‖2
(10)

where Di and Dj are the feature descriptor of two neighboring super pixels. The
alpha expansion algorithm [17] can be used to optimize the energy function and
obtain an optimal label configuration.
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6 Experiments

We used three datasets to test our method: the Google street view dataset used
in [10] ,the CBCL StreetScenes dataset [21] and the Cambridge-driving Labeled
Video dataset(CamVid) [22]. They covered street scenes taken from different
perspective under different lighting condition(day or dusk). As [8], we will use
the category average accuracy (the average proportion of pixels correct in each
category) and the global accuracy (total proportion of pixels correct) to evaluate
the segmentation performance. For each dataset, 50% images by random selec-
tion are put in the database, and the left are used for testing. Our method does
not require any 3D geometry information like [10, 11, 23], as it is not limited to
the street scenes of image sequences or images of multiple view.

Parameter setting. For each dataset, we rescale images so that the average
number of pixels contained in each image is about 320×240. For each input
image, we select twenty annotated images sets for the KNN-MRF matching.
When we decompose an image into super pixels with the method [18], the average
size of super pixels is about one hundred pixels. For image level prior prediction
and extracting the subset from the database introduced in section 5.1, the top
five nearest neighbor by GIST matching are used.

6.1 Google Street View Dataset

This dataset consists of about 10,000 images captured in the downtown of Pitts-
burgh by Google Street View. For evaluation of our method, we randomly select
320 images from this dataset, and labeled them by hand with five categories:
sky, ground, building, car and tree. 160 images are put in the database, and the
left 160 images are used for testing. The evaluation includes the following two
parts: comparison with two other methods, Semantic Texton Forest [8] and the
SIFT flow based label transfer method [13]; and the influence of matching corre-
spondences classification and the influence of different features in the matching
correspondences classification models.

The comparison with [8, 13] is shown in Fig. 3(a). From the comparison re-
sult, we found that in terms of category average accuracy and global accuracy,
our method is the best among the three methods. On the same dataset, the
global accuracy reported in [10](without 3D geometry and spatial smoothness
constraint) is 75.4%(In their evaluation, two more categories: person and recycle
bin with frequency of occurrence under 1% are included).

To analysis how the matching correspondences classification and different fea-
tures used in matching correspondences classification models influence the per-
formance, we test our method with different setting: full model, full model with-
out offset feature included in matching correspondences classification models and
the unsupervised model without matching correspondences classification. The
comparison is shown in Fig. 3(b). The comparison result shows that the match-
ing correspondences classification brings significant performance improvement,
in terms of category average accuracy and global accuracy. From the compar-
ison of testing with full model and full model without offset feature included
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Fig. 3. (a) Segmentation accuracy of Our method, Semantic Texton Forest[8] and

SIFT flow based label transfer[13] on the Google street view dataset; (b) Segmentation

accuracy of our method with different setting on the Google street view dataset
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Fig. 4. Segmentation accuracy of our method and Semantic Texton Forest[8] on the

CBCL StreetScenes dataset

in matching correspondences classification models, we found that the appear-
ance feature and offset feature both contribute to the matching correspondences
classification models. Some segmentation examples obtained by our method are
given in Fig. 7(a).
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Fig. 5. Segmentation accuracy of our method, Textonboost + SFM [11] and Superpixel

co-occurrence + 3D geometry [23] on the CamVid dataset
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Fig. 6. Global accuracy(vertical axis) achieved by our method with different number

of image sets(horizontal axis) used for confidence inference on different datasets

6.2 CBCL StreetScenes Dataset

The CBCL StreetScenes dataset contains total 3547 still images of street scenes
with annotation, which mainly includes nine categories: car, pedestrian, bicycle,
building, tree, sky, road, sidewalk, and store. In our test, the three categories with
frequency of occurrence under 1%: pedestrian, bicycle and store are not included.
We compared our method with one of the state-of-the-art semantic segmentation
techniques: Semantic Texton Forest[8], and the comparison result is given in Fig.
4. The SIFT flow based label transfer method[13] is not included in the compar-
ison, as the time cost of running it on the same train/test split is too high, over
800 hundred hours on a single computer by using the code the authors provided.
In terms of category average accuracy, Semantic Texton Forest[8] is better than
ours. However, the global accuracy of our method is about 11% higher than
that of Semantic Texton Forest[8]. Same as that we found in the test on the
previous dataset, the matching correspondences classification improved the per-
formance of our method significantly. Some segmentation examples obtained by
our method are given in Fig. 7(b).
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Building         Car        Ground       Sky        Tree

(a) Google street view dataset

Building         Car        Road       Sky        Tree       Sidewalk  

(b) CBCL StreetScenes dataset

Fig. 7. Some segmentation examples obtained by our method: (a) Google street view

dataset;(b) CBCL StreetScenes dataset
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Building         Car         Tree         Road        Sky       Sidewalk        Fence        Column_Pole Pedestrian         Bicyclist

Fig. 8. Some segmentation examples obtained by our method on the CamVid dataset

6.3 CamVid Dataset

This dataset provides 701 still images with annotation under different lighting
condition, which are extracted from video sequences. To compare with [11, 23]
which used the same dataset for testing, we grouped the original label into 11
larger categories and downsampled the images to 320×240 pixels as [23]. The re-
sult obtained by our method and the result reported in [11, 23] is given in Fig. 5.
From the comparison result we found that though no 3D geometry features are
used in our method, our method still outperforms [11, 23]. At the same time,
we found when no matching correspondences classification models are used, the
performance of our method is still close to the state-of-the-art result reported
[11, 23]. Last, the same as what we found in the testing on the previous two
datasets, integrating matching correspondences classification into the label trans-
fer brings a significant performance improvement. Some segmentation examples
obtained by our method are given in Fig. 8.

6.4 Computation Time

The time cost of segmenting an input image depends on the size of the cor-
responding two graphs to be matched with the KNN-MRF matching and how
many image sets are used for confidence inference. With our parameter setting,
the average time cost for a single KNN-MRF matching between two graphs with
average one thousand nodes is about one second. For all the three datasets, the
average time cost to segment an input image with our method is under one
minute. The global accuracy achieved by our method with different number of
image sets used for confidence inference is given in Fig. 6.

7 Conclusion

We propose a supervised label transfer method for semantic segmentation of
street scenes in this paper. Following the label transfer idea, given an input im-
age, we first find multiple proper image sets from the database, each of which
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can cover all semantic categories in the input image. Dense correspondence is
established on super-pixel level between the input image and each found im-
age sets with a proposed KNN-MRF matching scheme. Then it is followed by
a matching correspondences classification that tries to reduce semantically in-
correct correspondence with a supervised learning based method. With those
matching correspondences classified as semantically correct correspondence, we
infer the confidence value of each super pixel belonging to different semantic cat-
egories, and obtain the semantic segmentation of the input image by integrating
the inferred confidence value and spatial smoothness constraint in a Markov
random field. Experiments show encouraging performances on three standard
datasets.

Acknowledgements. This work was partially supported by the Hong Kong
RGC GRF 618908 and RGC GRF 619409, and the National Natural Science
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Abstract. We propose a category-independent method to produce a

bag of regions and rank them, such that top-ranked regions are likely

to be good segmentations of different objects. Our key objectives are

completeness and diversity: every object should have at least one good

proposed region, and a diverse set should be top-ranked. Our approach

is to generate a set of segmentations by performing graph cuts based

on a seed region and a learned affinity function. Then, the regions are

ranked using structured learning based on various cues. Our experiments

on BSDS and PASCAL VOC 2008 demonstrate our ability to find most

objects within a small bag of proposed regions.

1 Introduction

Humans have an amazing ability to localize objects without recognizing them.
This ability is crucial because it enables us to quickly and accurately identify
objects and to learn more about those we cannot recognize.

In this paper, we propose an approach to give computers this same ability
for category-independent localization. Our goal is to automatically generate a
small number of regions in an image, such that each object is well-represented
by at least one region. If we succeed, object recognition algorithms would be
able to focus on plausible regions in training and improve robustness to highly
textured background regions. The recognition systems may also benefit from
improved spatial support, possibly leading to more suitable coordinate frames
than a simple bounding box. Methods are emerging that can provide descriptions
for unknown objects [1,2], but they rely on being provided the object’s location.
The ability to localize unknown objects in an image would be the first step
toward having a vision system automatically discover new objects.

Clearly, the problem of category-independent object localization is extremely
challenging. Objects are sometimes composed of heterogeneous colors and tex-
tures; they vary widely in shape and may be heavily occluded. Yet, we have
some cause for hope. Studies of the human visual system suggest that a func-
tioning object localization system can exist in the absence of a functioning object
identification system. Humans with damage to temporal cortex frequently ex-
hibit a profound inability to name objects presented to them, and yet perform
similar to healthy controls in tasks that require them to spatially manipulate
objects [3]. Many objects are roughly homogeneous in appearance, and recent
work [4] demonstrates that estimated geometry and edges can often be used to
recover occlusion boundaries for free-standing objects. While we cannot expect
to localize every object, perhaps we can at least produce a small bag of proposed
regions that include most of them.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 575–588, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Our strategy is to guide each step of the localization process with estimated
boundaries, geometry, color, and texture. First, we create seed regions based on
the hierarchical occlusion boundaries segmentation [4]. Then, using these seeds
and varying parameters, we generate a diverse set of regions that are guided to-
ward object segmentations by learned affinity functions. Finally, we take a struc-
tured learning approach to rank the regions so that the top-ranked regions are
likely to correspond to different objects. We train our method on segmented ob-
jects from the Berkeley Segmentation Dataset (BSDS) [5], and test it on BSDS and
the PASCAL 2008 segmentation dataset [6]. Our experiments demonstrate our
system’s ability for category-independent localization in a way that generalizes
across datasets. We also evaluate the usefulness of various features for generating
proposals and the effectiveness of our structured learning method for ranking.

2 Related Work

Here, we relate our work to category-dependent and category-independent meth-
ods for proposing object regions.

Category Dependent Models: By far, the most common approach to ob-
ject localization is to evaluate a large number of windows (e.g., [7,8]), which are
found by searching naively over position and scale or by voting from learned
codewords [9,10], distinctive keypoints [11,12], or regions [13]. These methods
tend to work well for objects that can be well-defined according to a bound-
ing box coordinate frame when sufficient examples are present. However, this
approach has some important drawbacks. First, it is applicable only to trained
categories, so it does not allow the computer to ask “What is this?” Second,
each new detector must relearn to exclude a wide variety of textured background
patches and, in evaluation, must repeatedly search through them. Third, these
methods are less suited to highly deformable objects because efficient search re-
quires a compact parameterization of the object. Finally, the proposed bounding
boxes do not provide information about occlusion or which pixels belong to the
object. These limitations of the category-based, window-based approach supply
some of the motivation for our own work. We aim to find likely object candi-
dates, independent of their category, which can then be used by many category
models for recognition. Our proposed segmented regions provide more detail to
any subsequent recognition process and are applicable for objects with arbitrary
shapes.

Segmentation and Bags of Regions: Segmentation has long been proposed as
a pre-process to image analysis. Current algorithms to provide a single bottom-
up segmentation (e.g., [14,15] are not yet reliable. For this reason, many have
proposed creating hierarchical segmentations (e.g., [16,4,17]) or multiple overlap-
ping segmentations (e.g., [18,19,20,21]). Even these tend not to reliably produce
good object regions, so Malisiewicz et al. [19] propose to merge pairs and triplets
of adjacent regions, at the cost of producing hundreds of thousands of regions. In
our case, the goal is to segment only objects, such as cars, people, mugs, and ani-
mals, which may be easier than producing perceptually coherent or semantically
valid partitionings of the entire image. This focus enables a learning approach,
in which we guide segmentation and proposal ranking with trained classifiers.
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Input Image Hierarchical Segmentation Proposed Regions Ranked Regions

Fig. 1. Our pipeline: compute a hierarchical segmentation, generate proposals, and

rank proposed regions. At each stage, we train classifiers to focus on likely object

regions and encourage diversity among the proposals, enabling the system to localize

many types of objects. See section 3 for a more detailed overview.

An alternative approach is to attempt to segment pixels of foreground ob-
jects [22] or salient regions [23,24]. However, these approaches may not be suit-
able for localizing individual objects in cluttered scenes, because a continuous
foreground or salient region may contain many objects.

Two concurrent works have also considered generating object proposals as a
preprocess for later stages of classification. First, Alexe et al. [25] consider an
“objectness” measure over bounding boxes, which they use to bias a sampling
procedure for potential object bounding boxes. However, they are limited to the
restricted expressiveness of a bounding box. Alternatively, Carreira and Smin-
chisescu [26] consider a similar region proposal and ranking pipeline to ours.
Segmentations are performed using graph cuts and simple color cues, and the
regions are ranked through classification based on gestalt cues with a simple
diversity model. Our approach guides segmentation with a learned affinity func-
tion, rather than setting the image border to background. We also differ in our
structured learning approach to diverse ranking.

To summarize our contributions: 1) we incorporate boundary and shape cues,
in addition to low-level cues to generate diverse category independent object re-
gion proposals, and 2) introduce a trained ranking procedure that produces a
small diverse set of proposals that aim to cover all objects in an image. We thor-
oughly evaluate each stage of the process, and demonstrate that it can generalize
well across datasets for a variety of object categories.

3 Overview of Approach

Since our goal is to propose candidates for any object in an image, each stage of
our process must encourage diversity among the proposals, while minimizing the
number of candidates to consider. Our procedure is summarized in Figure 1. To
generate proposals for objects of arbitrary shape and size, we adopt a segmentation
basedproposalmechanism that is encouraged to only propose regions fromobjects.

Rather than considering only local color, texture, and boundary cues, we in-
clude long range interactions between regions of an image. We do this by consid-
ering the affinity for pairs of regions to lie on the same object. This set of regions
is chosen from a hierarchical segmentation computed over occlusion boundaries.
To generate a proposal, we choose one of these regions to seed the segmentation,
and compute the probability that each other region belongs to the same object
as this seed. The affinities are then transferred to a graph over superpixels from
which we compute segmentations with a variety of parameters. By computing
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the affinities over regions first and then transferring them to superpixels, we get
the benefit of more reliable predictions from larger regions while maintaining the
flexibility of a superpixel based segmentation. After repeating this process for
all seed regions, we obtain an initial bag of proposals.

In our effort to discover a diverse set of objects, our proposal mechanism
may generate many redundant or unlikely object candidates. In both cases, we
would like to suppress these undesirable proposals, allowing us to consider better
candidates first. This motivates a ranking procedure that provides an ordering for
a bag of proposals which simultaneously suppresses both redundant and unlikely
candidates. We can then uncover a diverse set of the good object proposals with
far fewer candidates.

Our ranker incrementally adds proposals, from best to worst, based on the
combination of an object appearance score and a penalty for overlapping with
previously added proposals. By taking into account the overlap with higher
ranked proposals, our ranker ensures that redundant regions are suppressed,
forcing the top ranked regions to be diverse. This is especially important in
images with one dominant object and several “auxiliary” objects.

4 Proposing Regions

We first generate a large and diverse bag of proposals that are directed to be
more likely to be object regions. Each proposal is generated from a binary seg-
mentation, which is seeded with a subregion of the image. This seed is assumed
to be foreground, and a segmenter selects pixels likely to belong to the same
foreground object as the seed.

4.1 Hierarchical Segmentation

We use regions and superpixels from a hierarchical segmentation as the building
blocks for our proposal mechanism. To generate the hierarchical segmentation,
we use the output of the occlusion boundary algorithm from Hoiem et al. [4]
(the details of this algorithm are not relevant to our paper). The occlusion al-
gorithm outputs four successively coarser segmentations, with a probability of
occlusion and of the figure/ground label for each boundary in the segmenta-
tion. From each segmentation, we compute a probability of boundary pixel map
and a figure/ground probability pixel map, and we average over the segmenta-
tions. Then, we create our hierarchical segmentation with agglomerative group-
ing based on boundary strength, as in [16], and we use the boundary strength
and figure/ground likelihoods as features.

4.2 Seeding

A seed serves as the starting point for an object proposal. The appearance and
boundaries around the seed are used to identify other regions that might belong
to the same object. Seeds are chosen from the hierarchical segmentation such
that they are large enough to compute reliable color and texture distributions.
Also, we remove regions with boundaries weaker than 0.01 , since these are likely
to just be a portion of a larger region. Stronger boundaries also facilitate the
use of boundary cues to determine the layout of the object with respect to the
regions.
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4.3 Generating Segmentations

CRF Segmentation: To generate a proposal, we infer a foreground / back-
ground labeling l, li ∈ {0, 1} over superpixels. Given a seed region, defined by
a set of superpixels S, we construct a CRF that takes into account each su-
perpixel’s affinity for the seed region and the probability of boundaries between
adjacent superpixels:

P (l|X,S, γ, β) ∝ exp
(∑

i

f(li;S,X, γ) + β
∑

{i,j}∈N

g(li, lj ;X)
)

(1)

Here, f(li;S,X, γ) is the superpixel affinity term, inferred from image features
X , and g(li, lj ;X) is the edge cost between adjacent superpixels (defined by
set of neighbors N). This CRF is parametrized by the foreground bias γ and
the affinity/edge trade-off β. By varying these parameters for each seed, we can
produce a more diverse set of proposals. We choose five γ values from between
[−2, 2], and five β values from [0, 5].

Affinity: To compute the superpixel affinity f(li;S,X, γ), we first compute each
region R’s affinity for lying on the same object as the seed S. We learn the
foreground probability P (lR|S,X) with a boosted decision tree classifier. Positive
training examples are generated from pairs of regions that lie on the same object.
Negative examples use pairs with one region lying on an object, and the other
region lying on another object or the background.

The classifier uses features for cohesion, boundary, and layout cues, as sum-
marized in Table 1. Cohesion is encoded by the histogram intersection distances
of color and texture (P1). Boundary cues are encoded by considering the cost to
pass across boundaries from one region to the other. This path across boundaries
is the straight line between their centers of mass (P2).

Table 1. Features computed for pairs of regions for predicting the likelihood that

the pair belongs to the same object. These features can capture non-local interactions

between regions, producing better segmentations.

Feature Description Length
P1. Color,Texture histogram intersection 2

P2. Sum,Max strength of boundary crossed between centers of mass 2

L1. Left+Right layout agreement 1

L2. Top+Bottom layout agreement 1

L3. Left+Right+Top+Bottom layout agreement 1

We introduce a new layout feature. Given occlusion boundaries and fig-
ure/ground labels, we predict whether a particular region is on the left, right,
top, bottom, or center of the object. These predictions are made by boosted
decision tree classifiers based on histograms of occlusion boundaries, where the
boundaries are separated based on figure/ground labels. As a feature, we mea-
sure whether the layout predictions for two regions are consistent with them
being on the same object. For example, if one region predicts that it is on the
left of the object and a second region to the right of the first predicts that it
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is on the right side of the object, those regions are consistent. We construct a
layout score for horizontal, vertical, and overall agreement (L1− L3).

Since the CRF is defined over superpixels, the region affinity probabilities are
transfered to each superpixel i by averaging over the regions that contain it.
The terms of this average are weighted by the probability that each region R
is homogeneous (P (HR)), which is predicted from the appearance features in
Table 2:

P (li = 1|S,X) =

∑
{R|i∈R} P (HR) · P (lR = 1|S,X)∑

{R|i∈R} P (HR)
. (2)

Note that we now have labels for superpixels (li) and for regions (lR). We use
P (li|S,X) to compute the affinity term f(li;S,X, γ):

f(li;S,X, γ) =

⎧⎪⎨⎪⎩
0 : li = 1, i ∈ S
∞ : li = 0, i ∈ S

− ln
(

P (li=0|X)
P (li=1|X)

)
+ γ : li = 1, i �∈ S

(3)

The infinite cost ensures that superpixels belonging to the seed are labeled
foreground.

Edge Cost: The edge cost enforces a penalty for assigning different labels to
adjacent superpixels when their separating boundary is weak. This boundary
strength is computed from the occlusion boundary estimates for each pair of
adjacent superpixels i, j: P (Bi,j |X).

g(li, lj ;X) =
{

0 : li = lj
− lnP (Bi,j |X) : li �= lj

(4)

This edge cost produces a submodular CRF, so exact inference can be computed
quickly with a single graph-cut [27] for each seed and parameter combination.
Proposals with disconnected components are split, and highly overlapping (≥
97%) proposals are pruned. Further non-maximum suppression is handled in the
ranking stage.

5 Ranking Proposals

We now introduce a ranker that attempts to order proposals, such that each object
has a highly ranked proposal. This ranker encourages diversity in the proposals al-
lowing us to achieve our goal of discovering all of the objects in the image. Below,
we detail our objective function, which encourages top-ranked regions to corre-
spond to different objects and more accurate object segmentations to be ranked
higher. Then, we explain the image features that we use to rank the regions. Fi-
nally, we describe the structured learning method for training the ranker.

Formulation: By writing a scoring function S(x, r;w) over the set of proposals
x and their ranking r, we can take advantage of structured learning. The goal
is to find the parameters w such that S(x, r;w) gives higher scores to rankings
that place proposals for all objects in high ranks.

S(x, r;w) =
∑

i

α(ri) ·
(
wT

a Ψ(xi)−wT
p Φ(ri)

)
(5)
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The score is a combination of appearance features Ψ(x) and overlap penalty
terms Φ(r), where r indicates the rank of a proposal, ranging from 1 to the
number of proposals M . This allows us to jointly learn the appearance model and
the trade-off for overlapping regions. Φ1(r) penalizes regions with high overlap
with previously ranked proposals, and Φ2(r) further suppresses proposals that
overlap with multiple higher ranked regions. The second penalty is necessary to
continue to enforce diversity after many proposals have at least one overlapping
proposal:

Φ1(ri) = max
{j|rj<ri}

ov(i, j) (6)

Φ2(ri) =
∑

{j|rj<ri}
ov(i, j) (7)

The overlap score is computed as the area of two regions’ intersection divided
by their union, with Ai indicating the set of pixels belonging to region i:

ov(i, j) =
|Ai ∩Aj |
|Ai ∪Aj |

(8)

Each proposal’s score is weighted by α(r), a monotonically decreasing function.
Because higher ranked proposals are given more weight, they are encouraged to
have higher scores. We found that the specific choice of α(r) is not particularly
important, as long as it falls to zero for a moderate rank value. We use α(r) =
exp

(
(r−1)2

σ2

)
, with σ = 150.

Computing maxr S(x, r;w) cannot be solved exactly, so we use a greedy ap-
proximation that incrementally adds the proposal with the maximum marginal
gain. We found that this works well for a test problem where full enumeration is
feasible, especially when ov(·, ·) is sparse, which is true for this ranking problem.

Representation: The appearance features Ψ(x) characterize general properties
for typical object regions, as summarized in Table 2. Since this is a category in-
dependent ranker, we cannot rely on finely tuned category dependent shape and
appearance models. However, we can expect object boundaries to respect occlu-
sion boundaries, so we encode the probability that the exterior is occluded by or
occluding another region. We also encode the probability of interior boundaries,
which we expect to be small.

Additionally, certain “stuff-like” regions can be quickly identified as back-
ground, such as grass and sidewalks, so we learn a pixel based probability of
background classifier on LabelMe [28], and characterize the response within the
region. We also use the confidence of the vertical solid non-planar geometric
class, using trained classifiers from [29], which is noted to often correspond to
object classes. Finally, we encode the differences between color and texture dis-
tributions between the object and background. We compute the difference in
histograms between the object and two regions: the local background region
surrounding the object and the entire background.

Learning: To solve the structured learning problem, we use the slack-rescaled
method with loss penalty used in [30]. This method finds the highest scoring
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Table 2. Features used to describe the appearance of a proposal region. It is important

that each of these features generalize across all object categories, including ones never

seen during training.

Feature Description Length
B1. Mean,max probability of exterior boundary 2

B2. Mean,max probability of interior boundary 2

B3. Mean,max probability that exterior occludes 2

B4. Mean,max probability of exterior being occluded 2

S1. Min,mean,max,max-min probability of background 4

S2. Min,mean,max,max-min probability of vertical surface 4

S3. Color,texture histogram intersection with local background 2

S4. Color,texture histogram intersection with global background 2

labeling, rather than the most violated constraint, and adds an additional cost
to the objective to penalize for high loss candidates:

min
w,ξn

1
2
||w||2 +

C1

N

∑
n

ξn +
C2

N

∑
n

L(r(n), r̂(n)) (9)

s.t. ∀r ∈ P (n)\r(n), ∀n
S(x(n), r(n);w)− S(x(n), r;w) ≥ 1− ξn

L(r(n),r)

ξn ≥ 0
wp ≥ 0

,

where, for image n, r(n) is the ground truth ranking, r̂(n) =
argmaxr∈P (n)S(x(n), r;w) is the highest scoring proposal, and P (n) is the
set of valid labellings, in this case, the set of permutations over regions. The
cutting plane approach avoids having to exhaustively enumerate the resulting
intractable set of constraints.

The loss L must enforce two properties: higher quality proposals should have
higher ranks (L1), and each object o in the set of objects O should have a highly
ranked proposal (L2):

L(r, r̂) = 1
2L1(r, r̂) + 1

2L2(r, r̂)
L1(r, r̂) = 1

|O|
∑

o∈O

∑
{(i,j)|ri<rj} I[ov(i, o) < ov(j, o)]

L2(r, r̂) = 1
|O|

∑
o∈O min{i|ov(i,o)≥50%} ri

(10)

To learn this structured model, we iteratively find the highest scoring ranking
for an image, update w with this new constraint, and repeat until the change in
w is small.

6 Experiments and Results

We perform experiments on the Berkeley Segmentation Dataset (BSDS) [5] and
the Segmentation Taster images from PASCAL VOC 2008 [6]. All training and
parameter selection is performed on the BSDS training set, and results are evalu-
ated on BSDS test and the PASCAL validation set. For both datasets, a ground
truth segmentation is provided for each object. For BSDS, we label object regions
by merging the original ground truth segments so that they correspond to objects.

Qualitative results from both PASCAL and BSDS are sampled in Figure 2.
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Fig. 2. Results from the proposal and ranking stages on BSDS (first 3 rows) and

PASCAL 2008 (last 3 rows). The left column shows the 3 highest ranked proposals, The

center column shows the highest ranked proposal with 50% overlap for each object. The

right column shows the same for a 75% threshold. The number pairs displayed on each

proposal correspond to rank and overlap, respectively. The desk scene demonstrates the

diversity of our ranking. The train and deer demonstrate the high quality of proposals.
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6.1 Proposal Generation

To measure the quality of a bag of proposals, we find the best segmentation
overlap score for each object (BSS). From this, we can characterize the overall
quality of segments with the mean BSS over objects, or compute the recall by
thresholding the BSS at some value, and counting the number of objects with a
BSS of at least this threshold. For our experiments, we set the threshold to 50%
unless otherwise noted. A pixel-wise overlap threshold of 50% is usually, but not
always, more stringent than a 50% bounding box overlap.

Features: The most commonly used features for segmentation are color and
texture similarity, so we use this as a baseline. We then add the boundary crossing
and layout features individually to see their impact. Finally, we combine all of the
features to obtain our final model. To measure the performance of each feature,
we consider the area under the ROC curve (AUC) for affinity classification, the
best segment score, and recall at 50%. The results are shown in Table 3.

The first thing to note is that the addition of both the boundary and lay-
out features are helpful for both datasets. In addition, we find that the affinity
classification performance cannot fully predict a feature’s impact on proposal
performance. It is important to also consider how well the features facilitate
producing a diverse set of proposals. Features that cause prediction to be more
dependent on the seed region will produce a more diverse set of proposals.

Table 3. A comparison of how features impact affinity classification (AUC), recall @

50% overlap, and best segment score (BSS). Both classification accuracy and diversity

of proposals must be considered when choosing a set of features.

BSDS PASCAL

Feature AUC Recall BSS AUC Recall BSS
Color,Texture (P1) 0.72 75.4 % 0.655 0.68 78.8% 0.67

C,T + Boundary Crossing (P1,P2) 0.77 81.8% 0.671 0.76 79.7% 0.68
C,T + Layout (P1,L1,L2,L3) 0.74 82.9% 0.679 0.71 81.1% 0.68
All (P1,P2,L1,L2,L3) 0.83 84.0% 0.69 0.80 79.7% 0.68

Proposal Quality: We define similar baselines to [19]. The first baseline is to
use each region from the hierarchical segmentation as an object proposal. The
second baseline is to merge all pairs of adjacent regions, which achieves higher
recall but with many more proposals. We can also measure the upper bound on
performance by choosing the best set of superpixels for each object region.

It is clear from Figure 3 that the initial hierarchical segmentation is not well
suited for proposing object candidates. After merging proposals, the segmenta-
tion quality is comparable to our method, but as Figure 6 shows, it produces
more than an order of magnitude more proposals. For both datasets, our method
produces more high quality proposals for overlaps greater than 65%.

Finally, we provide a breakdown of recall for individual categories of the PAS-
CAL dataset in Figure 4. These results are especially promising, because many
of the categories with high recall, such as dog and cat, are difficult for standard
detectors to locate. The low performance for categories like car and sheep is
mainly due to the difficulty of proposing small regions (< 0.5% of the image
area, or < 1000 pixel area), especially when the objects are in crowded scenes.
The dependence of recall on area is shown in Figure 5.
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Fig. 3. These curves characterize the quality of proposals from each method, showing

the percentage of objects recalled for a given overlap %. For BSDS, we generate better

proposals for all levels of overlap. For PASCAL, we outperform the baselines for higher

recall levels and are still comparable at 50% overlap. These results are impressive

because we consider 20-30 times fewer regions.

6.2 Ranking Performance

We compare our ranking method to three baselines. The first method scores each
proposal independently, and the ranking is produced by sorting these scores from
high to low, as in [26]. Positive examples are chosen from a pool proposals with
at least 50% overlap with some object and negative examples have no more than
35% overlap with any object. The second baseline includes the overlap penalty of
our method, but learns the appearance model and trade-off terms separately. The
final baseline simply assigns random ranks to each proposal. This can be seen
as encouraging diversity without taking into account appearance. To evaluate
the quality of our ranker, we measure the number of objects recalled when we
threshold each image’s bag at a certain size. The results are presented in Figure 6.

We find that by jointly learning the appearance and suppression models, our
method outperforms each of the baselines. Because the independent classifier
does not encourage diversity, only the first object or object-like region is given a
high rank, and the number of proposals required to recall the remaining objects
can be quite high. In fact, when considering more than 10 proposals, the ran-
dom ranker quickly outperforms the independent classifier. This emphasizes the
importance of encouraging diversity. However, both models that include both
appearance models and overlap terms outperform the random ranker. Finally,
by learning with an appropriate loss and jointly learning the model, we achieve
small but noticeable gains over the baseline with an overlap term.

7 Discussion

We have introduced a procedure that generates a small, but diverse set of
category-independent object proposals. By incorporating the affinity predictions,
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Fig. 4. Recall for each object category in PASCAL. These results are quite promising

because many of the categories with high recall are difficult for standard object detec-

tors to recognize. For many categories, most of the instances can be discovered in the

first 100 proposals.
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Fig. 5. Recall vs. object size: The plot shows the percentage of recalled objects based

on their area, relative to the image size. Histogram bin edges are indicated by solid

vertical lines. This demonstrates that uncovering smaller objects is more difficult than

larger objects, but nearly 60% of objects between 0.3% and 0.8% of the image are still

recovered. This is due to weaker object cues and because the region overlap criteria is

more sensitive to individual pixel errors for smaller objects. The dashed lines also show

the proportions of the dataset for each object size.

we can direct the search for segmentations to produce good candidate regions
with far fewer proposals than standard segmentations. Our ranking can further
reduce the number of proposals, while still maintaining high diversity. Our ex-
periments show that this procedure generalizes well and can be applied for many
categories.

The results on PASCAL are especially encouraging, because with as few as 100
proposals per image, we can obtain high recall for many categories that standard
scanning window detectors find difficult. This is quite amazing, considering that
the system had never seen most of the PASCAL categories during training!

Beyond categorization, our proposal mechanism can be incorporated in appli-
cations where category models are not available. When presented with images of
new objects, our proposals can be used in an active learning framework to learn
about unfamiliar objects. Alternatively, they can be used for automatic object
discovery methods such as [20]. Combined with the description based recognition
methods [1,2], we could locate and describe new objects.
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Fig. 6. Recall vs. number of proposals per image: When considering recall for more than

10 proposals per image, enforcing diversity (Random) is a more important than object

appearance (Classifier). Combining diversity and appearance (Classifier + Overlap)

improves performance further, and jointly learning both (Full model) gives further

gains.

While this method performs well in general, it has difficulty in cases where
the occlusion boundary predictions fail and for small objects. These are cases
where having some domain knowledge, such as appearance or shape models
can complement a generic proposal mechanism. This suggests a joint approach
in which bottom-up region proposals are complemented by part or category
detectors that incorporate domain knowledge.
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Abstract. Planar patches are a very compact and stable intermedi-

ate representation of 3D scenes, as they are a good starting point for

a complete automatic reconstruction of surfaces. This paper presents a

novel method for extracting planar patches from an unstructured cloud

of points that is produced by a typical structure and motion pipeline.

The method integrates several constraints inside J-linkage, a robust al-

gorithm for multiple models fitting. It makes use of information coming

both from the 3D structure and the images. Several results show the

effectiveness of the proposed approach.

1 Introduction

While the current state of the art in architectural three-dimensional (3D) re-
construction has focused on the recovery of dense and accurate representations
of objects imaged through pictures or video, the sustained interest in accessi-
ble architectural modeling software is a strong evidence of an untapped general
need for compact, abstract representations of architectural objects. What sepa-
rates unstructured cloud of points from higher-level renditions of an architectural
model is a semantic gap, which should be bridged exploiting additional informa-
tion. This is one of the most challenging research area in Computer Vision. The
proposed methods can be divided in three main categories: interactive, top-down
and bottom-up.

Interactive approaches require user intervention to recognize higher level struc-
tures, usually basing on the three-dimensional information previously extracted
[1–4]. Top-down or model based approaches start from the prior knowledge of the
set of potential parametric models and try to infer the best fitting one along with
its parameters [5–9]. Potentially, only one image could be employed if the prior
knowledge is enough to derive the 3D model [10, 11]. When no prior knowledge is
assumed or user intervention is not available, bottom-up methods are employed.
They start directly from raw three-dimensional data points trying to aggregate
them in progressively higher level structures, possibly using also the information
coming from the images. This paper falls in this category: The aim is to lever-
age models from unorganized point clouds to an intermediate representation,

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 589–602, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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i.e. planar patches, that narrows the gap between acquisition and manipulation
of architectural models.

Some methods try to optimize an initial triangulation using visibility [12] or
photo-consistency [13, 14] only, i.e., the fact that a patch corresponding to a
solid opaque surface has the same appearance in all the images (modulo some
geometric and photometric distortions). They work only with very simple con-
vex polyhedra objects, and they assume all points visible by at least one view.
A similar approach was proposed in [15]. A sequential MSAC [16] is employed
in order to detect the planes. Image-consistent triangulation is then used within
a simulated annealing algorithm to create an optimal surface mesh. In [17] an
automatic approach to segment a cloud of points into planes is proposed: It gener-
ates plane hypotheses by random sampling the 3D points (inspired by RANSAC)
and scores them using photo-consistency. The reported experiments involve ex-
tremely simple objects. More recently Moser et al. [18] presented a paper that
is able to perform out-of-core simplification of an high quality digital surface
model of a city using RANSAC. The density and good quality of the input data
are crucial here.

Very recent works proposed to run a Multiview Stereo on the output a SaM
pipeline[22, 23]. While the results are visually compelling, they do not point at
the problem of the semantic gap, since the output is a dense and less compact
representation of the scene.

Besides [12–14] which are very simple, all the above papers share a common
part since they extract the planes underlying the scenes using RANSAC (or
MSAC) with spatial or photo-consistency information. This seems to be a crucial
task, but the sequential application of an algorithm designed for single model
extraction, is not suitable, and this becomes clear as soon as one steps from
clean, structured data to real, noisy unstructured data, as those coming from
a structure and motion (SaM) pipeline[19, 20]. Techniques designed to extract
multiple instances of a model are required in this case, e.g. J-linkage, which has
recently been proposed [21] and proved to be very robust. It will be described
in details in section 2.

Our strategy reaps the benefits of most of the aforementioned methods: i) it
applies to unorganized large cloud of points, ii) employ a multiple model fitting
algorithm (J-linkage) and iii) seamlessly integrates both spatial, visibility and
photo-consistency information inside it.

The output of our algorithm are triangulated planar patches, which are a very
compact and stable intermediate representation of 3D scenes, as they are a good
starting point for a complete automatic reconstruction of surfaces.

2 Overview of the J-linkage Algorithm

In this section the J-linkage algorithm will be briefly overviewed. More details
can be found in [21].

The method is based on random sampling, like RANSAC. Each minimal sam-
ple set (MSS) defines a tentative model. Imagine to build a N×M matrix (Fig. 2)



Photo-Consistent Planar Patches from Unstructured Cloud of Points 591

where entry (i, j) is 1 if point i is closer to model j than a threshold ε. Each
column of that matrix is the characteristic function of the consensus set of a
model. Each row is the characteristic function of the preference set (PS) of a
given point, i.e., indicates which models a points has given consensus to. Points
belonging to the same structure will have similar PS, in other words, they will
cluster in the conceptual space {0, 1}M .

PS of point i

1 0 1 1 1 ... 0 0 1

1 1 0 1 0 ... 1 1 0

0 1 1 1 1 ... 1 0 0

1 0 1 1 1 ... 0 1 1

1 1 1 1 1 ... 0 0 1

1 0 0 0 1 ... 0 0 1

0 1 1 1 0 ... 0 0 1

1 0 1 1 1 ... 0 1 1

1 1 0 1 0 ... 1 0 1

CS of model j

Fig. 1. An example of consensus/preference matrix. Columns are consensus sets (CS),

rows are preference sets (PS).

2.1 Random Sampling

As in [24] it is assumed that the a-priori probability that two points belong
to the same structure is higher the smaller the distance between the points.
Hence minimal sample sets are constructed in a way that neighboring points are
selected with higher probability. If a point xi has already been selected, then xj

has the following probability of being drawn:

P (xj |xi) =

{
1
Z exp− ||xj−xi||2

σ2 if xj �= xi

0 if xj = xi

(1)

where Z is a suitable normalization constant and σ is chosen heuristically.

2.2 Agglomerative Clustering

Models are extracted by agglomerative clustering data points in the conceptual
space, where each point is represented by its PS. The distance between two
elements (point or cluster) is computed as the Jaccard distance between the
respective preference sets. The PS of a cluster is defined as the intersection of
the preference sets of its points. Given two sets A and B, the Jaccard distance is

dJ(A,B) =
|A ∪B| − |A ∩B|

|A ∪B| . (2)

The Jaccard distance measures the degree of overlap of A and B and ranges
from 0 (A = B) to 1 (A ∩B = ∅).

The algorithm proceeds by linking elements with distance smaller than 1 and
stops as soon as there are no such elements left. This can be performed efficiently
using an heap data structure. As a result, clusters have the following properties:
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– for each cluster there exists at least one model that is in the PS of all its
points;

– one model cannot be in the PS of all the points of two distinct clusters;

The final model parameters for each cluster of points is estimated by least squares
fitting.

3 Constraints Integration

This paper is aimed at leveraging the J-linkage algorithm to fit planar patches to
a cloud of 3D point that are samples of surfaces in the observed scene. Extraction
of planar patches is not the same as fitting planes, because a patch is a region of
the plane, and the same plane may contain more patches (see Fig. 2). The planar
patch associated to a set of coplanar points is the convex hull of the projection
of the points onto the fitting plane. In order for a planar patch to represent an
actual surface, it must satisfy a number of constraints, beside coplanarity, that
will be described later. This section will concentrate on how these constraints
can be seamlessly integrated inside J-linkage.

Fig. 2. A single plane (yellow) contains several patches (blue and red)

J-linkage extracts models in an incremental way, by merging smaller structures
at each step. In the case on planar patches, two patches can merge only if the
result is a set of coplanar points (to some extent). Coplanarity is the invariant
property, and any other constraint can be enforced as an invariant property, so
that two patches can be merged if and only if the resulting does not violate the
constraint.

More in detail, the constraints will be formulated and tested on triangles,
since any planar polygon can be triangulated. When two patches are being con-
sidered for possible merging, a new patch is computed as the convex hull of the
union of the points. By inductive hypothesis the two original patches satisfy the
constraints, whereas the new triangles that are created must be tested against
the constraints. If a single triangle fails the merging is rejected. A graphical
explanation of this incremental step is shown in the Fig. 3.
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Fig. 3. Incremental step. The constraints are assumed to be valid for each patch (top).

When two patches are merged (bottom) the constraints needs to be checked only for

the new triangles (yellow).

Three kind of constraints are enforced:

– Photo-Consistency Constraint: the projections of a triangle on the im-
ages where it is visible should be photo-consistent.

– Visibility Constraint: a triangle must not to occlude any visible point.
– Non Intersection Constraint: a triangle must not intersect any previously

defined surface.

3.1 Photo-Consistency Constraint

A patch in space is image-consistent if all its projections onto the images where
it is visible contain conjugate points. Image consistent patches are attached to
actual object surfaces in the scene (see Fig. 4). Image-consistency can be checked
through photo-consistency, the property that the projections of a patch are equal
up to a projective transformation and photometric nuances.

Let us first define a set of compatible images as the ones where the vertices of
a given triangle are visible. Among them, the one where the projected triangle
exhibits the maximum area is chosen as the reference. All the triangles in the
compatible images are projectively warped onto the triangle in the reference
image and compared to it through normalized cross-correlation (NCC). The
final photo-consistency of the 3D triangle is obtained as the average of the NCC
scores of its projections (the value ranges from −1 to 1), and its is considered
photo-consistent if this value is below a fixed threshold.

3.2 Visibility Constraint

A Structure and Motion pipeline generally outputs the visibility of the points,
i.e. the cameras from which a point is visible. This information can be exploited
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Fig. 4. The green triangle is image-consistent, the red ones are not

to formulate a simple yet powerful constraint: a surface patch must not occlude
a 3D point from the view where it is visible.

Mathematically, this translates into a segment-triangle intersection test. The
segment ranges from the optical center of the view to the 3D point that is being
examined. The intersection test can be performed efficiently at constant time.
However, in the worst case - i.e. when no intersections with the current triangle
were found - one need to run the test for each view and for each visible point
from that view. In order to speed up the process, we precompute the axis aligned
bounding box (AABB) for each view that contains every visible points and the
optical center. We also compute and update an AABB that contains every point
of a patch. A prior intersection test is made between the AABB of the patch and
the AABB of a view: if no intersection occurs we are assured that no triangle
of the patch will intersect a segment in that view. The intersection test between
two AABB also takes constant time.

3.3 Non Intersection Constraint

During the patch growing, it may happen that patches end up intersecting each
other in their interior. This is clearly an unwanted situation, as the customary
assumption holds that surfaces are manifolds. To avoid this, we embed the non
intersection constraint directly in the J-linkage.

When creating a new patch we check that it is not intersecting any previously
defined patch. This translates into a triangle-triangle intersection test among
all the triangles of two patches. The triangle-triangle intersection test can be
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computed in constant time. However, when dealing with surfaces composed by
many triangles, it may require many checks. We speed up the process taking
advantage of the AABB computed for every patch.

4 Filling the Gaps

During the agglomerative clustering of J-linkage, it is sufficient that a single
triangle does not satisfy a constraint to discard the entire merge, because it
is inductively assumed that patches are convex. As a result, triangles that ful-
fill the constraints are discarded, thereby leaving gaps in the surfaces between
neighbouring patches (Fig. 5). This issue is solved a-posteriori, by a gap-filing
heuristics that relaxes the convexity assumption.

Fig. 5. Green regions are gaps between adjacent patches that are to be filled. Blue

regions are gaps between orthogonal patches.

Two patches are said to be adjacent if at least one of the points of one patch
contains a point of the other patch in his k-neighborhood. We can distinguish
two cases of adjacent patches: coplanar, when the angle between the respective
support planes is less than 30 degrees, and orthogonal, when the angle lays
between 60 and 120 degrees. A graph of connection between the patches can thus
be inferred. First, we fill the gaps between orthogonal patches. By construction,
a point can belong to only one patch. We identify the points compatible, by
means of the inlier threshold, to both the orthogonal patches. The points are
then added to both patches if the constraints defined before are valid for the
newly computed patches.
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Finally, we fill the gaps between coplanar patches by testing each one con-
necting triangles between the patches using the same methods and constraints
defined before. When two patches have been processed they are treated as a
single entity in this iterative procedure.

5 Results

We tested our method on real data coming from a completely automatic SaM
pipeline. The first test compares our approach to [13] and [21] on a simple object.
The second set of experiments demonstrate how our method can cope with real-
world examples.

5.1 Comparative Test

In order to be able to tun a comparative test with [13] we had to choose a setup
where all the points projects in all the views. To this end we constructed the
“Duplo” object visible in Fig. 6 and manually selected 72 keypoints correspon-
dences in 5 views. The 3D structure have been recovered by a SaM pipeline. We
also considered for comparison the original J-Linkage without additional con-
straints and gap filling procedures. The results are shown in figure Fig. 6. It can
be noticed how [13] fails to extract a consistent triangulation. The reason is that
the simple subject of the scene is non-convex, and photo-consistency alone seems
to be sufficiently powerful in this case. J-Linkage without constraints is able to
correctly detect the supporting planes; yet, the final patches defined with a De-
launay triangulation contains gaps and fails to delineate the underlying object.
Our approach obtains best results, even if some triangles are missing.

5.2 Real World Examples

Three tests were performed on publicly available data1 produced by the Struc-
ture and Motion pipeline described in [20]. Results show the fitting planes to the
cloud of points, and the associated patches, projected over the images.

The first set - “Dante” - is composed of 39 images and 2971 points. The
results are shown in Fig. 7. In the second test the subject is a church. The
images involved are 54 and the cloud of points is composed of 11094 points.
The results are shown in Fig. 8. The last test is computationally more challeng-
ing. The subject is “Piazza Bra” (Verona). The images are 380 and the points
52024 (obtained by subsampling the original 104047 points). The final extracted
patches with our approach, visible in Fig. 9, are 302. It can be appraised from
the examples shown as the patches are always covering planar regions of actual
surfaces, whereas planes found by J-linkage not always correspond to a physical
plane (see for example the triangle in the sky of Fig. 8(a)). Please note that the
boundaries of the patches seldom do not coincide with the actual edges of the
façades, because points were detected by SIFT, which tends to keep away from
1 http://profs.sci.univr.it/˜fusiello/demo/samantha/
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(a) Triangulation produced

by [13].

(b) Triangulation produced

by [13].

(c) Final surface produced

by [13].

(d) Triangulation produced

by J-Linkage.

(e) Triangulation produced

by J-Linkage.

(f) Final surface produced

by J-Linkage.

(g) Triangulation produced

by our approach.

(h) Triangulation produced

by our approach.

(i) Final surface produced

by our approach.

Fig. 6. “Duplo” example. The top row depicts the results produced by [13], the middle

row the results produced by J-linkage followed by a Delaunay triangulation and the

bottom row shows the results of our approach.
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(a) J-linkage. (b) J-linkage. (c) Our approach. (d) Our approach.

(e) J-linkage. (f) Our approach.

Fig. 7. “Dante” dataset. The top row (a-c) depicts the patches superimposed onto the

images. The bottom row (e,f) shows the supporting planes from an azimuth view.
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(a) J-linkage. (b) J-linkage. (c) Our approach. (d) Our approach.

(e) J-linkage. (f) Our approach.

Fig. 8. “Pozzoveggiani” dataset. The top row (a-c) depicts the patches superimposed

onto the images. The bottom row (e,f) shows the supporting planes from an azimuth

view.



600 R. Toldo and A. Fusiello

(a) J-linkage. (b) J-linkage. (c) Our approach. (d) Our approach.

(e) J-linkage. (f) Our approach.

Fig. 9. “Piazza Bra” dataset. The top row (a-c) depicts the patches superimposed onto

the images. The bottom row (e,f) shows the supporting planes from an azimuth view.

(a) “Dante”. (b) “Pozzoveggiani”. (c) “Piazza Bra”.

Fig. 10. Textured examples

corners. However, these planar patches must be considered only as a initial step
toward the extraction of an high-level model. Several heuristics can be deployed
to expand the regions up to their natural boundaries.

The code is entirely written in C++ and it is written upon J-Linkage2. The
computing time on an entry level PC with a single core 2.4Ghz cpu, is about ,
20 seconds for the “Duplo” example, 15 minutes for “Dante”, 1 hour for “Poz-
zoveggiani” and 14 hours for “Piazza Bra”.

For visualization purposes only we produced a textured version of our results
shown in Fig. 10. The procedure we followed is straightforward: For every patch

2 http://profs.sci.univr.it/˜fusiello - http://www.toldo.info/roberto
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we have defined an alpha blended textured quad. The quad coordinates are settled
in order to include all the points of the patch projected on the supporting plane.

6 Discussion

In this work we proposed a novel method for extracting planar photo-consistent
patches that can cope with fairly large and noisy datasets coming from a standard
SaM pipeline.

The spatial information has been seamlessly combined with the information
coming from the images and the SaM pipeline. The final result is a very compact
and stable intermediate representation, and can be regarded as a starting point
for a complete automatic reconstruction of scene surfaces. Future work will aim
at bridging further the semantic gap.
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Contour Grouping and Abstraction Using Simple Part
Models

Pablo Sala and Sven Dickinson

Department of Computer Science, University of Toronto, Toronto ON, Canada

Abstract. We address the problem of contour-based perceptual grouping using a
user-defined vocabulary of simple part models. We train a family of classifiers on
the vocabulary, and apply them to a region oversegmentation of the input image
to detect closed contours that are consistent with some shape in the vocabulary.
Given such a set of consistent cycles, they are both abstracted and categorized
through a novel application of an active shape model also trained on the vocab-
ulary. From an image of a real object, our framework recovers the projections of
the abstract surfaces that comprise an idealized model of the object. We evalu-
ate our framework on a newly constructed dataset annotated with a set of ground
truth abstract surfaces.

Keywords: perceptual grouping, shape abstraction, part vocabulary.

1 Introduction

The problem of computational perceptual grouping received considerable attention be-
fore the advent of appearance-based recognition, when object models were typically
shape-based and image features were typically contour-based. Moreover, while object
databases were rather small, it was generally assumed that a linear search of a database,
i.e., matching the image features against each model in succession and choosing the
best-matching model, was an unacceptable strategy, for it did not scale to very large
databases. In an effort to achieve sublinear scaling, much effort was devoted to the
problem of object indexing, i.e., using a set of image features to query the database
for candidate objects that might account for the image features. An effective query
structure, or index, should be small enough to be reliably extracted, yet discriminative
enough to aggressively prune the database down to a few promising candidates. Since
image features were contour-based, perceptual grouping played a major role in group-
ing together contours that were unlikely to co-occur by chance. Moreover, grouping was
based not on object-level prior knowledge, but rather on mid-level (object-independent)
prior knowledge. Such grouping was essential, since local contour features were highly
ambiguous, and without grouping them into more discriminative structures, effective
indexing into large databases was problematic.

The object categorization community’s focus on the object detection problem has
since drawn attention away from perceptual grouping, since there is no need to con-
struct an effective index when the candidate (target) object is known. However, there
are signs that the categorization community is not only returning to the more categori-
cal feature of object shape, but to the more general problem of recognition from a large

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 603–616, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(a) (b)

(c) (d)

Fig. 1. Recovering abstract shape parts from an image: (a) input image of two exemplars that show
considerable within-class variation; (b) extracted contours: note that corresponding contour-based
features are seldom in one-to-one correspondence; (c) a simple example vocabulary of 2-D part
models that will drive the perceptual grouping and shape abstraction processes; (d) the resulting
abstract surfaces recovered by our framework; contour correspondence exists not at the level of
individual contours, but at a much higher level of abstraction.

database. In turn, the need to group together contour features into powerful indexing
structures may stimulate interest in perceptual grouping [1–3]. However, whereas sim-
ple groups of contour features may have been sufficient for indexing into a database of
shape exemplars, today’s interest in categorization will require not only the grouping of
causally related contour features, but their perceptual abstraction to yield higher-order
shape features that are invariant to within-class variation. This raises two important
challenges: 1) how to perceptually group related contours; and 2) how to perceptually
abstract the groups into high-order shape features that are more generic and lessspecific.

