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Preface

The 2010 edition of the European Conference on Computer Vision was held in

Heraklion, Crete. The call for papers attracted an absolute record of 1,174

submissions. We describe here the selection of the accepted papers:

Thirty-eight area chairs were selected coming from Europe (18), USA and
Canada (16), and Asia (4). Their selection was based on the following
criteria: (1) Researchers who had served at least two times as Area Chairs
within the past two years at major vision conferences were excluded; (2)
Researchers who served as Area Chairs at the 2010 Computer Vision and
Pattern Recognition were also excluded (exception: ECCV 2012 Program
Chairs); (3) Minimization of overlap introduced by Area Chairs being former
student and advisors; (4) 20% of the Area Chairs had never served before in
a major conference; (5) The Area Chair selection process made all possible
efforts to achieve a reasonable geographic distribution between countries,
thematic areas and trends in computer vision.

Each Area Chair was assigned by the Program Chairs between 28-32 papers.
Based on paper content, the Area Chair recommended up to seven potential
reviewers per paper. Such assignment was made using all reviewers in the
database including the conflicting ones. The Program Chairs manually
entered the missing conflict domains of approximately 300 reviewers. Based
on the recommendation of the Area Chairs, three reviewers were selected per
paper (with at least one being of the top three suggestions), with 99.7% being
the recommendations of the Area Chairs. When this was not possible, senior
reviewers were assigned to these papers by the Program Chairs, with the
consent of the Area Chairs. Upon completion of this process there were 653
active reviewers in the system.

Each reviewer got a maximum load of eight reviews—in a few cases we had
nine papers when re-assignments were made manually because of hidden
conflicts. Upon the completion of the reviews deadline, 38 reviews were
missing. The Program Chairs proceeded with fast re-assignment of these
papers to senior reviewers. Prior to the deadline of submitting the rebuttal by
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the authors, all papers had three reviews. The distribution of the reviews was
the following: 100 papers with an average score of weak accept and higher,
125 papers with an average score toward weak accept, 425 papers with an
average score around borderline.

For papers with strong consensus among reviewers, we introduced a
procedure to handle potential overwriting of the recommendation by the Area
Chair. In particular for all papers with weak accept and higher or with weak
reject and lower, the Area Chair should have sought for an additional
reviewer prior to the Area Chair meeting. The decision of the paper could
have been changed if the additional reviewer was supporting the
recommendation of the Area Chair, and the Area Chair was able to convince
his/her group of Area Chairs of that decision.

The discussion phase between the Area Chair and the reviewers was initiated
once the review became available. The Area Chairs had to provide their
identity to the reviewers. The discussion remained open until the Area Chair
meeting that was held in Paris, June 5-6. Each Area Chair was paired to a
buddy and the decisions for all papers were made jointly, or when needed
using the opinion of other Area Chairs. The pairing was done considering
conflicts, thematic proximity, and when possible geographic diversity. The
Area Chairs were responsible for taking decisions on their papers. Prior to
the Area Chair meeting, 92% of the consolidation reports and the decision
suggestions had been made by the Area Chairs. These recommendations were
used as a basis for the final decisions.

Orals were discussed in groups of Area Chairs. Four groups were formed,
with no direct conflict between paper conflicts and the participating Area
Chairs. The Area Chair recommending a paper had to present the paper to the
whole group and explain why such a contribution is worth being published as
an oral. In most of the cases consensus was reached in the group, while in the
cases where discrepancies existed between the Area Chairs’ views, the
decision was taken according to the majority of opinions.

The final outcome of the Area Chair meeting, was 38 papers accepted for an
oral presentation and 284 for poster. The percentage ratios of submissions/
acceptance per area are the following:
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Thematic area # submitted % over # accepted % over % acceptance
submitted accepted in area
Object and Scene Recognition 192 16.4% 66 20.3% 34.4%
Segmentation and Grouping 129 11.0% 28 8.6% 21.7%
Face, Gesture, Biometrics 125 10.6% 32 9.8% 25.6%
Motion and Tracking 119 10.1% 27 8.3% 22.7%
Statistical Models and Visual 101 8.6% 30 9.2% 29.7%

Learning
Matching, Registration, Alignment 90 7.7% 21 6.5% 23.3%
Computational Imaging 74 6.3% 24 7.4% 32.4%
Multi-view Geometry 67 5.7% 24 7.4% 35.8%
Image Features 66 5.6% 17 5.2% 25.8%
Video and Event Characterization 62 5.3% 14 4.3% 22.6%
Shape Representation and 48 41% 19 5.8% 39.6%
Recognition

Stereo 38 3.2% 4 1.2% 10.5%
Reflectance, lllumination, Color 37 3.2% 14 4.3% 37.8%
Medical Image Analysis 26 2.2% 5 1.5% 19.2%

® We received 14 complaints/reconsideration requests. All of them were sent to the
Area Chairs who handled the papers. Based on the reviewers’” arguments and the
reaction of the Area Chair, three papers were accepted—as posters—on top of
the 322 at the Area Chair meeting, bringing the total number of accepted papers
to 325 or 27.6%. The selection rate for the 38 orals was 3.2% .The acceptance
rate for the papers submitted by the group of Area Chairs was 39%.

® Award nominations were proposed by the Area and Program Chairs based on
the reviews and the consolidation report. An external award committee was
formed comprising David Fleet, Luc Van Gool, Bernt Schiele, Alan Yuille,
Ramin Zabih. Additional reviews were considered for the nominated papers
and the decision on the paper awards was made by the award committee. We
thank the Area Chairs, Reviewers, Award Committee Members, and the
General Chairs for their hard work and we gratefully acknowledge Microsoft
Research for accommodating the ECCV needs by generously providing the
CMT Conference Management Toolkit. We hope you enjoy the proceedings.

September 2010 Kostas Daniilidis
Petros Maragos
Nikos Paragios
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Towards Computational Models of the Visual
Aesthetic Appeal of Consumer Videos

Anush K. Moorthy*, Pere Obrador, and Nuria Oliver

Telefonica Research, Barcelona, Spain

Abstract. In this paper, we tackle the problem of characterizing the
aesthetic appeal of consumer videos and automatically classifying them
into high or low aesthetic appeal. First, we conduct a controlled user
study to collect ratings on the aesthetic value of 160 consumer videos.
Next, we propose and evaluate a set of low level features that are com-
bined in a hierarchical way in order to model the aesthetic appeal of
consumer videos. After selecting the 7 most discriminative features, we
successfully classify aesthetically appealing vs. aesthetically unappealing
videos with a 73% classification accuracy using a support vector machine.

Keywords: Video aesthetics, video quality, subjective assessment.

1 Introduction

In today’s digital world, we face the challenge of developing efficient multime-
dia data management tools that enable users to organize and search multimedia
content from growing repositories of digital media. Increasing storage capabil-
ities at low prices combined with pervasive devices to capture digital images
and videos enable the generation and archival of unprecedented amounts of per-
sonal multimedia content. For example, as of May 2009, about 20 hours of video
footage — most of it user-generated — were uploaded on the popular video sharing
site YouTube every minute [I]. In addition, the number of user-generated video
creators is expected to grow in the US by 77% from 2008 to 2013 [2].

Text query-based image and video search approaches rely heavily on the sim-
ilarity between the input textual query and the textual metadata (e.g. tags,
comments, etc.) that has previously been added to the content by users. Rele-
vance is certainly critical to the satisfaction of users with their search results,
yet not sufficient. For example, any visitor of YouTube will attest to the fact
that the most relevant search results today include a large amount of user gen-
erated data of varying aesthetic quality, where aesthetics deal with the human
appreciation of beauty. Hence, filtering and re-ranking the videos with a measure
of their aesthetic value would probably improve the user experience and satis-
faction with the search results. In addition to improving search results, another

* A. K. Moorthy is with The University of Texas at Austin, Austin, Texas, USA -
78712. This work was performed when A. K. Moorthy was an intern at Telefonica
Research, Barcelona, Spain.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 12010.
© Springer-Verlag Berlin Heidelberg 2010
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challenge faced by video sharing sites is being able to attract advertisement to
the user generated content, particularly given that some of it is deemed to be
“unwatchable” [3], and advertisers are typically reluctant to place their clients’
brands next to any material that may damage their clients’ reputations [4]. We
believe that the analysis of the aesthetic value of videos may be one of the tools
used to automatically identify the material that is “advertisement worthy” wvs.
not. Last, but not least, video management tools that include models of aes-
thetic appeal may prove very useful to help users navigate and enjoy their ever
increasing — yet rarely seen — personal video collections.

Here, we focus on building computational models of the aesthetic appeal of
consumer videos. Note that video aesthetic assessment differs from video quality
assessment (VQA) [B] in that the former seeks to evaluate the holistic appeal
of a video and hence encompasses the latter. For example, a low quality video
with severe blockiness will have low aesthetic appeal. However, a poorly lit un-
distorted video with washed-out colors may have high quality but may also be
aesthetically unappealing. Even though image aesthetic assessment has recently
received the attention of the research community [GI7/8I9I0], video aesthetic
assessment remains little explored [§].

To the best of our knowledge, the work presented in this paper represents the
first effort to automatically characterize the aesthetic appeal of consumer videos
and classify them into high or low aesthetic appeal. For this purpose, we first
carry out a controlled user study (Section[3)) to collect unbiased estimates of the
aesthetic appeal of 160 consumer videos and thus generate ground truth. Next,
we propose low-level features calculated on a per-frame basis, that are correlated
to visual aesthetics (Section F.T]), followed by novel strategies to combine these
frame-level features to yield video-level features (Section2)). Note that previous
work in this area has simply used the mean value of each feature across the video
[8], which fails to capture the video dynamics and the peculiarities associated
with human perception [11]. Finally, we evaluate the proposed approach with
the collected 160 videos, compare our results with the state-of-the-art (Section
[B), discuss the implications of our findings (Section [l and highlight our lines of
future work (Section [T).

In sum, the main contributions of this paper are threefold: 1) We carry out
a controlled user study to collect unbiased ground-truth about the aesthetic ap-
peal of 160 consumer videos; 2) we propose novel low-level (i.e., frame-level)
and video-level features to characterize video aesthetic appeal; and 3) we quan-
titatively evaluate our approach, compare our results with the state-of-the-art
and show how our method is able to correctly classify videos into low or high
aesthetic appeal with 73% accuracy.

2 Previous Work

Aesthetic Appeal in Still Images: One of the earliest works in this domain
is that by Savakis et al. [12] where they performed a large scale study of the
possible features that might have an influence on the aesthetic rating of an im-
age. However, no algorithm was proposed to evaluate appeal. In [10], Tong et al.
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extracted features — including measures of color, energy, texture and shape —
from images and a two-class classifier (high vs. low aesthetic appeal) was pro-
posed and evaluated using a large image database with photos from COREL
and Microsoft Office Online (high aesthetic appeal) and from staff at Microsoft
Research Asia (low aesthetic appeal). One drawback with this approach is that
some of the selected features lacked photographic/perceptual justification. Fur-
thermore, their dataset assumed that home users are poorer photographers than
professionals, which may not always be true.

Datta et al. [6] extracted a large set of features based on photographic rules.
Using a dataset from an online image sharing community, the authors discovered
the top 15 features in terms of their cross validation performance with respect to
the image ratings. The authors reported a classification (high vs. low aesthetic
appeal) accuracy of 70.12%. Ke et al. [7] utilized a top-down approach, where
a small set of features based on photographic rules were extracted. A dataset
obtained by crawling DPChallenge.com was used and the photo’s average rating
was utilized as ground truth. In [§], Luo and Tang furthered the approach pro-
posed in [7] by extracting the main subject region (using a sharpness map) in
the photograph. A small set of features were tested on the same database as in
[7], and their approach was shown to perform better than that of Datta et al. [6]
and Ke et al. [7]. Finally, Obrador recently proposed a region-of-interest based
approach to compute image aesthetic appeal [9] where the region-of-interest is
extracted using a combination of sharpness, contrast and colorfulness. The size
of the region-of-interest, its isolation from the background and its exposure were
then computed to quantify aesthetic appeal with good results on a photo dataset
created by the author.

Aesthetic Appeal in Videos: To the best of our knowledge, only the work in
[8] has tackled the challenge of modeling video aesthetics, in which their goal was
to automatically distinguish between low quality (amateurish) and high quality
(professional) videos. They applied image aesthetic measures — where each fea-
ture was calculated on a subset of the video frames at a rate of 1 frame per
second (fps) — coupled with two video-specific features (length of the motion of
the main subject region and motion stability). The mean value of each feature
across the whole video was utilized as the video representation. They evalu-
ated their approach on a large database of YouTube videos and achieved good
classification performance of professional vs. amateur videos (= 95 % accuracy).

3 Ground Truth Data Collection

Previous work in the field of image aesthetics has typically used images from
online image-sharing websites [I3]. Each of these photo-sharing sites allows users
to rate the images, but not necessarily according to their aesthetic appeal. A few
websites (e.g. Photo.net) do have an aesthetic scale (1-7) on which users rate
the photographs. However, the lack of a controlled test environment implies that
the amount of noise associated with the ratings in these datasets is typically
large [14]. In addition, users are influenced in their aesthetic ratings by factors
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such as the artist who took the photograph, the relation of the subject to the
photographer, the content of the scene and the context under which the rating is
performed. Hence, a controlled study to collect aesthetic rating data is preferred
over ratings obtained from a website. As noted in [I3], web-based ratings are
mainly used due to a lack of controlled experimental ground truth data on the
aesthetic appeal of images or videos. In the area of image aesthetics, we shall
highlight two controlled user studies [I12], even though neither of these datasets
was made public.

To the best of our knowledge, the only dataset in the area of video aesthetics
is that used by Luo and Tang [8]. It consists of 4000 high quality (professional)
and 4000 low quality (amateurish) YouTube videos. However, the authors do
not explain how the dataset was obtained or how the videos were ranked. The
number of subjects that participated in the ranking is unknown. It is unclear
if the videos were all of the same length. Note that the length of the video has
been shown to influence the ratings [I5]. The content of the videos is unknown
and since the rating method is undisclosed, it is unclear if the participants were
influenced by the content when providing their ratings. Finally, the authors do
not specify if the rated videos had audible audio or not. It is known that the
presence of audio influences the overall rating of a video [16].

In order to address the above mentioned drawbacks and to create a publicly
available dataset for further research, we conducted a controlled user study where
33 participants rated the aesthetic appeal of 160 videod]. The result of the study
is a collection of 160 videos with their corresponding aesthetic ratings which
was used as ground truth in our experiments. In this section, we detail how the
videos were selected and acquired, and how the study was conducted.

Video Selection: Since the focus of our work is consumer videos, we crawled
the YouTube categories that were more likely to contain consumer generated
content: Pets & Animals, Travel & Events, Howto & Style, and so on. To collect
the videos, we used popular YouTube queries from the aforementioned cate-
gories (i.e., text associated with the most viewed videos in those categories), for
instance, “puppy playing with ball” and “baby laughing”. In addition and in
order to have a wide diversity of video types, we included semantically different
queries that retrieved large numbers (>1000) of consumer videos, such as “Rio
de Janeiro carnival” and “meet Mickey Mouse Disney”. In total, we downloaded
1600 videos (100 videos x 16 queries). A 15 second segment was extracted from
the middle part of each of the videos in order to reduce potential biases induced
by varying video lengths [I5]. Each of the 1600 videos was viewed by two of
the authors who rated the aesthetic appeal of the videos on a 5-point Likert
scale. The videos that were not semantically relevant to the search query were
discarded (e.g, “puppy playing with ball” produced videos which had children
and puppies playing together or just children playing together); videos that were
professionally generated were also discarded. A total of 992 videos were retained
from the initial 1600. Based on the mean ratings of the videos — from the two

! Bach video received 16 different ratings by a subset of 16 participants.
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sets of scores by the authors after converting them to Z-scores [I7], 10 videos
were picked for each query such that they uniformly covered the 5-point range
of aesthetic ratings. Thus, a total of 160 videos — 10 videos x 16 queries — were
selected for the study. The selected videos were uploaded to YouTube to ensure
that they would be available for the study and future research.

User Study: An important reason for conducting a controlled study is the role
that content (i.e., "what” is recorded in the video) plays in video ratings. As
noted in [13], the assessment of videos is influenced by both their content and
their aesthetic value. We recognize that these two factors are not completely
independent of each other. However in order to create a content-independent
algorithm that relies on low-level features to measure the aesthetic value of a
video, the ground truth study design must somehow segregate these two factors.
Hence, our study required users to rate the videos on two scales: content and
aesthetics, in order to reduce the influence of the former in the latter.

A total of 33 participants (25 male) took part in the study. They had been re-
cruited by email advertisement in a large corporation. Their ages ranged from 24
to 45 years (= 29.1) and most participants were students, researchers or pro-
grammers. All participants were computer savvy and 96.8 % reported regularly
using video sharing sites such as YouTube. The participants were not tested for
acuity of vision, but a verbal confirmation of visual acuity was obtained. Par-
ticipants were not paid for their time, but they were entered in a $USD 150
raffle. The study consisted of 30 minute rating sessions where participants were
asked to rate both the content and the aesthetic appeal of 40 videos (10 videos
x 4 queries). Subjects were allowed to participate in no more than two rating
sessions (separated by at least 24 hours).

The first task in the study consisted of a short training session involving 10
videos from a “dance” query; the data collected during this training session was
not used for the study. The actual study followed. The order of presentation
of queries for each subject followed a Latin-square pattern in order to avoid
presentation biases. In addition, the order in which the videos were viewed within
each query was randomized. The videos were displayed in the center of a 17-inch
LCD screen with a refresh rate of 60 Hz and a resolution of 1024 x 768 pixels,
on a mid-gray background, and at a viewing distance of 5 times the height of
the videos [I8]. Furthermore, since our focus is wvisual appeal, the videos were
shown without any audio [16].

Before the session began, each participant was instructed as follows. You will
be shown a set of videos on your screen. Fach video is 15 seconds long. You have
to rate the video on two scales: Content and Aesthetics from very bad (-2) to
very good (+2). By content we mean whether you liked the activities in the video,
whether you found them cute or ugly for ewample You are required to watch each
video entirely before rating it. We were careful not to bias participants toward
any particular low-level measure of aesthetics. In fact, we left the definition fairly

2 Each video was embedded into the web interface with two rating scales underneath:
one for content and the other for aesthetics. The scales were: Very Bad (-2), Bad
(-1), Fair (0), Good (1), Very Good (2).
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Fig.1. (a) Histogram of aesthetic MOS from the user study. (b) Proposed 2-level
pooling approach, from frame to microshot (level 1) and video (level 2) features.

open in order to allow participants to form their own opinion on what parameters
they believed video aesthetics should be rated on.

During the training session, participants were allowed to ask as many ques-
tions as needed. Most questions centered around our definition of content. In
general, subjects did not seem to have a hard time rating the aesthetics of the
videos. At the end of each query, participants were asked to describe in their own
words the reasons for their aesthetic ratings of the videos. With this question-
naire, we aimed to capture information about the low-level features that they
were using to rate video aesthetics in order to guide the design of our low-level
features. Due to space constraints, we leave the analysis of the participants’
answers to these questions for future work.

The study yielded a total of 16 different ratings (across subjects) of video aes-
thetics for each of the 160 videos. A single per-video visual aesthetic appeal score
was created: First, the scores of each participant were normalized by subtracting
the mean score per participant and per session from each of the participant’s
scores, in order to reduce the bias of the ratings in each session. Next, the aver-
age score per video and across all participants was computed to generate a mean
opinion score (MOS). This approach is similar to that followed for Z-scores [17].
Thus, a total of 160 videos with ground truth about their aesthetic appeal in
the form of MOS were obtained. Figure [I] (a) depicts the histogram of the aes-
thetic MOS for the 160 videos, where 82 videos were rated below zero, and 78
videos were rated above zero. Even though 160 videos may seem small compared
to previous work [8], datasets of the same size are common in state-of-the-art
controlled user studies of video quality assessment [19].

4 Feature Computation

The features presented here were formulated based on previous work, the feed-
back from our user study and our own intuition.

The main difference between an image and a video is the presence of the
temporal dimension. In fact, humans do not perceive a series of images in the
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same fashion as they perceive a video [5]. Hence, the features to be extracted from
the videos should incorporate information about this temporal dimension. In this
paper, we propose a hierarchical pooling approach to collapse each of the features
extracted on a frame-by-frame basis into a single value for the entire video,
where pooling [11] is defined as the process of collapsing a set of features, either
spatially or temporally. In particular, we perform a two-level pooling approach,
as seen in Fig. [0l (b). First, basic features are extracted on a frame-by-frame
basis. Next, the frame-level features are pooled within each microshotl using 6
different pooling techniques, generating 6 microshot-level features for each basic
feature. Finally, the microshot-level features are pooled across the entire video
using two methods (mean and standard deviation), thus generating a set of 12
video-level features for each of the basic frame-level features.

In the following sections we describe the basic frame-level features and their
relationship (if any) to previous work, followed by the hierarchical pooling strat-
egy used to collapse frame-level values into video-level descriptors.

4.1 Frame-Level Features

Actual Frame Rate (fi, actual-fps): 29% of the downloaded videos contained
repeated frames. In an extreme case, a video which claimed to have a frame-
rate of 30 fps had an actual new frame every 10 repetitions of the previous
frame. Since frame-rate is an integral part of perceived quality [5] — and hence
aesthetics, our first feature, fi, is the “true” frame-rate of the video. In order to
detect frame repetition, we use the structural similarity index (SSIM) [20].

A measure of the perceptual similarity of consecutive frames is given by
Q =1— SSIM (small @ indicates high similarity), and is computed between
neighboring frames creating a vector m. To measure periodicity due to frame
insertions, we compute m*® = {ind(m;)|m; < 0.02}, where the set threshold al-
lows for a small amount of dissimilarity between adjacent frames (due to encod-
ing artifacts). This signal is differentiated (with a first order filter h[i] = [1 —1])
to obtain dm. If this is a periodic signal then we conclude that frames have
been inserted, and the true frame rate is calculated as: f; = fps x MAX}dm)_l,
where T, is the number of samples in m corresponding to the period in dm.
Note that this feature has not been used before to assess video aesthetics.

Motion Features ( fs, motion-ratio, and f3, size-ratio): The human visual sys-
tem devotes a significant amount of resources for motion processing. Jerky cam-
era motion, camera shake and fast object motion in video are distracting and
they may significantly affect the aesthetic appeal of the video. While other au-
thors have proposed techniques to measure shakiness in video [21], our approach
stems from the hypothesis that a good consumer video contains two regions: the
foreground and the background. We further hypothesize that the ratio of mo-
tion magnitudes between these two regions and their relative sizes have a direct
impact on video aesthetic appeal.

3 In our implementation a microshot is a set of frames amounting to one second of
video footage.
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A block-based motion estimation algorithm is applied to compute motion vec-
tors between adjacent frames. Since the videos in our set are compressed videos
from YouTube, blocking artifacts may hamper the motion estimates. Hence, mo-
tion estimation is performed after low-pass filtering and downsampling by 2 in
each dimension, each video frame. For each pixel location in a frame, the mag-
nitude of the motion vector is computed. Then, a k-means algorithm with 2
clusters is run in order to segregate the motion vectors into two classes. Within
each class, the motion vector magnitudes are histogrammed and the magnitude
of the motion vector corresponding to the peak of the histogram is chosen as a
representative vector for that class. Let my and m; denote the magnitude of the
motion vectors for each of the classes, where m; > my, and let sy and s, denote

the size (in pixels) of each of the regions respectively. We compute fo = z;fﬁ
and f3 = *T1 The constant 1 is added in order to prevent numerical instabili-

Serl :
ties in cases where the magnitude of motion or size tends to zero. These features
have not been used before to characterize video aesthetics.

Sharpness/Focus of the Region of Interest (fy, focus): Sharpness is of
utmost importance when assessing visual aesthetics [9]. Note that our focus lies
in consumer videos where the cameras are typically focused at optical infinity,
such that measuring regions in focus is challenging. In order to extract the in-
focus region, we use the algorithm proposed in [22] and set the median of the
level of focus of the ROI as our feature fy.

Colorfulness (fs, colorfulness): Videos which are colorful tend to be seen as
more attractive than those in which the colors are “washed out” [23]. The col-
orfulness of a frame (f5) is evaluated using the technique proposed in [23]. This
measure has previously been used in [9] to quantify the aesthetics of images.

Luminance (fg, luminance): Luminance has been shown to play a role in the
aesthetic appeal of images [6]. Images (and videos) in either end of the luminance
scale (i.e., poorly lit or with extremely high luminance) are typically rated as
having low aesthetic valudd. Hence, we compute the luminance feature fgs as the
mean value of the luminance within a frame.

Color Harmony (f7, harmony): The colorfulness measure does not take into
account the effect that the combination of different colors has on the aesthetic
value of each frame. To this effect, we evaluate color harmony using a variation of
the technique by Cohen-Or et al. [24] where they propose eight harmonic types
or templates over the hue channel in the HSV space. Note that one of these
templates (N-type) corresponds to grayscale images and hence does not apply
to the videos in our study. We compute the (normalized) hue-histogram of each
frame and convolve this histogram with each of the 7 template&ﬁ. The peak of the
convolution is selected as a measure of similarity of the frame’s histogram to a
particular template. The maximum value of these 7 harmony similarity measures

4 A video with alternating low and high luminance values may also have low aesthetic
appeal.
5 The template definitions are the same as the ones proposed in 24].
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Fig. 2. Rule of thirds: the head of the iguana is placed in the top-right intersecting
point

(one for each template) is chosen as our color harmony feature. Other color
harmony measures have been used to assess the aesthetic quality of paintings
[25], and photos and video [§].

Blockiness Quality (fs, quality): The block-based approach used in current
video compression algorithms leads to the presence of blocking artifacts in videos.
Blockiness is an important aspect of quality and for compressed videos it has
been shown to overshadow other artifacts [26]. The YouTube consumer videos
from our dataset are subject to video compression and hence we evaluate their
quality by looking for blocking artifacts as in [26]. Since this algorithm was
proposed for JPEG compression, it is defined for 8 x 8 blocks only. However,
some YouTube videos are compressed using H.264/AVC which allows for multiple
block sizes [27]. Hence, we modified the algorithm in [26] to account for multiple
block sizes. In our experiments, however, we found that different block sizes did
not improve the performance of the quality feature. Therefore, in our evaluation
we use the 8 x 8 block-based quality assessment as in [26] and denote this quality
feature as fg. We are not aware of any previously proposed aesthetic assessment
algorithm that includes a blockiness quality measure.

Rule of thirds (fy, thirds): One feature that is commonly found in the literature
on aesthetics and in books on professional photography is the rule of thirds [28§].
This rule states that important compositional elements of the photograph should
be situated in one of the four possible power points in an image (i.e., in one of the
four intersections of the lines that divide the image into nine equal rectangles,
as seen in Figure ). In order to evaluate a feature corresponding to the rule
of thirds, we utilize the region of interest (ROI) extracted as described above.
Similarly to [§], our measure of the rule of thirds (fo) is the minimum distance
of the centroid of the ROI to these four points.

4.2 Microshot and Video-Level Features

Once the 8 frame-level features (f2 to fg) have been computed on every frame,
they are combined to generate features at the microshot (i.e., 1 second of video
footage) level which are further combined to yield features at the video level.
We compute 6 different feature pooling techniques for each basic frame level
feature — mean, median, min, maz, first quartile (labeled as fourth) and third
quartile (labeled as three-fourths) — in order to generate the microshot-level
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features, and we let our classifier automatically select the most discriminative
features. In this paper we pool microshot-level features with two strategies in
order to generate video-level features: average, computed as the mean (labeled
as mean) of the features across all microshots; and standard deviation (labeled
as std), again computed across all microshots in the video. Thus, a bag of 97
video-level features is generated for each video: 8 frame-level basic features x 6
pooling techniques at the microshot level x 2 pooling techniques at the video
level + fi.

In the remainder of the paper, we shall use the following nomenclature:
videoLevel-microshotLevel-basicFeature, to refer to each of the 97 features. For
example, the basic feature harmony (f7), pooled using the median at the mi-
croshot level and the mean at the video level would be referred as: mean-median-
harmony. The use of these pooling techniques is one of the main contributions of
this paper. Previous work [§] has only considered a downsampling approach at
the microshot level (at 1 fps), and an averaging pooling technique at the video
level, generating one single video level feature for each basic feature, which can-
not model their temporal variability.

5 Experimental Results

Even though one may seek to automatically estimate the aesthetic ratings of
the videos, the subjectivity of the task makes it a very difficult problem to solve
[13]. Therefore, akin to previous work in this area, we focus on automatically
classifying the videos into two categories: aesthetically appealing vs. aesthetically
unappealing. The ground truth obtained in our user study is hence split into
these two categories, where the median of the aesthetic scores is considered as the
threshold. All scores above the median value are labeled as appealing (80 videos)
and those below are labeled as unappealing (80 videos). In order to classify the
videos into these two classes, we use a support vector machine (SVM) [29] with
a radial basis function (RBF) kernel (C,v) = (1,3.7) and the LibSVM package
[30] for implementation.

We perform a five-fold cross-validation where 200 train/test runs are carried
out with the feature sets that are being tested. We first evaluate the classifi-
cation performance of each of the 97 video-level features individually. The best
performing 14 features in these cross-validation tests are shown in Table[Il The
classification performance of these features is fairly stable: the average standard
deviation of the classification accuracy across features and over the 200 runs is
2.1211 (min = 0.5397, max = 3.2779).

In order to combine individual features, we use a hybrid of a filter-based
and wrapper-based approach, similar to [6]. We only consider the video-level
features that individually perform above 50%. We first pick the video-level fea-
ture which classifies the data the best. All the other video-level features de-
rived from the same basic feature and pooled with the same video-level pooling
method (i.e., either mean or standard deviation) are discarded from the bag
before the next feature is selected. The next selected feature is the one that
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classifies the data the best in conjunction with the first selected feature, and
so on. A 7-dimensional feature vecto is thus formed. The selected features in
order of their classification performance after being combined with the previ-
ously selected features are: actual fps (acc=58.8%, 0 = 1.5); mean-three-fourth-
colorfulness (acc=67%, o = 1.8); std-median-thirds (acc=69.5%, ¢ = 1.9); mean-
fourth-focus (acc=69.6%, o = 2.2); mean-max-luminance (acc=71%, o = 1.9);
mean-fourth-quality (acc=72.0%, ¢ = 1.9); and std-median-focus (acc=73.0%,
o= 2.0).

An overall classification accuracy of 73.03% is thus obtained. In order to pro-
vide a comparison with previous work, we implemented the algorithm proposed
in [8], achieving a classification accuracy of 53.5%. The poor performance of this
algorithm may be attributed to the fact that it was designed for professional
vs. amateur video classification rather than for classifying consumer videos into
high or low visual aesthetic appeal.

Table 1. Individual classification accuracy of the top 14-features in descending order
of performance

Feature Accura. Feature Accura.

1. actual-fps 58.77% 8. mean-mean-colorfulness 56.34%

2. mean-max-size-ratio 58.68% 9. mean-med-colorfulness 56.21%

3. std-fourth-motion-ratio 58.06% 10. mean-mean-quality 55.73%

4. mean-fourth-quality 57.67%  11. mean-three-fourth-quality 55.70%

5. mean-three-fourth-colorfulness 56.86% 12. mean-max-luminance 55.62%
6. mean-max-colorfulness 56.80% 13. std-three-fourth-motion-ratio 55.19%

7. mean-max-quality 56.62% 14. mean-three-fourth-luminance 55.16%

Personalization: Personalization has not been explored before in this area
even though it is known that certain aspects of aesthetic sensitivities depend
on individual factors [I3]. In this section, we carry out a preliminary analysis
of the personalization of aesthetic ratings. Recall that two of the authors rated
the aesthetic value of 1600 videos. All videos which were semantically irrele-
vant or professionally generated were excluded from the analysis (608 videos or
38%). Video-level features were computed for the remaining 992 videos. Using
the 7-dimensional feature vector previously described, we obtain classification
accuracies of 61.66% (author 1) and 58.17% (author 2).

In order to evaluate the impact that personalization would have on this
dataset, we select the optimum feature combination — using the approach de-
scribed above — for each of the authors. Table [2] depicts the selected features and
their contributions to classification accuracy, yielding classification accuracies
of 63.24% (author 1) and 66.46% (author 2), significantly larger in the case of
author 2 than the accuracies obtained with the non-personalized feature vector.

5 The feature vector is restricted to 7-dimensions due to the relatively small number
of videos in the ground truth (160) and in order to prevent overfitting.
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Table 2. Classification accuracies with personalized feature vectors. Features selected
for each author and their contribution to accuracy - '+’ indicates that the result was
obtained by combining this feature with the one right above it.

Author 1 Author 2
Feature Accura. StdDev Feature Accura. StdDev
actual-fps 58.4% 0.1 mean-fourth-luminance 58.0% 0.2
+ mean-mean-quality  60.2% 0.3 + mean-max-harmony  62.1% 0.5
+ mean-mean-size-ratio 61.2% 0.4 + std-max-quality 64.1% 0.6

+ mean-fourth-harmony 62.3% 0.7 + mean-median-size-ratio 65.0% 0.5
+ std-max-quality 63.2% 0.7 + mean-fourth-focus 66.0% 0.7

+ std-max-size-ratio  63.1% 0.7 + std-fourth-size-ratio  66.1% 0.6
+ mean-max-luminance 63.1% 0.8 + mean-max-thirds 66.4% 0.6
+ std-fourth-thirds  63.2 % 0.9 + std-mean-focus 66.5% 0.7

Aesthetics vs. Quality: As we mentioned in the introduction, quality does not
capture all aspects of the aesthetic appeal of a video, but a holistic definition of
aesthetics must include the quality of a video. In order to illustrate the role that
quality plays on aesthetics, we evaluate the performance of the quality features —
blockiness quality (fs) and actual frames-per-second (f1) — on the aesthetics clas-
sification. Hence, a quality feature vector is created by combining the actual fps
measure (f1) and the blocking quality pooling strategy that gives the best per-
formance (mean-fourth-quality). This vector when used for classification yields
an accuracy of 58.0%, which suggests that even though quality is an integral
part of aesthetics, the aesthetic value of a video encompasses elements beyond
traditional measures of quality. When adding the focus feature (f4), arguably a
quality feature also (particularly the std-median-focus feature) the overall per-
formance increases to 60.0%, still well below the performance obtained when
using the best performing 3 aesthetics features: 69.5%, as previously explained.

6 Discussion

Apart from the actual-fps feature (f1), the rest of the features that were au-
tomatically selected to classify the aesthetic value of videos correlate well with
previous research and intuition. For example, the third quartile of the colorful-
ness feature (f5) would indicate that the maximum colorfulness value is probably
noise, and the statistical measure of third quartile is a stable indicator of col-
orfulness. Again, the first quartile of the quality feature (fs) correlates with
research in image quality assessment [I1]. Furthermore, quality features alone
do not seem to capture all the elements that characterize the aesthetic value of
consumer videos.

The standard deviation of the focus feature (f4) is again intuitive in the sense
that humans tend be more sensitive to changes in focus rather than its absolute
value. This is also true for the rule-of-thirds feature (fy), which is a measure
of how well the main subject is framed in the video. Even though the motion
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features that we computed were not selected in the final feature vector, on their
own these features performed well (see Table [[) and seemed to be useful for
personalization (Table[2]). Given that the number of videos in the personalization
dataset is large and that motion features on their own seem to correlate well with
perception, we hypothesize that increasing the number of videos in the current
dataset (which we plan to undertake in the future) will result in a selection of
the motion features as well.

7 Conclusions and Future Work

In this paper, we have proposed a hierarchical approach to characterize the
aesthetic appeal of consumer videos and automatically classify them into high
or low aesthetic appeal. We have first conducted a controlled user study to
collect human ratings on the aesthetic value of 160 consumer videos. Next, we
have proposed 9 low-level features to characterize the aesthetic appeal of the
videos. In order to generate features at the video level, we have proposed and
evaluated various pooling strategies (at the microshot and video levels) based
on statistical measures. Based on the collected ground truth ratings, we have
automatically selected 7 features at the video-level and have classified the videos
into high vs. low aesthetic appeal with 73% classification accuracy, compared to
53.5% classification accuracy of a state-of-the-art algorithm. The videos and the
subjective ratings have been made available publiclyﬂ.

We plan on increasing the number of videos in our ground truth database
and conduct a larger scale user study. Future work includes exploring temporal
models to characterize video aesthetics, investigating personalization techniques
and shedding light on which features of our aesthetics model may be universal
vs. person-dependent, and assessing the influence of audio in aesthetic ratings so
as to form a complete measure of audio-visual aesthetics. Finally, we also plan to
develop novel aesthetics-assisted hierarchical user interfaces to allow end users
to efficiently navigate their personal video collections.
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Abstract. In this paper, we propose an object detection/recognition al-
gorithm based on a new set of shape-driven features and morphological
operators. Each object class is modeled by the corner points (junctions)
on its contour. We design two types of shape-context like features be-
tween the corner points, which are efficient to compute and effective in
capturing the underlying shape deformation. In the testing stage, we
use a recently proposed junction detection algorithm [I] to detect corner
points/junctions on natural images. The detection and recognition of an
object are then done by matching learned shape features to those in the
input image with an efficient search strategy. The proposed system is
robust to a certain degree of scale change and we obtained encourag-
ing results on the ETHZ dataset. Our algorithm also has advantages of
recognizing object parts and dealing with occlusions.

1 Introduction

Recent progress for object detection/recognition has been mostly driven by us-
ing advanced learning methods [2I3J40516] and designing smart feature/object
descriptors [7)8I9]. A detector is often trained on either a large number of fea-
tures [2] or SIFT like features in a bounding box[4]. Most of the resulting al-
gorithms, however, only tell whether an object is present or not in a bounding
box by sweeping an input image at all locations and different scales. Besides the
successes the field has witnessed for detecting rigid objects, such as frontal faces,
detecting non-rigid objects remains a big challenge in computer vision and most
of the systems are still not practical to use in general scenes [10].

Another interesting direction is using deformable templates [II] through
matching-based approaches. Typical methods include generalized Hough trans-
form [12], shape contexts [I3], pyramid matching [I4], pictorial structures
[15], codebook-based approaches [T6/17], and hierarchical shape representations
[I8/T920]. These algorithms not only locate where an object appears in an im-
age, they also recognize where the parts are, either through direct template
correspondences or part representations. However, the performances of these al-
gorithms are still not fully satisfactory, in terms of both efficiency and accuracy.

Marr [21] laid out a path to object recognition with a series of procedures
including: (1) generic edge detection, (2) morphological operators such as edge
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© Springer-Verlag Berlin Heidelberg 2010
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(b) (d)

Fig.1. (a) is the original image, (b) is an edge map by [I], (c¢) shows automatically
detected junctions of (b), and (d) is our model with 8 junctions

linking and thinning, (3) shape matching on edges and object boundaries. This
direction recently becomes unpopular because it largely relies on obtaining
high quality edges; in addition, its object descriptors are too simplistic to han-
dle the level of complexity in natural images. It is now accepted that perfect
edge/feature detection does not exist [22] and it is hard to strictly separate the
high-level recognition process from the low-level feature extraction stage. Never-
theless, these type of traditional methods still offer many appealing perspectives
compared to modern approaches for being simple, generic, and without heavy
learning.

In this paper, we take a rather traditional route by performing junction ex-
traction first, followed by shape matching using a new set of feature descriptors.
Note that from the remainder of this paper, we refer to junctions as corner points
with more than one-degree connection. Given an object template described by
its boundary contour, we annotate several corner points of high curvature with
their order information; we then design two types of shape-context like features
for describing the junction points. Note that these features are different from the
standard shape context [13] since we only take into account the relevant junctions
on the boundary. This means that, in the detection stage, we need to perform
explicit search to exclude the background clutter. Fig. () shows an example of
an object template with its corresponding junction points. To detect/recognize
an object, we first apply a recently developed algorithm [I] to extract junc-
tion points from cluttered images; we then apply a pre-processing procedure
to clean the edges and junctions; shape matching is then performed between
the templates and the extracted junctions with an efficient search strategy. The
proposed system spends about 1 or 2 minutes on an image to recognize an ob-
ject (excluding another 1 or 2 minutes for extracting junctions). Our algorithm
also has advantages of recognizing object parts and dealing with occlusions. The
strength of this paper lies in: (1) the design of a new set of shape descriptors,
(2) the development of a promising matching-based object detection/recognition
system, (3) the achievement of significantly improved results on non-rigid objects
like those in the ETHZ dataset.
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There are several other related methods worth mentioning. Shotton et al. [23]
describes the shape of the entire object using deformable contour fragments and
their relative positions. Since their distance measure using improved Chamfer
Matching is sensitive to the noise, many training samples are required for boost-
ing the discriminative shape features. G. Heitz et al. [24] uses probabilistic shape
to localize the object outlines. Our method is different from [25]. (1) We design
two types of SC-like features of junctions and edges on actively searched contours
whereas [25] uses geometric features of connected contours; (2) we emphasize a
sparse representation on junctions whereas [25] uses dense points for object de-
tection. Other works [26I27/T8I28] decompose a given contour of a model shape
into a group of contour parts, and match the resulting contour parts to edge
segments in a given edge image.

2 Junction Features

We use junction points as the basic elements to describe the object contour, and
thus, our shape model could be considered as a simplified polygon with junction
points being the vertices. In general, a majority of the junctions are the high
curvature corner points of degree 2. There are also some junction points with
degree 3 or 4, depending upon the image complexity. However, there are rarely
junctions with degree higher than 4. We adopt a recently developed algorithm
[1] to detect the junction points. and Fig. ([[lc) shows an example. In Fig. [Id),
an object template with 8 junction points is displayed. As we can see, due to the
presence of image clutter, it is not an easy task to match the template to the
object even with reliable low-level features.

Given a contour C of n junction points, we denote C' = (Jy, Jo, ..., J,), where
J; is the i*" junction on C. Note that we preserve the clockwise order of each
junction as the ordering is important in our model. In our current implementa-
tion, we assume multiple templates for each object type have the same number
of junctions. However, clustering can be used to obtain different clusters of the
same object type.

2.1 Junction Descriptors

We design two types of features, which are called F} and F5 respectively. For
each junction point J;, we compute the feature Fj(J;) based on its connected
contour segments using a shape context like approach. Unlike the traditional
shape context approaches [I3] where all the points within the context radius are
taken into account, we only use those points on the contour segments.

The two contour segments e;,_1; and e; ;41 between (J;—1 and J;) and (J;
and J;+1) respectively are called path to J;, denoted as P(J;). We then use
path P(J;) to characterize J; and compute the corresponding feature F(J;).
Fig. (@a) gives an example. We sample 10 points at equal space on P(J;) and
call them path points as (pgi)...pgi)) (see green points in Fig. ([2lb)). Here ¢ is the
index along the path from J;_; to J;1. Note that these 10 points are on the
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Fig. 2. The illustration for the feature () for characterizing the junction points. The
red ones in (a) are the junction points. The green dots in (b) are sampled path points on
which shape-context like features are computed. (¢) shows the densely sampled points
for the green dots in (b) to compute shape context information.

path altogether and e;_; ; and e; ;41 may not have 5 points each since they do
necessarily have the same length. For each path point p;, we compute its feature
h(p:) based on 50 densely sampled points on path P(J;) at equal space. Fig.
@lc) gives an illustration. The parameter setting for computing the histogram
of shape context is the same as that in [13]: 5 distance scales and 12 angle scales.
Thus, each h(p;) can be viewed as a feature vector of length 60. Finally, we are
ready to describe Fy(J;) as:

Fi() = (hp"). b)), S

which is of length 60 x 10 = 600.
Next, we show how to compute feature F5 to characterize the shape infor-
mation about a contour segment e; ;;1. The approach is similar to the way Fy

d 4 Ji
] . = =
A %
(@) u (b) (¢)

Fig. 3. The illustration for the feature (F2) for characterizing the contour segments
between junction points. The red ones in (a) are the junction points. The green dots in
(b) are those on which shape-context like features are computed. (c) shows the densely
sampled points for the green dots in (b) to compute shape context information.
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is computed. We sample 10 segment points at equal space on e; ;11 and denote
them as (pgz’zﬂ)...pgzdzﬂ)); for each piwﬂ), we compute its shape context fea-
ture based on 50 equally sampled points on e;_1 ;, €; i+1, and e;41,i+2 altogether;
the parameter setting for computing the shape context is the same as that in
computing F;. This means that the features for e; ;41 also takes into account its

immediate neighboring segments. Thus,

i i T
Fa(eriv1) = (R, o))", (2)

which is also of length 60 x 10 = 600. Fig. (3) shows an illustration.

2.2 Junction Descriptors for Edge Maps

Due to the background clutter in natural images, the low-level edge/junction
detection algorithms are always not perfect. We briefly describe some pre-
processing steps in our algorithm. First, standard edge linking methods [29]
are applied on extracted edge maps [I] using morphological operators. Fig. ()
gives an illustration. Fig. {@la) shows the original edge segments by [29], which
removes many background clutters. The remaining edges are used to connect
the junction points also by [].

_"_._._J Edge Connection
_-|.._‘_._l_ N
1 — >

(a) (b)

Fig. 4. The linking process for the segments around a junction

Given an input image I in the detection stage, we use method in [I] to extract
the edges and junction points, and apply a software package [29] to perform edge
linking. We call a junction point detected in a test image, J'. Next, we discuss
how to compute its corresponding feature, F(J'). The idea is to search for the
other two most plausible junctions J” and J/ for J’ to be adjacent on the object
contour. The junctions on the template are selected based on the guideline to
have high curvature; the search strategy echoes this but without using any shape
matching strategy at this stage.

We first discuss the case where the degree of J’ is 2. The problem is that the
nearest junctions to J', J' (0) and J/ (0) from the low-level edge/junction extrac-
tion process, might not be the desirable ones. We propose a simple deterministic
procedure to perform the search:

1) Given a junction J’, we find its nearest junctions J’ (0), J, (0) along the
edges.
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2) Let S = {s1, 52, ..., 55/} denote the adjacent junctions of J’ () on the edge
map (the junctions on the path between J’ and J' () are not included in S).

Let x and x_(t) be the coordinates of J' and J’ (t) respectively. Let x; denote
the coordinates of s;. We compute the angle as:

(x =% (£).(x_(t) — x1)

6, = arccos( Ix — x_(8)||x_ () — x|

)- 3)

3) Then we find a [* that satisfy:

Ir = i 0. 4
LB O W

If ;« is smaller than a given threshold £ = 0.175, let ¢ = ¢ + 1, set s;» as J (¢)
and go back to step 2). Else, output the J’ (¢) as the final J’ .

The above procedures determine the junction J’ , and the procedures to de-
termine J! are the same. Fig. (@) shows an example when the degree of junction
is 2. In Fig.Bl(a), point J] is a junction and the proposed procedure searches for
the most plausible J’ /J' , then the path between point 6 (J_) and point 1 is
chosen for computing feature F. Fig. (Blb) shows the path between 1 and 6.

6 | 6
(a) (b) (c)

Fig. 5. An illustration for finding the path from junction Ji (point 1) to its J_
(point 6)

Once J” and J! are determined, we then obtain a path P(J’) from J” to J/
(passing J') that is used for computing the feature F(J'). Fig. Blc) gives two
examples on a real image: the two points in yellow are two junctions, and the
red segments denotes the paths used for computing F; of them separately. We
can also view our algorithm as designed for finding the salient contour segments,
which might be useful in other vision applications.

When the degree of J’ is higher than 2, we then compute multiple features
Fy for J' corresponding different possible paths passing through J'. Let d(J')
denote the degree of J'. There are d(J’) junctions that are adjacent to J’, which
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means there are D = C’g(J,) paths P, (¢ = 1,..., D) that will pass J' ( D pairs
of J_/Jy can be estimated). In order to keep the same with the 2-degree case,
we consider J’ as D different 2-degree junctions J(’q) (¢ =1,..., D) with the same
position and different paths (different F; feature):

Fi(J(y) = Fi(Py). (5)

Fig. [6] shows an example when the degree of a junction is 3. Point 1 in Fig. ([@la)
can have three possible paths as separately shown in Fig. ([@b,c,d).

1 1 1y '1{(-"-’ r

(a) (b) (c) (d)

Fig. 6. An illustration for junctions with degree higher than 2

3 Detection

Once the junctions are determined, we then proceed to the detection/recognition
stage by matching the features on the junctions and segments to those in the
templates. A two-layer detection framework is proposed: In the first layer, we
classify all the junctions in a edge map M using a kNN classifier; based on the
junction classification results, we use the shortest path to find the order of these
junctions along the contour on M in the second layer; then we localize the object
position. Our goal is to to find a sequence of junctions most similar to the training
sequence, which is similar to shape matching with Dynamic Programming.

3.1 Junction Classification

Recall that for each object type, all templates have the same number of junction
points. For example, for the bottle templates, there are 8 junctions. Given a set
of training templates, we compute the corresponding Fj(J) for each junction.
The problem of computing how likely a junction J’ in a test image belongs to
a specific junction on the bottle becomes a classification problem. Each Fi(J)
is a 600 dimension feature and we simply learn a kNN classifier to classify J'
int {1,2,...,8} classes of junction points. In training a kNN classifier, the most
important thing is to define the distance measure:
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Let f denote a vector value of F}, then we define the distance function dis in
the same manner of SC [13]:

600

st (. F) =) Y A ()

i=1
The class label L* corresponding to the maximum is output by the algorithm:

L* =arg max p(Li|Fa(J") (7)

3.2 Graph Model

On the edge/junction map M(Z) of image I, we classify all the junctions into n
groups G}, based on the trained kNN classifier. Our next goal is to localize the
object boundary using a polygon with junctions as the vertices, which can be
solved by finding the shortest path on a graph. As shown in Fig. (®]), we construct
a connected graph model (V) E) in which the vertices V represent junctions in
a test image. Let e(; ) denote the edge between two junction nodes JJ’., Jj, from
adjacent groups Gj and Gj,, respectively. Let w;; denote the weight of the
edge e(; k). We set two dummy node N, and N, (in red) as the source node
and the target node respectively. The weights of the edges connecting with the
two dummy points are set as zero. The intuition is that all the critical junctions
on the object should lie on the shortest path between N, and N.. We use the
shortest path algorithm to solve this problem.

The edge weight w; ;. is computed with dissimilarity between the edge e(; 1)
and the edges e§7i+1(t =1,..., M) from the training templates. We use F» feature
to measure this dissimilarity:

M
1 )
wik = Y dis(Falem) Faleli11)) (®)

t=1

Notice that the way for computing F5 feature on a edge map is different from
the case for training template, since we do not know the adjacent junctions on a
edge map. For junctions J; and Jj, we can obtain their related paths P(J}) and
P(J}) (as shown Fig.[7l (a)) respectively using the search algorithm proposed in
Section .2 firstly. Then we sample the straight segment between J; and J, into

ten points pgj’k) (t =1,..,10) at equal space (see Fig. [ (b)); For each pij’k), we

compute its shape contexts feature on 50 equally sample points (see Fig. [ (c))
on P(J}) and P(J;) together. Finally, the F>(e(; )) is described as:

ik i)W T
Fy(ega) = (@), ... hp™) " (9)

For the shortest path on our graph model, the linear programming has the special
property that is integral. A * search algorithm [19] which uses heuristics to try
to speed up the search can be applied to solve the optimization problem. The
confidence for a detection is the sum of all the edge weights on the shortest path,
which is used for the categories classification.
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Fig. 7. The illustration for computing F» feature on a edge map
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Fig. 8. The illustration for the graph model

4 Experiments

We tested the proposed method on ETHZ shape dataset [16], which contains
5 different shape-based classes (apple logos, bottles, giraffes, mugs, and swans)
with 255 images in total. Each category has significant variations in scale, intra-
class pose, and color which make the object detection task challenging. To have
a fair comparison with [28], we use 1/3 positive images of each class as training
samples, same to [28]. Fig. [0 shows a few training contour templates (the red

s (D
AT

Fig. 9. Two training templates for each class from the ETHZ dataset [16]
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points denote the junctions of each contour), which are extracted from the binary
masks of the ETHZ dataset.

Initially, we extracted the gPb-based edge maps and junctions [I]. In an image
of average complexity, there are on average 100 junctions. We take the binary
mask annotation as the training templates. The results under PASCAL criterion
of our method are reported in Fig. (I0) with precision vs. recall curve. We
also compare it to the latest results in [28/26] . Fig. (I0) shows P/R curves for
the Kimia’s method based on skeletal shape model [2§] in red and for contour
selection [26] in blue. Our method significantly outperforms [28] on the four
categories of apple logos, bottles, mugs and swans, and a little better than [28]
in the category of giraffe. This demonstrates that our junction model can well
capture the intra-class variations of objects. Our result is also better than [26] on
all the categories. We also compare the precision at the same recall to [28/26]30].

As Table [I shows, our method works better than [28] and [30], particularly
in the category of apple logos. This is because our junction features take into
consideration of both local and global structures. Even though our method is

Batses

i

precision

==Trinh BMVC09

==Zhu ECCV08-Contour Selection

===Qur Method

‘o oz [ o6 08 [ 0z [ [T 08
- wcn

Fig. 10. Precision/Recall curves of our method compared to [28] and [26] for 5 classes
of ETHZ dataset

Table 1. Comparison of the precision at the same recall

Apple logos Bottles Giraffes Mugs Swans
Our method ~ 52.9/86.4 69.8/92.7 82.4/70.3 28.2/83.4 40.0/93.9
Zhu et al. [26]  49.3/86.4 65.4/92.7 69.3/70.3 25.7/83.4 31.3/93.9
Trinh&Kimia [28] 18.0/86.4 65.1/92.7 80.0/70.3 26.3/83.4 26.3/93.9
Ferrari et al. [30] 20.4/86.4 30.2/92.7 39.2/70.3 22.7/83.4 27.1/93.9
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Fig. 11. The detection results of ETHZ dataset

just slightly better than [28] in the category of giraffe, our method does not need
multi-scale shape skeletons as our method is based on junctions that are more-
or-less scale-invariant. Fig. ([II) shows some detection results by the proposed
method. The points and segments in red are the junction points and the poly-
gons that use the detection junctions as the vertices. We also show the contour
segments (in green) related to each junction in these images; we observe that
our method not only can detect the object position robustly but also have good
localization of the object contour, benefiting from the junctions.

The last row in Fig. (IIl) shows a few false detections. It’s very interesting
that we detected a girl when detecting a bottle in the first image (last row); in
the second image, we detected a photo frame when detecting a mug; in the third
image, we detected a mug when detecting a swan; the fourth and fifth images
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Fig.12. The curves about detection rate (DR) at 0.3 FPPI vs. the percentage of miss
contours for 5 classes of ETHZ dataset

Fig. 13. The detection results for partial contour detection with the proposed method

(last row) show two examples about false positives. Notice that even we could
not detect a swan in the fourth image, the segments detected out are very similar
to a swan, which is a graceful failure.

Our method is not limited to detect the whole contour of objects. It can also
be used to detect object parts. For detecting a contour part, we only use a group
of consecutive junctions from J! to Jf, , (m < n) on the training templates.
We randomly choose the start junction and end junction with a fixed length
percentage for training, and to make a clear evaluation of performance, we use
detection rate vs false positive per image(DR/FPPI). Fig[I2 reports the average
detection rate at 0.3 FPPI for five classes of ETHZ dataset. In Fig.[I2 we observe
that our detection rates can still reach above 0.4 at 0.3 FPPI when 50% of the
training contours are missing. This demonstrates that the proposed junction
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features are stable and effective for recognizing shapes in clutter images. Fig. [[3]
shows a few detection results with only parts detected.

5 Conclusions and Future Work

In this paper, we have introduced a shape-based object detection/recognition
system and showed its advantage on detecting rigid and non-rigid objects, like
those in the ETHZ dataset. Our method follows the line of template matching
by defining contour templates with a set of junction points. We found the de-
signed shape descriptors to be informative and our system outperforms many
contemporary approaches using heavy learning and design. We anticipate junc-
tion features to be useful for other vision tasks. In the future, we plan to combine
the shape features with appearance information to provide more robust results.
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Abstract. We propose a method for object category localization by par-
tially matching edge contours to a single shape prototype of the category.
Previous work in this area either relies on piecewise contour approxima-
tions, requires meaningful supervised decompositions, or matches coarse
shape-based descriptions at local interest points. Our method avoids
error-prone pre-processing steps by using all obtained edges in a partial
contour matching setting. The matched fragments are efficiently sum-
marized and aggregated to form location hypotheses. The efficiency and
accuracy of our edge fragment based voting step yields high quality hy-
potheses in low computation time. The experimental evaluation achieves
excellent performance in the hypotheses voting stage and yields compet-
itive results on challenging datasets like ETHZ and INRIA horses.

1 Introduction

Object detection is a challenging problem in computer vision. It allows local-
ization of previously unseen objects in images. In general, two main paradigms
can be distinguished: appearance and contour. Appearance-based approaches
form the dominant paradigm using the bag-of-words model [I0], which analyzes
an orderless distribution of local image features and achieves impressive results
mainly because of powerful local image description [I1].

Recently, the contour-based paradigm has become popular, because shape
provides a powerful and often more generic feature [I2] since an object contour
is invariant to extreme lighting conditions and large variations in texture or color.
Many different contour-based approaches exist and the research falls mainly into
four categories. The works of [T2] focus on the aspect of learning edge codebooks,
where chamfer matching is used to evaluate local shape similarity. Other research
uses piecewise approximations of the edges by short segments [I3/4] or supervised
decompositions [8]. In [5l6/14] the problem is cast as a matching between shape-
based descriptors on local interest points.

* This work was supported by the Austrian Research Promotion Agency (FFG) project
FIT-IT CityFit (815971/14472-GLE/ROD).

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 29442, (2010.
© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Overview of related work: Our approach relaxes the piecewise approximations
and local neighborhoods. We use partial matching to find contour fragments belonging
to the foreground rather than discarding entire edges. See Section 2] for details.

The main motivation for our work is that ”“connectedness is a fundamen-
tal powerful driving force underexploited in object detection” [3]. Viewing edge
contours as connected sequences of any length instead of short segment approxi-
mations or local patches on interest points provides more discrimination against
background cutter. In our contributions we focus on the partial matching of
noisy edges to relax the constraints on local neighborhoods or on assigning en-
tire edges as background disregarding local similarities. We formulate a category
localization method which efficiently retrieves partial edge fragments that are
similar to a single contour prototype. We introduce a self-containing descriptor
for edges which enables partial matching and an efficient selection and aggrega-
tion of partial matches to identify and merge similar overlapping contours up to
any length. A key benefit is that the longer the matches are, the more they are
able to discriminate between background clutter and the object instance. In this
way we lift standard figure / ground assignment to another level by providing
local similarities for all edges in an image. We retrieve these partial contours
and combine them directly in a similarity tensor and together with a clustering-
based center voting step we hypothesize object locations. This greatly reduces
the search space to a handful of hypotheses and shows excellent performance
compared to state of the art in the voting stage. For a full system evaluation,
the hypotheses are further verified by a standard multi-scale histogram of gra-
dients (HOG) classifier.

2 Related Work

There exists a range of work in the contour-based paradigm which achieve state-
of-the-art performance for several object categories using contour information,
for an overview see Figure[ll The research falls into four main categories, namely
(i) learning codebooks of contour fragments, (ii) approximating contours by
piecewise segments, (iii) using local description of the contour at selected in-
terest points, or (iv) assigning entire edges to either foreground or background.
Additional techniques are used in each work, for example learning deformation
models, sophisticated cost functions or probabilistic grouping.
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Learning codebooks: Shotton et al. [I] and Opelt et al. [2] concurrently proposed
to construct shape fragments tailored to specific object classes. Both find matches
to a pre-defined fragment codebook by chamfer matching to the query image
and then find detections by a star-shaped voting model. Their methods rely on
chamfer matching which is sensitive to clutter and rotation. In both approaches
the major aspect is to learn discriminative combinations of boundary parts as
weak classifiers using boosting to build a strong detector.

Piecewise approxzimation: Ferrari etal. [I5I3] build groups of approximately
straight adjacent segments (kAS) to work together in a team to match the
model parts. The segments are matched within a contour segmentation net-
work which provides the combinations of multiple simple segments using the
power of connectedness. In later work they also show how to automatically learn
codebooks [3], or how to learn category shape models from cropped training im-
ages [16]. In a verification step they use a thin-plate-spline (TPS)-based matching
to accurately localize the object boundary. Similar to this, Ravishankar et al. [4]
use short segments to approximate the outer contour of objects. In contrast to
straight segments, they prefer slightly curved segments to have better discrim-
inative power between the segments. They further use a sophisticated scoring
function which takes local deformations in scale and orientations into account.
However, they break the reference template at high curvature points to be able
to match parts, again resulting in disjoint approximations of the actual contour.
In their verification stage, the gradient maps are used as underlying basis for
object detection avoiding the error-prone detection of edges.

Shape-based interest points: This category uses descriptors to capture and match
coarse descriptions of the local shape around interest points. Leordeanu et al. [17]
use simple features based on normal orientations and pairwise interactions be-
tween them to learn and detect object models in images. Their simple features
are represented in pairwise relations in category specific models that can learn
hundreds of parts. Berg etal. [I4] formulate the object detection problem as
a deformable shape matching problem. However, they require hand-segmented
training images and do not learn deformation models in training. Further in
the line are the works of Maji and Malik [5] and Ommer and Malik [6] which
match geometric blur features to training images. The former use a max-margin
framework to learn discriminative weights for each feature type to ensure max-
imal discrimination during the voting stage. The latter provide an interesting
adaptation of the usual Hough-style center voting. Ommer and Malik trans-
form the discrete scale voting to a continuous domain where the scale is another
unknown in the voting space. Instead of multiple discrete center vectors, they
formulate the votes as lines and cluster these to find scale-coherent hypotheses.
The verification is done using a HOG-based fast SVM kernel (IKSVM).

Figure / ground assignment: Similar in concept but not in practice are the
works of Zhu et al. [8] and Lu et al. [9]. They cast the problem as figure / ground
labeling of edges and decide for a rather small set of edges which belong to
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the foreground and which are background clutter. By this labeling they reduce
the clutter and focus on salient edges in their verification step. Lu etal. use
particle filters under static observation to simultaneously group and label the
edge contours. They use a new shape descriptor based on angles to decide edge
contour similarity. Zhu et al. use control points along the reference contour to find
possible edge contour combinations and then solve cost functions efficiently using
linear programming. They find a maximal matching between a set of query image
contours and a set of salient contour parts from the reference template, which
was manually split into a set of reference segments. Both assume to match entire
edge contours to the reference sets and require long salient contours. Recent
work by Bai et al. [7] is also based on a background clutter removal stage called
shapeband. Shapeband is a new type of sliding window adapted to the shape
of objects. It is used to provide location hypotheses and to select edge contour
candidates. However, in their runtime intensive verification step they iteratively
compute shape context descriptors [I8] to select similar edge contours. Another
recent approach by Gu et al. [T9] proposes to use regions instead of local interest
points or contours to better estimate the location and scale of objects.

We place our method in between the aforementioned approaches. We use edge
contours in the query image and match them at any length from short contour
segments up to full regions boundaries using partial shape matching. In such a
setting the similarity to the prototype shape decides the complexity and length
of the considered contours.

3 Partial Shape Matching for Object Detection

In the following sections we describe our proposed approach to detect objects
by computing partial similarities between edge contours in a query image and a
reference template. For the sake of clarity, we will now define some terms used
throughout the paper, see Figure [2 for a visual illustration. We use the term
fragment to denote a part of an edge contour. Edge contours can be arbitrarily
long, contain irrelevant parts or may also be incomplete due to missing edge
detector responses or occlusions which make parts of the object invisible. The
query contours are the connected edge contours found by the detector and sub-
sequent 8-neighborhood linking. The reference contour is a single hand-drawn
model of the object’s outer boundary. A valid matched fragment is defined as a
part of an edge contour that is similar to a part of the reference contour.

Our goal is to identify matches from fragments of arbitrary length (contained
within the query edges) to the reference contour, by analyzing a self-contained
representation and description of the shape of the detected edge contours. We
want to build a representation that contains the whole as well as any part of a
contour, which enables matching independently from the remaining parts.

Our detection method consists of three parts: First, edges are extracted from
an image and represented as lists of coordinates. This representation is the basis
for the self-containing contour descriptor. Second, the matching is a vital com-
ponent which allows the efficient retrieval of contour fragments similar to a given
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(a)i<yj (b)i>j (c) Partial matches

Fig. 2. Hlustration of 2D angle description and matching. a-b) An angle is measured
between any two sampled points b; and b;, which define a fragment inside an edge
contours, ¢) shows partial matches in an occluded edge to a reference contour.

reference prototype. Third, for each matched fragment we calculate a center vote
to estimate the location of the searched object and aggregate coherent fragments
based on their voting, scale and correspondence to the reference.

3.1 Fragment Description

Our goal is to exploit the connectedness of an edge contour implicitly yet allowing
to retrieve parts of an edge as fragments. Many different methods have been pro-
posed for partial contour matching. Angular representations are a natural choice
due their direct encoding of geometric layout. For example, Turney et al. [20] use
the slope 6 and arc length s as local representation for boundaries, however only
on a small set of images. In a more recent work Brendel and Todorovic [21]
find matching fragments in complex images using circular dynamic time warp-
ing with a runtime of 200ms per match. Chen et al. [22] proposed an efficient
matching, however their descriptor only measures local shape and ignores global
contour similarity. Felzenszwalb et al. [23] proposed a hierarchy of deformable
shapes where only a single contour can be matched in subtrees and matching
two contours requires 500ms. A recent hierarchical approach by Kokkinos and
Yuille [24] formulates the task as image parsing and provide fast coarse to fine
matches. Lu etal. [9] developed a shape descriptor based on a 3D histogram of
angles and distances for triangles connecting points sampled along the contours.
They do not allow partial matching and the descriptor requires high computa-
tional costs. Donoser et al. [25] developed a descriptor which can be seen as a
subset of [9], where angles between any two points and a fixed third point on a
closed contour are analyzed. They demonstrate efficient matching between two
closed shapes within a few milliseconds.

Inspired by the high quality of hierarchical approaches, we adopt the de-
scriptor from Donoser et al. [25], which was designed for matching whole object
silhouettes, to handle the requirements of object detection in cluttered images.
First, partial matching of the cluttered edges must be possible. Since there are
no closed contours around a cluttered object after standard edge detection, we
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design a novel self-containing descriptor which enables efficient partial matching.
Second, similar to hierarchies the descriptor encodes coarse and fine contour in-
formation. Different sampling of the descriptor enables direct access to different
levels of detail for the contour, whereas the full descriptor implicitly contains all
global and local contour information.

The method in [25] proposed an efficient matching step to describe and then
retrieve all redundant and overlapping matching combinations. Their brute force
algorithm delivers good results on clean silhouette datasets. However, for an ob-
ject detection task this is not feasible due to the prohibitive combinators (mul-
tiple scales, multiple occlusions and hundreds of edges per image). Additionally,
slightly shifted matches at neighboring locations contradict each other and do
not provide coherent object location hypotheses. Therefore, in contrast to [25],
we propose an efficient summarization scheme directly in an obtained 3D sim-
ilarity tensor. Such an approach has several strong benefits like selection and
aggregation of only coherent center vote matches, longer merged matches out
of indiscriminate shorter segments and further an immense speedup due to the
reduction of the number of returned matches. The main motivation is to exploit
the connectedness of edge contours instead of using individual interest points or
short piecewise approximations of edge contours.

As a first step we sample a fixed number N of points from the closed reference
contour that can be ordered as R = {r1,r2,...,rn}. As next step we have
to extract connected and labeled edge contours from the query image. Edge
detection and linking in general is a quite challenging task [26]. We apply the
Pb edge detector [27] and link the results to a set of coordinate lists. For the
obtained query contours, points are sampled at equal distance, resulting in a
sequence of points B = {by,ba,...,bp} per contour. The sampling distance
d between the points allows to handle different scales. Sampling with a larger
distance equals to a larger scale factor, and vice versa. For detecting objects in
query images we perform an exhaustive search over a range of scales, which is
efficiently possible due to the properties of our descriptor and matching method.

We use a matrix of angles which encode the geometry of the sampled points
leading to a translation and rotation invariant description for a query contour.
The descriptor is calculated from the relative spatial orientations between lines
connecting the sampled points. In contrast to other work [9I25], we calculate
angles a;; between a line connecting the points b; and b; and a line to a third
point relative to the position of the previous two points. This angle is defined

<I(bibj, bjbj_A) ifi<yj
Q5 = {(bibj,bjijrA) ifi>j , (1)
0 ifabs(i —j) < A
where b; and b; are the i*" and j** points in the sequence of sampled points of
the contour and A is an offset parameter of the descriptor (5 for all experiments).
See Figure 2] for an illustration of the choice of points along the contour. The
third point is chosen depending on the position of the other two points to ensure
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that the selected point is always inside the contour. This allows us to formulate
the descriptor as a self-containing descriptor of any of its parts.

The angles «;; are calculated between every pair of points along a contour. In
such a way a contour defined by a sequence of M points is described by an M x M
matrix where an entry in row ¢ and column j yields the angle «;;. Figure Blillus-
trates the descriptors for different shape primitives. The proposed descriptor has
four important properties. First, its angular description makes it translation and
rotation invariant. Second, a shift along the diagonal of the descriptor handles
the uncertainty of the starting point in edge detection. Third, it represents the
connectedness of contours by using the sequence information providing a local
(close to matrix diagonal) and global (far from matrix diagonal) description.
And most importantly, the definition as a self-containing descriptor allows to
implicitly retrieve partial matches which is a key requirement for cluttered and
broken edge results.

Fig. 3. Visualization of descriptors for selected contour primitives. Middle row shows
descriptors from [25] and bottom row shows our descriptors. Note how each fragment
is included in its respective closed contours (square and circle) in our version, which is
not fulfilled for [25] since it was designed for closed contour matching.

3.2 Fragment Matching and Merging

Matching and merging partial contours is an important part of our approach
and is based on the 2D edge contour descriptors introduced in the previous sec-
tion. For any two descriptors representing two contours, the aim of matching is
to identify parts of the two contours which are similar to each other. In terms
of comparing corresponding descriptor matrices, one has to compare all sub-
blocks of the descriptor matrices to find all matching possibilities and lengths.
For efficient calculation of all similarity scores, we apply the algorithmic opti-
mization using integral images as proposed in [25] to access the partial descriptor
differences in constant time, which returns the similarities (differences between
our angle descriptors) for all matching triplets {r, ¢,1} stored in a 3D similarity
and correspondence tensor I, ;). The first two dimensions identify the starting
points of the match in the reference (r) and query edge contour (q) and the third
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dimension defines the length (1) of the match. Note that this tensor fully defines
all possible correspondences between the reference and the edge contour. Figured
shows the similarity tensor for the partial matching example in Figure 2l The
two matched fragments correspond to the peaks (a) in the tensor, here a single
slice at a fixed length [ = 11 is shown.

A main issue is redundancy within the tensor as there may be many over-
lapping and repetitive matches. This poses a problem for object detection in
cluttered images. Our goal is to find the longest and most similar fragments
and merge repetitive matches instead of retrieving all individual matches. This
is an important part of this work. First, it is necessary to outline some of the
properties of our 3D similarity and correspondence tensor I, 4 -

I. A fragment (r,¢q,l) is assigned a similarity (Euclidean distance between an-
gular descriptors) by I, q.1)-

II. Length variations (r, q,l3) with lo < [ define the same correspondence, yet
shorter in length.

ITII. Diagonal shifts in the indices (r + 1, ¢+ 1,1) also represent the same match,
yet one starting point later.

IV. Unequal shifts (r + 1,q,1) define a different correspondence, however very
similar and close.

V. Due to occlusions or noise, multiple matches per edge contour may exist.
The example in Figure 2] is a shifted match much later (r + 13,q + 32,1)
defining the same correspondence, yet skipping (32-13=19) points of noise.

VI. Matches near to the end of each contour (if not closed) have a maximal
length given by the remaining points in each contour sequence.

Perfect matches would result in singular peaks in a slice. However due to these
small shifts along the same correspondence or with an unequal offset, matches
result in a hill-like appearance of the similarity, see Figure dh. Given these prop-
erties we now define a matching criterion to deliver the longest and most similar
matches, i.e. finding the peaks not once per slice but for the entire 3D tensor.
This summarization is made of three steps: (a) finding valid correspondences
satisfying the constraints on length and similarity, (b) merging all valid corre-
spondences to obtain the longest combination of the included matches (property
IT) and (c) selecting the maximal similarity of matches in close proximity (prop-
erty IV). The steps are in detail as following:

First, we define a function £(r, g, 1) which gives the lengths at any given valid
correspondence tuple r, q as

Uit Iy gn) < Stim and 12 liim

0 else

L(r,q,1) = { ; (2)

where the value at L(r,¢q,1) is the length of a valid fragment. A valid fragment
has a similarity score below the limit sy, and a minimal length limit of I;;,.
This function is used to define a subset of longest candidates by
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Uirq) = Vrq: argmax L(r,q,l), (3)
lemin(N,M)

where ¥(, 4 is a subset of I, ;) containing the longest matches at each corre-
spondence tuple (r,q). This set contains matches for every possible correspon-
dence given by the constraints on similarity and matching positions (see property
II, VI). However, we further want to reduce this to only the local maxima (con-
serving property IV). Since the set can now be considered as a 2D function, we
find the connected components C satisfying ¥(,. ;) > 0. The final set of candidates
are the maxima per connected component and is defined as

Vg =Vei€C: a?g max (¥(,.q) € ¢i), (4)
(r,q,1)

where 1(, 4y holds the longest possible and most similar matches given the
constraints on minimum similarity sy, and minimal length l;,,,. In the example
shown in Figure[2] and [ the final set contains two matches, which are the longest
possible matches. Note that shorter matches in the head and back are possible,
but are directly merged to longer and more discriminative matches by analyzing
the whole tensor. Furthermore, obtained matches are local maxima concerning
similarity scores. This provides an elegant and efficient summarization leading
to coherent and discriminative matches and reduced runtime.

Similar

ﬂDssmar
Not possible

E
!
(a) Similarity scores in 3D (b) A single slice in 2D

position in query

()

Not possible-

position in reference 5 0 15w 25 W @ 4
position in query position in reference

Fig. 4. Illustration of the similarity and correspondence tensor I, ;) at length [ = 11
for example shown in Figure 2{(c): (a) the two peaks correspond to the matches found.
Matching uncertainty results in multiple peaks in a hill-like appearance. (b) shows the
same similarity in a flat view, where red signals high similarity and dark blue defines
invalid matches due to length constraints. Best viewed in color.

3.3 Hypothesis Voting

Matching as described in the previous section provides a set of matched frag-
ments for the query edges, which have to be combined to form object location
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hypotheses. In the following we describe how matched fragments are grouped
for object locations hypotheses and scores are estimated.

Fragment Aggregation. Up to this point we have a set 1}, ;) of matched
parts of edge contours detected in a query image which are highly similar to the
provided prototype contour. Every match has a certain similarity and length.
Further, we can map each matched contour to its reference contour and estimate
the object centroid from the given correspondence tuple. The aggregation of the
individual fragments identifies groups of fragments which compliment each other
and form object location hypotheses.

For this step we cluster the matched fragments analyzing their corresponding
center votes and their scale by mean-shift mode detection with a scale-dependent
bandwidth. The bandwidth resembles an analogy to the classical Hough accu-
mulator bin size, however with the added effect that we combine the hypotheses
locations in a continuous domain rather than discrete bins.

Hypothesis Ranking. All obtained hypotheses are ranked according to a con-
fidence. For this purpose we investigate two ranking methods. The first is based
on the coverage of detected fragments, where (coy is a score relative to the
amount of the reference contour that is covered by the matched fragments, de-

fined as
N

Ccov = ;;(fi x Si), (5)
where f; is the number of times the i-th contour point has been matched and
S; is the corresponding weight of this point. This is normalized by the number
of contour points N in the reference contour. The coverage score (coy provides
a value describing how many parts are matched to the reference contour for the
current hypothesis. We use a uniform weight of S; = 1. However, for example
weights given by the contour flexibility [28] would be an interesting aspect.

As a second score, we use a ranking as proposed by Ommer and Malik [6].
They define the ranking score (pyrx by applying an SVM classifier to the image
windows around the location hypotheses. The kernel is the pyramid match kernel
(PMK) [29] using histograms of oriented gradients (HOG) as features. Positive
samples for each class are taken from the ground truth training set. Negative
samples are retrieved by evaluating the hypotheses voting and selecting the false
positives. The bounding boxes are resized to a fixed height while keeping me-
dian aspect ratio. Since the mean-shift mode detection may not deliver the true
object location, we sample locations in a grid of windows around the mean-shift
center. At each location we evaluate the aforementioned classifier and retrieve
the highest scoring hypothesis as new detection location.

4 Experiments

We demonstrate the performance of our proposed object category localization
method on two different reference data sets: ETHZ (Section 1) and INRIA
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Table 1. Hypothesis voting, ranking and verification stages show competitive detection
rates using PASCAL criterion for the ETHZ shape database [I5] compared to related
work. For the voting stage our coverage score increases the performance by 6.5% [6],
8.5% [5] and 16.1% [13] leading to state-of-the-art voting results at reduced runtime.

Voting and Ranking Stage (FPPI=1.0) Verification Stage (FPPI=0.3/0.4)
ETHZ Hough M?HT wae Our PMK Our M?HT PMK KAS  System Our
Classes  [13] Bl 6] work [6] work 15 6l Bl Full [I3] work

Apples 43.0 80.0 85.0 90.4 80.0 90.4 95.0/95.0 95.0/95.0 50.0/60.0 77.7/83.2 93.3/93.3
Bottles 64.4 924 67.0 84.4 89.3 96.4 92.9/96.4 89.3/89.3 92.9/92.9 79.8/81.6 97.0/97.0
Giraffes 52.2  36.2 55.0 50.0 80.9 78.8 89.6/89.6 70.5/75.4 49.0/51.1 39.9/44.5 79.2/81.9
Mugs 45.1 475 55.0 323 7T4.2 614 93.6/96.7 87.3/90.3 67.8/77.4 75.1/80.0 84.6/86.3
Swans  62.0 588 42.5 90.1 68.6 88.6 88.2/88.294.1/94.1 47.1/52.4 63.2/70.5 92.6/92.6
Average 53.3 63.0 60.9 69.4 78.6 83.2 91.9/93.2 87.2/88.8 61.4/66.9 67.2/72.0 89.3/90.5

horses (Section [£.2). We significantly outperform related methods in the hy-
potheses generation stage, while attaining competitive results for the full system.
Results demonstrate that exploiting the connectedness of edge contours in a par-
tial contour matching scenario enables to accurately localize category instances
in images in efficient manner. Note also that we only use binary edge information
for the hypothesis voting and do not include edge magnitude information, which
plays important roles in other work [3J4615].

Our proposed object localization method is not inherently scale invariant. We
analyze 10 scales per image, where scale is defined by the distance between the
sampled points. Localization of an object over all scales (!) requires on average
only 5.3 seconds per image for ETHZ in a Matlab implementation.

4.1 ETHZ Shape Classes

Results are reported on the challenging ETHZ shape dataset consisting of five
object classes and a total of 255 images. All classes contain significant intra-class
variations and scale changes. The images sometimes contain multiple instances
of a category and have a large amount of background clutter.

