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Preface

The 2010 edition of the European Conference on Computer Vision was held in 
Heraklion, Crete. The call for papers attracted an absolute record of 1,174 
submissions. We describe here the selection of the accepted papers: 

Thirty-eight area chairs were selected coming from Europe (18), USA and 
Canada (16), and Asia (4). Their selection was based on the following 
criteria: (1) Researchers who had served at least two times as Area Chairs 
within the past two years at major vision conferences were excluded; (2) 
Researchers who served as Area Chairs at the 2010 Computer Vision and 
Pattern Recognition were also excluded (exception: ECCV 2012 Program 
Chairs); (3) Minimization of overlap introduced by Area Chairs being former 
student and advisors; (4) 20% of the Area Chairs had never served before in 
a major conference; (5) The Area Chair selection process made all possible 
efforts to achieve a reasonable geographic distribution between countries, 
thematic areas and trends in computer vision. 

Each Area Chair was assigned by the Program Chairs between 28–32 papers. 
Based on paper content, the Area Chair recommended up to seven potential 
reviewers per paper. Such assignment was made using all reviewers in the 
database including the conflicting ones. The Program Chairs manually 
entered the missing conflict domains of approximately 300 reviewers. Based 
on the recommendation of the Area Chairs, three reviewers were selected per 
paper (with at least one being of the top three suggestions), with 99.7% being 
the recommendations of the Area Chairs. When this was not possible, senior 
reviewers were assigned to these papers by the Program Chairs, with the 
consent of the Area Chairs. Upon completion of this process there were 653 
active reviewers in the system. 

Each reviewer got a maximum load of eight reviews––in a few cases we had 
nine papers when re-assignments were made manually because of hidden 
conflicts. Upon the completion of the reviews deadline, 38 reviews were 
missing. The Program Chairs proceeded with fast re-assignment of these 
papers to senior reviewers. Prior to the deadline of submitting the rebuttal by 
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  the authors, all papers had three reviews. The distribution of the reviews was 
the following: 100 papers with an average score of weak accept and higher, 
125 papers with an average score toward weak accept, 425 papers with an 
average score around borderline. 

For papers with strong consensus among reviewers, we introduced a 
procedure to handle potential overwriting of the recommendation by the Area 
Chair. In particular for all papers with weak accept and higher or with weak 
reject and lower, the Area Chair should have sought for an additional 
reviewer prior to the Area Chair meeting. The decision of the paper could 
have been changed if the additional reviewer was supporting the 
recommendation of the Area Chair, and the Area Chair was able to convince 
his/her group of Area Chairs of that decision. 

The discussion phase between the Area Chair and the reviewers was initiated 
once the review became available. The Area Chairs had to provide their 
identity to the reviewers. The discussion remained open until the Area Chair 
meeting that was held in Paris, June 5–6. Each Area Chair was paired to a 
buddy and the decisions for all papers were made jointly, or when needed 
using the opinion of other Area Chairs. The pairing was done considering 
conflicts, thematic proximity, and when possible geographic diversity. The 
Area Chairs were responsible for taking decisions on their papers. Prior to 
the Area Chair meeting, 92% of the consolidation reports and the decision 
suggestions had been made by the Area Chairs. These recommendations were 
used as a basis for the final decisions. 

Orals were discussed in groups of Area Chairs. Four groups were formed, 
with no direct conflict between paper conflicts and the participating Area 
Chairs. The Area Chair recommending a paper had to present the paper to the 
whole group and explain why such a contribution is worth being published as 
an oral. In most of the cases consensus was reached in the group, while in the 
cases where discrepancies existed between the Area Chairs’ views, the 
decision was taken according to the majority of opinions. 

The final outcome of the Area Chair meeting, was 38 papers accepted for an 
oral presentation and 284 for poster. The percentage ratios of submissions/ 
acceptance per area are the following: 
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Thematic area # submitted % over 
submitted

# accepted % over 
accepted

% acceptance 
in area

Object and Scene Recognition 192 16.4% 66 20.3% 34.4%

Segmentation and Grouping 129 11.0% 28 8.6% 21.7%

Face, Gesture, Biometrics 125 10.6% 32 9.8% 25.6%

Motion and Tracking 119 10.1% 27 8.3% 22.7%

Statistical Models and Visual
Learning

101 8.6% 30 9.2% 29.7%

Matching, Registration, Alignment 90 7.7% 21 6.5% 23.3%

Computational Imaging 74 6.3% 24 7.4% 32.4%

Multi-view Geometry 67 5.7% 24 7.4% 35.8%

Image Features 66 5.6% 17 5.2% 25.8%

Video and Event Characterization 62 5.3% 14 4.3% 22.6%

Shape Representation and 
Recognition

48 4.1% 19 5.8% 39.6%

Stereo 38 3.2% 4 1.2% 10.5%

Reflectance, Illumination, Color 37 3.2% 14 4.3% 37.8%

Medical Image Analysis 26 2.2% 5 1.5% 19.2%

We received 14 complaints/reconsideration requests. All of them were sent to the 
Area Chairs who handled the papers. Based on the reviewers’ arguments and the 
reaction of the Area Chair, three papers were accepted––as posters––on top of 
the 322 at the Area Chair meeting, bringing the total number of accepted papers 
to 325 or 27.6%. The selection rate for the 38 orals was 3.2%.The acceptance 
rate for the papers submitted by the group of Area Chairs was 39%.  

Award nominations were proposed by the Area and Program Chairs based on 
the reviews and the consolidation report. An external award committee was 
formed  comprising David Fleet, Luc Van Gool, Bernt Schiele, Alan Yuille, 
Ramin Zabih. Additional reviews were considered for the nominated papers 
and the decision on the paper awards was made by the award committee. We 
thank the Area Chairs, Reviewers, Award Committee Members, and the 
General Chairs for their hard work and we gratefully acknowledge Microsoft 
Research for accommodating the ECCV needs by generously providing the 
CMT Conference Management Toolkit. We hope you enjoy the proceedings. 

September 2010 Kostas Daniilidis  
Petros Maragos  
Nikos Paragios 
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Abstract. This paper proposes a hierarchical framework that resamples

3D reconstructed points to reduce computation cost on time and memory

for very large-scale Structure from Motion. The goal is to maintain ac-

curacy and stability similar for different resample rates. We consider this

problem in a level-of-detail perspective, from a very large scale global and

sparse bundle adjustment to a very detailed and local dense optimization.

The dense matching are resampled by exploring the redundancy using

local invariant properties, while 3D points are resampled by exploring

the redundancy using their covariance and their distribution in both 3D

and image space. Detailed experiments on our resample framework are

provided. We also demonstrate the proposed framework on large-scale ex-

amples. The results show that the proposed resample scheme can produce

a 3D reconstruction with the stability similar to quasi dense methods,

while the problem size is as neat as sparse methods.

1 Introduction

Nowadays growing demands on realtime mapping and localization, large scale
digital city modeling [1] push the scale of Structure from Motion (SfM) [2] to the
limits of our computing capacity again and again. The pipeline of the SfM follows
a divide-conquer-merge methodology. The collected images are first processed to
extract features independently. Then a matching and elementary reconstruction
process, e.g. projective reconstruction, is carried out to solve the SfM in pair-
wise or triplet manner. Such pairwise and triplet reconstruction are the funda-
mental building blocks (sub-problem) of any SfM system. The sub-problems are
merged into a consistent and complete result using a hierarchical [3] or incremen-
tal [4] merging process. To ensure consistency across the merged sub-problems, a
golden standard method–bundle adjustment [5], is used. Unfortunately, like any
other problems solved by divide-conquer-merge methodology, the huge merged
problem will exhaust the computation resource. In structure from motion, it is
challenging to fit the large scale bundle adjustment problem into memory, which
is an initial motivation to our work.

To reduce the problem size, a common approach is to explore the redundancy.
Lhuillier et al. [6] proposed a resample scheme for dense matching. The local re-
sample scheme not only reduces the consumption of the computation resource
due to large amount of pixel wise matches, but also improves the reliability of

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 1–14, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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resampled matching by using local-plane-model validation. To reduce the redun-
dancy in-between images, key-frames are extracted [7] given sequential input
images, so the computation can focus on the reduced set of images. Meanwhile,
with unordered images, Snavely et al. [8] proposed a skeleton representation
of the dominant cameras which are then used as the foundation to speed up
following incremental camera insertions and 3D point reconstruction.

Decoupling is another strategy to tackle large scale problems. Ni et al. [9] par-
titioned the large scale problem into overlapping blocks that fit to main mem-
ory and bundle each block respectively in an iterative inter-partition refinement
manner. However, due to high inter-connectivity between the parameters, it is
difficult to construct a pure independent partition from the original scene.

It is also another compromise to constrain the problem being solved only
locally. Local bundle adjustment [10,11] is proposed to use only the images and
features in the last few images in image sequences in the bundle adjustment
instead of using all images and features.

In contrast to finding redundancy in cameras, in this paper, from a level-
of-detail perspective, we propose a hierarchical resampling framework on 3D
points for the large scale SfM, which fits the large scale problem into main
memory. Moreover, with the concept of resampling, we set up a full picture of the
spectrum of level-of-detail (multi-scale) for geometry reconstruction (Figure 1).
In this spectrum, a very dense local reconstruction, e.g. multi-view stereo [12],
can transit to a semi-dense reconstruction [6], which can later be resampled to
a sparse reconstruction. This transition is also valid vice versa.

Large scale global reconstruction Detailed local reconstructionDensity controlon De

Fig. 1. Spectrum of the level-of-detail of the bundle adjustment

In this paper, we first review the basic notation and background knowledge
of bundle adjustment in Section 2. Next, our hierarchical resampling scheme is
introduced in Section 3. After that, an approximate bundle adjustment method
and an out-of-core merging process are introduced in Section 3.3 based on the re-
sampling scheme. The experiments and discussion are given in Section 4. Finally,
we conclude our work in Section 5.

2 Short Review of Bundle Adjustment

Given a set of input images Î = {I0, . . . , Ij}, let c = {c0
T, . . . , cj

T} be the
parameter vectors of all cameras Ĉ associated with Î and p = {p0

T, . . . ,pi
T}

be the parameter vectors of all 3D points P̂ = {P0, . . . , Pi}. A visibility function
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V (i, j) is defined to be 1 when Pi is visible in Ij . Otherwise, V (i, j) is defined to
be 0. Then a classic bundle adjustment problem can be expressed as a nonlinear
least square problem:

[c p]T = arg min
c,p

‖x − f(c,p)‖2 (1)

Equation 1 is to estimate c and p that optimize the re-projection error, given the
set of projections X̂ = {Xij |∀i, j where V (i, j) is 1} of 3D points onto input im-
ages. We also use |V | to denote the number of projections in images. x is the con-
catenation of the column vector of all projections {xT

ij |∀i, j where V (i, j) is 1}T .
f(·) is the model of projection. The variance of the estimation can also be esti-
mated using the inverse of the Hessien of Equation 1, i.e. H−1 according to the
perturbation analysis [13]. However, due to the gauge freedom, the estimation
of c, p and their covariance are up to the choice of the gauge. The estimations
of c and p that yield the same optimized value for Equation 1 form a manifold
called gauge orbit. In order to obtain a unique estimation of c and p, additional
constrains C on c and p are required. This process is called gauge fixing. The
covariance of c and p is highly related to the choice of gauge as well. However,
Morris has shown that this set of numerically unequal covariance is essentially
equivalent geometrically to normal covariance [13]. This fact makes the normal
covariance become an unified criteria for the quality of an estimation.

3 Hierarchical Resampling

Our framework of hierarchical resampling starts from the resampling of dense
matching and moves to the resampling of 3D points. The goal of the resampling
is to simplify the large scale problem so that the problem can be solved efficiently,
while maintaining the stability of the reconstruction.

3.1 Dense Matching Resample

Thanks to the robustness of rotation and scale invariance features [14], sparse
reconstruction is quite popular nowadays. However, as demonstrated in [6] and
in later experiments, unbalance sparse features in image can make the geometry
reconstruction problematic. Hence, matching propagation is still recommended
to maximize the stability of SfM. However, it overwhelms the computer to involve
all the propagated pixel matches. Therefore, we use the resampling strategy
proposed in [6] to resample the semi-dense pixel matches. The general process
proceeds as following steps.

(1) Pixels are aggregated into local groups. The local group should be small
enough so that the pixels in the same group share some invariance, e.g. local plane
assumption. On the other hand, the local group should be also large enough to
contain enough reliable observations. For simplicity, regular 8 by 8 pixels square
grids are used in this implementation. Over-segmentation algorithm [15] that
could generate equal-size and edge sensitive over-segmentation is also a good
candidate for partitioning pixels into local groups.
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(2) Local groups of pixel correspondences are evaluated using some local in-
variance property. Only the groups that pass the evaluation will be kept and a
representative point correspondence will be generated for later stages. In this
implementation, we used local affine transform as the invariance property in a
local group.

Please note that the local invariance hypothesis, i.e. local affine transform,
does not need any knowledge of the global motion between two images. Hence,
this step can be used before any 2-view or 3-view geometry reconstruction to
remove redundant information.

3.2 3D Points Resample

After local geometries are estimated, these local geometries are further merged
into a global geometry. Because the number of resampled semi-dense matches is
usually 10 ∼ 1000 times more than the number of sparse matches, the memory
runs out fast if all matches are used. In order to maintain the problem solvable
in main memory, we need to resample 3D points to reduce the problem size. At
the same time, we need to keep in mind that removing the redundant 3D points
should not harm the optimization itself. Hence, we should first figure out which
kind of points are less useful for bundle adjustment.

The meaning of “less useful” is twofold. First, some points themselves are
poorly reconstructed. Geometrically, small base line and small angle between
the reprojected rays for triangulation yields poor estimation of the 3D points.
Mathematically, the badness of the estimation of 3D points can be expressed
as the covariance of the estimated parameters using perturbation analysis, but
this covariance is highly related to the choice of gauge. As reviewed in Section 2,
normal covariance can be used to represent this set of geometrically equivalent
covariance regardless of the choice of gauge. More concretely, we take the diag-
onal blocks of the normal covariance matrix corresponding to the parameters of
3D points. Then each 3 × 3 covariance matrix is interpreted as an uncertainty
ellipsoid. The sum of the principle axes of an uncertainty ellipsoid is taken as
the measurement of the uncertainty of a 3D point.

Second, the removed 3D points should not in turn harm the estimation of the
parameters of cameras. Remaining points should span the whole reconstructed
scene and distribute uniformly in both 3D and image space. These uniform points
make the residual of Equation 1 distributed well over all points and make the
estimation of camera parameters well constrained. This uniformness in 3D and
image space, can be measured with the density of points in 3D and image space.

Therefore,for each point Pi, we define a score to measure its redundancy as:

si = ui · ρi · min
∀j V (i,j) is 1

ρi
Ij

(2)

where ui is the uncertainty of Pi, ρi is the density of 3D points around point
Pi, and ρi

Ij
is the density of the 2D projections in image Ij where Pi is visible.

Points with higher scores are regarded as more redundant and less useful than
points with lower scores.
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Now, we can at least remove a point with the highest score each time to re-
sample points. Unfortunately, the scores of the remaining points change when
any 3D points are removed. It is not computationally practical to re-compute
the scores for the remaining points every time a point is removed, as simply
the covariance computation takes O(|V ||Ĉ| + |P̂ |r2 + |Ĉ|3), given r is the max-
imal number of projections a 3D point has. In contrast to this greedy strategy,
we tackle this problem using a stochastic sampling process, which only require
O(|P̂ |) time, given a precomputed score of each point. The sampling process
can be interpreted as the higher score a point has, the more likely it should be
removed. In the stochastic sampling process, si is first computed for each point.
Then we can select the 3D points to be removed proportionally to this score us-
ing SUS (stochastic universal sampling) [16]. To build the sampling distribution
used in SUS, we normalize the scores of all 3D points by their sum. With this
resample scheme, we can define a downsample ratio (resample rate) as the ratio
of the number of remaining points to the number of original points.

Figure 2 shows how the terms in Equation 2 affect the resampled 3D points.
The full reconstruction in (a) is generated using the semi-dense reconstruc-
tion [6] 1. The results show that the random sample gives a resampled result of
similar distribution to the original reconstruction, where the resampled points
cluster around textured region. If only the covariance is considered in the score,
the remaining points are clustered around the places of better geometrical condi-
tion, especially where is close to cameras. “Den23” consisting of only 2D and 3D
density makes resampled points uniformly distributed. For more experimental
analysis, please refer to Section 4.

(a) Original (b) Comp (c) Ran (d) Cov (e) Den23

Fig. 2. (a) Original result with all reconstructed points. 10% points are kept by re-

sampling using our score function (b) Comp, using random sample (c) Ran, using only

the uncertainty measure (d) Cov, using the combination of 3D density and 2D density

(e) Den23. These abbreviations have the same meaning as here throughout this paper.

3.3 Approximate Bundle Adjustment and Out-of-Core Hierarchical
Merging

Next, we use the above resample strategy to speed up the bundle adjustment and
to adapter the original hierarchical merge process into an out-of-core manner.

Approximate bundle adjustment. We would like to use the resampled geometry
to approximate the bundle adjustment. First a full bundle adjustment problem
BA0 is resampled into a simplified bundle adjustment problem BAs according
1 Reconstructed with 10 input images at resolution 2400×1600 pixels which is different

from the resolution used to generate the results for the same scene in Section 4.
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to the capacity of main memory. Then a bundle adjustment of both motion
and structure parameters is carried out on BAs. The 3D points Pc = {Pi ∈
BA0 and /∈ BAs} are in turn estimated using the optimized parameters in
BAs by e.g. linear triangulation. Finally such Pc will be optimized with a bun-
dle adjustment only on structures. This process can be iterated several times.
Each time, the original BA0 is resampled again according to latest updated pa-
rameters. However, we found that this process usually converges in an iteration
with our resample scheme. Hence, it is much faster than solving a full bundle
adjustment problem.

Out-of-core merging. We can also adapt the hierarchical merge process [3] to
an out-of-core manner based on our resample scheme. Given sequential images,
the local triplet geometries are first reconstructed for every consecutive 3 images
using the semi-dense correspondences that are resampled from dense propagated
matching. Then we hierarchically merge the local geometries into a global geom-
etry. The merging process starts from finding a transformation, e.g. similarity
transformation, which aligns the overlapping cameras between two consecutive
local geometries. We merge the overlapping cameras by keeping either one of
them. Then the points from different local geometries are merged if they have
overlapping projections. In our implementation, we use 0.3 pixels as the thresh-
old for overlapping projections. Finally, bundle adjustment is applied on the
merged geometry to obtain higher level local geometries.

The above process can be carried out in an out-of-core manner as following.
Given two local geometries G0 and G1, if the bundle adjustment on the merged
geometries G01 does not fit into main memory, G0 and G1 will be resampled to
GS0 and GS1, which are merged into GS01. Only the simplified geometries are
used in further merging and bundle adjustment, while the removed 3D points are
dumped to the hard disk. The resample rate is controlled by the bound of mem-
ory available for a program. In the end, we obtain an optimized resampled global
geometry. As the number of levels of the hierarchical merging is O(log n) given
n local geometries, the total IO required is bounded by O(n log n). Therefore,
this process is I/O efficient.

4 Experiment and Discussion

In this section, we first describe the implementation of our system. Then the
proposed resample scheme is validated on moderate-scale data sets and large-
scale data sets, followed with the discussion.

4.1 Implementation

Our SfM pipeline follows the hierarchical strategy and is in calibrated framework.
SIFT or SURF can be used as sparse features. The matching propagation algo-
rithm [17,18] is implemented. ANN is used for the approximate nearest neighbor
searching. We use the calibrated 5 points algorithm [19] to reconstruct 2-view
and 3-view geometries. The bundle adjustment is handled by SBA [20].
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Fig. 3. Typical input images. From left to right, Hall of Prayers (HALL), BUILDING,

OXFORD, Canton and UNC.

Fig. 4. Canton sequence. Top row is the complete reconstruction of Canton#1 with

resampled 3D points. Middle row is the complete reconstruction of Canton#2 with

resampled 3D points. Bottom row is a close up view of the blue rectangular region of

the middle row in three different resample rates 5%, 20% and 100%.

For computing scores, a fast covariance computation [6] is used to obtain
the normal covariance of the position vectors of reconstructed cameras and 3D
points. We approximate the density of points around a point by counting the
number of points inside a fixed radius neighborhood around a point. This range
search is also speeded up by ANN. To find the radius that is used to compute
3D density, we first find the distance of each point in P̂ to its nearest neighbor.
Then the average distance dav of the first 50% are computed and set as the
searching radius for 3D density. For 2D density, 8 pixels is used as the radius to
compute the density.

In SUS, one thing has to be noted is that the samples are allowed to be
re-drawn, so a few points with higher scores may be selected multiple times.
This behavior is normal in the sense of statistic, but it is not acceptable in our
system, because the number of points to be removed is strictly bounded by the
capacity of the main memory. To overcome this problem, we run SUS iteratively
on the points that are not yet selected in the past iterations until enough points
are selected. In our experiment, the points of required number can usually be
selected in 2 or 3 iterations.
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Fig. 5. UNC sequence. Top row is the complete reconstruction with resampled 3D

points. Bottom row shows close-up views of the blue rectangular region of the top row

in three different resample rates 5%, 20% and 100%.

GPS SPA Ran Comp

Fig. 6. Comparison of UNC sequence

4.2 Moderate Scale Data Sets

Here we have three moderate scale data sets, which are denoted as capital-
ized HALL, BUILDING and OXFORD. The typical input images are shown in
Figure 3. These three examples represent three types of typical camera motions,
moving circularly with viewing direction perpendicular to the moving direction,
moving in a straight line while the camera focusing on a center object, and mov-
ing along the viewing direction. HALL was taken while the photographer moved
along a circular path around the center object. BUILDING was taken while the
photographer followed a straight line on the ground.

We reconstruct these examples using both sparse and semi-dense matches.
The SfM pipeline is the same, only the matches are different. We do not involve
any prior knowledge of camera motion, e.g. loop constrain or straight line move-
ment. In HALL, SURF features are used, while in the other examples, SIFT
features are used as sparse features. In Figure 7, the semi-dense reconstruction
has superior quality in both HALL and BUILDING, thanks to the extra and
more balance propagated matches. In HALL, the sparse reconstruction cannot
close the loop, while the positions of the cameras at both ends in BUILDING
are bended forward in the sparse reconstruction. In OXFORD, sparse method
and semi-dense method produce similar results.

Then we gradually resampled the merged reconstruction in the “MERGE”
column of Figure 7 with a resample rate from 100% to 0.2% using different scores
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PERSP MERGE QD SPA Comp Cov Den23 Ran

Fig. 7. The reconstruction and resampling of three moderate scale data sets. From top

to bottom, they are the results for HALL, BUILDING, and OXFORD respectively.

“PERSP” shows an perspective view of the semi-dense reconstruction. “MERGE”

shows the merged semi-dense reconstruction before bundle adjustment. “QD” shows

the bundle adjustment with all points in “MERGE”. “SPA” shows the results of sparse

reconstruction. “Comp”, “Cov”, “Den23” and “Ran” show the results of bundle ad-

justment on a resampled point set from “MERGE” at the ratio in the “md” column

of Table 1. Please refer to Table 1 for some statistic.

and bundled the resampled geometries. After the visual inspection of the results,
we list the minimal resample rate which still yields reasonable reconstruction in
“md” column of Table 1. The visual quality of the reconstruction can be found
in the right most 4 columns of Figure 7.

In HALL and BUILDING, “Den23” can maintain the overall trajectory of
camera motions, as it keeps the points evenly in 3D and image space, which
makes the estimation of camera well constrained. However, “Den23” does not
consider the quality of the 3D points. Usually, 3D points with poor quality can
make the optimization bias. We can observe this small bias in the “Den23” of
HALL. The top of the trajectory is slightly bended inwards to the center of circle
compared to “QD”. At the same time, only relying on the uncertainty terms also
induces bias in reconstruction due to the unbalanced resampled points. “Cov”
of BUILDING is an example. The right most three cameras were not recov-
ered correctly. “Cov” of HALL can be reconstructed well because the scene and
the camera motion are both symmetric. After removing a few highly uncertain
points at the background, the remaining points have similar uncertainty. Hence,
resampling HALL with “Cov” still yields a quite uniform point distribution. In
both of HALL and BUILDING, “Ran” gives bad results, while “Comp” which
combines the strength of “Cov” and “Den23” produces a reconstruction better
than sparse reconstruction with even fewer points. The results also show that
it is worth spending effort on carefully selecting 3D points. In OXFORD, visu-
ally, it is hard to tell the difference between the reconstruction using different
resample score. This will be explained in the following analysis of Figure 8.

We also plot the average covariance of the position of cameras and the average
covariance of the 3D points in Figure 8. In HALL and BUILDING, “Comp” gets
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Fig. 8. Top row: the covariance of the position of cameras after bundle adjustment on

the resampled point set vs the downsample ratio. Bottom row: the covariance of the

position of 3D points after bundle adjustment on the resampled point set vs the down-

sample ratio. In HALL and BUILDING, the covariance of the sparse reconstruction is

too large to be plotted in the figure region. Please refer to Table 1 for where the bundle

adjustment of the resampled point set fails.
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Fig. 9. The left 4 columns: the reprojection error and its standard deviation after each

iteration of approximate bundle adjustment using different scores. “With removal”

means after each iteration, the points with reprojection error larger than 2 pixels are

removed. “Without removal” means nothing is removed after each iteration. “Full BA”

stands for full bundle adjustment with all the points and cameras. The right most

column: the runtime comparison. From top to bottom, they are the results for HALL,

BUILDING, and OXFORD respectively.
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the estimation of cameras with lowest uncertainty. However, it is not surprising
that “Comp” does not always perform best for the estimation of 3D points. The
reason is that given a reliable camera reconstruction, removing the points with
high uncertainty greedily decreases the average covariance of 3D points most.
This is what “Cov” tries to do. However, if the remaining points cannot produce
reliable camera estimation, the removal of the points will harm the estimation of
remaining points. This is why “Cov” cannot perform better than “Comp” in av-
erage covariance of 3D points when the downsample ratio is small. In OXFORD,
the estimated covariance just jumps up and down almost randomly, because the
motion of camera in OXFORD is one of the typical degenerated case of co-
variance estimation. However, our resample score still resists to this problematic
covariance estimation and gets results not worse than uniform random resample.

Finally, we carried out an experiment on the approximate bundle adjustment.
HALL, BUILDING and OXFORD are resampled at downsample ratio 0.02, 0.05
and 0.1 respectively. The average reprojection error and its standard deviation
are plotted in Figure 9. The reprojection error and standard deviation before
and after full bundle adjustment involving all 3D points and cameras are also
plotted as baselines. We can observe that with either resample score, approxi-
mate bundle adjustment can optimize Equation 1 to almost the same residual
error level as full bundle adjustment in only one iteration. However, in HALL
and BUILDING, “Ran” gives us a bumping reprojection error and standard de-
viation after a few iterations, because “Ran” resamples points uniformly without
any guidance. Sometimes “Ran” just picks up a set of points that is bad for bun-
dle adjustment. In contrast, “Comp”, “Cov”, and “Den23” give better stability
after a few iteration, because they resample points according to some robust
criteria. In OXFORD, it is not surprising that different strategies just perform
similarly, given the perturbed covariance estimation in Figure 8.

In the right most column of Figure 9, we compare the time of the first iteration
of our approximate bundle adjustment and the full bundle adjustment. The time
of the approximate bundle adjustment includes the time for computing scores.
“Ran” is the fastest, as it does not require any computation on scores. “Den23”
is second fastest, because the computation of density is moderate compared
to the computation of normal covariance. The running time of “Comp” and
“Cov” is similar, because the computation of normal covariance dominates the
running time compared to the computation of density. However, an exceptional
case is BUILDING, where “Ran” runs slowest. The reason is that although
other methods spend more time on computing scores, they converge fast in
optimization because of better resampling.

4.3 Large Scale Data Sets

In the experiment for large scale data set, the memory bound is manually set at
1GB to force out-of-core computation even on PCs with large memory.

We demonstrate three complete reconstructions. Canton#1 and Canton#2,
are shown in Figure 4. UNC sequence is shown in Figure 5. Some statistic
is listed in Table 2. Typical input images are also shown in Figure 3. These
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Table 1. Statistic on three moderate scale data sets. “spa pt.#” is the number of re-

constructed sparse 3D points. “img.#” is the number of input images. “spa” is whether

the sparse reconstruction successes or not. “qd pt. #” is the number of reconstructed

semi-dense 3D points. “qd” is whether the semi-dense reconstruction successes or not.

“md” is the minimal number of resampled points that still yields reasonable result

visually using “Comp” score. The resample rate is included in the bracket. “size” is

the size of input images.

seq spa pt.# img.# spa qd pt.# qd md size

Hall 2325 113 Fail 206, 094 Success 413 (0.2%) 1024 × 682

Building 115 10 Success 4, 449 Success 36 (0.8%) 640 × 426

Oxford 653 11 Success 14, 985 Success 49 (0.3%) 512 × 512

Table 2. Statistics on three large scale data sets. “seq.” lists the names of 3 complete

reconstructions. “img#” is the number of images used in the reconstruction. “tp.#” is

the total number of points reconstructed. “rp.#” is the number of points that are used

in final in-core computation. “rm” is the amount of memory used for the resampled

reconstruction. “om” is the amount of memory that is needed to fit the bundle adjust-

ment problem with all points (both in-core and out-of-core) and all cameras. “size” is

the size of input images.

seq. img.# tp.# rp.# rm (GB) om (GB) size

Canton#1 344 6, 420k 378k 0.63 10.1 2400 × 1600

Canton#2 277 3, 819k 412k 0.62 5.56 2400 × 1600

UNC 921 5, 639k 72k 0.4 15.2 1024 × 768

examples are reconstructed using the proposed out-of-core merging process. All
intermediate merged results are bundled in the approximate manner we pro-
posed. Only the bundle adjustment on the final results is carried out on all
points and cameras. From the column “rm” and “om” in Table 2, we can see
how our out-of-core merging process reduces the amount of memory used in
bundle adjustment. Moreover, we make a comparison between a few different re-
construction methods on UNC in Figure 6. We further take the camera motion
measured using GPS/INS system as a reference. The reconstruction of “SPA”
and “Ran” both failed, while the camera motion reconstructed by “Comp” is
very close to GPS/INS measurement even with fewer points. The failure occurs
when two subsequences are merged because of the inconsistent reconstruction of
the overlapping cameras of two subsequences.

4.4 Discussion

Global vs. local. The requirement of the density of the 3D points usually differs
from application to application. For example, for image based modeling, it is
better to reconstruct as many 3D points locally as possible to assist the modeling
of each individual object. In contrast, the global reconstruction of camera poses
is crucial not only for the registration of individual model into a global coordinate
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system in large scale city modeling [21], but also for the application in localization
and mapping. With our resampling framework, a global geometry computation
can be first carried out with a lower density so that the very large-scale sequence
can be handled, while local geometries can be densified again using the original
detected matches and the estimated global geometry. This kind of level-of-detail
relationship is illustrated in Figure 1 and the bottom rows in Figure 5 and
Figure 4 . Because of our out-of-core merging process, all the points that cannot
be put in memory are still on the hard disk. It is very easy to reuse these 3D
points whenever they are needed.

Relation with other large scale methods. The results demonstrate that our
resample method can scale up properly into very large-scale data set. However,
as stated in other literature on large scale structure from motion [8,22], the
running time and resource will be dominated by cameras when the number of
cameras grows larger. Our work is complementary to the works targeting on
reduced the redundancy in-between images.

5 Conclusion

We propose a hierarchical approach of mixing global and local geometries and
controlling the on-demand density of 3D reconstruction. The mixture of global
and local geometries is handled by the statistical analysis of the reconstruction
accuracy and robustness from local to global. We studied our proposed resample
scheme carefully through a few validation experiments. And our approach was
also validated on the large-scale data set. The experiment results indicate that
sampling with our score functions can obtain robust reconstruction similar to
semi-dense approach, while the problem size is as neat as sparse approach. The
trade off for this advantage is the extra computation time on match propagation
and resampling compared to sparse approach.
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Abstract. So far the Non-Rigid Structure-from-Motion problem has

been tackled using a batch approach. All the frames are processed at

once after the video acquisition takes place. In this paper we propose

an incremental approach to the estimation of deformable models. Im-

age frames are processed online in a sequential fashion. The shape is

initialised to a rigid model from the first few frames. Subsequently, the

problem is formulated as a model based camera tracking problem, where

the pose of the camera and the mixing coefficients are updated every

frame. New modes are added incrementally when the current model can-

not model the current frame well enough. We define a criterion based

on image reprojection error to decide whether or not the model must be

updated after the arrival of a new frame. The new mode is estimated

performing bundle adjustment on a window of frames. To represent the

shape, we depart from the traditional explicit low-rank shape model and

propose a variant that we call the 3D-implicit low-rank shape model. This

alternative model results in a simpler formulation of the motion matrix

and provides the ability to represent degenerate deformation modes. We

illustrate our approach with experiments on motion capture sequences

with ground truth 3D data and with real video sequences.

1 Introduction

The reconstruction of 3D scenes from monocular video sequences is one of the
fundamental problems in computer vision. Following the success on rigid struc-
ture recovery in recent years there has been a wealth of research on modelling
deformable structures. Most Non-Rigid Structure-from-Motion (NR SfM) algo-
rithms to date rely on the foundational model proposed by Bregler et al. [4] which
describes the time varying structure of a deforming object as a linear combina-
tion of basis shapes. The pose, the basis and the time varying coefficients are
then estimated using a batch approach – all the frames in the sequence are
processed at once after the acquisition.

While batch and real-time sequential rigid SfM are mature fields that have
now consolidated into commercial applications, NR SfM is still at its infancy.
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Some batch algorithms exist [3,13,10] but there is still a need to define deformable
shape models and estimation algorithms that will allow to push NR SfM forward
to a scenario where it might emulate the successes of its rigid counterpart, in
terms of robust performance and application to real world cases. In this paper we
advance the state of the art in NR SfM in two main directions, both proposing
a new sequential estimation paradigm and an alternative low-rank shape model.

Our first contribution is the definition of a new estimation paradigm that
extends NR SfM to the sequential domain. We propose a rank-growing engine
which will determine when the rank of the model should be increased and if
necessary will estimate the new mode.

We divide the sequential non-rigid shape estimation into two processes: model-
based tracking of the camera pose and shape coefficients and model update. The
first process assumes that a current up-to-date model, of a certain rank, of the
3D shape observed so far exists and performs model based camera tracking: when
a new frame arrives this module estimates the current camera pose and the shape
parameters using as input the 2D coordinates of image features matched in the
last W frames, where W is the width of a sliding window. The second process
is a model update module which decides, based on the image reprojection error
given by the camera tracking module, whether or not the current model is able
to explain the deformations viewed in the new frame. If the current model does
not have enough descriptive power to capture the deformations observed in the
new frame, the model update module will add a new mode and estimate its
parameters using bundle adjustment on a sliding window. The entire system is
bootstrapped from a rigid reconstruction obtained from a small number of initial
frames.

Our second contribution is an alternative low-rank shape model that provides
the ability to represent modes of deformation of dimensionality lower than 3 (for
instance deformations on a plane or along a line).

We call it the 3D implicit low-rank shape model since it does not use an
explicitly defined 3D shape basis. This has two main advantages. First, the
motion matrix in our model has a simpler structure than in the classical model,
which allows for a linear estimation of camera pose and shape coefficients from a
single frame, and can be used to initialise the bundle adjustment in the sequential
framework. Second, our model handles deformations whose rank is not a multiple
of 3 and thus avoids one to explicitly compute the rank of a particular shape
basis. When the deformations are processed one frame at a time, having the
flexibility to update the model with 1-dimensional modes fits the sequential
estimation paradigm more naturally, since there is a much higher chance of
observing lower dimensional deformations.

It is important to note that in this paper we do not try to solve the matching
problem. Instead, we rely on point correspondences between frames being avail-
able. The integration of the feature tracking problem with the camera tracking
and model update processes (which are the focus of this paper) is beyond the
scope of this work although we certainly intend to address it in our future work.
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2 Related Work

The ability to reconstruct a deformable 3D surface from a monocular sequence
when the only input information is a set of point correspondences between images
is an ill posed problem unless more constraints than just the reprojection error
are used. The seminal work of Bregler et al. [4] was the first to propose a solution
to the NR SfM problem for the orthographic camera case. This model not only
provided an elegant extension of the rigid factorisation framework [12] but has
also opened up new computational and theoretical challenges in the field.

Current solutions to NR SfM focus on the definition of optimization criteria to
guarantee the convergence to a well behaved solution. This is often only achieved
through the addition of temporal and spatial smoothness priors. Bundle adjust-
ment has become a popular optimization tool to refine an initial rigid solution
while incorporating temporal and spatial smoothness priors on the motion and
the deformations.

Aanaes et al. [1] were the first to formulate the problem using bundle adjust-
ment using smoothness priors. Later, Del Bue et al. [5] incorporated the con-
straint that some of the points on the object were rigid while Bartoli et al. [3]
used a coarse to fine shape model where new deformation modes are added iter-
atively to capture as much of the variance left unexplained by previous modes
as possible. Torresani et al. [13] formulate the problem using Probabilistic Prin-
cipal Components Analysis introducing priors as a Gaussian distribution on the
deformation weights. More recently, Paladini et al.’s [10] work focuses on en-
suring that the solution lies on the correct motion manifold where the metric
constraints are exactly satisfied. All these approaches are initialised from a rigid
solution and they use temporal and spatial smoothness priors on the motion and
shape parameters. Olsen et al. [9] proposed the surface shape prior and an im-
plicit model that simplifies the estimation process but leads to a non-Euclidean
3D reconstruction.

The linear subspace model has also allowed closed-form solutions to be pro-
posed for the cases of both affine [14] and perspective [16,6] cameras. Recently,
a set of new approaches has departed from the low-rank linear shape model.
Rabaud and Belongie [11] adopt a manifold learning framework assuming that
only small neighbourhoods of shapes are well modelled with a linear subspace.

Akhter et al. [2] described the structure of a non-rigid body in trajectory space
as a linear combination of DCT basis trajectories with the obvious advantage
that the basis is object independent.

The common attribute to all NR SfM algorithms proposed so far is that they
are batch methods. Our new sequential approach is motivated by recent devel-
opments in the area of sequential real-time SfM methods for rigid scenes [7,8].
In particular, our approach is inspired by the work of Klein and Murray [7] in
which they develop a real time system based on two parallel threads – the cam-
era tracking thread which performs real time model based pose estimation and
the mapping thread which runs in a constant loop performing bundle adjust-
ment on a small set of key-frames. To the best of our knowledge our work is the
first in NR SfM to depart from the batch formulation and reformulate the shape



18 M. Paladini, A. Bartoli, and L. Agapito

estimation sequentially. First we introduce a new variant to the low-rank linear
basis shape model that we believe is better suited to a sequential formulation.

3 New Deformation Model

3.1 Classical Explicit Low-Rank Shape Model

In the case of deformable objects the observed 3D points change as a function
of time. In the low-rank shape model defined by Bregler et al. [4] the 3D points
deform as a linear combination of a fixed set of K rigid shape bases according
to time varying coefficients. In this way, Sf =

∑K
k=1 lfkBk where the matrix

Sf = [Xf1, · · ·XfP ] contains the 3D coordinates of the P points at frame f , the
3 × P matrices Bk are the shape bases and lfk are the coefficient weights. If the
3D shape is known, this model can be obtained from the PCA decomposition of
the S∗ that contains the 3D shape in all the frames.

S∗F×3P =

⎡⎢⎢⎢⎣
S∗1
S∗2
...
S∗F

⎤⎥⎥⎥⎦ =

⎡⎢⎣X11 Y11 Z11 · · · X1P Y1P Z1P

...
...

XF1 YF1 ZF1 · · · XFP YFP ZFP

⎤⎥⎦ (1)

A PCA decomposition of rank K of S∗ would give LB∗, where L is the F × K
matrix of deformation weights lik, and the K × 3P matrix B∗ can be rearranged
to give the basis shapes Bk. If we assume an orthographic projection model the
coordinates of the 2D image points observed at each frame i are then given by:

Wi = Ri

(
K∑

k=1

likBk

)
+ Ti (2)

where Ri is a 2×3 Stiefel matrix and Ti aligns the image coordinates to the image
centroid. The aligning matrix Ti is such that Ti = ti1T

P where the 2-vector ti is
the 2D image centroid and 1P a vector of ones.

When the image coordinates are registered to the centroid of the object and
we consider all the frames in the sequence, we may write the measurement matrix
as:

W =

⎡⎢⎣ l11R1 . . . l1KR1
...

. . .
...

lF1RF . . . lFKRF

⎤⎥⎦
⎡⎢⎣ B1

...
BK

⎤⎥⎦ = MS (3)

Since M is a 2F × 3K matrix and S is a 3K ×P matrix in the case of deformable
structure the rank of W is constrained to be at most 3K. The motion matrices
now have a complicated repetitive structure Mi = [Mi1 . . . MiK ] = [li1Ri . . . liKRi]
that makes the model estimation difficult.

Olsen et al. [9] proposed to consider an implicit model where the repetitive
structure of the motion matrix is not used. While this simplifies the estima-
tion problem, the recovered model does not directly provide usable motion and
shape parameters, unless a mixing matrix is computed [4,14]. The mixing matrix
computation problem has not received a simple solution so far.
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3.2 Proposed 3D-Implicit Low-Rank Shape Model

In this paper we propose to depart from the traditional basis shapes model, and
embrace a different formulation that will fit the problem of sequential structure
recovery more naturally since it allows for the rank of the shape model to grow
one by one with the arrival of a new frame, instead of multiples of three.

The data in the shape matrix may be re-arranged in a different form, stacking
the shape matrices vertically for all frames F . Each matrix Sf ∈ R3×P contains
the 3D coordinates of P points in frame f .

S3F×P =

⎡⎢⎢⎢⎣
S1
S2
...
SF

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X11 X12 X1P

Y11 Y12 · · · Y1P

Z11 Z12 Z1P

...
...

...
XF1 XF2 XFP

YF1 YF2 · · · YFP

ZF1 ZF2 ZFP

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4)

If we assume that the shape matrix S is low-rank we can perform Principal
Components Analysis to obtain a PCA basis as S = UdVd, where d is the rank of
the decomposition, Ud ∈ R3F×d and Vd ∈ Rd×P . We can also explicitly include an
average rigid (mean) shape in the model, therefore the shape at frame f would
be given by:

Sf = S̄ +
[
Uf1 · · · Ufr

]
⎡⎢⎢⎢⎣

V1
V2
...

Vr

⎤⎥⎥⎥⎦ (5)

where S̄ is the mean shape, d = 3+r, Ufr is the 3-vector [U(x)frU(y)frU(z)fr]
T

and Vr are the rows of matrix V.
Therefore we can consider V to be a PCA basis of the shape (row) space of S

and U to contain the time varying coefficients. Note that in this case the shape
matrix V has dimensions r × P where r is the rank of the decomposition and P
is the number of points in the shape. For each frame 3r coefficients are needed
to express the configuration of the shape.

We assume that the shape at instant f is then projected onto an image follow-
ing an orthographic camera model. The 2D coordinates of the points can then
be expressed as:

Wf =
[

uf1 · · · ufP

vf1 · · · vfP

]
= RfSf + Tf = Rf (S̄ + UfV) + Tf (6)

where Rf is a [2× 3] orthographic camera projection matrix, it encodes the first
two rows of the camera rotation matrix and Tf the translation for frame f . If we
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now register all the measurements to their centroid in each frame the projection
of the shape in all frames can be written as:

W =

⎡⎢⎢⎢⎣
R1

R2
. . .

RF

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
S̄
S̄
...
S̄

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
U11 · · · U1r

U21 · · · U2r

...
...

UF1 · · · UFr

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

V1
V2
...

Vr

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ (7)

In our model, the basis shapes are not explicitly used as in the classical model,
while the camera projection is explicitly modeled. We thus call our model the
3D-implicit low-rank shape model. Our model combines Bregler et al. [4]’s ex-
plicit model and Olsen et al. [9]’s implicit model. It has the following two main
advantages:

1. Simplicity. The motion matrix is block diagonal and only contains the
rotation matrices instead of a mixture of the coefficients and the rotations.
The fact that the 3D basis is not explicitly available in our model is not a
problem since one is generally more interested in recovering the 3D shape of
the observed scene than the basis shapes – the basis shapes can be estimated
a posteriori by forming and factorizing the matrix S∗ in equation (1). As we
explain below, it also is an advantage not to have explicit 3D basis shapes.

2. Any-rank deformations. Our formulation allows us to define shape models
where the rank is not a multiple of 3. In other words, in the explicit model,
a basis shape always has to be of rank 3, whereas in the real world not all
deformations are of rank 3. Xiao and Kanade [15] propose to explicitly find
the rank of a particular deformation mode (which can be one of 1, 2 or 3).
Our model circumvents this difficult problem.

4 A Sequential Approach to NR SfM

In this paper we depart from the batch formulation of NR SfM and we propose
a sequential approach based on the alternative low-rank shape model outlined
in the previous section. Our approach can be seen as a two process formulation.
The system holds a current up-to-date model, of a certain rank, encapsulated in
matrix V. The first process is a model based camera tracking module. Given the
current estimate of V, when a new frame arrives, the camera tracking module es-
timates the new pose Rf and the new deformation coefficients Uf for the current
frame. If the current model explains well the measurements the image reprojec-
tion error will be low. However, if the error goes above some defined threshold
the rank of the model must be increased and the model updated. I that case, a
model update module will update the current model adding a new row to ma-
trix V. As the sequence is processed the model will become more complicated,
until all the possible object deformations have been observed. Our sequential
approach to NR SfM is summarised in Algorithm 1. We now describe in detail
the two main modules of our sequential system: the camera tracking module and
the model update module.
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Algorithm 1. Sequential Non-Rigid Structure-from-Motion (NR SfM)
Input: 2D point correspondences

Output: 3D coordinates of the deforming surface for each frame.

1: Initialise model to mean rigid shape S̄ estimated via rigid factorization on the first

few frames.

2: loop
3: new frame f arrives

4: run camera tracking process: estimate camera pose Ri and coefficients Ui

5: while (image reprojection error is above threshold) do
6: run model update process:
7: increase rank r ← r + 1

8: estimate new row of V and new column of Uf

9: end while
10: go to process next frame; f ← f + 1

11: end loop

5 Camera Tracking Given a Known Model V

If the matrix V is known in advance, the NR SfM problem is reduced to the
estimation of the camera pose Rf and the mixing coefficients Uf for each frame. In
that case, the pose of the camera and the coefficients can be updated sequentially
for each frame using a model based approach.

We adopt a sliding window approach where we perform bundle adjustment
on the last W frames where W is the width of a pre-defined window. The cost
to be minimised is the image reprojection error over all frames in the window:

min
Ri,Ui

f∑
i=f−W

‖Wi − Ri(S̄ + UiV)‖2
F (8)

To this cost function we add a temporal smoothness prior to penalise strong vari-
ations in the camera matrices of the form ‖Ri − Ri−1‖2

F , and a shape smoothness
prior (similar to the one used in [3]) that ensures that points that lie close
to each other in space should stay close. The shape smoothness is defined as∑f

i=f−W Di,i−1, where Di,i−1 is the change in the euclidean distance between 3D
points over two frames: Di,i−1 =

∑P
a,b=1 φa,b|d2(Xi,a,Xi,b)−d2(Xi−1,a,Xi−1,b)|.

The weight φa,b is a measure of the closeness of points a and b, defined as a P ×P
affinity matrix φa,b = ρ(d2(Xa,Xb)) where ρ is a truncated Gaussian kernel. The
final cost function can now be written as:

min
Ri,Ui

f∑
i=f−W

‖Wi − Ri(S̄ + UiV)‖2
F + λ

f∑
i=f−W

‖Ri − Ri−1‖2
F + ψ

f∑
i=f−W

Di,i−1 (9)

The mean shape S̄ and the shape model V are assumed to be known. This non-
linear minimization requires an initial estimate for the camera pose Rf and the
shape coefficients Uf in the current frame f . Algorithms to obtain linear esti-
mates for Rf and Uf are described in Section 5.1.
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The steps of the complete algorithm to track the current pose of the camera
and the shape coefficients given the shape model can be summarised as follows.
Each time a new frame f of feature tracks is available:

– Obtain initial estimates for the current pose Rf and mixing coefficients Uf

using the linear estimation plus prior described in Section 5.1.
– Minimize the cost function (9) with smoothness priors using bundle adjust-

ment to obtain optimized values for the rotations Ri and shape coefficients
Ui in all the frames in the sliding window.

– If the reprojection error of the window becomes higher than a threshold,
signal the modelling process to increase the rank of the V matrix.

5.1 Initialization: Linear Estimation of Uf and Rf

Consider new image measurements become available for a new frame. These can
be arranged in a 2 × P matrix for that single frame called Wf . The projection
model gives us the relation Wf = Rf (S̄ + UfV) + Tf .

Linear estimation of Rf . For every new frame the camera pose Rf must
be initialised before Bundle Adjustment. For this purpose, we approximate the
shape with the rigid mode to obtain an initial estimate of the camera rotation.
This means we need to find the camera pose Rf that satisfies Wf = RfS, while
respecting the smoothness prior λI vec(Rf ) = λ vec(Rf−1). Using the relation
vec(AXB) = [BT ⊗ A] vec(X), where ⊗ is the Kronecker product and vec(.) is the
column-major vectorisation of a matrix, and using Wf = I2RfS we can write:

vec(Wf ) = [ST ⊗ I2] vec(Rf ) (10)[
[ST ⊗ I2]

λI

]
vec(Rf ) =

[
vec(Wf )

λ vec(Rf−1)

]
(11)

The resulting Rf will not be orthonormal (i.e. not a truncated rotation matrix),
so we find the closest orthonormal rigid projection using SVD.

Linear estimation of Uf . First we take away the contribution to the im-
age measurements given by the known translation and mean shape component
to give ~Wf = Wf − Tf − Rf S̄ = RfUfV, which can be rewritten as vec(~Wf ) =
[VT ⊗ Rf ] vec(Uf ). This provides a linear equation on the unknown vector Uf .
However, this is not sufficient to produce an acceptable solution, because Uf

is a 3 × r matrix where each column Ufr is a 3-vector [U(x)frU(y)frU(z)fr]
T

that contains the PCA coefficients of all 3D coordinates, while ~Wf contains 2D
projections. However, this problem can be overcome by including a temporal
smoothness prior term that penalises solutions that are far from the value for the
previous frame Uf−1. Thus the prior term is of the form λI vec(Uf ) = λ vec(Uf−1).
We can join both linear equations and solve the linear system:[

[VT ⊗ Rf ]
λI

]
vec(Uf ) =

[
vec(~Wf )

λ vec(Uf−1)

]
(12)
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6 Sequential Update of the Shape Model

In NR SfM the 3D object the camera observes varies over time. The current
model will encode the modes of deformation that the object has exhibited so far
in the sequence. However, if the object deforms in different ways that are not
encoded in the model the camera tracking will fail. Therefore, a mechanism is
needed to update the model when new modes of deformation appear. In that
case, the rank of the model should grow and the parameters of the model should
be fit to the new data.

The difficulty of updating the model in an sequential way is doublefold. Firstly,
when each new frame arrives, we need a mechanism to decide whether or not
the current model continues to fit the data well enough. While the shape model
can still describe the data, we can continue to do model based camera tracking.
We decide this based on the image reprojection error. Secondly, if the model can
no longer explain the data, the rank of the model needs to grow to incorporate
the new mode of deformation and the parameters of the new row of V and the
new column of U must be estimated.

6.1 Rank Increase Criterion

The rank selection criterion will decide to increase the rank only if the current
data does not fit the model well enough, i.e. if the existing modes do not model
the current frame well. Therefore we use the image reprojection error as the
criterion – if the error increases above a certain threshold we increase the rank
of the shape model. This results in a new row being added to the PCA basis V and
a new column to the PCA components U. However, the new mode is recovered
from the current frame only, so it has no influence over past frames. Therefore
for all past frames we can set the 3(f − 1) components of the new column of U
to 0.

6.2 Model Update: Estimating New Row of V and New Column of U

When the camera tracking module processes a new frame that it cannot model
well enough (the reprojection error is above the defined threshold), the model
is updated by increasing the rank. Ideally once all the different modes of defor-
mation that an object can exercise are incorporated in the PCA basis, the rank
will remain stable and the camera tracking process will be able to reconstruct
the incoming frames.

Given new image correspondences for frame f , the rank of U,V must be in-
creased. From the current estimate of Uf,1:r−1 and V1:r−1 we can rewrite the
model for the new frame as

W̃f = Rf (S̄ + Uf,1:r−1V1:r−1 + Uf,rVr). (13)

Both the residual of the current model A = W̃f − Rf (S̄ + Uf,1:r−1V1:r−1) and the
current camera rotation Rf are known. We need to estimate Z = Uf,rVr, the
contribution of the new rank, subject to the following constraints:

A = RfZ rank(Z) = 1 (14)
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This problem is difficult to solve in closed form, therefore we approximate it using
a linear solution as follows. We define C as the closest rank-1 approximation of
A obtained using SVD, then compute Z as Z = R†fC. Finally, we can decompose
Z using a rank-1 SVD decomposition to obtain a new row for V.

Non-linear refinement. Once initial estimates are available for the new row
of V and the new column of U, they can be refined minimising image reprojection
error over a sliding window of W frames

min
Vr,Uir

f∑
i=f−W

‖Wi − Ri(S̄ + UiV)‖2
F (15)

incorporating the smoothness priors described in section 5. Once the model is
updated, the camera tracking module can resume model based tracking with the
new model V with rank r + 1.

6.3 Bootstrapping

One of the known challenges in sequential approaches to rigid SfM is the initial-
ization [7]. It is common to run the system in batch mode for a few frames to
obtain a first model of the scene before starting the sequential operation. In the
current experiments we run a rigid factorization algorithm on a few initial frames
to obtain the rigid mean shape S̄. Once this is available the camera tracking and
model update loop can start. An alternative approach that does not require man-
ual intervention is the following. Start performing rigid factorization in batch.
When a new frame arrives, if the reprojection error of rigid factorization over
the frames observed so far is below the threshold then we keep performing rigid
factorization. However, if the error becomes higher than our threshold, the mean
shape of the non-rigid model is set to the rigid model obtained so far and we
start our sequential NR SfM algorithm.

7 Experiments

7.1 Motion Capture Sequence CMU-Face

First we tested our sequential method based on the 3D-implicit low-rank shape
model on a motion capture sequence with ground truth data1. This sequence
from the CMU Motion Capture Database2 contains 316 frames of motion cap-
ture data of the face of a subject wearing 40 markers performing deformations
while rotating. This sequence was also used by Torresani et al. [13] to perform
quantitative tests with ground truth data. We projected the 3D data syntheti-
cally using an orthographic camera model.
1 Videos of the experimental results can be found on the project website

http://www.eecs.qmul.ac.uk/~lourdes/SequentialNRSFM
2 Available from http://mocap.cs.cmu.edu

http://www.eecs.qmul.ac.uk/~lourdes/SequentialNRSFM
http://mocap.cs.cmu.edu
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Prior to the start of our sequential algorithm and with the purpose of boot-
strapping the camera tracking module, we ran a batch rigid SfM algorithm [12]
on the first 60 frames of the sequence to estimate the mean shape S̄. The PCA
basis matrix V was initialised to 0. We then ran our new sequential algorithm
based on the camera tracking and the model update modules, together with the
rank detection engine. The average 3D error is 2.9%, with a 0.7 pixels 2D re-
projection error on the 600 × 600pixels images. The reprojection threshold was
fixed to 1.2pixels.

In Figure 1 we show results of the rank estimation, the 2D image reprojec-
tion error and the 3D error for each frame in the sequence using our sequential
estimation formulation. The average image reprojection error over the whole se-
quence is less than a pixel. In Figure 3 (left) we compare results of the 3D error
obtained with our method (Sequential), with Torresani et al.’s state of the art
batch NR SfM algorithm (EM-LDS) [13].We show the histogram of 3D error
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Fig. 1. Results of sequential NR SfM on the CMU-face sequence. Left: Value of the

rank of the model for each frame, increasing as more frames are processed. Middle:

2D Reprojection error given by the camera tracking process. Right: 3D error of the

reconstruction for each frame.

Frame 61 Frame 188 Frame 252 Frame 316

Fig. 2. 3D Reconstruction results obtained on the CMU-face sequence using camera

tracking and model updating. First row: 2D image points (green circles) and reprojec-

tions (blue crosses). Second row: Views of the 3D reconstruction (crosses) compared

with ground truth MOCAP data (squares).
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Fig. 3. (Left) Histogram of 3D error values built from all the frames, comparing results

of our method (Sequential) with Torresani et al.’s state of the art batch (EM-LDS) [13].

The 3D errors obtained with our Sequential approach are comparable to the results

from the batch method EM-LDS. (Right) Rotation angles estimated with the camera

tracking module.
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Fig. 4. Results on the actress sequence. Left: Reprojection error of the frame-by-frame

reconstruction obtained with our method. Middle: The value of the rank, increased as

more frames are processed. Right: Rotation angles estimated with the camera tracking

module.

values taking into account all the frames in the sequence. The results show
that our new sequential algorithm provides results comparable to Torresani et
al.’s [13] batch state of the art algorithm. We show smooth estimates of the rota-
tion angles for all the frames in the sequence in Figure 3 (right). In Figure 2 we
show the 2D image reprojection error and the 3D reconstructions (blue crosses)
we obtained for some frames in the sequence comparing them with ground truth
values (green squares).

7.2 Real Data

We used the actress sequence, also used by Bartoli et al. [3], which consists of 102
frames of a video showing an actress talking and moving her head. In Figure 5
we show results of the 3D reconstructions obtained for some of the frames in the
sequence. The camera tracking was bootstrapped with a rigid model obtained
using Tomasi and Kanade’s rigid factorization algorithm [12] on the first 30
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Frame 31 Frame 48 Frame 84 Frame 102

Fig. 5. Qualitative results on the actress sequence using camera tracking and model

update. First row: The input images with superimposed feature tracking data. Second

and Third rows: Front and side views of the 3D reconstruction of 4 frames of the

sequence.

frames. The threshold for increasing the rank was a reprojection error of 0.9
pixels. From figure 4 we can see that the rank is increased, and the estimation
of new frame parameters keeps the reprojection error low.

8 Conclusions

We have undergone a re-thinking of the NR SfM problem for monocular se-
quences providing a sequential solution. Our new sequential algorithm is able
to automatically detect and increase the complexity of the model. Current state
of the art methods for NR SfM are batch and rely on prior knowledge of the
model complexity (usually the number of basis shapes, K). Our 3D-implicit
low-rank shape model simplifies the projection model and allows the rank to
grow one-by-one making it well suited to frame-by-frame operation. We have
shown quantitative results on a motion capture sequence and shown our system
in operation on a real sequence. Future work will pursue the goal of merging
the feature tracking and modelling of image data into a single process. Concern-
ing real time capability, our current MATLAB implementation is not real time.
However, the sliding window approach ensures that the computation time per
frame is bounded i.e. it does not grow with the number of frames. Therefore
we foresee that with appropriate code optimisation we would be able to achieve
real-time performance.
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Abstract. We present the design and implementation of a new inex-

act Newton type algorithm for solving large-scale bundle adjustment

problems with tens of thousands of images. We explore the use of Con-

jugate Gradients for calculating the Newton step and its performance

as a function of some simple and computationally efficient precondition-

ers. We show that the common Schur complement trick is not limited

to factorization-based methods and that it can be interpreted as a form

of preconditioning. Using photos from a street-side dataset and several

community photo collections, we generate a variety of bundle adjust-

ment problems and use them to evaluate the performance of six different

bundle adjustment algorithms. Our experiments show that truncated

Newton methods, when paired with relatively simple preconditioners,

offer state of the art performance for large-scale bundle adjustment.