In this paper, we present a novel approach to the perceptual grouping and abstrac-
tion of image contours using a set of 2-D part models. We assume no object-level prior
knowledge and, like the perceptual grouping community, assume only a mid-level shape
prior. However, our shape prior is slightly stronger than such classical Gestalt features
as symmetry, parallelism, collinearity, etc. Specifically, our mid-level shape prior takes
the form of a user-defined vocabulary of simple 2-D shape models, representing a fixed
set of parts from which a large database of object models can be constructed. In that
sense, our vocabulary can be seen as a high-level nonaccidental regularity – a common
denominator set of part shapes that can be used to model a large collection of objects
in the world. Since different domains may demand different vocabularies of parts, it’s
essential that our framework be independent of the part vocabulary; therefore, the vo-
cabulary is an input to our framework.

Figure 1(a) shows images of two object exemplars that belong to the same class
(bowl), while Figure 1(b) shows their extracted contours; note that corresponding
contour-based features are seldom in one-to-one correspondence. In Figure 1(c), we
show sample instances from a simple vocabulary of 2-D shapes that will be used to
group and abstract the contours in Figure 1(b). In Figure 1(d), we overlay the abstract
shapes recovered by our algorithm. If we examine carefully the region boundaries in
both images, we observe that due to within-class variation or noise, there are few



Contour Grouping and Abstraction Using Simple Part Models 605

corresponding contours between the two parts. As noise and within-class variation
increase, methods that rely on one-to-one feature correspondences among specific
contour-based features may fail. Only by examining the abstract shapes defined by these
contours does commonality between the two exemplars emerge.

2 Related Work

There is a large body of work on using simple shape models to group and regularize
2-D contour data. Due to space constraints, we will not review approaches that take,
as input, a silhouette, i.e., assume figure-ground segmentation, nor will we review ap-
proaches that assume knowledge of what object is in the scene, i.e., object-level shape
priors. Rather, we adopt the classical perceptual grouping position and review related
approaches that assume only mid-level shape priors. Such priors can range from simple
smoothness to compactness to convexity to symmetry to more elaborate part models,
but stop short of object models.

Jacobs [4] and Estrada and Jepson [5] explored the nonaccidental regularity of con-
vexity to group contours into convex parts. Other researchers, e.g., Stahl and Wang [3],
have explored the nonaccidental regularity of symmetry to group contours into sym-
metric parts, while Lindeberg [6], has explored symmetry to extract symmetric blobs
and ridges directly from image data. While each of these models exploits a particu-
lar nonaccidental shape regularity, they also restrict the image domain. Moreover, each
mid-level shape prior comes with its own computational model, and there is little to
unify the approaches.

More powerful part models stemmed from the early recognition by parts paradigm.
Pentland [7] partitioned a binary image into 2-D parts corresponding to the projections
of a vocabulary of 3-D deformable superquadrics. The method focused more on the
problem of part selection (from a large space of part hypotheses) than the grouping of
features into parts, and the framework was never applied to contours. Pilu and Fisher [8]
attempted to recover 2-D deformable parts models from image contours. However, they
assumed that the correspondence between image and model contours was one-to-one,
restricting the scenes to contain very simple objects. Little abstraction was achieved,
and such systems were rarely applied to complex scenes.

The dual problem to fitting part models to contours is fitting part models to regions.
Liu and Sclaroff ([9]) proposed a method capable of finding instances of a 2-D shape
(possibly a part model) in an image. From a bottom-up region segmentation, the space
of region merges and splits is explored in search of region groups with shapes similar
to a 2-D statistical template model. Wang et al. [2] proposed a stochastic approach to
explore the space of region merges and splits in search of region groups having a partic-
ular shape. From a bottom-up image region segmentation, their approach was capable
of finding multiple occluded instances of a model shape by grouping oversegmented
regions. However, these approaches typically admit a single model shape and also rely
strongly on appearance homogeneity to guide the grouping process. Moreover, Wang et
al.’s method employed a detailed model of the shape, and did not attempt shape abstrac-
tion. In [10], we introduced a model-based framework to detect abstract part hypotheses
from a multiscale edge map. However, it was not only computationally expensive (since
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Problem Formulation: (a) input image; (b) region oversegmentation; (c) region boundary
graph; (d) example vocabulary of shape models (used in our experiments); (e) example paths
through the region boundary graph that are consistent (green) and inconsistent (red); (f) example
detected cycles that are consistent with some model in the vocabulary; (g) abstractions of cycles
consistent with some model; (h) example cycles inconsistent with all models.

it exhaustively explored all possible transformations of every model), it also generated
a large number of hypotheses (several hundred), thus yielding poor precision.

In summary, a diverse set of mid-level shape priors have been proposed, each with its
own strengths and weaknesses. Unfortunately, most approaches are closely tied to their
underlying shape priors, and the mechanism for recovering one class of parts may vary
greatly from the mechanism for recovering the next class. Moreover, most part recovery
schemes are rather brittle and offer little opportunity for recovering abstract parts from
the noisy, irregular contours that often make up real objects. We address these two
shortcomings head on with a part-based grouping framework that’s independent of the
parts, and a shape abstraction mechanism that can recover the abstract parts that make
up a large collection of real objects.

3 Overview of the Approach

Our approach begins by computing a region oversegmentation (Figure 2(b)) of the in-
put image (Figure 2(a)). The resulting region boundaries yield a region boundary graph
(Figure 2(c)), in which nodes represent region boundary junctions where three or more
regions meet, and edges represent the region boundaries between nodes; the region
boundary graph is a multigraph, since there may be multiple edges between two nodes.
Our approach can be formulated as finding simple cycles in the region boundary graph
whose shape is consistent with one of the model shapes in the input vocabulary (Fig-
ure 2(d)); these are called consistent cycles. There is an exponential number of simple
cycles in a planar graph [11], and simply enumerating all cycles (e.g., [12]) and compar-
ing their shapes to the model shapes is intractable. Instead, we start from an initial set of
starting edges and extend these paths, called consistent paths (or CPs), as long as their
shapes are consistent with a part of some model. To determine whether a given path is
consistent (and therefore extendable), we approximate the path at multiple scales with
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a set of polylines (piecewise linear approximations, providing a set of low-dimensional
boundary abstractions), and classify each polyline using a one-class classifier trained on
the set of training shapes (Figure 2(e)). When a consistent path is also a simple cycle, it
is added to the set of output consistent cycles (Figure 2(f)).

Figure 2(d) shows the input vocabulary used in our experiments: four part classes (su-
perellipses plus sheared, tapered, and bent rectangles, representing the rows) along with
a few examples of their many within-class deformations (representing the columns). It
is important to note that our approach is independent of the vocabulary of parts. While
our demonstration vocabulary is ideally suited to the projected surfaces of ellipsoids,
and straight and bent rectangular blocks and cylinders, representing a simple volumet-
ric part vocabulary, the approach can accommodate any set of shapes, parameterized
or otherwise. Each shape model is allowed to anisotropically scale in the x- and y- di-
rections as well as rotate in the image plane. Since we employ scale-, rotation-, and
translation-invariant features to train the classifiers, we need to generate only (approx.)
1,500 instances (by varying the aspect ratio and deformation parameters) belonging to
these four shape classes. A single classifier is trained on all the component polylines of
length (i.e., number of piecewise linear segments) k spanning the complete set of shape
models and their deformations. Therefore, if K is the upper bound on the length of a
polyline approximating a shape in the vocabulary, then K classifiers are trained. An
ideal vocabulary defines a small set of “building blocks” common to a large database of
objects. As such, the complexity of the vocabulary shapes is low, and even at the finest
scale of polyline partitioning of a vocabulary shape’s contour, K remains low; for our
vocabulary, K is 13.

The algorithm outputs cycles of contours that are consistent with one of the model
(training) shapes. A cycle consists of actual contours (edges in the region boundary
graph) in the image, and therefore does not explicitly capture the abstract shape of the
contours. Moreover, the cycle has not yet been categorized according to the shapes in
the vocabulary. To abstract (or regularize) the shape of a cycle and to categorize it, we
follow a standard, iterative 2-step active shape model (ASM) fitting framework [13]
trained on about 600,000 model instances, generated by varying their aspect ratio, ori-
entation, and a finer sweeping of the deformation parameters than the one used to train
the polyline classifiers. We iterate over the classical two-step ASM procedure, consecu-
tively aligning and deforming the mean training shape with the cycle until convergence.
However, we depart from a standard ASM framework in two key ways.

In a standard ASM framework, the training shapes belong to a single shape class,
and the allowable, often limited, deformations are typically captured (using PCA) in a
low-dimensional shape space that can be approximated by a multidimensional Gaus-
sian distribution. Moreover, at run time, the model must be properly initialized, for if
the model is grossly misaligned, the deformations required to warp the model into the
image may fall outside the space of allowable deformations. In our case, given a con-
sistent cycle, we don’t know which category of vocabulary shape it belongs to, and
hence which ASM model to apply (if we assumed one model per category in the vocab-
ulary). Moreover, even if we knew its category, we assume no correct or near-correct
initial landmark correspondence. We overcome the first problem by having a single
ASM that’s trained on all instances of all the shapes in the vocabulary, and overcome
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the second problem by training on all possible landmark correspondences (alignments)
across these shapes.

After ASM convergence, the training shape closest to the deformed model identifies
the category of the cycle. In the previous step, the consistent cycle classifier’s precision
rate is never 100% at reasonable recall rates, and some of the recovered consistent
cycles (of contours) may yield shapes that are qualitatively different from those in the
vocabulary. Therefore, following ASM convergence, shapes that are still significantly
different from the training shapes are discarded. Figure 2(g) illustrates the vocabulary
shapes abstracted from the consistent cycles in Figure 2(f); for each detected shape, the
algorithm also yields its shape category. Finally, Figure 2(h) illustrates some of the false
positives discarded by the shape abstraction process.

4 Finding Consistent Cycles

In the following subsections, we elaborate on the steps of our algorithm for finding
consistent cycles, i.e., cycles whose shape is consistent with one of the model shapes;
Section 5 will focus on the problem of abstracting/categorizing the shape of the cycle.

4.1 Path Initialization

The goal of path initialization is to identify a minimum cardinality set of edges such that
every cycle in the graph contains at least one of the edges. This can be easily achieved
by computing the feedback edge set, i.e., the smallest set of edges whose deletion results
in an acyclic graph. The feedback edge set is computed as the edge complement of a
spanning tree. Favoring edges that represent longer, and thus more informative contours,
we will choose as our initial edge set the edge complement of the minimum spanning
tree, where edge weight equals contour length. While every cycle contains at least one
of these initial edges, two or more of these edges may be part of the same cycle. This
is problematic, since extending these initial paths will yield the same cycles, which is
highly inefficient. We avoid this problem by imposing a total ordering on the edges, and
allowing a path to be extended only by an edge whose rank is greater than that of the initial
edge of that path; the edges in the minimum spanning tree are all assigned a rank of∞.
The rank of a path is the rank of its initial edge. The set of initial edges, and their ranks,
form our initial set of paths, and they are added to the queue of paths to be extended.

4.2 Path Extension

At each iteration of the algorithm, one of the paths is taken off the queue. If the path is a
cycle, its consistency with the vocabulary of model shapes is checked. If it’s consistent
with at least one shape in the vocabulary, it is added to the output list of consistent
cycles. If, however, the path is not a cycle, its consistency is also checked. If the path
is consistent with a portion of the boundary of at least one shape in the vocabulary,
then the path’s possible extensions by an edge whose rank is greater than the path are
added to the queue. The algorithm continues until the queue is empty, and outputs the
consistent cycles.
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Fig. 3. Feature vectors for a multiscale polyline approximation of a contour

Checking consistency begins by approximating the shape of the cycle or path with
a polyline computed at different scales using the Ramer-Douglas-Peucker algorithm
[14]. For each resulting polyline, we compute a feature vector that encodes the angles
and normalized lengths of the linear segments making up the polyline. As illustrated
in Figure 3, the length of the feature vector is a function of the number of linear seg-
ments comprising the polyline. Each feature vector is passed to a one-class classifier
(there is a classifier for each feature vector length) that determines if the feature vector
is geometrically close to one of the training feature vectors. Those scales at which their
corresponding polylines are consistent are associated with the path. If a path at a partic-
ular scale is not consistent, then no extension of that path can be consistent at that scale.
Thus, when a path is initialized, it is associated with all scales, and when it is extended,
its associated scales can only remain constant or decrease. If there is no scale at which
the path is consistent, the path is discarded, and will not be extended further.

4.3 Training the Classifiers

The feature vectors used to train the classifiers are generated from contour fragments
of model instances. Axis-aligned instances of within-class deformations of each model
are generated at varying aspect-ratios, and Gaussian noise is added to each generated
contour with a standard deviation proportional to the model size (defined as the average
distance from a model contour point to the model’s centroid). A number of equidistant
points along each generated contour are sampled, and the two subcontours between ev-
ery pair of such points (traversed in both directions) are used as a training example. A
feature vector is generated for each subcontour from its polyline approximation, com-
puted using a tolerance that is proportional to model size. Finally, the dimensionality of
the feature vectors is reduced using PCA. Classification is performed on these reduced
dimensionality vectors. For our model vocabulary, we observe that at least 99% of the
variance is, in general, captured by the top N PCA components for the case of feature
vectors of dimension 2N − 1, corresponding to polylines with N linear segments.

In our implementation, the number of linear segments comprising the longest poly-
line approximating a model’s contour is bounded by 13. For this reason, at consis-
tency check time, a path whose polyline approximation is longer than this value is
discarded as inconsistent. Moreover, in the case of the path being a cycle, if its polyline
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approximation at a certain scale has less than three linear segments, the cycle is deemed
inconsistent at that scale, since the scale is obviously too coarse. In the case of an open
path with a polyline approximation with less than two segments, there is not enough in-
formation to decide on the path’s consistency, since the path is evidently still too short
at the given scale. In this case, the path is treated in the algorithm as if it had been con-
sistent, leaving the decision to a future iteration, after it has been eventually extended
to a length where a consistency decision is possible.

For our experiments, approximately 4 million contour fragments were employed to
train the classifiers. Due to the difficulty in generating an adequate set of training exam-
ples of inconsistent model contour fragments, a one-class classifier was used instead of
a binary classifier. Since the consistency check needs to be performed a large number
of times (once per path extension), an efficient implementation calls for a method with
a low classification complexity for this task. We obtain good classification performance
and very fast classification rates using a Nearest Neighbor Data Description approach
[15] implemented via a fast approximate nearest neighbor search data structure [16].

5 Abstracting the Shape of a Consistent Cycle

As mentioned in Section 3, we employ an ASM to both abstract the shape of a con-
sistent cycle and to categorize it. Recall that we train a single ASM on all deforma-
tions of all vocabulary shape classes over all possible landmark correspondences. This
avoids a proliferation of ASM models (one model, regardless of the size of the vo-
cabulary), and allows the model to be initialized anywhere on the cycle. To train the
Point Distribution Model, we sweep the parameter space of the shapes in the model
vocabulary. Specifically, we generate contours for all models and degrees of deforma-
tion (i.e., bending, tapering, and shearing) at a dense set of discrete aspect ratios and all
possible cyclical landmark alignments; in our implementation, we generate a total of
approximately 600,000 such training cases. Rotation invariance is achieved by training
on all model landmark alignments corresponding to all possible N cyclical rotations
of the landmarks, while scale invariance is achieved during ASM fitting by the rigid
transformation estimation.

The list of landmark points m1, . . . ,mN ∈ R2 in a training example corresponds
to a fixed number of equidistant points sampled along the contour (N = 64 in our
experiments). The first landmark m1 is the one for which the vector from the centroid
m to the landmark has the lowest (absolute value) angle with respect to the x-axis, i.e.,
(1, 0)T · (mi −m) / ‖mi −m‖ is maximum for i = 1; in case of a tie, we choose the
point with maximum ‖mi −m‖. The indices of the other landmarks in the list keep
their natural order along the contour. Following the standard ASM approach, a vector
is formed for each contour by rasterizing the contour’s landmark coordinates. A PCA
basis is computed for the training set, and the lowest-order principal components that
capture most of the variance are chosen. For our training set, 99.9% of the total variance
is captured by the top 21 components.

Fitting is performed by the successive iteration of two steps: one that finds the rigid
transformation that best aligns the current deformed model to the query contour, and a
second step that adjusts the shape parameters that deform the model to better improve
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the fit. This adjustment is constrained such that the deformed model shape is consis-
tent with that of the training examples. Enforcing this constraint is accomplished by
checking that the adjusted shape parameters do not fall outside of the distribution of the
training shapes; if the parameters do fall outside, they are set according to the closest
shape in the distribution.

We differ from a standard ASM in how a shape adjustment is constrained to lie in the
space of training shapes. In a classical ASM framework, where training shapes belong to
the same class and exhibit relatively minor deformations, the low-dimensional subspace
where the shape points live is approximately Gaussian distributed. Under this condition,
enforcing this constraint amounts to simply verifying that the adjusted shape parameters
do not deviate more than a certain number of standard deviations (e.g., 3) from the mean
shape; beyond that, the point is scaled down to correspond to the closest point within
the distribution. In our case, the set of training shapes is quite heterogeneous (spanning
multiple categories and all possible initial correspondences), yielding a complex shape
space boundary whose enclosed distribution is not well approximated by a Gaussian.
We therefore need a different way to constrain a given adjusted shape to fall within
the shape space spanned by the training set. Since our training set densely covers the
space of shapes of interest and a low-dimensional subspace captures most of the shape
variance, a Nearest Neighbor Data Description method [15] provides a fast mechanism
for checking if a query shape belongs to the target distribution. If an adjusted shape does
not belong to the distribution, it is constrained to be in the distribution by replacing it
by a near neighbor in the distribution. To avoid falling in local minima, we randomly
choose the replacement from among the k(t) nearest neighbors, where k(t) ∈ N>0 is
a non-increasing function of the number of iterations. In our experiments, we obtained
good results by using a linear function for k(t).

Since we attempt to bridge the gap between image contours and ideal model con-
tours, a simple distance field between image and model contour landmarks is inappro-
priate as a driving force to guide the model deformation process. Such an approach
would give the same weight to all contour landmark correspondences and may fail to
deform the model appropriately in the case of minor region undersegmentation or mi-
nor contour shape deviation from the model. In order to cope with these conditions, we
define the deformation force for each landmark i as:

δi = (1− α(t))(qi −mi) + α(t)(closestq(mi)−mi), (1)

where q1, . . . , qN ∈ R
2 are image contour landmarks sampled at equidistant positions

along the contour, closestq(mi) is the point along the image contour q that is closest
to model landmark mi, and α(t) ∈ [0, 1] is a bijective monotonically increasing func-
tion of the iteration number t. In this way, at the beginning of the fitting process, the
attraction forces between the image and model contours are globally driven purely by
landmark correspondences. This roughly aligns the model to the cycle. As the iterations
proceed, the model deformation becomes increasingly driven by local contour attrac-
tion forces, giving more weight to the consensus of the image contours that are closest
to the model, and thus letting the deformation process overlook significant image con-
tour departure from the abstract model as well as some undersegmentation. Note that
our fitting problem is more constrained than a standard ASM framework, since all land-
mark correspondences between a consistent cycle and the model ASM are known, and
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the influence of outlier landmarks on a consistent cycle (and their resulting incorrect
correspondences) is decreased over time (iterations). Thus, the ASM is initially fit to an
entire closed contour (not just a portion), but it converges to fit the relevant portion.

Finally, it is is possible that inconsistent cycles are misclassified as consistent. After
convergence, if the distance between the cycle and the model exceeds a threshold, or
the cycle coverage by the model (i.e., proportion of cycle contour covered by model
landmarks) is poor, the cycle is discarded as a false positive. We compute the scale-
independent distance

d(q,m) =
1
N

N∑
i=1

‖δi‖√
1
N

∑N
i=1 ‖qi − q̄‖2

(2)

between the fitted model m and the cycle q, where the denominator is a normalizing
factor corresponding to the geometric mean distance between cycle landmarks and their
centroid, thus making d(q,m) a scale-independent measure with an intuitive geometric
interpretation; in our experiments, we obtained good results using a threshold of 0.15.

6 Results

Unfortunately, we know of no benchmark dataset for evaluating part-based shape ab-
straction, nor are we aware of competing approaches for part-based shape abstraction
using a vocabulary of simple part models, except for [10]. Therefore, in order to evalu-
ate our framework, we created an annotated dataset with 67 images1 containing object
exemplars whose 3-D shape can be qualitatively described by cylinders and bent or ta-
pered cubic prisms. The abstract visible surfaces of each 3-D shape were hand-labeled
using 2-D models drawn from our vocabulary. Figure 4 illustrates the output of our
system on a number of examples in the dataset: column (a) shows the input image; col-
umn (b) shows the region oversegmentation used as input to our algorithm, computed
using the local variation approach by Felzenszwalb and Huttenlocher [17] with a fixed
parameterization on all images; column (c) shows the consistent cycles from which the
shapes in column (d) were abstracted, representing the recovered parts closest to the
ground truth in column (e). The numbers inside recovered abstract parts in column (d)
indicate the rank of the part among all recovered parts in that image, computed as a
function of the distance to the contours of the cycles that they are abstracting. The tar-
get regions can sometimes rank low if their degree of abstraction is high compared to
non-target regions in the image (whether real or segmentation artifacts) that require less
abstraction. Note that in some cases, e.g., the blender body in row 8, the ideal ground
truth part (e.g., corresponding to the projection of the body of a tapered cylinder) did
not exist in the vocabulary.

Our ability to abstract the shape of a cycle of contours with high local irregularity
(shape “noise”) means that many false positive parts will be recovered. As a result, the
ranks of some of the ground truth shapes among the hypotheses is poor. This is entirely
due to the naive scoring mechanism (absolute fitting error) that tends to favor small,

1 Available at http://www.cs.toronto.edu/˜psala/datasets.html

http://www.cs.toronto.edu/~psala/datasets.html
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Fig. 4. Abstract Part Recovery (see text for discussion)

well-fitting shapes over larger abstractions. While more inspired scoring functions may
increase the ranks of the target shapes, we mean only to illustrate the significant extent
to which the target shapes are indeed generated. It is at a later stage, when contex-
tual constraints are added, where we expect an aggressive pruning of false positives.
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Fig. 5. Quantitative Evaluation: (a) Distribution of Rankings of Ground Truth Parts Among Gen-
erated Abstract Shapes. For example, the first detected ground truth part (leftmost column) in
an image ranked 2nd (median rank - red bar) among the ranked hypothesis in the image. The
top and bottom of the blue box defines the upper and lower quartiles, the whiskers define the
furthest datum within 1.5IQR of the lower and upper quartiles, and the red “+”’s the outliers. (b)
Precision-recall curve (see text for discussion).

In future work, we plan to explore powerful contextual relations, including proximity,
alignment, and 3-D shape information to prune many of these false positives. For exam-
ple, if the surfaces in our images can indeed be the projections of volumetric parts, such
as cylinders or prisms, then there are strong constraints on the shapes and relations of
the component faces (parts) of their aspects. Other constraints are also possible, such as
pruning smaller surfaces that are subsumed by larger surfaces. Adding these relational
constraints is beyond the scope of this paper, and here we focus only on the initial re-
covery of the primitive parts. As can be seen from Figure 4, our framework is able to
recover and abstract many of the surfaces of the objects.

To provide a quantitative evaluation of our framework’s ability to recover the correct
abstractions amid the abstract shapes (hypotheses) recovered from an image, we ana-
lyze the rank of a ground truth shape among the ranked hypotheses. Figure 5(a) shows
the distribution of ground truth part rankings. For example, the first detected ground
truth part (leftmost column) in an image ranked 2nd (median rank - red bar) among
the ranked hypothesis in the image. The second detected ground truth part (second col-
umn) ranked 10th, and so forth. The number of ground truth parts, on average, was 3,
while the number of part hypotheses generated for an image, on average, was 71. No at-
tempt was made to eliminate redundant models (i.e., models of the same category with
roughly the same parameterization), and no size filtering was performed. From these
results, we conclude that the target (ground truth) shapes reside in a manageable num-
ber of hypotheses, and we expect that with the application of contextual constraints,
the false positive shapes can be drastically reduced. Figure 5(b) illustrates precision
and recall for our database. While precision is low due to the high number of false
positives (due to lack of contextual pruning and non-maximum suppression), our recall
of ground truth shapes is reasonably good, typically failing in the presence of signifi-
cant region undersegmentation. In terms of running time, a typical run of the consistent
cycle detection algorithm requires an average of about 40,000 iterations, which takes
about 3 seconds in our MATLAB/C++ implementation running on a laptop. The model
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abstraction algorithm was fully implemented in MATLAB and takes about 150 seconds
to process all consistent cycles detected in an image.

Exploring the results in more detail, we see that Figure 4(d) shows the ability of
our approach to abstract object surfaces that are locally highly irregular due to noise
or within-class variation, but capture a model shape at a higher level of abstraction. In
some cases (e.g., rows 5,6, and 8), we see misalignment with a neighboring shape. This
can be due to two reasons: (1) the vocabulary may not contain the appropriate shape to
model the surface; and (2) the shapes are recovered independently, with no alignment
constraints exploited; such constraints, as well as other constraints, will play an aggres-
sive role in pruning/aligning hypotheses in our future work. In all the examples, we can
see that the model abstraction process is able to cope with region undersegmentation
when it is restricted to a relatively small section of the contour. Figure 4 (rows 1 and
9) shows examples of cases in which, although some portions of the correct surface
boundaries are missing, the models are still correctly fit due to the consensus of the
correct surface contours.

Figure 6 illustrates some weaknesses of our approach. The top row shows a case in
which an object’s surface is missing (i.e., box’s left face) due to strong undersegmen-
tation of the input to our algorithm. Since the consistent cycle detection mechanism
already keeps incremental hypotheses of partial contour matchings, in future work we
plan to allow informative consistent paths to be abstracted (using a similar framework).
This will not only accommodate region undersegmentation, but also region occlusion
and partial part abstraction. In the second row of Figure 6, we see a case in which a
consistent cycle was abstracted by a model of an incorrect category (i.e., the rim of
the central bowl). This is because either the abstraction approach was trapped in a lo-
cal minimum or there is an inherent shape ambiguity in the noisy contour. This can be
remedied by allowing the abstraction process to return not just one model, but a list of
candidate models that lie within a certain distance from the consistent cycle. We expect
our future use of relational constraints to help overcome such ambiguity, and in this
case “flip” the rectangle to an ellipse. Finally, the third row of Figure 6 shows a case
where the ranking of the correct models is poor due to the presence of many uninter-
esting image region groups whose shape is consistent with vocabulary model shapes
(i.e., there is a large number of region groups forming regular quadrilaterals). The use
of context or non-maximum suppression can eliminate many of these false positives.
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7 Conclusions

We have presented a framework for grouping contours (region boundaries) into parts
according to a user-defined vocabulary of abstract parts models. Our contributions are
threefold: (1) we train a classifier on all possible component fragments of a vocabulary
of parts, and use the resulting set of classifiers to guide a grouping process that searches
for cycles of locally irregular contours that are consistent, at some level of abstraction,
with some model shape; (2) the consistent cycles are abstracted and categorized using a
novel application of an ASM model which captures the entire vocabulary of shapes with
a single model and which needs no proper initialization; (3) the resulting framework
reports promising first steps toward part-based shape abstraction from images of real
objects, and establishes a number of important directions for future work.
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Abstract. Accurately modeling object colors, and features in general,

plays a critical role in video segmentation and analysis. Commonly used

color models, such as global Gaussian mixtures, localized Gaussian mix-

tures, and pixel-wise adaptive ones, often fail to accurately represent the

object appearance in complicated scenes, thereby leading to segmenta-

tion errors. We introduce a new color model, Dynamic Color Flow, which

unlike previous approaches, incorporates motion estimation into color

modeling in a probabilistic framework, and adaptively changes model

parameters to match the local properties of the motion. The proposed

model accurately and reliably describes changes in the scene’s appear-

ance caused by motion across frames. We show how to apply this color

model to both foreground and background layers in a balanced way for

efficient object segmentation in video. Experimental results show that

when compared with previous approaches, our model provides more ac-

curate foreground and background estimations, leading to more efficient

video object cutout systems.1

1 Introduction

Creating accurate masks for video objects is a fundamental component in the
professional video post-processing pipeline. Once being accurately segmented
from the video, the target objects can be used to create seamless composites,
or be manipulated to create special visual effects. Recently, interactive, or user-
guided video segmentation systems have gained considerable attention, given the
fact that interactive systems can generate more accurate segmentation results
than fully automatic ones, on a wide range of videos.

Although significant breakthroughs have been achieved in recent years on
interactive video segmentation and matting [1], this problem remains difficult for
complex real world video sequences. The difficulty comes from two main aspects,
namely appearance complexity and motion complexity. Appearance complexity
refers to the fact that the targeted object could contain very similar, or even the
same colors and features as the background, thus distinguishing the object from
its background using color information becomes a hard problem. 2 In addition,
1 Work partially supported by NSF, NGA, ONR, ARO, and NSSEFF.
2 Not limited to colors, the object appearance can also incorporate other types of

features depending on the applications.
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video objects or backgrounds often exhibit nonuniform motions. Thus, applying
to the next frame an appearance model constructed from the current one, will
be problematic without correctly adapting it to the new position of the possibly
deforming object/background caused by the motion.

Although various approaches have been proposed in recent years to tackle
these problems, they either do not employ color models that are powerful enough
to handle the appearance complexity, or do not adequately consider the motion
complexity when updating the models across frames. We will analyze these lim-
itations in more detail in the next section. As a result, the color models used
in previous systems are often too rigid to handle video sequences with complex
appearance and motion. Even with the help of other priors such as shape, pose,
and structure, color is still an important feature in most natural videos, thus in-
accurate color modeling often directly leads to segmentation errors. While these
errors are correctable in an interactive setting, the user has to provide more
manual input, which could be time consuming in many cases.

We introduce a new motion-adaptive color model called Dynamic Color Flow,
or DCF. In this model, we combine motion estimation and color modeling into a
single probabilistic framework that simultaneously addresses the appearance and
motion complexities. The basic idea is to automatically and adaptively select the
suitable color model, continuously ranging from a global model to a localized one,
for different parts of the object, so that it can be reliably applied to segmenting
future frames. The proposed framework does not assume accurate motion esti-
mation. In fact, it takes into account the estimation errors and only assumes the
motion estimation to be probabilistic, thus any motion algorithm with reasonable
performance can be embedded into our system. Furthermore, we show how to ap-
ply the proposed DCF model to both foreground and background layers, leading
to an efficient video cutout system as demonstrated by numerous examples.

1.1 Related Work

Video object segmentation is a classic problem that has been extensively stud-
ied for decades. Instead of surveying the large volume of literature, which is
impractical here, we focus on classes of recent works that are most related to
our system, and analyze their limitations, especially on color modeling.

Global color models. Some modern interactive video cutout systems use global
color models, such as the popular choice of global Gaussian mixtures (GMM),
to represent the appearance of the dynamic objects, e.g., [2–4]. Global color
models do not consider the spatial arrangements of color components, thus are
robust to object motion. However, the discrimination power of global models is
too limited to deal with objects with complicated appearance.

Pixel-wise color models. The other extreme of color modeling is to consider
every pixel on the image plane independently. Such method is often used in back-
ground subtraction systems. Assuming the camera is fixed and the background
is static, these systems will form statistical models at every pixel location to de-
scribe the observed background colors, e.g., [5, 6]. However, using these models
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require accurate frame-to-frame alignment, which may not be possible with dy-
namic background scenes.

Localized color models. The recently proposed SnapCut system [7] employs
localized color models (see also [8]). It consists of a group of spatially constrained
color components that are distributed along the object’s boundary in an over-
lapping fashion. Each color component includes a GMM with a fixed spatial
domain. When propagated across frames, these local models are first pushed
by optical flow vectors to arrive at new destinations, before being applied for
local segmentation. It has been shown that by localizing the color models, the
foreground object can be modeled more accurately, leading to efficient segmen-
tations. Although in this approach motion estimation is used to move local color
models across frames, it is treated independently from color modeling and clas-
sification. The scale (spatial domain) of all local color models are fixed without
considering the underlying motion. This can cause two problems: when the local
motion is strong (like a waving hand), optical flow may lose track, and the fixed
window size will be too small to allow the localized color models to capture the
object. On the other hand, for parts of the object where local motion is small,
the window size may become too large to accurately model the foreground to
background transition. We will demonstrate these problems with real examples
in later sections.

Bilayer segmentation. Recently, significant success has been achieved for live
speaker-background segmentation for video conferencing. Assuming a stationary
background, the background cut system [9] uses a background contrast attenua-
tion method to adaptively suppress the contrasts that belong to the background,
making extracting the foreground easier. The i2i system, [10], avoids explicit
motion estimation using a second order HMM model as a temporal (learned)
prior on segmentation. These systems can efficiently segment a video in a con-
strained environment, but are hard to generalize for other types of videos, such
as the examples shown in this paper.

2 Dynamic Color Flow

To explain the proposed Dynamic Color Flow model (DCF), we first put aside
the whole interactive video object segmentation workflow, and focus on the fun-
damental problem of segmentation propagation, that is, given a known correct
foreground/background segmentation on frame t, how to use it to build accu-
rate color models for segmenting the foreground/background on frame t + 1.
Note that for now we do not distinguish between foreground and background,
we will show in Section 3 how to apply the model to both regions.

Segmentation is trivial if an accurate motion vector field between frames is
available: for every pixel on frame t + 1, we just trace it back to the previous
frame and see whether it comes from the target region or not. However, a perfect
motion vector field is almost impossible to compute in real world, and directly
using it for segmentation will be erroneous. The DCF model proposed in our
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system explicitly models the motion inaccuracy, and provides a probabilistic
framework unifying the local colors of the object and their dynamic motion.

Let Ω be the region of interest on frame t (Ω can be foreground F , background
B, or other object in case of multiple objects). Ω contains |Ω| pixels Xi (i =
1, 2, 3, . . . , |Ω|). Denote the position of pixel Xi as xi. For each pixel Xi inside
Ω, we use the locally-averaged optical flow v as the motion vector to predict
its position in frame t + 1, x′

i = xi + v.3 Assuming the motion vector is not
accurate enough, instead of using x′

i deterministically, we treat it as the center
of a Gaussian distribution,

fi(y) =
1√

2πσi

exp(−‖y − x′
i‖

2

2σ2
i

), (1)

where y is a location in frame t + 1. The variance σi measures the fuzziness of
the prediction. Its value is dynamically set for each pixel, as we will explain in
the next section.

Let cXi be the color vector of pixel Xi. The probabilistic prediction propagates
the colors in Ω to the next frame and generates a distribution p(c, y|Ω), the
probability of observing the color c at location y on frame t + 1 given that all
colors come from Ω on frame t. The conditional color distribution at y is

p(c|y,Ω) =
p(c, y|Ω)
p(y|Ω)

, (2)

where p(y|Ω) =
∑|Ω|

i=1 p(Xi)p(y|xi) is a spatial term independent of color, so we
treat it as a normalization constant. Since p(c, y|Ω) is contributed by all pixels
in Ω, it can be written as

p(c, y|Ω) =
|Ω|∑
i=1

p(Xi)p(c, y|Xi). (3)

Since the predicted position of Xi is independent of its color,

p(c, y|Xi) = p(c|cXi)p(y|xi). (4)

Then we have

p(c|y,Ω) =
∑|Ω|

i=1 p(Xi)p(c|cXi)p(y|xi)
p(y|Ω)

, (5)

where p(c|cXi) is the probability of observing color c on frame t + 1 given the
existence of cXi on frame t. Given the fact that colors of the same object may
vary across frames due to illumination changes, compression, and noise, we model
this as a 3-D Gaussian distribution with mean vector cXi and covariance matrix
Σ, i.e., p(c|cXi) = N (c|cXi , Σ). We will describe the explicit computation later.

3 Similarly to [7], we average optical flow vectors locally to remove noise.
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As previously defined, p(y|xi) = fi(y). Assuming equal priors for every pixel,
p(xi) = 1/|Ω|, then

p(c|y,Ω) ∝
|Ω|∑
i=1

fi(y)N (c|cXi , Σ). (6)

From Eqn. (6) it is clear that p(c|y,Ω) can be interpreted as a non-parametric
density estimation of the color sample set {cXi |i = 1, 2, . . . , |Ω|}. Each sample
cXi is weighted by fi(y), which is the probability of cXi arriving at y. We observe
that the color sample set encodes the motion estimation of the color samples
across video frames, thus the model inherently fuses motion and appearance
into a unified framework.

It is worth mentioning that there has been some formal studies on modeling
the statistics of optical flow ([11],[12],[13],[14],[15]). Particularly, [12] studied its
spatial properties and the brightness constancy error, resulting in a probabilistic
model of optical flow. Our model is quite different in the following aspects.
First, those works aim at improving optical flow estimation of natural images by
considering learned prior distributions from ground truth training data, while
our framework employs probabilistic methods on existing optical flow results for
the purpose of generating more accurate color models for segmentation. Second,
the learned statistics in [12] are global priors, while ours allows defining the
distribution for individual pixels depending on the local motion. In fact, our
model works with any optical flow algorithm that has reasonable performance
and can certainly benefit from replacing the simple Gaussians by more accurate
distributions as in [12].

Directly estimating p(c|y,Ω) for each pixel location on frame t + 1 is com-
putationally expensive, therefore we employ the following approximations to
efficiently speed up the computation. First, we use the Luv color space and as-
sume class-conditional independence of the three channels, 4 thus p(c|y,Ω) can
be estimated as the product of three 1-D PDFs rather than a 3-D PDF, and
the covariance matrix Σ in Eqn. (6) can be computed in each channel. Second,
the 1-D PDFs at every y location are incrementally built using a quantized his-
togram containing 32 bins. Denoting the L-channel histogram at y as HL

y , when
propagating Xi, the L component of cXi with weight fi(y), is added to HL

y for
every y that is within a neighborhood centered at x′

i with a radius of R = 4σi

(we then use a truncated Gaussian to replace the Gaussian function in Eqn. (1)).
After propagating all pixels within Ω, we apply 1-D kernel density estima-

tion, [16], on every histogram. Let now H̄L
y be the estimated density for the L

channel at y, u and v channels are similarly computed. Also, let us denote the
color at y in frame t + 1 as cy = {l, u, v}. Finally, the probability of cy coming
from Ω is

p(cy|y,Ω) = H̄L
y (l) · H̄u

y (u) · H̄v
y (v). (7)

4 Note that class-conditional independence is a weaker assumption than feature inde-

pendence.
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This procedure computes the probability for every pixel in the next frame
t+1 once the parameters σi are given. Next we show that the model adaptively
changes scales by using different σi-s.

Global Color Model. When all the σi → ∞, all color samples are equally
weighted, generating identical color distribution at each location, which is equiv-
alent to a global color model. As mentioned earlier, this model only works well
when the object has distinct colors from the rest of the scene, and is not affected
by large motions which are hard to track.

Localized Classifier. Setting all σi-s to the same value r, we get a set of
moving localized classifiers similar to the recently proposed SnapCut system [7].
This model assumes the object can be tracked reasonably well, i.e., the tracking
error is less than 4r.

Stationary Pixel-wise Model. When σi ≈ 0, we have the pixel-wise color
models commonly used in previous background subtraction systems ([5],[6],[9]).
This model can be used if the video background is still or an accurate alignment
can be achieved.

Dynamic Model. In all the above cases the motion scales of different parts of
the object are assumed to be the same. However, we argue that most real world
examples are likely to contain of motions of mixed scales. For instance, for a
walking person, his/her hand or foot motion obviously has a larger scale than
his/her body. Thus, by dynamically determining σi for every pixel, our model
offers the flexibility to adapt to different motion scales, even on the same object.
This is a key advantage of the proposed DCF model. We will describe how to
compute σi in the next section when we demonstrate how to apply this model
to video segmentation.

3 DCF for Video Object Segmentation

In this section we apply the proposed DCF model to user-guided video object
segmentation. We assume the video contains two independent foreground (F )
and background (B) layers, although there is no fundamental limit on extending
our model to multiple layers. The DCF model is applied to both F and B
layers for a balanced modeling. The segmentation is then solved within a MRF
framework.

3.1 The Foreground Layer

The foreground object usually presents various local motion scales. σi, by its
definition (see Eqn. (1)), is related to the prediction error of the foreground
optical flow. For erratic movement where the optical flow is likely to contain
large errors, we set σi to large values. For slow or stable motion, the optical
flow is generally more reliable, thus the value of σi is reduced, yielding more
localized color models which have greater classification power. In this way σi

changes adaptively with the prediction error for the different parts of the object.
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Fig. 1. (a) Frame t with known segmentation (the yellow contour). (b) Frame t + 1.

(c) The difference image between the warped frame t and frame t + 1. (d) Values of σi

(yellow circles), adapting to the local average intensity of (c) across the object.

To compute the prediction error, the key frame is warped by the (locally
averaged) optical flow to align with the next frame. In our system we de-
fine the alignment error e(x) as the local average of frames difference, e(x) =√

1
m

∑
x∈Nx∩Ω′

F
‖I ′t(x) − It+1(x)‖2, where Nx is a square neighborhood centered

at x, I ′t and Ω′
F are the warped color image and the binary foreground map from

frame t to t + 1 respectively, and m is the number of foreground pixels in Nx.
Accurate alignment generally indicates reliable optical flow in the local regions,
thus σi can be defined linearly proportional to e(x). For flat, textureless regions
where the local alignment error is always small, a lower bound term σmin is
added to increase robustness. Defining the local smoothness as s(x) = 1

1+β·ḡ(x) ,

where ḡ(x) =
√

1
m

∑
x∈Nx∩Ω′

F
|∇Iσ(x)|2 is the local average of image gradient,

and Iσ = I ′t ∗Gσ, we compute

σi =
{
α · e(x′

i) + s(x′
i) · σmin, e(xi) ≤ emax,

α · emax, e(x′
i) > emax,

(8)

where α · emax is the upper bound of σi. Typically α = 0.2, β = 10, emax =
50, and σmin = 4. We will later show that this definition leads to improved
results over traditional fixed σi color models (see Fig. 6), while our system is
general to adopt more sophisticated estimation of σi. Compared to [7], where
the colors are sampled within windows of a constant size, our algorithm uses a
flexible sampling range that generates more accurate local color distributions.
An example is shown in Fig. 1, where we can clearly see how σi changes based
on local motion estimation errors.

3.2 The Background Layer

The background layer can be essentially treated in the same fashion as the
foreground one. However, the occluded background behind the object is missing
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Fig. 2. Consider that all the frames i prior to frame t+ 1 have been segmented. (a),(b)

A frame with known background is warped to frame t + 1 (working frame) using ho-

mography. (c)-(f) As additional prior frames are projected, the background is gradually

completed, and (f) is used as the background layer for frame t + 1.

in frame t. In this section we explain two simple scenarios and methods to
reconstruct the missing background. Note that our system is not limited to these
two methods, and more complicated video mosaicking such as [17],[18], or hole
filling algorithms such as [19], can be employed for more accurate background
reconstruction.

A Clean Plate. For videos which present a shot of the scene without the objects
present, we can directly use the clean plate to build the background model. To
deal with moving cameras, we estimate a homography by SIFT matching and
RANSAC filtering, and then project the clean plate onto the current frame to
be segmented. Similar to the foreground modeling, the DCF model is applied
to the reconstructed clean plate, except that σi is fixed for every background
pixel. Typically for static background σi is set to [2, 4] to compensate for small
alignment errors.

Progressive Background Completion. In case a clean plate is not available,
we use a progressive background completion method similar to the one proposed
in [20]. Suppose the first t frames have been segmented, the segmented back-
grounds are projected onto frame t+ 1 in a reverse order, from frame t to frame
1, recovering as much occluded background as possible. In general if the fore-
ground object has a large relative motion against the background, a dynamic
background plate can be quickly recovered as the segmentation process evolves.
Such an example is shown in Fig. 2.

Once the DCF model is constructed for both the foreground and background
layers, the foreground probability of a pixel y is computed as

pC(y) =
p(cy|y, F )

p(cy|y, F ) + p(cy|y,B)
, y ∈ It+1. (9)

As demonstrated in [7], constructing an accurate probability map is the key to
achieve accurate object segmentation. Compared with color models used in previ-
ous video segmentation systems, the DCF model produces more accurate results,
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Fig. 3. The shape prior is a variable bandwidth border around the warped object

contour (yellow curve). (a) For every point p on the contour, compute the average

of histogram distance D(p) in the neighborhood Np. (b) The next frame. (c) Shape

prior function, pS shown in gray scale from darkest (0) to brightest (1). Similar F/B

color distributions result in narrow local bandwidth and tight shape constraint, and

vice versa. (d) Foreground color probability pC(y). (e) Integrated shape and color

foreground probability p(y).

thanks to the motion adaptive local scale and improved background modeling.
In Fig. 6 we will compare the color probability maps generated by DCF and
those generated by simple background subtraction, global GMM color models,
and the SnapCut system. We tested on difficult examples where foreground and
background color distributions are highly overlapping, and the backgrounds are
highly cluttered.

3.3 Segmentation with Shape Priors

Directly feeding the color probability map generated by Eqn. (9) (see also Fig. 6)
to a graph cut optimization may still result in some small segmentation errors,
since the color probability map tends to be noisy. To further improve the segmen-
tation, we borrow the general idea from [7] of incorporating dynamic and local
shape priors. The basic idea is to create a variable bandwidth contour adaptive
to the local statistics of the DCF model. This is in spirit similar to the variable
bandwidth trimap proposed in [4] for the purpose of image matting.

Let p be a point on the object contour (warped from the previous frame), and
Np a neighborhood centered at p. Define the distance between two histograms
as dH(H̄1, H̄2) � 1−

∑
i min

{
H̄1(i), H̄2(i)

}
. Let H̄L

F,y, H̄
u
F,y, H̄v

F,y be the three
foreground color histograms at a pixel y, and H̄L

B,y, H̄u
B,y, H̄

v
B,y the corresponding

background color histograms at y. Then, define

D(y) � min
{
dH(H̄L

F,y, H̄
L
B,y), dH(H̄u

F,y, H̄
u
B,y), dH(H̄v

F,y, H̄
v
B,y)

}
, (10)

and for added robustness, consider D̄(p) � 1
K

∑
y∈Np

D(y), where K is the
number of pixels in Np. The local shape profile pS(y) = 1−N (dy |σd). N (dy |σd)
is then a Gaussian distribution with variance σd, which is linearly proportional
to D̄(p), and with dy the Euclidean distance from y to the contour point p.
Larger D̄(p) indicates that the local foreground and background colors are more
separable, thus a wider shape profile is used to give less spatial constraint, and
vice versa. Finally, the integrated probability at y, combining both local shape
and color models, is defined as
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p(y) = pC(y)(1− pS(y)) + M ′
t+1(y)p

S(y), (11)

where M ′
t+1 is the warped object mask with 1 inside and 0 outside. Essentially

pS(y) is used as a weight to linearly combine the color probability pC(y) with the
warped object mask M ′

t+1. Please refer to [7] for more details of this equation.
An example is shown in Fig. 3.

Using p(y) as the data term, and the image gradient statistics for the neighbor-
hood term as proposed in [21], the current video frame t + 1 is then segmented
with a standard graph cuts image segmentation algorithm [22]. Examples are
shown in figures 4 and 5. The user can optionally add scribbles to correct seg-
mentation errors towards a more accurate segmentation, which then becomes the
key frame for the next frame. This process is repeated until the whole sequence is
segmented. Additionally, if necessary, the binary segmentation can be processed
with a temporally-coherent matting algorithm, [7], producing soft alpha mattes
for the foreground object for high-quality compositing tasks.

4 Experiments and Comparisons

We have tested our system on a variety of challenging video examples containing
complex color distributions (figures 4 and 5(b)), highly cluttered background
(figures 4 and 7), rapid topology changes (Fig. 5(c)), motion blur (Fig. 4), and
camera motion (Fig. 2).

Fig. 4. Propagating the segmentation from frame t to t + 1. (a) Frame t with seg-

mentation (yellow curve). (b) Frame t + 1. (c) The partially recovered background of

frame t + 1. (d) Color probability pC(y) shown in gray scale. (e) Shape prior derived

from frame t. (f) Incorporating the shape prior further improves the quality of the

probability map p(y). (g) Final segmentation (cyan curve) of frame t + 1 without any

user interactions.
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Fig. 5. Additional examples of segmentation propagation on objects with diverse mo-

tion. In each example we show the key frame t with segmentation (yellow curves), the

computed segmentation on frame t+1 (cyan curves), and the probability maps in gray

scale. In the last example, the segmentation propagates two consecutive frames.

First, Fig. 4 shows the intermediate results of segmenting one frame. Note
the background reconstruction in (c) is only partially complete. For those pixels
without background reconstruction colors, we simply sample nearby background
colors for them in our current implementation, which already leads to satisfactory
foreground estimation and segmentation, as shown in (d) and (g).

Then, Fig. 5 contains three additional examples that demonstrate different
motion scales. In the first example, the walking person moves with dynamic
(nonuniform) motion. The foreground in the second example is more stable but
contains very complex colors (see supplementary material for the full video).
The third example exhibits erratic motion and rapid topology changes that are
very hard to track. Our system automatically adapts to these very different ex-
amples and produced accurate foreground probabilities that lead to high quality
segmentation results.

We compared our proposed color model with background subtraction, global
GMM, and the SnapCut system on two examples, as shown in Fig. 6. We used
a basic background subtraction algorithm and manually selected the optimal
threshold for each example. Due to the rigidity assumption for the static back-
ground and the lack of accurate foreground model, the algorithm is generally
incapable of high quality segmentation tasks. The global GMM is without any
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Fig. 6. Comparing color probability maps and segmentation results generated by

simple background subtraction, the global GMM color model, the local color model

from [7], and the proposed DCF on two examples. The gray scale images are the color

probabilities generated by each method followed by their corresponding segmentation

results. (For better visualization, images are cropped from original videos. See figures 3

and 7 for the full frames.)

doubt the least preferred in these examples, as both the foreground and back-
ground contain very similar colors. The SnapCut system improves the color
probability results by localizing the color sampling. However, errors can occur
if colors are confusing even in local regions, e.g., the black color in the glasses
and in the background, first example. The DCF model generated more accurate
color probabilities and segmentations for these examples.

To evaluate the complete interactive system, we compared our system with
SnapCut on a video sequence, Fig. 7 (see supplementary material for additional
sequences with comparisons in terms of segmentation accuracy and the amount
of user interaction). Our system requires less user input to achieve comparable
results. As the propagation progresses, the amount of interactions is further
reduced thanks to the improved foreground and background models.

Of course our system cannot deal with all possible situations one may face
in video segmentation. The DCF model assumes that all foreground colors on
frame t + 1 have been seen on frame t, thus cannot model newly appeared fore-
ground colors due to occlusion and disocclusion, such as a self-rotating colored
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Fig. 7. The football sequence, from left to right: frames 2, 5, 10, 13, 20. Frame 1 is pre-

segmented. First row: segmentation (red curves) and user scribbles (blue as foreground
and green as background) by the SnapCut system. Second row: segmentation (yellow
curves) and user scribbles by our system. Third row: new composites on white.

ball where new colors constantly appear from one side of the object. The shape
prior can only be used when the foreground shape is consistent and cannot be
applied for things like fire and water. Also, if the background is highly dynamic,
like a foreground person passing by a group of walking people, then the sim-
ple background construction methods described in Section 3.2 will fail. In these
cases, more user input, or more advanced motion estimation and background re-
construction methods, will be needed to improve the performance of the system.

5 Concluding Remarks

A new color model that, unlike previous methods, incorporates motion estima-
tion in a probabilistic fashion, was introduced in this paper. By automatically
and adaptively changing model parameters based on the inferred local motion
uncertainty, the proposed method accurately and reliably models the object ap-
pearance, and significantly improves the foreground color probability estimation.
We applied the new model to both foreground and background layers for video
object segmentation, obtaining significantly improved results when compared to
previous state-of-the-art systems.
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Abstract. Visual attention is an important issue in image and video

analysis and keeps being an open problem in the computer vision field.

Motivated by the famous Helmholtz principle, a new approach of visual

attention analysis is proposed in this paper based on the low level fea-

ture statistics of natural images and the Bayesian framework. Firstly, two

priors, i.e., Surrounding Feature Prior (SFP) and Single Feature Prob-

ability Distribution (SFPD) are learned and integrated by a Bayesian

framework to compute the chance of happening (CoH ) of each pixel in

an image. Then another prior, i.e., Center Bias Prior (CBP), is learned

and applied to the CoH to compute the saliency map of the image. The

experimental results demonstrate that the proposed approach is both

effective and efficient by providing more accurate and quick visual atten-

tion location. We make three major contributions in this paper: (1) A

set of simple but powerful priors, SFP, SFPD and CBP, are presented in

an intuitive way; (2) A computational model of CoH based on Bayesian

framework is given to integrate SFP and SFPD together; (3) A com-

putationally plausible way to obtain the saliency map of natural images

based on CoH and CBP.