Unfortunately direct comparison to related work is quite hard since many dif-
ferent test protocols exist. Foremost, on the ETHZ dataset there exist two main
methods for evaluation. First, a class model is learned by training on half of the
positive examples from a class, while testing is done on all remaining images (half
of positive examples and all other negative classes) averaged over five random
splits. Second, the ETHZ dataset additionally provides hand-drawn templates
per class to model the categories. This step requires no training and has shown
to provide slightly better results in a direct comparison [I3]. Further, the detec-
tion performance may be evaluated using one of the two measures, namely the
stricter PASCAL or the 20%-IoU criterion, which require that the intersection
of the bounding box of the predicted hypotheses and the ground truth over the
union of the two bounding boxes is larger than 50% or 20% respectively. Ad-
ditional aspects in the evaluation are the use of 5-fold cross validation, aspect
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ratio voting and most influential the use of features. Using strong features in-
cluding color and appearance information naturally has a benefit over gradient
information and again over pure binary shape information. This spectrum of
features has the benefit to complement each other. Thus in our approach we use
the hand-drawn models to match only binary edges in an query image and for
a full system we further verify their location using a standard gradient-based
classifier trained on half of the positive training samples.

Class-wise results for ETHZ using the strict PASCAL criterion are given in
Table [Tl The focus of this work lies on hypothesis voting stage, where we can
show excellent results of 69.4% and 83.2%, without and with a PMK classifier
ranking. The PMK ranking increases the scores for three classes (bottles, giraffes
and mugs). The reason is that the classifier is better able to predict the instance
of these classes, especially for mugs, where our system produces twice as many
hypotheses compared to the other classes (on average 20 for mugs compared to
8 for the other classes). The coverage score performs better on compact object
classes (applelogos and swans). Please note, the other methods do not use hand-
drawn prototypes. We achieve an overall improvement over related work ranging
from 6.5% [6], 8.5% [5] to 16.1% [13] without classifier ranking, and 4.6% over [0]
using a classifier ranking. We also achieve competitive results after verification
of 90.5% compared to 66.9% [3], 72.0% [13], 88.8% [6] and 93.2% [5] at 0.4 FPPL.

Due to the lack of hypothesis voting results for other approaches, we also
provide a range of comparisons with previous work using the full system. We
evaluate our method using the 20%-IoU criterion and summarize the results
in Table @2l Compared to related work we also achieve excellent results using
this criterion. Note again, that direct comparison has to be seen with caution,
since methods either use hand-drawn or learned models. See Figure [l for some
exemplary successful detections and some failure cases.

Table 2. Average detection rates for related work on hand-drawn and learned models

ETHZ shape classes: Verification Stage (FPPI = 0.3/0.4) using 20%-IoU
Method Supervised = Template Template Template Codebook Learned Template+Learned
Lu [9] Ravishankar [4] Ferrari [I5] Ferrari [16] Ferrari [3] Ferrari [16] Our work
Average 90.3/91.9  93.0/95.2  70.5/81.5 82.4/85.3 74.4/79.7 T1.5/76.8 94.4/95.2

4.2 INRIA Horses

As a second dataset we use the INRIA horses [13], which consists of 170 im-
ages with one or more horses in side-view at several scales and cluttered back-
ground, and 170 images without horses. We use the same training and test split
as [I3] of 50 positive examples for the training and test on the remaining images
(1204170). We again use only a single reference template which was chosen from
the pixel-wise segmentation of a random horse from the training set. For this
dataset the performance is 83.72% at FPPI=1.0 and thus is better than recent
results 73.75% by [16], 80.77% by [3] and almost as good as 85.27% by [5], which
additionally vote for aspect ratios. Presumably this would also increase our recall
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Fig. 5. Results on ETHZ shape classes and INRIA horses (also see additional material)

for the strongly articulated horses since we detect the partial matches, however
a single rigid reference template does not capture the centroid change.

5 Conclusion

We have presented a new approach in the paradigm of contour-based object
detection based on partial contour matches to a reference template and show
competitive results on state-of-the-art datasets like ETHZ shape and INRIA
horses. Complementary to related work, we demonstrated that we can relax the
approximations by piecewise segments by providing partial matching of contours
instead of selecting or ignoring complete contours as well as extending the search
beyond local neighborhoods of interest points. Our system implicitly handles
parts of a contour and thus does not require grouping long salient curves or
harmful splitting of contours to be able to match parts. Though a verification
stage is a vital part for a full object detection system, we believe the focus should
lie on better reflecting the hypotheses voting space, since this has a direct effect
on the speed and accuracy of the full detector performance. In future work we
will investigate learning discriminating weights [IJ5] and interactions between
contour fragments [173].
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Abstract. This paper presents a new object representation, Active
Mask Hierarchies (AMH), for object detection. In this representation,
an object is described using a mixture of hierarchical trees where the
nodes represent the object and its parts in pyramid form. To account for
shape variations at a range of scales, a dictionary of masks with varied
shape patterns are attached to the nodes at different layers. The shape
masks are “active” in that they enable parts to move with different dis-
placements. The masks in this active hierarchy are associated with his-
tograms of words (HOWSs) and oriented gradients (HOGs) to enable rich
appearance representation of both structured (eg, cat face) and textured
(eg, cat body) image regions. Learning the hierarchical model is a latent
SVM problem which can be solved by the incremental concave-convex
procedure (iICCCP). The resulting system is comparable with the state-
of-the-art methods when evaluated on the challenging public PASCAL
2007 and 2009 datasets.

1 Introduction

The difficulty of object detection is because objects have complex appearance
patterns and spatial deformations which can all occur at a range of different
scales. Appearance patterns can be roughly classified into two classes: (i) struc-
tural (e.g., the head of a cat) which can be roughly described by the inten-
sity edges and their spatial relations (e.g. by histogram of oriented gradients
(HOGsS)), and (ii) textural (e.g., the fur of a cat) which can be modeled by his-
tograms of image features or words (e.g., histogram of words (HOWs)). Moreover
these patterns can deform spatially both by translation — i.e., an entire image
patch move — and/or by being partially masked out. The approach in this pa-
per develops a novel Active Mask Hierarchy (AMH) which combines both types
of appearance cues (HOWs and HOGs), allows subparts of the object to move
actively and use a variety of different masks to deal with spatial deformations,
and represents these appearance and geometric variations at a range of scales
by a hierarchy.

Our work relates to two recent object representations which have made a
significant impact in computer vision: (i) spatial pyramids [I], and (ii) part-
based model [2]. But both approaches have strengths and weaknesses in the way
that they deal with appearance variations and shape deformations. In this paper
we seek an object representation which combines their strengths.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 432010.
© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. (a) A spatial pyramid where the cells are bound together. (b) An Active Mask
Hierarchy is represented by a tree structure where nodes are connected between con-
secutive layers and allowed to move object parts with displacements at different scales.
(c) Shape masks include 11 generic shapes, such as vertical and horizontal bars, ori-
ented L’s, etc. The white regions show the “valid” areas, where features are computed,
while the black regions are “invalid”. The first mask is the rectangle used in standard
spatial pyramids. (d) The train image example. A rectangle is used at the top layer to
represent the entire object including some background. (e) Another (diagonal) mask is
also used at the top layer to describe the train. (f) Four masks at the second level can
be translated actively to better describe the object shape.

Spatial pyramids were proposed in [3] for scene classification and applied to
object detection by [I]. A spatial pyramid is a three-layer pyramid, as shown in
figure[Il (a), where cells at different levels of the grid specify histograms of words
(HOWs) located in the corresponding spatial domain yielding a coarse-to-fine
representation. HOWs are particularly successful at modeling textured regions
(e.g., a cat’s body), but are not well suited for describing structured regions (e.g.,
a cat’s face). Some papers [l[I] use complementary descriptors, ie, histograms of
oriented gradients (HOGs) [B], to account for other appearance variations. But
two limitations still remain in the pyramid framework: (i) the cells are tightly
bound spatially and are not allowed to move in order to deal with large spatial
deformations of object parts (although pyramid of HOWs do tolerate a certain
amount of spatial deformation). (ii) the cells have a rigid rectangular form and
so are not well suited for dealing with partial overlaps of the object and its
background. For example, the bounding box for the train in figure ([Ild) includes
cluttered background which makes HOWs less distinguishable.

Part-based models [2] are two-layer structures where the root node represent
the entire object while the nodes at the second layers correspond to the parts.
Unlike spatial pyramids, the nodes are allowed to move to account for large
deformations of object parts. But part-based models also have two limitations.
Firstly, the appearance models of the parts, which is based on HOGs [2], is
not suitable for regions with rich texture properties where gradients are not
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very informative. Secondly, the shallow structure (i.e., lack of a third layer)
limits the representation of detailed appearance of the object and prevents the
representation of small scale shape deformations.

This paper presents a new representation, called “Active Mask Hierarchies
(AMH)”, which offers a richer way to represent appearance variations and shape
deformations. Our approach combines spatial pyramids and part-based models
into a single representation. First observe that an active mask hierarchy can
be considered as a spatial pyramid with relaxed bonds — hence “active” (see
fig. M (b)). It can be represented by a tree structure where nodes at consecutive
layers are vertically related, and assigned latent position variables to encode
displacements of parts. Similarly active mask hierarchies can be thought of as
a three-layer part-based model where “parts” together with their connections
are simply designed as the active cells at different layers which are organized
in a form of multi-level grids. As a result, the complicated procedure of part
selection [2] is avoided. We will show that the multi-level grid design does not
prevent us from achieving good performance.

Cells at different levels of the active mask hierarchy have appearance features
based on HOGs and HOWs so as to model both structured and textured regions.
Moreover, we assign a dictionary of masks with various binary shape patterns
(fig. M(c)) to all nodes which enable the part to deal with variations in the
shape (i.e., overcome the restriction to regular rectangular templates). The fea-
tures are only measured in the white areas specified by the masks. For example,
masks (fig. 1 (d) and [dl(e)) at the top layer give the coarse descriptions of the
boundary of the entire object. The active masks at the lower layers (figlll(f))
with displacements combine to represent the object parts more accurately. The
selection of masks is performed by weighting their importance.

Learning the hierarchical model is a latent structural SVM problem [6] which
can be solved by the concave-convex procedure (CCCP). CCCP has been suc-
cessfully applied to learning models for object detection [7[8]. In order to reduce
the training cost we use the variant called incremental concave-convex procedure
(iCCCP) first reported in [§]. iCCCP allows us to learn hierarchical models using
a large-scale training set efficiently.

Our experimental results demonstrate that the active mask hierarchies achieve
state-of-the-art performance evaluated on the challenging public PASCAL 2007
and 2009 datasets [9,[10]. As we show, the proposed method performs well at
detecting both structured objects and textured objects.

2 Related Work

Hierarchical decomposition has also been explored in object recognition and
image segmentation, such as [II,[I2,[I3]. Our use of shape masks is partially
inspired by Levin and Weiss’s fragments [I4], Torralba et al. ’s spatial mask [15]
and by Zhu et al.’s recursive segmentation templates [16]. But [14]16] are applied
to segmentation and not to object detection. The masks used in [I5] are not
associated with latent postion variable. The idea of “active” parts is similar in
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spirit to Wu et al.’s active basis model [I7], which does not involve a hierarchy.
Schnitzspan et al.’s [I8] uses a hierarchical models, but does not contain the
shape masks.

There has been much related work on object detection, including [T1/2]8T920].
[12l8] focus on the modeling of objects. Vedaldi et al. [I] present multiple kernel
learning applied to spatial pyramids of histograms of features. They use a cascade
of models and non-linear RBF kernels. Felzenszwalb et al. [2] propose latent
SVM learning for part-based models and explore the benefit of post-processing
(eg, incorporating contextual information). As we will show in the experiments,
our system gives better performance without needing these “extras”. We use
the iCCCP learning method developed in [§], but [8] does not use shape masks
or HOWs (which give significant performance improvement as reported in the
experimental section).

Instead of improving the representation of objects, both [19] and [20] focus
on using global contextual cues to improve the performance of object detection.
Desai et al. [T9] make use a set of models from different object categories. [20]
considers global image recognition and local object detection jointly.

3 Active Mask Hierarchies

In this section, we first formulate object learning as a latent structural SVM
learning problem and then describe the active mask hierarchy representation.
Finally, we briefly smmarize the optimization method for training and the infer-
ence algorithm for detection.

3.1 Active Mask Hierarchies and Latent Structural SVM

The goal of the AMH model is to detect whether an object with class label y is
present in an image region x. The AMH model has latent variables h = (V, p)
(i.e. not specified in the training set), where V labels the mixture component
and p specifies the positions of the object masks.

The AMH is specified by a function w - &(x,y, h) where w is a vector of
parameter weights (to be learnt) and @ is a feature vector. @ has two types
of terms: (i) appearance terms @4 (x,y, h) which relate features of the image
2 to object classes y, components V, and mask positions p; (ii) shape terms
Ds(y, h) which specify the relationships between the positions of different masks
and which are independent of the image x.

The inference task is to estimate the class label y and the latent states h by
maximizing the discriminant function (assuming w is known):

Fy(z) = ar%rzlax[w - P(z,y,h)] (1)

The learning task is to estimate the optimal parameters w from a set of train-
ing data (x1,y1,h1),....(xN, yn, hn). We formulate the learning task as latent
structural SVM learning. The object labels {y;} of the image regions {z;} are
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known but the latent variables {h;} are unknown (recall that the latent variables
encode the mask positions p and the model component V). The task is to find
the weights w which minimize an objective function J(w):

N
1
J(w) = _|[w]]* +CY " | max{w - @iy p + Liyn] —max(w - &y ]| (2)
2 y,h h
i=1 ’

where C' is a fixed number, &;,, = P(z;,y,h) and L;yn = L(y;,y,h) is a
loss function. For our object detection problem L(y;,y,h) = 1, if y; = y, and
L(yi,y,h) =0 if y; # y (note L(.) is independent of the latent variable h).

Solving the optimization problem in equation () is difficult because the ob-
jective function J(w) is non-convex (because the fourth term — maxy[w - ®; 4, »]
is a concave function of w). Following Yu and Joachims [6] we use the concave-
convex procedure (CCCP) [2I] which is guaranteed to converge at least to a local
optimum. We note that CCCP has already been applied to learning models for
object detection [7[8]. We briefly describe CCCP and its application to latent
SVMs in section 3.3

In practice, the inner product in the discriminative function in equation ()
can be expressed as a summation of kernel functions [I]:

w-P(z,y,h Z @iy w KA Piyr s Py ) (3)
’y/ hl

where «; ./ ps are weights for support vectors obtained by solving equation (2))
and K(P; .y n, Pry,n) is a positive definite kernel, which can be represented by
a linear (convex) combination of kernels:

K(@i,y/,h/ ,y, h Z dk:ICk: iy’ h'y z y,h) (4)

where (i 1/, Py y.n) correspond to the appearance and shape kernels and
dj, are their weights. We will introduce these kernels in section ([B2]).

3.2 The Representation: Hierarchical Model and Feature Kernels

An AMH represents an object class by a mixture of two 3-layer tree-structured
models. The structure of the model is shown in fig. Il (b). The structure used
in our experiments is slightly different, but, for the sake of simplicity, we will
use this structure to illustrate the basic idea and describe the difference in
section .

The first layer has one root node which represents the entire object. The root
node has four child nodes at the second layer in a 2 x 2 grid layout where each
cell represents one fourth of an object. Each node at the second layer has 4 child
nodes at the third layer which contains 16 nodes in a 4 x 4 grid layout. There are
21 (1 +2 x 2+4 x 4) nodes in total. Note that the cells in the spatial pyramid
(figure[l(a)) are not connected.
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Fig. 2. The top three panels show the Histogram of Oriented Gradients (HOGs). The
bottom three panels show the Histogram Of Words (HOWS) extracted within different
cells. The visual words are formed by using SIFT descriptors. The columns from left
to right correspond to the top to bottom levels of the active hierarchy.

The numbers of layers and nodes are the same for different object classes
and mixture components. But their aspect ratios may be different. Each tree
model is associated with latent variables h = (V,p). V € {1,2} is the index
of the mixture components and p = ((uy,v1), (ug, v2), ..., (u21,v21)) encodes the
positions of all nodes. For an object class, let y = +1 denote object and y = —1
denote non-object. Let a € {1,...,21} index the nodes. b € Ch(a) indexes the
child nodes of node a.

The feature vector for each mixture component V is defined as follows:

e, p) = { (PRI Ty 41 (5)
where @ 4 (x, p) is a concatenation of appearance feature vectors @ 4 (z, p,) which
describe the image property of the corresponding regions specified by p,. @s(p)
is a concatenation of shape feature vectors @s(p,, py) which encode the parent-
child spatial relationship of the nodes (pq, ps). Note for different components V|
we maintain separate feature vectors.

The appearance features consist of two types of descriptors (see fig. 2l): (i)
Histograms of Oriented Gradients (HOGs) ®poc(z,p) [5] and (ii) Histograms
of Words (HOWSs) @ow (x,p) [ extracted from SIFT descriptors [22] which
are densely sampled. These two descriptors are complementary to each other for
appearance representation. HOGs are suitable for structured regions where the
image patches with specific oriented gradients (like car wheels, cat eyes, etc.) are
located at certain position. On the other hand, HOW’s advantages specialize at
the textured regions where the small image patches encoded by visual words (like
texton patches in cat body) appear randomly in a spatial domain. We followed
the implementations of [2] to calculate the HOG descriptors, and [I] for the SIFT
descriptors. Visual words are extracted by K-means using SIF'T descriptors.

The HOW features are a vector of features calculated within the valid regions
specified by the 11 shape masks, i.e.,

¢HOW(x1p) =< @}Jow(fﬂ,p),@zow(fﬂ,p),@Eow(l',p) > (6)
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Fig. 3. We illustrate the role of the mask and spatial variability (“active”) of the most
important HOW feature at the top level of the AMH. Figure (a) plots the maximum
response (for all masks) of visual word over the horse dataset. Observe that the response
is peaked but has big spatial variability so that the AMH can adapt to spatial position
and deformation of the objects. Figure (b), the most successful mask is the horizontal
bar — mask 5, see figure ([[lc) — which has, for example, twice as high kernel values as
mask 1 (the regular rectangle).

The shape masks associated with node a are located by the latent position
variable p,. They are forms of varied binary shape patterns (fig. l(c)) which
encode large shape variations of object and parts in a coarse-to-fine manner.
The regions activated for the feature calculations are the white areas specified
by the masks. For instance, the masks (fig. [[1(d) and [l (e)) at the top layer give
the coarse descriptions of the boundary of the entire object. The active masks at
the lower layers (fig. Il (f)) with displacements combine to represent the object
parts more accurately. The patterns of shape masks are designed so that the
histograms of words within the masks can be calculated efficiently using integral
image.

@ (h) is a concatenation of shape features @s(pq, py), Va,b € Ch(a), which en-
code the parent-child pairwise spacial relationship. More precisely, the shape fea-
tures for a parent-child pair (a, b) are defined as @s(pa, Py) = (Au, Av, Au?, Av?)
where (Au, Av) is the displacement of node b relative to its reference position
which is determined by the position of the parent node a. Our 3-layer model has
80 (4 x 4+ 4 x 16) shape features in total.

Now we have complete descriptions of the appearance and shape features. The
kernel in equation (@) which combines the appearance and shape kernels is given
by (note we only consider the nontrivial case, i.e., y = +1 ):

K(®Piy s Payn) = Ka(@(i,p'), 2(x, p)) + Ks(2(p'), 2(p)) (7)

where Kg(®(p'),P(p)) is the shape kernel which is a simple linear kernel, i.e.
Ks(.,.) =< d(p),®(p) > Ka(P(z;,p'), (x,p)) is the appearance kernel which
is given by the weighted sum of two types of appearance kernels:

iK1 (@roc(zi, '), Proc(x,p)) + doKo(Prow (i, p'), Prow (z,p))  (8)

where dy,ds are weights for two appearance kernels respectively. K1(.,.) is a
simple linear kernel, i.e., Ki(.,.) =< Pyoc(zi, '), Puoc(x,p) > . Ka(.,.) is
a quasi-linear kernel [1], i.e., K2(.,.) = 3(1 — X*(Prow (zi, '), Prow (z,p))),
which can be calculated efficiently using the technique proposed in [23]. Note
that unlike [I], the non-linear RBF kernels are not used here.
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Figure (@) shows how the appearance kernels of the HOWs and the shape
masks work. Recall that each HOW is computed for 11 masks, and the positions
of these masks vary depending on the input image. Firstly, we explore the spatial
variation of the maximum response of the HOW feature (for all masks) for the
horse dataset. Our results, see figure [Bla) show that the maximum response is
spatially peaked in the lower center of the image window containing the object.
But the position of the response varies considerably due to the variation in shape
and location of the object. Secondly, by examining the mask kernel values, we
see that mask 5 (horizontal bar) is the most effective when evaluated on this
database and, see figure ([Blb), has kernel value which is twice as high as mask 1
(regular rectangle).

The free parameter in equation (§]) is the ratio r of two weights d1 : d2. In
our experiments, the ratio r is selected by cross validation as explored in [4]. It
is possible to improve the performance using more recent technique on feature
combination [24]. We leave it as future work.

Now we have a complete description for the representation of active mask
hierarchies.

3.3 Optimization by CCCP

Learning the parameters w of the AMH model requires solving the optimization
problem specified in equation (). Following Yu and Joachims [6], we express the
objective function J(w) = f(w) — g(w) where f(.) and g(.) are convex functions
given by:

N
1
flw) = lQ [Jwl[* + Cznﬁx[w “Piyh + Lz‘,y,h]]
i=1

)

N
g(w) = lC > max[w - @,yi,h]} (9)

i=1

The concave-convex procedure (CCCP) [2]] is an iterative algorithm which con-
verges to a local minimum of J(w) = f(w) — g(w). When f(-) and g(-) take
the forms specified by equation (@), then CCCP reduces to two steps [6] which
estimate the latent variables and the model parameters in turn (analogous to
the two steps of the EM algorithm):

Step (1): Estimate the latent variables h by the best estimates given the
current values of the parameters w: h* = (V* p*) (this is performed by the
inference algorithm described in the following section).

Step (2): Apply structural SVM learning to estimate the parameters w using
the current estimates of the latent variables h:

N
1
min ol + €Y [t B+ Ligsl =0 @iy (10
i=1 ’

We perform this structural SVM learning by the cutting plane method [25] to
solve equation (I0Q)).
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In this paper, we use a variant called incremental CCCP (iCCCP) first re-
ported in [§]. The advantage of iCCCP is that it uses less training data and
hence makes the learning more efficient. The kernel in equation () is applied
without changing the training algorithm.

3.4 Detection: Dynamic Programming

The inference task is to estimate F,(x) = argmax, ,[w - &(z,y, h)] as specified
by equation (II). The parameters w and the input image region x are given.
Inference is used both to detect objects after the parameters w have been learnt
and also to estimate the latent variables during learning (Step 2 of CCCP).

The task is to estimate (y*, h*) = argmax, j,[w-@(z,y, h)]. The main challenge
is to perform inference over the mask positions p since the remaining variables
y, V take only a small number of values. Our strategy is to estimate the p by
dynamic programming for all possible states of V' and for y = 41, and then take
the maximum. From now on we fix y, V' and concentrate on p.

First, we obtain a set of values of the root node p; = (u1,v1) by exhaustive
search over all subwindows at different scales of the pyramid. Next, for each
location (u1,v7) of the root node we use dynamic programming to determine the
best configuration p of the remaining 20 parts. To do this we use the recursive
procedure:

F(z,pa) = Y, max{F(z,pp) +w- Bs(Pa,pp)} +w - Palz,ps)  (11)
beCh(a)

where F(x,p,) is the max score of a subtree with root node a. The recursion
terminates at the leaf nodes b where F(x,py) = Pa(x,pp). This enables us
to efficiently estimate the configurations p which maximize the discriminant
function F'(z,p;) = maxp w - &(z, p) for each V and for y = +1.

The bounding box determined by the position (u1,v1) of the root node and
the corresponding level of the image pyramid is output as an object detection if
the score F(x,p1) > is greater than certain threshold.

In our implementations, w - ®4(x, p,) is replaced by the appearance kernel
Ka(®P(z;,p'), P(x,p)) described in equation (J).

4 Experiments

The PASCAL VOC 2007 [9] and 2009 [10] datasets were used for evaluation and
comparison. The PASCAL 2007 is the last version for which test annotations are
available. There are 20 object classes which consist of 10000 images for training
and testing. We follow the experimental protocols and evaluation criteria used
in the PASCAL Visual Object Category detection contest 2007. A detection is
considered correct if the intersection of its bounding box with the groundtruth
bounding box is greater than 50% of their union. We compute precision-recall
(PR) curves and score the average precision (AP) across a test set.
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Table 1. Comparisons of performance on the PASCAL 2007 dataset. The numbers
are the average precisions per category obtained by different methods. “UoCTTI-1”
and “UoCTTI-2” report the results from [2] with and without special post-processing,
respectively. “MKL-17 and “MKL-2” show the results obtained by [I] using quasi-linear
kernels and RBF kernels, respectively.

Methods  Active Mask no mask UoCTTI-1 UoCTTI-2 MKL-1 MKL-2 [19] [20] [I8]

Hierarchies 8 2] 2] ] (1]
comments HOG-+HOW HOG Part-Based + context pyramid +RBF
Ave. Precision .338 .296 .268 .298 291 .321  .271 .289 .275

Table 2. Performance Comparisons on the 20 PASCAL 2007 categories [9]. “Active
Mask Hierarchies” refers to the proposed method in this paper. “UoCTTI-1” and
“UoCTTI-2” report the results from [2] with and without special post-processing, re-
spectively. “MKL-1”7 and “MKL-2” show the results obtained by [I] using quasi-linear
kernels and RBF kernels, respectively. “V07” is the best result for each category among
all methods submitted to the VOC 2007 challenge. Our method outperforms the other
methods in 11 categories. The average APs per category of all methods are shown in
the second column which have the corresponding numbers in table ().

class Ave. aero bike bird boat bottle bus car cat chair cow

Active Mask Hierarchies (AMH) .338 .348 .544 .155 .146 .244 .509 .540 .335 .206 .228
Hierarchy without masks [§] .296 .294 .558 .094 .143 .286 .440 .513 .213 .200 .193
UoCTTI-1 (Part-based) [2] 268 .290 .546 .006 .134 .262 .394 .464 .161 .163 .165
UoCTTI-2 (Part-based) [2] 298 .328 .568 .025 .168 .285 .397 .516 .213 .179 .185
MKL-1 (Pyramid-based) [1] 292 .366 .425 .128 .145 151 .464 .459 .255 .144 .304
MKL-2 (Pyramid-based) [I] .321 .376 .478 .153 .153 .219 .507 .506 .300 .173 .330

Vo7 [9] —  .262 .409 .098 .094 .214 .393 .432 .240 .128 .140
Ave. table dog horse mbike person plant sheep sofa train tv
Active Mask Hierarchies .338 .344 .241 .556 .473 .349 .181 .202 .303 .413 .433

Hierarchy without masks [8] .296 .252 .125 .504 .384 .366 .151 .197 .251 .368 .393
UoCTTI-1 (Part-based) [2] .268 .245 .050 .436 .378 .350 .088 .173 .216 .340 .390
UoCTTI-2 (Part-based) [2] .298 .259 .088 .492 .412 .368 .146 .162 .244 .392 .391
MKL-1 (Pyramid-based) [1] .292 .190 .160 .490 .460 .215 .110 .245 .264 .426 .408
MKL-2 (Pyramid-based) [1] 321 .225 .215 .512 .455 .233 .124 .239 .285 .453 .485

Vo7 [9] — .098 .162 .335 .375 .221 .120 .175 .147 .334 .289

4.1 The Detection Results on the PASCAL Dataset

We compared our approach with other representative methods reported in the
PASCAL VOC detection contest 2007 [9] and other more recent work [2L[11[19]
20,[18]. Table () reports the Average Precisions per category (averaged over 20
categories) obtained by different methods. The comparisons in table () show
that the active mask hierarchies (AMH) outperform other methods including
state-of-the-art systems, i.e., [I] and [2].

It is important to realize that our result (0.338 AP) is obtained by a single
model while all other methods’ final results rely on combining multiple models.
For instance, “MKL-2” [I] (0.321 AP) uses cascade of models where non-linear
RBF kernels and more features are used. “UoCTTI-2” [2] (0.298 AP) combines
the detections output by models of all categories to access contextual informa-
tion. It is clear that the additional processing improves the performance. For
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Table 3. Performance Comparisons on the 20 PASCAL 2009 categories [10]. The
approaches in the first column are described in table (2]).

class Ave. aero bike bird boat bottle bus car cat chair cow

Active Mask Hierarchies (AMH) .293 .432 .404 .135 .141 .271 .407 .355 .330 .172 .187
UoCTTI-2 (Part-based) [2] 279 .395 468 .135 .150 .285 .438 .372 .207 .149 .228
MKL-2 (Pyramid-based) [I] .277 .478 .398 .174 .158 .219 .429 .277 .305 .146 .206

Ave. table dog horse mbike person plant sheep sofa train tv

Active Mask Hierarchies 1293 227 .219 .371 444 .398 129 .207 .247 .434 .342
UoCTTI-2 (Part-based) [2] 279 .087 .144 .380 .420 415 .126 .242 .158 .439 .335
MKL-2 (Pyramid-based) [1] .277 .223 .170 .346 .437 .216 .102 .251 .166 .463 .376

example, the model with RBF kernels [I] improves by 0.03 AP and the post-
processing used in [2] contributes 0.03 AP.

To give a better understanding how significant the improvement made by
AMH is, three other recent advances are listed for comparisons. All of them
explore the combination of multiple models as well. They achieve 0.271 ( [19]),
0.289 ( [20]) and 0.275( [18]). [19] makes use of multiple models of different cat-
egories. [20] considers the recognition and detection jointly. [18] seeks to rescore
the detection hypotheses output by [2].

In table (@), we report the performance evaluated on the PASCAL 2009
dataset. It also shows that our method is comparable with “MKL-2” [I] and
“UoCTTI-2” [2]. In summary, our system built on a single model outperforms
other alternative methods. It is reasonable to expect that our method with ad-
ditional processing (e.g., RBF kernels, contextual cues, etc.) as used in other
methods will achieve even better performance.

4.2 Active Mask Hierarchies, Spatial Pyramid and Part-Based
Model

As we discussed before, spatial pyramid and part-based model can be unified in
the representation of active mask hierarchies (AMH). It is of interest to study
how differently (or similarly) each method performs in specific classes which
have different scales of shape deformation and appearance variations. We show
the detailed comparisons of the results on 20 object classes (PASCAL2007) in
table (). Our method obtains the best AP score in 11 out of 20 categories while
MKL-2 using RBF kernels achieves the best performance in 4 categories. In order
to show the advantage of the representation of AMH, it is more appropriate to
compare AMH with MKL-1 which uses the same quasi-linear kernel of spatial
pyramid, and “UoCTTI-1” which uses a part-based model only. Note AMH
outperforms “UoCTTI-1” by 0.07 AP , “MKL-1” by 0.05 AP and [8] by 0.04
AP. Therefore, the improvement made by AMH is significant.

4.3 Benefit of Shape Masks

Table () shows that the active mask hierarchies (AMH) with both HOGs and
HOWs outperform [8] by 0.04 AP. The detailed comparisons on 20 object classes



54 Y. Chen, L.(L.) Zhu, and A. Yuille

(PASCAL 2007) are shown in table ([2]). Recall that [8] uses HOGs only, and
does not contain the shape masks and the HOW features. We quantify the gain
contributed by HOWs and the shape masks. Figure () shows the PR curves of
the three models using HOGs only [8], AMH (HOGs+HOWs) attached with one
shape mask (regular rectangle), and AMH (HOGs+HOWSs) with a dictionary of
shape masks, respectively. HOWs improve the performance for bus by 0.03AP
and horse by 0.01AP, but degrade the performance for car by less than 0.01AP.
Adding shape masks makes improvement by 0.07, 0.03, 0.05 APs, for bus, car
and horse, respectively.
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Fig. 4. The benefit of shape masks. “HOG” and “HOGH+HOW?” refer to the simple
active hierarchy models without shape masks using HOGs only, and both HOGs and
HOWs, respectively. “AMH” is the active shape hierarchy with both HOGs and HOWs.
Three panels show the precision-recall curves evaluated on the bus, car, horse datasets.

4.4 Weights of HOGs and HOWs

The ratio of weights of appearance kernels for HOGs and HOWs is selected
by cross validation. Three values of the ratio r, i.e., d1 : d2 = 0.5,1.0,2.0 are
tested. Figure (B]) shows the PR curves of the models obtained by the appearance
kernels with three values of r. For car, the result is less sensitive for the ratio,
but for motorbike and horse, the maximum differences of performance are about
0.07 AP and 0.10 AP, respectively. The training cost is affordable if only one
parameter needs to be selected. If more parameters are used, [24] can be used
to learn the combination of appearance features in an efficient way.

4.5 Implementation Details

All experiments are performed on a standard computer with a 3Ghz CPU. C is
set to 0.005 for all classes. The detection time per image is 50 seconds. There
are 300 visual words which are extracted by k-means where the color SIFT
descriptors are used. The structure of the hierarchy used in our experiment is
slightly different from the one shown in figure [l In our implementations, the
number of nodes at from top to bottom levels are 1(1 x 1),9(3 x 3),36(6 x 6).
The nodes are organized in regular multi-level grids. The HOW features ® gow
at different layers of the pyramid are associated with fixed weights, i.e., 6:2:1,
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Fig. 5. We compare the performance of AMHs with different ratios of weights of HOGs
and HOWs. Three panels plot the precision-recall curves for the bus, car and horse
datasets.

for all categories. As suggested by [4], other settings might further improve the
performance. The settings of all free parameters used in the PASCAL 2007 and
2009 datasets are identical.

5 Conclusion

This paper describes a new active mask hierarchy model for object detection.
This active hierarchy enables us to encode large shape deformation of object
parts explicitly. The dictionary of masks with varied shape patterns increases our
ability to represent shape and appearance variations. The active mask hierarchy
uses histograms of words (HOWSs) and oriented gradients (HOGs) to give rich
appearance models for structured and textured image regions. The resulting
system outperforms spatial pyramid and part-based models, and comparable
with the state-of-the-art methods by evaluation on the PASCAL datasets.
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Abstract. This paper presents an approach to object discovery in a given un-
labeled image set, based on mining repetitive spatial configurations of image
contours. Contours that similarly deform from one image to another are viewed
as collaborating, or, otherwise, conflicting. This is captured by a graph over all
pairs of matching contours, whose maximum a posteriori multicoloring assign-
ment is taken to represent the shapes of discovered objects. Multicoloring is con-
ducted by our new Coordinate Ascent Swendsen-Wang cut (CASW). CASW uses
the Metropolis-Hastings (MH) reversible jumps to probabilistically sample graph
edges, and color nodes. CASW extends SW cut by introducing a regularization
in the posterior of multicoloring assignments that prevents the MH jumps to ar-
rive at trivial solutions. Also, CASW seeks to learn parameters of the posterior
via maximizing a lower bound of the MH acceptance rate. This speeds up multi-
coloring iterations, and facilitates MH jumps from local minima. On benchmark
datasets, we outperform all existing approaches to unsupervised object discovery.

1 Introduction

This paper explores a long-standing question in computer vision, that of the role of
shape in representing and recognizing objects from certain categories occurring in im-
ages. In psychophysics, it is widely recognized that shape is one of the most categorical
object properties [1]]. Nevertheless, most recognition systems rather resort to appearance
features (e.g., color, textured patches). Recent work combines shape with appearance
features [2,/3]], but the relative significance of each feature type, and their optimal fusion
for recognition still remains unclear.

Toward answering this fundamental question, we here focus on the problem of dis-
covering and segmenting instances of frequently occurring object categories in arbitrary
image sets. For object discovery, we use only the geometric properties of contour lay-
outs in the images, deliberately disregarding appearance features. In this manner, our
objective is to show that shape, on its own, without photometric features, is expressive
and discriminative enough to provide robust detection and segmentation of common
objects (e.g, faces, bikes, giraffes, etc.) in the midst of background clutter. To this end,
we develop an approach to mining repetitive spatial configurations of contours across
a given set of unlabeled images. As demonstrated in this paper, our shape mining in-
deed results in extracting (i.e., simultaneously detecting and segmenting) semantically
meaningful objects recurring in the image set.

To our knowledge, this paper presents the first approach to extracting frequently
occurring object contours from a clutter of image contours without any supervision,

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 57-70.[2010,
(© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Overview: Given a set of unlabeled images (left), we extract their contours (middle left),
and then build a graph of pairs of matching contours. Contour pairs that similarly deform from
one image to another are viewed as collaborating (straight graph edges), or conflicting (zigzag
graph edges), otherwise. Such coupling of contour pairs facilitates their clustering, conducted
by our new algorithm, called Coordinate Ascent Swendsen-Wang cut (CASW). The resulting
clusters represent shapes of discovered objects (right). (best viewed in color).

and without any help from appearance features. Existing work that uses only shape
cues for recognition in real-world images requires either a manually specified shape
template [4}15]], or manually segmented training images to learn the object shape [6].
Also, all previous work on unsupervised object-category discovery exploits the pho-
tometric properties of segments [7,/8]], textured patches [9]], and patches along image
contours [[10]. In our experiments, we outperform all these appearance-based, unsuper-
vised approaches in both object detection and segmentation on benchmark datasets.

Approach: Our approach consists of three major steps, illustrated in Fig. [l Step 1:
Given a set of unlabeled images, we detect their contours by the minimum-cover algo-
rithm of [[L1]. Each contour is characterized as a sequence of beam-angle descriptors,
which are beam-angle histograms at points sampled along the contour. Similarity be-
tween two contours is estimated by the standard dynamic time warping (DTW) of the
corresponding sequences of beam-angle descriptors. Step 2 builds a weighted graph
of matching contours, aimed at facilitating the separation of background from object
shapes in Step 3. We expect that there will be many similarly shaped curves, belong-
ing to the background in the images. Since the backgrounds vary, by definition, similar
background curves will most likely have different spatial layouts across the image set.
In contrast, object contours (e.g., curves delineating a giraffe’s neck) are more likely
to preserve both shape and layout similarity in the set. Therefore, for object discov-
ery, it is critical that we capture similar configurations of contours. To this end, in our
graph, nodes correspond to pairs of matching contours, and graph edges capture spatial
layouts of quadruples of contours. All graph edges can be both positive and negative,
where their polarity is probabilistically sampled during clustering of image contours,
performed in the next step. Positive edges support, and negative edges hinder the group-
ing of the corresponding contour pairs within the same cluster, if the contours jointly
undergo similar (different) geometric transformation from one image to another. This
provides stronger coupling of nodes than the common case of graph edges being only
strongly or weakly “positive”, and thus leads to faster convergence to more accurate
object discovery. Step 3 conducts a probabilistic, iterative multicoloring of the graph,
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by our new algorithm, called Coordinate-Ascent Swendsen-Wang (CASW) cut. In each
iteration, CASW cut probabilistically samples graph edges, and then assigns colors to
the resulting groups of connected nodes. The assignments are accepted by the standard
Metropolis-Hastings (MH) mechanism. To enable MH jumps to better solutions with
higher posterior distributions, we estimate parameters of the posterior by maximizing a
lower bound of the MH acceptance rate. After convergence, the resulting clusters rep-
resent shapes of objects discovered, and simultaneously segmented, in the image set.

Contributions: Related to ours is the image matching approach of [12]. They build a
similar graph of contours extracted from only two images, and then conduct multicolor-
ing by the standard SW cut [[13l[12]. They pre-specify the polarity of graph edges, which
remains fixed during multicoloring. Also, they hand-pick parameters of the posterior
governing multicoloring assignments. In contrast, our graph is designed to accommo-
date transitive matches of many images, and we allow our graph edges to probabilis-
tically change their polarity, in every MH iteration. We introduce a new regularization
term in the posterior, which provides a better control of the probabilistic sampling of
graph edges during MH jumps. Finally, we seek to learn parameters of our posterior via
maximizing a lower bound of the MH acceptance rate. Our experiments show that this
learning speeds up MH iterations, and allows jumps to solutions with higher posteriors.
Sec. 2] specifies our new shape descriptor. Sec. [3| describes how to build the graph
from all pairs of image contours. Sec. @ presents our new CASW cut for multicoloring
of the graph. Sec. 5-6 present experimental evaluation, and our concluding remarks.

2 Image Representation Using Shapes and Shape Description

This section presents Step 1 of our approach. In each image, we extract relatively long,
open contours using the minimum-cover algorithm of [11], referred to as gPb+ [L1].
Similarity between two contours is estimated by aligning their sequences of points by
the standard Dynamic Time Warping (DTW). Each contour point is characterized by
our new descriptor, called weighted Beam Angle Histogram (BAH). BAH is a weighted
version of the standard unweighted BAH, aimed at mitigating the uncertainty in contour
extraction. BAH down-weights the interaction of distant shape parts, as they are more
likely to belong to different objects in the scene.

The beam angles, 0;;, at contour points P;, ¢ = 1,2,..., are subtended by lines
(Pi—j, P;) and (P;, Pi4;), as illustrated in Fig. 2l P;,_; and P;;; are two neighbor-
ing points equally distant by j points along the contour from P;, j = 1,2,.... BAH
is a weighted histogram, where the weight of angle 6;; is computed as exp(—kxj),
j =1,2,... (k = 0.01). BAH is invariant to translation, in-plane rotation, and scale.
Experimentally, we find that BAH with 12 bins gives optimal and stable results.

Table [Tl compares BAH with other popular shape descriptors on the task of contour
matching. We match contours from all pairs of images belonging to the same class in the
ETHZ dataset [3]], and select the top 5% best matches. True positives (false positives)
are pixels of the matched contour that fall in (outside of) the bounding box of the target
object. The ground truth is determined from pixels of the initial set of detected contours
that fall inside the bounding box. For matching, we use DTW, and Oriented Chamfer
Distance [2]. Tab.[Ilshows that our BAH descriptor gives the best performance with all
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Table 1. Contour matching on the ETHZ image dataset [3]]. Top
is Preciston, bottom is Recall. The rightmost column shows
matching results of Oriented Chamfer Distance [2], and other
columns show DTW results. Descriptors (left to right): our BAH,
unweighted BAH, Shape Context [[14], and SIFT [15].

Contour detectors BAH BAH-U [14] [15] [2]

0.23£0.01 021 0.18 0.15 0.21
Canny
0.594+0.02 057 048 048 0.52
Fig.2. BAH is a weighted al 0.32+£0.03 030 025 0.18 0.29
histogram of beam angles 0.7840.03 0.75 0.62 0.61 0.72
0;; at contour points P;, 0.3740.02 034 026 0.20 0.34
Y gPb+ 1]
i=1,2, ... 0.81+£0.03 078 0.63 0.61 0.74

contour detectors, and the highest accuracy with gPb+ [[L1]. Also, DTW with our BAH
outperforms Oriented Chamfer Distance.

3 Constructing the Graph of Pairs of Image Contours

This section presents Step 2 which constructs a weighted graph, G = (V, E, p), from
contours extracted from the image set. Nodes of G represent candidate matches of con-
tours, (u,u’)€V, where u and v’ belong to different images. Similarity of two contours
is estimated by DTW. We keep only the best 5% of contour matches as nodes of G.

Edgesof G, e = ((u,u'), (v,v")) € E, capture spatial relations of corresponding im-
age contours. If contours u and v in image 1, and their matches v’ and v’ in image 2 have
similar spatial layout, then they are less likely to belong to the background clutter. All
such contour pairs will have a high probability to become positively coupled in G. Oth-
erwise, matches (u,u’) and (v, v’) will have a high probability to become negatively
coupled in GG, so that CASW could place them in different clusters. This probabilis-
tic coupling of nodes in G is encoded by edge weights, p., defined as the likelihood
pd o< exp(—wj &), given the positive polarity of e, and p_ oc exp(—wj (1—6.)), given
the negative polarity of e. w;r and wy are the parameters of the exponential distribution,
and J. € [0, 1] measures a difference in spatial layouts of « and v in image 1, and their
matches u’ and v’ in image 2. We specify J. for the following two cases. In Cases 1 and
2, there are at least two contours that lie in the same image. This allows establishing
geometric transforms between ((u,u’), (v,v)). Note that this would be impossible, in
a more general case, where ((u,u), (v,v")) come from four distinct images.

Case 1: (u,v') and (v,v’) come from two images, where u and v are in image 1, and
u’ and v’ are in image 2, as illustrated in Fig. Bh. We estimate d. in terms of affine
homographies between the matching contours, denoted as H,,, and H,, . Note that
if u, v in image 1 preserve that same spatial layout in image 2, then H,,,» =H , Hyo -
Since the estimation of H,,, between arbitrary, non-similar contours % and v in image 1
is difficult, we use the following strategy. From the DTW alignment of points along u
and v/, we estimate their affine homography H . Similarly, for v and v, we estimate
H,,'. Then, we project v’ to image 1, as v”=H,,u’, and, similarly, project v to im-
age 1 as v"=Hv' (Fig.Bh right). Next, in image 1, we measure distances between
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Image 2 Image 1 Image 3

Fig. 3. (a) Case 1: Estimating 6y, v +,./) When contours u and v are in image 1, and their matches
u' and v’ are in image 2. We use the affine-homography projection of u’ and v’ to image 1,
v’ = H,,v and v = H,,/v’, and compute § as the average distance between v and v”’, and
v and v”. As can be seen, pairs (u,s’) and (v,v") do not have similar layouts in image 1 and
image 2. (b) Case 2: Estimating 0(y, v v,y When u and v are in image 1, and their matches u
and v’ are in image 2 and image 3. We use multiple affine-homography projections of »’ and v’
to image 1 via auxiliary, context contours s’ and ¢’ in a vicinity of «’ and v’.

corresponding points of u and u”, where the point correspondence is obtained from
DTW of u and v'. Similarly, we measure distances between corresponding points of v
and v". §, is defined as the average point distance between u and v”, and v and v”.

Case 2: (u,u’) and (v,v’) come from three images, where v and v belong to image 1,
u’ is in image 2, and v’ is in image 3. In this case, we can neither use H,, to project
u’ from image 2 to image 1, nor H,, to project v’ from image 3 to image 1. Instead,
we resort to context provided by auxiliary contours s’ in a vicinity of u’, and auxiliary
contours ¢’ in a vicinity of v’. For every neighbor s’ of u’ in image 2, we find its best
DTW match s in image 1, and compute homography H, . Similarly, for every neighbor
t' of v in image 3, we find its best DTW match ¢ in image 1, and compute homography
H,,s. Then, we use all these homographies to project v’ to image 1, multiple times, as
ul!=Hgs ', and, similarly, project v” to image 1, multiple times, as vy’ =Hy v'. Next,
as in Case 1, we measure distances between corresponding points of all « and v/ pairs,
and all v and v}’ pairs. d. is defined as the average point distance.

4 Coordinate-Ascent Swendsen-Wang Cut

This section presents Step 3. Given the graph G = (V, E, p), specified in the previ-
ous section, our goal is to perform multicoloring of G, which will partition G into two
subgraphs. One subgraph will represent a composite cluster of nodes, consisting of a
number of connected components (CCPs), receiving distinct colors, as illustrated in



62 N. Payet and S. Todorovic

Fig. @l This composite cluster contains contours of the discovered object categories.
Nodes outside of the composite cluster are interpreted as the background. All edges
e € FE can be negative and positive. A negative edge indicates that the nodes are con-
flicting, and thus should not be assigned the same color. A positive edge indicates that
the nodes are collaborative, and thus should be favored to get the same color. If nodes
are connected by positive edges, they form a CCP, and receive the same color (Fig. ).
A CCP cannot contain a negative edge. CCPs connected by negative edges form a com-
posite cluster. The amount of conflict and collaboration between two nodes is defined
by the likelihood p, defined in Sec.

For multicoloring of G, we formulate a new Coordinate Ascent Swendsen-Wang cut
(CASW) that uses the iterative Metropolis-Hastings algorithm. CASW iterates the fol-
lowing three steps: (1) Sample a composite cluster from G, by probabilistically cutting
and sampling positive and negative edges between nodes of G. This results in splitting
and merging nodes into a new configuration of CCPs. (2) Assign new colors to the re-
sulting CCPs within the selected composite cluster, and use the Metropolis-Hastings
(MH) algorithm to estimate whether to accept this new multicoloring assignment of G,
or to keep the previous state. (3) If the new state is accepted, go to step (1); otherwise,
it the algorithm converged, re-estimate parameters of the pdf’s controlling the MH iter-
ations, and go to step (1), until the pdf re-estimation does not affect convergence.

CASW is characterized by large MH moves, involving many strongly-coupled graph
nodes. This typically helps avoid local minima, and allows fast convergence, unlike
other related MCMC methods. In comparison with [[12], our three key contributions
include: (a) the on-line learning of parameters of pdf’s governing MH jumps; (b) en-
forcing stronger node coupling by allowing the polarity of edges to be dynamically
estimated during the MH iterations; and (c) regularizing the posterior of multicolor-
ing assignments to help MH jumps escape from trivial solutions. In the following, we
present our Bayesian formulation of CASW, inference, and learning.

Bayesian Formulation: Multi-coloring of G amounts to associating labels /; to nodes
inV,i=1,...,|V|,wherel; € {0,1,..., K}. K denotes the total number of target ob-
jects, which is a priori unknown, and (K + 1)th label is the background. The multicol-
oring solution can be formalized as M=(K, {l;};—1,...|v|). To find M, we maximize
the posterior distribution p(M|G), as

M* = argm/axp(./\/l\G) = argm/axp(./\/l)p(ﬂ/\/l). (1)

Let N denote the number of nodes that are labeled as background [; = 0. Also, let
binary functions 1;,;; and 1;,—;, indicate whether node labels l; and [; are different,
and the same. Then, we define the prior p(M) and likelihood p(G| M) as

p(M) oxx emwrKemwn N 2)
p(G‘M) X He€E+ pj_ HeEE— p(’_ HeE]Eo(l - pj)]llﬁél_j : (1 - p(i_)]lli:lj ) (3)
where p(M) penalizes large K and N. wk and wy are the parameters of the exponen-
tial distribution. E™ and E~ denote positive and negative edges present in the composite

cluster, and E° denotes edges that are probabilistically cut (i.e., not present in the solu-
tion). Our p(G| M), defined in @), differs from the likelihood defined in [12]. In [12],
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p(GIM=A)=(p7 pg )(1—pg)

.’."-. p(GIM=B)=(p; pg )(1—pg)
a(Vee|A)=(1—pT )1 — pF)(A—p3 )
(-p)A=p5)A=pd)
a(Vee | B)=(1—pT) (1 = p3 )(1=p3)

(1—p (=5 )(1—p5)

(a) State A (b) State B (c) Probabilities for this example

Fig. 4. (a) In state A, probabilistically sampled positive (straight bold) and negative (zigzag bold)
edges define composite cluster Vo..={C'C P3, CCP4,CCP5} (cut edges are dashed). The cut is
a set of edges (red) that have not been probabilistically sampled, which would otherwise connect
Vcce to external CCPs. (b) The coloring of CCPs within V.. is randomly changed, resulting in
new state B. This also changes the type of edges p1, p2, ps, ps, since the positive (negative) edge
may link only two CCPs with the same (different) label(s). (c) Probabilities in states A and B.

nodes can be connected by only one type of edges. They pre-select a threshold on edge
weights, which splits the edges into positive and negative, and thus define the likelihood
as p(GIM) o< [].cu+ pd [1.cr- P - Since we allow both types of edges to connect ev-
ery pair of nodes, where the right edge type gets probabilistically sampled in every MH
iteration, we enforce a stronger coupling of nodes. As shown in Sec. 3] this advanced
feature of our approach yields faster convergence and better clustering performance.
This is because our formulation maximizes the likelihood p(G| M) when every two
nodes with the same label are (i) connected by a strong positive edge (e € ET, and p}
large), or (ii) remain unconnected, but the likelihood that these nodes should not have
the same label is very low (e € E°, and p_ small). Similarly, our likelihood p(G| M)
is maximized when every two nodes with different labels are (i) connected by a strong
negative edge (e € E™, and p_ large), or (ii) remain unconnected, but the likelihood
that these nodes should have the same label is very low (e € E°, and p; small).

Inference: We here explain the aforementioned iterative steps (1) and (2) of our CASW
cut. Fig. @ shows an illustrative example. In step (1), edges of G are probabilistically
sampled. If two nodes have the same label, their positive edge is sampled, with likeli-
hood p . Otherwise, if the nodes have different labels, their negative edge is sampled,
with likelihood p_ . This re-connects all nodes into new connected components (CCPs).
The negative edges that are sampled will connect CCPs into a number of composite
clusters, denoted by V.. This configuration is referred to state A. In step (2), we choose
at random one composite cluster, V.., and probabilistically reassign new colors to the
CCPs within V., resulting in a new state B. Note that all nodes within one CCP receive
the same label, which allows large moves in the search space.

The CASW accepts the new state B as follows. Let g(A — B) be the proposal
probability for moving from state A to B, and let ¢(B — A) denote the reverse. The
acceptance rate, «( A— B), of the move from A to B is defined as

“

ota— ) —in (1, 18 = M =8O,

"q(A — B)p(M = A[G)
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0o
q(A—B
only those edges that are probabilistically cut around V.. in states A and B — not all
edges. Also, 5 ((/\/\f[zi“g)) accounts only for the recolored CCPs in V.. — not the entire

graph G. Below, we derive Zgjg; and Z ((/\Af[zi“g)) , and present a toy example (Fig. 4.

Note that complexity of each move is relatively low, since computing involves

q(A — B) is defined as a product of two probabilities: (i) the probability of gener-
ating V.. in state A, q(V..|A); and (ii) the probability of recoloring the CCPs within

Ve in state B, where V.. is obtained in state A, ¢(B(Vee)|Vee, A). Thus, we have

(B—A) _q(Vee|B)a(A(Vee)|Vee, B) 1 q(A(Vee)|Vee,B)
Z(AHB) _Z(VCC\A)g(B(Vcc)\VCC,A) . The ratio Z(B(VCC)IVCC,A) can be canceled out, because

the CCPs within V.. are assigned colors under the uniform distribution. Let Cut; and
Cut, (Cut}; and Cuty) denote positive and negative edges which are probabilistically
“cut” around V. in state A (state B). Since the probabilities of cutting the positive and
negative edges are (1—p) and (1—p; ), we have

q(B—A4)  q(Vee|B)  Teecut, (1= Heecus; (1=p2)

= = . 5
q(A—>B) q(VM|A) HeeCurX(l_pj) HeECut; (1_053_) ( )

+ _ _
For the example shown in Figure d we compute a(BoA) _ (1=p1)(1=pg )(1=pg)

a(A=B) = (1—py)(1—p3)(1—pd)"
M=B M=B)p(G|M=B .
Also, 5((/\4:,4||g)) = ;’EM:A))Z((G“M:A; can be efficiently computed. p(M = B) can

be directly computed from the new coloring in state B, and i Egllﬁzljg depends only

on those edges that have changed their polarity. For the example shown in Figld] we
p(M=BI|G) _pg
p(M=A|G) ™ pr -

When o(A — B) has a low value, and new state B cannot be accepted by MH,
CD-SW remains in state A. In the next iteration, CD-SW either probabilistically selects
a different V., or proposes a different coloring scheme for the same V.

compute

Learning: Our Bayesian model is characterized by a number of parameters that we
seek to learn from data. We specify that learning occurs at a standstill moment when
MH stops accepting new states (we wait for 100 iterations). In that moment, the previ-
ous state A is likely to have the largest pdf in this part of the search space. By learning
new model parameters, our goal is to allow for larger MH moves, and thus facilitate
exploring other parts of the search space characterized by higher posterior distributions
p(M|G). Since the moves are controlled by a(A— B), given by @), we learn the pa-
rameters by maximizing a lower bound of «(A— B). If this learning still does not result
in accepting new states, we conclude that the algorithm has converged.

From (3) and @), and the definitions of edge likelihoods p and p_ given in Sec.[3l
we derive a lower bound of log(a(A — B)) as

log(a(A — B)) > ¢'w , (6)

where w = [wg, wy, wy, w(s_]T, and ¢ = [¢1, P2, @3, ¢4]T is the vector of observed
features, defined as ¢1 = Ko—Kp, ¢po = Nao—Np, ¢3 = Zeequ Oe— Zeefag Oes

and ¢y = ZeeE;(l_(se)_ Zeeﬁg(l—ée). E}, denotes all edges in state B whose
likelihood is p+, EL = IEE U Cutg U E%f, and INEE denotes all edges in state B whose
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likelihood is p—, INEg = Ez UCutz U IE%*. From (@), we formulate learning as the
following linear program

max ¢ w, st ||wla=1, @)

which has a closed-form solution [16], w = H¢1+H ¢+, where (¢)+ = max(0, @).

5 Results

Given a set of images, we perform object discovery in two stages, as in [9,[17,[10]. We
first coarsely cluster images based on their contours using CASW cut, and then again
use CASW to cluster contours from only those images that belong to the same coarse
cluster. The first stage serves to discover different object categories in the image set,
whereas the second, fine-resolution stage serves to separate object contours from back-
ground clutter, and also extract characteristic parts of each discovered object category.

We use the following benchmark datasets: Caltech-101 [18], ETHZ [3], LabelMe
[19], and Weizmann Horses [20]. In the experiments on Caltech-101, we use all Cal-
tech images showing the same categories as those used in [9]]. Evaluation on ETHZ and
Weizmann Horses uses the entire datasets. For LabelMe, we keep the 15 first images
retrieved by keywords car side, car rear, face, airplane and motorbike. ETHZ and La-
belMe increase complexity over Caltech-101, since their images contain multiple object
instances, which may: (a) appear at different resolutions, (b) have low contrasts with
textured background, and (c) be partially occluded. The Weizmann Horses are suitable
to evaluate performance on articulated, non-rigid objects.

We study two settings S1 and S2. In S1, we use only ETHZ to generate the input
image set. The set consists of positive and negative examples, where positive images
show a unique category, and negative ones show objects from other categories in ETHZ.
In S2, the image set contains examples of all object categories from the considered
dataset. S1 is used for evaluating particular contributions of our approach, and S2 is
used for evaluating our overall performance.

In the first stage of object discovery, CASW finds clusters of images. This is evalu-
ated by purity. Purity measures the extent to which a cluster contains images of a single
dominant object category. When running CASW in the second stage, on each of these
image clusters, we use Bounding Box Hit Rate (BBHR) to verify whether contours de-
tected by CASW fall within the true foreground regions. The ground truth is defined as
all pixels of the extracted image contours that fall in the bounding boxes or segments
of target objects. A contour detected by CASW is counted as “hit” whenever the con-
tour covers 50% or more of the ground-truth pixels. Since we discard contours that are
less than 50 pixels, this means that at least 25 ground-truth pixels need to be detected
within the bounding box. Our accuracy in the second clustering stage depends on the
initial set of pairs of matching contours (i.e., nodes of graph G) input to CASW. This
is evaluated by plotting the ROC curve, parameterized by a threshold on the minimum
DTW similarity between pairs of matching contours which are included in G.

Evaluation in S1: We present three experiments in S1. Experiment 1 in S1: We eval-
uate the merit of: (a) using pairs of contours as nodes of GG, and (b) accounting for
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Fig.5. Evaluation in S1 on the ETHZ dataset. (a): We evaluate five distinct formulations of
object discovery, explained in the text, by computing False Positive Rate (FPR) at Bounding
Box Hit Rate BBHR=0.5. Our approach G+CASW gives the best performance. (b): Precision
and Recall as a function of the number of positive examples in the input image set. Perfor-
mance increases with more positive examples, until about 20 positive images. (c): Evolution of
log(p(M)p(G| M) estimated by our CASW (magenta), and standard SW [[12] (cyan) on all pos-
itive examples of class Giraffes, and the same number of negative examples from ETHZ.

spatial configuration of contours as edge weights of GG, against the more common use
of individual contours as graph nodes, and contour similarities as edge weights. To this
end, we build three weighted graphs G1, G2 and G3 of contours extracted only from
all positive examples of a single object category in the ETHZ dataset (i.e., the set of
negative examples is empty). Nodes of G; are individual contours, edges connect can-
didate matches (u, u'), and edge weights s, represent the DTW similarity of contours
wand v'. In G5 and G, nodes are instead pairs of contours (u, u’). In Go, each edge
((u,u”), (v,v")) receives weight (Syq +5u07) /2. In G3, edges can only be positive and
receive weights p, defined in Sec.[3] For all three graphs, we apply the standard PageR-
ank algorithm, also used in [9L17.[10], to identify the most relevant contours, which are
then interpreted as object contours. False Positive Rate (FPR) is computed for BBHR
= 0.5, and averaged across all categories in the ETHZ dataset. Fig. Bla) shows that
G2+PageRank decreases the FPR of G;+PageRank by 3.2%. However, Go+PageRank
still yields a relatively high value of FPR, which suggests that accounting only for shape
similarity and ignoring the spatial layout of contours may not be sufficient to handle the
very difficult problem of object discovery. Using G3+PageRank significantly decreases
FPR, which motivates our approach. We also run our CASW on graph Gs, and on
G, specified in Sec.[3l In comparison with G3+CASW, our approach G+CASW addi-
tionally allows the negative polarity of graph edges. Fig. [5(a) shows that G3+CASW
outperforms G's+PageRank, and that G+CASW gives the best results.

Experiment 2 in S1: We test performance in object detection as a function of the number
of positive examples in the input image set. The total number of images M = 32 is set
to the number of images of the “smallest” class in the ETHZ dataset. In Fig[B(b), we
plot the ROC curves when the number of positive images increases, while the number
of negative ones proportionally decreases. As expected, performance improves with the
increase of positive examples, until reaching a certain number (on average about 20 for
the ETHZ dataset).

Experiment 3 in S1: Finally, we test our learning of pdf parameters. Fig[5lc) shows the
evolution of log(p(M)p(G|M)) in the first stage of object discovery in the image set
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Table 2. Mean purity of category discovery for Caltech-101 (A:Airplanes, C: Cars, F: Faces, M:
Motorbikes, W: Watches, K: Ketches), and ETHZ dataset (A:Applelogos, B: Bottles, G: Giraffes,
M: Mugs, S: Swans)

Caltech categories Our method [10] [9] [17] ETHZ categories Our method [10]
A,CEM 98.62+£0.51 98.03 98.55 88.82 A,B,G,M,S (bbox) 96.16+0.41 95.85
A,CEM,W 97.57+£0.46 96.92 97.30 N/A AB,G,M,S (expanded) 87.351+0.37 76.47
A, CEM,WK  97.131+0.42 96.15 95.42 N/A A,B,G,M,S (entire image) 85.49+0.33 N/A

es o CASW  [9] [10]
ALL CLASSES -=+ FACES o AIRPLANES |=-on A 0.1140.01 0.21 0.17

—hmagl | F 0.1240.01 0.30 0.15
o) g K 0.06-£0.003 0.19 0.08

. ;\—-\‘,,-/\._«\h M 0.04:£0.002 0.11 0.07
d

/\_r,-ﬁ W 0.020.003 0.08 0.03

o - CASW ol [10
| GIRAFFES o ~ MUGS o= i Uk

of

Leeenal A 0.15+0.02 N/A 0.18
B 0.18£0.01 N/A 0.20

G 0.16+0.01 032 0.18
E M 0.23£0.04 N/A 0.27
. - S 0.0940.002 N/A 0.11

Fig. 6. Bounding Box Hit Rates (BBHR) vs False Positive Rates (FPR). Top is Caltech-101,
bottom is ETHZ. Left column is our CASW on all classes, and middle and right columns show
a comparison with [9L[10] on a specific class (lower curves are better). The tables show FPR
at BBHR=0.5. Caltech-101: A: Airplanes, F: Faces, K: Ketches, M: Motorbikes, W: Watches.
ETHZ: A: Applelogs, B: Bottles, G: Giraffes, M: Mugs, S: Swans. (best viewed in color)

T

consisting of all positive examples of class Giraffes, and the same number of negative
examples showing other object categories from the ETHZ dataset. We compare our
CASW with the standard SW of [[12], where the pdf parameters are not learned, but
pre-specified. Since these parameters are unknown, to compute both the ground-truth
value and the value produced by [12]] of log(p(M)p(G|M)), we use the pdf parameters
learned by our approach after CASW converged. As CASW and SW make progress
through iterative clustering of the images, Fig. Blc) shows that CASW yields a steeper
increase in log(p(M)p(G|M)) to higher values, closer to the ground-truth. Notice that
CASW avoids local minima and converges after only few iterations.

Evaluation in S2: We evaluate the first and second stages of object discovery in S2.
First Stage in S2: We build a graph whose nodes represent entire images. Edges be-
tween images in the graph are characterized by weights, defined as an average of DTW
similarities of contour matches from the corresponding pair of images. A similar char-
acterization of graph edges is used in [9.[10]. For object discovery, we apply CASW to
the graph, resulting in image clusters. Each cluster is taken to consist of images showing
a unique object category. Unlike [9l/10], we do not have to specify the number of cate-
gories present in the image set, as an input parameter, since it is automatically inferred
by CASW. Evaluation is done on Caltech-101 and the ETHZ dataset. Table [2] shows
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that our mean purity is superior to that of [9,[17,[10]. On Caltech-101, CASW succes-
sively finds K = 4,5, 6 clusters of images, as we gradually increase the true number
of categories from 4 to 6. This demonstrates that we are able to automatically find the
number of categories present, with no supervision. On ETHZ, CASW again correctly
finds K = 5 categories. As in [[10], we evaluate purity when similarity between the im-
ages (i.e., weights of edges in the graph) is estimated based on contours falling within:
(a) the bounding boxes of target objects, (b) twice the size of the original bounding
boxes (called expanded in Table2)), and (c) the entire images. On ETHZ, CASW does
not suffer a major performance degradation when moving from the bounding boxes, to
the challenging case of using all contours from the entire images. Overall, our purity
rates are high, which enables accurate clustering of contours in the second stage.

Second Stage in S2: We use contours from all images grouped within one cluster in
the first stage to build our graph G, and then conduct CASW. This is repeated for all
image clusters. The clustering of contours by CASW amounts to foreground detec-
tion, since the identified contour clusters are taken to represent parts of the discov-
ered object category. We evaluate BBHR and FPR on Caltech-101, ETHZ, LabelMe,
and Weizmann Horses. Figlf] shows that our BBHR and FPR values are higher than
those of [9,/10] on the Caltech and ETHZ. CASW finds K = 1 for Airplanes, Cars
Rear, Faces, Ketches, Watches in Caltech-101, Apples, Bottles, Mugs in ETHZ, and Car
rear;, Face, Airplane in LabelMe. These objects do not have articulated parts that move
independently, hence, only one contour cluster is found. On the other hand, it finds
K = 2 for Giraffes, Swans in ETHZ, Cars side, Motorbikes in Caltech and LabelMe,
and K = 3 for Weizmann Horses. In Fig[Zl we highlight contours from different clus-
ters with distinct colors. Fig[7ldemonstrates that CASW is capable not only to discover
foreground objects, but also to detect their characteristic parts, e.g., wheels and roof for
Cars side, wheels and seat for Motorbikes, head and legs for Giraffes, etc. The plot in
Figll evaluates our object detection on LabelMe and Weizmann Horses. Detection ac-
curacy is estimated as the standard ratio of intersection over union of ground-truth and
detection bounding boxes, (BBg: N BBy)/(BBgt U BBg), where BBy is the small-
est bounding box that encloses detected contours in the image. The average detection
accuracy for each category is: [Face(F): 0.52, Airplane(A): 0.45, Motorbike(M): 0.42,
Car Rear(C): 0.34], whereas [10] achieves only [(F): 0.48, (A): 0.43, (M): 0.38, (C):
0.31]. For Weizmann Horses, we obtain Precision and Recall of 84.9%+0.68% and
82.4%=+0.51%, whereas [8]] achieves only 81.5% and 78.6%.

Remark: The probability of contour patterns that repeat in the background increases
with the number of images. On large datasets, CASW is likely to extract clusters of
those background patterns. However, the number of contours in these clusters is rela-
tively small, as compared to clusters that contain true object contours, because the fre-
quency of such patterns is, by definition, smaller than that of foreground objects. There-
fore, these spurious clusters can be easily identified, and interpreted as background. For
example, in setting S1, when the input image set consists of only positive, 100 images
of Weizmann Horses, we obtain K = 3 very large clusters (Fig[Z), and 9 additional
clusters with only 5 to 10 background contours.
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Fig.7. Unsupervised detection and segmentation of objects in example images from LabelMe
(top left), ETHZ (top right), and Weizmann Horses (bottom right). For LabelMe and ETHZ, each
row shows images that are grouped within a unique image cluster by CASW in the first stage.
Contours that are clustered by CASW in the second stage are highlighted with distinct colors
indicating cluster membership. CASW accurately discovers foreground objects, and delineates
their characteristic parts. E.g., for LabeMe Cars sideview CASW discovers two contour clusters
(yellow and magenta), corresponding to the two car parts wheels and roof. (bottom left) ROC
curves for LabelMe and Weizmann Horses, obtained by varying the minimum allowed DTW
similarity between pairs of matching contours which are input to CASW. (best viewed in color)

Implementation. The C-implementation of our CASW runs in less than 2 minutes on
any dataset of less than 100 images, on a 2.40GHz PC with 3.48GB RAM.

6 Conclusion

We have shown that shape alone is sufficiently discriminative and expressive to provide
robust and efficient object discovery in unlabeled images, without using any photomet-
ric features. This is done by clustering image contours based on their intrinsic geo-
metric properties, and spatial layouts. We have also made contributions to the popular
research topic in vision, that of probabilistic multicoloring of a graph, including: (a) the
on-line learning of pdf parameters governing multicoloring assignments; (b) enforcing
stronger positive and negative coupling nodes in the graph, by allowing the polarity of
graph edges to dynamically vary during the Metropolis-Hastings (MH) jumps; and (c)
regularizing the posterior of multicoloring assignments to help MH jumps escape from
trivial solutions. These extensions lead to faster convergence to higher values of the
graph’s posterior distribution than the well-known SW cut.
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Abstract. Image classification is a critical task for both humans and
computers. One of the challenges lies in the large scale of the semantic
space. In particular, humans can recognize tens of thousands of object
classes and scenes. No computer vision algorithm today has been tested
at this scale. This paper presents a study of large scale categorization
including a series of challenging experiments on classification with more
than 10,000 image classes. We find that a) computational issues be-
come crucial in algorithm design; b) conventional wisdom from a couple
of hundred image categories on relative performance of different classi-
fiers does not necessarily hold when the number of categories increases;
¢) there is a surprisingly strong relationship between the structure of
WordNet (developed for studying language) and the difficulty of visual
categorization; d) classification can be improved by exploiting the se-
mantic hierarchy. Toward the future goal of developing automatic vision
algorithms to recognize tens of thousands or even millions of image cat-
egories, we make a series of observations and arguments about dataset
scale, category density, and image hierarchy.

1 Introduction

Recognizing categories of objects and scenes is a fundamental human ability
and an important, yet elusive, goal for computer vision research. One of the
major challenges is the sheer scale of the problem, both in terms of the very
high dimensional physical space of images, and the large semantic space humans
use to describe visual stimuli. In particular, psychologists have postulated that
humans are able to categorize at least tens of thousands of objects and scenes [I].

The breadth of the semantic space has important implications. For many real
world vision applications, the ability to handle a large number of object classes
becomes a minimum requirement, e.g. an image search engine or an automatic
photo annotator is significantly less useful if it is unable to cover a wide range
of object classes. Even for tasks in restricted domains, e.g. car detection, to be
effective in the real world, an algorithm needs to discriminate against a large
number of distractor object categories.

Recent progress on image categorization has been impressive and has intro-
duced a range of features, models, classifiers, and frameworks [2I3456I7I8I9ITO].
In this paper we explore scaling up the number of categories considered in recog-
nition experiments from hundreds to over 10 thousand in order to move toward
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© Springer-Verlag Berlin Heidelberg 2010
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reducing the gap between machine performance and human abilities. Note that
this is not simply a matter of training more and more classifiers (although that
is a challenging task on its own). With such large numbers of categories there
is a concomitant shift in the difficulty of discriminating between them as the
categories sample the semantic space more densely. The previously unexplored
scale of the experiments in this paper allow this effect to be measured.

Recognition encompasses a wide range of specific tasks, including classifica-
tion, detection, viewpoint understanding, segmentation, verification and more.
In this paper we focus on category recognition, in particular the task of assign-
ing a single category label to an image that contains one or more instances of a
category of object following the work of [TTUT2/T3IT4].

We conduct the first empirical study of image categorization at near human
scale. Some results are intuitive — discriminating between thousands of categories
is in fact more difficult that discriminating between hundreds — but other results
reveal structure in the difficulty of recognition that was previously unknown.
Our key contributions include:

— The first in-depth study of image classification at such a large scale. Such
experiments are technically challenging, and we present a series of techniques
to overcome the difficulty. (Sec. [

— We show that conventional wisdom obtained from current datasets does not
necessarily hold in some cases at a larger scale. For example, the ordering
by performance of techniques on hundreds of categories is not preserved on
thousands of categories. Thus, we cannot solely rely on experiments on the
Caltech [I3/14] and PASCAL [12] datasets to predict performance on large
classification problems. (Sec. [6)

— We propose a measure of similarity between categories based on WordNet[15]
— a hierarchy of concepts developed for studying language. Experiments show
a surprisingly strong correlation between this purely linguistic metric and the
performance of visual classification algorithms. We also show that the cate-
gories used in previous object recognition experiments are relatively sparse
— distinguishing them from each other is significantly less difficult than dis-
tinguishing many other denser subsets of the 10,000 categories. (Sec. [7])

— Object categories are naturally hierarchical. We propose and evaluate a tech-
nique to perform hierarchy aware classification, and show that more infor-
mative classification results can be obtained. (Sec. )

2 Related Work

Much recent work on image classification has converged on bag of visual word
models (BoW) [16] based on quantized local descriptors [I7/3l4] and support vec-
tor machines [3I2] as basic techniques. These are enhanced by multi-scale spatial
pyramids (SPM) [] on BoW or histogram of oriented gradient (HOG) [I8/4]
features. In the current state-of-the-art, multiple descriptors and kernels are
combined using either ad hoc or multiple kernel learning approaches [T9512012T].
Work in machine learning supports using winner-takes-all between 1-vs-all
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classifiers for the final multi-class classification decision [22]. We choose SPM
using BoW because it is a key component of many of the best recognition re-
sults [T95J202T] and is relatively efficient. Recent work allows fast approxima-
tion of the histogram intersection kernel SVM, used for SPM, by a linear SVM
on specially encoded SPM features [23]. See Appendix for the modifications nec-
essary to allow even that very efficient solution to scale to very large problems.

There are very few multi-class image datasets with many images for more
than 200 categories. One is Tiny Images [0], 32x32 pixel versions of images
collected by performing web queries for the nouns in the WordNet [15] hierarchy,
without verification of content. The other is ImageNet [24], also collected from
web searches for the nouns in WordNet, but containing full images verified by
human labelers. To date there have been no recognition results on large numbers
of categories published for either datasetd. Fergus et al. explore semi-supervised
learning on 126 hand labeled Tiny Images categories [25] and Wang et al. show
classification on a maximum of 315 categories (< 5%) [26].

Recent work considering hierarchies for image recognition or categorization
[272829I30] has shown impressive improvements in accuracy and efficiency, but
has not studied classification minimizing hierarchical cost. Related to classifica-
tion is the problem of detection, often treated as repeated 1-vs-all classification
in sliding windows. In many cases such localization of objects might be useful
for improving classification, but even the most efficient of the state of the art
techniques [7I2003T] take orders of magnitude more time per image than the
ones we consider in this study, and thus cannot be utilized given the scale of our
experiments.

3 Datasets

The goals of this paper are to study categorization performance on a significantly
larger number of categories than the current state of the art, and furthermore
to delve deeper toward understanding the factors that affect performance. In
order to achieve this, a dataset with a large number of categories spanning a
wide range of concepts and containing many images is required. The recently
released ImageNet dataset consists of more than 10,000,000 images in over 10,000
categories organized by the WordNet hierarchy [24]. The size and breadth of
this data allow us to perform multiple longitudinal probes of the classification
problem. Specifically we consider the following datasets:

— ImageNet10K. 10184 categories from the Fall 2009 release of ImageNet [32],
including both internal and leaf nodes with more than 200 images each (a
total of 9 million images).

— ImageNet7K. 7404 leaf categories from ImageNet10K. Internal nodes may
overlap with their descendants, so we also consider this leaf only subset.

— ImageNet1K. 1000 leaf categories randomly sampled from ImageNet7K.

! Previous work on Tiny Images [6] and ImageNet [24] shows only proof of concept
classification on fewer than 50 categories.
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— Rand200{a,b,c}. Three datasets, each containing 200 randomly selected
leaf categories. The categories in Rand200a are sampled from ImageNet1K
while Rand200b and Rand200c are sampled directly from ImageNet7K.

— Ungulatel83, Fungus134, Vehicle262. Three datasets containing all the
leaf nodes that are descendants of particular parent nodes in ImageNet10K
(named by the parent node and number of leaves).

— CalNet200. This dataset serves as a surrogate for the Caltech256 dataset —
containing the 200 image categories from Caltech256 that exist in ImageNet.

Note that all datasets have non-overlapping categories except ImageNet10K.
Following the convention of the PASCAL VOC Challenge, each category is ran-
domly split 50%-50% into a set of training and test images, with a total of 4.5
million images for training and 4.5 million images for testing. All results are
averaged over two runs by swapping training and test, except for ImageNet7K
and ImageNet10K due to extremely heavy computational cost. In all cases we
provide statistical estimates of the expected variation. The number of training
images per category ranges from 200 to 1500, with an average of 450.

4 Procedure

The main thrust of this paper is image classification: given an image and K
classes, the task is to select one class label. We employ two evaluation measures:

Mean accuracy. The accuracy of each class is the percentage of correct pre-
dictions, i.e. predictions identical to the ground truth class labels. The mean
accuracy is the average accuracy across all classes.

Mean misclassification cost. To exploit the hierarchical organization of object
classes, we also consider the scenario where it is desirable to have non-uniform
misclassification cost. For example, misclassifying “dog” as “cat” might not be
penalized as much as misclassifying “dog” as “microwave”. Specifically, for each
image acgk) € X,i=1,...,m from class k, we consider predictions f(acz(»k)) X —
{1,..., K}, where K is the number of classes (e.g. K = 1000 for ImageNet1K)
and evaluate the cost for class k as Ly = 717 Z:il Cf(x(.k))vk, where C'is a K x K

cost matrix and C};; is the cost of classifying the true class j as class i. The
mean cost is the average cost across all classes. Evaluation using a cost based on
the ImageNet hierarchy is discussed in Sec. Bl

We use the following four algorithms in our evaluation experiments as samples
of some major techniques used in object recognition:

— GIST+NN Represent each image by a single GIST [33] descriptor (a com-
monly accepted baseline descriptor for scene classification) and classify using
k-nearest-neighbors (kNN) on L2 distance.

— BOW+NN Represent each image by a histogram of SIFT [17] codewords and
classify using kNN on L1 distance, as a baseline for BoW NN-based methods.

— BOW+SVM Represent each image by a histogram of SIFT codewords, and train
and classify using linear SVMs. Each SVM is trained to distinguish one class
from the rest. Images are classified by the class with largest score (a 1-vs-all
framework). This serves as a baseline for classifier-based algorithms.
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— SPM+SVM Represent each image by a spatial pyramid of histograms of SIF'T
codewords [4]. Again a 1l-vs-all framework is used, but with approximate
histogram intersection kernel SVMs [23[34]. This represents a significant
component of many state of the art classifiers [T95120121].

5 Computation Matters

Working at the scale of 10,000 categories and 9 million images moves com-
putational considerations to the forefront. Many common approaches become
computationally infeasible at such large scale.

As a reference, for this data it takes 1 hour on a 2.66GHz Intel Xeon CPU
to train ome binary linear SVM on bag of visual words histograms (including
a minimum amount of parameter search using cross validation), using the ex-
tremely efficient LIBLINEAR [34]. In order to perform multi-class classification,
one common approach is 1-vs-all, which entails training 10,000 such classifiers —
requiring more than 1 CPU year for training and 16 hours for testing. Another
approach is 1-vs-1, requiring 50 million pairwise classifiers. Training takes a sim-
ilar amount of time, but testing takes about 8 years due to the huge number of
classifiers. A third alternative is the “single machine” approach, e.g. Crammer &
Singer [35], which is comparable in training time but is not readily parallelizable.
We choose 1-vs-all as it is the only affordable option.