The code, test problems and detailed performance data are available

at http://grail.cs.washington.edu/projects/bal .

Keywords: Structure from Motion, Bundle Adjustment, Preconditioned

Conjugate Gradients.

1 Introduction

Recent work in Structure from Motion (SfM) has demonstrated the possibility
of reconstructing geometry from large-scale community photo collections [1,2,3].
Bundle adjustment, the joint non-linear refinement of camera and point param-
eters, is a key component of most SfM systems, and one which can consume a
significant amount of time for large problems. As the number of photos in such
collections continues to grow into the hundreds of thousands or even millions,
the scalability of bundle adjustment algorithms has become a critical issue.

The basic mathematics of the bundle adjustment problem are well under-
stood [4], and there is also a freely available high-quality implementation –
SBA [5]. SBA is based on a dense Cholesky factorization of the reduced
camera matrix. It has space complexity that is quadratic and time complex-
ity that is cubic in the number of photos. While this works well for problems
with a few hundred photos, for problems involving tens of thousands of photos,
it is prohibitively expensive.
� Part of this work was done while the author was at University of Washington.
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(a) Structured - 6375 photos (b) Unstructured - 4585 photos

Fig. 1. Connectivity graphs for a structured dataset (captured from a moving truck)

and a community photo collection (consisting of photos matching the search term

“Dubrovnik” downloaded from Flickr). For each dataset, we show an adjacency matrix

representation of the connectivity graph, where black indicates a connection between

two photos.

With the exception of a few efforts [6,7,8,1,9], the development of large-scale
bundle adjustment algorithms has not received significant attention in the com-
puter vision community. We believe this is because until now, the most common
sources of large SfM problems have been video and structured survey datasets
such as street-level and aerial imagery. For these datasets, the connectivity
graph—i.e., the graph in which each photo is a node, and two photos are con-
nected if they are looking at the same part of the scene—is extremely sparse,
and has a mostly band-diagonal structure with a large diameter. For instance,
in the case of data acquired using a camera mounted on a vehicle driving down
a street, there is little to no overlap between photos taken even a few seconds
apart. Figure 1(a) shows one such graph. Thus, techniques that reduce the size
of the bundle adjustment problem by focusing on the most recently modified
part of the reconstruction are quite effective [7,6].

Connectivity graphs of community photo collections are much less structured
and have a significantly smaller diameter, as they tend to represent popular
landmarks rather than a long, extended sequence of views. Figure 1(b) shows
the graph for a set of photos of the city of Dubrovnik downloaded from Flickr.
Compared to the structured dataset in Figure 1(a) which is 98% sparse with a
mostly band diagonal structure, the graph for Dubrovnik is only 84% sparse, with
a significantly more complex structure. This means that even though the dataset
in Figure 1(a) has almost 1800 more photos than the dataset in Figure 1(b), the
former requires 40x less time to find a sparse factorization of its reduced camera
matrix than the latter.

In this paper, we present the design and implementation of a new inexact
Newton type bundle adjustment algorithm, which uses substantially less time
and memory than standard Schur complement based methods, without com-
promising on the quality of the solution. We explore the use of the Conjugate
Gradients algorithm for calculating the Newton step and its performance as
a function of some simple and computationally efficient preconditioners. We
also show that the use of the Schur complement is not limited to factorization-
based methods, how it can be used as part of the Conjugate Gradients (CG)
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method without incurring the computational cost of actually calculating and
storing it in memory, and how this use is equivalent to the choice of a particular
preconditioner.

We present extensive experimental results on structured and unstructured
datasets with a wide variety of problem complexity, and present recommendations
based on these experiments. The code, test problems and detailed performance re-
sults from this paper are available at http://grail.cs.washington.edu/
projects/bal.

The rest of the paper is organized as follow. We begin in Section 2 with a
brief overview of the general nonlinear least squares problem, the Levenberg
Marquardt (LM) algorithm, and the Schur complement trick. In Section 3, we
introduce the inexact step LM algorithm, with a discussion of various methods
for preconditioning the Conjugate Gradients (CG) algorithm in Section 4. Sec-
tion 5 reports the results of our experiments and we conclude in Section 6 with
a discussion.

2 Bundle Adjustment

Given a set of measured image feature locations and correspondences, the goal
of bundle adjustment is to find 3D point positions and camera parameters that
minimize the reprojection error. This optimization problem is usually formulated
as a non-linear least squares problem, where the error is the squared L2 norm
of the difference between the observed feature location and the projection of
the corresponding 3D point on the image plane of the camera. However, we are
not limited to using the L2 norm; even when robust loss functions like Huber’s
norm are used, the problem can be cast as a re-weighted non-linear least squares
problem [10]. Thus in what follows, we will use the term bundle adjustment to
mean a particular class of non-linear least squares problems.

2.1 Levenberg Marquardt Algorithm

The Levenberg-Marquardt (LM) algorithm [11] is the most popular algorithm
for solving non-linear least squares problems, and the algorithm of choice for
bundle adjustment. In this section, we begin with a quick review of LM, and
then describe the Schur complement trick that substantially reduces the com-
putational complexity of LM applied to bundle adjustment. Several excellent
references exist for the reader interested in more details of LM [11,12,13,14].

Let x ∈ Rn be an n-dimensional vector of variables, and F (x) =
[f1(x), . . . , fm(x)]� be a m-dimensional function of x. We are interested in solv-
ing the following optimization problem,

min
x

1
2
‖F (x)‖2 . (1)

The Jacobian J(x) of F (x) is an m × n matrix, where Jij(x) = ∂jfi(x) and the
gradient vector g(x) = ∇1

2‖F (x)‖2 = J(x)�F (x).

http://grail.cs.washington.edu/
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The general strategy when solving non-linear optimization problems is to
solve a sequence of approximations to the original problem [11]. At each itera-
tion, the approximation is solved to determine a correction Δx to the vector x.
For non-linear least squares, an approximation can be constructed by using the
linearization F (x + Δx) ≈ F (x) + J(x)Δx, which leads to the following linear
least squares problem:

min
Δx

1
2
‖J(x)Δx + F (x)‖2 (2)

Unfortunately, näıvely solving a sequence of these problems and updating x ←
x + Δx leads to an algorithm that may not converge. To get a convergent al-
gorithm, we need to control the size of the step Δx. One way to do this is to
introduce a regularization term:

min
Δx

1
2
‖J(x)Δx + F (x)‖2 + μ‖D(x)Δx‖2 . (3)

Here, D(x) is a non-negative diagonal matrix, typically the square root of the
diagonal of the matrix J(x)�J(x) and μ is a non-negative parameter that con-
trols the strength of regularization. It is straightforward to show that the step
size ‖Δx‖ is inversely related to μ. LM updates the value of μ at each step
based on how well the Jacobian J(x) approximates F (x). The quality of this fit
is measured by the ratio of the actual decrease in the objective function to the
decrease in the value of the linearized model L(Δx) = 1

2‖J(x)Δx+F (x)‖2. This
kind of reasoning is the basis of Trust-region methods, of which LM is an early
example [11].

The dominant computational cost in each iteration of the LM algorithm is the
solution of the linear least squares problem (3). For general, small to medium
scale least squares problems, the recommended method for solving (3) is using
the the QR factorization [13]. However, the bundle adjustment problem has
a very special structure, and a more efficient scheme for solving (4) can be
constructed.

2.2 The Schur Complement Trick

We begin by introducing the regularized Hessian matrix Hμ(x) = J(x)�J(x) +
μD(x)�D(x). It is easy to show that for μD(x) > 0, Hμ is a symmetric positive
definite matrix and the solution to (3) can be obtained by solving the normal
equations:

Hμ(x)Δx = −g(x) . (4)

Now, suppose that the SfM problem consists of p cameras and q points and the
variable vector x has the block structure x = [y1, . . . , yp, z1, . . . , zq]. Where, y
and z correspond to camera and point parameters, respectively. Further, let the
camera blocks be of size c and the point blocks be of size s (for most problems
c = 6–9 and s = 3).

In most cases, a key characteristic of the bundle adjustment problem is that
there is no term fi that includes two or more camera or point blocks. In other
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words, each term fi(x) in the objective function can be re-written as fi(x) =
fi(y(i), z(i)), where, y(i) and z(i) are the camera and point blocks that occur in
the ith term. This in turn implies that the matrix Hμ is of the form

Hμ =
[

B E
E� C

]
, (5)

where, B ∈ Rpc×pc is a block diagonal matrix with p blocks of size c × c and
C ∈ Rqs×qs is a block diagonal matrix with q blocks of size s × s. E ∈ Rpc×qs

is a general block sparse matrix, with a block of size c × s for each observation.
Let us now block partition Δx = [Δy, Δz] and −g = [v, w] to restate (4) as the
block structured linear system[

B E
E� C

] [
Δy
Δz

]
=
[
v
w

]
, (6)

and apply Gaussian elimination to it. As we noted above, C is a block diagonal
matrix, with small diagonal blocks of size s× s. Thus, calculating the inverse of
C by inverting each of these blocks is an extremely cheap, O(q) algorithm. This
allows us to eliminate Δz by observing that Δz = C−1(w − E�Δy), giving us[

B − EC−1E�]Δy = v − EC−1w . (7)

The matrix
S = B − EC−1E� , (8)

is the Schur complement of C in Hμ. It is also known as the reduced camera
matrix, because the only variables participating in (7) are the ones corresponding
to the cameras. S ∈ Rpc×pc is a block structured symmetric positive definite
matrix, with blocks of size c × c. The block Sij corresponding to the pair of
images i and j is non-zero if and only if the two images observe at least one
common point.

Now, (6) can be solved by first forming S, solving for Δy, and then back-
substituting Δy to obtain the value of Δz. Thus, the solution of what was an
n×n, n = pc+ qs linear system is reduced to the inversion of the block diagonal
matrix C, a few matrix-matrix and matrix-vector multiplies, and the solution of
block sparse pc × pc linear system (7). For almost all problems, the number of
cameras is much smaller than the number of points, p 
 q, thus solving (7) is
significantly cheaper than solving (6). This is the Schur complement trick [15].

This still leaves open the question of solving (7). The method of choice for
solving symmetric positive definite systems exactly is via the Cholesky factoriza-
tion [16] and depending upon the structure of the matrix, there are, in general,
two options. The first is direct factorization, where we store and factor S as
a dense matrix [16]. This method has O(p2) space complexity and O(p3) time
complexity and is only practical for problems with up to a few hundred cam-
eras. But, S is typically a fairly sparse matrix, as most images only see a small
fraction of the scene. This leads us to the second option: sparse direct meth-
ods. These methods store S as a sparse matrix, use row and column re-ordering
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algorithms to maximize the sparsity of the Cholesky decomposition, and focus
their compute effort on the non-zero part of the factorization [17]. Sparse direct
methods, depending on the exact sparsity structure of the Schur complement,
allow bundle adjustment algorithms to significantly scale up over those based on
dense factorization.

This however is not enough for community photo collections, where the size
and sparsity structure of S (e.g. Figure 1) is such that even constructing it
is a significant expense, and factoring it leads to near dense Cholesky factors.
Hence we would like to find alternatives that do not depend on the construction,
storage, and factorization of S and yet give good performance on large problems.

3 A Truncated Newton Solver

The factorization methods described above are based on computing an exact
solution of (3). But it is not clear if an exact solution of (3) is necessary at each
step of the LM algorithm to solve (1). In fact, we have already seen evidence that
this may not be the case, as (3) is itself a regularized version of (2). Indeed, it is
possible to construct non-linear optimization algorithms in which the linearized
problem is solved approximately. These algorithms are known as inexact Newton
or truncated Newton methods [11].

An inexact Newton method requires two ingredients. First, a cheap method for
approximately solving systems of linear equations. Typically an iterative linear
solver like the Conjugate Gradients method is used for this purpose [11]. Second,
a termination rule for the iterative solver. A typical termination rule is of the
form

‖Hμ(x)Δx + g(x)‖ ≤ ηk‖g(x)‖. (9)

Here, k indicates the LM iteration number and 0 < ηk < 1 is known as the
forcing sequence. Wright & Holt [18] prove that a truncated LM algorithm that
uses an inexact Newton step based on (9) converges for any sequence ηk ≤ η0 < 1
and the rate of convergence depends on the choice of the forcing sequence ηk.

4 Preconditioned Conjugate Gradients

The convergence rate of CG for solving (4) depends on the distribution of eigen-
values of Hμ [19]. A useful upper bound is

√
κ(Hμ), where, κ(Hμ)f is the condi-

tion number of the matrix Hμ. For most bundle adjustment problems, κ(Hμ) is
high and a direct application of CG to (4) results in extremely poor performance.

The solution to this problem is to replace (4) with a preconditioned system.
Given a linear system, Ax = b and a preconditioner M the preconditioned sys-
tem is given by M−1Ax = M−1b. The resulting algorithm is known as Precon-
ditioned Conjugate Gradients algorithm (PCG) and its worst case complexity
now depends on the condition number of the preconditioned matrix κ(M−1A).

The key computational cost in each iteration of PCG is the evaluation of
the matrix vector product β = Aα and solution of the linear system Mφ = ψ
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for arbitrary vectors α and ψ. Thus, for each iteration of PCG to be efficient,
M should be cheaply invertible and for the number of iterations of PCG to be
small, the condition number κ(M−1A) should be as small as possible. The ideal
preconditioner would be one for which κ(M−1A) = 1. M = A achieves this,
but it is not a practical choice, as applying this preconditioner would require
solving a linear system equivalent to the unpreconditioned problem. So how
does one choose an effective preconditioner that is cheap to invert and results in
a significant reduction of the condition number of the preconditioned matrix?

The simplest of all preconditioners is the diagonal or Jacobi preconditioner,
i.e. , M = diag(A), which for block structured matrices like Hμ can be general-
ized to the block Jacobi preconditioner. Hμ also has the special property that its
diagonal blocks B and C are themselves block diagonal matrices. This property
makes the block Jacobi preconditioner

MJ =
[
B 0
0 C

]
. (10)

the optimal block diagonal preconditioner for Hμ [20].
Another option is to apply PCG to the reduced camera matrix S instead of

Hμ. One reason to do this is that S is a much smaller matrix than Hμ, but
more importantly, it can be shown that κ(S) ≤ κ(Hμ). There are two obvious
choices for block diagonal preconditioners for S. The matrix B [21] and the block
diagonal D(S) of S, i.e. the block Jacobi preconditioner for S.

Consider now, the generalized Symmetric Successive Over-relaxation (SSOR)
preconditioner for Hμ,

Mω(P ) =
[
P ωE
0 C

] [
P−1 0

0 C−1

] [
P

ωE� C

]
, (11)

where P is some easily invertible matrix and 0 ≤ ω < 2 is a scalar parameter.
Observe that for ω = 0, M0(B) = MJ is the block Jacobi preconditioner. More

interestingly, for ω = 1, it can be shown that using M1(P ) as a preconditioner
for Hμ is exactly equivalent to using the matrix P as a preconditioner for the
reduced camera matrix S [19]. This means that for P = I using M1(I) as a
preconditioner for Hμ is the same as running pure CG on S and we can run
PCG on S with preconditioners B and D(S) by using M1(B) and M1(D(S))
as preconditioners for Hμ. Thus, the Schur complement which started out its
life as a way of specifying the order in which the variables should be eliminated
from Hμ when solving (4) exactly, returns to the scene as a generalized SSOR
preconditoner when solving the same linear system iteratively.

As discussed earlier, the cost of forming and storing the Schur complement S
can be prohibitive for large problems. Indeed, for an inexact Newton solver that
uses PCG on S, almost all of its time is spent in constructing S; the time spent
inside the PCG algorithm is negligible in comparison.

Because PCG only needs access to S via its product with a vector, one way
to evaluate Sx is to use (11) for ω = 1. However we can do even better. Observe
that,
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x1 = E�x, x2 = C−1x1, x3 = Ex2, x4 = Bx, Sx = x4 − x3 . (12)

Thus, we can run PCG on S with the same computational effort per iteration as
PCG on Hμ, while reaping the benefits of a more powerful preconditioner. Even
if we decide to use the block Jacobi preconditioner D(S), it can be constructed
at a cost that is linear in the number of observations O(m) and memory cost
that is linear in the number of cameras - O(p). Both of these are substantially
less than the cost of computing and storing the full matrix S.

Equation (12) is closely related to Domain Decomposition methods for solving
large linear systems that arise in structural engineering and partial differential
equations. In the language of Domain Decomposition, each point in the SFM
problem is a domain, and the cameras form the interface between these domains.
The iterative solution of the Schur complement then falls within the sub-category
of techniques known as Iterative Sub-structuring [19,22].

5 Experimental Evaluation

5.1 Algorithms

We compared the performance of six bundle adjustment algorithms: explicit-
direct, explicit-sparse, normal-jacobi, explicit-jacobi, implicit-jacobi and implicit-ssor.
The first two methods are exact step LM algorithms, and the remaining four
are inexact step LM algorithms. explicit-direct, explicit-sparse and explicit-jacobi
explictly construct the Schur complement matrix S and solve (7) using dense
factorization, sparse direct factorization, and PCG using the block Jacobi pre-
conditioner D(S) respectively. normal-jacobi uses PCG on Hμ with the block
Jacobi preconditioner MJ . implicit-jacobi and implicit-ssor run PCG on S using
the block Jacobi preconditioner D(S) and B respectively. Unlike explicit-jacobi
they use (12) to implicitly evaluate matrix vector products with S.

Assuming that all the algorithms store Hμ in the same format, the difference
between their memory usages depends on how they use the Schur complement
S. implicit-jacobi, implicit-ssor and normal-jacobi do not compute or store S, and
therefore require the least amount of memory. explicit-direct is the most expensive
of the three as it uses O(p2) memory to store and factor S. explicit-sparse and
explicit-jacobi are less expensive as they stores S as a sparse matrix, and thus
their storage requirements scale with the sparsity of S. explicit-sparse requires
additional storage to store the Cholesky factorization of S, and the amount of
memory required is a function of the sparsity structure of S and not just the
number of non-zero entries.

For each solver, LM was run for a maximum of 50 iterations, i.e. (3) was
solved 50 times. After each LM iteration the step Δx may or may not be ac-
cepted, depending on whether it leads to a better solution. Inside each iteration
of LM, PCG was run for a minimum of 10 iterations, and terminated when either
‖Hμ(x)Δx+g(x)‖ ≤ ηk‖g(x)‖ was satisfied or a 1000 iterations were performed.
The forcing sequence ηk was set to a constant ηk = 0.1. At the beginning of LM,
the square root of the diagonal of the matrix J(x0)�J(x0) is estimated and used
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as a scaling matrix for the variables. This is a standard method for normalizing
all the variables in a problem [23] and is necessary as some parameters, (e.g.,
radial distortion), are up to 20 orders of magnitude more sensitive than others
(e.g., rotation). For the factorization methods, especially CHOLMOD, this im-
proves numerical stability. For the iterative solvers, this is equivalent to applying
the Jacobi preconditioner before any of the other preconditioners are used.

All six algorithms were implemented as part of a single C++ code base. We
use GotoBLAS2 [24] for dense linear algebra and CHOLMOD [17] for sparse
Cholesky factorization. All experiments were performed on a workstation with
dual Quad-core CPUs clocked at 2.27Ghz with 48GB RAM running a 64-bit
Linux operating system.

5.2 Datasets

We experimented with two sources of data:

1. Images captured at a regular rate using a Ladybug camera mounted on a
moving vehicle. Image matching was done by exploiting the temporal order of
the images and the GPS information captured at the time of image capture.

2. Images downloaded from Flickr.com and matched by the authors of [3]. We
used images from Trafalgar Square and the cities of Dubrovnik, Venice, and
Rome.

For Flickr photographs, the matched images were decomposed into a skeletal
set (i.e., a sparse core of images) and a set of leaf images [1]. The skeletal set
was reconstructed first, then the leaf images were added to it via resectioning
followed by triangulation of the remaing 3D points. The skeletal sets and the
Ladybug datasets were reconstructed incrementally using a modified version of
Bundler [25], which was instrumented to dump intermediate unoptimized recon-
structions to disk. This gave rise to the Skeletal and the Ladybug problems. We
refer to the bundle adjustment problems obtained after adding the leaf images
to the skeletal set and triangulating the remaing points as the Final problems.
For each dataset we use a nine parameter camera model (6 for pose, 1 for focal
length and 2 for radial distortion).

Figure 2 plots the three types of problems. The x-axis is the number of images
on a log-scale and the y-axis is the sparsity of the S matrix. The Ladybug (blue)
set has small dense problems and large sparse problems with almost band diag-
onal sparsity. The Skeletal (red) set has small dense, and medium to large sparse
problems with random sparsity. The Final (green) set has large problems with
low to high sparsity. Their size and sparsity can pose significant challenges for
state of the art algorithms. Complete details on the properties of each problem
used in the experiments can be found on the project website.

5.3 Analysis

Detailed statistics on the performance of all algorithms are available on the
project website. Here we summarize the broad trends in the data.



38 S. Agarwal et al.

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

Images

S
ch

ur
 C

om
pl

em
en

t S
pa

rs
ity

Ladybug
Skeletal
Final

Fig. 2. Datasets. This scatter plot shows each of the datasets in our testbed, colored

according to type (Ladybug, Skeletal, Final). The x-axis is the number of images in

the problem and the y-axis is the sparsity of the Schur complement matrix S. The
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large and sparse.
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Fig. 3. Performance analysis. Each column in this set of plots corresponds to one of

six algorithms, and each row corresponds to one of three tolerances τ . For each solver

(column), a point is colored red if the solver was declared a winner for the given tolerance,

and gray otherwise. Winnings solvers are the ones for which the relative decrease in the

RMS error (rk − r∗)/(r0 − r∗) ≤ τ in the least amount of time (there can be more than

one such solver). The axes of the individual plots are the same as in Figure 2.

We compare solvers across problems by looking at how often they are the first
one to improve the RMS error by a certain fraction. Concretely, for each solver
and problem, let rk =

√∑m
i f2

i (xk)/m denote the RMS error at end of iteration
k and let r∗ denote the minimum RMS error across all solvers for that problem.
Then, for a given tolerance τ , we find the solvers for which (rk − r∗)/(r0 − r∗) ≤
τ is satisfied in the least amount of time. We do this for three exponentially
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tighter tolerances, τ = 0.1, 0.01, 0.001. Figure 3 plots the results. The three rows
correspond to the values of τ and the six columns correspond to different bundle
adjustment algorithms. As in Figure 2, for each plot, x-axis is the number of
images on a log scale, and y-axis is the sparsity of the Schur compliment matrix
S. In each plot, we plot all the problems in light grey, and then in red, the
problems for which that solver at that tolerance level was one of the winners1.

From Figure 3, we observe that for problems with up to a few hundred images
and all three tolerances, explicit-direct offers consistently good performance. State
of the art BLAS and LAPACK libraries on multicore systems have excellent
performance, and for small to moderate sized matrices, an exact step LM with
a dense Cholesky solver is hard to beat. This explains the continuing popularity
and success of SBA [5].

For larger problems and high tolerance values τ = 0.1, both normal-jacobi
and implicit-ssor do well, with implicit-ssor working on a much wider variety of
problems. As the value τ decreases, the performance of normal-jacobi rapidly
degrades, indicating that the quality of preconditioning is not good enough to
produce high quality Newton steps in a short amount of time. On the other
hand as τ is decreased, explicit-jacobi which is the most expensive of the iterative
solvers, becomes a viable candidate with the block Jacobi preconditioning of S
starting to show its benefits. implicit-ssor beats explicit-jacobi when S has low
sparsity. This is not surprising, as the cost of computing a nearly dense reduced
camera matrix becomes a significant factor, where as implicit-ssor is able to avoid
this extra computational burden.

A closer examination of the data reveals that despite an overall degradation
in performance, normal-jacobi continues to work well for the larger problems in
the Final set. We believe this is because of the structure of the Skeletal sets
algorithm. After the skeletal set has been reconstructed, the geometric core of
the reconstruction is quite rigid and stable. The error in the reconstruction after
the leaf images have been added is mostly local and no major global changes that
span the entire reconstruction are expected. Therefore, the simple block Jacobi
preconditioner captures the structure of Hμ quite well and at a substantially less
computational cost than any other preconditioner.

It is also worth observing that for some of the problems, as the value of τ is de-
creased, factorization-based solvers become more competitive. This is expected,
as lower values of τ demand that the LM algorithm take higher quality steps at
each iteration. In this regime, the higher cost of the exact step algorithms, at
least for the smaller problems, wins over the increased iteration complexity of
the inexact step algorithms. Better performance for inexact step algorithms will
require more sophisticated forcing sequence ηk and preconditioners.

There were two surprises. First, the discrepancy in the performance of explicit-
jacobi and implicit-jacobi . In exact arithmetic, these two algorithms should return
exactly the same answer, but that is not the case in practice. A closer look at
the data revealed that for the same linear system, the two methods resulted in
different number of iterations and answers, sometimes significantly so, indicating

1 Since time is measured in seconds, there may be more than one such solver.
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Fig. 4. A sampling of run time plots. In each plot, the x-axis is time on a log scale,

and the y-axis is the relative decrease in the RMS error (rk − r∗)/(r0 − r∗). The three

black dashed horizontal lines in each plot correspond to the three tolerances, i.e. ,

τ = 0.1, 0.01 and 0.001. Note that explicit-direct and explicit-sparse are missing from

the Venice Final plot as they ran out of memory.

numerical instability in implicit-jacobi which merits further investigation. Second,
explicit-sparse did not emerge as a clear winner in any of the problem categories.
Either the problems were too small for the additional setup cost and the more
complicated algorithm used in CHOLMOD to beat dense Cholesky factorization,
or the problems were large enough that the exact factorization algorithms, sparse
and dense, were beaten by the inexact step algorithms.

In summary, we observe that for large scale problems, the iterative methods
are a significant memory and time win over Cholesky factorization-based meth-
ods. Particularly for Final problems, this can be the difference between being
able to solve the problem or not, as evidenced by the large Venice example. But
even for medium sized problems involving a few thousand images, the iterative
solvers are up to an order of magnitude faster while consuming 3-5 times less
memory. For the sparse problems in the Ladybug and Skeletal datasets, the ad-
vantage is usually in terms of memory and simplicity of implementation rather
than time, as the cost of exact factorization is offset by its superior quality.
However, we must remember that these experiments were performed on state of
the art workstations with much more RAM than is commonly available today,
which makes the memory usage of the iterative methods even more attractive.

For small to medium problems, we recommend the use of a dense Cholesky-
based LM algorithm. For larger problems, the situation is more complicated and
there is no one clear answer. Both implicit-ssor and explicit-jacobi offer competitive
solvers, with implicit-ssor being preferred for problems with lower sparsity and
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explicit-jacobi for problems with high sparsity. We hope that once the cause of
numerical instability in implicit-jacobi can be understood and rectified, it will
offer a memory efficient solver that bridges the gap between these two solvers
and works on large bundle adjustment problems, independent of their sparsity.

6 Discussion

The classical solution to bundle adjustment is based on exploiting the primary
sparsity structure of the problem to form a Schur complement and factoring
it [26,4,10]. With the exception of a few recent attempts [27,28], it has remained
the dominant method for doing bundle adjustment. While suitable for problems
with a few hundred images, this method does not scale to larger problems with
thousands of images. In this paper, we have shown with the help of an extensive
test suite of large scale bundle adjustment problems that a truncated Newton
style LM algorithm coupled with a simple preconditioner delivers state of the
art performance at a fraction of the time and memory cost of methods based on
factoring the Schur complement.

Going forward, the preconditioners considered in this paper are relatively
simple but we hope that the identification with domain decomposition meth-
ods opens up the possibility of using much more sophisticated preconditioners
developed in the structural engineering literature [19,22]. Numerical stability is
another critical issue. As we noted earlier, even though explicit-jacobi and implicit-
jacobi are algebraically equivalent algorithms, they show problem-dependent nu-
merical behavior. A more thorough development that accounts for the numerical
stability of evaluating the matrix-vector products using the explicit and the im-
plicit schemes is needed.
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Abstract. Several estimation problems in vision involve the minimiza-

tion of cumulative geometric error using non-linear least-squares fit-

ting. Typically, this error is characterized by the lack of interdependence

among certain subgroups of the parameters to be estimated, which leads

to minimization problems possessing a sparse structure. Taking advan-

tage of this sparseness during minimization is known to achieve enormous

computational savings. Nevertheless, since the underlying sparsity pat-

tern is problem-dependent, its exploitation for a particular estimation

problem requires non-trivial implementation effort, which often discour-

ages its pursuance in practice. Based on recent developments in sparse

linear solvers, this paper provides an overview of sparseLM, a general-

purpose software package for sparse non-linear least squares that can

exhibit arbitrary sparseness and presents results from its application to

important sparse estimation problems in geometric vision.

1 Introduction

A plethora of estimation problems in multiple view geometry employ model fit-
ting to infer mathematical objects from image data. Fitting is accomplished by
minimizing the total geometric error pertaining to overdetermined sets of im-
age measurements, which is an approach that has proven to constitute a major
contributor to the success of contemporary algorithms in multiple view geome-
try [1]. The total geometric error is expressed by a sum-of-squares cost function
(i.e., a L2 norm), whose minimizer represents the statistically optimal estimate
of the sought objects under Gaussian noise. Owing to their non-convexity, L2
cost functions are minimized with iterative non-linear least squares techniques,
of which the Levenberg-Marquardt (LM) algorithm has become the de facto
standard. LM operates by repeatedly linearizing the function to be minimized
in the neighborhood of the current minimizer estimate and computing an im-
provement to it through the solution of a linear system defined with the aid of
the Jacobian and known as the normal equations. Considering that each com-
putation of the solution to a dense linear system has complexity O(N3) in the
number of unknown parameters, it is clear that general purpose LM implementa-
tions are computationally very demanding when employed to minimize functions
involving a large number of parameters N .

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 43–56, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fortunately, when dealing with large estimation problems arising in multiple
view geometry, the corresponding geometric error exhibits lack of interdependence
among certain subgroups of the parameters tobe estimated. This observation trans-
lates to Jacobians for the least squaresminimization that are sparse, that is, consist
of mostly zero elements. In turn, sparse Jacobians yield normal equation systems
with sparse block structure. Examples of such sparse problems include single view
reconstruction [2], homography, fundamental matrix and trifocal tensor estima-
tion with the “Gold Standard” algorithms [1] (pp.114, 285 & 397 resp.), mosaick-
ing [3] and bundle adjustment [4,5]. It is well-known that by avoiding storing and
operating on zero elements of the normal matrix during the course of LM, substan-
tial memory and execution time benefits can be gained. For instance, Appendix 6
of [1] describes a scheme for effectively dealing with the commonly encountered
“arrowhead” type of sparseness (see also Fig. (1)(a)). This scheme performs a par-
titioning of the set of parameters in two functionally distinct groups and solves the
normal equations by employing the corresponding Schur complement of the nor-
malmatrix. Its adoptionhas facilitated the implementation ofLMvariants tailored
to the problem of bundle adjustment that divide the normal matrix into camera
and structure blocks and are capable of successfully dealing with large reconstruc-
tion problems [5]. Despite its usefulness, the aforementioned scheme is not suited to
all sparse problems that might be encountered in multiple view geometry, while its
implementation is problem-specific and rather complicated. Therefore, consider-
able effort is required for developing LM variants customized to a particular sparse
problem, making the latter task to be perceived as a daunting endeavor by both
vision researchers and practitioners.

The reason behind the lack of universal applicability of the partitioning scheme
of [1] is that its assumption of only two functional groups of parameters is not
valid for all estimation problems. In other words, there exist problems whose
Jacobian (and, therefore, normal equations) sparsity pattern has a more com-
plex structure (e.g. Fig. 1(b)). Nonetheless, if an effective mechanism of dealing
with arbitrary sparseness is available, then all sparse geometric vision estimation
problems can be cast as special cases of the general sparse non-linear least squares
minimization problem. During the last few years, such mechanisms have emerged
in the form of a number of algorithms and corresponding implementations for
the direct solution of large sparse linear systems of equations [6]. Compared to
iterative methods [7], sparse direct methods do not employ preconditioners, do
not suffer from slow convergence, produce exact rather than approximate solu-
tions and their technology is well developed. Thus, they are more general and
robust, therefore better suited as general-purpose linear solvers.

This work builds upon existing direct sparse solvers and employs them for de-
veloping sparseLM, a package fulfilling the need for a quality software designed for
general-purpose,arbitrarily sparsenon-linear least squares fitting. sparseLM is im-
plemented in C and its source code is publicly available under the GNU GPL. To
the best of the author’s knowledge, no other comparable software is currently freely
available with an open source license. Brief introductions to the LM algorithm and
sparse direct solvers are supplied in sections 2and 3, respectively. Section 4presents
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themajor design guidelines and implementation issues related to sparseLM.Exper-
imental results from the application of sparseLM to practical vision problems are
provided in section 5 and the paper concludes in section 6.

2 The Levenberg-Marquardt Algorithm

The LM algorithm is an iterative technique that locates a local minimum of a
multivariate function that is expressed as the sum of squares of non-linear real-
valued functions. For the sake of completeness, a short description of the LM
algorithm is provided next. However, a detailed analysis of the LM algorithm is
beyond the scope of this paper and the interested reader is referred elsewhere [8].

Let f be an assumed functional relation which maps a parameter vector p ∈
Rm to an estimated measurement vector x̂ = f(p), x̂ ∈ Rn. An initial parameter
estimate p0 and a measured vector x are provided and it is desired to find the
vector p+ that best satisfies the functional relation f locally, i.e. minimizes the
squared distance εT ε with ε = x − x̂ for all p within a m-sphere having a small
radius. The basis of the LM algorithm is a linear approximation to f in the
neighborhood of p. Denoting by J the Jacobian matrix ∂f(p)

∂p , a Taylor series
expansion for a small ||δp|| leads to the following approximation:

f(p + δp) ≈ f(p) + Jδp. (1)

Like all non-linear optimization methods, LM is iterative: Initiated at the start-
ing point p0, it produces a series of vectors that converge towards a local mini-
mizer p+ for f . Hence, at each iteration, it is required to find the step δp that
minimizes the quantity

||x− f(p + δp)|| ≈ ||x − f(p) − Jδp|| = ||ε − Jδp||. (2)

Thus, the sought δp is obtained from a linear least-squares problem which is
solved using the normal equations:

JT Jδp = JT ε. (3)

An alternative to minimizing (2) employs the QR decomposition, which is nev-
ertheless up to a factor of two slower than the normal equations (cf. [4], p.315).
Matrix JT J in Eq. (3) is the first order approximation to the Hessian of 1

2εT ε
[8], whereas δp is the Gauss-Newton step. The LM algorithm actually solves a
slight variation of Eq. (3), known as the augmented normal equations

Nδp = JT ε, with N ≡ JT J + μI and μ > 0, (4)

where I is the identity matrix. The strategy of altering the diagonal elements of
JT J is called damping and μ is a regularization parameter referred to as the damp-
ing term. If the updated parameter vector p + δp with δp computed from Eq. (4)
leads to a reduction in the error εT ε, the update is accepted and the process re-
peats with a decreased damping term. Otherwise, the damping term is increased,



46 M.I.A. Lourakis

the augmented normal equations are solved again and the process iterates until
a value of δp that decreases the error is found. The process of repeatedly solving
Eq. (4) for different values of the damping term until an acceptable update to the
parameter vector is found corresponds to one iteration of the LM algorithm.

The damping term is adaptively adjusted at each iteration of LM to assure
a reduction in εT ε. By doing so, LM is capable of alternating between a slow
descent approach when being far from the minimum and a fast convergence
when being in the minimum’s neighborhood: If the damping is set to a large
value, matrix N in Eq. (4) is nearly diagonal and the LM update step δp is near
the steepest descent direction JT ε. Moreover, the magnitude of δp is reduced,
ensuring that excessively large Gauss-Newton steps are not taken. A large damp-
ing term also handles situations where the Jacobian is rank deficient and JT J
is therefore singular. The damping term can be chosen so that the symmetric
matrix N in Eq. (4) is non-singular and, therefore, positive definite (SPD), en-
suring that the δp computed from it is a descent direction. In this way, LM
can defensively navigate a region of the parameter space in which the model
is highly non-linear. If, on the other hand, the damping is small, the LM step
approximates the exact Gauss-Newton step, lending LM rapid convergence.

3 Direct Sparse Linear Solvers

The solution of systems of sparse linear equations lies at the crux of numerous
computational problems. Direct methods for solving the linear system Ax = b,
where the coefficient matrix A is sparse, involve the explicit factorization of
a suitable permutation of A into the product of lower and upper triangular
matrices L and U. If A is symmetric and, further, positive definite, U = LT

(i.e., Cholesky factorization); in the indefinite case U = DLT , where D is block
diagonal. Forward elimination followed by backward substitution completes the
solution procedure for the right-hand side b. The main complication when devel-
oping direct solvers for sparse matrices stems from the requirement to efficiently
handle fill-in, i.e. limit the number of elements which change from an initial zero
in the permuted A to a non-zero value in the factors L and U.

Several algorithms and corresponding software codes implementing direct
methods have appeared in recent years. Despite their individual peculiarities,
sparse direct solvers operate in distinct phases, outlined as follows [9,6]:

1. An ordering phase that permutes rows and columns to ensure either that
the factors will suffer little fill-in or to yield a matrix with special structure
(e.g. block triangular). The choice of an ordering algorithm is crucial to
the efficiency of any direct solver. Since computing an optimal ordering is
NP-complete, various heuristics are used in practice [10,11].

2. An analysis or symbolic factorization phase concerned with analyzing the
matrix’s structure to determine a pivot sequence (optional) and the non-
zero structures of the factors. A good pivot sequence should significantly
reduce the memory requirements as well as the floating point operations
count. Occasionally, this phase is combined with the ordering one.
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3. A numerical factorization phase that uses the pivot sequence to factorize the
matrix.

4. A solve phase that performs forward elimination followed by back substitu-
tion using the computed factors.

The first two phases are independent of the matrix’s numerical values and de-
pend only on its non-zero structure. For SPD matrices, the pivot sequence may
be chosen based solely on the sparsity pattern, therefore the analysis phase in-
volves no computation on real numbers. When implemented serially, the factor-
ization is typically the most time-consuming of the different phases whereas the
solve phase is generally significantly faster. Performance can be accelerated with
parallel processing, employing the MPI-based implementations for distributed
memory architectures that are available for some of the solvers. Another poten-
tially useful feature of some implementations is their ability to work out-of-core,
i.e. to hold the coefficient matrix and/or its factor in disk files, thereby substan-
tially reducing the amount of main memory required by the solver and enabling
it to tackle larger problems.

4 Implementation Issues

This section discusses several choices made during the design of sparseLM with
the twofold objective of maximizing its performance while shielding the user from
the algorithmic details associated with direct solvers. Since the optimization
aspects of sparseLM are more or less standard, the emphasis is on sparseness
and means of better taking advantage of it.

4.1 Sparse Matrix Formats

We start with a short description of general storage formats for sparse matrices.
These formats make no assumptions regarding the sparsity structure and store
non-zero elements by allocating contiguous memory storage for them along with
some additional index information for keeping track where they fit into the full
matrix. The Compressed Row Storage (CRS) format stores non-zero elements in
row-major order, whereas Compressed Column Storage (CCS) adopts column-
major ordering. More details can be found in [12].

4.2 Jacobian Representation and Computation

From a user’s perspective, the provision of derivatives is one of the most bewilder-
ing practical aspects of non-linear least squares solvers. In the case of sparseLM,
the Jacobian has been further assigned the role of specifying the sparsity pat-
tern of the problem at hand: Its element at position (i, j) is non-zero if and
only if measurement i depends upon variable j. In other words, the Jacobian
can be thought of as a parameter - observation connection graph prescribing
which (parameter, observation) pairs have direct interaction. sparseLM accepts
Jacobians in either CRS or CCS format, allowing user applications to choose
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the representation that is most natural to them. Jacobians can be hand-coded
by the user or, more conveniently, generated through the use of automatic dif-
ferentiation tools that work by systematically applying the chain rule to a given
code segment. Additionally, sparseLM offers the possibility of numerically ap-
proximating the Jacobian using forward finite differences on data provided by
successive invocations of f (cf. Eq (1)). In that case, only the sparsity pattern
of the Jacobian should be specified by the user, whereas its numerical values
are approximated by sparseLM. To reduce the total number of invocations, the
Jacobian is approximated using a scheme that computes several of its columns
with a single evaluation of f , exploiting its sparse structure as explained in [8],
ch. 7. For a m-dimensional parameter vector, this scheme requires much fewer
evaluations than the m + 1 ones that would be required by the naive approach
of computing a single column of the Jacobian per evaluation of f . However,
considering that they lead to faster convergence, analytic Jacobians should be
preferred over approximated ones whenever possible.

4.3 Approximate Hessian Computation

A key aspect of sparseLM’s implementation concerns the efficient computation
of the first order approximation to the Hessian, i.e. of matrix JT J in Eq (4).
JT J is stored internally in the CCS format since this is the one most frequently
employed among the implementations of direct sparse solvers. Multiplication of
sparse matrices is considerably more challenging than that of dense ones, since
the sparsity pattern of the product should first be discovered and then the oper-
ations for calculating the product’s non-zeros should be carried out in a manner
efficient with respect to the matrices memory storage format. An important
observation concerning the sparsity pattern of JT J is that it does not change
among LM iterations. Therefore, sparseLM makes its computation more efficient
by computing its non-zero structure only once ignoring numerical cancellation
and then reusing it when evaluating an actual product. Another performance
improvement stems from exploiting symmetry. Thus, sparseLM computes only
the lower triangular part of JT J and then copies it to the upper half, effectively
reducing the number of computations roughly in half. In fact, even the copying
operation can be skipped for some of the solvers since those that are designed
for symmetric systems access only the triangular part of the coefficient matrix.
Depending on whether the Jacobian J is supplied in CRS or CCS format, the
product JT J is formed by an efficient technique that traverses J in a row-wise
or column-wise fashion, respectively, ensuring that the pattern of accesses to its
elements matches their physical layout in memory.

4.4 Choice of Linear Solver

As in the case of dense linear systems, it is generally advantageous in terms of
performance to employ a direct sparse solver whose prerequisites closely match
the intrinsic properties of the problem at hand. In the context of sparse non-linear
least squares, the augmented normal equations matrix of Eq. (4) is SPD, thus
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the direct solvers of choice are those designed to perform sparse Cholesky factor-
ization. Still, more general solvers targeted to indefinite or even non-symmetric
systems are clearly also usable. Advanced features such as provision for paral-
lel or out-of-core processing should also be taken into consideration. Compar-
ative evaluations of direct solvers in the literature indicate that no single one
is universally the best [9]. For this reason, sparseLM includes interfaces to a
wide variety of codes, the list of which currently consists of LDL [13], HSL’s
MA57/MA47/MA27 [14], PARDISO [15], SuperLU [16], TAUCS [17], UMFPACK [18],
CSparse [6], CHOLMOD [19] SPOOLES [20], and MUMPS [21]. Moreover, sparseLM
has been designed so that expanding this list with more solvers in the future
is straightforward. CHOLMOD [19], a set of routines for factorizing sparse SPD
matrices, is used as sparseLM’s default solver. Regarding ordering, CHOLMOD
automatically chooses between approximate minimum degree (AMD) [10] and
graph-based nested dissection (METIS) [11]. Its overall performance was found
to be quite competitive by the recent survey of Gould et al. [9].

Independently of the choice of a direct solver, its application in the context
of the LM algorithm can be made more efficient by the following observation:
During the course of the LM algorithm, several linear systems with identical
sparsity patterns are repeatedly solved. Thus, as explained in section 3, the
corresponding symbolic factorization is computed only once and then reused for
numerically solving all subsequent linear systems.

5 Experimental Results

This section provides an experimental evaluation of sparseLM, applying it to
three important problems in multiple view geometry and comparing its perfor-
mance against alternative established approaches. The problems in question are
bundle adjustment, trifocal tensor and homography estimation.

5.1 Euclidean Bundle Adjustment

In this section two sets of experiments are conducted, aiming at comparing the
performance of sba [5] against that of sparseLM applied to Euclidean sparse
Bundle Adjustment (BA). sba is our freely available package for BA that imple-
ments the partitioning scheme of [1] to solve the sparse augmented equations. It
is heavily optimized and provides increased flexibility by allowing user-defined
parameterizations for cameras and points as well as projection functions, thus
being able to support a wide range of manifestations of the multiple view recon-
struction problem. Being custom-written to match the sparsity structure of the
BA problem, sba is expected to generally excel in performance. Nevertheless,
it is instructive to examine when this conjecture holds and how close are the
performances of the two approaches.

The first set of experiments relies on the eight test sequences also employed
in [5]. Each experiment involves a set of 3D points whose image projections have
been identified in a number of real images acquired by an intrinsically calibrated
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Table 1. Statistics for Euclidean BA using the sparseLM and sba packages: Total num-

ber of images, total number of variables, total number of objective function/Jacobian

evaluations, total number of iterations and linear systems solved, elapsed execution

time in seconds. Identical values for the user-defined minimization parameters have

been used throughout all experiments.

func/jac evals iter./sys. solved exec. time
Sequence # imgs # vars sparseLM sba sparseLM sba sparseLM sba

“movi” 59 5688 20/18 20/20 18/20 20/20 4.26 3.69

“sagalassos” 26 5283 41/33 40/30 33/41 30/40 6.55 3.95

“arenberg” 22 4137 22/15 25/17 15/22 17/25 3.89 2.68

“basement” 11 981 33/22 32/23 22/33 23/32 0.57 0.28

“house” 10 1605 24/17 27/20 17/24 20/27 0.73 0.38

“maquette” 54 15945 29/21 30/23 21/29 23/30 13.20 7.98

“desk” 46 10542 28/20 32/22 20/28 22/32 8.51 6.06

“calgrid” 27 2328 25/19 21/20 19/25 20/21 15.61 8.58

moving camera. Estimates of the Euclidean 3D structure and camera motions
have been computed using a sequential structure and motion estimation tech-
nique. Those estimates serve as starting points for bootstrapping refinements that
are based on BA using sba and sparseLM. Camera motions corresponding to all
but the first frame are defined relative to the initial camera location. The former
is taken to coincide with the employed world coordinate frame. Camera rotations
are parameterized by quaternions while translations and 3D points by 3D vectors.

Table 1 illustrates several statistics gathered from the application of sba and
sparseLM-based Euclidean BA to the eight test sequences. Each row corresponds
to a single sequence and columns are as follows: The first column corresponds
to the total number of images that were employed in BA. The second column is
the total number of motion and structure variables pertaining to the minimiza-
tion. The third column shows the total number of objective function/Jacobian
evaluations during BA for both approaches. The number of iterations needed
for convergence and the total number of linear systems that were solved are
shown in the fourth column. The last column shows the time in seconds elapsed
during execution of BA. All experiments were conducted on an Intel P4@1.8
GHz running Linux and unoptimized BLAS. Both approaches converged to the
same solutions for each sequence, therefore the corresponding final reprojection
errors are not reported. As it is evident from the last column, BA with the aid
of sparseLM is roughly at most two times slower than that employing sba. This
is a remarkable result showing that the increased generality of sparseLM does
not come at the price of performance.

At this point, it is enlightening to point out a few limitations of sba that are re-
moved by the sparseLM-based approach to BA. sba assumes no coupling among
the parameters for different cameras or different points. While this assumption
is valid in many cases, there exist some situations where it imposes insurmount-
able restrictions. One such situation is illustrated in Fig. (1)(b) and concerns a
sequence acquired with a camera having constant intrinsics that are to be refined
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(a) (b)

Fig. 1. Visualization of the approximate Hessian’s structure for two BA problems in-

volving the “basement” sequence. (a) is 366× 366 and arises in BA for camera motion

and structure parameters (arranged in that order), (b) is 371 × 371 and corresponds

to BA for camera motion, structure and constant across frames intrinsic parameters.

Colored dots correspond to non-zero elements with red arising from motion-motion pa-

rameter pairs, green from point-point pairs, blue from motion-point pairs and magenta

from motion-intrinsic, point-intrinsic and intrinsic-intrinsic pairs. sba cannot handle

(b) due to the horizontal and vertical non-zero bands (in magenta) induced at its bot-

tommost and rightmost parts by the sharing of intrinsic parameters. To improve the

readability of graphs, only the first 100 points have been included in the BA.

via BA. In this case, the intrinsic calibration parameters must be shared by all im-
ages, violating sba’s assumption of independent camera parameters. Other exam-
ples involve the cases of employing inter-feature measurements such as distances
or angles between points, coplanarity constraints on subgroups of points, articu-
lated motion, etc. Another limitation stems from sba’s current implementation,
which when forming the reduced bundle system assumes a dense structure for the
Schur complement of the points submatrix in the approximate Hessian (i.e. the
block matrix S in p.2:13 of [5]). This matrix, whose ij block is zero if images i and
j have no points in common, is factored with a dense Cholesky decomposition
to update the camera parameters. While it is reasonable to expect that for small
problems such as the ones employed here most features are seen in all images and,
therefore, matrix S is dense1, for larger, more loosely connected image sets where
each image only sees a small fraction of the features, S can become quite sparse.
BA using sparseLM does not suffer from any of the aforementioned shortcomings
since it treats the Jacobian (and therefore the Hessian) as a matrix with arbitrary
sparseness, not needing to compute and factor S.

To study the effect on performance of the density of matrix S, a second set of
experiments was designed. First, a fairly large, densely connected initial recon-
struction consisting of 404 images, 77864 3D points and involving 236016 vari-
ables was obtained. The longest trajectory of image projections included in this

1 The densities of the eight test sequences are at least 84% and in most cases 100% [5].
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Fig. 2. Performance comparison of Euclidean BA for large reconstructions using

sparseLM and sba: execution time (top) and S matrix density (bottom) vs. the maxi-

mum trajectory length l

reconstruction has a length of 40. Then, for a length limit l assuming values in
{2, . . .40}, several other reconstructions were generated from the initial one by
truncating projection trajectories that were more than l images long, taking care
to avoid disconnecting the camera network. In this manner, the generated recon-
structions differ only in the densities of their point submatrices, thus providing a
basis for comparing the performance of sparseLM-basedBA against that of sba for
varying densities of the matrix S. The top part of Fig. 2 summarizes the execution
times of the two alternatives to BA applied to the 39 generated reconstructions,
whereas the bottom part shows their corresponding S matrix densities. Clearly,
the performance difference between sparseLM and sba is reversed in favor of the
former and is more pronounced for less connected image sets. As has been also ob-
served in [5], this difference stems from the fact that the computation of the dense
Cholesky decomposition of S has time complexity O(N3) and thus becomes ap-
preciable for large N (N = 2424 in this particular case). Furthermore, the time
spent by sparseLM for carrying out the the symbolic factorization once in the be-
ginning pays off by enabling it to numerically compute the sparse Cholesky in
less time at each subsequent iteration. The downside of using sparseLM is that
it requires about two to three times more memory than sba. This is because di-
rect sparse solvers require additional memory to store the symbolic factorization,
whose size depends on the matrix’s sparsity structure.

5.2 Trifocal Tensor Estimation

The trifocal tensor T encapsulates all geometric relations among three images
that are independent of scene structure. According to the “Gold Standard”
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(a) (b)

Fig. 3. (a) Hessian structure for trifocal tensor estimation involving the 114 3D points

visible in the first 3 frames of the “basement” sequence. Color coding is as in Fig. 1.

(b) Hessian structure for homography refinement involving 88 image point pairs. Red

dots correspond to homography-homography variable pairs, green to point-point pairs

and blue to homography-point pairs.

algorithm for obtaining the Maximum Likelihood Estimate of T [1], p.397 from
triplets of corresponding points xi, x

′
i and x

′′
i , the procedure proceeds as follows.

First, a geometrically valid estimate of T is computed with a linear algorithm
that minimizes the algebraic error and a canonical triplet of camera matrices is
recovered from this estimate. Subsidiary variables corresponding to 3D points
Xi are then introduced and initialized via triangulation. T is parametrized by
the elements of the camera matrices P

′
and P

′′
. Subsequently, the cost function∑

i

d(xi, x̂i)2 + d(x
′
i, x̂

′
i)

2 + d(x
′′
i , x̂

′′
i )2 (5)

is minimized over the 3D points Xi and the elements of the two camera matrices
P

′
, P

′′
with x̂i = [I | 0]Xi, x̂

′
i = P

′
Xi and x̂

′′
i = P

′′
Xi. For n 3D points, the

minimization involves 3n + 24 variables and amounts to a sparse problem (cf.
Fig. 3(a)) solvable by sparseLM. Finally, the three correlation slices of T are set
to Ti = aibT

4 − a4bT
i , i = 1 . . . 3, where ai, bi are respectively the i-th columns

of the refined camera matrices P
′
= [A |a4], P

′′
= [B |b4]. The tensor estimated

in this manner satisfies by construction the trilinear constraints for a triplet of
refined corresponding points.

The reprojection error of (5) is quite complex and minimizing it involves a
large number of parameters. An approximate solution to overcome this is to
substitute (5) with the so-called Sampson error [1], p.98, which is the distance
to the first order approximation of the algebraic variety defined by the trilinear
constraints. Minimization of the sum of Sampson errors for all points relates to
only 24 variables, appendix B of [22] provides more details. While it might seem
reasonable to expect that the fewer variables of the Sampson approximation
will result in faster performance, it is demonstrated next that an application of
sparseLM performs faster and is more accurate.
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Table 2. Statistics for tensor estimation using sparseLM (sLM), the Sampson approx-

imation (SA) and dense LM (dLM) approaches. The columns are as follows: Total

number of variables for sLM & dLM, average initial transfer error in pixels, average

final transfer error in pixels, total number of objective function/Jacobian evaluations,

total number of iterations and linear systems solved, elapsed execution time in seconds.

Again, identical values for the user-defined minimization parameters have been used

throughout all experiments.

# vars initial final error func/jac evals iter./sys. solved exec. time
Sequence sLM & dLM error sLM & dLM SA sLM SA dLM sLM SA dLM sLM SA dLM
“movi” 729 0.330 0.286 0.320 32/30 59/2 38/30 30/32 10/11 30/38 0.42 1.92 43.38
“sagalassos” 681 0.745 0.335 0.737 38/31 80/2 39/34 31/38 31/32 34/39 0.41 2.34 43.52
“arenberg” 960 0.428 0.357 0.428 35/29 41/1 35/31 29/35 16/17 31/35 0.60 1.73 99.83
“basement” 366 0.472 0.397 0.459 35/28 159/4 32/29 28/35 62/63 29/32 0.18 2.53 5.01
“house” 636 0.393 0.367 0.389 60/49 39/1 65/52 49/60 14/15 52/65 0.58 1.07 43.03
“maquette” 1041 0.771 0.429 0.739 37/33 83/2 37/31 33/37 34/35 31/37 0.75 3.81 133.61
“desk” 594 0.545 0.511 0.545 37/30 32/1 34/31 30/37 7/8 31/34 0.32 0.83 23.99
“calgrid” 2097 0.420 0.155 0.320 39/35 62/2 41/34 35/39 13/14 34/41 1.83 5.75 1151.75

The cost function (5) was minimized with sparseLM and levmar [23], which
includes a dense version of the LM algorithm implemented by sparseLM. These
two approaches are labeled sLM and dLM, respectively. Furthermore, the total
error of the Sampson approximation was minimized with levmar using a secant
variant of the dense LM; this approach is labeled SA. dLM serves as a reference
for the time savings achieved by SA and sLM. The three alternative approaches
were applied to the estimation of the trifocal tensor corresponding to the first
three frames of each sequence used in section 5.1 and the related statistics are
presented in Table 2.

The performance of the three approaches is evaluated for accuracy and effi-
ciency, using the average tensorial transfer error for all points in all three frames
and the total execution time, respectively. sLM and dLM employ the same ob-
jective function and, therefore, perform identically with respect to accuracy.
However, dLM is at least two orders of magnitude slower. On the other hand,
SA is less accurate than sLM and, being between 2 to 14 times slower, is also
considerably less efficient. The reasons for the worse performance of SA can be
partly attributed to the fact that the computation of the Sampson error for each
point triplet calls for a costly SVD operation to estimate the pseudoinverse of a
9× 9 rank 3 matrix [22]. Furthermore, the Jacobian of the Sampson error is too
complicated to express analytically, which necessitates its approximation using
finite differences that raise the total number of performed SVDs even further.
As a matter of fact, the motivation for using a secant variant of dense LM with
Broyden’s rank one update for minimizing the Sampson error was to ease down
the overhead of finite differentiation. The overall superior performance of sLM
combined with the restrictive assumption made by the Sampson approximation
according to which the variety of trilinear constraints has to be well approxi-
mated by a first order expansion in the vicinity of the current estimate, clearly
suggests sLM as the preferred alternative for tensor estimation.
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5.3 Homography Estimation

A homography is a general plane to plane projective transformation that is
represented by a non-singular homogeneous 3 × 3 matrix H. Assuming that a
set of corresponding coplanar image point pairs xi, x

′
i is available, the “Gold

Standard” algorithm for estimating H is as follows (cf. [1], p.114): First, an
initial estimate is computed using a linear normalized DLT algorithm embedded
in a robust regression framework to safeguard against outliers. Then, considering
only the inliers, the initial estimate is used as a starting point for minimizing
the following geometric cost over H and the subsidiary points x̂i:∑

i

d(xi, x̂i)2 + d(x
′
i,Hx̂i)2. (6)

The minimization corresponds to a sparse problem which involves 9 + 2n vari-
ables, n being the number of inlying point pairs (cf. Fig. 3(b)). In a manner
similar to the estimation of the trifocal tensor, the geometric error of (6) can be
approximated with the Sampson error involving 9 variables.

The performance of sparseLM minimizing (6) was compared against those of
a dense LM algorithm utilized to minimize (6) and the Sampson approximation.
Five experiments were carried out using around 900 SIFT keypoints extracted
and matched between successive pairs from the six images of the “graffiti” se-
quence. Although lack of space prevents the inclusion of detailed statistics, it is
noted that the performance of sparseLM was between 455 to 886 times better
than that of the dense LM algorithm minimizing (6) and between only 1.1 to
1.6 times worse than that of the dense LM applied to the Sampson approxima-
tion. As expected, minimizing (6) was slightly more accurate than employing
the corresponding Sampson approximation.

6 Conclusions

A general-purpose, computationally efficient implementation of sparse non-linear
least squares optimization is beneficial to a wide range of vision tasks. This paper
has presented an overview of sparseLM, a such open source implementation and
has demonstrated its versatility and effectiveness in different practical situations.
Considering that its applicability extends beyond geometric vision, sparseLM can
potentially prove invaluable to a variety of research fields and disciplines.
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Abstract. We present a new parsing framework for the line-based geo-

metric analysis of a single image coming from a man-made environment.

This parsing framework models the scene as a composition of geomet-

ric primitives spanning different layers from low level (edges) through

mid-level (lines and vanishing points) to high level (the zenith and the

horizon). The inference in such a model thus jointly and simultaneously

estimates a) the grouping of edges into the straight lines, b) the grouping

of lines into parallel families, and c) the positioning of the horizon and

the zenith in the image. Such a unified treatment means that the un-

certainty information propagates between the layers of the model. This

is in contrast to most previous approaches to the same problem, which

either ignore the middle levels (lines) all together, or use the bottom-up

step-by-step pipeline.