1 Introduction

The surrounding world contains a tremendous amount of visual information
which the human visual system (HVS ) cannot fully process [1]. Therefore, human
tends to pay attention to only a few parts while neglect others in front of a scene.
This phenomenon is usually called visual attention by psychologists. In order to
predict where people look in an image automatically, visual attention analysis
has been investigated for dozens of years in computer vision field. But till now it
is still an open problem to be tackled. Recently, understanding computer vision
problems from the view of psychologist is becoming an important track. As
visual attention is also an important issue and has been studied for more than
a century in the psychology field, it is reasonable to adopt some useful concepts
of psychology to solve the visual attention analysis problem.

By treating the visual attention analysis as a signal processing problem, re-
searchers believe HVS functions like a filter. It is natural for them to simulate
the psychological mechanism by a filter computationally [2,3]. However, it is
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difficult to strictly simulate the visual attention mechanism in practice because
the operating detail of HVS is still unknown until now even in the psychology
field. Therefore, although some existing approaches [4,5,6] try to build up el-
egant mapping from psychological theories to computational implementation,
they do not match the actual human saccade from the eye-tracking data and are
computational consuming in practice.

Another way of approach tries to learn a visual attention model by taking into
account of both the low level and the high level features based on the human eye
tracking data, In [7], the pixel intensity is extracted as low level feature. And the
semantic information is used as the high level features obtained by carrying out
face detection, car detection, etc.. However, the study of HVS in [8] shows that
the visual attention scheme is a kind of pre-processing before semantic analysis.
Moreover, it’s difficult to always extract the semantic information successfully
from the given image.

Different from the aforementioned approaches, Bruce et al. [9,10] try to figure
out the correlation between an information theory based definition of visual
saliency and the fixation behavior of HVS. Then, in order to realize Bruce’s
theory in a computationally plausible way, some researchers [11,12,13] argue that
some natural statistics of visual features, e.g., blue sky seldom exists in the lower
part of a scene, should play an important role in the visual attention process.
Some methods, such as Independent Component Analysis (ICA), are employed to
extract the visual features to achieve the natural statistics. However, such visual
features are complex and usually fail to estimate the visual attention efficiently.
Moreover, given an image, HVS usually tends to pay attention to the central
region of the image [14]. This center bias phenomenon of HVS is ignored in these
methods, which often leads to mismatch between the experimental results and
the eye tracking ground truth.

Inspired by the famous Helmholtz principle [15], a new concept called Chance
of Happening (CoH ) is introduced in this paper. As described literally, CoH of
a point represents how likely this point will exist at a specific location of an
image. And CoH is believed to be largely determined by a couple of priors, e.g.,
the relationship between the features of a specific point and its surroundings.
These priors are learned from daily life experience by the HVS. In our approach,
we try to learn these priors in a computationally plausible way and use them to
estimate the CoH of a point. Both the CoH and the center bias are taken into
account to compute the saliency map of the image.

The rest of the paper is organized as follows: section 2 introduces the motiva-
tion of the proposed approach. Section 3 describes two low level feature priors:
Surrounding Feature Prior (SFP) and Single Feature Probability Distribution
(SFPD). A Bayesian framework is introduced to compute the CoH from these
two priors. In section 4, Center Bias Prior (CBP) is proposed and in section 5,
a probabilistic framework is presented to compute the saliency map of an image
by integrating the CoH and CBP together. Experiment is carried out in section
6. And we conclude in section 7.
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(a) (b) (c)

Fig. 1. Example of relationship between Chance of Happening (CoH ) and visual at-

tention. (a) Scene with hidden regions; (b) Original scene; (c) Saliency map computed

directly from eye-tracking dataset.

2 Motivation

“Whenever some large deviation from randomness occurs, a structure
is perceived.” [15]

–H. von Helmholtz (1821-1894), Psychologist, Germany

H. von Helmholtz, the famous Gestalt psychologist in Germany in 19th cen-
tury, gave his famous description of human visual perception above, called
Helmholtz principle. As a commonsense statement, the Helmholtz principle
means that “we immediately perceive whatever could not happen by chance”
[15]. This description inspires us with two cues: given an image, first, human’s
visual attention depends heavily on the chance of happening (CoH ) which is esti-
mated based on the previous experience of human visual system (HVS ); second,
only the region which “could not happen by chance” tends to be “immediately
perceived” by HVS, where “could not happen by chance” means the CoH of the
region is small. Figure 1 demonstrates a typical instance of Helmholz principle.

In Figure 1, for each blacked out region (left) labeled A, B or C, HVS esti-
mates its CoH based on previous experience. For example, given the surrounding
context of blue sky, the existence of dark red spot of region C is a large deviation
from our expectation of color intensity distribution according to our previous ex-
perience. This large deviation leads region C to a small CoH. In contrast, the
CoH of A and B are large because they preserve the consistency to their sur-
roundings as predicted by HVS according to our previous experience. Recalling
“we immediately perceive whatever could not happen by chance”, C will be “per-
ceived immediately” as its CoH is small. The eye tracking experimental result
(Figure 1(c)) also justifies this principle.

Besides CoH, researchers also find that HVS usually tends to pay attention
to the center of an image [14,16]. This phenomenon is called center bias. In our
approach, both CoH and the center bias are taken into account to carry out the
visual attention analysis by computing the saliency map of an image.
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Based on the discussion above, three priors, two for CoH and one for the
center bias, are presented in our approach. And then they are integrated into a
computational framework to perform the visual attention analysis.

3 From Low Level Feature Priors to CoH

As aforementioned, the visual attention scheme is a kind of pre-processing be-
fore the semantic analysis. And the semantic information is high-level which is
difficult to extract robustly. In our approach, only the low level feature priors
are taken into account to compute CoH towards the visual attention analysis.

3.1 Single Feature Probability Distribution

Color intensity is a kind of primary low level features used in computer vision
society. In addition, color intensity can be manipulated more efficiently than
other features. Y CbCr is a preferable representation of the natural images in
digital image coding system wherein Y , Cb and Cr are highly uncorrelated
components corresponding to luminance, blue difference, and red difference [17].
So it is naturally to adopt YCrCb to learn the low level feature prior for the
previous experience of HVS on color intensity distribution in natural images.
Such low level feature prior is called Single Feature Probability Distribution
(SFPD) in our approach.

In order to learn SFPD, we accumulate the occurrences of different intensi-
ties in the collected natural images for Y , Cb and Cr respectively. Thus the
probability distributions of Y, Cb and Cr over the observed values is obtained
correspondingly. Observing the curves in Fig. 2, we notice that the distribution
of Y tends to be uniform, which means it doesn’t take function in the SFPD
computation. (Fig.2(a)). In contrast to Y , the statistics of Cb (Fig. 2(b)) and
Cr (Fig. 2(c)) look meaningful and Gaussian-like. Inspired by such observation,
both the marginal distributions of Cb and Cr can be formulated as generalized
Gaussian densities respectively:

P (Cb(x, y);σb, θb) =
θb

2σbτ( 1
θb

)
exp

(
−|Cb(x, y)

σb
|θb

)
(1)

P (Cr(x, y);σr , θr) =
θr

2σrτ( 1
θr

)
exp

(
−|Cr(x, y)

σr
|θr

)
(2)

where τ is the gamma function, σ(·) is the scale parameter that describes the
standard deviation of the density, θ(·) is the shape parameter that is inversely
proportional to the decreasing rate of the peak. Cb(x, y) and Cr(x, y) are the
color intensity values of the pixel (x, y). The model parameter (θ(·), σ(·)) can be
estimated using the moment matching method [18] or the maximum likelihood
rule [19]. In our approach, the estimated parameters are: σb = 0.23, σr = 0.041,
θb = 0.26, θr = 0.22. The estimated distributions are depicted in Figure 2.
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(a) (b) (c)

Fig. 2. (a)Single Feature Probability Distribution of Y (b)Single Feature Distribution

of Cb (c)Single Feature Distribution of Cr. The blue bars represent the origin distri-

bution and the red dots plot the estimated generalized Gaussian distributions

3.2 Surrounding Feature Prior

The surrounding context of a pixel is another important low level feature that
reflects the contrast in an image. In our approach, the previous experience on
the surrounding context in natural images is called Surrounding Feature Prior
(SFP).

Given a surrounding window sized by w ∗ w, two distances, i.e., the intensity
distance and the location distance, are defined between pixel (x, y) and one of
its surrounding pixels (xj , yj), j ∈ [1, w ∗w]. The definition of intensity distance
in our approach is given below:

Dj
f (x, y) = |Y (x, y)−Y (xj , yj)|+ |Cb(x, y)−Cb(xj , yj)|+ |Cr(x, y)−Cr(xj , yj)|

(3)
where | · | is the absolute operation.

And the location distance is defined as follows:

Dj
l (x, y) = max (|x− xj |, |y − yj|) (4)

where max(·, ·) returns the largest value of the two inputs.
In order to learn the SFP, we count the number of pixels for each Dl varies

from 1 to (w − 1)/2 in the range of Df based on the collected natural images.
By observing Fig. 3, we notice that the probability distributions of intensity
distance for different location distances are different from each other, but they
are all exponential-like. So we use exponential function to fit these distributions
using maximum likelihood rule. Given a pixel (x, y), the existence probability of
a pixel (xj , yj) in the surrounding window can be formulated as follows: :

P ((xj , yj)|(x, y)) = exp
(
−ψ

(
Dj

l (x, y)
)
Dj

f (x, y)
)

(5)

where ψ (·) is a enumerate function produces the unique coefficient for each
location distance Dj

l (x, y) by exponential regression. In our approach, we set the
surrounding window as 81 ∗ 81, and the estimated parameter ψ(·) varies from
0.955 to 0.472 while the Dl increases from 1 to 40. The original and estimated
distributions are depicted in Figure 3.
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Fig. 3. Surrounding Feature Prior. The blue bars represent the origin distribution and

the red lines are estimated exponential probability distribution.

3.3 Estimation of CoH

CoH of pixel (x, y) depends on not only the previous experience of color intensity
distribution but also that of the surrounding context, i.e., SFPD and SFP. Thus
CoH can be represented in a probability form and deduced based on Bayesian
theorem as follows:

CoH(x, y) = P (h(x, y)|Ω(x, y))
= P (Ω(x, y), h(x, y))/P (Ω(x, y)) (6)

where h(x, y) in the first line means the happening of pixel (x, y). Ω(x, y) rep-
resents the pixel (x, y) and its surrounding window.

Suppose the w ∗ w surrounding pixels are independent of each other. Since
P (Ω(x, y), h(x, y)) is the joint probability representing the co-occurrence of the
pixel (x, y) and its surrounding context, it can be computed as:

P (Ω(x, y), h(x, y)) =
w∗w∏
j=1

(P ((xj , yj), (x, y)))

=
w∗w∏
j=1

(P ((xj , yj)|(x, y))P (x, y)) (7)

=
w∗w∏
j=1

(P ((xj , yj)|(x, y))P (Cb(x, y))P (Cr(x, y)))

And P (Ω(x, y)) is the probability representing the occurrence of the surround-
ing context alone. So it can be computed as:

P (Ω(x, y)) =
w∗w∏
j=1

(P (xj , yj)) =
w∗w∏
j=1

(P (Cb(xj , yj))P (Cr(xj , yj))) (8)
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Substituting Eq.(7) and (8) into (6), we have

CoH(x, y) = P (h(x, y)|Ω(x, y))

=

∏w∗w
j=1 (P ((xj , yj)|(x, y))P (Cb(x, y))P (Cr(x, y)))∏w∗w

j=1 (P (Cb(xj , yj))P (Cr(xj , yj)))
(9)

4 Center Bias Prior

Besides the CoH, center bias is another important factor affects visual attention.
Liu et al. [16] apply it by setting weight arbitrarily to compute the saliency map.
However, it is still unclear that the decay rate of visual attention corresponding
to the distance from the center. In order to obtain the decay rate away from
the center, we learn a normal Bivariate Gaussian function from eye tracking
dataset [10] to model the center bias in this paper. In the dataset, each image
is accompanied with eye tracking data which are collected from 20 subjects
free-viewing the image. Only 4 seconds are recorded during the free-viewing
process by discarding the first several seconds which may introduce the imposed
centering operation of the head-mounted eye tracking system. By accumulating
all the fixation locations of human eyes in the eye tracking data, we depict the
distribution of the fixation locations in Fig. 4. Observing the 3D depiction of the
figure, a normal Bivariate Gaussian is defined to fit the eye fixation distribution
as follows:

CBP (x, y) = η exp

(
− 1

2(1 − ρ2)

(
(x − μ1)2

σ2
1

+ 2ρ
(x − μ1)(y − μ2)

σ1σ2
+

(y − μ2)

σ2
2

))
(10)

where η = 1

2πσ1σ2

√
(1−ρ2)

. And we use ρ = 0 for simplicity. Specifically, the image

size used for CBP learning is 511×681. And the learned parameters of CBP are
μ1 = 245.1, μ2 = 343.6, σ1 = 91.2, σ2 = 139.5.

5 Computational Framework for Saliency

As aforementioned, the visual attention of human is influenced by not only the
CoH, but also the center bias. So in our approach, both the CoH and the center
bias are taken into account to compute the saliency map of the given image.

As discussed in Section 2, a point will be more attractive to the HVS when
its CoH is relatively smaller. So in our approach, a pixel’s saliency is treated
inversely proportion to CoH. Thus, the saliency S(x, y) of pixel (x, y) can be
computed as follows:

S(x, y) = λ
CBP (x, y)
CoH(x, y)

(11)

where λ is a scalar to perform adjustment.
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(a) (b)

Fig. 4. Center Bias Prior: (a)Origin Center Bias Distribution (b)Estimated Center Bias

Distribution

By substituting eq. (9), (11) can be rewritten as:

S(x, y) = λ

∏w∗w
j=1 (P (Cb(xj , yj))P (Cr(xj , yj))) · CBP (x, y)∏w∗w

j=1 (P ((xj , yj)|(x, y))P (Cb(x, y))P (Cr(x, y)))
. (12)

Since logarithm is a monotonically increasing function, we rewrite Eq. (12) to
reduce the numerical computational complexity as follows:

S(x, y) → − log(

∏w∗w
j=1 (P ((xj , yj)|(x, y)) P (Cb(x, y))P (Cr(x, y)))∏w∗w

j=1 (P (Cb(xj , yj))P (Cr(xj, yj)))
) + log(CBP (x, y))

→

⎡⎢⎢⎢⎣
∑w∗w

j=1

(
ψ(Dj

l (x, y))Dj
f (x, y) − |Cb(xj ,yj)

σb
|θb − |Cr(xj ,yj)

σr
|θr

)
+w ∗ w ∗

(
|Cb(x,y)

σb
|θb + |Cr(x,y)

σr
|θr

)
− 1

2(1−ρ2)

(
(x−μ1)2

σ2
1

+ 2ρ (x−μ1)(y−μ2)
σ1σ2

+
(y−μ2)2)

σ2
2

)
⎤⎥⎥⎥⎦ (13)

where “→” means “depend on”.
Fig. 5 depicts the flowchart of saliency map computation. For each input

image, the RGB value of each pixel is transformed into YCbCr firstly. Then we
calculate the saliency of each pixel by a computational framework in terms of Eq.
(13). Thirdly, a 25× 25 Gaussian Blur is applied to remove the unwanted noisy
saliency value. And histogram equalization is performed for better visualization.

6 Experiments

In our implementation, more than 1000 natural images are collected from inter-
net so as to learn the two low level feature priors for CoH . And another prior
CBP is learned based on one part of the eye tracking dataset [10] which consists
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Fig. 5. The computational framework of our approach

80 records. The other part of the eye tracking dataset is used as testing data for
evaluation.

The computational complexity of our method is O(w2 × N) which is lower
than most of the conventional approaches, e.g., Itti’s method. N is the number
of pixels in the image. In addition, both look-up table and Integral Image [20]
techniques are adopted by our approach to further speed up the computation
of saliency map significantly. The experiment is carried out on a system with
2.8GHz processor and 8 Gigabyte memory. It takes our approach less than 1
minute on average for 511×681 images with 81×81 surrounding window. Under
the same condition, it usually takes Itti’s method 10 minutes to deduce the
saliency map.

It is noticeable that different sizes of the surrounding window lead to differ-
ent results (Fig. 6). When the surrounding window is too small, the computed
saliency map usually stays away from the ground truth (Fig. 6(b)). On the con-
trary, the computed saliency map will be closer to the ground truth when the
size of surrounding window becomes larger (Fig. 6(d)). But it will take more
time to produce the result as a tradeoff. As a compromise, we choose 81× 81 for
511× 681 images in our approach (Fig. 6(c)).

6.1 Qualitative Evaluation

The saliency maps are depicted in Fig. 7 and 8 for the outdoor and the indoor
images separately. The ground truths for evaluation are obtained from the eye
tracking dataset. And the testing image are modulated by the output saliency
of our method for better qualitative evaluation. It is noticeable that our method
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(a) Input Image (b) 41*41 surrounding

(c) 81*81 surrounding (d) 161*161 surrounding

Fig. 6. Comparison of saliency maps computed by various surrounding sizes

(a) (b) (c) (d) (f)

Fig. 7. Saliency comparison on indoor images (a) Original image (b)Itti et al. saliency

(c) Saliency of our method (d) Experimental saliency map (f) Modulated image
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performs better than Itti’s method [4] on both the indoor and the outdoor im-
ages. Especially for the outdoor images, Itti’s method does not match the ground
truth very well, e.g., the white car in the first row.

(a) (b) (c) (d) (f)

Fig. 8. Saliency comparison on outdoor images (a) Original image (b)Itti et al. saliency

(c) Saliency of our method (d) Experimental saliency map (f) Modulated image

6.2 Quantitative Evaluation

Recently, the receiver operating characteristic curve (ROC)[7,10] becomes a
widely adopted metric to evaluate eye fixation prediction quantitatively. The
ROC metric treats the saliency map as a binary classifier in the image, wherein
pixels with saliency value larger than a threshold are identified as “fixated” while
the others “non-fixated”. By varying the threshold and testing the true positive
rate for each threshold, an ROC curve can be drawn and the area under the
curve indicates how well the saliency map predicts eye’s fixations.

Figure 9 shows the comparison between the proposed method and the con-
ventional ones. In our evaluation, the threshold of visual attention region varies
from top 5% to top 30% part of the saliency map. The ROC curves in the fig-
ure depict quantitatively that the proposed method takes advantage over the
conventional ones.



642 Y. Yang et al.

Fig. 9. The ROC curves of performances for Itti [4], Bruce/Tsotsos [13] and our

method. We also plot chance for comparison.

7 Conclusions

In this paper, a new computational approach is presented for visual attention
analysis. Two low level feature priors, SFPD and SFP, are learned based on
natural images and integrated by a Bayesian framework to compute the CoH at
each pixel. Then another prior, CBP, is learned from the eye tracking dataset.
Finally, the saliency of each pixel is obtained by taking consideration of both
CoH and CBP. By using the proposed approach, visual attention analysis be-
comes more effective and more efficient than the existing low level feature based
approaches and produces better matching to human eye-tracking data.

We also notice some limitations of our method. For example, the size of the
surrounding window is set arbitrarily. In the future, we will develop a multi-scale
approach to figure out the optimal size of the surrounding window. In addition,
more low level feature priors for CoH , especially those biologically plausible
priors, will be investigated. It may also be possible to employ a GPU-based
implementation to parallelize the computation. However, these points do not
impact on the conclusions of this paper or the theory presented.
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Abstract. We present a novel scale adaptive, nonparametric approach

to clustering point patterns. Clusters are detected by moving all points

to their cluster cores using shift vectors. First, we propose a novel scale

selection criterion based on local density isotropy which determines the

neighborhoods over which the shift vectors are computed. We then con-

struct a directed graph induced by these shift vectors. Clustering is ob-

tained by simulating random walks on this digraph. We also examine

the spectral properties of a similarity matrix obtained from the directed

graph to obtain a K-way partitioning of the data. Additionally, we use

the eigenvector alignment algorithm of [1] to automatically determine

the number of clusters in the dataset. We also compare our approach

with supervised[2] and completely unsupervised spectral clustering[1],

normalized cuts[3], K-Means, and adaptive bandwidth meanshift[4] on

MNIST digits, USPS digits and UCI machine learning data.

Keywords: Data Clustering, Image Segmentation.

1 Introduction

This paper is about automatic clustering with minimal user input. A cluster is
viewed as a set of contiguous points having similar local point structures, defined
by the point density, which are in contrast with their immediate surround. We
allow clusters defined by a variety of global density-based criteria. (1) A cluster
may consist of uniformly distributed points (having constant point density), or
it may be characterized by a uniform density gradient, or it may be uniform in
higher order derivatives of the density. (2) The gradient may be uniform along
an open curve, giving rise to a uniform cluster. Alternately, an iso-density curve
may be a closed contour in which case the cluster is modal, with a point of
density extremum, surrounded by a succession of iso-contours with monotoni-
cally changing density. (3) A cluster may be of the same dimensionality as the
underlying point pattern, or it may be confined to a subspace. (4) The defining
criteria from (1) above, and other properties such as sizes, shapes and densities
are unknown.

The basic idea of the proposed approach is to identify overlapping neighbor-
hoods of points across the pattern, each completely contained within a clus-
ter. Regardless of cluster type, we characterize these neighborhoods as density

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 644–657, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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isotropic. Clearly, when a cluster has gradually varying density, the neighbor-
hood size will be smaller - small enough to pass as isotropic within the tolerance
level being used to test for density isotropy. Thus a cluster with arbitrarily com-
plex, smoothly varying spatial density will be composed of overlapping neigh-
borhoods each of whose size will be inversely proportional to the rate of local
density change. Clustering then amounts to finding and distinctly labeling each
connected set of overlapping, uniform-density neighborhoods. The connected
components are extracted by letting each cluster implode to a dense core in its
interior, thus resulting in as many well separated and uniquely labeled cores as
the number of clusters. This is done by gradually moving each point within each
cluster towards its core, by identifying a shift vector associated with the point
which is directed towards the cluster core.

2 Related Work

Clustering algorithms are extremely diverse in their definition of clusters and
approaches to finding them. Recent surveys of clustering algorithms are present
in papers by Jain et al. [5] and Xu and Wunsch [6]. We restrict our discussion to
algorithms relevant to motivating our approach, in particular the X-shift family
of algorithms and spectral clustering algorithms.

The works of Fukunaga and Hostetler[7] and Koontz et al.[8] are early exam-
ples of clustering algorithms based on computing local density gradients. These
techniques were rediscovered by the computer vision community in the recent
past and applied to a host of problems in clustering image and video data. More
recently methods based on computing a shift-vector based on mean[4], medoid[9]
or median[10] of a point neighborhood have been proposed. The key idea is to
compute a point or exemplar along the density gradient to which a point is
shifted. Their advantages are that they are unrestricted in the shapes of the clus-
ters and also automatically determine the number of clusters. The medoid-shift
algorithm can also be applied to cases where only the distances or similarities
between data is available. However, only adaptive bandwidth meanshift[11] ad-
dresses the problem of scale selection. Adaptive scales at individual points are
computed using a pilot kernel density estimate obtained at a fixed scale K. We
found the final clustering to be sensitive to this value of the initial bandwidth
(see sec 5). Additionally, heuristics for merging modes and minimum cluster size
significantly affect the final clustering. We differ from the X-shift algorithms in
how our shift vector is computed. The X-shift algorithms move points along the
density gradient towards the mode. However, they are not sensitive to other
types of local density disparities that may exist in the data, e.g. a density step.
This is because they rely on decisions that are local to a point neighborhood.
In contrast, we rely on evidence accumulation from relevant adjacent neigh-
bors to decide the local shift. X-shift methods are also likely to fail for clusters
with uniform point distribution as a unique density mode is unlikely to exist.
They return an oversegmented result for such clusters. In contrast, we model the
isotropy of point distributions in local neighborhoods. We propose a statistical
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testing approach to detect density isotropy. We are sensitive to relevant density
changes e.g. cluster boundaries, density steps, and density gradients while ignor-
ing incidental density disparities that may arise due to sampling, e.g. points in
a uniform cluster. Subsequently, we use these detected density isotropic regions
to determine a valid neighborhood over which each point influences its neigh-
bors to shift in its direction. In section 5, we show qualitative and quantitative
experiments that compare our shift vectors against those of X-shift algorithms.

Spectral approaches [12,2,3,1], involve the analysis of the graph Laplacian
to obtain an embedding using its eigenvectors. Following this, regular K-means
clustering or thresholding is applied to the embedded points to obtain a fi-
nal clustering. Ng et al.[2] propose analyzing the symmetric, normalized graph
Laplacian to obtain an embedding. The normalized cuts algorithm, in contrast
can be viewed as analyzing eigenvectors of the transition probability matrix of
a random walk on the undirected graph induced by the points[13]. Zelnik and
Perona[1], address the problems of scale selection and automatic determination
of the number of clusters for spectral clustering. The key advantage of these
approaches lies in their ability to model clusters of unrestricted shapes in any
subspace of the original space. However, Nader and Galun [14] construct several
failure cases of such approaches, including the self-tuning spectral clustering al-
gorithm. In particular, they identify problems with the scale selection parameter
when there is a significant difference in density between adjacent clusters of dif-
ferent sizes. Additionally, these algorithms are sensitive to outliers in the dataset.
We use the shift vectors computed using our approach to define a probabilistic
directed graph. We analyze the spectral properties of affinity matrices derived
from this digraph to obtain our final K-way and unsupervised clustering. This
may be viewed as spectral clustering using an alternative graph construction
technique. We demonstrate that this alternate construction, utilizing properties
of shift vectors rather than K-nearest neighbors similarities, outperforms spectral
clustering algorithms on real datasets.

3 Approach

Our proposed approach is an extension of the concept of the force transform,
introduced in [15] for image analysis, to point sets in R

N . The force transform
produces a vector at each pixel, which represents the direction and magnitude
of attraction experienced by the pixel from the rest of the image[15]. Region
borders are identified as adjacent points with divergent vectors, whereas region
skeletons are identified as adjacent points with convergent vectors. These vectors
are computed at a set of spatial and image intensity scales, which are then used
to produce a hierarchical image segmentation. Here our goal is to label points
belonging to the cluster interior and border analogous to pixel labeling in image
regions.

There are two major parts to our approach. The first part has to do with
the detection of isotropic density neighborhoods. To this end, we use a test
to determine if the neighborhood has isotropic point distribution in it. The
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second part has to do with labeling connected components formed by overlapping
isotropic density neighborhoods. This is made more complex than it may appear
by the possibility of false detection or false rejection of an isotropic neighborhood,
which may lead to cluster splits, e.g., in the neck area of a cluster, or cluster
merges, e.g., in locally isotropic appearing neighborhoods between two distinct
clusters. Although, postprocessing could be performed to detect and correct
such errors, we have developed a formulation which avoids the need for such
postprocessing by posing the problem as one of robust signal detection amidst
noise in the first place. The signal here is the connected neighborhoods and the
noise is deviations from density isotropy. We achieve this by iteratively, gradually
and probabilistically shifting each point towards its cluster interior. This itself is
done in two steps: by computing the local direction for shift, i.e., towards cluster
interior, and then identifying the cluster (core) from these shift vectors.

Consequently, there are three major steps in our approach: (1) detection of
density isotropic neighborhoods, (2) computation of shift vectors, and (3) identi-
fication of clusters utilizing probabilistic shift. The following subsections describe
how we formulate each of these steps.

3.1 Detection of Isotropic Density Neighborhoods

Our motivation for relying on isotropic density neighbors as the fundamental
structures for clustering is as follows. It is reasonable to associate points within
an isotropic density neighborhood with the same cluster. In contrast, density
anisotropy, usually associated with a cluster boundary, indicates a plausible
change in the cluster labels within a neighborhood. Therefore, density isotropy
by itself may be used as a criterion for grouping points into clusters. However,
we demonstrate that it is more useful as a scale selection criterion for computing
shift vectors.

Force Criterion: We model the expected behavior of the force criterion [15] in
isotropic and anisotropic neighborhoods to design a statistical testing approach
to detect them. Figure 1(a) shows examples of isotropic density neighborhoods
of a point. Figure 1(b) shows examples of anisotropic density neighborhoods of
a point.

Given a set of points {xi}n
i=1,centered at a point y, and a weighting function

w(||y − x||), the force vector at y is computed as:

fn(y) =
n∑

i=1

w(||y − xi||) ∗
(xi − y)
||xi − y|| (1)

There are several possible choices for the weight function, w(||.||). The only re-
quirement is that it is non-increasing[15]. We denote the magnitude of the force
over the n-nearest neighbors as fn(y) = ||fn(y)||. Therefore, the set {fi}K

i=1

represents the magnitude of the force vector computed over increasing neigh-
borhood sizes. We use this set to develop our criterion for detecting isotropic
neighborhoods. A non-zero magnitude for the force vector indicates anisotropy
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(a) (b) (c)

Fig. 1. Given two clusters with a density step between them, we show (a) isotropic

density regions for points a’ and b’, to which points a and b belong. (b) However, the

region for a’ containing b has anisotropic density. Therefore, b does not belong to the

influence neighborhood of a’. Similar reasoning holds for a and b’. (c) We show the

sets Ja and Jb that contain a and b respectively in their influence neighborhoods. The

shift is computed as a vector sum of influences of points in J .

Fig. 2. (left) Plot of the force criterion from equation 1 over increasing neighborhood

sizes. (right) Plot of random variable si for an isotropic density region and anisotropic

density region.

(a) (b)

Fig. 3. (a) Shift vectors computed for the entire point set. Notice the shift vectors

diverging at the cluster boundary and converging at the center.(b) Mean shift vectors

for the same point set. They do not respect the density step between clusters and are

arbitrarily oriented in the cluster interior. This results in cluster fragmentation.
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in the distribution of points in the neighborhood. If the magnitude continues
to increase as we grow the neighborhood around the point, it symptomatic of
a growing anisotropy in the local point distribution. The force vector points in
the direction of increasing point density. However, if the point distribution is
symmetric we expect the magnitude to fluctuate. Figure 2 shows a plot of the
force vector for different neighborhood sizes around a point of interest.

We define a random variable si = sign(fi − fi−1). This represents the sign
of the difference of force magnitudes computed at two adjacent neighborhood
sizes. We claim that in a region with isotropic point density the distribution
of si is uniform at its two possible values {−1, 1}. In an isotropic region the
force magnitude is as likely to increase as it is to decrease. Any anisotropy in
the neighborhood is incidental unless it is statistically significant. Formally, we
propose the identification of isotropic neighborhoods as a detection problem.

H0 : {si}K
i=1 has zero median (2)

H1 : H0 is false (3)

We test for H0 and H1 using the sign test that this distribution has a zero me-
dian [16]. If H0 is true it indicates an isotropic distribution of points in the given
K-neighborhood. This test is performed at a significance level α. Therefore, for
increasing neighborhood sizes we perform the sign test on the computed force
magnitudes and return the first point of failure as the neighborhood size, Ki,
over which the current point has influence. This is defined as the influence neigh-
borhood of a point and is used to compute the shift vectors at points contained
in it.

3.2 Shift Vector Computation

Let Ji denote the set of indices of points for which xi appears within their
respective neighborhoods of influence. It is reasonable for each point in Ji to
assume that xi shares its cluster label. However, it is also possible that for some
xi, Ji has points from adjacent clusters, e.g., consider the case of points at the
cluster boundary between two overlapping Gaussians. Therefore, we develop an
approach where points in Ji compete for ownership of xi. The shift vector is the
outcome of this competition. Given Ji the shift vector at a point is computed
as:

ai =
∑
jεJi

w(||xi − xj ||) ∗
(xj − xi)
||xj − xi||

(4)

Here w(||.||) is some non-increasing weighting function. In our experiments we
used the triangular weighting function (w||.|| ∝ 1- distj

maxj∈Ji
distj

, if j ∈ Ji, else 0).
It is important to recognize the difference between the force vector f , in section
3.1 , and the shift vector a. The force vector, similar to X-shift vectors, points in
the direction of the density gradient in the local neighborhood, as it is a purely
local measure. In contrast, our shift vector, a, points in the direction of greatest
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agreement with local neighborhood properties. It points in the direction of the
cluster whose points find the current point in most agreement with their local
point distributions. This is important in our model of clustering as we seek to
integrate neighborhoods with similar density properties while being sensitive to
density discontinuities. Figures 3(a) and 3(b) further emphasize the advantages
of our approach.

3.3 Cluster Identification

Cluster identification by connected components labeling of overlapping uniform
neighborhoods has been proposed in [17]. However, as stated at the beginning of
this section, this may lead to cluster splits and merges . Our shift vectors allow
for a more informed connected components labeling. Shift vector at a point is
directed in the general direction of the cluster core. We propagate labels in
the general direction of the shift vector. We construct a probabilistic directed
graph by connecting each point to other points in its influence neighborhood
that lie in the half-space in the direction of its shift vector. Points are shifted
probabilistically along this graph to cluster cores where the final clusters are
obtained. This is realized using the interpoint transition probability matrix for
the points defining the digraph.

Constructing the Transition Probability Matrix. First, define a directed
graph G = <X,P>, composed of a node set X = {xi}n

i=1 and a transition proba-
bility matrix P = {pij : probability of a transition from node i to node j}. Given
a node xi, its shift vector ai, and its influence neighborhood set Ki, we define
a variable tij ∈ [0, 1] which represents the preference for moving from node i to
node j. Formally, it is defined as:

tij = max(0, w(||xj − xi||)〈ai,xj − xi〉) (5)

This produces positive values for nodes in the positive half space of the hyper-
plane defined by ai at xi and 0 otherwise. From this we obtain the probability
of transitioning to a node xj , j ∈ Ki:

pij =
tij∑

jεKi
tij

(6)

Consider a point xb near the cluster border. Its shift vector, by construction,
points towards the cluster interior. Therefore, for a point xj , within its influence
neighborhood in the cluster interior, there is a non-zero probability of a transi-
tion from xb to xj . However, the reverse is not necessarily true as xb is unlikely
to lie in the positive half-space of aj . In contrast, shift vectors for points in the
cluster core, converge. Each core member lies in the positive half-space of shift
vectors of several other core points. This generates a non-zero probability of
transition between nodes in the core, making its constituents nodes in a strongly
connected subgraph of G. Since, P represents the transition probability matrix
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for this digraph G, taking powers of P simulates random walks on the graph
G. It is straightforward to see that these random walks move points from the
cluster boundary towards the core of the cluster. The preference for points to
transition to the cluster boundary disappears after a few iterations.

The row pN
i of the PN , represents the probability of a walk starting at xi

transitioning to other nodes in the graph over N steps. Once the walk transitions
to the core to of the cluster, this transition probability vector begins to converge
to a steady state value. This is a direct consequence of the core of the cluster be-
ing a strongly connected subgraph. We denote the transition probability matrix,
with rows that have converged to a steady state value, as P ε. We obtain this
matrix by multiplying out the rows pi repeated with P until, the normed differ-
ence in probability distributions between consecutive iterations is less than ε. We
denote this final probability vector as pε

i . There are two interpretations of the
entries in pε

i : (1) we view, j = argmax(pε
i) as the most likely final destination of

a walk starting at xi and use this to perform a connected components labeling.
(2) Alternatively, pε

i may be viewed as a soft assignment of final destinations of
a walk originating at xi. We can compare distributions of pε for different nodes
to construct an affinity matrix. We perform spectral clustering on this matrix to
give us the final clustering.

4 Algorithms

4.1 Partitioning by Connected Destinations

Given P ε, a straightforward algorithm is to assign each node to its most probable
destination. Nodes with the same destination are grouped in the same cluster.
However, it is possible that some of the destinations themselves converge on other
nodes. Therefore, a simple connected components labeling algorithm is executed
to obtain the final labeling. We will refer to this algorithm as Clustering with
Shift Vectors (CSV).

4.2 Supervised and Unsupervised Spectral Partitioning

Assuming points with similar probability distributions of their final destinations
are more likely to belong to the same cluster, we can obtain a similarity matrix
for our data by comparing these distributions. Clustering is obtained by spec-
tral analysis of this similarity matrix. Alternatively, the similarity matrix can
be constructed based on the initial transition probability distributions P . We
discuss both alternatives here.

Given P , each row represents a probability mass function for a corresponding
node in G transitioning to other nodes in its influence neighborhood. Let P̂
denote the row-normalized version of the matrix P . We can define an similarity
matrix based on P̂ as: AI = P̂ P̂T .

Nodes with preferences to transition to similar parts of the cluster interior
have a higher similarity than nodes which transition to other clusters or other
parts of the same cluster interior. Consequently, the matrix AI is very sparse.
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Similarly, given P ε, each row represents a probability mass function (PMF)
for the final destination of the corresponding point. Points with similar PMF’s
are more likely to belong to the same cluster (or same part of the cluster) than
points with different PMF’s. We use this intuition to define a similarity matrix
Aε as: Aε = P̂ εP̂ ε

T
.

We observed that Aε is blockwise dense. Nodes in a cluster usually converge
to the same subset of nodes in the core. Therefore, the similarities of their PMF’s
are likely to be very high.

In the supervised setting, the user specifies the number of partitions, K. We
perform a K-way graph partitioning following the method of [2]: (1) Compute
the normalized laplacian L = D− 1

2AID− 1
2 (or Aε). Here D denotes the degree

matrix.(2) Compute the top K eigenvectors of L and stack them columnwise in
a matrix E. (3) Normalize rows of E. (4) Perform K-means clustering on rows of
E to obtain final clustering. We refer to this algorithm as the Spectral Clustering
with Shift Vectors (SCSV-K).

In the unsupervised setting we adopt the eigenvector alignment algorithm
proposed in [1] to automatically determine the number of clusters: (1) Given
choices for number of clusters Kc = {K1...Km} compute the top max(Kc) eigen-
vectors of the normalized laplacian of AI (or Aε). (2) For each column subset
1 : Kc(i) of the eigenvector matrix E, compute the rotation that best aligns
this column with the canonical coordinates, by gradient descent. (3) Score the
alignment based on the distortion measure [1], to obtain CKc(i). (4) Return the
number of clusters as the number of columns with the best alignment score. (5)
Stack corresponding columns to form E and normalize its rows. (6) Return the
final clustering as the output of Kbest-means algorithm. We refer to this algo-
rithm as Zelnik-Perona Clustering with Shift Vectors (ZPCSV). We preprocess
both P and P ε to remove outliers by removing all nodes with zero transition
probabilities to other nodes.

5 Results

In this section we present the results of experiments with three variants of our
algorithm: Clustering with Shift Vectors (CSV), Spectral Clustering with Shift
Vectors (SCSV-K) and Zelnik-Perona Clustering with Shift Vectors (ZPCSV).
We first present qualitative results on challenging artificial datasets. We then
compare the SCSV-K algorithm against K-Means(KM), Locally Scaled Spectral
Clustering (ls-SC)1 and Normalized Cuts (NC)2. We compare our unsupervised
algorithms, CSV and ZPCSV, against Adaptive bandwidth Meanshift (AMS)3

and the Zelnik-Perona Spectral Clustering (ZPC)1.

Implementation Details: We do not address the issue of selection of an op-
timal α parameter for testing density isotropy, for a dataset. We expect it to
1 http://webee.technion.ac.il/~lihi/Demos/SelfTuningClustering.html
2 http://www.cis.upenn.edu/~jshi/software/
3 http://www.caip.rutgers.edu/riul/research/code/AMS/index.html

http://webee.technion.ac.il/~lihi/Demos/SelfTuningClustering.html
http://www.cis.upenn.edu/~jshi/software/
http://www.caip.rutgers.edu/riul/research/code/AMS/index.html
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 4. (a) Output of our CSV algorithm on overlapping clusters with different densi-

ties. (b) Output of the ZPCSV algorithm which determines the right number of clusters

based on the criterion described in [1]. (c) Shift vectors computed by our method. (d)

Output of Adaptive bandwidth Mean shift on the same data. (e) Our performance

on the crescent dataset from [9] and (f) the output of medoid-shift for an arbitrary

bandwidth setting. (g) Clusters detected by ZPCSV for a Gaussian overlapping with

an elongated uniform cluster from [14]. (h) The output of Zelnik-Perona Clustering on

the same data. (i) Output of CSV on three overlapping Gaussian clusters data.(j-l)

The output of CSV for color image segmentation. Notice that outliers are detected as

isolated pixels within image segments.

be a function of degree of sampling in the data, but this discussion is beyond
the scope of this paper. To deal with the diverse datasets in our experiments
we computed shift vectors at α = {0.05, 0.025, 0.01, 0.0075, 0.005, 0.0025, 0.001},
for each point. The final shift vector at a point is computed as the vector sum
of shift vectors obtained at that point, at each significance level. We used the
uniform weighting function w||.|| = 1 for computing forces (equation 1), and the
entries in the transition probability matrix (equation 5). We used the triangular
weighting kernel in equation 4. We specified the number of clusters between 1
and 20, for the unsupervised spectral clustering algorithm to evaluate its cost
function. We set ε = 5e − 4. These settings were used for all experiments with
artificial and real data.
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5.1 Artificial Data

The experiments on artificial datasets demonstrate the ability of our approach
to cluster (1) both uniform and modal clusters(fig.4(a)-4(b),4(i)), (2) multiscale
clusters(fig.4(b)), (3) overlapping clusters of different densities (fig. 4(a)-4(b))
and (4) clusters with arbitrary shapes (fig. 4(e)). (1), (2) and (3) are challenging
cases for X-shift based algorithms as shown in figure 4(d). Figure 4(b) shows
that ZPCSV, is a reasonable approach to utilizing outputs of our probabilistic
shift algorithm to identify the correct number of clusters in data. The corre-
sponding output of CSV is shown in figure 4(a). Figure 4(f) shows that though
X-shift based approaches can detect arbitrarily shaped clusters, this too relies
on a proper bandwidth setting. In contrast, we use the same parameter settings
across all datasets, demonstrating our invariance across a wide variety of data.
We compare the outputs of ZPC and ZPCSV on a dataset with a gaussian over-
lapping an elongated uniform cluster, a challenging dataset from [14]. Self-tuning
clustering using the scaled K-NN kernel oversegments the dataset (fig 4(h)). How-
ever, the ZPCSV algorithm accurately picks the right number of clusters, while
accounting for the density discontinuity that arises when the two distributions
overlap (fig 4(g)). This demonstrates that the affinity matrix obtained through
probablistic shift captures local geometry better than the locally-scaled affinity
matrix suggested in [1].

5.2 Real Data

We use real data to provide quantitative comparisons between our approach
and popular algorithms in literature. We use USPS digits, MNIST digits, and
datasets from the UCI Machine Learning repository for comparing algorithms.
We also demonstrate an application of our algorithm to segment color images
(figures 4(j)-4(l)).

Measuring Clustering Accuracy: For all our evaluation tasks, we work with
data for which the labeling is known. We define clustering accuracy as follows.
For each cluster detected, we check the number of unique “ground-truth” labels
present. Next we determine the label class with maximum representation within
each cluster. The remaining points in the cluster are identified as being wrongly
clustered. The clustering error is the percentage of points in the dataset that are
assigned to wrong clusters.

Digits Data: We use 9268 USPS digits (16×16 images digits 0-9) and 10000
MNIST digits(28×28 images of 0-9) to compare the performance of clustering
algorithms. These datasets pose an interesting challenge. The same digit written
by different people is likely to be more similar to other digits from the same class,
producing distinct clusters. However, some digits have very similar appearances,
e.g. 4’s and 9’s, and produce overlapping clusters.

We vectorize the digit images from USPS into 256 and MNIST into 784 di-
mensions. In the first set of experiments, within each dataset, we gave each of the
45 possible pairs of digits as inputs to the clustering algorithms(e.g. 0’s vs. 1’s).
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We report average performance of each algorithm on these 45 pairs in tables 1
and 2. SCSV-K outperforms all other supervised clustering algorithms on both
datasets (table 1). This indicates the affinity matrix constructed using shift vec-
tors produces a more accurate picture of cluster structure. Similarly, ZPCSV out-
performs all other unsupervised clustering algorithms. ZPCSV is not restricted
to finding 2 clusters in the experiments, therefore it can find multiple clusters
within a single digit. However, the median number of clusters returned was 2 for
both datasets. CSV shows similar performance however the median number of
clusters was 3 for MNIST and 4 for USPS, indicating a tendency to fragment
clusters. On average we found 7 outliers (out of 1500-2000 points) per experiment
for both datasets. We also experimented with giving all 10 classes simultaneously
to the clustering algorithms. Here too SCSV-K outperformed other supervised
clustering algorithms. Among unsupervised algorithms CSV performed the best
(table 2). Comparatively, ZPCSV performs worse because it finds fewer clusters
than there are classes in the data. However, it still beats the original ZPC on
both datasets, reinforcing our claim that we construct better affinity matrices us-
ing shift vectors. To compare our results against adaptive bandwidth meanshift
we varied the initial bandwidth at samples between 10 and 1500 nearest neigh-
bors. We report the best results obtained for their algorithm over this range.
We used this best performing bandwidth setting for experiments with all digits.
AMS performed worse than all other algorithms compared. Curiously, when we
performed K-means clustering on the modes to which individual points in AMS
converge, we obtained better results. For example, in the USPS digits cluster-
ing task with 10 classes, we obtained an accuracy of 26.52% with K=10, when
we post-processed the converged AMS modes using K-means. We attribute this
variation in performance to the heuristics employed in merging modes and spec-
ifying a minimum cluster size. In contrast we do not invoke heuristics to post
process our clustering.

UCI ML: We also tested our algorithms on data sets from the UCI Machine
Learning Repository(see tables). Our K-way algorithm outperformed other clus-
tering algorithms on most tasks. Interestingly, we noticed that our performance
on the SVMGUIDE dataset improved significantly we performed spectral anal-
ysis on our the affinity matrix obtained from the initial transition matrix P ,
instead of using P ε. These gains were not significant for other tasks. Although
CSV returned 2 clusters, one of them contained over 95% of the points in the
dataset. We obtained lower error rates with stricter α criterion. These results
suggest that direct analysis of P avoids the rare cases where CSV fails to find
the right cluster cores. This is because the affinity matrix computed using P
relies on the local correlations of shift vectors, as opposed to the final destina-
tions of the shift. It should be noted that spectral clustering using the affinity
matrix obtained from P , consistently outperforms all other spectral clustering
techniques(table 2). From the table it appears that on an unknown dataset CSV
would give lower expected error than other methods discussed here.
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Table 1. Comparison of supervised clustering errors (%) for various datasets. The

average error is reported for pairwise experiments with MNIST digits and USPS digits.

Data KM NC ls-SC SCSV(K)

P ε P
MNIST(Pairs) 9.04 8.8 8.3 2.7 2.77

MNIST(All) 38.54 80.56 59.49 16.2 17.3

USPS(Pairs) 7.54 5.1 5.13 0.89 0.976

USPS(All) 26.51 30.07 50.1 10.92 18.82

Ionosphere 28.8 10.83 10.82 3.65 3.65
Breast-Cancer 3.95 34.99 34.99 4 3.5

Diabetes 34.9 34.9 34.51 34.85 34.85

SVM-Guide 23.5 12.42 19.61 43.42 5.85

Table 2. Comparison of unsupervised clustering errors (%). The numbers in brackets

are the number of clusters detected.

Data AMS ZPC ZPCSV CSV

P ε P
MNIST(Pairs) 45.2 7.8 1.42 1.62 2.48

MNIST(All) 79.3(9) 80.2(2) 49.87(5) 40.23(7) 17.2(12)

USPS(Pairs) 38.8 3.84 0.913 0.987 0.984

USPS(All) 71.9(9) 69.9(2) 18.75(8) 25.61(7) 4.7(15)

Ionosphere 10.86(3) 10.83(15) 3.65(9) 3.65(10) 3.65(2)

Breast-Cancer 26.35(5) 3.2(7) 4(2) 3.5(2) 3.83(8)

Diabetes 34.37(3) 33.98(2) 33.55(10) 34.85(2) 33.81(4)

SVM-Guide 4.8(12) 9.03(8) 43.42(10) 6.46(6) 43.22(2)

6 Conclusions and Contributions

This paper makes three chief contributions. (1) We have introduced a novel
scale selection criterion based on density isotropy for the computation of shift
vectors. (2) Probabilistic shift using these shift vectors are shown to perform
better than X-shift methods on both real and challenging artificial datasets. (3)
Affinity matrices computed using these shift vectors are shown to consistently
outperform both supervised and unsupervised spectral clustering algorithms.
We argue this is a direct consequence of the principled evidence accumulation
approach adopted to determine local shift properties for points. One drawback
of the probabilistic shift approach is the computational complexity of computing
P ε (O(N3)) by matrix multiplication. In future work we will explore avenues to
compute this efficiently or to approximate it.
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Abstract. Detecting objects, estimating their pose and recovering 3D

shape information are critical problems in many vision and robotics ap-

plications. This paper addresses the above needs by proposing a new

method called DEHV - Depth-Encoded Hough Voting detection scheme.

Inspired by the Hough voting scheme introduced in [13], DEHV incor-

porates depth information into the process of learning distributions of

image features (patches) representing an object category. DEHV takes

advantage of the interplay between the scale of each object patch in the

image and its distance (depth) from the corresponding physical patch

attached to the 3D object. DEHV jointly detects objects, infers their

categories, estimates their pose, and infers/decodes objects depth maps

from either a single image (when no depth maps are available in testing)

or a single image augmented with depth map (when this is available in

testing). Extensive quantitative and qualitative experimental analysis on

existing datasets [6,9,22] and a newly proposed 3D table-top object cate-

gory dataset shows that our DEHV scheme obtains competitive detection

and pose estimation results as well as convincing 3D shape reconstruc-

tion from just one single uncalibrated image. Finally, we demonstrate

that our technique can be successfully employed as a key building block

in two application scenarios (highly accurate 6 degrees of freedom (6

DOF) pose estimation and 3D object modeling).

1 Introduction

Detecting objects and estimating their geometric properties are crucial prob-
lems in many application domains such as robotics, autonomous navigation,
high-level visual scene understanding, activity recognition, and object modeling.
For instance, if one wants to design a robotic system for grasping and manipu-
lating objects, it is of paramount importance to encode the ability to accurately
estimate object orientation (pose) from the camera view point as well as recover
structural properties such as its 3D shape. This information will help the robotic
arm grasp the object at the right location and successfully interact with it.

This paper addresses the above needs, and tackles the following challenges:
i) Learn models of object categories by combining view specific depth maps

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 658–671, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(a) Test Image (b) Detection (c) Partial 3D

Fig. 1. Illustration of key steps in our method. Given a single (previously) unseen

testing image (panel a), our DEHV (Depth-Encoded Hough Voting-based) scheme is

used to detect objects (panel b). Ground truth bounding box is shown in red. Our

detection is shown in green. The centers of the image patches which cast votes for the

object location are shown in red crosses. During detection, our method simultaneously

infers object depth maps of the detected object (panel c). This allows the estimation

of the partial 3D shape of the object from a single image!

(a) (b) (c)
Fig. 2. Point clouds (green) from

a 3D model is registered to the in-

ferred partial 3D point cloud (red)

by DEHV (a). This allows us to

achieve an accurate 6 DOF pose

estimation (b) and realistic 3D ob-

ject modeling (c).

along with the associated 2D image of objects in the same class from different
vantage points. We demonstrate that combining imagery with 3D information
helps build richer models of object categories that can in turn make detection
and pose estimation more accurate. ii) Design a coherent and principled scheme
for detecting objects and estimating their pose from either just a single image
(when no depth maps are available in testing) (Fig. 1(b)), or a single image
augmented with depth maps (when these are available in testing). In the latter
case, 3D information can be conveniently used by the detection scheme to make
detection and pose estimation more robust than in the single image case. iii)
Have our detection scheme recover the 3D structure of the object from just a
single uncalibrated image (when no 3D depth maps are available in testing)
(Fig. 1(c)) and without having seen the object instance during training.