Training SPM+SVM is even more challenging. Directly running intersection ker-
nel SVM is impractical because it is at least 100x slower ( 100+ years ) than
linear SVM [23]. We use the approximate encoding proposed by Maji & Berg [23]
that allows fast training with LIBLINEAR. This reduces the total training time
to 6 years. However, even this very efficient approach must be modified because
memory becomes a bottleneck P - a direct application of the efficient encoding of
[23] requires 75GB memory, far exceeding our memory limit (16GB). We reduce
it to 12G through a combination of techniques detailed in Appendix [Al

For NN based methods, we use brute force linear scan. It takes 1 year to run
through all testing examples for GIST or BOW features. It is possible to use
approximation techniques such as locality sensitive hashing [36], but due to the
high feature dimensionality (e.g. 960 for GIST), we have found relatively small
speed-up. Thus we choose linear scan to avoid unnecessary approximation.

In practice, all algorithms are parallelized on a computer cluster of 66 multi-
core machines, but it still takes weeks for a single run of all our experiments. Our
experience demonstrates that computational issues need to be confronted at the
outset of algorithm design when we move toward large scale image classification,
otherwise even a baseline evaluation would be infeasible. Our experiments sug-
gest that to tackle massive amount of data, distributed computing and efficient
learning will need to be integrated into any vision algorithm or system geared
toward real-world large scale image classification.

2 While it is possible to use online methods, e.g. stochastic subgradient descent, they
can be slower to converge [34].
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Fig. 1. Given a query image, the task of “image classification” is to assign it to one
of the classes (represented by a stack of images) that the algorithm has learned. Left:
Most traditional vision algorithms have been tested on a small number of somewhat dis-
tinct categories. Middle: Real world image classification problems may involve a much
larger number of categories — so large that the categories can no longer be easily sep-
arated. Right: Mean classification accuracy of various methods on Rand200{a, b, c},
ImageNet1K, ImageNet7K and ImageNet10K.

6 Size Matters

We first investigate the broad effects on performance and computation of scaling
to ten-thousand categories. As the number of categories in a dataset increases,
the accuracy of classification algorithms decreases, from a maximum of 34% for
Rand200{a,b,c} to 6.4% for ImageNet10K (Fig. [ right). While the performance
drop comes at no surprise, the speed of decrease is slower than might be expected
—roughly a 2x decrease in accuracy with 10x increase in the number of classes,
significantly better than the 10x decrease of a random baseline.

There is a surprise from k-nearest-neighbor (kNN) classifiers, either using GIST
features or BoW features. For Rand200{a,b,c}, these techniques are significantly
worse than linear classifiers using BoW features, around 10% lower in accuracy.
This is consistent with the experience of the field — methods that do use kNN
must be augmented in order to provide competitive performance [237]. But the
picture is different for ImageNet7K or ImageNet10K categories, where simple
kNN actually outperforms linear SVMs on BoW features (BOW+SVM), with 11-16%
higher accuracy. The small absolute gain in mean accuracy, around 0.5%, is made
significant by the very small expected standard deviation of the means 0.1% B.
A technique that significantly outperforms others on small datasets
may actually underperform them on large numbers of categories.

This apparent breakdown for 1-vs-all with linear classifiers comes despite a
consistent line of work promoting this general strategy for multi-class classifica-
tion [22]. It seems to reveal issues with calibration between classifiers, as the ma-
jority of categories have comparable discriminative power on ImageNet7K and
Rand200a (Fig[2 left), but multi-way classification is quite poor for ImageNet7K

3 Stdev for ImageNet7K and ImageNet10K are estimated using the individual category
variances, but are very small ¢f standard error and the central limit theorem.
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Fig. 2. Left: Scatter plot comparing the area under ROC curve (AUC) of BOW+SVM for
the 200 categories in Rand200a when trained and evaluated against themselves(x-axis)
and when trained and evaluated against ImageNet7K(y-axis). Right: Histograms of
accuracies for the same 200 categories in Rand200a, ImageNet1K, and ImageNet7K,
example categories indicated with colored markers.

(Fig 2 right). One explanation is that for the one-against-all approach, a correct
prediction would require that the true classifier be more confident than any other
classifiers, which becomes more difficult with a larger number of classes as the
chance of false alarms from others greatly increases. Then the behavior starts to
resemble KNN methods, which are only confident about close neighbors.

Looking in more detail at the confusion between the categories in ImageNet7K
reveals additional structure (Fig.Bl). Most notable is the generally block diagonal
structure, indicating a correlation between the structure of the semantic
hierarchy (by WordNet) and visual confusion between the categories.
The two most apparent blocks roughly align with “artifacts” and “animals”,
two very high level nodes in WordNet, suggesting the least amount of confusion
between these two classes with more confusion within. This is consistent with
both computational studies on smaller numbers of classes [30] and some human
abilities [38]. Sections of the confusion matrix are further expanded in Fig. B
These also show roughly block diagonal structures at increasingly finer levels
not available in other datasets. The pattern is roughly block diagonal, but by
no means exact. There is a great deal of noise and a fainter “plaid”, oscillating
pattern of stripes, indicating that the ordering of categories in WordNet is not
completely in agreement with the visual confusion between them.

The block patterns indicate that it is possible to speed up the classification by
using a sublinear number of classifiers in a hierarchy, as Griffin & Perona have
demonstrated on Caltech256 [30]. They built a hierarchy of classifiers directly
from the confusion matrix. Here we confirm their findings by observing a much
stronger pattern on a large number of classes. Moreover we note that such a
grouping may actually be directly obtained from WordNet, in which case, the
output of an internal classifier in the hierarchy would be semantically meaningful.

Also of note is that in scaling to many classes, only a small subset of the
distractor classes are truly distracting, possibly explaining the smaller than
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Fig. 3. Confusion matrix and sub-matrices of classifying the 7404 leaf categories in Im-
ageNet7K, ordered by a depth first traversal of the WordNet hierarchy, using SPM+SVM.
Left: Downsampled 7404 x 7404 confusion matrix, each pixel representing max con-
fusion over 4 x 4 entries. Middle: Zoom-in to two sub-matrices ( top: 949 x 949;
bottom: 1368 x 1368 ), each pixel 2 x 2 entries. One row of the matrix is plotted be-
low each matrix (corresponding to red outlined images). The correct class is indicated
by a red triangle. Examples of other classes are also shown. Right: Further zoom-in
(top: 188 x 188; bottom: 145 x 145), each pixel representing the confusion between two
individual categories.

expected performance drop. For example, to classify “German shepherd”, most
of the distractor classes are “easy” ones like “dishrag”, while only a few semanti-
cally related classes like “husky” add to the difficulty. It suggests that one key to
improving large scale classification is to focus on those classes, whose difficulty
correlates with semantic relatedness. We quantify this correlation in Sec. [1

7 Density Matters

Our discussion so far has focused on the challenges arising from the sheer number
of categories. FigureBlreveals that the difficulty of recognition varies significantly
over different parts of the semantic space. Some classifiers must tackle more se-
mantically related, and possibly visually similar, categories. Accurate classifi-
cation of such categories leads to useful applications, e.g. classifying groceries
for assisting the visually impaired, classifying home appliances for housekeeping
robots, or classifying insect species for environmental monitoring [39]. We refer
to sets of such categories as dense and study the effect of density on classification.

We begin by comparing mean classification accuracy for classifiers trained
and tested on each of the small datasets — Fungus134, Ungulatel83, Vehicle262,
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Fig. 4. Left: Accuracy on datasets of varying density. Note that CalNet200 (the Cal-
tech 256 categories in ImageNet) has low density and difficulty on par with a set of 200
randomly sampled categories. Right: Accuracy (using SPM+SVM) versus dataset density
measured by mean distance in WordNet (see Sec. [7]).

CalNet200, Rand200 — across descriptors and classifiers in Fig. [l Note that while
SPM+SVM produces consistently higher accuracies than the other approaches, the
ordering of datasets by performance is exactly the same for each approac
This indicates that there is a significant difference in difficulty between
different datasets, independent of feature and classifier choice.

Next we try to predict the difficulty of a particular dataset by measuring the
density of the categories, based on the hierarchical graph structure of WordNet.
We define the distance, h(i, j), between categories ¢ and j, as the height of their
lowest common ancestor. The height of a node is the length of the longest path
down to a leaf node (leaf nodes have height 0). We measure the density of a
dataset as the mean h(i,j) between all pairs of categories — smaller implies
denser. See Fig. [l for an illustration and for examples of pairs of categories from
each dataset that have distance closest to the mean for that dataset. There is a
very clear correlation between the density in WordNet and accuracy
of visual classification; denser datasets predict lower accuracy (Fig. ).
This is despite the fact that WordNet was not created as a visual hierarchy!

Classification accuracy on 200 randomly chosen categories (Rand200{a,b,c})
is more than 3 times higher than on the 134 categories from Fungus134. The large
gap suggests that the methods studied here are not well equipped for classifying
dense sets of categories. In fact, there have been relatively few efforts on “dense
classification” with some notable exceptions, e.g. [40/41J39]. The results seem
to call for perhaps more specialized features and models, since it is one key to
improving large scale classification performance as discussed in Sec.

Also of note is that the Caltech256 categories that occur in ImageNet (Cal-
Net200) have very low density and relatively high accuracy — in almost exactly
the same range as random sets of categories. The Caltech categories are very
sparse and do not exhibit the difficulty of dense sets of categories,

4 Ordering of datasets is consistent, but ordering of methods may change between
datasets as noted in Sec. [6l where BOW+SVM and the kNN approaches switch order.
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Fig.5. Left: Illustration of the inter-class distance (indicated by the numbers) be-
tween “sailboat” and other classes, as defined in Sec. [l Any descendant of ship is
further from sailboat than gallon but closer than those in aircraft. Note that one step
up the hierarchy may increase the distance by more than one as the tree height is the
length of the longest path to a leaf node. Right: Each row shows a pair of example
categories from the dataset indicated in the center column. The pairs are chosen to
have distance near the mean distance in WordNet (Sec. [ between categories in the
dataset, indicated by the bars in the center column.

making Caltech-like datasets incomplete as an evaluation resource to-
wards some of the real-world image classification problems.

Finally we note that our WordNet based measure is not without limitations,
e.g. “food tuna” and “fish tuna” are semantically related but belong to “food”
and “fish” subtrees respectively, so are far away from each other. Nonetheless as
a starting point for quantifying semantic density, the results are encouraging.

8 Hierarchy Matters

For recognition at the scale of human ability, categories will necessarily overlap
and display a hierarchical structure [IT]. For example, a human may label “red-
shank” as “shorebird”, “bird”, or “animal”, all of which are correct but with a
decreasing amount of information. Humans make mistakes too, but to different
degrees at different levels — a “redshank” might be mistaken as a “red-backed
sandpiper”, but almost never as anything under “home appliance”.

The implications for real world object classification algorithms are two fold.
First a learning algorithm needs to exploit real world data that inevitably has
labels at different semantic levels. Second, it is desirable to output labels as
informative as possible while minimizing mistakes at higher semantic levels.

Consider an automatic photo annotator. If it cannot classify “redshank” reli-
ably, an answer of “bird” still carries much more information than “microwave”.
However, our classifiers so far, trained to minimize the 0-1 loss ﬁ, have no incen-
tive to do so — predicting “microwave” costs the same as predicting “bird”.

5 The standard loss function for classification, where a correct classification costs zero
and any incorrect classification costs 1.
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Fig. 6. Left: Hierarchical cost of flat classification and hierarchical classification on
ImageNet10K across different methods. Right: Mean number of descendants for nodes
at each height, indicating the effective log-scale for hierarchical cost.

Here we explore ways to make classifiers more informative. We define a hier-
archical cost C; ; for classifying an image of class j as class i as C; ; = 0 when
i = j or when 7 is a descendant of j, and C; ; = h(i, j), the height of their lowest
common ancestor in WordNet, otherwise. This cost definition directly measures
the semantic level at which a misclassification occurs — a more informative clas-
sifier, one able to discriminate finer details, would have lower cost. It also takes
care of the overlapping categories — there is penalty for classifying an image in
an internal node as its (more general) ancestor but no cost for classifying it as
any of its (more specific) descendants. As an example, in Fig. [ left, for an im-
age labeled as “sailboat”, classifying it as “catamaran” or any other descendant
incurs no cost [§ while classifying as any descendant of “aircraft” incurs cost 6.

We can make various classification approaches cost sensitive by obtaining
probability estimates (Appendix). For a query image x, given posterior proba-
bility estimates p;(z) for class j, j € {1,... K}, according to Bayesian decision
theory, the optimal prediction is obtained by predicting the label that minimizes
the expected cost f(z) = argmin;—1, g Z]K:l C.ipi(z).

Comparing the mean hierarchical cost for the original (flat) classifier with
the mean cost for the cost sensitive (hierarchical) classifier, we find a consistent
reduction in cost on ImageNet10K (Fig.[d). It shows that the hierarchical classifier
can discriminate at more informative semantic levels. While these reductions may
seem small, the cost is effectively on a log scale. It is measured by the height in
the hierarchy of the lowest common ancestor, and moving up a level can more
than double the number of descendants (Fig. [l right).

The reduction of mean cost on its own would not be interesting without a
clear benefit to the results of classification. The examples in Fig. [ show query
images and their assigned class for flat classification and for classification us-
ing hierarchical cost. While a whipsnake is misclassified as ribbon snake, it is
still correct at the “snake” level, thus giving a more useful answer than “sun-
dial”. It demonstrates that classification based on hierarchical cost can
be significantly more informative.

5 The image can in fact be a “trimaran”, in which case it is not entirely correct to
predict “catamaran”. This is a limitation of intermediate level ground truth labels.
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Fig. 7. Example errors using a flat vs. hierarchical classifier with SPM+SVM on Ima-
geNet10K, shown in horizontal groups of three: a query, prediction by a flat classifier
(minimizing 0-1 loss), and by a hierarchical classifier (minimizing hierarchical cost).
Numbers indicate the hierarchical cost of that misclassification.

9 Conclusion

We have presented the first large scale recognition experiments on 10,000+ cat-
egories and 94 million images. We show that challenges arise from the size
and density of the semantic space. Surprisingly the ordering of NN and Linear
classification approaches swap from previous datasets to our very large scale ex-
periments — we cannot always rely on experiments on small datasets to predict
performance at large scale. We produce a measure of category distance based on
the WordNet hierarchy and show that it is well correlated with the difficulty of
various datasets. We present a hierarchy aware cost function for classification and
show that it produces more informative classification results. These experiments
point to future research directions for large scale image classification, as well as
critical dataset and benchmarking issues for evaluating different algorithms.
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A Experimental Details

We obtain BoW histograms (L1l-normalized) using dense SIFT [42] on 20x20
overlapping patches with a spacing of 10 pixels at 3 scales on images resized to a
max side length of 300, and a 1000 codebook from KMeans on 10 million SIFT
vectors. We use the same codewords to obtain spatial pyramid histograms (3
levels), ¢ encoded [23] to approximate the intersection kernel with linear SVMs.
Due to high dimensionality (21k), we only encode nonzeros (but add a bias term).
This preserves the approximation for our, non-negative, data, but with slightly
different regularization. We found no empirical performance difference testing up
to 1K categories. To save memory, we use only two bytes for each entry of encoded
vectors (sparse) by delta-coding its index (1 byte) and quantizing its value to
256 levels (1 byte). We further reduce memory by only storing every other entry,
exploiting redundancy in consecutive entries. We use LIBLINEAR [34] to train
linear SVMs, parameter C determined by searching over 3 values (0.01, 0.1, 1 for
ImageNet10K) with 2-fold cross validation. We use smaller weight for negative
examples(100x smaller for ImageNet10K) than positives. We obtain posterior
probability estimates by fitting a sigmoid function to the outputs of SVMs [43],
or by taking the percent of neighbors from a class for NN.
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Abstract. Can we model the temporal evolution of topics in Web im-
age collections? If so, can we exploit the understanding of dynamics to
solve novel visual problems or improve recognition performance? These
two challenging questions are the motivation for this work. We propose a
nonparametric approach to modeling and analysis of topical evolution in
image sets. A scalable and parallelizable sequential Monte Carlo based
method is developed to construct the similarity network of a large-scale
dataset that provides a base representation for wide ranges of dynam-
ics analysis. In this paper, we provide several experimental results to
support the usefulness of image dynamics with the datasets of 47 top-
ics gathered from Flickr. First, we produce some interesting observations
such as tracking of subtopic evolution and outbreak detection, which can-
not be achieved with conventional image sets. Second, we also present
the complementary benefits that the images can introduce over the asso-
ciated text analysis. Finally, we show that the training using the temporal
association significantly improves the recognition performance.

1 Introduction

This paper investigates the discovery and use of topical evolution in Web image
collections. The images on the Web are rapidly growing, and it is obvious to
assume that their topical patterns evolve over time. Topics may rise and fall in
their popularity; sometimes they are split or merged to a new one; some of them
are synchronized or mutually exclusive on the timeline. In Figlll we download
apple images and their associated timestamps from Flickr, and measure the
similarity changes with some canonical images of apple’s subtopics. As Google
trends reveal the popularity variation of query terms in the search volumes, we
can easily observe the affinity changes of each subtopic in the apple image set.
The main objectives of this work are as follows. First, we propose a non-
parametric approach to modeling and analysis of temporal evolution of topics
in Web image collections. Second, we show that understanding image dynamics
is useful to solve novel problems such as subtopic outbreak detection and to im-
prove classification performance using the temporal association that is inspired
by studies in human vision [2[T9)2T]. Third, we present that the images can be a
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Fig. 1. The Google trends-like visualization of the subtopic evolution in the apple im-
ages from Flickr (fruit: blue, logo: red, laptop: orange, tree: green, iphone: purple). We
choose the cluster center image of each subtopic, and measure the average similarity
with the posterior (i.e. a set of weighted image samples) at each time step. The fruit
subtopic is stable along the timeline whereas the iphone subtopic is highly fluctuated.

more reliable and delicate source of information to detect topical evolution than
the texts.

Our approach is motivated by the recent success of the nonparametric meth-
ods [I3I20] that are powered by large databases. Instead of using sophisticated
parametric topic models [322], we represent the images with timestamps in the
form of a similarity network [I1], in which vertices are images and edges con-
nect the temporally related and visually similar images. Thus, our approach is
able to perform diverse dynamics analysis without solving complex inference
problems. For example, a simple information-theoretic measure of the network
can be used to detect subtopic outbreaks, which point out when the evolution
speed is abruptly changed. The temporal context is also easily integrated with
the classifier training in a framework of the Metropolis-Hastings algorithm.

The network generation is based on the sequential Monte Carlo (i.e. particle
filtering) [I/9]. In the sequential Monte Carlo, the posterior (i.e. subtopic dis-
tribution) at a particular time step is represented by a set of weighted image
samples. We track similar subtopics (i.e. clusters of images) in consecutive pos-
teriors along the timeline, and create edges between them. The sampling based
representation is quite powerful in our context. Since we deal with unordered
natural images on the Web, any Gaussian or linearity assumption does not hold
and multiple peaks of distributions are unavoidable. Another practical advan-
tage is that we can easily control the tradeoff between accuracy and speed by
managing the number of samples and parameters in the transition model. The
proposed algorithm is easily parallelizable by running multiple sequential Monte
Carlo trackers with different initialization and parameters. Our approach is also
scalable and fast. The computation time is linear with the number of images.

For evaluation, we download more than 9M images of 47 topics from Flickr.
Most standard datasets in computer vision research [7II8] have not yet consid-
ered the importance of temporal context. Recently, several datasets have intro-
duced spatial contexts as fundamental cues to recognition [I§], but the support
for temporal context has still been largely ignored. Our experiments clearly show
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that our modeling and analysis is practically useful and can be used to under-
stand and simulate human-like visual experience from Web images.

1.1 Related Work

The temporal information is one of the most obvious features in video or au-
ditory applications. Hence, here we review only the use of temporal cues for
image analysis. The importance of temporal context has long been recognized in
neuroscience research [2JT9J21]. Wide range of research has supported that the
temporal association (i.e. liking temporally close images) is an important mecha-
nism to recognize objects and generalize visual representation. [21] tested several
interesting experiments to show that temporally correlated multiple views can
be easily linked to a single representation. [2] proposed a learning model for 3D
object recognition by using the temporal continuity in image sequences.

In computer vision, [16] is one of the early studies that use temporal context
in active object recognition. They used a POMDP framework for the modeling of
temporal context to disambiguate the object hypotheses. [5] proposed a HMM-
based temporal context model to solve scene classification problems. For the
indoor-outdoor classification and the sunset detection, they showed that the
temporal model outperformed the baseline content-based classifiers.

As the Internet vision emerges as an active research area in computer vision,
timing information starts to be used in the assistance of visual tasks. Surpris-
ingly, however, the dynamics or temporal context for Web images has not yet
been studied a great deal, contrary to the fact that the study of the dynamic
behaviors of the texts on the Web has been one of active research areas in data
mining and machine learning communities [3l22]. We briefly review some notable
examples using timestamp meta-data for visual tasks. [6] developed an annota-
tion method for personal photo collections, and the timestamps associated with
the images were used for better correlation discovery between the images. [12]
proposed a landmark classification for an extremely large dataset, and the tem-
poral information was used for the constraints to remove misclassification. [I7]
also used the timestamp as an additional feature to develop an object and event
retrieval system for online image communities. [10] presented a method to geolo-
cate a sequence of images taken by a single individual. Temporal constraints from
the sequence of images were used as a strong prior to improve the geolocation
accuracy.

The main difference between their work and ours is that they considered the
temporal information as additional meta-data or constraints to achieve their
original goals (i.e. annotations in [6], classification and detection in [T2J17], and
the geolocation of images in [I0]). However, our work considers the timestamps
associated with images as a main research subject to uncover dynamic behav-
iors of Web images. To our best knowledge, there have been very few previous
attempts to tackle this issue in computer vision research.
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2 Network Construction by Sequential Monte Carlo

2.1 Image Description and Similarity Measure

Each image is represented by two types of descriptors, which are spatial pyramids
of visual words [I4] and HOG [4]. We use the codes provided by the authors of
the papers. A dictionary of 200 visual words is formed by K-means to randomly
selected SIFT descriptors [14]. A visual word is densely assigned to every pixel
of an image by finding the nearest cluster center in the dictionary. Then visual
words are binned using a two-level spatial pyramid. The oriented gradients are
computed by Canny edge detection and Sobel mask [4]. The HOG descriptor
is then discretized into 20 orientation bins in the range of [0°,180°]. Then the
HOG descriptors are binned using a three-level spatial pyramid. The similarity
measure between a pair of images is the cosine similarity, which is calculated by
the dot product of a pair of L, normalized descriptors.

2.2 Problem Statement

The input of our algorithm is a set of images Z = {I1, I, ..., Iy} and associated
tags of taken time 7 = {T4,Ts, ..., Tn }. The main goal is to generate an N x N
sparse similarity network G = (V,£,W) by using the Sequential Monte Carlo
(SMC) method. Each vertex in V is an image in the dataset. The edge set &
is created between the images that are visually similar and temporally distant
with a certain interval that is assigned by the transition model of the SMC
tracker (Section [23)). The weight set W is discovered by the similarity between
descriptors of images (Section [Z]). For sparsity, each image is connected to its
k-nearest neighbors with k = alog N, where a is a constant (e.g. a =10).

2.3 Network Construction Using Sequential Monte Carlo

Algorithm [ summarizes the proposed SMC based network construction. For
better readability, we follow the notation of condensation algorithm [9]. The
output of each iteration of the SMC is the conditional subtopic distribution (i.e.
posterior) at every step, which is approximated by a set of images with relative
importance denoted by {s;, w¢} = {sgi), W;i),i =1,...,M}. Note that our SMC
does not explicitly solve the data association during the tracking. In other words,
we do not assign a subtopic membership to each image in s;. However, it can be
easily obtained later by applying clustering to the subgraph of s;.

Figl2l shows a downsampled example of a single iteration of the posterior
estimation. At every iteration, the SMC generates a new posterior {s;, m:} by
running transition, observation, and resampling.

The image data are severely unbalanced on the timeline. (e.g. There are only
a few images within a month in 2005 but a large number of images within even
a week in 2008). Thus, in our experiments, we bin the timeline by the number
of images instead of a fixed time interval. (e.g. The timeline may be binned by
every 3000 images instead of a month). The function 7(7;, m) is used to indicate
the timestamp of the m-th image later from the image at T;.
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Fig. 2. An overview of the SMC based network construction for the jaguar topic. The
subtopic distribution at each time step is represented by a set of weighted image samples
(i.e. posterior) {s:, 7+ }. In this example, a posterior of the jaguar topic consists of image
samples of animal, cars, and football subtopics. (a) The transition model generates new
posterior candidates s; from s;—1. (b) The observation model discovers 7} of s; and the
resampling step computes {s;, 7w} from {s},7;}. Finally, the network is constructed
by similarity matching between two consecutive posteriors s;—1 and s;.

Initialization. The initialization samples the initial posterior sy from the prior
p(xo) at Tp. p(x) is set by a Gaussian distribution N (Tp, 7%(To,2M/3)) on the
timeline, which means that 2M numbers of images around 7T have nonzero
probabilities to be selected as one of sy. The initial ¢ is uniformly set to 1/M.

Transition Model. The transition model generates posterior candidates s
rightward on the timeline from the previous {s;_1,m¢—1} (See Figll(a) for an
example). Each image sil_)l in s;_1 recommends m; numbers of images that are
similar to itself as candidates set s, for the next posterior. A more weighted image
sii)l is able to recommend more images for s;. (3, m; = 2M and m; wt(i)l).
At this stage, we generate 2M candidates (i.e. |s;| = 2M), and the observation
and resampling steps reduce it to be |s;| = M while computing weights 7r;.
Similarly to condensation algorithm [9], the transition consists of deterministic
drift and stochastic diffusion. The drift describes the transition tendency of the
overall s, (i.e. how far the s} is located from the s;_; on the timeline). The
diffusion assigns a random transition of an individual image. The drift and
the diffusion are modeled by a Gaussian distribution N (p,0?) and a Gamma

distribution I'(«, 3), respectively. The final transition model is the product of
these two distributions [8] in Eq[Il The asterisk of Pt(z)*(x) in Eq[llmeans that it
is not normalized. Renormalization is not required since we will use importance
sampling to sample images on the timeline with the target distribution (See the
next subsection with FigBl for the detail).

Pt(i)*(x) = N(z;pu,07) X F(ﬂay—)l’ﬂt@—)l) (1)
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Algorithm 1. The SMC based network generation
Input: (1) A set of images Z sorted by timestamps 7. (2) Start time Tp and end time
Te.. (3) Posterior size M. (4) Parameters for drift: (AM,,c?).
Output: Network G
Initialization:
1: draw s\ ~ N(Tp, 7%(To,2M/3)), 7§87 = 1/M for i =1,..., M.
while ¢ < Te, (po = To and pe = pe—1 + 7(pe—1, AMy)). do
[Transition)]
for all 8?21 € si—1 with 29 = 0 do
repeat ) )
8: draw z ~ N(z; pr,0%) x D(m; a1, 817 (af?y oc 1/m, By = pefaf?y).

4: 2 — g with probablhty of w(s\”,, z).

until |9 = m; *2M><7r . Then, s} — z(¥.
end for
[Observation]
4: Compute self-similarity graph W of s;. Row-normalize W, to W..
5: Compute the stationary distribution 7} by solving 7} = ﬁftTﬂ'Q
[Resampling]

6: Resample {s;, m}}2, from {s}, 7}} by systematic sampling and normalize ;.
7. G — Wy(se,st), We—1,4(8t—1, 8t), and then convert G into a k-NN graph.
end while
In sum, for each sE?l, we sample an image x using the distribution of Eq[I]
which constrains the position of x on the timeline. In addition, z is required
to be visually similar to its recommender. Thus, the sample x is accepted with
probability of w(si?l, x), which is the cosine similarity between the descriptors

of siz_)l and x. This process is repeated until m; number of samples are accepted.

In Eq[I the mean p; of N(u,0?) is updated at every step as py = g1 +
T(pe—1, AM,,) where AM,, is the control parameter for the speed of the tracking.
The higher AM,,, the further s; is located from s;_; and the fewer the steps are
executed until completion. The variance o2 of N (i, 0?) controls the spread of
s, along the timeline. A higher o2 results in a s; that includes images with a
longer time range.

A Gamma distribution I'(«, 8) is usually used to model the time required for
« occurrences of events that follow a Poisson process with a constant rate (.
In our interpretation, given an image stream, we assume that the occurrence of
images of each subtopic follows the Poisson process with §. Then, I‘(a,(i)l, t(i)l)
of Eqll indicates the time required for the next o images that have the same
subtopic with sgz_)l in the image stream. Based on this intuition, the agl_)l for
() is adjustively selected. A smaller a& is chosen for the image SEZ_)l
with hlgher 7T£Z_)1 since the similar images to a more weighted SEZ_)l are likely to

occur more frequently in the dataset. The mean of Gamma dibtribution of each

si )1 is aligned with the mean of the sample set p;. Therefore, ﬂt 1= Wt/ aEQl

since the mean of Gamma is af.

each s;
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Fig. 3. An example of sampling images on the timeline during (a) the initialization
and (b) the transition. From top to bottom: The first row shows the image distribu-
tions along the timeline. The images are regarded as the samples ({z(™}%) from a
proposal distribution Q*(z). They are equally weighted (i.e. Q*(z(™) = 1). The sec-
ond row shows the target distribution P*(x). (e.g. Gaussian in (a) and the product
of Gaussian and Gamma in (b)). The third row shows the image samples weighted by
P*(2™)/Q*(z™). The fourth row shows the images chosen by systematic sampling [1].

The main reason to adopt the product model rather than the mixture model
in Eq[dlis as follows. The product model only has a meaningful probability for an
event when none of its component distribution has a low probability. (i.e. if one
of two distributions has zero probability, their product does as well). It is useful
in our application that the product with the Gaussian of the drift prevents the
sampled images from severely spreading along the timeline by setting almost
zero probability for the image outside the 3o from .

Sampling Images with Target Distribution. In the initialization and the
transition, we sample a set of images on the timeline from a given target distri-
bution P*(z). (e.g. Gaussian in the initialization and the product of Gaussian
and Gamma in the transition). Fig[3 shows our sampling method, which can be
viewed as an importance sampling [I5]. The importance sampling is particularly
useful for the transition model since there is no closed form of the product of
Gaussian and Gamma distributions and its normalization is not straightforward.

Observation Model. The goal of the observation model is to generate weights
7, for the ). First, the similarity matrix W; of s, is obtained by computing
pairwise cosine similarity of s;. The =} is the stationary distribution of W;

T —
by solving 7; = W, 7; where W; is row-normalized from W; so that w;; =

Wij/ Dk Wik-

Resampling. The final posterior {s;, 7} = {sgi),ﬂ't(i)}i]‘il is resampled from
{8}, ™} by running the systematic sampling [I] on 7}. Then 7r; is normalized so
that their sum is one. The network G stores Wy(st, s;) and the similarity matrix
Wi_1t(st—1, 8t) between two consecutive posteriors s,_; and s;. As discussed
in section 2] each vertex in G is connected to only its k-nearest neighbors.
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3 Analysis and Results

3.1 Flickr Dataset

Table [[l summarizes 47 topics of our Flickr dataset. The topic name is identical
to the query word. We downloaded all the images containing the query word.
They are the images shown when a query word is typed in Flickr’s search box
without any option change. For the timestamp, we use the date taken field of
each image that Flickr provides.

We generate the similarity network of each topic by using the proposed SMC
based tracking. The runtime is O(NM) where M is constant and M < N (i.e.
1000 < M < 5000 in our experiments). The network construction is so fast that,
for example, it took about 4 hours for the soccer topic with N = 1.1 x 10°
and M = 5,000 in a matlab implementation on a single PC. The analysis of
the network is also fast since most network analysis algorithms depend on the
number of nonzero elements, which is O(N log N).

3.2 Evolution of Subtopics

FigH] shows the examples of the subtopic evolution of two topics, big-+ben and
korean. As we discussed in previous section, the SMC tracker generates the pos-
terior sets {sg, ..., Sc}. Five clusters in each posterior are discovered by applying
spectral clustering to the subgraph G; of each s; in an unsupervised way. Ob-
viously, the dynamic behavior is one of intrinsic properties of each topic. Some
topics such as big+ben are stationary and coherent whereas others like korean
are highly diverse and variant.

Outbreak Detection of Subtopics. The outbreak detection is important
in Web mining since it reflects the change of information flows and people’s
interests. We perform the outbreak detection by calculating an information-
theoretic measure of link statistics. Note that the consecutive posterior sets are

Table 1. 47 topics of our Flickr dataset. The numbers in parentheses indicate the
numbers of downloaded images per topic. 9,751,651 images are gathered in total.

Nation brazilian(119,620), jewish(165,760), korean(254,386), swedish(94,390),
spanish(322,085)

Place amazon(160,008), ballpark(340,266), big+ben(131,545), grandcanyon(286,994),
pisa(174,591), wall4street(177,181), white+house(241,353)

Animal butterfly+insect(69,947), cardinals(177,884), giraffe+zoo (53,591), jaguar(122,615),
leopard(121,061), lobster(144,596), otter(113,681), parrot(175,895),
penguin(257,614), rhino(96,799), shark(345,606)

Object classic+car(265,668), keyboard(118,911), motorbike(179,855), pagoda(128,019),
pedestrian(112,116), sunflower(165,090), television(157,033)

Activity  picnic(652,539), soccer(1,153,969), yacht(225,508)

Abstract  advertisement(84,521), economy(61,593), emotion(119,899), fine+art(220,615),
horror(157,977), hurt(141,249), politics(181,836)

Hot topic  apple(713,730), earthquake(65,375), newspaper(165,987), simpson(106,414),
starbucks(169,728), tornado(117,161), wireless(139,390)
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Fig. 4. Examples of subtopic evolution of korean and big+ben topics. Each column
shows the clusters of each s;. From top to bottom, we show top three out of five clusters
of each s; with average images (the first row) and top-four highest ranked images in the
cluster (the second row). The big+ben is relatively stationary and coherent whereas
the korean topic is highly dynamic and contains diverse subtopics such as sports, food,
buildings, events, and Korean War Memorial Park.

linked in our network. (i.e. s;—1 is connected to s;, which is linked to s;11.) The
basic idea of our outbreak detection is that if the subtopic distributions at step
t—1 and t+ 1 are different each other, then the degree distribution of s; to s;_1
(fit—1) and the degree distribution of s; to si1 (f; ;1) are dissimilar as well.
For example, suppose that the dominant subtopic of s;_ is fruit apple but the
dominant one of s;;1 is iphone. Then, the degree of a fruit apple image i in s;
has high f; ;_; (i) but low f; ,1(i). On the other hand, an iphone image j in s;
has high f, ;1 (j) but low f, ;_;(i). Both f, , ; and f, ,,; are |s;| x 1 histograms,
each element of which is the sum of edge weights of a vertex in s; with s;_1 and
8t+1, respectively. In order to measure the difference between f, , _; and f; , 4,
we use Kullback-Leibler (KL) divergence in Eq2l

Fori1(2)

Drr(fia | frroa) = Z'ft’t“(i) log Fri—1(d)

1€ St

(2)

Fig[Hl (a) shows an example of KL divergence changes along the 142 steps of apple
tracking. The peaks of KL divergence indicate the radical subtopic changes from
S¢—1 to s;41. We observed the highest peak at the step t* = 63, where s~ is
distributed in [May-2007, Jun-2007]. Fig[l(b) represents ten subtopics of s _1,
S¢+, and 8«41, which are significantly different each other.

3.3 Comparison with Text Analysis

In this section, we empirically compare the image-based topic analysis with the
text-based one. One may argue that the similar observations can be made from
both images and the associated texts. However, our experiments show that the
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Fig. 5. The outbreak detection of subtopics. (a) The variation of KL divergences for
the apple topic. The highest peak is observed at the step ¢t*=63 ([May-2007, Jun-2007]
with the median of 11-Jun-2007). (b) The subtopic changes around the highest peak.
Ten subtopics of si+_1, s+, and si+41 are shown from top to bottom. In each set, the
first row shows average images of top 15 images and the bottom row shows top four
highest ranked ones in each subtopic. In s;=_1 and s+, several subtopics about Steve
Jobs’s presentation are detected but disappear in si«11. Rather, crowds in street (i.e.
1st ~ 4th clusters) and iphone (i.e. 6,8,10-th clusters) newly emerge in s4x41.

associated texts do not overshadow the importance of information from the im-
ages. First of all, 13.70% of images in our dataset have no tags. It may be natural
since the Flickr is oriented toward image sharing and thus text annotations are
much less cared by users. In order to compare the dynamic behaviors detected
from images and texts, we apply the outbreak detection method in previous sec-
tion to both images and their associated tags. The only difference between them
is the features: the spatial pyramids of SIFT and HOG for images and term
frequency histograms for texts. Figlil(a) shows an example of outbreak detec-
tion using images and texts for the grandcanyon topic, which is one of the most
stationary and coherent topics in our dataset (i.e. no matter when the images
are taken, the majority of them are taken for the scene of the Grand Canyon).
The image-based analysis is able to successfully detect its intrinsic stationary
behavior. However, the text tags are highly fluctuated mainly because tags are
subjectively assigned by different users with little consensus. This is a well-known
noise source of the images from the Web image search, and our result can be its
another supporting example from the dynamics view.

Another important advantage of image-based temporal analysis is that it con-
veys more delicate information that is hardly captured by text descriptions.
Figldl (b) shows two typical examples about periodic updates of objects and
events. For example, when a new iphone is released, the emergence of the iphone
subtopic can be detected in the apple via both images and texts. However, the
images can more intuitively reveal the upgraded appearance, new features, and
visual context around the new event.
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Fig. 6. The comparison between the topical analysis on the images and associated
text tags. (a) The variation of KL divergences for the grandcanyon topic. The KL
divergences of images are stationary along the timeline whereas those of texts are
highly fluctuated. (b) The subtopic changes around the two highest peaks A (05-Nov-
2007) and B (16-Aug-2009). Five subtopics of s4x_1, 8+, and $4=41 are shown from
top to bottom. Very little visual variation is observed between them. (c) 15 selected
images tagged by apple+mnew+iphone (the first row) and whitehouse+christmas (the
second row). They are sorted on the timeline.

3.4 Temporal Association for Classification

As pointed in neuroscience research [I9/21], human perception tends to strongly
connect temporally smoothed visual information. Inspired by these studies, we
perform preliminary tests to see whether it holds in Web images as well; The sub-
topics that consistently appear along the timeline can be more closely related to
the main topic rather than the ones that are observed for only a short period.
For example, the fruit apple is likely to consistently exist in the apple image set,
which may be a more representative subtopic of the apple rather than a specific
model of an early Mac computer. In this experiment, we generate two training
sets from the extremely noisy Flickr images and compare their classification
performance; The first training set is constructed by choosing the images that
are temporally and visually associated, and the other set is generated by the
random selection without temporal context.

Since our similarity network links temporally close and visually similar im-
ages, dominant subtopics correspond to large clusters and their central images
map to hub nodes in the graph. The stationary probability is a popular ranking
measure, and thus the images with high stationary probabilities can be thought
of temporally and visually strengthened images. However, the proposed network
representation is incomplete in the sense that images are connected in an only
local temporal space. In order to cope with this underlying uncertainty, we gen-
erate training sets by the Metropolis-Hasting (MH) algorithm.
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We first compute the stationary probability 7w of the network G. Since a
general suggestion for a starting point in the MH is to begin around the modes
of the distribution, we start from an image 6, that has the highest wg(6). From
a current 6 vertex, we sample a next candidate point 8* from a proposal distri-
bution ¢(01, 62) that is based on a random surfer model as shown in Eq3} the
candidate is chosen by following an outgoing edge of the # with probability A,
but restarting it with probability 1 — A according to the wg. A larger A weights
more the local link structure of the network while a smaller A relies on 7 more.
The new candidate is accepted with probability  in Eq[3 where w;; is the ele-
ment (4, 7) in the row-normalized adjacency matrix of G. We repeat this process
until the desired numbers of training samples are selected.

_ o ma(07)q(0",6t—1) ) — A\ _ j
@ (ﬂ'G(atl)‘I(@tl, 6*)’ 1) where q(i, j) = Mwi; + (1 = Nmwa(j)  (3)
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Fig. 7. Comparison of the binary classification performance between Temporal train-
ing and Random training. (a) Classification accuracies of selected 20 topics. (b) Cor-
responding Precision-Recall curves. The number (n,m) underneath the topic name
indicates the average precision of (Random, Temporal).
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We perform binary classification using the 128 nearest neighbor voting [20] in
which we use the same descriptors and the cosine similarity in section 2.1l We
generate the positive training set of each topic in two different ways; We sample
256 images by the MH method (called Temporal training) and randomly choose
the same number of images (called Random training). For the negative training
images, we randomly draw 256 images from the other topics of Flickr dataset.
For the test sets, we downloaded 256 top-ranked images for each topic from
Google Image Search by querying the same word in Table[Il The Google Image
Search provides relatively clean images in the highest ranking. Since we would
like to test whether the temporally associated samples are better generalization
of the topic, the Google test sets are more suitable to our purpose than the
images from the noisy Flickr dataset. In the binary classification test of each
topic, the positive test images are the 256 Google images of the topic and the
negative test images are 256 Google images that are randomly selected from the
other topics. Note that in each run of experiment, only the positive training
samples are different between Temporal and Random tests. The experiments are
repeated ten times, and the mean scores are reported.

Fig[flsummarizes the comparison of recognition performance between Tempo-
ral and Random training. Figlll (a) shows the classification rates for the selected
20 topics. The accuracies of Temporal training are higher by 8.05% on average.
Fig[l(b) presents the corresponding precision-recall curves, which show that the
temporal association significantly improves the confidence of classification. The
Temporal training is usually better than the Random training in performance,
but the improvement is limited in some topics; In highly variant topics (e.g.
advertisement and starbucks), the temporal consistency is not easily captured.
In stationary and coherent topics (e.g. butterfly+insect and parrot), the random
sampling is also acceptable.

4 Discussion

We presented a nonparametric modeling and analysis approach to understand
the dynamic behaviors of Web image collections. A sequential Monte Carlo based
tracker is proposed to capture the subtopic evolution in the form of the similarity
network of the image set. In order to show the usefulness of the image-based
temporal topic modeling, we examined subtopic evolution tracking, subtopic
outbreak detection, the comparison with the analysis on the associated texts,
and the use of temporal association for recognition improvement. We believe that
this line of research has not yet fully explored and various challenging problems
still remain unsolved. In particular, more study on the temporal context for
recognition may be promising.
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Abstract. This work focuses on characterizing scenery images. We se-
mantically divide the objects in natural landscape scenes into background
and foreground and show that the shapes of the regions associated with
these two types are statistically different. We then focus on the back-
ground regions. We study statistical properties such as size and shape,
location and relative location, the characteristics of the boundary curves
and the correlation of the properties to the region’s semantic identity.
Then we discuss the imaging process of a simplified 3D scene model and
show how it explains the empirical observations. We further show that
the observed properties suffice to characterize the gist of scenery images,
propose a generative parametric graphical model, and use it to learn and
generate semantic sketches of new images, which indeed look like those
associated with natural scenery.

1 Introduction

By age 5 or 6 children develop a set of symbols to create a landscape that
eventually becomes a single variation repeated endlessly. A blue line and
sun at the top of the page and a green line at the bottom become symbolic
representations of the sky and ground. From: Drawing on the Right Side
of the Brain. Betty Edwards, 1979 [1].

When we think of “scenery” or “natural landscape” images, we typically imagine
a photograph or a painting, with a few horizontal background regions, each
spanning the frame. The highest region would usually be the sky, while the
lower regions might include mountains, trees, flowers, water (lake/sea), sand,
or rocks. This work examines whether this intuition is justified, by analyzing
image statistics and by modeling the 3D world and analyzing its 2D projections
as imaged in typical scenery photography. We semantically divide the objects
in natural landscape scenes into background and foreground and show that the
shapes of the regions associated with these two types are statistically different.
We then focus on the background regions. We study statistical properties such as
size and shape, location and relative location, the characteristics of the boundary
curves and the correlation of the properties to the region’s semantic identity.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 99{112,|2010.
© Springer-Verlag Berlin Heidelberg 2010
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These properties, which could be characterized as common world knowledge,
have been used, in part, to enhance several computer vision algorithms. Nonethe-
less, they have not, to the best of our knowledge, been explicitly expressed,
summarized, or computed.

This paper makes three contributions: First, we make several observations
about image region properties, and collect empirical evidence supporting these
observations from annotated segmentations of 2D scenery images (Section [2I).
Second, we discuss the imaging process of a simplified 3D scene model and show
how it explains the empirical observations (Section [). In particular, we use
slope statistics inferred from topographic maps to show why land regions whose
contour tangents in aerial images are statistically uniformly distributed appear
with a strong horizontal bias in images taken from ground level. Third, we show
that the observed properties suffice to characterize the gist of scenery images:
In Section Ml we propose a generative parametric graphical model, and use it to
learn and generate semantic sketches of new images, which indeed look like those
associated with natural scenery. The novel characteristics analyzed in this work
may improve many computer vision applications. In Section [ we discuss our
future intentions to utilize them for the improvement of top-down segmentation,
region annotation, and scene categorization.

1.1 Related Work

Statistics of natural images play a major role in image processing and computer
vision; they are used in setting up priors for automatic image enhancement and
image analysis. Previous studies in image statistics (e.g., [2I3/4/5]) mostly charac-
terized local low-level features. Such statistics are easy to collect as no knowledge
about high-level semantics is required. Lately, computer-vision groups have put
effort into collecting human annotations (e.g., [6I7U8]), mostly in order to obtain
large ground-truth datasets that enable the enhancement and validation of com-
puter vision algorithms. The availability of such annotations enables the infer-
ence of statistics on semantic characteristics of images. A first step was presented
in [6] where statistics on characteristics of human segmentation were collected.
In [7] a few interesting statistics were presented, but they mainly characterize the
way humans segment and annotate. We follow this direction relying on human
annotations to suggest characteristics that quantify high-level semantics.

The importance of context in scene analysis was demonstrated a while ago [9)]
and used intensively in recent years for improving object detection by means of
cues pertaining to spatial relations and co-occurrence of objects [I0[TIIT2], an-
notated segments [I3], or low-level scene characteristics and objects [T4/T5]. Part
of the work presented here focuses on the co-occurrence of and spatial relations
between background objects. Objects are semantically divided into background
and foreground, implying that image analysis applications may benefit from
treating objects of these two classes differently. This is related to the stuff vs.
things concept [16].

We found that the background-region boundary characteristics correlate
with the identity of the lower region. This observation is consistent with the
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observation made in figure-ground assignment studies, that of the two regions
meeting in a curve, the lower region is more likely to be the "figure”, i.e., of
lower depth [I7JI8]. Our work is also related to the recent successful approach
which uses learning to model the relation between image properties and the
corresponding 3D structure (e.g., [I9J20/21]). The approach in [2I], for exam-
ple, associates the images with particular classes of geometrically specified 3D
structures. We focus here on the wide class of scenery images with a variety of
semantically specified regions, and provide an image model (supported by 3D
scene analysis) characterizing the large scale image properties.

2 Observations and Evidence

In this section we present some observations on the appearance of background
regions in landscape images. After showing how the statistics of their general
shape differ from those of foreground objects, we discuss their relative location
and characteristics of their contours.

We use fully annotated landscape images included in the Labelme toolbox [7].
Of the images used in [22], where outdoor images were divided into eight cate-
gories, we used all the images of the three natural landscape categories: coast,
mountain, and open country (for a total of 1144 256X256 images).

With the Labelme toolbox, a Web user marks polygons in the image and
freely provides a textual annotation for each. This freedom encourages the use of
synonyms and spelling mistakes. Following [7], synonyms were grouped together
and spelling mistakes were corrected.(For details see [23].)

2.1 The General Shape of Background vs. Foreground Objects

We semantically divide the annotated objects into two sets: background objects
and foreground objects. The background set includes all objects belonging to the
following list: sky, mountain, sea, trees, field, river, sand, ground, grass, land,
rocks, plants, snow, plain, valley, bank, fog bank, desert, lake, beach, cliff, floor.
Foreground objects are defined as those whose annotation does not belong to that
list. (Note that while trees, rocks, and plants are considered background objects,
tree, rock, and plant are considered foreground objects.) For a summary of the
occurrence of each of the background and foreground labels see [23]. Differences
in the distribution of the size and aspect ratios of the bounding box of these two
classes give rise to the following observations:

Observation 1: Many background objects exceed the image width.

The background objects are often only partially captured in the image. See
Fig. M{a) and Fig. [(b) for background vs. foreground object width statistics.
Note the sharp bimodality of the distribution.

Observation 2: The background objects are wide and of low height
while foreground objects’ shape tend to be isotropic.

Although the entire background object width is usually not captured, the height
of its annotated polygon is usually small relative to the height of the image. See
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Fig. 1. Bounding boxes of imaged background objects are usually low height horizontal
rectangles, while those of imaged foreground objects tend to be squares: (a) width den-
sity estimation (by kernel smoothing) of annotated objects from the Labelme dataset
(where width is the difference in pixel units between the rightmost and the leftmost
points in the annotated polygon. All images are 256 x 256); (b) width density estima-
tion of background and foreground objects taken separately; (c) width minus height
density estimation of annotated objects; (d) width minus height density estimation of
background and foreground objects taken separately. The distributions in (a),(c) were
generated by an equal number of foreground and background objects. A random subset
of background objects was used to compensate for the larger number of background
objects in this dataset.

Fig. Ml(c) and Fig. [[((d): the width and height difference of foreground objects
is distributed normally with zero mean, while the width and height difference
of background objects significantly favors width. This implies that bounding
boxes of imaged background objects are low height horizontal rectangles, while
bounding boxes of imaged foreground objects tend to be squares. (Note that all
the images in this dataset are squares, so the horizontal bias is not due to the
image dimensions.) See further analysis and discussion on the horizontalness of
background regions in Section [3l

2.2 The Top-Down Order of Background Objects

Because background objects tend to be wide—frequently spanning the image
horizontally though not vertically—each landscape image usually includes a few
background regions, most often appearing one on top of the other.

Observation 3: The relative locations of types of background are often
highly predictable.

It is often easy to guess which background type will appear above another. For
instance, if an (unseen) image includes sky and ground, we know that the sky will
appear above the ground. Here we extend this ostensibly trivial ”sky is above”
observation and test above-and-below relations for various pairs of background
types. Let Z denote the set of all landscape images. Let A — B denote that
background type A appears above background type B in image I € Z (e.g.,
A=trees, B = mountain). We estimate the probability for A to appear above B
(or B to appear above A), given that we know both appear in an image:

{I €ZI|A,Bel,A—- B}

pa-p=p(A-Bl|A,Bel)~ {I € Z|A, B € I}|

(1)
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Fig. 2. Expected relative location of background regions. For most background type
pairs, there is a strong preference for one type to appear above the other. (a) The
probability for a background region of identity A to appear above a background region
with identity B, summarized in a histogram for various background identity pairs.
(b) Topological ordering of background identities can be defined: this DAG (Directed
Acyclic Graph) is associated with the reachability relation R : {(A, B)|pa—g > 0.7}.

See Fig. [2] for a histogram of p4_p for A and B being two background iden-
tities, A # B. The histogram is symmetric as pa_p + pg—a = 1. There are
22 background categories. Out of 231 possible pairs, only 116 appear at least
once in the same image. The histograms consider only pairs that coappeared at
least 5 times (83 pairs). Most pairs show a clear preference for the more likely
relative location. The most obvious is sky, which appears above all other back-
ground categories. However, some examples for pairs for which py_p > 0.9 are
mountain-lake, trees-plants, mountain-beach, trees-rocks, plain-trees. For 84%
of the pairs, max(pa—_p,ps—a) > 0.7. The dominant order relations induce a
(partial) topological ordering of the background identities and can be described
by a DAG (Directed Acyclic Graph). The DAG in Fig. BI(b) is associated with
the reachability relation R : {(A, B)|pa—p > 0.7}, i.e., there is a directed path
in the graph from A to B if and only if A appears above B in more than 70% of
the images in which they coappear. As evident here, learning the typical relative
locations of background regions is informative.

2.3 Contours Separating Background Regions

If a background region A appears above a background region B, it usually means
that B is closer to the photographer and is partly occluding A [T7/18|. Hence, we
can say that a contour separating background regions is usually the projection of
the closer (lower) background region’s silhouette, and usually has characteristics
that can be associated with this background type.

Observation 4: The characteristics of a contour separating two back-
ground regions correlates with the lower region’s identity.

Consider Fig. Bl The curves in Fig. B(b-d) are associated with the background
object classes ‘mountain’, ‘trees’, and ‘grass’, respectively. See also Fig. Ble)-
(g), for contours associated with different background objects. When the lower
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Fig. 3. Characteristics of background region boundaries. (a)-(d) An image and its hand
segmentation [6]. (e)-(g) A few sample contour segments associated with background
object classes ‘mountain’, ‘sea’, and ‘trees’ (from Labelme). (h) Classification accuracies
for two-class background identity, based only on the appearance of the region’s upper
boundary. The accuracy of classification is displayed in linear gray scale (black for all
values below 0.5 and white for all values above 0.8).

background object is of type sea, grass or field, the boundary is usually smooth
and horizontal, resembling a DC signal. For background objects such as trees
and plants, the boundary can be considered as a high frequency 1D signal.
For background objects of type ‘mountain’, the associated boundaries usually
resemble 1D signals of rather low frequency and high amplitude.

Adopting a signal representation, we checked how informative the contours
are for discriminating between background identities: The Labelme landscape
images were randomly divided into equally sized training and validation sets.
For each background labeled region, the upper part of its contour was extracted
and cut to chunks of 64-pixels length. Each chunk was FFT transformed, and
the norms of 32 coefficients (2-33) were added to a training or validation set
associated with the background label. Only labels for which the training set
included at least 30 ‘signals’ were further considered. For each pair of labels we
checked whether the two associated classes could be distinguished using ONLY
the upper part of their boundary. We used an SVM classifier with an RBF kernel.
(To avoid bias due to different class size, which would have made discrimination
easier, we took equal sized training sets and validation sets from the two classes,
by randomly selecting some members of the larger set.) Fig. Bl(h) summarizes
the accuracies of the two-class classifiers. While the information in the contour’s
shape cue discriminates well between several pairs of background types, it cannot
discriminate between all pairs. Better results may be obtained by adding local



Non-local Characterization of Scenery Images 105

properties as discussed in Section [l In Section Fl we show that the contour
shape information together with the relative location may be used to specify a
generative model that captures the gist of scenery images.

3 Why Are Background Regions Horizontal? A 3D
Analysis

In Section Plwe have statistically shown that imaged land region boundaries have
a strong horizontal bias. To account for this empirical finding, we model the 3D
world and analyze its 2D projections imaged in typical scenery photography. We
start by a simplified ‘flatland’ model, continue by considering also land coverage
(e.g., vegetation), and finally terrain elevation. In all these cases, we show why
land regions whose contour tangents in aerial images are uniformly distributed
appear with a strong horizontal bias in scenery filmed on the ground.

3.1 Flatland

Place a penny on the middle of one of your tables in Space ... look down
upon it. It will appear a circle....gradually lower your eyes ... and you
will find the penny becoming more and more oval to your view.... From
Flatland, by Edwin A. Abbott, 1884 [24].

We first consider a natural terrain in a flat world with no mountains, no valleys,
and vegetation of zero height. This terrain may be divided into a few regions, each
with different “clothing”, as depicted from an aerial view in Fig.[d{(a). Consider
the contour lines dividing the different regions. Let © be the set of tangent angles
for all such contours, measured relative to some arbitrary 2D axis on the surface.
It is reasonable to assume that the angles in © are uniformly distributed in the
range [0°,360°). Now consider a person standing on that surface at an arbitrary
point, taking a picture. Let ©’ be the set of angles that are the projections of
the angles in © on the camera’s image plane. How is @’ distributed?

For simplicity, we adopt the pinhole camera model. Let a point p on a contour
line be located at (z,—h,z) in a 3D orthogonal coordinate system originating
at the camera pinhole. (See Fig. Hl(b).) Redefine 6 as the angle of the tangent to
the contour line at p, relative to the 1st axis. The angle ', associated with the
projected contour on the camera’s sensor is

, htan 6
tanf’ = Y rtand (2)
For details see [23]. See Fig. Hl(c) for a plot of the distribution of ©’. The strong
peak around 0° explains why background regions tend to be wide and horizontal
in scenery images (as statistically shown in Section 2.T]).
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Fig. 4. The tangents of background object contours when imaging a flat terrain. (a)
A schematic illustration of an aerial image; (b) a view from height h. A point p that
lies on a land region boundary is located at (x,—h, z) relative to a 3D orthogonal co-
ordinate system originating at the camera pinhole; (¢) the distribution of the tangent
of boundary lines in such an image, assuming that the tangents of aerial image bound-
aries are uniformly distributed, 8§ ~ U[0,180), h = 2[m], z ~ U[0[m], 1000[m]], and
x ~ U[0[m], 500[m]].

3.2 Land Cover

Now we extend the flatland model and consider a flat terrain with protruding
coverage, e.g., sand, gravel, or rock covered regions, fields of flowers, or even
forests. Each such region’s cover is often of approximately equal height. Then,
the profile of this land (slicing through any vertical plane) can be considered as
a piecewise constant function.

Consider again the photographer at an arbitrary point on the flat terrain. First
consider the case where the cover is lower than the camera (e.g., bushes, pebbles).
The cover of a raised region would occlude part of the more distant regions. The
distribution of angles associated with the tangents of imaged contours describing
the upper contour of such cover is even more concentrated near the origin, as the
height difference of points on the cover and the pinhole is smaller compared to
the height difference in flatland. When the land cover is higher than the camera
(e.g., forest), the region cannot be viewed from above and only the side facing
the camera will be captured. Angles on the upper contour, at height H project
to image angles, #’, where tanf’ = (Z:;lggzge. Typically, trees are only a few
meters high while the viewing distance z for landscape images is usually much
larger. Therefore, the statistical shortening of the contour angles still holds.

Naturally, the land cover height is not constant, but characterized by some
nominal value with small local perturbation. These perturbations may signif-
icantly change the local projected angle but not the general direction of the
contour, which stays close to horizontal.

3.3 The World Is Wrinkled: Ground Elevation and Slope Statistics

Obviously, the earth’s terrain is not flat. Its surface is wrinkled by mountains,
hills and valleys. To approximately express how ground elevations affect the
appearance of background object contours in images, we rely on a slope statistics
database [25]. This dataset includes histograms over 8 variable size bins for each
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land region of about 9 square kilometers. (The bins are nonuniform and are
specified between the slope limits of 0%, 0.5%, 2%, 5%, 10%,15%, 30%, 45%, and
infinity.) We use the average histogram. To get a distribution, we approximate
the slope distribution within the bin as uniform. See Fig. Bl(b). We also use a
histogram of the maximum slope over the land regions (Fig. Bl(c)).

The slope statistics affect two landscape image contour types: (1) The con-
tours of mountains associated with occluding boundaries (e.g., skylines). (2) The
contours between different types of regions on the terrain.

The distribution depicted in Fig. Bl(c) provides a loose upper bound for the
expected distribution of projected tangent angles associated with the former set.
Even so, the horizontal bias is apparent.

To account for the effect of ground elevation on the latter type of background
contours, we extend the analysis suggested in Section Bl Instead of considering
an angle 0 lying on a flat terrain, we consider € to lie on an elevated plane with
slope gradient angle ¢. See Fig. [B(a). The plane is rotated relative to the image
plane, forming an angle w with the X; axis. The point p is at height H relative
to the camera height. The projected tangent angle § is given by

tan @ — H(cosfsinw + sin @ cos ¢ cosw) — zsin @ sin

x(cosf sinw + sin 6 cos g cosw) — z(cosf cosw — sin B cos p sinw) 3)
For details see [23]. To get an idea how 6’ is distributed, we make several rea-
sonable assumptions: 0 is uniformly distributed as before, ¢ is distributed as the
slope angle distribution (Fig. Bl(b)), and w is uniformly distributed U[—90°, 90°].
The distribution of H was estimated by sampling an elevation map [25], using
the height difference between pairs of locations up to 9km apart. See an analytic
plot of the distribution of 8 in Fig. Bl(d).

The above analysis isn’t perfect from either a geometrical, a topographical,
or an ecological point of view; e.g., we do not account for the roundness of
the world, we assume that the camera is levelled with the ground, we assume
independency between the slope steepness and the imaging height difference,
and we do not consider dependencies between the steepness of slopes and the
location of different land regions. For instance, the slope of a lake is always zero.
Nevertheless, we believe the horizontal bias of background contours, as observed
empirically, is sufficiently accounted for by the simplified analysis described here.

4 A Generative Model

The observations and the statistical quantification presented in Section [2lenable
us to propose the following generative model for scenery image sketches. See, e.g.,
Fig. Ba)-(d). Our model considers the top-down order of background regions,
the relative area covered by each, and the characteristics of their boundaries,
and assigns a probability for each possible annotation sequence.

Let S = (h1,...hpn, 51,52, ...,S,—1) be the description of a background seg-
mentation for an image divided into n background segments, ordered from the
highest in the image (i = 1) to the lowest (i = n). h; is the mean height of region
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Fig. 5. Distribution of background object contour angles in a “wrinkled” world. (a) A
point p lies on a boundary between land regions. It is located on an elevated slope with
gradient angle . The infinitesimal plane is rotated at an angle w relative to X; axis. (b)
Estimated terrain slope distribution using the ITASA-LUC dataset [25]. (c) Estimated
distribution of the maximum slope over land regions, each covering approximately 9
square kilometers. (d) The distribution of the tangents of imaged boundaries, following
the analysis in the text.

i,y hi = 0. .5; describes a ‘1-D signal” associated with the boundary between
tand i+ 1. Let I = (I4,...,1,) be a labeling sequence, where {; € L, and L is the
set of background labels. We shall use the approximated distribution

_ PWPO) 0 W Tl A
P(l|S) a ZlEL” P(S“)P(l) Pl(l) i=1 nPQ(hZ‘lZ) i:l,...,nflpd(SZ”Prl) .
(4)

This approximation assumes that the height of a region depends only on its
identity, and that a boundary’s characteristics depend only on the identity of
the corresponding lower region. Other dependencies are ignored.

The next three sections discuss the distributions P;, P> and Ps.

4.1 A Markov Network for Modeling the Top-Down Label Order

P, is the probability of a scenery image annotation. We use a Markov network
to represent possible label sequences. Let m = |L| be the number of possible
background labels. The network has m + 2 nodes (statuses). The first m are
associated with the members of L. In addition, there is a starting status de-
noted ‘top’ and a sink status denoted ‘bottom’. Let M be the transition matrix.
M (l;,1;) is the probability to move from status associated with label /; to status
associated with [;, i.e., that a region labeled I; appears above a region labeled
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l; in an image. M (top,l;) and M (l;, bottom) are the probabilities that a region
with label /; is at the top/bottom of an image, respectively. Then:

Pl =(l1,..,1n)) = M(top,lx)  [[  M(li,liy1) M(ln,bottom),  (5)
i=1,....n—1

i.e., the probability for a labeling sequence (I1, ...,1,) is equal to the probability
for a random walk starting at the initial network state to go through the states
corresponding with (I, ...,{,,), in that order, and to then continue to the sink
status. We use a dataset of images for which the sequences of background labeling
are known, e.g., the Labelme landscape images, and set the parameters of the
model (i.e., the matrix M) by counting the occurrences of the different ‘moves’.

4.2 A Normal Distribution for the Height Covered by Each Region

P> models the distribution of the relative height of an image region associated
with a certain label. Here we simply use a normal distribution, learning the mean
and variance of each region type’s relative height.

4.3 Modeling Background Contours with PCA

P5(S;|l)) is the probability of a contour with appearance S; to separate two back-
ground regions, the lower being of type lj. In Section we have shown that S;
and [j are correlated (observation 4). To estimate the probability from examples
we use PCA approximation (Principle Component Analysis [26]). Given a train-
ing set of separation lines associated with background type [x, each separation
line is cut to chunks of 64-pixel lengt. Each chunk’s mean value is subtracted,
and PCA is performed, resulting in the mean vector fi, the first s principle com-
ponents @ (a 64xx matrix) and the corresponding eigen values A = (A1, ..., \s).
k is chosen so that 95% of the variation in the training set is modeled.

The PCA modeling allows both computation of the probability of a new sepa-
rating line .S;, cut to chunks S;1, ..., Sim, to belong to the learned distribution (2,
and generation of new separating lines belonging to the estimated distribution.

4.4 Generative Model Demonstration

We can now use this model to generate sketches of new images. To generate a
sketch, a sequence of labels is first drawn from a random walk on the transition
matrix (P;). Then, heights are randomly picked from the normal distributions
(P2) and normalized. Finally, for each separating line indexed 4, four 64-length
chunks Si1,...,S;4 are generated by G = i + b - ®, where b; ~ N(0,./};),
j = 1,...,k. (Each chunk is generated independently, ignoring appearance de-
pendencies between chunks of the same line.) The leftmost point of chunk S; 1

! Cutting the ‘signals’ into chunks also allows us to use separating lines from the
training set that do not horizontally span the entire image or that are partly occluded
by foreground objects. Moreover, it enlarges the training set, by obtaining a few
training items (up to 4 chunks) from each separating contour.
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Fig. 6. A random sample of ‘annotated’ landscape images generated by our model. The
regions are colored with colors associated with their annotation (sky regions are colored
in blue, ground regions are colored in brown, etc.) Best viewed on a color computer
screen.
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is placed at image coordinate (0, 22:1 hj) (where (0,0) is the top-left image
corner). Chunk’s S; », (m = 2,3,4) leftmost point is connected to the rightmost
part of S; ;m—1. See Fig. [fl for a random sample of ‘annotated’ scenery landscape
image sketches generated by the model.

To evaluate the generated, annotated images, we took a random sample of 50
and asked two participants naive to this research, aged 7 and 37, to say whether
they seem to be the annotations of real landscape photos. The first participant
answered ‘yes’ for 37 images, ‘no’ for 5, and was not sure about 8. The second
participant answered ‘yes’ for 44 images, ‘no’ for 3 and ‘not sure’ for 3.

5 Discussion

This work focused on characterizing scenery images. Intuitive observations re-
garding the statistics of co-occurrence, relative location, and shape of background
regions were explicitly quantified and modeled, and 3D reasoning for the bias to
horizontalness was provided.

Our focus was on non-local properties. The generated image sketches, which
seem to represent a wide variety of realistic images, suggest that the gist of such
images is described by those properties. The proposed model provides a prior on
scenery image annotation. In future work we intend to integrate local descriptors
(see e.g. [2728]) into our model and to then apply automatic annotation of
segmented images. The large scale model introduced here should complement the
local information and lead to better annotation and scene categorization [27].
Relating the contour characteristics to object identity can be useful for top-
down segmentation (e.g., [I3]). Specifically, it may address the “shrinking bias”
of graph-cut-based methods [29].

A more complete model of scenery images may augment the proposed back-
ground model with foreground objects. Such objects may be modeled by loca-
tion, size, shape, and their dependency in the corresponding properties of other
co-occurring foreground objects and of the corresponding background regions.

One immediate application would be to use the probabilistic model to au-
tomatically align scenery pictures, similar to the existing tools for automatic
alignment of scanned text. Some would find an artistic interest in the generated
scenery sketches themselves, or may use them as a first step to rendering.
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Abstract. Sparse coding of sensory data has recently attracted notable
attention in research of learning useful features from the unlabeled data.
Empirical studies show that mapping the data into a significantly higher-
dimensional space with sparse coding can lead to superior classification
performance. However, computationally it is challenging to learn a set of
highly over-complete dictionary bases and to encode the test data with
the learned bases. In this paper, we describe a mixture sparse coding
model that can produce high-dimensional sparse representations very
efficiently. Besides the computational advantage, the model effectively
encourages data that are similar to each other to enjoy similar sparse
representations. What’s more, the proposed model can be regarded as an
approximation to the recently proposed local coordinate coding (LCC),
which states that sparse coding can approximately learn the nonlinear
manifold of the sensory data in a locally linear manner. Therefore, the
feature learned by the mixture sparse coding model works pretty well
with linear classifiers. We apply the proposed model to PASCAL VOC
2007 and 2009 datasets for the classification task, both achieving state-
of-the-art performances.

Keywords: Sparse coding, highly over-complete dictionary training,
mixture model, mixture sparse coding, image classification, PASCAL
VOC challenge.

1 Introduction

Sparse coding has recently attracted much attention in research of exploring
the sparsity property in natural signals for various tasks. Originally applied to
modeling the human vision cortex [I] [2], sparse coding approximates the input
signal, x € R%, in terms of a sparse linear combination of an over-complete bases
or dictionary B € R4*P | where d < D. Among different ways of sparse coding,
the one derived by ¢; norm minimization attracts most popularity, due to its
coding efficiency with linear programming, and also its relationship to the NP-
hard ¢ norm in compressive sensing [3]. The applications of sparse coding range
from image restorations [4] [5], machine learning [6] [7] [8], to various computer
vision tasks [9] [10] [I1] [I2]. Many efficient algorithms aiming to find such a
sparse representation have been proposed in the past several years [13]. Several
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empirical algorithms are also proposed to seek dictionaries which allow sparse
representations of the signals [4] [I3] [14].

Many recent works have been devoted to learning discriminative features via
sparse coding. Wright et al. [10] cast the recognition problem as one of finding a
sparse representation of the test image in terms of the training set as a whole, up
to some sparse error due to occlusion. The algorithm utilizes the training set as
the dictionary for sparse coding, limiting its scalability in handling large training
sets. Learning a compact dictionary for sparse coding is thus of much interest
[6] [15], and the sparse representations of the signals are used as the features
trained later with generic classifiers, e.g., SVM. These sparse coding algorithms
work directly on the objects, and are thus constrained to modeling only simple
signals, e.g., aligned faces and digits. For general image classification, such as
object recognition and scene categorization, the above sparse coding scheme will
fail, i.e., it is computationally prohibitive and conceptually unsatisfactory to
represent generic images with various spatial contents as sparse representations
in the above way.

For generic image understanding, hierarchical models based on sparse coding
applied to local parts or descriptors of the image are explored. Ranzato et al. [16]
proposed a neural network for learning sparse representations for local patches.
Raina et al. [I7] described an approach using sparse coding applying to image
patches for constructing image features. Both showed that sparse coding can cap-
ture higher-level features compared to the raw patches. Kavukcuoglu et al. [I§]
presented an architecture and a sparse coding algorithm that can efficiently learn
locally-invariant feature descriptors. The descriptors learned by this sparse cod-
ing algorithm performs on a par with the carefully engineered SIFT descriptors
as shown in their experiments. Inspired by the Bag-of-Features model and the
spatial pyramid matching kernel [19] in image categorization, Yang et al. [11]
proposed the ScSPM method where sparse coding is applied to local SIFT de-
scriptors densely extracted from the image, and a spatial pyramid max pooling
over the sparse codes is used to obtain the final image representation. As shown
by Yu et al. [7], sparse coding is approximately a locally linear model, and thus
the ScSPM method can achieve promising performance on various classification
tasks with linear SVM. This architecture is further extended in [I2], where the
dictionary for sparse coding is trained with back-propagation to minimize the
classification error.

The hierarchical model based on sparse coding in [II] [I2] achieves very
promising results on several benchmarks. Empirical studies show that using
larger dictionary for sparse coding to map the data into higher dimensional
space will generate superior classification performance. However, the computa-
tion of both training and testing for sparse coding can be prohibitively heavy
if the dictionary is highly over-complete. Although nonlinear regressor can be
applied for fast inference [I8], the dictionary training is still computationally
challenging. Motivated by the work in [7] that sparse coding should be local
with respect to the dictionary, we propose an efficient sparse coding scheme with
highly over-complete dictionaries using a mixture model. The model is derived
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Fig.1. A simplified schematic illustration of the image encoding process using the
mixture sparse coding scheme. (a) local descriptor extraction; (b) mixture modeling
in the descriptor space; (c) sparse coding and feature pooling. Within each mixture, a
small dictionary for sparse coding can be applied, thus speeding up the coding process.

via a variational approach, and the coding speed can be improved approximately
at the rate of the mixture number. Fig. [[lillustrates the simplified version of the
image encoding process. The mixture modeling allows a much smaller dictionary
for describing each mixture well, and thus the sparse coding computation can
be effectively boosted.

The reminder of this paper is organized as follows: Section [ talks about
two closely related works and the motivations; Section [ presents the proposed
model and a practical algorithm for learning the model parameters; in Section 4]
classification results on PASCAL VOC 2007 and 2009 datasets are reported and
compared with the existing systems; and finally Section [l concludes our paper
with discussions and future work.

2 Related Works and Motivations

2.1 Sparse Coding for Image Classification

We review the ScSPM system for image classification using sparse coding pro-
posed in [11]. Given a large collection of local descriptors randomly extracted
from training images X = [x1,2,...,xn], Where z; € RY*! is the i'h local
descriptor in column manner and N is the total number of local descriptors se-

lected, the ScSPM approach first concerns learning an over-complete dictionary
B € R¥™P by

N
min Z x; — Ba|? + M|y
i, 37 s = Basll + Ml

! 1)
st. |Bm)|3<1,m=1,2,..,D,

where /1-norm is used for enforcing sparsity, A is to balance the representation

fidelity and sparsity of the solution, and B(m) is the m!* column of B. De-

note A = [aq, g, ...,an], Eq. 0 is optimized by alternating between B and A.

Fixing B, A is found by linear programming; and fixing A, optimizing B is a

quadratically constrained quadratic programming.
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Given a set of local descriptors extracted from an image or a sub-region of
the image S = [x1, z2, ..., xs], we define the set-level feature over this collection
of local descriptors in two steps:

1. Sparse coding. Convert each local descriptor into a sparse code with respect
to the trained dictionary B:

Ay = mjn 1S = BAI + NAle, 2)

2. Max pooling. The set-level feqture is extracted by pooling the maximum
absolute value of each row of A;:

B, = max(|A,]). (3)

Note that A, contains the sparse codes as columns. Max pooling extracts
the highest response in the collection of descriptors with respect to each
dictionary atom, yielding a representation robust to translations within the
image or its sub-regions.

To incorporate the spatial information of the local descriptors, spatial pyramid
is employed to divide the image into different spatial sub-regions over different
spatial scales [I9]. Within each spatial sub-region, we collect its set of local
descriptors and extract the corresponding set-level feature. The final image-level
feature is constructed by concatenating all these set-level features.

2.2 Local Coordinate Coding

Yu et al. [7] proposed a local coordinate coding (LCC) method for nonlinear
manifold learning in high dimensional space. LCC concerns learning a nonlinear
function f(x) on a high dimensional sparse € R%. The idea is to approximate
the nonlinear function by locally linear subspaces, to avoid the “curse of dimen-
sionality”. One main result of LCC is that the nonlinear function f(x) can be
learned in a locally linear fashion as stated in the following lemma:

Lemma 1 (Linearization). Let B € R¥™P be the set of anchor points on the
manifold in R®. Let f be an (a,b, p)-Lipschitz smooth function. We have for all
x € R%:

D
— Y alm)f(B(m))| < allz —~(2 ||2+bZ|a B (m) — ()|

m=1

where B(m) is the m*" anchor points in B, vy(z) = 22:1 a(m)B(m) is the
approximation of x, and we assume a,b > 0 and p € (0, 1]. Note that on the
left hand side, a nonlinear function f(x) is approximated by a linear function
272:1 a(m)f(B(m)) with respect to the coding «, where {f(B(m))}2_; is the
set of function values on the anchor points. The quality of this approximation is
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bounded by the right hand side, which has two terms: the first term ||z — v (x)||
means x should be close to its physical approximation (), and the second
term means that the coding should be local. Minimizing the right hand side will
ensure good approximation for the nonlinear function. Note that this minimiza-
tion differs from the standard sparse coding in the regularization term, where
a weighted £ norm is employed to encourage localized coding. Nevertheless, as
shown by the experiments in [7], in the high dimensional space with unit fea-
ture normalization, empirically the standard sparse coding well approximates
the local coordinate coding for classification purposes.

2.3 Motivation

It should be easy to see that the ScCSPM approach [I1] works as an approximation
to the LCC in modeling the manifold of the local descriptor space. If linear SVM
is used, the nonlinear function values {f(B(m))}L_, are simply determined by
the weights of the classifier. The final classification score is thus an aggregation
of these function values. The ScSPM model shows promising classification results
on generic images with linear classifiers. Nevertheless, there are two limitations

with the ScSPM framework:

1. Standard sparse coding does not include locality constraints explicitly, and
thus may be inaccurate in modeling the manifold, especially when the dic-
tionary is not big enough;

2. The computation of sparse coding increases to be unaffordable when a large
dictionary is necessary to fit the nonlinear manifold well.

To make a concrete argument, we show the ScCSPM computation time for encod-
ing one image as well as the performance (in Average Precision) for dictionaries
of different sizes on PASCAL VOC 2007 dataset [20], where 30,000 local descrip-
tors are extracted from each image. As shown, the performance keeps growing
as the dictionary size increases, as well as the computation time, which increases
approximately linearly. In our experiment, training dictionaries beyond size 8192
is almost infeasible. The local coordinate coding (LCC) work suggests that the
sparse coding should be local and the bases far away from the current encoding
point can be discarded. This motivates our local sparse coding scheme induced
by a Mixture Model, where local sparse coding within each mixture can be very
fast (Refer to Fig.[Il). For comparison, using 1024 mixtures with dictionary size
256 for each mixture, the effective dictionary size is 1024 x 256 = 262, 144, and
our proposed approach can process one image (with 30,000 local descriptors) in
about one minute.

3 Sparse Coding Using a Mixture Model

The proposed approach partitions the descriptor space via a mixture model,
where within each mixture a small over-complete dictionary is used to fit the
local sub-manifold. An variational EM approach is applied to learn the model
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Table 1. The relationships between the dictionary size and the computation time as
well as the performance on PASCAL VOC 2007 validation dataset. The computation
time reported is an approximate time needed for encoding one image.

Dictionary Size 512 2048 8192 32,768
Computation Time 1.5 mins 3.5 mins 14 mins N/A
Performance 45.3% 50.2% 53.2% N/A

parameters. Because of the descriptor space partition and dictionary sharing
within each mixture, we can ensure that the sparse coding is local and similar
descriptors have similar sparse codes. The image feature is finally constructed
by pooling the sparse codes within each mixture.

3.1 The Model

We describe the image local descriptor space using a K-mixture model, where
the local distribution of each mixture is further governed by an over-complete
dictionary. Let X = {z,}X_; be the N independent and identically distributed
observation points, and z = {z,})_; be the corresponding N hidden variables,
where z, € {1,2,..., K} is a random variable indicating the mixture assignments.
Denote the mixture model parameters as © = {B,w}, where B = { B} X | is
the set of over-complete dictionaries, where By, € R**P and w = {wk}szl is the

set of prior weights for the mixtures. We desire to learn the model by maximizing
the likelihood

N K
P(Xx|0) =[] Pxnl©) = [ D w:.p(xn|B-,) (4)

n=1 n=1z,=1

where we let

penlBo,) = [ plan|Bey 0 plair lo)da, (5)
be the marginal distribution of a latent-variable model with a Laplacian prior
p(aZr|o) on the latent variable ", and p(x,|B,,,aZ") is modeled as a zero-
mean isotropic Gaussian distribution regarding the representation error x, —
B, oz

Learning the above model requires to compute the posterior P(z| X, ©). How-
ever, under this model, this distribution is infeasible compute in a close form.
Note that approximation can be used for the marginal distribution p(z,|B.,)
(introduced later in Eq. Bl in order to compute the posterior. This requires
evaluating the mode of the posterior distribution of the latent variable for each
data point, which, however, is computationally too slow. We thus develop a fast
variational approach, where the posterior p(z,|x,, ©) is approximated by

xl Ay, + bl x, + ok

6
S alAyx, + bg,wn + ¢ (6)

q(zn, = klz;, A) =
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where A = {(Ag, bk, ck)}, Ar is a positive definite matrix, by is a vector, and
¢ is a scalar. For computational convenience, we assume A to be diagonal. A
is a set of free parameters, determining the mixture partition in the descriptor
space. Then the learning problem can be formulated as

mlnz Z Zn‘a:m )Ing(mnaZn|@) +Q(zn‘$na/1) IOgQ(Zn‘mnvA)} (7)

n=1z,=1

which minimizes an upper bound of the negative log-likelihood —Zfil log p(x;|O@)
of the model [21].