For the evaluation, we consider a publicly available York Urban

dataset of “Manhattan” scenes, and also introduce a new, harder dataset

of 103 urban outdoor images containing many non-Manhattan scenes.

The comparative evaluation for the horizon estimation task demonstrate

higher accuracy and robustness attained by our method when compared

to the current state-of-the-art approaches.

1 Introduction

Recent years have seen a growing interest in the geometric analysis of a scene based
on as little as a single image of this scene. Often the image of interest comes from
a man-made environment, e.g. when the image is taken indoors or on a city street.
In this case, the image is highly likely to contain a certain number of straight lines,
which can be identified in the edgemap of the image, and which often can be fur-
ther grouped into parallel families. The presence of such lines and their parallelism
are known to be valuable cues for the geometric analysis.

When a family of parallel lines is projected on the image, their projections are
known to intersect in a single point in the image plane called vanishing point.
The vanishing point uniquely characterizes the 3D direction of those lines (given
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Fig. 1. Geometric primitives of different levels for an example “non-Manhattan” image.

TopLeft – edge pixels, TopRight – straight lines, BottomLeft – lines are grouped in

parallel families (color indication used), BottomRight – the horizon and the zenith

(shown with the direction vector in red). Our framework aims at joint estimation of

primitives at the latter three levels given the former one (edge pixels).

the camera). When 3D directions of several families are coplanar, the respec-
tive vanishing points belong to the same line. Such situation occurs frequently
for man-made environments, as there often exist several families with different
horizontal directions. In this case, the line containing their vanishing points is
called the horizon. Most of the remaining lines of the scene are typically vertical.
As such, they are parallel to each other and their projections intersect in the
vanishing point called the zenith1.

The environments where horizontal lines fall into two orthogonal families, are
known as “Manhattan” worlds. A considerable number of previous works inves-
tigated the Manhattan case, and the particular simplifications that it brings to
the geometric analysis. The parsing framework suggested in this work may be
adapted to the Manhattan case, however our work focuses on the non-Manhattan
case, assuming the presence of the horizon and the zenith but not the two or-
thogonal horizontal directions. Surprisingly, very few previous works have paid
attention to such scenario (most notably [1]), although we would argue that such
assumptions about the scene strike a good balance between the generality and
the robustness of the estimation.

1 Strictly speaking, when this vanishing point lies below the horizon, it should be

called the nadir. For brevity, we use the term zenith in this case as well.
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In general, several computer vision and image processing tasks can benefit
from the ability to extract the geometric information from a single image. E.g.
the knowledge about the location of the horizon may be used to rectify the user
photograph with inclined horizon, to facilitate the dense single-view reconstruc-
tion and “auto pop-up” [2,3]; this knowledge may also greatly improve semantic
segmentation, scene understanding, and object detection [4] as well as video sta-
bilization [5]. The abundance of applications thus motivates the research into
better method of geometric analysis of single images leading to more accurate
and robust algorithms.

1.1 Related Work

Conceptually, the process of line-based geometric analysis of a single image is well
investigated, and typically involves several bottom-up steps. Thus, the process
might be initialized with the edge map of an image computed with some edge
detector (a standard Canny detector is used in this work). Then, the bottom-
up pipeline [6,7,8,9,10,11,12] involves grouping edges into lines, grouping lines
into line families and finding the respective vanishing points, and, finally, fit-
ting the horizon and the zenith or the Manhattan directions, depending on the
assumptions about the world.

The problem with the step-by-step approach is, however, that neither of the
steps can be performed with 100% accuracy and reliability. As the edge maps
are always noisy and contaminated with spurious edge pixels not coming from
straight lines, the line detection step would miss some of the straight lines and,
even worse, detect some spurious lines that do not exist in the scene. Due to
these errors, the parallel line grouping step would often group together lines from
different families or create groups containing spurious lines (leading to spurious
vanishing points) or split actual line families into several (reducing the accuracy
of the respective vanishing point estimation). Finally, given an imperfect set of
vanishing point, contaminated with outliers, horizon and zenith estimation may
lead to gross errors.

Previous works address the challenges associated with each step through sev-
eral classes of techniques, including robust statistical inference[13], clustering
[6,9,14,11], various kinds of Hough transforms [7,9,10], stochastic model fitting
[15,12] as well as seeking user supervision [8]. While different approaches pos-
sess different strengths and weaknesses, neither results in a perfect accuracy and
robustness, leading to the accumulation of errors towards higher stages of the
pipeline.

A group of methods [16,17,1,18] goes beyond this pipeline paradigm, as they
bypass the line extraction step altogether and directly fit the low-parametric
high-level model of the frame (the Manhattan frame [16,17] or a set of Manhattan
frames [1]) to the low-level edge map or even to the dense set of image gradients.
The joint optimization nature of these methods is similar to our philosophy.
However, the simplicity of the model and lack of the edges-to-lines grouping
stage limits the accuracy and robustness of their approach as compared to a
well-engineered full pipeline approach such as [12].
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York Urban dataset [18] The new “Eurasian cities” dataset

Fig. 2. While the York Urban dataset [18] contains images of “Manhattan” worlds,

our framework uses less restrictive scene assumptions that are met by non-Manhattan

images in the new dataset that we introduce. Our framework is evaluated on both

datasets.

1.2 Overview of Our Method

In this work, we investigate the geometric parsing approach to the line-based
geometric analysis. By geometric parsing here, we understand the process, when
the geometric elements at different levels of complexity (Figure 1), as well as
the intra-level grouping relations are explicitly recovered through the joint op-
timization process. Note, that the term parsing is used in a similar meaning
in such works as [19], where semantic primitives of different levels (e.g. body
parts, individual humans, crowd) as well as the intra-level grouping relations are
recovered. In our cases, the primitives at different levels are edge pixels, lines,
horizontal vanishing points, the zenith and the horizon.

Our work thus differs from works that employ a single bottom-up pass, as
the inference in our case is performed jointly, allowing the information from top
levels resolve the ambiguities on the lower levels (and vice versa). Our work also
differs from the works that bypass the line detection, as the lines in our method
are detected explicitly. To the best of our knowledge, the method presented
here is the first that integrates line detection, vanishing point location, and
higher-level geometric estimation (the horizon and the zenith in our case) in a
single optimization framework. Notably, the optimization in our method does
not employ alternations between different levels, and is therefore less prone to
getting stuck at poor local minima.

There are several design choices and assumptions in our model that are moti-
vated by the applicability and tractability. Firstly, unlike the majority of previ-
ous works, we do not make a Manhattan-world assumption. Instead, we consider
a less-restrictive non-Manhattan scenario similar to the “Atlanta world” of [1]
that will be detailed below in Section 2. Regarding the camera parameters, we
assume that the principal point is known (if unknown we assumed it to be in
the center of the frame); we also assume that pixels are square. This assumption
holds approximately for the vast majority of cameras in real life, and it makes
the inference in our model much easier. We also do not model radial distortion
explicitly, which is perhaps a bigger shortcoming of our model, although the
robust nature of our algorithm means that considerable distortion might be tol-
erated without explicit modeling. Finally, we assume the focal length unknown.
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Theoretically, locations of the horizon and the zenith allow to estimate the fo-
cal length of the camera directly from the results of the parsing, however the
accuracy of such estimation is hindered by the degeneracy that occurs when the
horizon passes near the principal point, which in practice happens very often.

In a sequel, we detail our energy model in Section 2, and discuss the optimiza-
tion procedure in Section 3. We then perform the experimental validation on two
datasets (Figure 2). The first one is the York Urban dataset presented in [18],
where several approaches were benchmarked. This dataset has been recently also
used for the evaluation in [12], where improved results have been reported. The
second dataset was collected by ourselves and, unlike Urban, contains a lot of
more challenging non-Manhattan outdoor scenes. The experimental comparison
in Section 4 demonstrates the competitiveness of the parsing approach.

2 The Model for Geometric Parsing

We now explain the energy model of the world within our method. We assume
an image to be defined by the set of its edge pixels. The main assumptions about
the world are a) that a considerable part of edge pixels may be explained by a
set of lines, b) that considerable part of those lines fall into several parallel line
families. It is further assumed that c) one of these families is a set of vertical (in
3D) lines converging (in the image plane) to the zenith and d) all other families
consist of horizontal (in 3D) lines converging (in the image plane) to a set of
horizontal vanishing points, that all lie close to a single line in the image plane
known as the horizon. The model thus encompasses the edge pixels, the lines,
the zenith, and the horizontal vanishing points, as well as the grouping relations
of edge pixels in the lines as well as the lines into the parallel families.

We now introduce the notation and the energy model. The edge pixels are
denoted p = {pi}i=1..P . The lines present in the scene are denoted l = {li}i=1..L.
As the model involves grouping of lines into parallel families, we denote with z the
vanishing point of the vertical line family (the zenith) and with h = {hi}i=1..H

the set of vanishing points of the horizontal families. The points h1, h2 . . . hH

thus have to lie close to a line in the image plane (we will refer to this fact as
the horizon constraint).

The energy function in our method includes the individual energy terms cor-
responding to the (pseudo-)likelihood of each edge and each line. The edge pixel
energy term is defined as:

Eedge(p|l) = min
(
θbg, min

i=1..L
θdist · d(p, li) + θgrad ∗ dangle(p; li)

)
, (1)

where d(p, li) denotes the Euclidean distance in the image plane between the
pixel p and the line li, dangle(p; li) denotes the angular difference between the
local edge direction at pixel p and the direction of the line li, θbg is the constant,
corresponding to the likelihood of the background clutter, and θdist and θgrad

are the constants corresponding to the spread of edge pixels generated by a
particular line around that line. Thus, the energy term for an edge pixel p is
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small if this edge pixel is well explained by some line from the set l and is large
otherwise. The largest possible value is θbg, which corresponds to an edge pixel
generated by the background clutter.

The line energy terms are defined as

Eline(l|h, z) = min
(
ηbg, min

i=1..H
ηdist · φ(l, hi)2, ηdist · φ(l, z)2

)
, (2)

where φ denotes the distance on the Gaussian sphere [20] between the projection
of the line l and projection of the respective vanishing point (hi or z). ηbg is the
constant, corresponding to the likelihood of lines that are neither horizontal nor
vertical, and ηdist is the constant, corresponding to the spread of lines in their
families around the respective vanishing points. Thus, the energy term for a line
l is small if this line is well explained by (i.e. passes close to) a vanishing point
from the set h ∪ {z} and is large otherwise. The largest possible value is ηbg,
which corresponds to a line that is neither vertical nor horizontal.

According to horizontal constraint introduced above all vanishing points ex-
cept the zenith have to lie close to a line in the image plane. How can we enforce
this constraint? Should a separate variable for the position of the horizon be
introduced? It turns out [21] that under our assumption about internal camera
parameters (square pixels and known principal point) this is not necessary. Un-
der these assumptions, the horizon is perpendicular to the radius vector between
the line L(z) connecting the zenith and the principal point, and we enforce this
perpendicularity with the following energy term:

Ehorizon(u, h|z) = κhor · tanψ(u − h, L(z)) (3)

where ψ is the absolute angle between the vector u − h and a perpendicular
to L(z), and κhor is a constant. The tan in (3) was chosen because it imposes
significant penalty (upto +∞) on strong non-orthogonality between the horizon
and L(z).

The final energy is thus defined as:

Etotal(l,h, z|p) =
∑

i=1..P

Eedge(pi|l) +
∑

i=1..L

Eline(li|h, z)+∑
1≤i<j≤H

Ehorizon(hi, hj |z) + Eprior(l,h) , (4)

where Eprior(l,h) = λline|l|+ λvp|h|, is an MDL prior penalizing the number of
lines |l| = L and the number of horizontal vanishing points |h| = H , thus favour-
ing simpler explanations of the scene (λline and λvp are the constants regulating
the strength of this prior). The energy (4) thus ties together the different-level
components in the image of a non-Manhattan environment, and the line-based
parsing of such an image may be performed through the minimization of (4).

Probabilistic interpretation and the model of [22]. Some of the compo-
nents of our model may be easily formulated with the language of probabilities.
In particular, the part of our model related to the edges and their grouping into
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Fig. 3. The graphical model for the discrete approximation of the energy (4). The

variables x1 . . . xX and y1 . . . yY are binary and correspond to the existence or the

absence of candidate lines and horizontal vanishing points. z stands for the location

of the zenith and takes the value in a precomputed discrete set of 2D points in the

image plane. The unary cliques corresponding to x1 . . . xX and y1 . . . yY are omitted

for clarity. The shaded nodes (edge pixels) are observed both during training and at

test time. Please, see text for more details.

lines is in the exact correspondence with the probabilistic model of Hough trans-
form derived in [22]. The next layer of the model concerned with lines and their
grouping into families permits an analogous probabilistic treatment. It is unclear,
however, if the Ehorizon term in (3) admits a probabilistic interpretation, as it
apparently involves some overcounting of the perpendicularity cues. On practice,
this non-probabilistic nature does not present a problem, as we train our model
discriminatively by tuning the constants θbg, θdist, θgrad, ηbg, ηdist, κhor, λline, λvp

on the hold-out validation set.

3 Inference

The minimization of (4) is a hard computation problem that necessitates the
use of approximations. One possible way would be to minimize it greedily in
a layer-by-layer fashion, first choosing the set of lines given the edges, then
choosing the set of vanishing points given lines, then fitting the horizon and the
zenith into the chosen lines. Such approach would correspond to the traditional
bottom-up pipeline from previous methods. Its results might be improved with
reiteration of the process through the EM-algorithm, although on practice that
suffers from the local minima problem and often gets stuck close to the initial
greedy approximation.

A different approach taken in this work is to derive a discrete approximation
to the original energy that is easier to minimize. To achieve that, we do two steps
of the bottom-up pipeline, namely line detection and vanishing point detection,
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with very low acceptance thresholds, ensuring that an extensive set of X lines
l̂1..l̂X and an extensive set of Y vanishing points ĥ1..ĥY are detected. On practice,
one may use any approach that detects lines based on the edgemap and any
approach that detect a set of vanishing points based on lines. We detail our
choices in the experimental section (see also Figure 4).

The task of the approximate minimization of (4) may then be reduced to the
minimization of the energy of discrete variables x = {xi}i=1..X , y = {yi}i=1..Y ,
and z. Here, each variable xi is binary and decides whether a candidate line
l̂i is present (xi = 1) or absent (xi = 0) in the image. Similarly, each variable
yi is binary and decides whether a candidate vanishing point ĥi is a horizontal
vanishing point that is present (yi = 1) or absent (yi = 0) in the image. Finally,
the variable z is, as defined above, a 2D point in the image plane corresponding
to the zenith. The set of its possible locations is however restricted to discrete
set of candidate vanishing points. For computational efficiency, we may further
prune the set of possible locations for z by removing candidate vanishing points
that correspond to the horizon inclinations of more than 7.5 degrees. This can
be regarded as an additional hard prior on z in our original energy.

The discrete approximation to the energy (4) is then defined by the require-
ment:

Ediscrete(x,y, z|p) ≡ Etotal({l̂j}j:xj=1, {ĥk}k:yk=1, z|p) . (5)

In other words, the discrete energy is defined as the continuos energy of the
appropriate subsets of candidate lines and vanishing points.

In more detail, the discrete energy defined in (5) can be written as:

Ediscrete(x,y, z|p)=
∑

i=1..P

Eedge(pi|{l̂j}j:xj=1) +
∑

i=1..X

xi · Eline(l̂i|{ĥk}k:yk=1, z)+∑
1≤i<j≤Y

yi · yj · Ehorizon(ĥi, ĥj |z) +
∑

i=1..X

λline · xi +
∑

i=1..Y

λvp · yi. (6)

The factor graph for the formula (6) is shown in Figure 3. Note, that due to
the truncation effect of the constants θbg and θdist in the definition of Eedge and
Eline, the connections between the Eedge factors and the line variables as well
as between the Eline factors and the vanishing points variables are sparse. Each
Eedge factor is connected only to the lines that pass nearby that edge pixel and,
likewise, each Eline factor is connected to the vanishing point variables that lie
near that line.

Since the values of p are observed, very big efficiency gains may be easily
obtained by merging (summing up) the Eedge factors that are connected to the
same (or nested) sets of line variables. Since Eedge terms constitute the vast
majority of terms in (6), this trick dramatically reduces the number of energy
terms in the model. It permits us to use quite a simple and brute-force optimiza-
tion scheme, while still allowing short optimization runtime of several seconds
for a typical photograph. In more detail, we exhaustively search through the
zenith candidate set (which typically includes less then a dozen of candidates).
Given a fixed z, we then perform optimization over the binary variables x and
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y through the Iterated Conditional Modes algorithm [23] with the randomized
node visiting order.

4 Experiments

Technical details. In our experiments we used the following strategy for choos-
ing candidate lines and candidate vanishing points. For the line detection the
probabilistic version of Hough transform [22] was used, where we set the param-
eters of the method to θbg and θdist accordingly. As [22] provides the confidence
measure for each detected line, we fixed the number of candidates to 500 and for
each image took 500 lines with the highest confidence. Figure 4 gives a typical
example of what the candidate set typically looks like.

The candidates for vanishing points were chosen using the J-linkage procedure,
described in [12]. This method is based on random sampling, so we ran it several
times starting from different random initializations. Usually we got from 50 to
100 candidates for vanishing points. After performing the inference in our model
we usually got from 2 to 5 vanishing points and groups of lines supporting each
of them.

In the experiments on York Urban dataset we exploited the coordinates of
principal point provided, in the experiments on the new dataset we assumed the
principal point to lie in the center of the image frame.

Fig. 4. Sample image from the York Urban dataset: TopLeft – the input, Bottom-
Left – all candidate lines superimposed, BottomRight – all candidate vanishing points,

TopRight – the result of the parsing. Coloring reflects grouping into parallel families.

Yellow and pink thick lines correspond to the found and the ground truth horizons

respectively (the pink line is mostly occluded due to a good fit between the two).
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Datasets. Our approach is evaluated on two datasets (Figure 2):
1. The York Urban dataset [18] contains 102 images of outdoor and indoor

scenes taken within the same location with the same camera. Most of the scenes
meet the Manhattan world assumption, as the lines available in the scene mostly
fall into the three orthogonal families.

2. The Eurasian cities dataset is a new set of 103 outdoor urban images.
The images come from the cities of different cultures, hence with different line
statistics. They were also taken with different cameras. The main difference of the
dataset is the abundance of scenes that fit poorly to the Manhattan assumption.
During the annotation, we manually specified several most distinctive lines per
each distinctive parallel line family in each image (with the interactive tool
similar to that of [18]). This allows to estimate the horizon with good accuracy
and we use it as ground truth in the comparative evaluation.
Competing methods. We have compared our approach against the two pre-
viously published methods:

1. The method of Tardif [12] is a pipeline approach which reported the top
performance on the York Urban dataset. For the experiments on the York Urban
dataset we used the author code (with the exception of the EM process that
was not published and that we reimplemented by carefully following the text of
[12]). For York Urban dataset in cases where more than 3 vanishing points were
detected, we chose 3 most orthogonal of them as described in the paper [12].
The coordinates of principal point provided by the authors of the dataset were
used during orthogonalization. For the experiments in the Eurasian Cities we did
not choose most orthogonal points because the dataset contains non-Manhattan
scenes. Parameters of EM were chosen on validation set.

2. The method of Kosecka and Zhang [14] is an approach based on the EM-
algorithm, alternating between the two stages: estimation of vanishing point
coordinates given distribution of corresponding line segments and re-estimation
of distribution of line segments according to positions of vanishing points. The
process starts with clustering line segments according to their orientation which
results in excessive number of clusters. During EM the clusters with close van-
ishing points are merged together. Also clusters that have little support are
pruned. We took the code from implementation of Automatic Photo Pop Up
system [3], which uses that method for vanishing points estimation. Parameters
of the method were tuned on the validation sets.

Importantly, to put all the methods on an equal footing, we made sure that
all three algorithms are provided with the same Canny edge map (we used the
parameters suggested by Tardif in [12]). Both baseline methods use line segments,
so we use the line segments detection implementation by [12] for both of them.

After running each method we obtain the zenith, as well as a number of
vanishing points corresponding to the parallel families of the line segments (for
baseline methods) or lines (for our method). We use this information to estimate
the position of the horizon in an image. The horizon is estimated in the same way
for all methods. Thus, we restrict it to be perpendicular to the line connecting
principal point and zenith. So the slope of horizon is given by zenith and we
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York Urban Eurasian Cities

Fig. 5. The results of the comparison of the cumulative statistics for the accuracies

of the proposed framework along with the methods of [12] and [14]. The x-axis corre-

sponds to the horizon estimation error measure (see text for more details). The y-axis

corresponds to the share of the images in the test set that has the error less than the

respective x value. In both cases, the proposed framework obtains higher accuracy than

the competitors.

estimate only its position along the 1D axis. To do this last step, we perform the
weighted least squares fit, where the weight of each detected horizontal vanishing
point equals the number of corresponding lines (or line segments).

Accuracy measure. While all the considered approaches essentially output
both low-level and high-level primitives, comparing the accuracy of the low-level
description of the scenes (e.g. set of lines) is problematic, as the ground truth
available for the datasets do not provide full set of lines. Thus, if a line or a
vanishing point is present in the output that is missing in the ground truth,
it is unclear whether this is due to the error of the algorithm or due to the
incompleteness of the ground truth.

We therefore focused on the accuracy of the horizon estimation. Assume that
the horizon is given as a (linear) function H(x) of a pixel x-coordinate. Assume
that H0(x) and H1(x) are the ground truth and the estimated horizon. We then
define the estimation error as the maximum of |H0(x) − H1(x)| over the image
domain (0 < x < image width), divided by the image height. To represent the
error over the dataset, we plot the share of the images with the error less then
τ for each τ .

Results. Quantitative results are given in Figure 5, while in Figure 4 and Fig-
ure 6, we present some qualitative examples from both datasets for our frame-
work. Note that we used the first 25 images of each dataset as a held-out
set for the parameter validation for all three competing methods2. During the

2 Through the validation, the parameters for our method for York/Eurasian cities were

set to: θbg = 8·10−5/7.6·10−5 , θdist = 4·10−5/3·10−5 , θgrad = 4·10−5/2·10−5 , ηbg =

0.1/0.1, ηdist = 1.0/0.8, λvp = 0.015/0.015, λline = 0.003/0.01, κhor = 2.0/5.0. All

angular differences were measured in radians.
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Fig. 6. Sample results of the proposed framework from both datasets. In each pair,

we give the input image and the output of the parsing. Coloring reflects grouping into

parallel families. Yellow and pink thick lines correspond to the found and the ground

truth horizons respectively. Top rows show examples of successful applications, while

the bottom one demonstrates one of the worse cases (due to the severely cluttered edge

map, the horizon has been estimated significantly below the ground truth).

validation, the area under curve statistics on the hold-out set was optimized.
The accuracy measures in the plots in Figure 5 thus reflect the performance on
the rest of the images.

As can be seen, the method presented in the paper outperforms both com-
peting methods considerably on the Eurasian cities dataset and performs on a
par with [12] and much better than [14] on the York Urban dataset. The latter
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is all the more important, given the fact the stronger competing method [12]
makes explicit use of the Manhattan assumption that is very appropriate for the
York dataset, while our method worked with the more general non-Manhattan
world model. At the same time, our current implementation is much slower than
the competing methods (few minutes per image vs. few seconds per image on a
modern PC). The time for our method is dominated by the candidate (lines and
VPs) generation and graph construction, and can be reduced significantly is less
exhaustive number of candidates would be considered.

In addition to our main error measure (horizon accuracy), we also estimated
the error of the zenith estimation on York urban dataset (where ground truth
Manhattan geometry allows accurate localization of the zenith). We measured
the errors as the angle between directions to the ground truth zenith and the
estimated zenith on a Gaussian sphere [20]. The error for our method (0.0118±
0.0292) and for the method [14] (0.0133±0.0139) were lower than the error-rate
for [12] (0.0402± 0.1918).

5 Summary and Discussion

We formulated the problem of geometric analysis of a single image in an opti-
mization framework. Given a set of observed edge pixels, the framework jointly
infers groupings of edge pixels into lines, parallel lines, vanishing points and
geometric concepts such as the zenith and the horizon. This framework has
advantages over previous bottom up methods for inference of such geometric
properties; the most significant one being the ability to incorporate a confidence
measure about scene elements in a joint framework.

We observed that many failures of the algorithms resulted from the clutter in
the edge map (Figure 6 gives an example). As demonstrated by previous works
(e.g. [12]), the effect of the clutter may be reduced substantially by local grouping
into line segments. In our framework, this can be accomplished by augmenting
the graphical model with one more layer situated between the edge pixels layer
and the lines layer.

The current framework also ignores appearance information from the scene
elements. For instance, parallel lines arising due to a railway track or a road
might have similar appearance which may provide additional cues for grouping
lines and inferring the location of the zenith and the horizon. This information
can produce better results and is a topic for future work. Another interesting
direction of work is the incorporation of an uncertainty measure in the presence
of edges.
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Abstract. In this paper we consider the problem of recovering 3D Euclidean
structure from multi-frame point correspondence data in image sequences un-
der perspective projection. Existing approaches rely either only on geometrical
constraints reflecting the rigid nature of the object, or exploit temporal informa-
tion by recasting the problem into a nonlinear filtering form. In contrast, here we
introduce a new constraint that implicitly exploits the temporal ordering of the
frames, leading to a provably correct algorithm to find Euclidean structure (up
to a single scaling factor) without the need to alternate between projective depth
and motion estimation, estimate the Fundamental matrices or assume a camera
motion model. Finally, the proposed approach does not require an accurate cali-
bration of the camera. The accuracy of the algorithm is illustrated using several
examples involving both synthetic and real data.

Keywords: Structure from Motion, Perspective Images, Rank Minimization.

1 Introduction

Recovering 3D structure from a sequence of 2D images has been the subject of sub-
stantial research [1,2]. For the orthographic projection case, Tomasi and Kanade [3]
proposed a method based on factorizing a matrix containing the coordinates of the
tracked points, which is forced to have at most rank 4. The method has been extended
to paraperspective [4,5] and perspective [6,7] projection. In the former case, the al-
gorithm relies on the estimation of a set of point–dependent projective depths. Sturm
and Triggs [6] proposed to recover these depths by using the epipolar constraint be-
tween two views, which in turn requires estimating the fundamental matrix. Triggs [7]
extended this method by refining the projective depths through an iterative procedure
alternating with factorization. Other iterative approaches include [8,9,10,11].

Often, factorization techniques are followed by a bundle adjustment to minimize
the 2D re-projection error [12,13,14,15,16,17]. In general, this entails a non-linear opti-
mization based on descend methods which are very sensitive to initialization. [9] avoids
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this problem by solving a sequence of eigenvalue problems, but convergence cannot be
guaranteed.

A common feature of the approaches described above is the fact that they rely en-
tirely on geometrical constraints, discarding temporal information1. Indeed, most of
these methods are based on quasi-linear algorithms that alternate between estimating
the structure and projections, and whose convergence cannot be guaranteed [18,19,20],
and the resulting solutions are invariant with respect to frame permutations.

Temporal correlations have been exploited to solve the related problem of simulta-
neous localization and estimation (SLAM), where the goal is to use data provided by
a single moving platform to reconstruct its 3 D trajectory and a local map. In this con-
text, temporal information is exploited by recasting the problem as a non-linear filtering
one. The goal is to estimate a state vector that contains the motion state of the moving
sensor (e.g. position, velocity, pose) and the 3D coordinates of given features, as well
as a probability density function that quantifies the uncertainty in this estimation. Ear-
lier approaches to SLAM required the use of additional sensor data, e.g. odometry or
stereo, while later ones, [21] avoid this by requiring a short calibration run using a
landmark with a known position. In principle, success of this approach hinges upon the
availability of a motion model for the camera, and access to the inputs to the model.
While this additional information is typically available in robotic applications, this is
not the case for sequences generated by an unknown camera (or object) motion. This
difficulty can be circumvented by assuming a simple model (e.g. constant velocity or
acceleration [21]), subject to uncertainty. However this leads to larger uncertainty in
the estimated feature position. Alternatively, [22] avoid this issue by using the dynam-
ics for tracking only, while reconstructing the 3-D geometry by first triangulating two
key-frames obtained during an initialization stage with user input, followed by epipo-
lar search when new keyframes are added and local bundle adjustment. While SLAM
methods work well in practice, convergence to the true depths cannot be guaranteed
due to uncertainty in the motion model, coupled with the non-convex nature of bun-
dle adjustment. Further, (external) calibration data is usually unavailable in pure SfM
applications.

In this paper, we present a convex-optimization based solution to the problem of Eu-
clidean 3D structure recovery from an image sequence under perspective projection.
The proposed method avoids the estimation of epipolar geometry and the fundamen-
tal matrix. This is accomplished by exploiting the temporal information encoded in the
ordering of the given image sequence to recast the problem into a rank minimization
form, that can be efficiently solved using existing convex relaxations. The main theoret-
ical result of the paper shows that indeed the solution to this rank-minimization problem
recovers the correct Euclidean depths of the scene points, up to a single constant scaling
factor for all points across the entire motion sequence. This result is general, and neither
depends on the object motion model nor necessitates explicitly finding it. The effective-
ness of the algorithm is illustrated with several examples involving both synthetic and
real data with known ground truth.

1 In general, the temporal ordering of the frames is only used while tracking the features and
establishing correspondences across frames.
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2 3D Structure from Perspective Images

Consider a camera Cartesian coordinate system defined with its origin at the center of
projection and its Z axis along the camera optical axis. Let N be the number of points
of a moving rigid object, and let Pij = (Xij , Yij , Zij)T be the 3D Cartesian camera
coordinates of point Pj , j = 1, . . . , N , at time i, i = 1, . . . , F . Then, the corresponding
2D image coordinates at time i, pij(uij , vij), are given by

uij = f
Xij

Zij
− cu, vij = αf

Yij

Zij
− cv (1)

where f is the camera’s focal length, α is its pixel aspect ratio and (cu, cv) is its princi-
pal point. In the sequel, for notational simplicity we will assume that (cu, cv) = (0, 0)2.
With this notation, the problem of interest here can be formalized as follows.
Problem 1: Given the above setup, find the 3D scene structure Pij from the N × F
feature correspondences pij .

Classically, this problem has been solved using the Strum Triggs Algorithm [6],
based on iteratively computing the best rank 4 approximation to a matrix constructed
from the image data, and the associated projective depths. Since the problem is not
jointly convex, this algorithm is guaranteed to converge only to a local solution. Fur-
ther, the algorithm as stated above can only recover the 3D structure up to an arbitrary
(time–varying) projectivity. Recovering the Euclidian geometry entails an additional
computationally challenging non–linear, non–convex optimization.

3 Preliminaries

Below we introduce some preliminary definitions required to recast Problem 1 as a rank
minimization problem.

Definition 1. An operator L that maps a vector xo ∈ Rn to an infinite sequence of
vectors xk

.= {L[xo]}k ∈ Rn is said to be point-wise rigid if

‖{L [P − Q]}k‖2 = ‖P − Q‖2 for all P,Q, k

Definition 2. N points P1, . . . ,PN ∈ R3 are said to belong to a rigid body if, for
each frame k, there exist a point Ok ∈ R3 (not necessarily in the object) and a point-
wise rigid operator L such that for all points and all time instants, the corresponding
trajectories satisfy: Pki−Ok = {L [Poi − Oo]}k , k = 1, 2, . . . where Pki denote the
coordinates of point Pi at time k.

For example, for a constant rotationRabout a moving axis we have{L [Poi − Oo]}k =
Rk [Poi − Oo].

Definition 3. Given a vector sequence {yk}n+l−1
k=1 its Hankel matrix is defined as:

Hy,n,l
.=

⎡⎢⎢⎢⎣
y1 y2 · · · yl

y2 y3 · · · yl+1
...

...
. . .

...
yn yn+1 · · · yl+n−1

⎤⎥⎥⎥⎦
2 By redefining, if necessary, ûij = uij + cu and v̂ij = vij + cv .
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4 Recovering Geometry from Hankel Rank Minimization

In this section, we show that the Euclidean structure of a rigid object undergoing a point-
wise rigid transformation can be recovered (up to a single scaling factor) by minimizing
the rank of the Hankel matrix associated with the trajectory, subject to one linear and
two rank constraints. From its definition, it is clear that the rank of the Hankel matrix
encapsulates temporal correlations, since it is not invariant under a permutation of the
ordering of the frames. The surprising result is that this rank also encapsulates rigidity,
since as we prove below, the correct 3D rigid geometry, up to an overall constant scaling
factor, is precisely the one that minimizes it, subject to the additional constraints. This
result allows for recasting Problem 1 into a rank-minimization form.

Theorem 1. Consider the image trajectories pki = (uki, vki)T , i = 1, 2, 3, k =
1, . . . , F of the perspective projections of three points Pki, i = 1, 2, 3, belonging to
a rigid moving under some point-wise rigid motion operator L. Then, the 3D camera
Cartesian coordinates of Pki i = 1, 2, 3, k = 1, . . . , F are given by:

Pki =

⎡⎣Xki

Yki

Zki

⎤⎦ =
1

λoρk
Z∗

ki

⎡⎣ 1
f uki
1

αf vki

1

⎤⎦ (2)

where λo and ρ > 0 are constant factors (point and frame independent), and where
{Z∗

k1, Z
∗
k2, Z

∗
k3}k=1,...,F solve the following rank minimization problem

min{Z∗
k1,Z∗

k2,Z∗
k3}k=1,...,F

rank
([

Hy13 Hy23

])
subject to: Zki ≥ 1 (3)

where

yij
k =

⎡⎣ 1
f (Z∗

kiuki − Z∗
kjukj)

1
αf (Z∗

kivki − Z∗
kjvkj)

Z∗
ki − Z∗

kj

⎤⎦
and Hy

.= Hy,�F/2�,F , the Hankel matrix of the sequence {yk}F
k=1.

Proof: See the Appendix.

Theorem 1 allows for recovering the correct relative 3D structure by solving a rank–
minimization problem. This follows from the fact that since Z∗

ki = λoρ
kZki, then

Z∗
ki

Zki
=

Z∗
kj

Zkj
for all (i, j), where Z and Z∗ denote the actual and recovered depths,

respectively. While in many situations this may suffice, in others it is of interest to re-
cover the geometry up to an overall, frame-independent scaling. As we show next, this
can be accomplished by adding one linear and two rank constraints to the problem.

Corollary 1. The correct 3D geometry (up to a single constant scaling factor) satisfies
(3), subject to one linear and two rank constraints.

Proof. Note that the solutions to (3) satisfy: ‖Pki − Pkj‖2
2 =

(
1

λoρk

)2
‖P∗

ki − P∗
kj‖2

2

where P∗
ki

.= Z∗
ki

[uki

f
vki

αf 1
]T

. Next, impose rigidity of the reconstructed trajectories
only across the first and last frames, leading to:

0 = ‖P∗
Fi − P∗

Fj‖2
2 − ‖P∗

1i − P∗
1j‖2

2 ⇒
0 =

(
λoρ

F
)2 ‖PFi − PFj‖2

2 − (λoρ)2 ‖P1i − P1j‖2
2 ⇒ ρ = 1

(4)
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where the last equality follows from the fact that the actual trajectories satisfy ‖Pki −
Pkj‖2 = constant, for all k. Thus, imposing rigidity of the reconstructed object only
for 2 points across the first and last frames forces the overall scaling to become frame
independent (e.g. αk = λo(1)k = λo). As we show below, the constraint (4) can be
recast as a combination of linear and rank constraints. Start by rewriting the constraint
‖|P∗

11 − P∗
12‖2

2 = ‖|P∗
F1 − P∗

F2‖2
2 as:

Z2
11(

u2
11

f2
+

v2
11

f2α2
+ 1) + Z2

12(
u2

12

f2
+

v2
12

f2α2
+ 1) − 2 ∗ Z11Z22(

u11u12

f2
+

v11v12

f2α2
+ 1)−

Z2
F1(

u2
F1

f2
+

v2
F1

f2α2
+ 1)−Z2

F2(
u2

F2

f2
+

v2
F2

f2α2
+ 1)+2 ∗ ZF1ZF2(

uF1uF2

f2
+

vF1vF2

f2α2
+1)=0

(5)

Next, define the following variables:

m20
t

.= Z2
t1, m11

t
.= Zt1Zt2, m02

t
.= Z2

t2 (6)

In terms of these new variables, (5) can be rewritten as the linear constraint:

m20
1 (

u2
11

f2
+

v2
11

f2α2
+ 1) + m02

1 (
u2

12

f2
+

v2
12

f2α2
+ 1) − 2 ∗ m11

1 (
u11u12

f2
+

v11v12

f2α2
+ 1)−

m20
F (

u2
F1

f2
+

v2
F1

f2α2
+ 1) − m02

F (
u2

F2

f2
+

v2
F2

f2α2
+ 1) + 2 ∗ m11

F (
uF1uF2

f2
+

vF1vF2

f2α2
+ 1) = 0

(7)

Further, it can be easily seen3 that (6) is equivalent to

rank
{[

m20
t m11

t

m11
t m02

t

]}
= 1, t = {1, F} (8)

��

From this corollary, it follows that the 3D geometry (up to a single scaling factor) of a
moving rigid object can be found by using the following algorithm.

Algorithm 1. RANK MINIMIZATION

BASED 3D-DEPTH RECOVERY

Data: Camera Intrinsic Parameters.
Input: (uki, vki), the temporally ordered 2-D coordinates of N points in F frames.
Output: 3D depths Zki up to an overall scaling constant.
1. Form the difference vectors yiN

k
.= P∗

ki − P∗
kN , i = 1, . . . , N − 1 where

P∗
ki

.= Z∗
ki

[uki

f
vki

αf 1
]T

, and the corresponding Hankel matrices HyiN

2. Solve: minZ∗
ki
≥1rank

[
Hy1N . . .HyN−1N

]
subject to (7) and (8)

3 This follows from simply decomposing the matrix as M = vT v, with vT =
[
Zt1 Zt2

]
.
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4.1 Computational Complexity and Robustness Considerations

In principle, Algorithm 1 will recover the unknown Zij in a single optimization step.
Moreover, although rank minimization is generically NP–hard, efficient convex relax-
ations are available. In particular, in this paper we used the LMIRank relaxation [23].
A potential problem here is the computational cost entailed in solving simultaneously
for all Zki, since the computational complexity of this relaxation scales as (number
of decision variables)5. On the other hand, using larger sets of points minimizes the
effects of outliers. To balance these effects we pursued a RANSAC (Random Sample
Consensus) [24] approach. Since the minimum number of points required to define a
3D coordinate system is 4, we proceeded by finding the 3D coordinates corresponding
to 4 points, randomly selected from the complete set of image points, Ns times. Out of
these 4-tuples, the one preserving rigidity the most was used to find the coordinates of
the remaining points by exploiting the fact that the measurements matrix has at most
rank 4. Thus, given the 3D trajectories of 4 points Pki, the depth of a fifth point Zk5
can be found by solving a problem of the form: mins,Zk5 ‖W · s− P5‖, where

W =

⎡⎢⎣P11 . . . P14

... . . .
...

PF1 . . . PF4

⎤⎥⎦ ; P5
.
=
[

1
f
Z15u15

1
fα

Z15v15 Z15 . . . 1
f
ZF 5uF5

1
fα

ZF5vF5 ZF5

]T

5 Experiments

The accuracy of the proposed algorithm is illustrated next with experiments using
synthetic and real data. In all cases, the 3D structure recovered using our algorithm
(HankelSFM), is compared against the results of the Hung and Tang (HTSFM) and
Mahamud and Hebert (MHSFM) algorithms. Videos of the data are provided as addi-
tional material.

5.1 Synthetic Data: The Utah Teapot

Next, we illustrate the robustness of the proposed algorithm to noise and poor cali-
bration data. The data consists of the trajectories of the perspective projections of 137
points4 on the Utah Teapot, centered at (880, 250, 860)′, as seen by a pin-hole camera
with focal length f = 400 and image size 800 × 600 pixels.

In the first experiment, the teapot underwent a constant angular velocity rotation
ωr = 0.3, around the axis a = (0, 0, 1)′, while in the second experiment, the camera
is also translated with constant velocity (−10, 5, 0)′. Figure 1 (a)–(d) shows renderings
for frames 1, 5 and 10 for the rotation experiment and the corresponding reconstruc-
tions using HankelSFM, HTSFM and MHSFM. As shown there, HankelSFM preserves
the Euclidean geometry while the other methods deform the object frame to frame.
Quantitative comparisons are given in Figures 1 (e)-(f), 2 and 3. Figure 1 (e)-(f) shows

4 Nine points were selected from each surface of the Teapot.
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Fig. 1. (a): Frames 1, 5, and 10 of the actual teapot sequence. (b)–(d): 3D structure recov-
ered using HankelSFM (b), MHSFM (c) and HTSFM (d). Note that HankelSFM does not
introduce geometric distortion between frames. Right:Real and estimated depth trajectories
for two basis points. Stars: ground truth data; solid line: HankelSFM; dashed line: MHSFM;
and dashed and dotted line: HTSFM. (e) Rotation experiment. (f) Rotation and translation
experiment.

the depth trajectories of two of the four points selected as basis points by the Han-
kelSFM method, and the depths recovered using the three algorithms. All trajecto-
ries were scaled by the single scaling factor c =

∑
k

∑
i Zki/

∑
k

∑
i Z∗

ki where Zki

and Z∗
ki are the ground truth and the estimated depth for point i at frame k, respec-

tively. Since the data is noiseless, HankelSFM exactly recovers the geometry (up to
the scaling factor c) as expected, while the other methods introduce varying distortion
across frames. Quantitatively, the distortion for all the points can be seen in Figure 2,
showing the plots of the differences between the ratio of the elements of W and W ∗,
the true and reconstructed 3D measurement matrices, respectively, and the normaliza-
tion factor c . As shown there, only the HankelSFM method produces a flat surface
indicating a uniform scaling factor across all frames. Additionally, table 1 summa-
rizes the 3D and the 2D re-projection median error for the three methods (noiseless
data) while Figures 3 (a) and (b) plot them for increasing noise levels up to 3 pix-
els. In all cases, the errors are significantly lower for HankelSFM than for MHSFM
and HTSFM. Finally, the very small effect of the choice of focal length on the accu-
racy of the depth estimation is illustrated in Figure 3 (c) where the relative variation
of the scaling factor Δ = maxk,i ‖Zki/Z

∗
ki − c‖/c is plotted against K , as the fo-

cal length used by the algorithm is set to Kf where f is the true focal length and
0.5 ≤ K ≤ 1.5.
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Fig. 2. W
W∗ − c for the translation and rotation Utah Teapot experiment. (a) HankelSFM. (b)

MHSFM. (c) HTSFM.
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Fig. 3. (a) 2D re-projection and (b) 3D reconstruction median error as noise is increased from 0
to 3 pixels (solid line HankelSFM, dashed line MHSFM and dashed and dotted line HTSFM).
(c) Scaling factor variation Δ as the focal length used by the algorithm is varied from 0.5 to 1.5
times the true focal length.

5.2 Real Data with Ground Truth

The purpose of these experiments is to compare the performance of HankelSFM against
HTSFM and MHSFM using real data. In order to asses the accuracy of the algorithms,
the 2D data was generated by projecting the noisy 3D coordinates of special markers
attached to an umbrella and to a human sitting on a swivel chair that were measured
using a VICON motion capture system5 as shown in Figure 4, left. Quantitative re-
sults and comparisons between the 3D reconstructions and ground truth are displayed

5 It should be noted that the objects used in these experiments are flexible. Furthermore, the
markers are about 1cm. in diameter and hence have a significant depth which affects the mea-
surement of their location as the object moves in front of the motion capturing system.
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Fig. 4. (a) Sample frames of the Umbrella (top) and Human on a chair (bottom) sequences. (b)
Estimated depth trajectories for two basis points. Stars: ground truth data; solid line: HankelSFM;
dashed line: MHSFM; and dashed and dotted line: HTSFM.

in Figures 4, right, and 5. Finally, 3D and 2D re-projection errors are summarized in Ta-
ble 1. As shown there, the HankelSFM algorithm recovers 3D structure up to a unique
constant and its 3D accuracy outperforms the other two algorithms.

(a) (b) (c) (d) (e) (f) (g)

Fig. 5. Left: Frames 1, 6 and 12 of the umbrella sequence. (a) Ground truth data, and 3D structure
recovered using (b) HankelSFM, (c) MHSFM and (d) HTSFM. Right: Frames 1, 7, 14 frames
of the human on a chair sequence with ground truth data (dashed line) superimposed with 3D
structure (solid line) recovered using (e) HankelSFM, (f) MHSFM and (g) HTSFM.
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Fig. 6. W
W∗ − c for the umbrella (top row) and for the human on a chair (bottom row) sequences.

(a) HankelSFM. (b) MHSFM. (c) HTSFM.

Table 1. 3D and 2D re-projection median error

Data Set HankelSFM MHSFM HTSFM
3D (mm.) 2D (pixels2) 3D (mm.) 2D (pixels2) 3D (mm.) 2D (pixels2)

Teapot (R) 4.89e-1 0 1.34e+1 3.5e+0 1.34e+1 1.2e-7
Teapot(RT) 1.61e-4 0 3.00e+1 1.0e+0 3.20e+1 2.5e-7
Umbrella 3.50e+1 0 8.22e+1 0.6176 8.32e+1 0.0136
Human 4.10e+1 0 1.37e+2 2.3091 1.51e+2 0.2713

6 Conclusions

In this paper we propose a novel algorithm for 3D Euclidean structure recovery from
image sequences under perspective projection. The main idea is to exploit geometri-
cal information encapsulated in the rank of a matrix (the Hankel matrix) constructed
from the measurements. This rank implicitly encapsulates temporal information, since
it strongly depends on the temporal order of the sequence: the Hankel matrices cor-
responding to two sequences with the same data in different order have generically
different rank. The main result of the paper shows that the provably correct depths (up
to an arbitrary, overall scaling constant) are the ones that minimize the rank of the cor-
responding Hankel matrix, thus allowing for recasting the SfM problem into a rank
minimization one. This result was established by exploiting the existence of an under-
lying model governing the motion of the rigid body. However, no assumptions are made
about this model, and there is no need to find its parameters. Indeed, our results hold
independently of the object motion model. While rank-minimization problems are NP
hard, recent developments in the field allow for relaxing them to a convex optimiza-
tion form that can be efficiently solved. When compared to existing approaches, the



Euclidian Structure Recovery from Motion via Hankel Rank Minimization 81

proposed algorithm recovers the 3D geometry, up to a single arbitrary scaling constant,
and does require neither solving a challenging non-linear optimization, performing bun-
dle adjustment, external camera calibration or the availability of a motion model for the
moving object.

The advantages of the proposed algorithm were illustrated with synthetic and real
image sequences. Research is currently underway seeking to extend these results to
articulated and non-rigid objects.
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A Proof of Theorem 1

The proof, based on basic concepts from Linear Systems theory (see for instance the
textbook [25]), consists of three steps:

1. Find an operator L with 2 inputs, such that its response to an impulse applied at the
ith input is precisely yi,αki

k

.= (αkiPki − αk3Pk3).
2. Use a realization of L to find the minimal rank of any linear time varying operator

that interpolates the data, and to establish that the minimum rank interpolant is
time-invariant and corresponds to the case αki = λoρ

k, for some λo, ρ > 0.
3. Use the connection between rank of a Linear Time Invariant (LTI) operator and the

rank of its associated Hankel matrix to establish that minimizing the rank of Hyα
ki

recovers the depths Zti up to an overall scaling factor of the form αt = λoρ
t.

Step 1; Assume6, that the Markov parameters of L and Ok satisfy:

Lt =
∑nL

i=1 AL
i Lt−i, Ot =

∑nO

i=1 AO
i Ot−i, AL

i ,AO
i ∈ R3×3 (9)

Let xi
t

.= Pti − Ot. From the above, it follows that the trajectories xi
k also satisfy a

model of the form

xi
t =

nL∑
j=1

AL
j xi

t−j , (10)

or, in compact form:
ξi
t+1 = ALξi

t,
xi

t = CLξi
t

(11)

where

AL
.=

⎡⎢⎢⎢⎢⎢⎣
AL

1 AL
2 . . . AL

nL−1 AL
nL

I 0 . . . . . . 0
0 I 0 . . . 0
...

...
. . .

. . .
...

0 0 . . . I 0

⎤⎥⎥⎥⎥⎥⎦ ξi
t

.=

⎡⎢⎢⎢⎣
xi

t−1
xi

t−2
...

xi
t−nL

⎤⎥⎥⎥⎦ , CL =
[
I 0 . . . 0

]

6 This is without loss of generality, since over finite horizons, any trajectory Lk can be interpo-
lated with an ARMA model of sufficiently high order.

http://rsise.anu.edu.au/robert/lmirank/
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With this notation, the trajectories xi
t in (10) are given by:

xi
t = CLξi

t = CLALξi
t−1 = · · · = CLAt

Lξi
o (12)

Thus, xi
t is the impulse response of the system:

ξi
t+1 = ALξi

t + ξi
oδt

xi
t = CLξi

t
(13)

A similar situation holds for Ot, with Aj
L and AL replaced by Aj

O and AO, respec-
tively, and ξt by a vector ωt containing the past values Ok, k = t, . . . , t − nO + 1.
Hence Ot can be obtained as the impulse response of a system with state space realiza-
tion (AO, ωo, [I 0 . . . 0]).

Given two points Pi,Pj from the rigid, and a time varying scaling constant αt,
consider now the vector yαt

t
.= (αtPti − Ptj). Since Pti = xi

t + Ot, we have that

yαt
t = αt(xi

t + Ot) − (xj
t + Ot) = αtxi

t − xj
t + (αt − 1)Ot

From (13) and linearity it follows that the trajectory yαt
t can be generated as the impulse

response of the system:

ζt+1 =

⎡⎣AL 0 0
0 AL 0
O O AO

⎤⎦ ζt +

⎡⎣ξi
o

ξj
o

ωo

⎤⎦ δt

yαt
t =

[
αtCL −CL (αt − 1)CO

]
ζt

(14)

Finally, consider three points P1,P2,P3 and the corresponding vectors yiαti
.= αtiPti−

αt3Pt3, i = 1, 2. It follows from above that the two trajectories yiαti can be simulta-
neously generated as the impulse response of the system:

ζt+1 = Aζt + Bu; u ∈ R2

yt = Ctζt
(15)

where

A =

⎡⎣AL 0 0 0 0 0
0 AL 0 0 0 0
0 0 AO 0 0 0
0 0 0 AL 0 0
0 0 0 0 AL 0
0 0 0 0 0 AO

⎤⎦ B =

⎡⎢⎢⎢⎢⎢⎣
ξ1

o 0

ξ3
o 0

ωo 0

0 ξ2
o

0 ξ3
o

0 ωo

⎤⎥⎥⎥⎥⎥⎦, CL =
[
I 0 . . . 0

]
, CO =

[
I 0 . . . 0

]

Ct = [αt1CL αt3CL (αt1 − αt3)CO αt2CL −αt3CL (αt2 − αt3)CO]
(16)

Step 2: Recall [25] that for linear time invariant systems, given a triple (A,B, C), with
A ∈ Rn×n, the order of the minimal realization (Am,Bm, Cm) that has the same in-
put/output response is given by the rank of the product of its controllability and observ-
ability matrices, defined as:

Kctrb =
[
B AB . . .An−1B

]
, Kobs =

[
CT AT CT . . . (An−1)T CT

]
(17)
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However, this result cannot be directly applied to (15), due to the time–varying scaling
factors αti in Ct. In this case, the order of the minimal realization (Am,Bm, Cm) that
has the same input/output response as the original triple (A,B, C) is given by ([25],
Chapter 9) rank(W c

t W o
t ) where

Wo
t = (Kt,o)

T Kt,o, Wc
t = (Kt,c)

T Kt,c, Kt,o =

⎡⎢⎢⎢⎣
Ct−1

Ct−2A
...

CoAt−1

⎤⎥⎥⎥⎦ , Kt,c =
[B AB . . .At−1B]

Note that the pair (A,B) is time invariant (since no scaling factors are involved). Fur-
ther, from a PBH argument (see [25], page 366) it can be shown that, if t ≥ n, then,
generically, rank(Kt,c) = n. On the other hand, using the explicit expressions for A
and C yields, for each block-row of Kt,o:

(Kt,o)j =
[
α(t−j)1

(
KL

obs

)
j
−α(t−j)3

(
KL

obs

)
j

(α(t−j)1 − α(t−j)3)
(
KO

obs

)
j

α(t−j)2
(
KL

obs

)
j

−α(t−j)3
(
KL

obs

)
j

(α(t−j)2 − α(t−j)3)
(
KO

obs

)
j

]

where (M)j denotes the jth block–row of a matrix M, and KL
obs, K

O
obs denote the

observability matrices of (CL,AL) and (CO,AO), respectively. Since by construction
both realizations are observable, it follows that, if the motion of Ok has at least one
mode not contained in the operator L (the relative motion of the rigid with respect
to O) then the minimum rank of Kt,o over all αti > 0 is achieved by selecting αt1 =
αt2 = αt3 = αt, an overall, time varying scaling factor. Further, note that this minimum
is achieved by an LTI system if and only if αt = λoρ

t for some λo, ρ �= 0.
Step 3. Let Ẑti and P̂ti, denote the actual values of Zti and the 3D trajectories, re-
spectively. Consider any candidate trajectory Z̃ti

.= αtiẐti and denote by Pti, the 3D
trajectory reconstructed from the 2D data using Z̃ti. Finally, define the difference vec-
tors:

yi
t

.= Pti − Pt3 =
(
αtiP̂ti − αt3P̂t3

)
(18)

and the associated matrix Hy =
[
Hy1 Hy2

]
. Consider any sequence α̃ti > 0 and let

L(α̃ti) denote the associated operator. From step 2 above, it follows that

minαtirank{L(αti)} ≤ rank{L(α̃ti)} ≤ rank{H(α̃ti)}

with the equalities holding only in the case where L is an LTI operator, e.g. α̃ti =
λoρ

t, i = 1, 2, 3. Hence, the depths Zti obtained by minimizing the rank of Hy satisfy
Zti = λoρ

tẐti for some λo, ρ �= 0.
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Jérôme Courchay1, Arnak Dalalyan1, Renaud Keriven1, and Peter Sturm2

1 IMAGINE, LIGM, Université Paris-Est
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Abstract. A technique for calibrating a network of perspective cameras based
on their graph of trifocal tensors is presented. After estimating a set of reliable
epipolar geometries, a parameterization of the graph of trifocal tensors is pro-
posed in which each trifocal tensor is encoded by a 4-vector. The strength of this
parameterization is that the homographies relating two adjacent trifocal tensors,
as well as the projection matrices depend linearly on the parameters. A method
for estimating these parameters in a global way benefiting from loops in the graph
is developed. Experiments carried out on several real datasets demonstrate the ef-
ficiency of the proposed approach in distributing errors over the whole set of
cameras.

1 Introduction

Camera calibration from images of a 3-dimensional scene has always been a central
issue in Computer Vision. The success of textbooks like [1,2] attests this interest. In
recent years, many methods for calibration have been proposed. Most of these work
either rely on known or partially known internal calibrations [3,4,5,6,7,8,9,10] or deal
with an ordered sequence of cameras [11,12,13,14]. In many practical situations, how-
ever, the internal parameters of cameras are unavailable or available but very inaccurate.
The absence of an order in the set of cameras is also very common when processing,
for instance, Internet images.

In this paper, we deal with the problem of calibrating a network of cameras from
a set of unordered images, the main emphasis being on the accuracy of the projective
reconstruction of camera matrices. Traditionally, this situation is handled by factorizing
the measurement matrix [15,16], which may be subject to missing data [17,18] because
of occlusions. The methodology adopted in the present work is substantially different
and is based on the notion of the graph of trifocal tensors rather than on the factorization.
The experiments on real datasets show that our approach leads to highly competitive
results that furnish a good initialization to the bundle adjustment (BA) algorithm [19].

Even in the case of calibrated cameras, most of the aforementioned methods are
based on a graph of cameras (in which the edges are the epipolar geometries) which is
made acyclic by discarding several edges. On the other hand, a number of recent studies,
oriented toward city modeling from car or aerial sequences, point out the benefits of
enforcing loop constraints. Considering loops in the graph of cameras has the advantage
of reducing the drift due to errors induced while processing the trajectory sequentially

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 85–99, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(cf. Fig. 1). [20] merges partial reconstructions, [21] constrains coherent rotations for
loops and planar motion. Adapted to their specific input, these papers often rely on
trajectory regularization or dense matching [22,23]. [24] is a notable exception, where
loop constraints are added to sparse Structure from Motion (SfM), yet taking as input
an ordered omnidirectional sequence and assuming known internal parameters. The

Fig. 1. Multi-view stereo reconstruction [25] using cameras calibrated without (left) and with
(right) using the loop-constraint. When the loop constraint is not enforced, the accumulation of
errors results in an extremely poor reconstruction.

method proposed in the present work consists of the following points:

– Our starting point is a set of unknown cameras linked by estimated epipolar geome-
tries (EG). These are computed using a state-of-the-art version of RANSAC [26],
followed by a maximum likelihood improvement described in [13]. We assume that
along with the estimated fundamental matrices, reliable epipolar correspondences
are known. These correspondences are made robust by simultaneously considering
several camera pairs, like in [3]. This produces a set of three-view correspondences
that will be used in the sequel.

– We group views into triplets. Three views (i, j, k) are considered as a valid triplet if
(a) the EGs between i and j as well as between j and k have been successfully com-
puted at the previous step and (b) there are at least 4 three-view correspondences
in these images. To reduce the number of nodes, some of the estimated epipolar
geometries are ignored, so that inside a triplet, only two of the three fundamental
matrices are considered known. The advantage of this strategy is that we do not
need to enforce the coherence of fundamental matrices. At first sight, this can be
seen as a loss of information. However, this information is actually recovered via
trifocal tensors.

– We define a graph having as nodes valid camera triplets. Therefore, there are two
fundamental matrices available for each node. Two nodes are connected by an edge
if they share a fundamental matrix. We demonstrate that for each node there exists
a 4-vector such that all the entries of the three camera matrices are affine functions
of this 4-vector with known coefficients. Moreover, the homographies that allow
the registration of two adjacent nodes ν and ν′ are also affine functions depending
on 4 out of the 8 unknown parameters corresponding to ν and ν′. To speed-up the
computations, for each node only 50 (or less) three-view correspondences that are
the most compatible with the EGs are used.
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– If the graph of triplets is acyclic, the equations of three-view correspondences for
all nodes lead to a linear estimate of all the cameras. In case, the graph of triplets
contains one or several loops, each loop is encoded as a (non-linear) constraint
on the unknowns. Starting from an initial value computed as a solution to the un-
constrained least squares, we sequentially linearize the loop constraints and solve
the resulting problem by (sparse) linear programming. This can be efficiently done
even for very large graphs. It converges very rapidly, but the loop constraints are
fulfilled only approximately.

– In the case where the loop constraints are not satisfied exactly, we proceed by ho-
mography registration and estimation of camera matrices by linear least-squares
under norm constraint. This is done exactly via a singular value decomposition
producing as output all cameras in a projective space. To provide a qualitative eval-
uation, we recover the metric space using an implementation of [27], and a single
Euclidean bundle adjustment that refines the metric space and camera positions.

Thus, we propose a method that accurately recovers geometries, without any sequential
process, and attempts to enforce the compatibility of cameras within loops in the early
stages of the procedure. An important advantage conferred by our approach is that the
number of unknown parameters is kept fairly small, since we consider only the cameras
(four unknowns for each triplet) and not the 3D points. Our reconstruction is further re-
fined by bundle adjustment. Taking loops into account and avoiding error accumulation,
the proposed solution is less prone to get stuck in local minima.