Inspired by implicit shape model (ISM) [13], our method is based on a new
generalized Hough voting-based scheme [2] that incorporates depth information
into the process of learning distributions of object image patches that are com-
patible with the underlying object location (shape) in the image plane. We call
our scheme DEHV - Depth-Encoded Hough Voting scheme (Sec. 3). DEHV ad-
dresses the intrinsic weaknesses of existing Hough voting schemes [13,10,16,17]
where errors in estimating the scale of each image object patch directly affects
the ability of the algorithm to cast consistent votes for the object existence. To
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resolve this ambiguity, we take advantage of the interplay between the scale of
each object patch in the image and its distance (depth) from the correspond-
ing physical patch attached to the 3D object, and specifically use the fact that
objects (or object parts) that are closer to the camera result in image patches
with larger scales. Depth is encoded in training by using available depth maps of
the object from a number of view points. At recognition time, DEHV is applied
to detect objects (Fig. 1(b)) and simultaneously infer/decode depths given hy-
potheses of detected objects (Fig. 1(c)). This process allows the reinforcement of
the existence of an object even if a depth map is not available in testing. If depth
maps are available in testing, the additional information can be used to further
validate if a given detection hypothesis is correct or not. As a by-product of
the ability of DEHV to infer/decode depth at recognition time, we can estimate
the location in 3D of each image patch involved in the voting, and thus recover
the partial 3D shape of the object. Critically, depth decoding can be achieved
even if just a single test image is provided. Extensive experimental analysis on a
number of public datasets (including car Pascal VOC07 [6], mug ETHZ Shape
[9], mouse and stapler 3D object dataset [21]) as well as a newly created in-
house dataset (comprising 3 object categories) are used to validate our claims
(Sec. 4). Experiments with the in-house dataset demonstrate that our DEHV
scheme: i) achieves better detection rates (compared to the traditional Hough
voting scheme); further improvement is observed when depth maps are available
in testing; ii) produces convincing 3D reconstructions from single images; the
accuracy of such reconstructions have been qualitatively assessed with respect
to ground truth depth maps. Experiments with public datasets demonstrate
that our DEHV successfully scales to different types of categories and works in
challenging conditions (severe background clutter, occlusions). DEHV achieves
state of the art detection results on several categories in [6,9], and competitive
pose estimation results on [21]). Finally, we show anecdotal results demonstrat-
ing that DEHV is capable to produce convincing 3D reconstructions from single
uncalibrated images from [6,9,21] in Fig. 12.

We demonstrated the utility of DEHV in two applications (Sec. 4.3): i) Robot
object manipulation: we show that DEHV enables accurate 6 DOF pose estima-
tion (Fig. 2(b)); ii) 3D object modeling: we show that DEHV enables the design
of a system for obtaining eye catching 3D objects models from just one single
image (Fig. 2(c));

2 Previous Work

In the last decade, the vision community has made substantial progress ad-
dressing the problem of object categorization from 2D images. While most of
the work has focussed on representing objects as 2D models [4,13,8] or collec-
tions of 2D models [23], very few methods have tried to combine in a principled
way the appearance information that is captured by images and the intrinsic 3D
structure representative of an object category. Works by [25,21,22] have proposed
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solutions for modeling the way how 2D local object features (or parts) and their
relationship vary in the image as the camera view point changes. Other works
[11,27,14,1] propose hybrid models where reconstructed 3D object models are
augmented with features or parts capturing diagnostic appearance. Few of them
(except [26] for objects) have demonstrated and evaluated the ability to recover
3D shape information from a single query image. However, instead of using
image patches to transfer meta-data (like depth) to the testing instance as in
[26], 3D information is directly encoded into our model during training. Other
works propose to address the problem of detecting and estimating geometrical
properties of single object instances [12,19,18,15]; while accurate pose estimation
and 3D object reconstruction are demonstrated, these methods cannot be easily
extended to incorporate intra-class variability so as to detect and reconstruct
object categories. Unlike our work, these techniques also require that the ob-
jects have significant interior texture to carry out geometric registration. Other
approaches assume that additional information about the object is available in
both training and testing (videos, 3D range data) [20,5]. Besides relying on more
expensive hardware platforms, these approaches tend to achieve high detection
accuracy and pose estimation, but fail when the additional 3D data is either
partially or completely unavailable.

3 Depth-Encoded Hough Voting

In recognition techniques based on hough voting [2] the main idea is to repre-
sented the object as a collection of parts (patches) and have each part to cast
votes in a discrete voting-space. Each vote corresponds to a hypothesis of object
location x and class O. The object is identified by the conglomeration of votes in
the voting space V (O, x). V (O, x) is typically defined as the sum of independent
votes p(O, x, fj , sj , lj) from each part j, where lj is the location of the part, sj

is the scale of the part, and fj is the part appearance.
Previously proposed methods [13,10,16,17] differ mainly by the mechanism for

selecting good parts. For example, parts may be either selected by an interest
point detector [13,16], or densely sampled across many scales and locations [10];
and the quality of the part can be learned by estimating the probability [13]
that the part is good or discriminatively trained using different types of classifiers
[16,10]. In this paper, we propose a novel method that uses 3D depth information
to guide the part selection process. As a result, our constructed voting space
V (O, x|D), which accumulates votes for different object classes O at location
x, depends on the corresponding depth information D of the image. Intuitively,
any confusing part that is selected at a wrong scale can be pruned out by using
depth information. This allows us to select parts which are consistent with the
object physical scale. It is clear that depending on whether object is closer or
further, or depending on the actual 3D object shape, the way how each patch
votes will change (Fig. 3).
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Fig. 3. Left panel shows that patches associated to the actual object parts (red boxes)

will vote for the correct object hypothesis (red dots) in the voting space on the right.

However, parts from the background or other instances (cyan boxes) will cast confusing

votes and create a false object hypothesis (green dots) in the voting space. Right panel

shows that given depth information, the patches selected in a wrong scale can be easily

pruned. As a result, the false positive hypothesis will be supported by less votes.

In detail, we define V (O, x|D) as the sum of individual probabilities over all
observed images patches at location lj and for all possible scales sj , i.e,

V (O, x|D) =
∑

j

∫
p(O, x, fj , sj, lj |dj) dsj

=
∑

j

∫
p(O, x|fj , sj, lj , dj)p(fj |sj , lj , dj)p(sj |lj , dj)P (lj |dj) dsj (1)

where the summation over j aggregates the evidence from individual patch loca-
tion, and the integral over sj marginalizes out the uncertainty in scale for each
image patch. Since fj is calculated deterministically from observation at location
lj with scale sj , and we assume p(lj |dj) is uniformly distributed given depth, we
obtain:

V (O, x|D) ∝
∑

j

∫
p(O, x|fj , sj , lj , dj)p(sj |lj .dj)dsj

=
∑
j,i

∫
p(O, x|Ci, sj , lj , dj)p(Ci|fj)p(sj |lj , dj)dsj (2)

Here we introduce codebook entry Cj , matched by feature fj, into the frame-
work, so that the quality of a patch selected will be related to which codeword
it is matched to. Noting that Cj is calculated only using fj and not the lo-
cation lj, scale sj, and depth dj , we simplify p(Cj |fj , sj , lj, dj) into p(Cj |fj).
And by assuming that p(O, x|.) does not depend on fj given Cj , we simplify
p(O, x|Cj , fj , sj , lj, dj) into p(O, x|Cj , sj , lj , dj).

Finally, we decompose p(O, x|.) into p(O|.) and p(x|.) as follows:

V (O, x|D) ∝
∑
j,i

∫
p(x|O,Ci, sj , lj, dj)p(O|Ci, sj , lj , dj)p(Ci|fj)p(sj |lj , dj) dsj

Scale to depth mapping. We design our method so as to specifically selects
image patches that tightly enclose a sphere with a fix radius r in 3D during
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Fig. 4. Illustration of depth to scale mapping. Right panel illustrates the concept of

depth to scale mapping. Training under the assumption that an image patch (green

box) tightly encloses the physical 3D part with a fix size, our method deterministically

selects patches given the patch center l, 3D information of the image, and focal length

t. During testing, given the selected image patches on the object, our method directly

infers the location of the corresponding physical parts and obtains the 3D shape of the

object. Left Panel illustrates the physical interpretation of Eq. 3. Under the assumption

that image patch (red bounding box) tightly encloses the 3D sphere with radius r, the

patch scale s is directly related to the depth d given camera focal length t and the

center l = (u, v) of the image patch. Notice that this is a simplified illustration where

the patch center is on the yz plane. This figure is best viewed in color.

training. As a result, our model enforces a 1-to-1 mapping m between scale s
and depth d. This way, given the 3D information, our method deterministically
select the scale of the patch at each location l, and given the selected patches,
our method can infer the underlying 3D information (Fig.4). In detail, given the
camera focal length t, the corresponding scale s at location l = (u, v) can be
computed as s = m(d, l) and the depth d can be inferred from d = m−1(s, l).
The mapping m obeys the following relations:

s = 2(v − v); v = tan(θ + φ)t; θ = arcsin(
r

dyz
); φ = arctan(

v

t
)

dyz =
d
√
t2 + v2

√
u2 + v2 + t2

: d projected onto yz plane (3)

Hence, p(s|l, d) = δ(s −m(d, l)). Moreover, using the fact that there is a 1-to-1
mapping between s and d, probabilities p(x|.) and p(O|.) are independent to d
given s. As a result, only scale s is directly influenced by depth.

In the case when depth is unknown, p(s|l, d) becomes a uniform distribution
over all possible scales. Our model needs to search through the scale space to
find patches with correct scales. This will be used to detect the object and
simultaneously infer the depth d = m−1(s, l). Hence, the underlying 3D shape
of the object will be recovered.

Random forest codebook. In order to utilize dense depth map or infer dense
reconstruction of an object, we use random forest to efficiently map features
f into codeword C (similar to [10]) so that we can evaluate patches densely
distributed over the object. Moreover, random forest is discriminatively trained
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to select salient parts. Since feature f deterministically maps to Ci given the ith
random tree, the voting score V (O.x|D) becomes:

V (O, x|D) ∝
∑
j,i

∫
p(x|O,Ci(fj), sj , lj)p(O|Ci(fj))p(sj |lj , dj) dsj (4)

where the summation over i aggregates the discriminative strength of different
trees. In section 3.1, we describe how the distributions of p(x|O,Ci(fj), sj , lj)
and p(O|Ci(fj)) are learned given training data, so that each patch j knows
where to vast votes during recognition.

3.1 Training the Model

We assume that for a number of training object instances, the 3D reconstruction
D of the object is available. This corresponds to having available the distance
(depth) of each image object patch from its physical location in 3D. Our goal is to
learn the distributions of location p(x|.) and object class p(O|.), and the mapping
of Ci(f). Here we define location x of an object as a bounding box with center
position q, height h, and aspect ratio a. We sample each image patch centered
at location l and select the scale s = m(l, d). Then the feature f is extracted
from the patch (l, s). When the image patch comes from a foreground object, we
cache: 1) the information of the relative voting direction b as q−l

s ; 2) the relative
object-height/patch-scale ratio w as h

s ; 3) the object aspect ratio a. Then, we
use both the foreground patches (positive examples) and background patches
(negative examples) to train a random forest to obtain the mapping Ci(f).
p(O|C) is estimated by counting the frequency that patches of O falls in the
codebook entry C. p(x|O,C, s, l) can be evaluated given the cached information
{v, w, a} as follows:

p(x|O,C, s, l) ∝
∑

j∈g(O,C)

δ(q − bj · s + l, h− wj · s, a− aj) (5)

where g(O,C) is a set of patches from O mapped to codebook entry C.

3.2 Recognition and 3D Reconstruction

Recognition when depth is available. It is straightforward to use the model
when 3D information is observed during recognition. Since the uncertainty of
scale is removed, Eq. 4 becomes

V (O, x|D) ∝
∑
j,i

p(x|O,Ci(fj),m(lj , dj), lj)p(O|Ci(fj)) (6)

Since sj = m(lj , dj) is a single value at each location j, the system can detect
objects more efficiently by computing less features and counting less votes. More-
over, patches selected using local appearance at a wrong scale can be pruned out
to reduce hallucination of objects (Fig. 3).
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Fig. 5. A typical detection re-

sult in (a) shows object hypothe-

sis bounding box (green box) and

patches (red crosses) vote for the

hypothesis. A naive reconstruction

suffers from quantization error (b)

and phantom objects (c). Our algo-

rithm overcomes these issues and

obtains (d)

Recognition when depth is not available. When no 3D information is avail-
able during recognition, p(sj |lj, dj) becomes a uniform distribution over the en-
tire scale space. Since there is no closed form solution of integral over sj , we
propose to discretize the space into a finite number of scales S so that Eq. 4 can
be approximated by V (O, x|D) ∝

∑
j,i

∑
sj∈S p(x|O,Ci(fj), sj , lj)p(O|Ci(fj))

Decoding 3D information. Once we obtain a detection hypothesis (x,O)
(Green box in Fig. 5(a)) corresponding to a peak in the voting space V , the
patches that have cast votes for a given hypothesis can be identified (Red cross
in Fig. 5(a)). Since the depth information is encoded by the scale s and position
l of each image patch, we apply Eq 3 in a reverse fashion to infer/decode depths
from scales. The reconstruction, however, is affected by a number of issues:
i) Quantization error: The fact that scale space is discretized into a finite set
of scales, implies that the depths d that we obtained are also discretized. As
a result, we observe the reconstructed point clouds as slices of the true object
(See Fig. 5(b)). We propose to use the height of the object hypothesis h and
the specific object-height/patch-scale ratio w to recover the continuous scale
ŝ = h/w. Notice that since w is not discretized, ŝ is also not discretized. Hence,
we recover the reconstruction of an object as a continuum of 3D points (See
Fig. 5(c)). ii) Phantom objects: The strength and robustness of our voting-
based method comes from the ability to aggregate pieces of information from
different training instances. As a result, the reconstruction may contain multiple
phantom objects since image patches could resemble those coming from different
training instances with slightly different intrinsic scales. Notice that the phantom
objects phenomenon reflects the uncertainty of the scale of the object in an object
categorical model. In order to construct a unique shape of the detected object
instance, we calculate the relative object height in 3D with respect to a selected
reference instance to normalize the inferred depth. Using this method, we recover
a unique 3D shape of the detected object.

4 Evaluation

We evaluated our DEHV algorithm on several datasets. The training settings
were as follows. For each training image, we randomly sample 100 image patches
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Fig. 6. Object localization results are shown as precision recall curves evaluated using

PASCAL VOC protocol. (Green curve) Result using standard ISM model (baseline).

(Blue curve) Result using DEHV with no depth information during testing. (Red curve)

Result using DEHV with partial depth information during testing. Notice the consistent

improvement of average precision (AP) compared to the baseline hough voting.

from object instances and 500 image patches from background regions. The
scale of the patch size from the corresponding object instance is determined by
its (known) depth (Fig. 4). At the end, 10 random trees (Sec. 3.1) are trained
using the sampled foreground and background patches for each dataset. For all
experiment, we use a Hog-like feature introduced in [10]. During detection, our
method treats each discrete viewpoint as a different class O.

4.1 Exp.I: System Analysis on a Novel 3D Table-Top Object
Dataset

Due to the lack of datasets comprising both images and 3D depth maps of set of
generic object categories, we propose a new 3D table-top object category dataset
collected on a robot platform. The dataset contains three common table-top ob-
ject categories: mice, mugs, and staplers, each with 10 object instances. We ar-
range these objects in two different sets for the purpose of object localization and
pose estimation evaluation. The object localization dataset (Table-Top-Local)
contains 200 images with the number of object ranging from 2 to 6 object in-
stances per image in a clutter office environment. The object pose estimation
dataset (Table-Top-Pose) contains 480 images where each object instance is cap-
tured under 16 different poses (8 angles and 2 heights). For both settings, each im-
age comes with depth information collected using a structure-light stereo camera.
Please see the author’s project page ( http://www.eecs.umich.edu/~sunmin)
for more information about the dataset.

We evaluate our method under 3 different training and testing conditions,
which are 1) standard ISM model trained and tested without depth, 2) DEHV
trained with depth but tested without depth, and 3) DEHV trained and tested
with depth. We show that the knowledge of 3D information helps in terms of
object localization (Fig. 6), and pose estimation (Fig. 7). Moreover, we evaluate
our method’s ability to infer depth from just a single 2D image. Given the
ground truth focal length of the camera, we evaluate the absolute depth error
for the inferred partial point clouds in table. 1-Left Column. Notice that our

http://www.eecs.umich.edu/~sunmin
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averaged across three cate-

gories. The average accuracy

increases when more 3D in-

formation is available. And

knowing depths in both train-

ing and testing sets gives the

best performance.

errors are always lower than the baseline errors1. We also evaluate the relative
depth errors2 reported in table. 1-Right Column when the exact focal length is
unknown. Object detection examples and inferred 3D point clouds are shown in
Fig. 8.

Sparse/Baseline Sparse/Baseline

Mouse 0.0145/0.0255 0.0173/0.0308

Stapler

0.0176/0.0228 0.0201/0.0263

0.0094/0.0240 0.0114/0.0298

Abs. Depth in (m) Rel. Depth 
(known focal length) (unknown focal length)Table 1

Mug

Savarese et
al. ’08 [22]

Farhadi et
al. ’09 [7]

DEHV
stapler

DEHV
mouse

64.78 78.1675.0 73.5

Table 2. pose estimation performance on 3D object dataset[21]

Fig. 8. Example of object detections (Top) and inferred 3D point clouds (Bottom).

The inferred point clouds preserve the detailed structure of the objects, like the han-

dle of mug. Object contours are overlaid on top of the image to improve the readers

understanding. Please refer to the author’s project page for a better visualization.

4.2 Exp.II:Comparision on Three Challenging Datasets

In order to demonstrate that DEHV generalizes well on other publicly available
datasets, we compare our results with state-of-the-art object detectors on a sub-
set of object categories from the ETHZ shape dataset, 3D object dataset, and
Pascal 2007 dataset. Notice that all of these datasets contain 2D images only.
Therefore, training of DEHV is performed using the 2D images from these public
available dataset and the depth maps available from the 3D table-top dataset
and our own set of 3D reconstruction of cars3.
1 It is computed assuming each depth is equal to the median of the depths of the

inferred partial point clouds.
2 ‖d−d̂‖

d
where d is the ground truth depth, and d̂ is the estimated depth. And d̂ is

scaled so that d and d̂ have the same median.
3 Notice that only depth is used from our own dataset.



668 M. Sun et al.

Non-Hough Detector
recall @ 0.3/0.4 FPPI

DEHV KAS [9]

67.8/77.4

Hough Detector
recall @ 1.0 FPPI

M HT[16]DEHV

55.0

2

87.1

77.4/80.6

(a)

PMKrank[17]

74.2

ISM[13]

35.5

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False−positives per image

D
e

te
c
ti
o

n
 r

a
te

mugs(b)

 DEHV

Fig. 9. Performance on the mug category of

ETHZ shape dataset [9]. (a-Top) Performance

comparison with other pure Hough voting

methods (M2HT) [16] and (PMK rank) [17].

(a-Bottom) Performance comparison between

state-of-the-art non-hough voting methods [9].

(b) Detection Rate vs. FPPI of DEHV.

ETHZ Shape Dataset. We test our method on the Mug category of the ETHZ
Shape dataset. It contains 48 positive images with mugs and 207 negative images
with a mixture of apple logos, bottles, giraffes, mugs, and swans. Following the
experiment setup in [9], we use 24 positive images and an equal number of
negative images for training. We further match the 24 mugs with the mugs in
3D table-top object dataset to transfer the depth maps to the matched object
instances so that we obtain augmented depth for positive training images. All
the remaining 207 images in the ETHZ Shape dataset are used for testing.

The table in Fig. 9(a)-top shows the comparison of our method with the
standard ISM and two state-of-the-art pure voting-based methods at 1.0 False-
Positive-Per-Image (FPPI). Our DEHV method (recall 83.0 at 1 FPPI) sig-
nificantly outperforms Max-Margin Hough Voting (M2HT) [16] (recall 55 at 1
FPPI) and pyramid match kernel ranking (PMK ranking) [17] (recall 74.2 at 1
FPPI). The table in Fig. 9(a)-bottom shows that our method is comparable to
state-of-the-art non-voting-based method KAS [9]. Note that these results are
not including a second stage verification step which would naturally boost up
performance. The recall vs (FPPI) curve of our method is shown in Fig. 9(b).

3D object dataset. We test our method on the mouse and stapler categories of
the 3D object dataset [21,22], where each category contains 10 object instances
observed under 8 angles, 3 heights, and 2 scales. We adapt the same experimental
settings as [21,22] with additional depth information from the first 5 instances of
the 3D table-top object dataset to train our DEHV models. The pose estimation
performance of our method is shown in table.2. It is superior than [22] and
comparable to [7] (which primarily focuses on pose estimation only).

Pascal VOC 2007 Dataset. We tested our method on the car category of
the Pascal VOC 2007 challenge dataset [6], and report the localization perfor-
mance. Unfortunately PASCAL does not contain depth maps. Thus, in order
to train DEHV with 3D information, we collect a 3D car dataset containing 5
car instances observed from 8 viewpoints, and use Bundler [24] to obtain its 3D
reconstruction. We match 254 car instances4 in the training set of Pascal 2007
dataset to the instances in 3D car dataset and associate depth maps to these
254 Pascal training images. This way the 254 positive images can be associated
to a rough depth value. Finally, both 254 positive Pascal training images and

4 254 cars is a subset of the 1261 positive images in the PASCAL training set. The

subset is selected if they are easy to match with the 3D car dataset.
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Fig. 11. Circular histograms of 6
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estimated object orientation (ex: a
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Fig. 12. Examples of the complete 3D object inference process using the testing images

from Pascal VOC07 [6], ETHZ Shape [9], and 3D object dataset [21]. This figure should

be viewed in color. Row 1 Detection results (green box) overlaid with image patch

centers (red cross) which cast the votes. Row 2 Inferred 3D point clouds (red dots),

given the detection results. Row 3 3D registration results, where red indicates the

inferred partial point clouds and green indicates the visible parts of the 3D CAD

model. Row 4 3D Object modeling using the 3D CAD models and estimated 3D pose

of the objects. Notice that the supporting plane in 3D object modeling are manually

added. Row 5 Visualizations of the estimated 6 DOF poses. (See author’s project page

for 3D visualization.)
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the remaining 4250 negative images are used to train our DEHV detector. We
obtain reasonably good detection performance (Average Precision 0.218) even
though we trained with fewer positive images (Fig. 10). Detection examples and
inferred objects 3D shape are shown in Fig. 12.

4.3 Applications: 6 DOF Pose Estimation and 3D Object Modeling

DEHV detects object classes, estimates a rough pose, and infers a partial recon-
struction of the detected object. In order to robustly recover the accurate 6 DOF
pose and the complete 3D shape of the object, we propose to register the inferred
partial 3D point cloud (Fig. 1(c)) to a set of complete 3D CAD models5. Having
estimated pose during detection allows us to highly reduce the complexity of
this registration process. A modified ICP algorithm [3] is used for registration.
Quantitative evaluation of 6 DOF pose estimation are shown in Fig. 11. We also
obtain a full 3D object model by texture mapping the 2D image onto the 3D
CAD model. Anecdotal results are reported in the 5th row of figure 12.

5 Conclusion

We proposed a new detection scheme called DEHV which can successfully detect
objects, estimate their pose from either a single 2D image or a 2D image com-
bined with depth information. Most importantly, we demonstrated that DEHV
is capable of recover the 3D shape of object categories from just one single un-
calibrated image.

Acknowledgments. We acknowledge the support of NSF (Grant CNS 0931474)
and the Gigascale Systems Research Center, one of six research centers funded
under the Focus Center Research Program (FCRP), a Semiconductor Research
Corporation Entity, and Willow Garage, Inc. for collecting the 3D table-top
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Abstract. The study of 2D shapes is a central problem in the field of

computer vision. In 2D shape analysis, classification and recognition of

objects from their observed silhouettes are extremely crucial and yet diffi-

cult. It usually involves an efficient representation of 2D shape space with

natural metric, so that its mathematical structure can be used for further

analysis. Although significant progress has been made for the study of 2D

simply-connected shapes, very few works have been done on the study of

2D objects with arbitrary topologies. In this work, we propose a represen-

tation of general 2D domains with arbitrary topologies using conformal
geometry. A natural metric can be defined on the proposed representation

space, which gives a metric to measure dissimilarities between objects.

The main idea is to map the exterior and interior of the domain confor-

mally to unit disks and circle domains, using holomorphic 1-forms. A set of

diffeomorphisms from the unit circle S
1 to itself can be obtained, which to-

gether with the conformal modules are used to define the shape signature.

We prove mathematically that our proposed signature uniquely represents

shapes with arbitrary topologies. We also introduce a reconstruction algo-

rithm to obtain shapes from their signatures. This completes our frame-

work and allows us to move back and forth between shapes and signatures.

Experiments show the efficacy of our proposed algorithm as a stable shape

representation scheme.

1 Introduction

Shape analysis of objects from their observed silhouettes is important for many
computer vision applications, such as classification, recognition and image re-
trieval. In order to perform shape analysis effectively, it is necessary to have an
efficient shape representation and a robust metric measuring shape dissimilarity.

Recently, many different representations for 2D shapes and various measures
of dissimilarity between them have been proposed. For example, Zhu et al. [1]
proposed the representation of shapes using their medial axis and compare their
skeletal graphs through a branch and bound strategy. Liu et al. [2] used shape
axis trees to represent shapes, which are defined by the locus of midpoints of op-
timally corresponding boundary points. Belongie et al. [3] proposed to represent
and match 2D shapes for object recognition, based on the shape context and the

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 672–686, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Hungarian method. Mokhtarian [4] introduced a multi-scale, curvature-based
shape representation technique for planar curves, which is especially suitable
for recognition of a noisy curve. Besides, various statistical models for shape
representation were also proposed by different research groups [5,6,7]. These ap-
proaches provide a simple way to represent shapes with finite dimensional spaces,
although they cannot capture all the variability of shapes. Yang et al. [8] pro-
posed a signal representation called the Schwarz representation and applied it
to shape matching problems. Lee et al. [9] proposed to represent curves using
harmonic embedding through their complete silhouettes. Lipman et al. [10] pro-
posed to detect shape dissimilarities up to isometry using conformal densities.
Their works focus on simply-connected domains. Zeng et al. [11] presented to
match and register 3D multiply-connected domains using holomorphic differen-
tials. Zeng et al. [12] analyzed 3D surfaces based on conformal modules. Their
shape index can only determine shapes up to conformal deformations. Mumford
et al. [13] proposed a conformal approach to model simple closed curves which
captured subtle variability of shapes up to scaling and translation. They also
introduced a natural metric, called the Weil-Petersson metric, on the proposed
representation space.

Most of the above methods work only on simple closed curves and gener-
ally cannot deal with multiply-connected objects. In real world applications,
objects from their observed silhouettes are usually multiply-connected domains
(i.e. domains with holes in the interior). In order to analyze such kind of shapes
effectively, it is necessary to develop an algorithm which can deal with multiply-
connected domains. This motivates us to look for a good representation, which is
equipped with a natural metric, to model planar objects of arbitrary topologies.

In this paper, we extend Mumford’s conformal approach [13], which models 2D
simply-connected domains, to represent multiply-connected shapes. Mumford’s
approach provides an effective way to represent 2D simple curves and capture
their subtle differences. To extend it to multiply-connected shapes, the key idea
of our method is to map the exterior and interior of the domain conformally to
unit disks and punctual disks, using holomorphic 1-forms. A set of diffeomor-
phisms from the unit circle S1 to itself can be obtained, which together with
the conformal modules are used to define the shape signature. Our proposed
signature uniquely represents shapes with arbitrary topologies up to scaling and
translation. We also introduce a reconstruction algorithm to obtain shapes from
their signatures. This completes our framework and allows us to move back and
forth between shapes and signatures. The proposed representation space inherits
a natural metric that can be used to measure dissimilarity between shapes.

2 Theoretically Background

In this section, we briefly introduce the theoretical foundations necessary for the
current work. For more details, we refer readers to the classical books [14,15].
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2.1 Beltrami Equation

Consider a complex valued function φ : C → C maps the z-plane to the w-plane,
where z = x+ iy, w = u+ iv. The complex partial derivative is defined as: ∂

∂z :=
1
2 ( ∂

∂x − i ∂
∂y ), ∂

∂z̄ = 1
2 ( ∂

∂x + i ∂
∂y ). The Beltrami equation for φ is defined by: ∂φ

∂z̄ =
μ(z)∂φ

∂z , where μ is called the Beltrami coefficient. If μ is zero, then φ is called
a holomorphic or conformal mapping. Otherwise, if ‖μ‖∞ < 1, then φ is called
a quasiconformal mapping. Given a compact simply-connected domain Ω in C

and a Beltrami coefficient μ with ‖μ‖∞ < 1. There is always a quasiconformal
mapping from Ω to the unit disk D which satisfies the Beltrami equation in the
distribution sense [14].

2.2 Conformal Module

Suppose Ω1 and Ω2 are planar domains. We say Ω1 and Ω2 are conformally
equivalent if there is a biholomorphic diffeomorphism between them. All planar
domains can be classified by the conformal equivalence relation. Each conformal
equivalence class shares the same conformal invariants, the so-called conformal
module. The conformal module is one of the key component for us to define the
unique shape signature.

Suppose Ω is a compact domain on the complex plane C. If Ω has a single
boundary component, the it is called a simply-connected domain. Every simply
connected domain can be mapped to the unit disk conformally and all such kind
of mappings differ by a Möbius transformation: z → eiθ z−z0

1−z̄0z .
Suppose Ω has multiple boundary components ∂Ω = γ0−γ1−γ2 · · · γn, where

γ0 represents the exterior boundary component, then Ω is called a multiply-
connected domain. A circle domain is a unit disk with circular holes. Two circle
domains are conformally equivalent, if and only if they differ by a Möbius trans-
formation. It turns out every multiply-connected domain can be conformally
mapped to a circle domain, as described in the following theorem.

Theorem 1 (Riemann Mapping for Multiply-Connected Domain). If
Ω is a multiply-connected domain, then there exists a conformal mapping φ :
Ω → D, where D is a circle domain. Such kind of mappings differ by Möbius
transformations.

Therefore, each multiply-connected domain is conformally equivalent to a cir-
cle domain. The conformal module for a circle domain is represented as the
centers and radii of inner boundary circles. All simply-connected domains are
conformally equivalent. The topological annulus requires 1 parameter to repre-
sent the conformal module. In general case, because there are n > 1 inner circles,
and the Mobius transformation group is 3 dimensional, therefore the conformal
module requires 3n − 3 parameters. We denote the conformal module of Ω as
Mod(Ω). Fix n, all conformal equivalence classes form a 3n − 3 Riemannian
manifold, the Teichmüller space. The conformal module can be treated as the
Teichmüller coordinates. The Weil-Peterson metric [13] is a Riemannian metric
for Teichmüller space, which induces negative sectional curvature, therefore, the
geodesic between arbitrary two points is unique.
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2.3 Holomorphic Differentials

In order to compute the conformal modules, one needs to find the holomorphic
differential forms on the multiply-connected domain. A differential 1-form on a
planar domain ω is defined as τ = f(x, y)dx + g(x, y)dy, where f, g are smooth
functions. The Hodge star operator acting on a differential 1-form gives the con-
jugate differential 1-form ∗τ = −g(x, y)dx+f(x, y)dy. Intuitively, the conjugate
1-form ∗ τ is obtained by rotating τ by a right angle everywhere.

A holomorphic 1-form consists of a pair of conjugate harmonic 1-forms ω =
τ + i ∗τ = φ(z)dz, where φ(z) is a holomorphic function. We further requires
that either τ or ∗τ is orthogonal to all the boundaries. All holomorphic 1-forms
form a group (with real coefficients), denoted as H(Ω). A basis of H(Ω) is given
by: {ω1, ω2, · · · , ωn}, such that

∫
γj

ωi = δj
i , where δj

i is the Kronecker symbol.
By integrating the holomorphic 1-forms, one can construct the conformal cir-

cular slit map, whose existence is guaranteed by the following theorem.

Theorem 2 (Circular Slit Map). Suppose Ω is a multiply connected domain
with more than one boundary components, then there exists a conformal mapping
φ : Ω → C, such that γ0, γ1 are mapped to concentric circles, γk’s are mapped
to concentric circular slits. All such kind of mappings differ by a rotation.

2.4 Conformal Welding

This work is built on conformal welding, which is constructed as follows. Sup-
pose Γ = {γ0, γ1, · · · , γk} is a set of non-intersecting smooth closed curves on
the complex plane. Γ segments the plane to a set of connected components
{Ω0, Ω1, · · · , Ωs}, each segment Ωi is a multiply-connected domain. We assume
Ω0 contains the infinity point, p �∈ Ω0. By using a Möbius transformation
φ(z) = 1

z−p , p is mapped to ∞, Ω0 is mapped to a compact domain. Replace
Ω0 by φ(Ω0). Construct φk : Ωk → Dk to map each segment Ωk to a circle
domain Dk, 0 ≤ k ≤ s. Assume γi ∈ Γ = Ωj ∩ Ωk, then φj(γi) is a circu-
lar boundary on the circle domain Dj , φk(γi) is a another circle on Dk. Let
fi|S1 := φj ◦ φ−1

k |S1 : S
1 → S

1 be the diffeomorphism from the circle to itself,
which is called the signature of γi.

Definition 1 (Signature of a Family of Loops). The signature of a family
non-intersecting closed planar curves Γ = {γ0, γ1, · · · , γk} is defined as: S(Γ ) :=
{f0, f1, · · · , fk} ∪ {Mod(D0),Mod(D1), · · · ,Mod(Ds)}.

The following main theorem plays the fundamental role for the current work.

Theorem 3 (Main Theorem). The family of smooth planar closed curves Γ
is determined by its signature S(Γ ), unique up to a Möbius transformation of
the Riemann sphere C ∪ {∞}.
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Note that if a circle domain Dk is disk, its conformal module can be omitted
from the signature. The Möbius transformation of the Riemann sphere is given
by (az + b)/(cz + d), where ad − bc = 1, a, b, c, d ∈ C. The proof of Theorem 3
can be found in the Appendix.

The theorem states that the proposed signature determine shapes up to a
Möbius transformation. We can further do a normalization that fixes ∞ to ∞
and that the differential carries the real positive axis at ∞ to the real positive
axis at ∞, as in Mumford’s paper [13]. The signature can then determine the
shapes uniquely up to translation and scaling.

The shape signature S(Γ ) gives us a complete representation for the space of
shapes. It inherits a natural metric. Given two shapes Γ1 and Γ2. Let S(Γi) :=
{f i

0, f
i
1, · · · , f i

k} ∪ {Mod(Di
0),Mod(Di

1), · · · ,Mod(Di
s)} (i = 1, 2). We can define

a metric d(S(Γ1), S(Γ2)) between the two shape signatures using the natural
metric in the Teichmuller space, such as the Weil-Petersson metric [13].

Besides, our signature is stable under geometric noise. Our algorithm depends
on conformal maps from shapes to circle domains using holomorphic 1-forms.
The computation of 1-forms is equivalent to solving an elliptic PDE, which is
stable under the perturbation of boundary conditions. On the other hand, in
theory, the change of topology will cause the change of conformal structures.
Hence, our algorithm is sensitive to topological noise. In practice, after extracting
the contours, we filter out the ones with length less than the threshold, which
are treated as topological noise.

3 Algorithm

In this section, we describe our proposed algorithm in detail. Here, we assume
a planar domain Ω is with n inner boundary components, Let the boundary of
the mesh be ∂Ω = γ0 − γ1 · · · − γn, represented as a triangular mesh. We use
vi to denote a vertex, [vi, vj ] denote an edge, [vi, vj , vk] denote face. The angle
at vertex vi in triangle [vi, vj , vk] is denoted as θi

jk. The angle structure of the
mesh is defined as the set: A(Ω) := {θi

jk, θ
k
ij , θ

j
ki|[vi, vj , vk] ∈ Ω}. In this work,

all the following computations completely depend on the angle structure.

3.1 Shape Signatures of Planar Domains with Arbitrary Topologies

We describe the algorithm to compute the signature of Ω with n inner boundary
components. The inner boundaries decompose Ω into several sub-domains Ωk.
The algorithm consists of two main steps, as follows:

– 1. Compute the conformal maps from Ωk to circle domains Dk;
– 2. Compute the conformal modules for each sub-domain Ωk and the signature

fij for each boundary.

Step 1: Conformal maps from Ωk to circle domains Dk. The conformal param-
eterization of Ωk can be obtained easily by computing the circular slit map and
performing the Koebe’s iteration. Detailed algorithm can be found in [16].
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(a) Holomorphic 1-form (b) Circular slit map (c) Fill the inner hole (d) Circular map of (c)

Fig. 1. Circular slit map

Circular slit map: The circular slit map can be obtained by finding a holomorphic
1-form ω, such that

Img(
∫

γ0

ω) = 2π, Img(
∫

γ1

ω) = −2π, img(
∫

γk

ω) = 0, 2 ≤ k ≤ n. (1)

To solve Equation 1, we first compute the basis for the holomorphic 1-form group.
ω is then a linear combination of the basis ω =

∑n
k=1 λkωk, the coefficients {λk}

can be calculated by solving the linear system 1. The circular slit map is given
by φ(p) = exp(

∫ p

q
ω), ∀p ∈ Ω, where q is a base point, and the integration path

is arbitrarily chosen in Ω. Figure 1 shows the circular slit map of a 2-hole planar
domain.

(a) Exact form (b) Closed form (c) Holomorphic form (d) Conformal mapping

Fig. 2. Conformal mapping for a simply connected domain by puncturing a small hole

in the center

If Ω is a simply-connected domain (topological disk), we compute the confor-
mal mapping to map it to the unit disk in the following way. First, we punch
a small hole in the domain, and treat it as a topological annulus. Then we use
circular slit map to map the punched annulus to the canonical annulus. By
shrinking the size of the punched hole, the circular slit mappings converge to the
conformal mapping. Figure 2 shows such an example.

Hole filling: After computing the circular slit map, the planar domain is mapped
to the planar annulus with concentric circular slits. γ0 is the unit circle, γ1 is
the inner circle, γk’s are slits, 2 ≤ k ≤ n. We use Delaunay triangulation to
generate a disk D1 bounded by γ1, ∂D1 = γ1, and glue Ω with D1 along γ1,
Ω1 := Ω ∪γ1 D1. We then use circular slit map again to map Ω1, such that
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γ2 is opened to a circle. We compute a disk D2 bounded by γ2, glue Ω1 and
D2 to get Ω2. By repeating circular slit map, at the step k, γk is opened to a
circle. We compute a circular disk Dk bounded by γk, and glue Ωk−1 with Dk,
Ωk = Ωk−1 ∪γk

Dk. Eventually, we can fill all the holes to get Ωn. All the disks
Dk in Ωn are not exactly circular.

Koebe’s iteration: By Koebe’s iteration, all the boundary components become
rounder and rounder. Basically, each time, we choose a disk Dk. The complement
of Dk on Ωn is a doubly-connected domain. We map the complement to the
canonical planar annulus, then γk becomes a circle. We recompute the disk
Dk bounded by the updated γk, and glue the annulus with the updated Dk.
After this iteration, γk becomes a circle. Then we choose another disk Dj, and
repeat this process to make γj a circle. This will destroy the perfectness of
the circular shape of γk. But by repeating this process, all the γk’s become
rounder and rounder, and eventually converge to perfect circles. The convergence
is exponentially fast. Detailed proof can be found in [15].

Step 2: Computing conformal modules and signatures fij on boundaries. After
the conformal parameterization of Ωk to the circle domain is computed, we can
compute their conformal modules and also the signature fij on each boundary.
The conformal modules together with {fij} give the complete signature S(Γ ). We
demonstrate the process for computing S(Γ ) with a double fish image as shown
in Figure 3. Given the original image, we first perform image segmentation to get
the binary image, then calculate the contours of the objects in the image. The
contour of each fish is shown in the figure. For simplicity, we treat the outermost
boundary of the image as the unit circle. Then all the contours segment the
image to planar domains Ω0, Ω1, Ω2. We map each planar segment to a circle
domain. Ω0 is mapped to a disk D0 with two circular holes. The centers and
radii (c0, r0) and (c1, r1) form the conformal module of Ω0. Also, Ω1 and Ω2 are
mapped to the unit disks D1, D2 respectively. We denote the conformal maps of
Ωi by Φi : Ωi → Di. The contour of the small fish are mapped to the boundary
of D1 and one inner boundary of D0, the signature is given by f01 := Φ1 ◦ Φ−1

0 ,
which is shown in frame (B) as the blue curve. Similarly, the signature f02 of the
contour of the shark can also be computed. The signature of both fish contours
is given by S(Γ ) = {c0, c1, r0, r1, f01, f02}.

3.2 Reconstruction of Shapes from Signatures

Suppose Ω has n contours, then with n+ 1 segments. The signature is given by
the conformal modules {Mod(Dk), 0 ≤ k ≤ n} and automorphims of circles fij .

First, we construct circle domains Dk’s directly from their modules
Mod(Dk)’s. We tessellate the circular boundaries of each Dk and use Delau-
nay triangulation to triangulate Dk. Then, we combinatorially glue the trianglar
mesh Di and Dj by fij . Suppose the boundary circle γi ∈ ∂Di corresponds to
γj ∈ Dj , fij : γi → γj . For each vertex vi ∈ γi, we insert fij(vi) to γj , vice
versa, for each vertex vj ∈ γj , we insert f−1

ij (vj) to γi. Then we use constrained
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Fig. 3. Signature. Each segment is mapped to a circle domain. The conformal modules

(centers and radii of inner circles) of the circle domains and the diffeomorphisms of the

circles define the signature.

Fig. 4. The shark image with spatial changes in the positions of the two fishes. The

shape signature can effectively capture spatial changes of objects in the image (com-

pared to Figure 3).

Delaunay triangulation to refine the triangulation of Di and Dj . Therefore the
refined triangle mesh Di and Dj can be combinatorially glued through γi and
γj . We repeat this process for all fij ’s, to obtain a combinatorial triangle mesh,
denoted as D.

In the whole algorithm pipeline, all the computations solely depend on the
angle structure. We define the angle structure of D as: A(D) = ∪n

k=0A(Dk).
Then we compute a conformal mapping φ from D to the unit disk using

the angle structure A(D). The image φ(D) differs from the original image by a
Möbius transformation. This can be further removed by specifying three vertices
on the outer boundary circle.

Suppose in the original image, the positions of three boundary vertices {v0,
v1, v2} are {w0, w1, w2}, and their positions in φ(D) are {z0, z1, z2}. We need
compute a unique Möbius transformation ρ, such that ρ(zk) = wk. First, we maps
the unit disk to the upper half plane by h(z) = z−i

iz−1 . Then on the upper half

plane, we map {h(z0), h(z1), h(z2)} to {0, 1,∞} by σ1(z) = z−h(z0)
z−h(z2)

h(z1)−h(z2)
h(z1)−h(z0)

.
Similarly, we construct σ2(z), that maps {h(w0), h(w1), h(w2)} to {0, 1,∞}. The
the composition map σ = h−1◦σ−1

2 ◦σ1◦h is the desired Möbius transformation,
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Fig. 5. Shape signatures of different images with 2 boundaries and 2 levels

which is called normalization map. Therefore, τ ◦ φ maps D to the unit disk,
which reconstructs the contours from the signature.

4 Experimental Results

We implement our proposed algorithm using generic C++ on windows XP plat-
form, with Intel Duo CPU 2.33 GHz, 3.98 G RAM. The numerical systems are
solved using Matlab C++ library. The contour extraction is obtained by using
the OpenCV library. The computational time for our algorithm is shown in Table
1. In general, both the signature calculation and reconstruction take less than 1
minute to compute, even on complicated domains.

Table 1. Computational time (second)

Model # of contours # of vertex # of faces Signature Reconstruction

Cat 3 5247 10236 19 s 10 s

TwoCats 6 5969 11680 29 s 7 s

Ameba 2 9094 17930 8 s 12 s

Fishes 2 5978 11716 23 s 8 s

NewFishes 2 7519 14780 24 s 9 s

Elephant 2 11968 23678 17 s -

Brain 2 8211 16164 11 s -

Wolf 3 8451 16644 47 s -
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A. Shape Representation of Multiply-Connected Domains

Figure 4 (A) shows another double fishes image with spatial changes in the posi-
tions of the two fishes, compared with that in Figure 3. The big shark and small
fish interchanged their positions. The shape signature of the image is plotted in
(B), which is quite different from the shape signature in Figure 3 (see red and
blue curves). In other words, our shape signature can effectively capture spatial
changes of objects in the image, which can be potentially used for the purpose of
image understanding. Figure 5 shows the shape signatures of 3 different images
with 3 boundaries and 2 levels (levels = number of punctual disks needed for
conformal parameterizations). (A) shows the shape signature of the flower image.
Note that the fluctuating pattern of the outer boundary of the flower is effec-
tively captured by f01 (the red curve). (B) and (C) shows the shape signatures of
the brain and elephant images respectively. The three different images have very
different shape signatures, meaning that our shape representation can effectively
be used for classifying shapes. We also computed the shape signatures on more
complicated images. Figure 6 (A) shows a wolf image with 3 boundaries and 1
level. The exterior and interior of the domain are conformally mapped to the
unit disk and punctual disk. The conformal domains consist of one punctual disk
with 3 inner disks removed. So, the conformal modules consist of 3 centers and 3
radii, as shown in (A). The diffeomorphisms of the unit circle on each boundary
are also plotted. (B) shows the shape signature of the Mickey Mouse image with
3 boundaries and 2 levels. The conformal domain consists of two punctual disks.
So, the conformal modules again consist of 3 centers and radii. The conformal
modules together with the diffeomorphisms of the unit circle are plotted. Figure
7 shows an image with two cats. It consists of 6 boundaries with 2 levels. The
conformal modules consist of 3 punctual disks with 3 holes removed. Hence, the
conformal modules consist of 6 centers and 6 radii. The shape signatures are
plotted in (B) and (C). (B) shows the signature for the outer level whereas (C)
shows the signature of the inner level. Experimental results on these complicated
images demonstrate the efficacy of our shape representation method.

B. Reconstruction of Shapes From Their Shape Signatures

Figure 8 shows the reconstruction of the shark image from its shape signature.
The reconstructed image closely resembles to the original image, except some
very tiny details are missing. The zoomed views show that the reconstructed
ones are smoother, and lose the sharp corners. It shows our algorithm can effec-
tively reconstruct shapes from their signature. We also tested our reconstruction
algorithm on images with 2 levels. Figure 9 shows the Ameba image with 2
boundaries and 2 levels. The conformal domains consist of two punctual disks,
each has one hole removed. The conformal modules consist of two centers and
two radii. The shape signature is plotted in (B). We reconstruct the image from
its shape signature in (C), which is very close to the original image. We also
tested the algorithm on a more complicated example. Figure 10 shows a cat
image with 3 boundaries and 2 levels. As we can see in (A), the original con-
tour of the image is a little bit noisy. We computed the shape signature of the
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Fig. 6. Shape signatures of different images with 3 boundaries and 2 levels

Fig. 7. Shape signatures of another image of cats with 6 boundaries and 2 levels

image, which is shown in (B). In (C), we show the reconstructed image from
its shape signature. Again, the reconstructed image is very close to the original
one, although the original noisy contours are smoothed out a little bit. Finally,
we studied the numerical error of our reconstruction scheme. Table 2 shows the
distance between the original and reconstructed contours of the Ameba and cat
images. It shows a very small numerical error. The average distance is less than
0.005. It means our proposed reconstruction algorithm is very accurate.

Table 2. Distance between the original and reconstructed contours

Ameba Number of vertex Distance sum Average distance

Contour 1 685 1.669626 0.002437

Contour 2 112 0.238269 0.002127

Cat Number of vertex Distance sum Average distance

Contour 1 96 0.227687 0.002372

Contour 2 92 0.295533 0.003212

Contour 3 363 1.674350 0.004613
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(a) Original contour (b) Reconstructed contour (c) Zoomed view (d) Zoomed view

Fig. 8. Comparison between the original contours (a) and the reconstructed ones (b).

The zoomed views (c) and (d) show that the reconstructed ones are smoother

Fig. 9. Shape representation of the Ameba image and the reconstruction from its shape

signature

Fig. 10. Shape representation of the cat image and its reconstruction from the shape

signature

5 Conclusion and Future Work

We present a shape representation of multiply-connected planar domains using
conformal geometry. Using conformal geometry, a set of diffeomorphisms from
the unit circle S1 to itself can be obtained, which together with the conformal
modules are used to define the shape signature. We also introduce a reconstruction
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algorithm to obtain shapes from their signatures. This completes the framework
of our shape representation scheme. In the future, we will apply our algorithm for
shape analysis based on Weil-Peterson metric. We will also test our proposed sig-
natures on standard benchmark images, and compare with other existing repre-
sentations for simply-connected shapes.
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Appendix: Proof of Theorem 3

Proof. See Figure 11. In the left frame, a family of planar smooth curves Γ = {γ0,
· · ·, γ5} divide the plane to segments {Ω0, Ω1, · · · , Ω6}, where Ω0 contains the ∞
point. We represent the segments and the curves as a tree in the second frame,
where each node represents a segment Ωk, each link represents a curve γi. If Ωj

is included by Ωi, and Ωi and Ωj shares a curve γk, then the link γk in the tree
connects Ωj to Ωi, denoted as γk : Ωi → Ωj . In the third frame, each segment
Ωk is mapped conformally to a circle domain Dk by Φk. The signature for each
closed curve γk is computed fij = Φi ◦ Φ−1

j |γk
, where γk : Ωi → Ωj in the tree.

In the last frame, we construct a Riemann sphere by gluing circle domains Dk’s
using fij ’s in the following way. The gluing process is of bottom up. We first
glue the leaf nodes to their fathers. Let γk : Di → Dj , Dj be a leaf of the tree.
For each point z = reiθ in Dj , the extension map: Gij(reiθ) = refij(θ).

We denote the image of Dj under Gij as Sj . Then we glue Sj with Di. By
repeating this gluing procedure bottom up, we glue all leafs to their fathers.
Then we prune all leaves from the tree. Then we glue all the leaves of the new
tree, and prune again. By repeating this procedure, eventually, we get a tree
with only the root node, then we get a Riemann sphere, denoted as S. Each
circle domain Dk is mapped to a segment Sk in the last frame, by a sequence
of extension maps. Suppose Dk is a circle domain, a path from the root D0 to
Dk is {i0 = 0, i1, i2, · · · , in = k}, then the map from Gk : Dk → Sk is given by:
Gk = Gi0i1 ◦Gi1i2 ◦ · · · ◦Gin−1in . Note that, G0 is identity. Then the Beltrami
coefficient of G−1

k : Sk → Dk can be directly computed, denoted as μk : Sk → C.
The composition Φk ◦G−1

k : Sk → Ωk maps Sk to Ωk, because Φk is conformal,
therefore the Beltrami coefficient of Φk ◦G−1

k equals to μk.

Ω0

Ω1

Ω2

Ω3

Ω6

Ω5

Ω4

γ0

γ1

γ2
γ3

γ4

γ5

Ω Ω0

Ω1

Ω2 Ω3

Ω4
Ω5

Ω6

γ0

γ1
γ2

γ3
γ4

γ5

γ0, f01

γ1, f12 γ2, f13

γ3, f24 γ4, f25
γ5, f36

Φ0 : Ω0 → D0

Φ1 : Ω1 → D1

Φ2 : Ω2 → D2
Φ3 : Ω3 → D3

Φ4 : Ω4 → D4
Φ5 : Ω5 → D5

Φ6 : Ω6 → D6

S1

S0

S2

S3

S4 S5

S6

S

Fig. 11. Proof for the main theorem, the signature uniquely determines the family of

closed curves unique up to a Mb̈oius transformation



686 L.M. Lui et al.

We want to find a map from the Riemann sphere S to the original Riemann
sphere Ω, Φ : S → Ω. The Beltrami-coefficient μ : S → C is the union of μk’s
each segments: μ(z) = μk(z), ∀z ∈ Sk. The solution exists and is unique up to a
Möbius transformation according to Quasi-conformal Mapping theorem [14].

Note that, the discrete computational method is more direct without explicitly
solving the Beltrami equation. From the Beltrami coefficient μ, one can deform
the conformal structure of Sk to that of Ωk, under the conformal structures of
Ωk, Φ : S → Ω becomes a conformal mapping. The conformal structure of Ωk

is equivalent to that of Dk, therefore, one can use the conformal structure of
Dk directly. In discrete case, the conformal structure is represented as the angle
structure. Therefore in our algorithm, we copy the angle structures of Dk’s to
S, and compute the conformal map Φ directly.
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Abstract. In order for recognition systems to scale to a larger number of

object categories building visual class taxonomies is important to achieve

running times logarithmic in the number of classes [1,2]. In this paper we

propose a novel approach for speeding up recognition times of multi-class

part-based object representations. The main idea is to construct a taxon-

omy of constellation models cascaded from coarse-to-fine resolution and

use it in recognition with an efficient search strategy. The taxonomy is

built automatically in a way to minimize the number of expected compu-

tations during recognition by optimizing the cost-to-power ratio [3]. The

structure and the depth of the taxonomy is not pre-determined but is

inferred from the data. The approach is utilized on the hierarchy-of-parts

model [4] achieving efficiency in both, the representation of the structure

of objects as well as in the number of modeled object classes. We achieve

speed-up even for a small number of object classes on the ETHZ and

TUD dataset. On a larger scale, our approach achieves detection time

that is logarithmic in the number of classes.