3.2 Learning Algorithm

The learning problem in Eq. [l can be cast into a standard variational EM algo-
rithm, where we optimize A to push down the upper bound to approximate the
negative log-likelihood at E-step, and then update @ in the M-step to maximize
the approximated likelihood. Let the first term in the object be formulated into

N K
> > 9Galwn, A)log p(an, 20|O)
o (8)

N K
9(zn|2n, A) log p(x,|Bs,) ZZ (zn|2n, A)logw,

Il
_
n
Il
_

M=
M=

Il
_
n
Il
_

n n

Note that the marginal distribution p(x,|B,, ) is difficult to evaluate due to the
integration. We then simplify it by using the mode of the posterior distribution
of ay,:

—logp(xy|B:,) ~ min {—logp(xn|B.,, ;") — log p(ay|o)}
o 9)

=min ||z, — B, a;" |3 + Allei |1
Qp

which turns the integration into a standard sparse coding (or LASSO) problem.
We then have the following updates rules for learning the model

1. Optimize A

mAmZ > {alznlzn, A) [~ log p(@a|B.,) — logw., +log q(zn|a,, )]}

n=1z,=1
(10)
2. Optimize B

N K
H}?i’n— Z Z Q(Zn‘mnv/l) logp(:lii|an) (11)
n=1z,=1

where each column of the dictionaries { By} | is constrained to be of unit
f2 norm. The optimization is again a quadratically constrained quadratic
programming problem, similar to the procedure of updating B in Eq.[dl
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3. Optimize w

N K
rr‘lni,n - Z Z Q(Zn|wna A) Ingzn

n=1z,=1
K

st > w,, =1

which always leads to w,, = + 22/:1 q(zn|®n, A) using the Lagrange multi-
plier.

(12)

By alternatively optimizing over A, B and w, we are guaranteed to find a local
minimum for the problem of Eq. [l Note that B = [By, Bo, ..., Bx] € R>*KD is
the effective highly over-complete dictionary (KD > d) to learn for sparse cod-
ing. The above mixture sparse coding model leverages the learning complexity
by training By (k = 1,2, ..., K) separately and independently in Step 2 given
the posteriors from Step 1. On the other hand, since we specify all the mixture
dictionaries By to be of the same size, their fitting abilities for each data mixture
will affect the mixture model parameters in Step 1, and thus the mixture weights
in Step 3. Therefore, the above training procedure will efficiently learn the highly
over-complete dictionary B, while ensuring that the mixture dictionaries can fit
each data mixture equally well .

3.3 Practical Implementation

The above iterative optimization procedures can be very fast with proper ini-
tialization for A, B, and w. We propose to initialize the model parameters by
the following:

1. Initialize A and w: fit the data X into a Gaussian Mixture Model (GMM)
with K mixtures. The covariance matrix of each mixture is constrained to
be diagonal for computational convenience.

N K

XV, 2 w) =[] D veN (@, Zi)- (13)

n=1 k=1

The above Gaussian Mixture Model can be trained with standard EM algo-
rithm. Initialize A, b, cx and wy with Z‘,;l, —QZgluk, ufZ’gluk and vy,
respectively.

2. Initialize B: Sample the data X into K clusters {Xk},[f:l, according to the
posteriors of the data points calculated from the above GMM. Train the corre-
sponding over-complete dictionaries {Bg}le for those clusters using the pro-
cedure discussed for Eq.[Il Initialize B with this trained set of dictionaries.

! In [22], a Gaussian mixture model is proposed for image classification. Instead of
using Gaussian to model each mixture, we use sparse coding, which can capture the
local nonlinearity.
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3.4 Image Encoding

The proposed model can be regarded as a good approximation to the LCC theory
[7: i) the mixture clustering ensures the locality of the sparse coding; ii) and
the highly over-complete dictionary provides sufficient anchor points for well
approximation of the nonlinear manifold. Similar to case in Sec. 21l suppose we
have a set of local descriptors S = [®1, @2, ..., 5] extracted from an image or its
sub-region, the set-level feature is defined on the latent variables (sparse codes)
{aZr}. Specifically, the local descriptors are first assigned to multiple mixtures
according to the posteriors, and then the sparse codes are extracted with the
corresponding dictionaries. We pool these sparse codes using a weighted average
within each mixture and stack them into a super-vector:

fs = [Vwipts Vwapss .. Vwr ] (14)
where
Y1 40 = Kl@n, Aoy
ZnN:1 q(zn = klxn, A)
is the weighted average of the sparse codes with their posteriors for the kt* mix-

ture. The super-vector feature representation Eq. [[4] has several characteristics
that are not immediately obvious:

By = (15)

— The feature constructed in Eq. [[4] is based on the locally linear model as-
sumption, and thus is well fitted to linear kernels.

— The square root operator on each weight wy corresponds to the linearity of
the feature.

— In practice, the posteriors {p(z, = k|x,, A)}1_ | are very sparse, i.e., each
data point will be assigned to only one or two mixtures. Therefore, Eq.
is very fast to evaluate.

— The effective dictionary size of the sparse coding is K x D. However, in our
mixture sparse coding model, the nonlinear coding only involves dictionaries
of size D, improving the computation approximately by K times (typically
we choose K > 1024).

Again, to incorporate the spatial information, we make use of the philosophy of
spatial pyramid [19] to divide the image into multiple sub-regions over different
configurations. The final image feature is then built by concatenating all the
super-vectors extracted from these spatial sub-regions.

4 Experimental Validation

4.1 PASCAL Datasets

We evaluate the proposed model on the PASCAL Visual Object Classes Chal-
lenge (VOC) datasets. The goal of this challenge is to recognize objects from a
number of visual object classes in realistic scenes (i.e., not pre-segmented ob-
jects). It is fundamentally a supervised learning problem in that a training set
of labeled images is provided. Totally there are twenty object classes collected:
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bottle
#@r.‘—-—__;--'u‘wi‘;

tv/monitor

pottedplant sheep sofa

Fig. 2. Example images from Pascal VOC 2007 dataset

Person: person

Animal: bird, cat, cow, dog, horse, and sheep

Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, and train
Indoor: bottle, chair, dining table, potted plant, sofa, and tv/monitor

Two main competitions for the PASCAL VOC challenge are organized:

— Classification: for each of the twenty classes, predicting presence/absence
of an example of that class in the test image.

— Detection: predicting the bounding box and label of each object from the
twenty target classes in the test image.

In this paper, we apply our model for the classification task to both PASCAL
VOC Challenge 2007 and 2009 datasets.

The PASCAL VOC 2007 dataset [20] consists of 9,963 images, and PASCAL
VOC 2009 [23] collects even more, 14,743 images in total. Both datasets are split
into 50% for training/validation and 50% for testing. The distributions of images
and objects by class are approximately equal across the training/validation and
test sets. These images range between indoor and outdoor scenes, close-ups and
landscapes, and strange viewpoints. These datasets are extremely challenging
because all the images are daily photos obtained from Flickr where the size,
viewing angle, illumination, etc appearances of the objects and their poses vary
significantly, with frequent occlusions. Fig.[2] shows some example images for the
twenty classes from PASCAL VOC 2007 dataset.

The classification performance is evaluated using the Average Precision (AP)
measure, the standard metric used by PASCAL challenge, which computes the
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area under the Precision/Recall curve. The higher the score, the better the per-
formance.

4.2 Implementation Details

Local descriptor. In our experiments, we only use single descriptor type HoG
as the local descriptors, due to its computational advantage over SIFT via in-
tegral image. These descriptors are extracted from a regular grid with step size
4 pixels on the image plane. At each location, three scales of patches are used
for calculating the HoG descriptor: 16 x 16, 24 x 24 and 32 x 32. As a result,
approximately 30,000 local descriptors are extracted from each image. We then
reduce the descriptor dimension from 128 to 80 with PCA.

Mixture modeling. For the VOC 07 dataset, K = 1024 mixtures are used and
the size of the dictionary D for each mixture is fixed to be 256. Therefore, the
effective dictionary size is 1024 x 256 = 262144. Recall from Tab. [[l that working
directly on a dictionary of this size is impossible. Using our mixture model, we
only need to perform sparse coding on dictionaries of size 256, with little extra
efforts of computing the posteriors for each descriptor, leveraging the computa-
tion time for encoding one image below a minute. For the VOC 09 dataset, we
increase the mixture number to 2048. K and D are chosen empirically, balancing
the performance and computational complexity.

Spatial pyramid structure. Spatial pyramid is employed to encode the spatial
information of the local descriptors. As suggested by the winner system of VOC
2007 [24], we use the spatial pyramid structure shown in Fig. Bl for both datasets.
Totally 8 spatial blocks are defined, and we extract a super-vector by Eq.[I4 from
each spatial block and concatenate them with equal weights.

Layer 1 Layer 3

Fig. 3. Spatial pyramid structure used in both PASCAL VOC 2007 and 2009 datasets

Feature normalization. Since our feature is based on the linear model as-
sumption, we use Linear Discriminant Analysis (LDA) to sphere the features,
and then linear SVM or Nearest Centroid is applied for classification. In practice,
we always observe some improvements from this normalization step.
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4.3 Classification Results

We present the classification results on the two datasets in this section. The
precisions for each object class and the Average Precision (AP) are given by
comprehensive comparisons.

PASCAL VOC 2007 dataset. For VOC 2007 dataset, the results we have
are obtained by training on the training set and testing on the validation set.
We report our results in Tab. Bl where the results of the winner system of VOC
2007 [24] and a recent proposed algorithm LLC [25] on validation set are also
provided as reference. As the detailed results for Winner’07 and LLC are not
available, we only cite their APs. Note that the Winner’07 system uses multiple
descriptors beside dense SIFT, and the multiple kernel weights are also optimized
for best performance. The LLC algorithm, similar to our system, only employs
single kernel based on single descriptor. In both cases, our algorithm outperforms
Winner’07 and LLC by a significant margin of about 5% in terms of AP.

Table 2. Image classification results on PASCAL VOC 2007 validation dataset

Obj. Class aero bicyc bird boat bottle bus car cat chair cow
Winner’07 - - - - - - - - - -
LLC [25] - - - - - - - - - -

Ours 785 61.6 53.0 69.8 31.69 622 81.0 60.5 55.9 41.8
Obj. Class table dog horse mbike person plant sheep sofa train tv AP
Winner’07 - - - - - - - - - - 54.2
LLC [25] - - - - - - - - - - 551

Ours 59.3 50.3 754 729 821 26.1 36.1 55.7 81.6 56.3 59.6

PASCAL VOC 2009 dataset. Tab.[Blshows our results and comparisons with
the top systems in VOC 2009. In this table, we compare with Winner’09 sys-
tem (from NEC-UIUC team), and two honorable mention systems UVAS (from

Table 3. Image classification results on PASCAL VOC 2009 dataset. Our results are
obtained based on single local descriptor without combining detection results.

Obj. Class aero bicyc bird boat bottle bus car cat chair cow

Winner’09 88.0 68.6 679 729 442 79.5 725 70.8 59.5 53.6
UVAS 847 639 66.1 673 379 741 63.2 64.0 57.1 46.2
CvC 83.3 574 67.2 688 399 556 669 63.7 50.8 34.9
Ours 87.7 678 681 71.1 391 785 70.6 70.7 57.4 51.7

Obj. Class table dog horse mbike person plant sheep sofa train tv AP

Winner’09 57.5 59.0 726 723 853 36.6 56.9 579 859 68.0 66.5
UVAS 54.7 53.5 68.1 70.6 85.2 385 47.2 49.3 83.2 68.1 62.1
CvC 47.2 473 67.7 66.8 88.8 40.2 46.6 49.4 79.4 71.5 59.7
Ours 53.3 59.2 716 70.6 84.0 309 51.7 559 859 66.7 64.6
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University of Amsterdam and University of Surrey) and CVC (from Computer
Vision Centre Barcelona ). The Winner’09 system obtains its results by com-
bining the detection scores from object detector. The UVAS system employs
multiple kernel learning over multiple descriptors. The CVC system not only
makes use of the detection results, but also unites multiple descriptors. Yet, our
algorithm performs close to the Winner’09 system, and improves by a notable
margin over the honorable mention systems.

5 Conclusion and Future Work

This paper presents an efficient sparse coding algorithm with a mixture model,
which can work with much larger dictionaries that often offer superior classifi-
cation performances. The mixture model softly partitions the descriptor space
into local sub-manifolds, where sparse coding with a much smaller dictionary
can fast fit the data. Using 2048 mixtures, each with a dictionary of size 256,
i.e, effective dictionary size is 2048 x 256 = 524, 288, our model can process one
image containing 30,000 descriptor in about 1 minutes, which is completely im-
possible for traditional sparse coding. Experiments on PASCAL VOC datasets
demonstrate the effectiveness of the proposed approach. One interesting finding
we have is that although our method maps each image into an exceptionally
high dimension space, e.g., the image from VOC 2009 dataset is mapped to a
2048 x 256 x 8 = 4,194,304 dimensional space (spatial pyramid considered), we
haven’t observe any evidence of overfitting. This is possibly owing to the locally
linear model assumption from LCC. Tighter connections with LCC will be inves-
tigated in the future, regarding the descriptor mixture modeling and the sparse
codes pooling.
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Abstract. This paper studies the one-shot and zero-shot learning prob-
lems, where each object category has only one training example or has no
training example at all. We approach this problem by transferring knowl-
edge from known categories (a.k.a source categories) to new categories
(a.k.a target categories) via object attributes. Object attributes are high
level descriptions of object categories, such as color, texture, shape, etc.
Since they represent common properties across different categories, they
can be used to transfer knowledge from source categories to target cat-
egories effectively. Based on this insight, we propose an attribute-based
transfer learning framework in this paper. We first build a generative
attribute model to learn the probabilistic distributions of image features
for each attribute, which we consider as attribute priors. These attribute
priors can be used to (1) classify unseen images of target categories (zero-
shot learning), or (2) facilitate learning classifiers for target categories
when there is only one training examples per target category (one-shot
learning). We demonstrate the effectiveness of the proposed approaches
using the Animal with Attributes data set and show state-of-the-art per-
formance in both zero-shot and one-shot learning tests.

1 Introduction

In this paper, we focus on the one-shot learning [I] and the zero-shot learning
[2] of object categories where there is only one training example per category
or even no training example. Under these circumstances, conventional learning
methods can not function due to the lack of training examples. To solve this
problem, knowledge transfer becomes extremely important [3]: by transferring
prior knowledge obtained from source categories (i.e. known categories) to tar-
get categories (i.e. unknown categories), we equivalently increase the number of
training examples of the target categories. Thus, the difficulties raised by the
scarcity of training examples can be greatly alleviated.

This paper present a transfer learning framework that utilizes the semantic
knowledge of the object attributes. Object attributes are high-level descriptions
about properties of object categories such as color, texture, shape, parts, context,
etc. Human beings have a remarkable capability in recognizing unseen objects
purely based on object attributes. For example, people who have never seen a
zebra still could reliably identify an image of zebra if we tell them that “a zebra

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 127 2010.
© Springer-Verlag Berlin Heidelberg 2010
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is a wild quadrupedal with distinctive white and black strips living on African
savannas”. Since they have prior knowledge about the related object attributes,
e.g., quadrupedal, white and black strips, African savannas, they can transfer
them to facilitate prediction of unseen categories. The attribute-based transfer
learning framework is motivated by this insight. Figure [[l compares different
learning process of conventional learning approaches and attribute-based transfer
learning approaches: while conventional learning approaches treat each category
individually and train each classifier from scratch, the attribute-based transfer
learning approaches can help improve the learning of target classifiers using
the attribute prior knowledge learned from source categories. Therefore, we are
able to learn target classifiers with much fewer training examples, or even no
examples. In the following, we will explore three key components in an attribute-
based transfer learning system: attribute models, target classifiers and methods
to transfer attribute priors. The main contributions of our paper are:

1) We present a generative attribute model that offers flexible representations
for attribute knowledge transfer.

2) We propose two methods that effectively employ attribute priors in the
learning of target classifiers and combine the training examples of target cat-
egories when they are available. Thus the attribute priors can help improving
performance in both zero-shot and one-shot learning task.

3) We show state-of-the-art performance of our transfer learning system on
the Animal with Attributes [2] data set.

Source Categories

fraining exa ran’es

Harnrng exa mp.fes
attribute priors
Target Categories v
traini ng examp.fes rrammg eramp}es
C'ﬂs""('e' Targel Classma

Fig. 1. Comparison of the learning process between conventional learning approaches
(a) and attribute-based transfer learning approaches (b)

The rest of this paper is organized as follows: Section 2] discusses the related
work; Section [3] describes the attribute model, the target classifer and two ap-
proaches of knowledge transfer in details; we present the experimental results in
Section ] and conclude this paper in Section

2 Related Work

Roughly, the methods of knowledge transfer for object categorization can be
divided into three groups [3]: knowledge transfer by sharing either features [4lJ5],
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model parameters [16] or context information [7]. Most of the early work re-
lies on bootstrap approaches to select features or parameters to be transferred
[A5T]. A very recent study [6] suggests that an explicit and controllable transfer
of prior knowledge can be achieved by considering the ontological knowledge of
object similarity. For example, horse and giraffe are both quadrupeds and share
common topologies, so a full model can be transferred from horse to giraffe. The
work presented in this paper integrates a broader ontological knowledge, i.e.,
object attributes, which can transfer knowledge either among similar categories
(e.g., horse and giraffe), or among different categories that share common at-
tributes(e.g., both German shepherd and giant panda have the attribute black).

Several recent studies have investigated the approach employing the object
attributes in recognition problems [2I8/9T0]. Among them, our work is most
related to [2/10]. However, as both studies focused on attribute prediction for
zero-shot learning task, they did not attempt to combine attribute priors with the
training examples of target categories. Thus, although useful, their applications
in one-shot learning task are still limited. Since the framework presented in this
paper (Figure [[lb) includes the route for both attribute priors and the training
examples of target categories, we can benefit from these two domains whichever
is available in learning a new target category. Compared to the existing work
in [2/T0], our contribution is a more complete framework for attribute-based
transfer learning, which enables us to handle both zero-shot learning and one-
shot learning problems. The approaches in [§9] are also related to ours. However,
their methods need attributes annotated for each image. Although this type
of image-level attribute annotation will benefit intra-class feature selection [§]
and object localization [9], it requires substantially human efforts to label each
image. Thus their scalability to a large number of categories is greatly restricted
compared to the category-level attribute annotations advocated in [2/T0] and
this paper.

3 Algorithms

3.1 Background

In the proposed approaches, the category-attribute relationship is represented
by a category-attribute matrix M, where the entry at the m-th row and the ¢-th
column is a binary value indicating whether category m has the ¢-th attribute.
Figure Bla illustrates an example of M. Each object category thus has a list of
attributes whose corresponding values in M equal to “yes”. Given an object cat-
egory, the list of associated attributes a is deterministic. Take the category cow in
Figure[]for example, we have a = {black, white, brown, spots, furry, domestic}.
This information is supposed to be available for both source categories and target
categories.

In our approach, the attribute model and the target classifier belong to an
extension of topic models, which constitute an active research area in the machine
learning community in recent years [IIIT2/T3]. Computer vision researchers have
extended them to deal with various vision problems [T4JT5IT6/T7]. In a topic
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model, a document w is modeled by a mixture of topics, z’s, and each topic z is
represented by a probability distribution of words, w’s. In the computer vision
domain, a quantized image feature is often analogous to a word (a.k.a “visual
words” [I4]), a group of co-occurred image features to a topic (a.k.a “theme”
[I7]), and an image to a document. In Section [ we will visualize visual words
and topics using examples in the test data set. In this paper, we use the bag-of-
features image representation [I8]: the spatial information of image features is
discarded, and an image is represented as a collection of orderless visual words.

3.2 Attribute Model and Target Classifier

The attribute model we employed is the Author-Topic (AT) model (Figure[2a)
[13]. The AT model is originally designed to model the interests of authors from
a given document corpus. In this paper, we extend the AT model to describe the
distribution of image features related to attributes. To our best knowledge, this
is the first attempt of this kind. Indeed, authors of a document and attributes of
an object category have many similarities, which allow us to analogize the latter
to the former: a document can have multiple authors and an object category
can have multiple attributes; an author can write multiple documents and an
attribute can be presented in multiple object categories. Nevertheless, there is
also noticeable difference between them: each document can have a distinct list
of authors, while all images within an object category share a common list of
attributes.

© © [|®

® ‘

5 Ho ([ ide

O] o)
(a) (b) (c)

Fig. 2. Graphical representations of the Author-Topic (AT) model (a), the Category-
Topic (CT) model (b) and the CT model with informative Dirichlet priors over 7 and
¢ (c). See text for detailed discussions of these models.

The AT model is a generative model. In this model, an image j has a list of
attributes, denoted by a;. An attribute ¢ in a; is modeled by a discrete distri-
bution of K topics, which parameterized by a K-dim vector 8y = (641, ..., 00k)
with topic k receiving weight 6,,. The topic k is modeled by a discrete distribu-
tion of W codewords in the lexicon, which is parameterized by a W-dim vector
ok = (Pk1, ..., dpw ) With codeword v receiving weight ¢y, . Symmetric Dirich-
let priors are placed on 6 and ¢, with 8, ~ Dirichlet(a), and ¢y, ~ Dirichlet()),
where a and \ are hyperparameters that affect the sparsity of these distributions.
The generative process is outlined in Algorithm [II
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Algorithm 1. The generative process of the Author-Topic model
1: given the attribute list a; and the desired number of visual words in image j, N;
2: for i =1to N; do
3:  conditioning on a;, choose an attribute zj; ~ Uniform(a;)
4:  conditioning on x;;, choose a topic zj; ~ Discrete(f.,,), where 6, defines the
distribution of topics for attribute x = £

5:  conditioning on z;i, choose a visual word w;; ~ Discrete(¢.;,), where ¢y defines
the distribution of visual words for topic z = k
6: end for

Given a training corpus, the goal of inference in an AT model is to identify
the values of ¢ and 0. In [13], Rosen-Zvi et al. presented a collapsed block
Gibbs sampling method. The “collapse” means that the parameters ¢ and 6
are analytically integrated out, and the “block” means that we draw the pair
of (zi,#;;) together. The pair of (xj;,zj;) is drawn according to the following
conditional distribution

o/K+NE i AW +Ch "
a+2k’ lN(fC/\jzA_'_Z’ lov/\]z

where 2 = {a;, z\j;, X\ i, W\ ji, @, A}, the subscript ji represents the i-th visual
word in image j, xj; = £ and z;; = k represent the assignments of current visual
word to attribute ¢ and topic k respectively, wj; = v represents the observation
that the current visual word is the v-th codeword in the lexicon, z\ ;; and x, j;
represent all topic and attribute assignments in the training corpus excluding the
current visual word, N o\ji is the total number of visual words that are assigned
to attribute ¢ and topic k, excluding wj;, and C” ; is the total number of visual
words with value v that are assigned to topic k; excludlng Wy

To run the Gibbs sampling algorithm, we first initialize x and z with random
assignments. In each Gibbs sampling iteration, we draw samples of x;; and z;; for
all visual words in the training corpus according to the distribution in Equation
(@) in a randomly permuted order of ¢ and j. The samples of x and z are
recorded after the burn-in period. In experiments, we observe 200 iterations
are sufficient for the sampler to be stable. The posterior means of § and ¢ can
then be estimated using the recorded samples as follows:

p(xji = E,Zﬂ = k;|wﬂ =, Q) X

G OEENE o MW o)
a+2,§:1Nf" >‘+ZUM//:1C;§/

where N, f and C} are defined in a similar fashion as in Equation (), but without
excluding the instance indexed by ji.

If there is only one attribute in each image and the attribute is the object
category label, the AT model can be used in object categorization problems [I6].
In this paper, we call this approach Category-Topic (CT) model (Figure 2lb)
and use it as the target classifier in the proposed transfer learning framework.
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It worth to note that the proposed transfer learning framework as illustrated
in Figure [Ilb is an open framework in that we can also employ other type of
attribute models and target classifiers. For example, we evaluate SVM as a target
classifier in this paper. Nevertheless, our experiments show that the CT model
can outperform discriminative classifiers such as SVM by a large margin.

The inference of a CT model can be performed in a similar way to the AT
model. In the Gibbs sampling, we draw samples z;; according to the following
conditional distribution

BIK+M), ;0 MW+,

p(2ji = klwj; =v,¢; =m, 2) K , W
B+ k—1 M%\ji A2 O

)

where 2 = {z\j;, W\ji, 3, A}, M:; \ji 18 the number of visual words in images of
category m assigned to topic k, excluding the current instance. The posterior
mean of 7 can be estimated as follows:

i BIK + My,
Timk = K &’
/6 + Zk’:l Mm
and the posterior mean of ¢ is the same as in Equation (2]).
After learning a CT model, we can use it to classify a test image w; =

{wy1, ..., wen, } by choosing the target classifier that yields the highest likelihood,
where the likelihood for category ¢ = m is estimated as

(4)

N K
p(Wile = m, D) ~ H Z Phewyi Tme- (5)

i=1k=1

If the attribute list is unique in each category, an AT model can also be used
to classify a new image by the maximum likelihood criterion. Suppose we have
learned 6, for every ¢ = 1, ..., A from the source categories, we can then use them
in classifying an image of a target category using the approximate likelihood

N: K N; K
p(Wile = m, ap, D7) ~ HZQbkwt (Al Z éek> = HZngwtﬁmk,

i=1 k=1 ' team i=1 k=1
(6)

where a,, is the attribute list associated to a target category ¢ = m, A,, the
length of an,. In the above equations, we have constructed a pseudo weight
for the category-specified topic distribution of a new category from 6,, i.e.,

Tk = (Alm Z@eam éek). This pseudo weight can be viewed as the prior of

T before we see the real training examples of the new category. Although the
unique-attribute-list assumption does not hold in general, it is necessary for
attribute-only classifiers, including the AT model discussed in this paper and
the approaches in [2I8], to predict unseen categories. The data set tested in this
paper satisfies this assumption.

While the AT model can be used to deal with the zero-shot learning problem,
it is ineffective for the one-shot learning problem. One may conjecture to add the
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training examples of target categories to those of source categories and then re-
train the AT model. However, this naive approach will not work well in practice
because the number of training examples of source categories is usually higher
than the one of target categories by several orders. Consequently the AT model
can not well represent the new observations in the training examples of target
categories. Thus we need approaches to control the balance between the prior
information from source categories and the new information in target categories.
We will propose two approaches to achieve this goal in the rest of this section.

3.3 Knowledge Transfer by Synthesis of Training Examples

The first knowledge transfer approach is to synthesize training example for target
categories. The idea is as follows: first, we learn the attribute model from the
training examples of the source categories; second, for each target category, we
run the generative process in Algorithm [ to produce S synthesized training
examples using the estimated 6 and gZ) as well as the attribute list associated
to this target category. Each synthesized training example contains N visual
words, where N is the mean number of visual words per image in the source
categories. In this procedure, the number of synthesized training example, .S,
represent our confidence about the attribute priors. We can use it to adjust the
balance between the attribute priors and new observations from the training
images of target categories.

Since we adopt the bag-of-features representation, the synthesized example
is actually composed of a set of image features without spatial information. So
they are indeed “artificial” examples in that we can not visualize them like a
real image. This is different from the image synthesis approaches in the literature
[19/20], which output viewable images. Nevertheless, since our goal is to generate
training examples for the target categories to assist the learning process, this is
not an issue providing the classifiers take these bag-of-features as inputs.

3.4 Knowledge Transfer by Informative Parameter Priors

The second knowledge transfer approach is to give parameters of the CT model
in the target classifiers informative priors. Figure Plc illustrates the complete
CT model, where m and ¢ are given Dirichlet distributions as priors. In these
Dirichlet distributions, p and 7 are base measurements that represent the mean
of ¢ and 7, and A and [ are scaling parameters that control the sparsity of
the samples drawn from the Dirichlet distribution. When we have no clue about
the prior of ¢ and 7, we usually give symmetric Dirichelt priors, whose base
measures are uniform distributions. The graphical representations of CT models
often neglect such uniform distributed base measures and only retain the scaling
parameters A and (3, as shown in Figure 2b. This rule also applies to the AT
model. In this paper, these scaling parameters are given vague values when doing
Gibbs sampling, A=W, a= 3= K.

However, after we learn the attribute model from source categories, our un-
certainty about the ¢ and 7 of target categories will be greatly reduced. Our
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knowledge on these parameters are represented by the estimated (/3 in Equation
@) and 7 in Equation (). Since E(¢r) = pr and E(my) = 1m, now we can
give informative priors to ¢ and 7 by setting py = qZ)k and 7, = 7p,. The basic
equation of Gibbs sampling of the CT model with informative prior the becomes

ﬁ’frmk + Myk,;’\ji Aqgkrv + Cllc),\ji

X K / W
B+ Mff,,,\ji At Ck,\ji

p(zji = klwji = v, 2) ; (7)

where 2 = {c; = m,2z\j;, W\ji, B0, \u}. The posterior means of 7 and ¢ in
Equation @) and () are updated accordingly. The value of A\ and 3 represent
our confidence on these priors, which can be used to control the balance between
attribute priors and the new observations of training images of target categories.
In the experiments, we set A = 3 = NS, where N and S are defined as in
Section 3.3

By comparing Equation (7)) and Equation (3)), we can appreciate the im-
portance of informative priors for the zero-shot learning task. If we have no
prior knowledge about 7, we can only give it a symmetric Dirichlet prior where
Nmk = 1/K. In this scenario, the CT model have to see some training examples
of target categories; otherwise, 7, will be assigned to vague value 1/K, which is
useless for categorization tasks. Thus the CT model can not be used in zero-shot
learning task. With the attribute knowledge, we can give 7 informative priors
Nmk = Tmk, Which permits us to perform zero-shot learning task using the CT
model. Similar impact of the informative priors can be observed in the one-shot
learning task.

4 Experiments

4.1 Data Set and Image Features

In the experiments, we use the “Animals with Attributes” (AwA) data set
described in [2]. This data set includes 30475 images from 50 animal cate-
gories, and 85 attributes to describe these categories. The category-attribute
relationship is labeled by human subjects and presented in a 50 x 85 matrix M.
FigureBla illustrates a subset of this matrix. 40 categories are selected as source
categories and the rest 10 categories are used as target categories. The divi-
sion of source and target categories is the same as in [2]. The 85 attributes can
be informally divided into two groups: visual attributes such as black, furry,
big, arctic, etc., and non-visual attributes such as fast, weak, fierce, domes-
tic, etc. Totally there are 38 non-visual attributes (attribute No.34 to No.64
and attribute No.79 to No.85) and 47 visual attributes. While non-visual at-
tributes are not directly linked to visual features, it turns out that the non-
visual attributes have strong correlation to the visual attributes, as shown in
Figure Blb. Take the attribute fast as an example, the top three most related
visual attributes are furry (P(furry|fast) = 0.833), tail (P(tail|fast) = 0.833)
and ground (P(ground|fast) = 0.786).
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Fig.3. (a): examples of ontological knowledge represented by the binary
category-attribute values; (b): the probability of nonvisual attributes con-
ditioned on visual attributes measured by P(visuallnonnon-visual) =
N (visual, non-visual) /N (nonnon-visual), where N(-) denote the number of cat-
egories that have the particular attributes in the given data set. Images and attributes
are from the “Animals with Attributes” data set [2].

All images are resized such that the longest side has 300 pixels. From each im-
age, we extract four types of image features: SIFT [21], rgSIFT [22], local color his-
togram and local self-similarity histogram (LSS) [23]. Then for each type of feature,
we build a visual lexicon of size 1000 by applying K-means clustering algorithms
over features from 250 images randomly selected from source categories. Code-
words from four type of features are combined into a single lexicon with 4000 code-
words. Features in all images are quantized into one of the codewords in this lexi-
con. On average, there are about 5000 features in each image. So we set N = 5000
in the approaches of attribute knowledge transfer in Section3.3land Section3.4l In
[2], color histogram (CH) and PHOG features are also extracted from 21 cells of a
3-level spatial pyramids. In our experiments, we did not use these features because
the topic model can not discover sensible patterns of co-occurrence of CH/PHOG
from the sparse 21 CH/PHOG features in each image.

4.2 Experiment Setup and Implementation Details

Baseline Algorithms. In the experiments, we use Direct Attribute Prediction
(DAP) [2] and SVM as baselines in the zero/one-shot learning tasks.

The DAP is selected as a baseline because it is the state-of-the-art approach
for zero-shot learning on the AwA data set. DAP uses a SVM classifier that is
trained from source categories to predict the presence of each attribute in the
images of target categories. Then the attribute predictions are combined into a
category label prediction in an MAP formulation. The original DAP can only
perform zero-shot learning. For one-shot learning, we use predicted attributes
as features and choose a 1NN classifier following the idea in [§]. We call this
classifier as “DAP+NN” in this paper.

When we use the synthesized training examples to transfer attribute knowl-
edge, many existing classifiers can be used as the target classifier. We choose
SVM as a baseline in this case, mainly because SVM is one of the state-of-the-
art classifiers with bag-of-features image representation [24].
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Implementation Details. The AT model has Ky = 10 unshared topics per
attribute in all tests. When using synthesized training examples, the CT model
has 100 topics; when using informative priors, the number of topics in the CT
model is the same as the total topics in the AT model. The SVM in the target
classifiers is implemented using the C-SVC in LIBSVM with a x? kernel. The
kernel bandwidth and the parameter C' are obtained by cross-validation on a
subset of the source categories.

Evaluation Methodology. In the zero-shot learning scenario, both AT and
DAP are trained using the first 100 images of each source category. Then we
use the AT model to generate S = {10, 20,100} synthesized examples for each
target category. The CT and SVM classifiers will be trained using these synthe-
sized examples. We denote them as “CT+S” and “SVM+S” respectively in the
reported results. Also we use the learned gZ) and 7 in the AT model as informative
priors for the CT model as described in Section B4 where we set S = {2,5,10}.
We denote it as “CT+P” in the reported results.

In the one-shot learning scenario, CT and SVM classifiers are trained with
the synthesized training examples/informative priors obtained in the zero-shot
learning test plus the first M = {1,5,10} images of each target category. The
AT model is trained with the first 100 images of each source category plus the
first M images of each target category. DAP+NN uses the attribute predictions
of the first M images of each target category as training data points to classify
new images of target categories based on the nearest neighbor criterion.

In both zero-shot and one-shot learning tests, all classifiers are tested over
the last 100 images of each target category and the mean of the diagonal of the
confusion matrix is reported as the measurement of performance.

4.3 Results

Test 1: Overall Performance of Zero/One-Shot Learning. The overall
performance of zero/one-shot learning are presented in the top row of Figure [l
These results show that the proposed approach outperforms the baseline algo-
rithms in the following three aspects:

1. We have proposed a better attribute model for knowledge transfer. In both
zero/one-shot learning tests, the AT model surpasses DAP and DAP+NN by
5.9% to 7.9%. Furthermore, all target classifiers that employ the prior knowledge
from the AT model (SVM+S, CT+S and CT+P) achieve higher accuracy than
DAP and DAP+NN. These results clearly show the advantages of the AT model
in the attribute-based transfer learning framework.

2. We have proposed better methods of knowledge transfer for one-shot learn-
ing. In the one-shot learning test, the performance of the AT model does not
improve compared to the zero-shot learning test. It is not a surprise: there are
total 4000 images of source categories while only 10 images of target categories
in training the AT model, thus the learned AT model will be almost the same
as the one trained only with the 4000 source images. This result shows that
the naive method of knowledge transfer will not work for the one-shot learning
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Fig. 4. Results of zero-shot and one-shot learning in Test 1 (top row, using all at-
tributes), Test 2 (middle row, using visual attributes only) and Test 3 (bottom row,
using randomly selected attributes) for SVM+S (column 1), CT+S (column 2) and
CT+P (column 3) respectively. The x-axis represents the number of real examples,
M, and the y-axis represents the mean classification accuracy, i.e., the mean of the
diagonal of the confusion matrix.

task. The proposed CT+S and CT+P approaches achieve better balance be-
tween the prior attribute knowledge and the real example of target categories,
and the additional single training example improves their accuracies by 0.9%-
3% (CT+S) and 0.4%-1.4% (CT+P) respectively compared to their zero-shot
learning results.

3. We have proposed a better target classifier. In both the zero-shot and one-
shot learning tasks, the CT models (CT+S and CT+P) consistently exceed the
baseline SVM classifier and thus the advantage of CT over SVM in the zero/one-
shot learning tasks is confirmed.

In addition to the above conclusion, we also have the following observations.

4. CT+S generally outperforms CT+P. CT+P can be viewed as an online
version of CT+S, where the informative priors are equivalent to the initial val-
ues estimated from the synthesized examples in the initialization stage. Thus,
samples drawn with CT+P are not distributed according to the true posterior
distribution P(z;;|z\ ;;, W), which includes all the synthesized and real training
examples. As a result, the categorization performance is degraded.

5. With the increasing number of real training examples, the improvement on
classification due to the prior knowledge decreases accordingly. This suggests that
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Fig. 5. Illustrations of three attribute models for black, ocean and fast from the top
to the bottom. Column 1: the distribution of the 10 topics assigned to a particular
attribute; Column 2: the distribution of codewords for a particular attribute; Column
3-6: examples of images from source categories (Column 3-5) and target categories
(Column 6), superposed with the top 100 most likely codewords (solid red dots) for
the attributes of the same row. Figures are best viewed in color.

the attributes do not contain all the information in target categories. Further-
more, some attributes may be difficult to learn and some are less informative to
the categories. Thus when we have sufficient number of real training examples,
the prior knowledge behaves more and more like noise and inevitably degrade
the classification performance. We can thus derive a practical guideline from this
observation to select an appropriate parameter S: when there is no or only one
real training example, we can set a large value of S, e.g., 100; when more and
more real training examples are available, we then gradually reduce the value of
S to zero.

Illustrations of the Attribute Models. We show three attribute models for
black, ocean and fast in Figure Bl Though we employ the bag-of-features image
representation and discard the spatial information in the image representation,
the visual features related to two visual attributes, black and ocean, roughly lo-
calize the regions of interest. As discussed in Section 1] the non-visual attribute,
fast, is most correlated to visual attributes furry, tail and ground. So the visual
features related to these visual attributes are implicitly linked to fast. Visual
examples in Figure [0 support this assumption. The influence of the non-visual
attributes on the classification performance will be evaluated quantitatively in
Test 2.

Test 2: The Influence of the Non-visual Attributes in the Transfer
Learning. In this experiment, we remove the non-visual attributes from the
class-attribute matrix and repeat the above tests. Results are illustrated in the
middle row of Figure @ Clearly, the absence of non-visual attributes degrades
the classification performance enormously for all classifiers in both zero-shot and
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one-shot learning scenarios. This test illustrates the importance of the non-visual
attributes in the transfer learning approaches.

Test 3: The Effectiveness of the Knowledge of Attribute in the Trans-
fer Learning. In this experiment, we use the AT model learned from source
categories to generate synthesized training examples or compute informative pri-
ors following randomly selected attributes for each target category, where the
number of random attributes are the same as that of the true attributes in each
target category. The results show that the classification performance is at the
chance level in the zero-shot learning tasks. In the one-shot learning task, the
prior knowledge from the randomly selected attributes does not improve the
classification performance compared to those not using attribute priors. This
experiment highlights the effectiveness of the knowledge of the attribute.

5 Conclusion and Future Work

In this paper, we proposed a transfer learning framework that employs object
attributes to aid the learning of new categories with few training examples. We
explore a generative model to describe the attribute-specified distributions of im-
age features and two methods to transfer attribute priors from source categories
to target categories. Experimental results show that the proposed approaches
achieve state-of-the-art performance in both zero-shot and one-shot learning
tests.

There are several areas to improve this work. First, we will evaluate our ap-
proaches using more data sets in the future, especially the FaceTracer data set
[10] and the PASCAL+Yahoo data set [10]. We will also compare the attribute-
based transfer learning approaches to those not using attributes, such as [4U5I[1].
Second, we employ the bag-of-features image representation in this work, which
discards valuable spatial information. In the future work, we will enhance the
current model by including spatial constraints, such as regions [I5] or vicinity
[16]. By this way, we can localize attributes more accurately and subsequently
improve the categorization performance. Finally, it would be highly valuable to
formally study the influence of different visual attributes and select informative
attributes for particular categories.

Acknowledgement

The support of the Cognitive Systems program (under project POETICON) is
gratefully acknowledged.

References

1. Fei-Fei, L., Fergus, R., Perona, P.: One-Shot Learning of Object Categories.
PAMI 28, 594-611 (2006)

2. Lampert, C.H., Nickisch, H., Harmeling, S.: Learning To Detect Unseen Object
Classes by Between-Class Attribute Transfer. In: CVPR (2009)



140

3.

4.

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

X. Yu and Y. Aloimonos

Fei-Fei, L.: Knowledge Transfer in Learning to Recognize Visual Object Classes.
In: International Conference on Development and Learning (2006)
Bart, E., Ullman, S.: Cross-Generalization: Learning Novel Classes from a Single
Example by Feature Replacement. In: CVPR, pp. 672-679 (2005)
Torralba, A., Murphy, K.P., Freeman, W.T.: Sharing Features: Efficient Boosting
Procedures for Multiclass Object Detection. In: CVPR, vol. 2, pp. 762-769 (2004)

. Stark, M., Goesele, M., Schiele, B.: A Shape-Based Object Class Model for Knowl-

edge Transfer. In: ICCV (2009)

. Murphy, K., Torralba, A., Freeman, W.T.: Using the Forest to See the Trees: A

Graphical Model Relating Features, Objects, and Scenes. In: NIPS (2003)

. Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing Objects by Their At-

tributes. In: CVPR (2009)

. Wang, G., Forsyth, D.: Joint Learning of Visual Attributes, Object Classes and

Visual Saliency. In: CVPR, (2009)

Kumar, N., Belhumeur, P.N., Nayar, S.K.: FaceTracer: A Search Engine for Large
Collections of Images with Faces. In: Forsyth, D., Torr, P., Zisserman, A. (eds.)
ECCV 2008, Part IV. LNCS, vol. 5305, pp. 340-353. Springer, Heidelberg (2008)
Blei, D.M., Ng, A.Y., Jordan, M.I., Lafferty, J.: Latent Dirichlet Allocation.
JMLR 3 (2003)

Griffiths, T.L., Steyvers, M.: Finding Scientific Topics. Proceedings of the National
Academy of Sciences 101(suppl. 1), 5228-5235 (2004)

Rosen-Zvi, M., Chemudugunta, C., Smyth, P., Steyvers, M.: Learning author-topic
models from text corpora. ACM Transactions on Information System (2009)
Sivic, J., Russell, B., Efros, A.A., Zisserman, A., Freeman, B.: Discovering Objects
and Their Location in Images. In: ICCV, pp. 370-377 (2005)

Russell, B.C., Efros, A.A., Sivic, J., Freeman, W.T., Zisserman, A.: Using Multi-
ple Segmentations to Discover Objects and their Extent in Image Collections. In:
CVPR (2006)

Sudderth, E.B., Torralba, A., Freeman, W.T., Willsky, A.S.: Learning Hierarchical
Models of Scenes, Objects, and Parts. In: ICCV, vol. 2, pp. 1331-1338 (2005)
Fei-Fei, L., Perona, P.: A Bayesian Hierarchical Model for Learning Natural Scene
Categories. In: CVPR, pp. 524-531 (2005)

Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual Categorization
with Bags of Keypoints. In: Workshop on Statistical Learning in Computer Vision,
ECCV (2004)

Sun, N., Haas, N., Connell, J.H., Pankanti, S.: A Model-Based Sampling and Sam-
ple Synthesis Method for Auto Identification in Computer Vision. In: IEEE Work-
shop on Automatic Identification Advanced Technologies, Washington, DC, USA,
pp. 160-165 (2005)

Jiang, D., Hu, Y., Yan, S., Zhang, L., Zhang, H., Gao, W.: Efficient 3D reconstruc-
tion for face recognition. Pattern Recognition 38, 787-798 (2005)

Lowe, D.G.: Distinctive Image Features from Scale-invariant Keypoints. IJCV 20,
91-110 (2004)

van de Sande, K.E., Gevers, T., Snoek, C.G.: Evaluation of Color Descriptors for
Object and Scene Recognition. In: CVPR, (2008)

Shechtman, E., Irani, M.: Matching Local Self-Similarities across Images and
Videos. In: CVPR, pp. 1-8 (2007)

Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local Features and Kernels for
Classification of Texture and Object Categories: A Comprehensive Study. IJCV 73,
213-238 (2007)



Image Classification Using Super-Vector Coding
of Local Image Descriptors

Xi Zhou!, Kai Yu?, Tong Zhang?, and Thomas S. Huang!

! Dept. of ECE, University of Illnois at Urbana-Champaign
2 NEC Laboratories America, Cupertino, CA
3 Department of Statistics, Rutgers University

Abstract. This paper introduces a new framework for image classifi-
cation using local visual descriptors. The pipeline first performs a non-
linear feature transformation on descriptors, then aggregates the results
together to form image-level representations, and finally applies a clas-
sification model. For all the three steps we suggest novel solutions which
make our approach appealing in theory, more scalable in computation,
and transparent in classification. Our experiments demonstrate that the
proposed classification method achieves state-of-the-art accuracy on the
well-known PASCAL benchmarks.

1 Introduction

Image classification, including object recognition and scene classification, re-
mains to be a major challenge to the computer vision community. Perhaps one
of the most significant developments in the last decade is the application of lo-
cal features to image classification, including the introduction of “bag-of-visual-
words” representation that inspires and initiates a lot of research efforts [IJ.

A large body of work investigates probabilistic generative models, with the
objective towards understanding the semantic content of images. Typically those
models extend the famous topic models on bag-of-word representation by further
considering the spatial information of visual words [2][3].

This paper follows another line of research on building discriminative models
for classification. The previous work includes SVMs using pyramid matching ker-
nels [4], biologically-inspired models [5][6], and KNN methods [7][8][9]. Over the
past years, the nonlinear SVM method using spatial pyramid matching (SPM)
kernels [4][I0] seems to be dominant among the top performers in various im-
age classification benchmarks, including Caltech-101 [1I], PASCAL [12], and
TRECVID. The recent improvements were often achieved by combining differ-
ent types of local descriptors [I0][13][14], without any fundamental change of the
underlying classification method. In addition to the demand for more accurate
classifiers, one has to develop more practical methods. Nonlinear SVMs scale
at least quadratically to the size of training data, which makes it nontrivial to
handle large-scale training data. It is thus necessary to design algorithms that
are computationally more efficient.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 141 2010.
© Springer-Verlag Berlin Heidelberg 2010
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1.1 Overview of Our Approach

Our work represents each image by a set of local descriptors with their spatial
coordinates. The descriptor can be SIFT, or any other local features, computed
from image patches at locations on a 2D grid. Our image classification method
consists of three computational steps:

1. Descriptor coding:
Each descriptor of an image is nonlinearly mapped to form a high-dimensional
sparse vector. We propose a novel nonlinear coding method called Super-Vector
coding, which is algorithmically a simple extension of Vector Quantization
(VQ) coding;

2. Spatial pooling:
For each local region, the codes of all the descriptors in it are aggregated
to form a single vector, then vectors of different regions are concatenated to
form the image-level feature vector. Our pooling is base on a novel proba-
bility kernel incorporating the similarity metric of local descriptors;

3. Image classification:
The image-level feature vector is normalized and fed into a classifier. We
choose linear SVMs, which scale linearly to the size of training data.

We note that the coding-pooling-classification pipeline is the de facto frame-
work for image scene classification. One notable example is the SPM kernel ap-
proach [4], which applies average pooling on top of VQ coding, plus a nonlinear
SVM classifier using Chi-square or intersection kernels.

In this paper, we propose novel methods for each of the three steps and formal-
ize their underlying mathematical principles. The work stresses the importance
of learning good coding of local descriptors in the context of image classifica-
tion, and makes the first attempt to formally incorporate the metric of local
descriptors into distribution kernels. Putting all these together, the overall im-
age classification framework enjoys a linear training complexity, and also a great
interpretability that is missing in conventional models (see details in Sec. 2.3)).
The most importantly, our method demonstrates state-of-the-art performances
on the challenging PASCALQ7 and PASCALQ9 image classification benchmarks.

2 The Method

In the following we will describe all the three steps of our image classification
pipeline in detail.
2.1 Descriptor Coding

We introduce a novel coding method, which enjoys appealing theoretical prop-
erties. Suppose we are interested in learning a smooth nonlinear function f(z)
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defined on a high dimensional space R?. The question is, how to derive a good
coding scheme (or nonlinear mapping) ¢(x) such that f(z) can be well approxi-
mated by a linear function on it, namely w' ¢(z). Our only assumption here is
that f(z) should be sufficiently smooth.

Let us consider a general unsupervised learning setting, where a set of bases
C C R4, called codebook or dictionary, is employed to approximate any x,

namely,
o Yl
veC

where v(x) = [v,(2)]vec is the coefficients, and sometimes Y v,(z) = 1. By
restricting the cardinality of nonzeros of v(z) to be 1 and +,(z) > 0, we obtain
the Vector Quantization (VQ) method

ve(2) = argmin ||z — |,

where || - || is the Euclidean norm (2-norm). The VQ method uses the coding
Y(z) =1if v = v.(z) and 7, (z) = 0 otherwise. We say that f(z) is # Lipschitz
derivative smooth if for all z, 2’ € R%:

|[f@) = f@") = V@) (z —a')| < §||w -]

It immediately implies the following simple function approximation bound via
VQ coding: for all z € R%:

B

@) = f(0u(@) = VI (0-@) (@ = v@)| < | o —v@IP. )

This bounds simply states that one can approximate f(x) by f (v*(x)) +

Vf (v*(w))T (:r — v*(w)), and the approximation error is upper bounded by the
quality of VQ. It further suggests that the function approximation can be im-
proved by learning the codebook C' to minimize this upper bound. One way is
the K-means algorithm

C = argmin {Z min ||z — v|2} .
C - velC

Eq. (@) also suggests that the approximation to f(x) can be expressed as a linear
function on a nonlinear coding scheme

(@) = g(x) = w' é(x),
where ¢(z) is called the Super-Vector (SV) coding of z, defined by

(@) = [s70(@), (@) (@ —v) 7] 2)

where s is a nonnegative constant. It is not difficult to see that w =
[ f(v),Vf(v)]vec, which can be regarded as unknown parameters to be esti-
mated. Because v, (z) = 1 if v = v, (), otherwise v,(x) = 0, the obtained ¢(x)
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a is highly sparse representation, with dimensionality |C|(d + 1). For example,
if |C| = 3 and v(x) = [0,1,0], then

o(z) = 9,...,9,3,(m—v)T,0,...,0 (3)

~
d+1 dim. d+1 dim. d+1 dim.

Fig. 1. Function f(z) approximated by w' ¢(x)

As illustrated in Figure [l w' ¢(z) provides a piece-wise linear function to
approximate a nonlinear function f(z), as shown in Figure [I}H2), while with
VQ coding ¢(z) = ['yv(x)]zec, the same formulation w' ¢(z) gives a piece-wise
constant approximation, as shown in Figure[I}(3). This intuitively suggests that
SV coding may achieve a lower function approximation error than VQ coding.
We note that the popular bag-of-features image classification method essen-
tially employs VQ to obtain histogram representations. The proposed SV cod-
ing is a simple extension of VQ, and may lead to a better approach to image
classification.

2.2 Spatial Pooling

Pooling. Let each image be represented as a set of descriptor vectors x that fol-
lows an image-specific distribution, represented as a probability density function
p(z) with respect to an image independent back-ground measure du(z). Let’s
first ignore the spacial locations of x, and address the spacial pooling later. A
kernel-based method for image classification is based on a kernel on the proba-
bility distributions over « € 2, K : P x P — R. A well-known example is the
Bhattacharyya kernel [15]:

1

Ko(p.q) = /Q p()} q(a) d dua).

Here p(x) and g(x) represent two images as distributions over local descriptor
vectors, and p(x) is the image independent background measure. Bhattacharyya
kernel is closely associated with Hellinger distance, defined as Dy(p,q) = 2 —
Ky(p,q), which can be seen as a principled symmetric approximation of the
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Kullback Leibler (KL) divergence [I5]. Despite the popular application of both
Bhattacharyya kernel and KL divergence, a significant drawback is the ignorance
of the underlying similarity metric of x, as illustrated in Figure [2l In order to
avoid this problem, one has to work with very smooth distribution families that
are inconvenient to work with in practice. In this paper, we propose a novel
formulation that explicitly takes the similarity of x into account:

/ / #')} (2, 2/ )dp(@)du(a’)
- /Q /Q p(2) F (@)~ 4 sz, 2" p()g(a dpa(w)dpu(')

where k(z,2") is a RKHS kernel on 2 that reflects the similarity structure of z.
In the extreme case where k(z,z’) = §(x — ') is the delta-function with respect
to p(+), then the above kernel reduces to the Bhattacharyya kernel.

t p(z) q(x) t p(z) q(x)

(1) (2)

Fig. 2. Illustration of the drawback of Bhattacharyya kernel: in both cases their density
kernels K3 (p, ) remain to be the same, equal to 0

In reality we cannot directly observe p(x) from any image, but a set X of
local descriptors. Therefore, based on the empirical approximation to K(p,q),
we define a kernel between sets of vectors:

K(X, X' NN, >3 ) 2k(z,a) (4)

rzeX x'eX’

where N and N’ are the sizes of the descriptor sets from two images.

Let k(z,2") = (¢(x), ¢(z")), where ¢(x) is the SV coding defined in the pre-
vious section. It is easy to see that x(z,2’) = 0 if  and 2’ fall into different
clusters. Then we have

ICI

K(X,X') NN, DI )2 ()

k=1lxeXy x EX'
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where X} is the subset of X fallen into the k-th cluster. Furthermore, if we
assume that p(x) remains constant within each cluster partition, i.e., p(x) gives

rise to a histogram [pk]lcill, then

|C]

MKXFN}ZKQMZ¢WV;§:ﬂM>

k=1 z€Xp, a'e X,

The above kernel can be re-written as an inner product kernel of the form
K(X,X'") = (9(X),P(X")), where

|C]

1 1
WO =S, o

€ Xy

Therefore functions in the reproducing kernel Hilbert space for this kernel has
a linear representation f(X) = w' ®(X). In other words, we can simply employ
&(X) as nonlinear feature vector and then learn a linear classifier using this fea-
ture vector. The effect is equivalent to using nonlinear kernel K (X, X’) between
image pairs X and X'.

Finally, we point out that weighting by histogram py, is equivalent to treating
density p(x) as piece-wise constant around each VQ basis, under a specific choice
of background measure p(z) that equalizes different partitions. This representa-
tion is not sensitive to the choice of background measure p(z), which is image
independent. In particular, a change of measure u(-) (still piece-wise constant in
each partition) leads to a rescaling of different components in ¢(X). This means
that the space of linear classifier f(x) = w'®(X) remains the same.

Spatial Pyramid Pooling. To incorporate the spatial location information
of x, we apply the idea of spatial pyramid matching [4]. Let each image be
evenly partitioned into 1 x 1, 2 x 2, and 3 x 1 blocks, respectively in 3 different
levels. Based on which block each descriptor comes from, the whole set X of an
image is then organized into three levels of subsets: Xi;, X7, X%, X2, X2,,
X3, X35, and X3;. Then we apply the pooling operation introduced in the last
subsection to each of the subsets. An image’s spacial pyramid representation is
then obtained by concatenating the results of local pooling

@,(X) = [P(X1)), (XE), B(XE), B(XE,), B(XE,), B(XF,), B(XEy), D(XTy)|

2.3 Image Classification

Image classification is done by applying classifiers based on the image repre-
sentations obtained from the pooling step. Here we consider the task of finding
whether a particular category of objects is contained in an image or not, which
can be translated into a binary classification problem. We apply a linear SVM
that employs a hinge loss to learn g(X) = w'®4(X). We note that the function
is nonlinear on X since @,(X) is a nonlinear operator.
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Interestingly, the image-level classification function is closely connected to a
real-valued function on local descriptors. Without loss of generality, let’s assume
that only global pooling is used, which means @4(X) = ¢(X) in this case.

|C] |C]

g(X)=w'd Z\/pk Y wlé) Z\/pk Y gz (5)

e Xy e Xy

where g(z) = w' ¢(x). The above equation provides an interesting insight to the
classification process: a patch-level pattern matching is operated everywhere in
the image, and the responses are then aggregated together to generate the score
indicating how likely a particular category of objects is present. This observa-
tion is well-aligned with the biologically-inspired vision models, like Convolution
Neural Networks [16] and HMAX model [6], which mostly employ feed-forward
pattern matching for object recognition.

This connection stresses the importance of learning a good coding scheme
on local descriptors z, because ¢(z) solely defines the function space of g(x) =
w' ¢(x), which consequently determines if the unknown classification function
can be well learned. The connection also implies that supervised training of ¢(x)
could potentially lead to further improvements.

Furthermore, the classification model enjoys the advantages of interpretability
and computational scalability. Once the model is trained, Eq. (B suggests that
one can compute a response map based on g(z), which visualizes where the
classifier focuses on in the image, as shown in our experiments. Since our method
naturally requires a linear classifier, it enjoys a training scalability which is linear
to the number of training images, while nonlinear kernel-based methods suffer
quadratic or higher complexity.

3 Discussion and Further Improvement

Our approach is along the line of recent works on unsupervised feature learning
for image classfiication, especially, learning sparse representations e.g., [17][5][18]
[19] [20]. In theory our work is more related to local coordinate coding (LCC)
[19], which points out that in some cases a desired sparsity of ¢(z) should come
from a locality of the coding scheme. Indeed, the proposed SV coding leads to a
highly sparse representation ¢(x), as defined by Eq. (2]), which activates those
coordinates associated to the neighborhood of z. As the result, g(z) = w' ¢(x)
gives rise to a local linear function (i.e., piece-wise linear) to approximate the
unknown nonlinear function f(z). But, the computation of SV coding is much
simpler than sparse coding approaches.

Our method can be further improved by considering a soft assignment of x to
bases C. Recall that the underlying interpretation of f(z) ~ w' ¢(z) is the the
approximation

F@) & f(0u(@) + Y (0a(2) (2 = ve(2))
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which essentially uses the unknown function’s Taylor expansion at a nearby
location v.(z) to interpolate f(x). One natural idea to improve this is using
several neighbors in C' instead of the nearest one. Let’s consider a soft K-means
that computes pi (), the posterior probability of cluster assignment for x. Then
the function approximation can be handled as the expectation

IC]

Zpk { vg) + V() (x—vk)}

Then the pooling step becomes a computation of the expectation

|
B(X) = [\/p’“ ;{pk )(@ — v + 5)

where p, = ]i, Y wex Pr(), and s comes from Eq. ). This approach is dif-
ferent from the image classification using GMM, e.g., [21][22]. Basically, those
GMM methods consider the distribution kernel, while ours incorporates non-
linear coding into the distribution kernel. Furthermore, our theory requires the
stickiness to VQ — the soft version requires all the components share the same
isotropic diagonal covariance. That means a much less number of parameters

k=1

Table 1. Comparison of different coding methods, on PASCAL VOC 2007 test set

P (%) VQ GMM SV  SV-soft
aeroplane 399 744 775 78.9
bicycle 44.0 579 67.2 68.4
bird 27.7 4577 47.0 51.9
boat 53.8 689 739 71.5
bottle 158 26.2 27.2 29.8
bus 48.5 63.0 66.9 70.3
car 63.4 772 814 81.6
cat 386 54.6 61.1 60.2
chair 45.8 53.0 53.7 54.5
cow 27.4 4277 49.3 48.2
dining table 32.7 46.9 55.1 56.8
dog 36.0 43.1 44.6 44.9
horse 66.7 777 777 80.8
motorbike  43.6 60.2 66.2 68.8
person 73.1 83.6 84.8 85.9
potted plant 25.9 28.2 285 29.6
sheep 22.8 423  46.7 47.7
sofa 419 512 56.1 57.7
train 60.0 756 79.2 81.7

tv/monitor 27.0 44.1 51.1 52.9
average 41.7 55.8 59.8 61.1
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to estimate. Our experiment confirms that our approach leads to a significantly
higher accuracy.

4 Experiments

We perform image classification experiments on two datasets: PASCAL VOC
2007 and PASCAL VOC 2009. The images in both datasets contain objects
from 20 object categories and range between indoor and outdoor scenes, close-
ups and landscapes, and strange viewpoints. The datasets are extremely chal-
lenging because of significant variations of appearances and poses with frequent
occlusions. PASCAL VOC 2007 consists of 9,963 images which are divided into
three subsets: training data (2501 images), validation data (2510 images), and
test data (4952 images). PASCAL VOC 2009 consists of 14,743 images and corre-
spondingly are divided into three subsets: training data(3473 images), validation
data(3581 images), and testing data (7689 images).

All the following experiment results are obtained on the testing datasets,
except the comparison experiment for different codebook sizes |C| (Table M),
which is performed on PASCAL VOC 2007 validation set. We use the PASCAL
toolkit to evaluate the classification accuracy, measured by average precision
based on the precision/recall curve.

Table 2. Comparison of our method with top performers in PASCAL VOC 2007

AP (%) QMUL TKK XRCE INRIA(flat) INRIA(GA) Ours
aeroplane 71.6 71.4 72.3 74.8 77.5 79.4
bicycle 55.0 51.7 57.5 62.5 63.6 72.5
bird 41.1 48.5 53.2 51.2 56.1 55.6
boat 65.5 63.4 68.9 69.4 71.9 73.8
bottle 27.2 27.3 28.5 29.2 33.1 34.0
bus 51.1 49.9 57.5 60.4 60.6 72.4
car 72.2 70.1 75.4 76.3 78.0 83.4
cat 55.1 51.2 50.3 57.6 58.8 63.6
chair 474 51.7 52.2 53.1 53.5 56.6
Ccow 35.9 32.3 39.0 41.1 42.6 52.8
dining table  37.4 46.3 46.8 54.9 54.9 63.2
dog 41.5 41.5 45.3 42.8 45.8 49.5
horse 71.5 72.6 75.7 76.5 77.5 80.9
motorbike 57.9 60.2 58.5 62.3 64.0 71.9
person 80.8 82.2 84.0 84.5 85.9 85.1
potted plant 15.6 31.7 32.6 36.3 36.3 36.4
sheep 33.3 30.1 39.7 41.3 44.7 46.5
sofa 41.9 39.2 50.9 50.1 50.6 59.8
train 76.5 71.1 75.1 77.6 79.2 83.3
tv/monitor 45.9 41.0 49.5 49.3 53.2 58.9

average 51.2 51.7 55.6 57.5 59.4 64.0
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Table 3. Comparison of our method with top performers in PASCAL VOC 2009

AP (%) LEOBEN LIP6 LEAR FIRSTNIKON CVC UVASURREY OURS

aeroplane 79.5 80.9 79.5 83.3 86.3 84.7 87.1
bicycle 52.1 52.3 555 59.3 60.7 63.9 67.4
bird 57.2 53.8 54.5 62.7 66.4 66.1 65.8
boat 59.9 60.8 63.9 65.3 65.3 67.3 72.3
bottle 29.3 29.1 43.7 30.2 41.0 37.9 40.9
bus 63.5 66.2 70.3 71.6 1.7 74.1 78.3
car 55.1 53.4 66.4 58.2 64.7 63.2 69.7
cat 53.9 55.9 56.5 62.2 63.9 64.0 69.7
chair 51.1 50.7 54.4 54.3 55.5 57.1 58.5
cow 31.3 33.8 38.8 40.7 40.1 46.2 50.1
dining table 42.9 43.9 44.1 49.2 51.3 54.7 55.1
dog 441 44.6 46.2 50.0 45.9 53.5 56.3
horse 54.8 59.4 58.5 66.6 65.2 68.1 71.8
motorbike 58.4 58  64.2 62.9 68.9 70.6 70.8
person 81.1 80.0 82.2 83.3 85.0 85.2 84.1
potted plant  30.0 25.3 39.1 34.2 40.8 38.5 31.4
sheep 40.2 419 41.3 48.2 49 47.2 51.5
sofa 44.2 42.5 39.8 46.1 49.1 49.3 55.1
train 74.9 784 73.6 83.4 81.8 83.2 84.7
tv/monitor 58.2 60.1 66.2 65.5 68.6 68.1 65.2
average 53.1 53.6 56.9 58.9 61.1 62.1 64.3

In all the experiments, 128-dimensional SIFT vectors are extracted over a
grid with spacing of 4 pixels on three patch scales (16x16,25x25 and 31x31).
The dimension of descriptors is reduced to 80 by applying principal component
analysis (PCA). The codebooks C are trained on one million randomly sampled
descriptors. The constant s is chosen from [0,1074 1073,1072,107!] via cross-
validation on the training set.

4.1 Comparison of Nonlinear Coding Methods

Our first experiment investigates image classification using various nonlinear
coding methods. The goal is to study which coding method performs the best
under linear SVM classifiers. These methods are: (1) VQ coding — using Bhat-
tacharyya kernel on spatial pyramid histogram presentations; (2) GMM - the
method described in [22]; (3) SV — the super-vector coding proposed by this
paper; (4) SV-soft — the soft version of SV coding, where [pi ()], for each z is
truncated to retain the top 20 elements with the rest elements being set zero.

Table [[l shows the experiment results with different coding methods on PAS-
CAL VOC 2007 test dataset. In all the cases |C| = 512 bases/components are
used for coding. SV and SV-soft both significantly outperform other two com-
petitors. SV-soft is slightly better than SV. In the rest of the experiments we
apply SV-soft for classification.
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Table 4. The influence of codebook sizes |C|, on PASCAL VOC 2007 validation set

AP (%) |C| =256 |C| =512 |C]=1024 |C| =2048
aeroplane 777 77.9 77.9 78.7
bicycle 55.6 57.2 58.2 58.7
bird 51.0 53.5 54.4 54.0
boat 66.3 66.9 67.1 68.9
bottle 25.5 29.8 31.5 31.9
bus 56.2 59.7 60.9 60.0
car 78.8 79.6 79.8 80.5
cat 59.5 61.4 62.3 62.4
chair 56.4 56.6 56.8 58.0
cow 40.0 43.6 45.6 44.3
dining table 52.7 58.8 61.1 60.7
dog 42.3 46.5 48.7 47.1
horse 72.5 72.1 72.2 4.4
motorbike 65.7 68.7 70.1 70.5
person 79.8 81.0 81.6 81.7
potted plant 23.3 22.9 22.5 23.2
sheep 30.2 33.9 35.5 32.0
sofa 52.2 54.7 55.9 57.3
train 80.2 81.2 81.4 82.5
tv/monitor 55.0 56.4 57.2 57.9
average 56.0 58.1 59.0 59.2

4.2 Comparison with State-of-the-Art Results

In this section we compare the performance of our method with reported state-of-
the-art results on the PASCAL VOC 2007 and 2009 benchmarks. In both cases,
we train the classifier on the training set plus the validation set, and evaluate
on the test set, with |C| fixed as 2048. Table [2] compares the experiment results
by our approach with the top performances in PASCAL VOC 2007 dataset
while Table [l compares our results with the top results in PASCAL VOC 2009
datasetP In both cases, our method significantly outperforms the competing
methods on most of the object categories. We note that most of those compared
methods extend the SPM nonlinear SVM classifier by combing multiple visual
descriptors/kernels, while our method utilizes only SIFT features on gray images.
This difference highlights the significant success of the proposed approach. Note
that in Table Bl we do not compare with the winner team NEC-UIUC’s result,
because as far as we know, they combined an object detection model, i.e. using
the information of the provided bounding boxes, to achieve a higher accuracy.

! http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007 /workshop/
everingham cls.pdf

2 http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2009 /workshop/
everingham cls.pdf
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Fig. 3. Visualization of the learned patch-level function g(z) on image examples from
PASCAL-09. The relationship between g(z) and the image classification function g(X)
is shown in Eq.[Bl The figures show that g(z) has a good potential for object detection.
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4.3 Impact of Codebook Size

In this section we report further experimental results on PASCAL VOC 2007
validation set, to show the impact of codebook size |C| on classification perfor-
mance. As shown in Table [ as we increase |C| from 256, to 512, 1024, and
2048, the classification accuracy keeps being improved. But the improvement
gets small after |C| goes over 1024.

4.4 Visualization of the Learned Patch-Level Function

As suggested by Eq. Bl a very unique perspective of our method is the “trans-
parency” of the classification model. Once the image classifier is trained, a real-
valued function g(z) is automatically obtained on the local descriptor level.
Therefore a response map of g(z) can be visualized on test images. In Figure 3]
we show the response map (with kernel smoothing) on a set of random images
from the PASCAL VOC 2009 test set. In most of the cases, the results are quite
meaningful — the target objects are mostly covered by high-valued responses
of g(x). This observation suggests a potential to extend the current framework
toward joint classification and detection.

5 Conclusion

This paper introduces a new method for image classification. The method follows
the usual pipeline but introduces significantly novel methods for each of the
steps. We formalizes the underlying mathematic principles for our methods and
stresses the importance of learning a good coding of local descriptors in image
classification. Compared to popular state-of-the-art methods, our approach is
appealing in theory, more scalable in computation, transparent in classification,
and produces state-of-the-art accuracy on the well-known PASCAL benchmark.
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Abstract. We present a discriminatively trained model for joint mod-
elling of object class labels (e.g. “person”, “dog”, “chair”, etc.) and their
visual attributes (e.g. “has head”, “furry”, “metal”, etc.). We treat at-
tributes of an object as latent variables in our model and capture the
correlations among attributes using an undirected graphical model built
from training data. The advantage of our model is that it allows us to in-
fer object class labels using the information of both the test image itself
and its (latent) attributes. Our model unifies object class prediction and
attribute prediction in a principled framework. It is also flexible enough
to deal with different performance measurements. Our experimental re-
sults provide quantitative evidence that attributes can improve object
naming.

1 Introduction

What can we say about an object when presented with an image containing it,
such as images shown in Fig. [I? First of all, we can represent the objects by
their categories, or names (“bird” “apple” “chair”, etc). We can also describe
those objects in terms of certain properties or attributes, e.g. “has feather” for
(a), “red” for (b), “made of wood” for (c) in Fig. I

In the computer vision literature, most work in object recognition focuses
on the categorization task, also known as object naming, e.g. “Does this image
window contain a person?” or “Is this an image of a dog (versus cat, chair,
table, ...)?”. Some recent work [7IT9] proposes to shift the goal of recognition
from naming to describing, i.e. instead of naming the object, try to infer the
properties or attributes of objects. Attributes can be parts (e.g. “has ear”),
shape (e.g. “is round”), materials (e.g. “made of metal”), color (e.g. “is red”),
etc. This attribute-centric approach to object recognition provides many new
abilities compared with the traditional naming task, e.g. when faced with an
object of a new category, we can still make certain statements (e.g. “red”
furry” “has ear”) about it even though we cannot name it.

The concept of attributes can be traced back (at least) to the early work
on intrinsic images [I], in which an image is considered as the product of char-
acteristics (in particular, shading and reflectance) of a scene. Conceptually, we
can consider shading and reflectance as examples of semantically meaningful

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 155-168,|2010.
© Springer-Verlag Berlin Heidelberg 2010
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properties (or attributes) of an image. Recently there has been a surge of in-
terest in the computer vision community on learning visual attributes. Ferrari
and Zisserman [9] propose a generative model for learning simple color and tex-
ture attributes from loose annotations. Farhadi et al. [7] learn a a richer set of
attributes including parts, shape, materials, etc. Vaquero et al. [I8] introduce
a video-based visual surveillance system which allows one to search based on
people’s fine-grained parts and attributes, e.g. an example could be “show me
people with bald head wearing red shirt in the video”.

The attribute-centric approach certainly has great scientific value and practi-
cal applications. Some attributes (e.g. “red”) can indeed be recognized without
considering object names, and it is possible for people to infer attributes of ob-
jects they have never seen before. But object naming is clearly still important
and useful. Consider the image in Fig. [[[a), we as humans can easily recognize
this object has the attribute “eye”, even though the “eye” corresponds to a very
tiny region in the image. Although it is not entirely clear how humans achieve
this amazing ability, it is reasonable to believe that we are not running an “eye”
detector in our brain in order to infer this attribute. More likely, we infer the
object “has eye” in conjunction with recognizing it as a bird (or at least an
animal). The issue becomes more obvious when we want to deal with attributes
that are less visually apparent. For example, we as humans can recognize the
images in Fig. [[{(b,c) have the attributes “being edible” and “being able to sit
on”, respectively. But those attributes are very difficult to describe in terms of
visual appearances of the objects — we infer those attributes most likely because
we recognize the objects. In addition, the functions of objects cannot always
easily be inferred directly from their visual attributes. Consider the two images
in Fig.[Ml(d,e). They are similar in terms of most of their visual attributes — both
are “blue”, “made of metal”, “3D boxy”, etc. But they have completely different
functions. Those functions can be easily inferred if we recognize Fig. [I(d) as a
mailbox and Fig. [le) as a trash can.

Fig.1l. Why cannot we forget about object naming and only work on inferring at-
tributes? Look at the image in (a), it is very hard to infer the attribute “has eye” since
“eye” is a very tiny region. But we as humans can recognize it “has eyes” most likely
because we recognize it is a bird. Other attributes are difficult to infer from visual
information alone, e.g. “edible” for (b) and “sit on” for (c¢). Meanwhile, objects with
similar visual attributes, e.g. (d) and (e), can have different functions, which can be
easily inferred if we can name the objects.
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Our ultimate goal is to build recognition systems that jointly learn object classes
and attributes in a single framework. In this paper, we take the first steps toward
this goal by trying to answer the following question: can attributes help object
naming? Although conceptually the answer seems to be positive, there have only
been limited cases supporting it in special scenarios. Kumar et al. [T1] show that
face verification can benefit from inferring attributes corresponding to visual ap-
pearances (gender, race, hair color, etc.) and so-called simile attributes (e.g. a
mouth that looks like Barack Obama). Attributes have also been shown to be use-
ful in solving certain non-traditional recognition tasks, e.g. when training and test
classes are disjoint [TJ6lT2]. However, when it comes to the traditional object nam-
ing task, there is little evidence showing the benefit of inferring attributes. The
work in [7] specifically mentions that attribute based representation does not help
significantly in the traditional naming task. This is surprising since object classes
and attributes are two closely related concepts. Attributes of an object convey a
lot of information about the object category, e.g. an object that “has leg” “has
head” “furry” should be more likely to be a dog than a car. Similarly, the name
of an object also conveys a lot of information about its possible attributes, e.g. a
dog tends to “have leg”, and is not likely to “have wing”. The work on joint learn-
ing of visual attributes and object classes by Wang and Forsyth [19] is the closest
to ours. Their work demonstrates that attribute classifiers and object classifiers
can improve the performance of each other. However, we would like to point out
that the improvement in their work mainly comes from the fact that the training
data are weakly labeled, i.e. training data are only labeled with object class labels,
but not with exact locations of objects in the image. In this case, an object classi-
fier (say “hat”) and an attribute classifier (say “red”) can help each other by trying
to agree on the same location in an image labeled as “red” and “hat”. That work
does not answer the question of whether attributes can help object naming with-
out this weakly labeled data assumption, e.g. when an image is represented by a
feature vector computed from the whole image, rather than a local patch defined
by the location of the object.

Our training data consist of images with ground-truth object class labels (e.g.
“person”, “dog”, “chair”, etc.) and attribute labels (e.g. “has torso”, “metal”,
“red”, etc.). During testing, we are given a new image without the ground-truth
attribute labels, and our goal is to predict the object class label of the test
image. We introduce a discriminative model for jointly modelling object classes
and attributes. Our model is trained in the latent SVM framework [§]. During
testing, we treat the attributes as the latent variables and try to infer the class
label of a test image.

The contributions of this paper are three-fold. Firstly and most importantly,
we propose a model clearly showing that attributes can help object naming. Our
model is also very flexible — it can be easily modified to improve upon many dif-
ferent performance measurements. Secondly, most previous work (e.g. [7U19])
assumes attributes are independent of each other. This is clearly not true.
An object that “has ear” is more likely to “has head”, and less likely to be
“made of metal”. An important question is how to model the correlations among
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attributes. We introduce the attribute relation graph, an undirected graphical
model built from training data, to capture these correlations. Thirdly, our model
can be broadly applied to address a whole class of problems which we call recogni-
tion with auxiliary labels. Those problems are characterized as classification tasks
with certain additional information provided on training data. Many problems in
computer vision can be addressed in this framework. For example, in pedestrian
detection, auxiliary labels can be the body part locations. In web image classi-
fication, auxiliary labels can be the textual information surrounding an image.
There has been work that tries to build recognition systems that make use of
those auxiliary labels, e.g. [17] for pedestrian detection and [20] for object image
classification. However, those work typically use a simple two-stage classification
process by first building a system to predict the auxiliary labels, then learning
a second system taking into account those auxiliary labels. Conceptually, it is
much more appealing to integrate these two stages in a unified framework and
learn them jointly, which is exactly what we do in this paper.

2 Model Formulation

A training example is represented as a tuple (x, h,y). Here x is the image itself.
The object class label of the image is represented by y € ), where ) is a finite
label alphabet. The attributes of the image x are denoted by a K-dimensional
vector h = (hy, ho,...,hi), where hy € Hi (k = 1,2,..., K) indicates the k-th
attribute of the image. We use Hj, to indicate the set of possible configurations
of the k-th attribute. For example, if the k-th attribute is “2D boxy”, we will
have Hj = {0, 1}, where h; = 1 means this object is “2D boxy”, while hy = 0
means it is not. If the k-the attribute is “leg”, hy = 1 means this object “has
leg”, while hy = 0 means it does not. The datasets used in this paper only
contain binary-valued attributes, i.e. Hy = {0,1} (k = 1,2,..., K). For ease of
presentation, we will simply write H instead of Hj, from now on when there are
no confusions. But we emphasize that our proposed method is not limited to
binary-valued attributes and can be generalized to multi-valued or continuous-
valued attributes.

We assume there are certain dependencies between some attribute pairs
(hj, hi). For example, h; and hj; might correspond to “head” and “ear”, re-
spectively. Then their values are highly correlated, since an object that “have
head” tends to “have ear” as well. We use an undirected graph G = (V, £), which
we call the attribute relation graph, to represent these dependency relations be-
tween attribute pairs. A vertex j € V corresponds to the j-th attribute, and an
edge (j,k) € € indicates that attributes h; and hy, have a dependency. We only
consider dependencies of pairs of attributes in this paper, but it is also possible
to define higher-order dependencies involving more than two attributes. We will
describe how to obtain the graph G from training data in Sec. Bl

Given a set of N training examples {(x(™, h(™ y(M)IN_| our goal is to learn
a model that can be used to assign the class label y to an unseen test image
x. Note that during testing, we do not know the ground-truth attributes h of
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the test image x. Otherwise the problem will become a standard classification
problem and can be solved using any off-the-shelf classification method.