The remainder of the paper is organized as follows. Section 2 presents the back-
ground theory and terminology. Our algorithm is thoroughly described in Sections 3
and 4. The results of numerical experiments conducted on several real datasets as well
as a comparison to state-of-the-art software is provided in Section 5. A discussion con-
cludes the paper.

2 Background

In this work, we consider a network of N uncalibrated cameras and assume that for
some pairs of cameras (i, j), where i, j = 1, . . . , N , i �= j, an estimation of the funda-
mental matrix, denoted by Fij , is available. Let us denote by eij the unit norm epipole
in view j of camera center i. Recall that the fundamental matrix leads to a projective
reconstruction of camera matrices (Pi,Pj), which is unique up to a homography.

The geometry of three views i, j and k is described by the Trifocal Tensor, hereafter
denoted by T ijk . It consists of three 3 × 3 matrices: Tijk

1 ,Tijk
2 and Tijk

3 and provides
a particularly elegant description of point-line-line correspondences in terms of linear
equations

pT
i

⎡⎢⎣lTj T
ijk
1

lTj T
ijk
2

lTj T
ijk
3

⎤⎥⎦ lk = 0, (1)

where pi is a point in image i (seen as a point in projective space P2) which is in
correspondence with the line lj in image j and with the line lk in image k. Considering
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the entries of T ijk as unknowns, we get thus one linear equation for each point-line-
line correspondence. Therefore, one point-point-point correspondence pi ←→ pj ←→
pk leads to 4 independent linear equations by combining an independent pair of lines
passing through pj in image j with an independent pair of lines passing through pk in
image k.

Since a Trifocal Tensor has 27 entries, the previous argument shows that 7 point-
point-point correspondences suffice for recovering the Trifocal Tensor as a solution of
an overdetermined system of linear equations. Recall however that the Trifocal Tensor
has only 18 degrees of freedom. Most algorithms estimating a Trifocal Tensor from
noisy point-point-point correspondences compute an approximate solution to the linear
system by a least squares estimator (LSE) and then perform a post-processing in order to
get a valid Trifocal Tensor. An alternative approach consists in using a minimal solution
that determines the three-view geometry from six points [28,29].

2.1 Main Ingredients of Our Approach

Let us describe now two elementary results that represent the building blocks of our ap-
proach, relying on the fact that when two out of three fundamental matrices are known,
the Trifocal Tensor has exactly 4 degrees of freedom.

Proposition 1. For three views i, j and k, given two fundamental matrices Fij and Fik,
there exists a 4-vector γ = [γ0, . . . , γ3] such that T ijk is given by:

Tijk
t = Aij

t

⎡⎣0 0 0
0 0 1
0 γ0 γt

⎤⎦ (Aik
t )

T
(2)

for every t = 1, 2, 3, where Ais
t =

[
(Fis

t,1:3)T , (Fis
t,1:3)T × eis , eis

]
, for s = j, k.

Moreover, T ijk is geometrically valid, i.e. , there exist 3 camera matrices Pi, Pj and
Pk compatible with Fij and Fik and having T ijk as the Trifocal Tensor.

The proof of this result is deferred to the supplemental material. It is noteworthy that
the claims of Proposition 1 hold true under full generality, even if the centers of three
cameras are collinear. In view of [1], the camera matrices parameterized by γ that are
compatible with the fundamental matrices Fij and Fik as well as with the Trifocal
Tensor defined by Eq. 2 are given by (up to a projective homography)

Pi = [I3×3 |03×1], Pk = [γ0[eik]×Fki | eik],
Pj = kron

(
[γ1:3, 1]; eij

)
− [[eij ]×Fji |03×1],

(3)

where kron(·, ·) stands for the Kronecker product of two matrices.
In the noiseless setting, Proposition 1 offers a minimal way of computing the 4 re-

maining unknowns from point-point-point correspondences. One could think that one
point-point-point correspondence leading to 4 equations is enough for retrieving the 4
unknowns. However, since two EGs are known, only one equation brings new informa-
tion from one point-point-point correspondence. So we need at least 4 point-point-point
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correspondences to compute the Trifocal Tensor compatible with the two given funda-
mental matrices. In the noisy case, if we use all 4 equations associated to point-point-
point correspondences, the system is then overdetermined and one usually proceeds by
computing the LSE.

The second ingredient in our approach is the parameterization of the homography
that bridges two camera triplets having one fundamental matrix in common. Let i, j,
k and � be four views such that (a) for views i and k we have successfully estimated
the fundamental matrix Fik and (b) for each triplet (i, j, k) and (k, i, �) the estimates of
two fundamental matrices are available. Thus, the triplets (i, j, k) and (k, i, �) share the
same fundamental matrix Fik . Using equations (3), one obtains two projective recon-
structions of camera matrices of views i and j based on two 4-vectors γ and γ′. Let us
denote the reconstruction from the triplet (i, j, k) (resp. (k, i, �)) by Pi

γ and Pk
γ (resp.

Pi
γ′ and Pk

γ′ ). If the centers of cameras i and k differ, then there is a unique homography
Hγ,γ′ such that

Pi
γHγ,γ′ ∼= Pi

γ′ , Pk
γHγ,γ′ ∼= Pk

γ′ , (4)

where ∼= denotes equality up to a scale factor. Considering the camera matrices as
known, one can solve (4) w.r.t. Hγ,γ′ . One readily checks that1

Hγ,γ′ =

⎡⎢⎣ kron(γ ′
1:3, e

ki) − [eki]×Fik eki

−γ0
2 tr([eik]×Fki[eki]×Fik)(eik)T 0

⎤⎥⎦ . (5)

To sum up this section, let us stress that the main message to retain from all these
formulas is that Hγ,γ′ , as well as the camera matrices (3) are linear in (γ, γ′).

3 Estimating Tensors by Sequential Linear Programming

This section contains the core of our contribution which is based on a graph-based
representation of the triplets of cameras. This is closely related to the framework devel-
oped in [5], where the graph of camera pairs is considered. The advantage of operating
with triplets instead of pairs is that there is no need to distinguish between feasible and
infeasible paths.

3.1 Graph of Trifocal Tensors

The starting point for our algorithm is a set of estimated EGs that allow us to define a
graph Gcam so that (a) Gcam has N nodes corresponding to the N cameras and (b) two
nodes of Gcam are connected by an edge if a reliable estimation of the corresponding
epipolar geometry is available. Then, a triplet of nodes i, j, k of Gcam is called valid if
(a) there is a sufficient number of three view correspondences between i, j and k, and
(b) at least two out of three pairs of nodes are adjacent in Gcam.

If for some valid triplet all three EGs are available, we remove the least reliable one
and define the graph Gtriplet = (Vtriplet, Etriplet) having as nodes valid triplets of cameras

1 See supplemental material for more details.



90 J. Courchay et al.

and as edges the pairs of triplets that have one fundamental matrix in common. In view
of Proposition 1, the global calibration of the network is equivalent to the estimation of
a 4-vector for each triplet of cameras. Thus, to each node v of the graph of triplets we
associate a vector γv ∈ R4. The large vector Γ = (γv : v ∈ Vtriplet) is the parameter of
interest in our framework.

If, by some chance, it turns out that the graph of triplets is acyclic, then the problem
of estimating Γ reduces to estimating NV = Card(Vtriplet) independent vectors γv.
This task can be effectively accomplished using point-point-point correspondences and
the equation (1). As explained in Section 2, a few point-point-point correspondences
suffice for computing an estimator of γv by least squares. In our implementation, we
use RANSAC with a minimal configuration of four 3-view correspondences in order to
perform robust estimation.

3.2 Calibration as Constrained Optimization

However, acyclic graphs are the exception rather than the rule. Even if the camera graph
is acyclic, the resulting triplet graph may contain loops. To explain how the loops in the
graph Gtriplet are handled, let us remark that one can associate a homography (cf. (5))
to each adjacent pair (v, v′) of nodes of Gtriplet. Using these homographies, each loop
of the graph of triplets yields a constraint on the homographies and, therefore, on the
parameter vector Γ . For instance, the 3-loop v ←→ v′ ←→ v′′ ←→ v gives rise to the
constraint Hγv ,γv′Hγv′ ,γv′′Hγv′′ ,γv

∼= I4×4. This equation defines a set of 15 poly-
nomial constraints on the unknown vector Γ . If the triplet graph contains Nloop loops,
then we end up with 15Nloop constraints. Our proposal—in the case of general graphs
of triplets—is to estimate Γ by minimizing an energy derived from the equations (1)
and point-point-point correspondences (similarly to the LSE proposed in the previous
subsection) subject to 15Nloop constraints.

The main advantage of this approach is that if a solution to the proposed optimiza-
tion problem is found, it is guaranteed to be consistent w.r.t. the loops, meaning that
each camera matrix will be uniquely determined up to a scale factor and an overall
homography ambiguity.

3.3 Sequential Linear Programming

Instead of solving the optimization problem that is obtained by combining the LSE
with the loop-constraints, we propose here to replace it by a linear program. To give
more details, let us remark that every loop-constraint can be rewritten as fj(Γ ) = 0,
j = 1, . . . , 15, for some polynomial functions fj . Gathering these constraints for all
Nloop loops, we get

fj(Γ ) = 0, j = 1, . . . , 15Nloop. (6)

On the other hand, in view of (1) and (2), the point-point-point correspondences can be
expressed as an inhomogeneous linear equation system in Γ

MΓ = m, (7)
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where M is a 4N3-corr × 4N matrix and m is a 4N3-corr vector with N3-corr being the
number of correspondences across three views. The matrix M and the vector m are
computed using the known fundamental matrices. Since in practice these matrices are
estimated from available data, the system (7) need not be satisfied exactly. Then, it is
natural to estimate the parameter-vector Γ by solving the problem

min ‖MΓ − m‖q
q subject to fj(Γ ) = 0, ∀j = 1, . . . , 15Nloop, (8)

for some q ≥ 1. Unfortunately, there is no q for which this problem is convex and,
therefore, it is very hard to solve. To cope with this issue, we propose a strategy based
on local linearization.

We start by computing an initial estimator of Γ , e.g., by solving the unconstrained
(convex) problem with some q ≥ 1. In our implementation, we use RANSAC with
q = 2 for ensuring robustness to erroneous three-view correspondences. Then, given
an initial estimator Γ0, we define the sequence Γk by the following recursive relation:
Γk+1 is the solution to the linear program

min ‖MΓ − m‖1 subject to |fj(Γk) + ∇fj(Γk)(Γ − Γk)| ≤ ε, (9)

where ε is a small parameter (we use ε = 10−6). There are many softwares—such
as GLPK, SeDuMi, SDP3—for solving problem (9) with highly attractive execution
times even for thousands of constraints and variables. Furthermore, empirical expe-
rience shows that the sequence Γk converges very rapidly. Typically, a solution with
satisfactory accuracy is obtained after five to ten iterations.

3.4 Accounting for Heteroscedasticity

The goal now is to make the energy that we minimize in (9), which is purely algebraic,
meaningful from a statistical viewpoint. Assume equations (7) are satisfied up to an
additive random noise: MΓ = m + ξ, where the random vector ξ has independent
coordinates drawn from the centered Laplace distribution with constant scale. Then the
energy in (9) is proportional to the negative log-likelihood. The constancy of the scale
factor means that the errors are homoscedastic, which is a very strong hypothesis. We
observed that all three view correspondences recorded by a fixed triplet have nearly
the same scale for the errors, while the scales for different triplets are highly variable.
To account for this heteroscedasticity of the noise, we use the initial estimator of Γ to
estimate one scale parameter σv per node v ∈ Vtriplet. This is done by computing the
standard deviation of the estimated residuals. Using {σv}, the energy in problem (9) is
replaced by

∑
v ‖MvΓ −mv‖1/σv. Here, Mv is the submatrix of M containing only those

rows that are obtained from three-view correspondences recorded by v. The vector mv

is obtained from m in the same way.

4 Homography Registration and Estimation of Projection
Matrices

Assume that we have a graph of trifocal tensors, Gtriplet, each node of which will be de-
noted by v1, v2, . . . , vn. In the previous step, we have determined parameters γ1, . . . , γn,
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such that γi characterizes the trifocal tensor represented by vi. A naive strategy for es-
timating camera matrices is to set one of the cameras equal to [I3×3 |03×1] and to
recover the other cameras by successive applications of the homographies Hγ,γ′ to the
camera matrices reconstructed according to (3). However, in general situations, the vec-
tor Γ computed by sequential linear programming as described in the previous section
satisfies the loop constraints up to a small error. Therefore, the aforementioned naive
strategy has the drawback of increasing the error of estimation for cameras computed
using many homographies Hγ,γ′ . In order to avoid this and to uniformly distribute the
estimation error over the set of camera matrices, we propose a method based on homog-
raphy registration by SVD. Thus, the input for the method described in this section is a
vector Γ for which the loop constraints are satisfied up to a small estimation error.

4.1 The Case of a Single Loop

We assume in this subsection that Gtriplet reduces to one loop, that is each node vi has
exactly two neighbors vi−1 and vi+1 with standard convention and vn+i = vi for all i.
(This applies to all the indices in this subsection.) For each node vi representing three
views, we have already computed a version of the projection matrices P1,γi , P2,γi , P3,γi .
Furthermore, for two neighboring nodes vi and vi+1 we have computed a homography
Hi,i+1 so that Pj,γi+1 ∼= Pj+1,γiHi,i+1, j ∈ {1, 2}. Based on the relative homographies
{Hi,i+1} we want to recover absolute homographies Hvi that allow to represent all the
matrices Pj,γi in a common projective frame. In other terms, in the ideal case where
there is no estimation error, the matrices Hvi should satisfy

Pj,γi Hvi ∼= Pj+i−1,∗, j ∈ {1, 2, 3}. (10)

Obviously, the set {Hvi} can only be determined up to an overall projective homography.

Proposition 2. If for some i = 1, . . . , n, the cameras Pi+1,∗ and Pi+2,∗ have different
centers, then Hvi ∼= Hi,i+1Hvi+1 . Furthermore, if the centers of each pair of consecutive
cameras are different, then one can find a projective coordinate frame so that

i) Hvi = Hi,i+1Hvi+1 , ∀i = 1, . . . , n − 1,

ii) α Hvn = Hn,1Hv1 , where α can be determined by α = 1
4Trace(

∏n
i=1 H

i,i+1),
iii) Let H̄ be the (4n) × 4 matrix resulting from the vertical concatenation of matrices

Hvi . The four columns of H̄ are orthonormal.

This result, the proof of which is presented in the supplemental material, allows us
to define the following algorithm for estimating the matrices {Hvi}. Given the relative
homographies {Hi,i+1}, we first compute α according to the formula in ii) and then
minimize the cost function

n−1∑
i=1

‖Hvi − Hi,i+1Hvi+1‖2
2

max(σ2
vi

, σ2
vi+1

)
+

‖α Hvn − Hn,1Hv1‖2
2

max(σ2
v1

, σ2
vn

)
(11)

w.r.t. {Hvi}, subject to the orthonormality of the columns of H̄. Here, ‖ · ‖2 is the Frobe-
nius norm. The exact solution of this (non-convex) optimization problem can be com-
puted using the singular value decomposition of a matrix of size 4n × 4n constructed
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First frame Second frame Last frame

Fig. 2. This figure illustrates the improvement achieved at each step of our algorithm. If the cam-
eras are reconstructed without imposing loop constraints, the epipolar lines between the first and
the last frames are extremely inaccurate (1st row). They become much more accurate when the
constrained optimization is performed (2nd row). Finally, the result is almost perfect once the
homography registration is done.

from α and {Hi,i+1}. Since this is quite standard (based on the Courant-Fisher minimax
theorem [30, Thm. 8.1.2]), we do not present more details here.

4.2 The Case of Several Loops

Assume now that we have identified several loops in the graph of trifocal tensors. Let
Nloop be the number of these loops. We apply to each loop the method of the previous
section and get a homography for every node of the loop. In general, one node of Gtriplet

may lie in several loops, in which case we will have several homographies for that
node. It is then necessary to enforce the coherence of these homographies. To this end,
we define the graph Gloop having Nloop nodes, each node representing a loop. Two nodes
of Gloop are linked by an edge, if the corresponding loops have non-empty intersection.
We will assume that the graph Gloop is connected, since otherwise it is impossible to
simultaneously calibrate different connected components.

The next step consists in determining a minimal depth spanning tree Tloop of Gloop.
Since the number of loops is assumed small, this step will not be time consuming.
Let (L,L′) be a pair of adjacent nodes of Tloop. By an argument analogous to that
of Proposition 2, one can show that there exists a 4 × 4 homography HL,L′

such that
Hv,L ∼= Hv,L′

HL
′,L up to an estimation error, for every triplet of cameras v ∈ L ∩ L′.

Here, Hv,L (resp. Hv,L′
) stands for the homography assigned (cf. previous subsection) to

the triplet v as a part of the loop L (resp. L′). The homography HL
′,L can be estimated

by minimizing the objective function
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∑
v∈L∩L′

‖αvH
v,L − Hv,L′

HL
′,L‖2

2/σ2
v (12)

w.r.t. the matrix HL
′,L and parameters {αv} subject to ‖HL′,L‖2

2 +
∑

v∈L∩L′ α2
v = 1.

Once again, this minimization can be carried out by computing the eigenvector corre-
sponding to the smallest singular value of a suitably defined matrix.

Finally, to enforce the coherence of absolute homographies computed using different
loops, we proceed as follows. We do not modify the homographies computed within
the loop L0 constituting the root of the minimal depth spanning tree Tloop. For any other
loopL, let L0 → L1 → . . . → Lk → L be the (unique) path joiningL to the root. Then,
every absolute homography Hv,L, v ∈ L, computed within the loop L using the method
of the previous subsection is replaced by Hv,LHL,Lk · · · HL1,L0 . After this modification,
the images by Hv,L of the projection matrices Pj,γv (j = 1, 2, 3) will all lie in nearly the
same projective space. This makes it possible to recover the final projection matrices Pi

by a simple computation presented in the next subsection.

4.3 Estimating Projection Matrices

Once the set of absolute homographies estimated, we turn to the estimation of camera
matrices {Pj,∗}. Due to the estimates computed in previous steps, each projection ma-
trix Pj,∗ can be estimated independently of the others. To ease notation and since there
is no loss of generality, let us focus on the estimation of P1,∗. We start by determining
the nodes in Gtriplet that contain the first view. Let V1 denote the set of these nodes. To
each node v ∈ V1 corresponds one estimator of P1,∗, denoted by P1,γv . Furthermore,
we have a set of estimated homographies Hv,L that satisfy, up to an estimation error,
the relation P1,vHv,L ∼= P1,∗. This is equivalent to αv,LP1,vHv,L = P1,∗, ∀v ∈ V1,
∀L ⊃ {v} with some αv,L ∈ R. In these equations, the unknowns are the reals αv,L
and the matrix P1,∗. Since this matrix should be of rank 3, it has nonzero Frobenius
norm. Therefore, we estimate P1,∗ by P1 defined as a solution to

arg min
P

min
{αv,L}:‖P‖2

2+‖α‖2
2=1

∑
L

∑
v∈L∩V1

‖αv,LP1,vHv,L − P‖2
2/σ2

v, (13)

where α stands for the vector having as coordinates the numbers αv,L. Once again, the
problem (13) can be explicitly solved using the SVD of an appropriate matrix.

5 Experiments

Implementation. In order to apply the methodology we have just described, we extract
and match SIFT [31] descriptors from all the images. Then, epipolar geometries are
estimated by DEGENSAC [32]. Note that some speed-up in this step can be achieved
by using one of the recent versions of RANSAC [26,33]. Estimated EGs allow us to
identify and remove wrong correspondences as well as to create feature tracks. Using
these tracks and EGs as input for our algorithm, we compute as output the projection
matrices of all the cameras. In order to be able to visually assess the reconstruction
quality, all cameras and the 3D structure are upgraded to Euclidean [27].
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Table 1. Characteristics of the datasets used for the experimental validation. From left to right:
number of frames in each sequence, the resolution of each image, the number of 2D image points
used for the final BA for our method and for bundler [5], the mean squared reprojection error.

Dataset #frames resolution
# image points MSRE (pxl)

Our Bundler Our Bundler

Dinosaur 36 576 × 720 45,250 37,860 0.27 0.25
Temple 45 480 × 500 26,535 23,761 0.08 0.11
Fountain P11 11 2048 × 3072 57,547 23,648 0.16 0.13
Herz-Jesu R23 23 2048 × 3072 129,803 − 0.41 −
Detenice 34 1536 × 2048 30,200 − 0.15 −
Calvary 52 2624 × 3972 54,798 − 0.51 −

Fig. 3. One frame of each dataset used to test our methodology. From left to right: dinosaur,
temple, fountain P11, Herz-Jesu R23 [34], Calvary, Detenice fountain.

Datasets. We tested our methodology on six datasets: the dinosaur sequence (36 frames),
the temple sequence (45 frames), the fountain P11 sequence (11 frames), the Herz-Jesu
R23 sequence (23 frames), the Detenice fountain sequence (34 frames) and the calvary
sequence (52 frames). For the first three datasets, the ground truth of camera matrices
is available on the Web.

Quality measures. Since the main contribution of the present paper concerns the pro-
jective reconstruction, it is natural to assess the quality of the proposed approach using
the distance:

dproj({Pj}, {Pj,∗}) = inf
α,H

n∑
j=1

‖αjP
jH− Pj,∗‖2

2, (14)

where Pj and Pj,∗ are respectively the reconstructed and the true camera projection
matrices, α = (α1, . . . , αn) is a vector of real numbers and H is a 3D-homography.
Naturally, this measure can be used only on sequences for which the ground truth is
available. Note also that the computation of the infimum in (14) is a non-convex op-
timization problem. We solve it by first computing the one-norm solution to the least
squares problem minα,H

∑n
j=1 ‖PjH−α−1

j Pj,∗‖2
2, and then use this solution as a starting

point for an alternating minimization. For the examples considered here, this converges
very rapidly and, since the results are good, we believe that the local minimum we find
is in fact a global minimum, or at least not too far from it.
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(a) (b)

(c)

Fig. 4. This figure shows the errors in estimated camera matrices for our method and for bundler.
The per-camera errors and their boxplots for the dinosaur sequence (a), the temple sequence (b)
and for the fountain P11 sequence (c). One can remark that our method achieves the same level
of accuracy as that of bundler, despite the fact that we do not use any information on the internal
parameters, while bundler assumes that the skew is zero and the principal point is the center.

Results. For the dinosaur, temple and fountain P11 sequences, since ground truth ex-
ists, we compared our results with those of bundler [5], which is a state-of-the-art cali-
bration software. The ground truth was normalized so that the Frobenius norm of all the
cameras is one. For both reconstructions (ours and bundler), we computed numbers αj

and a homography H by minimizing (14). This allows us to define the per-camera error
as ‖αjP

jH − Pj,∗‖2
2 for the jth camera. As shown in Fig. 4, not only these errors are

small, but also our results are quite comparable to those of bundler despite the fact that
our method does not perform intermediate BAs and does not assume that the principal
point is in the center and the skew is zero. One can also note that the error is well dis-
tributed over the whole sequence of cameras due to the fact that both methods operate
on the closed sequence. Furthermore, the results reported for fountain P11 are achieved
without final BA, proving that the method we proposed furnishes a good starting point
for the non-linear optimization.

As for the datasets where no ground truth is known, we have chosen to use as measure
of evaluation the multiview stereo reconstruction of the scene based on the method of
[25]2. The results are shown in Fig. 1 (right) for the calvary sequence and in Fig. 5 for
the Herz-Jesu R23 and the Detenice fountain sequences. In the aim of comparing our
results with other approaches, let us recall that (as reported in [34]) on the Herz-Jesu
R23 data the ARC3D software succeeded to calibrate four of the 23 cameras, while
the method proposed in [4] calibrated all the cameras with a relatively large error for

2 Since multiview stereo reconstruction is not the purpose of the paper and is only used for
illustration, the results shown in Fig. 1 and 5 are obtained without the final mesh refinement.
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Fig. 5. Multi-view stereo reconstruction using the camera matrices estimated by our method for
the Herz-Jesu R23 and Detenice fountain datasets. For these data, the ground truth is unavailable
but the quality of the scene reconstruction demonstrates the accuracy of estimated cameras.

cameras 6-11. Although we are unable to quantitatively compare our reconstruction
to that of [4], the accuracy of the 3D scene reconstruction makes us believe that the
estimated cameras are very close to the true ones.

6 Conclusion

In this paper, we have proposed a new approach to the problem of autocalibration of a
network of cameras. Our approach is based on a representation of the network of cam-
eras by a graph of trifocal tensors and on a natural parameterization of camera matrices
and relating homographies. We have proposed to estimate the unknown parameters by
a constrained optimization that can be recast in a linear program. Thanks to the spar-
sity of the matrices involved in this linear program, the running times of the proposed
algorithm are very attractive even for large scale datasets. The experiments reported in
this paper show that our approach leads to state-of-the-art results without assuming any
kind of information on the internal parameters.
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Abstract. We present an efficient structure from motion algorithm that

can deal with large image collections in a fraction of time and effort of

previous approaches while providing comparable quality of the scene and

camera reconstruction. First, we employ fast image indexing using large

image vocabularies to measure visual overlap of images without running

actual image matching. Then, we select a small subset from the set of

input images by computing its approximate minimal connected dominat-

ing set by a fast polynomial algorithm. Finally, we use task prioritization

to avoid spending too much time in a few difficult matching problems

instead of exploring other easier options. Thus we avoid wasting time on

image pairs with low chance of success and avoid matching of highly re-

dundant images of landmarks. We present results for several challenging

sets of thousands of perspective as well as omnidirectional images.

Keywords: Structure from motion, Image set reduction, Task prioriti-

zation, Omnidirectional vision.

1 Introduction

We seek to reconstruct 3D scene structure and camera poses from a large col-
lection of images downloaded from the web or taken by a camera mounted on a
moving vehicle as in the Google Street View. This is a challenging task because
unstructured web collections often contain a large number of very similar images
of landmarks while, on the other hand, image sequences often have very limited
overlap between images. Computation effort of large scale structure from motion
is dominated by image matching, which is often done only to find that matched
images actually do not have visual overlap.

Most of the state-of-the-art techniques for 3D reconstruction from unorganized
image sets [1,2,3,4] start the computation by performing exhaustive pairwise im-
age matching which becomes infeasible for image sets comprising thousands of
images. Even Photo Tourism [5], one of the most known 3D modeling systems
from unordered image sets, uses exhaustive pairwise image feature matching and
exhaustive pairwise epipolar geometry computation to create the image graph

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 100–113, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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with vertices being images and edges weighted by the uncertainty of pairwise
relative position estimations which is later used to lead the reconstruction. By
finding the skeletal set [6] as a subgraph of the image graph having as few in-
ternal nodes as possible while keeping a high number of leaves and the shortest
paths being at most constant times longer, the reconstruction time improves
significantly but the time spent on image matching remains the same. Recent
advancement of the aforementioned technique [7] abandons exhaustive pairwise
image matching by using shared occurrences of visual words [8,9] to match only
the ten most promising images per each input image. On the other hand, the
number of computed image matchings still remains rather high for huge im-
age sets. The presented computational speed is achieved also thanks to massive
parallelization which demands grid computing on 496 cores.

We aim at reducing the number of image matchings by reducing the size of
the image set, because it may be highly redundant. Opposed to the technique
presented in [10], we do not cluster the input images using GIST [11] but we
select a subset of input images in such a way that all the remaining images
have a significant visual overlap with at least one image from the selected ones
(Section 2). As this visual overlap is measured by shared occurrences of visual
words [9], the method is more robust to viewpoint changes because it seeks for
images capturing the same 3D structure rather than for images acquired from the
same viewpoint, as demonstrated in [12]. Furthermore, the method works also for
omnidirectional images where GIST often fails. For selecting the subset of input
images, the approximate minimal connected dominating set is computed by a
fast polynomial algorithm [13] on the graph constructed according to the visual
overlap. The algorithm used is closely related to the maximum leaf spanning tree
algorithm employed in [6] but the composition of the graph is quite different and
less computationally demanding in our case.

The actual SfM pipeline uses the atomic 3D models reconstructed from camera
triplets introduced by [14] as the basic elements of the reconstruction but the
strict division of the computation into steps is relaxed by introducing a priority
queue which interleaves different reconstruction tasks in order to get a good
scene covering reconstruction in limited time (Section 3). Our aim here is to
avoid spending too much time in a few difficult matching problems by exploring
other easier options which lead to a comparable resulting 3D model in shorter
computational time. We also introduce model growing by constructing new 3D
points when connecting an image which allows for sparser image sets than those
which could be reconstructed by [14].

2 Image Set Reduction

When performing sparse 3D reconstruction from user-input images, the input
image set may often be highly redundant, such as photographs acquired by
tourists at landmark sites. As it is not needed to use all such input images in
order to get a 3D model covering the scene captured in them, it is possible to
speed the reconstruction up by using only a suitable subset of input images.
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Algorithm 1. Approximate minimum CDS computation [13]
Input Unweighted undirected graph G = (V, E).

Output List S of vertices belonging to the minimum CDS of G.

I. Label all vertices v ∈ V white.

II. Set D := {} and repeat until no white vertices are left:

1: For all black vertices v ∈ V set c(v) := 0.

2: For all gray and white vertices v set c(v) := number of white neighbours of

v.

3: Set v∗ := arg max
v

c(v).

4: Label v∗ black and add it into D.

5: Label all neighbours of v∗ gray.

III. Set S := D and connect components of the subgraph of G induced by D by adding

at most 2 vertices per component into S in a greedy way.

IV. Return S.

We seek for a method that would remove the unnecessary images from the
input image set while affecting neither the quality nor the connectivity of the
resulting 3D model much. The concept of visual words, which first appeared
in [9], has been used successfully for matching images and scenes [8]. It proved
its usefulness also for near duplicate image detection [12] when the scene is
captured from different viewpoints or under different lighting conditions. Our
aim is to (i) evaluate pairwise image similarity efficiently following [15,7] and
(ii) formulate the selection of the desired subset of input images as finding a
suitable subgraph of the graph constructed according to image similarity.

2.1 Image Similarity

We use the bag-of-words approach to evaluate image similarity. In particular,
we follow the method proposed in [15] to create the pairwise image similarity
matrix MII containing the cosines of the angles between the normalized tf-idf
vectors computed from the numbers of occurrences of the quantized SURF [16]
image feature descriptors in individual images. Next, we create an unweighted
undirected graph GII expressing image similarity. Vertices of GII are the input
images and we add five edges per vertex connecting it with the five most similar
images according to the values of MII , which is close to the approach used in [7].
Edges are not added if the measured similarity falls under 0.05. Notice that there
may (and often will) exist vertices with degree higher than five in the resulting
graph as some images may be similar to many other images.

2.2 Minimum Connected Dominating Set

According to [13], the minimum connected dominating set (CDS) problem is
defined as follows. Given a graph G = (V, E), find a minimum size subset S
of vertices, such that the subgraph induced by S is connected and S forms a
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(a) (b)

Fig. 1. Minimum CDS computation. Vertices belonging to the minimum dominating

set D are labeled black, vertices added when connecting the components in order to

get S are labeled blue. (a) General graph. (b) Graph being a singly connected line.

dominating set in G. In a graph with a dominating set, each vertex is either
in the dominating set or adjacent to some vertex in the dominating set. The
problem of finding the minimum CDS is known to be NP-hard [17] but [13]
presents a fast polynomial algorithm with an approximation ratio of ln� + 3,
� being the maximum vertex degree in the graph, see Algorithm 1.

We use the aforementioned algorithm to find the minimum connected domi-
nating set SII of the graph GII , see Figure 1(a), and only the images correspond-
ing to the vertices in SII are further used for the sparse 3D model reconstruction.
Edges of the subgraph of GII induced by D (Algorithm 1, Step III.) together
with the edges connecting the components of this subgraph in order to get SII

are used as the seeds of the reconstruction.
The usage of the dominating set provides for connecting the removed images

to the resulting 3D model reconstructed from the selected ones using camera
resectioning [18] if required, as an image is removed only if it is similar to at
least one image which remains in the selected subset, i.e. there exists visual over-
lap between the resulting model and each of the removed images. Furthermore,
the connectivity of the resulting 3D model is preserved by using the connected
dominating set which does not allow for splitting the originally connected graph
into components. For non-redundant image sets, e.g. when the graph expressing
image similarity is a singly connected line, the method removes only the first and
the very final images because removing more images would affect model connec-
tivity, see Figure 1(b). On the other hand, the reduction of highly redundant
image sets is drastic, as shown in Section 4.1.

3 3D Model Construction Using Tasks Ordered by a
Priority Queue

The reduced image set is input into our 3D reconstruction pipeline which grows
the resulting 3D model from several atomic 3D models. The computation is di-
vided into tasks, each of them can either try to create a new atomic 3D model
from three images, or try to connect one image to a given 3D model, see Fig-
ure 2. The order of the execution of different tasks is determined by task priority
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Fig. 2. Schematic visualization of the computation. The task retrieved from the head

of the priority queue can be either an atomic 3D model construction task (dark gray) or

an image connection task (light gray). Unsuccessful atomic 3D model reconstruction (–)

inserts another atomic 3D model reconstruction task with the priority key doubled into

the queue, a successful one (+) inserts five image connection tasks. Unsuccessful image

connection (–) inserts the same task again with the priority key doubled, a successful

one (+) inserts a new image connection task. Merging of overlapping 3D models is

called implicitly after every successful image connection if the overlap is sufficient.

keys set when adding them to the priority queue being the essential underlying
data structure. Note that the task with the smallest priority key has the highest
priority, i.e. it is always in the head of the queue, in our implementation of the
priority queue. Our aim is to set task priority keys in such a way that stopping
the computation at any time would give a good scene covering sparse 3D model
for the time given which is demanded e.g. by online SfM services. The state-of-
the-art SfM approaches [5,6,7] implement this priority queue implicitly in such
a way that they may get stuck by solving a difficult part of the reconstruction
even when an easier path to the goal exists, as they are greedily growing from a
single seed. Using our approach, several seeds are grown in parallel so the easiest
path is actively searched for.

First, the queue is filled with one candidate camera triplet for atomic 3D
model reconstruction per seed. The triplet is constructed from the two cameras
C1, C2 being the endpoints of the edge corresponding to the seed. The third
camera C∗

3 is selected as

C∗
3 = argmax

C3

min(MII(C1, C3), MII(C2, C3)) (1)

and the priority key of this task is set to 1 − MII(C1, C2).
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Next, the task from the head of the priority queue is taken and executed. As
we are just starting the computation, it will be an atomic 3D model creation
task. If the atomic 3D model reconstruction from a given candidate camera
triplet is not successful, the camera triplet is rejected and another candidate
camera triplet for the same seed is input into the queue with the priority key
doubled. The new third camera accompanying cameras C1 and C2 is selected
similarly as in Equation 1 by taking the camera C∗

3 with the n-th largest value
of min(MII(C1, C

∗
3 ), MII(C2, C

∗
3 )) and increasing n. After a successful atomic

3D model creation, the vicinity of the respective seed is searched for camera
candidates suitable for connecting with the newly created atomic 3D model and
tasks connecting the five most suitable cameras are input into the queue. We put
the cameras contained in the atomic 3D model into the set Cc and the rest of the
cameras into Cn. Then, we search for a candidate camera C∗

r to be connected to
the atomic 3D model using

(C∗
r , C∗

s ) = arg max
(Cr,Cs)∈Cn×Cc

MII(Cr, Cs). (2)

The priority key of this task is set to 1 − MII(C∗
r , C∗

s ). Other four candidate
cameras are selected similarly using the second, third, fourth, and fifth largest
value of MII(C∗

r , C∗
s ).

Alternatively, the head of the priority queue may contain an image connection
task. After a successful image connection, a task connecting another camera to
the same partial 3D model is created using Equation 2 again with a larger set
Cc and input into the queue in order to keep the number of image connection
tasks at five per a partial model. When the connection of an image to a given 3D
model is unsuccessful, the task is input into the queue again with the priority
key doubled because it may be successful if tried again after other images are
successfully connected. In order to keep the resulting reconstruction consistent
and connected, grown 3D models are implicitly merged together when they share
at least five images. If the merge is not successful, it will be tried again when
the number of shared images increases again.

The whole procedure is repeated until the priority queue is empty or the
available time runs out. The following paragraphs describe particular parts of
the pipeline in deeper detail.

3.1 Creation of Atomic 3D Models

Atomic 3D model reconstruction introduced in [14] has been improved and ex-
tended in several ways:

1. SIFT [19] and SURF [16] image feature detectors and descriptors have been
added as it shows out that a combination of many different detectors is
needed for difficult image sets. On the other hand, for easy image sets, it is
possible to use only the fastest of them, which is SURF in our case.

2. Camera calibration does not need to be the same for all images in the set
and can be obtained from the EXIF info of JPEG images.



106 M. Havlena, A. Torii, and T. Pajdla

3. The formula computing the quality score q has been simplified into:

q = |{X : τ(X) ≥ 5◦}|, (3)

τ(X) being the apical angle measured at the 3D point X . In contrast with
the original formula, 3D points with even larger apical angles do not con-
tribute more to the quality score as we found out that it does not bring any
significant improvement over the simple formula.

We require the quality score of at least 20 to accept a given candidate camera
triplet as being suitable for reconstructing. Together with the remaining triplet
quality pre-tests, the decision rule is the following: A given candidate camera
triplet is accepted if and only if the results of pairwise epipolar geometries are
consistent (the inlier ratio of the RANSAC finding the common scale is higher
than 0.7), at least fifty 3D points have been reconstructed, at least twenty of
them have apical angles larger than 5 degrees, and their projections cover a
sufficiently large portion of the three respective viewfields.

3.2 Model Growing by Connecting Images

Connection of a new image to a given partial 3D model proceeds in two stages.
First, the pose of the corresponding camera Cg with respect to the 3D model is
estimated. Secondly, promising cameras from the vicinity of the newly connected
one are used to create new 3D points.

Every 3D point already contained in the model has a descriptor which is
transferred from one of the corresponding images during its triangulation. Thus
it is easy to find 2D-3D matches between the reconstructed 3D points and the
feature points detected and described in the candidate image being connected.
To ensure reasonable speed even for large models with millions of points, we do
one-way matching only with strict criteria on the first/second nearest neighbour
distance ratio, setting it to 0.7 [19]. If the number of tentative matches is smaller
than 20, the connection is not successful. Otherwise, RANSAC sampling triplets
of 2D-3D matches is used to find the camera pose [18] having the largest support
evaluated by the cone test [14]. Local optimization is achieved by repeated cam-
era pose computation from all inliers [20] via SDP and SeDuMi [21]. We require
the inlier ratio to be higher than 60% to consider the connection as successful
and continue.

Next, we find the cameras already contained in the partial model, which have
some viewfield overlap with the newly connected camera, by examining the pro-
jections of the inlier 3D points from the previous stage. We take a set Cp of
all cameras, which contain projections of at least 20 inlier 3D points, and try
to triangulate 3D points from camera pairs (Cg, Ci) : Ci ∈ Cp. Newly triangu-
lated 3D points with apical angles larger than 5 degrees are accepted if they are
projected to at least three cameras after being merged based on the shared 2D
feature points in Cg. Cone test can further reject a 3D point if those projections
are not consistent with any possible 3D point position. Finally, sparse bundle
adjustment [22] is used to refine the whole partial reconstruction after adding
new 3D points and their projections.
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3.3 Merging Overlapping Partial Models

When two partial 3D models share images, they usually share also 2D feature
points which are the projections of some already triangulated 3D points. There-
fore, we can avoid costly descriptor matching and create tentative 3D point
matches between the two partial 3D models from pairs of 3D points which project
to the same 2D feature points in both models.

As the 2D-3D matching used when connecting new images is rather strict, it
often fails to find correspondences between not so distinctive regions, e.g. regions
corresponding to the repetitive scene structures, which leads into triangulating
the same scene 3D point once more at the latter stage. After connecting many
images, scene 3D points may have several triangulated copies in the model, that
is why the tentative 3D point matches created for merging often form large
connected components, each of them corresponding to a single scene 3D point.
After splitting all of these components into two parts, one per each partial model
being merged, we use the cone test for each of those parts to verify that given
3D points can be merged into one. When this “internal merge” consolidating the
partial models is finished, we continue with merging the two models using the
collapsed tentative 3D point matches.

If there are less than 10 tentative 3D point matches, the merge is not suc-
cessful, otherwise we try to find a similarity transform between the coordinate
systems of the models. As three 3D point matches are needed to compute the
similarity transform parameters [23], RANSAC with samples of length three is
used. Inliers are evaluated by the cone test using image projections from both
partial models and local optimization is performed by repeating the similarity
transform computation from all inliers. Camera poses corresponding to the im-
ages shared by the models are averaged (rotation and position separately) inside
the RANSAC loop before the cone test, so the similarity transforms which would
lead into incorrectly averaged cameras would not be accepted. We require the
inlier ratio to be higher than 60% to consider the merge as successful.

Finally, the smaller model is transformed to the coordinate system of the larger
one because transforming the smaller model is faster. 3D point matches which
were inliers are merged into a single point with the position being the mean
of the former positions after transformation and duplicate image projections
are removed. Sparse bundle adjustment [22] is used to refine the whole partial
reconstruction after a successful merge.

4 Experiments

We demonstrate the proposed method in three experiments. The first one shows
the efficient reduction of a highly redundant image set using the approximate
minimum connected dominating set of a graph constructed using the image sim-
ilarity matrix, the latter ones present the output of our 3D model reconstruction
pipeline after 6 hours of computation for an omnidirectional and a perspective
image set. All measured times are achieved by running a MATLAB+MEX im-
plementation on a 2.83GHz Core2Quad PC.



108 M. Havlena, A. Torii, and T. Pajdla

4.1 Image Set Reduction

Image set DiTrevi consists of 2,545 images resulting from a Flickr Photo Sharing
site [24] search for “di trevi” (April 2009). The image set is highly redundant
and contaminated with images not capturing Di Trevi Fountain as it comprises
pictures uploaded by hundreds of tourists visiting Rome. After detecting SURF
image features and computing the image similarity matrix in 2 hours, the al-
gorithm finding the approximate minimum connected dominating set of the
corresponding graph returned 70 images in 5 seconds, see Figure 3. Selected
images reasonably cover different scene viewpoints while the image set size was
reduced by more than 97%. Furthermore, the contamination ratio of the image
set decreased from 17% to 7% after the reduction.

Fig. 3. Images corresponding to the approximate minimum connected dominating set

computed for image set DiTrevi. Image set size has been reduced by 97% from 2,545

to 70 and the contamination ratio of the image set decreased from 17% to 7%.
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(a) (b)

Fig. 4. (a) 3D model computed by Bundler [5] from the 70 images selected from image

set DiTrevi by CDS. (b) The best from the 3D models returned by the five runs of

Bundler on different random selections of 70 images from image set DiTrevi.

We used Bundler [5], a publicly available SfM tool, to evaluate the suitability
of the image selection done by CDS for 3D reconstruction. The model returned
in 44 minutes contains 47 camera poses and 8,489 3D points, see Figure 4(a).
We ran Bundler also on five randomly selected sets of 70 images out of 2,545.
Two of the runs did not return any result, two returned small fragments of the
model with fewer than 5 camera poses, and one returned an incomplete 3D model
having 32 camera poses and 3,355 3D points, as can be seen in Figure 4(b).

4.2 Sparse 3D Model Reconstruction

Two city sequences with landmark areas visited several times are used to demon-
strate sparse 3D model reconstruction, see Figure 5. Nevertheless, they were
input into the pipeline as unordered image sets.

Castle image set. Omnidirectional image set Castle [14] captured by a 180◦ fish-
eye lens camera with known calibration [25] consists of 4,472 omnidirectional
images captured while walking in the center of Prague and around the Prague
Castle. The obtained approximate minimum connected dominating set comprises
1,063 vertices and 1,359 edges are used as the seeds of the reconstruction. Image
set reduction is not as drastic as for image set DiTrevi because the images are
more evenly distributed. We use MSER [26], SIFT, and SURF image features in
order to create sufficiently many 3D points even when image resolution is low.
Several 3D models showing the important landmarks captured in the image set
were obtained when the reconstruction time was limited to 6 hours, see Figure 6.

The resulting sparse 3D models are very similar to those presented in [14] but
the speed of the reconstruction differs significantly as the authors of the afore-
mentioned paper needed 12.5 days to obtain those results. Using our approach,
the models are obtained in 10 hours, including 4 hours for image similarity ma-
trix computation, which shows proper task priority key assignment.

Vienna image set. Image set Vienna [27] consists of 2,448 radially undistorted
perspective images captured by a pre-calibrated camera while walking in the
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Fig. 5. Sample input images from image sets Castle and Vienna respectively

(a) (b)

Fig. 6. Two largest partial 3D models reconstructed from the reduced image set Castle

(1,063 images) after 6 hours of computation

center of Vienna. After computing the image similarity matrix in 90 minutes,
1,008 vertices and 1,900 edges being the seeds of the reconstruction are obtained
in 10 seconds as the result of the search for the approximate minimum connected
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(a) (b)

Fig. 7. Two largest partial 3D models reconstructed from the reduced image set Vienna

(1,008 images) after 6 hours of computation

Table 1. The number of computed pairwise matchings, the number of active seeds,

and the number of images contained in at least one partial model for the reduced image

set Vienna (1,008 images) at given times of the reconstruction process

Time 1h 2h 3h 4h 5h 6h 7h 8h 9h 10h 11h 12h

# pairs 548 991 1432 1773 2100 2360 2624 2882 3172 3437 3679 4030

# seeds 44 57 66 77 86 80 79 77 73 71 71 65

# images 153 244 313 368 411 438 466 496 521 546 572 600

dominating set of the corresponding graph. As image resolution is sufficient, only
SURF image features are used for 3D model reconstruction. The 3D models
showing several important landmarks captured in the image set, received after
6 hours of reconstruction, can be seen in Figure 7.

Compared to the omnidirectional image set Castle, only parts of the land-
marks are reconstructed in the 6 hour limit because more images are needed
to capture the whole landmark as the field of view of the perspective camera
is limited. Partial 3D models become larger and connected gradually when the
reconstruction continues, see Table 1 for different quantitative results of the re-
construction process at given times. Notice that the number of active seeds drops
(86 → 77 → 65) after some time as the overlapping models are merged and also
the sub-quadratic number of computed pairwise matchings w.r.t. the number of
images contained in the partial models being far behind the quadratic number
which would be achieved by methods using exhaustive pairwise image matching.

Note that when running Bundler on the reduced image set, 3 hours are spent
on detecting and describing SIFT image features and 1,922 out of 15,753 tested
image pairs are accepted after additional 6 hours of computation. No partial 3D
models are output at this time as bundling starts later, after all 507,528 possible
image pairs are tested.
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If one modified Bundler according to [7] so that it would test only the ten
most promising image pairs per image based on image similarity and ran it on
the non-reduced image set comprising 2,448 images, the whole 6 hour limit would
still be spent on testing 16,762 obtained image pairs. This demonstrates the need
for a prioritized structure from motion pipeline for large image sets.

5 Conclusions

We presented a pipeline for efficient sparse 3D model reconstruction from highly
redundant unordered image sets, such as those acquired by tourists at landmark
sites as well as image sequences. The approximate minimum connected dominat-
ing set of a graph constructed according to the image similarity matrix computed
from tf-idf vectors over SURF image features is used both for (i) reducing the
size of the image set by removing nearly duplicate images and (ii) setting pri-
ority keys of the reconstruction tasks stored in a priority queue. The proposed
interlacing of different reconstruction tasks allows for obtaining either a good
scene covering sparse 3D model in limited time or a complete sparse 3D model
when time is not limited.

Based on our experiments, image similarity works very well for the presented
image sets and the number of the edges which were kept after the reduction was
sufficient for 3D reconstruction. On the other hand, revisiting the reduction step
may be necessary for difficult image sets. This is in principle possible and is a
part of our future work together with fine tuning of the priority keys assigned
to different tasks.
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Abstract. Bundle adjustment for multi-view reconstruction is tradi-

tionally done using the Levenberg-Marquardt algorithm with a direct

linear solver, which is computationally very expensive. An alternative to

this approach is to apply the conjugate gradients algorithm in the inner

loop. This is appealing since the main computational step of the CG

algorithm involves only a simple matrix-vector multiplication with the

Jacobian. In this work we improve on the latest published approaches to

bundle adjustment with conjugate gradients by making full use of the

least squares nature of the problem. We employ an easy-to-compute QR

factorization based block preconditioner and show how a certain property

of the preconditioned system allows us to reduce the work per iteration

to roughly half of the standard CG algorithm.

1 Introduction

Modern structure from motion (SfM) systems, which compute cameras and 3D
structure from images, rely heavily on bundle adjustment. Bundle adjustment
refers to the iterative refinement of camera and 3D point parameters based on
minimization of the sum of squared reprojection errors and hence belong to the
class of non-linear least squares problems. Bundle adjustment is important both
as a final step to polish off a rough reconstruction obtained by other means as well
as a way of avoiding accumulation of errors during an incremental reconstruction
procedure.

A recent trend in SfM applications is to move from small and medium size
setups to large scale problems (typically in the order 103-104 cameras or more),
cf. [1,2,3,4]. Bundle adjustment in general has O(N3) complexity, where N is the
number of variables in the problem [5]. In the large scale-range of the spectrum,
bundle adjustment hence starts to become a major computational bottleneck.

The standard algorithm for bundle adjustment is Levenberg-Marquardt with
Cholesky factorization to solve the normal equations [6,7]. An interesting alter-
native to this is the method of conjugate gradients (CG), which has recently
been applied in the context of bundle adjustment [8,1]. The conjugate gradient
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algorithm can be applied both as a non-linear optimization algorithm replac-
ing Levenberg-Marquardt or as an iterative linear solver for the normal equa-
tions, where the latter approach seems to be the right choice for non-linear least
squares.

In [8], which is of a speculative nature, the graph structure of the problem
was used to derive multiscale preconditioners for bundle adjustment and con-
jugate gradients. While the authors show some promising preliminary results,
they were not able to overcome some fundamental limitations yielding the pre-
conditioners themselves expensive to construct and apply. In this paper we take
a more straightforward approach and make use of the inherent sparsity structure
of the problem to design a light-weight matrix based preconditioner. Doing bun-
dle adjustment with conjugate gradients and block diagonal preconditioning was
mentioned in the work of Agarwal et al on large scale structure from motion [1].
Compared to the work of Agarwal et al , where essentially the standard conju-
gate gradient algorithm was applied to the normal equations, the main novelty
of this work is to make explicit use of the least squares nature of the problem
for maximum efficiency and precision. Here we make use of the least squares
property in several ways. Our main contributions are:

– We apply the CGLS algorithm (instead of the standard CG algorithm),
which allows us to avoid forming JT J , where J is the Jacobian, thus saving
time and space and improving precision.

– A QR factorization based block-preconditioner, which can be computed in
roughly the same time it takes to compute the Jacobian.

– We note that the preconditioned system has ”property A” in the sense of
Young [9], allowing us to cut the work per iteration in roughly half.

– An experimental study which sheads some new light on when iterative solvers
for the normal equations may be successfully used.

2 Problem Formulation

We consider a setup with m cameras C = (C1, . . . , Cm) observing n points
U = (U1, . . . , Un) in 3D space. An index set I keeps track of which points are
seen in which views by (i, j) ∈ I iff point j is seen in image i. If all points
are visible in all views then there are mn projections. This is not the case in
general and we denote the number of image points nr = |I|. The observation
model f(Ci, Uj) yields the 2D image coordinates of the point Uj projected into
the view Ci. The input data is a set of observations f̂ij such that

f̂ij = f(Ci, Uj) + ηij , (1)

where ηij is measurement noise drawn from a suitable distribution. The unknown
parameters x = (C, U) are now estimated given the set of observations by ad-
justing them to produce a low re-projection error as realized in the following
non-linear least squares problem

x∗ = argmin
x

∑
(i,j)∈I

‖f̂ij − f(Ci, Uj)‖2. (2)
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The standard algorithm for dealing with non-linear least squares problem is
the Gauss-Newton algorithm. Rewriting (2), our task is to solve the following
optimization problem

x∗ = argmin
x

‖r(x)‖2, (3)

where r is the vector of individual residuals rij = f(Ci, Uj) − f̂ij .
A first order expansion inside the norm in the non-linear sum of squares

expression yields a linear least squares problem

min
x

‖r(x + δx)‖2 ≈ ‖r(x) + J(x)δx‖2, (4)

where solving for δx in the usual least squares sense yields the equation for the
update step:

J(x)T J(x)δx = −J(x)T r(x). (5)

If the system matrix JT J does not have full rank, or if there are significant
non-linearities then it is common to add a damping term λI to JT J and solve
the damped system

(JT J + λI)δx = −JT r. (6)

We use the strategy by Nielsen [10] to update λ based on how well the decrease
in error agrees with the decrease predicted by the linear model.

In the case of bundle adjustment, it is possible to partition the Jacobian into
a camera part JC and a point part JP as J = [JC JP ], which gives

JT J =
[
JT

C JC JT
C JP

JT
P JC JT

P JP

]
=
[

U W
WT V

]
, (7)

where U and V are block diagonal. One can now apply block wise Gaussian
elimination producing the simplified system

(U − WV −1WT )δxC = bC − WV −1bP (8)

and then substituting the obtained value of δxC into

V δxP = bP − WT δxC (9)

and solving for δxP . This procedure is known as Schur complementation and
reduces the computational load from solving a (6m+3n)× (6m+3n) system to
solving a 6m × 6m system followed by a quick substitution and block diagonal
solve. In applications m is usually much smaller than n so this typically means
substantial savings. For systems with up to a couple of hundred cameras, the
most expensive step actually often lies in forming WV −1WT , since W is often
quite dense. However, for larger problems the cost of solving the Schur system
will dominate the computations. With the method of conjugate gradients we can
avoid both Schur complementation and Cholesky factorization, thus avoiding the
two dominant steps in terms if time and memory requirements. The price for
this can be slower convergence especially near the optimum.
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3 The Linear and Non-linear Conjugate Gradient
Algorithms

The conjugate gradient algorithm is an iterative method for solving a symmetric
positive definite system of linear equations

Ax = b, (10)

introduced by Hestenes and Stiefel [11,12]. In its basic form it requires only
multiplication of the matrix A with a vector, i.e no matrix-matrix multiplications
and no matrix factorizations.

Conjugate Gradient Algorithm(x0, A, b)
// An initial solution x0 (possibly zero) has to be provided
s0 = b − Ax0, p0 = s0, k = 0
while |sk| > threshold

αk = skT
sk

pkT Apk

xk+1 = xk + αkpk

sk+1 = sk − αkApk

βk = sk+1T
sk+1

skT sk

pk+1 = sk+1 + βkpk

k = k + 1

The basic way to apply the conjugate gradient algorithm to the bundle ad-
justment problem is to form the normal equations JT Jδx = −JT r and set
A = JT J, b = −JT r.

The linear CG method corresponds to minimization of the quadratic form
q(x) = 1

2xT Ax − bT x. Fletcher and Reeves generalized the procedure to non-
quadratic functions yielding the non-linear conjugate gradients algorithm [13].
Here, only the function f(x) and its gradient ∇f(x) are available.

4 Conjugate Gradients for Least Squares

A naive implementation of the conjugate gradient algorithm for the normal equa-
tions would require forming A = JT J which is a relatively expensive operation.
However, we can rewrite the updating formulas for αk and sk+1 as

αk =
skT

sk

(Jpk)T (Jpk)
, (11)

sk+1 = sk − αkJT (Jpk), (12)

implying that we only need to compute the two matrix-vector multiplications
wk = Jpk and JT wk in each iteration. The resulting algorithm is known as
CGLS [14]. The conjugate gradient method belongs to the wider family of Krylov
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subspace optimizing algorithms. An alternative to CGLS is the LSQR algorithm
by Paige and Saunders [15], which is based on Lanczos bidiagonalization. Math-
ematically CGLS and LSQR are equivalent, but LSQR has in some cases been
observed to be slightly more stable numerically. However, in our bundle adjust-
ment experiments these two algorithms have produced virtually identical results.
Since LSQR requires somewhat more storage and computation than CGLS we
have stuck with the latter.

5 Inexact Gauss-Newton Methods

As previously mentioned, there are two levels where we can apply conjugate
gradients. Either we use linear conjugate gradients to solve the normal equations
JT Jdx = −JT r and thus obtain the Gauss-Newton step or we apply non-linear
conjugate gradients to directly solve the non-linear optimization problem.

Since c(x) = rT (x)r(x), we get ∇c(x) = −JT (x)r(x) and we see that com-
puting ∇c implies computing the Jacobian J of r. Once we have computed J
(and r) we might as well run a few more iterations keeping these fixed. But,
since the Gauss-Newton step is anyway an approximation to the true optimum,
there is no need to solve the normal equations very exactly and it is likely to be
a good idea to abort the linear conjugate gradient method early, going for an
approximate solution. This leads to the topic of inexact Newton methods (see
e.g [16] for more details). In these methods a sequence of stopping criteria are
used to abort the inner iterative solver for the update step early. The logical
termination quantity here is the relative magnitude of the residual of the normal
equations |sk| (not to be confused with the residual of the least squares system
r). A common choice is to terminate the inner CG iteration when

|sk|
|∇c(xj)|

< ηj ,

where the sequence ηj ∈ (0, 1) is called a forcing sequence. There is a large body
of research on how to select such a forcing sequence. We have however found the
rule of thumb to select the constant ηj = 0.1 to provide a resonable trade off
between convergence and number of CG iterations.

6 Preconditioning

The success of the conjugate gradient algorithm depends largely on the condi-
tioning of the matrix A. Whenever the condition number κ(A) is large conver-
gence will be slow. In the case of least squares, A = JT J and thus κ(A) = κ(J)2,
so we will almost inevitably face a large condition number1. In these cases one

1 Note that even if we avoid forming A = JT J explicitly, A is still implicitly the

system matrix and hence it is the condition number κ(A) we need to worry about.



Conjugate Gradient Bundle Adjustment 119

can apply preconditioning, which in the case of the conjugate gradient method
means pre-multiplying from left and right with a matrix E to form

ET AEx̂ = ET b,

where E is a non-singular matrix. The idea is to select E so that Â = ET AE has
a smaller condition number than A. Finally, x can be computed from x̂ with x =
Ex̂. Often E is chosen so that EET approximates A−1 in some sense. Explicitly
forming Â is expensive and usually avoided by inserting M = EET in the right
places in the conjugate gradient method obtaining the preconditioned conjugate
gradient method. Two useful preconditioners can be obtained by writing A =
L + LT − D, where D and L are the diagonal and lower triangular parts of
A. Setting M = D−1 is known as Jacobi preconditioning and M = L−T DL−1

yields Gauss-Seidel preconditioning.

6.1 Block QR Preconditioning

The Jacobi and Gauss-Seidel preconditioners alone do not make use of the special
structure of the bundle adjustment Jacobian. Assume for a moment that we
have the QR factorization of J , J = QR and set E = R−1. This yields the
preconditioned normal equations

R−T JT JR−1δx̂ = −R−T JT r,

which by inserting J = QR reduce to

δx̂ = −R−T JT r

and δx̂ is found in a single iteration step (δx is then be obtained by δx = R−1δx̂).
Applying R−1 is done very quickly through back-substitution. The problem here
is of course that computing J = QR is exactly the sort of expensive operation
we are seeking to avoid. However, we can do something which is similar in spirit.
Consider again the partitioning J = [JC , JP ]. Using this, we can do a block wise
QR factorization in the following way:

JC = QCRC , JP = QP RP .