1 Introduction

Representing objects as spatial layouts of simpler parts has been shown as an
effective way of modeling generic object classes [5,6,7]. In order to recognize
and detect a larger number of object categories in images, several works have
proposed feature sharing among the objects to achieve better generalization as
well as to cut down computation time [5,7]. However, these approaches still run
with time linear in the number of classes [8], since they need to scan the (shared)
feature space with a detector for each class separately. In contrast, visual class
taxonomies [2,9] induce a hierarchy over the class labels: usually a hierarchical
tree of classifiers is used to achieve recognition complexity logarithmic in the
number of classes [1].

In this paper we propose a novel approach for speeding up multi-class object
detection based on part-based object representations [10,7] by constructing a
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Fig. 1. A hierarchical tree of coarse-to-fine constellation models. M ’s denote the mod-

els, T ’s denote the tests (detectors for the models), explained in Sec. 4.1 and 5. The leaf

nodes (object class models) are assumed known (we use [4] to learn them), whereas all

the other models in the taxonomy are obtained automatically, by clustering the object

models in the leaves. The depth and structure of the taxonomy are learned.

visual taxonomy of constellation models cascaded from coarse-to-fine resolution
(Fig. 1). The taxonomy is generative, where each object class can be generated
by following a particular path in the hierarchical taxonomy tree. The taxonomy
is constructed by clustering a set of object class models into a hierarchical tree
of increasingly coarser constellation models both in terms of structure as well as
in the appearance of parts. The tree is built automatically in a way to minimize
the number of expected computations during recognition by optimizing the cost-
to-power ratio [3]. The structure and the depth of the taxonomic tree are not
pre-determined but are inferred from the data. During recognition, our approach
uses the learned taxonomy to prune the search space in a coarse-to-fine fashion,
starting from the root using the depth-first search algorithm.

The approach is utilized on the hierarchy-of-parts model [4] achieving effi-
ciency in both, the representation of the shape of the objects (by using a hierar-
chy of shareable shape features that gradually progress in complexity) as well as
in the number of modeled object classes (by inducing a taxonomy over the class
labels). Compared to the baseline [4], we demonstrate good speed-up even for a
small number of object classes on the ETHZ [11] and TUD dataset [12]. On a
larger scale (Caltech 101 [13] and LabelMe [5]), our approach achieves detection
time that is logarithmic in the number of classes.

2 Related Work

Prior work on multi-class object recognition is mainly concerned with speeding-
up classification approaches [1,8,14], while our goal here is to speed-up gen-
erative, part-based object class models. Nevertheless, the ideas behind these
approaches are related to ours. Zhender et al. [14] employ a hierarchical cas-
cade of classifiers, while [8] translates the classification stage into matching in
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a high-dimensional vector space, where fast, scalable solutions exist. Similarly,
Stewenius and Nister [15] build a hierarchical cluster tree in the vector space
(representing descriptor appearance) in an image retrieval scenario. Our prob-
lem is substantially different since we are dealing also with object geometry.

Bart et al. [9] build a taxonomy of images represented as bags of visual words
in an unsupervised manner by learning a hierarchical tree of topic models. Their
taxonomy is generative like ours, however, they are dealing with taxonomy of
images and not objects and the representation does not take into account the ge-
ometry between features. Closer to our approach is the work by Sivic et al. [2],
where the authors build a taxonomy of increasingly coarser object represen-
tations both in terms of the spatial layout (fixed grid with varying degree of
resolution) and appearance (by varying the degree of clustering of SIFT fea-
tures) using a Hierarchical LDA model. In our approach we use the constellation
model [16,10,4] as the means to represent the objects and show how to build a
generative taxonomy of increasingly coarser constellations.

Our work is also related to coarse-to-fine model matching which has appeared
in many forms in the literature. Gavrila [17] proposed a method for hierarchical
clustering of object templates and applying the cascade to speed-up template
matching in the domain of pedestrian detection.

In [18], the authors propose a cascade of detectors based on the constellation
model to detect specific instances of objects. Similarly as in our approach, the
detectors are cascaded in a coarse-to-fine resolution, however, the coarsening of
the spatial grid is pre-defined, while in our approach the coarsening of both the
location and appearance is learned by optimizing the cost-to-power ratio on a
set of training images. We also deal with generic object classes.

Amit and Geman [19] learn “spread” tests to check multiple object hypotheses
simultaneously. Spreading corresponds to OR-ing (disjunctions) the locations
of simple oriented edges so that the conjunction of these coarsely positioned
features is common (shared) among several object classes. In our approach the
spreading (OR-ing) is done in both location as well as in appearance making the
method generally applicable to part-based models.

Our work builds on some of the theoretical ideas on coarse-to-fine search
strategies [3,20]. We apply them to our particular problem, which is building
visual taxonomies of object classes for part-based object representations.

Note that our constellation-based object taxonomy differs from hierarchical
representations of object structure [4,21]. Here we induce a hierarchy on the
object class labels, while [4,21] deal with a hierarchy of shape features.

3 Overview and Contributions

The problem we are tackling is multiple object class detection using part-based
object representations, in particular the constellation-type models [16,10]. We
assume that we have available constellation models for a set of object classes
and we want to perform recognition with them in arbitrary images (we do not
know which objects are present in an image). In the original approach [16,10], a
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detector for each class separately needs to be run on a query image resulting in
recognition times linear in the number of modeled objects.

The novel idea of this paper is to speed-up recognition by using a generative
taxonomy of constellation object detectors organized hierarchically in a coarse-
to-fine manner. Recognition will proceed from the root down by first employing
a small set of coarse detectors and pruning improbable search paths. Performed
in this way, the detectors in the leaves, which are the given object class models,
will rarely be implemented, thus speeding up the overall recognition procedure.

This paper makes three novel contributions:

1. Representing a visual taxonomy of object classes with a coarse-to-fine
taxonomy of constellation models.

2. Automatic construction of the taxonomy by minimizing the expected
number of computations during recognition. We will build on the coarse-to-
fine search strategies proposed by Blanchard and Geman [3].

3. Combining the class taxonomy with a structure hierarchy for fast
multi-class object recognition.

The approach is organized as follows. In Sec. 4 we present the representation of
the constellation taxonomy which will be referred to as the taxonomic constella-
tion tree (TCT). Sec. 5 explains the recognition procedure using TCT. In Sec. 6
we propose an approach to automatic construction of the TCT model.

4 Representation: Coarse-to-Fine Constellation
Taxonomy

Let C be a set of classes. We assume we have available a constellation-type
model [10] Mc for each class c ∈ C, the collection of which forms our database
M = {Mc}c∈C of object models. Note that each object class can be represented
with (a mixture of) multiple models (e.g. a model per view or object articula-
tion), however for the ease of exposition, we assume the existence of one model
per class. We first define the basic constellation model in Subsec. 4.1. In Sub-
sec. 4.2 we propose the representation using a taxonomic constellation tree.

4.1 The Probabilistic Constellation Model of Objects

From a query image I a set of features F along with their locations X is first
extracted. We assume that features are discrete, i.e., each feature in F is char-
acterized by type (e.g. a particular shape or visual word). The set of all feature
types forms a vocabulary. We assume the object models to have a star topology,
although the approach can be easily extended to more complex topologies.

Each model represents an object class as a collection of parts and spatial
relations among them. We follow [10] to define the model. Each class c ∈ C is
represented with a model Mc = (Pc, θ

app
c , θg

c ), Mc ∈ M, which has Pc parts,
appearance parameters θapp

c for the parts, and geometry parameters θg
c , where

the positions of all parts are conditioned on the position of a so-called reference
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part, but are mutually independent conditionally on the reference part. We addi-
tionally define the assignment variable h of size Pc, which assigns some features
in F to the parts in the model Mc.

The joint density is factored as follows [10]:

p(F,X,h|c,Mc) = p(F|h, c,Mc)︸ ︷︷ ︸
appearance

p(X|h, c,Mc)︸ ︷︷ ︸
geometry

p(h|c,Mc)︸ ︷︷ ︸
occlusion

For the appearance term we have the following factorization:

p(F|h, c,Mc) =
Pc∏
i=1

p(F(hi) | c, θapp
ci ) (1)

We will assume that each part corresponds to one feature type or is modeled as
a distribution over a small number of feature types, i.e. p(f | c, θapp

ci ) > 0 for a
small number of all types f in the vocabulary.

The geometry term can be factorized as follows:

p(X|h, c,Mc) = p(xR|hR)
∏
j �=R

p(xj |xR, hj , c, θ
g
cj),

where R denotes the reference part. The distribution pjR := p(xj |xR, hj , c, θcj) is
taken to be Gaussian [10,4], i.e., pjR = N (xj −xR | θcj), where θcj = (μcj , Σcj).

In recognition, a decision whether an object of class c is present in an image
(at a particular location) or not is made on the likelihood-ratio [16]:

p(c|F,X)
p(B|F,X)

∝
∑

h p(F,X,h|c,Mc)
p(F,X,h0|B)

, (2)

where B denotes the background (“no object of class c present”) and h0 is the
null hypothesis explaining all features as background. The occlusion term can
be defined as in [10], however, we will not explicitly deal with it in this paper.

4.2 A Coarse-to-Fine Taxonomic Constellation Tree (TCT)

Our approach exploits the fact that constellation models for similar object classes
have (or share) similar spatial arrangements of parts (of possibly similar appear-
ance) and can thus be grouped in a natural way: we can design “coarse” constel-
lations that capture the distribution over multiple object classes. In particular,
we will cluster the models in the database M to obtain a hierarchical tree H of
constellations, where the constellations close to the root are coarse in both ge-
ometry and appearance and span the distribution over a larger number of object
classes, while the constellations closer to the leaves are more specific. The leaves
of the tree contain the given object constellation models from M. This induces
a taxonomic organization on object classes which will be used during detection
to speed-up the computations. Fig. 1 illustrates H.



692 S. Fidler, M. Boben, and A. Leonardis

A taxonomic constellation tree (TCT)H is represented with a tree graph,H =
(V,E), where each node ξ ∈ V in the tree contains a model Mξ = (Pξ, θ

app
ξ , θg

ξ )
and a corresponding test Tξ (which will be explained in more detail in Sec. 5).
The leaves of the tree correspond to the object models Mc ∈ M and are assumed
to be known in advance. All other models in the tree are obtained by hierarchical
clustering of the models in M. By definition, the root node will be set at level
0 of the tree.

Define the domain D(Mξ) of a model Mξ to be the set of object classes {c},
such that the likelihood p(I(c)|Mξ) of observing an image I(c) of any of these
classes under the model Mξ is non-zero, or rather, higher than a threshold τξ

(discussed in Sec. 5): D(Mξ) = {c ∈ C : p(I(c)|Mξ) > τξ}. A node ξ from level
� is a parent of node η from level � + 1 below, if the domain of the model Mη

is entirely contained in the domain of Mξ: D(Mη) ⊂ D(Mξ). This means that if
the likelihood of class c is high under Mη it must also be sufficiently high under
its parent Mξ. Thus a model that has multiple children spans a distribution over
multiple object classes, and the variances of the distribution in both appearance
of parts as well as their geometry have to be large enough to accommodate for
this. In the root node, we put a “trivial” model M0 that has only one part, where
θapp
0 is uniform over the feature space and θg

0 is trivial.

5 Efficient Inference

The main purpose of TCT is to reduce the number of full object class models
that need to be evaluated at a particular region in an image during recognition.
To achieve this we will evaluate TCT from the root down in a depth-first search
manner and prune the improbable search paths (the unlikely object hypotheses).

For the purpose of pruning, we will construct a binary computationally inex-
pensive test Tξ for each model Mξ in H. The test will be, during recognition,
used to form a decision whether the children of the model Mξ should be further
explored or not. A test will yield a value 1 if the finer hypotheses (the children
of ξ) are “worth” evaluating further, and 0 if the entire subbranch of hypotheses
can be reliably eliminated from the search process. During training, each test will
be designed to have no missed detections, at the expense of having some false
positives. This idea is adopted from [19]. The false positives during recognition
mean that some search paths will get explored even though the corresponding
object classes might not be present. If some search path ends in a leaf (meaning
that no parents yielded a negative answer), the likelihood-ratio as defined in (2)
will be evaluated for the corresponding object class model and a full probabilistic
decision will be made on the presence or absence of an object.

A test Tξ(I) will take the following form:

Tξ(I) = 1
(
Jξ(I) > τξ

)
, where (3)

Jξ(I) = max
h

p(F,X,h | ξ, θξ)

where 1(·) is the indicator function. It checks whether the most probable hy-
pothesis under the model Mξ is higher than a particular threshold τξ. We use
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the max instead of a sum (which would correspond to the image likelihood un-
der the model Mξ) since it allows for further speed-ups as discussed below. If
the probability of the most likely hypothesis is too small the test will be 0 and
none of the children of Mξ in the TCT will be evaluated further. If Tξ(I) is 1
the children of Mξ get tested in a similar way. We adopt a depth-first search as
in [3,20], meaning that the child μ with the highest value of Jμ is explored first.

By using the tests as defined in (3), we assume the existence of thresholds
τξ which effectively separate the “foreground” (classes in the domain D(Mξ))
from the “background”, similarly as in [19]. As in [19], the thresholds τξ will be
learned such that the probability of a missed detection will be 0 (or close to 0):
p
(
Tξ = 0|D(Mξ)

)
= 0, while the number of false positives will be sufficiently

small: p(Tξ = 1|background,Mξ)� 1.
For further speed-up, we additionally define the individual likelihoods of

the appearances and geometry under Mξ: Japp
ξ,j (I) = maxhj p(F(hj)|Mξ) and

Jg
ξ,j(I) = maxhj p(xj |xR, hj ,Mξ). While evaluating the tests in an image we can

exploit the factorization of p(F,X,h | ξ, θξ): since the overall probability Jξ(I)
should exceed the threshold τξ, each of the individual probabilities Japp

ξ,j (I) and
Jg

ξ,j(I) in the product should also satisfy this condition. This limits the allowed
geometry to a small region making computations fast, while at the same time
quickly prunes off assignments where the individual likelihoods are small.

6 Learning the Taxonomic Constellation Tree

Given the database of object class models M, our goal is to construct a tax-
onomic constellation tree H by optimizing its expected run time on a set of
training images. We adopt some of the conceptual ideas from [20,3], i.e., opti-
mizing the power-to-cost ratio to learn the representation.

We first introduce the notation. Let H� = (V �, E�) denote the subgraph of
H at level � with the set of models M� and tests T � defined in the nodes V �.
Denote with θg,� and θapp,� the parameters of the models at level � and with
V� the vocabulary of feature types at this level. Further, let B(Mξ) denote the
background interpretation under Mξ, which is any interpretation outside of the
model’s domain D(Mξ). Define the missed detection rate of a test with α(Tξ) =
p
(
Tξ = 0|D(Mξ)

)
. Each test will be assigned a cost denoted with t(Tξ), which

can be measured with dedicated CPU time, and power denoted with β(Tξ) =
p
(
Tξ = 0|B(Mξ)

)
. The power is thus the selectivity of the test. It is shown in [3],

that under certain conditions, a sufficient condition for the optimality of the
coarse-to-fine search is:

∀ξ ∈ V :
t(Tξ)
β(Tξ)

≤
∑

η=child(ξ)

t(Tη)
β(Tη)

, (4)

which will motivate our learning objective function. The tree will be built from
the leaves up. The models at a particular level � will be obtained by clustering
the models from the previous level, �+ 1 (the root node will be at level 0). Each
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(clustered) model Mξ ∈ H� will be evaluated with respect to the effectiveness of
its corresponding test (detector) Tξ.

Assume we already have a model Mξ. Its test Tξ (which has one parameter: a
threshold τξ) is learned as follows. Since we want the missed detection rate to be
close to zero, α(Tξ) ≈ 0, we set τξ as the minimum of {Jξ(I)}I∈train, or rather,
some percentage of it to allow for generalization outside the training data [19,22].
When the test is learned, we can calculate its cost t and the power β from the
training data. For better generalization, we use different training data to learn
the tests than the data used to train the original set of models M.

Our learning objective for each level � is to optimize the cost-to-power ratio:

H�
∗ = arg min

H�

∑
ξ∈V �

t(Tξ)
β(Tξ)

, (5)

where each Tξ also satisfies the condition in (4). Finding the global maximum
of (5) is obviously intractable, thus our solution will be to generate good guesses
and use stochastic optimization to improve the result. In particular, our learn-
ing approach uses the following steps: 1.) parameter clustering: cluster the
parameters θg and the vocabulary of feature types V from the models at the
level below, 2.) model clustering: cluster the models from the level below with
respect to the appearance and geometry clusters, 3.) local optimization: opti-
mize H� on the training data. Steps 1 to 3 are repeated several times (by varying
the clustering parameters) and the H� with the lowest cost in (5) is selected.
Parameter clustering. To cluster the models, geometry will be the primary
cue: models with similar spatial arrangements of parts will have a higher chance
of being merged. We start by clustering the geometry parameters and group the
feature types afterwards. Geometry: We use the k-means algorithm to cluster
the means μ�+1 of the Gaussian parameters θg,�+1 (defined in Sec. 4.1) and
assign each mean μ�+1 to its closest cluster. Appearance: With respect to the
centers, we can calculate the similarity between different types of features from
vocabulary V�+1 and use a clustering algorithm to group them, which yields the
vocabulary V�. Clustering in the case of discrete feature types means OR-ing
(disjunction). To calculate the similarity we can do the following: for every pair
of models in which a part of one model coincides with a part of the other (the
means of the geometric distributions fall in the same k-means cluster) we simply
increase the similarity score of the feature types corresponding to these two
parts. With respect to V� we can re-define the appearance parameters θapp,�+1.
Model clustering. If we do not consider the variances of the geometric dis-
tributions, we can now group the models M �+1 which have the same geometric
means (k-means clusters) as well as the appearance distributions θapp,�+1 into
one model M � at level � and make corresponding edges in the graph H� (to
models that were merged into M �). For each M � we can estimate the variances
of the geometric distributions from the variances of its children at level � + 1.
Local optimization. Since the model clustering stage disregards the informa-
tion on the variances of the geometry, the resulting models can have too large
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variances and the corresponding tests will not be very selective. This means that
the condition in (4) will not be fulfilled. It is thus necessary to optimize the clus-
ters: we can remove one edge from H�, re-estimate the variances of the parent
model M �

ξ and re-calculate the cost-to-power ratio t(T �
ξ )/β(T �

ξ ). At each step the
edge with the highest cost-to-power ratio is removed from H�.

The levels of TCT are built until there is still a computational saving with
respect to the cost-to-power ratio (5).

7 Combining TCT with the Hierarchy-of-Parts Model [4]

To represent, learn and detect object classes we will use the hierarchy-of-parts
model [4], which will serve as the baseline in the experiments. We give a brief
summary of the model. Objects are represented with a recursive compositional
shape vocabulary, the structure of which is learned from images without su-
pervision. The vocabulary contains a set of shape compositions at each layer.
Each composition is defined recursively: it is a hierarchical generative probabilis-
tic model that represents a geometric configuration of a small number of parts
which are themselves hierarchical probabilistic models, i.e., compositions from a
previous layer of the vocabulary. Different compositions can share models for the
parts, which makes the vocabulary efficient in size and results in faster inference.

The definition of a composition with respect to just one layer below is akin to
that of the constellation model [10]. Each part is spatially constrained on the par-
ent composition via a spatial relation which is modeled with a two-dimensional
Gaussian distribution. Each part in a composition has also an “appearance”
which is defined as a (discrete) distribution over the set of compositions from
the previous layer of the vocabulary. At the lowest layer, the vocabulary con-
sists of a small number of short oriented contour fragments. The vocabulary at
the top-most layer contains compositions that represent the shapes of the whole
objects. Altogether six layers are learned.

Fig. 2. Hierarchy-of-parts model [4]

(hierarchy of shape features of increas-

ing complexity) combined with the

proposed taxonomic constellation tree

TCT (taxonomy of object class mod-

els). The structure hierarchy has six

layers. The taxonomy is built over

the last layer’s models which are the

compositions (constellations) model-

ing the whole shape of the objects.

The depth of the taxonomy is not pre-

determined.
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We will combine our taxonomy model with the hierarchical vocabulary in
the following way. The top layer in the vocabulary is an object layer and grows
linearly with the number of modeled classes. Thus the models at the final layer
form our database of models for which the taxonomy is built over. The features
F which are extracted from an image prior to recognition will be the detections
corresponding to the compositions in the fifth layer of the vocabulary (one layer
below the object layer). The illustration of the combined model is given in Fig. 2.

8 Experimental Results

The aim of the experiments is to compare the speed of the proposed taxonomy
model vs the baseline as the number of classes increases, and show that its
detection rate does not degrade significantly with respect to the baseline model.

8.1 ETHZ Shape Dataset: 5 Object Classes

We use the ETHZ shape dataset of 5 object classes: apple logo, bottle, giraffe,
mug and swan. For training and testing we follow the same protocol as in [11].
For this and all experiments in the paper, the following was used to train the
model. Bounding boxes (scaled to size approx. 200 pixels in diagonal) were used
in training. Two image scales, spaced apart by

√
2, were used to train object

models, while 4 to 6 scales were used in testing. For constructing the taxonomy
the positive training images as well as a set of 100 natural images not containing
the objects were used to construct TCT. The positive training images available in
each dataset were split into 5 images used as positive examples for test learning
and the rest for learning the object representation, i.e., training the hierarchy-
of-parts model [4].

For the five classes, the learned TCT consisted of 2 layers. The detection
times are reported in Fig. 3 (the first five classes in the Shape-15 plot). The
times reported do not include the process of feature extraction. Since both the
baseline and our approach involve the same feature extraction process, such a
comparison gives a clearer picture of the achieved speed-up.

The detection performance is reported in Table 1. The TCT approach per-
forms slightly worse than the baseline which is due to the depth-first search
strategy during recognition: while it boosts recognitions times, the performance
might slightly degrade.

Table 1. Average detection-rate (in %) at 0.4 FPPI for the ETHZ dataset [11]

applelogo bottle giraffe mug swan average

[11] 83.2(1.7) 83.2(7.5) 58.6(14.6) 83.6(8.6) 75.4(13.4) 76.8

[23] 95.0 89.3 75.4 90.3 94.1 88.8

baseline 88.2(3.4) 87.6(1.5) 83.5(1.1) 86.1(2.) 80(3.5) 85.1

TCT 87.3(2.6) 87.3(2.2) 83.1(1.3) 85.8(3.1) 79.4(5.4) 84.6
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8.2 TUD Shape Dataset: 10 Object Classes

TUD shape2 [12] contains 10 classes of home appliances such as knife, fork, mug,
saucepan, etc. The test set contains 10 images of objects for each class, and
roughly 100 for training – from these we randomly choose 20 images for training
the object class models with [4] and another 5 for training the TCT (with the
addition of 100 negative natural images). The learned TCT consisted of 2 layers.

The recognition times of both the baseline and TCT are plotted in Fig. 3.
The speed-up factor for 10 classes is almost 2 and grows as more classes are
added. We also compare the baseline (hierarchy-of-parts [4]) and TCT against
the recognition procedure used in the original constellation model [16,10]. There,
a detector for each class is run separately over the image, thus resulting in
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Fig. 3. Comparison between baseline and proposed TCT model for several datasets in:

a) average detection times per image, b) speed-up of TCT over baseline, c) compar-

ison of detection times of baseline and TCT against the recognition procedure of the

constellation model [16] (see text for details), all as a function of the number of classes
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complexity linear in the number of classes, i.e., n · O(detector for one class)
(where n is the number of classes). Due to part sharing and the indexing and
matching recognition scheme in [4], not all class models get evaluated in each im-
age location already for our baseline, however, the running time of [4] is still lin-
ear, but with a smaller constant, i.e., k ·O(detector for one class) (where k� n).

The classification accuracy of the baseline approach is 69%, while the TCT
achieves a 66% classification rate. For comparison, Stark et al. [12] report a 44%
accuracy using a discriminative approach (SVM over different types of features).

8.3 Shape 15

The approach was also tested on detection of 15 shape-based object classes.
The first 5 are taken from ETHZ [11] and the 10 additional from the GRAZ
dataset [7]. The comparison in detection performance is given in Fig. 4, while
the comparison in detection times is plotted in Fig. 3. TCT is depicted in Fig. 6.
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Fig. 4. Comparing detection rates (recall at EER) on Shape-15 – composed of the

ETHZ [11] (first 5 classes in the plot) and 10 classes from GRAZ dataset [7]

Fig. 5. Detection examples: horse, motorbike, giraffe, cow, bottle

8.4 Caltech 101 and LabelMe Dataset (148 Object Classes)

The approach has been also tested on a larger scale. We used 100 classes from
the Caltech-101 dataset [13] and 148 classes from the LabelMe dataset [24]. For
both datasets, 30 images were randomly chosen from the available annotations to
train each class. For both datasets the taxonomy resulted in a 4 layer TCT. The
approach was tested for detection time on 200 images randomly sampled from
each dataset. Evaluation is done on full images, i.e., of approx. size 500×400. The
comparison in detection times (averaged over 200 images) is plotted in Fig. 3.

The speed-up on the LabelMe dataset is not very high due to various possible
reasons: 1.) too few classes are still being used to adequately showcase a taxon-
omy (as also reported in [8]), 2.) the LabelMe annotations are noisy and thus



A Coarse-to-Fine Taxonomy of Constellations 699

8

15

A
pp

le

8

16

bo
ttl

e

16

28

gi
ra

ff
e

12

21

m
ug

8

12

sw
an

14

25

ho
rs

e
9

16

co
w

25

42

m
bi

ke

23

39

bi
cy

cl
e

10

16

ca
rf

ro
nt

17

32

ca
rs

id
e

24

35

ca
rr

ea
r

24

37

fa
ce

9

15

pe
rs

on

9

12

cu
p

22 2 43 2 3 3

6 612 97 117 20 17 8 16 1718 852 2 33 1 12 111 221

Fig. 6. TCT learned on Shape-15. Bottom level are object classes – the number denotes

the number of models for each class.

the baseline does not learn the classes very well, 3.) the images used for testing
in LabelMe are images of complex scenes containing many objects and signifi-
cant texture (with which already the baseline [4] does not deal well) resulting
in many false-positives decisions, 4.) a number of classes have very simple shape
(e.g. a street lamp which mostly gets represented as a long vertical line) and thus
lead to a higher number of false positives per image already with the baseline
method. A detection (even if it is a false positive) means that a whole branch in
the TCT tree needs to be explored as well, making the speed-up smaller.

9 Summary and Conclusions

In this paper we proposed a novel approach for automatic construction of a
generative visual class taxonomy with the aim to speed-up multi-class object
detection with the constellation models. Specifically, we learned a taxonomic tree
of constellations cascaded from coarse-to-fine resolution, and the corresponding
detectors which take the form of inexpensive, binary tests. Both the taxonomic
constellation tree and the corresponding tests are learned from the training data.

The approach has been utilized on the hierarchy-of-parts model [4] achieving
efficiency in both, the representation of the object structure as well as in the
number of modeled object classes. We demonstrated good speed-up on several
recognition datasets with promising scaling tendency for recognition on a larger
scale. As part of future work, we plan to add discriminative information to the
taxonomy to boost also its recognition accuracy.
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Abstract. Co-occurrence features are effective for object classification

because observing co-occurrence of two events is far more informative

than observing occurrence of each event separately. For example, a color

co-occurrence histogram captures co-occurrence of pairs of colors at a

given distance while a color histogram just expresses frequency of each

color. As one of such co-occurrence features, CoHOG (co-occurrence his-

tograms of oriented gradients) has been proposed and a method using

CoHOG with a linear classifier has shown a comparable performance with

state-of-the-art pedestrian detection methods. According to recent stud-

ies, it has been suggested that combining heterogeneous features such

as texture, shape, and color is useful for object classification. There-

fore, we introduce three heterogeneous features based on co-occurrence

called color-CoHOG, CoHED, and CoHD, respectively. Each heteroge-

neous features are evaluated on the INRIA person dataset and the Ox-

ford 17/102 category flower datasets. The experimental results show that

color-CoHOG is effective for the INRIA person dataset and CoHED is

effective for the Oxford flower datasets. By combining above heteroge-

neous features, the proposed method achieves comparable classification

performance to state-of-the-art methods on the above datasets. The re-

sults suggest that the proposed method using heterogeneous features can

be used as an off-the-shelf method for various object classification tasks.

1 Introduction

Object classification is one of the essential tasks in computer vision and his-
togram based features such as SIFT (scale invariant feature transform) [9], HOG
(histograms of oriented gradients) [1], and a color histogram [17] are widely used
features for object classification. A merit of histogram based features is robust-
ness to the slight shift of an object position. However, these histogram based
features have the limited discriminative power because they don’t take any spa-
tial information into account. One of the solutions to this problem is to extract
features from multiple small regions in an image. However, if the regions are too
small, features extracted from them become sensitive to the slight object trans-
lation. Another solution is to use co-occurrences of pairs of features extracted
from different positions in an input image. For example, a color co-occurrence
histogram (CCH) [6], also called color correlogram, captures co-occurrence of

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 701–714, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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pairs of colors while a color histogram just expresses frequency of each color.
In a similar way, edge co-occurrence matrices (ECMs) [13], originally applied to
texture classification problem, express the spatial relationship of pairs of edge
orientations. Recently, CoHOG (co-occurrence histograms of oriented gradients)
[19], an extension of HOG to represent the spatial relationship between gradi-
ent orientations, has been proposed and its effectiveness for pedestrian detection
and cat face detection has been shown in [19,8]. Methods using co-occurrences
of more than two features have also been proposed in [20,15].

According to recent studies [4,16,10,11], it has been suggested that combining
heterogeneous features such as texture, shape, and color is useful for object clas-
sification. Since heterogeneous features represent various aspects of objects and
work complementarily, they achieve higher classification performance than ho-
mogeneous features and are applicable to a variety of object classification tasks.
Therefore, we introduce three heterogeneous features based on co-occurrence
called color-CoHOG, CoHED, and CoHD, respectively.

The remainder of the paper is organized as follows. CoHOG is briefly explained
in Sect. 2. Then three heterogeneous features, color-CoHOG, CoHED, and CoHD
are proposed in Sect. 3. Experiments are presented in Sects. 4 and 5. Finally,
conclusions are given in Sect. 6.

2 Co-occurrence Histograms of Oriented Gradients

CoHOG (co-occurrence histograms of oriented gradients) [19], an extension of
HOG [1], consists of multiple co-occurrence histograms of gradient orientations.
Though the dimensionality of CoHOG is high, a linear classifier gives high clas-
sification performance. Therefore, computational cost of classification is lower
than other complex classification methods such as kernel SVM. An algorithm
of CoHOG calculation is shown in Algorithm 1. The number of elements of the
co-occurrence histograms H is m × n × d2 where d is the number of gradient
orientation bins. For example, given 10 offsets, 10 small regions, and 10 bins for
gradient orientation, the number of elements of H is 10, 000. In detail, please
refer to [19].

3 Proposed Features

In this section, we propose three heterogeneous features based on co-occurrence
called color-CoHOG, CoHED, and CoHD, respectively. Color-CoHOG, which is
an extension of CoHOG to make use of color information, is co-occurrence of
a color matching result and a pair of edge directions. CoHED is co-occurrence
between edge orientation and color difference. CoHD is co-occurrence of a pair of
color differences. Hence color-CoHOG and CoHED are co-occurrences of hetero-
geneous features and CoHD is co-occurrence of homogeneous features. Details
are described in the following sections. We also explain a color histogram as a
complementary feature of the above three features.
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Algorithm 1. CoHOG calculation
Input: I : a grayscale image, {(pi, qi)}m

i=1: m offsets, {Di}n
i=1: n small regions in the

image

1: compute a gradient orientation image G from I
2: initialize co-occurrence histograms H with zeros

3: for i = 1 to m do
4: for j = 1 to n do
5: for all (x, y) ∈ Dj do
6: if (x + pi, y + qi) is inside of the image then
7: g1 ← G(x, y)

8: g2 ← G(x + pi, y + qi)

9: H(g1, g2, j, i) ← H(g1, g2, j, i) + 1

10: end if
11: end for
12: end for
13: end for
14: return H

3.1 Color-CoHOG

CoHOG calculation described in Algorithm 1 assumes that an input image is
grayscale. Derivative masks such as Sobel filter are used to compute gradients.
If a color image is given, the conversion from color to grayscale is necessary
before CoHOG extraction. Therefore, we extend CoHOG to make use of color
information and we apply two ideas. First, we calculate edge orientation in a
color image instead of a grayscale one. Second, we use a result of color matching
in order to take distinction of foreground and background into account. The
details of the ideas are described below.

Deciding edge orientation in a color image is not a trivial problem and a
lot of researches have been done [7,14,12]. We found that a method based on
the double angle representation [5] gives the consistent results with reasonable
computational cost. In the double angle representation, the directions θ and
θ+180 degrees are equivalent and the orthogonal directions θ and θ+90 degrees
are the vectors that point in opposite directions so that averaging gradients in
different color channels makes sense (shown in Fig. 1). As a result, we obtain
gradient orientations between 0 and 180 degrees since we make no distinction
between θ and θ + 180 degrees. In the experiments described in Sects. 4 and 5,
Roberts filter is used to calculate initial gradients and then they are averaged in
the double angle representation over the RGB channels and the spatial regions
of 2× 2 pixel size. Averaged gradient orientation is evenly divided into 4 bins.

Foreground-background discrimination is helpful to describe a shape (e.g.,
[12]). Taking this into account, we use a result of color matching between a pair
of pixels at a given offset. This is based on the assumption that colors of a pair
of pixels belonging to the same object are likely to be similar while colors of a
pair of pixels located at different objects are likely to be dissimilar. In particular,
we calculate two co-occurrence histograms per offset and small region, one is the
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Fig. 1. (a) A vertical edge. (b) Averaging gradients, denoted by arrows, over red and

blue channels in the single angle representation gives undesirable result. (c) Averaging

gradients over red and blue channels in the double angle representation gives desirable

result.

co-occurrence histogram of a pair of pixels at a given offset that have the same
color and the other is the one of a pair of pixels that have different colors. For
the computational efficiency, we quantize colors in Cb-Cr space into 17 clusters
shown in Fig. 2a and compare the cluster labels to decide if a pair of pixels has
the same color.

Our proposed feature named color-CoHOG is summarized in Algorithm 2.
Whereas the original CoHOG captures texture information only, color-CoHOG
can capture both texture and shape information since foreground-background
discrimination is taken into account. The dimension of color-CoHOG is m×n×
2 × d2 where d is the number of quantized edge directions. In the experiments,
since we use 16 offsets shown in Fig. 2b, color-CoHOG has 16× 1× 2× 42 = 512
elements per small region.

3.2 CoHED

We propose a feature CoHED (Co-occurrence Histograms of pairs of Edge orien-
tations and color Differences) that expresses the relationships between an edge
orientation and the change of colors across the edge. Once an edge orientation at
the point p0 is determined, two points p1 and p2 are located at the two opposite
sides of the edge point p0 (shown in Fig. 3a). Edge orientations are calculated
in the same manner as described in Sect. 3.1 and color differences between p1

and p2 are calculated in YCbCr color space. Then color differences are quantized
to 8 directions in each color plane, that is, Y-Cb plane, Y-Cr plane, and Cb-Cr
plane. Calculation of a co-occurrence histogram with color difference in Y-Cb
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(a) (b)

Fig. 2. (a) The figure shows color labels in Cb-Cr space. The label 16 corresponds to

neutral gray. (b) The figure shows 16 offsets (drawn as filled circles) used for color-

CoHOG calculation.

(a) (b)

Fig. 3. (a) Positions of three points p0, p1 and p2 used for CoHED. Once edge orien-

tation at p0 is decided, p1 and p2 are located at the two opposite sides of the edge.

(b) Eight offsets used for CoHD. A set of three pixels that consist of an origin and a

pair of points located at two opposite positions with respect to the origin is used to

calculate color difference.

plane is as follows;

HY−Cb(g, c)← HY−Cb(g, c) + |dy|+ |du| (1)

where g is the edge orientation at p0, c is the quantized color difference between
p1 and p2 in Y-Cb plane, and dy and du are differences between p1 and p2 in Y
channel and Cb channel, respectively. CoHED is computed by weighted voting
(|dy| + |du| in (1) corresponds to a voting weight) while other co-occurrence
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Algorithm 2. color-CoHOG calculation
Input: I : a color image, {(pi, qi)}m

i=1: m offsets, {Di}n
i=1: n small regions in the image

1: compute an edge direction image G from I using the double angle representation

2: compute color labels C of pixels in the image

3: initialize co-occurrence histograms H with zeros

4: for i = 1 to m do
5: for j = 1 to n do
6: for all (x, y) ∈ Dj do
7: if (x + pi, y + qi) is inside of the image then
8: g1 ← G(x, y)

9: g2 ← G(x + pi, y + qi)

10: if C(x, y) is equal to C(x + pi, y + qi) then
11: c ← 1

12: else
13: c ← 0

14: end if
15: H(g1, g2, c, j, i) ← H(g1, g2, c, j, i) + 1

16: end if
17: end for
18: end for
19: end for
20: return H

features described in this paper are computed by unweighted voting. Since voting
weights for strong step-edges are larger than those for weak ones, CoHED mainly
captures shape information rather than texture information. We use 1, 3, 6, and
9 as the distance s from p0 to p1(p2) in the experiments. Thus, the dimension
of CoHED is 4 (edge directions) ×8 (directions of color differences) ×3 (color
planes) ×4 (scales) = 384.

3.3 CoHD

Since color-CoHOG captures shape and texture information and CoHED cap-
tures shape information, it’s expected that features mainly capturing texture in-
formation work complementarily to color-CoHOG and CoHED. Therefore, based
on the similar idea as CoHOG, we propose a feature CoHD (Co-occurrence His-
tograms of color Differences) that simply captures texture information. CoHD
represents changes of color values of three pixels located on a given line in an
image (shown in Fig. 3b). Color differences are calculated between the centered
pixel and the one of the other two pixels, respectively. Calculation of CoHD is
described in Algorithm 3. Color differences in Cb-Cr plane are quantized to 4
directions. Eight offsets (shown in Fig. 3b) are used to calculate color differ-
ences of pairs of pixels. Thus, the dimension of CoHD is 4 (directions of color
differences) ×4 (directions of color differences) ×8 (offsets) = 128.
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Algorithm 3. CoHD calculation
Input: U : Cb-plane image, V : Cr-plane image, {(pi, qi)}m

i=1: m offsets, {Di}n
i=1: n

small regions in the image

1: initialize co-occurrence histograms H with zeros

2: for i = 1 to m do
3: for j = 1 to n do
4: for all (x, y) ∈ Dj do
5: if (x + pi, y + qi) and (x − pi, y − qi) are inside of the image then
6: u1 ← U(x + pi, y + qi) − U(x, y)

7: v1 ← V (x + pi, y + qi) − V (x, y)

8: u2 ← U(x − pi, y − qi) − U(x, y)

9: v2 ← V (x − pi, y − qi) − V (x, y)

10: c1 ← (u1 > 0) + 2 × (v1 > 0) // quantization into 4 directions

11: c2 ← (u2 > 0) + 2 × (v2 > 0) // quantization into 4 directions

12: H(c1, c2, j, i) ← H(c1, c2, j, i) + 1

13: end if
14: end for
15: end for
16: end for
17: return H

3.4 Color Histogram

The above three features use relative color information. However, absolute color
information is also useful for object classification [10,16]. In this paper, we use a
simple color histogram that consists of 17 bins shown in Fig. 2a. Since we use a
linear classifier in the experiments, 2nd order polynomial terms of elements of a
color histogram are explicitly generated in order to increase linear separability.
Thus the number of elements including the 2nd order terms is 170.

4 Experiment 1. INRIA Person Dataset

In this section, we evaluate the proposed method on the INRIA person dataset
[1]. The INRIA person dataset provides positive images cropped 64× 128 pixels
and negative images of various sizes. Some examples are shown in Fig. 4. The
number of positive/negative images are 2, 416/1, 218 for training and 1, 132/453
for testing, respectively. Detection performance is evaluated by the same way as
described in [1]. We extract features separately from 4× 8 non-overlapped small
regions that are 16× 16 pixel sizes and concatenate them into a single feature
vector. Since the dimensionality of the feature vectors is high, we use a linear
classifier trained by LIBLINEAR [3] that is applicable to a large scale problem.
Each component of features is normalized by its maximum value in the training
samples, respectively.
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Fig. 4. Examples in the INRIA person dataset
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Fig. 5. Feature evaluation on the INRIA person dataset. (a) DET curves of various

thresholds for neutral gray. (b) DET curves obtained by changing the number of color

bins. (c) DET curves of the sparse setting (denoted by ’S’) and the dense setting

(denoted by ’D’), respectively.

4.1 Feature Evaluation

In this section, we study the effect of the following three parameters; the thresh-
old for neutral gray, the number of color bins, and the scale of the offsets. The
former two parameters are related to color-CoHOG and the last parameter is re-
lated to color-CoHOG, CoHED and CoHD, respectively. Since the dimensionality
of features isn’t affected by changing the above three parameters, detection per-
formances obtained by changing those parameters can be easily compared with
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each other. On the other hand, the dimensionality of features is proportional to
the square of the number of quantized directions, which is another parameter of
the proposed features. In this case, it’s difficult to compare the detection perfor-
mances. Thus we select a practical value for the number of quantized directions
and it’s used in the experiments in this paper.

The threshold for neutral gray is the parameter that decides whether each
pixel is chromatic (labels 0-15 in Fig. 2a) or achromatic (label 16 in Fig. 2a)
based on the distance from the origin in Cb-Cr space. Figure 5a shows the DET
(detection error trade-off) curves obtained by changing the threshold. The ex-
perimental result suggests that a small threshold that classifies most of the pixels
as chromatic works well. The setting that classifies all the pixels as chromatic
also works as well (threshold = 0 in Fig. 5a). We set the threshold to 5 in other
experiments described in this paper.

We also studied the effect of the number of color bins. The experimental result
shows that the result of 33 color bins is slightly worse than the other two results
but the number of color bins is insensitive to the detection performance (shown
in Fig. 5b). We use 17 color bins in other experiments described in the paper.

The scale of the offsets is the parameter that decides the distance between
the center pixel and the pixel with an offset. We tested two cases; one is a sparse
setting and the other is a dense setting. The sparse setting uses four scales 1,
3, 6 and 9 as the distances between pixels in Figs. 2b and 3 while the dense
setting uses 1, 2, 3 and 4. The results of color-CoHOG and CoHD show that the
sparse setting is better than the dense one and the result of CoHED shows that
the sparse setting is a little bit better than the dense one (shown in Fig. 5c).
This suggests that capturing less redundant information is more important to
improve classification performance. Therefore, the sparse setting is used in other
experiments in the paper.

4.2 Comparison with CoHOG

Figure 6 shows the DET curves of CoHOG and color-CoHOG, respectively. We
also plotted the result of 3ch-CoHOG as another extension of CoHOG to make
use of color information. 3ch-CoHOG is a feature obtained by concatenating
CoHOGs extracted separately from each color channel. The offsets that are used
for color-CoHOG (shown in Fig. 2b) are used to calculate CoHOG and 3ch-
CoHOG for comparison under the same condition. The detection performance
of color-CoHOG is superior to that of CoHOG and comparable to that of 3ch-
CoHOG while the dimensionality of color-CoHOG (16, 384) is half as that of Co-
HOG (32, 768) and only one-sixth of that of 3ch-CoHOG (98, 304), respectively.
This result means that color-CoHOG makes use of color information efficiently.

4.3 Comparison with Previous Methods

Figure 7 compares the DET curves of the proposed method with those of the
previous methods [1,18,21,2,19,16]. Four heterogeneous features, color-CoHOG,
CoHED, CoHD, and color histograms, were used for the proposed method. The



710 S. Ito and S. Kubota

0.01

0.02

0.05

0.1

0.2

0.5

1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

M
is

s 
R

at
e

False Positive Per Window (FPPW)

Detection Error Trade-off Curve

CoHOG
3ch-CoHOG

color-CoHOG

Fig. 6. DET curves of several CoHOGs on the INRIA person dataset. Color-CoHOG

(circle) is superior to CoHOG (triangle) and comparable to 3ch-CoHOG (cross) while

the dimensionality of color-CoHOG is half as that of CoHOG and only one-sixth of

that of 3ch-CoHOG.

0.01

0.02

0.05

0.1

0.2

0.5

1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

M
is

s 
R

at
e

False Positive Per Window (FPPW)

Detection Error Trade-off Curve

Dalal (CVPR05)
Tuzel (CVPR07)

Wu (CVPR08)
Dollar (ECCV08)

Watanabe (PSIVT09)
Schwartz (ICCV09)

proposed method

Fig. 7. DET curves of the proposed method and several previous methods on the IN-

RIA person dataset. This figure shows that the proposed method (circle) is comparable

to the state-of-the-art method (cross).
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Fig. 8. DET curves of single features on the INRIA person dataset

curves of the previous methods were obtained by tracing the results in the refer-
ences. The proposed method achieves 8.6%, 5.5% and 2.9% miss rates at 10−6,
10−5 and 10−4 FPPWs (false positive per window), respectively. This result is
comparable to the state-of-the-art method [16] that has achieved 7.9% miss rate
at 10−6 FPPW and 5.8% miss rate at 10−5 FPPW.

We also show the DET curves of single features in Fig. 8. The result of each single
feature except color-CoHOG is far inferior to the method of Dalal et al. [1] (shown
in Fig. 7) while the method using the concatenated features achieves comparable
performance to the state-of-the-art method as described above. This means that
our proposed features provide complementary information to each other.

5 Experiment 2. Oxford 17/102 Category Flower
Datasets

In this section, we evaluate the proposed method on the Oxford 17/102 cate-
gory flower datasets [10,11]. The 17 category dataset consists of 80 images per
category and the 102 category dataset consists of between 40 and 258 images
per category. Some examples are shown in Fig. 9. Classification performance is
evaluated by the same manner as described in [10].

In [10], they provide training images, validation images and test images though
we don’t use validation images since they are not necessary for the proposed
method. There are various sizes of images in the datasets, so we crop and resize
them into 64 × 64 pixel size. We extract color-CoHOG, CoHED, CoHD, and
a color histogram from the whole region of the resized image and concatenate
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Fig. 9. Examples of the Oxford 17 category flower dataset

Table 1. Classification performance on the Oxford flower datasets

Method Performance score [10]

17 categories 102 categories

Nilsback [11] 88.33±0.30 72.8

color-CoHOG+CoHED+CoHD+color histogram 94.19±1.22 74.8

color-CoHOG 78.89±1.19 43.4

CoHED 91.54±0.99 64.2

CoHD 84.24±1.07 57.0

color histogram 69.88±2.68 35.6

them into a single feature vector. The dimension of the resulting feature vector
is 1,194. In the same manner as described in Sect. 4, linear classifiers trained
by LIBLINEAR are used and each component of features is normalized by its
maximum value.

Experimental results are shown in Table 1. The proposed method using all
features described in Sect. 3 achieves higher classification performance than the
state-of-the-art method [11] on both datasets in spite of the simplicity of the
proposed method. CoHED achieves the best classification performance among
the four single features on both flower datasets while color-CoHOG achieves the
best performance on the INRIA person dataset. This means that effective fea-
tures are different with respect to object classification tasks. Therefore, a method
using homogeneous features, which is effective for a specific object classification
task, may fail to achieve high classification performance for another object clas-
sification task. In contrast, the proposed method using heterogeneous features
can be used as an off-the-shelf method for various object classification tasks.

6 Conclusion

In this paper, we proposed three heterogeneous features based on co-occurrence
called color-CoHOG, CoHED, and CoHD, respectively and introduced a color
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histogram as a complementary feature of those three features. Co-occurrence
features are very high dimensional features and highly discriminative, so that a
linear classifier is sufficient to achieve high classification performance. Classifi-
cation performance of each feature was evaluated on the INRIA person dataset
and the Oxford 17/102 category flower datasets, respectively. The experimental
results show that effective features for the INRIA person dataset are different
from those for the Oxford flower datasets. By combining the above four het-
erogeneous features, the proposed method achieved comparable performance to
state-of-the-art methods on the above datasets. The results suggest that the
proposed method using heterogeneous features can be used as an off-the-shelf
method for various object classification tasks.
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Abstract. The level set representation of shapes is useful for shape

evolution and is widely used for the minimization of energies with respect

to shapes. Many algorithms consider energies depending explicitly on the

signed distance function (SDF) associated with a shape, and differentiate

these energies with respect to the SDF directly in order to make the level

set representation evolve. This framework is known as the “variational

level set method”. We show that this gradient computation is actually

mathematically incorrect, and can lead to undesirable performance in

practice. Instead, we derive the expression of the gradient with respect

to the shape, and show that it can be easily computed from the gradient

of the energy with respect to the SDF. We discuss some problematic

gradients from the literature, show how they can easily be fixed, and

provide experimental comparisons illustrating the improvement.

1 Introduction

In recent years, much work on geometric active contour models, i.e. active contour
models [1] implemented with the level set method [2], has been proposed to solve
many computer vision problems [3]. Any planar closed curve Γ , i.e. any function
Γ : S1 → Ω from the circle S1 to the image domain Ω ⊂ R2, can be represented
by the zero level set of a higher-dimensional embedding function φ : Ω → R.
During curve evolution, instead of directly updating the contour Γ , one can then
update its associated embedding function φ, which is more practical for handling
topological changes, like merging or splitting. The embedding function φ is usually
the signed distance function (SDF) of Γ , i.e. the function that associates any point
x ∈ Ω with the signed distance φ(x) = ±d(x, Γ ) from x to Γ , with a minus sign
if x belongs to the interior of the region delimited by Γ .

Many computer vision problems involving shapes can be formulated as the
minimization of a certain energy functional E(Γ ). Depending on the properties of
the energy E, one is often reduced to performing gradient descents with respect
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to the shape Γ , starting from an initialization Γ0 and making Γ evolve step by
step in the opposite direction of the gradient of the energy:⎧⎪⎨⎪⎩

Γ (0) = Γ0

∂Γ (t)
∂t

= −∇ΓE(Γ (t))
(1)

where the gradient ∇ΓE(Γ ) is defined from the derivative of E with respect to
Γ and depends on the choice of an inner product (see Section 3.1 for a proper
definition, or [4]). If one chooses to represent the contour Γ (t) by an embedding
function φ(t), then one is interested in the equation that governs the evolu-
tion of φ(t). Since by definition ∀t, ∀x ∈ Γ (t), φ(t)(x) = 0, one obtains, by
differentiation, ∂φ

∂t + ∂φ
∂x

∂Γ
∂t = 0, and thus:⎧⎪⎨⎪⎩

φ(0) = φ0 (e.g. := SDF(Γ0) )

∂φ

∂t
(x) = |∇xφ(t)|(x) V (t)(x) ∀x ∈ Γ (t) = φ(t)−1(0)

(2)

where ∀x ∈ Γ, V (t)(x) = ∇ΓE(Γ (t))(x) · nΓ (t)(x) is the normal velocity field,
i.e. the part of the shape gradient that is normal to the contour Γ . This so-called
“level set equation” has to be properly defined for points which are not on Γ ,
e.g. by extending the velocity field V to at least a narrow band around Γ .