We are interested in learning a discriminative function fy : X x Y — R
over an x image and its class label y, where w are the parameters of this func-
tion. During testing, we can use fy to predict the class label y* of the input
x as y* = argmaxycy fw(X,y). Inspired by the latent SVM [§] (also called the
max-margin hidden conditional random field [21]), we assume fy (X, y) takes the
following form: fu (x,y) = maxy w' ®(x, h, %), where ®(x,h,y) is a feature vec-
tor depending on the image x, its attributes h and its class label y. We define
w ' ®(x, h,y) as follows:

wiD(x,h,y) = wyo(x) + Y wi o(x) + ) Wy, wix

JjeV JEV

+ Z 31#/) hjahk: +Z'Uyh (1)

(j,k)EE jev

The model parameters w are simply the concatenation of the parameters in all
the factors, i.e. W = {Wp,; Wy 1,5 Wi k3 Wy Uy b fyey b e, jev,(jk)ee- Lhe details
of the potential functions in Eq. () are described in the following.

Object class model W;— ¢(x): This potential function represents a standard
linear model for object recognition without considering attributes. Here ¢(x) €
R? represents the feature vector extracted from the image x, the parameter Wy
represents a template for object class y. If we ignore other potential functions in
Eq. (@) and only consider the object class model, the parameters {wy,},cy can
be obtained by training a standard multi-class linear SVM.

In our current implementation, rather than keeping ¢(x) as a high dimensional
vector of image features, we simply represent ¢(x) as the score of a pre-trained
multi-class linear SVM. In other words, we first ignore the attributes in the
training data and train a multi-class SVM from {(x(™,y(™)IN_ = Then we use
o(x;y) to denote the SVM score of assigning x to class y. Note that we explicitly
put y in the notation of ¢(-) to emphasize that the value depends on y. We use
o(x;y) as the feature vector. In this case, w, is a scalar used to re-weight the
SVM score corresponding to class y. This significantly speeds up the learning
algorithm with our model. Similar tricks have been used in [322].

Global attribute model w}z_ ©(x): This potential function is a standard linear
model trained to predict the label (1 or 0) of the j-th attribute for the image x,
without considering its object class or other attributes. The parameter wy,; is a
template for predicting the j-th attribute to have label h;. If we only consider this
potential function, the parameters {wy; },c can be obtained via a standard

binary linear SVM trained from {(x(), hg")) N_,. Similarly, instead of keeping
©(x) as a high dimensional vector of image features, we simply represent it using
a scalar ¢(x; 7, h;), which is the score of predicting the j-th attribute of x to be
h; by the pre- tralned binary SVM.

Class-specific attribute model wy n,w(x): In addition to the global attribute
model, we also define a class-specific attribute model for each ob ject classy € ).
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Here wy ; is a template for the j-th attribute to take the label h; if the object
class is y. If we only consider this potential function, wy n, (h; € {0,1}) for a
fixed y can be obtained by learning a binary linear SVM from training examples
of object class y. Similarly, we represent w(x) as a scalar w(x;y, j, h;), which is
the score of predicting the j-th attribute to be h; by an SVM pre-trained from
examples of class y.

The motivations for this potential function are two-fold. First, as pointed out
by Farhadi et al. [7], learning an attribute classifier across object categories is
difficult. For example, it is difficult to learn a classifier to predict the attribute
“wheel” on a dataset containing cars, buses, trains. The learning algorithm might
end up learning “metallic” since most of the examples of “wheels” are surrounded
by “metallic” surfaces. Farhadi et al. [7] propose to address this issue by learn-
ing a “wheel” classifier within a category and do feature selection. More specif-
ically, they learn a “wheel” classifier from a single object category (e.g. cars).
The “wheel” classifier learned in this fashion is less likely to be confused by
“metallic”, since both positive and negative examples (i.e. cars with or without
“wheel”) in this case have “metallic” attributes. Then they can select features
that are useful for differentiating “wheel” from “non-wheel” based on the clas-
sifier trained within the car category. The disadvantage of the feature selection
approach in [7] is that it is disconnected from the model learning and requires
careful manual tuning. Our class-specific attribute model achieves a goal similar
to the feature selection strategy in [7], but in a more principled manner since
the feature selection is implicitly achieved via the model parameters returned by
the learning algorithm.

Second, the same attribute might appear differently across multiple object
classes. For example, consider the attribute “leg”. Many object classes (e.g. peo-
ple, cats) can “have leg” . But the “legs” of people and “legs” of cats can be very
different in terms of their visual appearances. If we learn a “leg” attribute classifier
by considering examples from both people and cat categories, the learning algo-
rithm might have a hard time figuring out what “legs” look like due to the appear-
ance variations. By separately learning a “leg” classifier for each object category,
the learning becomes easier since the positive examples of “legs” within each cat-
egory are similar to each other. This allows the learning algorithm to use certain
visual properties (e.g. furry-like) to learn the “leg” attribute for cats, while use
other visual properties (e.g. clothing-like) to learn the “leg” attribute for people.

One might think that the class-specific attribute model eliminates the need
for the global attribute model. If this is the case, the learning algorithm will set
wp; to be zero. However, in our experiment, both wy; and wy . have non-zero
entries, indicating these two models are complementary rather than redundant.

Attribute-attribute interaction w;':kz/)(hj, hi): This potential function repre-
sents the dependencies between the j-th and the k-th attributes. Here ¢ (h;, hy)
is a sparse binary vector of length |H| x |H| (i.e. 4 in our case, since |H| = 2)
with a 1 in one of its entries, indicating which of the four possible configurations
{(1,1),(1,0),(0,1),(0,0)} is taken by (h;, hx), e.g. 1(1,0) = [0,1,0,0]T. The
parameter wj is a 4-dimensional vector representing the weights of all those
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configurations. For example, if the j-th and the k-th attributes correspond to
“ear” and “eye”. The entries of w; 5 that correspond to (1,1) and (0,0) will prob-
ably tend to have large values, since “ear” and “eye” tend to appear together in
any object.

Object-attribute interaction v, ; : This is a scalar indicating how likely the
object class being y and the j-th attribute being h;. For example, let y correspond
to the object class “people” and the j-th attribute is “torso”, then v, ; will
probably have a large value since most “people” have “torso” (i.e. h; =1).

3 Learning Objective

If the ground-truth attribute labels are available during both training and test-
ing, we can simply consider them as part of the input data and solve a standard
classification problem. But things become tricky when we want to take into ac-
count the attribute information on the training data, but do not want to “overly
trust” this information since we will not have it during testing. In this section,
we introduce two possible choices of learning approaches and discuss why we
choose a particular one of them.

Recall that an image-label pair (x,y) is scored by the function of the form
fw(x,y) = max, w ' ®(x, h,y). Given the model parameter w, we need to solve
the following inference problem during testing:

h* = arg max w'd(x,h,y) Yyey (2)

In our current implementation, we assume h forms a tree-structured model. In
this case, the inference problem in Eq. [2]) can be efficiently solved via dynamic
programming or linear program relaxation [L6/2T].

Learning with latent attributes: Given a set of N training examples S =
{(x), h) 4y e would like to train the model parameter w that tends
to produce the correct label for an image x. If the attributes h are unobserved
during training and are treated as latent variables, a natural way to learn the
model parameters is to use the latent SVM [8I21] formulation as follows:

N
g?ﬁWﬂP+§:5m
’ n=1

s.t.maxw ! (x"), h,y™) —maxw T O(x", h,y) > Ay,y™) — €7, ¥n, y(3)

where [ is the trade-off parameter controlling the amount of regularization, and
£ is the slack variable for the n-th training example to handle the case of soft
margin, A(y,y™) is a loss function indicating the cost of misclassifying 3™ as
y. In standard multi-class classification problems, we typically use the 0-1 loss
Apy defined as:

: (n)
my— JLify 7y
Aos1(y,y™™) { 0 otherwise W



162 Y. Wang and G. Mori

Learning with observed attributes: Now since we do observe the ground-
truth attributes h(™ on the training data, one might think a better choice would
be to fix those values for (™ rather than maximizing over them, as follows:

N
: 2 (n)
min Bf|w||" + ;f

The two formulations Eq. (B) and Eq. (@) are related as follows. First, let us
define h(™ as h(® = argmaxy w' &(x(™ h,y™). Then it is easy to show that
Eq. @) is a non-convex optimization, while Eq. (Bl is convex. In particular,
Eq. (B) provides a convex upper-bound on Eq. ([B]). The bound is tight if h™
and h(™ are identical for Vn.

Discussion: Even though Eq. ({) provides a surrogate of optimizing Eq. [B) as
its upper bound, our initial attempt of using the formulation in Eq. (] suggests
that it does not work as well as that in Eq. (B)). We believe the reason is the
optimization problem in Eq. (Bl assumes that we will have access to the ground-
truth attributes during testing. So the objective being optimized in Eq. (&) does
not truthfully mimic the situation at run-time. This will not be an issue if the
bound provided by Eq. (@l is tight. Unfortunately, having a tight bound means
we need to set the parameters w to almost perfectly predict h given (x(™), y(")),
which is obviously difficult.

This might be surprising given the fact that the formulation in Eq. (3] seems
to ignore some information (i.e. ground-truth attribute labels) during training.
At first glance, this argument seems to be reasonable, since Eq. ([B]) does not
require the ground-truth attributes h(® at all. But we would like to argue that
this is not the case. The information provided by the ground-truth attributes on
training data has been implicitly injected into the feature vectors ¢(x) and w(x)
defined in the global attribute model and class-specific attribute model (see the
descriptions in Sec. ), since ¢(x) and w(x) are vectors of SVM scores. Those
scores are obtained from SVM classifiers trained using the ground-truth attribute
labels. So implicitly, Eq. @) already makes use of the information of the ground-
truth attributes from the training data. In addition, Eq. @) effectively models
the uncertainty caused by the fact that we do not know the attributes during
testing and it is difficult to correctly predict them. So in summary, we choose
the learning with latent attributes (i.e. non-convex version) formulated in
Eq. @) as our learning objective. But we would like to emphasize that the convex
version in Eq. (@) is also a reasonable learning objective. In fact, it has been
successfully applied in other applications [3]. We leave the further theoretical
and empirical studies of these two different formulations as future work.

4 Non-convex Cutting Plane Training

The optimization problem in Eq. @) can be solved in many different ways.
In our implementation, we adopt a non-convex cutting plane method proposed
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in [4] due to its ease of use. First, it is easy to shown that Eq. () is equivalent
to miny L(w) = g||w]|*> + ZnNzl R™(w) where R™(w) is a hinge loss function
defined as:

R"(w) = max (A(y, y(")) + max w ' &(x™) h, y)> — max wT<P(x("),h, y™)(6)
Yy

The non-convex cutting plane method in [4] aims to iteratively build an in-
creasingly accurate piecewise quadratic approximation of L(w) based on its
sub-gradient Oy L(w). The key issue here is how to compute the sub-gradient
OwL(w). Let us define:

h(y”) = argmax WT¢(X(”),h, y) Vn,Vye)

/) — arg max (A(:%y(n)) +wTd(x™, h;n)7y)) (7)
Yy

As mentioned in Sec. 2 the inference problem in Eq. (7)) can be efficiently solved
if the attribute relation graph forms a tree. It is easy to show a sub-gradient
Ow L(w) can be calculated as follows:

N N
DwL(w) =263 w+ > d(x™, h" |y ™) = 3" ax™ h) ™) (8)
n=1

= n=1

Given the sub-gradient Oy L(w) computed according to Eq. (), we can mini-
mize L(w) using the method in [4]. In order to extend the algorithm to handle
more general scenarios involving multi-valued or continuous-valued attributes,
we can simply modify the maximization over h in Eq. (@) accordingly. For
example, arg maxy will be replaced by some continuous optimization in the case
of continuous attributes.

5 Attribute Relation Graph

We now describe how to build the attribute relation graph G = {V, £}. In order
to keep the inference problem in Eq. [2]) tractable, we will assume G is a tree-
structured graph. Our approach is inspired by the Chow-Liu algorithm [2] for
learning Bayesian network structures.

A vertex j € V corresponds to the j-th attribute. An edge (j, k) € £ means
the j-th and the k-th attributes have dependencies. In practice, the dependencies
between certain attribute pairs might be weaker than others, i.e. the value of one
attribute does not provide much information about the value of the other one.
We can build a graph that only contains edges corresponding to those strong de-
pendencies. The graph G could be built manually by human experts. Instead, we
adopt an automatic process to build G by examining the co-occurrence statistics
of attributes in the training data. First, we measure the amount of dependency
between the j-th and the k-th attributes using the normalized mutual infor-

mation defined as NormMI(j, k) = min{l\fll((j?;’z(k)}, where MI(j, k) is the mutual
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information between the j-th and the k-th attributes, and H(j) is the entropy
of the j-th attribute. Both MI(j, k) and H(j) can be easily calculated using the
empirical distributions p(h;), p(hg) and p(hj, hg) estimated from the training
data.

A large NormMI(j, k) means a strong interaction between the j-th and the
k-th attributes. We assign a weight NormMI(j, k) to the connection (7, k), then
run a maximum spanning tree algorithm to find the edges £ to be included
in the attribute relation graph G. Similar ideas have been used in [I3] to find
correlations between video annotations. The attribute relation graph with 64
attributes built from our training data is shown in Fig.

Saddle Leather

Fum Seal | Shiny

mm- e ----—---m

g
s
(o]  — [vn)

Fig. 2. Visualization of the attribute relation graph learned from the training data
from the a-Pascal dataset

6 Other Loss Functions

This paper mainly deals with multi-class classification problems, where the per-
formance of an algorithm is typically measured by its overall accuracy. It turns
out we can modify the learning approach in Sec. B to directly optimize other
performance measurements. In this section, we show how to adapt the learning
objective so it optimizes a more sensible measurement for problems involving
highly skewed class distributions.

First we need a new interpretation of Eq. [@). From Eq. @), it is easy to
show £ > A(y*(n),y™), where y*(n) = arg maxy fw(x",y) is the predicted
class label of x by the model fu. So £ can be interpreted as an upper bound
of the loss incurred on x(™ by the model. The cumulative loss on the whole
training data is then upper bounded by Zf:/:l £ In the case of 0-1 loss, the
cumulative loss is exactly the number of training examples incorrectly classified
by the model, which is directly related to the overall training error. So we can
interpret Eq. (@) as minimizing (an upper bound of) the overall training error,
with a regularization term 3||w/||?.

If the distribution of the classes is highly skewed, say 90% of the data are of a
particular class, the overall accuracy is not an appropriate metric for measuring
the performance of an algorithm. A better performance measure is the mean per-
class accuracy defined as follows. Let ny,q (p, ¢ € V) be the number of examples
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in class p being classified as class ¢g. Define m, = Zq Npq, 1.6. My is the number
of examples with class p. Then the mean per-class accuracy is calculated as

Y
/1915 (S0 /).
We can define the following new loss function that properly adjust the loss
according to the distribution of the classes on the training data:

Lify £y and y™ =p

Anew ) ) = M
(y™) {0 ’ otherwise

(9)
It is easy to verify that 25:1 Apew (y*(n), y™) directly corresponds to the mean
per-class accuracy on the training data. The optimization in Eq. (B with Apew
will try to directly maximize the mean per-class accuracy, instead of the overall
accuracy. This learning algorithm with Apey is very similar to that with Ag ;.
All we need to do is use Aoy in Eq. [@).

Our learning approach can also be extended for detection tasks [§]. In that
case, we can adapt our algorithm to directly optimize other metrics more appro-
priate for detections (e.g. F-measure, area under ROC curve, or the 50% over-
lapping criterion in Pascal VOC challenge [5]) using the technique in [TOJTH].
We omit the details due to space constraints. The flexibility of optimizing dif-
ferent performance measurements is an important advantage of the max-margin
learning method compared with other alternatives, e.g. the hidden conditional
random fields [I4].

7 Experiments

We test our algorithm on two datasets (called a-Pascal and a-Yahoo) intro-
duced in [7]. The first dataset (a-Pascal) contains 6340 training images and 6355
test images collected from Pascal VOC 2008 challenge. Each image is assigned
one of the 20 object class labels: people, bird, cat, cow, dog, horse, sheep, aero-
plane, bicycle, boat, bus, car, motorbike, train, bottle, chair, dining table, potted
plant, sofa, and TV /monitor. Each image also has 64 binary attribute labels, e.g.
“2D boxy”, “has hair”,“shiny”, etc. The second dataset (a-Yahoo) is collected
for 12 object categories from Yahoo images. Each image in a-Yahoo is described
by the same set of 64 attributes. But the object class labels in a-Yahoo are
different from those in a-Pascal. Object categories in a-Yahoo are: wolf, zebra,
goat, donkey, monkey, statue of people, centaur, bag, building, jet ski, carriage,
and mug.

We follow the experiment setup in [7] as close as possible. However, there is
one caveat. These two datasets are collected to study the problem of attribute
prediction, not object class prediction. Farhadi et al. [7] use the training images
in a-Pascal to learn their model, and test on both the test images in a-Pascal and
images in a-Yahoo. We are interested in the problem of object class prediction, so
we cannot use the model trained on a-Pascal to predict the class labels for images
in a-Yahoo, since they have different object categories. Instead, we randomly
split a-Yahoo dataset into equal training/testing sets, so we can train a model
on a-Yahoo training set and test on a-Yahoo test set.
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We use the training images of a-Pascal to build the attribute relation graph
using the method in Sec. Bl The graph is shown in Fig. 2l We use the exact
same graph in the experiments on the a-Yahoo dataset. In order to do a fair
comparison with [7], we use exactly the same image features (called base feature
in [7]) in their work. Each image is represented as a 9751-dimensional feature
vector extracted from information on color, texture, visual words, and edges.
Note that since the image features are extracted from the whole image, we have
essentially eliminated the weakly labeled data assumption in [I9].

Figure 3 (left) shows the confusion matrix of our model trained with A/
on the a-Pascal dataset. Table [[] summarizes our results compared with other
baseline methods. Since this dataset is heavily biased toward “people” category,
we report both overall and mean per class accuracies. Here we show the results
of our approach with Ay,; and Ayey. The baseline algorithm is to train an SVM
classifier based on the base features. To make a fair comparison, we also report
results of SVM with Ay/; and Ayew. We also list the result of the baseline algo-
rithm taken from [7] and the best reported result in [7]. The best reported result
in [7] is obtained by performing sophisticated feature selection and extracting
more semantic attributes. We can see that both of our models outperform the
baseline algorithms. In particular, the mean per class accuracies of our models
are significantly better. It is also interesting to notice that models (both our
approach and SVMs) trained with A,y achieve lower overall accuracies than
Ap/1, but higher mean per class accuracies. This is exactly what we would ex-
pect, since the former optimizes an objective directly tied to the mean per class
accuracy, while the latter optimizes one directly tied to the overall accuracy.
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Fig. 3. Confusion matrices of the classification result of our approach with Ag,; on the
a-Pascal (left) and a-Yahoo (right) datasets. Horizontal rows are ground truths, and
vertical columns are predictions. Each row is normalized to sum to 1. The mean per
class accuracy is calculated by averaging the main diagonal of this matrix. Dark cells
correspond to high values.

The results on a-Yahoo are summarized in Table 2l Here we compare with
baseline SVM classifiers using the base features. Farhadi et al. [7] did not perform
object category prediction on this dataset, so we cannot compare with them. On
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this dataset, the performances of using Ay, and Ayey are relatively similar.
We believe it is because this dataset is not heavily biased toward any particular
class. So optimizing the overall accuracy is not very different from optimizing the
mean per-class accuracy. But the results still show the benefits of attributes for
object classification. Figure Bfright) shows the confusion matrix of our approach
trained with Ag/; on this dataset.

Table 1. Results on the a-Pascal dataset. We report both overall and mean per class
accuracies, due to the fact that this dataset is heavily biased toward “people” category

method overall mean per-class

Our approach with Ay,; 62.16 46.25
Our approach with Ayew 59.15 50.84

SVM with Ag/q 58.77 38.52
SVM with Anew 53.74 44.04
[7] (base features+SVM) 58.5 34.3
[7] (best result) 59.4 37.7

Table 2. Results on the a-Yahoo dataset. Similarly, we report both overall and mean
per class accuracies

method overall mean per-class
Our approach with Ag/; 78.67 71.45
Our approach with Anew 79.88 73.31
SVM with Ag/q 74.43 65.96
SVM with Apew 74.51 66.74

8 Conclusion

We have presented a discriminatively trained latent model for joint modelling of
object classes and their visual attributes. Different from previous work [7JT9], our
model encapsulates the correlations among different attributes via the attribute
relation graph built from training data and directly optimize the classification
accuracy. Our model is also flexible enough to be easily modified according to
different performance measurements. Our experimental results clearly demon-
strate that object naming can benefit from inferring attributes of objects. Our
work also provides a rather general way of solving many other classification tasks
involving auxiliary labels. We have successfully applied a similar technique to
recogize human actions from still images by considering the human poses as
auxiliary labels [22].
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Abstract. The people in an image are generally not strangers, but
instead often share social relationships such as husband-wife, siblings,
grandparent-child, father-child, or mother-child. Further, the social re-
lationship between a pair of people influences the relative position and
appearance of the people in the image. This paper explores using familial
social relationships as context for recognizing people and for recognizing
the social relationships between pairs of people. We introduce a model
for representing the interaction between social relationship, facial ap-
pearance, and identity. We show that the family relationship a pair of
people share influences the relative pairwise features between them. The
experiments on a set of personal collections show significant improve-
ment in people recognition is achieved by modeling social relationships,
even in a weak label setting that is attractive in practical applications.
Furthermore, we show the social relationships are effectively recognized
in images from a separate test image collection.

1 Introduction

Personal image collections now often contain thousands or tens of thousands of
images. Images of people comprise a significant portion of these images. Con-
sumers capture images of the important people in their lives in a variety of social
situations. People that are important to the photographer often appear many
times throughout the personal collection. Many factors influence the position
and pose of each person in the image. We propose that familial social relation-
ships between people, such as “mother-child” or “siblings”, are one of the strong
factors. For example, Fig.[Ilshows two images of a family at two different events.
We observe that the relative position of each family member is the roughly the
same. The position of a person relative to another is dependent on both the iden-
tity of the persons and the social relationship between them. To explore these
ideas, we examine family image collections that have repeating occurrences of
the same individuals and the social relationships that we consider are family
relationships.

For family image collections, face recognition typically uses features based
on facial appearance alone, sometimes including contextual features related to
clothing [T4JT9T7]. In essence, that approach makes the implicit assumption that
the identity of a face is independent of the position of a face relative to others

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 1694182, [2010.
© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Social relationships often exhibit certain visual patterns. For the two people in
a wife-husband relationship, the face that is higher in the image is more likely to be
the husband. The family members are in roughly the same position in the two images,
even though the images are of two different events on different days. The inclination of
people to be in specific locations relative to others in a social relationship is exploited
in this work for recognizing individuals and social relationships.

Training input: Tt

Social relationships:

Daisy-Noah - sibling
Dabsy-Edward -> sibling
Moah-Edward > sibling

Barth years:

Dalsy: 2002
Moah: 2004
Edward: 2005

Fig. 2. In the training procedure, images are weakly labeled. Social relationships and
birth years are annotated as input for learning social relationship models. In the recog-
nition test procedure, the goal is to annotate faces present in images with names.

in the image. At its core, our work re-examines this assumption by showing that
face recognition is improved by considering contextual features that describe one
face relative to others in the image, and that these same features are also related
to the familial social relationship.

Our contributions are the following: we develop a probabilistic model for repre-
senting the influence between pairwise social relationships, identity, appearance
and social context. The experimental results show that adding social relation-
ships results in better performance for face annotation. With the learned rela-
tionship models, we can in turn discover social relationships from new image
collections where the social relationships are not manually annotated. To the
best of our knowledge, this is the first work that shows that explicitly modeling
social relationships improves person recognition. Further, this is the first work
that demonstrates classification of social relationships from a single image. It is
also important to note that our model is learned from an empirically attractive
setting of weakly labeled data.
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1.1 Related Work

Organizing consumer photo collections is a difficult problem. One effective solu-
tion is to annotate faces in photos and to search and browse images by people
names [12]. Automatic face annotation in personal albums is a hot topic and
attracts much attention [3J20]. There has been pioneering work on using social
cues for face recognition [BTTIT8]. [I8] works with strongly labeled data, and
only has one type of relationship: friend or not. In comparison, we deal with
weakly labeled images, and explicitly model a number of social relationships. In
[6], the authors uses the social attributes people display in pictures to better
recognize genders, ages and identities. However, [6] does not explicitly model
different social relationships between people or recognize specific individuals. In
[11], recognizing individuals improves by inferring facial attributes. We extend
these works by using social relationships as attributes for pairs of people in an
image for recognizing people and social relationships.

Weak labeling is an area related to our work. In image annotation, ambiguous
labels are related to generic object classes rather than names [IJ8]. Berg et al.
[2] is an example where face recognition has been combined with weak labels.
In that work, face models are learned from news pictures and captions about
celebrities, but ordinary people and the social relationships between them are
not considered.

Certainly, the use of social relationships for recognition constitutes a type of
context. The social context is related to the social interactions and environment
in which an image is captured, and consequently it is not necessarily inferred
directly from image data. Our contextual features for describing the relative
positions between pairs of people in an image are similar to the contextual fea-
tures shown to be effective in general object recognition [4J9T5]. In these works,
pairwise features enforce priors that, for example, make it unlikely for cows to
appear in the sky. We show that our similar features are in fact also useful for im-
proving person recognition and for identifying social relationships. In our work,
social relationships act as a high-level context leveraged from human knowledge
or human behavior. In this sense, it is similar to the context of [BIT6].

2 Approach

The common method for providing labeled samples to construct a model of
facial appearance for a specific individual involves asking a user to label a set
of training faces for each person that is to be recognized. Then, a face model
can be learned in a fairly straightforward manner. However, annotating specific
faces in a manual fashion is a time-consuming task. In practice, tools such as
Flickr, or Adobe Album are used by many consumers, but they only provide
weak labels that indicate the presence of a person but not that person’s location
in the image. Appearance models can still be learned in this scenario, but the
label ambiguity increases the learning difficulty. In our work, we assume this
realistic weak-labeling scenario, similar to that of [2], and our model is used
to disambiguate the labels, learn appearance models, and find the identity of
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persons in images that were not in the original training subset. Note also that
other frameworks exist for minimizing the effort of the user by using active
learning to suggest samples to label [I9/10], and our model could be inserted
into one of these frameworks.

The procedure is illustrated in Fig. Pl For each image, we only know there are
N names annotated, which are written as {p;,7 = 1,---, N}, but do not know
the positions or scales of the corresponding faces. Most of faces are automati-
cally detected from images, and we manually add missed faces since we are not
studying face detection in this work. Each face is represented by Fisher subspace
features. Features of faces are written as {w;,j =1,--- ,M}.

We train a face model for each individual. This requires establishing corre-
spondences between names and faces in each training image. Social relationships
are manually annotated by photo owners; the relationship between the i*® and
J*® people is written as r;;, a discrete variable over the nine pairwise social rela-
tionships that we consider. The labeling of this social relationship is reasonable
and requires only a small amount of additional effort, because a given pairwise
social relationship need be annotated only once for the entire personal collec-
tion. There are N (NN — 1)/2 possible pairwise relationships in one album with N
people, but many pairs of people do not have direct relationships.

Table 1. The notation for our model

pi: the i*™™ person name P: all names

w;y: the feature representation of the i*™® face W all face features

t;: the age of the i™ person T: all ages

ri;: the social relationship between the ™ R: all annotated relationships
and the j* person

fiz: the social relationship features between F': all social relationship features

the i** and the j** face
A: the hidden variable which assigns names to faces A; = j: the i*® name is assigned
0: model parameters to the 5™ face

A specific social relationship usually exhibits common visual patterns in im-
ages. For example, in a “husband-wife” relationship, the husband is usually taller
than the wife due to physical factors (e.g., the average adult male is 176.8 cm
while the average female is 163.3 cm [I3]). Of course, it is easy to find excep-
tions, and this is why our model relies not on “rules” that define the behavior
of an individual or a person in a family relationship, but rather on probabilistic
distributions of features f for particular social relationships.

We extract features that reflect social relationships for each pair of faces
i and j. The features describing the i** and j*™ face pair are written as f;;.
This feature vector represents the “social context” in our model. Note that even
within a single social relationship, visual patterns are not time-invariant. For
example, for “child-mother” relationship, when the child is an infant and the
mother is in her 20s, the mother’s face is physically larger than and generally
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positioned above the child’s; but when the child grows, he or she may eventually
have a larger face, be physically taller, and will no longer sit on the mother’s
lap. To accommodate the evolving roles within a social relationship, we allow
the representation of social relationships for different age combinations. This
requires that the collection owner provides approximate birth years for each
person as illustrated in Fig. 2l In a training image, ages of people are written as
{tiyi=1,--- ,N}.

oNo
©—0
oo

Fig. 3. The graphical model. The notation is explained in Table [I}

Given the above defined notations, we then aim to maximize the conditional
probability of labels given image observations p(P, R, T | W, F'), which can be
rewritten as:

p(P, R, T, W, F)

wr) %jp(P, R,T,W, F | A)p(A) (1)

A is a hidden variable that defines the correspondence between faces and
names. 4; = j denotes the i*® name is assigned to the j*® face. Given a specific
A, the dependency between P, R,T,W and F' is represented as shown in Fig.
Bl We use a discriminative model to represent the appearance of each name
(here we use a weighted KNN classifier due to its robustness, but note that
a generative model such as a Gaussian mixture model is also applicable) and
generative models for social relationships.

According to the graphical model, (Il) can be written as:

N N
ZHP(Pi | wa,) H p(fasa; | rij tisty)p(rij | pi, pj)p(A) (2)
A i=1 i=1,j=1

where wy, denotes the features of the face that is associated with the name
pi. ri; is annotated for each pair of names p; and p;, so p(ri; | pi,p;) is 1 and
neglected from now on. p(p; | wa,) is calculated as:

L Na,
21:1 p(pi | wy B )

(3)
SN SE i | wp )

p(pi | wa,) =
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Where wlNAi denotes the [ nearest neighbor faces found for w4, in all the training

images. p(p; | wlNAi) = 0 if the image containing wlNAi does not have the person
pi present. . p(p; | w;) = 1 is enforced in the training procedure.

fa,a,; denotes the social relationship features extracted from the pair of faces
A; and A;. We extract five types of features to represent social relationships,
which are introduced in Section Bl The space of each feature is quantized to
several discrete bins, so we can model p(ff‘iAj | rij,ti,t;) as a multinomial

distribution, where k denotes the k*® type of relationship features. For simplicity,
these relationship features are assumed to be independent of each other, and
p(fa,a; | rij,ti, t;) could simply be calculated as the product of the probability
for each feature. However, we find that the features can be combined in smarter
ways. By providing a learned exponent on each probability term, the relative
importance of each feature can be adjusted. By learning the exponents with
cross-validation on training examples, better performance is achieved.

There are many possible ¢; and ¢; pairwise age combinations, but we may only
have a few training examples for each combination. However, visual features do
not change much without a dramatic change of age. So we quantize each age
t; into 5 bins. The quantization partition points are [0 217 35 60 100] years.
Consequently, there are 25 possible pairwise age bin combinations. For each,
we learn a multinomial distribution for each type of relationship feature. The
multinomial distribution parameters are smoothed with a Dirichlet prior.

2.1 Learning the Model with EM

Learning is performed to find the parameters b:

~

0 = argmaxyp(P, R, T | W, F; 6) (4)

6 contains the parameters to define p(p | w) and p(f | r,t). This can not be
learned with maximum likelihood estimation because of the hidden variable.
Instead, we use the EM algorithm, which iterates between the E step and the
M step. Initialization is critical to the EM algorithm. In our implementation, we
initialize p(p; | w;) with the parameters produced by the baseline model that
omits the social relationship variables. The multinomial distribution is initialized
as a uniform distribution.

In the E step, we calculate the probability of the assignment variable A given
the current parameters 8°'4. For a particular A*, we calculate it as:

p(A* ‘ P, R, T, VV, F, 001d) _ p(Pv RvTv Wv F ‘ A*v 001d)p(A*; 001d) (5)
ZA p(Pa R7 Ta VV7 F | A7 901d)p(A; 901d)

p(P, R, T, W, F, A*;6°'Y) can be calculated according to (). The prior distribu-
tion of A is simply treated as a uniform distribution. This needs to be enumerated
over all the possible assignments. When there are a large number of people in
images, it becomes intractable. We only assign one p; to a w; when p(p; | w;) is
bigger than a threshold. In this way, we can significantly reduce the number of
possible A.
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In the M step, we update the parameters by maximizing the expected like-
lihood function, which can be obtained by combing ([2) and (). There are two
types of parameters, one to characterize p(p | w) and the other one to charac-
terize p(f | r,t). In the M step, when updating one type of parameters using
maximum likelihood estimation, the derivative doesn’t contain the other type of
parameters. Therefore, the updates of parameters for p(p | w) and p(f | r,t) are
separate. When running the EM algorithm, the likelihood values do not change
significantly after 5 to 10 iterations.

2.2 Inference

In the inference stage, we are given a test image containing a set of people
(without any name label information), we extract their face appearance features
W and relationship features F', then predict the names P. We use the relationship
models to constrain the labeling procedure, so the classification of faces is not
done based on facial appearance alone. This problem is equivalent to finding a
one-to-one constraint A* in the following way:

A" = argmax,p(A | P,R,W,F,T) (6)

Here, P denotes all the names in the dataset. There would be too many possible
A to evaluate and compare. We adopt a simple heuristic by only considering As
which assign a name p to a face w when p(p | w) is bigger than a threshold. This
heuristic works well in our implementation.

3 Implementation Details

In this section, we describe important implementation details. The appearance
of each face is represented by projecting the original pixel values into a Fisher
subspace learned from a held-out collection (containing no images in common
with either the training set or the test set). Each face is represented as a Fisher
discriminant space feature.

In our model, the social relationship variable r;; is discrete over the space
of pairwise social relationships. We represent the following nine familial social
relationships between a pair of people:

mother-child father-child grandparent-child husband-wife siblings
child-mother child-father child-grandparent wife-husband

We consider relationships to be asymmetric (e.g., “mother-child” is different
from “child-mother”) because our objective is to identify the role of each per-
son in the relationship. We use the following five types of observed appearance
features to represent social relationships.
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Fig. 4. Pairwise facial features are dependent on social relationships. From these plots,
we see that parents’ faces are usually above childrens’ faces (a), that spouses’ faces
are usually about the same size, but are larger than children’s (b), and spouses tend
to be close together in an image(c). Note that we also model the changing nature of
family relationships over time: a mother’s face is larger than the child’s when the child
is young, but they are generally the same size when the child is an adult (d).

Height: the height difference is used as a feature. Very simply, we use the ratio
of the difference y-coordinates of the two people’s faces to the average face size
of the faces in the image. The ratio is quantized to six bins.

Face size ratio: this feature is the ratio of the face sizes. We quantize the ratio
to six bins.

Closeness: the distance of two people in an image can reveal something about
their social relationship. We calculate the Euclidean distance between pair of
people, normalized by the average face size. We quantize the distance to five
bins.

We train gender and age classifiers based on standard methods, following the
examples of [TITT]. Two linear projections (one for age and one for gender) are
learned and nearest neighbors (using Euclidean distance) to the query are found
in the projection space.

Age difference: we use our age predictor to estimate the ages of people. This
age difference, estimated purely from appearance, tells us some information
about the social relationship. We quantize age into five ranges, so the age differ-
ence between two people has nine possibilities. The age difference relationship
is modeled as a multinomial distribution over these nine bins.

Gender distribution: the appearance-based gender classifier helps to indicate
the role of a person in a social relationship. For example, gender estimates are
useful for distinguishing between a wife and husband (or more broadly a hetero-
sexual couple). For each pair of people, there are four possible joint combinations
of the genders.

Fig. @l demonstrates evidence of the dependence between social relationships
and our features by showing the distribution of feature values given the social
relationships, as learned from our training collections.
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4 Experiments

In this section, we show experiments that support our assertion that modeling
social relationships provides improvements for recognizing people, and allows for
the recognition of pairwise social relationships in new images.

In Section 1] we examine the task of identifying people through experiments
on three personal image collections, each of which has more than 1,000 images
and more than 30 distinct people. We show that significant improvement is
made by modeling social relationships for face annotation on both datasets.
We also investigate how different social relationships features help to boost the
performance.

Furthermore, in Section .2l we show that learned social relationships models
can be transferred across different datasets. Social relationships are learned on a
personal image collection, and then social relationships are effectively classified
in single images from unrelated separate image collections.

4.1 Recognizing People with Social Relationships

In the first experiment, a subset of images from a personal image collection
is randomly selected as training examples, and weak name labels are provided
for the identities of the people in the images. The remaining images comprise a
test set for assessing the accuracy of recognizing individuals. Testing proceeds as
follows: First, the correspondence between the names and the faces of the training
images are found using the EM procedure from Section 21l Next, inference is
performed (Section[Z2]) to determine the most likely names assignment for each
set of faces in each test image. The percentage of correctly annotated faces is used
as the measure of performance. This measure is used to evaluate the recognition
accuracy in the test set as well as in the training set.

The first collection has 1,125 images and contains 47 distinct people. These
people have 2,769 face instances. The second collection contains 1,123 images,
with 34 distinct people and 2,935 faces. The third collection has 1,117 images
of 152 individuals and 3,282 faces. For each collection, we randomly select 600
images as training examples and the others as test examples. Each image contains
at least two people. In total, these images contain 6,533 instances of 276 pairwise
social relationships.

Improvement made by modeling social relationships: For comparison
to our model that includes social relationships, we first perform experiments
without modeling social relationships. In the training procedure, we maximize:
p(PIW)~>", Hfil p(pi | wa,)p(A). Likewise, the EM algorithm is employed
to learn model parameters.

Fig. Bl shows that all datasets show improved recognition accuracy in both
training and testing when social relationships are modeled. By modeling so-
cial relationships, better correspondence (i.e. disambiguation of the weak label
names) in the training set is established. In collection 1, training set accuracy
improves by 5.0% by modeling social relationships, and test set identification



178 G. Wang et al.

improves by 8.6% due to the improved face models as well as the social rela-
tionship models. Significant improvement is also observed in collection 2 in both
the training (improves by 3.3%) and test (improves by 5.8%) sets. Collection 3
also shows improvement (by 9.5% in training and by 1.8% in testing) although
the overall accuracy is lower, mainly because this collection contains many more
unique people (152 people versus 47 and 34 in collections 1 and 2).

Fig. [@ illustrates the improvement that modeling social relationships provides
for specific test image examples. The faces in green squares are instances that
are not correctly classified when the model ignores social relationships, but are
corrected by modeling social relationships. We can see that these faces are sur-
rounded by other people who have strong social relationships with, and the visual
patterns between people are what is typically expected given their roles in the
relationships. The faces in red squares are instances that are correctly classified
when appearance alone is considered, but get confused by incorporating social
relationships. This is because visual relationship patterns in these pictures are
atypical of what is observed in most of other pictures. mother, so she is misclas-
sified as her father, despite her childlike facial appearance.

Table 2. Person recognition accuracy in the test set improves for both collections by
modeling social relationships using more features. For example, “+height” means that
only relative height feature is used, and the other features are omitted.

without relationships +height 4closeness +size +age +gender +all

Collection 1 0.560 0.621 0.628  0.637 0.635 0.630 0.646
Collection 2 0.537 0.563 0.560  0.583 0.573 0.584 0.595
Collection 3 0.343 0.361 0.359  0.362 0.362 0.362 0.361
Overall Mean 0.480 0.515 0.516  0.527 0.523 0.525 0.534

Effect of each social relationship feature: As described in Section Bl we
use five features to encapsulate social relationships. We show how each type of
relationship feature helps by in turn omitting all features except that one. The
results are shown in Table2l We observe that relative face size is the most helpful
single feature, followed by age and gender. In general, including all features
provides significant improvement over using any single feature and adding any
single feature is better than using none at all. It is interesting to note that while
our results concur with [I1I] in that we achieve improved face recognition by
estimating age and gender.

4.2 Recognizing Social Relationships in Novel Image Collections

Our model explicitly reasons about the social relationships between pairs of
people in images. As a result, the model has applications for image retrieval
based on social relationships.

Social relationships are modeled with visual features such as relative face sizes
and age difference, which are not dependent on the identities of people. This



Seeing People in Social Context 179

Training Set Recognition Accuracy Test Set Recognition Accuracy
0.7,
0.6
>0.8| >
3 3
8 g05
3 3
208§ 204
c c
2 203
g B
g 02
ool [i4
lNo Social Relationships| 0.1 lNo Social Relationships|
[CISocial Relationships [ISocial Relationships
0 Collection 1 Collection2  Collection 3 0 Collection 1 Collection2  Collection 3

Fig. 5. Modeling social relationships improves recognition accuracy. The plots show
the improvement in recognition accuracy for both the training set (left) and the test
set (right) for two different image collections.

Fig. 6. The faces in green squares are instances that are not correctly recognized with-
out modelling social relationships, but are corrected by modeling social relationships.
The faces in red squares are correctly recognized at first, but are misrecognized when
social relationships are considered. The mistakes are sometimes due to an improbable
arrangement of the people in the scene (e.g. the son on the father’s shoulders in the
lower right) that is not often observed in the training set. As another example, in the
middle image of the second row, the daughter (closer to the camera) appears taller and
has a bigger face size than her mother, so she is misclassified as her father, despite her
childlike facial appearance.

means social relationship models can be transferred to other image collections
with different people. Consequently, the models learned from one image collec-
tion can be used to discover social relationships in a separate unrelated image
collection with no labeled information at all. We perform two experiments to ver-
ify that we learn useful and general models for representing social relationships
in images.

In the first experiment, we learn social relationship models from the training
examples of collection 1, and classify relationships in collection 2. Because col-
lection 2 contains no “grandparent-child” relationships, we limit the classified
r;; values to the other seven social relationships. The confusion matrix is shown
in Fig. 8l Each row of this confusion matrix shows an actual class.
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(c) social relationships classified as mother-child

Fig. 7. Social relationship classification is accomplished from single images with our
model, trained only with weak labels on a single, unrelated personal collection. Here,
the task is to distinguish between the “wife-husband”, “siblings”, and “mother-child”
relationships for each pair of circled faces. Incorrect classifications are outlined in red.
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Fig. 8. The confusion matrix of social relationships classification. Left: We learn social
relationship models from collection 1 and test on the images of collection 2. Right:
We apply the learned social relationship models to a set of images from Flickr, and la-
beled as one of five social relationships. Both experiments show that social relationship
models learned from one collection and transferable and useful for classifying social
relationships in images containing strangers.

The averaged value of diagonals is 50.8%, far better than random perfor-
mance (14.3%). We can see that the mistakes are reasonable. For example,
“child-mother” is usually misclassified as “child-father” because the primary
visual difference between “mother” and “father” is the gender, which may not
be reliably detected from consumer images.
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In a second experiment, we perform social relationship recognition experi-
ments on the publicly released group image dataset [6]. First, we manually la-
beled relationships between pairs of people. A total of 708 social relationships
were labeled, at most one relationship per image, and each of the three social
relationships has over 200 samples. This dataset is used solely as a test set.
The social relationship models are learned from collection 1 in the same weakly
supervised learning fashion as before. The confusion matrix is shown in Fig. Bl
The overall social relationship classification accuracy in this experiment is 52.7%,
again exceeding random classification 20.0%. This performance is significant in
that the entire model is trained on a single personal image collection with weak
labels. Images classification results from the model are shown for three social
relationships in Fig. [1

5 Conclusions

We introduce a model that incorporates pairwise social relationships such as
husband-wife or mother-child for representing the relationship between people
in a personal image collection. This model is motivated by the observation that
the joint appearance between people in an image is associated with both their
identities and the social relationship between the pair. We show experimentally
several advantages of this representation. First, the model allows for establish-
ing the correspondence between faces and names in weakly labeled images. Sec-
ond, the identification of unknown faces in test images is significantly improved
when social relationship inference is included. Third, social relationships models
learned from the weakly labeled data are used to recognize social relationships
in single previously unseen images. This work is believed to represent the first
attempt at explicitly modeling the pairwise social relationships between people
in single consumer images.
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Abstract. Even a relatively unstructured captioned image set depict-
ing a variety of objects in cluttered scenes contains strong correlations
between caption words and repeated visual structures. We exploit these
correlations to discover named objects and learn hierarchical models of
their appearance. Revising and extending a previous technique for finding
small, distinctive configurations of local features, our method assembles
these co-occurring parts into graphs with greater spatial extent and flex-
ibility. The resulting multipart appearance models remain scale, transla-
tion and rotation invariant, but are more reliable detectors and provide
better localization. We demonstrate improved annotation precision and
recall on datasets to which the non-hierarchical technique was previously
applied and show extended spatial coverage of detected objects.

1 Introduction

Computer vision tasks from image retrieval to object class recognition are based
on discovering similarities between images. For all but the simplest tasks, mean-
ingful similarity does not exist at the level of basic pixels, and so system design-
ers create image representations that abstract away irrelevant information. One
popular strategy for creating more useful representations is to learn a hierarchy
of parts in which parts at one level represent meaningful configurations of sub-
parts at the next level down. Thus salient patterns of pixels are represented by
local features, and recurring configurations of features can, in turn, be grouped
into higher-level parts, and so on, until ideally the parts represent the objects
that compose the scene. The hierarchical representations are inspired by and in-
tended to reflect the compositional appearance of natural objects and artifacts.
For instance, each level of the Leaning Tower of Pisa appears as a ring of arches
while the tower as a whole is composed of a (nearly) vertical stack of levels.
With this strategy in mind, we build upon the approach of [I] to produce a
system with more accurate image annotation and improved object localization.
Given images of cluttered scenes, each associated with potentially noisy cap-
tions, our previous method [I] can discover configurations of local features that
strongly correspond to particular caption words. Our system improves the overall
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distribution of these local configurations to optimize the overall correspondence
with the word. While individual learned parts are often sufficient to indicate the
presence of particular exemplar objects, they have limited spatial extent and it
is difficult to know whether a collection of part detections in a particular image
are from multiple objects or multiple parts of a single object. Our system learns
meaningful configurations of parts wherever possible, allowing us to reduce false
annotations due to weak part detections and provide a better indication of the
extent of detected objects. Figure [l illustrates how low-level features are assem-
bled in stages to form a multipart model (MPM) for the Leaning Tower. MPMs
are more robust to occlusion, articulation and changes in perspective than a flat
configuration of features. While the instantiated system uses exemplar-specific
SIFT features, the framework can support more categorical features.

(a) pixels (b) local features

Fig.1. Object model detection and learning progresses in stages. Gradient patterns
in the original image (a) are grouped into local features (b). Configurations of local
features with strong word correspondence are captured as part models (c). Finally, we
represent meaningful configurations of part models as multipart models (d).

2 Related Work

A number of researchers have studied the problem of automatic image anno-
tation in recent years [2BJ4BG/T]. Given cluttered images of multiple objects
paired with noisy captions, these systems can learn meaningful correspondences
between caption words and appearance models.

In many automatic annotation systems, the main component of the appear-
ance model is a distribution over colors and textures. This kind of representation
is a good fit for relatively structureless materials such as grass, sand or water
and is relatively robust to grouping or segmentation errors. However, objects
such as buildings and bicycles often lack a distinctive color or texture, and re-
quire representations that can capture a particular configuration of individually
ambiguous parts. Most of these automatic annotation systems do not focus on
learning such feature configurations. Often, appearance is modeled as a mixture
of features (e.g., [B3I6]) in which common part configurations are reflected in
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co-occurrence statistics but without spatial information. Similarly, the Markov
random field model proposed by Carbonetto et al. [4] can represent adjacency
relationships but not spatial configurations.

In contrast, the broader object recognition literature contains many methods
for grouping individual features into meaningful configurations and even arrang-
ing features into hierarchies of parts. For instance, Fergus et al. [7] and Crandall
and Huttenlocher [§] look for features and relationships that recur across a col-
lection of object images in order to learn object appearance models consisting of
a distinctive subset of features and their relative positions. A natural strategy
to improve the flexibility and robustness of such models is to organize the object
representation as a parts hierarchy (e.g., [QUTOTTT2/T3/T4]). The part hierar-
chy can be formed by composing low-level features into higher and higher level
parts (e.g. Kokkinos and Yuille [9], Zhu et al. [I0]) or by decomposing larger-
scale shared structures into recurring parts (e.g., Epshtein and Ullman [I3]). The
composition and learning method of parts at different levels of the hierarchy may
be highly similar (e.g., Bouchard and Triggs [11]], Fidler et al. [12]) or hetero-
geneous (e.g., Ommer and Buhmann [14]). Some of these methods can learn an
appearance model from training images with cluttered backgrounds, sometimes
without relying on bounding boxes. However, unlike most automatic annotation
work, they are not designed for images containing multiple objects and multiple
annotation words.

In [I], we describe an automatic annotation system that can capture explicit
spatial configurations of features while retaining the ability to learn from noisy,
unstructured collections of captioned images. Guided by correspondence with
caption words, the system iteratively constructs appearance graphs in which ver-
tices represent local features and edges represent spatial relationships between
them. However, the learned appearance models usually have limited spatial ex-
tent, with each model typically describing only a distinctive portion of an object.
There is no way to determine whether a set of detections in a given image repre-
sents multiple objects or different parts of the same object. Our system addresses
these limitations by using the appearance models as parts in larger hierarchical
object models.

3 Images, Parts and Multipart Models

Our system learns multipart appearance models (MPMs) by detecting recurring
configurations of lower-level ‘parts’ that together appear to have a strong corre-
spondence with a particular caption word. Though our overall approach could
be appropriate for a variety of part features, in this paper our parts are local
configurations of interest points as in [I].

In [I], an image is represented as a set of local interest points, I = {p,,|m =
1...|I|}. These points are detected using Lowe’s SIFT method [I5], which defines
each point’s spatial coordinates, x,,, scale A\, and orientation 6,,. A PCA-SIFT
[16] feature vector (f,,) describes the portion of the image around each point. In
addition, a vector of transformation-invariant spatial relationships r;,,, is defined
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between each pair of points, p,, and p,, including the relative distance between
the two points (Axy,y,), the relative scale difference between them (AM,,,) and
the relative bearings in each direction (A¢mn, Adnm)-

A part appearance model describes the distinctive appearance of an object
part as a graph G = (V, E). Each vertex v; € V is composed of a continuous
feature vector f; and each edge e;; € E encodes the expected spatial relation-
ship between two vertices, v; and v;. Model detections have a confidence score,
Conf getect (0, G) € [0,1], based on the relative likelihood of an observed set of
points O and the associated spatial relations being generated by the part model
G versus unstructured background.

Multipart models are very similar in structure to the local appearance models
described in [I]. As shown in Figure[2 a multipart model is a graph H = (U, D)
where vertices u;,ur € U are part appearance model detections and each edge
d;r € D encodes the spatial relationships between them, using the same rela-
tionships as in the part model: dji = (Axji, AXji, Adjr, Adr;).

Fig. 2. A multipart model H is a graph with parts u; € U and spatial relationships
dji € D, where each part is a graph G with local features v; € V' and spatial relation-
ships e;s € E

4 Discovering Parts

Multipart models are composed of the same type of individual appearance models
that were discovered in [I]. However, models trained to maximize stand-alone de-
tection performance are generally not ideal as parts of a larger appearance model.
Singleton appearance models need to act as high-precision detectors while MPM
parts can be individually more ambiguous and rely on the MPM layer to weed
out false-positive detections by imposing co-occurrence and spatial constraints.
Therefore, when learning MPM parts, we can accept some loss of precision in ex-
change for better recall and better spatial coverage of the object of interest. We
implement this shift toward weaker parts with better coverage by replacing the
part initialization process in [I] with our own improved process and by limiting
the size of learned part models to eight vertices.
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4.1 Model Initialization through Image Pair Sampling

We replace the clustering-based model initialization method of [I] with an ap-
proach that makes earlier use of language information. The system in [I] sum-
marizes the visual information within each neighborhood of an image set as a
quantized bag-of-features descriptor called a neighborhood pattern and then uses
clustering to group similar neighborhood patterns. Next, the system checks for
promising correspondences between the occurrence patterns of each neighbor-
hood cluster and each word. Finally, clusters with the best correspondences for
each word are used to extract initial two-vertex appearance models.

This clustering approach has several drawbacks. The neighborhood patterns
are noisy due to features quantization and detector errors. Therefore a low sim-
ilarity threshold is needed to reliably group similar appearances. However, this
allows unrelated neighborhoods to join the cluster. Especially on large image
sets, this can add substantial noise to the cluster occurrence pattern, obscuring
its true word correspondences. Therefore recurring visual structure correspond-
ing to rarer object views is often overlooked.

Our initialization method avoids feature quantization and uses word labels
early-on in the process. Instead of using a neighborhood pattern, we compare
visual features directly. Rather than cluster visual structure across the entire
training set, we look for instances of shared appearance between pairs of images
with the same word label. For a given word w, the system randomly samples
pairs of images I4 and Ig from those with captions containing w and identifies
neighborhoods in the two images that share visual structure.

We identify shared neighborhoods in three steps. First, the system looks for
uniquely-matching features that are potential anchors for shared neighborhoods.
Following [15], we identify matching features that are significantly closer to each
other than to either feature’s second-best match, i.e., features f,, € I, and
f,, € I that satisfy equations [Il and

|fm - n‘z < 'l/}u|fm - fk‘z,ka S {IB - fn} (1)
|fm - n‘z < 'l/)u|fl - n‘zval € {IA - fm} (2)

where 1, < 1 controls degree of uniqueness of anchor matches. For each pair of
uniquely-matching features, the system checks for supporting matches in the sur-
rounding neighborhood. These supporting matches aren’t required to be unique,
so the corresponding uniqueness quantifier s > 1. For each supporting match
pair f; € I4 and f; € Ip, the system then verifies that the spatial relationships
between the unique feature and the supporting feature in the two images (r;
and 7,;) are consistent. A shared neighborhood has a pair of unique matches
and at least two spatially consistent supporting matches.

Given this evidence of shared visual structure, we construct a set of two-vertex
part models, each with one vertex based on the unique match and the other
on a strong supporting match. These two-vertex models represent shared visual
structure between two images labeled with word w. To check whether the models
correspond with w, the system detects each model G across the training image
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set and compares its occurrence pattern with that of w. Below, we explain how
we sample image pairs and filter the resulting initial part models to maximize
overall coverage of the object.

4.2 Part Coverage Objective

In [1], the system develops the n neighborhood clusters with the best correspon-
dence with w into full appearance models. This approach concentrates parts on
the most common views of an object, neglecting less common views and appear-
ances associated with w. Our method instead selects initial part models so that,
as a group, they have good coverage of w throughout the training set.

Ideally, a set of part models G would have multiple, non-overlapping detections
in every training set image annotated with word w and no detections elsewhere.
We represent the distribution of model detections throughout the £ training im-
ages with the vector Q. = {Quili = 1,...,k}. If n; is the number of independent
model detections in image i, Q,; = 1 — ™, v < 1. With multiple detections,
Qi approaches 1, but each successive detection has a smaller effect.

We evaluate how well G approximates the ideal by evaluating the correspon-
dence between Q, and a vector r, indicating images with w in the caption
using an F-Measure, F(r,, Q). The part initialization process greedily grows
and modifies a collection of non-overlapping two-vertex part models G to max-
imize F'(r,,Qu). At each iteration, it draws a pair of images from the sample
distribution s,, and uses them to generate potential part models. Q,, influences
the sample distribution: s,, ~ 1 — Q,,. This focuses the search for new models
in images that do not already contain several model detections. The algorithm
calculates, for each potential model, the effects on the correspondence score F
of adding the model to the current part set, of replacing each of the models in
the current set and of rejecting the model. The algorithm implements the option
which leads to the greatest improvement in correspondence. The process stops
once no new models have been accepted in the last Npqirs image-pair samples.

Besides optimizing the explicit objective function, the initialization system
also avoids redundant models with many overlapping detections. Two models
are considered to be redundant when their detections overlap nearly as often as
they occur separately. When a new two-vertex model is considered, if selected it
must replace any models that it makes redundant.

5 Building Multipart Models

After learning distinctive part models, but before assembling them into multipart
models, we perform several stages of processing. Algorithm [I] summarizes both
the preprocessing steps and the MPM initialization and assembly process, with
reference to the subsections below that explain the steps of the algorithm.
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Algorithm 1. Uses parts associated with word w to assemble multipart models.
ConstructMPMs(w)
1. For each part G associated with w, find the set Og of observations of G in training images.
2. Identify and remove redundant parts (section
3. For each G, set the spatial coordinates of each observation O¢g € O¢ (section[B2):
— Choose representative vertex v. to act as center of G.
— For each v; € vg, find average relationship, F;., between co-occurences of (v;,v.) € Og.
— For each Og € O¢g, and each observed vertex p; € Og calculate expected position of x.
based on (Fi., x;). Part spatial coordinate x¢ is the average expected center X..

4. Sort parts by Confcor (G, w
5. For each G:
— Skip expansion if most Og € Og are already incorported into existing MPMs (section [5.3)).
— Iteratively expand G into an MPM H using same method as part models (section [5.4):
e Expand MPM H to H* by adding new part or spatial relationship.
e Detect H* across the training image set (sectlon
e If new MPM-word correspondence, Conf o (H™, w) > Conf o (H,w), H < H".
— If at least Npspps multipart models have been created return.

5.1 Detecting Duplicate Parts

Our initialization method avoids excessive overlap of initial part models. How-
ever, during model refinement, two distinct part models can converge to cover the
same portion of an object’s appearance. Near-duplicate parts must be pruned
or they could complicate the search for multipart models since they could be
interpreted as a pair of strongly co-occurring, independent parts.

Rather than detect near-duplicates by searching for partial isomorphisms be-
tween part models, we look for groups of parts that tend to be detected in the
same images at overlapping locations. If a vertex v4; in model G 4 maps to the
same image point as vertex vp; in model G g in more than half of detections, then
we draw an equivalence between v4; and vg;. If more than half of the vertices
in either part are equivalent, we remove the part with the weakest word—model
correspondence confidence Conf .o (G, w).

5.2 Locating Part Detections

The parts described in [I] encode spatial relationships among local interest
points; we construct multipart models by discovering spatial relationships be-
tween such detected parts. However, while a local interest point detector provides
that point’s scale, orientation and location, the part detector does not. We there-
fore set the spatial coordinates for each part detection based on the underlying
image points in a way that is robust to occlusion and errors in feature detection.

For each part we select a central vertex and for each detection we estimate
the center’s spatial coordinates. The center vertex need not be observed in every
detection, since each observed vertex contributes to a weighted estimate of the
center’s coordinates. Figure [ illustrates this approach. We use the estimated
location and orientation of the center and multiply the estimated scale of the
center vertex by a part-specific factor so that the detected part scale reflects the
normal spread of the part’s vertices.
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Fig. 3. The spatial coordinates of a part detection are tied to a central vertex c. We
estimate ¢’s coordinates based on observed vertices, even if ¢ itself is not observed.

5.3 Choosing Initial Multipart Models

Our system uses the most promising individual part models as seeds for con-
structing multipart models. Parts that have good correspondence with a word
are likely to co-occur with other parts in stable patterns from which large MPMs
with good spatial coverage can be constructed. However, if only the strongest
part models are expanded, the resulting MPMs may be too clustered around
only the most popular views of the object. This would neglect views with weaker
individual parts where MPMs can make the biggest difference in precision.

Therefore initial model selection proceeds as follows. Part models are evalu-
ated in the order of their correspondence with a word w. A model is expanded
if at least half of its ‘good’ detections (in images labeled with w) have not been
incorporated into any of the already-expanded MPMs. Selective expansion con-
tinues until the list of part models is exhausted or Nj;pjps distinct multipart
models have been trained for a given word.

5.4 Refinement and Expansion of Multipart Models

In order to expand the multipart models, we take an approach very similar to [IJ,
in that we use the correspondence strength Conf ... (H, w) between a multipart
model H and word w to guide the expansion of these two-vertex graphs into
larger multipart models. Introduced in [I], the correspondence score reflects the
amount of evidence, available in a set of training images, that a word and a part
model are generated from a common underlying source object, as opposed to
appearing independently.

Each iteration of the expansion algorithm begins by detecting all instances
of the current multipart model in the training set (section £.5) and identifying
additional parts that tend to co-occur with a particular spatial relationship rel-
ative to the multipart model. We propose an expansion of the MPM H either by
adding a new part model and spatial relationship from among these candidates
or by adding a new edge between existing vertices. The proposal is accepted if it
improves Conf .,.-(H,w) (starting a new iteration), and rejected otherwise. The
expansion process continues until potential additions to H have been exhausted.
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5.5 Detecting Multipart Models

As in part model detection, multipart detection must be robust to changes in
viewpoint, occlusion and lighting that can cause individual part detections to
be somewhat out of place or missing entirely. We use a simple generative model
illustrated in Figure [ to explain the pattern of part detections both in images
that contain a particular multipart model and those that do not.

Each image ¢ has an independent probability P(h; = 1) of containing the
multipart model H. Given h;, the presence of each model part is determined
independently (P(u;; = 1|h;)). The foreground probability of a model part be-
ing present is relatively high (P(u;; = 1|h; = 1) = 0.95), while the background
probability, P(u;; = 1|h; = 0), is equal to its normalized frequency across the
training image set. If a part is present, it tends to have a higher observed de-
tection confidence, 0;; (p(0i;|ui; = 1) = 2045, p(oij|ui; = 0) = 2(1 — 0;5)). If
the multipart model is present (h; = 1) and contains an edge 7, and the parts
u;; and u,, are present, then the observed spatial relationship s;;; between the
two parts has a relatively narrow distribution centered at the edge parameters.
Otherwise, all spatial relationships follow a broad background distribution.

Fig. 4. A graphical model of the generative process with multipart model indicator h,
part indicators u, part detection confidences o and observed spatial relations s

In any given image, there may be many possible assignments between multi-
part model vertices and observed part detections. We choose assignments in a
greedy fashion in order to maximize P(h; = 1|o;,s;). First we choose the best-fit
assignment of two linked vertices, then one by one we choose the vertex assign-
ment that makes the largest improvement in P(h; = 1|o;,s;) and is consistent
with existing assignments.

The prior probability P(h; = 1) depends on the complexity of the MPM, with
more complex multipart models having a lower prior probability. Specifically:

P(h;=1)=alVl. gIPl, (3)

where o, f < 1 and |U| and | D| are, respectively, the number of vertices and edges
in H. The constants o and [ were selected based on detection experiments on
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random synthetic MPMs with a wide range of sizes in order to prevent large,
complex models from being detected when only a tiny fraction of their vertices
are present.

6 Results

Once we have discovered a set of individual part models and learned multipart
models from configurations of the parts, we can use these learned structures
to annotate new images. We begin by detecting all part models in the image
(even those that are relatively weakly detected or have relatively low individual
correspondence confidence). Based on these part observations, we then evaluate
detection confidence for all learned MPMs. Following [I], our annotation confi-
dence for both parts and multipart models is the product of detection confidence,
Conf getect (i, H), and correspondence confidence Conf .o (H,w). Overall anno-
tation confidence is the maximum annotation confidence over word w’s detected
models in image 7.

For ease of comparison, we ran our system on three image sets described in [I].
In all three cases, the changes to part initialization combined with the addition
of MPM models improve the precision and recall of annotation on new images
compared to the system in [I]. The degree of improvement seems to depend on
the scale and degree of articulation of named objects.

In experimentation on the small TOYS image set, we find that the particular
values of our system parameters do not have a significant effect on our results.
The same parameter values chosen based on the TOYS set results are carried
over to the two larger and more significant sets without modification. We set
uniqueness factors ¢, = 0.9 and 95 = 1.2. Npgirs = 50 allows a large number
of failed pair samples before ending initial model search. v = 0.75 allows @Q,; to
build gradually. We set the maximum number of MPMs per word, Ny pas = 25,
more than the number of distinct views available for individual objects in these
image collections. Finally, we choose MPM detection parameters a = 0.25 and
(6 = 0.33 based on experiments on synthetic data.

The first set, TOYS, is a small collection of 228 images of arrangements of
children’s toys captured and annotated by the authors of [I]. For the sake of
completeness, we report our results on this set while focusing on the larger and
more natural HOCKEY and LANDMARK sets. Without MPMs, our new model
initialization method modestly improves recall on the TOYS set while slightly
lowering overall precision. Including MPMs corrects precision, resulting in a net
improvement in recall of about 3% at 95% precision.

6.1 Experiments on the HOCKEY Data Set

The HOCKEY set includes 2526 images of National Hockey League (NHL) play-
ers and games, with associated captions, downloaded from a variety of sports
websites. It contains examples of all 30 NHL teams and is divided into 2026
training and 500 test image—caption pairs. About two-thirds of the captions are
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(d) Maple Leafs and Islanders (e) Maple Leafs (f) Stars

Fig. 5. Sample detections of objects in the HOCKEY test set. Part detections are drawn
in yellow, supporting interest points in red and spatial relationships in blue.

full sentence descriptions, whereas the remainder simply name the two teams
involved in the game.

Figure Bl shows sample multipart model detections on test-set images and the
associated team names. Compared to MPMs in the TOY and LANDMARK sets,
most MPMs in the HOCKEY set are relatively simple. They typically consist of
2 to 4 parts clustered around the team’s chest logo. Since the chest logos are
already reasonably well covered by individual part models, there is little reward
for developing extensive MPMs. In principle, MPMs could tie together parts
that describe other sections of the uniform (socks, pants, shoulder insignia) like
those shown in Figure Ble), but this type of MPM (seen in Figure Bf)) is quite
rare. There may be too much articulation and too few instances of co-occurrence
of these parts in the training set to support such MPMs.

Figure [fl(a) indicates that our new approach for initializing part models leads
to about a 12% improvement in recall. Considering the barriers to achieving
high recall on the HOCKEY set (discussed in [I]), this represents a substantial
gain. Our initialization system is better able to identify regions of distinctive
appearance than the approach in [I]. For instance, one of the best-recognized
NHL teams using our method was completely undetected in [I]. On the other
hand, the addition of MPMs does not improve annotation performance at all.
This is probably due to the relatively small size of distinctive regions in the
HOCKEY images combined with a degree of articulation and occlusion that make
larger models unreliable.
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Fig. 6. A comparison of precision-recall curves over the HOCKEY (a) and LANDMARK
test sets, for three systems: MPMs with our new initialization, our new initialization
alone and the system described in [I]. Our initialization system substantially improves
overall recall in both image sets. MPMs have little effect in the HOCKEY set, where
the distinctive portions of a player’s appearance are of limited size and do not tend
to co-occur in repeating patterns. In contrast, MPMs significantly improve precision
for the LANDMARK set, perhaps because distinctive portions of landmarks more often
co-occur with stable spatial relationships.

6.2 Experiments on the LANDMARK Data Set

The LANDMARK data set includes images of 27 famous buildings and locations
with some associated tags downloaded from the Flickr website, and randomly
divided into 2172 training and 1086 test image—caption pairs. Like the NHL
logos, each landmark appears in a variety of perspectives and scales. Compared
to the hockey logos, the landmarks usually cover more of the image and have
more textured regions in a more stable configuration. On the other hand, the
appearance of the landmarks can vary greatly with viewpoint and lighting, and
many of the landmarks feature interior as well as exterior views.

Figure [[ provides some sample detections of multipart models in the LAND-
MARK test set. The MPMs can integrate widely-separated part detections,
thereby improving detection confidence and localization. However, many of the
models still display a high degree of part overlap, especially on objects such as
the Arc de Triomphe with a dense underlying array of distinctive features. In
addition, MPM coverage of the object, while better than individual parts, is not
as extensive as it could be. For instance, the system detects many more parts on
the western face of Notre Dame than are incorporated into the displayed MPM.
In the future, we may wish to modify the MPM training routine to explicitly
reward spatial coverage improvements. Finally, MPMs often seem to have one
or two key parts with a large number of long-range edges. This edge structure
may unnecessarily hamper robustness to occlusion.

Regardless of their limitations, Figure B(b) indicates that MPMs can signif-
icantly improve annotation precision. The new initialization system improves
overall recall by about 10%, and the addition of MPMs lifts the precision of the
curve towards the 100% boundary. The structures on which our system achieved
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(a) Notre Dame (b) Christo Redentor (c) Statue of Liberty

(d) Taj Mahal (e) Mount Rushmore (f) Arc de Triomphe

Fig. 7. Sample detections of objects in the LANDMARKS test set

the poorest results were St. Peter’s Basilica, Chichen Itza and the Sydney Opera
House. The first two of these suffer from a multiplicity of viewpoints, with train-
ing and test sets dominated by a variety of interior viewpoints and zoomed
images of different parts of the structure. The Sydney Opera House’s expres-
sionist design has relatively little texture and is therefore harder to recognize
using local appearance features.

7 Conclusions

Our initialization method and multipart models are designed to work together
to improve annotation accuracy and object localization over the approach in
[1]. Our initialization mechanism boosts recall and part coverage by detecting
potential parts that would have been overlooked by the system in [I], providing
for a better distribution of parts over the image set and including more indi-
vidually ambiguous parts. The MPM layer boosts precision and localization by
integrating parts that may be individually ambiguous into models that can cover
an entire view of an object.

Together, our new methods significantly improve annotation accuracy over
previous results on the experimental data sets, with the amount of improvement
strongly dependent on the image set. Our improvements to part initialization and
training have significantly increased recall, though sometimes at the expense of
precision. For objects with recurring patterns of distinctive parts, the MPM layer
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can filter out bad detections, resulting in a substantially improved precision—
recall curve.

Our initialization mechanism and the development of multipart models also
improves object localization. Parts have less spatial overlap than in [I], they
cover portions of the object that are less individually distinctive and they are
better-distributed across object views. MPMs tie together recurring patterns
of parts, allowing us to distinguish between the presence of multiple parts and
multiple objects. Future work could further improve localization by ensuring that
MPMs use all available parts to maximize spatial coverage and are themselves
well-distributed across object views.
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Abstract. Hough voting methods efficiently handle the high complexity of multi-
scale, category-level object detection in cluttered scenes. The primary weakness
of this approach is however that mutually dependent local observations are in-
dependently voting for intrinsically global object properties such as object scale.
All the votes are added up to obtain object hypotheses. The assumption is thus
that object hypotheses are a sum of independent part votes. Popular represen-
tation schemes are, however, based on an overlapping sampling of semi-local
image features with large spatial support (e.g. SIFT or geometric blur). Features
are thus mutually dependent and we incorporate these dependences into prob-
abilistic Hough voting by presenting an objective function that combines three
intimately related problems: i) grouping of mutually dependent parts, ii) solving
the correspondence problem conjointly for dependent parts, and iii) finding con-
certed object hypotheses using extended groups rather than based on local obser-
vations alone. Experiments successfully demonstrate that state-of-the-art Hough
voting and even sliding windows are significantly improved by utilizing part de-
pendences and jointly optimizing groups, correspondences, and votes.

1 Introduction

The two leading methods for detecting objects in cluttered scenes are voting approaches
based on the Hough transform [19] and sliding windows (e.g. [33l12]). In the lat-
ter case, rectangular sub-regions of a query image are extracted at all locations and
scales. A binary classifier is evaluated on each of these windows before applying post-
processing such as non-max suppression to detect objects. The computational com-
plexity of this procedure is critical although techniques such as interest point filtering,
cascade schemes [33]], or branch-and-bound [20] have been presented to address this
issue. Rather than using a single, global descriptor for objects, Hough voting avoids the
complexity issues by letting local parts vote for parametrized object hypotheses, e.g.
object locations and scales. Generalizations of the Hough transform to arbitrary shapes,
exemplar recognition [23], and category-level recognition [22/16/29,30.2825l18|] have
successfully demonstrated the potential of this approach, and its wide applicability. De-
spite the current popularity of the method, Hough voting has two significant weaknesses
that limit its performance: i) (semi-)local parts are independently casting their votes for
the object hypothesis and ii) intrinsically global object properties such as object scale
[28]] have to be estimated locally. Consequently, current voting approaches to object
detection, e.g. [22/16/25/18]], are adding all local votes in a Hough accumulator and are,
thus, assuming that objects are a sum of their parts. This assumption is against the fun-
damental conviction of Gestalt theory that the whole object is more than the sum of its

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 197421042010.
(© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. a) Outline of the processing pipeline. b) The three terms of the cost function d7~ from
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parts. And indeed, popular semi-local feature descriptors such as SIFT [23]] or geomet-
ric blur [5]] have a large spatial support so that different part descriptors in an image are
overlapping and thus mutually dependent. To avoid missing critical image details, a re-
cent trend has been to even increase sampling density which entails even more overlap.
However, observing the same image region N times does not provide /N independent
estimates of the object hypothesis. Models with richer part dependencies (see section[2))
such as constellation models [[15] or pictorial structures [[14] have been proposed to ad-
dress these issues, however these methods are limited by their complexity (number of
parts and the number of parameters per part). Without grouping, [5] transform a com-
plete query image onto a training image. Therefore, this method is constrained to few
distractors (e.g. little background clutter) and the presence of only one object in an im-
age. In [[1L6] Hough voting precedes the complex transformation of the complete object
from [5]] to limit the hypothesis space and reduce the influence of background clutter.
However, the voting is limited by assuming independent part votes.

To establish reliable group votes, we incorporate dependencies between parts into
Hough voting [22] by

— grouping mutually dependent parts,

— solving the correspondence problem (matching parts of the query image to model
parts of training images) jointly for all dependent parts, thereby utilizing their in-
formation on each other,

— letting groups of dependent parts vote for concerted object hypotheses that all con-
stituents of the group agree upon,

— integrating grouping, correspondence, and voting into a single objective function
that is jointly optimized, since each subtask is depending on the remaining ones.

Outline of the Approach

Object detection in a novel image (c.f. Fig. [[) starts by first computing a probabilistic
edge map (using [24]]). A uniform sampling of edge pixels yields points where local fea-
tures are extracted on a single scale (we use geometric blur features [5]]). Each descriptor
is mapped to similar features from training images. In standard Hough voting, all points
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are then independently voting for an object hypothesis in scale space, i.e. object location
and scale, before adding up all these votes in a Hough accumulator. Consequently, de-
pendencies between points are disregarded and for each point, unreliable local estimates
of global object properties such as object scale are required. To correctly model the de-
pendencies between features, we group related points and estimate object hypotheses
jointly for whole groups rather than independently for all of their constituents. This
results in three intimately related problems: i) Grouping mutually dependent points,
ii) letting groups of dependent points vote for a concerted object hypothesis, and iii)
finding correspondences for each point in a group to training samples. We jointly find
a solution to all of these three subtasks by formulating them in a single cost function
and solving it using a single clustering algorithm. That way, all related points influence
each others voting and correspondences and their voting influences their grouping, in
turn. To obtain an initial grouping, we perform pairwise clustering of edge points. The
necessary pairwise affinities are obtained by measuring the cooccurrence of points in
different levels of the hierarchical segmentation of the initial probabilistic edge map
from [24]].

2 Voting Methods and Object Detection

Category-level object detection requires models that represent objects based on local
measurements in an image. A broad variety of models with widely differing represen-
tation complexity have been proposed. These range from bag-of-features approaches
[[L1] and latent topic models without spatial relationships [31] to richer spatial repre-
sentations such as hierarchical models [7417.2]], k-fans [[10], and latent scene models
[32]]. Complex spatial representations have been described by a joint model of all local
parts (constellation model) [[15], shape matching [5], pictorial structures [14], and by
rigid template-like models [12/21]]. The compositional nature of our visual world has
been utilized by [27] to build hierarchical object representations.[26] describes a Ten-
sor voting approach to form perceptually meaningful groups which can then be used
for object recognition. The voting paradigm [22116/2825/18]], which is central to this
paper, effectively handles the complexity of large-scale part-based models.

2.1 Hough Voting with Independent Parts

Hough voting makes part-based object models with large numbers of parts feasible by
letting all parts independently cast their votes for object hypotheses [22]]. All these lo-
cally estimated object hypotheses are summed up in a Hough accumulator HP™ (¢, x, o)
over scale space. Here, x and o are the location and scale of an object hypothesis and
c denotes its category. Moreover, a local part detected at location xiQ € R? in a query
image incorporates a feature vector fiQ € RY and a local estimate O'iQ € R of object
scale. The key assumption of Hough voting is that all parts are independently casting
their votes for the object hypothesis so that the overall object hypothesis is indepen-

dently obtained from dependent parts,

HP™(¢,x,0) o pra|c 2x2,02)p(c| 2. xP, o) (1)
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Let ij denote the j-th codebook vector or the j-th training sample, depending on
whether vector quantization or a nearest neighbor approach is used. Without loss of
generality we can assume that the training object is centered at the origin so that the
location x? € R? of fJT is the shift of the feature from the object center. Moreover, all
training images are assumed to be scale normalized, i.e. they are rescaled so that objects
are the same size. Summation over fJT and xf then yields

H™ (e, x,0) o<y p(x = [x7 —oi'x Lo — o) x plelf) p(f]1F7) (2
i,j

Details of this derivation can be found in [22/28]].

2.2 Key Points of Our Method

Hough voting methods (e.g. [22/16l28125118])) let all parts independently cast their votes
for the object hypothesis, thereby neglecting part dependence. In contrast to this, our
approach models the dependencies between parts by establishing groups and letting all
parts in a group jointly find a concerted object hypothesis. In detail, we are differing
from voting methods to detection in the following ways:

Grouping of Dependent Parts: Rather than considering all parts to provide indepen-
dent votes (e.g. [22116/28125I18]]), we segment a scene into groups of mutually depen-
dent parts. Thus multiple strongly related features (e.g. due to overlapping descriptors)
are not considered as providing independent information.

Joint Voting of Groups of Dependent Parts: Mutually dependent parts in a group as-
sist each other in finding compatible correspondences and votes, rather than estimating
these independently as in standard Hough voting. Thus groups yield votes with signif-
icantly less uncertainty than the individual part votes (c.f. Fig. B). Intrinsically global
parameters such as object scale are then obtained by global optimization rather than
by local estimates (such as local scale estimation in [22l8]]). [28] could only model the
uncertainty of each local part. Based on a grouping of parts, we can however obtain
reliable estimates.

Joint Optimization of Grouping, Voting, and Correspondences: Identifying and
grouping dependent parts, computing joint votes for complete groups, and solving the
part correspondence problem are mutually dependent problems of object detection. We
tackle them jointly by iteratively optimizing a single objective function. Rather than
letting each of these factors influence the others, [8] finds groups before using them
to optimize correspondences in a model where parts are grouped with their k nearest
neighbors. Estrada et al. [[13] pursue the simpler problem of exemplar matching by only
dealing with grouping and matching consecutively. Several extensions have been pro-
posed to the standard Hough voting scheme, but the critical grouping of dependent parts
has not been integrated into voting in any of those approaches. [29] extend the Implicit
Shape Model by using curve fragments as parts that cast votes. Without incorporat-
ing a grouping stage into their voting, parts are still independently casting their votes.
Amit et al. [3] propose a system limited to triplet groupings. In contrast to such rigid
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groupings, our approach combines flexible numbers of parts based on their vote consis-
tency and geometrical distortion. In contrast to hierarchical grouping approaches, where
later groupings build on earlier ones, our method does not require any greedy decisions
that would prematurely commit to groupings in earlier stages but rather optimizes all
groupings at the same time.

Linear Number of Consistency Constraints: In contrast to Berg et al. [5] who need a
quadratic number of consistency constraints between all pairs of parts, grouping reduces
this to a linear number of constraints between parts and the group they belong to, see
section

Flexible Model vs. Rigid Template: Template-like descriptors such as HoG [12] or
[21] have a rigid spatial layout that assumes objects to be box-shaped and non-
articulated. Moreover, they require a computationally daunting search through hypoth-
esis space although approximations such as branch-and-bound [20] have been proposed
to deal with this issue. On the other end of the modeling spectrum are flexible parts-and-
structure models [[15/14]. However, the modeling of part dependencies in [15] becomes
prohibitive for anything but very small number of points and [[14] restrict the depen-
dencies to a single, manually selected reference part. In contrast to this, we incorporate
dependencies in the powerful yet very efficient Hough voting framework. Moreover, we
do not rely on pixel accurate labeling of foreground regions as in [22] but only utilize
bounding box annotations. In contrast to [[L6l5] who transform a query image onto train-
ing images using a complex, nonlinear transformation we decompose the object and the
background into groups and transform these onto the training samples using individual,
linear transformations. That way, unrelated regions do not interfere in a single, complex
transformation and regions of related parts can be described by simpler and thus more
robust, linear models.