Due to the special block structure of JC and JP respectively we have

RC = R(JC) =

⎡⎢⎢⎢⎣
R(Ã1)

R(Ã2)
. . .

R(Ãn)

⎤⎥⎥⎥⎦
and

RP = R(JP ) =

⎡⎢⎢⎢⎣
R(B1)

R(B2)
. . .

R(Bn)

⎤⎥⎥⎥⎦ ,
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where

Ãk =

⎡⎢⎢⎢⎣
Ak1
Ak2

...
Akn

⎤⎥⎥⎥⎦
and

Bk =

⎡⎢⎢⎢⎣
B1k

B2k

...
Amk

⎤⎥⎥⎥⎦
and where

Aij = ∂Cirij , Bij = ∂Uj rij .

In other words, we can perform QR factorization independently on the block
columns of JC and JP , making this operation very efficient (linear in the number
of variables) and easy to parallelize. The preconditioner we propose to use thus
becomes

E =
[
R(JC)−1

R(JP )−1

]
.

Similar preconditioners were used by Golub et al in [17] in the context of satellite
positioning. One can easily see that the QR preconditioner is in fact analytically
equivalent to block-Jacobi preconditioning. Two important advantages are how-
ever that (i) we do not need to form JT J (as is the case with block-Jacobi)
and (ii) that QR factorization of a matrix A is generally considered numerically
superior to forming AT A followed by Cholesky factorization.

6.2 Property A

A further important aspect of the bundle adjustment Jacobian is that the pre-
conditioned system matrix ĴT Ĵ has “property A” as defined by Young in [9].

Definition 1. The matrix A has “property A” iff it can be written

A =
[
D1 F
FT D2

]
, (13)

where D1 and D2 are diagonal.

The benefit is that for any matrix posessing “property A”, the work that has to
be carried out in the conjugate gradient method can roughly be cut in half as
showed by Reid in [18]. This property can easily be seen to hold for ĴT Ĵ :

ĴT Ĵ =
[

R(JC)
R(JP )

]−T [
JT

C JC JT
C JP

JT
P JC JT

P JP

] [
R(JC)

R(JP )

]−1
=
[

QT
CQC QT

CQP

QT
P QC QT

P QP

]
,
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where QT
CQC and QT

P QP are both identity matrices and QT
P QC = (QT

CQP )T .

Partition the variables into camera and point variables and set sk =
[

sk
C

sk
P

]
.

Applying Reid’s results to our problem yields the following: By initializing so
that δxC = 0 and δxP = −JT

P r, we will have s2m
C = s2m+1

P = 0. We can make
use of this fact in the following way (where for clarity, we have dropped the
subscript j from the outer iteration):

Inner CG loop using ”Property A”(J, r)
η = 0.1
δx0

C = 0, δx0
P = −JT

P r, r̂0 = −r − Jδx0, p0 = s0 = JT r̂0,

γ0 = s0T
s0, q0 = Jp0, k = 0

while ‖sk‖ > η‖s0‖

αk = γk

qkT qk

δxk+1 = δxk + αkpk{
sk+1

C = −αkJT
C qk, sk+1

P = 0 k odd
sk+1

P = −αkJT
P qk, sk+1

C = 0 k even
γk+1 = sk+1T

sk+1

βk = γk+1

γk

pk+1 = sk+1 + βkpk{
qk+1 = βkqk + JCsk+1

C k odd
qk+1 = βkqk + JP sk+1

P k even

One further interesting aspect of matrices with ”Property A” is that one can
show that for these matrices, block-Jacobi preconditioning is always superior to
Gauss-Seidel and SSOR preconditioners [14] (pages 286-287).

7 Experiments

For evaluation we compare three different algorithms on synthetic and real data.
Standard bundle adjustment was performed using the Levenberg-Marquardt al-
gorithm and sparse Cholesky factorization of the Schur complement to solve
the normal equations. Cholesky factorization was performed using the Cholmod
library with reverse Cuthill-McKee ordering. We henceforth denote this algo-
rithm DBA for direct bundle adjustment. Secondly, we study a straight forward
adaptation of the conjugate gradient algorithm to bundle adjustment by using
JT J as the system matrix and the block diagonal of JT J as a preconditioner.
We simply refer to this algorithm as CG. Finally, we denote the conjugate gra-
dient method taylored to bundle adjustment as proposed in this paper CGBA
for conjugate gradient bundle adjustment.

In all cases we apply adaptive damping to the normal equations as suggested
in [10]. In the case of CGBA, we never form JT J and we instead apply damping
by using the damped Jacobian
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Jλ =
[

J
λI

]
,

which can be factorized in the same manner as J for preconditioning.
For clarity, we focus on calibrated cameras only in this work. Including ad-

ditional parameters such as focal length and distortion parameters presents no
problem and fits into the same general framework without modification.

7.1 Synthetic Data: When Is the CG Algorithm a Good Choice?

A common statement is that standard bundle adjustment is good for small to
medium size problems and that Conjugate Gradients should probably be the way
to go for large and sparse problems. This is not quite true as we will show with
a couple of synthetic experiments. In some cases CG based bundle adjustment
can actually be a better choice for quite small problems. On the other hand it
might suffer from hopelessly slow convergence on some large very sparse setups.
Theoretically, the linear CG algorithm converges in a number of iterations propor-
tional to roughly the square root of the condition number and a large condition
number hence yields slow convergence. Empirically, this happens in particular for
sparsely connected structures where unknowns in the camera-structure graph are
far apart. Intuitively such setups are much less ”stiff” and can undergo relatively
large deformations with only little effect on the reprojection errors.

To capture this intuition we have simulated two qualitatively very different
scenarios. In the first setup, points are randomly located inside a sphere of ra-
dius one centered at the origin. Cameras are positioned uniformly around the
sphere at around two length units from the origin pointing roughly towards the
origin. There are 10 times as many points as cameras and each camera sees
100 randomly selected points. Due to this, each camera shares features with a
large percentage of the other cameras. In the second experiments, points are
arranged along a circular wall with cameras on the inside of the wall pointing
outwards. There are four points for each camera and due to the configuration
of the cameras, each camera only shares features with a small number of other
cameras. For each scenario we have generated a series of configurations with
increasingly many cameras and points. One example from each problem type
can be seen in Figure 1. For each problem instance we ran both standard bun-
dle adjustment with Cholesky factorization and the Conjugate Gradient based
bundle adjustment procedure proposed in this paper until complete convergence
and recorded the total time. Both solvers produced the same final error up to
machine precision. Since the focus of this experiment was on iterative versus
direct solvers, we omitted the comparision CG method. The results of this ex-
periment are perhaps somewhat surprising. For the sphere problem, CGBA is
orders of magnitude faster for all but the smallest problems, where the time is
roughly equal. In fact, the empirical time complexity is almost linear for CGBA
whereas DBA displays the familiar cubic growth. For the circular wall scenario
the situation is reversed. While CGBA here turns out to be painfully slow for the
larger examples, DBA seems perfectly suited to the problem and requires not
much more than linear time in the number of cameras. Note here that the Schur
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Fig. 1. Top-left: An instance of the sphere problem with 50 cameras and 500 3D points.

Top-right: Points arranged along a circular wall, with 64 cameras viewing the wall from

the inside. Bottom-left: Time to convergence vs. number of cameras for the sphere

problem. This configuration is ideally suited to CG based bundle adjustment which

displays approximately linear complexity. Bottom-right: Time vs. problem size for the

circular wall. The CG based solver takes very long to converge, whereas the direct

solver shows an almost linear increase in complexity, far from the theoretical O(N3)

worst case behaviour.

complement in the sphere setup is almost completely dense whereas in the wall
case it is extremely sparse. The radically different results on these data sets can
probably understood like this. Since the CG algorithm in essence is a first order
method ”with acceleration”, information has to flow from variable to variable.
In the sphere case, the distance between cameras in the camera graph is very
small with lots of connections in the whole graph. This means that information
gets propagated very quickly. In the wall problem though, cameras on opposite
sides of the circular configuration are very far apart in the camera graph which
yields a large number of CG iterations. For the direct approach ”stiffness” of the
graph does not matter much. Instead fill-in during Cholesky factorization is the
dominant issue. In the wall problem, the Schur complement will have a narrow
banded structure and is thus possible to factorize with minimal fill-in.

8 Community Photo Collections

In addition to the synthetic experiments, we have compared the algorithms on
four real world data sets based on images of four different locations downloaded
from the internet: The St. Peters church in Rome, Trafalgar square in London,
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the old town of Dubrovnik and the San Marco square in Venice. The unoptimized
models were produced using the systems described in [19,20,1].

The models produced by these systems initially contained a relatively large
number of outliers, 3D points with extremely short baselines and very distant
cameras with a small field of view. Each of these elements can have a very large
impact on the convergence of bundle adjustment (both for iterative and direct
solvers). To ensure an informative comparison, such sources of large residuals and
ill conditioning were removed from the models. This meant that approximately
10% of the cameras, 3D points and reprojections were removed from the models.

In addition, we used the available calibration information to calibrate all cam-
eras before bundle adjustment. In general this gave good results but for a very
small subset of cameras (< 0.1%) the calibration information was clearly incor-
rect and these cameras were removed as well from the models.

For each data set we ran bundle adjustment for 50 iterations and measured
the total time and final RMS reprojection error in pixels. All experiments were
done on a standard PC equipped with 32GB of RAM to be able to process large
data sets. For the CG based solvers, we used a constant η = 0.1 forcing sequence
and set the maxium number of linear iterations to 100. The results can be found
in Table 1. Basically, we observed the same general pattern for all four data sets.
Due to the light weight nature of the CG algorithms, these showed very fast
convergence (measured in seconds) in the beginning. At a certain point close to
the optimum however, convergence slowed down drastically and in none of the
cases did either of the CG methods run to complete convergence. This is likely
to correspond to the bound by the condition number of the Jacobian (which we
were not able to compute due to the sizes of these problems). In other words,
the CG algorithms have problems with the eigenmodes corresponding to the
smallest singular values of the Jacobian. This situation makes it hard to give a
fair comparison between direct BA and BA based on an iterative linear solver.
The choice has to depend on the application and desired accuracy. In all cases,

Table 1. Performance statistics for the different algorithms on the four community

photo data sets

Data set m n nr Algorithm Total Time Final Error (Pixels)

St. Peter 263 129502 423432

DBA 113s 2.18148

CGBA 441s 2.23135

CG 629s 2.23073

Trafalgar Square 2897 298457 1330801

DBA 68m 1.726962

CGBA 18m 1.73639

CG 38m 1.75926

Dubrovnik 4564 1307827 8988557

DBA 307m 1.015706

CGBA 130m 1.015808

CG 236m 1.015812

Venice 13666 3977377 28078869

DBA N/A N/A

CGBA 230m 1.05777

CG N/A N/A
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Fig. 2. Sparsity plots for the reverse Cuthill-McKee reordered Schur complements.

Top-left: St. Peter, top-right: Trafalgar, bottom-left: Dubrovnik, bottom-right: Venice.

CGBA was about two times faster than CG as expected and in general produced
slightly more accurate results.

For the Venice data set, we were not able to compute the Cholesky factoriza-
tion of the Schur complement since we ran out of memory. Similarly, there was
not enough memory in the case of CG to store both J and JT J . While Cholesky
factorization in this case is not likely to be feasible even with considerably more
memory, a more clever implementation would probably not require both J and
JT J and could possibly allow CG to run on this instance as well. However, as can
be seen from the other three examples, the relative performance of CG and CGBA
is pretty constant so this missing piece of information should not be too serious.

As observed in the previous section, problem structure largely determines the
convergence rate of the CG based solvers. In Figure 2, sparsity plots for the
Schur complement in each of the four data sets is shown. To reveal the structure
of the problem we applied reverse Cuthill-McKee reordering (this reordering was
also applied before Cholesky factorization in DBA), which aims at minimizing
the bandwidth of the matrix. As can be seen, this succeeds quite well in the
case of St. Peter and Trafalgar. In particular in the Trafalgar case, two almost
independent sets are discovered. As discussed in the previous section, this is
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a disadvantage for the iterative solvers since information does not propagate as
easily in these cases. In the case of Dubrovnik and in particular Venice, the graph
is highly connected, which is beneficial for the CG solvers, but problematic for
direct factorization.

9 Conclusions

In its current state, conjugate gradient based bundle adjustment (on most prob-
lems) is not in a state where it can compete with standard bundle adjustment
when it comes to absolute accuracy. However, when good accuracy is enough,
these solvers can provide a powerful alternative and sometimes the only alter-
native when the problem size makes Cholesky factorization infeasible. A typical
application would be intermediate bundle adjustment during large scale incre-
mental SfM reconstructions. We have presented a new conjugate gradient based
bundle adjustment algorithm (CGBA) which by making use of ”Property A”
of the preconditioned system and by avoiding JT J is about twice as fast as
”naive” bundle adjustment with conjugate gradients and more precise. An inter-
esting path for future work would be to try and combine the largely orthogonal
strengths of the direct versus iterative approaches. One such idea would be to
solve a simplified (skeletal) system using a direct solver and use that as a pre-
conditioner for the complete system.

References

1. Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building rome in a

day. In: Proc. 12th Int. Conf. on Computer Vision, Kyoto, Japan (2009)

2. Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from Internet photo col-

lections. Int. Journal of Computer Vision 80, 189–210 (2008)

3. Mordohai, A.F.: Towards urban 3d reconstruction from video (2006)

4. Cornelis, N., Leibe, B., Cornelis, K., Gool, L.V.: 3d urban scene modeling integrat-

ing recognition and reconstruction. Int. Journal of Computer Vision 78, 121–141

(2008)

5. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd

edn. Cambridge University Press, Cambridge (2004)

6. Triggs, W., McLauchlan, P., Hartley, R., Fitzgibbon, A.: Bundle adjustment: A

modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999.

LNCS, vol. 1883, p. 298. Springer, Heidelberg (2000)

7. Lourakis, M.I.A., Argyros, A.A.: Sba: A software package for generic sparse bundle

adjustment. ACM Trans. Math. Softw. 36, 1–30 (2009)
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Abstract. In order to achieve a complete image description, we intro-

duce no-feature-features (NF-features) representing object regions where

regular interest point detectors do not detect features. As these regions

are usually non-textured, stable re-localization in different images with

conventional methods is not possible. Therefore, a technique is presented

which re-localizes once-detected NF-features using correspondences of reg-

ular features. Furthermore, a distinctive NF descriptor for non-textured

regions is derived which has invariance towards affine transformations and

changes in illumination. For the matching of NF descriptors, an approach

is introduced that is based on local image statistics.

NF-features can be used complementary to all kinds of regular feature

detection and description approaches that focus on textured regions, i.e.

points, blobs or contours. Using SIFT, MSER, Hessian-Affine or SURF as

regular detectors, we demonstrate that our approach is not only suitable

for the description of non-textured areas but that precision and recall of

the NF-features is significantly superior to those of regular features. In

experiments with high variation of the perspective or image perturbation,

at unchanged precision we achieve NF recall rates which are better by

more than a factor of two compared to recall rates of regular features.

1 Introduction

During the past years, the combination of interest point detector and local
descriptor has been successfully applied in a high number of computer vision
problems. The main reason for that is the fact that establishing local image

Fig. 1. Detected NF-features with increasing density using SIFT as regular features.

The lines denote the extents that the feature descriptor is built from.
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correspondences, which is one of the main computer vision problems, can be
solved by inexpensive descriptor matching. As high repeatability under various
external influences like changes in perspective or illumination is important for
a stable matching, textured image regions with intensity variations in scale and
space are chosen during the detection. Thereby, the local descriptor is created
from high-entropy input data which results in distinctive descriptors.

However, broad categories of real-world objects have non-textured regions.
Regular detectors very likely miss stable feature locations there. Additionally,
most kinds of descriptors are built using local image gradients and thus lose their
distinctiveness when built on non-textured areas. Hence, non-textured regions
usually are not considered for detection and description.

In this paper we present a new feature type named No-Feature features (NF-
features) that has the purpose to explicitly model regions without any features.
This is inspired from the field of physics, in which the absence of electrons in
conductors is modeled as the positively charged particle ‘electron hole’ with
effective properties like mass and mobility. Likewise, NF-features are located on
all those regions where any regular interest point detector left a ‘feature hole’.
Thus NF-features results in a complete description for all regions of an image
which enhances detection and classification.

The contributions of this paper are

– the development of a detection method for NF-features ensuring there is a
minimal density in the extracted features,

– the derivation of a new descriptor in which contrast and intensity-shift in-
variant image content is stored,

– the derivation of a statistical descriptor matching method which evaluates
the local image noise variance, and

– comprehensive evaluation of NF in combination with SIFT, MSER & GLOH,
Hessian-Affine & GLOH and SURF as regular features.

– For further evaluation of NF we provide binaries [1].

The remaining sections are structured as follows: In Section 2, we give an
overview of related work and explain the differences to our approach. In Sec-
tion 3, the algorithms used for NF detection, description and matching are de-
scribed. In Section 4, we show experiments and give a conclusion in Section 5.

2 Related Work

For stability and repeatability, all commonly-used interest point detectors de-
tect image content that contains high entropy. By evaluating the second moment
matrix, the Harris Corner Detector [2] detects interest points with intensity gra-
dients that vary in two directions and thus are precisely locatable. In [3] points
with extremal intensities are detected and by the evaluation of surrounding image
contents with rays, an affine orientation is assigned. Maximally Stable Extremal
Regions (MSER) [4] are detected by finding connected components which are
extremal as they either have lower or higher intensity values than all surround-
ing pixels. These regions can be considered homogeneous or non-textured, but in



130 R. Dragon et al.

order to be detected, they necessarily have to exhibit a significant contour. The
following detectors which are based on the scale-space, detect blob-like features
not only in the spatial but also in the scale domain. The Harris-Affine detector
[5], which is based on the Harris Corner Detector, evaluates the second moment
matrix at a given scale and thus locates anisotropic blobs in the image. The
Hessian-Affine (HAff) [6] detector works similar but the Hessian matrix is eval-
uated instead. The famous SIFT (Scale Invariant Feature Transform) detector
[7] uses the Difference of Gaussians operator to locate features that correspond
to isotropic blobs in the unscaled image. In [8], generalized junction-type fea-
tures were proposed as interest points which are detected at different scales.
The idea of detecting all kinds of maxima that exhibit spatial unpredictability is
exploited in [9], where regions with maximal salience are detected. For a stable
localization in the scale-space, all these methods detect only significant maxima.
As non-textured regions with non-elliptic shape result in blurred maxima in the
scale-space, they are usually not considered as keypoint location.

In [10], the fusion of complementary information similar to our method has
been proposed. They use a contour descriptor combined with a local descriptor
and get improved results for the combination. However, non-textured regions are
still not covered with this approach. As they contain no contours and no texture,
no interest points may be described.

Local descriptors are usually built from statistical parameters around the de-
tected location. The SIFT descriptor [7] is built from histograms of gradient
orientation at the detected scale. [11] proposed GLOH (Gradient Location and
Orientation Histogram) which extends SIFT by changing the location grid and
using PCA for compression. [12] proposed SURF (Speeded Up Robust Features),
an efficient variation of SIFT by using integral images for a more-efficient com-
putation while making additional approximations towards SIFT. For invariance
towards monotonic changes in intensity, SMD (Stable Monotonic Change Invari-
ant Descriptor) [13] was introduced, which analyzes intensity order changes.

The idea of sampling lines for the descriptor that originate from the keypoint
location is also used for Spiders [14] and for the intensity-based region detector
[3]. In [14], the lines are used to determine the extents of a feature by evaluating
the intensity run along a line and choosing that border location, where the
intensity falls below a threshold for the first time. Likewise in [3], that location
is selected where an intensity expression becomes maximal. Thus in contrast to
NF, in both works the lines are used to determine the extents of a feature to
make it affine invariant.

3 NF Features

Creating NF-features in an image I1 follows the same paradigm as state-of-the-
art local features: First the feature is detected and then a descriptor is built from
the local image content. As our approach is always complementary to features
like SIFT that we call regular features, the NF detection has to be performed after
regular features have been detected. To match NF-features between images I1
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and I2, we introduce a technique called second level matching, for which regular
correspondences, NF features of I1, and the image I2 have to be given. Second
level matching consists of second level detection and second level description
which are both explained at the end of the following two sections.

In the derivation, xc denotes the location of a feature of set Fc, features of
images I1 and I2 are distinguished by x

(1)
c and x

(2)
c , and D(x, y) denotes the

Euclidean distance between two vectors x and y.

3.1 NF Detection

NF-features should be complementary to regular features. Thus we detect an
NF-feature at every location xnf where all regular features at xreg ∈ Freg are
far, thus D(xnf, xreg) > dfar. We define dfar as a constant factor c of the median
nearest neighbor Euclidean distance dmnn of the regular features:

dfar = c · dmnn(Freg) = c · medianFreg

[
D
(
xreg, nearestFreg(xreg)

)]
. (1)

Choosing c = 3 yields to a good trade-off between dense NF coverage and com-
putation speed. Likewise, we clip dmnn if it falls below 10 pel. In Fig. 1, detections
with increasing NF density using dfar from 5dmnn down to 2dmnn are displayed.

The detection is performed iteratively using an algorithm similar to the Far-
thest Point Sampling [15]. Given Freg and all already detected NF-features Fnf,
we seek for the location which is farthest from all known features Fkf = Freg∪Fnf.
In other words, we seek for the center of the largest hole in Fkf. To find that
location efficiently, the Delaunay triangulation is built for Fkf (cf. Fig. 2(a)). The
edges of its dual graph, the Voronoi diagram, cover all points to which the dis-
tance to the nearest two neighbors is identical. Thus, Voronoi vertices cover all
points which are locally farthest to all known feature locations. From all Voronoi
vertices we choose that point with maximal distance dmax to Fkf as NF location.
Features are located iteratively until dmax falls below dfar. Using this algorithm,
we ensure no hole remains with a radius larger than dfar.

Keypoint detection should be robust and repeatable. However, this detection
method is only repeatable if after a detection in image I1, exactly the same
regular features are detected in another image I2. To overcome this, when regular
correspondences Creg = {(F (1)

reg , F
(2)
reg )} have been found between images I1 and

I2, second level detection is performed. For each NF location x
(1)
nf from image

I1, a local transformation T to image I2 is estimated using the nearest n regular
features with correspondences in I2 (cf. Fig. 2(b)). The local transformation
x(2) = T (x(1)) is then applied to localize the NF-feature in image I2 as

x
(2)
nf = T

(
x

(1)
nf

)
. (2)

Thus, the NF keypoint always fulfills the same local motion as the nearest regular
correspondences. We call the involved regular features anchor features, as the
NF keypoint is fixed to these features and performs the same local motion.

Assuming that the anchor features as well as the NF-feature are coplanar,
T is a homography. For a stable estimate, RANSAC is used with the nearest
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(a)

x
(2)
nf

I2I1
(b)

T

x
(1)
nf

Fig. 2. (a) NF detection using the Delaunay triangulation (solid) and the Voronoi di-

agram (dotted). The NF-feature (small circle) is located at xnf, which is that Voronoi

vertex with maximum distance to all regular features (crosses). (b) Second level detec-

tion. Corresponding regular features from images I1 and I2 are used as anchor features

in order to compute the local transformation x(2) = T (x(1)).

n = 8 correspondences, combined by a normalization step [16] and least-squares
fitting. If RANSAC does not find a reasonable solution, there is no NF-feature
located and thus no NF correspondence established. Likewise, any x

(2)
nf too close

to a regular feature is not considered, as I2 is assumed to be textured at that
location. By this second level detection, we obtain candidates for the matching.

3.2 NF Description

The NF descriptor should specify the contents of the region around its location.
As there was no regular feature detected in that region, it is very likely that it
is non-textured. However, the hull of the area which is built from the nearest
regular points is textured. We exploit this transition from dull to featured within
the NF descriptor: The descriptor is created by analyzing intensity runs from the
NF location to the nearest regular features. To describe the whole area around
the NF location, it is divided into 8 segments of same angle (Fig. 3(a)). In
each segment, a line is sampled which runs towards the nearest regular feature
inside the segment. If no regular feature has been detected or it is very far, we
sample along the segment middle with a distance of 5dmnn, as we are unsure
about the dimensions of the feature. By this sampling method, a hull around
the NF location is formed with one hull point in each segment. We use the
parametrization t ∈ [0, 1] for the line starting at the NF location.

ti =
i

N + 1
, i = 1 . . .N . (3)

To extract the deviation from a smooth transition from dull to featured, the
difference between I(t) and the linear transition Ilin(t) = I(0) + t · (I(1)− I(0))
is extracted for the descriptor (cf. Fig. 3(b)). For the jth segment, j = 1 . . . 8,
we receive N samples δij along the line towards the hull point:

δij = I(ti) − Ilin(ti) (4)
= I(ti) + (ti − 1) · I(0) − ti · I(1) . (5)

δij is not contrast invariant, as I(c) = αI yields δ(c) = αδ. As a stable measure-
ment for normalization, we use the standard deviation of δ of all samples in the
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(a) (b)

0 1 t

δij

ti

I(1)

I(0)

I

I(t)

Ilin(t)

Fig. 3. (a) NF description by sampling lines (solid) from xnf towards the hull points.

The dotted lines denote the 8 segment borders. For every segment the nearest regular

feature is selected as hull point. If no such feature exists, a point in the segment

middle (arrows) with specific distance to xnf is chosen as hull point. (b) Sampling δij

according to (5). The difference of the image intensity run I(t) to the linear transition

Ilin(t) = I(0) + t · (I(1) − I(0)) is extracted.

NF hull. For further processing, a zero-mean descriptor dij is required:

dij =
δij − mean δ√

var δ
. (6)

The NF descriptor dij , which has variance 1 and mean 0, specifies the contents of
the convex region spanned by the hull points. To store it in a memory-efficient
way, each element is quantized. We evaluated that a uniform quantization of
8 bit with clipping at ±2 does not change the descriptors significantly.

As the image texture is assumed to be non-textured near to the NF sampling
locations, small localization errors during the sampling can be neglected. Besides,
we can sample the low-passed image signal with acceptable loss in precision to
reduce the noise variance by a factor of slp. We use a Gaussian-shaped filter of
size 7 × 7 and a variance of 1 that performs a suppression of slp = 4.1.

Computing the hull is not repeatable if other nearest regular features are
used. Thus, we have to distinguish between first and second level descriptions
again. When regular correspondences have been established and the NF-feature
is located in image I2, we also transform the hull points x

(1)
hull from I1 to I2 using

x
(2)
hull = T (x(1)

hull). Sampling is then performed analog to first level matching.

3.3 Descriptor Matching Using Local Noise Estimation

As the descriptor is invariant with respect to small offsets, the two possibilities for
two descriptors to differ are that either the image content differs or the presence
of image noise. The two cases are to be classified to consider two descriptors to
differ or to match. Because the content of the NF hull is non-textured and thus
very unlikely to contain any high-frequency patterns, it can be assumed that
the local image variance is due to the noise. We use the high-pass filtered image
signal around the NF location to estimate the variance of Gaussian-distributed
image noise. For a more robust estimate, we collect estimations of the variance
at all sampling locations and take the median value of all estimations.

To analyze if two descriptors match, the NF descriptor d(1) is compared
element-wise with d(2) using the difference



134 R. Dragon et al.

eij = d
(1)
ij − d

(2)
ij . (7)

If we assume that two segment descriptors do not match, d(1) and d(2) are two
independent random variables which were each normalized in (6) to have var d =
1. Assuming dij being Gaussian-distributed, eij is also Gaussian-distributed with
var e = 2. On the other side if we assume that the descriptors match perfectly,
then var e = 0. Among all perturbations which lead to non-perfect descriptor
matches, image noise is the only one that is not due to image contents changes.
Thus we further estimate the influence of image noise on eij .

First, we look at the influence of additive zero-mean Gaussian-distributed
image noise with variance σ2 on the samples I(t) from (5). I(0), I(1) and I(ti)
become independent random variables. During the sampling, their variance was
reduced from the low-pass filter by slp. Thus, we have

var I(t) =
σ2

slp
. (8)

As the three random variables are scaled in (5) by factors of 1, ti − 1 and ti
respectively, we get

var δij =
σ2

slp

(
12 + (ti − 1)2 + t2i

)
= 2

σ2

slp
(1 − ti + t2i ) . (9)

We assume that during the normalization of the descriptor in (6), the influence
of the image noise on var δ, which was created from the whole descriptor, is
negligible compared to the influence on δij . The influence of σ2 on dij is thus

var dij =
2σ2

slp var δ
(1 − ti + t2i ) = 2σ̄2(1 − ti + t2i ) , (10)

where we introduce σ̄2 as normalized image noise variance. When we compare
two independent descriptor elements according to (7), the variance of eij is

var eij = 2(σ̄2
1 + σ̄2

2)(1 − ti + t2i ) . (11)

We can assume that the image noise variance is constant in the sampled area.
Thus we can use (3) to derive the expected variance E[var eij ] of the random
variable eij over all realizations (i, j). An estimation of E[var eij ] can be found
by computing the element-wise mean square distance (MSD) between two zero-
mean descriptors:

E[var eij ] = DMSD(d(1), d(2)) = 2(σ̄2
1 + σ̄2

2)
1
N

N∑
i=1

(1 − ti + t2i ) (12)

= 2(σ̄2
1 + σ̄2

2)rN , (13)

where rN is a scale factor (3
4 ≤ rN < 5

6 ) that increases with growing number of
samples:

rN =
5N + 4
6N + 6

. (14)
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With an a-priori probability of p for two matching line segments, we set the
classification border to the weighted middle between the expected values.

b = 2(1 − p) + 2p
(
σ̄2

1 + σ̄2
2
)
rN (15)

As there is no a-priori information about the area between the features, p is set
to 0.5.

b = 1 + (σ̄2
1 + σ̄2

2)rN (16)

The theoretical limit where NF-features are not classifiable is at a mean image
noise variance of

σ2
max =

slp var δ

2 rN
. (17)

It seems we can handle all noisy images with a high noise suppression slp or with
a high number of samples N , but the variance of δ will also decrease by this: As
the image content of the sampled line is non-textured, the difference to the linear
run sampled in (5) mainly contains low-frequency patterns. So the theoretical
limit depends on the image contents and thus cannot be derived here.

We empirically determined N = 4 samples per line for regular camera images.
Thus, we achieve the following descriptor size: when using the here-proposed pa-
rameters (8 segments with 4 samples per segment, 8 bit descriptor quantization)
the descriptor only occupies 32 byte. With this approach, we have to additionally
store the intra-segment angles (8 bit) and the distances of the 8 hull points (8 bit)
as well as the normalized image variance with high precision (32 bit). Thus, the
NF descriptor size is 52 byte.

4 Experiments

We first demonstrate the properties of NF in a cluttered environment (Fig. 4).
Using NF-SIFT, we match 3 T-shirts worn by 6 different persons under different
illumination conditions. It can be seen that regular features match only at the
T-shirt logos whereas NF-features match on most of the T-shirt area. Further,
occluded or changed image contents like the faces is not matched.

To show the performance of our algorithm, we use natural image pairs of
sequences for the evaluation of affine invariant features from [11]. To demon-
strate illumination invariance, we use the Memorial sequence from [17] originally
used to create high dynamic range images. For a larger experiment, we use the
Amsterdam Library of Object Images (ALOI) [18] which includes 1000 images
under varying illumination conditions. To demonstrate NF-features are useful in
combination with different kinds of feature types, we use SIFT, MSER, Hessian-
Affine (HAff) and SURF as regular features, where for MSER and Hessian-Affine
GLOH is used as descriptor.

As NF uses second level matching and as the NF descriptor comparison is
not based on a nearest neighbor similarity, evaluating recall vs. precision graphs
by varying thresholds is not suitable here. Instead we focus on the common way
of establishing regular correspondences using second nearest neighbor (2NN)
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Fig. 4. NF (cyan) and SIFT (green) correspondences between 3 T-shirts worn by 6

different persons in a cluttered environment. The NF features are located on non-

textured T-shirt regions. The correspondence lines are thinned out by a factor of 5.

matching as proposed in [7]. We then build NF correspondences, estimate them
separately from the regular correspondences and compare all eight cases.

To measure performance, we use precision and recall of the extracted keypoints
of the first image I1 of every image pair (I1, I2) according to (18), where true
positives (tp), false positives (fp) and false negatives (tp) are counted.

recall =
tp

tp + fn
, precision =

tp
tp + fp

. (18)

To verify the correspondences in the case of sequences with a moving camera, ho-
mography matrices supplied with the test material are used as ground truth. As
we focus on dense object description for object recognition, we want to count an
imprecise localization as inlier in contrast to ‘real’ outliers with false correspon-
dences. For true positive correspondences we thus accept a maximum deviation
of 15 pel from the ground truth which is approximately the average dmnn of the
ALOI image database. Correspondences with a higher distance are classified as
false positives. All features detected only in the first image of the illumination
image pair are counted as false negatives. True negatives are not analyzed as no
significant occlusions exist in the sequences.

The runtime for processing NF-features using our non-optimized code depends
on the image contents. If there are many regular features near each other (e.g.
Fig. 6(b)) and large areas are unsampled, the iterative sampling algorithm from
Section 3.1 covers large unsampled regions. In such cases, the runtime is up to
10 times the processing time of regular SIFT features. In images, where holes
between regular features are filled (e.g. Fig. 1) NF matching needs roughly twice
the processing time.

4.1 Descriptor Invariance in Image Sequences

First we examine the influence of changes in global illumination (‘Leuven’), in
changes of internal (‘Bark’, ‘Boat’) and external camera parameters (‘Graf’,
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Fig. 5. Recall over the image index distance in the sequences ‘Bark’ (zoom and rota-

tion), ‘Bikes’ (blur), ‘Boat’ (zoom and rotation), ‘Graf’ (viewpoint), ‘Leuven’ (illumi-

nation), ‘Wall’ (viewpoint), ‘Ubc’ (JPEG compression), ‘Trees’ (blur) and ‘Memorial’

(dynamic range). Crosses denote NF features, circles regular features.

‘Wall’), in adding blur (‘Bikes’, ‘Trees’) and JPEG artifacts (‘Ubc’) and in varia-
tions of the dynamic range (‘Memorial’). For each series, correspondences
between all image pairs are established using 2NN for regular features and the
here-presented methods for NF. To analyze the descriptor invariance, we reduce
the effect of wrong second level detection due to false regular correspondences (We
further analyze this in Section 4.3). We enforce high precision by a loose outlier fil-
tering of the regular correspondences using RANSAC to estimate a homography
from the unfiltered correspondences. By this the precision values are similar (al-
most all above 0.9). So we can compare the approaches using the recall value, which
we average between all image pairs of the same image index distance (Fig. 5).

It can be seen that for all sequences NF always get higher recall values than
regular features, often with a factor of more than two. This is positively surpris-
ing as regular features serve as anchor points for the second level detection. Thus
we can deduce that NF descriptors have better invariance properties towards illu-
mination changes, blurring, JPEG compression and affine transformations than
regular features.
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(a) (b) (c)

Fig. 6. (a) Original image 256 of the ALOI database. (b) The sampled lines of the

detected NF-features (cyan) and SIFT anchor points (green circles denoting the extent).

(c) The examined image with added image noise variance of 100.
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Fig. 7. (a) Influence of image noise on the descriptor difference variance from image

256 of the ALOI database. (b) Noise variance estimation at the feature locations vs.

true noise variance.

4.2 Influence of Image Noise onto the Descriptor Distinctiveness

In this experiment, the distinctiveness of the NF descriptor is analyzed. Topo-
logical information from regular correspondences is not considered. In contrast
to all kinds of regular state-of-the-art descriptors, NF descriptors are directly
built from image intensity values. Thus the influence of image noise on the dis-
tinctiveness of the descriptor seems to be crucial. We now analyze the behavior
of NF towards noise. Therefore we use the center view of object 256 of the ALOI
database which shows a non-textured surface that has regular features at the
borders only (Fig. 6). This means there is no transition from non-textured to
textured during the line sampling for the descriptor. This is highly-crucial as
the NF descriptor has low variance (cf. (17)) and by this image noise has a high
impact on the matching result. We detect NF locations on the object and com-
pute the descriptor differences while adding Gaussian image noise. Using the
descriptor MSD, we compare descriptors which should match and those which
should not match (Fig. 7(a)).

It can be seen that the descriptor difference variance runs as expected: For
non-matching features it is independent from the image noise and reliably at
approximately 2, where it grows from 0 with increasing noise if the features
match. However, we have small systematic deviations from the derived model
concerning the estimation of the image noise (cf. Fig. 7(b)). Besides, the MSD
of non-matching features is slightly but significantly smaller than 2 which means
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Fig. 8. ALOI object 103 with varying illumination l1 . . . l8 viewed from camera c1

Fig. 9. Matching regular (green ellipses) and NF-features (cyan stars) of object 113

from the ALOI image database using NF-SIFT, NF-MSER, NF-HAff and NF-SURF

that they are statistically dependent. However these deviations are small and
likely to be overestimated in this experiment because of the large untextured
area. So we can deduce that NF descriptors are distinctive under the influence
of image noise, even for small changes in image contents.

4.3 Image Database

We use the series ‘Illumination Direction Collection’ from ALOI with camera
c1 in which one object is observed by a static camera during 8 different illumi-
nation conditions l1 . . . l8 (Fig. 8). Illumination l1 . . . l5 were taken at angles of
−60◦ . . . 60◦ in steps of 30◦. l6 and l7 were taken combining the side illuminations
l1 + l2 and l4 + l5 respectively. l8 is all illuminations combined.

We establish correspondences of each object illumination setting with each
other illumination setting of the same object. To measure the impact of false NF
correspondences due to false anchor point correspondences, we do not filter any
correspondence like in Section 4.1. However, we allow the correspondence cluster
filtering which is performed in SIFT, as it is an essential part of the algorithm.
We compute recall and precision values according to (18) for all illumination
pairs of the same object and average them. The results are plotted as precision
and recall matrices over the eight illumination setting in Fig. 10 and in the form
of precision and recall graphs over the angle of illumination change in Fig. 11.1

In Fig. 9 we show a comparison for the detection of all examined NF feature
combinations.

Generally two tendencies can be observed: Concerning the precision, images
with similar illumination, e.g. (l1, l6), have higher precision values for regular
features. With increasing variations of the illumination, NF outperforms reg-
ular features in precision, e.g. (l1, l5). However, NF-HAff show inferior results

1 Please note that NF recall of identical images does not necessarily have to equal to

1, as the estimation of the local motion model T may fail if there are too few suitable

anchor points available.
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Fig. 10. Precision (a) and recall (b) matrix for the illumination conditions l1 . . . l8,
where l1 . . . l5 are single-illuminated images and l6, l7 and l8 are illuminated with a

combinations thereof. In each square, regular (top) and NF features (bottom) are op-

posed using (starting left) SIFT, MSER, HAff and SURF. White denotes precision and

recall of 1, black a precision of 0.72 and a recall of 0.06.
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Fig. 11. Mean precision (a) and recall (b) over the angle of illumination change using

NF-SIFT, SIFT, NF-MSER, MSER, NF-HAff, HAff, NF-SURF and SURF

compared to HAff. Concerning the recall rates, NF always outperforms regular
features, where NF-SIFT is by far better than the other three NF combinations.

5 Conclusion

We derived a framework for NF-features which is complementary to every reg-
ular interest point detection approach with local descriptors. During detection,
centers of regions unsampled by a regular feature detection are determined as NF
locations. The second level matching algorithm re-locates suitable NF features
in further images according to a local transformation which is extracted from
already-established regular correspondences. The descriptor is built by sampling
lines from the non-textured NF location to the nearest regular feature locations.
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Using standard test material and enforcing high precision, we demonstrated
that the repeatability of NF-features is significantly improved towards regular
features, often by a factor of more than two. In a challenging experiment with
high variations of the illumination without outlier filtering, we also achieved
significantly better results concerning recall and precision. Thus, NF-features
are not only useful for a complete description of the image contents but also
improve recall and precision rates. For further evaluation, we provide binaries [1]
that may be combined with any type of regular features.
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Abstract. This paper presents a novel robust and efficient framework

to analyze large repetitive structures in urban scenes. A particular con-

tribution of the proposed approach is that it finds the salient boundaries

of the repeating elements even when the repetition exists along only

one direction. A perspective image is rectified based on vanishing points

computed jointly from edges and repeated features detected in the orig-

inal image by maximizing its overall symmetry. Then a feature-based

method is used to extract hypotheses of repetition and symmetry from

the rectified image, and initial repetition regions are obtained from the

supporting features of each repetition interval. To maximize the local

symmetry of each element, their boundaries along the repetition direc-

tion are determined from the repetition of local symmetry axes. For any

image patch, we define its repetition quality for each repetition interval

conditionally with a suppression of integer multiples of repetition inter-

vals. We determine the boundary along the non-repeating direction by

finding strong decreases of the repetition quality. Experiments demon-

strate the robustness and repeatability of our repetition detection.

1 Introduction

Repetition and symmetry are frequently used in the design of urban architecture.
In fact, buildings often consist of a hierarchy of repetitions and symmetries
(e.g. Fig. 1). Particularly, most of the basic repeating elements on facades (such
as doors and windows) are symmetric by themselves, repetition and symmetry
coexist and interplay at different scales. This paper introduces a new method to
detect repeating elements with salient boundaries in facade images.

The symmetry and repetition patterns together with the appearance of the
repeating/symmetric elements provide a strong characterization of the scene.
Given that, particularly for urban scenes, the symmetries and repetitions of a
scene describe its high-level structure, they can be used for wide baseline match-
ing. One area where this representation would be useful is in the reconstruction
from urban photo collections as in [1]. The reliable boundaries of the detected
repeating elements and the symmetric structure can be used as compact image
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Fig. 1. Example of our detected repetitive structures. Note that the vertical boundaries

are selected automatically to distinguish between the interesting elements and high

frequency repetition of the roof.

features for effective recognition. Since such structures encode significantly more
scene semantics than, for example, SIFT features [2], the matching is signifi-
cantly less ambiguous. The known scene symmetries and repetitions allow us
to automatically extract the facade grammars [3,4,5] as well as the semantic
parsing of the images. Additionally, the known structure of the facades allows to
regenerate facades based its grammar or compensate for occlusions by replacing
occluded parts through their symmetric or repetitive equivalent.

Reliably detecting repetitions and extracting their boundaries is a significantly
challenging problem. Even though images of planar facades can be rectified to a
frontal view by using the vanishing points of the facade, the appearance of re-
peating elements may still significantly change, due to reflections and occlusions.
In addition, the perspective change for non-planar structures on the facade plane
severely affects the local symmetries.

A particularly challenging scenario that draws our attention is where the large
repetitive structures repeat only along the horizontal direction (e.g. Fig. 1). Ho-
mogeneous regions, edges along vanishing directions, and high-frequency repe-
titions cause additional ambiguities in choosing meaningful boundaries for the
repeating elements. To reliably detect the boundaries of such structures, we need
to distinguish between regions that belong to different repetition groups (with
different repetition intervals).

The remainder of the paper is organized as follows. Section 2 briefly discusses
the related work. Section 3 discusses the few of our observations on repetition in
urban scenes. Section 4 gives our vanishing point detection and sparse repetition
analysis. Sections 5 introduces our repetition quality functions. Section 6 pro-
poses our dense repetition detection algorithm with salient boundary detection.
Experiments are discussed in Section 7 and conclusions are given in Section 8.

2 Related Work

Repetitions are usually hypothesized from the matching of local image features,
and repetition are often detected as a set of sparse repeated features by growing
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or tracking from the small sets of initial features towards their immediate spatial
neighbors [6,7,8,9,10,11]. Dense detection of repetition requires the determination
of the boundaries of repeating elements. Liu et. al [12] determine the boundary
of repeating elements by maximizing the local symmetries. A limitation of their
method is the requirement of a 2D repetition grid, which are not always available
in urban environment. This paper shares their idea of maximizing local symme-
tries, but beyond that we separate different repetition groups by evaluating the
local repetition quality conditionally for different repetition intervals.

Additional assumptions about the shape of the repeating elements are some-
times used to define the boundaries of repeating elements. Korah et. al [13]
assume the repeating elements to be rectangular and extract them based on the
edge segments in the rectified images. Their assumptions is often not completely
valid in urban scenes because curved structures are very common. Our method
uses a less restrictive assumptions only requiring the repeating elements to be
approximately symmetric.

The general symmetry includes translational symmetry (we refer to as rep-
etition), reflective symmetry and rotational symmetry. Many researches have
proposed frameworks that can solve both translational symmetry and reflective
symmetry(e.g. [14], [9]). Our method also handles both but in a joint fashion.
We use the coexistence of repetition and symmetry to define the boundaries for
our detected repetition regions along the repeating direction.

Perhaps most closely related to this paper is the work of Müller et. al [15].
They also aim to recover the architectural grammar describing the structure
of the facade. The results are impressive, but require significantly stronger as-
sumptions than for our approach. Besides rectification as in our approach, this
approach requires a tight rectangular boundary delineating the facade (which
seems to be a manual step as no automated solution is provided). It is further
assumed that within this region vertical repetitions occur over the whole width
and horizontal repetitions over the whole height. This is more restrictive than
the bottom up approach we propose in this paper which only requires local sup-
port. As [15] only demonstrates their approach in the presence of both horizontal
and vertical repetitions this seems to be required. Our approach works in the
presence of horizontal repetition (or symmetry) alone. Finally, in [15] boundaries
between elements are chosen based on edge support and distance heuristics and
can yield undesired results. An important contribution of our work is to propose
a principled approach to determine those boundaries based on the symmetry
assumption and on direct image support. Beyond the scope of our paper, [15]
refines the subdivision of facade elements and enables manual depth adjustments
to yield detailed 3D facade reconstructions which is ideally suited for rendering.

3 Observations and Assumptions

Urban scenes are often designed with many repetitive structures, this section
lists some observations that guided the design of our detection algorithm.
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1. Dominant repetition(s) are mostly along the vanishing point direction(s)
with equal 3D spacing. This gives us the opportunity to refine the vanishing
point(s) based on repetition;

2. While many existing approaches require 2D repetition, many buildings lack
vertical repetitions and symmetries. Our approach is specifically developed
to handle this case.

3. Repeating architectural elements typically also exhibit reflective symmetry
around vertical axes. Symmetry axes occur at twice the frequency of the
repetition, in the middle and in between repeated elements. We use this to
localize the vertical boundary between repeating elements (up to a two-fold
ambiguity). Only in very few cases have we observed buildings where this
principle is not satisfied. Note that the rectangle structure assumptions used
for example by [13,15] is a special case of this assumption.

4 Sparse Repetition and Symmetry Detection

In this paper, we denote the extraction of repetition and symmetry from key-
points as sparse detection. This section first introduces our improved vanishing
point detection, and then discusses our sparse detection in the rectified images.

4.1 Vanishing Point Refinement by Maximizing Overall Symmetry

Accurate vanishing point (VP) detection is important in our framework because
we assume the repetitions along vanishing directions. Inaccuracy in VP locations
will disturb the finding of optimal repetition interval and symmetry axes since
the pairwise distances between the matched features change gradually. In our
approach we use the cascaded hough transform [16] to compute the vertical and
one or more horizontal vanishing points from edge pixels as initialization.

We propose a VP refinement by maximizing the overall symmetry in the en-
tire image using both edges and features. Given a pair of horizontal and vertical
vanishing points, V PH and V PV , a homography T = T (V PH , V PV ) can be de-
termined to rectify the image. We define the transformation to keep the original
resolution as much as possible to avoid too much shrinking and expanding. By
matching SIFT [2] features extracted in the original image along both vanish-
ing directions and keeping the closest matches (closest in the image), three sets
of feature pairs can be extracted. We use RH for horizontal repetition, RS for
horizontal symmetry, RV for vertical repetition.

Consider a set of point pairs R ∈ {RH , RV , RS} in the original image and a
transformation T , we use XT (R) to denote the distribution of their horizontal
distances after rectification, Y T (R) for the distribution of their rectified vertical
distances and CT (R) for the distribution of the horizontal coordinates of their
rectified midpoints. Typically in urban scenes images, there exist only a few
strong symmetry axes and repetitions intervals. Correspondingly, we expect to
see only a few strong peaks in the histogram of XT (RH), Y T (RV ) and CT (RS).
These strong peaks correspond to the minimum information that are required
to represent most of the data distribution. Therefore, we expect low entropies
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from those histograms. This paper optimizes the rectification by minimizing
the summed entropy, so that the vanishing directions are better aligned with
repetition directions and symmetry axes.

We use H to denote the entropy function. It can be proven that H(XT (RH))
and H(Y T (RV )) are invariant to any affine transformations, and H(CT (RS))

is invariant to transformation in the form of
(

a 0
b c

)
. However, such an affine

ambiguity can be resolved by using the point distances in the direction that
is perpendicular to repetition or symmetry, Y T (RH), XT (RV ) and Y T (RS),

because they are only invariant to transformations in the form of
(

a b
0 1

)
given a

finite resolution of histogram.
Consider a distance distribution D(x) ∈ {Y T (RH), XT (RV ), Y T (RS)} that

are expected to be close to zero, we use the entropy of D(x) + D(−x) in our
minimization to reduce both drift from zero mean and large variance. We denote
such entropy function by Ĥ . In our case, this can apply to Y T (RH), Y T (RS),
and XT (RV ). Optionally, the edge information can be incorporated straightfor-
wardly. Given the set of edge segments GH and GV that are corresponding to the
two vanishing point, Y T (GH) and XT (GV ) can be used the same as repetition.

By assuming the different distributions independent of each other and ignoring
their joint distributions, we define an energy function for the repetition and
symmetry of an image as

Q(V PH , V PV ) = H(XT (RH)) + H(Y T (RV )) + H(CT (RS)) + Ĥ(Y T (RH))

+Ĥ(Y T (RS)) + Ĥ(XT (RV )) + Ĥ(Y T (GH)) + Ĥ(XT (GV ))

and the vanishing points V PH , V PV are then recovered at the minimum as

(V PH , V PV ) = argmin
V PH ,V PV

Q(V PH , V PV ) (1)

It can be seen that our method still optimizes both vanishing points when vertical
repetition RV is missing because the horizontal symmetry constraints the vertical
vanishing points. Liu [17] has pointed out the potential of using symmetry in
rectification, which were used by [7] to rectified facade images of 2D repetition
grids. Our paper goes beyond to work with more general cases.

In this paper, individual entropies are weighted by the number of points to
avoid bias from small point sets, and gradient descent is used to solve Eq 1.
Our experiments show the VP refinement significantly reduces the drift of the
estimated repetition interval when the initial detection is not accurate enough.

4.2 Repetition Intervals and Symmetry Axes

With the detected VPs, the original images are rectified to be fronto-parallel,
and afterwards upright SIFT features are extracted (similar to the concept of
U-SURF [18]). The single fixed orientation for all features is a natural choice
given that the rotation is compensated through the rectification. Hence, our
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Fig. 2. An example of detected repeating features and symmetry axes. Only the fea-

ture pairs for the strongest repetition interval are displayed. It can be seen that the

symmetry axes are repeating at half the interval of the window repetition.

feature matching does not suffer under descriptor changes from the erroneous
orientation detections. The upright SIFT features are then matched along the
horizontal and vertical direction. Note that the feature matching for reflective
symmetry detection uses the mirrored matching [8].

By matching features along the horizontal direction and vertical direction,
histograms of possible horizontal repetition intervals, vertical repetition inter-
vals, and symmetries can be obtained from the features pairs. Local maxima are
extracted from histograms to get a set of repetition intervals {I} and symmetry
axes {Λ}. In this paper, we do not try to recover vertical symmetries since they
typically do not show up in urban scenes. We also skip any repetition intervals
that are smaller than 30 pixels to focus on only large repetitive structures.

For each repetition interval and symmetry axis, the bounding box of their
matches features gives rough regions for the repetition and symmetry. Unfortu-
nately these regions are often inaccurate due to noise in their appearance and
the ambiguity caused by small repetitive structures. To find the correct region,
a dense measurement should be used.

Consistent with our assumption #3, the local symmetries and the symmetries
between neighbouring repeating elements repeat with an interval of half of the
structure size. See Fig. 2 for an example. Selecting the horizontal boundaries
at the position of those symmetry axes maximizes the local symmetry of the
repeating elements.

5 Evaluation of Repetition Quality

In order to define salient boundaries for repeating elements, we need to densely
evaluate how well each location fits the repetition interval under consideration.
While it is important to have some invariance to lighting changes and other
small variations, non-repeating elements have to be identified. In addition, it is
also important to suppress spurious support that could come from homogeneous
regions and repetitions at higher frequencies (for example, the roof eaves in
Fig. 2 has a repetition interval of 1

5 of the window distances). We first use
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image patches to evaluate the similarity between any two locations. In order
to be invariant to scale changes and different rectification, the patch size WI is
selected proportionally to the repetition interval I. Through our experiments we
have determined that WI = I

4 consistently provides good results.
To provide robustness to small variations and lighting, patch similarity is

evaluated by comparing SIFT descriptors, which is effeciently computed on
GPU [19]. Given a repetition interval I and a location x, we use DR(x, I) to
denote the distance between the normalized SIFT descriptor at x and x + I.
Similarly, the matching distance wrt. a symmetry axis Λ is denoted as DS(x, Λ).

It can be verified that if an element is repeated many times, then if I is a
valid repetition interval 2I, 3I, . . . will also be valid. Therefore, we are interested
in the smallest valid repetition interval and want to suppress its multiples. It
is therefore important to verify that for a repetition interval I, the repetition
intervals { I

2 , I
3 , . . .} are not valid repetition intervals. In fact, this would only have

to be verified for I
p with p prime numbers. In practice, verifying for the first few

prime numbers is sufficient (we go up to 7). Notice that this automatically also
covers the issue of homogeneous regions as those would verify repetition for any
interval. Inspired by the widely used ratio test in SIFT matching, we choose a
set of translations TI = {0,± I

2 ,± I
3 , . . . }, compute the set of matching distances

for them V = {D(x, I + t)|t ∈ TI}, and define the following quality function

f(x, I) = min(α
V(2) + σ

D(x, I) + σ
, 1) (2)

where V(2)is the second smallest distance in V . α is a parameter used for trun-
cating the quality so that the quality function evaluates to 1 when D(x, I) is
significantly smaller than V(2) (we use α = 0.7 as typical for the SIFT ratio
test [2]). Adding a small number σ reduces noise when all distances are very
small, which can be seen as a variance in the SIFT distance distribution (we use
σ = 0.1). It can be seen that f(x, I) > α only when I is local minimum. Note
that the definition works for both single patch or a patch set.

In feature matching, a small ratio between the smallest distance and the
second often corresponds to a high probability of being a correct match [2], and
such a ratio test filters out both ambiguous matches and poor matches. Similarly,
a high f(x, I) indicates high probability of x being salient repetition for interval
I. The quality measure will be low if appearances change too much or if a patch
matches better under other intervals or everywhere. This strategy gives penalty
to both noise and ambiguous high frequency regions (e.g. Fig. 3).

As evaluation of single patches is very noisy, we define similarity and qual-
ity measures to evaluate repetition for image regions. The distance between two
patch sets is defined as its the median distance: DR(X, I) = median{DR(x, I)|x ∈
X}. For quality function, we use a pre-learned threshold1 T to select a inlier
patch set XI{x|x ∈ X, DR(x, I) < T } of an image region X , and use the inlier
set to evaluate the repetition quality as F (X, I) = f(XI , I). Our experiments
show that this quality function is very robust to outliers even for low inlier ratios.
1 T = 0.64 learned from the distributions in labeled images is used in this paper.
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Fig. 3. Our similarity and quality measurement. The colored-patches in the left image

gives the distance map (The visualization uses 1− 1
2
d2 to map distance [0,

√
2] to [0, 1]).

The colored patches in the right image gives the quality map and the curve gives the

quality for each row. The distance map shows good matching for the grass, roof eaves

and the horizontal edges, but our quality function is able to penalize them. The black

lines in the right image gives the places where the vertical boundary are detected.

In order to avoids unreliable evaluation from noise, we set the quality measure
to 0 when inlier ratio is less than 20%.

To correctly handle the first and last element of a repetition sequence, we
define the bidirectional distance and quality

D+(X, I) = min(D(X, I), D(X,−I))
f+(X, I) = max(f(X, I), f(X,−I))

The distance map and quality map refer to D+ and f+ unless specified otherwise.
Similar with F (X, I), only inliers X+

I = {x|x ∈ X, D+(x, I) < T } are considered
while evaluating f+ for a patch set instead of a single patch.

6 Dense Detection

Our dense detection uses the detected sparse repetition and symmetry to obtain
their initial regions, and refines them by dense matching and propagation.

6.1 Region Initialization and Propagation

It is a natural choice to select the horizontal boundaries of the repeating ele-
ments according the detected repeating symmetry axes (e.g. Fig. 2) since such
boundaries generate elements with maximal local symmetry. As illustrated in
Fig. 4, the initial horizontal extent of repetition region is defined by a group of
symmetry axes that have horizontal distances of I

2 or I with each other. The
initial vertical range is chosen to cover the matched feature pairs whose line
segments intersect with the symmetry axes.

Detecting repeating elements is more complicated than detecting symmetry
because the larger repetition count requires propagation and verification in order
to get the full correct regions. Due to perspective change and noise, not all
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Algorithm 1. The Repetition Detection Algorithm
1: Detect vanishing points and rectify image.

2: Find sparse repetitions {I} and symmetry axes {Λ} (Section 4)

3: for each un-processed repetition interval I do
4: Find sets of repeating symmetry axes {ΛI}
5: while {ΛI} is not empty do
6: Find a consecutive set of axes with gap I

2
or I

7: Initialize region from the symmetry axes (Section 6.1)

8: Propagate the region by matching at interval I
9: Find region boundaries and sub-regions. (Section 6.2)

10: Search and analyze vertical repetition.

11: Find further decompositions of regions. (Section 6.3)

12: Save detected repeating elements

13: Remove covered symmetry axes from {ΛI}
14: end while
15: Mark repetitions that can be modeled as processed
16: end for

Fig. 4. Our region initialization from symmetry and propagation by dense matching

symmetry axes can be perfectly detected from initial feature matching. The
initialization in previous step is likely to miss some parts of the actual repetition
region. To extend the repetition region horizontally, we take steps of ±I or ± I

2
to match a rectangular region of width I at the desired location. If the inlier
ratio for both the left and right I

2 are high enough, the region is extended by the
step size. Given the large window sizes, it is actually not necessary to match all
the pixels. Typically, a sparse grid of locations can be used instead like Fig. 4.

6.2 Boundary Detection

Without using vertical repetition, we select the vertical boundaries based on the
quality evaluation of row scanlines. Basically, we exclude regions that lack salient
repetitions at interval I by simply setting boundaries where the quality of rows
F+(X, I) drops from 1 to α (e.g. roof eaves and grass in Fig. 3).

With the determined vertical boundaries, multiple repeating elements can be
defined after filtering out the rows without salient repetition between them.

After the horizontal repetition analysis, sparse vertical repetition analysis is
applied in the detected region, and the boundaries for the vertical repetition are
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Fig. 5. Example of decomposition. The color stripes in the left image shows the con-

tinuation score, and the black vertical lines give the detected element boundary edges.

The right image shows the final decomposition as 4 different repetition groups.

then detected from vertical repetition quality map in a similar way. The initial
region is then decomposed to sub-regions that have both horizontal and vertical
repetition, and sub-regions that have only horizontal repetition.