However, for many applications, calculating the gradient using Eq.(1) directly
is difficult and therefore an alternative derivation to obtain the level-set equation
was proposed in [5], named the “variational level set method”. The idea is that
since there is a bijection between Γ and its signed distance function φ, an energy
defined on shapes E(Γ ) can be rewritten as an energy F (φ) defined on their
level set representations and vice versa. Subsequently, one might be interested
in deriving the Euler-Lagrange equation that minimizes F (φ) directly:

∂φ

∂t
= −∇φF (φ) =: G(φ). (3)

Note that this equation is a priori not related to Eq.(2). Since the introduction
of the variational level set approach, much work has been carried out under
this framework, e.g. [6,7,8], to name a few. However only very few functions in
L2(Ω → R) are SDFs of a shape; for instance, they must satisfy the Eikonal
Equation |∇xφ| = 1 almost everywhere. Therefore, a new φ obtained from a
discrete step of Eq.(3) will generally not itself be a valid SDF. Various authors
[5,9,10] showed that if the velocity field G in Eq.(3) satisfies

∇xG · ∇xφ = 0 (4)

then the evolving level set φ will always remain a valid SDF for all time. However,
a general level set gradient G = −∇φF (φ) is unlikely to satisfy Eq.(4), and
several approaches have been proposed to maintain the SDF property of φ [11].
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The first approach is known as “velocity extension”[9,10]. A narrow band
around Γ is first defined, and Eq.(4) is solved to extend G with the “Fast March-
ing” method [10]. A second approach is known as “reinitialization” [12]. Here,
Eq.(3) is used to update φ, but since the newly obtained φ will drift away from
a SDF, the evolution is occasionally stopped, and the SDF of the zero level set
of φ is recomputed. A third approach was proposed by Li et al. [13], in which
the deviation of |∇xφ| from 1 is incorporated into the energy function F (φ).

However, previous works neglect one important issue. Although the desired
energy E(Γ ) can be rewritten as F (φ), the meaning of the gradient ∇φF (φ)
is fundamentally different from ∇ΓE(Γ ) because the computation ∇φF (φ) is
performed without the constraint that the gradient should belong to the very
particular subset of variations of φ that maintain its property of being a SDF.
Thus the effect of the gradient ∇φF (φ) on the zero level Γ may be completely
different from ∇ΓE(Γ ) and entirely incorrect. Updating the level set function
to maintain the SDF property (e.g. by recomputing it from its zero level) does
not change the fact that the newly obtained Γ associated with φ is wrong.

In this work, we show that with a simple “velocity projection” step, the level
set gradient can be made to exactly match the true gradient of E(Γ ) with respect
to Γ , which we call the “shape gradient”. Therefore, with our approach, one
can still take the derivative ∇φF (φ) of an energy F (φ) with respect to φ, and
transform it to obtain the correct shape gradient to deform φ. To motivate
the discussion, Fig.1 compares our result with the standard variational level
set method, where E(Γ ) is defined as the L2 distance from φ to the SDF φT

corresponding to a target curve ΓT , i.e. F (φ) = ||φ − φT ||2L2 . We can see that
using the standard (incorrect) level set gradient, the initial curve would shrink
to a point, while with our corrected gradient, the initial curve is correctly drawn
to ΓT . For more detailed discussion, please refer to Section 4.

(a)

(b)

Fig. 1. Curve evolution of the red circle Γ , where the black circle ΓT is the target. The

cost function is the L2 distance between the two SDFs. (a) standard variational level

set method, (b) our result.
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This paper is organized as follows. In Section 2, we describe the family of
admissible SDF variations δφ so that φ+ δφ remains a valid SDF. In Section 3,
we use this family to draw the connection between the level set gradient obtained
from Eq.(3) and the shape gradient from Eq.(1). We show that by projecting
the level set gradient onto the family of admissible SDF variations, we exactly
recover the shape gradient. Therefore, with only a simple “velocity projection”
step, we can convert any level set gradient to the correct shape gradient and
thus deform φ by extending the shape gradient with the usual velocity extension
approach. We also show how to directly compute the correct deformation of φ by
integrating the level set gradient over parts of the image Ω, without explicitly
computing the shape gradient. In Section 4, we review some often-used level
set gradients from the literature that need the “velocity projection” step to
make them correct deformations of Γ . We also show experimental results that
compare the corrected shape gradient with problematic level set gradients. We
then conclude and discuss future directions.

2 The Family of Admissible SDF Variations

Let us consider a closed planar curve Γ ∈ L2(S1 → Ω), an infinitesimal defor-
mation field δΓ ∈ L2(Γ → R

2), which can be seen as a function in L2(S1 → R
2)

using Γ ’s parameterization, and let φ ∈ L2(Ω → R) be the SDF associated
with Γ . If we consider an infinitesimal variation δφ of φ, which is any function
in L2(Ω → R), in the general case φ + δφ would not be a valid SDF of some
corresponding shape. Thus we should only consider variations δφ so that there
exists a shape Γ ′ so that φ + δφ is the SDF of it, i.e. φ + δφ = Φ(Γ ′).

Let us call F the family of all such infinitesimal deformations δφ. There is
a bijection between SDF variations δφ in F and shape deformations δΓ of Γ ;
that is, for any vector field δΓ normal to Γ at each point of Γ (since tangent
displacements do not affect the shape), we can associate a corresponding SDF
variation δφ and vice versa. We show in the appendix that to match the shape
deformation δΓ , one has to update δφ according to:

∀x ∈ Ω, δφ(x) = −δΓ (sx) · nΓ (sx) (5)

where Γ (sx) is the projection of point x onto Γ , and nΓ (sx) is the unit normal
at point Γ (sx) pointing outwards. Here δφ can be understood as dφ

dΓ (δΓ ). Note
however that dφ

dΓ is not defined when a topological change occurs, so that φ will
have to be recomputed from its 0-level after topological changes.

Fig. 2 illustrates the admissible variations of an SDF. Intuitively, Eq.(5) im-
plies that a valid deformation δφ at any point x in Ω depends only on its pro-
jection onto Γ : if two points share the same projection point Γ (sx), then their
variation will be the same. This is a known result [5,9,10]. Consequently, all
points on a projection line vary the same way, i.e. δφ is a constant along pro-
jection lines to Γ . Conversely, if δφ is constant along all projection lines to Γ ,
then there exists a deformation δΓ associated with it. Note that the projection
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(a) (b)

Fig. 2. Illustration of the admissible variations of a SDF. (a) The projection line (in

blue) is the line going through x that orthogonally intersects Γ at Γ (sx) and stops at

the skeleton B. (b) The admissible variation δφ is a constant along the projection lines.

Γ (sx) is well-defined for all points in Ω except for those on the skeleton of Γ .
Since we will later integrate bounded variations over regions of Ω in which the
Lebesgue measure of the skeleton is 0, this will pose no problem in our work.

As a consequence, the family F of all admissible variations of a SDF φ is
the set of all L2(Ω → R) functions that are constant along projection lines to
Γ . This means that, when performing a shape evolution based on a level set
representation, one should ensure that the level set variation belongs to this
family F . Numerical algorithms such as the Fast Marching method [10] can be
used to obtain such a level set variation based on the deformation of Γ .

3 Velocity Projection

In the previous section, we defined the family of all admissible variations of an
SDF as the set of all functions that are constant along projection lines to Γ . We
will now use this result to draw a connection between ∇φF (φ), which we call the
“level set gradient” and ∇ΓE(Γ ), which we call the “shape gradient”. We will
show that projecting ∇φF (φ) onto the family F will exactly produce ∇ΓE(Γ ).

3.1 Gradients and Inner Products

The gradient definition depends on the choice of the inner product in the tangent
space of shapes [14,15]. In this work, we use the standard L2 inner product:

〈δΓ1|δΓ2〉L2(S1→R) =
∫

Γ

δΓ1(s) · δΓ2(s) dΓ (s) (6)

where δΓ1 and δΓ2 are two deformations of Γ , where s denotes a parameteriza-
tion of Γ , and where dΓ (s) =

∥∥dΓ
ds

∥∥
R2 ds is the associated differential element

(i.e. its parameterization-independent length). The gradient associated with this
inner product is then defined as the unique deformation ∇ΓE(Γ ) that satisfies

∀ δΓ, DE(Γ )(δΓ ) = 〈∇ΓE(Γ )|δΓ 〉L2(S1→R) (7)
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where DE(Γ )(δΓ ) is the usual directional derivative of E at Γ along the direction
δΓ . One of our goals for future work (discussed in the last section) is to extend
our current framework to other inner products.

3.2 Relating the Two Gradients

Since φ is a function of Γ (its SDF), and since E(Γ ) = F (φ(Γ )) ∀Γ , we have
DE(Γ )(δΓ ) = DF (φ)( dφ

dΓ (δΓ )), i.e. DE(Γ )(δΓ ) = DF (φ)(δφ). On the one side:

DE(Γ )(δΓ ) = 〈∇ΓE(Γ )|δΓ 〉L2(S1→R)

while on the other side, Eq.(5) and the definition of the gradient in Eq.(7) give:

DF (φ)(δφ) = 〈∇φF (φ)|δφ〉L2(Ω→R) =
〈
∇φF (φ)

∣∣−δΓ (sx) · nΓ (sx)

〉
L2(Ω→R)

so that combining both sides gives:

−
∫

Ω

∇φF (φ)(x) (δΓ (sx) · nΓ (sx)) dx =
∫

Γ

∇ΓE(Γ )(s) · δΓ (s) dΓ (s) (8)

We are now ready to derive a more explicit relation between these two gradients.
As we pointed out, the Lebesgue measure of the skeleton is 0, and under

smoothness assumptions about F , the integrand is bounded and consequently
the integral over Ω is the same as the integral over Ω\Skeleton(Γ ). We also note
that any point x ∈ Ω\Skeleton(Γ ) not on the skeleton can be written as:

x = Γ (sx) + φ(x)nΓ (sx) = Γ (s) + rnΓ (s)

where s(x) = sx and r(x) = φ(x), which is illustrated in Fig. 3. Note that r
can be negative. We will define a new coordinate system using s and r such
that the mapping that associates x ∈ Ω\Skeleton(Γ ) with (s, r) is injective. The
infinitesimal (vector) elements of the two coordinate systems are related by:

dx =
∥∥∥∥dΓds

∥∥∥∥
R2

tΓ (s) ds + nΓ (s) dr − r κΓ (s)

∥∥∥∥dΓds
∥∥∥∥

R2

tΓ (s) ds

= (1 − κΓ (s)r)
∥∥∥∥dΓds

∥∥∥∥
R2

tΓ (s) ds + nΓ (s) dr

where tΓ (s) is the unit tangent of Γ (s), and κΓ (s) is the curvature of Γ (s), which
means by definition d

dsΓ (s) =
∥∥dΓ

ds

∥∥
R2 tΓ (s) and d

dsnΓ (s) = −κΓ (s)

∥∥dΓ
ds

∥∥
R2 tΓ (s).

The determinant of the Jacobian
∣∣dx

ds ,
dx
dr

∣∣, which is the ratio between the
infinitesimal area elements, is then |1−κΓ (s)r|

∥∥dΓ
ds

∥∥
R2 . Therefore, the right side

of Eq.(8) can be rewritten as:

−
∫

Ω

∇φF (φ)(x) (δΓ (sx) · nΓ (sx)) dx

= −
∫

Ω

∇φF (φ)(x(s,r)) (δΓ (s) · nΓ (s)) |1− κΓ (s)r|
∥∥∥∥dΓds

∥∥∥∥
R2

dr ds

= −
∫

Γ

∫
l(s)

∇φF (φ)(x(s,r)) |1− κΓ (s)r| dr nΓ (s) · δΓ (s) dΓ (s)
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Fig. 3. Illustration of the change of coordinates. See text for explanations.

where l(s) is the projection line that goes through Γ (s) as illustrated in Fig. 3.
It is the set of all points of Ω whose projection on Γ is Γ (s). It is thus a part of
a line, which stops at the skeleton of Γ and is also delimited by the boundary of
Ω. Therefore, a projection line l(s) is a segment and the integral is well-defined.
Since the equality Eq.(8) holds for all possible shape deformations δΓ , we obtain:

∇ΓE(Γ )(s) = −
∫

l(s)

∇φF (φ)(x(s,r))
∣∣1− κΓ (s) φ(x(s,r))

∣∣ dr nΓ (s) (9)

with φ(x(s,r)) being just r by definition. This is the key contribution of our work,
since it draws the connection between the shape gradient ∇ΓE(Γ ) and the level
set gradient ∇φF (φ) frequently used in the literature. The intuitive explanation
of Eq.(9) is that the shape gradient ∇ΓE(Γ ) at Γ (s) is a weighted integral of
the level set gradient ∇φF (φ) along the projection line going through Γ (s). We
will shortly introduce a natural interpretation of these weights.

3.3 The Correct Way to Evolve the Level Sets

Eq.(9) shows how to calculate the shape gradient ∇ΓE(Γ ) from the level set
gradient ∇φF (φ). However, to actually update the level sets, we need to find
the corresponding variation of φ, that is δφ. One possibility for this is to use
the classical “velocity extension” approach [9,10] where the velocity defined on
Γ is extended to Ω. This involves the computation of the zero level set, which
is sometimes undesirable. Another way is to directly express δφ using Eq.(5):

δφ(x) = −δΓ (sx) · nΓ (sx)

= −
∫

l(sx)

∣∣∣1− κ(sx)φ(x′
(sx ,r))

∣∣∣ ∇φF (φ)(x′
(sx ,r)) dr (10)

To compute the variation δφ(x) at point x, it is thus sufficient to integrate
the level set gradient, weighted by the area element ratio, along the projection
line l(sx) that shares the same projection point as x. We will now give a natural
geometrical interpretation of Eq.(9) and Eq.(10) which will lead to our numerical
implementation algorithm.



722 S. Chen, G. Charpiat, and R.J. Radke

3.4 Implementation

Let us first examine the term |1 − r κΓ (s)| in Eq.(9). From basic differential

geometry, we have that κΓ (s) = dθ
ds

∥∥∥dΓ (s)
ds

∥∥∥−1

= 1
R , where R is the radius of

the osculating circle at Γ (s), with the same sign as the curvature, and where
dθ is the angle formed by the normals to the curve at Γ (s) and Γ (s + ds), as
illustrated in Fig. 4a. We also note that r = φ(x(s,r)) and is negative when x is
inside Γ , and positive when x is outside Γ . We can show that:

|1−φ(x)κΓ (s)| dΓ (s) =
∣∣∣1− r

R

∣∣∣ dΓ (s) =
|r −R|

R
dΓ (s) = |r−R|dθ = dL (11)

where dL is the distance x(s,r) will travel for an infinitesimal step ds, i.e. the
length of the arc formed by the projection lines through Γ (s) and Γ (s + ds),
at a distance |r − R| from their intersection, as shown in Fig. 4a. Note that
R < 0 in this figure. Since in Eq.(9) we are integrating a function of x times
dL(r) along the projection line segment bounded on one side by the skeleton, we
are interested in the region formed by the skeleton, the boundary of Ω and the
projection lines going through Γ (s) and Γ (s+ds), that is, the red dotted region
dW shown in Fig. 4b. One can indeed show that, for any smooth function f :∫

dW (ds)

f(x) dx =
∫

r∈l(s)

f(x(s,r)) dL(r) dr + o (‖∇xf‖∞ds)

The above analysis shows that Eq.(9) can be written as an integral over this
subregion dW when multiplied by an infinitesimal step dΓ (s). We believe this is
a more intuitive explanation of velocity projection, i.e. that the shape gradient
at any point Γ (s) is the average limit of the level set gradient over the region
whose projection points are between Γ (s) and Γ (s + ds):

∇ΓE(Γ )(s) = − lim
ds→0

1
dΓ (s)

∫
dW (ds)

∇φF (φ)(x) dx nΓ (s) (12)

(a) (b)

Fig. 4. Another look at velocity projection. (a) The osculating circle of Γ (s) is shown in

blue, where O is the center of the osculating circle. (b) The skeleton of Γ is B, shown in

red. The area of the dashed subregion dW is
∫

r∈ls
dL(r) dr =

∫
r∈ls

|1−r κΓ (s)|dr dΓ (s).
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Although both Eq.(5) and Eq.(12) are the same theoretically, we recommend
using the integral over dW for the following reason. To integrate along l(s), we
need to find the explicit range of r, whose estimation is not straightforward since
it depends on the skeleton. We can however avoid the estimation of the skeleton
if we integrate over regions W .

For any point x in Ω, we can easily locate its projection point Γ (sx) = x −
φ(x)∇xφ(x). Suppose that Γ is discretized by points Γ (si), i = 1, . . . , N , and
there is a Wi associated with each Γ (si). Then Eq.(12) could be discretized as:

∇ΓE(Γ )(si) = −
∑

x∈Wi

∇φF (φ)(x) nΓ (si) (13)

with its equivalent from Eq.(10) for direct level set evolutions, if x ∈ Wi:

δφ(x) =
∑

y∈Wi

∇φF (φ)(y) (14)

which means that the correct level set evolution can be computed from the
level set gradient ∇φF (φ) very easily by just integrating over regions that share
similar projection points.

However, since the projection sx of a random point x ∈ Ω is unlikely to be
exactly one of the si, a point x will typically contribute to more than one Wi. Let
us denote by hx

i the weight that x contributes to Wi. We have the constraint that
all contributions of a point sum up to 1 :

∑
i h

x
i = 1. Thus Eq.(13) is replaced

by:
∇ΓE(Γ )(si) = −

∑
x∈Ω

hx
i ∇φF (φ)(x) nΓ (si) (15)

or, more practically, we obtain the level set evolution from Eq.(10):

δφ(x) =
∑

i

hx
i

∑
y∈Ω

hy
i ∇φF (φ)(y). (16)

Then the problem comes down to how to estimate the weight hx
i that x con-

tributes to Wi in a computationally effective manner. In practice, we assign hx
i

to a function of the distance from Γ (sx) to Γ (si) and normalize accordingly. A
better numerical implementation algorithm is also one of our future goals.

4 Implications for Common Level Set Gradients

As mentioned earlier, much work has been carried out under the variational level
set method, without considering whether the level set gradient agrees with the
shape gradient. In this section, we will discuss some energy models that depend
on SDFs and their gradients. We will not discuss energy models that depend
only on Γ , such as the Geodesic Active Contour [16] and the Chan-Vese models
[6], since our aim is to compare shape gradients with level set gradients.
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We first consider the L2 distance between two SDFs and its gradient:

F (φ) = ||φ− φT ||2L2 , ∇φF (φ) = 2(φ− φT ) (17)

Here φT is a target SDF. This energy is important and has many applications in
shape analysis, morphing and shape prior image segmentation [17,18]. We are not
aware of any work on computing the corresponding E(Γ ) or its shape gradient
∇ΓE(Γ ). Charpiat et al. [19] showed how to calculate the shape gradient directly
with the W 1,2 norm but under a smooth approximation of infima. We can easily
compute the shape gradient with our velocity projection step.

If instead, as in other works, we let φ evolve with the level set gradient, and
rebuild it regularly from its 0-level to maintain its SDF property, we notice the
following effect. Curve segments of Γ that lie inside the region delimited by ΓT

expand, while segments of Γ that lie outside of ΓT shrink. This immediately
implies that if Γ lies completely outside of ΓT , then the evolution process will
shrink Γ until it disappears no matter how close they are. This phenomenon is
illustrated in Fig. 1a where we are trying to evolve the red circle Γ to the black
circle ΓT . With the velocity projection approach, we can calculate the shape
gradient and deform Γ accordingly. Fig. 1b illustrates the deformation process
under the correct shape gradient, which naturally morphs the initial curve to ΓT .

Fig. 5 illustrates the evolution of two overlapped shapes using the same L2

distance with and without velocity projection. Fig. 5a illustrates the traditional
evolution without velocity projection. As we can see, the parts that are outside
ΓT will shrink while the parts that are inside will expand. Fig. 5b illustrates the
correct deformation with velocity projection. As we can see, the deformation is
more meaningful, leading to much better point correspondences. However, this
model suffers from the drawback that the energy and thus the gradient depend
on the domain Ω. That is, by fixing Γ and ΓT and changing Ω alone, we will
get different energies, gradients and thus different deformation processes.

(a)

(b)

Fig. 5. Curve evolution of the red curve Γ , where the black curve ΓT is the target.

The cost function is the L2 distance between the two SDFs. (a) standard variational

level set method, (b) our result.
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As a second example, consider the following energy model:

F (φ) =
∫

Ω

(φ− φT )2H(−φ)dx (18)

which is the integration of the L2 distance between φ and φT inside Γ . Here H is
the Heaviside function. This energy model was studied by Rousson and Paragios
[7]. It can be shown that the level set gradient is:

∇φF (φ) = 2(φ− φT )H(−φ)− (φ− φT )2δ(φ) (19)

In this case, the velocity projection step is necessary to calculate the correct
shape gradient. The evolution process of the correct shape gradient is illustrated
in Fig. 6a. Since the integration is only inside Γ , it is not appropriate if Γ lies
outside ΓT . To improve the evolution, we study the following symmetric term:

F (φ) =
∫

Ω

(φ− φT )2H(−φT )dx (20)

which is the integration of the L2 distance between φ and φT inside ΓT . This
energy was studied by Cremers and Soatto [8]. The level set gradient is:

∇φF (φ) = 2(φ− φT )H(−φT ) (21)

It is only defined within ΓT and therefore if we try to make Γ evolve to ΓT under
this gradient alone, most likely it won’t move at all! We can again calculate its
shape gradient (see Fig. 6b). This evolution does not correctly draw Γ to ΓT .
The reason is that the level set gradient is non-0 inside ΓT and all the projection
points inside ΓT fall only on the blue curve segment of Γ in Fig. 6c. Therefore,
the fastest way to minimize this energy, or the gradient, is to only move the blue
curve segment to ΓT . The dissimilarity measure between Γ and ΓT can be made
symmetric by combining both Eq.(18) and Eq.(20):

F (φ) =
∫

Ω

(φ− φT )2H(−φT )dx +
∫

Ω

(φ− φT )2H(−φ)dx (22)

The evolution of this symmetric dissimilarity measure is shown in Fig. 6d. As
we can see, it correctly evolves Γ to ΓT . We note here that the traditional
variational gradient of this symmetric measure could also be used to evolve Γ .
However, since the level set gradient Eq.(21) is not defined on curve segments
of Γ that lie outside ΓT , only the gradient Eq.(19) would play a role in the
evolution and it would not correctly draw Γ to ΓT .

As a final example, we consider the following energy model [20]:

E(Γ ) =
∫

ΓT

φ2 ds =
∫

Ω

φ2 δ(φT ) dx = F (φ) (23)

This also defines a dissimilarity between Γ and ΓT . The level set gradient is:

∇φF (φ) = 2φ δ(φT ) (24)
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(a)

(b) (c)

(d)

Fig. 6. The evolution from the red circle Γ to the black circle ΓT under the correct

shape gradient of the three different energy models. (a) energy model Eq.(18), (b)

energy model Eq.(20), (c) the blue curve segment is the region that H(−φT ) projects

onto for (b), (d) energy model Eq.(22).

which is defined only along ΓT and is zero everywhere else. Therefore, it is also
problematic for the traditional variational level set method. However, if we apply
the velocity projection approach we can calculate the true deformation field:

δφ(x) = −2
∑

y∈(l(sx)∩ΓT )

|1− φ(y)κ(sx)|φ(y) (25)

(a) (b)

(c)

Fig. 7. The evolution from the red circle Γ to the black circle ΓT under the shape

gradient of two different energy models. (a) energy model Eq.(23), (b) the blue curve

segment is the region that δ(φT ) projects onto, (c) energy model Eq.(26).
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where l(sx) is the projection line going through x. The deformation process
is illustrated in Fig. 7a. However, as we can see, this evolution also does not
correctly draw Γ to ΓT . The reason is the same as in Fig. 6c.

To improve the evolution process, we can add a second symmetric term:

F (φ) =
∫

ΓT

φ2 ds +
∫

Γ

φ2
T ds (26)

The evolution of this symmetric energy under the correct shape gradient is il-
lustrated in Fig. 7c and it successfully draws Γ to ΓT .

5 Discussion and Conclusions

The experiments in Section 4 show that the limitations of traditional variational
level set formulations can be fixed with our velocity projection step. In this work,
we used shape morphing as a motivating application since it is closely related to
other computer vision problems. In future work, we plan to apply our method
to shape-prior image segmentation and statistical shape analysis. Fig. 5 shows
the evolution of tubular structures under the traditional level set gradient can
be problematic and our corrected shape gradient can handle these cases nicely.

We should point out that the geometric L2(S1 → R) inner product has been
shown to suffer from serious drawbacks as a metric on the manifold of shapes
[21,22]. Specifically, the L2 geodesic distance between two shapes is 0. Since we
consider gradient descents only, the L2 inner product will pose no theoretical
problem. However, we would like to investigate other inner products such as
the H1(S1 → R) inner product [14,15]. We are also investigating energy models
other than F (φ), such as F (Γ, φ), as well as extending our framework to 3D.
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Appendix

Proof of Eq.(5): (φ + δφ)(x) = φΓ ′(x) implies, using the signed distance d:

δφ(x) = φΓ ′(x) − φ(x) = d(x, Γ ′)− d(x, Γ ). (27)

Since the part of an infinitesimal deformation that is tangent to Γ has no effect
on the shape (just reparameterizes), we only keep the part of the deformation
that is normal to Γ , and the following redefinition of Γ ′ describes the same shape
(as a set of points): Γ ′(s) := Γ (s) + (δΓ (s) · nΓ (s))nΓ (sx).

Then x− Γ ′(sx) = x− Γ (sx) − (δΓ (sx) · nΓ (sx))nΓ (sx)

(x− Γ ′(sx)) · nΓ (sx) = (x− Γ (sx)) · nΓ (sx) − (δΓ (sx) · nΓ (sx))(nΓ (sx) · nΓ (sx))
d(x, Γ ′) = d(x, Γ ) − δΓ (sx) · nΓ (sx)

since the projection of any point x ∈Ω on the closed subset Γ is necessarily ortho-
gonal to its boundary Γ . Hence with Eq.(27) one has δφ(x) = −δΓ (sx) · nΓ (sx).
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Abstract. Inferring depth from a single image is a difficult task in com-

puter vision, which needs to utilize adequate monocular cues contained

in the image. Inspired by Saxena et al’s work, this paper presents a close-

form iterative algorithm to process multi-scale image segmentation and

depth inferring alternately, which can significantly improve segmentation

and depth estimate results. First, an EM-based algorithm is applied to

obtain an initial multi-scale image segmentation result. Then, the multi-

scale Markov random field (MRF) model, trained by supervised learning,

is used to infer both depths and the relations between depths at different

image regions. Next, a graph-based region merging algorithm is applied

to merge the segmentations at the larger scales by incorporating the in-

ferred depths. At the last, the refined multi-scale image segmentations

are used as input of MRF model and the depth are re-inferred. The

above processes are iteratively continued until the expected results are

achieved. Since there are no changes on the segmentations at the finest

scale in the iterative process, it still can capture the detailed 3D struc-

ture. Meanwhile, the refined segmentations at the other scales will help

obtain more global structure information in the image. The contrastive

experimental results verify the validity of our method that it can infer

quantitatively better depth estimations for 62.7% of 134 images down-

loaded from the Saxena’s database. Our method can also improve the

image segmentation results in the sense of scene interpretation. More-

over, the paper extends the method to estimate the depth of the scene

with fore-objects.

Keywords: Depth inferring, monocular cues, image segmentation,

Markov random field, scene reconstruction.

1 Introduction

Inferring 3D scene structure from a single image is an extremely challenging
topic in computer vision, since it is an ill-posed problem in a mathematical
sense and we can never know if the image is a picture of a painting or if it
is a picture of an actual 3D environment. However, people have no difficulty
to infer the scene structure from a single image. Here people utilize monocular
depth cues to infer 3D information, which include some physical phenomenon

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 729–742, 2010.
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and object characteristics, such as lighting and shading, perspective, occlusion,
texture gradient and so on.

In recent works, researchers exploited some of these cues to obtain some 3D
information from a single image. Saxena et al. [1,2,3,4,5] presented a Markov
random field model for inferring depths from multi-scale monocular image fea-
tures and applied the monocular depth perception to drive a remote-controlled
car autonomously. Hoiem et al. [6,7,8] used texture and perspective cues to
build pop-up models under a strong assumption that the scene consists of
ground/horizontal planes and vertical walls (and possibly sky). Based on this,
Hoiem et al. [9] also presented a closed form framework to integrate surface
orientations, occlusion boundaries and objective identifications to develop a 3D
scene understanding system. But the methods cannot be applied to the many
scenes that are not made up only of vertical surfaces standing on a horizontal
floor [10], such as mountains, trees, rooftops and so on.

In this paper, the goal is to propose a close-form iterative algorithm for im-
proving the accuracy of depth inferring. In Hoiem et al’s and Saxena et al’s work,
the depths of nature scene are approximately inferred from an over-segmentation
of the image under the assumption that the 3D scene is made up of a number
of small planes. This implies that image segmentation and depth inferring are
inter-correlated. The image segmentations can help inferring the relations be-
tween the depths of different image regions. On the other hand, the depths can
also be used as an additional attribute to improve segmentation results. Our al-
gorithm utilizes this inter-correlated property and processes image segmentation
and depth inferring alternately.

As mentioned in Saxena et al’s work, local image features are insufficient to
estimate the depth and multi-scale image features have to be used to capture
more global properties. So we apply an EM-based multi-scale image segmentation
algorithm to obtain the initial segmentation results. The image feature vectors
extracted from the multi-scale segmentations are used to infer the different depth
of each pixel in the image. The inferred depths are fed back and integrated with
image segmentation into a cognitive loop. It is particularly noted that the depth
inferring is regarding the segmentation regions at the finest scale, while the
region merging is acting on the regions at the larger scales. This method will
not decrease the number of the patches made up of 3D scene structure and
can capture the rich detailed 3D scene structure. At the same time, the refined
segmentations at the larger scales can offer more global structure information
in multiple spatial scales which can be used to improve the accuracy of depth
inferring. The above processes are iteratively continued until the expected results
are achieved.

By using this close-form iterative framework, our algorithm can significantly
improve the depth estimation results. Compared with the exiting methods, our
algorithm can provide sharper depthmaps for 62.7% of 134 test images. The 3D
flythrough reconstruct results using our algorithm are also a bit more visually
pleasing. In additional, our method can improve the image segmentation results
in the sense of scene interpretation.
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Furthermore, we also consider the problem of depth inferring for scene with
fore-objects. Under the assumption that the fore-objects lie vertical on the
ground, the fore-objects regions are extracted from the image and the depth
inferring of these regions are processed solely. After the other regions have also
been processed, the depth estimations are incorporated together.

The remainder of this paper is organized as follows. Related works are re-
viewed in section 2. The overview of the proposed algorithm is introduced in
section 3. The close-form iterative algorithm is described in section 4. Experi-
mental results are shown in section 5. The depth inferring method for scene with
fore-object is explained in section 6, before concluding in section 7.

2 Related Works

In some specific settings, monocular cues have been applied to perform the tasks
of depth inferring from a single image. A number of researchers have studied the
corresponding problems and proposed some effective methods including shape
from texture (SFT) [11,12], shape from shading (SFS)[13,14] and tour into pic-
ture (TIP)[15]. Different from the geometric methods relied on feature matching
and triangulation, such as stereo vision [16] and shape from motion [17], these
methods use the cues contained in image to obtain rich 3D information. How-
ever, these methods often ignore the additional useful cues and enforce hard
assumption that the scene structure is simple and uniform, thus they can only
be applied in limited environment. For example, the TIP method can only be
used in fully structured environment.

Recently, great progresses have been made in applying monocular cues to ob-
tain 3D information. Based on the assumption that the environment is made of a
ground-vertical structure, Delage et al. [18] and Hoiem et al. [6,7], built a simple
pop-up 3D model from an image by classifying the image into horizontal/ground
and vertical regions (also possibly sky). Delage considered indoor images, while
Hoiem considered outdoor scenes. Based on these concepts, Hoiem et al. [10] and
Sudderth et al.[19] integrated learning-based object recognition with 3D scene
reconstruction; Hedau et al. [8] presented an algorithm to recover the spatial lay-
out of cluttered room. Saxena et al. [1,2,4,5] presented an algorithm for inferring
depth from monocular image cues. This algorithm was also successfully applied
for improving the performance of stereovision [3] and autonomous navigation
of remote-controlled car [20]. Heitz et al. [21] developed cascaded classification
models (CCM) that combined a set of related subtasks of scene categorization,
object detection and 3d reconstruction and these tasks can be solved in its own
level and help each other. Hoiem et al. [9] regarded surface orientations, occlu-
sion boundaries and objective identifications as intrinsic images and presented a
closed form framework for interfacing scene analysis processes.

Our work seems like Heitz et al’s and Hoiem et al’s works for integrating
the tasks of image segmentation and depth inferring. However, their works have
strong leaning towards image understanding rather than depth inferring, and
their algorithms contain many steps include object detection, region labeling and
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so on. Moreover, their algorithms are based on iterative training which requires
the knowledge of the implementation of each step, while our algorithm does not
need retraining and is more flexible to be used in some specific applications such
as robot navigation.

3 Overview of Our Algorithm

The overview of our proposed algorithm is illustrated in Fig. 1. There are three
main modules, image segmentation, depth inferring, and region merging. Our
input data are the multi-scale image segmentations, obtained by an EM-based
algorithm at different scales. From these multi-scale segmentations, image fea-
ture vectors are first extracted through a template. Subsequently, a multi-scale
Markov random field, trained by supervised learning, is used to model the re-
lations between image feature vectors and the different depths of image regions
at the finest scale. Then the inferred depths are fed back to incorporate the
larger-scale image segmentations that are closed in 3D structure. Combined with
the initial segmentation at the finest scale, the refined multi-scale segmentation
results are obtained. The above processes are iteratively continued until the
expected depth inferring results are achieved.

Fig. 1. Overview of our algorithm integrating depth inferring with image segmentation

The three modules are integrated in a cognitive loop. For each image, the re-
gion merging module receives initial segmentations and depth information from
the other two modules and feeds back the refined multi-scale segmentations.
Thus, the modules exchange information that helps compensate for their indi-
vidual disadvantages and improves overall system performance. The pipeline of
our algorithm is detailed in the following sections.

4 The Framework of Our Algorithm

4.1 Multi-scale Image Segmentation

Same as Hoiem et al’s and Saxena et al’s works, our algorithm also begins by
segmenting the image into many such small planar surfaces. In order to capture
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the depth cues directly from the local structure of the brightness pattern of a sin-
gle monocular image, we use an expectation-maximization image segmentation
algorithm [22,23] to obtain the initial segmentation results. The algorithm can
offer an effective solution to bridge the gap from the low-level image features to
surface reconstruction. Due to the extent of the inner-workings of the algorithm,
we refrain from explaining in detail of the well-known algorithm, but limit the
introduction to our specific application of the algorithm.

Creating multi-scale segmentation of an image involves three steps. (1) Select
an appropriate scale for each pixel, and then extract color, texture and position
features for that pixel at the selected scale. (2) Group pixels into regions by
modeling the distribution of pixel features with a mixture of Gaussian using
Expectation-Maximization. (3) Repeat the above two steps at multiple spatial
scales.

In this image segmentation algorithm, the pixels are represented by the de-
scriptor consists of eight values: three for color, three for texture and two for
position. The three color components are the coordinates of Lab color space,
which is approximately perceptually uniform and has the distances to be mean-
ingful. The three texture components are polarity, anisotropy and contrast of
each pixel, computed at the selected scale. The anisotropy and polarity are each
modulated by the contrast since they are meaningless in regions of low contrast.
The position of the pixel in the image, which can describe the spatial distribu-
tion, is also included in the feature vector.

Then, the Expectation-Maximization (EM) algorithm is applied to segment
the pixels into patches. Since an image can be regarded as points in an eight-
dimensional feature space after the process of feature extraction, the segmen-
tation problem are transformed into dividing these points into groups. So the
EM algorithm is actually used to determine the maximum likelihood parameters
by assuming K Gaussian mixture model in the feature space. In order to avoid
under-segmentations, we choose a rather large value of K, where K=256 for a
1024x768 size image in our experiment.

In order to capture more global structure properties from image, the segmen-
tation algorithm are applied at three different scales (image resolutions, which
are 1x, 3x and 9x of the original one in our experiments). The segmentations
at the larger two scales are to be replaced by the refined ones after the region
merging. An example result is shown as Fig.2.

Fig. 2. (a) Original image, (b)-(d) multi-scale image segmentation results
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4.2 Depth Inferring

Feature Vector. In our algorithm, we choose the same features with Saxena
et al’s. There are two types of features: absolute features and relative features,
which are used to estimate the absolute depth and relative depths respectively.
As described in [2], a 17 dimensional template consists of 9 Laws’masks, 2 color
channels and 6 texture gradients are used to compute summary statistics for a
patch i at scale s in the image I. For the absolute depth feature, the outputs
are incorporated to compute the sum absolute energy and sum squared energy.
After including features from itself and its 4 neighbors at 3 scales and its 4
location features, the absolute feature vector x is 19×34 = 646 dimensional. For
the relative depth features, a 10-bin histogram of each of the template output
is computed, giving us a total of 170 features yis for each patch i. Then the 170
dimensional relative depth features vector yijs for two neighboring patches i and
j at scale s are computed as yijs = yis − yjs.

Multi-scale Markov random model. The monocular depth cues of a partic-
ular patch are not only contained in this patch, but also can be captured from
the relations between the patches which are adjacent at multiple spatial scales.
Similar to Saxena et al’s work [2,5], a hierarchical multi-scale Markov Random
Field (MRF) is used to model the relationship between the depth of a patch and
the depths of its neighboring patches. The model is formulated as,

P (d|X ; θ, σ)=
1
z

K∏
i

Pi=1∏
pi

f1(di,pi |Xi,pi , θr, σ1r)
3∏

s=1

K∏
i

∏
j∈Ns

f2(di(s), dj(s)|yijs, σ2r).

(1)
where Z is the normalization constant for the model; K is the total number of
patches in the image (at the lowest scale); with a total of Pt points in the patch
i, Xi,pi = {∈ R646, pi = 1, 2, 3 · · ·Pi} is the absolute depth feature vector for
the point pi in the patch i;s = {1, 2, 3} is the 3 scales of image; Ns(i) are the
4 neighbors of patch i at scale s; θr, σ1r, σ2r are the parameters of the model.
The model consists of two terms, f1(·) and f2(·). The first term f1(·) captures
the relations between the depth di,pi and the absolute feature Xi,pi and it is
formulated as,

f1(·) = exp(−|di,pi(1)− xT
i,pi

θr|σ1r) . (2)

The parameter σ1r is modeled as a linear function of the features, which is
σ1r = uT

r xi,pi . The second term f2(·) captures the relations between the depths
of patches which are adjacent at multiple spatial scales and it is formulated as,

f2(·) = exp(−|di(s)− dj(s)|σ2r) . (3)

In our algorithm, there are two constraints on the depths of patch i at the scale
s. The first one is that the depths of patch i are the average of the depths of all
of points in patch i.

di(s) = 1/Pi

Pi∑
pi=1

di,pi(s) . (4)
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The second one is that the depths at a higher scale are the average of the depths
at the lower scale.

di(s + 1) = 1/5
∑

j∈Ns(i)∪i

dj(s) . (5)

Similar to the parameter σ1r, σ2r is modeled as σ2r = vT
rsyijs. In detail, different

parameters (θr, ur, vr) are used for each row r in the image to learn the different
statistical properties of different rows of image. Since the location features are
also included in image segmentation and feature extraction, it can improve to
detect some specific regions, such as sky and ground. For example, a blue region
might represent sky if it is in upper part of image, and a green region might be
more likely to be ground if in the lower part of the image.

Parameter Learning and MAP Inference. As described in [2], an approxi-
mate parameter learning of the model is made by using Multi-Conditional Learn-
ing (MCL). With ur ≥ 0 and vrs ≥ 0, the model parameters are estimated by
solving a Linear Program (LP). After learning the parameters, the depth in-
ferring problem is transformed into the MAP inference problem by maximizing
(1) in terms of d. It can be seen that the first term in (1) models depth as an
exponential function of multi-scale features of the points in the single patch i.
The second term places a constraint that depends on the multi-scale relative
features yijs on the depths, which plays a role to improve the accuracy of initial
depth estimates. The MAP inference of the depth di can also be performed by
solving a LP.

4.3 Region Merging

Region merging is the core part of our algorithm. As shown in Fig. 1, the inputs of
region merging module are the inferred depth and the initial image segmentation
results, and the outputs are the refined segmentations at the two larger scales.
With this module, our algorithm can capture the strong interactions between the
depths of patches which are not immediate neighbors. For example, consider the
patches that lie on a large building, which are to be at similar depths. However,
some adjacent patches are difficult to recognize as parts of the same object,
since there are discontinuities in feature space (such as a window on the wall of
a building). When the depth information is fed back, the adjacent patches tend
to be incorporated and the discontinuities are eliminated. Then the depths of
the patches will be highly correlated according to the MRF model.

As described above, each segmentation region represents a coherent region
in the scene with all the pixels having similar properties. Thus, the 3D scene
model is assumed to be made of a set of small planes. For ease of description,
the basic unit of representation in the region merging module will be these small
planes in the world. The relations between depths and the planar parameters
are described as Fig.3. The planar surface on which a segmentation region lies
is represented by using a set of plane parameters α ∈ R3, as described in [5]. The
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Fig. 3. Illustration of the relations between plane parameter α and the depth d of the

point i (Cited from [5])

camera viewpoint is a two-parameter and is assumed to be constant. The value
1/|α| is the distance from the camera center to the closest point on the plane,
and the normal vector α̂ = α/|α| gives the orientation of the plane. Ri is the unit
vector from the camera center to a point i lying on a plane with parameters α.
Then the planar parameter α can be computed by least square fitting according
to Ri and the estimated depth di at the corresponding plane.

Then, the relations between two adjacent regions are weighted by the angle
between the two planes on which the two regions lie. The weighted function
W (i, j) is defined as,

W (i, j) =
{
θij if the region i is adjacent to region j
∞ if the region i is not adjacent to region j

. (6)

θij = |αi/|αi| − αj/|αj || . (7)

where θij is the angle between two planes i and j. A graph-based segmentation
algorithm is used to realize region merging. The image is abstracted into an
undirected weighted graph G(V,E). V is the vertex set of G with its elements Vi

representing the regions. E is the edge set of G with its elements Ei,j representing
the relations between two vertexes Vi and Vj . Based on the obtained graph
G(V,E) , the region merging algorithm is performed as described in [24]. An
example result is shown as Fig.4.

Fig. 4. (a) Image segmentation region at the largest region, (b) Initial depth recon-

struction result,(c) Region merging result. (Best viewed in color)
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5 Experiments

In order to verify the validity of our approach, we performed contrastive ex-
periments that compare our algorithm with Saxena et al’s [2,5],and Hoiem et
al’s work [10]. We downloaded 534 images+depthmaps from Saxena’s home-
page and used 400 for training model. The rest 134 images are used for quan-
titative comparison and the other 150 internet images are used for qualitative
comparison.

We use relative depth error |d − d̂|/d as the performance metric to decide
which algorithm is quantitative better. We also perform a further qualitative
comparison experiment that we ask a person to compare the three 3D fly through
results, and decide which algorithm is qualitative better. The quantitative and
the qualitative comparison results are shown in the Table 1. Since Hoiem et
al’s work is leaning towards surface reconstruction rather than depth inferring,
the average relative depth errors are rather large, but the scene reconstruction
results are more visual pleasing. Compared with Saxena et al’s work, our method
gives better relative depth accuracy for 62.7% of 134 images. Our algorithm also
outputs visually better model in 35% of the cases, while Saxena et al’s method
outputs better model in 21% cases and Hoiem et al’s work outputs better model
in 35% cases (the rest cases are hard to decide).

Table 1. The quantitative and qualitative comparison results

Algorithm Quantitative better Average relative depth error Qualitative better

Hoiem et al’s 0.7% 4.055 35%

Saxena et al’s 36.6% 0.400 21%

Our 62.7% 0.312 35%

The inferring depthmap compared with Saxena et al’s work and ground truth
are shown in Fig.5 and the typical scene reconstruction results are shown in
Fig.6. As seen in the 3rd image at the 2nd row in Fig.5 and the 2nd image at
the 4th row in Fig.6, the details of the distant region in image are arbitrarily
to be reconstructed as a uniform one due to using depth information. Although
the region merging is only acted on the regions at the larger scales in order to
improve this, this situation still happens sometimes. On the whole, nevertheless,
using the close form iterative framework yields better reconstruct results than
before.

As a byproduct of our algorithm, the image segmentation results incorporated
depth information are also obtained. The typical image segmentation results at
the largest scale are shown in Fig.7. From the aspect of scene structure interpre-
tation, the segmentation results get better and better after 1-3 iterations.
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(a) (b) (c) (d) (e)

Fig. 5. Results for the predicted depthmap. The column a is original images, the col-

umn b is the results of Saxena’s methods, the column c is the results of our methods,

the column d is the groundtruth and the column e is the depth scale. The depths of

sky regions in column c and d are denoted as zero. (Best viewed in color)



A Close-Form Iterative Algorithm for Depth Inferring from a Single Image 739

Fig. 6. Results for scene reconstruction. The 1st row is original images, the 2nd row is

Saxena’s scene reconstruction results, the 3rd row is Hoiem’s results and the 4th row

is our results.(Best viewed in color)

Fig. 7. Results for image segment. The 1st column is original image; the 2nd column is

the initial segmentation under the largest scale;the 3rd -5th columns show the obtained

segmentation results after 1-3 iterations.(Best viewed in color)
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6 Scene Reconstruction with Fore-Object

As mentioned above, each segmentation region with the pixels having similar
properties represents a coherent region in the scene. Thus, it will be sometimes
failed when there are fore-objects in the scene. The example is shown as Fig.8(a).
A stool lies in front of the back wall with the similar color and texture. In the
inferred 3D scene shown in Fig.8(b), the stools are conjoint to the back wall,
which is obviously wrong.

Under the on-the ground assumption, we propose a method to deal with the
above problem. Actually, the fore-objects are most likely to be on the ground,
rather than in it, especially at indoor environments. So we firstly find the ground
region in an image. According to the initial scene reconstruction results, the
edges of the ground region can easily be extracted and denoted as a set of lines
l1, l2, · · · ln. Then the pixels surrounded by l1, l2, · · · ln are marked as ground
region. As for the fore-object region in image, it is most likely to be intersected
with the ground region, rather than to be included in it. So if a region has only a
part of pixels marked as ground region, it can be regarded as fore-object region.
The example of extracting the fore-object is shown as Fig. 8(c), black line is the
edge of ground region and the red block is the fore-object.

Then the fore-object regions and the rest regions are dealt with respectively.
As for the fore-object, it can be assumed to be vertical to ground since there is no
more information about it. Based on the assumption, the depth is predicted ac-
cording to projective geometry. As for the rest regions, the depth can be inferred
by the methods described in section 4. Finally the scene reconstruction results
are incorporated together. The experimental results are shown as Fig.8(d,e,f).

(a) (b) (c)

(d) (e) (f)

Fig. 8. (a) Original image, (b) Results of scene reconstruction without the detecting

of fore-object, (c) Results of detecting the edges of ground region (black lines) and

extracting the fore-object (red block), (d, e) Results of scene reconstruction after ex-

tracting fore-object, (f) Final scene reconstruction results. (Best viewed in color)
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7 Conclusion

Over the last few decades, great progresses have been made on the depth in-
ferring and scene reconstruction form stereo, motion and other ”triangulation”
cues. However, the vast majority of this work has only used the geometric cues,
but neglected the other depth cues contained in the image, such as texture,
color, defocus and so on. In contrast, the recent research of monocular depth
perception, such as Saxena et al’s and Hoiem et al’s work, is commendably sup-
plementary to computer vision.

Inspired by these works, this paper presents a close-form iterative algorithm
that utilizes the inter-correlated property between image segmentation and depth
inferring. The algorithm can significantly improve segmentation and depth in-
ferring by processing them alternately iteratively. Our algorithm firstly obtains
the initial segmentation results by an EM-based algorithm. Then, a multi-scale
Markov random field, trained by supervised learning, is used to model the rela-
tions between feature vectors and different depths. After the depth of each pixel
are inferred, it is fed back to refine the segmentation results at the larger scales.
This method can offer more global structure information without decreasing the
number of the patches made up of 3d scene structure. The above processes are
iteratively continued until the expected results are achieved. The experimental
results show the validity of our algorithm. Moreover, the paper also extends the
method to deal with the problem that infers depth of the scene with fore-objects.
We believe that our algorithm can be used for many other applications in vision,
such as robot navigation, building 3-d models of urban environments, and object
recognition.
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Learning Shape Segmentation Using Constrained
Spectral Clustering and Probabilistic Label Transfer

Avinash Sharma, Etienne von Lavante, and Radu Horaud

INRIA Grenoble Rhône-Alpes, Montbonnot Saint-Martin, France

Abstract. We propose a spectral learning approach to shape segmentation. The
method is composed of a constrained spectral clustering algorithm that is used
to supervise the segmentation of a shape from a training data set, followed by
a probabilistic label transfer algorithm that is used to match two shapes and to
transfer cluster labels from a training-shape to a test-shape. The novelty resides
both in the use of the Laplacian embedding to propagate must-link and cannot-
link constraints, and in the segmentation algorithm which is based on a learn,
align, transfer, and classify paradigm. We compare the results obtained with our
method with other constrained spectral clustering methods and we assess its per-
formance based on ground-truth data.

1 Introduction

In this paper we address the problem of segmenting shapes into their constituting parts
with emphasis onto complex 3D articulated shapes. These shapes are difficult to de-
scribe in terms of their parts, e.g., body parts of humans, because there is a large vari-
ability within the same class of perceptually similar shapes. The reasons for this are
numerous: changes in pose due to large kinematic motions, local deformations, topo-
logical changes, etc. Without loss of generality we will represent 3D shapes with meshes
which can be viewed as both 2D discrete Riemannian manifolds and graphs. Therefore,
shape segmentation can be cast into the problem of graph partitioning for which spectral
clustering (SC) algorithms [1] provide tractable solutions.

Nevertheless, unsupervised spectral clustering algorithms will not always yield sat-
isfactory shape segmentation results for the following reasons: Distances between ver-
tices are only locally Euclidean (manifold structure), the graph has bounded connec-
tivity (sparseness), and the number of edges meeting at each vertex is almost the same
through the graph (regular connectivity). Manifoldness will exclude methods that need
a fully-connected affinity matrix. While sparseness makes shape-graphs good candi-
dates for Laplacian embedding [2,3], the usual spectral clustering assumptions do not
hold in the case of regular connectivity. First, the Laplacian matrix of a shape-graph
cannot be viewed as a slightly perturbed version of the ideal case1, namely a number
of strongly connected components that are only weakly interconnected [1]. Second,
there is no eigengap and hence there is no simple way to determine the number of clus-
ters. Third, the eigenvectors associated with the smallest non-null eigenvalues cannot
be viewed as relaxed indicator vectors [1].

1 In the ideal case the between-cluster similarity cost is exactly 0.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 743–756, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. First stage: Constrained spectral clustering (CSC) which takes as input a mesh (or more
generally a graph) together with a sparse set of must-link (dashed lines) and cannot-link (full
lines) constraints (a). These constraints are propagated using the commute-time distance (b).
Spectral clustering is applied to a modified graph Laplacian (c). Second stage: Probabilistic label
transfer (PLT). Shape segmentation is performed via vertex-to-vertex matching (d) and label
transfer (e).

In this paper we propose a learning approach to shape segmentation via a two-stage
method, e.g., fig. 1. First we introduce a new constrained spectral clustering (CSC)
algorithm which takes as input a shape-graph Gtr from a training set. Gtr contains unla-
beled vertices as well as must-link and cannot-link constraints between pairs of vertices,
fig. 1-(a). These constraints are propagated, using the unnormalized Laplacian embed-
ding and the commute-time distance (CTD), such that edge-weights corresponding to
within-cluster connectivities are strengthened while those corresponding to between-
cluster connectivities are weakened, fig. 1-(b). This modified embedding yields im-
proved shape segmentation results than the initial one, e.g., fig. 1-(c), because it better
fits into the theoretical requirements of spectral clustering [1].

Second, we consider shape alignment based on vertex-to-vertex graph matching as
a way to probabilistically transfer labels from a training-set of segmented shapes to
a test-set of unsegmented ones. We consider a shape-graph Gtest from a test set. The
segmentation of Gtest is carried out via a new probabilistic label transfer (PLT) method
that computes a point-to-point mapping between the embedding of Gtr and Gtest, e.g.,
fig. 1-(d). This completely unsupervised matching is based on [4,5] and allows to trans-
fer labels from a segmented shape to an unsegmented one. Consequently, the vertices
of Gtest can be classified using the segmentation trained with Gtr, fig. 1-(e). While the
spectral graph matching is appealing [6], it adds an extra difficulty because of the am-
biguity in the definition of spectral embeddings up to switching between eigenvectors
corresponding to eigenvalues with multiplicity and changes in their sign [4,7]. This is
particularly critical in the presence of symmetric shapes [8].