3 Grouping, Voting, and Correspondences

Hough voting approaches to object detection let all local parts independently vote for
a conjoint object hypothesis. However, there are direct mutual dependencies between
features, e.g. due to their large spatial support and since interest point detection has
a bias towards related regions in background clutter [6]]. Thus, multiple related fea-
tures yield dependent votes rather than independent evidence on the object. Rather than
adding up all those duplicates as is common practice in Hough voting approaches (eg.
[22116125128]), a group of mutually dependent parts should actually jointly vote for a
concerted object hypothesis. That way, the correspondence problem of matching fea-
tures in a novel query image to features in training samples is jointly solved for a group
of dependent parts.

3.1 Joint Objective Function for Grouping, Voting, and Correspondences

To solve the grouping, voting, and correspondence problem jointly, we have to i) match
query features onto related training features, ii) find correspondences with low geomet-
rical distortion, and iii) minimize the overall scatter of all votes within a group. Let us
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now investigate each of these aspects in detail. Hough voting solves the correspondence

problem by matching the i-th part of a query image, fiQ , to the training part or training
codebook vector ij that is most similar, i.e. for which

6'(i.j) = |

2=, 3

is minimal. Boiman et al. [6] have demonstrated the deficiencies of quantization and
codebook based representations. Therefore, we adopt a nearest neighbor approach,
where query features are mapped onto training features rather than mapping them onto
a quantized codebook. Let C;; € {0, 1} denote a matching of the i-th query part to
the j-th training part, where C,; captures many-to-one-matchings, > j Cij = 1. As
discussed above, the correspondence problem has to be solved jointly for all mutually
dependent parts, i.e. all related parts should undergo the same transformation 7" when

being matched to the training samples, xiQ S T”x?. This implies that related parts ¢
and 4’ are clustered into the same group v by computing assignments M, of parts to
groups, M;, € {0,1}.,>°, M, = 1.

Due to the relatedness of points in a group, transformations should be forced to be
simple, eg. similarity transformations

oy cos(f) —ay sin(0) t;,

T" = | oysin(0) oy cos(d) ty 4)

0 0 1

In effect, we are decomposing heterogeneous objects into groups of dependent parts
so that piecewise linear transformations (one for each group) are sufficient rather than
using a complex nonlinear transformation for the whole scene as in [SI16]. Let G¥ :=
{i : M, = 1} denote all parts in a group v and |G”| = ). M, denote the number
of parts in the group. Then we have to find a transformation 7 that minimizes the
distortion

0% (i.5) = |[x2 = Tx] | 5)
for each part in the group.

(@) is penalizing the distortions of correspondences to yield minimal group distortion.
The consistency of group votes is obtained by measuring the deviation of individual
votes from the average vote of the group. Minimal group distortion does not necessarily
guarantee consistent group votes. Hence we introduce a term that penalizes the scatter
of the group vote.

2
. T T

6 (i) = |[x = 7] = @ty )7 ©)

(@) is measuring the agreement of all parts in the group with respect to their object cen-

ter estimate (summing over all parts ¢ in a group yields the variance of the group vote).
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This consistency constraint has a linear complexity in the number of image features
in contrast to Berg et al. [S] who proposed pairwise consistency constraints with a
quadratic complexity. This reduction in complexity is possible since dependent parts
are combined in groups, so we can penalize the scatter of the entire group. Without
the grouping, Berg et al. have to penalize the distortions of all pairs of parts under the
transformation.

Joint Cost Function

Groupings M, of query parts, correspondences C;; between query parts and training
parts, and group transformations 7 are mutually dependent. Thus we have to combine
them in a single cost function

drv(i,§) = M6 (3, §) + X262 (i, §) + N30 (3, ) (7)

that is jointly optimized for each of these unknowns. The weights A1, A2, A3 are adjusted
by measuring the distribution of each distance term d(.) in the training data. The weights
are then set to standardize the dynamic range of each term to the same range. The cost
for matching all the query parts ¢ which belong to group v to the corresponding training
parts j = C(4) is given by

1
R(GY) = o] ZM,;,,ZCU drv(i,j) ®)
g J

3.2 Joint Optimization of Groups, Votes, and Correspondences

To find optimal groups, object votes, and correspondences, we need to minimize the
overall cost of all groups >~ R(G"). We seek optimal group assignments M*, corre-
spondences C*, and transformations 7 * that minimize the summation of costs over all
the groups,

(M*,C*, T") = argminZ'R(G”) . )
M,C,T <

Since parts in a group are mutually dependent, each of these parameters depends on
the other two. Therefore we incorporate an alternating optimization scheme. To find the
optimal corresponding training part j = C (i) for query part i we have to minimize

C(i) = argmindzv (i, ) . (10)
J

So for each 7, we select the training part j with minimal cost. Optimal groupings are
obtained by finding assignments v = M, (¢) for each part ¢,

M,, (i) = argmindz+ (i, C(i)) = argmin[A267. (i, C(i)) + 367 (4, C(i))]. (11)
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Thus for each ¢, the group v with minimal distortion is chosen. Finally, the transforma-
tion of each group from the query image onto the training images has to be estimated

TV — arg;ninZMiV > Cij - [X207 (i, C(0) + Asd5 (i, C(4))] - (12)

z J

Optimal 7" in (I2) is obtained by Levenberg-Marquardt minimization. These three op-
timization steps are alternated until convergence. In our experiments, the optimization
in Alg. 1 has usually converged after two or three iterations. We initialize v by the out-
put of a bottom-up grouping that is outlined in section[3.4] Initialization of C;; for each
query part ¢ is obtained by a nearest neighbour search for j using the distance function
6Y(i,7). TV is initialized with the transformation that aligns the centroid of group v
onto the centroid of the corresponding training parts.

3.3 Hough Voting with Groups

After finding optimal groupings, group transformations, and correspondences, the votes
from all groups have to be combined. In standard Hough voting, the votes of all parts
are summed up, thus treating them as being independent, c.f. the discussions in [341]].
In our setting, all mutually dependent parts are combined in the same group. The joint
optimization of correspondences and transformations forces these dependent parts to
agree upon a joint overall vote.

(x,0)" = (x2 —T"xIC(i) +t",0")" (13)

where ¥ and o are the translation and scaling component of 7. Evidently, all parts
in a group are coupled by using the same transformation matrix 7 and the jointly
optimized correspondences C;;. After jointly optimizing the votes of all dependent
parts, the group vote can be obtained by averaging over the part votes. The Hough
accumulator for the voting of groups is obtained by summing over independent groups
rather than over dependent parts as in standard Hough voting. Since groups are mutually
independent, their summation is justified. Analogous to () we obtain

(14)
HEP (¢, x, 0) ocz GVRl(G”) x Z Zcij CP(x— [x9 — ’T”ij +t'],0 — ")

i€Gy j

where P(e) is obtained using the balloon density estimator [9] with Gaussian Kernel
K, Kernel bandwidth b, and distance function in scale space d : R3 x R3 — R,

a[(x,0) s (x2 = TxT + 17,07
P(x—[x?—’f”x?—ﬁ—t”],a—a”):K b(o)

(15)
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Algorithm 1. Voting with groups of dependent parts: Joint optimization of groupings,
correspondences, and transformations.

Input: e parts from query image: fiQ, xiQ,
o UCM-connectivity [4] A,/
e parts from all training images: fJT , X
Init: e pairwise clustering on A;;; — M, ()
do
C(i) « argmin; drv (4, j)
M, (i) < argmin,, d7v (i, C(7))
TY — argming Y-, My, Y- Cij (X267 (i, C(4)) + As67+ (i, C(0)))
until convergence
HEP (¢, x,0) — Eq. (I4)
{(x",o")T}, « Local minima of H*?

T
J

~N O AW~

3.4 Bottom-Up Grouping

Object detection in a query image starts by computing a probabilistic edge map [4] and
uniformly sampling edge points. Next, we perform a bottom-up grouping on the proba-
bilistic edges which serves as an initialization for v in section[3.1l Two edge points 4, i’
are considered to be connected on level s of the hierarchical ultrametric contour map of
[4], if they are on the boundary of the same region on this level. Let 1 = A, € {0,1}
denote this case. Averaging over all levels, A x ZS A?,, yields a similarity measure
between points and pairwise clustering (using Ward’s method) on this similarity matrix
produces a grouping M;,, which we use to initialize the optimization of (9.

3.5 Hypothesis Verification

Due to intra-class variations and noise, the votes of all parts in a group cannot be brought
into perfect agreement. As is common practice in voting approaches, we employ a ver-
ification stage, where a SVM classifies histograms of oriented gradients (extracted on
regular grids on 4 different resolutions and 9 orientations) using pyramid match kernels
(PMK). To train the SVM, positive examples for a category are the groundtruth bound-
ing boxes, rescaled to the average bounding box diagonal length of the class. Negative
samples are obtained by running our group voting on the positive training samples and
selecting false positive hypotheses, i.e. the most confused negative samples. In the ver-
ification stage, the SVM classifier is evaluated in a local 3 x 3 neighbourhood around
each voting hypothesis. This local search refines the voting hypotheses from the groups.

4 Experiments

We evaluate our approach on ETHZ Shape and INRIA Horses Datasets. These two
datasets feature significant scale changes, intra-class variation, multiple-objects per im-
age, and intense background clutter. We use the latest experimental protocol of Ferrari
et al. [16]: For ETHZ shape dataset, detectors are trained on half the positive samples of
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a category. No negative training images are used and all remaining images are used for
testing. For INRIA shape dataset, 50 horse images are used for training and the remain-
ing 120 horse images plus 170 negative images are used for testing. In all experiments,
the detection performance is measured using the PASCAL VOC criterion [16] (requir-
ing the ratio of intersection and union of predicted and groundtruth bounding box to be
greater than .5).

4.1 ETHZ Shape Dataset — Performance Analysis

Fig. 2l compares our approach with state-of-the-art voting methods on ETHZ. Voting
with our groups of dependent parts outperforms all current voting based approaches.
We achieve a gain of 27% over the Hough voting in [[16], an improvement of 19%
over [25]], and 17% higher performance than [28], see Tab. [[l Even compared with
the local sliding window classification in [28]] (PMK re-ranking) we obtain a slightly
higher performance (1.4%). The PMK re-ranking is a separate classifier that performs
verification of votes. Thus our voting method alone not only improves current Hough
voting approaches, but also produces results beyond those of the verification stage of
some of the methods.

The primary focus of this paper is to improve Hough voting by modeling part depen-
dence. Nevertheless, we also investigate the combined detector consisting of voting and
a verification stage. The results are shown in Fig.2l Our results compare favourably with
sliding window classification in [28]]. This approach has to search over 10* hypotheses
whereas our approach produces on the order of 10 candidate hypotheses. Consequently,
the gain in computational performance of our approach is between two and three orders
of magnitude. Compared to preprocessing steps such as extraction of probabilistic edge
maps and computation of geometric blur, our grouping, voting and correspondence op-
timization has insignificant running time. Nevertheless, we obtain a gain of 3.68% over
sliding windows at 0.3 fppi. Compared to the best verification systems [25], we obtain
a gain of 0.68% at 0.3 fppi.

Fig. Bl compares the supervised methods of [35] against our detector (which only
needs training images with bounding boxes). Without requiring the supervision infor-
mation of [35], we are dealing with a significantly harder task. [16] showed a perfor-
mance loss of 15% at 0.4 fppi.Nevertheless, we perform better on 3 out of 5 categories.
(actual values of [35]] are unavailable).

Let us now compare the reliability of votes from individual parts with the reliabil-
ity of object hypotheses produced by our groupings. Therefore, we map object query
features (features from within the groundtruth bounding box) onto the positive training
samples and we do the same for background query features. By comparing the match-
ing costs we see how likely positive query features are mistaken to be background and
vice versa. Then we are doing the same for groups, i.e. groupings (IT)) from the object
and from the background are mapped onto positive training samples. Fig. [3] shows that
groups have a significantly lower error rate R (30% vs. 77%) to be mapped onto wrong
training samples. Thus group votes are significantly more reliable. Fig. d shows the vot-
ing of parts before and after optimization. Voting with groups produces concerted votes
whereas independent parts(singleton groups) produce votes with significant clutter.
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4.2 INRIA Horse Dataset — Performance Analysis

Figure Fig. |6 shows the performance of voting with groups and the overall detector
(voting + verification). Voting with groups significantly outperforms the best voting
methods so far (M?HT detector), e.g., roughly 12% gain at 3 fppi. In terms of overall
performance, we have a detection rate of 87.3% at 1 fppi compared to the state of the
art results of 85.27% for M2HT + IKSVM and 86% for sliding windows (IKSVM).
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Table 1. Comparing the performance of various methods. Detection rates (in [%]), PASCAL
criterion .5 overlap. The approach of [23]] use positive as well as negative samples for training
whereas we use only positive samples for training. Our voting yields a 27% higher performance
than the Hough voting in [16]], 19% gain over max-margin Hough voting [23]], and 17% gain over
line voting [28]], thus significantly improving the state-of-the-art in voting.

Voting Stage (FPPI = 1.0 ) Verification Stage (FPPI = 0.3 /0.4)
Cat HEP  HoughM>HT voting H®™ vo- Full  Sliding  Full syst M?HT+
[16] [25] [28] ting+verif system  Windows [16] IKSVM
128] 1251

Apples  84.0 43.0 85.0 80.0 9583/95.8395.0/95.095.8/96.6 77.7/83.2 95.0/95.0
Bottles  93.1 644 67.0 924 96.3/96.3 89.3/89.3 89.3/89.3 79.8/81.6 92.9/96.4
Giraffes 79.5 522 55.0 36.2 81.82/84.09 70.5/75.473.9/77.3 39.9/44.5 89.6/89.6
Mugs  67.0 45.1 55.0 47.5 94.87/96.44 87.3/90.3 91.0/91.8 75.1/80.0 93.6/96.7
Swans  76.6 62.0 42.5 588 94.12/94.12 94.1/94.1 94.8/95.7 63.2/70.5 88.2/88.2

Avg 80.0 533 609 63.0 92.58/93.3587.2/88.8 88.9/90.1 67.2/72.0 91.9/93.2

(@ (b)

Fig. 4. Left plot in panels (a) and (b) shows standard Hough voting which assumes mutual inde-
pendence between features. Right plot in panels (a) and (b) shows the voting after joint optimiza-
tion of correspondences, groups, and votes.
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Fig. 5. Reliability of parts (singleton groups), left plot vs. groups, right plot. The plots show the
misclassification rate of groups and parts for different matching cost R. The optimal error rate
for parts is 77%, for groups 30% thereby underlining the increased reliability of groups.
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Fig. 6. Detection plots on INRIA Horses dataset. Left plot compares the M2HT detector for differ-
ent parameters with our group voting. Voting with groups is superior to all. Right plot compares
the overall detection results obtained from voting with groups plus verification with sliding win-
dows (IKSVM) and state-of-the-art methods. At 1.0 FPPI we achieve a detection rate of 87.3%
compared to the state of the art result of 86% (IKSVM) [25]]

5 Discussion

We have tackled the primary weakness of Hough voting methods, the assumption of
part independence, by introducing the grouping of mutually dependent parts into the
voting procedure. Therefore, we have formulated voting-based object detection as an
optimization problem that jointly optimizes groupings of dependent parts, correspon-
dences between parts and object models, and votes from groups to object hypotheses.
Rather than using uncertain local votes from unreliable local parts we utilize their de-
pendences to establish extended groups that reliably predict global object properties
and are thus producing reliable object hypotheses. Compared to the sliding window
paradigm, our voting approach reduces the number of candidate hypotheses by three
orders of magnitude and improves its recall. Our model of part dependence in voting
has demonstrated that it significantly improves the performance of probabilistic Hough
voting in object detection.
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Abstract. Many methods for object recognition, segmentation, etc.,
rely on a tessellation of an image into “superpixels”. A superpixel is
an image patch which is better aligned with intensity edges than a rect-
angular patch. Superpixels can be extracted with any segmentation al-
gorithm, however, most of them produce highly irregular superpixels,
with widely varying sizes and shapes. A more regular space tessellation
may be desired. We formulate the superpixel partitioning problem in
an energy minimization framework, and optimize with graph cuts. Our
energy function explicitly encourages regular superpixels. We explore
variations of the basic energy, which allow a trade-off between a less reg-
ular tessellation but more accurate boundaries or better efficiency. Our
advantage over previous work is computational efficiency, principled opti-
mization, and applicability to 3D “supervoxel” segmentation. We achieve
high boundary recall on images and spatial coherence on video. We also
show that compact superpixels improve accuracy on a simple application
of salient object segmentation.

Keywords: Superpixels, supervoxels, graph cuts.

1 Introduction

Many vision applications benefit from representing an image as a collection of su-
perpizels, for example [TI2BI4IBIGI7IR], to cite just a few. While the exact defini-
tion of a superpixel is not feasible, it is regarded as a perceptually meaningful
atomic region. A superpixel should contain pixels that are similar in color, tex-
ture, etc., and therefore are likely to belong to the same physical world object.
The atomic region notion is old, but a popular term superpizel has been coined
recently [I].

The assumption that all pixels in a superpixel belong to the same object leads
to the advantage of superpixel primitives over pixel primitives. The first advan-
tage is computational efficiency. If one needs to compute a property that stays
approximately constant for an object, then superpixel representation is more ef-
ficient since the total number of primitives is greatly reduced [9]. Computational
efficiency also comes from a reduction in the number of hypothesis. Instead of
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exhaustive examining of all rectangular patches [10], an alternative is to examine
only superpixels [TI2/45]6l/7]. In addition to efficiency, superpixels are used for
computing features that need spatial support [3].

To obtain superpixels, one often uses image segmentation algorithms such as
meanshift [TT], graph based [I2], normalized cuts [I3]. To increase the chance
that superpixels do not cross object boundaries, a segmentation algorithm is run
in an oversegmentation mode. However, most segmentation algorithms produce
regions of highly irregular shape and size, for example the meanshift [I1] and
the graph-based [12], see Fig. [ first two images. The boundaries are also highly
irregular, since there is no explicit constraints on length. A large superpixel with
a highly irregular shape is likely to straddle more than one object.

Fig. 1. From left to right: meanshift [I1], graph based [12], turbopixels [14], NC super-
pixels [I]. Implementation was obtained from the authors’ web sites.

There are advantages to superpixels with regular shapes and sizes, such as
those in Fig. [ right. A regular shape is less likely to cross object boundaries,
since objects rarely have wiggly shapes. If a superpixel does cover more than one
object, if its size is not too large, the error rate is likely to be controlled.

The normalized cuts algorithm [I3] can be adapted to compute superpixels
that are regular in size and shape [I], see Fig.[ll Many methods that need regular
superpixels use normalized cuts [QTJ2/45]. However, NC superpixels [I] are very
expensive, and have the following unappealing property, noticed by [14]. The
smaller is the size of target superpixels, the longer the computation takes.

Our work was inspired by the turbopixel algorithm [14], Fig. [l It is based
on curve evolution from seeds placed regularly in the image, which produces a
regular “turbopixel” space tessellation. Using various constraints during curve
evolution, they encourage a uniform space coverage, compactness of superpix-
els in the absence of image edges, and boundary alignment when image edges
are present. They have to devise a collision detection mechanism to insure no
turbopixels overlap. The algorithm runs in seconds on the images in Berkeley
dataset [I5], as compared to minutes with NC superpixels [I].

We propose a principled approach to compute superpixels in an energy mini-
mization framework. Our method is simple to understand and implement. The
basic algorithm, illustrated in Fig. 2] is similar in spirit to texture synthesis [16].
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Fig. 2. Overview of our algorithm. Left: the original image overlayed with square
patches. For clarity, only some patches are shown. Middle: result of patch stitching.
Right: superpixel boundaries.

An image is covered with overlapping square patches of fixed size, Fig. 2 left.
Each pixel is covered by several patches, and the task is to assign a pixel to
one of them. If two neighboring pixels are assigned to the same patch, there is
no penalty. If they belong to different patches, then there is a stitching penalty
that is inversely proportional to the intensity difference between the pixels. In-
tuitively, we are stitching patches so that the seams are encouraged to align
with intensity edges. The stitching result is in Fig. [2 middle, and superpixel
boundaries are in Fig. [2 right. Boundaries are regularized due to the stitching
energy function. A superpixel cannot be too large, not larger than a patch size.
Small superpixels are discouraged because they contribute a higher cost to the
stitching energy. Thus the sizes of superpixels are also regularized. We extend
this basic algorithm to other formulations, which allow a trade-off between a less
regular space tessellation but more accurate boundaries or better efficiency.

Our work has several advantages over turbopixels [14]. First, we have an ex-
plicit energy, and a principled way to optimize it. In contrast, the method in [I4]
is described only procedurally. Our approach is simpler to understand and ana-
lyze. Unlike [I4], we do not need a collision detection mechanism, overlap is not
allowed by design. Since we have an explicit energy function, we can change its
terms to encourage different superpixel types. One modification we add is a term
that encourages intensity homogeneity inside a superpixel, not something that
is easy to include explicitly into [14]. Another advantage is optimization. Tur-
bopixels are based on level set evolution [I7], which is known to have numerical
stability issues. We optimize with graph cuts [18], which is known to perform
well [T9]. Our running time is better. Last, but not least, our approach naturally
transfers to 3D for “supervoxel” segmentation of video.

An interesting work on superpixels is in [20/21]. Their goal is somewhat differ-
ent from ours. They seek superpixels conforming to a grid, which has storage and
efficiency advantages. The work in [20] is based on greedy optimization, and [21]
uses a more global approach, which, like our work, is also based on graph cuts.
However, the formulation in [20121] poses restrictions on superpixel shapes: the
boundary between superpixels cannot “turn back” on itself.
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We evaluate our approach on Berkeley dataset [15] and show that we achieve
high boundary recall and low undersegmentation error, similar or better than
that of [IIT4]. We also show that our supervoxels have a high spatial coherence
on 3D volumes constructed from video. To show that compact superpixels are
more appropriate for some applications, we compare the performance of our su-
perpixels vs. those of [12] on a simple application of salient object segmentation.

2 Superpixel Segmentation

In this section we give a detailed description of our superpixel segmentation
approach. We review graph cut optimization in Sec. 21l Then we explain the
basic “compact” superpixel algorithm is in Sec. In Sec. 23 we show how
to incorporate variable patch size. The resulting algorithm is called “variable
patch” superpixels. Variable patch superpixels are more efficient computation-
ally, and their boundary recall does not suffer a performance loss. However they
do have more widely varying sizes. Lastly, in Sec. [Z4] we show how to incorporate
intensity constancy constraints, and the resulting algorithm is called “constant
intensity” superpixels. Constant intensity superpixels perform better on bound-
ary recall, but, again, have more widely varying sizes.

2.1 Energy Minimization with Graph Cuts

We now briefly review the graph-cut optimization approach [I8]. Many problems
in vision can be stated as labeling problems. Given a set of pixels P and a finite
set of labels £, the task is to assign a label [ € £ to each p € P. Let f, denote
the label assigned to pixel p, and let f be the collection of all label assignments.
There are two types of constraints. Unary constraints D,(l) express how likely
is a label [ for pixel p. Binary constraints Vp4(l1,l2) express how likely labels /3
and [y are for neighboring pixels p and ¢q. An energy function is:

E(f) = ZDp(fp)+>‘ Z Wpq * Vi (fps fa)s (1)

peP {p.a}eN

In Eq. (), the first and the second sums are called the data and the smooth-
ness terms, and A is a collection of neighboring pixel pairs. We use 8-connected
grid, and Potts model Vp,(fp, f) = min(1,|fp, — fq4]). The coefficients wy,q are
inversely proportional to the gradient magnitude between p and ¢, encouraging
discontinuities to coincide with intensity edges. This energy is NP-hard to opti-
mize. We use the expansion algorithm from [I§], which guarantees a factor of 2
approximation. For the max-flow/min-cut algorithm, we use [22].

2.2 Compact Superpixels

First recall the intuitive explanation, Fig.[2l We cover an image with overlapping
square patches of fixed size, equal to the maximum allowed superpixel size. We
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(a) Three patches (b) Their optimal stitching (c¢) In the final stitching

Fig. 3. A simple illustration of patch stitching. Left: orange, green, and purple patches.
Middle: their optimal stitching. Right: their optimal stitching in the final result.

seek a stitching of the patches, or, in other words, an assignment of each pixel to
a unique patch. The stitches cost cheaper if they coincide with intensity edges. A
simple illustration is in Fig. Bl Suppose only three patches in Fig.[Bla) participate.
There is a strong intensity gradient on the lip boundary, and therefore the cut
between the patches aligns to the lip boundary, Fig. Bi(b). Fig. Blc) shows the
shape of these patches in the final stitching, with all patches participating.

We now formalize the problem in the energy minimization framework. We
number allowed patches with consecutive integers 1, ..., k, where k is the number
of allowed patches. We identify ith patch with an integer label i, therefore £ =
{1,2,...,k}. Even though L is ordered, this order has no meaning. Let S(I) denote
the set of the pixels contained in patch | € L. For example, in Fig. Bl(a), if { is
the “orange” label, then S(I) is the set of pixels covered by the orange square.
Label [ can be assigned only to pixels in S(I). Therefore the data term is:

1 ifpe S
o0 otherwise

D)= { @
We have to decide how many patches to use and how to spread them out in the
image. We address these issues after the energy function is completely specified.

We now discuss the smoothness term. To better approximate Euclidean met-
ric [23] we use 8-connected N. V,, is Potts model with wy, from [24]: w,, =

2
eavp(—dig’(’;;)q_)%z,). Here I, is the intensity of pixel p, and dist(p,q) is the Eu-

clidean distance between p and q.

Observe that with D,, as defined in Eq. (@), the data term in Eq. () is equal
for all finite energy labelings. This implies that parameter A in Eq. (1) has no
effect on optimization, so we set A = 1. Usually X is an important parameter
to choose correctly as it controls the relative weight between the data and the
smoothness terms, and, therefore, the length of the boundary. Parameter \ is
often set by hand through a tedious trial and error process. In our case the
parameter that controls the boundary length is the patch size. Larger patches
lead to fewer boundaries in the optimal labeling. Patch size is in some sense a
more “natural” parameter since it is chosen by the user to control the size of the
maximum superpixel, as appropriate for an application.

We now address the question of how many patches to place in the image.
Observe that only some labels (patches) are present in the final labeling. It is
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clear from our energy function that the more patches we have, the lower is the
final energy, since adding patches only helps to discover better stitches. Thus for
the best stitching, we should use a dense strategy, i.e. put a patch at every image
pixel. The dense strategy is too expensive. In practice we obtain good results by
spreading patches at intervals four times less than the length of the square side.

We use the expansion algorithm [I8] for optimization. It does not guarantee
an optimum but finds an approximation within a factor of two. We initialize
by randomly picking a label I, and assigning ! to pixels in S(I) until there are
no uninitialized pixels. An intuitive optimization visualization is as follows. An
expansion for label [ improves the boundaries under the patch S({) and its border.

In addition to the maximum size, the minimum superpixel size is also con-
trolled. Suppose that there is a small superpixel A. Then for any neighboring
superpixel B, there is no label [ s.t. the patch S(I) completely covers A and
B. Otherwise, an expansion on [ would obtain a smaller energy by assigning [
to pixels in A U B, since the boundary between B and A disappears and no
new boundary is created. The smaller is A, the less likely it is that there is no
neighboring superpixel B s.t. A and B are covered completely by some patch.

Despite a large number of labels, for our energy the expansion algorithm is
very efficient. An expansion on label [ needs to be performed only for pixels in
S(1). This is both memory and time efficient. We run the expansion algorithm
for two iterations, and it takes about 5 seconds for Berkeley images [15]. Our
algorithm would be easy to implement on multiple processors or GPU.

To summarize, the properties of compact superpixels are as follows. In the
presence of large image gradient, superpixel boundaries are encouraged to align
with image edges. In the absence of large gradient, superpixels tend to divide
space into equally sized regular cells. Superpixel sizes tend to be equalized, and
their boundaries are encouraged to be compact by the energy function.

2.3 Variable Patch Superpixels

In the previous section we assumed that the patch size is fixed. This helps to
ensure that the superpixel sizes are equalized. If one is willing to tolerate a wider
variance in superpixel sizes, then it makes sense to allow larger superpixels in
the areas with lower image variance.

We develop a simple approach to variable patch superpixels. We allow a vari-
able set of square patches, with the smallest side of size k,,;, and the largest of
size kmae- Let S be a be a patch centered at pixel p. Let C(S) be the square
patch of side twice less than the side of S also centered at p, i.e. C(S) is the
“central” part of S. Let P(S) be the set of pixels contained in S but not in
C(S). As a measure of quality of S we take Q(S) = var(C(S)) — var(P(S)) .
Here var(S) measures the intensity variance in the patch S. The lower is Q(S),
the better is the quality of a patch. That is we want the central part of a patch
to be of low variance and the periphery to have a high variance. The expectation
is that the inside part of patch S is not going to contain stitches, and therefore
should be uniform in intensity. The cuts are encouraged to lie in the periphery
of the patch S, therefore this part is encouraged to have a high variance.
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We measure the quality of all possible patches of sizes in the range from k,,;y,
t0 kmaz- This can be done efficiently using integral images [10]. After this, we
sort all patches in terms of quality and select the m best ones so that each pixel
is contained in at least 4 patches. We found experimentally that variable patch
superpixels do not worsen the boundary recall compared to compact superpixels,
while improving efficiency by about a factor of 2.

2.4 Constant Intensity Superpixels

Since we formulate superpixel segmentation in the energy minimization frame-
work, we can change certain properties of superpixels by simply changing the
energy function. We now address one useful change. In the energy for compact
superpixels, Sec. 2.2] there is no explicit encouragement that superpixels have
constant intensity. Consider a grey and white rectangles adjacent to each other
in front of a black background. If there is a patch that covers both rectangles,
they will be assigned to the same superpixel, since there is no incentive to split
them across two superpixels, regardless of their difference in intensity.

We can explicitly encourage constant intensity inside a superpixel but at the
price of obtaining superpixels that are less equalized in terms of size. Let ¢(l) be
the pixel at the center of patch S(I). We change the data term to:

|1y — Ic(l)| if pe S(1)
9 otherwise

D, = {

Fig. 4. Two enlarged pieces overlayed over original superpixel images. Left: Compact
superpixels, part of the boundaries between elephant legs and on top are missed. Right:
constant intensity superpixels, these boundaries are captured.

Now each pixel that is assigned label [ is encouraged to be of the same intensity
as the center of patch S(I). To ensure this new energy is not increasing during
optimization, we have to make sure that that if p is assigned label [, then the
center of the patch ¢(l) is also assigned I. We can easily do this with addition of
the following new term T, (f) to the energy in Eq. (d):
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Tnew(f) = Z W(fpa fC(fp))a (4)

pEP

where W(a, 3) = oo if @ # 3 and 0 otherwise.

See Fig. Ml for an example where intensity constancy constraint helps to get
more accurate boundaries. The cost is that approximately 20% more superpixels
are found for the same patch size, some being quite small.

3 Supervoxel Segmentation

Our approach naturally extends to segmenting “supervoxels” in 3D space. A
voxel has three coordinates (z,y,t), with ¢ being the third dimension. A su-
pervoxel is a set of spatially contiguous voxels that have similar appearance
(intensity, color, texture, etc.). Notice that the slices of a voxel at different val-
ues of the coordinate ¢ do not necessarily have the same shape. Segmentation
of volumes into supervoxels can be useful, potentially, for medical image and
for video processing. In particular, for video processing, there is an interest in
coherent 3D segmentation for video abstraction and animation [25/26].

First we create a 3D volume by stacking the frames together, Fig. Bl left.
Analogously to the 2D case, we cover the 3D volume by overlapping 3D blocks.
For clarity, in Fig. Bl we show only a few non-overlapping blocks. The depth of a
block can be different from its width and height. The larger the depth, the more
temporal coherency is encouraged. As before, each block corresponds to a label.
N is now 16-connected and contains neighbors between the frames. Just as in
the 2D case, we place blocks overlapping in step size equal to a quarter of the

Fig. 5. Supervoxels. Left: video frames are stacked into a 3D volume and covered by a
set of 3D blocks. Right: supervoxels, shown separately in each frame. Three supervoxels
are highlighted with color (red, yellow, light blue). This figure is better viewed in color.
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size of the block (in each dimension). The algorithm is efficient, since we only
need to work on a little more than a single block at a time.

Fig. Bl right, shows the results on four consecutive frames of the “tennis”
video sequence. We show the section of supervoxels with each frame separately.
Notice the high degree of spatial coherency between the frames.

4 Experimental Results

First we evaluate how well superpixel boundaries align to image edges. We use
Berkeley database [I5] that has ground truth provided by human subjects. We
use the same measure of boundary recall as in [IIT4]. Given a boundary in the
ground truth, we search for a boundary in superpixel segmentation within a
distance of ¢ pixels. For experiments we set ¢ = 2. Recall is the percentage of
ground truth boundary that is also present in superpixel segmentation (within a
threshold of t). Fig. [B(a) plots the dependency of boundary recall on the number
of superpixels. The smaller is the number of superpixels, the less boundaries
there are, and the worse is the recall. These results were obtained by averag-
ing over 300 images in the database. We compare our compact (OursCompact)
and constant intensity (OursIntConstant) superpixels with turbopixels (Turbo),
method from [12] (FH), and NC superpixels (NC) [1]. Our variable patch super-
pixels have performance similar to compact superpixels, so we omit them from
Fig. [dl for clarity. From the plot, it is clear that our constant intensity superpix-
els have a comparable performance to FH and NC methods, and are superior
to turbopixels, at least for lower superpixel number. For high superpixel num-
ber, all methods have similar performance. Our constant intensity superpixels
are superior to compact superpixels for any number of superpixels. The running
time of our algorithm is better than that of Turbopixel and NC algorithms.

In Fig. [B(b) shows the undersegmentation error from [I4]. Given a ground
truth segment and a superpixel segmentation of an image, undersegmentation
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Fig. 6. Performance vs. number of superpixels. Left: boundary recall vs. number of
superpixels. Right: undersegmentation error vs. number of superpixels.
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Fig. 7. Top: compact superpixels, bottom: constant intensity superpixels

error measures what fraction of pixels leak across the boundary of a ground
truth segment. The FH algorithm [12] is particularly susceptible to this error
because it produces segments of highly variable shapes. Our normalization is
slightly different from that in [14], so the vertical axis is on a different scale.

The running times of our algorithms for the images in Berkeley dataset are, on
average, as follows. The variable patch superpixels take 2.7 seconds to compute.
The compact superpixels take from 5.5 to 7.4 seconds to compute, depending on
the patch size. A larger patch size corresponds to a slightly longer running time.
The constant intensity superpixels take from 9.7 to 12.3 seconds to compute,
again depending on the patch size. Patch sizes are from 20 by 20 to 90 by 90.
The turbopixel algorithm [14] takes longer to compute, on average 21.3 seconds.
The average running time of NC superpixels [I] is 5.7 minutes.

We now compare the dense strategy of using all patches with the sparse patch
placement described in Sec. In both cases, we run the expansion algorithm
for two iterations. Since the dense strategy is expensive, we ran the experiment
for 20 images chosen at random from the Berkeley database [I5]. To compare
energies across different images, we measure the relative energy difference. For
an image I, let £%(I) be the energy with dense patch placement, and E*(I) be
the energy with the sparse patch placement. Then the relative percent difference
in energy is 100 - Es(g; ?d(l). The mean running time for the dense strategy
was 123.5 seconds, whereas for the sparse strategy it was 5.8 seconds. The mean
energy difference is 13%, with standard deviation of 0.8%. It makes sense to gain
a factor of 21 in computational efficiency while worsening the energy by 12%.

Fig. [l and Fig. [ can be used to visually compare our results with turbopix-
els [14] and NC superpixels [I]. Visually the results are similar, except the NC
superpixels appear to have smoother boundaries. This is because in [I] they use
a sophisticated boundary detector from [27]. We could incorporate this too in
our framework, but it is rather expensive, it takes approximately 30 seconds to
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compute boundaries for one image. In Fig.[7l, we show some of our segmentations.
The top row is compact and the bottom row is intensity constant superpixels.

Fig. Bl(b) shows the results on four frames of the “tennis” video sequence.
We show the section of supervoxels with each frame separately. Notice the high
degree of spatial coherency, even in the areas that are not stationary. Between
the first and the last frames shown, the ball moves by about 5 pixels, and the
hand by about 8 pixels in the vertical direction. The fingers and the ball are
segmented with a high degree of temporal coherency between the frames. We
highlight 3 different supervoxels: the one on the ball with red, on the hand with
light blue, and on the wall with yellow. The wall is stationary and the supervoxel
shape is almost identical between the time slices. The ball and hand are moving,
but still the supervoxels slices have a high degree of consistency.

The results of supervoxel segmentation are best to be viewed in a video pro-
vided in the supplementary material. We show the original “tennis” sequence
and the result of supervoxel segmentation. For visualization, we compute the
average intensity of each supervoxel and repaint the video with the average
supervoxel intensity. To appreciate the degree of temporal coherence in the su-
pervoxel segmentation, we also perform superpixel segmentation on each frame
of the “tennis” sequence separately, using the algorithm in Sec. We display
the results by painting superpixels with their average intensity. The result of
segmentation on each frame separately has much less temporal coherence, as
expected. We also provide several other video sequences.

The code for superpixel segmentation will be made available on our web site.

5 Application to Salient Object Segmentation

To show that regular superpixels are useful, we evaluated them for salient object
segmentation, similar to [28]. The goal is to learn to segment a salient object(s)
in an image. We use Berkeley dataset [I5], 200 images for training and 100 for
testing. Using human marked boundaries as a guide, we manually select salient
object(s). Of course, our ground truth is somewhat subjective.

We segment images using rectangular boxes, FH superpixels [12], and our
compact superpixels. For boxes, we found that different sizes with overlap give
better results. We used 4 different box sizes, from 80 by 80 to 20 by 20. For
segmentation, we choose parameters that give the best results on the training
data. From each box/superpixel, we extract features similar to those used in [3].
We use features based on color, position (relative to the image size) in the image,
and texture. We use gentleboost [29] for trainingl.

The testing error is as follows. Our compact superpixels: 20.5%, FH superpix-
els [12]: 27.4%, rectangular boxes: 24.0%. Thus performance with our superpixels
is significantly better than that of boxes and of FH superpixels [I2]. With boxes,
the size is controlled, but boxes do not align well to object boundaries. With FH
superpixels [12], boundaries are reasonable, but segment size is not controlled,

! The implementation by A. Vezhnevets downloaded from
graphics.cs.msu.ru/ru/science/research/machinelearning/adaboosttoolbox.
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some segments are very large. Thus it appears to be important that our compact
superpixels have both regularized size and boundary alignment. We expect that
we would have gotten performance similar to ours using turbopixels [14] or NC
superpixels [I], but our computational time is much better. Our results in this
section are consistent with those of [6], who show that having more accurate
spatial support (more accurate superpixels) improves object segmentation.

We also investigate whether the results from classification can be further im-
proved by spatial coherence. We apply the binary segmentation algorithm of [24]
to separate an image into the salient object and background components. For the
data term, we use the confidences provided by boosting. Using confidences only
can smooth results, but will not help to rectify large errors. Additional informa-
tion is gathered from the histogram of pixels with a high confidence either the
object or background class. Thus the data term is computed from quantized color
histogram weighted by class confidences. After binary graph cut segmentation
the errors are as follows. Our compact superpixels: 21.1%, FH superpixels [12]
25.6%, rectangular boxes 28.4%. Interestingly, the results for FH superpixels [12]
improve, results for our superpixels slightly worsen, and results for boxes worsen
significantly. Fig. B(a) shows some results after graph cut segmentation. While
what exactly constitutes a salient object may be arguable, our results most often

(a) Left column: results with our su- (b) Worst failures. Top row: results
perpixels, middle column: results with our superpixels. Bottom row: first
with FH superpixels [12], last col- result is with boxes, the other two are
umn: results with boxes. with FH superpixels [12]

Fig. 8. Some results for salient object segmentation
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correspond to recognizable object(s) occupying a significant portion of a scene,
with minimal holes. For most images, results with our superpixels are better or
comparable than that of boxes and superpixels of [12]. However sometimes there
are significant failures, the worst of them are in Fig. B[(b).

6 Future Work

In the future, we plan to investigate more variations on the “basic” energy func-
tion to produce superpixels with other interesting properties, such as certain pre-
determined orientations, etc. We can also use our algorithm to integrate results
from different segmentation algorithms, taking advantages or their respective
strengths.
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Convex Relaxation for Multilabel Problems
with Product Label Spaces

Bastian Goldluecke and Daniel Cremers

Computer Vision Group, TU Munich

Abstract. Convex relaxations for continuous multilabel problems have
attracted a lot of interest recently [TI2I3/4U5]. Unfortunately, in previous
methods, the runtime and memory requirements scale linearly in the total
number of labels, making them very inefficient and often unapplicable for
problems with higher dimensional label spaces. In this paper, we propose
a reduction technique for the case that the label space is a product
space, and introduce proper regularizers. The resulting convex relaxation
requires orders of magnitude less memory and computation time than
previously, which enables us to apply it to large-scale problems like optic
flow, stereo with occlusion detection, and segmentation into a very large
number of regions. Despite the drastic gain in performance, we do not
arrive at less accurate solutions than the original relaxation. Using the
novel method, we can for the first time efficiently compute solutions to
the optic flow functional which are within provable bounds of typically
5% of the global optimum.

1 Introduction

1.1 The Multi-labeling Problem

A multitude of computer vision problems like segmentation, stereo reconstruc-
tion and optical flow estimation can be formulated as multi-label problems. In
this class of problems, we want to assign to each point z in an image domain
2 C R™ a label from a discrete set I" = {1,..., N} C N. Assigning the label
v € I to x is associated with the cost ¢, (r) € R. In computer vision applica-
tions, the local costs usually denote how well a given labeling fits some observed
data. They can be arbitrarily complex, for instance derived from statistical mod-
els or complicated local matching scores. We only assume that the cost functions
¢y lie in the Hilbert space of square integrable functions £2(£2). Aside from the
local costs, each possible labeling g : {2 — I is penalized by a regularization term
J(g) € R. The regularizer J represents our knowledge about which label con-
figurations are a priori more likely. Frequently, it enforces some form of spacial
coherence. In this paper, we are above all interested in regularizers which penal-
ize proportionally to the length of the interface between regions with different
labels v, x and a metric d(vy, x) between the associated labels.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 2257 2010.
© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. The proposed relaxation method can approximate the solution to multi-labeling
problems with a huge number of possible labels by globally solving a convex relaxation
model. This example shows two images and the optic flow field between the two, where
flow vectors were assigned from a possible set of 50 x 50 vectors, with truncated linear
distance as a regularizer. The problem has so many different labels that a solution
cannot be computed by alternative relaxation methods on current hardware. See Fig. [1]
for the color code of the flow vectors.

The goal is to find a labeling ¢ : 2 — I" which minimizes the sum of the total
costs and the regularizer, i.e.

argmin J(g)—l—/ Cy(z)(z) da. (1)
geEL2(Q,T) o

1.2 Discrete Approaches

It is well known that in the fully discrete setting, the minimization problem ()
is equivalent to maximizing a Bayesian posterior probability, where the prior
probability gives rise to the regularizer [6]. The problem can be stated in the
framework of Markov Random Fields [7] and discretized using a graph represen-
tation, where the nodes denote discrete pixel locations and the edges encode the
energy functional [§].

Fast combinatorial minimization methods based on graph cuts can then be
employed to search for a minimizer. In the case that the label space is binary and
the regularizer submodular, a global solution of () can be found by computing
a minimum cut [9JI0]. For multi-label problems, one can approximate a solution
for example by solving a sequence of binary problems (a-expansions) [TTJI2],
or linear programming relaxations [I3]. Exact solutions to multi-label problems
can only be found in some special cases, notably [I4], where a cut in a multi-
layered graph is computed in polynomial time to find a global optimum. The
construction is restricted to convex iteraction terms with respect to a linearly
ordered label set.

However, in many important scenarios the label space can not be ordered, or
a non-convex regularizer is more desireable to better preserve discontinuities in
the solution. Even for relatively simple non-convex regularizers like the Potts
distance, the resulting combinatorial problem is NP-hard [I1]. Furthermore, it
is known that the graph-based discretization induces an anisotropy, so that the
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solutions suffer from metrication errors [I5]. It is therefore interesting to inves-
tigate continuous approaches as a possible alternative.

1.3 Continuous Approaches

Continuous approaches deal with the multi-label problem by transforming it
into a continuous convex problem, obtaining the globally optimal solution, and
projecting the continuous solution back onto the original discrete space of labels.
Depending on the class of problem, it can be possible to obtain globally optimal
solutions to the original discrete minimization problem.

As in the discrete setting, it is possible to solve the two-label problem in a
globally optimal way by minimizing a continuous convex energy and subsequent
thresholding [2]. In the case of convex interaction terms and a linearly ordered
set of labels, there also exists a continuous version of [14] to obtain globally
optimal solutions [3]. For the general multi-label case, however, there is no re-
laxation known which leads to globally optimal solutions of the discrete problem.
Currently the most tight relaxation is [4]. The theoretical basis of the reduction
technique introduced in this paper is the slightly more transparent formulation
introduced in [5] and further generalized in [I], but it can be easily adapted to
the framework [4] as well.

The convex relaxation described in [II5] works as follows. Instead of looking
for g directly, we associate each label v with a binary indicator function u, €
£2(£2,{0,1}), where u,(z) = 1 if and only if g(z) = 7. To make sure that a
unique label is assigned to each point, only one of the indicator functions can
have the value one. Thus, we restrict optimization to the space

Ur == { (Uy)yer : uy € L2(£2,{0,1}) and Z uy(z) =1 for all z € 2
yel’
2)
Let {-,-) denote the inner product on the Hilbert space £2(£2), then problem ()
can be written in the equivalent form

argminJ(w) + Y (uy,¢y) (3)
ueUr ~erl

where we use bold face notation u for vectors (u) er indexed by elements in I
We use the same symbol J to also denote the regularizer on the reduced space.
Its definition requires careful consideration, see Section [3l

1.4 Contribution: Product Label Spaces

In this work, we discuss label spaces which can be written as a product of a
finite number d of discrete spaces, I' = A; x -+ x Agq. Let N; be the number
of elements in A;, then the total number of labels is N = Ny - ... - Ng. In the
formulation (3)), we optimize over a number of N binary functions, which can
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Fig. 2. The central idea of the reduction technique is that if a single indicator function
in the product space I" takes the value 1, then this is equivalent to setting an indicator
function in each of the factors A;. The memory reduction stems from the fact that
there are much more labels in I" than in all the factors A; combined.

be rather large in practical problems. In order to make problems of this form
feasible to solve, we present a further reduction which only requires N1+ - -4+ Ny
binary functions - a linear instead of an exponential growth.

We will show that with our novel reduction technique, it is possible to effi-
ciently solve convex relaxations to multi-label problems which are far too large
to approach with previously existing techniques. A prototypical example is optic
flow, where a typical total number of labels is around 322 for practical problems,
for which we only require 64 indicator functions instead of 1024. However, the
proposed method applies to a much larger class of labelling problems. A con-
sequence of the reduction in variable size is a disproportionately large cut in
required runtime, which also makes our method much faster.

2 Relaxations for Product Label Spaces

2.1 Product Label Spaces

As previously announced, from now on we assume that the space of labels is a
product of a finite number d of discrete spaces, I' = A; x- - - x Ag, with |4;] = Nj.
To each label A € A;,1 < j < d, we associate an indicator function ug\ Thus,
optimization will take place over the reduced space of functions

Z/[F = {(U§)1<j<d,A€Aj uf\ € ,Cz((), {0,1}) and

, (4)
Z u&(x)zlforallx60,1<j<d}.
)\EA]'
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Fig. 3. Product function and its mollified convex envelope for the case d = 2
We use the short notation u* for a tuple (ui)1§j§d7,\e/1j. Note that such a
tuple consists indeed of exactly N7 + ... + Ny binary functions. The following
proposition illuminates the relationship between the function spaces U and U}: .

Proposition 1. A bijection uw* — w from U} onto Ur is defined by setting

1 d

Usy 1= Uy e UG

forally = (y1,.yva) € T

This is easy to see visually, Figure[2l A formal proof can be found in the appendix.
With this new function space, another equivalent formulation to () and @) is

argmin J(u™) + Z (ul, - ufim,c.y> . (5)

uXEZ/l;f ~yer

Note that while we have reduced the dimensionality of the problem considerably,
we have introduced another difficulty: the data term is not convex anymore, since
it contains a product of the components. Thus, in the relaxation, we need to take
additional care to make the final problem again convex.

2.2 Convex Relaxation

Two steps have to be taken to relax (Bl to a convex problem. In a first step, we
replace the multiplication function m(u%l, ey ugd) = u%l Cet ugd with a convex
function. In order to obtain a tight relaxation, we first move to the convex
envelope co (m) of m. Analyzing the epigraph of m, Fig. shows that

co(m) (z1, ..., Ta) = {1 ifoi=..=a24=1, o

0 ifany z; =0.
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This means that if in the functional, m is replaced by the convex function co (m),
we retain the same binary solutions, as the function values on binary input are
the same. We lose nothing on first glance, but on second glance, we forfeited
differentiability of the data term, since co (m) is not a smooth function anymore.

In order to be able to solve the new problem in practice, we replace co (m)
again by a mollified function co(m),, where ¢ > 0 is a small constant. We
illustrate this for the case d = 2, where one can easily write down the functions
explicitly. In this case, the convex envelope of multiplication is

0 if g +a0 <1

1+ 2o —1 otherwise.

co(m) (x1,x2) = {

This is a piecewise linear function of the sum of the arguments, i.e symmetric in
1 and x2, see Fig. We smoothen the kink by replacing co (m) with

0 if oy +a0 <1—4e
co(m), (x1,22) =S o (x1+ a2 — (1 —4e)? if1—4de <z +x2 <1+44e
1 if w1 +x2 >1+4¢

This function does not satisfy the above condition (@) exactly, but only fulfills
the less tight

=1 ife;=---=x4=1,

co(m), (z1,...,2q) { (7)

<e ifany z; =0.

The following Theorem shows that the solutions of the smoothened energy con-
verge to the solutions of the original energy as e — 0. After discretization, this
means that we obtain an exact solution to the binary problem if we choose €
small enough, since the problem is combinatorial and the number of possible
configurations finite.

Theorem 1. Let € > 0 and co (m), satisfy condition ([@). Let ug be a solution
to problem (H), and

u) € argmin J(u™) + Z {co(m), (ul,,..oul)),cy) (8)
‘LLXEZ/[}( ~yel
Then
|Be(u) = E(ug)| < 1921 llesllo e 9)
yerl

where E and E. are the energies of the original problem () and smoothened
problem (8), respectively.

The proof can be found in the appendix. The key difference of () compared
to (@) is that the data term is now a convex function.

In the second step of the convex relaxation, we have to make sure the do-
main of the optimization is a convex set. Thus U}: is replaced by its convex
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hull co (U F) . This just means that the domain of the functions (ug\) is extended
to the continuous interval [0, 1]. The final relaxed problem which we are going
to solve is now to find

argmin J(u™) + Z {co(m), (ul,.yul)),cy) (10)
uXECO(M;f) yerl'

2.3 Numerical Method

With a suitable choice of convex regularizer J, problem (I0) is a continuous
convex problem with a convex and differentiable data term. In other relaxation
methods, one usually employs fast primal-dual schemes [T6J17] to solve the con-
tinuous problem. However, those are only applicable to linear data terms. For-
tunately, the derivative of the data term is Lipschitz-continuous with Lipschitz
constant L = J_ o llexlly- If we take care to choose a lower semi-continuous J,
we are thus in a position to apply the FISTA scheme [I§] to the minimization
of ([I0). It is much faster than for example direct gradient descent, with a prov-
able quadratic convergence rate. The remaining problems are how to choose a
correct regularizer, and how to get back from a possibly non-binary solution of
the relaxed problem to a solution of the original problem.

2.4 Obtaining a Solution to the Original Problem

Let ©* be a solution to the relaxed problem (I0)). Thus, the functions 1}& might
have values in between 0 and 1. In order to obtain a feasible solution to the
original problem (), we just project back to the space of allowed functions. The
function g € £2(§2,T") closest to @ is given by setting

. . ~d
g(z) = argmaxu}/1 (z) ... 4f, (z),
yel’

i.e. we choose the label where the combined indicator functions have the highest
value.

We cannot guarantee that the solution ¢ is indeed a global optimum of the
original problem (), since there is nothing equivalent to the thresholding theo-
rem [2] known for this kind of relaxation. However, we still can give a bound how
close we are to the global optimum. Indeed, the energy of the optimal solution
of (@) must lie somewhere between the energies of > and g.

3 Regularization

The following construction of a family of regularizers is analogous to [I], but
extended to accomodate product label spaces. An element u* € U} can be
viewed as a map in £2(£2, AX), where

A = Al xox AT C RN AN
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and

N;
j=1

is the set of corners of the standard (k — 1)-simplex. As shown previously, there
is a one-to-one correspondence between elements in A* and the labels in I

We will now construct a familiy of regularizers J : co (Z/IF) — R and after-
wards demonstrate that it is well suited to the problem at hand. For this, we
impose a metric d on the space I" of labels. A current limitation is that we can
only handle the case of separable metrics, i.e. d must be of the form

d

d(v,x) = > di(yi, xi)» (11)

i=1

where each d; is a metric on A*. We further assume that each d; has an Euclidean
representation. This means that each label A € A? shall be represented by an r;-
dimensional vector a} € R™, and the distance d; defined as Euclidean distance
between the representations,

d(\ p) = |ax —a,|, for all \,p € A”. (12)

The goal in the construction of J is that the higher the distance between labels,
the higher shall be the penalty imposed by J. To make this idea precise, we
introduce the linear mappings A; : co (A’) — R which map labels onto their

representations, ] )
Ai(N) =aj forall A e A*.

When the labels are enumerated, then in matrix notation, the vectors aiy become
exactly the columns of A;, which shows the existence of this map.
We can now define the regularizer as

d
J(u*) = TVi(Au'), (13)

where TV is the vectorial total variation on £2(§2,R"#). The following theorem
shows why the above definition makes sense.

Theorem 2. The regularizer J defined in ([I3]) has the following properties:

1. J is convex and positively homogenous on co (Z/IF)
2. J(u*) =0 for any constant labeling uw*.
3. If S C 2 has finite perimeter Per(S), then for all labels v, x € I,

J(’Y].S + X]-SC) = d(% X) PGY(S) )

i.e. a change in labels is penalized proportional to the distance between the
labels and the perimeter of the interface.
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The theorem is proved in the appendix. More general classes of metrics on
the labels can also be used, see [I]. For the sake of simplicity, we only included
the most important example of distances with Euclidean representations. This
class includes, but is not limited to, the following special cases:

— The Potts or uniform distance, where d;(\, u) = 1 if and only if A = y, and
zero otherwise. This distance function can be achieved by setting a} = %e X
where (ex)aea, is an orthonormal basis in RY:. All changes between labels
are penalized equally.

— The typical case is that the af denote feature vectors or actual geometric
points, for which |-|, is a natural distance. For example, in the case of optic
flow, each label corresponds to a flow vector in R2. The representations
a}\,ai are just real numbers, denoting the possible components of the flow
vectors in x and y-direction, respectively. The Euclidean distance is a natural
distance on the components to regularize the flow field, corresponding to the
regularizer of the TV-L! functional in [19].

The convex functional we wish to minimize is now fully defined, including the
regularizer. The ROF type problems with the vectorial total variation as a reg-
ularizer, which are at the core of the resulting FISTA scheme, can be minimized
with algorithms in [20]. For the also required backprojections onto simplices
we recommend the method in [21]. Thus, we can turn our attention towards
computing a minimizer in practice. In the remaining section, we will apply the
framework to a variety of computer vision problems.

4 Experiments

We implemented the proposed algorithm for the case d = 2 on parallel processing
GPU architecture using the CUDA programming language, and performed a
variety of experiments, with completely different data terms and regularizers.
All experiments were performed on an nVidia Tesla C1060 card with 4GB of
memory.

When the domain {2 is discretized into P pixels, the primal and dual variables
required for the FISTA minimization scheme are represented as matrices. In
total, we have to store P - (N7 + ... + Ng) floating point numbers for the primal
variables, and Pn- (r1 +...+rq) floating point numbers for the dual variables. In
contrast, without using our reduction scheme, this number would be as high as
P-Nj-...- Ny for the primal variables and Pn -rq - ... - rq for the dual variables,
respectively. For the FISTA scheme, we need space for four times the primal
variables in total, so we end up with the total values shown in Fig. [ Thus,
problems with large number of labels can only be handled with the proposed
reduction technique.

4.1 Multi-label Segmentation

For the first example, we chose one with a small label space, so that we can
compare the convergence rate and solution energy of the previous method [I]
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K 2 e e B e m
Proposed ——
# of Pixels # Labels Memory [Mb] Runtime [s] 25 F Previous N
P =P, x P, N1 X N2 Previous Proposed Previous Proposed
320 x 240 8% 8 112 28 196 6 > 2r
320 x 240 16 x 16 450 56 * 21 o0 B
320 x 240 32 x 32 1800 112 * 75 g 1.5
320 x 240 64 x 64 7200 225 - 314 4] 1
640 x 480 8 x 8 448 112 789 22
640 x 480 16 x 16 1800 224 * 80 05
640 x 480 32 x 32 7200 448 - 297 :
640 x 480 64 x 64 28800 900 - 1112 0 I N S |

| |
0246 8101214
Iteration

Fig. 4. The table shows the total amount of memory required for a FISTA implemen-
tation of the previous and proposed methods depending on the size of the problem.
Also shown is the total runtime for 15 iterations, which usually suffices for convergence.
Numbers shown in red cannot be stored within even the largest of todays CUDA capa-
ble cards, so an efficient parallel implementation is not possible. Failures marked with
a “«” are due to another limitation: the shared memory is only sufficient to store the
temporary variables for the simplex projection up until dimension 128. In the graph,
we see a comparison of the convergence rate between the original scheme and the pro-
posed scheme. Despite requiring significantly less memory and runtime, the relaxation
is still sufficiently tight to arrive at an almost similar solution.

with the proposed one. We perform a segmentation of an image based on the
HSL color space. The hue and lightness values of the labeling are taken from the
discrete sets of equidistant labels A; and As, respectively. Their size is |A;] =
|A2] = 8, so there are 64 labels in total, which can still be handled by the old
method as well, albeit barely. The labels shall be as close as possible to the
original image values, so the cost function penalizes the £!-distance in HSV
color space. We choose the regularizer so that the penalty for discontinuities is
proportionally larger in regions with higher lightness. The relaxation constant e
is reduced from 0.2 to 0.05 during the course of the iterations. The result can be
seen in Fig. Bl while a comparison of the respective convergence rates are shown
in the graph in Fig. [l The proposed method, despite requiring only a fraction of
the memory and computation time, achieves a visually similar result with only
a slightly higher energy. Note that the runtime of our method is far lower, since
the simplex projection becomes disproportionally more expensive if the length
of the vector is increased.

4.2 Depth and Occlusion Map

In this test, we simultaneously compute a depth map and an occlusion map for
a stereo pair of two color input images Iy, Ir : 2 — R3. The occlusion map
shall be a binary map denoting wether a pixel in the left image has a matching
pixel in the right image. Thus, the space of labels is two-dimensional with A
consisting of the disparity values and a binary As for the occlusion map. We use
the technique in [I] to approximate a truncated linear smoothness penalty on



Convex Relaxation for Multilabel Problems with Product Label Spaces 235

Fig.5. Results for the multi-label segmentation. The input image on the left was
labelled with 8 x 8 labels in the hue and lightness components of HSL color space. The
label distance is set so that smoothing is stronger in darker regions, which creates an
interesting visual effect.

Fig. 6. The proposed method can be employed to simultaneously optimize for a dis-
placement and an occlusion map. This problem is also too large to be solved by alter-
native relaxation methods on current GPUs. From left to right: (a) Left input image
I.. (b) Right input image Ir. (¢) Computed disparity and occlusion map, red areas
denote occluded pixels.

the disparity values. A Potts regularizer is imposed for the occlusion map. The
distance on the label space thus becomes

d(%X) =81 min(th |’Yl - X1|) + s2 |’Yz - X2| ) (14)

with suitable weights s1, s2 > 0 and threshold ¢; > 0. We penalize an occluded
pixel with a constant cost c,e. > 0, which corresponds to a threshold for the
similarity measure above which we believe that a pixel is not matched correctly
anymore. The cost associated with a label v at (x,y) € §2 is then defined as

Coce lf 2= 17
) = 15
ey (2,y) {HIL(% y) — Ir(z — A1,y)|l,  otherwise. (15)

The result for the “Moebius” test pair from the Middlebury benchmark is shown
in Fig. [0l The input image resolution was scaled to 640 x 512, requiring 128 dis-
parity labels, which resulted in a total memory consumption which was slightly
too big for previous methods, but still in reach of the proposed algorithm. Total
computation time required was 597 seconds.
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O

First image Ip Second image I Flow field and color code

Fig. 7. When employed for optic flow, the proposed method can successfully capture
large displacements without the need for coarse-to-fine approaches, since a global op-
timization is performed over all labels. In contrast to existing methods, our solution is
within a known bound of the global optimum.

4.3 Optic Flow

In the final test, we compute optic flow between two color input images Iy, I; :
2 — R3 taken at two different time instants. The space of labels is again two-
dimensional, with A; = As denoting the possible components of flow vectors in
z and y-direction, respectively. We regularize both directions with a truncated
linear penalty on the component distance, i.e.

d(v,x) = smin(t, |y1 — x1|) + smin(t, |[y2 — x2|), (16)

with a suitable weight s > 0 and threshold ¢ > 0. The cost function just compares
pointwise pixel colors in the images, i.e.

(@, y) = [Ho(z,y) = Lz + 71,5 +72)l; - (17)

Results can be observed in Fig. [l and [l Due to the global optimization of a
convex energy, we can successfully capture large displacements without having
to implement a coarse-to-fine scheme. The number of labels is 50 X 50 at an image
resolution of 640 x 480, so the memory requirements are so high that this problem
is currently impossible to solve with previous convex relaxation techniques by
a large margin, see Fig. @l Total computation time using our method was 678
seconds. A comparison of the energies of the continuous and discretized solution
shows that we are within 5% of the global optimum for all examples.

5 Conclusion

We have introduced a continuous convex relaxation for multi-label problems
where the label space is a product space. Such labeling problems are plentiful in
computer vision. The proposed reduction method improves on previous methods
in that it requires orders of magnitude less memory and computation time, while
retaining the advantages: a very flexible choice of distance on the label space, a
globally optimal solution of the relaxed problem and an efficient parallel GPU
implementation with guaranteed convergence.
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Because of the reduced memory requirements, we can successfully handle spe-

cific problems with very large number of labels, which could not be attempted
with previous convex relaxation techniques. Among other examples we presented
a convex relaxation for the optic flow functional with truncated linear penalizer
on the distance between the flow vectors. To our knowledge, this is the first
relaxation for this functional which can be optimized globally and efficiently.
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Appendix

Proof of Proposition [Il In order to proof the proposition, we have to show
that the mapping induces a point-wise bijection from A* onto

N
A= xze {01}V : Zaszl
j=1

We first show it is onto: for w(x) in A, there exists exactly one v € I' with
uy(z) = 1. Set ui(z) = 1if A = v;, and u}(z) = 0 otherwise. Then u(z) =

ul(z) - ... - u?(x), as desired. To see that the map is one-to-one, we just count
the elements in A*. Since A’ contains N; elements, the number of elements in
A*i8 Ny -...- Ng = N, the same as in A. O

Proof of Theorem [Il The regularizers of the original and smoothened problems
are the same, so because of condition (),

|E.(wX) - Bug)| < Z/Qecwdw <121 eyl (18)

Ner ~er
This completes the proof. O

Proof of Theorem [2l The first two claims are basic properties of the total
variation. For the last claim, we combine Corollary 1 in [I] with the definition
of the metric in equations (1)) and (I2) to find

d d

J(Yls +xlse) = > TVi(Ai(yls + xlse)) = 3 |}, —al], Per(S) (19)
i=1 i=1

= d(y, x) Per(S).

This completes the proof. O
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Statistics™

Lubor Ladickyl’**, Chris Russell'"**, Pushmeet Kohli2, and Philip H.S. Torr!

L Oxford Brookes
2 Microsoft Research

Abstract. Markov and Conditional random fields (CRFs) used in computer vi-
sion typically model only local interactions between variables, as this is compu-
tationally tractable. In this paper we consider a class of global potentials defined
over all variables in the CRF. We show how they can be readily optimised us-
ing standard graph cut algorithms at little extra expense compared to a standard
pairwise field.

This result can be directly used for the problem of class based image segmen-
tation which has seen increasing recent interest within computer vision. Here the
aim is to assign a label to each pixel of a given image from a set of possible ob-
ject classes. Typically these methods use random fields to model local interactions
between pixels or super-pixels. One of the cues that helps recognition is global
object co-occurrence statistics, a measure of which classes (such as chair or mo-
torbike) are likely to occur in the same image together. There have been several
approaches proposed to exploit this property, but all of them suffer from different
limitations and typically carry a high computational cost, preventing their ap-
plication on large images. We find that the new model we propose produces an
improvement in the labelling compared to just using a pairwise model.

1 Introduction

Class based image segmentation is a highly active area of computer vision research
as is shown by a spate of recent publications [[11122129/31I34]. In this problem, every
pixel of the image is assigned a choice of object class label, such as grass, person, or
dining table. Formulating this problem as a likelihood, in order to perform inference, is a
difficult problem, as the cost or energy associated with any labelling of the image should
take into account a variety of cues at different scales. A good labelling should take
account of: low-level cues such as colour or texture [29], that govern the labelling of
single pixels; mid-level cues such as region continuity, symmetry [23]] or shape [2] that
govern the assignment of regions within the image; and high-level statistics that encode
inter-object relationships, such as which objects can occur together in a scene. This
combination of cues makes for a multi-scale cost function that is difficult to optimise.
Current state of the art low-level approaches typically follow the methodology pro-
posed in Texton-boost [29]), in which weakly predictive features such as colour, location,
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and texton response are used to learn a classifier which provides costs for a single pixel
taking a particular label. These costs are combined in a contrast sensitive Conditional
Random Field cRF [[19].

The majority of mid-level inference schemes [25120] do not consider pixels directly,
rather they assume that the image has been segmented into super-pixels [SI8I28]. A
labelling problem is then defined over the set of regions. A significant disadvantage
of such approaches is that mistakes in the initial over-segmentation, in which regions
span multiple object classes, cannot be recovered from. To overcome this [10] proposed
a method of reshaping super-pixels to recover from the errors, while the work
proposed a novel hierarchical framework which allowed for the integration of multiple
region-based CRFs with a low-level pixel based CRF, and the elimination of inconsistent
regions.

These approaches can be improved by the inclusion of costs based on high level
statistics, including object class co-occurrence, which capture knowledge of scene se-
mantics that humans often take for granted: for example the knowledge that cows and
sheep are not kept together and less likely to appear in the same image; or that mo-
torbikes are unlikely to occur near televisions. In this paper we consider object class
co-occurrence to be a measure of how likely it is for a given set of object classes to
occur together in an image. They can also be used to encode scene specific information
such as the facts that computer monitors and stationary are more likely to occur in of-
fices, or that trees and grass occur outside. The use of such costs can help prevent some
of the most glaring failures in object class segmentation, such as the labelling of a cow
as half cow and half sheep, or the mistaken labelling of a boat surrounded by water as a
book.

(a) (c)

Fig. 1. Best viewed in colour: Qualitative results of object co-occurrence statistics. (a) Typical
images taken from the MSRC data set [29]; (b) A labelling based upon a pixel based random
field model that does not take into account co-occurrence; (c¢) A labelling of the same model
using co-occurrence statistics. The use of co-occurrence statistics to guide the segmentation re-
sults in a labelling that is more parsimonious and more likely to be correct. These co-occurrence
statistics suppress the appearance of small unexpected classes in the labelling. Top left: a mis-
taken hypothesis of a cow is suppressed Top right: Many small classes are suppressed in the
image of a building. Note that the use of co-occurrence typically changes labels, but does not
alter silhouettes.
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As well as penalising strange combinations of objects appearing in an image, co-
occurrence potentials can also be used to impose an MDLL] prior that encourages a
parsimonious description of an image using fewer labels. As discussed eloquently in the
recent work [4], the need for a bias towards parsimony becomes increasingly important
as the number of classes to be considered increases.

Figure [[lillustrates the importance of co-occurrence statistics in image labelling.

The promise of co-occurrence statistics has not been ignored by the vision commu-
nity. In [22] Rabinovich et al. proposed the integration of such co-occurrence costs that
characterise the relationship between two classes. Similarly Torralba er al. [31] pro-
posed scene-based costs that penalised the existence of particular classes in a context
dependent manner. We shall discuss these approaches, and some problems with them in
the next section.

2 CRFs and Co-occurrence

A conventional CRF is defined over a set of random variables ¥V = {1,2,3,...,n}
where each variable takes a value from the label set £ = {l1, 2, ..., } corresponding
to the set of object classes. An assignment of labels to the set of random variables will
be referred to as a labelling, and denoted as x € L!VI. We define a cost function E(x)

over the CRF of the form:
E(x) =) te(xc) (1
ceC

where the potential 1. is a cost function defined over a set of variables (called a clique)
¢, and x.. is the state of the set of random variables that lie within c. The set C of cliques
is a subset of the power set of V, i.e. C C P (V). In the majority of vision problems, the
potentials are defined over a clique of size at most 2. Unary potentials are defined over a
clique of size one, and typically based upon classifier responses (such as ada-boost [29]
or kernel SVMs [27]), while pairwise potentials are defined over cliques of size two and
model the correlation between pairs of random variables.

2.1 Incorporating Co-occurrence Potentials

To model object class co-occurrence statistics a new term K (x) is added to the energy:

B(x) =) te(xe) + K(%). )

The question naturally arises as to what form an energy involving co-occurrence terms
should take. We now list a set of desiderata that we believe are intuitive for any co-
occurrence cost.

(i) Global Energy: We would like a formulation of co-occurrence that allows us
to estimate the segmentation using all the data directly, by minimising a single cost
function of the form @)). Rather than any sort of two stage process in which a hard
decision is made of which objects are present in the scene a priori as in [31].

! Minimum description length.
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(ii) Invariance: The co-occurrence cost should depend only on the labels present
in an image, it should be invariant to the number and location of pixels that object
occupies. To reuse an example from [32], the surprise at seeing a polar bear in a street
scene should not not vary with the number of pixels that represent the bear in the image.

(iii) Efficiency: Inference should be tractable, i.e. the use of co-occurrence should
not be the bottle-neck preventing inference. As the memory requirements of any con-
ventional inference algorithm [30] is typically O(|V|) for vision problems, the memory
requirements of a formulation incorporating co-occurrence potentials should also be
o(vl).

(iv) Parsimony: The cost should follow the principle of parsimony in the following
way: if several solutions are almost equally likely then the solution that can describe
the image using the fewest distinct labels should be chosen. Whilst this might not seem
important when classifying pixels into a few classes, as the set of putative labels for
an image increases the chance of speckle noise due to misclassification will increase
unless a parsimonious solution is encouraged.

While these properties seem uncontroversial, no prior work exhibits property (ii).
Similarly, no approaches satisfy properties (i) and (iii) simultaneously. In order to sat-
isfy condition (ii) the co-occurrence cost K (x) defined over x must be a function de-
fined on the set of labels L(x) = {l € £ : Jx; = [} present in the labelling x; this
guarantees invariance to the size of an object:

K(x) = C(L(x)) 3)

Embedding the co-occurrence term in the CRF cost function (@), we have:

E(x) =Y te(xe) + C(L(x)). )
ceC
To satisfy the parsimony condition (iv) potentials must act to penalise the unexpected
appearance of combinations of labels in a labelling. This observation can be formalised
as the statement that the cost C(L) monotonically increasing with respect to the label
set L i.e.:
Ly ClLy, = O(Ll) < C(LQ) 5

The new potential C'(L(x)) can be seen as a particular higher order potential defined
over a clique which includes the whole of V, i.e. 1, (x).

2.2 Prior Work

There are two existing approaches to co-occurrence potentials, neither of which uses
potentials defined over a clique of size greater than two. The first makes an initial hard
estimate of the type of scene, and updates the unary potentials associated with each
pixel to encourage or discourage particular choices of label, on the basis of how likely
they are to occur in the scene. The second approach models object co-occurrence as a
pairwise potential between regions of the image.

Torralba et al. [31]] proposed the use of additional unary potentials to capture scene
based occurrence priors. Their costs took the form:

K(x) =) é(w:). 6)

%
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While the complexity of inference over such potentials scales linearly with the size of
the graph, they are prone to over counting costs, violating (ii), and require an initial
hard decision of scene type before inference, which violates (i). As it encourages the
appearance of all labels which are common to a scene, it does not necessarily encourage
parsimony (iv).

A similar approach was seen in the Pascal VOC2008 object segmentation challenge,
where the best performing method, by Csurka [6], worked in two stages. Initially the
set of object labels present in the image was estimated, and in the second stage, a label
from the estimated label set was assigned to each image pixel. As no cost function K (-)
was proposed, it is open to debate if it satisfied (i) or (iv).

Method Global.energy Invar.i.ance Efﬁc.i.e.:ncy Parsi.mony
(i) (ii) (iii) (iv)
Unary [31] X X 7 X
Pairwise [22,9,37] v X X v/
Csurka [6] X _ / o
Our approach v 4 4 V4

Fig. 2. A comparison of the capabilities of existing image co-occurrence formulations against our
new approach. See section2.2] for details.

Rabinovich et al. [9122], and independently [32], proposed co-occurrence as a soft
constraint that approximated C'(L(x)) as a pairwise cost defined over a fully connected
graph that took the form:

K(x)= ) ¢z ), ™

i,jEV

where ¢ was some potential which penalised labels that should not occur together in
an image. Unlike our model @) the penalty cost for the presence of pairs of labels, that
rarely occur together, appearing in the same image grows with the number of random
variables taking these labels, violating assumption (ii). While this serves as a functional
penalty that prevents the occurrence of many classes in the same labelling, it does not
accurately model the co-occurrence costs we described earlier. The memory require-
ments of inference scales badly with the size of a fully connected graph. It grows with
complexity O(|V|?) rather than O(|V|) with the size of the graph, violating constraint
(iii). Providing the pairwise potentials are semi-metric [3]], it does satisfy the parsimony
condition (iv).

To minimise these difficulties, previous approaches defined variables over segments
rather than pixels. Such segment based methods work under the assumption that some
segments share boundaries with objects in the image. This is not always the case, and
this assumption may result in dramatic errors in the labelling. The relationship between
previous approaches and the desiderata can be seen in figure 21
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Two efficient schemes [7112] have been proposed for the minimisation of the num-
ber of classes or objects present in a scene. While neither of them directly models
class based co-occurrence relationships, their optimisation approaches do satisfy our
desiderata.

One such approach was proposed by Hoiem ef al. [12], who used a cost based on
the number of objects in the scene, in which the presence of any instance of any object
incurs a uniform penalty cost. For example, the presence of both a motorbike and a bus
in a single image is penalised as much as the presence of two buses. Minimising the
number of objects in a scene is a good method of encouraging consistent labellings, but
does not capture any co-occurrence relationship between object classes.

In a recent work, appearing at the same time as ours, Delong ef al. [7] proposed the
use of a soft cost over the number of labels present in an image for clustering. While the
mathematical formulation they propose is more flexible than this, they do not suggest
any applications of this increased flexibility. Moreover, their formulation is less general
than ours as it does not support the full range of monotonically increasing label set
costs.

3 Inference on Global Co-occurrence Potentials

Consider the energy (@) defined in section 2.1l The inference problem becomes:

x" = arg MiNy e rv| Zcec Ye(xc) + C(L(x))
stxe LV L(x)={leL: 3w =1}. (8)

In the general case the problem of minimising this energy can be reformulated as an in-
teger program and approximately solved as an LP-relaxation [16]. This LP-formulation
can be transformed using a Lagrangian relaxation into a pairwise energy, allowing al-
gorithms, such as Belief Propagation [33]] or TRW-S [14], that can minimise arbitrary
pairwise energies to be applied [16]. However, reparameterisation methods such as
these perform badly on densely connected graphs [[15126].

In this section we show that under assumption, that C'(L) is monotonically increasing
with respect to L, the problem can be solved efficiently using a3-swap and a-expansion
moves [3]], where the number of additional edges of the graph grows linearly with the
number of variables in the graph. In contrast to [22], these algorithms can be applied to
large graphs with more than 200, 000 variables.

Move making algorithms project the problem into a smaller subspace in which a
sub-problem is efficiently solvable. Solving this sub-problem proposes optimal moves
which guarantee that the energy decreases after each move and must eventually con-
verge. The performance of move making algorithms depends dramatically on the size
of the move space. The expansion and swap move algorithms we consider project the
problem into two label sub-problem and under the assumption that the projected energy
is pairwise and submodular, it can be solved using graph cuts. Because the energy ()
is additive, we derive graph constructions only for term C(L(x)). Both the application
of swap and expansion moves to minimise the energy, and the graph construction for
the other terms proceed as described in [3].



Graph Cut Based Inference with Co-occurrence Statistics 245

3.1 «aB-Swap Moves

The swap and expansion move algorithms can be encoded as a vector of binary variables
t ={t;, Vi € V}. The transformation function T'(x”, t) of a move algorithm takes the
current labelling x” and a move t and returns the new labelling x which has been
induced by the move.

In an o3-swap move every random variable x; whose current label is « or (3 can
transition to a new label of o or 8. One iteration of the algorithm involves making
moves for all pairs («, 3) in £ successively. The transformation function Thg(x;,t;)
for an a3-swap transforms the label of a random variable x; as:

_ Joaifz; =aorBandt; =0,
Top(wi,ti) = {ﬂifxi =aorfBandt; = 1. ©)

Consider a swap move over the labels « and (3, starting from an initial label set L(x).
We assume that either «v or 3 is present in the image. Then, after a swap move the labels
present must be an element of S which we define as:

S =A{L(x)U{a} \ {8}, L(x) U{B} \ {a}, L(x) U{a, B}} . (10)

Let V,p be the set of variables currently taking label o or 3. The move energy for
C(L(x)) is:

Co = C(L(x) U{a} \ {B}) if Vi € Vag ,t; =0,
E(t) =< C3=C(L(x) U{B} \ {a}) if Vi € Vg ,t; =1, (11)
Cop = C(L(x) U{e,(}) otherwise.

Note that, if C(L) is monotonically increasing with respect to L then, by definition,
Co < Cqpand Cg < Cyg.