6.3 Decomposition

As shown in Fig. 5, the possible mistakes of initializing from symmetry axes
is the over-grouping of different repeating elements that have the same repeti-
tion intervals. In this case, the matching distances between neighboring elements
will change over the entire horizontal range, it particularly gets large matching
distances at the places where the repetition elements change. We define a con-
tinuation score function to evaluate how the repetition continues over a range
of 4 times the repetition interval. Similar with the quality function, we define a
continuation score from X to X + I based on the ratio of distances

Cont(X, I) =
min(D(X+

I − I, I), D(X+
I + I, I)) + σ

D(X+
I , I) + σ

The ratio threshold α used in repetition quality functions is basically a closeness
threshold. For regions where we have good continuation of repetition, the con-
tinuation score should be in (α, 1/α). At places where the repetition changes to
something else, there will be much smaller continuation score. We particularly
look for local minimums along horizontal direction that satisfy

Cont(X, I) < min(Cont(X − I, I), Cont(X + I, I), α)

Such local minimums give the possible locations that separate different repeti-
tion elements, and connecting such points vertically defines the edges between
different repetition elements. To be robust to noises, we use regions of size I×I
to evaluate the continuation score. Fig. 5 gives an example of the continuation
score and the resulting decomposition.
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7 Experiments

This section presents our qualitative results and quantitative results. We run our
experiments with the same setting on all the results included in this paper.

7.1 Qualitative Results

Fig. 6 gives a few of our detection results. It can be seen that our detection
algorithm robustly finds salient boundaries for both horizontal direction and
vertical direction. The boundary detection is robust to occlusions, illumination
changes, perspective changes, and existence of homogeneous regions and high-
frequency repetition regions. As shown in of 2, 3, 4, 9, 13, 18 of Fig. 6 our
algorithm detects vertical boundaries based on our quality function and correctly
generates multiple repetition regions vertically.

Although our algorithm initializes the regions from symmetry axes, we do
not enforce strong symmetry constraint on the detected elements. This allows
the repetition detection under very large viewpoints, where the symmetry is

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 19

Fig. 6. Detection shown in the original images. Best viewed in color with 4× zoom.
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Table 1. Our detection performance on the ZübuD dataset

Category # Percentage

No detection due to VP detection failure 25 4%

No detection due to other algorithmic limitations 34 5%

Partial Detection; Missing major repetitions 88 12%

Full detection of all major repetitions; Some boundaries errors 67 9%

Full detection of all major repetitions; Good boundaries 509 70%

very weak (e.g. 4, 9, 14, 16 in Fig. 6). In such cases, the repeating elements are
detected with imperfect symmetries, and the horizontal boundaries may not be
optimal. The experiments also show several of our limitations. In Fig. 6.3, the
repetition from the left tower to the right tower is missing because the repetition
interval is much larger than the tower width. Our current proportional patch size
will not work, unless the ratio is allowed to vary. Fig. 6.8 does not detect the pure
vertical repetition on the right side because our implementation currently only
looks for vertical repetitions for horizontally repeating elements. We do have
small errors in boundary detection like in Fig. 6.4 where too much is occluded
for correct boundary detection. Fig. 6.17 has detected a wrong repetition due to
inaccuracy of the second vanishing point pair.

7.2 Quantitative Evaluation

We use the ZübuD database [20] to evaluate out detection. ZübuD contains 1005
images of 201 buildings in Zürich taken from different viewpoints and illumina-
tions conditions. We first manually filtered out 282 images that do not have clear
repetitions that satisfy our assumptions (Due to occlusions, curved surface, etc).
Fig. 6.17-19 are 4 examples from ZübuD. Table 7.2 is the statistics of our detec-
tion on the 723 remaining images. It can be seen that our algorithm has high
successes rate for both VP detection and repetition detection.

Furthermore, we run an image retrieval experiment to evaluate the repeata-
bility of our detection. We select the 140 buildings that have clear repetitions
on at least 4 images. Our algorithm detects 10096 features in total (eacch ele-
ment is counted as one; average 14 per images). Similar with SIFT descriptor,
for each repeating element, we compute a 4x4 and a 8x8 gradient orientation
histogram grid aligned with repeated elements to get a 128D resp. 512D feature
descriptor. Paticularly, uniform weighting is used instead of Gaussian weighting
to give equal importance to each cell. The distance of a feature to an image is
defined as its smallest distance to all the features in that image. Given a single
feature, images can be retrieved by selecting the closest ones. In this experiment,
a feature-image retrieval is considered correct if the image is one of the other 4
images of the same building. For comparison, we select the 10/100 SIFT features
that have the largest scales in each image to run the same experiment. Fig. 7
shows the retrieval precisions for the first 4 nearest neighbors, where our detec-
tion of repeating elements demonstrates relatively high repeatability. It is worth
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Fig. 7. Evaluation by single-feature image retrieval. REP refers to our repeating el-

ements. 8x8 and 4x4 refers to the grid size for feature descriptor. R3 refers to the

elements that repeat at least 3 times. R2D refers to the features that belong some 2D

repetition grids. It can be seen that our repetition-based features achive better repeata-

bility compared with standard image features. We believe that further improvements

can be achieved with a new descriptor to capture more details. Additionally, features

in R2D and R3 have better precision because they are easier to detect.

pointing out that many of the retrieval failures are due to the similar structures
(especially windows) on different buildings.

8 Conclusion and Future Work

We propose a novel method to detect repeating elements on architectural facades.
The main contributions are the new boundary selection for the dense repetition
detection. We initialize our detection from symmetry axes to maximize the local
symmetry. We also propose a quality function to conditionally evaluate how
image patches fit a repetition interval, which leads to accurate vertical boundary
detection. Our method is very efficient by evaluating repetition and symmetry
with adaptiveness to the scale of repetitions. Typical images require only 2-4
seconds to complete the full analysis with the help of GPU. We evaluate our
detection on large datasets and demonstrate the robustness and repeatability
of our algorithm. Our method works particularly well for low-count and purely
horizontal repetitions which has not been addressed by most previous work.

In future work, we hope to use the proposed repetition and symmetry detec-
tion scheme to automatically extract architectural grammars from images. We
also hope to be able to recover missing 3D information by finding gradual changes
of repetition and symmetry at different depths and generate true ortho-photos
of facades from oblique views. Due to perspective changes, repeating elements
at different depth that have a same 3D repetition interval will show different 2D
repetition intervals in a rectified image ( e.g. 9 and 14 in Fig. 6). Building further
on the preliminary experiment presented in the evaluation, an interesting area
of future work is to use the repetition/symmetry regions as invariant feature
extractor and develop specific appearance and repetition descriptors.
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Abstract. This paper presents algorithms for efficiently computing the

covariance matrix for features that form sub-windows in a large multi-

dimensional image. For example, several image processing applications,

e.g. texture analysis/synthesis, image retrieval, and compression, operate

upon patches within an image. These patches are usually projected onto a

low-dimensional feature space using dimensionality reduction techniques

such as Principal Component Analysis (PCA) and Linear Discriminant

Analysis (LDA), which in-turn requires computation of the covariance

matrix from a set of features. Covariance computation is usually the bot-

tleneck during PCA or LDA (O(nd2) where n is the number of pixels

in the image and d is the dimensionality of the vector). Our approach

reduces the complexity of covariance computation by exploiting the re-

dundancy between feature vectors corresponding to overlapping patches.

Specifically, we show that the covariance between two feature compo-

nents can be reduced to a function of the relative displacement between

those components in patch space. One can then employ a lookup table

to store covariance values by relative displacement. By operating in the

frequency domain, this lookup table can be computed in O(n log n) time.

We allow the patches to sub-sample the image, which is useful for hier-

archical processing and also enables working with filtered responses over

these patches, such as local gist features. We also propose a method for

fast projection of sub-window patches onto the low-dimensional space.

1 Introduction

We consider the problem of efficiently computing the covariance matrix for fea-
ture vectors that can be expressed as sub-windows in a large image. This prob-
lem occurs in construction of codebooks for image patches, where each patch
(sub-window) in the image is projected to a low-dimensional space using a di-
mensionality reduction technique such as Principal Component Analysis (PCA)
or Linear Discriminant Analysis (LDA). This low-dimensional representation is
then useful for several tasks such as matching (search for patches with matching
feature vectors in texture analysis/synthesis, example-based super-resolution,
non-local image denoising and inpainting), compression (using Vector Quanti-
zation), and detection/recognition (e.g. face recognition using wavelet features).
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c© Springer-Verlag Berlin Heidelberg 2010



Fast Covariance Computation for Sub-window Features 157

Sub-window features may not be limited to 2D images, but also useful in 1D
time-series such as audio signals and for 3D analysis in volumetric data or video.

We present an algorithm for efficiently computing the covariance matrix from
these sub-window features by exploiting the redundancy between overlapping
windows. Specifically, we show that the covariance between two feature compo-
nents can be expressed as a function of the relative displacement between those
components in patch space. This further reduces to a cross-correlation operation
which can be computed quickly in frequency domain. Using a similar analysis,
the projection of sub-window features onto the low-dimensional PCA or LDA
basis can also be expressed as a cross-correlation (or filtering) operation, and
therefore computed efficiently.

We are particularly motivated by texture analysis and synthesis tasks, where
image patches or their filtered representations are used as descriptors of local
image texture. Recent work on scene analysis employs gist descriptors for im-
ages [21]. The local version which computes gist features for sub-images and pro-
vides textural information for similar patch search is also based on sub-window
features. Computing these descriptors requires learning weights for filter bank
responses of the image. An intermediate step involves performing PCA over fea-
tures representing sub-windows in the filtered response images. Due to the high
dimensionality of these feature vectors, image windows are usually sub-sampled
before performing PCA. However, using our approach, PCA can be performed
efficiently without resorting to sub-sampling.

In example-based synthesis, super-resolution, and denoising algorithms [19,7,2],
image patches matching a target patch are searched for repeatedly, making low-
dimensional representations valuable for faster performance. PCA is a popular
choice for this purpose, but may need to be applied to each example image in-
dependently for superior synthesis quality. Our fast covariance computation and
low-dimensional projection algorithms significantly speed up the pre-processing
time for these applications. Note that the local gist features described above can
also be used in synthesis tasks for searching similar patches.

2 Related Work

Data analysis techniques such as PCA [22], LDA [6] and factor analysis [5]
employ covariance matrix computation as an essential step. We specifically fo-
cus on dimensionality reduction of image patches, and the fast computation
of covariance matrices for that purpose. Such efficient covariance computation
would benefit several image processing applications including texture synthe-
sis [19,17,27], image and video compression [28,20], super resolution [7,13,26],
non-local denoising [2,1], inpainting [4,15], image modeling [14], and image de-
scriptors computation [12,21].

Covariance estimation for high dimensional vectors is a classically difficult
problem because the number of coefficients in the covariance grows as the dimen-
sion squared [25,8,10]. Most work on estimation of covariance matrices approxi-
mates the actual covariance matrix on the basis of a sample from a multivariate
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distribution. Higham [9] provided a method for computing the nearest covari-
ance matrix when only partially observed data are available. Cao and Bouman [3]
presented a technique based on constrained maximum likelihood estimation for
covariance matrices with n < d, where n versions of a d dimensional vector are
given. We are solving the n >> d case in which the observations are complete.
We provide an efficient approach for the unique situation where the high dimen-
sional vectors are sub-windows sliding in a large domain, such as from an image
or an acoustic signal.

Qi and Leahy [24] described an approximate technique for fast computation
of the covariance using maximum a-posteriori estimation. They extracted the
covariance from multiple images. Porikli and Tuzel [23] presented an integral
image based algorithm to efficiently extract covariance matrices from a given
image. Their feature vector is composed of values defined at a single pixel. The
typical dimensionality used in [23] is d ≈ 7. On the contrary, in our method
feature vectors are composed of values that span multiple pixels (patches) and
have much higher dimensionality (d = 3072 for 32×32 RGB patches). One could
express a patch based feature vector by unrolling the entire patch at every pixel
and subsequently apply the integral based method for covariance computation.
However, as per [23], computing the integral image takes O(nd2) time and storage
(as d+d2 integral images need to be computed). For large d-values, this is much
slower than our method, which takes O(n log n) time. Moreover, the storage
requirements for the integral image method are prohibitive in this case, requiring
more than 20GB for a 100×100 image! The advantage of the integral image based
method is that it allows covariance calculation over arbitrary windows in O(d2)
time once the integral images have been computed. Our method on the other
hand operates over the whole image (or a fixed window), but can handle an
arbitrary mask or pixel weights if they are known a-priori.

3 Fast Covariance Computation

Computation of the covariance matrix from a given set of feature vectors is
an expensive operation when the number and/or dimensionality of the feature
vectors is large. A set of n feature vectors of dimensionality d can be expressed
as the feature matrix F:

F = (f1 f2 . . . fn), where fi = (fi1 fi2 . . . fid)T

is the ith feature vector. The covariance matrix over these feature vectors (as-
suming zero-mean)1 is:

C =
1
n
FFT =

1
n

n∑
i=1

fifT
i ,

1 The true covariance matrix is obtained by subtracting the outer product of the mean

vector from C.
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(a) (b) (c)

Fig. 1. (a) The diagonal pixel pair in the middle of the image corresponds to different

pixel pair locations (equivalently pairs of feature vector components) for patches A, B,
and C (w.r.t their patch origins). Therefore the same pixel pair contributes to all pairs

of feature vector component products that have the same relative pixel displacement.

Pixel pairs near the boundary of the image contribute to the covariance of some “imag-

inary” patches (like patch D) that do not fully lie inside the image. (b) A filtered local
gist image is shown along with a sub-sampled patch. The sub-window feature in this

case is formed by collecting only the red pixels from the patch. Each local gist pixel

stores the integrated filter response over the cell anchored at that pixel (see Section 4.1

for explanation). (c) Image obtained after repacking the local gist image.

where each term fifT
i in the summation is the outer product of the feature vector

fi and takes O(d2) time, leading to a total time complexity of O(nd2).
Now consider the case where the feature vectors form sub-window patches in

a training image. If the patch size is, say 32 × 32, then for a grayscale image,
the dimensionality of the feature vector is d = 32 × 32 = 1024. This is quite
large, given that the covariance computation varies by d2. However, since the
patches are sub-windows in an image, we can exploit the redundancy between
overlapping patches to speed up the computation.

For the ith image patch, its feature vector’s component fij corresponds to a
location in the image, say qij = (qx

ij , q
y
ij). If the patch’s origin is anchored at

location ti = (txi , tyi ) in the image, we can express this location as qij = ti + pj ,
where pj = (px

j , py
j ) is the location expressed w.r.t the patch’s origin and is the

same for all patches. Therefore, we can express fij as a function of the image
from which features are extracted. This could be an intensity image if we are
looking at intensity features, or a processed image containing filter responses,
but returns a scalar feature value as a function of the pixel location2. If I denotes
the image, then

fij = I(ti + pj). (1)

If we focus on a single entry in the covariance matrix at (fj , fk), then:

2 We consider vector-valued images in the next section.
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C(fj , fk) =
1
n

n∑
i=1

fijfik (2)

=
1
n

n∑
i=1

I(ti + pj)I(ti + pk) (3)

=
1
n

n∑
i=1

I(ti + pj)I(ti + pj + vjk), (4)

where vjk = pk − pj is the displacement vector between the pixel locations
corresponding to fij and fik. Now, if we treat the image as infinite, that is the
number of patches n → ∞ and the patch displacements ti span all integer-valued
locations in the plane, then we can drop pj from the term ti + pj in (4). This
is possible because under this infinite span assumption, the pixels spanned by
both ti and ti +pj are the same, and therefore the sum in (4) tends to the same
value. Hence, we can rewrite (4) as:

C(fj , fk) ≈ 1
n

n∑
i=1

I(ti)I(ti + vjk) = C(vjk), (5)

i.e. the covariance value is only a function of the displacement between pixel
locations corresponding to the feature vector’s scalar components. Intuitively,
this works because the same pixel pair in the image contributes to the sums for
different pixel pairs in different patches, all with the same relative displacement,
as shown in Fig. 1a. In practice, for a finite sized image, this formulation results
in an approximation since pixel pairs near the boundary would not contribute
to all products with the same relative displacement (also shown in Fig. 1a).
However, for large enough images, this is an acceptable approximation: because
we are aggregating these products, the error due to the extra accumulation from
boundary pixels diminishes with increasing image size.

3.1 Algorithm

To compute the covariance matrix using (5), one can compute the product for
all pixel pairs in the image with the same relative displacement and sum them
up. These sums of products are stored in a lookup table indexed by the relative
displacement v. The entry C(fj , fk) in the covariance matrix is then assigned
as value in the lookup table at index vjk = pk − pj , where pj and pk are
corresponding pixel locations as defined above. To analyze the complexity of
this algorithm, observe that we need to do this computation for d displacement
vectors because the possible integer-valued relative displacements in a w × w
sized patch is w2 = d (the dimensionality of the patch feature vectors). Also,
each computation is done over all pixel pairs in the image which are O(n), where
n is the number of pixels in the image. Therefore the total complexity is O(nd).
This is much better compared to the original complexity of O(nd2). For a 32×32
patch for example, this is three orders of magnitude faster.
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One can further speed up covariance computation by observing that (5) rep-
resents the 2D auto-correlation function of the image I, which can be computed
efficiently in frequency domain using the Fast Fourier Transform (FFT). The
complexity of this algorithm is bounded by the complexity of FFT computation,
which is O(n log n). For patches with large dimensionality d >> log n, this is
faster than computing the lookup table by explicit summation of products.

4 Extension to Vector Images and Gist Features

The covariance computation approach described above assumes scalar-valued
images. It can be extended to vector-valued images, where the feature vector is
formed by concatenation of the vector components at each pixel in the patch.
Vector-valued images may include multi-channel color images, or images ob-
tained as responses of filter banks applied to the original image. For example, it
is common to apply gradient or Gabor filters [11] to images for texture analysis
as well as for computation of global scene features in the gist algorithm [21].

Consider a vector-valued I image with c channels. A feature value in an image
patch now corresponds to a channel in addition to a pixel location. For the ith

patch, feature component fij corresponds to location qij = ti + pj and channel
cj . Hence, (1) and (4) respectively become

fij = I(ti + pj , cj), and

C(fj , fk) =
1
n

n∑
i=1

I(ti + pj , cj)I(ti + pj + vjk, ck).

By applying the same argument as used for deriving (5), we obtain

C(fj , fk) ≈ 1
n

n∑
i=1

I(ti, cj)I(ti + vjk, ck),

i.e. , the covariance value corresponding to a pair of features is a function of
the channels they belong to in addition to the relative displacement in patch
space. Instead of representing the auto-correlation function of the image, the
covariance now represents the cross-correlation between the respective channels
of the image. Therefore, frequency domain computation can still be employed.
However, the cross-correlation needs to be computed across all (unordered) pairs
of image channels, making the total complexity O(c2n log n). However, this is
still better than the complexity of the exact brute-force algorithm, which is
O(nd2) = O(nc2w4), where w is the window size.

4.1 Sub-sampled Windows and Gist Features

We now consider sub-window features that sub-sample the original image. Fig-
ure 1b shows an example sub-sampled patch. Such sub-sampling of patches is
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useful for computation of local gist features, which are gist features computed
over patches. Compared with global gist features, which compute a gist image
for entire image, we compute a gist patch for every image patch, where each
cell in the gist patch is computed by integrating over a subset of pixels within
the patch.

More specifically, local gist features are computed as weighted filter responses
over local image patches. Firstly, a multi-channel image is obtained by applying
several filters to the image such as Gabor wavelets and/or oriented gradient
filters. Every patch over which the feature vector needs to be extracted is further
divided into a grid of cells, where each cell contains s×s pixels (typically s = 4).
The filtered images are integrated within these cells for each patch to form a
feature vector of size w

s × w
s × c, where w

s is the number of cells along each
dimension within a patch’s grid and c is the number of filtered channels. One
can then organize these integrated cell responses into a local gist image, where
each pixel stores the integrated response for the cell anchored at that pixel
(see Fig. 1b for a visualization of the gist image, shown with 2 × 2 cells). The
feature vector corresponding to a patch can then be obtained by sub-sampling
the local gist image every s pixels.

These features are used to form patch-level scene descriptors in retrieval and
recognition tasks. Local gist features are also useful for searching patches within
an image for graphics applications such as example-based texture synthesis and
super resolution.

Another application of sub-sampled patches is hierarchical processing. For
example, in [18], a Gaussian stack (instead of a pyramid) is used as the multi-
scale representation of an image. Patches at lower resolutions in the stack are
obtained by sub-sampling from corresponding filtered images with a successively
larger step size.

Covariance computation for features corresponding to such sub-sampled
patches follows the observation that feature values only interact with other fea-
ture values that are a multiple of s pixels away in either dimension, where s is
the sub-sampling step size. Therefore one can re-pack the image pixels so that it
results in a grid of s× s sub-images (as shown in Fig. 1c), where each sub-image
now consists of densely sampled w

s × w
s patches. Covariance matrices may then

be computed independently for each of these sub-images and averaged together
to obtain the combined covariance. Alternately, because the sub-images need to
be processed independently, there is no performance benefit to processing all of
them together (as was the case with processing all patches together). Hence, it
may be sufficient to compute the covariance based on just one of the sub-sampled
images. Since each sub-image contains n

s2 pixels, the complexity is O(c2 n
s2 log n

s2 )
per sub-image (or O(c2n log n

s2 ) if all sub-images are used).
The re-packing described above may also be used for processing multiple im-

ages simultaneously by concatenating them together into a larger collage if the
number of images is small. Alternatively, covariances for each image can be com-
puted independently followed by weighted averaging.
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5 Weighted Features

The above approach for covariance computation can be extended to the case in
which pixels have arbitrary weights. This may be useful in case certain patches
are more preferrable than others, e.g. those near interest points or high gradients.
The caveat is that the weights need to be expressed per-pixel, as opposed to
per-patch. However, a simple way to achieve that is to assign to every pixel the
average weight of patches overlapping it. The per-pixel weights may also be used
to specify an image mask that selects the pixels to be considered. In presence of
weights, (5) becomes

C(fj , fk) ≈
∑n

i=1 W(ti)I(ti)W(ti + vjk)I(ti + vjk)∑n
i=1 W(ti)W(ti + vjk)

=
∑n

i=1 WI(ti)WI(ti + vjk)∑n
i=1 W(ti)W(ti + vjk)

where W denotes the per-pixel weights and WI denotes the weighted image,
obtained by multiplying the weights with the image at every pixel. The numer-
ator and denominator denote cross-correlation and auto-correlation operations
respectively and therefore can be computed efficiently as described earlier.

6 Fast Dimensionality Reduction

The covariance matrix computation described above can be used as a pre-process
for performing PCA or LDA on the original feature vectors. However, to use the
computed principal components for dimensionality reduction, it is necessary to
project the original high-dimensional feature vectors onto the low-dimensional
space represented by the principal basis. We can again exploit the redundancy
across overlapping sub-windows to perform this operation efficiently as well.

Projecting a sub-window patch onto a single principal basis vector entails
computing a dot product between the two vectors which is an O(d) operation,
where d = c × w × w is the dimensionality of the patch. Therefore projecting
all sub-windows within the image onto a single basis vector requires O(nd) =
O(ncw2) computation for an image with n pixels. However, if we interpret each
principal component vector as a patch, then the basis coefficient bk for an image
patch anchored at location ti w.r.t the kth principal basis patch Bk can be
expressed as:

bk(ti) =
c∑

l=1

w2∑
j=1

I(ti + pj , cl)Bk(pj , cl)

where pj spans the w × w patch window. Since we want to compute bk for
all values of ti, this is equivalent to filtering the image I with the basis patch
Bk. This can be again efficiently computed in O(cn log n) time in the frequency
domain, which is significantly faster when the patch size is non-trivial, i.e. w2 >>
log n.
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7 Experimental Results

In our experiments, we compute covariances for patches extracted from RGB im-
ages and gist images (which are 6 channel Gabor-filtered images with responses
integrated over cells of 4×4 pixels). We have used a dataset consisting of texture
images, natural scenes, and urban imagery (see Fig. 1a and Fig. 2 for a few ex-
amples that we will refer to subsequently). We compute covariances using three
methods: (1) the exact method that computes the average covariance over all
feature vectors explicitly, (2) our frequency domain FFT -based method, and (3)
a sampling method that sub-samples the image for feature vectors, only using
n

w2 vectors, either randomly or over a regular grid.
Table 1 demonstrates the performance gain we achieve in covariance computa-

tion as well as PCA projection over the respective exact methods. Our covariance
computation is 2-3 orders of magnitude faster, while projection is about an or-
der of magnitude faster. The sampling method is slower than ours for the chosen
sampling rate, without being as accurate. Random sampling or sampling over
a grid generate similar results. Figure 3 shows a visualization of the covariance
matrices and the principal components obtained using the three methods for
the Crowd image. The covariance matrix obtained by our method has the same

(a) Crowd (b) Traffic (c) Leopard skin (d) Green scales

Fig. 2. Reference images used in quantitative experiments (also refer Lena in Fig. 1a)

(a) (b)

Fig. 3. Comparison of covariance matrices and PCA basis vectors computed over

16 × 16 patches extracted from the Crowd image. Visualization of resulting covari-
ance matrices (a) and top 25 basis vectors (b): shown from left-to-right are the results

for the exact method, our FFT-based method, and the sampling method, respectively.

The covariance matrix obtained by our method has the same structure as the exact

covariance, while the sampling method exhibits aliasing which is also evident in the

principal components. The principal components obtained by our method closely re-

semble the smooth exact bases, with the top few components being nearly identical.
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Table 1. Performance comparison between various methods. CPU time shown in sec-

onds. Our method (FFT) is 2-3 orders of magnitude faster for covariance computation,

and about an order of magnitude faster for projection, compared with exact method.

The sampling method is slower than ours for the chosen sampling rate.

Image (size)
Covariance Time Projection Time

16 × 16 RGB 32 × 32 gist 16 × 16 RGB

Exact FFT Sampling Exact FFT Sampling Exact FFT

Scales (64x64) 6 0.04 0.04 0.62 0.02 0.02 0.7 0.1

Grass (120x120) 24 0.07 0.12 5 0.06 0.08 3 0.5

Leopard (128x128) 29 0.07 0.15 5 0.06 0.1 3.5 0.6

Crowd (150x180) 50 0.11 0.23 10 0.09 0.17 6 1.2

Gecko (256x256) 130 0.23 0.57 29 0.23 0.5 16 3

Lena (256x256) 130 0.23 0.59 29 0.22 0.49 16 3

Text (256x256) 131 0.23 0.57 29 0.25 0.49 16 3.2

Windows (306x208) 125 0.23 0.57 27 0.22 0.45 16 3.6

Ropes (360x240) 177 0.3 0.74 39 0.32 0.64 21 5

Traffic (390x300) 239 0.41 0.97 54 0.42 0.85 29 7.5

Building (865x190) 341 0.6 1.34 74 0.74 1.22 41 8

structure as the exact covariance, while the sampling method exhibits aliasing
as it is biased towards the sampled patches (also evident in the principal com-
ponents). Note that the aliasing is not due to sampling on a regular grid since
contributions from all samples are averaged together. The principal components
obtained by our method, on the other hand, closely resemble the smooth exact
bases, with the top few components being nearly identical.

Figure 4 is a quantitative comparison of the covariance matrices computed
using our method and the sampling method against the exact covariance. Since
we are ultimately interested in the principal components obtained from the co-
variance, we compare the subspaces induced by these components. We group
successive principal components obtained from the exact method into subspaces
if the ratio between their respective eigenvalues is less than a threshold (1.2 in
our experiments). This is necessary because the principal eigenvectors become
unstable when their corresponding eigenvalues are close to each other. Therefore
it makes more sense to compare the grouped subspaces as opposed to individ-
ual eigenvectors. Note that we do consistently better than the sampling method
(i.e. have smaller subspace angles). Also, the subspace angle increases only close
to where the eigenvalue curve becomes flat, i.e. after most of the variance has
been captured. The rightmost plot shows that the subspace angle for our method
generally decreases as the number of pixels in the image increase, confirming our
hypothesis that the approximation should improve with image size.

Figure 5 compares the reconstruction error and Fig. 6 compares the nearest
neighbor (NN) search performance between our method (FFT) and sampling
method, Our method results in lower reconstruction error, and the NNs from
our method consistently have lower true distances to query patches than sam-
pling method. The details are in the captions of Fig. 5 and Fig. 6.
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Fig. 4. Subspace angles between principal components obtained by each method (FFT

and sampling) w.r.t the exact method. (a) is a plot for 16× 16 patches extracted from

an RGB image (Traffic), and (b) is a plot for 32 × 32 patches in a 6-channel gist

image (corresponds to an 8 × 8 grid of cells 4 × 4 pixels each). In these two plots,

the eigenvalues of principal components are plotted (scaled and shifted to fit graph).

Our method consistently generates smaller subspace angles compared with sampling

method. There is a jump in the curve when a new subspace is created, and the curve

stays flat when the new eigenvector is added to the same subspace but does not change

the angle considerably. (c) shows the angle between the subspaces induced by the top

10 eigenvectors of the two methods for different images listed in Table 1, plotted as a

function of number of pixels in the images. The subspace angle for our method generally

decreases as the number of pixels in the image increase, confirming our hypothesis that

the approximation should improve with image size.

(a) Traffic (b) Lena (c) Leopard skin (d) Green scales

Fig. 5. Comparison of reconstruction error (y-axis) based on top 25 PCA coefficients for

basis vectors computed using our FFT method (blue curve) and the sampling method

(red dots). Each plot shows reconstruction error for all 16 × 16 patches in the image,

sorted (along the x-axis) by increasing FFT method error. The error from our method’s

PCA basis is consistently smaller than that from the sampling method.

We have applied our technique for accelerating example-based super resolution
and texture synthesis. A practical setting where these methods may be employed
is for resolution enhancement and hole filling of building facades in large scale 3D
urban environments. For super resolution, given a low resolution target image
and a high resolution (partial) source image with similar texture, we synthesize
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a high resolution version of the target (our algorithm combines ideas from [7]
and [16]). The core of the synthesis algorithm is patch-based search performed
in PCA space. The most time consuming component is covariance computation
and feature projection to PCA space. Figure 7a shows a sample super resolution
result. We extract 32×32 patches in this 202×402 image. The computation time
is 3.1s using the fast covariance computation vs. 2415s using the exact covariance
computation. A similar approach may be used for hole filling (see Fig. 7b). Again,
we take advantage of the fast covariance computation to improve the processing
time by more than 2 orders of magnitude.

Fig. 6. Nearest neighbor performance on 16 × 16 patches from (left to right) Traffic,

Lena, Leopard skin and Green scales. Top row plots the median distance (y-axis; blue
curve for our FFT method and red dots for sampling method) from every patch to its top

10 nearest neighbors. Distances are computed over PCA coefficients. We use a hierar-

chical search tree constructed from PCA projected patches for nearest neighbor search.

Patches are sorted (along the x-axis) by FFT method distance. These plots demonstrate

that our FFT method consistently results in nearest neighbors with smaller median

distance compared to the sampling method, except for Green scales where performance

is more even. This is attributable to the fact that the Green scales texture is small in

size (64× 64) and therefore the approximation error in covariance matrix computation

is not negligible. The bottom row plots cumulative histograms over the joint rank of

nearest neighbors collected from the two methods (FFT and sampling). We find the

top 10 nearest neighbors for each patch from both methods and jointly ranked the

resulting 20 neighbors. Then for top K neighbors where K varies from 1 to 20 (plotted

along the x-axis), we count how many neighbors come from the FFT method (blue
left-side bars) vs. the sampling method (red right-side bars) and average this value over

all patches. The resulting value (plotted on the y-axis) denotes the average number

of nearest neighbors in the top-K, that come from the FFT method. Note that for

the first three columns, this value for K = 10 lies between 7 and 9, indicating that

the FFT method consistently results in better ranked neighbors. For the last column

(Green scales), the performance is again evenly split (5.35) between the two methods.
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(a) (b)

Fig. 7. Sample Applications: (a) Example-based super resolution of building facades.

Left to right: (partial) high resolution source image, low resolution target image, high

resolution result. (b) Hole filling. The texture on the left contains a hole (shown in

black) which is filled on the right using texture synthesis.

8 Conclusion

We have proposed a novel algorithm to efficiently compute covariance matrices
for features that can be described as sub-windows in an image. The overlap-
ping nature of these sub-windows results in a special property for the covariance
matrix, namely that the covariance between two pixel features is a function of
their relative displacement. Using this property, covariance computation can be
expressed as a cross-correlation operation, which can be computed quickly in
the frequency domain. We have also presented extensions for vector-valued im-
ages and sub-sampled windows, as well as a method for fast low-dimensional
projection of the sub-windows onto PCA space. Our formulation results in an
approximation to the exact covariance, where the approximation error dimin-
ishes with increasing image size. We support this claim with both qualitative
and quantitative experimental results. We also compare with a simple sampling
approach to covariance estimation, and show that our technique results in a
much closer approximation, while still being faster.
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Binary Coherent Edge Descriptors
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Abstract. Patch descriptors are used for a variety of tasks ranging from

finding corresponding points across images, to describing object category

parts. In this paper, we propose an image patch descriptor based on edge

position, orientation and local linear length. Unlike previous works using

histograms of gradients, our descriptor does not encode relative gradi-

ent magnitudes. Our approach locally normalizes the patch gradients to

remove relative gradient information, followed by orientation dependent

binning. Finally, the edge histogram is binarized to encode edge loca-

tions, orientations and lengths. Two additional extensions are proposed

for fast PCA dimensionality reduction, and a min-hash approach for fast

patch retrieval. Our algorithm produces state-of-the-art results on pre-

viously published object instance patch data sets, as well as a new patch

data set modeling intra-category appearance variations.

1 Introduction

The ability to describe an image patch is critical to many recognition algorithms.
Image patches can be used to find correspondences between varying viewpoints
of an object [1,2,3,4], or to represent parts of object categories [5,6,7]. Typically,
a desirable patch descriptor is robust to illumination changes, moderate pose
variation, and intra-category appearance variation.

A standard approach to describe a patch is the use of Histograms of Gradients
(HoG), [1,7,8,9,10,11]. A HoG is defined as the histogram of image gradients
over a combination of positions, orientations and scales. Examples include the
SIFT [1] and GLOH [9] interest point descriptors, which have been shown to
be very effective for object instance recognition. Similar approaches have been
applied to describe object category parts [7,12]. After creating histograms from
local pixel gradients, standard HoG approaches rely on a global normalization
step to account for variations in illumination. However, these descriptors are
still sensitive to the relative magnitudes of gradients. In many scenarios such as
intra-category appearance variation and partial illumination changes the relative
gradient magnitudes do vary, resulting in reduced matching performance. Several
approaches [1,11,12] use truncated normalization to help reduce this sensitivity.

In this paper, we propose an image patch descriptor based on the location,
orientation, and length of edges, and not their relative gradient magnitudes. We
hypothesize that the presence and not magnitude of edges provides an informa-
tive measure of patch similarity that is robust not only to illumination and pose
changes, but intra-category appearance variation. Our descriptor encodes the

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 170–182, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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presence or absence of edges using a binary value for a range of possible edge
positions and orientations. In addition the locally linear length of an edge is used
to differentiate sets of coherent edges aligned perpendicular to the edge orienta-
tion from shorter edges resulting from textures. Our approach consists of three
main steps: First, the image patch gradients are locally normalized to remove
variations in relative gradient magnitudes. Second, the normalized gradients are
binned using the position, orientation and local linear length of an edge. Finally,
the normalized gradient histogram is binarized to encode the presence of edges.

In addition to the basic approach we propose two extensions: a fast method for
dimensionally reduction using binary vectors and PCA, and a min-hash feature
representation for efficient retrieval. The approach is tested using a previously
published [11] ground truth object instance data set to test its invariance to
illumination and pose changes. A new data set is provided to test invariance to
intra-category appearance variation. In both cases, state-of-the-art results are
achieved, with significant increases in accuracy over traditional approaches such
as SIFT [1], GLOH [9] and variants of Daisy descriptors [10,11].

The rest of the paper is organized as follows: In the next section we describe
previous work, followed by our basic approach. In Section 4 we discuss exten-
sions to our algorithm. Finally results are provided in Section 5 following by a
conclusion and discussion.

2 Previous Work

There exists a large body of previous work on image patch descriptors [13]. The
SIFT [1] descriptor popularized the HoG approach and introduced several opti-
mizations, including truncated normalization and ratio tests. Several follow up
papers have improved on the SIFT desciptor using PCA [14], radial binning [9]
and “daisy” binning [11,15]. Spatial binning parameters have also been learned
from training data [10,11]. Geometric Blurring [8] proposed blurring the gradi-
ents using a spatially varying blur kernel based on the distance to the center of
the patch. SURF [16] uses Harr wavelets instead of gradients to describe image
patches. Another approach is to use generative models to learn the statistics of
image patches [17].

Image patches have also been described and classified using randomized trees
[18,19] and boosting [20] to aid in detecting object classes.

Gradients are commonly used for category part representation. Felzenszwalb
et al. [7] and Dalal and Triggs [12] use HoGs for object category detection,
while others such as Crandall et al. [6] use binary edge detection. PCA on image
intensities has also shown good results in Fergus et al. [5].

3 Binary Edge Descriptor

Our descriptor relies on the detection of edges in an image patch. It is assumed
that the presence of edges remains consistent across matching image patches,
even if their relative magnitudes do not. Thus, we describe an edge based on its
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orientation, position and length, and not its gradient magnitude. For instance see
Figure 1(a). Both patches share similar edge structure, but the relative gradient
magnitudes vary significantly.

Our method is split into three stages: gradient normalization, edge aggregation
and binarization. Gradient normalization removes differences in relative gradient
magnitudes between edges. It is worth noting that we locally normalize gradients
to remove relative differences in magnitude, instead of a global normalization [1]
that only accounts for global gain and offset differences. Next, the gradients
are aggregated into bins, after which a binarization process labels the bins with
highest contribution. Before we describe these three stages, we define our initial
gradient orientations and magnitudes.

The descriptor is computed from a n×n square patch of pixels. The intensity
of a pixel p at location (xp, yp) is denoted f(p) or f(xp, yp). The horizontal
gradient fx(p) of the pixel is equal to f(xp+1, yp)−f(xp, yp) and similarly for the
vertical gradient fy(p). The magnitude of the gradient for pixel p is the Euclidean
norm of its gradients, gp = ‖[fx(p) fy(p)]T‖2. The orientation is defined as θp =
arctan(fy(p)/fx(p)). To help remove noise and sampling artifacts a small amount
of Gaussian blur (σ = 0.5) is applied to the patch before computing the gradients
and orientations.

3.1 Gradient Magnitude Normalization

Our goal for gradient normalization is to maintain the gradient profiles while
removing the relative height differences between the gradient peaks. An efficient
method to solve this problem is to normalize the gradients based on the average
gradient magnitude in a local spatial neighborhood. We compute the average
Gaussian weighted gradient magnitude ḡp in a spatial neighborhood N of p
using

ḡp =
∑
q∈N

gqN (q; p, σs), (1)

where N is the standard normal distribution. The normalized gradients ĝp are
computed using the ratio of the original gradients and the average gradients,

ĝp =
gp

max(ḡp, ε)
, (2)

where ε = 4 is used to ensure the magnitude of ḡp is above the level of noise.
In our experiments the spatial standard deviation is set to σs = 3. Examples of
the normalized gradients are shown in Figure 1(a). We also experimented with
including orientation to compute the average gradients in three dimensions. This
avoids edges with large gradient magnitudes inhibiting the gradients of nearby
edges with different orientations. However, this computationally more expensive
approach did not improve the accuracy of the final descriptor.

3.2 Edge Aggregation

The next stage of our approach aggregates the normalized gradients into bins
defined by an edge’s position, orientation and local linear length. We align the
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Fig. 1. Processing pipeline: (a) Two matching patches (left to right): Original patch,

gradients gp and normalized gradients ĝp, (b) an illustration of the coordinate frame

used for the orientation dependent binning, (c) the edge histogram with the top patch

shown in red and bottom patch shown in green (yellow denotes agreement), (d) the

histogram after blurring and spliting the edges into two sets of bins based on the

edge’s local linear length, (e) final binarized descriptor, red is the top patch, green is

the bottom patch and yellow denotes agreement

spatial binning with the gradient’s orientation to allow for the descriptor’s ro-
bustness to vary perpendicular and parallel to an edge. Orientation dependent
sampling also aids in the detection of coherent edges (as shown later), i.e. sets of
similarly orientated gradients aligned perpendicular to the gradient orientation.
This varies from previous approaches [1,9,11] that define the spatial binning in-
dependent of the orientation. Specifically as illustrated in Figure 1(b), we define
a new coordinate frame (x′

p, y
′
p) for each pixel p at position (xp, yp) depending

on its orientation θp equal to[
x′

p

y′
p

]
= R(θp)

[
xp

yp

]
, (3)

where R(θp) is a standard 2D rotation matrix. We assume the origin (0, 0) is
at the center of the patch. Using (x′

p, y
′
p, θp) we define our binning on a bx′ ×

by′ × bθ resolution grid creating a histogram H(x′, y′, θ). In practice we use
bx′ = 32, by′ = 32 and bθ = 20. When assigning the values ĝp to each bin
according to (x′

p, y
′
p, θp), we use the standard linear soft binning approach using
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bilinear interpolation [1]. An example of the resulting bin values can be seen in
Figure 1(c).

Detecting coherent edges: Above, we aggregated the normalized gradients
into a fixed number of bins in a 3D Histogram. Specifically, we split the vertical
y′ dimension into by′ bins, capturing edges 1/by′ the length of the patch. Many
edges run the entire length of the patch. The discriminability of the descriptor
could be increased if long coherent edges could be distinguished from shorter
texture edges. A simple approach to estimate edge length L(x′, θ) for an edge
at position x′ and orientation θ is to sum the vertical bins perpendicular to its
gradient’s direction,

L(x′, θ) =
∑
y′

H(x′, y′, θ). (4)

If we assign a value of lp = L(x′, θ) to every gradient ĝp we may create a four di-
mensional histogram H(x′, y′, θ, l). In our experiments we found discretizing the
edge lengths into two bins, bl = 2, results in an effective separation of coherent
edge gradients and short texture edges, as shown in Figure 1(d). Specifically, we
compute a delta function Δ(lp) equal to

Δ(lp) = max(0, min(1,
lp − α

β
)). (5)

where the values α and β where set to 2 and 8 respectively. Other sigmoid
functions may also be used, but this linear form provides efficient computation.
The normalized gradient values ĝp are split between the two edge length bins
using Δ(lp) and 1 − Δ(lp) as weights.

3.3 Binary Representation

Given a 4D histogram H(x′, y′, θ, l) we want to determine the edges present in the
patch, while providing robustness to small changes in position and orientation.
Robustness is provided by applying a small amount of blur to the histogram. We
apply Gaussian blurring in the x′, y′ and θ dimensions with standard deviations
of σx′ , σy′ and σθ respectively. Optimizing over possible values of σx′ , σy′ and
σθ we empirically found values of σx′ = 1, σx′ = 3 and σθ = 1 to work well. An
increased amount of blur is applied to the σy′ dimension parallel to the edges,
since this dimension proved less informative in our experiments, see Section 5.
An example of the blurred histogram is shown in Figure 1(d).

Before binarizing edges in the histogram, we first reduce its resolution to
nx′ × ny′ × nθ × nl using sub-sampling. Empirically we found dimensions of
nx′ = 24, ny′ = 8, nθ = 12, and nl = 2 for the x′, y′, θ and l dimensions
respectively to provide good results. Experiments for various values of nx′ , ny′ ,
nθ, nl and are shown in Section 5.

We binarize the sub-sampled histogram’s values by assigning a value of 1 to
the top τ percent of the bins with highest values, and 0 to the others. To reduce
bias in the detection of longer edges over texture edges, we perform binarization
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independently for both sets of edge length bins. The final binarized descriptor
is denoted D, and an example is shown in Figure 1(e). The binarization process
provides nearly full invariance to edge magnitudes. It also provides computa-
tional advantages when reducing the descriptor’s dimensionality as we discuss in
Section 4.1. In our experiments τ = 20%. Results using other values are shown in
Section 5. In practice, several efficient O(n) methods for finding the top τ percent
may be used and are commonly referred to as “selection algorithms” [21].

4 Extensions

In this section, we describe two separate extensions to our basic approach for
reducing the dimensionality of our descriptor using PCA and min-hash.

4.1 Dimensionally Reduction Using PCA

The size of our descriptor D is nx′ ×ny′ ×nθ ×nl, which for the values described
above is 4,608 dimensions. This is far larger than standard descriptors such as
SIFT using 128 dimensions. The difference isn’t quite as dramatic if it is consid-
ered that our descriptors are binary. For instance, we could store our descriptor
in the same space as 144 32-bit floating point numbers. Furthermore, compar-
ison between descriptors can be done efficiently using bit-wise xor functions
[22,23,24].

In this section we explore dimensionally reduction using Principal Component
Analysis (PCA). It has been shown [9,11,14] that using PCA can both decrease
the dimensionally of a descriptor and improve accuracy. We perform PCA using
a standard approach to compute K basis vectors. The training dataset Yosemite
provided by [11] was used to learn the basis functions. Using real-valued descrip-
tors, the cost of projecting an M dimensional descriptor using K basis functions
uses MK multiplications and additions, which can be computationally expensive
for large descriptors.

To increase efficiency, we can take advantage of two properties of our descrip-
tors; they are binary and neighboring values typically have the same values,
Figure 1(e). As a result, we can use a technique similar to integral images to
efficiently project our descriptors by pre-computing the following values

wΣ
k,i =

∑
j<i

wk,j , (6)

where wk,i is the ith value in the kth basis vector. Thus, wΣ
k,i is the sum of all

values in wk before the ith entry. To compute the reduced dimensional descriptor
D∗ the kth projection of D is computed as

D∗
k =

∑
i

(Di−1 − Di)wΣ
k,i. (7)

Since (Di−1 − Di) is only nonzero when neighboring values aren’t equal, the
total amount of computation is greatly reduced. In our experiments, on average
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only 10% of neighboring values were not equal when parsing the descriptor using
an x′, y′, θ and l ordering of the dimensions, resulting in just 0.1*MK adds on
average to project onto the PCA vectors. To handle boundary conditions, an
additional entry has to be added to the end of all descriptors with a value of 0.
Results using PCA dimensionality reduction can be found in Section 5.

4.2 Min-hash for Fast Patch Retrieval

We propose using min-hash as an efficient means for finding similar descriptors.
Previous works use min-hash [25] for image retrieval and clustering [26,27]. Lo-
cality sensitive hashing, semantic hashing and binary coding [28,23,24] have also
been used for image retrieval. Hashing techniques used in conjunction with in-
verse look-up tables provide a fast and scalable method for finding similar points
in high dimensional spaces with certain probabilistic guarantees. In particular,
the min-hash technique has the property that the probability of two hashes be-
ing identical is equal to the Jaccard similarity. The Jaccard similarity is the
cardinality of the intersection of two sets divided by their union’s cardinality. In
our task, the elements of the set are the indices assigned to 1 by our descriptor.
A min-hash is found by creating a random permutation of the set of possible
indices. The smallest permutated index with a value of one in a descriptor is
its resulting hash value [25]. Multiple hashes can be generated for a single de-
scriptor using different random permutations. Given a set of descriptors with
hashes, an inverse lookup table can be created to efficiently find descriptors with
equal hash values. If enough hashes are shared between two descriptors, they
are said to “match”. The advantage of hashing over simple quantization such
as vocabulary trees [2] and kd-trees is the matching accuracy is proportional to
the number of hashes stored per descriptor and not fixed based on the amount
of quantization. In this regard it is similar to using randomized kd-trees [29] or
multiple quantizations, except the quantized values can be efficiently computed
without traversing a tree.

In order to increase the uniqueness of a hash, hashes can be concatenated
into sketches. The size of the sketch refers to the number of hashes used to
create it. If the Jaccard similarity between two patches f and f ′ is J(f, f ′),
the probability of two sketches being identical is J(f, f ′)k, where k is the sketch
size. Min-hash is increasingly effective if the Jaccard similarity between matching
images is high and is low for non-matches. In Figure 4(a), we see the density
functions for matching and non-matching image pairs with respect to the Jaccard
similarity. Since our descriptor produces significant separation between the two
distributions and it is binary, it is a good candidate for the min-hash algorithm.
We present results using the min-hash approach with various sketch sizes and
numbers of sketches in Section 5.

5 Experimental Results

In this section, we provide experimental results on three datasets. The Liberty
and Notre Dame datasets [11] contain image patches generated from Difference of
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(a) (b)

(c)

Fig. 2. Examples of matching patches from the (a) Liberty, (b) Notre Dame and (c)

category datasets

(a) (b)

(c)

Fig. 3. ROC curves for (a) Liberty, (b) Notre Dame and (c) Category datasets. Notice

the plotted ranges vary from (a,b) to the more difficult dataset of (c).
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Table 1. Liberty, Notre Dame and Category dataset accuracies for SIFT [1], Gloh [9],

T2-8a-2r6s, T3-2nd-6, and T3-2nd-6 [11] compared to our approach BiCE. Errors at

95 % recall, and Equal Error Rates (EER) are given. (B) indicates binary dimensions.

Liberty Notre Dame Category

Method Dimensions 95% Error EER 95% Error EER 95% Error EER

SIFT [11] 128 35.09 - 26.10 - - -

SIFT 64 128 33.38 11.51 26.31 10.03 87.37 32.53

GLOH 64 272 28.38 10.27 20.46 8.87 86.69 31.25

T2-8a-2r6s 104 22.37 9.89 14.70 7.57 54.49 20.59

T3-2nd-4 [11] 416 19.36 - 10.50 - - -

T3-2nd-6 624 20.08 8.89 10.15 6.35 74.34 25.70

T3-2nd-4 PCA [11] 37 17.24 - 9.71 - - -

T3-2nd-6 PCA [11] 42 17.14 - 9.49 - - -

BiCE 4608 (B) 14.47 7.50 8.34 6.01 48.66 17.77

BiCE PCA 256 12.76 7.03 7.46 5.72 45.04 16.74

BiCE PCA 128 13.85 7.24 8.01 5.95 47.69 17.44

BiCE PCA 64 15.82 7.90 9.97 6.50 49.12 18.94

BiCE PCA 32 20.15 9.09 14.37 7.58 54.51 20.84

Gaussian interest point detectors [1] from the Statue of Liberty and Notre Dame
cathedral, as shown in Figure 2(a,b). Pairs of matching image patches are verified
using structure from motion [4]. These datasets are effective for measuring a patch
descriptor’s robustness to lighting variation and changes in viewpoint.

We created an additional dataset to measure robustness to intra-category
appearance variation, as shown in Figure 2(c). The category dataset consists of
20 collections of 64×64 patches extracted from the Caltech 256 [30] dataset. Each
collection of patches is selected by humans from a single category centered on the
same part of the object, e.g. the back wheel of a motorcycle, the head of a turtle,
etc. From these sets, 12,800 positive patch pairs are split to create testing and
training datasets. An equal number of negative patch pairs are also generated
using random patch selection. The dataset is available from the author’s website.

Table 1 shows the results of various patch descriptors on the three datasets.
We compare our approach Binary Coherent Edge descriptor (BiCE), to SIFT
[1], Gloh [9], and several state-of-the-art descriptors T2-8a-2r6s, T3-2nd-4, T3-
2nd-6 from [11]. Error rates at 95% recall and Equal Error Rates (EER) are
given. The EER is the point on the ROC curve where the percentage of false
positives and false negatives are equal. Since we are using 64 × 64 patches we
also computed SIFT 64 and Gloh 64 using their standard resolutions for spatial
binning, but with the full resolution patches for a fair comparison. Results of
our descriptor using smaller patches and other variations are shown in the next
section. Results using PCA with various dimensions are also shown. Parameters
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are kept constant for all experiments using the values stated in previous sections.
Running times for computing a descriptor were approximately 11ms for BiCE,
2ms for SIFT and 14ms for T3-2nd-6 on a 2.4GHz Intel PC. The code for BiCE
is only partially optimized.

The best results are found across all datasets using BiCE with PCA and 256
dimensions, followed closely by BiCE without PCA. The results for T3-2nd-4
and T3-2nd-6 with PCA also perform well. However, rotating these descriptors
using PCA in high dimensional spaces can be computationally expensive. It is
worth noting that T2-8a-2r6s does relatively better on the category dataset than
other previous methods. We hypothesize this is due to the inhibition technique
used to compute orientation binning.

5.1 Parameter Exploration

In this section, we explore various adjustments and parameter changes to the
previously described approach. The results are summarized in Table 2. The first
set of figures shows the result of various sampling densities on the histogram H
to get our final descriptor D. The results show that additional sampling in the y′

dimension does not provide additional accuracy. As the sampling rate decreases
the accuracies slowly decrease. Even with only 432 binary dimensions (54 bytes
of storage) the accuracies still outperform previous techniques. The value of
τ is varied from 10% to 30%, with only minor differences in accuracies. The
removal of the edge length dimension increases the error rate by approximately
6% at 95% recall. The direct use of normalized continuous values sampled from
H instead of using binarization significantly increases the 95% error rate to
27.42%. Similar to the binarization stage, the bins corresponding to different
edge lengths were normalized independently. Normalizing all values together
produces worse results. We also tried binarizing T3-2nd-6 [11] and SIFT [1]
features using our simple approach, but improved results were not achieved.
Other more sophisticated approaches to binarization could produce better results
[23,24]. Finally we tested the descriptor’s invariance to the initial patch size. As
the patch size decreases, the accuracies are slightly better (32 × 32) or slightly
worse (18 × 18).

5.2 Min-hash

The results using the min-hash approach from Section 4.2 are summarized in
Table 3. ROC curves for a subset of the results can be seen in Figure 4, with
BiCE providing an upper bound on the accuracies. The “% Match” and “%
Non-match” columns indicate the probability of an descriptor having a corre-
sponding hash value if it is a matching or non-matching descriptor. For instance,
if a dataset had 1 million descriptors with most being non-matches, we would
find on average 155,500 descriptors in each entry of the inverse lookup table
using a sketch of size 1. As we can see, sketches of larger size are advantageous
to minimize collisions. However, larger sketches also require more hashes to be
stored to find collisions with correct matches. The right tradeoffs are applica-
tion dependent. It is interesting to note that the min-hash approach produces
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Table 2. Variations of parameters and methods on the BiCE baseline algorithm. This

includes different descriptor sizes, differing values of τ , removal of edge length infor-

mation, using continuous values instead of binary and using various patch sizes. (B)

denotes binary dimensions.

Liberty

Method Dimensions 95% Error rate EER

BiCE baseline 4608 (B) 14.47 7.50

BiCE nx′ = 24, ny′ = 24, nθ = 12, σy′ = 1 13824 (B) 14.68 7.67

BiCE nx′ = 16, ny′ = 4, nθ = 8 1024 (B) 15.22 7.72

BiCE nx′ = 12, ny′ = 3, nθ = 6, σx′ = 1.5, σy′ = 4, σθ = 1.5 432 (B) 16.27 7.90

BiCE τ = 10% 4608 (B) 16.28 7.82

BiCE τ = 15% 4608 (B) 14.86 7.52

BiCE τ = 30% 4608 (B) 14.46 7.63

BiCE nl = 1 2304 (B) 20.36 9.55

BiCE Continuous 4608 27.42 10.27

T3-2nd-6 Binary, τ = 20% 624 (B) 20.00 8.89

SIFT Binary, τ = 20% 128 (B) 39.65 13.88

BiCE 32 × 32 patch 4608 (B) 13.86 7.41

BiCE 18 × 18 patch 4608 (B) 16.03 7.84

Table 3. Error rates at 95% recall and Equal Error Rates (EER) for various sketch

sizes and numbers of sketches on the Liberty dataset. The percentage of match and

non-match image patches sharing a sketch on average.

Liberty

Sketch size Number of sketches 95% Error rate EER % Match % Non-match

1 32 42.03 19.26 40.47 15.55

1 64 33.96 11.13

2 64 60.95 17.08 18.57 2.91

2 128 27.78 11.79

3 128 44.36 19.67 9.23 0.65

3 256 47.94 12.14

4 256 50.60 17.62 4.75 0.15

4 512 37.53 15.37

similar accuracies to SIFT using 128 sketches of size 2 or 64 sketches of size 1.
Hashing techniques are ideal for applications that can handle some degradation
in matching accuracy for gains in efficiency, such as large scale image clustering
and near-duplicate image search [26,27].
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(a) (b)

Fig. 4. (a) Density functions for matching and non-matching image pairs with respect

to their Jaccard similarity, (b) ROC curves for various numbers of sketches and sizes.

BiCE provides an upper bound on the accuracy of the min-hashing approaches.

6 Discussion and Conclusion
In this paper, we have developed a simple and effective image patch descrip-
tor that provides state-of-the-art results. The descriptor encodes edge position,
orientation, and local linear length, but not relative gradient magnitudes. We
describe two techniques for dimensionality reduction using PCA and min-hash.
Min-hash also provides a method for efficient patch retrieval.

In designing the descriptor, we experimented with other edge information
such as curvature and distinguishing between even and odd edges. However,
these approaches did not yield improved results. For category recognition, it can
be important to be invariant to edge polarity, which our descriptor is not. It
is still an open question on how to encode robustness in situations where it is
useful while not providing full invariance when polarity is informative.

Finally, our edge descriptor might be invariant to relative gradient magnitudes,
but interest point detectors are generally not with some exceptions [31]. An area
of future work is to develop a corresponding interest point detector for sparse sam-
pling that is robust to relative gradient magnitude and intensity changes.
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Abstract. The efficient detection of interesting features is a crucial step

for various tasks in Computer Vision. Corners are favored cues due to

their two dimensional constraint and fast algorithms to detect them. Re-

cently, a novel corner detection approach, FAST, has been presented which

outperforms previous algorithms in both computational performance and

repeatability. We will show how the accelerated segment test, which un-

derlies FAST, can be significantly improved by making it more generic

while increasing its performance. We do so by finding the optimal decision

tree in an extended configuration space, and demonstrating how special-

ized trees can be combined to yield an adaptive and generic accelerated

segment test. The resulting method provides high performance for arbi-

trary environments and so unlike FAST does not have to be adapted to

a specific scene structure. We will also discuss how different test patterns

affect the corner response of the accelerated segment test.

Keywords: corner detector, AGAST, adaptive, generic, efficient, AST.

1 Introduction

Efficient corner detection algorithms are the basis for many Computer Vision
applications, e.g. to find features for tracking, tracking by matching, augmented
reality, registration or 3D reconstruction methods. Compared to edges and color
cues, corners are more accurate and provide a two dimensional constraint. Con-
sidering corners as intersection of two edges, these features have no spatial ex-
tension and, therefore, there is no ambiguity in their location. Of course, this
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aspect is only valid if the locality of a corner is preserved and the response of a
corner detector is as close as possible to the real corner location. Several different
approaches to corner detection are known in literature. All try to find a solu-
tion for efficient, accurate and reliable corner detection - three rather conflicting
characteristics.

The Harris corner detection algorithm is probably one of the most popular
corner extraction methods [1]. It is based on the first order Taylor expansion of
the second derivative of the local sum of squared differences (SSD). The eigen-
values of this linear transformation reveal how much the SSD approximation
varies if the patch would be shifted along the image axes. There are solutions
which interpret the eigenvalues based on a threshold [2] or without [3]. So called
global matching algorithms allow features to be detected within the whole image.
Therefore, a corner detector has to provide a high repeatability so that it de-
tects the same features also after large affine transformations. The global tracker
SIFT [4] uses difference of Gaussians (DoG), while the faster SURF [5] uses a
Haar wavelet approximation of the determinant of the Hessian. Both methods
have the drawback of being rather computationally expensive. Smith developed
the so called ”Smallest Uni-Value Segment Assimilating Nucleus Test” (SU-
SAN) [6] for corner detection. The brightness of the center pixel, the nucleus,
is compared to its circular pixel neighborhood, and the area of the uni-value
segment assimilating nucleus (USAN) is computed. Corner and edges can be
detected by evaluating this area, or it can also be used for noise reduction.
The advantages of this approach are that no noise sensitive derivation or other
computationally expensive operations have to be performed. In [6] a circular
disc with diameter 3.4 is used, which yields a total area of 37 pixels. A more
comprehensive survey can be found in [7].