Unsupervised segmentation of articulated shapes is a well investigated problem and
one can find a quantitative comparison of recent non-spectral methods in [9]. How-
ever, the spectral methods are natural choice for pose-invariant segmentation as they
exploit the inherent manifold structure of the mesh representation to embed the shape
in an isometric space. For the reasons already mentioned in the introduction, the re-
sults of simple spectral clustering (SC) are unsatisfactory ([1] for both a tutorial and
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comprehensive study). Therefore, more recent methods, such as those by Reuter [10]
and Zhang [11], also take the topological features of a shape in its embedded space
into account and can achieve this way impressive segmentation results. However, these
methods do not provide intuitive means to include constraints in a semi-supervised
framework.

Regarding semi-supervised spectral methods, we distinguish between semi-super-
vised and constrained spectral clustering methods: With semi-supervised spectral meth-
ods we consider algorithms which attempt to find good partitions of the data given par-
tial labels. In [12] labeled data information is propagated to nearby unlabeled data using
a probabilistic label diffusion process, which needs an extra time parameter that must
be specified in advance [13,14,7]. In [15] the labeled data are used to learn a classifier
that is then used to sort the unlabeled data. These methods work reasonably well if there
are sufficient labeled data or if the data can be naturally split into clusters. Furthermore,
these methods were only applied to synthetic “toy” data and their extension to graphs
that represent shapes may not be straightforward.

Constrained clustering methods use prior information under the form of pairwise
must-link and cannot-link constraints, and were first introduced in conjunction with
constrained K-means [16]. Subsequently, a number of solutions were proposed that
consist in learning a distance metric that takes into account the pairwise relationships;
This generally leads to convex optimization [17,18]. Since K-means is a ubiquitous
post-processing step with almost any SC technique, it is tempting to replace it with
constrained K-means. However, this does not take full advantage of the graph structure
of the data where edges naturally encode pairwise relationships. Recently, metric learn-
ing has been extended to constrained spectral clustering leading to quadratic program-
ming [19]. The semi-supervised kernel K-means method [20] incorporates constraints
by adding reward and penalty terms to the cost function to be minimized.

Another way to incorporate constraints into spectral methods is to modify the affinity
matrix of a graph using a simple rule: Edges between must-link vertex-pairs are set to
1 and edges between cannot-link pairs are set to 0 [21]. Despite its simplicity, this
method is not easily extendible to our case due to graph sparsity: one has to add new
edges (with value 1) and to remove some other edges. This will modify the graph’s
topology and hence it will be difficult to use the segmentation learned on one shape in
order to segment another shape.

All methods described above need a large number of constraints to work well, which
is a major drawback, as it is desirable to work with a small set of sparse constraints.
We note that the issue of constraint propagation is not well studied: The transitivity
property of the must-link relationship has already been explored [22] but this cannot be
used with the cannot-link relationship which is not transitive.

1.1 Paper Contributions

This paper has two contributions: A new constrained spectral clustering method that
uses the unnormalized Laplacian embedding to propagate pairwise constraints and
a modified Laplacian embedding to cluster the data, and a new shape segmentation
method based on spectral graph matching and on a novel probabilistic label-transfer
process.
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We exploit the properties of the unnormalized graph Laplacian [3,1] which embeds
the graph into an isometric space armed with a metric, namely the Euclidean commute-
time distance (CTD) [23,14]. Unlike the diffusion maps that are parameterized by a
discrete time parameter, which acts as a scale, [13], the CTD reflects the connectiv-
ity of two graph vertices: All possible paths of all lengths. We build on the idea of
modifying the weighted adjacency matrix of a graph using instance level constraints on
vertex-pairs [21]. We provide an explicit constraint propagation method that uses the
Euclidean CTD to densify must-link and cannot-link relationships within small volumes
lying between constrained data pairs. We show that the modified weighted adjacency
matrix thus obtained can be used to construct a modified Laplacian. The latter respects
the topology of the initial graph but with a distinct geometric structure that have the
presence of dense graph lumps, which is a direct consequence of the constraint propa-
gation process: This makes it particularly well suited for clustering.

We introduce a shape segmentation method based on a learn, align, transfer, and
classify paradigm. This introduces an important innovation, namely that one can per-
form the training on one data-set and then classify a completely different data-set on the
premise that the two sets are approximately isomorphic. Our probabilistic label trans-
fer algorithm is robust to topological noise as we consider dense soft correspondences
between two shapes.

We compare our CSC algorithm with several other methods recently proposed in the
literature, and we evaluate it against ground-truth segmentations of both simulated and
real shapes. We note that the existing CSC methods have not been applied to articulated
shapes which are rather complex discrete Riemannian manifolds. Real shapes gathered
with scanners and cameras are very challenging dataset. As already mentioned, these
manifold data are very difficult to cluster due to the regularity of the associated graph.

2 Laplacian Embeddings and Their Properties

We consider an undirected weighted graph G = {V , E ,A}where V(G) = {v1, . . . , vn}
is the vertex set, E(G) = {eij} is the edge set, and the entries of the weighted adjacency
matrix A are: aii = 0, aij > 0 whenever two vertices are adjacent, i.e., vi ∼ vj ,
and aij = 0 otherwise. In the case of 2D manifolds, a vertex vi corresponds to a
3D point vi. Let 0 < amin ≤ aij ≤ amax ≤ 1. Since our graphs correspond to a
uniform surface discretization, it is realistic to assume that the weights vary within a
small interval [amin, amax]. Without loss of generality we consider Gaussian weights
i.e. aij = exp(−d2

ij/σ
2).

We briefly recall the following definitions: the degree matrix D = Diag [di . . . dn],
the n-dimensional degree vector d = (d1 . . . dn)�, with di =

∑
i∼j aij . The following

Laplacian matrices are used in spectral clustering [1]: The unnormalized Laplacian
L = D −A, the normalized Laplacian LN = D−1/2LD−1/2, and the random-walk
Laplacian LR = D−1L. Both L and LN are symmetric semi-positive definite, hence
their eigenvalues are non-negative and their eigenvectors form an orthonormal vector
basis of Rn. From the similarity LR = D−1/2LND1/2 one can easily characterize the
eigenspace of the random-walk graph Laplacian. It has been recently shown that both
L and LR are well suited for spectral clustering [1]. In this section we describe some
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interesting properties of the unnormalized Laplacian which justify its use for both the
tasks of clustering and of matching.

The L-embedding. Let Lu = λu, denote Λ = Diag [λ2 . . . λp+1], and let U =
[u2 . . .up+1] be the n × p matrix formed with the p smallest non-null eigenvectors
of L, hence U�U = Ip. We have as well λ1 = 0 and u1 = 1 (a vector with all entries
equal to 1). The columns of U form an orthonormal basis that span an embedded space
Rp ⊂ Rn perpendicular to 1. Hence, we have the following property:

n∑
j=1

ui(vj) = 0, ∀i, 2 ≤ i ≤ p + 1 (1)

where we introduced the notation ui(vj) for the j-th entry of vector ui in order to
emphasize that each eigenvector is an eigenfunction mapping the graph’s vertices onto
real numbers. The Euclidean embedding of the graph’s nodes that we will use are the
column vectors of the p× n matrix X defined by:

X = Λ−1/2U� = [x1 . . .xj . . .xn] (2)

This is also known as the commute-time embedding [14]. From the orthonormality of
the eigenvectors and from (1) we obtain:

−λ
−1/2
i < ui(vj) < λ

−1/2
i , ∀j, 1 ≤ j ≤ n (3)

The L̃-embedding. So far we described the properties of spectral embeddings that
correspond to graphs that contain only unlabeled vertices. As it will be explained in the
next section, the presence of pairwise constraints could lead to a modified Laplacian
embedding and in this paragraph we describe the rationale of this modified spectral
representation. We suppose that pairwise constraints are provided and we consider one
such vertex-pair. Two situations can occur: (i) the two vertices are adjacent or, more
generally, (ii) the two vertices are connected by one or several graph paths. While the
former situation leads to simply modifying the edge weights of the corresponding pairs,
the latter is more problematic to implement because it involves some form of constraint
propagation and it constitutes the topic of section 3. To summarize, the presence of
constraints leads to modifying some of the edge weights in the graph. We denote the
modified adjacency matrix with Ã. We also obtain a modified degree matrix D̃ and a
modified unnormalized Laplacian L̃:

L̃ = D̃− Ã (4)

This leads to modified Euclidean coordinates:

X̃ = Λ̃−1/2Ũ� = [x̃1 . . . x̃j . . . x̃n] (5)

The initial graph can therefore be represented with two different embeddings, the exact
geometry of the embedded space depending on the edge weights. Notice, that there is a
one-to-one correspondence between the columns of X and of X̃.
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3 Propagating Pairwise Constraints

In a constrained clustering task instance-level constraints are available. In practice, it
is convenient to be able to cope with a sparse set of constraints. The counterpart is
that they are not easily exploitable: propagating these constraints over a manifold (or
more generally over a graph) is problematic. In this section we describe a constraint
propagation method that uses the L-embedding and the associated Euclidean commute-
time distance (CTD). As already mentioned, must-link and cannot-link constraints were
successfully incorporated in several variant of the K-means algorithm [16,17,18]. How-
ever, these methods did not incorporate constraint propagation. Rather than modifying
the K-means step of spectral clustering, we incorporate a constraint-propagation pro-
cess directly into the L-embedding, thus fully exploiting the properties outlined in the
previous section.

Consider a subset of the set of graph vertices S = {v̄i},S ⊂ V from which we
build two sets of constraints: A must-set M ⊂ S × S and a cannot-set C ⊂ S × S.
Vertex pairs from the must-set should be assigned to the same cluster while vertex pairs
from the cannot-set should be assigned to different clusters. Notice that the cardinality
of these sets is independent of the final number of clusters. Also, it is necessary neither
to provide must links for all the clusters, nor to provide cannot links across all cluster
pairs. A straightforward strategy for enforcing these constraints consists in modifying
the weights aij associated with adjacent vertex-pairs that belong either to M or to C,
such that aij is replaced with ãij = 1 if (v̄i, v̄j) ∈ M and ãij = ε if (v̄i, v̄j) ∈ C,
where ε is a small positive number. We recall that 0 < amin ≤ aij ≤ amax ≤ 1. Notice
that for graphs corresponding to regular meshes, the edge-weight variability is small.

Since the set S is composed of sparsely distributed vertices, the pairs (v̄i, v̄j) do
not necessarily correspond to adjacent vertices. Hence, one has to propagate the ini-
tial must-link and cannot-link constraints to nearby vertex pairs. We propose to use the
commute-time distance (CTD) already mentioned. The CTD is a well known quantity
in Markov chains [24]. For undirected graphs, it corresponds to the average number of
(weighted) edges that it takes, starting at vertex vi, to randomly reach vertex vj for the
first time and go back. The CTD has the interesting property that it decreases as the
number of paths connecting the two nodes increases and when the lengths of the paths

Fig. 2. Propagating constraints. (a): Constraint placement onto the initial graph, two must-links
(dashed lines) and one cannot-link; (b): The L-embedding used for constraint propagation. (c):
The propagated constraints are shown on the graph. (d): The new embedding obtained with the
modified Laplacian L̃.
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Fig. 3. The CSC algorithm applied to the the dog and to the flashkick data (Note: unlike the results
in Table 1, we seek here for flashkick 14 segments). Initial graphs and manually placed constraints
(a), (d); Constraint propagation (b), (e); Final clustering results (c), (f).

decrease. We prefer the CTD to the shortest-path geodesic distance in the graph be-
cause it captures the connectivity structure of a small graph volume rather than a single
path between two vertices. The CTD is the integral of the diffusion distances over all
times. Hence, unlike the latter, the former does not need the free parameter t to be spec-
ified [13,14,7]. Indeed, the scale parameter introduces an additional difficulty because
different vertex-pairs may need to be processed at different scales. The commute-time
distance [23] between two vertices is an Euclidean metric and it can be written in closed
form using the L-embedding, i.e., eq. (2):

d2
CTD(vi, vj) = ‖xi − xj‖2 (6)

The CTD will allow us to propagate must-link and cannot-link constraints within small
graph volumes, e.g., fig. 2.

We briefly describe the propagation of must-link constraints. For each pair
(v̄i, v̄j) ∈ M with embedded coordinates xi and xj : We consider the hypersphere
centered at (xi + xj)/2 with diameter given by (6) and we build a subset Xs ⊂ X
that contains embedded vertices lying in this hypersphere. We build a subgraph Gs ⊂ G
having as vertices the set Xs = {vi}r

i=1 corresponding to Xs. Finally, we modify the
weights aij of the edges of Gs: ãij = 1. There is an equivalent procedure for the prop-
agation of cannot-link constraints. In order to preserve the topology of the modified
graph, in this case the weights are set to a small positive number, i.e., the modified
weight of a cannot-edge is ãij = ε. Hence the proposed CSC algorithm, fig. 3:

Algorithm 1. Constrained Spectral Clustering (CSC)
input : Unnormalized Laplacian L of a shape-graph G, a must-link set M, a cannot-link set C,

the number of cluster k to construct.
output : A set of binary variables Δ = {δil} assigning a cluster label l to each graph vertex vi.
1: Compute the L-embedding of the graph using the p first non-null eigenvalues and eigenvec-

tors of L, p ≥ k.
2: Propagate the M and C constraints, modify the adjacency matrix of G and build the modified

Laplacian L̃ using eq. (4).
3: Compute the L̃-embedding using the k first non-null eigenvalues and eigenvectors of L̃.
4: Assign a cluster label l to each graph vertex vi by applying K-means to the points X̃ in

eq. (5).
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4 Shape Segmentation via Label Transfer

The CSC algorithm that we just described is applied to a shape-graph Gtr such that
the latter is segmented into k clusters. Given a second shape Gtest we wish to use the
segmentation result obtained with Gtr to segment Gtest. Therefore, the segmentation of
Gtest can be viewed as an inference problem, where we seek a cluster label for each one
of its vertices conditioned by the segmentation of Gtr.

We formulate this label inference problem in a probabilistic framework and adopt a
generative approach where we model the conditional probability of assigning a label to
a test shape vertex. More formally, let Xtr and Xtest be the L-embeddings of the two
shapes with n and m vertices respectively, i.e., eq. (2). We introduce three sets of hidden
variables: S = {s1, . . . , sm} which assign each test-shape vertex to its cluster, R =
{r1, . . . , rn}which assign each train-shape vertex to its cluster, and Z = {z1, . . . , zm},
which assign a test-shape vertex to a train-shape vertex. Then the posterior probability
of assigning a cluster label l ∈ {1, . . . , k} to a test-shape vertex xtest

i ∈ Xtest can be
written as:

P (si = l|xtest
i ) =

n∑
j=1

P (rj = l|xtr
j )P (zi = j|xtest

i ), (7)

Here, P (rj = l|xtr
j ) is the posterior probability of assigning a label l to a train-shape

vertex xtr
j , conditioned by the train-shape vertex. Similarly, P (zi = j|xtest

i ) is the pos-
terior probability of assigning train-shape vertex xtr

j to test-shape vertex xtest
i and can

be termed as soft assignment. We propose to replace the posteriors P (rj = l|xtr
j ) with

hard assignments, namely the output of the CSC algorithm:

P (rj = l|xtest
j ) = δjl (8)

The estimation of the posteriors P (zi = j|xtest
i ) is an instance of graph matching in the

spectral domain which is a difficult problem in its own right, especially in the presence
of switches between eigenvectors and changes in their sign. The graph/shape matching
task is further complicated when the two graphs are not isomorphic and when they have
different numbers of vertices.

We adopted the articulated shape matching method proposed in [4,5] to obtain these
soft assignments. This method proceeds in two steps. The first step uses the histograms
of the k first non-null eigenvectors of the normalized Laplacian matrix to find an align-
ment between the Euclidean embeddings of two shapes. The second step registers the

Fig. 4. Clustering obtained with CSC (a), (d); vertex-to-vertex probabilistic assignment between
two shapes (b), (e); The result of segmenting the second shape based on label transfer (c), (f)
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two embeddings using the expectation-maximization (EM) algorithm and selects the
best vertex-to-vertex assignment based on the maximum a posteriori probability (MAP)
of a vertex from one shape to be assigned to a vertex from the other shape. In order to
fit to our methodological framework, we introduce two important modifications to the
technique described in [4]:

1. We use the unnormalized Laplacian. This is justified by the properties of the L-
embeddings which where described in detail in section 2. In particular, the property
(3) facilitates the task of comparing the histograms of two eigenvectors.

2. We do not attempt to find the best one-to-one assignments based on the MAP cri-
terion. Instead, we keep all the assignments and hence we rely on soft rather than
hard assignments.

The resulting shape matching algorithm will output the desired posterior probabilities
P (zi = j|xtest

i ) = pij , ∀1 ≤ i ≤ m. From (7) and (8) we obtain the following
expression that probabilistically assigns a vertex of Gtest to a cluster of Gtr:

γil = arg max
1≤l≤k

n∑
j=1

pijδjl (9)

This corresponds to the maximum posterior probability of a test-shape vertex to be
assigned to a train-shape cluster conditioned by the test-shape vertex and by the train-
shape-to-test-shape soft assignments of vertices. The proposed segmentation method is
summarized in algorithm 2. Fig. 4 illustrates the PLT method on two examples.

Algorithm 2. Probabilistic Label Transfer (PLT)

input : L-embeddings Xtr and Xtest of train and test shape-graphs Gtr and Gtest; a set of binary
variables Δ = {δjl} assigning a cluster label l to each vertex xtr

j ∈ Xtr.
output : A set of binary variables Γ = {γil} assigning a cluster label l to each vertex xtest

i ∈
Xtest.

1: Align two L-embeddings Xtr and Xtest using the histogram alignment method [4].
2: Compute the posterior probability pij of assigning each test graph vertex xtest

i to every train
graph vertex xtr

j using the EM based rigid point registration method proposed in [5].
3: Find the cluster label l for each test graph vertex xtest

i using the eq.(9).

5 Experiments and Results

We evaluated the performance of our approach on 3D meshes, consisting of both syn-
thetic 2 and real articulated shapes 3 having a wide range of variability in terms of mesh
topology, kinematic poses, noise and scale. Particularly, the data acquired by multi-
camera systems are non-uniformly sampled and there are major topological changes in

2 http://tosca.cs.technion.ac.il/book/resources_data.html
3 http://people.csail.mit.edu/drdaniel/mesh_animation/index.html
http://4drepository.inrialpes.fr/public/datasets
http://www.ee.surrey.ac.uk/CVSSP/VisualMedia/
VisualContentProduction/Projects/SurfCap

http://tosca.cs.technion.ac.il/book/resources_data.html
http://people.csail.mit.edu/drdaniel/mesh_animation/index.html
http://4drepository.inrialpes.fr/public/datasets
http://www.ee.surrey.ac.uk/CVSSP/VisualMedia/VisualContentProduction/Projects/SurfCap
http://www.ee.surrey.ac.uk/CVSSP/VisualMedia/VisualContentProduction/Projects/SurfCap
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between the various kinematic poses, e.g., fig. 1(c). We have generated manual segmen-
tations of all the employed meshes as a ground truth for the quantitative evaluation of
our approach. As a consequence of this, one-to-one correspondences between ground-
truth and our results are available. Therefore, the standard statistical error measures like
the true positives etp

i , the false negatives efn
i and the false positives efp

i can be easily
computed for each segmentation and for each cluster i. From these measures we derive
the true positive rate mtpr

i (recall) and positive predictive value mppv
i (precision) for

every cluster: mtpr
i gives for each cluster i the percentage of vertices which have been

correctly identified from the ground truth, and mtpr
i gives for each identified cluster the

percentage of vertices which actually truly belong to this cluster. Using these two mea-
sures, we tabulate the overall performance of our segmentation results by computing
the mean over all clusters of each shape mesh. We can define recall and precision as:

m̄tpr =
k∑

i=1

etp
i

etp
i + efn

i

, m̄ppv =
k∑

i=1

etp
i

etp
i + efp

i

with k being the total number of clusters on the evaluated mesh. To maintain the in-
dependence of the ground truth from the test data, the manual segmentation and con-
straint placement for the tested algorithms were performed by different persons. We
performed two sets of experiments. First, we evaluate the segmentation performance
of the CSC algorithm described in section 3 against two other constrained spectral

Fig. 5. Manual segmentation (ground-truth), results obtained with our algorithm (CSC) and re-
sults obtained with three other methods
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Table 1. Comparison of constrained spectral clustering algorithms

CSC CCSKL [19] SL [21] SC [1]
|V| k |M| |C| m̄tpr m̄ppv m̄tpr m̄ppv m̄tpr m̄ppv m̄tpr m̄ppv

dog 3400 9 28 19 0.8876 0.9243 0.5215 0.6239 0.4342 0.5644 0.5879 0.6825
crane 10002 6 9 8 0.9520 0.9761 0.6401 0.7952 0.8673 0.7905 0.7818 0.8526
handstand 10002 6 7 5 0.9659 0.9586 0.6246 0.7691 0.6475 0.7246 0.7584 0.9248
flashkick 89 1501 6 18 5 0.9279 0.9629 0.5898 0.7539 0.5412 0.5984 0.6207 0.7376
ben 16982 6 7 5 0.9054 0.9563 0.4002 0.5888 0.6434 0.6084 0.5587 0.6494

Fig. 6. Segmentation results with synthetic meshes which have been corrupted in various ways

clustering algorithms; Second, we evaluate the probabilistic label-transfer method de-
scribed in section 4.

We compared our CSC algorithm with the constrained clustering by spectral ker-
nel learning (CCSKL) method [19], and with the spectral learning (SL) method [21].
For completeness we also provide a comparison with the spectral clustering algorithm
(SC) based on the random-walk graph Laplacian. Our implementations of these meth-
ods were duly checked with their respective cited results. With all these constrained
spectral clustering methods the same set of constraints was used as well as the same
number of clusters (the latter varies from one data set to another). The normalized SC
algorithm that we implemented corresponds to the second algorithm in [1]: it applies
K-means to the unnormalized Laplacian embedding, i.e., eq. (2) and it corresponds to
steps 3 and 4 of our own CSC algorithm. A summary of these results can be found in Ta-
ble 1 and fig. 5. The most surprising result is that, except for the “Crane” data and with
SL, both CCSKL and SL could not significantly improve over the unsupervised SC al-
gorithm, despite the side-information available to guide the segmentation. The CCSKL
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Table 2. Summary of evaluating the PLT algorithm

Results for several meshes (I) Results for corrupted horse meshes (II)
Gtr Gtest |Vtr| |Vtest| m̄tpr m̄ppv transform |Vtr| |Vtest| m̄tpr m̄ppv

ben handstand 16982 10002 0.9207 0.9594 topology 19248 19248 0.9668 0.9642
handstand ben 10002 16982 0.9672 0.9462 sampling 19248 8181 0.8086 0.9286
flashkick 50 flashkick 89 1501 1501 0.8991 0.9248 noise 19248 19248 1.0 1.0
gorilla horse 2038 3400 0.8212 0.8525 holes 19248 21513 0.9644 0.9896

algorithm fails to improve over SC with our mesh data. Indeed, both assume that there
are natural partitions (subgraph) in the data which are only weakly inter connected.
Therefore, CCSKL only globally stretches each eigenvector in the embedded space to
satisfy the constraints, without any local effect of these constraints on the segmenta-
tion. The SL algorithm can barely improve over the SC results as it requires a large
number of constraints. With our method the placement of the cannot-link constraints
is crucial. Although our method needs only a sparse set of constraints, the number of
constraints increases (still number of constraints� |V|) if the desired segmentation is
not consistent with the graph topology, e.g., fig. 3(d).

In the second experiment, we evaluate the performance of our probabilistic label
transfer (PLT) method. In all these examples, we consider two different shapes, one
from the training set and one from the test set. First we apply the CSC algorithm to
the train-shape and then we apply the PLT algorithm to the test-shape. Fig. 1 shows
an example of PLT between two different shapes and in the presence of significant
topological changes: the right arm of Ben, (e), touches the torso. Fig. 4 show additional
results which are quantified on Table 2 (I). We also evaluate the robustness of PLT with
respect to various mesh corruptive transformations, such as holes, topological noise,
etc. Fig. 6 and Table 2 (II) shows the segmentation results obtained by transferring
labels from the original horse mesh to its corrupted instances. We obtain zero error if
the corruptive transformation does not change the triangulation of the mesh as in the
case of Gaussian noise. In fig. 7 we show the segmentation obtained with PLT where

Fig. 7. Clustering obtained with CSC (a); vertex-to-vertex probabilistic assignment between two
shapes (b); The result of segmenting the second shape based on label transfer (c)
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the test shape fig. 7-(c) significantly differs from the training shape fig. 7-(a) due to
large aquisition noise (see the left hand merged with the torso).

6 Conclusions

We proposed a novel framework for learning shape segmentation. We made two con-
tributions: (1) we proposed to use the unnormalized Laplacian embedding and the
commute-time distance to diffuse sparse pairwise constraints over a graph and to design
a new constrained spectral clustering algorithm, and (2) we proposed a probabilistic la-
bel transfer algorithm to segment an unknown test-shape by assigning labels between
an already segmented train-shape and a test-shape. We perform extensive testing of
both the CSC and the PLT algorithms on real and synthetic meshes. We compare our
shape segmentation method with recent constrained/semi-supervised spectral cluster-
ing methods which were known to outperform unsupervised SC algorithms. However,
we found it difficult to adapt these existing constrained clustering methods to the prob-
lem of shape segmentation. This is due to the fact that, unlike our method, they do not
explicitly take into account the properties inherently associated with meshes, such as
sparsity and regular connectivity.
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Abstract. We describe an efficient approach to construct shape mod-

els composed of contour parts with partially-supervised learning. The

proposed approach can easily transfer parts structure to different object

classes as long as they have similar shape. The spatial layout between

parts is described by a non-parametric density, which is more flexible

and easier to learn than commonly used Gaussian or other parametric

distributions. We express object detection as state estimation inference

executed using a novel Particle Filters (PF) framework with static ob-

servations, which is quite different from previous PF methods. Although

the underlying graph structure of our model is given by a fully connected

graph, the proposed PF algorithm efficiently linearizes it by exploring the

conditional dependencies of the nodes representing contour parts. Ex-

perimental results demonstrate that the proposed approach can not only

yield very good detection results but also accurately locates contours of

target objects in cluttered images.

1 Introduction

Object recognition, detection, and localization in real images is a major prob-
lem in Computer Vision since its beginning. In the last few years, the majority
of existing methods use simple relations of local image patches as basic fea-
tures, e.g., [24,3]. They can perform very well on high textured objects, but they
are unable to identify parts of deformable objects nor precisely localize their
boundaries in images. The main reason is that the model fails to represent all
available information [25]. However, an improved, richer representation of de-
formable objects is only useful when it is accompanied by efficient techniques
for performing inference and learning [26]. Thus, progress in this area requires
to simultaneously develop more powerful representations together with efficient
inference algorithms.

In this paper, we propose a single layer fully connected graph to model shape
of deformable objects. Each node in the graph is a state variable, which con-
sists of the position and the corresponding part. The relation between nodes is
long range and not limited to direct spatial proximity. Our model can be inter-
preted as a generative prior for the configuration of the state variables. Since our
graph is fully connected, we do not need to learn its structure, which simplifies

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 757–770, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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the learning significantly. We only need to learn representation of the nodes and
their pairwise relations. Since the number of pairwise relations is large, and most
of them are not used in our inference process, we do not learn the pairwise rela-
tions explicitly. Instead, we learn a representation that allows us to dynamically
construct the pairwise relations needed in the inference process.

In our model graph, the nodes represent contour parts and their position in
a given shape class. They are learned automatically with partially-supervised
learning. While many state-of-the-art approaches construct part models manu-
ally [18,27], we limit manual labeling to a single contour. In our approach, only
one silhouette is manually decomposed into visual parts in advance. Then, the
part decomposition is automatically transferred to silhouettes not only in the
same class but also in different classes with similar shape by shape matching.
To deal with non-rigid objects, we use Inner Distance Shape Context (IDSC) in-
troduced in [17]. The constructed part bundles (see §3) with proper position in
the exemplar shapes form the nodes in the model graph. The relations between
the nodes represent the spatial layout between parts. It is described by nonpara-
metric density estimation, which has better discriminative power than methods
based on unimodal distributions modeled as Gaussians, e.g., [5,23]. To make
the learnt model graph representative, we use the well designed exemplar based
clustering by Affinity Propagation [8] to select a set of candidate silhouettes as
exemplars for our model learning approach.

According to [26], there are no known algorithms for performing inference
for densely connected flat models, e.g., the performance of Belief Propagation
(BP) is known to degrade for representations with many closed loops. To address
this issue, we propose a Markov chain Monte Carlo (MCMC) approach that is
able to efficiently infer the values of the state variables representing nodes of our
fully connected model graph. The proposed MCMC approach is based on Particle
Filter (PF), but it differs fundamentally, since unlike the standard PF framework,
our PF framework can infer an order of random variable (RVs). The inferred
order follows the most informative paths in the graph. Thus, we use PF to
linearize the structure of the graph, which allows us to avoid the problem of loops.
Each particle may explore a different node order in this linearization, which
corresponds to the order of contour parts. This fact is illustrated by two different
detection examples shown in Fig. 1, where the PF order of detected contour parts
is color coded. This property makes our algorithm different from other PF based
method [13,12]. As can be seen by examining the relative position of consecutive
parts, the proposed inference is not limited to direct spatial proximity of the
parts. This fact sets our approach apart from existing approaches, e.g., [26,14].

In order to show the advantages of the proposed approach, we test our method
on three widely used data sets, Weizmann horses [2], the ETHZ [6], and the
cow dataset from the PASCAL Object Recognition Database Collection (TU
Darmstadt Database [16]). Our results measured by bounding box intersection
are comparable to state-of-the-art methods. Also, we perform very well in the
accuracy of boundary localization, which is evaluated by a recently proposed
measure in [7].
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(a) (b)

Fig. 1. Examples of two different inferred orders of detected contour parts. Colors

represent the order, which is 1=red, 2=cyan, 3=blue, 4=green, 5=yellow, and 6=black.

2 Related Work

Ferrari et al. [7] propose to learn the model from real images with weakly su-
pervision. Given the bounding boxes, the model is considered as the common
pattern of objects in the same class. With the same intuition, Lee and Grau-
man [15] also treat the common pattern in a class as the model. However, their
method is totally unsupervised. To utilize the already learnt information, Stark
et al. [23] transfer information of the learnt model to better study the new model
by a probabilistic framework. They have very similar intuition with our method.
However, ours are quite different from theirs. We transfer the structure infor-
mation by pure shape matching without any statistics. Their method is mainly
based on the probabilistic model they construct.

To detect objects in the cluttered image, Ferrari et al. [6] use kAS with Hough
voting to estimate the position of objects. Ommer and Malik [20] propose a novel
Hough voting strategy to overcome the problem of scales. Zhu et al. [27] treat
the detection as a set-to-set matching problem between segments. They simplify
the problem into linear programming to reduce the complexity. Ravishankar et
al. [21] propose a multi-stage method with manually deformed model. Similar to
ours, Trinh and Kimia also learn the model from silhouettes. However, instead of
contours, they use a skeleton based generative shape model. Also, their detection
stage is using dynamic programming, which is quite different from our method.
Besides pure shape based method, Maji and Malik [19] propose a maximum
margin hough voting method with SVM to detect objects. Gu et al. [11] combine
the region and shape together for object detection.

Particle filter (PF) has been used for object detection previously [13,12]. They
mainly utilize PF to reduce the possible assumptions and they have pre-defined
the order for PF. However, our method can determine the order of PF on the fly,
which is theoretically quite different from the traditional PF. Moreover, we are
based on shape features for object detection instead of the binary classifier they
defined. Lu et al. [18] also use PF for shape based object detection. However,
we are totally different from them at the proposal and evaluation steps, which is
essential for PF. Also, the pairwise relation between parts is naturally embedded
into our PF framework, which has not been done in the previous PF methods.
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3 Partially-Supervised Model Learning

Our approach only requires marking object parts on one exemplar. We then
transfer this knowledge to other contours not only in the same shape class but
also to similar shape classes. Thus, our approach is able to construct the part
models for different classes of objects starting with only one exemplar contour.
The constructed model can describe a wide range of objects with different poses.

As we learn the model from exemplars, the first issue is which ones should be
chosen from a given training data set. We use Affinity Propagation to select the
exemplars, which are cluster centers in AP. These cluster centers are representa-
tive, so that they can describe most of the poses of objects. The input pairwise
distance between shapes is obtained by Oriented Chamfer Matching (OCM).

3.1 Part Model Construction

In this section we describe a way to automatically decompose the exemplars
E = {E1, . . . , ENe} into meaningful parts. We first manually segment one se-
lected silhouette, say E1 into m different meaningful parts S = {s1, . . . , sm}. For
example, for horse, we have six parts: head, two front legs, two back legs, and
the body, shown in different colors in top left of Fig. 2(a). We then use shape
matching with IDSC [17] to transfer the parts to other exemplars E2, . . . , ENe ,
e.g., to the second horse in Fig.2(a). The corresponding points carry over the
part decomposition. To ensure that the part decomposition is transferred cor-
rectly, we require that the number of corresponding points for a given contour
part si is larger than a given threshold, e.g. 80% of the total number of points
in the contour part. If this is not the case, the corresponding part is removed
from the model.

We define part bundle Bi as a set composed of part si on E1 and all cor-
responding parts on E2, . . . , ENe transferred by the IDSC matching for i =
1, . . . ,m. Each part bundle Bi has at most Ne contour parts. We obtain a set of
m part bundles B = {B1, B2, ..., Bm} that defines the nodes of our part model
graph.

We can also employ shape matching to transfer the part structure to different
but similar object classes. As illustrated in Fig. 2(a), our part decomposition of
the horse contour transfers easily to contours of giraffes. As long as the objects
in different classes have similar structure, the proposed approach can transfer
the structure knowledge from the known class to the other classes and obtain the
part bundle models. There are three advantages of the proposed approach: 1) It
requires very little manual labeling. 2) The constructed model composed of part
bundles can handle the intra-class variations as long as the training silhouettes
can represent the possible poses of objects. 3) The structural knowledge can be
easily transferred to different classes.

3.2 Relation between Model Parts

After learning the model from silhouettes, in order to make the model more
flexible, we permit the rotation for each part and also some shift. However, with
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(a) (b)

Fig. 2. (a) Six manually labeled parts on the horse in top left are marked with different

colors. The point correspondence obtained by shape matching allows us to transfer the

part structure to a different horse and to a giraffe. (b)The horse head and horse body

shown on the left hand side are very different from our perception of a horse. Our

measure of this fact is illustrated in the rest of this figure.

the increasing flexibility, the obtained model can be very different from shapes in
a given object class. To reduce the negative effect of flexible models, we propose a
soft way to constrain the flexibility. We allow the flexibility in a range determined
by shape similarity to example shapes in a given object class. Here the shape
similarity is described by spatial layout of model parts, i.e., a new rotated spatial
layout of parts is allowed if it is similar to a layout previously seen for this class.
An example is shown in Fig. 2(b). The horse head and horse body shown on the
left hand side are very different from our perception of a horse. The head and
body are too far away from each other and their arrangement due to rotation is
really strange. With the method described below, we can offer a soft constraint
on possible spatial layout of parts.

The key idea is to construct a distribution describing the spatial layout be-
tween different parts. In particular, given a part bundle Bi, the spatial relation
between it and another part bundle Bj forms a distribution. This kind of dis-
tribution has been used in object detection to help describe the model [23,5],
but the distribution is assumed to be Gaussian, whose parameters can be eas-
ily learned from training samples. However, obviously, the distribution of part
relation is very complex and expressing it as Gaussian or any other parametric
distribution does not seem to be a good approximation. Instead, we propose to
learn the underlying distribution in a non-parametric setting.

We employ kernel density estimation, which is one of the most popular non-
parametric methods. Given are two rotated parts p′i and p′j that come from
different part bundles Bi and Bj respectively. Our goal is to find how is p′j
located with respect to p′i. For example, we want to find out how well the green
body is positioned with respect to the black horse head in Fig. 2(b). For part p′i,
we use OCMp′

i
to find the top k most similar exemplar parts (pi(1), . . . , pi(k))

in part bundle Bi (the bundle of p′i). For these original parts in Bi, we know
the exemplar contours they came from. From these contours, we extract parts
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(pj(1), . . . , pj(k)) that belong to the same bundle as p′j , i.e., to part bundle Bj . In
Fig. 2(b), OCM retrieves the 3 red horse heads (pi(1), pi(2), pi(3)) as most similar
to the black head, which in turn carry over from their original contours 3 blue
horse bodies (pj(1), pj(2), pj(3)). Finally, we measure the spatial layout between
parts p′i and p′j by estimating the fitness of p′j to the distribution described by
(pj(1), . . . , pj(k)):

f(p′j|p′i) =
1
Cc

k∑
t=1

1
h
K(

OCMp′
j
(pj(t))

h
) (1)

where K is a kernel function with bandwidth h, which is Gaussian in the paper
and Cc is a constant value. The computation of f(p′j|p′i) in our example is il-
lustrated in the right column of Fig. 2(b). It is a function of the OCM distance
between the green horse body and the 3 blue horse bodies.

4 Framework for Object Detection

Our goal is to infer the maximum of a posterior distribution p(B1, . . . , Bm | Z),
where (B1, . . . , Bm) is a vector of random variables (RVs) representing part
bundles, which are nodes of our shape model graph (§3). In our application
Z = (I, C) is a set of observations, where I is a RV ranging over binary edge
images and C ranges over classes of target objects including background. Thus,
Z is static, since the target edge image and the class of object are fixed for a
given detection process. The possible values of each RV Bi are vectors of two
elements, one is the location xi in the image and the second is the part si chosen
from the part bundle Bi in the model. In the case of a correct detection, we
expect part si to be located at xi in the image. We stress that even though each
part bundle has many parts, only one of them is chosen for a given location in the
image. To simplify the notation, we use b to represent the pair of values (x, s) for
each random variable, i.e., bl = (xl, sl). Consequently, our goal is to find value
assignments to RVs Bt = bt for t = 1, . . . ,m that maximize the posterior

b̂1:m = argmax
b1:m

p(b1:m | Z), (2)

where b1:m is a shorthand notation for (b1, . . . , bm). We will achieve our goal
by approximating the posterior distribution with a finite number of particles in
the framework of Particle Filter (PF). Besides, only a small subset of the search
space is considered in the framework, which reduces the complexity significantly
compared to exhaustive search with sliding windows, e.g., [22].

Unlike the standard PF framework, the observations Z in our approach do
not arrive sequentially, but are available at once, i.e., Z is static. Therefore, the
observations have no natural order. Consequently, the states b1:m also do not
have any natural order, i.e., the order of indices 1, . . . ,m does not have any
particular meaning. Therefore, we need to extend the PF framework to infer an
order of RVs, which may be different for each particle. Intuitively, we want to
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determine such an order of RVs so that the corresponding order of observations
is most informative, which makes the particle reaches optimal solution faster
and more accurate. This makes the proposed PF fundamentally different from
classical PF. To represent the order of RVs we need a symbol of a bijection
(onto and one-to-one function) < · >(i): {1, . . . ,m} → {1, . . . ,m}. Although we
may have a different bijection for each particle (i), we will drop the index (i)
from < 1 : t >(i), since the state variables already carry the particle index. For
example, we denote (b(i)4 , b

(i)
5 , b

(i)
2 ) as b

(i)
<1:3>, where < 1 : 3 >= (4, 5, 2).

We first present the proposed PF algorithm followed by a discussion of its ma-
jor differences to standard PF approaches. As it is often the case in PF applica-
tions, we assume the proposal distribution to be q(b|b(i)<1:t−1>, Z) = p(b|b(i)<1:t−1>).
For each particle (i), where i = 1, . . . , N , the proposed PF algorithm in each it-
eration t = 2, . . . ,m performs the following three steps:

1) Importance sampling / proposal: Sample followers of particle (i) for
l ∈ {1, . . . ,m}\ < 1 : t− 1 >

b
(i)
l ∼ p(bl|b(i)<1:t−1>) (3)

and set b
(i)
<1:t−1>,l = (b(i)<1:t−1>, b

(i)
l ). In particular, in the first iteration (t = 1)

we generate samples from each dimension of the state space, i.e., we sample for
l ∈ {1, . . . ,m}

b
(i)
<1> = b

(i)
l ∼ p(bl) (4)

2) Importance weighting/evaluation: An individual importance weight is
assigned to each follower of each particle by

w(b(i)<1:t−1>,l) = p(Z|b(i)<1:t−1>,l). (5)

3) Resampling: At the sampling step we have generated more samples than
the number of particles. Thus we have a larger set of particles b

(i)
<1:t−1>,l for

i = 1, . . . , N and l ∈ {1, . . . ,m}\ < 1 : t − 1 > from which we sub-sample N
particles and assign equal weights to all of them as in the standard Sampling
Importance Resampling (SIR) approach. We obtain a set of new particles b

(i)
<1:t>

for i = 1, . . . , N . The resampling is not performed in the last step, i.e., when
t = m.

Algorithm discussion:
1) This step provides our main extension of the classical PF framework. In
the classical PF framework, followers of each particle are selected from only
one conditional distribution, i.e., from the conditional distribution of RV at
dimension t given by p(bt|b(i)1:t−1), since the dimension index t represents a real
order of RVs 1 : t = 1, . . . , t. In contrast we sample the followers from each
dimension l ∈ {1, . . . ,m} that is not already included in < 1 : t− 1 >.

The fact that one can consider more than one follower of each particle and
reduce the number of followers by resampling is known in the PF literature and
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is referred to as prior boosting [10]. It is used to capture multi-modal likelihood
regions. However, all followers are selected from the conditional distribution of
the same RV (the same dimension t) in the classical PF framework.
2) We take the weight formula from [18], where it has been derived for PF with
static observations.
3) We stress that the resampling plays in our framework an additional and a very
crucial role. It selects the the most informative random variables (i.e., state space
dimensions) as followers of particles. Since the weight of b(i)<1:t−1>,l is determined
by the observations Z, and the resampling uses the weights to selects a follower
b<t> = bl from not yet considered dimensions l ∈ {1, . . . ,m}\ < 1 : t− 1 >, the
resampling determines the order of RVs, i.e., the bijection < t > for t = 1, . . .m.
Consequently, the order of RVs is heavily determined by Z, and this order may
be different for each particle (i). This is in strong contrast to the classical PF,
where observations Z have no influence on the order of RVs, which is fixed.

In order to execute the derived PF algorithm, we need to define the proposal
distribution p(bl|b(i)<1:t−1>), and the evaluation pdf p(Z|b(i)<1:t−1>,l). As stated in
Eq. 4, the initial proposal distribution is defined by p(bl), where l is an index of
a RV representing a part bundle and bl = (sl, xl). In our implementation, p(bl)
is simply the probability of finding model part sl at location xl, and it measures
how well model part sl fits the edges in the image. We compute it as a Gaussian
of the oriented chamfer distance. Similarly, p(bl|b(i)<1:t−1>) is the probability of
finding model part sl at the location xl, but now the location is constrained,
since parts s<1:t−1> have already been placed in the image. Thus, this conditional
probability is picked around the expected location xl determined by the locations
x<1:t−1> of the previously added parts. While the initial proposal distribution
is computed at every image location, the conditional proposal distribution is
only computed at regions of interest determined by the previously placed model
parts.

As Z = (I, C), and I and C can be viewed as independent conditioned on
b
(i)
<1:t−1>,l, we obtain:

p(Z|b(i)<1:t−1>,l) = p(I|b(i)<1:t−1>,l)p(C|b
(i)
<1:t−1>,l) (6)

We recall that in our detection framework, both I and C are instantiated, since
they are given prior to the detection, i.e., I = im, where im is a given binary
edge image and C = 1, which represents the class of the target object. The first
factor p(I = im|b(i)<1:t−1>,l) in Eq. 6 describes the goodness of fit to the edge

image im of the partial shape model determined by b
(i)
<1:t−1>,l, i.e., how likely

the edges in im come from a picture of a shape like the shape of b(i)<1:t−1>,l. The

second factor p(C = 1|b(i)<1:t−1>,l) represents the probability of the target class

given the model b(i)<1:t−1>,l. Hence it can be viewed as shape class constraints on
the model. The conditional pdfs describing both factors are defined in § 5.
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5 Evaluation Based on Shape Similarity

As b
(i)
<1:t−1>,l consists of the parts s

(i)
<1:t−1>,l and their locations x

(i)
<1:t−1>,l,

we construct a partial shape model μ by putting parts s
(i)
<1:t−1>,l at locations

x
(i)
<1:t−1>,l on the edge map im. The probability that the edge map im is an

image of a real object looking like our partial model μ is given by

p(I = im|b(i)<1:t−1>,l) = exp(−β ·OCMim(μ)), (7)

where OCMim(μ) returns the Oriented Chamfer distance between im and μ
and β is set to 10. Consequently, OCMim(μ) measures how well the constructed
partial model matches to the edge map.

p(C = 1|b(i)<1:t−1>,l) expresses the probability of the target shape class given

partial shape model μ = b
(i)
<1:t−1>,l. We obtain by Bayes rule

p(C = 1|μ) =
p(μ|C = 1)p(C = 1)∑

c=1,0 p(μ|C = c)p(C = c)
. (8)

p(μ|C = 1) measures the similarity between the constructed model and the tar-
get class. Similarly, p(μ|C = 0) measures the similarity between the constructed
model and the background. Eq. 8 helps to prevent accidental match to the back-
ground, since it eliminates shape models with both high similarity to a given
object class and to the background, and favors models with high similarity to a
given object class and low similarity to the background. We utilize a recursive
computation in our PF framework to obtain

p(μ|C = c) = p(b(i)<1:t−1>,l|C = c)

= p(b(i)l |b
(i)
<1:t−1>, C = c) p(b(i)<1:t−1>|C = c)

= p(b(i)l |b
(i)
<t−1>, C = c) p(b(i)<1:t−1>|C = c)

= f(b(i)l |b
(i)
<t−1>) p(b(i)<1:t−1>|C = c), (9)

where f is defined in Eq. 1, and a given shape class C = c is modeled as a set
of exemplars E = {E1, . . . , ENe}, which are selected from training examples by
affinity propagation.f describes the pairwise relation between nodes in the graph,
which is naturally utilized in our PF framework. When C = 0, we randomly select
some background edge configurations as training examples. In the transition from
2nd to 3rd row in Eq. 9, we make a Markov assumption that the new model part
b
(i)
l only depends on the previously added part b(i)<t−1> conditioned that we know

the shape class C = c. This simplifies the computation and makes the shape
model more flexible in that the pose of the new model part is only evaluated
with respect to the pose of previously added part. Finally, p(b(i)<1:t−1>|C = c) is
remembered from the previous iteration of particle (i).
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6 Experimental Results

We have tested our algorithm on three widely used data sets: the extended Weiz-
mann Horses [2,22], the ETHZ shapes [7] and the TU Darmstadt Database [16].
During the testing for Weizmann Horses, only 12 automatically selected horse
silhouettes with one hand decomposed horse are used to learn the shape model.
All the other images are used for testing. The edge maps for this dataset are ob-
tained by Canny edge detector. We also test our method on the class of giraffe in
ETHZ shape dataset [7]. The reason why we only select the category giraffes from
ETHZ is that our model learning method can only transfer between objects with
similar structure and giraffe is the only object in ETHZ having similar structure
to horse. Only one hand decomposed horse and 6 automatically selected giraffe
silhouettes are used to learn the giraffe model. Further, we work on the cow
dataset the TU Darmstadt Database [16], since cows have similar structure with
the above two classes. It contains 111 images. Only one hand decomposed horse
and 6 automatically selected cow silhouettes are used to learn the cow model.
The edge maps for this dataset are obtained by Canny edge detector.

To adapt to large scale variance, we generate multiple models by resizing the
original ones to 5 to 8 scales, and choose as the final result from the best score
in all the scales. We not only report our results on the commonly used bounding
box intersection, but also the accuracy of our boundary localization.

6.1 Detection according to Bounding Boxes

We first evaluate the ability of the proposed approach to localize objects in clut-
tered images using bounding-box intersection, which is widely used in traditional
object detection task. We adopt the strict standards of PASCAL Challenge cri-
terion: a detection is counted as correct only if the intersection-over-union ratio
with the ground-truth bounding-box is greater than 50%.

Fig. 3 reports precision-recall (P/R) curve and detection rate vs false positive
per image (DR/FPPI) curve for the class Giraffes in ETHZ dataset. In P/R, we
compare to Lu et al. [18], Zhu et al. [27], Ommer and Malik [20] and Ferrari et
al. [7], whose results are quoted from [18]. In DR/FPPI, as Ferrari et al. [7,6],
Ommer and Malik [20] and Lu et al. [18] provide their results, we compare to
them. As Ravishankar et al. [21] do not give their curves, we do not compare
to them in Fig. 3. According to the curves, we are better than Lu et al. [18],
Ommer and Malik [20], Ferrari et al. [7,6] and perform equally well as Zhu et
al. [27]. The performance of the proposed method illustrates its ability to cope
with substantial nonrigid deformations, which are present in the class Giraffes.
This is demonstrated by our example results in Fig. 4(a).

Table 1 compares our detection rate to [26,22] on Weizman Hores and TU
Darmstadt Cows. The detection rate on horses is estimated from the DR/FPPI
curve in [22]. The DR/FPPI curve for cows is not available in [22]. The method
in [26] is also matching based, while [22] is a classification method. Some exam-
ples of our horse and cow detection results are shown in Fig. 4(b). The detection
precision/recall area under curve (AUC) is a standard performance measure on
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Ommer and Malik

ICCV 09

Ommer and Malik

ICCV 09

Fig. 3. Precision-recall curve and detection rate (DR) vs false positive per image

(FPPI) curve for the class Giraffes in ETHZ dataset

(a) (b)

Fig. 4. Examples of detection results for Giraffes, horses and cows

the Weizmann Horses dataset. The AUC for our approach is 79.84%, which is
comparable to the result 80.32% in Xiang et al. [1]. We compare to them as
they also use the explicit shape model and matching based method for object
detection. The AUC of classification based methods [22,9] is 84.98% and 96%,
respectively. We observe that classification based methods are bounding box clas-
sifiers and utilize significantly more information than matching based methods
as ours. This explains why our detection rate and AUC is lower than [22,9].

The proposed approach can not only succeed in extensive cluttered images,
but also handles the problem of large range of scales and intra-class variability.
This is demonstrated by several examples in Fig. 4. The images in the bottom
right of Fig. 4(a) with red rectangles are the ones we fail to detect. The images of
horses in Fig. 4(b) with red rectangles are false positives in the negative images
provided by Shotton et. al. [22] to complement the Weizmann horse dataset.

Table 1. Detection rate

Our method Zhu et al. [26] Shotton et al. [22]

Horses 93.97% 86.0% 95.20%

Cows 90.38% 88.6% N/A
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They show that the false positives in the negative set are caused by really very
cluttered edges or by the structure of edges happening to match to the model
very well. Interestingly, the rightmost false positive of horses is due to a camel,
whose shape is very similar to that of a horse.

6.2 Localizing Object Boundaries

The method presented in this paper offers one important advantage compared
to texture based and classification methods like [3,9,4]. It can localize object
boundaries, rather than just bounding-boxes.

In order to quantify how accurately the output shapes match to true bound-
aries, we use the coverage and precision measures defined in [7]. Coverage is
the percentage of points from ground-truth boundaries closer than a threshold
t to the output shapes of the proposed approach. Reversely, precision is the
percentage of points from output shapes closer than t to any point of ground-
truth boundaries. As in [7] t is set to 4% of the diagonal of the ground-truth
bounding box. The measures are complementary. Coverage captures how much
of the object boundary has been recovered by the algorithm, whereas preci-
sion reports how much of the algorithm’s output lies on the object boundaries.
These measurements are really useful and suitable for evaluating shape based
approaches. In comparison, bounding-box evaluation cannot represent how ac-
curate the detected shapes match the ground-truth boundary. It is possible to
have bounding-box intersection larger than 0.5 without having correctly identi-
fied the ground-truth object boundaries. Two examples of horse detection are
shown in Fig. 4(b) with green rectangles.

The first two columns of Table 2 show coverage and precision averaged over all
images of the class giraffes in ETHZ dataset in comparison to the results in [7].
We measure the coverage and precision for the correct detections at 0.4 FPPI,
following [7]. The coverage of the proposed approach is over 11% better than
[7], which shows that our approach can efficiently recover the true boundary of
objects. The precision is a little lower than [7]. More importantly, the detection
rate at our 0.4 FPPI is 86.75%. However, even for 20% bounding box intersection,
the detection rate at 0.4 FPPI in [7] is only around 60% , which is much less than
us. It demonstrates that our approach can correctly localize object’s boundary
on more images.