Lemma 1. For a function C(L), monotonically increasing with respect to L, the move
energy can be represented as a binary submodular pairwise cost with two auxiliary
variables z, and zg as:

Et)=Cy+ Cg — Cap + min {(Cag — Ca)2’5 + (C’ag — Cg)(l — Zqa)

Zas®p3

+ > (Cap—Calti(l—23)+ > (Cap—Cp)(1 —t)za)|.  (12)

1€Vags 1€Vag
Proof. See appendix. This binary function is pairwise submodular and thus can be
solved efficiently using graph cuts.
3.2 «-Expansion Moves

In an a-expansion move every random variable can either retain its current label or
transition to label c. One iteration of the algorithm involves making moves for all v in
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L successively. The transformation function T, (x;, t;) for an c-expansion move trans-
forms the label of a random variable z; as:

Z; if ti =0

To derive a graph-construction that approximates the true cost of an a-expansion move
we rewrite C'(L) as:

cL) =Y ks, (14)

BCL
where the coefficients kp are calculated recursively as:
kp=C(B)— > kp. (15)
B'CB

As a simplifying assumption, let us first assume there is no variable currently taking
label . Let A be set of labels currently present in the image and 0;(t) be set to 1 if
label [ is present in the image after the move and 0 otherwise. Then:

1 if dieVstit; =1,
Oa(t) = {0 otherwise. (16)
(1 i eVstt=0,
Ve A, a(t) = { 0 otherwise. (7

The a-expansion move energy of C'(L(x)) can be written as:

E(t) = Encw(t) — Boqa= Y kg [ ai(t) — C(A).

BCAU{a} leB

Ignoring the constant term and decomposing the sum into parts with and without terms
dependent on o we have:

Et)=> ks [[at)+ D knugarda(t) [T 6ult)- (18)

BCA leB BCA leB

As either « or all subsets B C A are present after any move, the following statement
holds:
Sa(t) [T 0i(t) = da(t) + J] ar(t) — 1. (19)

leB leB

Replacing the term 6 (t) [[;c 5 di(t) and disregarding new constant terms, equation
({18) becomes:

B(t)=)_ kpufayda(t)+ D (kpthpuie) [ 0i6)=kidat)+ > K [ ailt),
BCA BCA leB BCA IeB
(20)
where &, = > pc 4 kBujay = C(BU{a}) — C(B) and ki = kp + kpu{a)-
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E(t) is, in general, a higher-order non-submodular energy, and intractable. However,
when proposing moves we can use the procedure described in [21424] and over-estimate
the cost of moving from the current solution. If k; > 0 the term kp [],. 5 0i(t) is
supermodular, and can be over estimated by a linear function E'g(t) such that Eg(A) =

ki [Tiep 601(A) and Ep(t) > ki [T, 6i(t) e :
t) = ki [[ou(t) < ki > pPaut), 1)

leB leB

where pP > 0and ) leB pP = 1. While p can always be chosen such that the moves
proposed are guaranteed to outperform any particular o3 swap [24], in practise we set
oP =1/|B|.

For kg < (0 we overestimate:

Ky [T 6ut) <k — k> (1 —a1(t) = (1= [B)kp + ki > _pla(t), (22)
leB leB leB

where pP = 1. Both of these over-estimations are equal to the original move energy for
the initial solution. This guarantees that the energy after the move will not increase and
must eventually converge. Ignoring new constant terms the move energy becomes:

(6) = Kobo + Y Kp D pP0u(t) = koda + D 0i(8) D Kpome

BCA  IeB leA BCA\{1}
= ki ba + Y K/Gi(t), 23)
leA
where k' = Y pcaq k%u{l}pfu{l}. Coefficients k; are non-negative, as

VBC AleB: kBu{z BU{Z} > 0, while coefficient &/, is non-negative for all C(L)
that are monotonically i 1ncreasmg with respect to L.

Lemma 2. For all C(L) monotonically increasing with respect to L the move energy
can be represented as a binary pairwise graph with | A| auxiliary variables z as:

E'(t) = mm{ 1—2q) +Zk zl+Zk’ 1- tza+ZZk (1- zl} (24)

leA i€V leAieV,;
where V), is the set of pixels currently taking label l.

Proof. See appendix. This binary function is pairwise submodular and thus can be
solved efficiently using graph cuts.

For co-occurrence potentials monotonically increasing with respect to L(x) the prob-
lem can be modelled using one binary variable z; per class indicating the presence of
pixels of that class in the labelling, infinite edges for x; = [ and z; = 0 and hyper-
graph over all z; modelling C(L(x)). The derived a-expansion construction can be
seen as a graph taking into account costs over all auxiliary variables z; for each move
and over-estimating the hyper-graph energy using unary potentials. Note that the energy
approximation is exact, unless existing classes are removed from the labelling. Conse-
quentially, the only effect our approximation can have on the final labelling is to over
estimate the number of classes present in an image. In practice the solutions found by
expansion were generally local optima of the exact swap moves.
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source

CapCy Kq

Fig.3. Graph construction for a3-swap and a-expansion move. In a/3-swap variable z; will
take the label « if corresponding ¢; are tied to the sink after the st-mincut and (3 otherwise. In
a-expansion variable z; changes the label to « if it is tied to the sink after the st-mincut and
remains the same otherwise. Colours represent the label of the variables before the move.

Fig. 4. Best viewed in colour: (a) Typical images taken from the vOoC-2009 data set [29]; (b)
A labelling based upon a pixel based random field model [17] that does not take into account
co-occurrence; (¢) A labelling of the same model using co-occurrence statistics. Note that the co-
occurrence potentials perform in a similar way across different data sets, suppressing the smaller
classes (see also figure[T)) if they appear together in an uncommon combination with other classes
such as a car with a monitor, a train with a chair or a dog with a bird. This results in a qualitative
rather than quantitative difference.
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4 Experiments

We performed a controlled test evaluating the performance of CRF models both with
and without co-occurrence potentials. As a base line we used the segment-based CRF
and the associative hierarchical random field (AHRF) model proposed in [17] and the
inference method [26], which currently offers state of the art performance on the MSRC
data set [29]. On the VOC data set, the baseline also makes use of the detector potentials
of [18]. The costs C'(L) were created from the training set as follows: let M be the
number of images, x(™) the ground truth labelling of an image m and

2™ = §(1 € L(x"™)) (25)

an indicator function for label ! appearing in an image m. The associated cost was

trained as:
1 M -
C(L) = —wlog 1+ E I | 2 , (26)

m=11[eL

where w is the weight of the co-occurrence potential. The form guarantees, that C'(L)
is monotonically increasing with respect to L. To avoid over-fitting we approximated
the potential C'(L) as a second order function:

C'(L) = ch + Z Ckl, 27

leL k,leL,k<I

where ¢; and ¢ minimise the mean-squared error between C' (L) and C’(L).

On the MSRC data set we observed a 3% overall and 4% average per class increase
in the recall and 6% in the intersection vs. union measure with the of the segment-
based CRF and a 1% overall, 2% average per class and 2% in the intersection vs. union
measure with the AHRF. The comparison on the vOC2009 data set was performed on the
validation set, as the test set is not published and the number of permitted submissions
is limited. Performance improved by 3.5% in the intersection vs. union measure used in
the challenge. The performance on the test set was 32.11% which is comparable with
current state-of-the-art methods. Results for both data sets are given in tables[3and [6l

By adding a co-occurrence cost into the CRF we observe constant improvement in
pixel classification for almost all classes in all measures. In accordance with desiderata
(iv), the co-occurrence potentials tend to suppress uncommon combination of classes
and produce more coherent images in the labels space. This results in a qualitative
rather than quantitative difference. Although the unary potentials already capture tex-
tural context [29], the incorporation of co-occurrence potentials leads to a significant
improvement in accuracy.

It is not computationally feasible to perform a direct comparison between the work
[22]] and our potentials, as the AHRF model is defined over individual pixels, and it
is not possible to minimise the resulting fully connected graph which would contain
approximately 4 x 1019 edges. Similarly, without their scene classification potentials it
was not possible to do a like for like comparison with [31]].

Average running time on the MSRC data set without co-occurrence was 5.1s in com-
parison to 16.1s with co-occurrence cost. On the vOC2009 data set the average times
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were 107s and 388s for inference without respectively with co-occurrence costs. We
compared the performance of a-expansion with LP relaxation using solver given in
[[L] for general co-occurrence potential on the sub-sampled images [[16]]. Both methods
produced similar results in terms of energy, however a-expansion was approximately
42,000 times faster.

o
=
‘:‘:’é‘;ﬂg”og% é‘sw iggﬁx‘-n ES
S B |= & S > =2 = 8 4 T 9 % 8 - o T
cilEsiésd2scE8c2aic2888E ¢
Segment CRF 77 6470 95 78 55 76 95 63 81 76 67 72 73 82 35 72 17 88 29 62 45 17
Segment CREwithco (80 68 |77 96 80 69 82 98 69 82 79 75 75 81 85 35 76 17 89 25 61 50 22
Hierarchical CRF 86 75 (81 96 87 72 84 10077 92 86 87 87 95 95 27 85 33 93 43 80 62 17
Hierarchical CRF withcO[87 77 |82 95 88 73 88 10083 92 88 87 88 96 96 27 85 37 93 49 80 65 20

Fig. 5. Quantitative results on the MSRC data set, average per class recall measure, defined as

True Positives : : :
True Positives -+ False Negatives ° Incorporation of co-occurrence potentials led to a constant improvement

for almost every class.

=] K = =

5 2 = 2 ! £

o |8 § o < B a g
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58 &€ 2 8 € 2 =« - 5 82 2 w £ £ 2 2 % g & 5

> s o & B o o 5 & & O o = o O 5] o & o & >

L m < @A A A A0 000 AAQAIT = A A& B a B &

Hierarchical CRF 273 (77.7 383 9.6 24.0 358 31.0 592 365 21.2 83 1.7 227 143 17.0 267 21.1 155 163 146 485 33.1
Hierarchical CRF with CO|30.8 |82.3 49.3 11.8 193 37.7 30.8 63.2 46.0 23.7 10.0 0.5 23.1 14.1 224 339 357 184 121 225 531 375

Fig. 6. Quantitative analysis of VOC2009 results on validation set, intersection vs. union mea-
True Positive : :

sure, deﬁned 88 True posiive 1 False Negative + False Positive Incorporation of co-occurrence poterlltla.l led

to labellings, which visually look more coherent, but are not necessarily correct. Quantitatively

the performance improved significantly, on average by 3.5% per class.

5 Conclusion

The importance of co-occurrence statistics has been well established [3112216]. In this
work we have examined the use of co-occurrence statistics and how they might be incor-
porated into a global energy or likelihood model such as a conditional random field. We
have discovered that they can naturally be encoded by the use of higher order cliques,
without a significant computational overhead. Our new framework provides significant
advantages over state of the art approaches including efficient scalable inference. We
performed a controlled test evaluating the performance of CRF models both with and
without co-occurrence potentials and the incorporation of these potentials results in
quantitatively better and visually more coherent labellings.
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Appendix

Lemmalll Proof. First we show that:

E.(t) = min {(caﬁ —Cp)(1—2) + Y (Cap — Cs)(1 — ti)za

z
* iEVag

_ 0 ifVi e Vap ity =1,
N { Cap — Cp otherwise. (28)
If Vi € Vog : t; = 1 then Zieva[,(caﬁ — C)(1 — t;)2zo = 0 and the minimum cost
cost 0 occurs when z, = 1. If 3¢ € V43 ,t; = 0 the minimum cost labelling occurs
when z, = 0 and the minimum cost is Cpg — Cj3.

Similarly:

Ep(t) = min [(Caﬂ ~Ca)zs+ Y (Capp — Calti(1 - zp)

z
s 1€Vap

0  ifVieVag:t; =0,
{Ca (29)

8 — Cao otherwise.

By inspection, if Vi € V,3 : t; = 0 then ZievaB(Caﬁ — Co)ti(1 — 2z3) = 0 and
the minimum cost cost 0 occurs when zg = 0. If 3i € V45 ,¢; = 1 the minimum cost
labelling occurs when z3 = 1 and the minimum cost is Cog — Ca.

For all three cases (all pixels take label «, all pixels take label 5 and mixed labelling)
E(t) = Eo(t) + E3(t) + Co + Cg — Cq3. The construction of the aF-swap move is
similar to the Robust PV model [13]. O

See figure 3] for graph construction.
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Lemmal2l Proof. Similarly to the a3-swap proof we can show:

T, s ] K ifFieVstt =0,
Ea(t) = o {ka(l ~2a) ¥ ; Fa(l = tl)za] B { 0 otherwise.

(30)

If 3¢ € Vs.t.t; = 0, then Ziev k! (1—t;) > k., the minimum is reached when z, = 0
and the cost is k...

IfVieV:t; = 1then k. (1 —t;)2z, = 0, the minimum is reached when z, = 1 and
the cost becomes 0.

For all other [ € A:

o " "y _ kl// itdi e Vst t; =1,
Ey(t) = min [kl 2+ ; kyti(1 - Zl)] - { 0 otherwise.
7 1

&1V

If3i € YV s.t. t; = 1, then Zievl kj't; > k;’, the minimum is reached when z; = 1 and
the cost is k.

IfVi € V, : t; = 0 then Zievl k/'ti(1 — ) = 0, the minimum is reached when
z; = 1 and the cost becomes 0.

By summing up the cost E,(t) and |A| costs E;(t) we get E'(t) = E,(t) +
> ica Ei(t). If o is already present in the image k], = 0 and edges with this weight
and variable z,, can be ignored. O

See figure 3 for graph construction.
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Abstract. We present an extension of the classical Ambrosio-Tortorelli
approximation of the Mumford-Shah approach for the segmentation of
images with uncertain gray values resulting from measurement errors and
noise. Our approach yields a reliable precision estimate for the segmen-
tation result, and it allows to quantify the robustness of edges in noisy
images and under gray value uncertainty. We develop an ansatz space for
such images by identifying gray values with random variables. The use
of these stochastic images in the minimization of energies of Ambrosio-
Tortorelli type leads to stochastic partial differential equations for the
stochastic smoothed image and a stochastic phase field for the edge set.
For their discretization we utilize the generalized polynomial chaos ex-
pansion and the generalized spectral decomposition (GSD) method. We
demonstrate the performance of the method on artificial data as well as
real medical ultrasound data.

Keywords: Image processing, segmentation, uncertainty, stochastic im-
ages, stochastic partial differential equation, polynomial chaos, general-
ized spectral decomposition.

1 Introduction

In many applications images are used for quantitative measurements, e.g. to de-
termine the size or distance of objects. As image acquisition itself (e.g. by digital
camera, CT, MR or Ultrasound) involves measurements of physical or chemical
quantities or properties it is good scientific practice that these measurements
are equipped with error estimates and that these error estimates are propagated
through all analysis steps, including quantitative image processing. The goal is
a reliable precision estimate for the final result. In quantitative medical imag-
ing this for example can support the evaluation of the treatment response in
chemotherapy. There the growth or shrinkage of tumors must be detected ro-
bustly on base of noisy contrast enhanced CT scans. As a matter of fact small
measurement errors due to noise and uncertainty in the gray values can result in
huge variations in the computed tumor volume, thus being a source for erroneous
therapy-response indications.

Quantitative image processing is often related to the segmentation of an object
inside an image. The main idea is to detect the shape of an object inside an image

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 254 2010.
© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. From left to right: The first mode (=mean), second mode, fifth mode and the
variance of a stochastic image are shown

and to separate it from the background. In the past, a multitude of methods
based on PDEs have been developed. Among them are level set (sharp interface)
and phase field (diffuse interface) approaches, which use implicit representations
of the object boundaries that are computationally much easier to handle than
explicit representations.

In [10] a speed function for the level set evolution is proposed, which depends
on the image gradient. The evolution stops when the level set reaches an edge
inside the image. This method was improved by Caselles et. al. [4] by introducing
an additional term, which forces the level set to stay at the boundary. The idea
of the Chan and Vese approach [5] is to segment homogeneous regions inside an
image. An evolution equation is solved until the level set separates homogeneous
regions of the image. This allows to segment objects with and without sharp
edges. The well known Mumford-Shah approach [12] is based on the minimization
of an energy functional, which measures the smoothness of the segmented objects
as well as the length of the object boundaries. An often used regularization of
the Mumford-Shah functional is the method proposed by Ambrosio-Tortorelli [I]
leading to a phase field model for the description of object boundaries.

Error propagation is very difficult for classical image processing algorithms
and in particular for the level set or phase field segmentation methods mentioned
above. In the literature a lot of authors deal with error estimates, which have
several restrictions: Weber et. al. [I7] presented a method were the input data
is presumed to be Gaussian distributed. Nestares et. al. [I3] were able to derive
bounds for the error and Bruhn et. al. [2] derived confidence measures for the
error. In [T5] a method is presented, which assumes values of the image pixels
not to have fixed gray values but distributions of gray values. Thus, pixels are
random variables (RVs), which model the errors in the image acquisition process.
An image containing such RVs as pixels/voxels is then called a stochastic image.
A few modes of a stochastic image are pictured in Fig. [Il

In the work presented here we extend this approach of stochastic images
and combine it with Mumford-Shah segmentation in the spirit of the Ambrosio-
Tortorelli phase field approximation. For an input image with uncertain gray
values our approach provides a stochastic edge representation in the form of a
stochastic phase field as well as a stochastic image as the representation of the
smoothed input image. It allows for precise error estimates beyond the assump-
tion of Gaussian gray value distributions. In fact, the evaluation of the stochastic
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modes of the phase field allows e.g. to estimate the variance of the edge location
or the confidence for the presence of edges at certain locations for arbitrary noise
models and distributions of gray values.

The use of the notion of stochastic images in variational image processing
leads to stochastic partial differential equations (SPDE). The numerical solution
of SPDE:s is a challenging problem, because intrusive methods like the stochastic
finite element method (SFEM) [§] lead to high dimensional systems of equations,
which are difficult to treat on contemporary hardware. We utilize the recently
developed generalized spectral decomposition (GSD) [14], which allows to break
down the systems of equations into a series of smaller systems by choosing op-
timal small subspaces in the stochastic dimension. This results in an enormous
speedup of the computation, a saving of memory, and in an algorithm, which is
much faster than classical sampling techniques like Monte Carlo.

2 Stochastic Images

It is popular in PDE based image processing to model an image f : D — IR on
a domain D C ]Rd, d = 2,3 using a finite element space and a representation

f@) =3, FPi) (1)

where f* € R is the value of the i-th pixel from the pixel set Z and P; the shape
function (e.g. tent-function) of the i-th pixel. In a stochastic image a single
pixel has no longer a fixed value. Instead it depends on a vector of RVs &(w) =
(€1 (w),...,&n(w)) and on a random event w € 2. Here {2 denotes an event
space, A C 2 a o-algebra and IT a probability measure. Note that the concept
of stochastic images can also be combined with other spacial discretizations,
e.g. finite difference schemes.

2.1 Polynomial Chaos Expansion

Based on the fundamental work of Wiener [I8], Xiu and Karniadakis [20] devel-
oped the generalized polynomial chaos (gPC) expansion for the representation
of a RV with finite second-order moments by a polynomial basis.

Following Cameron/Martin [3], every RV X (w) € L?(£2, A, IT) can be repre-
sented by

X@) =37 aal(Ew)) (2)

where é = (£1,&, .. .) is a sequence of RVs with known probability density func-
tion p; and ¥ are polynomials in ¢ forming a basis of L2(12, A, IT). For the
numerical treatment an approximation with prescribed polynomial degree p and
a fixed number of RVs & = (&1, ...,&,) is chosen, thus

N

XWm)  al*(EW) . 3)
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This representation involves a mapping € : 2 — I" of events w € 2 to &(w) € T,
where I' = X;;lgj(ﬂ) is finite dimensional.

The number N of basis functions depends on the number n of RVs and the
maximal polynomial degree p of the approximation. As usual for a polynomial
basis the number of basis functions is given by N = (";p). Thus, the number
of basis functions grows rapidly with the number of RVs n and the polynomial
degree p of the approximation.

It is most convenient to choose polynomials ¥ which are pairwise orthogo-
nal with respect to the corresponding probability measure of the &;. Thus, in
the case of Gaussian RVs &; the ¥* are products of one-dimensional Hermite
polynomials. In the case of uniformly distributed RVs the ¥ are products of
Legendre polynomials. In our work presented here we use uniformly distributed
RVs ¢ involving Legendre polynomials. For arithmetic operations needed for the
use of the gPC expansion in numerical schemes we use the methods from [6].

The expectation, variance and analogously higher stochastic moments of the
approximated RV X (w) are evaluated as

/Zaaw €)dIl; , Var(X /(Z aoW* (&) — (X))zdﬂg . (4)

where dIlg = H?:l p;(&;) d¢; is the transformed probability measure.

2.2 Polynomial Chaos for Stochastic Images

Following [I5], the representation of an image whose pixels values are RVs is
obtained from ({l) by replacing the fixed f by RVs f¢(&), thus

2,6 =) fEP() . ()

Note that here and in the following we omit denoting the dependence of £ on
w for reasons of simplicity of the presentation. The gPC expansion (B) allows
to approximate any second order RV f¢(¢) by a weighted sum of orthogonal
multidimensional polynomials. This leads to

=3 3 AP (6)

as the representation of a stochastic image, i.e. an image whose gray values are
RVs. For fixed o we call the coefficient f a stochastic mode of the pixel i. The
set {fi}iez collects the stochastic modes of all pixels for fixed «. This set can
be visualized as a classical image, which is done in Fig. [l where three modes of
a sample image are shown.

From the gPC expansion (@) it is straight forward to compute stochastic
moments of the images. With the use of our orthogonal set of basis functions,
the Legendre Polynomials, we have E(¥!) = 1 and E(¥*¢¥#) = 0 if a # 3. Thus,
the mean and the variance of a stochastic image are computed as

E(fen ) =f,  Var(fao) =3 (A)E(@) . @

a=2
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Other stochastic moments are obtained in a similar way. In Fig. [[] the mean and
the variance of a stochastic image are shown.

Note that the representation of stochastic images presented here differs from
the one discussed in [I5]. There, an image space is used in which every pixel
depends on one RV only. However, for many image acquisition processes and
image processing methods the assumption that the noise is independent for every
pixel is not true, thus we let every pixel depend on a vector of RVs &.

2.3 From Samples to Input Distributions

To use the notion of stochastic images developed in the previous sections for
image processing, we need to obtain the coefficients of the representation (6l for
our image undergoing the analysis. Let ("), ... v, with u*) € R", r = |Z],
denote sample images, e.g. resulting from repeated acquisition. The goal is to
identify these image samples as the samples of some vector of independent RVs
X. To this end the empirical Karhunen-Loeve decomposition [9] yields

_ T k
W =at VU (8)

where @ is the mean of the input samples. The pairs (s;,U;) for j =1,...,r are
the eigenpairs sorted in descending order of the r X r covariance matrix

1 M

Co= Zkzl(u(’“) —a) T (w® —a) . (9)

Moreover, the
k — _
XM = (s)7 20T (w® —q) (10)

are samples of the desired vector of RVs X = (X1,...,X,,), where n < r.

The estimation of the coefficients of the gPC expansion [B]) of the random
vector X from these samples can be achieved by inverting the discrete empirical
cumulative distribution function (CDF) Fx,, which is based on the samples X J(k).
This leads to a staircase-like approximation of the RV X;. Following [16] we get

X, from the projection on ¥* via

X0 = E(X;0°) = /F Fi! (Fe(y) 9 (E(y))dTTe(y) - (1)

Note that the assumption of independence allows us to work with those basis
functions, which depend on one RV only, i.e. #*(&) = ¥*(&). The empirical CDF
and the empirical inverse of the CDF are obtained by

M
Fx,(z) = ]\14 ZI (Xj(k) Sx)
k=1

M
et - e (), ot}

J
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where [ is the indicator function attaining value 1 for true arguments and 0 else.
Note that the RVs X are related to the eigenpairs (s;,U;) of the Karhunen—
Loeve decomposition via ([I0)). Using the expression for the inverse F'y X, ! together
with a numerical quadrature associated with the measure I1¢ allows to compute
the gPC expansion coefficients X7 independently from each other.

We emphasize that the assumption of independence of the RVs X is very
strong and in general not true. However, following [16] in particular for the case
of few input samples this assumption is reasonable.

Also note that the estimation of the typically dense covariance matrix is only
feasible for images of low dimension r. For large image dimensions we must model
the gray value distribution using characteristics of the acquisition process and
not via the analysis of samples. This noise modeling is part of ongoing work.

3 A Phase Field Model for Segmentation on Stochastic
Images

We now focus on the combination of the notion of stochastic images with the
segmentation approach in the spirit of Ambrosio and Tortorelli [I].

3.1 Classical Mumford-Shah and Ambrosio-Tortorelli Segmentation

For a given initial image 1o on the domain D Mumford and Shah [I2] proposed to
obtain an edge set K C D and a smooth representation u of ug as the minimizers
of the energy

Eyvs(u, K) := / (u — up)*dx + u/ \Vu|?dz + vHOTHK) (13)
D\K D\K

where ;1 and v are positive weights, and H% ! (K) the d—1-dimensional HausdorfF
measure. Roughly speaking, the minimizer © must be an image, which is close to
the initial uy away from the edges (then [ D\ 5 (u—ug)?dx is small) and smooth

away from the edges (then || D\K |Vu|?dx is small). Moreover the length of edges

K must be small (then H?~!(K), measuring the length of the edge set, is small).

Ambrosio and Tortorelli [I] proposed to approximate the edge set by a phase
field ¢ : D — R, i.e. a smooth function that is zero on edges and one away from
the edges. To this end they define the energy

EAT (U, ¢) = Eﬁd(u) + Efe%(”’ ¢) + Ephase(¢)
= /D(u(x) — up(x))? dm—I—/DN (6(2)” + ko) [Vu(a)P? da ”
+/DZ/€ |v¢($)|2+:5(1_¢(x))2 de

The first integral ensures closeness of the smoothed image to the original wuy.
The second integral measures smoothness of w apart from areas where ¢ is small,
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and enforces ¢ to be small in the vicinity of edges. The parameter k. ensures
coerciveness of the differential operator and thus existence of solutions, because
¢? may vanish. The third integral drives the phase field towards one and ensures
small edge sets via the term |V¢|2. The parameter ¢ allows to control the scale
of the detected edges.

For the numerical determination of a minimizing pair (u,¢) the Euler-La-
grange equations of ([4) are solved. Thus we seek u,¢ € H'(D) as the weak
solutions of

—div (u(¢® + ke)Vu) +u = uy, —eA¢ + ( !

I 2 1
= . (1
ot VuR)o= . (9

4e

In an implementation both equations can be solved alternately letting either u
or ¢ vary until a fixed point as the joint solution of both equations is reached.

3.2 Ambrosio-Tortorelli Segmentation on Stochastic Images

For the segmentation of stochastic images by the phase field approach of Ambro-
sio and Tortorelli we replace the deterministic u and ¢ by their corresponding
stochastic analogs. The stochastic energy components are then defined as the
expectations of the classical components, i.e.

By (u) = E(Epa) = /F /D (u (2, €) — up (2, €))? do I

reg(u ¢) reg) :// /~L ¢($,€)2 + ke) |V’LL(.’E,€)‘2 d‘rdﬂﬁ
Biae(0) = BlBne) = [ [ ve[Vola. &) + [ (1= 0 (2.€))" deale
(16)
and we define the stochastic energy as the sum of these, i.e.

EIS4T(U7 ¢) = Eéd( ) + Efeg(”’ ¢) + E;llase(¢) . (17)

The Euler-Lagrange equations of the energy are obtained from the first vari-
ation of the above integrals. Since the stochastic energies (6] are just the ex-
pectations of the classical energies (I4) the computations are straight forward
and completely analog to the deterministic case. For example, we get for a test
function 0 : D x I' - R

C Bauti0)| = (jt/ / (e, €) + 10(r,€) — wo(,8)) do dll|

// u(z, &) — uo(z, g)) (,€) du dlT¢ .
(18)
With analog computations for the remaining energy contributions we arrive at
the following system of stochastic partial differential equations: We seek for
u,¢: D x I' — R as the weak solutions of
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v (a6, €)° + h)Vu(e, ) + (e, €) = (. )
19
2000 €)+ (. + g0 ITu &) 0l €) = e

This system is analog to the classical system (I3 in which images have been
replaced by stochastic images.

3.3 Weak Formulation and Discretization

The system (I3 contains two elliptic SPDEs, which are supposed to be inter-
preted in the weak sense. To this end we multiply the equations by a test function
0 : D x I' — R, integrate over I" with respect to the corresponding probabil-
ity measure and integrate by parts over the physical domain D. For the first
equation in (I3 this leads us to

/ / y (¢> (2,€)% + k) Vu(z,€) - VO(x, &) + ulz, £)0(x, £) dz dII
I D

_ F/ ! wo(z, €)0(z, €) dr dITe

and to an analog expression for the second part of ([9). Here we assume Neu-
mann (natural) boundary conditions for u and ¢ such that no boundary terms
appear in the weak form. For the existence of solutions for these SPDEs, the con-
stant k. is supposed to ensure the positivity of the diffusion coefficient (¢ + k).
In fact, there must exist cmin, Cmax € (0, 00) such that

P (w €n|p (gzb (z,€w))? + kg) € [Cmin, Cmax) VT € D) =1. (21)

Finally, solutions u and ¢ will be random fields, i.e. RVs, which are indexed by a
spatial coordinate and such that u(-, ), ¢(-,&€) € H*(D) almost sure. Thus, for
almost every realization (in the sense of the measure I1¢) the stochastic images
u and ¢ have weak derivatives in L?(D).

The weak system (20) is discretized with a substitution of the gPC expansion
@) of the image and the phase field. As test functions products P;(z)¥?(€)
of spatial basis functions and stochastic basis functions are used. Denoting the
vectors of coefficients by U = (ul));er € R and similarly for the phase field
¢ and the initial image ug we get the fully discrete systems

(20)

N

SO (MeByLad) U ZM‘W Uo)®  VBe{l....N}

a=1

- (22)
> (8% 4+17) o ZA“ v3e{l,...,N}

a=1

where M®B L8 88 and T are the blocks of the system matrix, defined as

)

(M2), =E(¥7“W)/DHPj dw, (S™F), . :JE(WW)/DVE-Vdex (23)
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and

(L"), , ZZE (TOwPwT) (¢2)k /VP VP; P dz,

T“"H ZZE (TewPw) ﬁ/PinPkdx.
D

(24)

Here, (gbz) denotes the coefficients of the gPC expansion of the Galerkin pro-
jection of gz52 onto the image space (cf. [6]). Finally, the right hand side vector is
defined as

/1R-dx ifa=1,
(A%, —/u'/adg/ Pidr =< Jp4e (25)

0 else

Note that the expectations of the products of stochastic basis functions involved
above can be precomputed in advance, since these do only depend on the choice
of basis functions. Analog to the classical finite element method the systems of
linear equations can be treated by an iterative solver like the method of conjugate
gradients.

3.4 Generalized Spectral Decomposition

A significant speedup of the solution process and an enormous reduction of the
memory requirements are achieved by selecting suitable sub-spaces and a special
basis which captures the dominant stochastic effects. In the GSD [14] the solution
u (analogously ¢) is approximated by

K

u(z,§) ~ ijl 2 (€)Vj(z) (26)

where Vj is a deterministic function, A; a stochastic function and K the number
of modes of the decomposition. Thus, the GSD allows to compute a solution
where the deterministic and the stochastic basis functions are not fixed a priori.
The flexible basis functions allow to find a solution, which has significant less
modes, i.e. K < N, but has nearly the same approximation quality.

In [I4] it is shown how to achieve the modes of an optimal approximation in

the energy norm || - || 4 of the problem, i.e. such that
K 2 ) K
u— ijl AVl = min || — ijl AV (27)

Details about the GSD method, proofs for the optimality of the approximation,
implementation details and numerical tests can be found in [I4] and in the
supplementary material of this contribution. In our implementation the power-
type GSD presented in [14] is used.
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4 Results

In the following we demonstrate the performance of our stochastic segmentation
approach. Our first input image data set consists of M = 5 samples from the
artificial "street sequence" [IT], the second dataset consists of M = 45 sample
images from ultrasound (US) imaging of a structure in the forearm, acquired
within 2 seconds. Note that we do not consider the street sequence as an image
sequence here, instead we use 5 consecutive frames as samples of the noisy and
uncertain acquisition of the same object. From the samples we compute the gPC
representation using n = 10 (US), respectively n = 4 (street scene) RVs with
the method described in Section [Z3l Our images have a resolution of 100 x 100
pixels. We use a maximal polynomial degree of p = 3 leading to a gPC dimension
N =286 (US) and N = 35 (street scene), respectively. For the reduction of the
complexity by the GSD we set K = 6. Furthermore, we use v = 0.00075 and
ke = 2.0h in all computations, where h is the grid spacing. To show the influence
of the RVs, we have also used the US data using the mean value only (n = 0).

4.1 Street Image Data Set

Between the samples of the street sequence the camera position and the position
of the car differs, thus the edge detection using (7)) should show a high variance
at edges close to the camera (thus moving much) and around the moving car.
The results depicted in Fig. Bl match with these expectations. Indeed, in the

Samples

Var(¢)

GSD

MonteCarlo

i

Fig. 2. Results of the segmentation of the street scene
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Fig. 3. Left: Denotation of image regions. The image shows a structure in the forearm.
Right: Probability density function of a single pixel from the resulting phase field.

Table 1. Comparison of the computation times of different methods for the discretiza-
tion of SPDEs (measured for the street scene)

Numerical method Computation time Number of samples
MonteCarlo about 35 hours 10000
Stochastic Collocation about 7 hours about 2000
GSD about 2 hours n/a

region around the wheels of the car and around the right shoulder of the person
the edge detection is most influenced by the moving camera, respectively the
varying gray values between the samples at the edges. Also around the edges in
the background the variance is increased due to the moving camera. A compari-
son of the results of our GSD implementation with a simple Monte Carlo method
with 10000 sample computations shown in Fig. 2] reveals that both approaches
lead to similar results. In Table [Il we report the execution times on a typical
desktop PC for the Monte Carlo sampling, a more sophisticated sampling using
stochastic collocation [I9] and the GSD method discussed here. We see that the
GSD implementation is about 20 times faster as the classical sampling, however
the intrusive GSD needs more implementational effort than the non-intrusive
sampling techniques, which can reuse existing deterministic code, because sam-
pling techniques solve the classical Ambrosio-Tortorelli model for every sample
and compute stochastic quantities like the variance afterwards from the results
on the samples.

4.2 Ultrasound Samples

The conversion of the input samples into the gPC expansion as described in Sec-
tion leads to the representation of the stochastic ultrasound image in a 286-
dimensional space. Thus, the only meaningful way of visualizing this stochastic
image is via stochastic moments like mean and variance. Fig. @] shows the mean
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Fig.4. The mean and variance of the resulting image and phase field for different
parameter settings and numbers of RVs using the ultrasound data

and the variance of the phase field ¢ and the smoothed image u for different set-
tings of the smoothing coefficient p and the phase field width €. The algorithm
needs about 100 iterations, i.e. alternate solutions of (I9) for v and ¢. However,
in the first steps the convergence is very fast and already after about 10 itera-
tions no visible difference in u and ¢ can be seen (cf. movie in the supplementary
material that shows the solution iterations).

From the variance image of the phase field the identification of regions where
the input distribution has a strong influence on the segmentation result (areas
with high variance) is straight forward. A benefit of our new stochastic edge
detection via the phase field ¢ is that it allows for an identification of edges in
a way that is robust with regard to parameter changes. Indeed, in particular
within the four regions marked in the left picture of Fig. Bl the expectation of
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the phase field is highly influenced by the choice of ; and v as can be seen in
Fig. [l The blurred edge at position 1 is seen in the expectation of the phase field
only when a narrow phase field is used. In region 2 we have a different situation
in which the edge can be identified only using a widish phase field. Also the
edges at positions 3 and 4 can be identified using adjusted parameters. However,
note that in case one of these edges is not seen in the expectation of ¢ because
of a particular choice of parameters, a high variance of ¢ indicates the possible
existence of an edge. This is in particular obvious for the regions 1 and 2.

Moreover, our algorithm can estimate the reliability of detected edges: A low
mean phase field value and a low variance indicate, that the edge is robust and
not influenced by the noise and uncertainty of the acquisition process. This is for
example true for the edges on the top of the structure shown here. In contrast
to that a high variance in regions with a high or low mean phase field value
(e.g. the labeled regions 1-4) indicates regions, where the detected edge is highly
sensitive to the noise and uncertain acquisition process.

Also, we can easily extract the distribution of the gray values for any pixel
location inside the image and the phase field from the gPC expansion obtained
via GSD. In Fig. Bl right, we show the probability density function of a pixel
from the phase field computed via the GSD.

5 Conclusions

We have presented an extension of the well known Ambrosio-Tortorelli phase
field approximation of the Mumford-Shah functional to stochastic images. Our
approach allows us to propagate information about the distribution of the gray
values in the input image, which result from noise or erroneous measurements,
through the segmentation process, leading to a segmentation result that contains
information about the reliability of the segmentation. The resulting SPDEs are
discretized by the generalized polynomial chaos approach and a generalized spec-
tral decomposition method. We have shown the application of the segmentation
to artificial sample images as well as to noisy ultrasound image samples. In an
ongoing work we investigate the use of our algorithm on the basis of noise models
instead of multiple input image samples.

In particular for medical applications of quantitative image processing we en-
visage that our approach can be a basis for superior results, since it allows to
measure the size of lesions including reliability estimates. But also other appli-
cations, e.g. material science, quality control, geography etc. can benefit from
the reliability estimates. In the future we plan to investigate a stochastic exten-
sion of edge linking methods [7] for the Mumford-Shah functional. Also, we will
study stochastic extensions of sharp interface segmentation methods like level
set based approaches.

Acknowledgements. We acknowledge R.M. Kirby from the University of Utah,
USA for fruitful discussions and D. Ojdanic from Fraunhofer MEVIS, Bremen,
Germany for providing the ultrasound data set.
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Abstract. Multiple Hypothesis Video Segmentation (MHVS) is a
method for the unsupervised photometric segmentation of video se-
quences. MHVS segments arbitrarily long video streams by considering
only a few frames at a time, and handles the automatic creation, continu-
ation and termination of labels with no user initialization or supervision.
The process begins by generating several pre-segmentations per frame
and enumerating multiple possible trajectories of pixel regions within a
short time window. After assigning each trajectory a score, we let the
trajectories compete with each other to segment the sequence. We de-
termine the solution of this segmentation problem as the MAP labeling
of a higher-order random field. This framework allows MHVS to achieve
spatial and temporal long-range label consistency while operating in an
on-line manner. We test MHV'S on several videos of natural scenes with
arbitrary camera and object motion.

1 Introduction

Unsupervised photometric video segmentation, namely the automatic labeling of
a video based on texture, color and/or motion, is an important computer vision
problem with applications in areas such as activity recognition, video analytics,
summarization, surveillance and browsing [T2]. However, despite its significance,
the problem remains largely open for several reasons.

First, the unsupervised segmentation of arbitrarily long videos requires the
automatic creation, continuation and termination of labels to handle the free flow
of objects entering and leaving the scene. Due to occlusions, objects often merge
and split in multiple 2D regions throughout a video. Such events are common
when dealing with natural videos with arbitrary camera and object motion. A
complete solution to the problem of multiple-object video segmentation requires
tracking object fragments and handling splitting or merging events.

Second, robust unsupervised video segmentation must take into account spa-
tial and temporal long-range relationships between pixels that can be several
frames apart. Segmentation methods that track objects by propagating solu-
tions frame-to-frame [3/4] are prone to overlook pixel relationships that span
several frames.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 268 2010.
© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Results from the on-line, unsupervised, photometric segmentation of a video
sequence with MHVS. Top: original frames. Bottom: segmented frames. MHV'S keeps
track of multiple possible segmentations, collecting evidence across several frames be-
fore assigning a label to every pixel in the sequence. It also automatically creates and
terminates labels depending on the scene complexity and as the video is processed.

Finally, without knowledge about the number of objects to extract from an im-
age sequence, the problem of unsupervised video segmentation becomes strongly
ill-posed [5]. Determining the optimal number of clusters is a fundamental prob-
lem in unsupervised data clustering [5].

Contributions. MHVS is, to the best of our knowledge, the first solution to the
problem of fully unsupervised on-line video segmentation that can effectively
handle arbitrarily long sequences, create and terminate labels as the video is
processed, and still preserve the photometric consistency of the segmentation
across several frames.

Although the connections between tracking and video segmentation are well
discussed in e.g. [63U7/4IR], we present the first extension of the idea of deferred
inference from Multiple Hypothesis Tracking (MHT) [9/I0] to the problem of
unsupervised, multi-label, on-line video segmentation. MHVS relies on the use of
space-time segmentation hypotheses, corresponding to alternative ways of group-
ing pixels in the video. This allows MHVS to postpone segmentation decisions
until evidence has been collected across several frames, and to therefore operate
in an on-line manner while still considering pixel relationships that span multiple
frames. This extension offers other important advantages. Most notably, MHVS
can dynamically handle the automatic creation, continuation and termination of
labels depending on the scene complexity, and as the video is processed.

We also show how higher-order conditional random fields (CRFs), which we
use to solve the hypothesis competition problem, can be applied to the problem
of unsupervised on-line video segmentation. Here, we address two important
challenges. First, the fact that only a subset of the data is available at any time
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pre-segmentations

Fig. 2. Left: MHVS labels a video stream in an on-line manner considering several
frames at a time. Right: For each processing window, MHVS generates multiple pre-
segmentations per frame, and finds sequences of superpixels (shown as colored regions)
that match consistently in time. Each of these sequences, called a superpixel flow, is
ranked depending on its photometric consistency and considered as a possible label for
segmentation. The processing windows overlap one or more frames to allow labels to
propagate from one temporal window to the next.

during the processing, and second, that the labels themselves must be inferred
from the data. A working example of MHVS is illustrated on Fig. [}

Previous work. Some of the common features and limitations found in previous
work on video segmentation include:

1. The requirement that all frames are available at processing time and can
be segmented together [GITTIT2/T3]. While this assumption holds for certain
applications, the segmentation of arbitrarily long video sequences requires the
ability to segment and track results in a continuous, sequential manner (we
refer to this as on-line video segmentation). Unfortunately, those methods
that can segment video in an on-line manner usually track labels from frame
to frame [3I74] (i.e., they only consider two frames at a time), which makes
them sensitive to segmentation errors that gradually accumulate over time.

2. The user is often required to provide graphical input in the form of scribbles,
seeds, or even accurate boundary descriptions in one or multiple frames to
initiate or facilitate the segmentation [I4JIT]. This can be helpful or even
necessary for the high level grouping of segments or pixels, but we aim for an
automatic method.

3. The assumption that the number of labels is known a priori or is constant
across frames [IBJTOIT7IIRIT2TY] is useful in some cases such as foreground-
background video segmentation [I8/I2/14], but only a few methods can adap-
tively and dynamically determine the number of labels required to photo-
metrically segment the video. Such ability to adjust is especially important
in on-line video segmentation, since the composition of the scene tends to
change over time.
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Recently, Brendel and Todorovic [6] presented a method for unsupervised photo-
metric video segmentation based on mean-shift and graph relaxation. The main
difference between their work and MHVS is that our method can operate in an
on-line manner and consider multiple segmentation hypotheses before segment-
ing the video stream.

2 An Overview of MHVS

The three main steps in MHVS are: hypotheses enumeration, hypotheses scoring,
and hypotheses competition.

A hypothesis refers to one possible way of grouping several pixels in a video,
i.e., a correspondence of pixels across multiple frames. More specifically, we
define a hypothesis as a grouping or flow of superpizels, where a superpixel
refers to a contiguous region of pixels obtained from a tessellation of the image
plane without overlaps or gaps. This way, each hypothesis can be viewed as a
possible label that can be assigned to a group of pixels in a video (see Fig. ).

Since different hypotheses represent alternative trajectories of superpixels,
hypotheses will be said to be incompatible when they overlap; that is, when one
or more pixels are contained in more than one hypothesis. In order to obtain a
consistent labeling of the sequence, we aim for the exclusive selection of only one
hypothesis for every set of overlapping hypotheses (see an example in Fig. [)).

Depending on the photometric consistency of each hypothesis, we assign them
a score (a likelihood). This allows us to rank hypotheses and compare them in
probabilistic terms. The problem of enumeration and scoring of hypotheses is
discussed in Section Bl Once hypotheses have been enumerated and assigned
a score, we make them compete with each other to label the video sequence.
This competition penalizes the non-exclusive selection between hypotheses that
are incompatible in the labeling. In order to resolve the hypotheses competition
problem, MHVS relies on MAP estimation on a higher-order conditional random
field (CRF). In this probabilistic formulation, hypotheses will be considered as
labels or classes that can be assigned to superpixels on a video. Details about
this step are covered in Section @l

For the segmentation of arbitrarily long video sequences, the above process of
hypotheses enumeration, scoring and competition is repeated every few frames
using a sliding window. By enumerating hypotheses that include the labels from
the segmentation of preceeding windows, solutions can be propagated sequen-
tially throughout an arbitrarily long video stream.

3 Enumeration and Scoring of Hypotheses

The enumeration of hypotheses is a crucial step in MHVS. Since the number of all
possible space-time hypotheses grows factorially with frame resolution and video
length, this enumeration must be selective. The pruning or selective sampling of
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Fig. 3. Two hypotheses that are incompatible. The hypotheses (shown in green and
red) overlap on the first two frames. The segmentation of the sequence should ensure
their exclusive selection. MHVS ranks hypotheses photometrically and penalizes the
non-consistent selection of the most coherent ones over time.

hypotheses is a common step in the MHT literature, and it is usually solved via
a “gating” procedure [19].

We address the enumeration and scoring of hypotheses in two steps. First,
we generate multiple pre-segmentations for each frame within the processing
window using segmentation methods from the literature, e.g., [20], [2I]. Then,
we match the resulting segments across the sequence based on their photometric
similarity. Those segments that match consistently within the sequence will be
considered as hypotheses (possible labels) for segmentation.

The above approach can be modeled with a Markov chain of length equal
to that of the processing window. This allows us to look at hypotheses as time
sequences of superpixels that are generated by the chain, with the score of each
hypothesis given by the probability of having the sequence generated by the
chain.

We formalize this approach as follows. Given a window of F' consecutive frames
from a video stream, we build a weighted, directed acyclic graph G = (V| E) that
we denote as a superpizel adjacency graph. In this graph, a node represents a su-
perpixel from one of the pre-segmentations on some frame within the processing
window, and an edge captures the similarity between two temporally adjacent
superpixels (superpixels that overlap spatially but belong to two different and
consecutive frames). Edges are defined to point from a superpixel from one of the
pre-segmentations on time ¢ to a superpixel from one of the pre-segmentations
on t + 1. Fig. @ shows an illustration of how this graph is built.

The above graph can be thought as the transition diagram of a Markov chain
of length F' [22]. In this model, each frame is associated with a variable that
represents the selection of one superpixel in the frame, and the transition prob-
abilities between two variables are given by the photometric similarity between
two temporally adjacent superpixels. By sampling from the chain, for example,
via ancestral sampling [22] or by computing shortest paths in the transition
diagram, we can generate hypotheses with strong spatio-temporal coherency.
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Frame ¢t — 1 Frame ¢

At—l,t

pP,q

t—1,t
Ap?s
a) b)

Fig. 4. Construction of the superpixel adjacency graph for the enumeration of hy-
potheses (flows of superpixels). @ For each processing window, MHVS generates P
pre-segmentations on each frame. Each of them groups pixels at different scales and
according to different photometric criteria. The nodes in the graph represent super-
pixels from some of the pre-segmentations on each frame, and the edges capture the
photometric similarity between two temporally adjacency superpixels. @ Two super-
pixels are considered to be temporally adjacent if they overlap spatially but belong to
two different and consecutive frames.

O s

More specifically, for a given window of F' frames, and the set of all superpixels

vV = {V1,...,VEr} generated from P pre-segmentations on each frame, we can
estimate the joint distribution of a sequence of superpixels (z1,...,zF) as
t=F
t—1,t
p(z1,....zr) =p(z1) - [] A5 (1)
t=2

where the transition matrices A;Tkl’t capture the photometric similarity between
two temporally adjacent superpixels z; 1 = j and z; = k, and are computed from
the color difference between two superpixels in LUV colorspace, as suggested
in [23]. In order to generate hypotheses that can equally start from any superpixel
on the first frame, we model the marginal distribution of the node z; as a uniform
distribution. Further details about the generation of pre-segmentations and the
sampling from the Markov chain are discussed in Section

Once a set of hypotheses has been enumerated, we measure their temporal
coherency using the joint distribution of the Markov chain. Given a set of L
hypotheses # = {H1,...,Hr}, we define the score function s : # — [0, 1] as:

F
s(Hk):N1~p(z1:vl,...,zF:vp):HAZ;ll’fvt, (2)
t=2
where (v1,...,vF) is a sequence of superpixels comprising a hypothesis Hy and

N is the number of superpixels on the first frame.
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Fig. 5. We define our higher-order conditional random field on a sequence of fine grids
of superpixels § = {S1,...Sr}. Each grid S; is obtained as the superposition of the P
tessellations that were generated for the enumeration of hypotheses. The mapping g:
takes superpixels v; from one of the pre-segmentations to the superposition S;. Each
superpixel in S; is represented in our CRF with a random variable that can be labeled
with one of the hypotheses {H1,...,Hr}.

Propagation of solutions. The above approach needs to be extended to also
enumerate hypotheses that propagate the segmentation results from preceding
processing windows. We address this problem by allowing our processing win-
dows to overlap one or more frames. The overlap can be used to consider the
superpixels resulting from the segmentation of each window when enumerating
hypothesis in the next window. That is, the set of pre-segmented superpixels
vV ={W,...,Vr}in a window w, w > 1, is extended to include the superpixels
that result from the segmentation of the window w — 1.

4 Hypotheses Competition

Once hypotheses have been enumerated and scored for a particular window of
frames, we make them compete with each other to label the sequence. We deter-
mine the solution to this segmentation problem as the MAP labeling of a random
field defined on a sequence of fine grids of superpixels. This framework allows us
to look at hypotheses as labels that can be assigned to random variables, each
one representing a different superpixel in the sequence (see Fig. [).

Our objective function consists of three terms. A unary term that measures
how much a superpixel within the CRF grid agrees with a given hypothesis, a
binary term that encourages photometrically similar and spatially neighboring
superpixels to select the same hypothesis, and a higher-order term that forces
the consistent labeling of the sequence with the most photometrically coherent
hypotheses over time (See Fig. [0l for an illustration).

We formalize this as follows. For each processing window of F' frames, we de-
fine a random field of N variables X; defined on a sequence of grids of superpixels
S = {S1,...5Fr}, one for each frame. Each grid S; is obtained as the superpo-
sition of the P pre-segmentations used for the enumeration of hypotheses, and
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]
Ox

Fig. 6. The unary, pairwise and higher-order potentials, v:,v; ; and 9, , respectively,
control the statistical dependency between random variables X;, each one representing
a different superpixel within the processing window.

yields a mapping g; that takes every superpixel from the pre-segmentations to
the set S; (see Fig. Bl). The random variables X; are associated with superpixels
from S, and take values from the label set # = {Hy,...,H}, where each hy-
pothesis Hy, is sampled from the Markov chain described in the previous section.

A sample x = (21,...,zy) € H" from the field, i.e. an assignment of la-
bels (hypotheses) to its random variables, is referred to as a labeling. From the
Markov-Gibbs equivalence, the MAP labeling x* of the random field takes the
form:

x* = argmin Z acthe (Xe) (3)
xeHN C=o
where the potential functions 1. are defined on cliques of variables ¢ from some
set C, and . are weighting parameters between the different potentials. The
labeling x. represents the assignment of the random variables X; within the
clique ¢ to their corresponding values in x.

We next define three different types of potentials . (representing penalties
on the labeling) for our objective function in Eq. Bl The potentials enforce the
consistent photometric labeling of the sequence. The unary potentials favor the
selection of hypotheses that provide a high detail (fine) labeling of each frame.
The pairwise potentials encourage nearby superpixels to get the same label,
depending on their photometric similarity. Finally, the higher-order potentials
force the exclusive selection of hypotheses that are incompatible with each other.

Unary potentials. The mappings g = (g1, ..., 9r) between the pre-segmenta-
tions and the grids S; (see Fig. []) are used to define the penalty of assigning a
hypothesis z; to the random variable X; representing the superpixel s; as

Vi (zi) =1 —d(si,9(z:)), (4)

where g (z;) represents the mapping of the superpixels within the hypothesis x;
to the set of superpixels S. The function d(a,b) measures the Dice coefficient
€ [0,1] on the plane between the sets of pixels a and b (the spatial overlap
between a and b), and is defined as d(a,b) = 2|a Nb|/ (|a| + |b]). Since the set
of superpixels {S1,...Sr} represents an over-segmentation on each frame (it
is obtained from a superposition of tessellations), the unary potential favors
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labelings of the sequence with spatially thin hypotheses, i.e. those with the
highest overlap with superpixels on the CRF grid, in the Dice-metric sense.

Pairwise potentials. We define the following potential for every pair of spa-
tially adjacent superpixels s;, s; in each frame:

0 if Ty =Ty (5)

Yig (@0 ) = {b(i,j) otherwise,

where b (i, ) captures the photometric similarity between adjacent superpixels,
and can be obtained by sampling from a boundary map of the image. The above
potential guarantees a discontinuity-preserving labeling of the video, and penal-
izes label disagreement between neighboring superpixels that are photometrically
similar [24]. A discussion on the choice of b (7, j) is given in Section

Higher-order potentials. As mentioned in Section 2] we penalize the non-
exclusive selection of hypotheses that are incompatible with each other. To do
this, we design a higher-order potential that favors the consistent selection of
the most photometrically coherent hypotheses over time. The notion of label
consistency was formalized by Kohli et al. in [25] and [26] with the introduction
of the Robust P™ model, which they applied to the problem of supervised multi-
class image segmentation. Here, we use this model to penalize label disagreement
between superpixels comprising hypotheses of high photometric coherency. For
each hypothesis Hy, we define the following potential:

Nk, (x1) ¢, s(Hr) if Ni; (x1) < Q.
s(Hg) otherwise,

VYu, (Xk) = { (6)

where X, represents the labeling of the superpixels comprising the hypothesis Hy,
and Ny (x) denotes the number of variables not taking the dominant label (i.e.,
it measures the label disagreement within the hypothesis). The score function
s (H},) defined in the previous section measures the photometric coherency of the
hypothesis Hy (see Eq.[2]). The truncation parameter @ controls the rigidity of
the higher-order potential [25], and we define it as:

1—s(Hyg) |c]
Qr = C (7)
e (1—s(Hn)) 2

The potential ¢ g, with the above truncation parameter gives higher penalties to
those labelings where there is strong label disagreement between superpixels that
belong to highly photometrically coherent hypotheses (the more photometrically
coherent a hypothesis is, the higher the penalty for disagreement between the
labels of the CRF superpixels comprising it). See Fig for an example.

Labeling. Once we have defined unary, binary and higher-order potentials for
our objective function in Eq.[3l we approximate the MAP estimate of the CRF
using a graph cuts solver for the Robust P™ model [25]. This solver relies on a



Multiple Hypothesis Video Segmentation from Superpixel Flows 277

A le . . ll

Vu, b

s (H>) , : OQO /l3—

Ql QQ Nk (Xk)
a) b)

Fig. 7. @ Higher-order penalty (y-axis) as a function of label disagreement within a
hypothesis (z-axis) for two overlapping hypotheses H1 and H», with H; being more
photometrically coherent than H». The potential ¢ g, strongly penalizes any label dis-
agreement within Hi, while 15, tolerates significantly higher label disagreement within
Hos. @ The colored circles represent superpixels that were labeled in the preceding pro-
cessing window (each color being a different label). The groupings l1,l2 and I3 are the
result of the MAP labeling within the current processing window. Depending on the
selection of 71 and 2 (see text), l1 and l2 are considered as new labels or mapped to
the label depicted in red.

sequence of alpha-expansion moves that are binary, quadratic and submodular,
and therefore exactly computable in polynomial time [25]. From the association
between variables X; and the superpixels in S, this MAP estimate also yields
the segmentation of all the pixels within the processing window.

Handling mergers and splits. The implicit (non-parametric) object boundary
representation provided by the random field [24] allows MHVS to easily handle
merging and splitting of labels over time; when an object is split, the MAP
labeling of the graph yields disconnected regions that share the same label. Since
labels are propagated across processing windows, when the parts come back in
contact, the labeling yields a single connected region with the same label. The
automatic merging of object parts that were not previously split in the video
is also implicitly handled by MHVS. This merging occurs when the parts of an
object are included within the same hypothesis (i.e. one of the pre-segmentations
groups the parts together).

In order to create new labels for parts of old labels, when the parts become
distinguishable enough over time to be tracked, a final mapping of labels is
done before moving to the next processing window. We handle this scenario by
comparing the spatial overlap between new labels (from the current processing
window) and old labels (from the preceding processing window). We check for
new labels [ that significantly overlap spatially with some old label p, but barely
overlap with any other old label g. We can measure such overlaps using their
Dice coefficients, and we denote them by 7, and ~,. Then, if v, > v; and v, < 72,
Vg # p, for a pair of fixed parameters v1,v2 € [0, 1], we map the label I to p,
otherwise [ is considered a new label (see Fig. for an example).
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5 Experimental Results

Most previous work on unsupervised photometric video segmentation has fo-
cused on the segmentation of sequences with relatively static backgrounds and
scene complexity [J6JI2/16]. In this paper, however, we show results from ap-
plying MHVS to natural videos with arbitrary motion on outdoor scenes. Since
existing datasets of manually-labeled video sequences are relatively short (often
less than 30 frames), and usually contain a few number of labeled objects (often
only foreground and background), we collected five videos of outdoor scenes with
100 frames each, and manually annotated an average of 25 objects per video
every three frames. The videos include occlusions, objects that often enter and
leave the scene, and dynamic backgrounds (see Figs. [land Blfor frame examples).

We compared MHVS with spatio-temporal mean-shift (an off-line method,
similar to [13]), and pairwise graph propagation (an on-line method with frame-
to-frame propagation, similar to [4]). In both methods we included color, texture
and motion features. For the test with mean-shift, each video was processed in
a single memory-intensive batch. For our MHVS tests, ' was set to 5 frames
to meet memory constraints, but values between 3 and 10 gave good results in
general. The size of the processing window was also observed to balance MHVS’s
ability to deal with strong motion while preserving long-term label consistency.
We used an overlap of one frame between processing windows and generated
P = 30 pre-segmentations per frame using the g Pb boundary detector introduced
by Maire et al. [2I], combined with the OWT-UCM algorithm from [27].

As mentioned in Section [B] hypotheses can be obtained via ancestral sam-
pling [22] (i.e. sampling from the conditional multinomial distributions in the
topological order of the chain), or by computing shortest paths in the transition
diagram from each superpixel on the first frame to the last frame in the window
(i.e. computing the most likely sequences that start with each value of the first
variable in the chain). We follow this second approach. Neither guarantees that
every CRF superpixel is visited by a hypothesis. In our implementation, such
CRF superpixels opt for a dummy (void) label, and those that overlap with the
next processing window are later considered as sources for hypotheses. The pa-
rameters o, weighting the relative importance between the unary, pairwise and
higher-order potentials in Eq. [3] were set to 10, 2 and 55, respectively, although
similar results were obtained within a 25% deviation from these values. The
pairwise difference between superpixels b (7, j) was sampled from the boundary
map generated by OWT-UCM and the parameters «; and - that control the
mapping of new labels to old labels were set to 0.8 and 0.2, respectively.

We measured the quality of the segmentations using the notion of segmen-
tation covering introduced by Arbeldez et al. in [27]. The covering of a human
segmentation S by a machine segmentation S’, can be defined as:

C(S' — 8) = 11; SOV max d(V, V) (8)

V'es
Ves

where N denotes the total number of pixels in the video, and d (V,V’) is the
Dice coefficient in 3D between the labeled spatio-temporal volumes V and V'
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Fig.8. Top to fourth row: Results from the on-line, unsupervised, photometric
segmentation of four video sequences of varying degrees of complexity with MHVS.
The examples show MHVS’s ability to adjust to changes in the scene, creating and
terminating labels as objects enter and leave the field of view. Fourth and fifth row:
Comparison between MHVS (fourth row) and pairwise graph propagation (similar
to [4]) (fifth row). The frames displayed are separated by 5-10 frames within the original
segmented sequences.

Table 1. Best segmentation covering obtained with MHV'S, pairwise graph propagation
and mean-shift across five outdoor sequences that were manually annotated. Frame
examples from Video 1 are shown in Fig. [[] and from Videos 2 to 5 in Fig. B top to
bottom. Higher segmentation coverings are better.

Method Video 1 Video 2 Video 3 Video 4 Video 5

MHVS (multi-frame on-line) 0.62 0.59 0.45 0.54 0.42
Graph propagation (pairwise on-line)  0.49 0.37 0.36 0.39 0.34
Mean-shift (off-line) 0.56 0.39 0.34 0.38 0.44
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within S and S’, respectively. These volumes can possibly be made of multiple
disconnected space-time regions of pixels. Table [I] shows the values of the best
segmentation covering achieved by each method on our five videos.

6 Discussion and Future Work

In our tests, we observed that sometimes labels have a short lifespan. We at-
tribute this to the fact that it is difficult to find matching superpixels in pre-
segmentations of consecutive frames. The use of multiple pre-segmentations per
frame was introduced to alleviate this problem, and further measures, such as the
use of “track stitching” methods (e.g. see [28]) could help reduce label flickering
in future work.

Running time. The unary, pairwise and higher-order potentials of Eq. [3] are
sparse. Each random variable (representing an over-segmented superpixel) over-
laps few other hypotheses. No overlap makes the unary and higher-order terms
associated with the hypothesis zero. The pre-segmentations, enumeration of hy-
potheses and measuring of photometric similarities between superpixels can be
parallelized, and each processing window must be segmented (Eq. Bl solved) be-
fore moving to the next processing window. With this, in our tests, MHVS run
on the order of secs/frame using a Matlab-CPU implementation.

Conclusions. MHVS is, to the best of our knowledge, the first solution to
the problem of fully unsupervised on-line video segmentation that can segment
videos of arbitrary length, with unknown number of objects, and effectively man-
age object splits and mergers. Our framework is general and can be combined
with any image segmentation method for the generation of space-time hypothe-
ses. Alternative scoring functions, to the ones presented here, can also be used
for measuring photometric coherency or similarity between superpixels.

We believe our work bridges further the gap between video segmentation
and tracking. It also opens the possibility of integrating the problem of on-line
video segmentation with problems in other application domains such as event
recognition or on-line video editing. Future work could include extensions of
MHVS based on on-line learning for dealing with full occlusions and improving
overall label consistency.
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Abstract. Unsupervised learning requires a grouping step that defines
which data belong together. A natural way of grouping in images is the
segmentation of objects or parts of objects. While pure bottom-up seg-
mentation from static cues is well known to be ambiguous at the object
level, the story changes as soon as objects move. In this paper, we present
a method that uses long term point trajectories based on dense optical
flow. Defining pair-wise distances between these trajectories allows to
cluster them, which results in temporally consistent segmentations of
moving objects in a video shot. In contrast to multi-body factorization,
points and even whole objects may appear or disappear during the shot.
We provide a benchmark dataset and an evaluation method for this so
far uncovered setting.

1 Introduction

Consider Fig. [a). A basic task that one could expect a vision system to ac-
complish is to detect the person in the image and to infer his shape or maybe
other attributes. Contemporary person detectors achieve this goal by learning a
classifier and a shape distribution from manually annotated training images. Is
this annotation really necessary? Animals or infants are not supplied bounding
boxes or segmented training images when they learn to see. Biological vision
systems learn objects up to a certain degree of accuracy in an unsupervised way
by making use of the natural ordering of the images they see [I]. Knowing that
these systems exist, another objective of vision research must be to understand
and emulate this capability.

A decisive step towards this goal is object-level segmentation in a purely
bottom-up way. This step seems to be impossible given that such segmentation
is ambiguous in the very most cases. In Fig. [Tl the contrast between the white
shirt and the black vest is much higher than the contrast between the vest and
the background. How should a bottom-up method know that the shirt and the
vest belong to the same object, while the background does not? The missing link

* This work was supported by the German Academic Exchange Service (DAAD) and
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Fig. 1. Left: (a) Bottom-up segmentation from a single input frame is ambiguous.
Right: (b) Long term motion analysis provides important information for bottom-up
object-level segmentation. Only motion information was used to separate the man and
even the telephone receiver from the background.

can be established as soon as objects movdl. Fig. [l shows a good separation of
points on the person versus points on the background with the method proposed
in this paper using only motion cues. As these clusters are consistently found for
the whole video shot, this provides rich information about the person in various
poses.

In this paper we describe a motion clustering method that can potentially
be used for unsupervised learning. We argue that temporally consistent clusters
over many frames can be obtained best by analyzing long term point trajectories
rather than two-frame motion fields. In order to compute such trajectories, we
run a tracker we developed in [2], which is based on large displacement optical
flow [3]. It provides subpixel accurate tracks on one hand, and can deal with the
large motion of limbs or the background on the other. Moreover, in contrast to
traditional feature point trackers, it provides arbitrarily dense trajectories, so it
allows to assign region labels far more densely. An alterative tracker that will
probably work as well with our technique is the one from [4], though the missing
treatment of large displacements might be a problem in some sequences.

With these long term point trajectories at hand, we measure differences in
how the points move. A key contribution of our method is that we define the
distance between trajectories as the maximum difference of their motion over
time. The person in Fig. 2l is sitting for a couple of seconds and then rising up.
The first part of the shot will not provide any motion information to separate
the person from the background. The most valuable cues are available at the
point where the person moves fastest. A proper normalization further ensures
that scenes with very large motion can be handled the same way as scenes with
only little motion.

! Potentially even static objects can be separated if there is camera motion. In this
paper, however, we consider this case only as a side effect. Generally, active observers
will be able to either move themselves or objects of interest in order to generate the
necessary motion cues.
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Fig. 2. Frames 0, 30, 50, 80 of a shot from Miss Marple: Murder at the vicarage. Up
to frame 30, there is hardly any motion as the person is sitting. Most information is
provided when the person is sitting up. This is exploited in the present approach. Due
to long term tracking, the grouping information is also available at the first frames.

Given the pairwise distances between trajectories, we can build an affinity
matrix for the whole shot and run spectral clustering on this affinity matrix [56].
Regarding the task as a single clustering problem, rather than deciding upon a
single-frame basis, ensures that trajectories that belong to the same object but
did not exist at the same time become connected by the transitivity of the
graph. An explicit track repair as in [7] is not needed. Moreover, since we do not
assume the number of clusters to be known in advance and the clusters should
be spatially compact, we propose a spectral clustering method that includes a
spatial regularity constraint allowing for model selection.

In order to facilitate progress in the field of object-level segmentation in videos,
we provide an annotated dataset together with an evaluation tool, trajectories,
and the binaries of our approach. This will allow for quantitative comparisons
in the future. Currently the only reasonably sized dataset with annotation is
the Hopkins dataset [8], which is specialized for factorization methods (sparse,
manually corrected trajectories, all trajectories have the same length). The new
dataset will extend the task to a more general setting where (1) the given tra-
jectories are partially erroneous, (2) occlusion and disocclusion are a frequent
phenomenon, (3) shots are generally larger, (4) density plays a role (it will be
advantageous to augment the motion cues by static cues), and (5) the number
of clusters is not known in advance.

2 Related Work

The fact that motion provides important information for grouping is well known
and dates back to Koffka and Wertheimer suggesting the Gestalt principle of
“common fate” [9]. Various approaches have been proposed for taking this group-
ing principle into account. Difference images are the most simple way to let
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temporally changing structures pop out. They are limited though, as they only
indicate a local change but do not provide the reason for that change. This be-
comes problematic if many or all objects in the scene are subject to a change
(e.g. due to a moving camera). Much richer information is provided by opti-
cal flow. Numerous motion segmentation methods based on two-frame optical
flow have been proposed [TO/TTIT2/13]. The quality of these methods depends
on picking a pair of frames with a clear motion difference between the objects.
Some works have combined the flow analysis with the learning of an appearance
model [T4[T5]. This leads to temporally consistent layers across multiple frames,
but comes along with an increased number of mutually dependent variables.
Rather than relying on optical flow, [16] estimates the motion of edges and uses
those for a reasoning of motion layers.

In order to make most use of multiple frames and to obtain temporally con-
sistent segments, a method should analyze trajectories over time. This is nicely
exploited by multi-body factorization methods [T7UT8JT9/20]. These methods are
particularly well suited to distinguish the 3D motion of rigid objects by exploit-
ing the properties of an affine camera model. On the other hand, they have two
drawbacks: (1) factorization is generally quite sensitive to non-Gaussian noise,
so few tracking errors can spoil the result; (2) it requires all trajectories to have
the same length, so partial occlusion and disocclusion can actually not be han-
dled. Recent works suggest ways to deal with these problems [I9/20], but as the
problems are inherent to factorization, this can only be successful up to a cer-
tain degree. For instance, it is still required that a sufficiently large subset of
trajectories exists for the whole time line of the shot.

There are a few works which analyze point trajectories outside the factor-
ization setting [7I2TU22/23]. Like the proposed method, these techniques do not
require a dominant subset of trajectories covering the full time line, and apart
from [2I], which analyzes trajectories but runs the clustering on a single-frame
basis, these methods provide temporally consistent clusters. Technically, how-
ever, they are very different from our approach, with regard to the density of
trajectories, how the distance between trajectories is defined, and in the algo-
rithm used for clustering.

Trajectory clustering is not restricted to the domain of object segmentation.
For instance, it has been used for learning traffic models in [24].

3 Point Tracking and Affinities between Trajectories

We obtain point trajectories by running the optical flow based tracker in [2] on
a sequence. Fig. Bl demonstrates the most important properties of this tracker.
Clearly, the coverage of the image by tracked points is much denser than with
usual keypoint trackers. This is very advantageous for our task, as this allows
us to assign labels far more densely than in previous approaches. Moreover, the
denser coverage of trajectories will enable local reasoning from motion similari-
ties as well as the introduction of spatial regularity constraints in the clustering
method.
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Fig. 3. From left to right: Initial points in the first frame and tracked points in
frame 211 and 400. Color indicates the age of the tracks. The scale goes from blue
(young) over green, yellow, and red to magenta (oldest). The red points on the right
person have been tracked since the person appeared behind the wall. The figure is best
viewed in color.

Fig. [3 also reveals that points can be tracked over very long time intervals.
A few points on the wall were tracked for all the 400 frames. The other tracks
are younger because almost all points in this scene have become occluded. The
person on the right appeared behind the wall and was initially quite far away
from the camera. The initial points from that time have been tracked to the last
frame and are visible as red spots among all the other tracks that were initialized
later due to the scaling of the person.

Clearly, trajectories are asynchronous, i.e., they cover different temporal win-
dows in a shot. This is especially true if the shot contains fast motion and large
occluded areas. If we only selected the set of trajectories that survived the whole
shot, this set would be very small or even empty and we would miss many dom-
inant objects in the scene. So rather than picking a fully compatible subset, we
define pairwise affinities between all trajectories that share at least one frame.
The affinities define a graph upon which we run spectral clustering. Due to tran-
sitivity, even tracks that do not share common frames can be linked up as long
as there is a path in the graph that connects them.

According to the Gestalt principle of common fate, we should assign high
affinities to pairs of points that move together. However, two persons walking
next to each other share the same motion although they are different objects.
We have to take into account that there are situations where we cannot tell
two objects apart. The actual information is not in the common motion but in
motion differences. As soon as one of the persons moves in another direction
from the other one, we get a very clear signal that these two areas in the image
do not belong together.

We define distances and affinities such that they best exploit this information.
Regarding two trajectories A and B, we consider the instant, where the motion
of the two points is most dissimilar:

d*(A, B) = max; d?(A, B). (1)

Pairwise distances can only compare the compatibility of trajectories on the
basis of translational motion models. To estimate the parameters of a more
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general motion model, we would have to consider triplets or even larger groups of
points, which is intractable. Another way is to estimate such models beforehand
using a RANSAC procedure to deal with the fact that we do not know yet
which points share the same motion model [7]. However, especially in case of
many smaller regions, one needs many samples to ensure a set of points without
outliers with high probability. Instead, we rely here on the fact that translational
models are a good approximation for spatially close points and introduce a proper
normalization in order to reduce the negative effects of this approximation.
We define the distance between two trajectories at a particular instant ¢ as:

uft —up)? + (vt —vp)?

d?(A, B) = dgp(A, B)( 52
t

2)

dsp(A, B) denotes the average spatial Euclidean distance of A and B in the
common time window. Multiplying with the spatial distance ensures that only
proximate points can generate high affinities. Note that due to transitivity, points
that are far apart can still be assigned to the same cluster even though their
pairwise affinity is small. u; := x5 — x4 and vy := Y445 — Yy denote the motion
of a point aggregated over 5 frames. This averaging adds some further accuracy
to the motion estimates. If less than 5 frames are covered we average over the
frames that are available. Another important detail is the normalization of the

distance by
5

O¢ = Milae (A B} Z o (T Yi t+ 1), (3)
=1
where o : R® — R denotes the local flow variation field. It can be considered
a local version of the optical flow variance in each frame and is computed with
linear diffusion where smoothing is reduced at discontinuities in the optical flow.
The normalization by o; is very important to deal with both fast and slow
motion. If there is hardly any motion in a scene, a motion difference of 2 pixels
is a lot, whereas the same motion difference is negligible in a scene with fast
motion. As scaling and rotation will cause small motion differences even locally,
it is important to consider these differences in the context of the overall motion.
Considering the local rather than the global variance of the optical flow makes
a difference if at least three motion clusters appear in the scene. The motion
difference between two of them could be small, while the other differences are
large.
We use the standard exponential and a fixed scale A = 0.1 to turn the distances
d*(A, B) into affinities

w(A, B) = exp(—\d*(A, B)) (4)

yielding an n x n affinity matrix W for the whole shot, where n is the total
number of trajectories.
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Fig. 4. From left to right, top to bottom: (a) Input frame. (b-h) The first 7 of
m = 13 eigenvectors. Clearly, the eigenvectors are not piecewise constant but show
smooth transitions within the object regions. However, discontinuities in the eigenvec-
tors correspond to object boundaries very well. This information needs to be exploited
in the final clustering procedure.

4 Spectral Clustering with Spatial Regularity

Given an affinity matrix, the most common clustering techniques are agglomera-
tive clustering, which runs a greedy strategy, and spectral clustering, which maps
the points into a feature space where more traditional clustering algorithms like
k-means can be employed. While the mapping in spectral clustering is a globally
optimal step, the successive step that yields the final clusters is like all general
clustering susceptible to local minima. We rely on the eigendecomposition of
the normalized graph Laplacian to obtain the mapping and elaborate on deriv-
ing good clusters from the resulting eigenvectors. The setting we propose also
includes model selection, i.e., it decides on the optimum number of clusters.
Let D be an n xn diagonal matrix with entries d, = ), w(a,b). The Laplacian
eigenmap is obtained by an eigendecomposition of the normalized Laplacian

VTAV =D :(D—-W)D > (5)

and keeping the eigenvectors vy, ..., v,, corresponding to the m + 1 smallest
eigenvalues Ag, ..., Ayy- As Ay = 0 and vq is a constant vector, this pair can
be ignored. We choose m such that we keep all A < 0.2. The exact choice of
this threshold is not critical as long as it is not too low, since the actual model
selection is done in eigenvector space. Since m < n, the eigendecomposition can
be efficiently computed using the Lanczos method. We normalize all eigenvectors
v; to a range between 0 and 1.

In case of ideal data (distinct translational motion, no tracking errors), the
mapping yields m = k — 1 piecewise constant eigenvectors and the k clusters can
be extracted by simple thresholding [5]. However, the eigenvectors are usually not
that clean, as shown in Fig. @l The eigenvectors typically show smooth transitions
within a region and more or less clear edges between regions. Standard k-means
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cannot properly deal with this setting either, since smooth transitions get ap-
proximated by multiple constant functions, thus leading to an over-segmentation.
At the same time the optimum number of clusters K is by no means obvious as
clusters are represented by many eigenvectors.

As a remedy to both problems, we suggest minimizing an energy function
that comprises a spatial regularity term. Let v{ denote the ath component of
the ith eigenvector and v the vector composed of the ath components of all m
eigenvectors. Index a corresponds to a distinct trajectory. Let A (a) be a set of
neighboring trajectories based on the average spatial distance of trajectories. We
seek to choose the total number of clusters K and the assignments 7% € {1, ..., K'}
such that the following energy is minimized:

S S el + v Y > _’“;g]’; (6)

a k=1 a beN(a)

The first term is the unary cost that is minimized by k-means, where p; de-
notes the centroid of cluster k. The norm | - || is defined as |[v* — ul|x =
(0 — wi)?/ N, i.e., each eigenvector is weighted by the inverse of the square
root of its corresponding eigenvalue. This weighting is common in spectral clus-
tering as eigenvectors that separate more distinct clusters correspond to smaller
eigenvalues [25].

Clearly, if we do not restrict K or add a penalty for additional clusters, each tra-
jectory will be assigned its own cluster and we will get a severe over-segmentation.
The second term in () serves as a regularizer penalizing the spatial boundaries be-
tween clusters. The penalty is weighted by the inverse differences of the eigenvec-
tors along these boundaries. If there are clear discontinuities along the boundary of
two clusters, the penalty for this boundary will be very small. In contrast, bound-
aries within a smooth area are penalized far more heavily, which avoids splitting
clusters at arbitrary locations due to smooth transitions in the eigenvectors. The
parameter v steers the tradeoff between the two terms. We obtain good results in
various scenes by fixing v = %

Minimizing (@) is problematic due to many local minima. We propose a heuris-
tic that avoids such local minima. For a fixed K, we first run k-means with 10
random initializations. Additionally, we generate proposals by running hierarchi-
cal 2-means clustering and selecting the 20 best solutions from the tree. We run
k-means on these 20 proposals and select the best among all 30 proposals. Up
to this point we consider only the first term in (@), since the proposals are gen-
erated only according to this criterion. The idea is that for a large enough K we
will get an over-segmentation that comprises roughly the boundaries of the true
clusters. In a next step we consider merging moves. We successively consider the
pair of clusters that when merged leads to the largest reduction of () including
the second term. Merging is stopped if the energy cannot be further minimized.
Finally, we run gradient descent to locally optimize the assignments. This last
step mainly refines the assignments along boundaries. The whole procedure is
run for all K € {1,...,2m} and we pick the solution with the smallest energy.
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Fig. 5. Left: (a) Best k-means proposal obtained for K = 9. Over-segmentation due
to smooth transitions in eigenvectors. Center: (b) Remaining 5 clusters after choosing
the best merging proposals. Right: (c) Final segmentation after merging using affine
motion models. Another cluster boundary that was due to the fast 3D rotation of the
left person has been removed. The only remaining clusters are the background, the two
persons, and the articulated arm of the left person.

Finally, we run a postprocessing step that merges clusters according to the
mutual fit of their affine motion models. This postprocessing step is not abso-
lutely necessary, but corrects a few over-segmentation errors. Fig. [l shows the
clusters obtained by k-means, after merging clusters of the k-means proposal,
and after the postprocessing step.

5 Experimental Evaluation

5.1 Dataset and Evaluation Method

While qualitative examples often reveal more details of a method than pure
numbers, scientific research always benefits from exact measurement. The task
of motion segmentation currently lacks a compelling benchmark dataset to pro-
duce such measurements and to compare among methods. While the Hopkins 155
dataset [8] has clearly boosted research in multi-body factorization, it is much
too specialized for these types of methods, and particularly the checkerboard se-
quences do not correspond to natural scenes. To this end, we have annotated 26
sequences, among them shots from detective stories and the 10 car and 2 people
sequences from Hopkins 155, with a total of 189 annotated frames. The anno-
tation is dense in space and sparse in time, with more frames being annotated
at the beginning of a shot to allow also for the evaluation of methods that do
not work well with long sequences. There are four evaluation modes. The first
three expect the methods to be run only on the first 10, 50, and 200 frames,
whereas for the last all available frames should be considered. It is planned to
successively extend the dataset by more sequences to avoid over-fitting issues in
the long run. An example of the annotation is shown in Fig. [6l This dataset is
publicly available.