In the last decade the processing power of standard computers has become
fast enough to provide corner extraction at video rate. However, running con-
ventional corner detection (i.e. the Harris corner detector) and performing other
intensive tasks, is computationally infeasible on a single processor. With the in-
troduction of recent techniques such as the “Features from Accelerated Segment
Test” (FAST) [8], feature extraction has seen significant performance increase for
real-time Computer Vision applications. While being efficient, this method has
proven in several applications to be reliable due to high repeatability (see [9]).
Some applications which use FAST are, e.g., Klein’s PTAM [10] and Taylor’s
robust feature matching in 2.3 μs [11].

In this work we are going to present a novel corner detection approach, which is
based on the same corner criterion as FAST, but which provides a significantly
performance increase for arbitrary images. Unlike FAST, the corner detector
does not have to be trained for a specific scene, but it dynamically adapts to the
environment while processing an image.

Section 2 discusses FAST in more detail due to its strong relation to the
presented work. In Section 3, we will present the adaptive and generic accelerated
segment test with increased performance for arbitrary environments. Further,
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we will discuss the use of different segment pattern and show some experimental
results to demonstrate the achieved speed-up in Section 4.

2 FAST Revisited

The FAST principle is based on the SUSAN corner detector. Again, the center
of a circular area is used to determine brighter and darker neighboring pixels.
However, in the case of FAST, not the whole area of the circle is evaluated, but
only the pixels on the discretized circle describing the segment. Like SUSAN,
also FAST uses a Bresenham’s circle of diameter 3.4 pixels as test mask. Thus,
for a full accelerated segment test 16 pixels have to be compared to the value
of the nucleus. To prevent this extensive test, the corner criterion has been even
more relaxed. The criteria for a pixel to be a corner according to the accelerated
segment test (AST) is as follows: there must be at least S connected pixels on the
circle which are brighter or darker than a threshold determined by the center
pixel value. The values of the other 16 − S pixels are disregarded. Therefore,
the value S defines the maximum angle of the detected corner. Keeping S as
large as possible, while still suppressing edges (where S = 8), increases the
repeatability of the corner detector. Thus, FAST with segment size 9 (FAST-9) is
usually the preferred version, and is also used in our experiments unless otherwise
stated. The AST applies a minimum difference threshold (t) when comparing
the value of a pixel on the circular pattern with the brightness of the nucleus.
This parameter controls the sensitivity of the corner response. A large t-value
results in few but therefore only strong corners, while a small t-value yields also
corners with smoother gradients. In [9] is shown, that the AST with S = 9 has
a high repeatability, compared to other corner detectors as, e.g., Harris, DoG,
or SUSAN. The repeatability of a corner detector is a quality criterion which
measures the capability of a method to detect the same corners of a scene from
varying viewpoints.

One question still remains, namely which pixel to compare first, second, third,
and so forth. Obviously, there is a difference in speed, whether one consecutive
pixel after another is evaluated or, e.g., bisection on the circle pattern is used to
test if the corner criterion applies or cannot apply anymore. This kind of problem
is known as constrained twenty questions paradigm. When to ask which question
results in a decision tree with the aim to reduce its average path length. In [12],
Rosten uses ID3 [13], a machine learning method, to find the best tree based on
training data of the environment where FAST is applied. Doing so, it is not guar-
anteed that all possible pixel configurations are found (see Section 4.2). Already
small rotations of the camera may yield pixel configurations which have not been
measured in the test images. And even if all the pixel configurations are present,
a small rotation about the optical axis would cause the probability distribution
of the measured pixel configurations to change drastically. This may result in an
incorrect and slow corner response. To learn the probabilistic distribution of a
certain scene is therefore not applicable unless only the same viewpoints and the
same scene are expected. Note that the decision tree is optimized for a specific
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environment and has to be re-trained every time it changes to provide the best
performance.

The decision tree learning used by the FAST algorithm builds a ternary tree
with possible pixel states “darker”, “brighter” and “similar”. At each learning
step, both questions, “is brighter” and “is darker”, are applied for all remaining
pixel and the one with the maximum information gain is chosen. Hence, the state
of each pixel can be one of four possibilities: unknown (u), darker (d), brighter (b)
or similar (s). In the following we call a combination of N such states a pixel
configuration. The size of the configuration space is therefore 4N , which yields
416 ≈ 4 · 109 possible configurations for N = 16. For the rest of this paper we
refer to this model as restricted or four states configuration space.

FAST-ER, the most recent FAST derivation, has even a slightly increased
repeatability, compared to FAST-9, at the cost of computational performance [9].
The main difference is the thickness of the Bresenham’s circle, that has been
increased to 3 pixels. This results again in a more SUSAN-like algorithm, which
spans a circular area of 56 pixels, disregarding the inner 3x3 pixels. Again, ID3
is used to build the decision tree, restricting the evaluation to only a small part
of the 47 pixels.

3 Adaptive and Generic Accelerated Segment Test

In this section we present a corner detection approach which is also based on the
AST, but which is more efficient, while being more generic too. We introduce
the reader step-wise to the different concepts underlying the algorithm.

3.1 Configuration Space for a Binary Search Tree

Instead of only considering a restricted configuration space, as in FAST, we
propose to use a more detailed configuration space in order to provide a more
efficient solution. To do this, we consider to evaluate a single question per time.
The idea is as follows: choose one of the pixels to test and one question to pose.
The question is then evaluated for this given pixel, and the response is used to
decide the following pixel and question to query. Searching for a corner, hence,
reduces to traversing a binary decision tree. Since, it is required to specify which
pixel to query and the type of question to use. Consequently, the configuration
space increases by the addition of two more states: “not brighter” (b) and “not
darker” (d). Using a similar notion as [12], the state of a pixel relative to the
nucleus n, denoted by n → x, is assigned as follows:

Sn→x =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d, In→x < In − t (darker)
d, In→x ≮ In − t

∧
S′

n→x = u (not darker)
s, In→x ≮ In − t

∧
S′

n→x = b (similar)
s, In→x ≯ In + t

∧
S′

n→x = d (similar)
b, In→x ≯ In + t

∧
S′

n→x = u (not brighter)
b, In→x > In + t (brighter)

(1)
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where S′
n→x is the preceding state, I is the brightness of a pixel and u means

that the state is still unknown. This results in a binary tree representation, as
opposed to a ternary tree, allowing a single evaluation at each node. Note that
this increases the configuration space size to 6N , which yields 616 ≈ 2 · 1012

possible nodes for N = 16.
Associated with each branch of our tree is a processing cost, which represents

the computational cost on the target machine. These costs vary due to different
memory access times. We specify these as follows,

– cR: register access cost (second comparison of the last tested pixel),
– cC : cache access cost (testing of a pixel in the same row)
– cM : memory access cost (testing of any other pixel).

Further, for each of these, an additional cost equivalent to evaluating a greater-
than operation, is required.

3.2 Building the Optimal Decision Tree

It is well known that a greedy algorithm, such as ID3, performs rather poorly
when finding the optimal decision tree [14]. However, the issue of finding such a
tree is a well-studied problem, where it has been shown that finding the global
optimum is NP-complete [15]. There are several solutions towards finding the
optimal tree [16,17,18], but they are either approximations to the global optimum
or are restricted to special cases, making them ill-suited for this application.

In order to find the optimal decision tree we implemented an algorithm which
is similar to the backward induction method [16]. We explore the whole configu-
ration space starting at the root of the decision tree, where none of the pixels is
known. Nodes of the tree are formed by recursively evaluating a possible question
at a given pixel. We explore the configuration space (using Depth First Search)
until a leaf is found, where a leaf is defined as the first node on the path which
fulfills or cannot fulfill anymore the AST corner criteria. The cost at a given leaf
is zero, while the cost at any given internal node, cP , is determined by picking
the minimum cost computed for each child pair C+ and C−, representing the
positive and negative results of a test, by

cP = min
{(C+,C−)}

cC+ + pC+cT + cC− + pC−cT = cC+ + cC− + pP cT (2)

where cT represents the cost of the pixel evaluation with cT ∈ {cR, cC , cM} and
the pP , pC+ and pC− are the probabilities of the pixel configurations at the
parent and child nodes respectively. Using this dynamic programming technique
allows us to find the decision tree for an optimal AST (OAST) efficiently. The
resulting decision tree can therefore be optimized for different cR, cC and cM , but
also for arbitrary probabilities for each pixel configuration, which is necessary
for our approach described in the following section.

The binary configuration space allows for decision trees which reduce the
entropy more quickly than a ternary tree, as questions which contain little in-
formation gain are deferred to later stages of the decision process. Note that the
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additional cost of re-evaluating the same pixel at a subsequent point in time is
taken into account when computing the optimal tree.

3.3 Adaptive Tree Switching

Every image has, independent of the scene, homogeneous and (or) cluttered
areas representing uniform surfaces or structured regions with texture. Hence,
instead of learning the distribution of the pixel configurations from training
images, like FAST, a first generalization would be to learn the probability of
structured and homogeneous regions and optimize the decision tree according to
this distribution. The resulting tree is complete and optimized for the trained
scene, while being invariant to camera rotations. The probability of an image
to be uniform can be modeled by the probability of a pixel state to be similar
to the nucleus (ps). The “brighter” and “darker” states are mirrored states,
which means that, e.g., a brighter pixel on the test pattern will evaluate the
current nucleus pixel as darker as soon as it becomes the center pixel. Due to
this mirroring the states “brighter” and “darker” are assumed to have the same
probability (pbd), which is chosen to sum up to one with ps (ps + 2pbd = 1).
Thus, the probability of a pixel configuration pX can be computed as follows:

pX =
N∏

i=1

pi with pi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 for Sn→i = u

ps for Sn→i = s

pbd for Sn→i = d
∨

Sn→i = b

pbd + ps for Sn→i = d
∨

Sn→i = b

(3)

The probability distribution of the pixel configuration is therefore a trinomial
distribution with the probabilities ps and twice pbd. Note that the states d,
b and u are not samples of this distribution but represent a set of two and
three samples respectively. While this approach provides a good solution for the
trained environment, it is not generic and, as FAST, it has to be learned for each
specific scene where it is applied.

A more efficient and generic solution is achieved, if the algorithm automat-
ically adapts to the area which is currently processed, i.e. it switches between
decision trees which are optimized for the specific area. The idea is to build,
e.g., two trees and specialize one for homogeneous and one for structured re-
gions based on a small and a large value for ps. At the end of each decision path,
where the corner criterion is met or cannot be fulfilled anymore, a jump to the
appropriate specialized tree is performed based on the pixel configuration of this
leaf (see Fig. 1). This switch between the specialized decision trees comes with
no additional costs, because the evaluation of the leaf node is done offline when
generating the specialized tree. In this way the AST is adapted to each image
section dynamically and its performance is increased, for an arbitrary scene. Any
learning becomes needless.

Because a switch between the trees at no costs can only be performed at
a leaf, the adaption is delayed by one test. Therefore, the only case were the
adaptive and generic accelerated segment test (AGAST) would be less efficient
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Fig. 1. Principle of the adaptive and generic accelerated segment test. The AGAST

switches between two (or more) specialized trees as soon as the pixel neighborhood

changes. The lighter the gray of a leaf the more equal pixels are in the configuration.

The left tree achieves less pixel evaluations (shorter decision paths) in a homogeneous

pixel neighborhood, while the right one is optimized for textured regions.

than FAST, is if the environment would switch from homogeneous to structured
and vice versa at consecutive pixels. This is practically not possible, due to the
mirroring effect of dissimilar pixels as described earlier. However, natural images
usually do not have a random brightness distribution, but they are rather split
into cluttered and uniform regions. If the decision trees can be strongly balanced
by varying ps, also more than two different weighted trees can be used.

4 Experimental Results

The speed and the repeatability of FAST have already been compared to state
of the art corner detection algorithms in [9]. In those experiments FAST-9 has
demonstrated better performance than, e.g., Harris, DoG, or SUSAN. Thus, we
renounce to compare our AST variation only with FAST-9. Note that our ap-
proach is also based on the AST and, therefore, it provides the same repeatability
as FAST.

First, we show and discuss an experiment where we compare the performance
of different AST masks on noisy and blurry images. In Section 4.2 we evaluate
the corner response of different balanced decision trees; and, finally, we compare
the performance of FAST with our approach.

4.1 Evaluation of Various AST Patterns

As already mentioned, SUSAN as well as FAST use a circle radius of 3.4 pixels.
In [6] it is noted that the mask size does not influence the feature detection
as long as there is no more than one feature within the mask. The effect of
the mask size of an image operator is well studied for filters with dense masks.
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Fig. 2. Different mask sizes for the AST: a 4 pixels mask (red), a squared and diamond

shaped 12 pixels mask (blue, left and right figure) and a 16 pixels mask (green). The

black pixel represents the nucleus.

Fig. 3. Checkerboard dataset

Their size affects the smoothing behavior so that larger filters are more robust
against noise. The corresponding effect for the AST pattern size has so far not
been discussed in the similar literature. While for the dense mask of SUSAN,
the same smoothing criteria as mentioned above apply, it is not obvious that
large circles have a similar smoothing effect for AST. Therefore, we use eight
checkerboard pictures acquired from different viewpoints (see Fig. 3) to evaluate
the corner response of the AST pattern shown in Fig. 2. A checkerboard provides
many bright and dark corners of different sizes if viewed from different angles.
Further, we add Gaussian blur and noise to determine the performance of these
pattern on images of poor quality. For all the tests the same threshold is applied.

For pattern sizes up to 12 pixels it is possible to compute the optimal path
by exploring the six state configuration space as described in Section 3.1. The
computational resources of conventional computers are not sufficient to find the
optimal tree for a 16 pixel pattern within the extended configuration space in
reasonable time. Thus, for this size we compute the optimal tree based on the
four state space, yielding a ternary decision tree. Before generating the machine
code, the tree is splatted as described in [9] to cut off equal branches.

Fig. 4 shows the corner response of a 16 pixel pattern with arc lengths of 9, 10
and 11 (12 is omitted because it does not find any features at these corners), the
12 pixel pattern with a square and diamond shape as well as the 8 pixel pattern.
The larger the mask and the larger the arc threshold S, the more features that
are found. A small arc is more discriminating and yields features only close to
the real corner location, which is apparent in Fig. 4(c). Large patterns result in
multiple responses around a corner location, but they may lie at a distance of
about the radius of the mask from the real corner (see Fig. 4(a)). Thus, they do
not preserve the corner location. They are therefore slower for two reasons: 1) the
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(a) 9 of 16 (b) 10 of 16 (c) 11 of 16

(d) 7 of 12 diamond (e) 7 of 12 square (f) 5 of 8

Fig. 4. The corner response for different AST pattern. Detected features are colored

in red. The corners after non-maximum suppression are green.

Fig. 5. These charts compare the corner response of different patterns for blurry and

noisy images. To preserve the comparability we use the arc length S and in brackets

the mask size to label the bars. The red bars show the total amount of features found,

while the green bars represent the number of corners after non-maximum suppression.

Note that the scales of the charts are not the same.

processing of a large pattern is of course computationally more expensive, and
2) they need to evaluate many features for non-maximum suppression. Smaller
patterns better preserve the locality constraint of a corner. However, in the case
of the pattern of size 8, the features are too close, so that a part of them get lost
after non-maximum suppression. Thus, for this size such a post processing is not
necessary, because only single responses are observed at a corner, and should
even be avoided to prevent the loss of features.
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For the next experiment the original checkerboard images were modified by
adding Gaussian noise (5% and 10%) and Gaussian blur (σ = 0.5, 1.0, 1.5).
Fig. 5 shows the performance of the different pattern on these images. Here the
advantage of the 16 pixel mask with arc length 9, 9(16), becomes apparent. It
is more robust against noise and blur. However, the same mask sizes but with
larger arcs show a similar drop-off on blurry images as the smaller pattern with
similar segment angle. The 16 pixel mask with arc length 12, 12(16), has a similar
arc angle as 5(8), while 7(12) has a similar angle as 16(10).

The size of the arc angle controls the repeatability, as shown in [9], and the ro-
bustness against blur. The arc length and, thus, the radius of the mask influences
the robustness against noise.

4.2 Corner Response Time

The corner response time of a certain decision tree is evaluated by computing
the number of tests (greater-than or less-than evaluations) for all the possible
pixel configurations of a mask. To compare the weighting effects of different
probabilities of a pixel to be similar (ps), as described in Section 3.3, the pixel
configurations are divided into classes representing the number of similar pixels.
Fig. 6 shows the deviation of the mean and the standard deviation of the corner
response time from the minimum of all tests on a class. The trees are built for 12
pixel masks exploring the six state configuration space. For zero or one similar
pixels the trees with weight ps = 0.1 and ps = 0.01 perform fewer tests as trees
with larger values for ps. Also the standard deviation of the classes is smaller
for these trees. It is apparent that the decision trees can not be balanced signif-
icantly due to the strong symmetry of this special constrained twenty questions
problem. Besides, the classes with a large number of similar pixels cannot be
balanced properly anymore, because the amount of possible configurations de-
creases drastically for them. Nevertheless, the performance of the adaptive tree
is better than if only one tree is used, as we will see in Section 4.3.

No performance increase can be achieved for different ps by exploring only the
restricted configuration space, due to the reduced degrees of freedom compared to
the full six state configuration space. The limitations of the latter space are also
apparent in the performance of the tree M12 (4st), which shows a significantly
higher average of tests as M12 (6st) in Table 1. This table compares the corner
response time for trees of various mask sizes which were built using different
methods. The second data row M12 (6st) shows the minimum time of the trees
compared in Fig. 6 which were specialized for different ps. Thus, these values are
achieved using the AGAST, switching between two trees which are optimized
for ps = 0.1 and ps = 1/3.

Experiments have shown, that by learning a decision tree based on 120 out-
door images as proposed in [12], only about 87000 pixel configurations out of
over 43 million possible ones could be found. Any learned decision tree should
therefore be enhanced by the missing configurations to prevent false positive and
false negative responses. The ID3 based decision tree, learned from all possible
configurations with equal weights, has shown to achieve the best corner response
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Fig. 6. This chart illustrates the performance of various decision trees, based on dif-

ferent probabilities for a pixel to be similar (ps). Each decision tree was tested with all

possible pixel combination for the mask.

(a) Lab (b) Outdoor (c) Indoor (d) Aerial (e) Medical

Fig. 7. The scenes used for the performance test are a lab scene (768x288), an outdoor

image (640x480), an indoor environment (780x580), an aerial photo (780x582) and an

image from a medical application (370x370)

of all trees witch were optimized using ID3 and various ps. Indeed, it yields the
identical corner response as the code provided in the FAST sources.1

4.3 Performance Experiments

All the timing experiments are run on one core of an Intel Core2 Duo (P8600)
processor at 2.40 GHz. We are using five images from different scenes2, shown
in Fig. 7.

Table 2 shows the performance of various AST-decision trees with different
mask sizes and built by different methods. Please note, that the achieved speed-
ups do not only affect the corner detection step, but also the computation of the
pixel-score for the non-maximum suppression.

To compare the performance of our decision trees with the conventional FAST-
9 algorithm, we use the code from the FAST sources mentioned in Section 4.2.
The FAST and optimal AST (OAST) trees are built based on a uniform proba-
bility distribution, which means that the probability for any pixel configuration
1 http://svr-www.eng.cam.ac.uk/˜er258/work/fast.html
2 The lab scene is provided in the FAST Matlab package at

http://svr-www.eng.cam.ac.uk/˜er258/work/fast-matlab-src-2.0.zip
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Table 1. This table compares the average tests performed for each class of configuration

using various mask sizes and different methods to find the best decision tree. From left

to the right: mask size 8 exploring the six states configuration space, mask size 12

exploring the six states space, mask size 12 exploring the four states space, mask size

16 exploring the four states space and the ID3-learned decision tree trained on all

possible configurations. The probability of all configurations was assumed to be equal

for all trees beside M12 (6st), which represents the minimum tests for all decision trees

of Fig. 6. These trees were built by exploring the six state configuration space for a

mask size of 12 pixels using different weights.

ns M8 (6st) M12 (6st) M12 (4st) M16 (4st) M16 (ID3)

0 5.54 6.53 7.80 8.1528 8.3651

1 5.32 6.17 7.27 7.6485 7.8073

2 5.07 5.82 6.77 7.1948 7.3094

3 4.81 5.48 6.33 6.7893 6.8692

4 4.59 5.19 5.93 6.4277 6.4812

5 4.41 4.94 5.59 6.1044 6.1388

6 4.26 4.74 5.28 5.8144 5.8354

7 4.13 4.56 5.01 5.5529 5.5649

8 4.00 4.41 4.77 5.3160 5.3223

9 - 4.29 4.55 5.1003 5.1033

10 - 4.18 4.35 4.9031 4.9043

11 - 4.08 4.17 4.7221 4.7225

12 - 4.00 4.00 4.5554 4.5555

13 - - - 4.4013 4.4013

14 - - - 4.2583 4.2583

15 - - - 4.1250 4.1250

16 - - - 4.0000 4.0000

is the same. This probability distribution yielded the trees with the best overall
corner response and therefore the best performance.

As mentioned earlier, it is not possible to search for the optimal decision tree
for a 16 pixel mask within the complete configuration space in reasonable time
on conventional computer. Therefore, the tree is optimized in the four state
configuration space and achieves an average speed-up of about 13% regarding
FAST-9. For the 12 pixels mask the ideal tree can be found in the six state space
and by combining the trees specialized for ps = 1/3 and ps = 0.1 a mean speed-
up of about 23% and up to more than 30% can be gained. Using the AGAST-5
decision tree on the 8 pixels mask results in a performance increase of up to
almost 50%. Of course, with the drawback of its sensitivity regarding noise and
blur as discussed in Section 4.1.

The C-sources for OAST-9, AGAST-7 and AGAST-5 are available for down-
load at http://www6.cs.tum.edu/Main/ResearchAgast. The trees have been
optimized according to standard ratios of memory access times.

http://www6.cs.tum.edu/Main/ResearchAgast
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Table 2. This table shows the computational time of various AST-decision trees. The

value in parentheses, close to the tree names, stands for the mask size which the tree is

based on. The specified speedup is relative to the FAST performance. The first value

represents the mean speedup for all five images while the value in parentheses shows

the maximum speedup measured.

Image Lab Outdoor Indoor Aerial Medical Speed-Up [%]

FAST-9 (16) 1.8867 2.4242 1.8516 2.2798 1.1106 -

OAST-9 (16) 1.5384 2.2970 1.6197 1.9225 0.9413 13.4 (18.5)

AGAST-7 (12) 1.2686 1.9416 1.4405 1.8865 0.8574 23.0 (32.8)

AGAST-5 (8) 0.9670 1.4582 1.3330 1.8742 0.7727 33.0 (48.7)

5 Conclusion and Future Work

We have shown how to increase the performance of the accelerated segment
test by combining specialized decision trees. The optimal trees are found by
exploiting the full binary configuration space. The algorithm dynamically adapts
to an arbitrary scene which makes the accelerated segment test generic. In doing
so no additional costs arise. This makes this approach to the currently most
efficient corner detection algorithm to our knowledge. Moreover, any decision
tree learning to adapt to an environment becomes needless. By exploring the
full configuration space also the processor architecture and its memory access
times can be taken into account to yield the best performance on a specific target
machine.

Further, we have discussed the influence of different AST mask sizes and shown
that, for images of good quality, smaller mask sizes should be preferred. They
reduce the processing time and emphasize the locality constraint of a corner.
Dealing with blurry and noisy images, patterns with a larger radius are favored.

For future research we would like to implement an approximation for decision
tree learning as proposed in [17], which considers also the length of the decision
path and not only the minimization of the entropy, as ID3. In this way, we can
also balance trees of pattern sizes 16 or more pixels and implement the AGAST
for these masks. Further, we are looking for an efficient combination of different
mask sizes to yield high robustness while preserving the real corner location.
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Abstract. Invariant image descriptors play an important role in many

computer vision and pattern recognition problems such as image search

and retrieval. A dominant paradigm today is that of “bags of features”,

a representation of images as distributions of primitive visual elements.

The main disadvantage of this approach is the loss of spatial relations

between features, which often carry important information about the

image. In this paper, we show how to construct spatially-sensitive im-

age descriptors in which both the features and their relation are affine-

invariant. Our construction is based on a vocabulary of pairs of features

coupled with a vocabulary of invariant spatial relations between the fea-

tures. Experimental results show the advantage of our approach in image

retrieval applications.

1 Introduction

Recent works [1,2,3,4,5,6,7,8,9] demonstrated that images can be efficiently rep-
resented and compared using local features, capturing the most distinctive and
dominant structures in the image. The construction of a feature-based represen-
tation of an image typically consists of feature detection and feature description,
often combined into a single algorithm. The main goal of a feature detector is
to find stable points or regions in an image that carry significant information on
one hand and can be repeatedly found under transformations. Transformations
typically considered include scale [3,4], rotation, and affine [7,8] transformations.
A feature descriptor is constructed using local image information in the neigh-
borhood of the feature points (or regions).

One of the advantages of feature-based representations is that they allow to
think of images as a collection of primitive elements (visual words), and hence
appeal to the analogy of text search and use well-developed methods from that
community. Images can be represented as a collection of visual words indexed
in a “visual vocabulary” by vector quantization in the descriptor space [10,11].
Counting the frequency of the visual word occurrence in the image, a repre-
sentation referred to as a bag of features (analogous to a bag of words used in
search engines) is constructed. Images containing similar visual information tend
to have similar features, and thus comparing bags of features allows to retrieve
similar images.
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Using invariant feature detectors and descriptors, invariance is built into bags
of features by construction. For example, given two images differing by an affine
transformation, their bag of features representations based on MSER descriptors
are (at least theoretically) equal. Yet, one of the main disadvantages of bags of
features is the fact that they consider only the statistics of visual words and lose
the spatial relations between them. This may often result in loss of discrimina-
tivity, as spatial configuration of features often carries important information
about the underlying image [12]. A similar problem is also encountered in text
search problems. For example, in a document about “matrix decomposition” the
word “matrix” is frequent. Yet, a document about the movie Matrix will also
contain this word, which will result in a similar word statistics and, consequently,
similar bags of features. In the most pathological case, a random permutation of
words in a text will produce identical bags of words. In order to overcome this
problem, text search engines commonly use vocabularies consisting not only of
single words but also of combinations of words or expressions.

This text analogy can be extended to images. Unlike text which is one-
dimensional, visual expressions are more complicated since the spatial relations
of objects in images are two-dimensional. A few recent papers tried to extend
bags of features taking into consideration spatial information about the features.
Marszalek and Schmid [13] used spatial weighting to reduce the influence of back-
ground clutter (a similar approach was proposed in [14]). Grauman and Darrell
[15] proposed comparing distributions of local features using earth mover’s dis-
tance (EMD) [16], which incorporates spatial distances. Nister and Stewenius [17]
used feature grouping to increase the discriminativity of image descriptors, and
also showed that such the advantage of such an approach over enlarging the de-
scriptor area is smaller sensitivity to occlusion. A similar approach for feature
grouping and geometry consistency verification has been more recently proposed
by Wu et al. [18]. Sivic et al. [19,20] used feature configurations for object retrieval.
Chum and Matas [21] considered a special case when the feature appearance is ig-
nored and only geometry of feature pairs is considered. In [22], the spatial struc-
ture of features was captured using a multiscale bag of features construction. The
representation proposed in [23] used spatial relations between parts. In [24], in a
different application of 3D shape description, spatially-sensitive bags of features
based on pairs of words were introduced. Behmo et al. [25] proposed a commute
graph representation partially preserving the spatial information. However, the
commute graph based on Euclidean distance relations is not invariant under affine
transformations. Moreover, commute graphs encode only translational relations
between features, ignoring more complicated relations such as scale and orienta-
tion of one feature with respect to another.

The main focus of this paper is the construction of affine-invariant feature-
based image descriptors that incorporate spatial relations between features. Our
construction is based on a vocabulary of pairs of features coupled with a vocabu-
lary of affine-invariant spatial relations. Such a construction is a meta-approach
which can augment existing feature description methods and can be considered as
an extension of the classical bags of features. The rest of the paper is organized
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as follows. In Section 2, we introduce notation and the notions of invariance
and covariance, using which we formally define feature detection, description,
and bags of features. Section 3 describes our construction of affine-invariant
spatially-sensitive bags of features. Section 4 demonstrates the performance of
our approach in an invariant image retrieval experiment. Finally, Section 5 con-
cludes the paper.

2 Background

Typically, in the computation of a bag of features representation of an image, first
a feature detector finds stable regions in the image. Next, each of the detected
features undergoes is transformed to an invariant canonical representation, from
which a visual descriptor is computed. Each such descriptor containing visual
information about the feature is quantized in a visual vocabulary, increasing the
count of the visual word corresponding to it. Finally, counts from all features
are collected into a single distribution, called a bag of features. In what follows,
we formalize each of these steps.

Feature detection. Let us be given an image I (for simplicity, grayscale). We
refer to a planar subset F as to a feature, and denote by FI = {F1, . . . , Fn} a
feature transform of I that produces a collection of features out of an image.
The feature transform is said to be covariant with a certain group of geometric
transformations if it commutes with action of the group, i.e., for every transfor-
mation T, FTI = TFI (we write TI(x) implying I(Tx)). In particular, we are
interested in the group of affine transformations of the plane. We will henceforth
assume that the feature transform is affine-covariant. A popular example of such
a feature transform is MSER [7], which will be adopted in this study.

Feature canonization. Once features are detected, they are often normalized
or canonized by means of a transformation into some common system of coordi-
nates [26]. We denote the inverse of such a canonizing transformation associated
with a feature F by AF , and refer to A−1

F F as to a canonical representation of
the feature. As before, this process is said to be affine-covariant if it commutes
with the action of the affine group. The canonical representation in that case
is affine-invariant, i.e., A−1

F F = A−1
TF (TF ) for every affine transformation T.

A classical affine-covariant (up to reflection ambiguity) feature canonization is
based on zeroing its first-order moments (centroid) and diagonalizing the second-
order moments [27].

Feature descriptors. The fact that a canonical representation of a feature
is invariant is frequently used to create invariant descriptors. We will denote
by vF a vector representing the visual properties of the image supported on F
and transformed by A−1

F into the canonical system of coordinates, referring to
it as to a visual descriptor of F . A straightforward descriptor can be obtained
by simply sampling the feature footprint in the canonical space and represent-
ing the obtained samples in a vector form [26]. However, because of using the
intensity values of the image directly, such a descriptor is sensitive to changes
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in illumination. While this is not an issue in some applications, many real ap-
plications require more sophisticated representations. For example, the SIFT
descriptor [3] computes a histogram of local oriented gradients (8 orientation
bins for each of the 4 × 4 location bins) around the interest point, resulting in
a 128-dimensional vector. SURF [9] descriptor is similar to SIFT yet more com-
pact, with 4-dimensional representation for each of the 4 × 4 spatial locations
(total of 64 dimensions).

Bags of features. Given an image, descriptors of its features are aggregated
into a single statistic that describes the entire image. For that purpose, descrip-
tors are vector-quantized in a visual vocabulary V = {v1, . . . ,vm} containing m
representative descriptors, which are usually found using clustering algorithms.
We denote by QV a quantization operator associated with the visual vocab-
ulary V that maps a descriptor into a distribution over V, represented as an
m-dimensional vector. The simplest hard quantization is given by

(QVv)i =
{

1 : d(v,vi) ≤ d(v,vj), j = 1, . . . , m
0 : else, (1)

where d(v,v′) is the distance in the visual descriptor space, usually the Euclidean
distance ‖v − v′‖. Summing the distributions of all features,

BI =
∑

F∈FI

QVvF ,

yields an affine-invariant representation of the image called a bag of features,
which with proper normalization is a distribution of the image features over the
visual vocabulary. Bags of features are often L2-normalized and compared using
the standard Euclidean distance or correlation, which allows efficient indexing
and comparison using search trees or hash tables [11].

3 Spatially-Sensitive Image Descriptors

A major disadvantage of bags of features is the fact that they discard information
about the spatial relations between features in an image. We are interested in
spatially-sensitive bags of features that encode spatial information in an invariant
manner. As already mentioned in the introduction, spatial information in the
form of expressions is useful in disambiguating different uses of a word in text
search. A 2D analogy of two text documents containing the same words up to
some permutation is a scene depicting different arrangements or motion of the
same objects: a change in the relative positions of the objects creates different
spatial configuration of the corresponding features in the image. Yet, in images,
the spatial relations can also change as a result of a difference in the view point
(usually approximated by an affine transformation). If in the former case the
difference in spatial relations is desired since it allows us to discriminate between
different visual content, in the latter case, the difference is undesired since it
would deem distinct a pair of visually similar images.
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Visual expressions. A straightforward generalization of the notion of combi-
nations of words and expressions to images can be obtained by considering pairs
of features. For this purpose, we define a visual vocabulary on the space of pairs
of visual descriptors as the product V × V, and use the quantization operator
Q2

V = QV × QV assigning to a pair of descriptors a distribution over V × V.
(Q2

V(v,v′))ij can be interpreted as the joint probability of the pair (v,v′) being
represented by the expression (vi,vj).

Same way as expressions in text are pairs of adjacent words, visual expressions
are pairs of spatially-close visual words. The notion of proximity can be expressed
using the idea of canonical neighborhoods: fixing a disk M of radius r > 0
centered at the origin of the canonical system of coordinates, we define NF =
AF M to be a canonical neighborhood of a feature F . Such a neighborhood is
affine-covariant, i.e., NTF = TNF for every affine transformation T. The notion
of a canonical neighborhood induces a division of pairs of features into near and
far. We define a bag of pairs of features simply as the distribution of near pairs
of features,

B2
I =

∑
F∈FI

∑
F ′∈NF

Q2
V(vF ,vF ′).

Bags of pairs of features are affine-invariant by their construction, provided that
the feature transform and the canonization are affine-covariant.

Spatial relations. Canonical neighborhoods express binary affine-invariant
proximity between features, which is a simple form of spatial relations. A more
general class of spatial relations can be obtained by considering the relation be-
tween the canonical transformations of pairs of features. Specifically, we consider
the canonical relation

SF,F ′ = A−1
F ′ AF .

It is easy to show that SF,F ′ is affine-invariant, i.e., STF,TF ′ = SF,F ′ for every
affine transformation T. This spatial relation can be thought of as the transfor-
mation from F ′ to F expressed in the canonical system of coordinates. It should
not be confused with the transformation from the system of coordinates of F ′

to the system of coordinates of F , which is achieved by AF A−1
F ′ .

It is worthwhile noting that symmetric features result in ambiguous spatial
relations. The problem can be resolved by projecting the relation onto the sub-
group of the affine group modulo the ambiguity group. When the ambiguity
group is finite (e.g. reflection), the spatial relation can be defined as a set [28].

Spatially-sensitive bags of features. Being an invariant quantity, the canon-
ical spatial relation can be used to augment the information contained in visual
descriptors in a bag of pairs of features. For that purpose, we construct a vo-
cabulary of spatial relations, S = {S1, . . . ,Sn}. A quantization operator QS

associated with the spatial vocabulary can be constructed by plugging an ap-
propriate metric into (1). The easiest way of defining a distance on the space of
transformations is the Frobenius norm on transformations represented in homo-
geneous coordinates,
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d2(S,S′) = ‖S− S′‖2
F = tr((S − S′)T(S − S′)),

which is equivalent to considering the 3 × 3 transformation matrices as vectors
in R9 using the standard Euclidean distance. A somewhat better approach is to
use the intrinsic (geodesic) distance on the Lie group of matrices,

d2(S,S′) = ‖ log(S−1S′)‖2
F,

where logX =
∑∞

i=0
(−1)i+1

i (X − I)i is the matrix logarithm.
The disadvantage of the intrinsic distance is the non-linearity introduced by

the logarithm. However, using the Baker-Campbell-Hausdorff exponential iden-
tity for non-commutative Lie groups yields the following first-order
approximation,

d(S,S′) = ‖ log(S−1S′)‖F =
∥∥log

(
exp(− logS) exp(logS′)

)∥∥
F

=
∥∥log

(
exp(log S′) − exp(logS) + O(‖ logS′ logS‖2)

)∥∥
F

≈ ‖ logS′ − logS‖F.

Practically, using this approximation, spatial relations can be thought of as nine-
dimensional vector whose elements are the entries of the logarithm matrix logS,
and the distance between them is the standard Euclidean distance on R9. A
more general distance between spatial relations can be obtained by projecting
S and S′ onto subgroups of the affine group, measuring the distances between
projections, and then combining them into a single distance.

Coupling the spatial vocabulary S with the visual vocabulary V×V of pairs
of features, we define the spatially-sensitive bag of features

B3
I =

∑
F∈FI

∑
F ′∈NF

Q2
V(vF ,vF ′) · QS(SF,F ′),

which, with proper normalization, is a distribution over V×V× S that can be
represented as a three-dimensional matrix of size m×m× n. Spatially-sensitive
bags of features are again affine-invariant by construction.

While the clear advantage of spatially-sensitive bags of features is their higher
discriminativity, the resulting representation size may be significantly higher.
Additional potential drawback is that repeatability of pairs of features can be
lower compared to single features. Due to the above considerations, the best
application for the presented approach is a scenario in which the two images to
be compared have a large overlap in the visual content. An example of such an
application is image and video copy detection, in which one tries to recognize an
image or video frame that has undergone some processing or tampering. Another
example is video alignment, in which one tries to find a correspondence between
two video sequences based on their visual content. Subsequent frames in video
may differ as a result from motion, which result in different spatial configurations
of the depicted object. Distinguishing between such frames using bags of features
would be very challenging or even impossible (see e.g. Figure 2).
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Fig. 1. Examples of five layouts of a Shakespearean sonnet from the Text dataset. The

last layout is a random permutation of letters.

Fig. 2. Examples of three images from the same scene in the Opera dataset. Each

scene contains visually similar objects appearing in different spatial configurations.

Such images are almost indistinguishable by means of bags of features, yet, result in

different spatially-sensitive descriptors.

4 Results

We assessed the proposed methods in three image retrieval experiment, using
Text, Opera, and Still life datasets described in the following.1 The first two
experiments were with synthetic transformations, the third experiment was with
real photographed data. The datasets were created to contain objects in different
geometric configurations. In all the experiments, MSER was used as the feature
detector, followed by the moment-based canonization. Feature descriptors were
created by sampling the unit square in the canonical space on a 12 × 12 grid.
Three methods were compared: simple bags of features (BoF), bags of pairs of
features (P-BoF), and spatially-sensitive bags of features (SS-BoF). All bags of
features were computed from the same sets of feature descriptors and canonical
transformations using the same visual vocabularies.

Synthetic data. The first two experiments were performed on two datasets.
The first was the Text dataset consisting of 29 distinct fragments from

1 All the data and code for reproducing the experiments will be published online.
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Shakespearian sonnets. Each fragment was rendered as a black-and-white im-
age using the same font in several spatial layouts containing the same letters
organized differently in space. One of such extreme layouts included a random
permutation of the letters. This resulted in a total of 91 images, a few examples of
which are depicted in Fig. 1. Black-and-white text images are an almost ideal set-
ting for the MSER descriptor, which manifested nearly perfect affine-invariance.
This allowed to study in an isolated manner the contribution of spatial relations
to bag of feature discriminativity.

The Opera dataset was composed of 28 scenes from different opera recordings.
From each scene, several frames were selected in such a way to include approx-
imately the same objects in different spatial configurations, resulting in a total
of 83 images (Fig. 2). The challenge of this data was to be able to distinguish
between different spatial configurations of the objects. Such a problem arises,
for example, in video alignment where subsequent frames are often very similar
visually but have slightly different spatial layouts.

To each image in both data sets, 21 synthetic transformation were applied.
The transformations were divided into five classes: in-plane rotation, mixed in-
plane and out-of-plane rotation, uniform scaling, non-uniform scaling, and null
(no transformation). Each transformation except the null appeared in three in-
creasing strengths (marked 1 − 5).

For the Text data, the vocabularies were trained on examples of other text,
not used in the tests. Same visual vocabulary of size 128 were used in all the
algorithms; spatial vocabulary of size 24 was used in SS-BoFs. For the Opera
data, the vocabularies were trained on web images. Visual vocabulary was of
size 128, and spatial vocabulary was of size 24. In all experiments, the size of
the canonical neighborhood was set to r = 15.

We performed a leave-one-out retrieval experiment on both datasets. Eu-
clidean distance between different image descriptors (BoF, P-BoF, and SS-BoF)
was used to rank the results. Retrieval performance was evaluated on subsets of
the distance matrix using precision/recall characteristic. Precision at k, P (k), is
defined as the percentage of relevant images in the first k top-ranked retrieved
images. Relevant images were the same configuration of objects regardless of
transformation. Average precision (AP) is defined as mAP = 1

R

∑
k P (k)·rel(k),

where rel(k) ∈ {0, 1} is the relevance of a given rank and R is the total number
of relevant images. Mean average precision (mAP), the average of AP over all
queries, was used as a single measure of retrieval performance. Ideal retrieval
results in all first matches relevant (mAP=100%).

Tables 1 and 2 shows the retrieval performance using different image repre-
sentations on Text and Opera datasets, respectively. The performance is broken
down according to transformation classes and strengths. The use of spatially-
sensitive bags of features increases the performance from 39.46% mAP to 92.4%
(134% improvement) on the Text data and from 83.9% to 91.35% (8% improve-
ment) on the Opera data.

Real data. In the third experiment, we used the Still life dataset containing
191 images of objects laid out in 9 different configurations (scenes) and captured
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Table 1. Retrieval performance (mAP in %) of different methods on the Text dataset,

broken down according to transformation classes and strengths (1–5)

Strength
Method Transformation 1 ≤2 ≤3 ≤4 ≤5

In-plane rotation 41.57 35.33 31.98 30.86 30.39

Mixed rotation 26.28 35.23 32.68 28.56 24.25

BoF Nonuniform scale 58.13 59.70 59.25 60.11 58.63

Uniform scale 55.30 48.64 46.79 45.77 44.57

All 45.32 44.73 42.68 41.33 39.46

In-plane rotation 60.51 49.36 43.45 40.90 39.94

Mixed rotation 30.08 48.86 42.97 36.05 30.33

P-BoF Nonuniform scale 81.90 82.90 83.13 83.26 81.31

Uniform scale 78.91 72.56 73.06 69.82 67.73

All 62.85 63.42 60.65 57.51 54.83

In-plane rotation 100.00 100.00 99.45 99.08 99.12

Mixed rotation 97.99 98.99 98.14 85.96 70.48

SS-BoF Nonuniform scale 100.00 100.00 100.00 100.00 100.00

Uniform scale 100.00 100.00 100.00 100.00 100.00

All 99.50 99.75 99.40 96.26 92.40

Table 2. Retrieval performance (mAP in %) of different methods on the Opera dataset,

broken down according to transformation classes and strengths (1–5)

Strength
Method Transformation 1 ≤2 ≤3 ≤4 ≤5

In-plane rotation 92.95 88.36 84.62 80.63 77.59

Mixed rotation 68.39 64.98 69.86 70.25 70.07

SS-BoF Nonuniform scale 95.50 96.01 95.90 95.22 94.47

Uniform scale 96.73 95.16 94.78 94.31 93.47

All 88.39 86.13 86.29 85.10 83.90

In-plane rotation 93.55 88.19 85.82 84.17 81.49

Mixed rotation 75.42 72.84 75.47 75.21 74.75

SS-BoF Nonuniform scale 95.31 96.01 95.53 95.13 94.52

Uniform scale 96.18 94.76 93.86 93.62 93.09

All 90.11 87.95 87.67 87.03 85.96

In-plane rotation 95.11 92.73 91.27 89.91 88.52

Mixed rotation 82.68 81.42 83.65 83.95 84.23

SS-BoF Nonuniform scale 97.32 97.32 97.64 97.36 96.47

Uniform scale 98.80 98.11 97.28 96.66 96.20

All 93.48 92.40 92.46 91.97 91.35

from multiple views with very wide baseline by cameras with different focus
and resolution (12–36 views for each scene). Some of the views differed dramat-
ically, including occlusions, scene clutter, as shown in Figure 3. Moreover, most
of the scenes included a sub-set of the same objects. The challenge in this ex-
periment was to group images into scenes based on their visual similarity. Same
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Fig. 3. Examples of three viewpoints (left, middle, right) and two configurations (first

and second rows) of objects in the Still life dataset. Images in the same layout were

taken by multiple cameras from different positions.
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Fig. 4. Performance of different methods on the Still life dataset. Four red solid curves

correspond to SS-BoF with spatial vocabulary of different size (displayed on the curve).

vocabularies as in the Opera test were used. We performed a leave-one-out re-
trieval experiment. Successful match was from the same object configuration
(e.g., in Figure 3, when querying the top left image, correct matches are top
middle and right, incorrect matches are all images in the second row).

Figure 4 shows the retrieval accuracy of different methods as a function of
visual and spatial vocabulary size. BoF achieves the best retrieval performance
(42.1% mAP) with a vocabulary of size 128. With the same vocabulary, P-BoF
achieves 44.7% mAP. The best result for SS-BoF is 51.0% (21% improvement)
when using a spatial vocabulary of size 24. Consistent and nearly constant im-
provement is exhibited for all the range of the tested visual vocabulary sizes.
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We observe that while consistent improvement is achieved on all datasets,
spatially-sensitive bags of features perform the best on the Text data. We at-
tribute this in part to the relatively primitive feature canonization method used
in our experiments, which was based only on the feature shape and not on the
feature intensity content. This might introduce noise into the computed canoni-
cal transformation and therefore degrade the performance of canonical neighbors
and spatial vocabulary. In future studies, we intend to use a SIFT-like feature
canonization based on the dominant intensity direction, which is likely to im-
prove the stability of the canonical transformations.

5 Conclusions and Future Directions

We presented a construction of a feature-based image representation that gener-
alizes the bag of features approach by taking into consideration spatial relations
between features. Central to our construction is a vocabulary of pairs of affine-
invariant features coupled with a vocabulary of affine-invariant spatial relations.
The presented approach is a meta-algorithm, since it augments the standard bag
of features approach and is not limited to a specific choice of a feature trans-
form. In future studies, we intend to test it on other descriptors such as SIFT,
and extend the idea of spatial relations to epipolar relations between features
in calibrated images. We also intend to extend the proposed approach to video,
creating affine-invariant vocabularies for motion.

Experimental results show improved performance of image retrieval on syn-
thetic and real data. We plan to evaluate our approach in a large-scale image
retrieval experiment. Our approach is especially suitable for problems in which
the compared images have large overlap in visual content, such as copy detection
and video alignment, an application that will be studied in future works.
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Abstract. Co-occurrence features are effective for object classification

because observing co-occurrence of two events is far more informative

than observing occurrence of each event separately. For example, a color

co-occurrence histogram captures co-occurrence of pairs of colors at a

given distance while a color histogram just expresses frequency of each

color. As one of such co-occurrence features, CoHOG (co-occurrence his-

tograms of oriented gradients) has been proposed and a method using

CoHOG with a linear classifier has shown a comparable performance with

state-of-the-art pedestrian detection methods. According to recent stud-

ies, it has been suggested that combining heterogeneous features such

as texture, shape, and color is useful for object classification. There-

fore, we introduce three heterogeneous features based on co-occurrence

called color-CoHOG, CoHED, and CoHD, respectively. Each heteroge-

neous features are evaluated on the INRIA person dataset and the Ox-

ford 17/102 category flower datasets. The experimental results show that

color-CoHOG is effective for the INRIA person dataset and CoHED is

effective for the Oxford flower datasets. By combining above heteroge-

neous features, the proposed method achieves comparable classification

performance to state-of-the-art methods on the above datasets. The re-

sults suggest that the proposed method using heterogeneous features can

be used as an off-the-shelf method for various object classification tasks.

1 Introduction

Object classification is one of the essential tasks in computer vision and his-
togram based features such as SIFT (scale invariant feature transform) [9], HOG
(histograms of oriented gradients) [1], and a color histogram [17] are widely used
features for object classification. A merit of histogram based features is robust-
ness to the slight shift of an object position. However, these histogram based
features have the limited discriminative power because they don’t take any spa-
tial information into account. One of the solutions to this problem is to extract
features from multiple small regions in an image. However, if the regions are too
small, features extracted from them become sensitive to the slight object trans-
lation. Another solution is to use co-occurrences of pairs of features extracted
from different positions in an input image. For example, a color co-occurrence
histogram (CCH) [6], also called color correlogram, captures co-occurrence of

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 209–222, 2010.
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pairs of colors while a color histogram just expresses frequency of each color.
In a similar way, edge co-occurrence matrices (ECMs) [13], originally applied to
texture classification problem, express the spatial relationship of pairs of edge
orientations. Recently, CoHOG (co-occurrence histograms of oriented gradients)
[19], an extension of HOG to represent the spatial relationship between gradi-
ent orientations, has been proposed and its effectiveness for pedestrian detection
and cat face detection has been shown in [19,8]. Methods using co-occurrences
of more than two features have also been proposed in [20,15].

According to recent studies [4,16,10,11], it has been suggested that combining
heterogeneous features such as texture, shape, and color is useful for object clas-
sification. Since heterogeneous features represent various aspects of objects and
work complementarily, they achieve higher classification performance than ho-
mogeneous features and are applicable to a variety of object classification tasks.
Therefore, we introduce three heterogeneous features based on co-occurrence
called color-CoHOG, CoHED, and CoHD, respectively.

The remainder of the paper is organized as follows. CoHOG is briefly explained
in Sect. 2. Then three heterogeneous features, color-CoHOG, CoHED, and CoHD
are proposed in Sect. 3. Experiments are presented in Sects. 4 and 5. Finally,
conclusions are given in Sect. 6.

2 Co-occurrence Histograms of Oriented Gradients

CoHOG (co-occurrence histograms of oriented gradients) [19], an extension of
HOG [1], consists of multiple co-occurrence histograms of gradient orientations.
Though the dimensionality of CoHOG is high, a linear classifier gives high clas-
sification performance. Therefore, computational cost of classification is lower
than other complex classification methods such as kernel SVM. An algorithm
of CoHOG calculation is shown in Algorithm 1. The number of elements of the
co-occurrence histograms H is m × n × d2 where d is the number of gradient
orientation bins. For example, given 10 offsets, 10 small regions, and 10 bins for
gradient orientation, the number of elements of H is 10, 000. In detail, please
refer to [19].

3 Proposed Features

In this section, we propose three heterogeneous features based on co-occurrence
called color-CoHOG, CoHED, and CoHD, respectively. Color-CoHOG, which is
an extension of CoHOG to make use of color information, is co-occurrence of
a color matching result and a pair of edge directions. CoHED is co-occurrence
between edge orientation and color difference. CoHD is co-occurrence of a pair of
color differences. Hence color-CoHOG and CoHED are co-occurrences of hetero-
geneous features and CoHD is co-occurrence of homogeneous features. Details
are described in the following sections. We also explain a color histogram as a
complementary feature of the above three features.
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Algorithm 1. CoHOG calculation
Input: I : a grayscale image, {(pi, qi)}m

i=1: m offsets, {Di}n
i=1: n small regions in the

image

1: compute a gradient orientation image G from I
2: initialize co-occurrence histograms H with zeros

3: for i = 1 to m do
4: for j = 1 to n do
5: for all (x, y) ∈ Dj do
6: if (x + pi, y + qi) is inside of the image then
7: g1 ← G(x, y)

8: g2 ← G(x + pi, y + qi)

9: H(g1, g2, j, i) ← H(g1, g2, j, i) + 1

10: end if
11: end for
12: end for
13: end for
14: return H

3.1 Color-CoHOG

CoHOG calculation described in Algorithm 1 assumes that an input image is
grayscale. Derivative masks such as Sobel filter are used to compute gradients.
If a color image is given, the conversion from color to grayscale is necessary
before CoHOG extraction. Therefore, we extend CoHOG to make use of color
information and we apply two ideas. First, we calculate edge orientation in a
color image instead of a grayscale one. Second, we use a result of color matching
in order to take distinction of foreground and background into account. The
details of the ideas are described below.

Deciding edge orientation in a color image is not a trivial problem and a
lot of researches have been done [7,14,12]. We found that a method based on
the double angle representation [5] gives the consistent results with reasonable
computational cost. In the double angle representation, the directions θ and
θ+180 degrees are equivalent and the orthogonal directions θ and θ+90 degrees
are the vectors that point in opposite directions so that averaging gradients in
different color channels makes sense (shown in Fig. 1). As a result, we obtain
gradient orientations between 0 and 180 degrees since we make no distinction
between θ and θ + 180 degrees. In the experiments described in Sects. 4 and 5,
Roberts filter is used to calculate initial gradients and then they are averaged in
the double angle representation over the RGB channels and the spatial regions
of 2 × 2 pixel size. Averaged gradient orientation is evenly divided into 4 bins.

Foreground-background discrimination is helpful to describe a shape (e.g.,
[12]). Taking this into account, we use a result of color matching between a pair
of pixels at a given offset. This is based on the assumption that colors of a pair
of pixels belonging to the same object are likely to be similar while colors of a
pair of pixels located at different objects are likely to be dissimilar. In particular,
we calculate two co-occurrence histograms per offset and small region, one is the
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Fig. 1. (a) A vertical edge. (b) Averaging gradients, denoted by arrows, over red and

blue channels in the single angle representation gives undesirable result. (c) Averaging

gradients over red and blue channels in the double angle representation gives desirable

result.

co-occurrence histogram of a pair of pixels at a given offset that have the same
color and the other is the one of a pair of pixels that have different colors. For
the computational efficiency, we quantize colors in Cb-Cr space into 17 clusters
shown in Fig. 2a and compare the cluster labels to decide if a pair of pixels has
the same color.

Our proposed feature named color-CoHOG is summarized in Algorithm 2.
Whereas the original CoHOG captures texture information only, color-CoHOG
can capture both texture and shape information since foreground-background
discrimination is taken into account. The dimension of color-CoHOG is m×n×
2 × d2 where d is the number of quantized edge directions. In the experiments,
since we use 16 offsets shown in Fig. 2b, color-CoHOG has 16× 1× 2× 42 = 512
elements per small region.

3.2 CoHED

We propose a feature CoHED (Co-occurrence Histograms of pairs of Edge orien-
tations and color Differences) that expresses the relationships between an edge
orientation and the change of colors across the edge. Once an edge orientation at
the point p0 is determined, two points p1 and p2 are located at the two opposite
sides of the edge point p0 (shown in Fig. 3a). Edge orientations are calculated
in the same manner as described in Sect. 3.1 and color differences between p1
and p2 are calculated in YCbCr color space. Then color differences are quantized
to 8 directions in each color plane, that is, Y-Cb plane, Y-Cr plane, and Cb-Cr
plane. Calculation of a co-occurrence histogram with color difference in Y-Cb
plane is as follows;
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(a) (b)

Fig. 2. (a) The figure shows color labels in Cb-Cr space. The label 16 corresponds to

neutral gray. (b) The figure shows 16 offsets (drawn as filled circles) used for color-

CoHOG calculation.

Algorithm 2. Color-CoHOG calculation
Input: I : a color image, {(pi, qi)}m

i=1: m offsets, {Di}n
i=1: n small regions in the image

1: compute an edge direction image G from I using the double angle representation

2: compute color labels C of pixels in the image

3: initialize co-occurrence histograms H with zeros

4: for i = 1 to m do
5: for j = 1 to n do
6: for all (x, y) ∈ Dj do
7: if (x + pi, y + qi) is inside of the image then
8: g1 ← G(x, y)

9: g2 ← G(x + pi, y + qi)

10: if C(x, y) is equal to C(x + pi, y + qi) then
11: c ← 1

12: else
13: c ← 0

14: end if
15: H(g1, g2, c, j, i) ← H(g1, g2, c, j, i) + 1

16: end if
17: end for
18: end for
19: end for
20: return H

HY−Cb(g, c) ← HY−Cb(g, c) + |dy| + |du| (1)

where g is the edge orientation at p0, c is the quantized color difference between
p1 and p2 in Y-Cb plane, and dy and du are differences between p1 and p2 in Y
channel and Cb channel, respectively. CoHED is computed by weighted voting
(|dy| + |du| in (1) corresponds to a voting weight) while other co-occurrence
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(a) (b)

Fig. 3. (a) Positions of three points p0, p1 and p2 used for CoHED. Once edge orien-

tation at p0 is decided, p1 and p2 are located at the two opposite sides of the edge.

(b) Eight offsets used for CoHD. A set of three pixels that consist of an origin and a

pair of points located at two opposite positions with respect to the origin is used to

calculate color difference.

features described in this paper are computed by unweighted voting. Since voting
weights for strong step-edges are larger than those for weak ones, CoHED mainly
captures shape information rather than texture information. We use 1, 3, 6, and
9 as the distance s from p0 to p1(p2) in the experiments. Thus, the dimension
of CoHED is 4 (edge directions) ×8 (directions of color differences) ×3 (color
planes) ×4 (scales) = 384.

3.3 CoHD

Since color-CoHOG captures shape and texture information and CoHED cap-
tures shape information, it’s expected that features mainly capturing texture in-
formation work complementarily to color-CoHOG and CoHED. Therefore, based
on the similar idea as CoHOG, we propose a feature CoHD (Co-occurrence His-
tograms of color Differences) that simply captures texture information. CoHD
represents changes of color values of three pixels located on a given line in an
image (shown in Fig. 3b). Color differences are calculated between the centered
pixel and the one of the other two pixels, respectively. Calculation of CoHD is
described in Algorithm 3. Color differences in Cb-Cr plane are quantized to 4
directions. Eight offsets (shown in Fig. 3b) are used to calculate color differ-
ences of pairs of pixels. Thus, the dimension of CoHD is 4 (directions of color
differences) ×4 (directions of color differences) ×8 (offsets) = 128.

3.4 Color Histogram

The above three features use relative color information. However, absolute color
information is also useful for object classification [10,16]. In this paper, we use a
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Algorithm 3. CoHD calculation
Input: U : Cb-plane image, V : Cr-plane image, {(pi, qi)}m

i=1: m offsets, {Di}n
i=1: n

small regions in the image

1: initialize co-occurrence histograms H with zeros

2: for i = 1 to m do
3: for j = 1 to n do
4: for all (x, y) ∈ Dj do
5: if (x + pi, y + qi) and (x − pi, y − qi) are inside of the image then
6: u1 ← U(x + pi, y + qi) − U(x, y)

7: v1 ← V (x + pi, y + qi) − V (x, y)

8: u2 ← U(x − pi, y − qi) − U(x, y)

9: v2 ← V (x − pi, y − qi) − V (x, y)

10: c1 ← (u1 > 0) + 2 × (v1 > 0) // quantization into 4 directions

11: c2 ← (u2 > 0) + 2 × (v2 > 0) // quantization into 4 directions

12: H(c1, c2, j, i) ← H(c1, c2, j, i) + 1

13: end if
14: end for
15: end for
16: end for
17: return H

simple color histogram that consists of 17 bins shown in Fig. 2a. Since we use a
linear classifier in the experiments, 2nd order polynomial terms of elements of a
color histogram are explicitly generated in order to increase linear separability.
Thus the number of elements including the 2nd order terms is 170.