For horses and cows, the coverage and precision are obtained over all correct
detections. The third column of Table. 2 shows the coverage and precision of the
proposed method on the Weizmann Horse dataset. As the edges are significantly
worse than the ones provided for the giraffes, both measures are worse than
the results on giraffes. The coverage and precision results for cow are shown in
the fourth column of Table. 2. Due to less intra-shape variance, the precision is
92.02%, which is much higher than giraffes and horses. However, the coverage is
only 73.86%. The main reason for the difference between these two values is that
our model has a gap, since we removed the contour part representing the horse
tail from the horse contour used for part decomposition. Thus, even if the model
and object match perfectly, the coverage score cannot be perfect (see examples
in Fig. 4).
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Table 2. Accuracy of the boundary localization

Ours Results in [7] Ours Ours

on giraffes on giraffes on horses on cows

Coverage 79.4% 68.5% 77.5% 73.86%

Precision 74.6% 77.3% 61.7% 92.02%

7 Conclusion and Discussion

This paper mainly contains two contributions: shape model learning through
shape matching and a novel framework for shape based object detection. The
proposed model learning method can not only learn the model for non-rigid
or articulated objects with partially-supervised learning, but also transfer the
structure information to different kinds of objects. More importantly, the spatial
layout between parts is also modeled.

We extend the classical particle filter framework in order to be able to infer an
optimal label assignment to RVs whose dependencies are described by a complete
graph. The values of RVs represent contour parts of our shape model and their
locations. In our framework each particle explores a different order of detected
contour parts, and the most informative order is selected by particle resampling.
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Abstract. This paper presents a new method for 2-D and 3-D shape

retrieval based on geodesic signatures. These signatures are high dimen-

sional statistical distributions computed by extracting several features

from the set of geodesic distance maps to each point. The resulting high

dimensional distributions are matched to perform retrieval using a fast

approximate Wasserstein metric. This allows to propose a unifying frame-

work for the compact description of planar shapes and 3-D surfaces.

1 Introduction

Content based 2-D and 3-D shape retrieval is an important problem in com-
puter vision. It requires to design both representations and similarity measures
to discriminate shapes from different classes, while being invariant to some de-
formations.

1.1 Feature-Based Shape Retrieval

There is a large amount of literature on content-based retrieval using similarity
measures between descriptors. In this section, a brief review is given, focusing
on bending and isometric deformations (i.e. preserving the topology). We refer
the reader to the following review papers devoted to planar shapes [1,2] and 3-D
surfaces [3,4] retrieval for a complete review.

Global descriptors. Simple global features are computed using polynomial mo-
ments [5,6,7], or Fourier transform [8] (see [9] for review).

The spectrum of the Laplace Beltrami operator defines a descriptor invariant
to rigid motion and to simple bendings [10]. Shape distributions [11] compute de-
scriptors as histograms of the distribution of Euclidean distance between points
on the surface. This is extended to bending invariant descriptors in [12,13,14]
using geodesic distances. It is possible to replace the geodesic distance by a
diffusion distance [15] computed by solving a linear Poisson PDE.
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Local descriptors. Many other shape representations do not make use of a single
descriptor. They rather compute similarities by matching points of interest for
which local descriptors are defined. Shape context features [16] are local 2-D his-
tograms of contours around points of interest. Geodesic shape context makes use
of geodesic curves to gain bending invariance [17]. Local tomographic projections
on tangent planes (spin images) [18] define a set of local descriptors.

Similarity measure. Most of the previous approaches make use of Euclidean
metric, Kullback-Leibler or χ2 distance to compare low-dimensional histogram-
based descriptors in linear time. When considering high-dimensional descriptors
(either histograms or discrete point clouds), another possibility is to use the
Wasserstein distance [19], see e.g. [20,21,22].

1.2 Contributions

This paper introduces a novel framework for bending invariant recognition of
shapes. We use the setting of geodesic distances on Riemannian manifolds, which
unifies both planar shape and 3-D surface retrieval problems. This novel frame-
work builds on several already known statistical descriptors, and encompasses
them into a single high-dimensional descriptor. This allows us to take advan-
tage of the richness of information available in each separate statistical measure
to enhance the retrieval performance. The retrieval method is based on an ap-
proximation of the Wasserstein distance, that works directly over discrete point
clouds, and can be computed with an iterative algorithm.

2 Geodesic Distances

In the following, we consider shapes as compact 2-D manifolds Ω ⊂ IRs, where
s = 2 (planar shapes) or s = 3 (surfaces). Note however that our approach is
generic and accommodates for domains of arbitrary dimension.

2.1 Geodesic Distance Definition

The length of a curve γ : [0, 1] → Ω traced within the domain is defined as
L(γ) =

∫ 1

0
||γ′(t)||dt. The geodesic distance between two points xs, xe ∈ Ω is the

length of the shortest piecewise smooth curve joining the two points

dΩ(xs, xe) = min
γ(0)=xs,γ(1)=xe

L(γ). (1)

The geodesic map dΩ(xi, x) differs significantly from the the Euclidean distance
map ||xi − x|| when the shapes are non convex, as it is illustrated by Fig. 1.

A curve γ� satisfying dΩ(xs, xe) = L(γ�) is called a shortest path, sometimes
also referred to as a (globally minimizing) geodesic. Figure 1 (on the far right)
shows several examples of geodesics, each time computed between a starting
point xs ∈ Ω (red dot) and some ending points {xe} lying on the boundary ∂Ω
of the manifold (blue dots).
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Euclidean ||xi − x|| Geodesic dΩ(xi, x) Shortest curves γ�

Fig. 1. Left and center: comparison of Euclidean and geodesic distances inside a 2-D

shape. Right: display of geodesic curves.

2.2 Geodesic Distance Computation

Geodesic distance within a planar shape. Given some starting point xs, the
geodesic distance map Uxs(x) = dΩ(xs, x) can be shown to be the unique vis-
cosity solution of the following non-linear PDE,

∀x ∈ Ω, ||∇Uxs(x)|| = 1 and Uxs(xs) = 0. (2)

where the derivative should be understood in a weak sense at points along the
medial axis of xs where Uxs is not smooth.

The PDE (2) can be discretized with upwind finite difference. The resulting
discrete equation can be and solved in O

(
N log(N)

)
operations using the Fast

Marching algorithm [23,24]. This algorithm performs a front propagation within
the shape, as displayed on Fig. 2.

Fig. 2. Fast Marching propagation inside a 2-D shape

Geodesic distance on a 3-D surface. If the surface Ω is parametrized using
ψ : V ⊂ [0, 1]2 $→ Ω, then one can prove that the distance map

∀x ∈ V, Uxs(x) = dΩ(xs, ψ(x))

satisfies an anisotropic Eikonal PDE

∀x ∈ V, ||∇Uxs(x)||T−1
x

= 1, and Uxs(ψ(xs)) = 0, (3)
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where Tx =
(
〈 ∂ψ
∂xi

,
∂ψ

∂xj
〉
)

0�i,j�1

and ||x||A =
∑

0�i,j�1

Ai,jxixj .

This equation (3) extends to surfaces of arbitrary topology using several charts
that parametrize locally the surface.

The Eikonal equation (3) can be discretized on 3-D meshes. In the case of
mesh with no obtuse angle, the discrete equation can be solved in O

(
N log(N)

)
operations [25]. For general meshes, the resolution requires more advanced sche-
mes, see for instance [26]. An example of a Fast Marching propagation from a
set of starting points on a 3-D shape is given on Fig. 3.

Fig. 3. Example of Fast Marching propagation on a triangulated mesh

3 Geodesic Descriptors

Similarity measures between shapes are computed by extracting global or lo-
cal features ϕ(Ω), and then performing some comparison between the resulting
descriptors.

An important goal in designing a similarity measure is to achieve invariance
to some class R of deformations. This requires that the descriptors are invariant,
so that ϕ(RΩ) = ϕ(Ω) for any R ∈ R.

This section details a class of geodesic descriptors that are invariant under
geodesic isometries, and quasi-invariant to shape articulations and bendings.
This is especially relevant to perform robust retrieval on articulated shapes,
such as animal or human with varying poses.

3.1 Local Descriptors

Geodesic distance distributions. To design features invariant to bendings and
articulations, we consider, for each point x ∈ S ⊂ Ω, the set {dΩ(x, y)}y∈E⊂Ω ⊂
IR+ of distances to a subset E ⊂ Ω. This set of distances should be thought as
being a 1-D distribution of values in IR+.

For numerical applications, the set S is a discrete sub-sampling of the manifold
computed as described in Sect. 3.2. The set E used to compute the distributions
can be defined depending on the application. In our numerical examples, we
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choose E = ∂Ω to be the boundary of the manifold for 2-D shapes, and E = Ω
for 3-D surfaces.

Figure 4 shows examples of geodesic distance distribution, conveniently dis-
played using 1-D histograms.

Fig. 4. Histogram of the distribution of the geodesic distance to several points

Geodesic quantile measures. The whole set of distances {dΩ(x, y), y ∈ E , x ∈
S} is too large to be used for retrieval applications. To achieve dimensionality
reduction, we retain only a few statistical measures out of this distribution of
values. This article considers quantiles statistical measures Qx(α) defined as, for
all α ∈ [0, 1],

∀x ∈ S, Qx(α) = F−1
x (α) = max{δ ∈ IR+, Fx(δ) � α} (4)

where Fx is the cumulative distribution function of the set {dΩ(x, y), y ∈ E},
and F−1

x is its pseudo-inverse.
Observe that Qx(0) is the minimum geodesic distance between x and E , while

Qx(1/2) is the median distance. The maximum distance Qx(1) is also known as
the eccentricity, and has been used for 2-D shapes [13] and surfaces [14] retrieval.
Other statistical measures can be retained as well. For instance, the mean of the
distance

∫
E dΩ(x, y)dy is used in [12] to perform surface retrieval.

Geodesic local descriptors. At each location x ∈ S, the local descriptor px ∈ IRd

is a vector of d quantiles

px = (Qx(α�))1���d ∈ IRd,

where 0 � α� � 1 are equi-spaced values. Figure 5 displays each of the d = 3
components Qx(α�) of px as a function of x ∈ Ω, with α� ∈ {0, 1

2 , 1}.
The key feature of our approach, that makes it significantly different from

these previous works is that it uses several statistical measures, and thus builds
high dimensional descriptors.
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Fig. 5. Display of x �→ Qx(α�) for several α� ∈ {0, 1
2
, 1} and of the corresponding 3-D

distribution {px = (Qx(α�))1���3}x∈S ⊂ IR3

3.2 Global Descriptors

The local descriptors px are sampled on a set S ⊂ Ω to obtain a global descriptor
that characterizes the shape.

Farthest Point Sampling. Estimating the full set {px}x∈Ω of descriptors is com-
putationally intractable, and one thus needs to compute a sub-sampling S =
{xi}i∈I of n points on the manifold, where I = {0, . . . , n − 1}. To perform a
uniform sampling of the manifold, we use the farthest point sampling strategy.
It corresponds to a greedy scheme, originally introduced in [27], and extended
to geodesic distances on manifolds for surface remeshing in [28].

The initial point x0 ∈ Ω is sampled at random. Given a set of k points
{x0, . . . , xk−1}, the next point is computed as

xk = argmax
x∈Ω

min
0�i<k

dΩ(xi, x).

Once this new point xk has been computed, the set {dΩ(xk, x)}x∈E of geodesic
distances is computed in O

(
n log(n)

)
operations, and the geodesic descriptor

pxk
∈ IRd is obtained by computing the quantiles (4) from these distances. This

process of iteratively adding the furthest point to the set S is continued until a
given number of points n is reached. Examples of this farthest point sampling
method on a 2-D shape and a surface are shown in Fig. 6.

Global descriptor as a point cloud. The global descriptor is then defined as a
uniform sampling of the local descriptors

ϕ(Ω) = {pxi}i∈I ⊂ IRd,

and is thus a cloud of n points in IRd.
This point cloud ϕ(Ω) should be thought as being drawn from a probabil-

ity distribution. Each shape has its own distribution, that is invariant under
isometric bending of the shape.
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Fig. 6. Illustration of the farthest point sampling strategy for a 2-D shape
and a 3-D surface. For each case |S| = n = 100 points are sampled (red dots). The

geodesic distances between each x ∈ Ω and these points are plotted as a colormap.

An alternative representation is to compute the d-dimensional histogram of
the distribution. We prefer in this paper to work directly using discretized point
cloud, because it offers a more precise matching.

The resulting global descriptor ϕ(Ω) is invariant to isometric deformations, in
the sense that ϕ(Ω) = ϕ(RΩ) if R is a deformation of Ω that maintains geodesic
distances. More generally, if R does not modify too much the distances, meaning

∀ (x, y) ∈ Ω2, dΩ(x, y) ≈ dRΩ(Rx,Ry), (5)

then ϕ(Ω) ≈ ϕ(RΩ). This is the case for bending deformations and articulations,
see [17]. Observe that geodesic distances {dΩ(x, y)}x,y ∈Ω have to be normalized
(according to maximum distance) to achieve invariance to scaling.

4 Optimal Transport Retrieval

Our shape retrieval method uses a similarity measure that compares the geodesic
descriptors ϕ(Ω) using the Wasserstein metric related to the Monge-Kantorovich
optimal transport problem (see [19] for an in-depth study).

4.1 Similarity Measure

In classical settings, shapes are generally represented by histogram-based de-
scriptors and thus compared with Lp distances or the Kullback-Leibler diver-
gence. In our setting, the descriptors are high dimensional discrete distributions,
and we propose to use the Wasserstein distance [19] which is well adapted to
compare statistical distributions [20], and is know to be more robust that Haus-
dorff distance [29]. Our similarity measure is thus defined as

Δ(Ω0, Ω1) = W (ϕ(Ω0), ϕ(Ω1)),

where W (X,Y ) is the Wasserstein distance between two point clouds X,Y ⊂ IRd,
defined in the next section. Since our geodesic descriptors satisfy the approximate
invariance (5) for bendings and articulations R ∈ R, our similarity measure
satisfies Δ(Ω0, R(Ω0)) ≈ 0.
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4.2 Wasserstein Distance

Given two point clouds X,Y ⊂ IRd of n elements, the L2-Wasserstein distance
is defined as

W (X,Y ) 2 = min
σ∈Σn

∑
i∈I

||Xi − Yσ(i)||2 , (6)

where Σn is the set of all permutations of n elements and I = {0, . . . , n − 1}.
Our framework extends to arbitrary strictly convex cost such as Lp-metric for
p > 1. Computing this distance boils down to estimate the optimal assignment
i $→ σ�(i) minimizing Formula (6). This can be computed exactly using linear
programming or other dedicated algorithms in O

(
n2.5 log(n)

)
operations [30].

One-dimensional case. It is well known that the Wasserstein assignment problem
in 1-D can be easily solved in O

(
n log(n)

)
operations by sorting the values [19].

Indeed, σX and σY being two permutations such that {XσX(i)}i and {YσY (i)}i

are sorted in increasing order, the optimal assignment is

σ� = σY ◦ σ−1
X . (7)

4.3 Approximate Wasserstein Distance

For large point clouds in high dimension (d � 2), computing exactly (6) is too
demanding. Following an idea recently introduced in [31], we propose to use the
an approximate transport cost W̃ (X,Y ) defined as

W̃ (X,Y ) = ||X −X(∞) || , (8)

where X(∞) is computed using an iterative algorithm described in the following
paragraph. Starting from X(0) = X , this algorithm computes points clouds
{X(k)}k that progressively evolves X(k) toward Y , minimizing at each iteration
an energy EY which is a sum of 1-D Wasserstein distances on the unit sphere
Sd−1 in IRd:

EY (U) =
1
2

∫
θ∈Sd−1

∑
i∈I

〈Ui − Yσ�
θ (i), θ〉2 dθ , (9)

where 〈. , .〉 is the L2-scalar product, and where σ�
θ is the optimal 1-D assignment

according to direction θ of {〈Yi, θ〉}i with {〈Ui, θ〉}i following Formula (7).

Algorithm. Finding a minimum of energy (9) can be done using a classical
gradient descent strategy. For numerical considerations, this energy is estimated
at each iteration k from a restricted set of directions, thus resulting in a stochastic
gradient descent scheme (see e.g. [32]), which relies on three steps:

# Step 1. Define the direction set Ψ (k) ⊂ Sd−1, a collection of vectors randomly
and uniformly sampled on Sd−1. The corresponding energy E

(k)
Y is therefore

E
(k)
Y

(
U
)

=
1
2

∑
θ∈Ψ (k)

∑
i∈I

〈Ui − Yσ�
θ (i), θ〉2 . (10)
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# Step 2. Compute, for each direction θ ∈ Ψ (k), the optimal 1-D assignment σ�
θ

of 1-D distribution {〈Yi, θ〉}i∈I with {〈X(k)
i , θ〉}i∈I using Formula (7).

# Step 3. The set {σ�
θ} being computed, update the point cloud using a Newton

step with parameter λ ∈ ]0, 2[ to minimize the energy E
(k)
Y , such that ∀ i ∈ I

X
(k+1)
i = X

(k)
i − λ

(
∇2E

(k)
Y

(
X(k)

))−1

∇E
(k)
Y

(
X

(k)
i

)
,

= (1− λ) ·X(k)
i + λH−1

∑
θ∈Ψ (k)

〈Yσ�
θ (i), θ〉 θ , (11)

where H =
∑

θ∈Ψ (k) θθT ∈ IRd×d is the Hessian matrix of E(k)
Y at point X(k)

i .

Convergence. Stochastic gradient descent is known to converge if one uses a
properly chosen step size λ = λk that decays through the iterations, see [32]. In
numerical simulations, we always observed convergence of X(k) to some X(∞)

using the fixed step size λ = 1/|Ψ (k)|. Furthermore, X(∞) is actually equal (up to
a permutation) to Y , so that the algorithm computes an assignment between the
two distributions –which is not necessarily optimal in the sense of Formula (6).

Implementation. In the numerical simulations of Sect. 5, we used a fixed number
of K = 100 iterations and |Ψ | = d directions, and we noticed that using more
iterations does not improve significantly the retrieval results. The complexity of
the proposed algorithm is therefore O

(
|Ψ |Kn log(n)

)
.

This method extends the algorithm proposed by [33] that makes use of an
orthogonal set of direction Ψk, and a descent step size λ = 1. Using a smaller
step, e.g. λ = 1/|Ψk| is important to ensure the convergence of the method.
Using a larger set of directions is useful to obtain a assignment that is closer
to the optimal one, see [31] for more details. Observe that other approximation
methods has been previously proposed in the literature, e.g. making use of metric
embedding [21] or wavelet approximations [34].

5 Numerical Examples

Given a database of manifolds {Ωj}j∈J , our algorithm for shape retrieval begins
by computing the global signature ϕ(Ωj) for each manifold in the database.
This is performed in parallel to the farthest point sampling algorithm described
in Sect. 3.2. When an input manifold Ω is queried in the database, its global
signature ϕ(Ω) is computed, and the shape in the database are ordered according
to the Wasserstein distance approximation W̃ (ϕ(Ω), ϕ(Ωj)).

To evaluate the retrieval performance of the proposed descriptor, two classical
performances curves are displayed:

– the average recall curve shows the average number of correct shapes (or
“true-positives”) retrieved per query among the r most similar ones in the
dataset. This curve, plotted depending of the rank r, is obtained by querying
every shape in the dataset (the query itself is no used to compute the score);



780 J. Rabin, G. Peyré, and L.D. Cohen

– the average precision-recall curve plots the rate of correct shapes retrieved
among r as a function of the average recall rate.

In order to show the interest of considering high dimensional geodesic statistics,
each performance curves are shown for two different descriptors: the aforemen-
tioned multi-dimensional descriptor and also a simple 1-D descriptor correspond-
ing to the distribution of eccentricity (maximal geodesic distances).

5.1 2-D Shape Retrieval

In this setting, the domain E of ending points {yj}j∈J is the boundary ∂Ω of
the manifold. 4-dimensional distributions of n = 500 points are used as global
descriptors, considering 3 quantiles Qx(αj) (minimum, median and maximum)
in addition with the mean values of geodesic distances.

We consider first the “Articulated Shapes” dataset of [17] (see Fig. 7(a)), a
small dataset being designed to evaluate the robustness of retrieval to bending
deformations. Performance curves are shown in Figs. 7(b) and 7(c) for both 4-D
and 1-D descriptors. Comparison with state-of-the-art methods [17,22] is also
provided in Table 1. One can see that considering several geodesic statistics at
the same time enables to catch more sophisticated information on the shape
while being more robust to bending deformations. Note that it is not the case
when using Euclidean metric with descriptors made of 4 1-D histograms instead
of the approximate Wasserstein metric with 4-D discrete distributions.

Table 1. Retrieval results on the articulated shapes dataset [17]. Scores cor-

respond to the number of correct shapes retrieved among 40 depending on their rank.

Method Rank

Descriptor Metric 1st 2nd 3rd 4th

Geodesic quantile distribution (4-D) Approx. Wasserstein 39 34 30 24

Maximal geodesic distribution (1-D) Wasserstein 27 24 16 18

4 Geodesic quantile histogram (1-D) Euclidean 21 15 7 11

Inner Distance Shape Context χ2 [17] 40 34 35 27

Inner Distance Shape Context EMD-L1 [22] 39 39 34 32

In order to evaluate the robustness of our approach for 2-D shape retrieval
on a larger database, we consider now the MPEG-7 dataset of 1400 shapes (see
Fig. 8(a)). Results are shown in Figs. 8(b) and 8(c). Again, one can see that
using multi-dimensional statistics on geodesic distances yields far better results.
The state-of-the art method of [22] yields a bullseye score (average recall rate
for rank r = 40) of 86.56%, whereas we obtain 59.7%. This can be explained
by the strongly non-isometric variations of the objects in the MPEG-7 classes,
which makes our representation quite inefficient for this retrieval. An important
avenue for future work is to design a large benchmark of planar shapes undergo-
ing bendings and articulation deformations, to explore the performance of our
algorithm and related methods.
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(a) Articulated shapes dataset of [17]. Pairs of shapes from different classes. The

complete dataset is composed of 8 classes of 5 elements.
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(b) Recall vs Image Rank.

0 20 40 60 80 100
0

20

40

60

80

100

A
ve

ra
ge

 P
re

ci
si

on

Average Recall

1D
4D

(c) Average Precision-Recall.

Fig. 7. Retrieval results on the articulated shapes database [17]. Figure 7(a):

database overview. Figure 7(b): Average recall rate depending on the shape rank thresh-

old for each query shape in the dataset (the score does not include the query itself).

Figure 7(c): Average Precision versus Recall.

(a) MPEG7 dataset. Pairs of shapes from different classes. The complete dataset

is composed of 8 classes of 5 fives elements.
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(b) Recall vs Image Rank.

0 20 40 60 80 100
0

20

40

60

80

100

A
ve

ra
ge

 P
re

ci
si

on

Average Recall

1D
4D

(c) Average Precision-Recall.

Fig. 8. Retrieval results on MPEG7 database. Figure 8(a): database overview.

Figure 8(b): Average recall rate. Figure 8(c): Average Precision versus Recall.

5.2 3-D Shape Retrieval

For surface, the domain E = Ω is the whole manifold. Hence, the first order
quantiles Qx(0) are discarded since they are zero, so that we handle d = 3 -
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(a) McGill dataset of articulated and non-articulated objects [35] (respectively

composed of 9 classes of 202 elements and 10 classes of 255 elements).
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(b) Recall vs Image Rank on articulated

dataset.
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(c) Average Precision-Recall on articu-

lated dataset.
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(d) Recall vs Image Rank on complete

dataset.
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(e) Average Precision-Recall on complete

dataset.

(f) Average Recall on partial McGill

database (14 classes) with [36] method.
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Fig. 9. Retrieval results on McGill database [35]. Figure 9(a): overview of the

database. Figure 9(b) and 9(d): Average recall rate on articulated and complete dataset.

Figure 9(c) and 9(e): Average Precision versus Recall on articulated and complete

dataset. Figures 9(f) (from [36]) and 9(g)): comparison of our approach with state-

of-the-art method described in [36] on partial McGill Dataset (14 classes out of 19).

Results are shown as average recall rate curve (plotted in black) along with the average

intra-class standard deviation (in red).
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dimensional geodesic statistics of n = 500 points, considering from now max
and median in addition with mean values of geodesic distances.

To evaluate the robustness of such global descriptor for 3-D shapes, we used
the McGill dataset of 3-D articulated objects [35] (see Fig. 9(a) for an overview).
Retrieval results are shown in Figs. 9(b) and 9(c). Again, it is clear that the
combination of several geodesic distance characteristics achieves better retrieval
results than considering only one. A comparison with state-of-the-art approach
described in [36] is also provided in Figure 9, where we obtain similar results.
Following the same protocol as in [36], retrieval results are given for a subset of
the complete McGill Database (14 classes out of 19).

6 Conclusion

The first contribution of this paper is a generic framework to represent mani-
folds with statistical signatures based on geodesic distances, which are robust
to bendings. The second contribution of this paper is an algorithm to compute
a similarity measure between multi-dimensional joint distributions, which yields
a fast approximation of the Wasserstein metric. This algorithm is applied to
perform shape retrieval using our geodesic framework.

Our framework extends naturally to include additional information such as
texture. One can indeed use a non-constant Riemannian metric that takes into
account this information.
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Abstract. Recently, there has been increasing interests in applying as-

pect models (e.g., PLSA and LDA) in image segmentation. However,

these models ignore spatial relationships among local topic labels in an

image and suffers from information loss by representing image feature

using the index of its closest match in the codebook. In this paper,

we propose Topic Random Field (TRF) to tackle these two problems.

Specifically, TRF defines a Markov Random Field over hidden labels

of an image, to enforce the spatial coherence between topic labels for

neighboring regions. Moreover, TRF utilizes a noise channel to model

the generation of local image features, and avoids the off-line process of

building visual codebook. We provide details of variational inference and

parameter learning for TRF. Experimental evaluations on three image

data sets show that TRF achieves better segmentation performance.

1 Introduction

Image segmentation represents a fundamental problem in computer vision, which
aims to cluster pixels in an image into distinct, semantically coherent and salient
regions [1,2,3]. Solutions to image segmentation serves as the basis for a wide
range of applications including object recognition, content-based image retrieval,
video surveillance and object tracking [4].

Although geometry-based methods such as normalized cuts [1] remain an
effective approach to image segmentation, motivated by the success of proba-
bilistic aspect models, such as the probabilistic latent semantic analysis (PLSA)
[5] and the latent Dirichlet allocation (LDA) [6], in text analysis and informa-
tion retrieval, there has been a growing interest in applying such models for
semantically-driven segmentation of natural images [7,8,9,10,11,12]. Among var-
ious advantages offered by these approaches, is their affordances for unsupervised
training of representations of the latent aspects underlying a content-rich cor-
pora, often known as topics, which can help define a semantically meaningful
“content space” in which an image can lie. Thus the segmental results derived
from an aspect model (also known as topic model) can be more reliant on con-
tent coherence, rather than mere spatial contiguity as in the spectrum methods.
Other advantages include flexibility in capturing content granularity [7], and
computational efficiency based on efficient approximate inference.

To apply those aspect models originally proposed for text data, it is necessary
to first build a connection between an image and a text document. While text

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 785–798, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. (Best viewed in color) Comparison of the spatial latent Dirichlet allocation

(spatial LDA) model [13], one of the state-of-the-art aspect model for image analysis,

and our proposed model, topic random field (TRF). First column shows the input

images. Second column shows the input regions to spatial LDA and TRF provided by

an over-segmentation method (normalized cut in this paper). The last two columns

show the segmentation results of spatial LDA and TRF respectively. The first row

indicates that by defining MRF over latent topics, TRF enforces spatial coherency

over adjacent regions, while spatial LDA separates adjacent and semantically similar

regions into two segments. The second row shows that using noise channel instead

of codebook enables TRF to group two visually non-identical objects (black cow and

white cow) from the same semantic class into the same category, while the spatial LDA

model categorizes these two objects into different semantic classes.

documents are naturally composed from a vocabulary of distinctive words, an
image is made from a collection of pixels, and there is no such obvious word-
level representation for images. Conventionally, researchers extract various local
features, for example, interest points detected by scale invariant saliency detector
[14] as used in [13], and transform these local features to “visual words”, which
play the same role as textual words in text analysis. Typically, after extracting
local features from training images, a clustering is performed on the entire set of
local features. Then a dictionary is constructed, with “words” being the centroids
of the feature clusters. Based on this dictionary, each feature extracted from the
image is then represented by the index of the most similar item (i.e. a visual
word defined by the feature centroid) in the dictionary. Finally, analogous to
text data, an image is represented as a collection of visual words, obtained by
assigning every local feature an index in the visual dictionary.

Despite the success of modern low-level visual feature detectors, the aspect
model built upon those local features suffers from several weaknesses. First, most
existing aspect models regard an image as a bag of visual words, ignoring the
spatial relationship between them. Although the spatial relationship between
words in text documents might not severely affect content distillation, the spa-
tial relationship between visual words are crucial for image understanding. For
example, a scrambled collection of patches from a building image does not nec-
essarily evoke the recognition of a building [11]. Most current work on aspect
model of images ignores this important issue, hence might have compromised
the final accuracy of the segmentation and recognition tasks. This contrasts the
spectrum methods for which spatial contiguity is crucial in defining segmental
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patterns. Second, representing each local image feature by the index of the item
that is closest to it in the dictionary can result in severe loss of information. Due
to the usual high dimensionality of local features extracted from images, it is im-
practical to build a large size dictionary that could enumerate all possible local
features. Therefore, it is highly possible that even the closest matching visual
word in the dictionary for a particular local feature instance can be quite dif-
ferent from the feature instance itself, and the matched visual word might even
represent a mismatching content, thereby causing ambiguity in feature-instance
versus visual-word matching. This phenomena has never been an issue in text
modeling, where a word-instantiation in a document can be always unambigu-
ously mapped to a word in the dictionary. We suspect that these two problems
could seriously hinder the application of aspect models on image data.

In this paper, we propose a Topic Random Field (TRF) model for image
segmentation, which improves over the basic LDA-style models, by defining a
Markov Random Field (MRF) over hidden topic assignment of super-pixels in
an image to enforce the spatial coherence between neighboring regions; and by
employing a noise channel between visual words in the dictionary and instanti-
ated super-pixels in the real image to better model the variance of local features.
Specifically, instead of assuming that the latent topic assignments of every super-
pixels in an image are generated independently according to a multinomial dis-
tribution, a TRF defines an MRF over the hidden super-pixels’ labels to model
their spatial relationship. Moreover, different from previous attempts, which first
build a codebook off-line and then generate each local feature instantiation ac-
cording to a multinomial distribution over word-index, a TRF generates each
local feature instantiation as a corrupted or transformed version of a matching
visual word in the codebook according to a noise-channel model, which allows
explicit modeling and inference of the ambiguity of the matching between feature
instantiation and feature prototypes (i.e., visual word). As a result, TRF avoids
the problem of information loss during topic learning without building a large
size codebook, and is significantly more robust to variability in the instantiations
of local features corresponding to the same objects or common visual words due
to variations in lighting, transformation, viewing angle, etc.

It should be noted that there has been some attempt in utilizing spatial rela-
tionships between topic labels to improve the performance of aspect models on
image segmentation [13,11,15,16,17]. Probably the most related work to this pa-
per is the spatial-LDA model [13], which also considers utilizing spatial consis-
tency, by defining latent topic variables on over-segmented regions and enforcing
all local patches within the region to share the same latent topic. In fact, we adopt
a similar way of defining latent topic variables on over-segmented regions to en-
force spatial consistency between local patches within the same region. However,
in spatial-LDA model, the authors only consider the spatial consistency between
adjacent local patches, while topic labels for over-segmented regions are assumed
to be generated independently. Empirical comparison between spatial-LDA and
TRF demonstrate the necessity of enforcing spatial consistency between adja-
cent over-segmented regions. Besides, in [11], the authors demonstrated that the
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performance of PLSA can be improved by introducing an image-specific MRF to
enforce the spatial coherence on the labels of the fine-grained local patches in an
image. However, in that model the number of parameters grows linearly with the
number of training images and the model is trained fully supervised. On the other
hand, the number of parameters in TRF does not grow with the size of the train-
ing data because we apply a universally-parameterized MRF within the TRF over
all images, which can be trained via a maximum likelihood principle in a fully
unsupervised fashion. Applying a universal MRF rather than an image-specific
one as in [11] is crucial to avoid overfitting and enable scalability. Moreover, [11]
builds an MRF on local patches. Since there might be several hundreds of patches
in one image, the resulting MRF is quite large; whereas our approach defines an
MRF on over-segmented regions usually with homogeneous object-level contents,
whose number in an image is around 50, and enforces the consistency among local
semantically similar and adjacent patches by enforcing them to share the same la-
tent topic. Therefore, the MRF in our model is much smaller than the one in [11],
yet enforces the same amount of spatial consistency. In our empirical studies, we
found that training TRF takes much less time than training the model in [11] on
the same data set, which makes TRF more practical for web-scale image analysis.

Unlike the attempt on utilizing spatial relationships between topic labels to im-
prove aspect model, as far as we are concerned, the noise channel presented in this
paper is the first attempt in modeling visual feature generation without building
a codebook in this topic-model based image analysis. Despite the fact that noise
model could tolerate variability in the instantiations of local features due to vari-
ations in lighting, transformation, viewing angle, etc, using a noise channel also
avoids the hassle of building a codebook off-line.

In summary, the main contributions of this paper can be highlighted as the fol-
lows: (1) The Topic Random Field provides a probabilistically sound framework
for modeling spatial coherency within an aspect model. (2) TRF offers a more
principled approach for addressing the ambiguity in feature-instance versus visual-
word matching, and for codebook construction via unsupervised maximum likeli-
hood learning during training the TRF (rather then via an off-line preprocessing).
(3) The conjoint effect of a spatial MRF on topic labels and a noise-chanel code-
book lead to a segmental algorithm that takes into consideration of both semantic
and spatial coherence, without any supervision. Figure 1 illustrates topic random
field’s novelty by comparing the segmentation results of spatial-LDA and TRF.

The rest of this paper is organized as follows. We briefly review the image rep-
resentation employed in aspect models for image segmentation problems, and de-
scribe the visual features we utilize in this paper. We introduce the topic random
field model in Section 3. Section 4 presents the details of variational inference and
parameter learning for this model. We give experimental results on three image
data sets in Section 5, followed by conclusions in Section 6.

2 Preliminary: Image Representation

Given an image, TRF starts with an initial over-segmentation of the image by par-
titioning it into multiple homogeneous regions. To ensure that pixels in a region
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belongs to the same object and avoid obtaining regions larger than the objects we
want to segment, we start with an over-segmentation of the images using spectral
clustering [1]. For each over-segmented region, we extract 4 types of region-level
features: shape, color, location and texture. specifically, the shape features include
the centered object mask in a canonical 32× 32 frame, the size of the region, and
the size of region’s bounding box, which results in a 1027 dimensional vector [18].
The color features include the mean RGB value, its standard deviation and a color
histogram. The location information extracted from each region is represented by
a coarse 8 × 8 absolute segmentation mask as well as the height of the top-most
and bottom-most pixel in the region [18]. Finally, the texture features are aver-
age responses of filter banks in each region. Besides region-level features, we also
extract pixel-level features within each segmented region. Specifically, we find a
number of scale invariant interest points and describe them by SIFT [19].

3 Topic Random Field

In this section, we will introduce the Topic Random Field and explain in detail the
generative process of this model. As discussed in the first section, TRF improves
the spatial LDA model [13], a specially designed topic model for image segmen-
tation, in two perspectives: the incorporation of an MRF over the hidden labels
in the image and the introduction of a noise model for generating image features.
To better understand the motivation of TRF, we first briefly describe the spatial
LDA model as depicted in figure 2(a).

Given an image Id (d ∈ {1, 2, . . . , D}) and its over-segmented regions n =
1, 2, . . . , Nd, the spatial LDA model defines a latent topic zd

n to represent the label
of region n. Topics in image data have similar meanings as they do in text data: a

(a) Spatial LDA (b) TRF

Fig. 2. Graphical model representation of Topic Random Field and comparison with

spatial LDA model
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topic represents category identity of an object, e.g., buildings, horses, cars, trees,
etc. Suppose there are totally K topics within the image collection, then for each
region n, zd

n ∈ {1, . . . ,K}. Each topic zd
n then generates a region-level feature Rd

n,
for example the average filter responses in the region, and Md

n pixel-level features

{Xd
nm}

Md
n

m=1, such as the detected salient points described by SIFT. In order to do
image segmentation using topic model, we first need to infer the hidden topic label
for each over-segmented region and then group all the regions with the same topic
label to form an object.

We will take an example to explain the generative process of spatial LDA: sup-
pose we want to generate a “building” image Id. First, we will draw a probability
vector θd which determines what intermediate topics to select to generate each re-
gion of the image. For a building image, θd should privilege topics like “glasses”,
“walls”, etc. Then, to create each region in the image, we determine a group of
particular topics {zd

n}Nd

n=1 out of the mixture of possible topics. For example, if a
“glass” topic is selected, this will in turn give preference on some codewords that
occur more frequently in glasses. Finally, we draw codewords Rd

n and {Xd
nm}

Md
n

m=1

to describe the appearance of region n. The process of drawing both the topic and
codewords will be repeated Nd times, eventually forming an entire bag of visual
words that would construct an image of buildings.

3.1 Spatial MRF over Topic Assignments

The basic model ignores the spatial structure of the image, modeling its regions
as independent draws from the topic mixing vector θd. However, the labels for ad-
jacent regions tend to be strongly correlated in real images. TRF extends spatial
LDA by enforcing spatial coherence among neighboring regions. Specifically, to
enforce spatial coherence over hidden topic labels in our image model, we move
from a multinomial distribution over hidden topics to a Markov Random Field.
The topic random field, depicted as a generative model in Figure 2(b), introduces
explicit couplings between the labels of adjacent regions in an image. This allows
the TRF model the ability to capture local correlations that would be missed
under the conditional independence assumption of spatial LDA. The transition
from spatial LDA to TRF is equivalent to placing an MRF prior on hidden topic
labels zd:

p(zd|θd, σ) = 1
A(θd,σ)

exp
[∑

n

∑
k zd

nk log θd
k +

∑
n∼m σI(zd

n = zd
m)
]

(1)

where I is the indicator function, n runs through all over-segmented regions in the
image, k runs through all possible topics, n ∼ m means that zd

n and zd
m are con-

nected by an edge in the graphical model, and A(θd, σ) is the normalizing factor

A(θd, σ) =
∑

zd exp
[∑

n

∑
k zd

nk log θd
k +

∑
n∼m σI(zd

n = zd
m)
]

(2)

A positive value of σ awards configurations in which neighboring regions have the
same label. Moreover, if we set σ = 0, i.e., assume the hidden topic labels are
generated independently, A(θd, σ) = 1 and zd follows a multinomial distribution
parameterized by θd, and this gives us exactly the spatial LDA model.
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Throughout this paper, we assume the Markov Random Field structure is
known. Although structure learning over latent variables could be an interest-
ing problem, it is not our intention to tackle this problem in current paper. The
Markov Random Field is built by connecting a region with its nearest k neighbors.

3.2 Noise Channel over Codebook

Despite of the empirical success of aspect models on image data [12], one should be
careful with the distinction between text data and image data. Representing each
word by its index in the dictionary incurs no loss of information, and we could still
recover that exact word using the index and the dictionary. However, due to the
fact that there is no natural counterpart of words and dictionary in image data, we
have to manually build a dictionary. Different from text data, representing each
visual feature by the index of its most similar visual word in the dictionary will
lose information about that particular local feature, since it is highly possible that
there might not be an exact match in the dictionary we built. One would proba-
bly argue that we could alleviate this problem by building a large dictionary, to
make sure every possible local detector has exact or close enough match in the
dictionary. However, different from text word, visual words are usually high di-
mensional, to ensure each visual word has exact match in the dictionary would
render the dictionary so large that no practical inference algorithm could solve
the resulting model.

Therefore, the size of the codebook becomes crucial: a small codebook would
incur heavy information loss, while a large codebook could render the model too
difficult to solve. However, a closer look into the problem reveals that although
it is not possible to exactly match every visual feature to a visual word in the
dictionary, we could always find an entry in the dictionary such that the visual
feature could be represented by this entry plus some noise. For example, given
features extracted from a tree image, it is highly possible that we could extract
similar features from another tree image. This intuition tells us that we could find
several “prototype” visual features for an object, and model features extracted
from the same object by these prototype features plus some noise. Therefore, each
object is represented by a group of prototype features, and feature extracted from
each individual image is the combination of prototype feature and noise.

To ease the description of the model, in the rest of this paper, we use xd
n to

represent both region-level feature Rd
n and pixel-level features {Xd

nm}
Md

n
m=1. The

generative process for visual features could then be modeled as a two-step pro-
cess: first draw the prototype indicator cd

n according to a multinomial distribution
p(cd

n|zd
n,β), then draw the visual feature xd

n using a noise model p(xd
n|cd

n, z
d
n,μ, δ),

where μ and δ are parameters. Specifically, in this paper, we employ a Gaussian
noise model, where μ is the mean vector and δ2 is the variance. Suppose the num-
ber of possible prototype features for each object is Lk, then cd

n ∈ {1, . . . , Lk}.
For simplicity, we assume the number of different prototypes for all objects are
the same, say L. Then the Gaussian noise model is

p(xd
n|cd

n = l, zd
n = k,μ, δ) ∝ exp

{
− (xd

n−μkl)
T (xd

n−μkl)

2δ2
kl

}
(3)
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Note that by introducing the noise model, we no longer need to build a codebook
off-line. The prototype features are learned during the training process, and are
stored in the mean vectors μ. This could also be understood as building a “code-
book” online, where L is the size of the codebook for each object. The optimal
value of L could be determined using Bayesian information criterion [20].

3.3 The Proposed Model

The generative process of Topic Random Field is as follows:

– For each image Id, draw the prior distribution of θd according to a Dirichlet
distribution parameterized by α;

– Draw hidden topic labels {zd
1 , . . . , z

d
Nd} according to Markov random field pa-

rameterized by θd;
– For each over-segmented region n ∈ {1, . . . , Nd}:

• Draw a prototype appearance indicator cd
n|zd

n ∼Mult(β);
• Draw region-level and pixel-level appearance features according to the

noise model p(xd
n|cd

n, z
d
n,μ, δ)

Putting the generative process together, the joint distribution of {θd, zd, cd,xd}
given an image Id can be written as

p(θd, zd, cd,xd|α, σ,β,μ, δ) (4)

= p(θd|α)p(zd|θd)
∏Nd

n=1 p(c
d
n|zd

n,β)p(xd
n|zd

n, c
d
n,μ, δ)

= Γ (
∑K

k=1 αk)∏K
k=1 Γ (αk)

∏K
k=1(θ

d
k)αk−1 1

A(θd,σ)

(∏Nd

n=1

∏K
k=1(θ

d
k)zd

n,k

)
exp

[∑
n∼m σ(zd

n)T zd
m

]
·
∏Nd

n=1

{∏K
k=1

∏L
l=1

[
βklp(xd

n|μkl, δkl)
]zd

n,kcd
n,l

}
where we abuse the notation by defining zd

n,k = 1 if and only if zd
n = k, and cd

n,l = 1
if and only if cd

n = l. p(xd
n|μkl, δkl) is the noise model parameterizedwith (μkl, δkl).

After training the model, we label the region r with (zd
r )∗ such that

(zd
r )∗ = arg maxzd

r
p(xd

r |zd
r ) (5)

The regions with the specific (zd
r )∗ constitute the interested object.

4 Variational Inference and Parameter Learning

The central challenge in using TRF is computing the posterior distribution of hid-
den variables given an image: p(θd, cd, zd|xd). In general, this distribution is in-
tractable to compute due to the dependence between θd, cd and zd, once condi-
tioned on some observations. Various variational inference algorithms have been
proposed in the machine learning literature to solve this problem. In this paper,
we employ mean field variational inference to efficiently obtain an approximation
to this distribution. Specifically, mean field variational inference algorithm forms
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a factorized distribution of the latent variables, parameterized by free variables
known as variational parameters [21].

q(θd, zd, cd|γd,ρd, ξd) = q(θd|γd)
∏Nd

n=1 q(z
d
n|ρd

n)q(cd
n|ξd

n) (6)

where the Dirichlet parameters γd and the multinomial parameters (ρd
1, . . . ,ρ

d
N ),

(ξd
1, . . . , ξ

d
N ) are variational variables. These parameters are fit by minimizing

the Kullback-Leibler (KL) divergence between the approximated and true pos-
terior [21]. We begin with bounding the log likelihood of an image Id by Jensen’s
inequality. Specifically, we use variational EM algorithm to do inference and pa-
rameter learning for the TRF model. As shown in Algorithm 1, the E-step opti-
mizes the variational parameters {γd, ξd,ρd} as follows1

γd
k =αd

k +
∑Nd

n=1 ρ
d
nk, λd =e|E

d|σ (7)

ξd
nl∝

∏K
k=1

{
βkl

(
1

2πδ2
kl

)m
2
exp[− (xd

n−μkl)
T(xd

n−μkl)

2δ2
kl

]
}ρd

nk

(8)

ρd
nk∝exp[Ψ(γd

k)−Ψ(
∑K

k=1γ
d
k)+

∑
m∈N (n)σρ

d
mk]

·
∏L

l=1

{
βkl

(
1

2πδ2
kl

)m
2
exp[− (xd

n−μkl)
T(xd

n−μkl)

2δ2
kl

]
}ξd

nl

(9)

and the M-step optimizes model parameters {α, σ,β,μ, δ}

βkl ∝
∑D

d=1

∑Nd

n=1 ξ
d
nlρ

d
nk, μkl =

∑D
d=1

∑Nd

n=1 ξd
nlρ

d
nkxd

n∑
D
d=1

∑
Nd

n=1 ξd
nlρ

d
nk

(10)

δ2
kl =

∑D
d=1

∑Nd

n=1 ξd
nlρ

d
nk(xd

n−μkl)
T (xd

n−μkl)

m
∑D

d=1
∑Nd

n=1 ξd
nlρ

d
nk

(11)

σ = 1
|E| log

∑D
d=1

∑K
k=1

∑
n∼mρd

nkρd
mk∑

D
d=1

1
λd

(12)

5 Experiments

In this section, we show the empirical performance of topic random field for image
segmentation, both qualitatively and quantitatively.

5.1 Data Sets

We use three data sets in our experiments, which are selected to cover a wide range
of properties. Specifically, those data sets include

– Weizmann data set [22]. The data set contains 328 images of horses with
different poses, sizes, face directions, backgrounds and illumination condi-
tions. Each image has a ground truth segmentation that labels out the horse.
There is only one horse in each image, and there is a single object category in
the data set: horse.

1 Here we omit the details due to the space limit. The derivation of variational inference

and parameter learning for TRF is provided in the supplemental material.
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Algorithm 1. Variational EM for topic random field
repeat

E-step: For each image Id, update {γd, λd, ξd, ρd} using equations (7), (8), and

(9);

M-step: Update {σ, β, μ, δ} using equations (10), (11), (12), and update α using

the linear-time Newton-Raphson algorithm described in [6].

until The increase of log likelihood between two consecutive iterations is less than ε

– Microsoft object recognition data set [23]. This data set involves 182 im-
ages of cows, facing three different directions: left, right and front. Moreover,
some cow pictures also contain multiple instances and significant occlusions.
Similar to the Weizmann data set, there is a single object category in the data
set, but there might be multiple objects in one image.

– MSRC pixel-wise labeled image database 2. There are 240, 213 × 320
pixel images in this data set. Each pixel belongs to one of 13 semantic classes or
to the void class.There are multiple objects in one image, and multiple object
categories in the data set.

5.2 Experimental Setups and Comparisons

We have conducted comprehensiveperformance evaluations by testing ourmethod
under different circumstances. Specifically, to better understand the effect of in-
troducing MRF on latent topics to enforce spatial consistency and use of noise
model to better model image feature generation, we study the model adding only
MRF on latent topics and adding only noise model separately, and compare with
the TRF model. We use the spatial LDA model [13], which is state-of-the-art as-
pect model for image segmentation, as baseline and also compare with spectral
clustering. The algorithms that we evaluated are listed below.

– Spatial LDA [13]. The implementation is the same as in [13]. We use the
same region-level and pixel-level features as in our TRF model.

– LDA+MRF. This model is based on spatial LDA [13], with the only mod-
ification of introducing a Markov random field on the latent topics. Thus,
this model could be viewed as the TRF model without noise channel. For
each image Id, we set L = 20 and build a Markov random field on zd by
connecting each zd

n with its nearest 4 neighbors.
– LDA+noise Similar with LDA+MRF, this model adds a noise channel in

the spatial LDA model. Hence, this model could be regarded as the TRF
model without Markov random field on the latent topics.

– TRF. We build MRF for each image in the same way as LDA+MRF.
– Normalized cuts. (NCut) [1]. The implementation code is downloaded from

http://www.cis.upenn.edu/~jshi/software/.

2 http://research.microsoft.com/vision/cambridge/recognition

http://www.cis.upenn.edu/~jshi/software/


Image Segmentation with Topic Random Field 795

5.3 Image Segmentation Results

Since the Weizman data set provides ground truth segmentations, we could assess
the segmentation result quantitatively. Regions sharing the same latent topics z
are grouped into the same segment, and the percentage of pixels in agreement
with the ground truth segmentation is used to measure the performance of seg-
mentation algorithms. We match the topic that resulted in highest segmentation
accuracy as the object, and other topics as background. The segmentation accu-
racy results are shown in figure 3, from which we could see that both LDA+MRF
and LDA+noise model result in higher accuracy than spatial LDA model, and
topic random field produces the highest segmentation accuracy. Also, the com-
parison between LDA+MRF and LDA+noise model shows that the Markov
random field defined over latent topic variables improves the accuracy more. It
should be noted that our result is not directly comparable to that of the state-of-
the-art image segmentation methods, as we did not engineer our image features
much. The message here is that spatial consistency and a better model of image
feature generation are crucial for the success of aspect models in image analysis.
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Fig. 3. Segmentation accuracy of normalized cut, spatial LDA, LDA+MRF,

LDA+noise, and TRF on the Weizmann horse data set

Fig. 4. (Best viewed in color). Segmentation results of horses. From left to right: orig-

inal image, segmentation result of spatial LDA and TRF. The regions in white are the

segmentations of the animals. The regions in black stand for background.
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Fig. 5. (Best viewed in color). Segmentation results of the MSRC database. From left

to right: original image, segmentation result of spatial LDA and TRF.

Fig. 6. (Best viewed in color). Segmentation results of cows. From left to right: original

image, segmentation result of spatial LDA and TRF.
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To better compare the performance of TRF with LDA, we show in figures
4,5,6 the segmentation results on the three data sets, where we have set the
number of topics to 4, 12, 4 respectively. From these segmentation results, we
could see that one major problem with spatial LDA is that it is more likely to
separate parts from the same object into different segments. For example, in the
Weizmann horse data, spatial LDA constantly separates the body and legs of a
horse into different groups. However, the segmentation results of TRF does not
show this phenomenon. Therefore, we argue that enforcing spatial coherence be-
tween adjacent regions via MRF avoids separating parts of the same object into
different groups. Moreover, from the results on cows data set, we see that spatial
LDA is more likely to segment cows with different colors or facing different di-
rections into separate groups. However, by introducing a simple Gaussian noise
model for generating image features, TRF is significantly more robust to vari-
ability in the instantiations of local features corresponding to the same objects
due to variations in lighting, transformation, viewing angle, etc.

6 Conclusions

We propose Topic Random Field (TRF) for image segmentation. The TRF
model improves over the LDA-style models by defining a Markov Random Field
(MRF) over hidden topic assignment of super-pixels in an image to enforce the
spatial coherence between neighboring regions, and by employing a noise channel
between visual words in the dictionary and instantiated super-pixels in the real
image to better model the variance of local features. Empirical studies on three
image data sets demonstrate the improvement of our model in image segmenta-
tion over the LDA-style model.
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Chum, Ondřej III-1

Chung, Albert C.S. III-720

Cipolla, Roberto III-300

Clausi, David A. III-44

Clipp, Brian IV-368

Cohen, Laurent D. V-771

Cohen, Michael I-171

Collins, Robert T. V-324

Collins, Roderic I-549, II-664

Courchay, Jérôme II-85
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