The evaluation tool yields 5 numbers for each sequence, which are then aver-
aged across all sequences. The first number is the density of the points for which
a cluster label is reported. Higher densities indicate more information extracted
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Fig. 6. Frames 1, 110, 135, 170, 250 of a shot from Miss Marple: Murder at the vicarage
together with our clusters and the ground truth regions. There is much occlusion in this
sequence as Miss Marple is occluded by the passing inspector and then by the building.
Our approach can link tracks of partially occluded but not of totally occluded objects.
A linkage of these clusters is likely to be possible based on the appearance of the
clusters and possibly some dynamic model.

from the sequences and increase the risk of misclassifying pixels. The overall
clustering error is the number of bad labels over the total number of labels
on a per-pixel basis. The tool optimally assigns clusters to ground truth regions.
Multiple clusters can be assigned to the same region to avoid high penalties for
over-segmentations that actually make sense. For instance, the head of a person
could be detected as a separate cluster even though only the whole person is
annotated in the dataset. All points covering their assigned region are counted
as good labels, all others count as bad labels. In some sequences, objects are
marked that are easy to confuse due to their size or very little motion infor-
mation. A penalty matrix defined for each sequence assigns smaller penalty to
such confusions. The average clustering error is similar to the overall error
but averages across regions after computing the error for each region separately.
Usually the average error is much higher than the overall error, since smaller
objects are more difficult to detect, confused regions always pay the full penalty,
and not covering an object yields a 100% error for that region.

Since the above evaluation method allows for cheating by producing a severe
over-segmentation, we also report the over-segmentation error, i.e., the num-
ber of clusters merged to fit the ground truth regions. Methods reporting good
numbers with a very high over-segmentation error should be considered with
care.

As the actual motivation for motion segmentation is the unsupervised extrac-
tion of objects, we finally report the number of regions covered with less than
10% error. One region is subtracted per sequence to account for the background.
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5.2 Results

Apart from the numbers of the proposed tech-
nique we also report numbers for General-
ized PCA (GPCA), Local Subspace Affinity
(LSA) [18], and RANSAC using the code pro-
vided with the Hopkins dataset [8]. We also
show results for the factorization method in
[19], which can deal with either incomplete or
corrupted trajectories (ALC). When running
these methods, we use the same trajectories as
for our own method. Except for ALC with in-
complete tracks, all these techniques require
the tracks to have full length, so we restrict
the available set of tracks accordingly. For this
reason, the density with these methods is con-

Table 1. Computation times for
the peoplel sequence of the Hop-
kins dataset considering only the
first 10 frames. When running
ALC we randomly subsampled the
tracks by a factor 16 to have more
tractable computation times.

tracks  time
our method 15486  497s
GPCA 12060 2963s
LSA 12060 38614s
RANSAC 12060 15s
ALC 957 22837s

siderably smaller, especially when more frames are taken into account and the
areas of occlusion and disocclusion grow bigger. Moreover, all these methods ask
for the number of regions to be given in advance. We give them the correct num-
ber, whereas we select the model in our approach automatically. Since ALC gets
intractably slow when considering more than 1000 trajectories (see Table[I]), we
randomly subsampled the tracks for this method by a factor 16. In Table [2 we
multiply the density again by this factor to make the results comparable.

Table 2. Evaluation results. The sequence marple7 was ignored in the entry marked
with * as the computation took more than 800 hours.

. overall average over- extracted
Density . .
error  error  segmentation objects
First 10 frames (26 sequences)
our method 3.34% 7.75% 25.01% 0.54 24
GPCA 2.98% 14.28% 29.44% 0.65 12
LSA 2.98% 19.69% 39.76% 0.92 6
RANSAC 2.98% 13.39% 26.11% 0.50 15
ALC corrupted 2.98% 7.88% 24.05% 0.15 26
ALC incomplete 3.34% 11.20% 26.73% 0.54 19
First 50 frames (15 sequences)
our method 3.27% 7.13% 34.76% 0.53 9
ALC corrupted 1.53% 7.91% 42.13% 0.36 8
ALC incomplete 3.27% 16.42% 49.05% 6.07 2
First 200 frames (7 sequences)
our method 3.43% 7.64% 31.14% 3.14
ALC corrupted 0.20% 0.00% 74.52% 0.40 1
ALC incomplete 3.43% 19.33% 50.98% 54.57
All available frames (26 sequences)
our method 3.31% 6.82% 27.34% 1.77 27
ALC corrupted 0.99% 5.32% 52.76% 0.10 15
ALC incomplete® 3.29% 14.93% 43.14% 18.80 5
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Fig. 7. From left to right: (a) Frame 40 of the cars4 sequence from the Hopkins
dataset. (b) The proposed method densely covers the image and extracts both the car
and the person correctly. (¢) RANSAC (like all traditional factorization methods) can
assign labels only to complete tracks. Thus large parts of the image are not covered.
(d) ALC with incomplete trajectories [I9] densely covers the image, but has problems
assigning the right labels.

Clearly, the more traditional methods like GPCA, LSA, and RANSAC do
not perform well on this dataset (which comprises a considerable number of
sequences from the Hopkins dataset). Even when considering only 10 frames,
i.e. there is only little occlusion, the error is much larger than for the proposed
approach. The 10-frame result for ALC with a correction for corrupted tracks is
quite good and comparable to ours with some advantages with regard to over-
segmentation and extracted objects. This is mainly due to the correct number
of regions given to ALC.

As the number of frames is increased, the density of ALC decreases and its
performance goes down. With more occlusions, ALC with incomplete tracks be-
comes interesting, as it is the only method in this comparison apart from ours
that can exploit all trajectories. However, its ability to handle sparse trajectories
is limited. ALC still needs a sufficiently large set of complete tracks in order to
extrapolate the missing entries, whereas the approach described in this paper
just requires some overlapping pieces of trajectories to cluster them together. We
see a larger over-segmentation error for the longer sequences, as occlusion intro-
duces ambiguities and makes the clustering problem generally harder, but at
the same time we obtain more information about the tracked objects. Moreover,
by considering more frames, objects that were static in the first frames can be
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extracted due to their motion in a later frame. We obtain the smallest overall
error and can extract the most objects when considering all the frames in a shot.

Fig.[Mhighlights the qualitative differences between the types of methods. The
proposed method can densely cover the full image with cluster labels despite
significant occlusions, and errors in the trajectories are handled well. Recent
factorization methods like ALC with correction for corrupted tracks work quite
well for the subset of complete tracks, but they cannot produce labels for points
that are not visible in all frames. ALC for incomplete tracks can generally cover
the whole image with labels, but as this is achieved by extrapolating missing
entries, lots of errors occur. In case ALC cannot find the given number of regions,
it uses an MDL criterion, which leads to a very high over-segmentation error.

The density of our approach is still far from 100%. This is mainly due to
efficiency considerations, as the tracker in [2] could also produce denser trajec-
tories. However, the trajectories already cover the image domain without too
many larger gaps. In this paper, we did without static cues to keep the pa-
per uncluttered. Given these point labels, however, it actually should be quite
straightforward to obtain a dense segmentation by considering color or boundary
information.

6 Conclusions

We have presented a technique for object-level segmentation in a pure bottom-up
fashion by exploiting long term motion cues. Motion information is aggregated
over the whole shot to assign labels also to objects that are static in a large part of
the sequence. Occlusion and disocclusion is naturally handled by this approach,
which allows to gather information about an object from multiple aspects. This
kind of motion segmentation is far more general than most previous techniques
based on two-frame optical flow or a sparse subset of complete trajectories. We
believe that such a general setting is very relevant, as it will ultimately enable
unsupervised learning of objects from appropriate video data. We hope that by
providing a benchmark dataset that comprises a variety of easier and harder
sequences, we can foster progress in this field.
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Abstract. Many man-made and natural structures consist of similar elements
arranged in regular patterns. In this paper we present an unsupervised approach
for discovering and reasoning on repetitive patterns of objects in a single image.
We propose an unsupervised detection technique based on a voting scheme of
image descriptors. We then introduce the concept of latticelets: minimal sets of
arcs that generalize the connectivity of repetitive patterns. Latticelets are used for
building polygonal cycles where the smallest cycles define the sought groups of
repetitive elements. The proposed method can be used for pattern prediction and
completion and high-level image compression. Conditional Random Fields are
used as a formalism to predict the location of elements at places where they are
partially occluded or detected with very low confidence. Model compression is
achieved by extracting and efficiently representing the repetitive structures in the
image. Our method has been tested on simulated and real data and the quantitative
and qualitative result show the effectiveness of the approach.

1 Introduction

Man-made and natural environments frequently contain sets of similar basic elements
that are arranged in regular patterns. Examples include architectural elements such as
windows, pillars, arcs, or structures in urban environments such as equidistant trees,
street lights, or similar houses built in a regular distance to each other. There are at
least two applications where models of repetitive structures are useful pieces of infor-
mation: occlusion handling and data compression. For the former, pattern information
can be used to predict the shape and position of occluded or low confidence detections
of objects in the same scene. This introduces a scheme in which low-level detections
are mutually reinforced by high-level model information. For model compression, rep-
resenting the repetitive structure by a generalized object and pattern description makes
it possible to represent the structure of interest in the image very efficiently.

In this paper, we present a technique to find such repetitive patterns in an unsuper-
vised fashion and to exploit this information for occlusion handling and compression.
Specifically, we evaluate our method on the problem of building facade analysis.

The contributions of this paper are:

1. Unsupervised detection of mutually similar objects. Closed contours are extracted
and robustly matched using a growing codebook approach inspired by the Implicit
Shape Models (ISM) [I1]].

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 296 2010.
(© Springer-Verlag Berlin Heidelberg 2010
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2. Analysis of pattern repetitions by the concept of latticelets: a selected set of fre-
quent distances between elements of the same object category in the Cartesian
plane. Latticelets are generalizations of the repetition pattern.

3. A probabilistic method to geometrically analyze cyclic element repetitions. Using
Conditional Random Fields (CRF) [2], the method infers missing object occur-
rences in case of weak hypotheses. Element detection probability and geometrical
neighborhood consistency are used as node and edge features.

Our method is a general procedure to discover and reason on repetitive patterns, not
restricted to images. The only requirement is that a method for detecting similar objects
in a scene is available and that a suitable latticelet parameterization is available in the
space of interest, e.g. the image or Cartesian space.

To the authors’ best knowledge, there is no other work in the literature that pursues
the same goals addressing the problem in a principled way.

This paper is organized as follows: the next section discusses related work. Section 3
gives an overview of our technique while in Section 4, the process of element discovery
is explained. Section 5 presents the way we analyze repetitive patterns and Section 6
describes how to use CRFs for the task of repetitive structure inference. Section 7 shows
how to obtain an high-level image compression with the proposed method. In Section 8
the quantitative and qualitative experiments are presented followed by the conclusions
in Section 9.

2 Related Work

In this work we specifically analyze repetitions from a single static image. The work
of [3] uses Bayesian reasoning to model buildings by architectural primitives such as
windows or doors parametrized by priors and assembled together like a *Lego kit’. The
work of [4] interprets facades by detecting windows with an ISM approach. A prede-
fined training set is provided. Both works address the problem with a Markov Chain
Monte Carlo (MCMC) technique. Unlike our approach, they do not exploit information
on the connectivity between the detected elements. Our work uses ISM in an unsu-
pervised fashion without a priori knowledge. We consider closed contours to create
codebooks that generalize the appearance of repeated elements. Thereby, we are able to
recognize such elements with high appearance variability thanks to the Hough-voting
scheme. In the field of computer graphics, grammar based procedural modeling [5l6/7]]
has been formally introduced to describe a way of representing man-made buildings.
Most of these works do not discover patterns but reconstruct the 3D appearance of the
facade and require human intervention.

Approaches based on RANSAC [8] and the Hough transform [9] have been used to
find regular, planar patterns. More sophisticated methods relax the assumption of the
regular pattern using Near-Regular Textures (NRT) [10J11]]. Similar to our work is [12]
in which the authors propose a method to find repeated patterns in a facade by using
NRT with MCMC optimization using rules of intersection between elements. They are
able to extract a single pattern based on a 4-connectivity lattice. Our approach allows
detection of arbitrary patterns without relying on a fixed model. Further, it can detect
multiple object categories and associate for each category multiple repetition patterns.
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Fig. 1. Schematic overview of the algorithm

3 Overview

The first step of our algorithm (see Fig.[I) is to compute a set of standard descriptors
on a given input image. Then, we compute closed contours that represent the candi-
dates for repetitive objects such as windows or pillars. The key idea is that we do not
classify these objects using a model that was previously learned from training data, but
instead, obtain evidence of their occurrence by extracting similarities directly from the
given scene. The advantage of this is twofold: first, we are independent of a previously
hand-labeled training data set. Second, by grouping similar objects into categories and
considering only those categories with at least two object instances, we can filter out
outlier categories for which no repetitive pattern can be found. Our measure of mu-
tual similarity is based on the object detection approach by Leibe ef al. [1]]. In the next
step, we analyze repetitive patterns inside each category. This is done by analyzing the
Euclidean distances between elements in the image accumulated in a frequency map.
These relative positions are represented as edges in a lattice graph in which nodes rep-
resent objects positions. The most dominant edges by which all nodes in this graph can
be connected are found using a Minimum Spanning Tree algorithm and grouped into a
set that we call latticelet. For reasoning on higher-level repetitions we extract a set of
polygonal repetitions composed of latticelet arcs. Such polygonal repetitions are used
to build a graph for predicting the position of occluded or weakly detected elements.
An inference engine based on CRFs is used to determine if the occurrence of an object
instance at a predicted position is likely or not. In an image compression application,
we use a visual template of each object category, the medium background color and the
lattice structure to efficiently store and retrieve a given input image.

4 Extraction of Mutually Similar Object Instances

In this section we explain the process of discovering repetitive elements present in an
image based on closed contours. As first step of the algorithm, Shape Context descrip-
tors [13] are computed at Hessian-Laplace interest points. Contours are computed by
using the binary output of the Canny edge detector [14] encoded via Freeman chain
code [[15]. We refer to the content in each contour as an object instance O,. Matching
contours in real world images can be very hard due to shadows and low contrast areas.
We therefore employ an Implicit Shape Model-like (ISM) technique in which the con-
tours act as containers to define a codebook of included descriptors. This way, we can
robustly match objects. In summary, an ISM consists of a set of local region descriptors,
called codebook, and a set of displacements, usually named votes, for each descriptor.
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Fig. 2. Extraction of mutually similar objects. For each closed contour, a codebook of descriptors
is created that contains relative displacements to the object centers (votes). Then, the descriptors
of each object are matched against the descriptors in the image.

The idea is that each descriptor can be found at different positions inside an object and
at different scales. Thus, a vote points from the position of a matched descriptor to the
center of the object as it was associated in the codebook construction. In our case all
the descriptors found inside a contour are included in the codebook %, as well as the
relative displacement of the respective interest points with respect to the center of the
contour. To retrieve objects repetitions we match objects in the following way:

1. All descriptors found in the image are matched against an object’s codebook %..
Those with a Euclidean distance to the best match in %, that is bigger than a thresh-
old 6, are discarded.

2. Votes casted by the matching descriptors are collected in a 2D voting space

3. We use mean shift mode estimation to find the object center from all votes. This is
referred to as an object hypothesis.

To select valid hypotheses we propose a quality function that balances the strength of
the votes with their spatial origin. Votes are accumulated in a circular histogram around
the hypothetical object center. The detection quality function is given by:

S0, o) S
¢ fh(O(e,Ote) +(1 Wa) Se

where o is the vote orientation histogram of the object %,; o; is the vote orientation
histogram of the hypothesis i; f, is a function that applies an AND operator between
the bins of two histograms and sums the resulting not empty bins. s;, s, are respectively
the score (number of votes received for the hypothesis) and the score of O,. w, is the
bias that is introduced between the two members. This is a simplified version of the cost
function explained in [16]. Detected objects are selected by a simple minimum thresh-
old 6, on the detection quality g;. All the objects matching with O, constitute the object
category 7 that is defined by a codebook composed by descriptors that contributed to
each match and all the entries of %,. Thus, a more complete description of the visual
variability of the initial object instance O, is achieved. It is important to notice that it
is not required that every object in the image has a closed contour as soon as there is
at least one of its category. In other words: if an image of a facade contains several
windows of the same type, only one of them is required to have a closed contour. In this
work we aim to match objects with the same scale. Same objects present at different
scales in the image are treated as different object categories.

qi=w gi €[0,1] (D
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As a last step we use an hierarchical agglomerative clustering with average linkage
to group visually similar categories by using a measure described by their codebook
L(r}g,r%)
min(|r%|,|n;)
scriptors from the two codebooks with a Euclidean distance of less than 8, and

number of codebook entries.

entries d (‘L’%, ‘L'%) = where L computes the number of corresponding de-

the

i
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5 Analysis of Repetitive Objects

5.1 Latticelets

In this section we introduce the space frequency analysis for the discovered object cate-
gories. We name the detected object locations in the image as nodes. In order to analyze
the repetition pattern of each object category we build a complete graph that connects
all the nodes. Our aim is to select in this graph edges that have a repeated length and
orientation. Moreover, we require our arc selection to include all the nodes. Our pro-
posed solution is based on the use of a Minimum Spanning Tree (MST). From the
complete graph we build a frequency map (see scheme Fig.[Bland Fig. @), in which we
store the distances |dx|,|dy| in pixels between nodes of the graph. The map represents
the complete distance distribution between the nodes. We therefore have to select from
this map the most representative modes. In order to estimate local density maxima in
the frequency map we employ a two dimensional mean shift algorithm, with a simple
circular kernel. Each convergence mode is expressed by a point in the map dx,dy and
its score repetitiveness that is given by the number of points contributing to the basin
of attraction. All the graph edges that contribute to each mode convergency are then
labeled with their associated distance. At the end of this process we have obtained a
graph in which the distances between the nodes have been relaxed by averaging similar
consistent distances/orientations. Each edge is tagged with its repetitiveness score.
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Fig. 3. Latticelet discovery process. Objects of the same category are detected. A complete graph
is built and the relative distances are accumulated in the Cartesian plane.
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Fig. 4. Repetitive distances in x and y are clustered via mean-shift, the arcs are reweighed by their
mode convergency score. The solid and dotted lines in the latticelet figure represent the possible
directions espressed by the selected |dx| and |dy|.

As last step of this processing we employ Kruskal’s algorithm [17] to find the min-
imum spanning tree by using the nodes, their edge connectivity and the weight of the
arcs. The resulting tree represents the most repetitive arcs sufficient to connect all the
nodes. In order to compact the information we select each kind of arc just once. We call
it latticelet, the minimal set of repetitive arcs that are needed to represent the original
lattice. Each object category is associated to a latticelet that generalize its repetition
pattern. Our method is able to cope with small perspective distortions thanks to the re-
laxation step. For larger deviations from a fronto-parallel image view, the problem of
perspective estimation can be naturally decoupled from the one of analyzing repetitive
patterns. The problem of image rectification could be addressed with many existing
methods (e.g. [[L8]) that are far beyond the scope of this paper.

5.2 Cycles and Chains

Latticelets contain very local information, they explain the direction of a possible pre-
dicted element from a given position. In order to incorporate higher level knowledge of
the repetitive pattern of the neighborhood, we use cycles composed of latticelets arcs.
Our aim is to find minimal size repetitive polygons. They provide the effective object
repetition that is used in later stages to obtain prediction and simplification. For each
category we sort the the weight of its latticelet arcs and we select the one with highest
weight. We compose a new graph by using the selected arc to build connection between
nodes and compute the smallest available cycle by computing its girth (i.e. length) y.

A cycle I' is computed by using an approach based on a Breadth-first Search algo-
rithm. Starting from a node of choice in the graph, arcs are followed once, and nodes
are marked with their number of visits. A cycle is found as soon as the number of visits
for a node reaches two. This is done for all the nodes present in the object category
detection set. We then collect all the cycles, and we select the one with the smallest
number of nodes. We create a graph by using the connectivity offered by I and mark
as removed the nodes that are connected by it. Thus, we add another latticelet arc until
all the nodes are connected or all the latticelet arcs are used. We obtained a polygon
set composed of frequent displacements suitable to describe the object distribution in
the image (see scheme Fig. ) and to generalize higher orders repetitions. An object
category is therefore associated to k small cycles: 4 = {I3,...,I;}.
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Fig. 5. From the graph created by an incremental set of latticelet’s arcs, small repetitive cycles I”
are selected by using a Breadth-first Search algorithm. Chains are created on the remaining nodes
that have not been satisfied by any polygonal cycles ¢.

In addition to what has been explained above, the algorithm tries to represent with
chains the nodes that cannot be described with polygonal cycles. The procedure is anal-
ogous to the former one: chain arcs are selected by using the sorted latticelet set. The
procedure is run for each object category.

6 Structure Inference Using Conditional Random Fields

So far, we showed our method to detect objects represented as closed contours and to
find repetitive patterns in the occurrence of such objects. However, in many cases, ob-
jects can not be detected due to occlusions or low contrast in the image. In general,
the problem of these false negative detections can not be solved, as there is not enough
evidence of the occurrence of an object. In our case, we can use the additional knowl-
edge that similar objects have been detected in the same scene and that all objects of
the same kind are grouped according to a repetitive pattern. Using these two sources
of information, we can infer the existence of an object, even if its detection quality is
very low. We achieve this by using a probabilistic model: each possible location of an
object of a given category 7 is represented as a binary random variable /;(x) which is
true if an object of category 7 occurs at position x and false otherwise. In general, the
state of these random variables can not be observed, i.e. they are hidden, but we can
observe a set of features z(x) at the given position x. The features z here correspond
to the detection quality defined in Eqn. (). The idea now is to find states of all binary
variables 1; = {I;(x) | x € 2"} so that the likelihood p(l; | z) is maximized. In our for-
mulation we will not only reflect the dependence between the variables / and z, but also
the conditional dependence between variables I;(x;) and I (x;) given z(x;) and z(x;),
where x| and x; are positions that are very close to each other. The intuition behind this
is that the occurrence probability of an object at position x; is higher if the same object
already occurred at position x,. We model this conditional dependence by expressing
the overall likelihood p(l; | z) as a CRE.

6.1 Conditional Random Fields

A CRF is an undirected graphical model that represents the joint conditional probability
of a set of hidden variables (in our case 1;) given a set of observations z. A node in
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the graph represents a hidden variable, and an edge between two nodes reflects the
conditional dependence of the two adjacent variables. To compute p(1; | z), we define
node potentials ¢ and edge potentials y as

0(zi,15) = Wt (@il)  and W(Ziazj7Yi7Yj) _ ewe.fe(zhzj,lri-,lrj)’ )

where £, and f, are feature functions for the nodes and the edges in the graph (see
below), and w,, and w, are the feature weights that are determined in a training phase
from hand-labeled training data. Using this, the overall likelihood is computed as

1 N
P(lr ‘ Z) = Z(Z) H(p(zivlfi) H W(Zivzjvl‘[ivlfj)v (3)

=1 (i.j)e€

where Z is the partition function, N the number of nodes, and & the set of edges in the
graph. The computation of the partition function Z is intractable due to the exponential
number of possible states 1;. Instead, we compute the log-pseudo-likelihood, which
approximates log p(l; | z).

In the training phase, we compute the weights w,, and w, that minimize the negative
log pseudo-likelihood together with a Gaussian shrinkage prior. In our implementation,
we use the Fletcher-Reeves method [19]. Once the weights are obtained, they are used
in the detection phase to find the 1; that maximizes Eq. (3). Here, we do not need
to compute the partition function Z, as it is not dependent on 1;. We use max-product
loopy belief propagation [20] to find the distributions of each I;;. The final classification
is then obtained as the one that is maximal at each node.

6.2 Node and Edge Features

As mentioned above, the features in our case are directly related to the detection qual-
ity obtained from Eqn. (I). In particular, we define the node features as f,(g;, /7 ;) =
1 =1+ (2l:; — 1)g;, i.e. if the label I;; is 1 for a detected object, we use its de-
tection quality g;, otherwise we use 1 — ¢;. The edge feature function f, computes a
two-dimensional vector as follows:

y(fer  fer) if I =L Jfer = max(£,(qi, L), £a (g, 1))
f . -,l ',l N y el e2 Ti Tj ith el n\Yi,tti ), n\qjsttj
(i) i ) { 0 0) else Wit — maxgeg, (5,(1(G), i),
where ¢, is the set of (maximal two) minimum cycles I" that contain the edge between
nodes i and j, and n(I") is a function that counts the number of detected objects along
the cycle I', i.e. for which the detection quality is above 6.

6.3 Network Structure

The standard way to apply CRFs to our problem would consist in collecting a large
training data set where all objects are labeled by hand and for each object category 7 a
pair of node and edge features is learned so that p(l; | z) is maximized. However, this
approach has two major drawbacks:
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— For a given object category 7, there are different kinds of lattice structures in which
the objects may appear in the training data. This means that the connectivity of a
given object inside its network varies over the training examples. Thus, the impor-
tance of the edges over the nodes can not be estimated in a meaningful way.

— In such a supervised learning approach, only objects of categories that are present
in the training data can be detected. L.e., if the CRF is trained only on, say, some
different kinds of windows, it will be impossible to detect other kinds of objects that
might occur in repetitive patterns in a scene. Our goal however, is to be independent
of the object category itself and to infer only the structure of the network. In fact, the
object category is already determined by the similarity detection described above.

To address these issues, we propose a different approach. Considering the fact that from
the training phase we only obtain a set of node and edge weights w, and w,, which
do not depend on the network geometry but only on its topology, we can artificially
generate training instances by setting up networks with a given topology and assigning
combinations of low and high detection qualities g; to the nodes. The advantage of this
is that we can create a higher variability of possible situations than seen in real data and
thus obtain a higher generalization of the algorithm. The topology we use for training
has a girth y of 3 and is shown in Fig. [6l on the left. Other topologies are possible for
training, e.g. using squared or hexagonal cycles, but from experiments we carried out it
turns out that the use of such topologies does not increase the classification result. The
graph in Fig.[@]right illustrates that. It shows the true positive and the true negative rates
from an experiment with 100 test data sets, each consisting of networks with a total
of 5000 to 10000 nodes. The training was done once only with a triangular topology
(TriTop) and once also including square and hexagonal topologies (MixTop), which
represent all possible regular tessellations of the plane. As the graph shows, there is no
significant difference in the two classification results. In contrast to the topology, the
number of outgoing edges per node, i.e. the connectivity, has a strong influence on the

AT
AVAVANEES- &

True Positive Rate True Negative Rate

Fig. 6. Left: Triangular lattice topology used for training the CRF. The numbers inside the nodes
show the connectivity of the nodes. Right: Comparison of CRF performances using TriTop and
MixTop datasets for training. True positive and the true negative rates are evaluated. The result
from the TriTop data are shown in box-and-whiskers mode, the MixTop result as dots. We can see
that using different topologies for learning gives no significant change in the classification result.
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learned weights. Thus, we use a training instance where all possible connectivities from
2 to 6 are considered, as shown in Fig. [6 left.

In the inference phase, we create a CRF by growing an initial network. From the
analysis of repetitive patterns described above, we obtain the set ¢ for each category,
the topology and edge lengths of the lattice. By subsequently adding cycles from ¢ to
the initial network obtained from the already detected objects, we grow the network
beyond its current borders. After each growing step, we run loopy belief propagation to
infer the occurrence of objects with low detection quality. The growth of the network is
stopped as soon as no new objects are detected in any of the 4 directions from the last
inference steps.

7 Model Compression

One aim of our work is to show that the information contained in an image (e.g. a fa-
cade) can be compressed using the proposed repetition detection technique. We reduce
the image to a simple set of detected object categories, their repetition scheme, and a
simplified background extraction. More in detail: each object category is stored as a
set of codebook descriptors and vote vectors, a rectangular colorscale bitmap result-
ing from averaging the image areas inside the detected elements bounding boxes. To
visually simplify the image background, we assume that the space between detected
elements in a category is covered by textures of the same kind. We sort object cate-
gories by their cardinality. Then, as a texture simplification, we compute the median
color between the elements by sampling squared image patches. This color is assigned
to arectangle patch that extends from top to the bottom of each category. We iterate this
procedure until all the image is covered. Missing empty spaces are filled with the color
of the most populous group. Some examples are shown in the right part of Fig.

An image compressed with our method can be used in a number of applications
such as visual based localization, in which information is extracted only from the re-
peated pattern, or low-bitrate storage for embedded systems (e.g. UAV) that have to
store/transmit large urban environments. In a more general fashion we consider that our
approach should be useful in all those cases where the main goal is to identify places
where repetitive patterns are present, although it is not as well suited to provide detailed
reconstructions of the represented objects.

8 Experiments

The goal of our experimental evaluation is to investigate to which extent the proposed
algorithm is capable to detect different categories of objects, to detect repetition rules
and to run inference based on that information.

In order to obtain rich statistics on a wide range of object categories we prepared an
image evaluation set composed of high contrast polygons at different sizes. 150 pictures
of 450 x 150 pixels size have been computer generated, each one containing 2 to 8
different object categories. An object category is defined by a type of a polygon. It is
important to stress that such set evaluates not the detection capabilities but the capacity
of grouping similar elements, detecting latticelets and inferring high level cycles and
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Fig. 8. Left: Average difference between the number of detected categories and annotated cate-
gories. The algorithm tends to under-explain the data trying to not overfit single detections. Right:
Discovery only detection and discovery + CRF detection. The contribution of CRF for detecting
missing elements is particularly evident when a low detection rate is obtained. Graphs are plotted
with respect to the minimum detection quality 6, needed for each node.

chains for model compression and completion. Polygons are described by few pixels
to introduce ambiguity in the description of repetitive elements. Fig. [/l shows some
samples from the evaluation dataset.

One of our goals is to assess the quality of object category distinction and grouping,
that is fundamental for the creation of the graph, as well as its analysis. It is important
to note that the angle difference between an hexagon and a pentagon is just 12° and
in small scales, due to pixel aliasing, this difference may not be easy to distinguish.
Fig.Blleft shows the average difference between the number of detected categories and
annotated categories. The graph is plotted with respect to the minimum detection quality
0, needed for each node. We can notice that the algorithm tends to under-explain the
data trying to not overfit single detections. This is the result of the soft detection and
grouping strategy we use that favors the merging of similar categories to the creation of
anew one.

Moreover, we evaluate the contribution of the CRF to the detection rate of repetitive
elements present in the image. We plot, in Fig. [8| right, this measure with respect to 6,
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Fig. 9. Left Column: Extracted self-similar objects (red boxes). Note that often only a few number
of instances are found. Center Column: Final CRF lattice (dots and lines) and inferred position
of objects (boxes). Right Column: Reconstruction of images based on our model compression.
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and we overlay the results using CRF. The left side of the graph shows the CRF contri-
bution ( 4%) when many annotated objects have been already detected by the discovery
process, the right one shows the performance when just few elements are detected. In
the latter case, a sound 20% detection rate improvement is achieved: it suffices that a
small group of elements is detected for generating a set of ¢ used for inferring many
missing aligned low-detection nodes. Important to mention is the average of false pos-
itives per image: 0.2. CRF therefore increases the true positive rate and it guarantees a
very low false positive rate.

We also performed a quantitative analysis of compression ratio for the images in the
evaluation set and the real-world images displayed in Fig. Blright. The resulting com-
pressed image is very compact and it stores just one bitmap for each object category
and a list of 2D coordinates of elements locations. If we employ the ratio in bytes be-
tween the compressed image and the raw input image for the testing set images we
obtain 1.4% ratio, for the pictures displayed in Fig. [0] (top to bottom order), we ob-
tain: 2%, 1.2%,2.3%,0.8%,2.8%,8%. Even though this method aggressively reduces
the amount of image details, the salient repetitive pattern is preserved.

A set of images of facades and other repetitive elements have been downloaded from
internet and treated as input for our algorithm, Fig. [0l On each of the examples the
difference from discovery and CRF-completed image is shown. It is interesting to notice
that the algorithm works also for not rectified facades and several kind of architectural
or repetitive elements. In the scope of this work it is evident that training on a simulated
data, sufficiently rich in variability, satisfies also real world examples.

9 Conclusions

In this paper we presented a probabilistic technique to discover and reason about repet-
itive patterns of objects in a single image. We introduced the concepts of latticelets,
generalized building blocks of repetitive patterns. For high-level inference on the pat-
terns, CRFs are used to soundly couple low-level detections with high-level model
information.

The method has been tested on simulated and real data showing the effectiveness of
the approach. From a set of synthetic images, it was verified that the method is able to
correctly learn different object categories in an unsupervised fashion regardless the de-
tection thresholds. For the task of object detection by model prediction and completion,
the experiments showed that the method is able to significantly improve detection rate
by reinforcing weak detection hypotheses with the high-level model information from
the repetitive pattern. This is especially true for large thresholds for which detection
only, without our method, tends to break down. For the task of model compression,
i.e. retaining and efficiently representing the discovered repetitive patterns, a very high
compression ratio of up to 98% with respect to the raw image has been achieved.

Beyond the tasks of model completion and compression, we see applications of this
method in image inpainting, environment modeling of urban scenes and robot naviga-
tion in man-made buildings.
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Abstract. We address the problem of large scale image retrieval in
a wide-baseline setting, where for any query image all the matching
database images will come from very different viewpoints. In such set-
tings traditional bag-of-visual-words approaches are not equipped to han-
dle the significant feature descriptor transformations that occur under
large camera motions. In this paper we present a novel approach that
includes an offline step of feature matching which allows us to observe
how local descriptors transform under large camera motions. These ob-
servations are encoded in a graph in the quantized feature space. This
graph can be used directly within a soft-assignment feature quantization
scheme for image retrieval.

Keywords: Wide baseline, image retrieval, quantization.

1 Introduction

In this paper we address the challenge of image retrieval from large databases.
While this is a classic problem in Computer Vision, we are interested in the
specific scenario of wide-baseline image retrieval. In this setting, we assume that
for most query images the closest matching (true matches) databases images are
of the same scene but from very different viewpoints, and thus have undergone
significant transformations relative to the query (see Figure [H] for an example).
We isolate the wide-baseline challenge because it has important practical im-
plications. For example, it is unrealistic in any real-world image retrieval sys-
tem that the databases will contain many images of all interesting locations,
so matching to a few images of a scene is important. Furthermore, the ability
to effectively match images from a wide-baseline means one can construct the
database accordingly, keeping fewer images of each scene than would otherwise
be needed. This would have an impact on both storage costs and retrieval time.
Much of the work for large scale image retrieval has been based on the bag-of-
visual-words (BOW) approach [12], which borrows ideas from the text-retrieval
community. To summarize briefly, forming an image representation can be broken
into three steps: (1) local feature detection and extraction (2) feature quantiza-
tion, and (3) tf-idf image representation. In our setting, the real challenges lie
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within the first two steps. Much effort has been put into identifying local fea-
ture detectors and descriptors [BI4lJ5] suitable for correspondence problems, but
even these will not remain sufficiently invariant (either repeatability of detec-
tor or invariance of descriptor) when the camera undergoes very large motions.
Also, while feature quantization may mask small descriptor transformations, it
is unlikely to deal gracefully with larger transformations.

In this paper we aim to improve wide-baseline retrieval within the BOW
framework. To address the primary issue of feature deformations over large cam-
era motions, we perform unsupervised tracking of millions of points through
long image sequences in order to observe how corresponding descriptors trans-
form under significant camera motions. As an intermediate representation for
millions of feature tracks, we construct a weighted graph embedded in the quan-
tized feature space, where the edge weight between two words is related to the
number of tracks having descriptors mapped to both words. We will refer to
this graph as the track-graph. In a way the track-graph encodes how often we
have seen features that are mapped to one word transform into features that
are mapped to another word. Importantly, this graph construction provides a
purely data-driven way of encoding the observed feature transformations. We
avoid the difficult problem of explicitly modeling or parameterizing the space of
feature transformations, for example. We utilize the track-graph for the image
retrieval application by incorporating it into a soft-assignment scheme similar to
that of [6].

Our primary contribution can be summarized as a novel approach for image
retrieval that utilizes offline feature tracking to observe feature transformations
under large camera motions. To our knowledge this is the first method that
successfully incorporates such information within a BOW retrieval approach.
Furthermore, we examine properties of the track-graph in detail to understand
the added value of the information it encodes. Evaluation of the retrieval system
in a wide-baseline setting shows promising performance.

1.1 Related Work

Retrieval from large image collections is a well-studied problem in Computer
Vision. In 2003, Sivic and Zisserman [I] applied a text retrieval approach for
object retrieval, and many of the current state-of-the-art methods can be seen
as an extension of this BOW approach (a few examples are [27I8/9]).

At their core, these methods rely on a quantization of the feature space into
visual words to make large scale retrieval a tractable problem. To this end a
number of papers have explored various ideas related to partitioning and assign-
ment in the feature space. The baseline standard is k-means clustering to build
a vocabulary, and nearest-neighbor assignment of descriptors to words [I]. In
[2], a vocabulary tree (constructed with hierarchical k-means) is used for fea-
ture quantization and assignment, while [§] considers approximate k-means for
assignment, and [I0] considers a fixed quantization for a vocabulary. More re-
cently, [7] have studied the effects of quantization and introduce a combination of
vector quantization and hamming embedding. In [I1] kernel density estimation
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is applied to capture the uncertainty of assignment from features to words, thus
limiting the effects of hard assignment. Philbin et al [6] show the effects of quan-
tization can be remedied in part by a soft-assignment when mapping descriptors
to words. Our work is influenced by this last approach as we will incorporate our
observations of feature transformations into a similar soft-assignment scheme.
While the works above address the issue of feature quantization and assignment,
there has been little done to specifically address the challenges of image retrieval
under wide-baseline conditions. Efforts in landmark recognition are capable of
building rich 3D representations of landmarks or scenes given a sufficient number
of images [T2IT3IT4/T5]. These representations can be utilized for image matching
and retrieval. However, such approaches [I3] still require the image database to
be populated with a large number of images of each landmark. This is in contrast
to our wide-baseline setting where we do not expect to have a large number of
matching images in the database for any query.

A central premise of our approach is that by tracking or matching features
through image or video sequences one can observe how image features transform
under large viewpoint changes. Utilizing this information should improve re-
trieval when query images come from unique viewpoints relative to the database
images. Prior related work includes [I6], where Implicit Shape Models are con-
structed for object pose recognition. 3D descriptors are represented by a set of
2D image descriptors that were matched over a set of training images, however
manual correspondences (e.g. hand-selected feature matches) are required for
initialization. In [I7], object level representations are formed by object regions
tracked within video shots, which provides viewpoint invariance for retrieval.
In [I8], feature matching between images in the training set is used to identify
a set of “useful” features. This greatly reduces the number of features stored
from each image without loss in retrieval precision. Earlier work [T9] explores
building invariant distance measures with a priori knowledge of patch transfor-
mations. In [20] invariance is incorporated into SVM classifiers by introducing
artificially transformed copies of support vectors. In [21], feature matching under
wide-baseline conditions is treated as a classification problem, where each class
corresponds to all views of a point. In the BOW approach of [6], one variation of
their soft assignment scheme involves generating multiple feature sets for an im-
age by applying small transformations directly to the image. While our work is
related to these last approaches, we note that in both [2I] and [6] feature trans-
formations are generated by simulating image transformations. This is limited
in that one has to model and parameterize the space of patch transformations
(e.g. affine transformations), and it is unlikely such an approach can capture the
full spectrum of transformations that are observed from actual camera motions.
In our work we address this issue by tracking features through image sequences.

2 Bag-of-Visual-Words Image Retrieval

In this section we give a brief summary of our implementation of the traditional
baseline BOW model. We combine a Hessian-Affine interest point detector and
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SIFT descriptors [45], and starting with a collection of SIFT features from a
large dataset a visual vocabulary is constructed by partitioning the feature space
with k-means clustering. The ideal number of clusters depends on the dataset,
and so in this paper we experiment with vocabularies ranging from 2500 to
500000 in size. We denote a vocabulary as V' = {vy, v, vs3, ... }, where the visual
words v; are the cluster centers. Feature-to-word mapping assigns a descriptor
x; to the closest visual word #; = argmin||z; — v||2. In practice, this mapping is

v
done with approximate nearest neighbors when the vocabulary size is large. The
final tf-idf image representation is simply a weighted histogram over the words
appearing in an image. For complete details see [1I22].

3 Constructing the Track-Graph

In this section we describe our process of constructing a graph in the quantized
space that encodes feature transformations observed from image sequences. Our
intermediate goal here is to develop a method that allows us to characterize how
feature descriptors transform under large camera motions. As with any data-
driven approach, we must be sure to collect a large number of samples in order
to be sure our observations have statistical significance. Our setup consists of 3
cameras on top of a vehicle that acquires images while driving through urban
city streets. The three cameras (c1, co, and c3) are arranged to face the same
side of the street, but at different angles. Camera c5 is fronto-parallel to building
facades on the side of the street, while ¢; and c3 are offset approximately 45°
on either side of ¢;. Due to this arrangement, scene content that is observed
by camera c; at time ¢ is usually observed by cs and c3 at a later time ¢’ > ¢.
Figure [l shows a sequence of images from 7 consecutive time steps.

1116 1117 1118 1119 1120 1121 1122

Fig. 1. A sequence of seven consecutive frames from our acquisition system that il-
lustrates how the same scene content will be seen from multiple cameras over time
separated by a wide baseline. At each of the seven time steps (frames 1116 through
1122), the same scene content is observed from one of the three cameras (1, 2, or
3). With frame-to-frame feature matching we are more likely to generate tracks that
observe world points from very different viewpoints angles than if we tried to match
features directly between the extreme wide baseline image pairs.
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3.1 Feature Matching and Track Extraction

Since the sampling rate of the camera is too low to allow true feature tracking
between frames, we pursue discrete matching with RANSAC [23] to generate
correspondences that are consistent with a Fundamental matrix or Homography
transformation. Putative correspondences are obtained with nearest-neighbor
matching while discarding ambiguous candidates [B] (however all nearest
neighbor-matches are used to generate the final set of inliers after geometry
estimation). Since image acquisition is of minor cost, our matching thresholds
are fairly strict to protect against too many outliers. In total, we collected five
non-overlapping image sequences from the same city that contained a total of
45K image frames. Our matcher extracted 3.8 M feature tracks having an average
duration of 5.8 frames (tracks shorter than 3 frames are discarded) ] Employing
discrete matching in place of pure tracking also serves a secondary purpose. It
is well known that repeatability of a feature detector is limited under viewpoint
changes, and so by generating tracks in this way we make sure to observe feature
transformations only for those features where the reliability of the detector is
certain.

3.2 Graph Construction

We define the track-graph as a weighted graph G = (V, E,w), where the vertices
are the set of visual words in the vocabulary. We would like the weight w(u,v)
to reflect the number of feature tracks whose descriptors have mapped to both
u and v. Let us represent a tracked feature ¢ with its observed SIFT descriptors
t = {x1,29,23,...}, and let T be the collection of all feature tracks obtained
during the offline tracking process (T" = {t;}). Figure [2 shows the few steps
required in constructing the weighted graph. To summarize, the edge weights
between vertices w(u,v) count exactly the number of tracks where at least one
descriptor mapped to word u and at least one descriptor mapped to word v.
Note that our construction process ignores self-edges (w(u,u) = 0,Vu € V)E

3.3 Properties of the Track-Graph

The graph construction process described above can be seen as an iterative
process, where tracks are incorporated into the track-graph one after another
(in arbitrary order). The natural question that arises is how do we determine
the stability of the graph as we continue to incorporate more tracks (this can help
us determine if we have included enough observations to terminate construction).
To study this characteristic we evaluate how the graph changes as we continue

! Figures depicting some tracking results can be seen at
http://www.cis.upenn.edu/~makadia/

2 We also considered post-processing the graph to account for the frequency in which
certain types of features were tracked. One such normalization was, for example,

2
’I,U/(’U,,U) _ - w(u,v)

. In practice, the few we tried all lowered performance.
yw(wy) 3, w(v,y)
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Input

1. Set of tracked features T, and a set of visual words V,
and a weighted graph over the words G = G(V, E,w)
(initially w(u,v) = 0,Vu,v € V).

Constructing G

1. For each track t € T
(a) t = unique({1, 22, %3,...}).
(b) For each pair of words (u,v) in &:
i w(u,v) =w(u,v) + 1
. wv,u) =w,u) +1
2. Filter graph by setting all small weights (w(u,v) < 7) to
zero. In practice we use 7 = 5.

Fig. 2. Outline of track-graph construction. Here a track ¢ is represented by the ob-
served feature descriptors ¢ = {z1,x2,...}, and the notation &; refers to the visual
word assignment for feature x;.

to add more tracks. Given a graph G1, let us define the probability of seeing
an edge (u,v) as P((u,v)) = w(w,v) Note for this task we ignore that

T Y wwev w(w)”
w(u,v) and w(v,u) represent the same link. Given two graphs G; and Ga, the
KL-divergence of Pg, from Pg, is used to measure their relative difference:

((u,))

((w,v)) @

P,
Dki(Pa,||Pay) = ) P, ((u,v))log 7
Pg,

(u,v)eV XV

For our purposes here Gy will always represent a graph obtained by integrating
more tracks into G;. The relative graph distance is not complete unless we
account for the relative “sizes” of the graphs. In other words, the relative change
in graphs should be normalized by the number of observations used to construct
the graphs. If we define the size of the graph as Wg = Zu’vevw(u,v), we can
define the relative change between graphs as the KL-divergence scaled by the
relative change in graph size: D(Pg, ||Pa,) = Dk 1 (Po,||Pa,) xg; . Table[Mlshows
that the graph changes much less as more and more tracks are incorporated
(in this example the vocabulary size is 250000 words). This experiment was
performed on graphs before the small edges were filtered out (as per Figure 2J),
which means the stability is observed even with possibly noisy edges present. The
second important consideration is whether or not the constructed track-graph
contains information that cannot be obtained from standard distance measures in
the feature space. If after constructing a graph from millions of tracked features
we find that the nearest neighbors in the graph (according to the edge weights)
mimic the neighbors produced with a traditional distance measure, this would
indicate that the track-graph will not contribute any orthogonal information. To
examine this property, we construct another graph that captures the proximity
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Table 1. Each column shows how the track-graph changes as a new collection of
tracks is incorporated. See the text for term definitions. The last row indicates that
as we incorporate more and more tracks into the graph, the relative change in the
graph continues to decrease. Note, in each column G2 represents a graph obtained
after incorporating more tracks into G.

Wa, 12M 20M 29M 36M

W, 20M 20M 36M 41M

e 0.58 0.70 0.79 0.88
Go

Dk1(Pe,||Pe,) 0.36 0.20 0.13 0.07
D(Pg,||Pe,) 0.21 0.14 0.10 0.06

between visual words in the feature space using a standard distance measure
for SIFT features. We call this the L2-graph since the edge weight w(u,v) is
related to the Euclidean distance between u and v. To see how the track-graph
and L2-graph relate, we compare for each visual word its closest neighbors in
the track graph against its closest neighbors in the L2-graph. Figure Bl (left)
illustrates the average overlap between a visual word’s 10 closest neighbors in
the two graphs. Even for small vocabulary sizes there is less than 50% overlap
between the neighborhoods. A related experiment shown in Figure B] (middle,
right) examines the actual Euclidean distance to a word’s k-th nearest neighbor
in the track and L2 graphs, respectively. The differences between the two graphs
is an indication that the track graph is capturing feature transformations that
may not occur smoothly in the feature space.

A final experiment on the graphs is a simple test of feature assignment. The
idea is to see how useful the track-graph weights might be in practice where cor-
responding features are often initially mapped to different words. Since our graph
weights are constructed to reflect this property exactly, in some sense this test
can be considered a cross-validation step. We collect feature tracks from an image
sequence that was not used during track-graph construction. From these tracks
we select 5000 wide-baseline feature pairs. We consider a feature pair (z;, ;) to
be wide-baseline if x; was observed in camera ¢; and x; in c3 (or vice-versa).
Our measure of correct assignment is if #; is one of the k-nearest neighbors
of #; in the track/L2 graph. Figure Ml shows the results of this experiment for
different vocabulary sizes and for k ranging from 0 to 10 (k = 0 is just tradi-
tional hard assignment, and is thus the same for both the track and L2 graphs).

The experiments above depict valuable qualities of the track-graph. First, the
graph is relatively stable after incorporating 3.8 M tracks (Table[Il), which gives
us confidence we have included enough tracks during construction. Second, the
graph encodes some information about how feature descriptors transform that
cannot be observed with a traditional distance measure (Figure B]). Finally, ini-
tial experiments show the graph may be useful in practical correspondence tasks

(Figure H).
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Neighborhood overlap Mean distance to 1st NN Mean distance to 5th NN
L2-graph vs track-graph ’T QI
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Fig. 3. The single plot on the left compares the overlap between a visual word’s 10
nearest neighbors in the track-graph and its neighbors in the L2-graph. We ignore
those words that did not have any tracked neighbors. The plot shows this neighborhood
overlap ratio for graphs constructed with 11 different vocabularies (ranging from 2500
to 500000 words). The two plots to the right compare the average distance of a visual
word to its k-th nearest neighbor (k = 1 on the left, K = 5 on the right).

Codebook: 2500 words Codebook: 200000 words Codebook: 500000 words

PRI

B ¢ e 8 s & & &
B s & ¢ @

s

% feature pairs matched in K-NN
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% feature pairs matched in K-NN
% feature pairs matched in K-NN

L2—graph
——track-graph|
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——track-graph|

Fig. 4. Feature assignment results for the track and L2 graphs. Results are shown for
graphs constructed with three different vocabulary sizes: 2500 (left), 200000 (middle),
and 500000 (right). For each feature pair (x;,x;), assignment is considered correct if
Z; is one of the k nearest neighbors of #; in the graph. In the plots k£ ranges between
0 and 10.

3.4 Image Retrieval with the Track-Graph

To utilize the track-graph in an image-retrieval engine, we develop a natural
feature quantization scheme that is motivated by the soft assignment approach
of Philbin et al [6]. To summarize [6] briefly, instead of quantizing feature x to its
closest word Z, the vote for x in the tf-idf vector is distributed over the k-nearest
words to x. The weights given to each of these words is proportional to exp gofl; ,
where d = ||z — Z|2.

We utilize our track-graph in a similar way. Instead of assigning x to its closest
word & (determined by L2 distance), the vote for x will be distributed between &
and the closest words to & in the track graph. For k-nearest neighbor assignment,
for example, the weight for « will go to & and the (k—1)-nearest neighbors of & in
the track-graph (neighbors are determined by sorting the edge weights w(Z, v) in
decreasing order). Here also the tf-idf weights are proportional to exp ;jj . The
weights for each feature are scaled uniformly so the total tf-idf contribution is 1,
and o is set identical to [6]. Note, we are only using the graph weights w(Z,v)
for selecting a word’s neighbors, while the tf-idf weights are determined by L2
distances. The fundamental difference between our approach and [6] is that the
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track-graph provides a unique way of selecting the “closest” words to a feature.
The track-graph neighbors will be consistent with the feature transformations
observed in our offline tracking process rather than just L2 proximity in the fea-
ture space. For visual words that have fewer than k£ — 1 edges, the neighborhood
is supplemented with the original feature’s closest (L2) words. For example, if
a feature’s closest word & has no track-graph neighbors, its assignment reduces
to the soft-assignment of [6]. For the track-graph constructed over 500000 visual
words, 36% of the words had no edges. At the other extreme, all words had some
neighbors for the graph constructed with the smallest vocabulary of 2500 words.
In the next section we evaluate our proposed approach for wide-baseline image
retrieval.

4 Evaluation

As we wish to evaluate image retrieval specifically in a wide-baseline setting,
we prepared a test scenario that reflects the relevant challenges. We begin by
collecting an image sequence in the same manner as described earlier. From this
sequence, we select 1374 non-overlapping test images, and the remaining images
form the database. All test images are chosen from either camera ¢; or cs, so
that they are not oriented fronto-parallel to the building facades. To create a
sufficiently difficult challenge, only the wide-baseline matches are stored in the
database (6348 images). Figure Blshows two test images and their true neighbors
in the database. Each test image has on average 4.6 true matches in the database.
We supplement the dataset with 247686 images collected from image sequences
that have no overlap with the test sequence. In total, we have 1374 test images
and 254034 database images.

We note that there is no overlap between the images used for vocabulary
and graph construction and the images used to build the evaluation dataset.
However, all images come from urban environments using the same image ac-
quisition scheme so the vocabulary and tracked features will still be relevant for
the application.

Fig. 5. Challenging sample test images and their closest matching database images.
The significant camera motion between the queries and their matches makes for a
difficult retrieval task.
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Fig. 6. Top images retrieved for three queries using our track-graph method (Vocab-
ulary size 500000, 5-NN assignment). The leftmost image (highlighted in red) is the
query. The retrieval images are shown to the right of the query (correct matches high-
lighted in green). For all three queries, both [6] and traditional hard assignment failed
to retrieve any correct matches in the top 10.

4.1 Evaluation Criteria

Most image retrieval systems designed for practical large-scale use perform some
form of post-processing or re-ranking of the top results from the initial retrieval
(e.g. geometric verification, query expansion, see [8I24]). In this setting the most
important criteria is making sure as many correct results as possible appear in
the portion of the list that will be post-processed. In light of this we focus our
evaluation on the top returned images. Specifically, we will measure recall (at n),
which measures what fraction of the true matches appear in the top n results.
We will evaluate our track-graph based approach against the soft assignment of
[6], as well as the traditional BOW approachﬁ

4.2 Results

For our evaluation the two primary parameters are (1) the number of neigh-
bors used in k-NN feature-to-word assignment and (2) the cutoff n for which we
evaluate mean recall-at-n. Figure [0 shows results for n € {10, 20, 50,100}, and
k € {3,4,5}. Of the 11 vocabulary sizes we have experimented with in previ-
ous sections (2500, 5000, 10000, 20000, 40000, 80000, 100000, 150000, 200000,
250000, and 500000), we select four of the larger vocabularies (100000, 150000,
250000, and 500000 words) for displaying results here (as expected, all three
algorithms performed their best on these larger vocabularies). While both our
track-graph approach and the soft assignment of [6] significantly outperform the
traditional hard assignment, the results also show the track-graph consistently
improving over [6], especially at the largest vocabularies. The improvements are

3 We attempted a variation of soft assignment based on simulating image patch trans-
formations [6], but due to the many implementation parameters our best results
underperformed the simple BOW baseline, thus those results are not included here.
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Fig. 7. Results of our track-graph approach (‘track’), soft assignment [6] (‘soft’), and
traditional assignment (‘hard’). Each plot shows a different combination of n (recall-
at-n) and k (k-NN assignment that is used in both our approach as well as [6]). n is
one of 10, 20, 50, or 100. k is one of 3, 4, or 5.

most noticeable at n = 50, while performance is closer at n = 100. For visual
examples, Figure 6] shows three queries where our approach succeeded in retriev-
ing at least one correct result in the top ten while both algorithms we compare
against fail to return any correct matches.

Looking at these results in a wider context, the final improvement in the
application setting of our method over the approach of [6] may seem modest
compared to the possible gains indicated by our earlier isolated experiments (see
Figure H]). One explanation for this is that, as mentioned earlier, our feature
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mapping reverts to [6] for those words where we have no tracking observations.
In the case of 500000 words we see that 36% of the words had no track-graph
neighbors. Furthermore, the earlier experiments isolate the comparison of tracked
neighbors and L2 neighbors, whereas the retrieval results in Figure [6] show the
results of an entire image retrieval engine, where naturally the differences within
a single component will be muted.

Regarding the cost to sparsity using our track-graph approach, we note that
for the 500000 word vocabulary, using 3 — NN assignment, our approach gener-
ates 7% fewer nonzero entries in the tf-idf representation than the comparable
[6] (while simple hard assignment produces 66% fewer nonzero entries). Another
question is how does our constructed track-graph perform on image retrieval from
more general image collections? We emphasize that it is critical that the track-
graph encode the types of transformations expected in the retrieval problem (in
this paper we focus on wide-baseline camera motions exhibited by street-level
imagery). As we discuss in more detail in the following section, extending our
automatic tracking and graph construction process to address the types of trans-
formations observed in general collections (e.g. Web datasets) is non-trivial and
left to future workd.

5 Future Work

We have designed a novel data-driven approach to study how image features
transform under large camera motions and how such observations can be incor-
porated into a system targeting wide-baseline retrieval. While our results are
promising, we consider this preliminary work and note a number of areas re-
quiring future attention. Most notably is the generalization of our approach.
While our current approach encodes wide-baseline (specifically planar) motions
in the track-graph, going forward we would like to cover all possible transfor-
mations (e.g. descriptor transformations induced by general camera motions,
lighting and environment changes, changes in camera modality, etc.). This ex-
tension is non-trivial because our approach requires simple data collection and
fully unsupervised tracking to generate a large number of observations. However,
extending this approach will be challenging because controlling data collection
to observe a wide set of transformations, as well as automatically generating
sufficient ground-truth correspondences, is not a simple task. Another point for
future work is addressing the artifacts of quantization that remain in our devel-
opment. Our graph construction relies on hard assignment of tracked descriptors
to visual words, and similarly during tf-idf construction for identifying the word
from which track neighbors are selected. While our decisions here have been
motivated by sparsity and computation, we plan for future work to explore a
fully probabilistic soft assignment framework for graph construction as well as

4 However, as a validation of our intuition here we do provide an evaluation of our
wide-baseline tracks applied out of context to a general Web dataset. The supple-
mental material at http://www.cis.upenn.edu/~makadia/| shows performance on
the Oxford Buildings dataset [§].
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tf-idf generation. Another aspect of our work worth investigating further is the
application of our ideas to different problems. For example, we believe the track-
graph may be useful for improving correspondences in two views, and the offline
feature tracking can be used to build better visual vocabularies.

Acknowledgments. We thank Matthew Burkhart and Alexander Toshev for
helpful discussions, and the Google StreetView team for the data.
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Crowd Detection with a Multiview Sampler
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Abstract. We present a Bayesian approach for simultaneously estimat-
ing the number of people in a crowd and their spatial locations by sam-
pling from a posterior distribution over crowd configurations. Although
this framework can be naturally extended from single to multiview de-
tection, we show that the naive extension leads to an inefficient sampler
that is easily trapped in local modes. We therefore develop a set of novel
proposals that leverage multiview geometry to propose global moves that
jump more efficiently between modes of the posterior distribution. We
also develop a statistical model of crowd configurations that can han-
dle dependencies among people and while not requiring discretization of
their spatial locations. We quantitatively evaluate our algorithm on a
publicly available benchmark dataset with different crowd densities and
environmental conditions, and show that our approach outperforms other
state-of-the-art methods for detecting and counting people in crowds.

Keywords: Pedestrian detection; RIMCMC; Multiview geometry.

1 Introduction

Crowd detection is challenging due to scene clutter and occlusions among indi-
viduals. Despite advances in detecting and tracking people in crowds, monocular
techniques are limited by ambiguities caused by insufficient information from a
single view. Multiview approaches, on the other hand, can resolve ambiguities
using complementary information from different views of the same scene. For
example, two people totally overlapping in one view might be well separated in
another view, making detection easier.

We present a probabilistic approach to estimate the crowd configuration, i.e.
number of individuals in the scene and their spatial locations, regardless if people
are visible in one view or multiple views. Our approach uses a stochastic process,
specifically a Gibbs point process, to model the generation of multiview images
of random crowd configurations. The optimal crowd configuration is estimated
by sampling a posterior distribution to find the MAP estimate for which this
generative model best fits the image observations. An overview of our approach
is illustrated in Figure [

Our approach is motivated by the success of previous generative models for
people detection [1I2I3]. Due to the great flexibility offered by sampling-based in-
ference methods, our crowd model can accommodate inter-person dependencies
that otherwise would be intractable to infer because of their inherent combi-
natorics. Efficient sampling strategies are the key to performance in practice.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 322010.
© Springer-Verlag Berlin Heidelberg 2010



Crowd Detection with a Multiview Sampler 325

likelirays

multiview
proposals

standard
rop osals

b‘b

original foreground birth proposal map people detections in
image mask in the centroid-plane image views and 3D

Fig. 1. Our proposed method tests hypothesized crowd configurations in 3D space
against multiview observations (foreground masks) within a sampling framework

Although various data-driven proposals have been designed in the single view
context to guide hypothesis generation [2I3], to our knowledge we are the first
to explore multiview geometry constraints for efficient sampling.

Summary of Contributions

1. We extend generative sampling-based methods from single view to multi-
view, providing a unified framework for crowd analysis that successfully es-
timates 3D configurations in monocular and multiview input.

2. We introduce novel proposals based on multiview geometric constraints,
yielding a sampler that can effectively explore a multi-modal posterior distri-
bution to estimate 3D configurations despite occlusion and depth ambiguity.

3. Our global optimization does not require discretization of location and re-
spects modeled spatial dependencies among people, resulting in better de-
tection and localization accuracy than current state-of-the-art.

2 Related Work

Among monocular approaches for pedestrian detection [ABIGI7IRIT], classifier-
based methods are very popular [7I8/9] and sampling-based methods have also
been shown effective for crowd detection [23/10] as well as generic object
detection[IT12]. Within the sampling framework, various efficient, data-driven
sampling strategies have been proposed. For example, Zhao and Nevatia [2] use a
head detector to guide location estimates and Ge and Collins [3] learn sequence-
specific shape templates to provide a better fit to foreground blobs. We extend
the sampling framework to a unified approach that can detect people visible in
a single view or in multiple views.
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Previous multiview detection methods differ not only in image features and
algorithms, but also camera layout. We confine our discussion to multiple cam-
eras with overlapping viewpoints, for we are primarily interested in resolving
ambiguities due to occlusion. Mittal and Davis [I3] match color regions from all
pairs of camera views to generate a ground plane occupancy map by kernel den-
sity estimation. In Khan et.al. [14], foreground likelihood maps from individual
views are fused in a weighted average fashion based on field-of-view constraints.
Tyagi et.al. [I5] develop a kernel-based 3D tracker that constructs and clusters
3D point clouds to improve tracking performance.

Among related approaches that estimate ground plane occupancy [TIT6T7ITS],
our work bears the closest resemblance to [I] in that we both take a generative
approach. However, they discretize the ground plane into a grid of cells, and
approximate the true joint occupancy probability of the grid as a product of
marginal probabilities of individual cells, under the assumption that people move
independently on the ground plane. Although our problem and framework are
similar, we use a sampling-based inference technique that allows us to use a more
flexible crowd model. Our model relaxes the independence assumption among
people and does not require discretization of spatial location nor a fixed size
for each person. We show in our results that these improvements lead to better
detection and localization accuracy as well as greater robustness to errors in
foreground estimation and camera calibration.

Our efficient sampling algorithm is inspired by previous work that seeks to
improve the mixing rate of a sampler by encouraging traversal between different
modes of the target distribution [I920/21]. Dellaert et.al. [19] developed a chain
flipping algorithm to generate samples of feasible solutions for weighted bipartite
matching. Other methods such as the mode-hopping sampler [21] use knowledge
about the topography of the target distribution to speed up sampling. Although
inspiring, these methods are not directly applicable to our scenario because we
are searching a large configuration space with variable dimension. More relevant
is the data-driven MCMC framework [22] that uses various data-driven proposals
such as edge detection and clustering to speed up Markov chain sampling for
image segmentation.

3 A Gibbs Point Process for Crowd Detection

In this section we present a Bayesian statistical crowd model that accommodates
inter-person dependence, together with a baseline sampling algorithm that di-
rectly extends a single view detection approach to perform multiview inference.
We discuss the limitations of this baseline algorithm in Section @ where we
present the motivation and strategies of our novel multiview proposals. Experi-
mental results on a public benchmark dataset are presented in Section [l

3.1 Modeling

Our goal is to estimate a 3D crowd configuration based on image observations
from a surrounding set of fixed cameras. A crowd configuration is an unordered
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set of targets o™ = {o1,...,0,}, ¢ = 1,...,m, n > 0. Each target represents
a person moving on a flat ground plane and is parameterized by an upright
cylinder o = (¢, r, h), where ¢ € W is a spatial coordinate in the centroid-plane,
a plane that is half the height of an average person above the ground, W is a
compact subset of R? equipped with volume measure v, and [r, h] specifies the
width (radius) and height of a person.

The configuration space is denoted as 2y = {0, U 0}, which is a union
of subspaces with varying dimensions, including the empty set and up to IV
people distributed over W. We model random configurations by a spatial point
process, specifically, the Gibbs point process [23]. Let u(-) be the distribution
of a homogenous Poisson process of unit intensity, which is analogous to the
Lebesgue measure on R?. The density of the Gibbs point process can be defined
with respect to this reference Poisson process. Formally,

_ flo)
Jor F(©)du(o)’

where the mapping f(o) : 2 — [0,00) is an unnormalized density having the
Gibbs form f(o) = exp{—U(0)}.

The Gibbs process is very flexible for modeling prior knowledge about ob-
ject configurations. It often includes a unary data term to model object at-
tributes and higher-order interaction terms to model inter-object relationships.
Our model incorporates two types of inter-person dependency. The first one is
an avoidance strategy motivated by studies in social science showing that people
keep a ‘comfort zone’ around themselves. We incorporate this dependency by a
Strauss Model [23], which defines a pairwise potential interaction as

p(o)

(1)

_In la—clsr
¢(0i70j)_{() | ci—cjill>r’ (2)
where r is a parameter that controls the size of the comfort zone and 7 is set to
some large constant number.

The second modeled dependency is based on the principle of non-accidental
alignment. It penalizes configurations where people line up perfectly along a
viewing ray to claim the same foreground region. This is not a hard constraint:
certainly one person can be occluded by another in any view. However, each
person is unlikely to be occluded in every view. In general, we seek to penalize
configurations that require a large number of occlusions to explain the data.
Unfortunately, explicit occlusion analysis involves a combinatorial number of
interacting subsets. To keep the energy function linear in the number of targets,
we measure the degree of alignment in 3D by the amount of overlap among
projected rectangles in each image view. Formally, a ‘label’ image is computed
by pixel-wise disjunction as S(o) = U;H"(0;), where H" is projection function
associated with camera v that maps a 3D person to a binary image that is zero
everywhere except for a rectangular area bounding the projected person and v €
[1,V] where V is the number of camera views. Pixels in the label image covered
by at least one projected rectangle are labeled as foreground. For simplicity, we
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use S as a shorthand for S¥(o). For each object o;, DY = |H"(0;) N S¥(0\o;)|
measures the amount of overlap between one target’s projection and the rest
of the targets in that view by counting the number of foreground pixels in the
intersection image. We define the overlap cost for o; as
Dy o0; only visible in v
Di =\ min Dy otherwise :
v
This way, overlap in some views will not be penalized as long as the target is

clearly visible in other views. We encode prior knowledge about a general crowd
configuration in the total energy of a Gibbs process

=Y #(0i,05) + Y Di+N, (3)
ij i

where N = |o| is the number of estimated people in 3D. The last term penalizes
spurious detections with a constant weight ~.

Under this probabilistic framework, the problem of crowd detection is solved
by finding the configuration that best explains the image observations (fore-
ground masks) from different views. Denote the binary foreground mask in view
vby Z¥ ={Z}}, Z? € {0,1}, i =1,...,m,, where m, is the number of pixels in
the image observed from view v. A likelihood function £ is defined to measure
the probability of a configuration given the foreground masks by comparing two
sets of binary images, the mask images Z and label images S,

L(0;Z) = L(S: Z) = exp{—G (o)}, (4)
Glo) = Y0 y S I (SY, Z2) + BN Ia(oy), (5)
nest.zn ={y 574 n) - {(1) 3o st Ppfipl | <01 (g

This likelihood function contains two terms: I; penalizes discrepancies between
hypothesized person detections and the image observations, and I imposes an
extra penalty on ‘ghosts’ — detections that cover mostly background pixels. 3 is
set to some large constant number.

Combining the prior (Eqn. [[) and the likelihood function (Eqn. @), we define
the optimal crowd configuration as the MAP estimator

ef(U(o)JrG(o))
o = argenrlzax(P(0|Z)) = ar§€n(12ax( ) ). (7)

Optimizing the above posterior directly is intractable because the normalizing

constant from the Gibbs prior, C(2) = [, f o ), involves all possible con-
figurations in the combinatorial conﬁguratlon space Q. Moreover, pairwise po-
tentials in our crowd model make the inference harder than what can be handled
by approximation methods such as [T[T8/24].
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3.2 Inference

We use reversible jump Markov Chain Monte Carlo (RIMCMC) to battle the
intractable normalizing constant in Eq. [ MCMC is designed to generate sam-
ples from complicated target distributions, such as our posterior distribution,
by constructing a Markov chain with the desired target distribution as its equi-
librium distribution. RIMCMC [25] extends the classic algorithm to deal with
variable dimension models. It suits the crowd analysis problem well because the
number of people is not known apriori, and thus also needs to be estimated.

The RIMCMC sampler explores the configuration space by proposing per-
turbations to a current configuration. The general sampling framework is re-
viewed in the supplemental materiall. The design of good proposal distributions
is the most challenging part of the sampling algorithm. Proposals that only
allow local perturbations may become trapped in local modes, leaving large por-
tions of the solution space unexplored, whereas global adjustments have less
chance to be accepted unless the target distribution is very smooth or tem-
pered to be so. To achieve a good balance of both local and global proposals,
we use proposals from a mixture of both types: Q(;) = Zle peQc(;), where
Yope = 1, [Qc(0;0)u(do’) = 1, and C is the number of different proposal
moves. Below we describe a baseline multiview sampler directly extended from
local birth, death, and update proposals commonly used in single view sam-
plers [23].

Birth/Death proposal. A birth proposal adds a 3D person to the current
configuration, i.e. o' = o U 0,. A simple birth strategy might place a person
uniformly at random (u.a.r.) in the bounded region W. A death proposal removes
a person from the current configuration so that o’ = 0\ 04, e.g. choosing o4 u.a.r.
from o. Both proposals involve a dimension change from |o| to |o’|. Instead of
blindly adding a person, we use a more informative data-driven proposal [22].

We sample 0p’s location according to the birth probability P, ~ > P\ Pyl
1

where B,(1) = |, >, |H‘7_El)8)zl “I'is the fused occupancy likelihood of a particular
location I, computed as the sum of the percentage of foreground pixels within its
projected rectangles in all views, and W is a discretization of the bounded region
of interest in the centroid-plane W. Our final detection results are not restricted
by this discretization because localization is adjusted by other proposals of the
sampler.

Update Proposal. The update proposal preserves the dimension of the current
configuration but perturbs its member’s attributes (location and size) to generate
a new configuration. We use a random walk proposal that selects a person o,
u.a.r. from o, and either proposes a new spatial placement by sampling from a
truncated normal distribution A(c|c,, o) centered at the current location c,,, or
proposes a new size by sampling from a truncated normal centered at the size
of an average person, h = 1.7m and r = 0.4m.

! http://vision.cse.psu.edu/projects/multiviewmcemc/multiviewmeme. html
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7

gfeal person

Fig. 2. Common pitfalls in multiview crowd detection. Left: the phantom phenomenon.
A 3D phantom location (red circle) explains foreground pixels in different views that
actually belong to the projections of two different real people (red boxes). Right:
depth ambiguity for people visible in a single view can result in explanation of a single
foreground region by alternative detections of different sizes.

4 Multiview Proposals

The local proposals presented in the previous section yield satisfactory results
when people are well-separated in multiple views. However, when a person is visi-
ble only in one view, the inherent depth ambiguity coupled with noisy foreground
blobs leads to a significant performance drop, which has also been reported in
previous work [I8[24]. Moreover, as occlusion becomes more frequent, we have
observed that the naive sampler often gets stuck in local modes because of the
‘phantom’ phenomenon. Phantoms are accidental intersections of viewing rays at
locations that are not occupied by any real person. Phantom hypotheses attempt
to explain foreground regions across multiple views that actually are projections
of different people in 3D. As shown in Figure 2] when a phantom gets accepted
in the current configuration, later proposals for the real person are less likely
to get accepted because the phantom already explains a large portion of their
foreground pixels, thus the new birth proposal will suffer a high overlap penalty.
Local random walk updates are also unlikely to escape from this local maximum.
Although increasing the step size of a random walk can alleviate the problem to
some extent, such blind exploration wastes time visiting mostly low probability
regions, leading to an inefficient sampler.

Inspired by long range mode-hopping MCMC proposals [T9120121], we exploit
geometric constraints to design proposals that allow global changes that more ef-
fectively explore the configuration space. The motivation behind using geometric
constraints is that multiview geometry is consistent across views whereas image-
based appearance constraints (e.g. head detection for birth [2]) may conflict with
each other in different views.

Our multiview proposals are based on occupancy likelihood rays, or likeli-
rays for short. Recall that in our data-driven birth proposal, we have com-
puted a centroid-plane occupancy map by fusing foreground masks from all the
views in 3D. Likelirays are essentially polar coordinate transformations of the
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Fig. 3. Left: Likelirays from one viewpoint v, indexed by angle 0, define a set of 1D
distributions over potential person and phantom locations at different depths along
viewing rays in the centroid-plane. Right: Mode-hopping by sampling from a likeliray
pv(0). Green dots are samples from the depth move, which visits all significant modes
whereas the blue samples from a local random walk proposal stays in a single mode.

centroid-plane occupancy map with respect to each camera view v, indexed by
angle 0, i.e. p,(0). Different modes along each likeliray correspond to potential
real and phantom locations of people at different depths. The likeliray represen-
tation gives us a convenient way to generate proposals with respect to a single
camera view while taking into account fused information from all other camera
views. We now present two such multiview proposals.

Depth Move Proposal. A depth move first randomly selects a person o,, and
a camera view v from the list of views where o0,,, is visible. Let § denote the angle
of the polar coordinate of 0,,. A new 3D location is sampled with probability
proportional to the 1D likeliray distribution p,(6). Figure [ shows that samples
from depth moves are able to visit different modes whereas samples from local
random walk proposals only cluster around the current location. The depth
proposal is a powerful and versatile mechanisim to handle the problems shown
in Figure 2 It can switch between a phantom and a real person hypothesis and
also can produce the effect of a large scale change of a single person by “sliding”
them in depth along a viewing ray, which is useful for correctly detecting people
visible only in a single view. Unlike random walk with large step size, a depth
move preserves some of the already covered foreground pixels. Depth moves
therefore tend not to cause large decreases in likelihood, so are more likely to be
accepted.

Merge/Split Proposal. When people are only visible in a single view and the
viewpoint is not very elevated, a large foreground region may become covered by
fragmented detections corresponding to pedestrian hypotheses scattered within
a small range of viewing angles at different distances from the camera may
be hypothesized to cover parts of a large foreground region (Figure [). These
fragments create local modes that prevent explaining the entire region correctly
as one single person.
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Fig. 4. Left: Merge Proposal. The top panel shows how the 3D merge proposal yields a
new hypothesis C that minimally covers both projections A and B in view v. The bot-
tom shows that the final results (right) correctly recover from fragmented hypotheses
(left). Right: Independent Update Proposal. The top panel shows localization error
(marked in red) in four views due to camera calibration and synchronization errors.
The bottom shows improved results using the independent update proposal.

We design a 3D merge/split move to ease the switch between the following two
hypotheses: multiple distant people versus a single, closer person. Let two people
0, and op both be visible from a particular viewpoint, with polar coordinates
(0a,7q) and (6p,13), 0 € (0, 7). As illustrated in Figure @ their angular extents
are [a1,as] and [by,bs]. A new merged person o, can be hypothesized from o,
and op in two ways: 1) when one of the angular extents completely falls within
the other, we randomly move the person with the larger angular extent closer
to the camera and delete the other; 2) otherwise, without loss of generality,
assume a1 < by and as < bg, which includes the case of partial occlusion as
well as complete separation of the two. We create a new person in 3D whose
image projection minimally covers the projections of both merge candidates, thus
having an angular extent [a1,b2]. The corresponding polar coordinates (6.,7.)
of 0. can be computed as f. = “ 3%, r, = 0.5w where w is the width
of an average sized person.

A 3D merge move randomly chooses a view v in which to propose a merge.
Denoting all visible people in v as o,, a person o, is chosen u.a.r. from o,.
For each other person o;, i # a, let e; be the angular extent of the candidate
blob that would result from merging o, and o;. We use these extents to define a
probability distribution over candidates i as p; = Ze'iéj , where &; = ™"

tan(0.5(ba—a1))’

o I favors

merging two people with large angular overlap. A éandidate person is proposed
for merging with o, by sampling from this distribution. If a newly merged person
is accepted, we store their components in a merge list. The reverse proposal is
a 3D split that randomly selects a person from the merge list and splits them
back into their stored original component detections.

Independent Update Proposal. So far, the four types of presented proposals,
birth/death, update, depth move, and merge/split, all hypothesize new person
locations/sizes in 3D and the corresponding projections in image views are de-
termined by the camera calibration information. To accommodate noisy input,
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e.g. errors in calibration, synchronization, or foreground estimation, we add an
independent update proposal that can perturb the 2D projection rectangle in
each image plane independently (demonstrated in Figure H). The independent
update move works by randomly choosing a person o; and a camera view v from
the list of views where o; is visible. With equal probability, either the size or the
location of the projection box in view v is updated by sampling from a trun-
cated 2D normal distribution centered at the nominal image location and size
determined by the calibration matrices.

5 Experiments

We evaluate our algorithm on the PETS2009 dataset [26], a challenging bench-
mark dataset for multiview crowd image analysis containing outdoor sequences
with varying crowd densities and activities. We tested on two tasks: crowd de-
tection in a sparse crowd (sequence S21.1-1234) and crowd counting in a dense
crowd (sequence S1L1-1357). We generated foreground masks using an adap-
tive background subtraction algorithm similar to Zivkovic’s method [27], and
camera calibration information provided with each dataset was used to generate
the birth proposal map P, as the average back-projection of foreground masks
from all views, as described in Section Sample detection results are shown in
Figure[6l Our proposed method obtains superior results over other state-of-the-
art crowd detection methods, as will be shown through quantitative evaluation
below.

Sparse sequence S2L1: We used four camera views, including one elevated, far
field view (called View 1) and three low-elevation near field views with frequent,
severe occlusions (Views 5, 6, and 8). We compared our detection results against
the ASEF method, which is a detection method using convolution of learned
average of synthetic exact filters [5], and the POM+LP method, which is a multi-
target detection and tracking algorithm based on a probabilistic occupancy map
and linear programming [24]. We chose these two methods because they are the
current top-performers as reported in Winter-PETS2009 [26]. We also compared
against the Cascade [8] and Part-based [9] person detectors, trained according
to [5]. We performed ground-truth annotation of the sequence and evaluated
each algorithm based on the standard MODA and MODP metrics (details are
included in the supplemental materiall). MODP measures localization quality
of the correct detections and MODA measures detection accuracy taking into
account false negatives/positives. For both metrics, larger values are better. A
detection is counted as correct if the overlap ratio between the annotated box
and the detection box is greater than some threshold 7. We systematically vary
this threshold and compute the evaluation metrics at each threshold. Correct
detections and false positives/negatives are determined by solving an assignment
problem between the annotations and the detection output.

Figure BIA) shows averaged MODP and MODA scores across four views for
our method and POM+LP, and over the detections from View 1 for the three
classifier-based detectors (those are monocular methods that only have results
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Fig. 5. Evaluation results on S2L1 and S1L1. For S2L1, our algorithm (red curves)
consistently outperforms other methods in terms of MODA&MODP (A) and Preci-
sion&Recall metrics (B) at different overlap threshold levels without using temporal
or appearance information. For S1L1 (C), we achieve lower count errors in all three
target regions than current state-of-the-art methods.

reported for View 1). Our multiview MCMC method consistently outperforms
others (higher detection accuracy) at all overlap threshold levels. Addition-
ally, the prominent performance gap at the tighter end of the threshold levels
(larger 7) indicates that our method has better localization quality than other
methods. It is interesting to note that our method is the top performer even
though we do not use temporal consistency constraints across frames or discrim-
inative object appearance information. Our improved accuracy is due to use of a
more flexible generative model, made possible by the sampling-based inference,
and our novel multiview proposals that allow more efficient global exploration of
the posterior distribution. Since we are free from restrictions 