4 Experiment 1. INRIA Person Dataset

In this section, we evaluate the proposed method on the INRIA person dataset
[1]. The INRIA person dataset provides positive images cropped 64× 128 pixels
and negative images of various sizes. Some examples are shown in Fig. 4. The
number of positive/negative images are 2, 416/1, 218 for training and 1, 132/453
for testing, respectively. Detection performance is evaluated by the same way as
described in [1]. We extract features separately from 4× 8 non-overlapped small
regions that are 16 × 16 pixel sizes and concatenate them into a single feature
vector. Since the dimensionality of the feature vectors is high, we use a linear
classifier trained by LIBLINEAR [3] that is applicable to a large scale problem.
Each component of features is normalized by its maximum value in the training
samples, respectively.

4.1 Feature Evaluation

In this section, we study the effect of the following three parameters; the thresh-
old for neutral gray, the number of color bins, and the scale of the offsets. The
former two parameters are related to color-CoHOG and the last parameter is re-
lated to color-CoHOG, CoHED and CoHD, respectively. Since the dimensionality
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Fig. 4. Examples in the INRIA person dataset
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Fig. 5. Feature evaluation on the INRIA person dataset. (a) DET curves of various

thresholds for neutral gray. (b) DET curves obtained by changing the number of color

bins. (c) DET curves of the sparse setting (denoted by ’S’) and the dense setting

(denoted by ’D’), respectively.

of features isn’t affected by changing the above three parameters, detection per-
formances obtained by changing those parameters can be easily compared with
each other. On the other hand, the dimensionality of features is proportional to
the square of the number of quantized directions, which is another parameter of
the proposed features. In this case, it’s difficult to compare the detection perfor-
mances. Thus we select a practical value for the number of quantized directions
and it’s used in the experiments in this paper.

The threshold for neutral gray is the parameter that decides whether each
pixel is chromatic (labels 0-15 in Fig. 2a) or achromatic (label 16 in Fig. 2a)
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based on the distance from the origin in Cb-Cr space. Figure 5a shows the DET
(detection error trade-off) curves obtained by changing the threshold. The ex-
perimental result suggests that a small threshold that classifies most of the pixels
as chromatic works well. The setting that classifies all the pixels as chromatic
also works as well (threshold = 0 in Fig. 5a). We set the threshold to 5 in other
experiments described in this paper.

We also studied the effect of the number of color bins. The experimental result
shows that the result of 33 color bins is slightly worse than the other two results
but the number of color bins is insensitive to the detection performance (shown
in Fig. 5b). We use 17 color bins in other experiments described in the paper.

The scale of the offsets is the parameter that decides the distance between
the center pixel and the pixel with an offset. We tested two cases; one is a sparse
setting and the other is a dense setting. The sparse setting uses four scales 1,
3, 6 and 9 as the distances between pixels in Figs. 2b and 3 while the dense
setting uses 1, 2, 3 and 4. The results of color-CoHOG and CoHD show that the
sparse setting is better than the dense one and the result of CoHED shows that
the sparse setting is a little bit better than the dense one (shown in Fig. 5c).
This suggests that capturing less redundant information is more important to
improve classification performance. Therefore, the sparse setting is used in other
experiments in the paper.

4.2 Comparison with CoHOG

Figure 6 shows the DET curves of CoHOG and color-CoHOG, respectively. We
also plotted the result of 3ch-CoHOG as another extension of CoHOG to make
use of color information. 3ch-CoHOG is a feature obtained by concatenating Co-
HOGs extracted separately from each color channel. The offsets that are used for
color-CoHOG (shown in Fig. 2b) are used to calculate CoHOG and 3ch-CoHOG
for comparison under the same condition. The detection performance of color-
CoHOG is superior to that of CoHOG and comparable to that of 3ch-CoHOG
while the dimensionality of color-CoHOG (16, 384) is half as that of CoHOG
(32, 768) and only one-sixth of that of 3ch-CoHOG (98, 304), respectively. This
result means that color-CoHOG makes use of color information efficiently.

4.3 Comparison with Previous Methods

Figure 7 compares the DET curves of the proposed method with those of the
previous methods [1,18,21,2,19,16]. Four heterogeneous features, color-CoHOG,
CoHED, CoHD, and color histograms, were used for the proposed method. The
curves of the previous methods were obtained by tracing the results in the refer-
ences. The proposed method achieves 8.6%, 5.5% and 2.9% miss rates at 10−6,
10−5 and 10−4 FPPWs (false positive per window), respectively. This result is
comparable to the state-of-the-art method [16] that has achieved 7.9% miss rate
at 10−6 FPPW and 5.8% miss rate at 10−5 FPPW.

We also show the DET curves of single features in Fig. 8. The result of each single
feature except color-CoHOG is far inferior to the method of Dalal et al. [1] (shown
in Fig. 7) while the method using the concatenated features achieves comparable
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performance to the state-of-the-art method as described above. This means that
our proposed features provide complementary information to each other.

5 Experiment 2. Oxford 17/102 Category Flower
Datasets

In this section, we evaluate the proposed method on the Oxford 17/102 cate-
gory flower datasets [10,11]. The 17 category dataset consists of 80 images per
category and the 102 category dataset consists of between 40 and 258 images
per category. Some examples are shown in Fig. 9. Classification performance is
evaluated by the same manner as described in [10].

In [10], they provide training images, validation images and test images though
we don’t use validation images since they are not necessary for the proposed
method. There are various sizes of images in the datasets, so we crop and resize
them into 64 × 64 pixel size. We extract color-CoHOG, CoHED, CoHD, and
a color histogram from the whole region of the resized image and concatenate
them into a single feature vector. The dimension of the resulting feature vector
is 1,194. In the same manner as described in Sect. 4, linear classifiers trained
by LIBLINEAR are used and each component of features is normalized by its
maximum value.

Experimental results are shown in Table 1. The proposed method using all
features described in Sect. 3 achieves higher classification performance than the
state-of-the-art method [11] on both datasets in spite of the simplicity of the
proposed method. CoHED achieves the best classification performance among
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Fig. 9. Examples of the Oxford 17 category flower dataset

Table 1. Classification performance on the Oxford flower datasets

Method Performance score [10]

17 categories 102 categories

Nilsback [11] 88.33±0.30 72.8

color-CoHOG+CoHED+CoHD+color histogram 94.19±1.22 74.8

color-CoHOG 78.89±1.19 43.4

CoHED 91.54±0.99 64.2

CoHD 84.24±1.07 57.0

color histogram 69.88±2.68 35.6

the four single features on both flower datasets while color-CoHOG achieves the
best performance on the INRIA person dataset. This means that effective fea-
tures are different with respect to object classification tasks. Therefore, a method
using homogeneous features, which is effective for a specific object classification
task, may fail to achieve high classification performance for another object clas-
sification task. In contrast, the proposed method using heterogeneous features
can be used as an off-the-shelf method for various object classification tasks.

6 Conclusion

In this paper, we proposed three heterogeneous features based on co-occurrence
called color-CoHOG, CoHED, and CoHD, respectively and introduced a color
histogram as a complementary feature of those three features. Co-occurrence
features are very high dimensional features and highly discriminative, so that a
linear classifier is sufficient to achieve high classification performance. Classifi-
cation performance of each feature was evaluated on the INRIA person dataset
and the Oxford 17/102 category flower datasets, respectively. The experimental
results show that effective features for the INRIA person dataset are different
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from those for the Oxford flower datasets. By combining the above four het-
erogeneous features, the proposed method achieved comparable performance to
state-of-the-art methods on the above datasets. The results suggest that the
proposed method using heterogeneous features can be used as an off-the-shelf
method for various object classification tasks.

References

1. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:

IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

vol. 1, pp. 886–893 (2005)

2. Dollár, P., Babenko, B., Belongie, S., Perona, P., Tu, Z.: Multiple component learn-

ing for object detection. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008,

Part II. LNCS, vol. 5303, pp. 211–224. Springer, Heidelberg (2008)

3. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A li-

brary for large linear classification. Machine Learning Research 9, 1871–1874 (2008)

4. Gehler, P.V., Nowozin, S.: On feature combination for multiclass object classifica-

tion. In: Proceedings of the Twelfth IEEE International Conference on Computer

Vision (2009)

5. Granlund, G.H.: In search of a general picture processing operator. In: Computer

Graphics and Image Processing, pp. 155–173 (1978)

6. Huang, J., Kumar, S.R., Mitra, M., Zhu, W.J., Zabih, R.: Image indexing using

color correlograms. In: Proceedings of the 1997 Conference on Computer Vision

and Pattern Recognition, p. 762. IEEE Computer Society, Los Alamitos (1997)

7. Koschan, A.: A comparative study on color edge detection. In: Li, S., Teoh, E.-K.,

Mital, D., Wang, H. (eds.) ACCV 1995. LNCS, vol. 1035, pp. 574–578. Springer,

Heidelberg (1995)

8. Kozakaya, T., Ito, S., Kubota, S., Yamaguchi, O.: Cat face detection with two

heterogeneous features. In: Proceedings of the 2009 IEEE International Conference

on Image Processing (2009)

9. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. Journal

of Computer Vision 60(2), 91–110 (2004)

10. Nilsback, M.-E., Zisserman, A.: A visual vocabulary for flower classification. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

vol. 2, pp. 1447–1454 (2006)

11. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number

of classes. In: Proceedings of the Indian Conference on Computer Vision, Graphics

and Image Processing (December 2008)

12. Ott, P., Everingham, M.: Implicit color segmentation features for pedestrian and

object detection. In: Proceedings of the Twelfth IEEE International Conference on

Computer Vision (2009)

13. Rautkorpi, R., Iivarinen, J.: A novel shape feature for image classification and

retrieval. In: Proc. of Int. Conf. on Image Analysis and Recognition, Part I, pp.

753–760 (2004)

14. Ruzon, M.A., Tomasi, C.: Color edge detection with the compass operator. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

vol. 2, pp. 160–166 (1999)

15. Sabzmeydani, P., Mori, G.: Detecting pedestrians by learning shapelet features. In:

IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

pp. 1–8 (2007)



222 S. Ito and S. Kubota

16. Schwartz, W.R., Kembhavi, A., Harwood, D., Davis, L.S.: Human detection using

partial least squares analysis. In: Proceedings of the Twelfth IEEE International

Conference on Computer Vision (2009)

17. Swain, M.J., Ballard, D.H.: Color indexing. Int. Journal of Computer Vision 7(1),

11–32 (1991)

18. Tuzel, O., Porikli, F., Meer, P.: Human detection via classification on riemannian

manifolds. In: IEEE Computer Society Conference on Computer Vision and Pat-

tern Recognition (2007)

19. Watanabe, T., Ito, S., Yokoi, K.: Co-occurrence histograms of oriented gradients

for pedestrian detection. In: The 3rd Pacific Rim Symposium on Advances in Image

and Video Technology, pp. 37–47 (2009)

20. Wu, B., Nevatia, R.: Detection of multiple, partially occluded humans in a single

image by bayesian combination of edgelet part detectors. In: The Tenth IEEE

International Conference on Computer Vision, vol. 1, pp. 90–97. IEEE Computer

Society, Washington (2005)

21. Wu, B., Nevatia, R.: Optimizing discrimination-efficiency tradeoff in integrating

heterogeneous local features for object detection. In: IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition (2008)



Maximum Margin Distance Learning for
Dynamic Texture Recognition

Bernard Ghanem and Narendra Ahuja

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

{bghanem2,ahuja}@vision.ai.uiuc.edu

Abstract. The range space of dynamic textures spans spatiotemporal

phenomena that vary along three fundamental dimensions: spatial tex-

ture, spatial texture layout, and dynamics. By describing each dimension

with appropriate spatial or temporal features and by equipping it with a

suitable distance measure, elementary distances (one for each dimension)

between dynamic texture sequences can be computed. In this paper, we

address the problem of dynamic texture (DT) recognition by learning lin-

ear combinations of these elementary distances. By learning weights to

these distances, we shed light on how “salient” (in a discriminative man-

ner) each DT dimension is in representing classes of dynamic textures.

To do this, we propose an efficient maximum margin distance learning

(MMDL) method based on the Pegasos algorithm [1], for both class-

independent and class-dependent weight learning. In contrast to popular

MMDL methods, which enforce restrictive distance constraints and have

a computational complexity that is cubic in the number of training sam-

ples, we show that our method, called DL-PEGASOS, can handle more

general distance constraints with a computational complexity that can

be made linear. When class dependent weights are learned, we show

that, for certain classes of DTs , spatial texture features are dominantly

“salient”, while for other classes, this “saliency” lies in their tempo-

ral features. Furthermore, DL-PEGASOS outperforms state-of-the-art

recognition methods on the UCLA benchmark DT dataset. By learning

class independent weights, we show that this benchmark does not of-

fer much variety along the three DT dimensions, thus, motivating the

proposal of a new DT dataset, called DynTex++.

1 Introduction

A dynamic texture (DT) sequence captures a stochastic spatiotemporal phe-
nomenon. The randomness reflects in the spatial and temporal changes in the
image signal. This may be caused by a variety of physical processes, e.g., involv-
ing objects that are small (smoke particles) or large (snowflakes), or rigid (grass,
flag) or nonrigid (cloud, fire), moving in 2D or 3D, etc. Even though the overall
global motion of a DT may be perceived by humans as being simple and coher-
ent, the underlying local motion is governed by a complex stochastic model. For
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example, a scene of “translating” clouds conveys visually identifiable global dy-
namics; however, the implosion and explosion of the cloud segments during the
motion result in very complicated local dynamics. Irrespective of the nature of
the physical phenomena, the usual objective of DT modeling in computer vision
and graphics is to capture the nondeterministic, spatial and temporal variation
in images. The study of DTs poses numerous challenges, especially for traditional
motion models that fail to capture their stochastic nature. These challenges arise
from the need to capture the large number of objects involved, their complex
motions, and their intricate interactions. A good model must accurately and ef-
ficiently capture both the appearance and global dynamics of a DT. Despite the
diverse types of DTs in nature, we see that they belong to a three dimensional
DT space. In this space, each dimension isolates a single aspect that describes the
variation of an individual DT. These dimensions are, therefore, broad categories
of variation for DTs, in general. However, they are not generally independent,
since for some cases of DT, it is not possible to fix two dimensions and vary the
third independently. This interdependence is attributed to the physical nature
of the phenomena being imaged. In what follows, we will describe each of these
dimensions and give their respective ranges. Then, we will designate the portion
of the DT space, where this paper operates. Note that the first two dimensions
describe the spatial variation and the spatial organization of a DT, while the
third describes its temporal variations.
1. Spatial Texture Element: This dimension describes the spatial variation

of a DT as observed from each frame independently. Texture elements (usu-
ally denoted as texels) are the spatially repetitive groups of pixels that share
statistically similar appearance and structural properties. The spectrum of
texture elements varies from the simplest form at the microscopic level (i.e.
particles) to the most complex at the macroscopic level (i.e. whole objects).
At one extreme, this spectrum has DTs that show clouds, smoke, or water
in motion, while at the other, there are DTs of birds, animals, or humans
moving. The majority of DT work has focused on pixel or subpixel objects
(i.e. microscopic), whereby the pixel is assumed to be the texture element
whose motion is to be modeled.

2. Spatial Texture Layout: This dimension describes the spatial layout of
the texture elements in a DT, as well as, their spatial layering. A DT’s spatial
layout determines how its texture elements are organized within each frame,
especially in terms of their spatial placement. In this sense, there are DTs
with homogenously placed/spaced texture elements, as well as, DTs where
the placement distribution is non-uniform. Moreover, the spatial layering of
a DT refers to the “density” (or translucency) of a DT. For simplicity, spatial
layering of a DT can be viewed as the alpha matte of the texture elements,
in each frame, when visualized infront of a background layer. The values of
this alpha matte take values in [0, 1]. For opaque DTs, spatial layering is not
an issue, since the background does not appear at all (i.e. the alpha matte is
either 0 or 1). For translucent DTs (e.g. clouds and smoke), this layering is
essential. The majority of DT work has focused on DTs with opaque texture
elements that cover the whole spatial extent of the video.
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3. Dynamics: This dimension describes the temporal variation of a DT as
observed by the frame-to-frame variation in its texture elements and their
layering/layout. DT dynamics represent temporal changes in features (e.g.
intensity values and linear transformations of these values) describing the
texture elements and their layout. Note that the dynamics of a DT is a
global motion representation that incorporates the dynamics of individual
texture elements and their spatiotemporal interactions. Being a DT means
that the dynamics of texture elements are statistically similar and temporally
stationary. In other words, texture elements in the same DT all “move” in a
similar fashion and their “motions” are not time dependent (i.e. statistically
stationary). As such, the models of DT dynamics either make use of physical
models (e.g. Navies-Stokes equations [2]) or assume a general parametric
model whose parameters are learned by fitting the model to the observed
DT frames (e.g. a linear dynamical system [3]). The majority of DT work
has concentrated on the latter form of models, where linear/nonlinear models
have been proposed to model variations in the intensity values of DTs.

In this paper, we cater to opaque DTs consisting of pixel-based texture elements,
whose dynamics can be represented by a linear parametric model [3]. We address
the problem of DT recognition, which is motivated by critical real-life applica-
tions, especially the detection of the onset of emergencies (e.g. fire). Recognition
is done by learning linear combinations of distances between DT sequences, so
that classes of DTs are maximally separated. These distances quantify how dif-
ferent two DT sequences are with respect to the three dimensions mentioned
above. By learning weights to these distances, we shed light on how “salient”
(in a discriminative fashion) each dimension (i.e. spatial and/or temporal) is in
representing a single DT class or a whole DT database.

2 Related Work

DT recognition involves the analysis of both image appearance and temporal
changes in appearance. For an overview of recent techniques developed for DT
recognition, we refer the reader to [4]. Numerous DT recognition methods have
stemmed from representing the global spatiotemporal variations of a DT as a
linear dynamical system (LDS) [3]. In [5], Doretto et al. use the LDS model
parameters and the Martin distance measure [6] to perform nearest neighbor
recognition. In [7], a kernel function between two LDS models was proposed and
used in a support vector machine (SVM) framework to perform DT recognition.
More recent work has addressed shift and view invariant DT recognition [8,9].
The latter work extends the use of the popular bag-of-features model to the
non-Euclidean space of LDS models.

Other recognition methods have used a multiplicity of spatiotemporal descrip-
tors to represent a DT sequence. In [10], Peteri et al. propose a DT recognition
algorithm based on six translation invariant features. Recent work by Zhao et
al. proposed using local binary patterns (LBP) [11] and volume local binary
patterns (VLBP) to recognize DT sequences [12,13]. The latter two methods are
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based on local descriptors, which do not incorporate the global dynamics that
characterize a DT.

Despite the merits of these methods, they all either focus on one dimension of
the DT space defined before or assume that these dimensions contribute equally
and in the same manner for all DT classes. These assumptions are quite restric-
tive and fail to characterize the discriminative properties of many DTs. To the
best of our knowledge, this paper is the first to address the problem of combin-
ing the discriminative properties of the three DT dimensions. Here, we provide
an intuitive example that motivates why this is important in DT recognition.
On one hand, the fire DT class is easily distinguished from other DT classes,
primarily due to its highly discriminative dynamics, as compared to its spatial
texture appearance. On the other hand, DTs such as moving leaves and grass
have a more “salient” spatial texture element.

We infer the contributions of the DT dimensions by using a multiplicity of
DT descriptors, each of which operates in a given dimension. We elaborate on
these descriptors and motivate their selection later. Since these descriptors are
of different dimensions and belong to different spaces, we model the distance be-
tween two DT sequences as a weighted sum of the elementary distances between
their respective descriptors. Learning these weights in a maximum margin set-
ting will determine the contributions of the DT dimensions, in such a way that
maximizes DT class discrimination. Learning weighted distance functions in a
maximum margin framework is not new, as it has been successfully applied to
image classification and retrieval [14,15] and more recently to region-based object
recognition [16]. These approaches impose the following distance constraint: an
image is closer to all other images in its class than to images of all other classes.
In feature space, this forces classes to be significantly compact, which tends not
to be the case for most real data. This “compactness” assumption is quite re-
strictive and does not generalize well to object classes that share properties (e.g.
cow vs. horse). Furthermore, this assumption produces a number of distance
constraints/variables that is cubic in the number of training images, since all
relevant distance triplets are used. Our method generalizes this “compactness”
assumption whereby each DT sequence is only closer to a representative set of
DTs within its class than to a comparative set of DTs outside this class. By
taking the representative set of a DT to include its k nearest neighbors within
its class and its comparative set to include all other DTs outside its class, we al-
low for less compact DT classes and much fewer distance constraints. To reduce
computational complexity, we solve the primal version of the maximum margin
problem in a way similar to the Pegasos algorithm [1].

Here, we note that distance weight learning finds some similarities with mul-
tiple kernel learning (MKL), which has been recently applied to object detection
[17,18]. In MKL, the kernels define similarities between elements and are, by
definition, symmetric and positive definite kernels. Although similarities can be
formed from certain distances (e.g. by parametric negative exponentiation), these
distances need not be symmetric and the parameters used to form the similarities
need to be set wisely. This method also suffers from a computational drawback,
since it requires expensive optimization techniques to learn the kernel mixing
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coefficients. Moreover, the MKL framework does not readily accommodate the
distance constraints required in maximum margin distance learning (MMDL).

Contributions: The contributions of this work are three fold. (1) We propose
to learn the individual contributions/weights of all three DT dimensions, in
regards to DT class discrimination. (2) To learn these weights, we propose an
efficient MMDL method based on the Pegasos algorithm, whose complexity can
be made linear in the number of training samples. (3) A new DT dataset, called
DynTex++, is compiled to replace the current UCLA benchmark dataset.

This paper is organized as follows. In Section 3, we give an overview of the
DT recognition problem, in an MMDL framework. Section 4 provides a detailed
description of our proposed solution and algorithm, while Section 5 shows exper-
imental validation of this algorithm, when applied to the UCLA and DynTex++
datasets.

3 Problem Overview

In this paper, we seek to learn how the different dimensions of the DT space can
be linearly combined to best discriminate between DT classes. Learning these
linear combinations for a given DT class or a group of DT classes sheds light on
the relative importance of each DT dimension. We choose a suitable descriptor to
represent each dimension, which is characterized by a corresponding elementary
distance. Since these descriptors need not belong to vector spaces, the elementary
distances are can be of different forms. In this framework, the distance between
two DT sequences is modeled as a positively weighted sum of their elementary
distances. These weights are learned in a maximum margin fashion, so that DT
classes are maximally separated. We consider the case of class independent and
class dependent weights.

We assume a set of M training DT sequences (from N classes) is given with
corresponding labels in {1, . . . , N}. Let �(.) denote the labeling function, whereby
�(vi) is the label of the DT sequence vi. The DT sequence vi has F different DT
descriptors1, which characterize the three different DT dimensions. We define the
f th elementary distance from vj to vi as df (vi → vj). Here, we note that these
elementary distances need not be symmetric. As such, the combined distance
from vj to vi is defined as Dw�(vi)

(vi → vj) =
∑F

f=1 wf
�(vi)

df (vi → vj). More
compactly, we can combine the elementary distances in vector format to obtain
Dw�(vi)

(vi → vj) = wT
�(vi)d (vi → vj). Here, wf

�(vi)
is the weight that character-

izes the f th elementary distance for class �(vi). Here, we are considering class
dependent weights; however, class independent weights are similarly incorpo-
rated by dropping the class label from w�(vi).

In order to best separate the DT classes, we assume that each DT of a given
class is closer to a representative set of DTs within this class than a compara-
tive set of DTs outside this class. Let R(vi) define the representative set corre-
sponding to DT vi and C(vi) define its comparative set. Under this assumption,

1 In this paper, F = 3, but the method generalizes to any number of descriptors.



228 B. Ghanem and N. Ahuja

a set of distance constraints arises for each DT vi, defined as follows. For all
i �= j, �(vi) = �(vj) �= �(vk), vj ∈ R(vi), and vk ∈ C(vi) we have:

Dw�(vi)
(vi → vj) ≤ Dw�(vi)

(vi → vk) ⇔ wT
�(vi)�d (vi, vj , vk) ≥ 0 (1)

where d (vi, vj , vk) = d (vi → vk) − d (vi → vj) is the distance difference corre-
sponding to the DT triplet vi, vj , and vk. The total number of these constraints
is
∑M

i |R(vi)||C(vi)|. Clearly, this number and thus the scale of the optimiza-
tion needed to learn w�(vi) depends on the nature of R(.) and C(.). In fact, it is
bounded by Θ(M3) from above and Θ(M) from below.

Let Ac ∈ RL×F denote the matrix whose rows are composed of all the distance
difference vectors �d(vi, vj , vk) for all DTs vi where �(vi) = c. The distance con-
straints in Eq. (1) can be formalized as Acwc � 0. We embed these constraints in
a maximum margin framework, as shown in Eq. (2). In this framework, the cost
function includes two terms that work towards minimizing the classification bias
and variance. The second term is the average hinge loss cost of the L distance
constraints. This cost uses a margin of 1 instead of 0. Although using L1 regular-
ization is known to lead to sparser solutions, we choose an L2 regularization term
on wc instead, as it is more robust to noise and outliers and the number of feature
descriptors F is relatively too small to benefit from a sparse solution.

min
wc�0

λ

2
‖wc‖2

2 +
1
L

L∑
i=1

max
(
0, 1 − wT

c ac(i)
)

(2)

where ac(i) is the ith row in Ac. It is important to point out that when solving
for class independent weights the matrix of distance constraints becomes a con-
catenation of all Ac matrices with c ∈ {1, . . . , N}. Furthermore, note that class
information need not be provided so long as relative dissimilarities/rankings are.
In other words, even when class labels are not given, our method can still be ap-
plied, if pairwise distance inequalities are known. So, a statement like “dynamic
texture A looks more similar to dynamic texture B than C” can be directly
translated to a distance constraint.

The formulation in Eq. (2) is the same one used in the Pegasos algorithm
[1], except for the non-negativity constraint on wc. In the next section, we will
show how the original Pegasos method can be modified to efficiently solve for
wc, to incorporate different forms of R(.) and C(.), and to reduce the number of
distance constraints used in each Pegasos iteration. In fact, we choose to use this
formulation/method instead of the one used in [14,15,16], since the latter does
not lend itself suitable for variations in the representative and comparative sets
and it requires a custom solver to handle a large number of distance constraints.

After solving for wc of each class, a test DT sequence is classified as the class,
which satisfies the most (or violates the least) number of distance constraints
generated by the test DT. More specifically, for each class in the training set,
a logistic regression classifier2 is learned based on the combined distances of

2 For a test sequence vp, f(vp|c) =

(
1 + exp

(
α0 +

∑
vi:�(vi)=c αiDwc(vi → vp)

))−1

defines the logistic regression classifier of class c.
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training samples to samples within this class, as done in [16]. The test DT is
assigned to the class, whose regression classifier evaluates to the maximum value
among all classes. In the case of class independent weight learning, a simple
k-nearest neighbor (kNN) classifier can be employed to classify the test DT.

Elementary Distances

In what follows, we present and justify the set of feature descriptors (F = 3)
that we choose to represent the three DT dimensions of a DT sequence.

1. Spatial Texture Element: This DT dimension is described by a histogram
of Local Binary Patterns (LBP), which provides a simple yet powerful local
depiction of intensity variation. Each frame in a DT is described by an LBP
histogram. As such, the elementary distance between two DTs along this
dimension is the minimum distance between LBP histograms from these two
DTs. To compare histograms, we use the Earth Mover’s Distance (EMD) [19],
which though more computationally expensive than other distances (e.g. �2
norm or χ2), it provides a more accurate histogram distance. This spatial
texture descriptor has been successfully utilized in DT recognition [12] and
extended to video sequences in [20]. Recently, it has also proven to be useful
in improving human detection performance [21].

2. Spatial Texture Layout: This DT dimension is described by a Pyramid
of Histograms of Oriented Gradients (PHOG), which provide a powerful
depiction of local spatial layout. In building the PHOG of a DT frame, we
assume uniform weighting for each histogram at a given pyramid level and
we normalize with respect to the number of histograms at each pyramid
level. We only use two levels in the pyramid. Similar to the LBP descriptor,
we use EMD to compute distances between histograms. Prior work has used
this descriptor extensively in detecting objects, especially human detection
[22], as well as, image retrieval [23].

3. Dynamics: To describe the global temporal variations of a DT sequence,
we model it as a Linear Dynamical System (LDS) [3]. An LDS model is
parameterized by the matrix pair (A,C), which govern feature generation
and state transition. We assume a model size of 25, in our experiments. The
LDS model and its variants have been extensively applied to DT recognition,
most recently in [8,9]. The elementary distance between two LDS models is
the Martin distance between ARMA processes [6].

Since each elementary distance above spans a different range of values, proper
normalization is called for. After computing the elementary distances between
DT sequences in the training set, we normalize each distance type by its mean
(μ) offset by a multiple of its standard deviation (σ). In our experiments, we
normalize each elementary distance by its corresponding (μ + 3σ).

4 Learning Maximum Margin Weights

In this section, we give a detailed description of the learning algorithm used to
compute wc in Eq. (2). Algorithm 1 summarizes the learning process, which
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is a modified version of the original Pegasos algorithm [1]. DL-PEGASOS can
handle general definitions for R(.) and C(.), since they can be data-driven and/or
application specific. Furthermore, these definitions can even be dependent on wc,
which explains why R(vi) and C(vi) must be updated at each iteration of this
algorithm (refer to STEPS 2-3). In this case, Eq. (2) is no longer convex and
so DL-PEGASOS becomes a stochastic, projected3 subgradient descent method
that alternates between (i) performing a Pegasos iteration when the sets R(vi)
and C(vi) are fixed for all DT sequences vi and (ii) updating these sets for a
fixed Pegasos solution of wc. A study of convergence for DL-PEGASOS is kept
for future work; however, empirical analysis is very promising.

Algorithm 1. Distance Learning PEGASOS (DL-PEGASOS)
Input : R(.), C(.), {d (vi → vj) : �(vi) = c}, λ, T , m

Initialization: w
(0)
c ∈ B+

λ = {x : ‖x‖2 ≤ 1√
λ
, x 	 0}1

for t = 0, . . . , T do2

• determine R(vi) and C(vi) ∀vi such that �(vi) = c (use w
(t)
c if needed)3

• determine Ac ∈ RL×F
4

// original PEGASOS iteration5

• Randomly choose Ct ⊆ {1, . . . , L}, where |Ct| = m6

• Set C+
t = {i ∈ Ct : aT

c (i)w
(t)
c < 1} and ηt = 1

λt
7

• Compute subgradient: ∇t = λw
(t)
c − 1

|C+
t |
∑

i∈C+
t

ac(i)8

• Do subgradient descent step: w
(t+ 1

2 )
c = w

(t)
c − ηt∇t9

• Project onto B+
λ : w

(t+1)
c = min

⎧⎪⎪⎨⎪⎪⎩1, 1/
√

λ∥∥∥∥∥∥
[
w

(t+ 1
2 )

c

]
+

∥∥∥∥∥∥
2

⎫⎪⎪⎬⎪⎪⎭
[
w

(t+ 1
2 )

c

]
+

10

end11

return w
(T )
c12

In our MMDL formulation, the distance constraint matrix Ac is directly de-
pendent on the definition of R(.) and C(.). One popular definition is to equate
R(vi) to the set of all DTs within class c and C(vi) to the set of all DTs outside
class c (refer to Fig. 1(a)). This definition was used in [14,15,16]. This is quite
restrictive, since it assumes that classes in feature space must be significantly
compact (i.e. the minimum distance between any sample in class B to class A
is at least the maximum distance between any two samples in class A). This is
usually not the case for most real data. Based on this definition, the total num-
ber of distance constraints is L = Θ(M3), which quickly becomes intractable for
reasonably sized datasets. As a result, heuristic pruning measures were taken to

3 The projection onto B+
λ is necessary due to the non-negativity constraint on wc.

The [.]+ operator returns a vector whose negative coordinates are truncated to zero.
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reduce this number [15,14]; however, it remains Θ(M3). A major problem with
these measures is their immutability, since relevant constraints that are pruned
at the beginning can never be added back to the learning process. Therefore, a
need arises for another definition of R(.) and C(.) that is less restrictive (i.e. a
more general representation of real data) and less computationally demanding.

(a) (b)

Fig. 1. Shows examples of two definitions for R(vi) and their impact on the relative

positioning of classes in feature space. For illustration purposes, we assume an L2

distance is used between features. 1(a) is an example of the definition used in [14,15,16].

1(b) is an example of the definition used here. Note how the classes need to be more

separated (or equivalently more compact) in 1(a) than 1(b).

Although our MMDL method can handle a general structure for R(.) and
C(.), in this paper, we set R(vi) to the k nearest neighbors of vi within its
class. This is based on the intuition that a simple kNN classifier can be easily
employed to classify vi. In this case, STEPS 2-3 in Algorithm 1 are equivalent
to finding vi’s nearest neighbors according to w

(t)
c . Note that the value of k need

not be the same for every class c. A similar scheme can be applied to set C(vi);
however, since M � N and to avoid overhead computation, we do not compute
the nearest neighbors of vi outside class c. Instead, we simply let C(vi) be the set
of all DTs outside class c (refer to Fig. 1(b)). Since k 
 M , the total number of
distance constraints now is L = Θ(M2). However, only m out of L constraints
are actually used in a single iteration and m is usually much smaller than L. In
fact, we show empirical results where the total number of constraints per DL-
PEGASOS iteration can be reduced to m = Θ(M), without loss in recognition
performance. Since a random set of these relevant constraints is chosen every
iteration, the immutability problem facing previous methods is also alleviated.
Moreover, the computational complexity of DL-PEGASOS, with R(.) and C(.)
defined as above, is Θ

(
T (2F+k

N M + Fm)
)
, which includes computing and sorting

the combined distances Dwc
. While previous MMDL methods suffer from Θ(M3)

complexity, our method is at worst Θ(M2) and on average Θ(M).
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5 Experimental Results

In this section, we present experimental results that validate the DL-PEGASOS
algorithm4 in terms of DT recognition. We first learn class-independent and
class-dependent weights for the UCLA benchmark dataset [5]. Realizing that
recognition performance on this dataset has saturated and that it lacks DT
diversity, a new, easily accessible benchmark is essential. We organize the Dyn-
Tex++ dataset to be this next benchmark and evaluate our algorithm on it.

5.1 UCLA Dataset

The UCLA dynamic texture dataset contains 50 classes of gray-scale dynamic
texture, each of which is comprised of 4 DT sequences. Since these 50 classes
contain the same DTs at different viewpoints, they can be grouped together to
form 9 classes, as in [9]. Each DT sequence includes 75 frames of 160×110 pixels.
Here, the DT sequences are cropped to show the representative dynamics alone,
thus, leading to frames of 48 × 48 pixels.

50-class breakdown: In the case of the 50 DT classes, the state-of-the-art
recognition result (97.5%) was achieved by using kernel support vector machines
(SVM’s) [24]. Here, four cross-fold validation was performed, so the training
set included M = 150 DT sequences (i.e. 3 sequences for each class). Applying
DL-PEGASOS with m = 150 (i.e. Θ(M)) and T = 25 iterations, we obtain an
average recognition performance of 99% when both class dependent and class
independent weights were learned. The class independent weights for the LBP,
PHOG, and LDS descriptors are w1 = 1.95, w2 = 1.12, and w3 = 1.33 respec-
tively. This clearly indicates that the discrimination between DTs in this dataset
is dominated by their spatial texture features, whereby using these features alone
leads to a recognition rate of 90%. This reinforces the conclusion of [7], whose
authors also reported on the dominant discriminative power of static texture in
the UCLA DT dataset. In what follows, we will evaluate DL-PEGASOS on the
9-class breakdown of this dataset, since it poses a greater challenge.

9-class breakdown: In the case of the 9 DT classes, the state-of-the-art recog-
nition result (80%) was achieved by using a bag-of-words model on LDS features
[9]5, which lends itself useful to view-invariant recognition. For comparison, we
adopt the same experimental setup as in [9]. We train on 50% of the dataset
(i.e. M = 100) and test on the rest, with the recognition rates recorded as the
average rate over 20 trials (i.e. random bisection of the classes in the dataset).
First, we study the effect of the DL-PEGASOS free parameters (i.e. m and T )
on the average recognition performance. Fig. 2(a) plots the recognition rate of
class independent DL-PEGASOS when m is varied, while T is fixed to 25 itera-
tions. Since k = 1, the total number of distance constraints is about 7000, from
4 All experiments were executed using MATLAB 7.6 on a 2.4 GHz, 4GB RAM PC.

Some DL-PEGASOS parameters were kept constant: (i) k = 1 nearest neighbors

for R(.) and (ii) λ = 0.05.
5 In [9], only 8 classes were considered, since the “plants” class was removed.
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which m distance constraints are randomly chosen at each iteration. It is evident
that recognition rate very quickly stabilizes (∼ 95%), thus, indicating that most
distance constraints do not play a significant role in discriminating between DT
classes. This seems intuitive, since most constraints are easily satisfied for DTs
that are significantly different in DT feature space. We also conclude that m can
be reduced to Θ(M), without loss of performance. Similarly, Fig. 2(b) plots the
recognition rate as T is increased, while m is fixed to 100. Clearly, the stable
rate (∼ 95%) is reached in a very small number of iterations.

(a) (b)

Fig. 2. Plots the recognition performance of DL-PEGASOS versus m (the number of

distance constraints per iteration) and T (the maximum number of iterations) when

class dependent weights are learned. To obtain the recognition rates in 2(a), we use

T = 25. To obtain the recognition rates in 2(b), we use m = 100.

Fig. 3. Shows the confusion matrix for

the 9-class experiment

By setting m = 100 and T =
25, we obtain an average recognition
rate of 95.6%, which significantly outper-
forms the state-of-the-art (80%) on this
dataset. Fig. 3 shows the average con-
fusion matrix for this experiment. The
confused classes tend to have very sim-
ilar appearance and/or dynamics, espe-
cially “fire” + “smoke”, “flowers” +
“plants” and “fountains” + “waterfall”.
In regards to time complexity, each com-
plete trial ran in under 0.6 seconds.
This time does not include feature ex-
traction or pairwise elementary distance
computation.

Here, we mention that the recognition performance of class dependent DL-
PEGASOS (82%) is significantly less than the class independent performance
above. This is indicative of overfitting due to the small number of DTs per
class. However, it is worthwhile to examine the values of wc, since they shed
light on which DT dimension(s) are the most discriminative for a given class.
From the weights in Table 1, we notice that some of our intuitions about what
discriminates certain DTs are validated. For example, classes defined primarily
by their spatial texture appearance (e.g. “flowers”, “plants”, and “sea”) have
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Table 1. Class dependent weights for the 9-class recognition experiment

boiling water fire flowers fountains plants sea smoke water waterfall

w1 (LBP) 0.21 1.22 10.58 0.12 2.95 6.27 4.23 7.13 4.73

w2 (PHOG) 7.81 0.17 1.06 0.83 0.19 2.95 1.99 1.61 0.93

w3 (LDS) 7.31 7.07 1.45 10.18 0.14 1.08 5.93 4.70 7.12

dominant w1 values. Other classes that are primarily defined by their motion
have dominant w3 values (e.g. “fire” and “fountains”). Interestingly, the “boiling
water” class is the only class where w2 is the largest weight. This is due, in part,
because the spatial texture is irregular and highly varying over time, while the
overall layout remains stable. The other classes rely on a combination of these
dimensions for their discriminative power.

5.2 DynTex++ Dataset

As mentioned before, the UCLA dataset is currently the benchmark for DT
recognition, even though a much larger and more diverse datasets (the Dyn-
Tex dataset [25]) exists. The UCLA dataset remains the benchmark due to the
following reasons. (i) Its DT sequences have already been pre-processed from
their raw form, whereby each sequence is cropped to show its representative
dynamics in absence of any static or dynamic background. (ii) Only a single
DT is present in each DT sequence. (iii) In each DT sequence, no panning or
zooming is performed. (iv) Ground truth labels of the DT sequences are pro-
vided. Although some researchers have applied their recognition algorithms on
the DynTex dataset (e.g. [20]), it is difficult to manage/use because it lacks the
above four properties, in its present form. Therefore, we propose the compilation
of a new dataset, called DynTex++.

Compiling the DynTex++ Dataset: The goal here is to organize the raw
data in the DynTex dataset in order to provide a richer benchmark that is
publicly available (http://vision.ai.uiuc.edu/∼bghanem2/DynTex++.htm) for
future DT analysis, in the same way the UCLA dataset is currently. The origi-
nal dataset is already publicly available (∼ 2GB of data); however, only the raw
AVI videos are provided. We proceeded to filter, pre-process, and label these DT
sequences. While DynTex contains a total of 656 video sequences, DynTex++
uses only 345 of them. We eliminated sequences that contained more than one
DT, contained dynamic background, included panning/zooming, or did not de-
pict much motion. The remaining sequences were then hand labeled as one of
N = 36 classes (e.g. “flying birds”, “waterfall”, “vehicle traffic”). They were not
uniformly distributed among the N classes. We preprocessed them so each class
contained the same number of subsequences.

The preprocessing proceeded as follows: (i) Each sequence is spatially down-
sampled by a factor of 0.75 and converted to grayscale. (ii) Since it is infeasible
to manually crop these sequences, we randomly selected a large (1000) set of sub-
sequences of fixed size (50×50×50), each of which is attributed a relevance score
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Fig. 4. shows the confusion matrix for

DT recognition on DynTex++

that represents how much motion it en-
tails. This score is the average optical flow
[26] energy in the subsequence. By do-
ing this, static background subsequences
are eliminated from consideration and the
more relevant DT subsequences remain.
(iii) From each class, we selected 100
subsequences with the highest scores (uni-
formly chosen from the sequences con-
stituting this class), thus, resulting in a
dataset of M = 3600 subsequences. For
more details on DynTex++, refer to the
supplementary material.

DL-PEGASOS on DynTex++: We
apply our approach to the DynTex++
dataset, using an experimental setup similar to the one in the 9-class experi-
ment on the UCLA dataset. In this case, we set m = 2000 and T = 100. We
obtain an average recognition rate of 63.7%, with the average confusion matrix
shown in Fig. 4. Each trial took under 15 seconds to run to completion.

6 Conclusions and Acknowledgments

In this paper, we formulate DT recognition in a maximum margin distance learn-
ing framework, where the distance between two DTs is a linear combination of
three elementary distances representing DT space. These distance weights are
efficiently learned by our proposed DL-PEGASOS algorithm, whose computa-
tional complexity is linear in the number of training samples. We validated our
approach by outperforming the state-of-the-art on the UCLA benchmark, as well
as, applying it the newly compiled DynTex++ dataset. The support of the Of-
fice of Naval Research under grant N00014-09-1-0017 and the National Science
Foundation under grant IIS 08-12188 is gratefully acknowledged.
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Abstract. Image invariants are those properties of the images of an object that re-
main unchanged with changes in camera parameters, illumination etc. In this pa-
per, we derive an image invariant for smooth surfaces with mirror-like reflectance.
Since, such surfaces do not have an appearance of their own but rather distort the
appearance of the surrounding environment, the applicability of geometric in-
variants is limited. We show that for such smooth mirror-like surfaces, the image
gradients exhibit degeneracy at the surface points that are parabolic. We lever-
age this result in order to derive a photometric invariant that is associated with
parabolic curvature points. Further, we show that these invariant curves can be
effectively extracted from just a few images of the object in uncontrolled, un-
calibrated environments without the need for any a priori information about the
surface shape. Since these parabolic curves are a geometric property of the sur-
face, they can then be used as features for a variety of machine vision tasks. This
is especially powerful, since there are very few vision algorithms that can handle
such mirror-like surfaces. We show the potential of the proposed invariant using
experiments on two related applications - object recognition and pose estimation
for smooth mirror surfaces.

1 Introduction

Image invariants are those properties of the images of an object that remain unchanged
with changes in camera parameters, illumination etc. Any geometric invariant (eg., cross
ratio) is true for surfaces with any reflectance characteristics including diffuse, specular
and transparent surfaces. But, in order to actually use these geometric invariants from
observed images of an object, one needs to identify point correspondences across these
images. Establishing such point correspondences from images of diffuse objects is a
meaningful task since these objects have photometric features of their own. But surfaces
with mirror reflectance do not have an appearance of their own, but rather present a
distorted view of the surrounding environment. Therefore, establishing physical point
correspondences using image feature descriptors (such as SIFT) is not meaningful. Such
descriptors find correspondences between environment reflections, and therefore are not
physically at the same point on the surface. Thus, there is a need to find photometric
properties of specular surfaces that are invariant to the surrounding environment. In this
paper, we study and present such an invariant for the images of smooth mirrors.

The main results of this paper arise by studying the photometric properties of the
images of mirror surfaces around points that exhibit parabolic curvature. Parabolic cur-
vature points are fundamental to perception of shape both for diffuse [15,17] and for

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 237–250, 2010.
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specular surfaces [23]. In this paper, we first derive a photometric invariant that is as-
sociated with parabolic curvature points of the mirror surface. We show that a smooth
mirror imaged by an orthographic camera, reflecting an environment feature at infinity,
exhibits degenerate gradients at parabolic curvature points. This degeneracy is charac-
terized by the image gradients being orthogonal to the direction of zero curvature at the
parabolic point. Although the invariant holds exactly for the aforementioned imaging
setup, we empirically show that for a range of practical imaging conditions (with per-
spective camera and finite scene), the invariance still holds to a high degree of fidelity.

The set of parabolic points is a geometric property of a surface and each surface has
its own distinct set of parabolic curves. The photometric invariant that we propose al-
lows us to detect these parabolic curves from just images of the specular object without
any a priori knowledge about its 3D shape or the surrounding environment. Since these
parabolic points are a geometric property of the surface, they can then be used for a
variety of machine vision tasks such as object recognition, pose estimation and shape
regularization. In this paper, we demonstrate a few such applications.

Contributions: The specific technical contributions of this paper are:

– We present a theoretical study of the properties of images of mirrors. We show
that under a certain imaging setup, the image derivatives at the points of parabolic
curvature exhibit degeneracies independent of the surrounding environment.

– We show that this degeneracy can be measured quantitatively using just a few im-
ages of the object under arbitrary illumination, thereby allowing us to recover the
parabolic curvature points associated with the mirror.

– We show new applications of this invariant to challenging machine vision problems
such as object recognition and pose estimation for mirror objects.

2 Prior Work

In this paper, we are interested in identifying invariants for images of mirrors. Addi-
tional assumptions are needed for obtaining something meaningful/non-trivial. A planar
mirror viewed by a perspective camera is optically the same as a perspective camera,
and hence, can produce arbitrary images.

The qualitative properties of images of specular/mirror objects have been well stud-
ied (see [14] for a survey). Zisserman et al. [25] show that local surface properties such
as concave/convexity can be determined under motion of the observer without knowl-
edge of the lighting. Blake [4] analyze stereoscopic images of specular highlights and
show that disparity of highlights observed on the mirror is related to the qualitative prop-
erties of the shape such as its convexity/concavity. Blake and Brelstaff [5] quantify local
surface ambiguities given stereo images of highlights. Fleming et al. [11] discuss hu-
man perception of shape from images of specular objects even when the environment is
unknown and show that humans are capable of accurately determining the shape of the
mirror; potentially from image compression cues. In another study of human perception
of specular surfaces, Savarese et al. [20] report poor perception when the surrounding
scene comprises of unknown but structured patterns.
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It is worth noting that points/curves of parabolic curvature have been studied in terms
of their photometric properties. Our search is motivated in part from classical results in
photometric stereo and more recent work in the area of specular flow. Koenderink and
van Doorn [15] demonstrate that the structure of isophotes is completely determined
by parabolic curves of the surface. Further, they also show that the a local extremum
of the field of isophotes occur on parabolic curves, and move along these curves under
motion of the light source. Isophotes as a construct are useful for diffuse objects with
constant albedo and mirrors under simple lighting (such as a point light source), and do
not extend well to scenes/object with rich textures.

Much of prior work using properties of parabolic points revolve around the idea of
consistency of highlights at parabolic curvature points across small changes in view
or illumination. Miyazaki et al [18] use parabolic curves for registration of transparent
objects across views.

Recent literature has focused on estimating the shape of the mirror from the specular
flow [1,21,7] induced under motion. Specular flow is defined as the movement of envi-
ronmental features on the image of a mirror due to motion of the mirror/scene. It has
been shown that parabolic curvature points exhibit infinite flow under infinitesimal mo-
tion. The infinite flow is a result of appearance of new scene features and disappearance
of existing ones, an observation made earlier by Longuet-Higgins [16] and Walden and
Dyer [22] as well. Waldon and Dyer [22] suggest that, for mirrors, reliable qualitative
shape information is available only at the parabolic curves in the forms of discontinu-
ous image flow fields. Studies in perception [17] hint at the ability of humans to detect
and use parabolic curvature curves to perform local shape analysis. Some existing ap-
proaches in perception [23] and detection [9] of mirrors remark on the anisotropy of
gradients in the images of smooth mirrors. However, these papers do not identify the
existence of the invariance, the assumptions required for the invariance to hold, the
geometric interpretation behind its occurrence and the stability of the invariance for
practical imaging scenarios. More importantly, in addition to exploring these proper-
ties, we also show that parabolic curvature points of the mirror (a surface descriptor)
can be recovered from a few images of the mirror.

3 Deriving the Invariant

This section describes the main technical contributions of the paper. We begin with
a brief overview of parabolic curvature points. Then, we discuss the image formation
model for mirror objects and show that the observed image gradients exhibit a degener-
acy at the points of parabolic curvature, irrespective of the environment. This leads us
to define an invariant for the surfaces of smooth mirrors.

3.1 Parabolic Curvature Points

Let us model the shape of the (smooth) mirror in its Monge form (x, y, f(x, y)) =
(x, f(x)) in a camera coordinate system where the function f is twice continuously
differentiable. At a given point on the surface, the curvature along a curve is defined
as the reciprocal of the radius of the osculating circle. The principal curvatures are
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Elliptic
Surface bends similarly 

along different directions

Hyperbolic
Surface bends in opposite 

directions

Parabolic
No bending along one 

direction

Fig. 1. Local properties of a surface can be classified into 4 types: elliptic, hyperbolic, parabolic
and flat umbilic (planar). This classification deals with the bending of the local surface in various
directions. The parabolic curve is shown in red.

defined as the minimum and maximum values of the curvature measured along various
directions at a given point. The product of the principal curvatures is defined as the
Gaussian curvature. It can be shown [15] that the Gaussian curvature is given by

fxxfyy − f2
xy

1 + f2
x + f2

y

. (1)

Points at which one of the principal curvatures is zero are termed parabolic curvature
points or simply parabolic points. Defining the Hessian at point x of the surface as

H(x) =
1
2

[
fxx fxy

fxy fyy

]
(x)

, (2)

parabolic curvature points are defined by points where rank[H(x)] = 1. When both
principal curvatures at a point are zero, the point is referred to as flat umbilic. Planes
are examples of surfaces which are flat umbilic everywhere. Shown in Figure 1 are
characterization of local properties of a surface.

3.2 Image Formation for Mirror Objects

Mirrors do not have an appearance of their own, and image of mirror are warps of
the surrounding environment. Modeling the shape of the mirror as (x, f(x)), image
formation can be described by identifying the camera and the environment. We model
the camera as orthographic. Under an orthographic camera model, all the rays entering
the camera are parallel to its principal direction.

The surface gradient at pixel location x is given as ∇f = (fx, fy)T , and the surface
normal is given as

n(x) =
1√

1 + ‖∇f‖2

(
−∇f

1

)
. (3)

The camera viewing direction v at each pixel is the same, v = (0, 0, 1)T . Under perfect
mirror reflectance, we can compute the direction of the ray that is reflected onto the
camera as s = 2(nT v)n − v The corresponding Euler angles Θ(x) = (θ, φ) are given
as,

tan φ(x) =
fy

fx
, tan θ(x) =

2‖∇f‖
1 − ‖∇f‖2 . (4)
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1

Parabolic Point
Value of detection 

statistic: 524

Value of detection 
statistic: 2

Parabolic Point
Value of detection 

statistic: 6300

Non-Parabolic Point

Fig. 2. Degeneracy of image gradients at parabolic points. Shown are image patches at three
locations on a mirror from multiple images rendered under a rotating environment. The image
patches corresponding to parabolic curves do not have have gradients along the parabolic curve.
This is in contrast to a non-parabolic point which can have arbitrary appearance.

The scene/environment that is seen at pixel x is hence defined by the intersection of
the scene and the ray in the direction of s(x) from the location of the mirror element
(x, f(x))T . In the special case of environment at infinity, the dependence on the lo-
cation of the mirror is completely suppressed, and the environment feature observed
depends only on the surface gradient ∇f .

Under the assumption of environment at infinity, we can define the environment map
over a sphere. Let E : S2 �→ R be the environment map defined on the sphere S2

under the Euler angle parametrization. Under no inter-reflectance within the object, the
forward imaging equation for the intensity I(x) observed at pixel x is given as

I(x) = E(Θ(x)) (5)

where Θ(x) is the Euler angle of the observed ray as given in (4). Differentiating (5)
with respect to x, the image gradients are given by

∇xI = 2H(x)
[

∂Θ

∂∇f

]T

∇ΘE (6)

where the Hessian H(x) is defined in (2). The full derivation is in the supplemental
material (and similar to that of [1]).

For parabolic curvature points, H(x) is singular. As a consequence, ∇xI takes val-
ues that are proportional to the non-zero eigenvalue of H(x), immaterial of what the
environment gradient ∇ΘE is. Figure 2 shows the local appearance of parabolic and
non-parabolic points under various environment maps.

3.3 Invariant

Given a smooth mirror (x, f(x)), where f is C2 continuous, placed with the surround-
ing environment at infinity and viewed by an orthographic camera, the proposed invari-
ant is a statement on the observed image gradient at parabolic curvature points of the
mirror. Under this setting, the image gradients at parabolic curvature points are degen-
erate and take values along a single direction that is defined by the local shape of the
surface. This property is independent of the scene in which the mirror is placed.
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Locally parabolic 
surface

Principle direction with no 
curvature marked in red

Orthographic camera

Surface Normals do not 
change along the parabolic 

curve

(Env. at infinity)

Fig. 3. The proposed invariant can be geometrically described using the ray diagram above. At
a parabolic point, by definition, the normal (and curvature) do not change along one direction.
Under orthographic imaging and scene at infinity, the same feature is imaged onto the camera as
we move along the parabolic curve and hence, the image gradient disappears along this direction.

The invariant arises directly due to the principal direction of zero curvature at
parabolic point (see Figure 3). By definition, an infinitesimal movement on the surface
along this direction does not change the surface normal. Under our imaging model,
the environment feature imaged at a point depends only on the surface normal. Hence,
an infinitesimal displacement on the image plane along the projection of this direction
does not change the environment feature imaged. As a consequence, the image gradi-
ent along this direction is zero. This geometric understanding is related to recent work
on ray-space specular surface analysis [24,10], where the authors study local mirror
patches as general linear cameras and associate different camera models to different
local surface properties. Interesting connections to our work can potentially be derived
from these papers and remain an important direction for future research.

Mathematically, the invariant can be expressed in various forms. From (6) and under
the assumed imaging conditions, a parabolic curvature point at x0 satisfies

∇xI(x0) = ‖∇xI(x0)‖v (7)

where v is the eigenvector of H(x0) with non-zero eigenvalue. An alternate interpreta-
tion that does not involve H(x) uses the matrix M(x) defined as:

M(x) =
∑
E

(
(∇xI(x; E))(∇xI(x; E))T

)
(8)

where I(x; E) is the intensity observed at pixel x under environment defined in E(Θ).
Note that the summation in (8) is over all possible environment maps. At points of
parabolic curvature,

rank[M(x0)] = 1 (9)

In contrast, for elliptic and hyperbolic points, the matrix M is full rank. For flat umbili-
cal points, H(x) is the zero matrix and the image gradients are zero as well. Therefore,
the matrix defined in (8) will be zero rank.
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4 Detecting Parabolic Curvature Points

We derive a practical algorithm for detecting points of parabolic curvature from mul-
tiple images of a mirror. The algorithm exploits the consistency (or degeneracy) of the
image gradients as given in (9). Under motion of the camera-mirror pair (or equiva-
lently, rotation of the environment), the environment feature associated with each point
changes arbitrarily. However, parabolic points are tied to the surface of the mirror, and
hence, the direction of image gradients associated with them do not change. This moti-
vates an acquisition setup wherein the environment is changed arbitrary and consistency
of image gradient at a pixel indicates whether or not it has parabolic curvature. Since
movement of the camera-object pair simultaneously is the equivalent to that of rotation
of the environment, we use environment rotation to denote both. In practise, moving the
camera-object pair is easier to accomplish.

Given a set of images {Ij}, compute the matrix

M(x) =
∑

j

(∇xIj(x)) (∇xIj(x))T (10)

using image gradients computed at each frame. We use the ratio of the eigenvalues of
M(x) as the statistic to decide whether or not a pixel x observes a parabolic curvature
point. Figure 4 shows estimates of parabolic points of different surfaces. Images for
this experiment were rendered using PovRay. Each image was taken under a arbitrary
rotation of the environment. As the number of images increase, the detection accuracy
increases significantly as M(x) at non-parabolic points become well-conditioned.

We believe that our approach is unique in the sense that it recovers a ‘dense’ char-
acterization of parabolic curvature points from uncalibrated images of a mirror. Much
of the existing literature on using the photometric properties of parabolic points rely on
the stability of highlights at parabolic points under changes in views. However, such a
property is opportunistic at best, and does not help in identifying all the parabolic cur-
vature points associated with the visible surface of the mirror. In this sense, the ability
to recover a dense set of parabolic curvature points opens the possibility of a range of
applications. We discuss these in Section 5.

Theoretically, the invariance is guaranteed only for an orthographic camera and an
environment at infinity. However, in practice, the invariance holds with sufficient fidelity
when these assumptions are relaxed. We explore the efficacy of the proposed invariant
for a range of practical operating conditions in Section 6.

Mis-detection: The proposed invariant does not take inter-reflections into account.
Inter-reflections alter the physics of the imaging process locally, and violates the re-
lations made earlier in physical models. Imaging resolution also affects the detection
process. For low resolution images, the curvature of the surface observed in a single
pixel might deviate significantly from parabolic. Such a scenario can potentially annul
the invariance at the parabolic point due to corruption from the surrounding regions.

False Alarm: It is noteworthy that the invariant describe image gradients at parabolic
points. However, degenerate gradients do not necessarily imply the presence of
parabolic points. Clearly, for small number of images, it is possible that a surface pixel/
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(c) Rotated Torus

Fig. 4. Detecting parabolic curvature points from rendered images for various surfaces. (From
left to right) the depth map of the mirror with the parabolic points highlighted in red; a rendered
image of the surface using the Grace cathedral environment map; detected parabolic points from
2 images; from 5 images; from 25 images; Log of decision statistic estimated from 25 images.
The occluding contour is shown in cyan and the parabolic points in green.

patch do not observe environment features that are sufficiently rich. Similarly, discon-
tinuities in the surface such as occluding contours can lead to consistent degeneracy in
the observed image gradients.

Note that, the detection of statistics does not require the environment texture to be
rich. Using increasing number of images (camera-mirror pair rotations), the degenera-
cies due to environment become incoherent and can be filtered out easily. Our exper-
iments include textures such as the Grace cathedral which exhibit large regions with
little or no textures and the method succeeds to capture the statistics regardless.

5 Applications

In this section, we describe three applications of the presented theory; (1) pose es-
timation, (2) recognition of mirror-like objects; and (3) a possible extension for sur-
face reconstruction. The equivalent algorithms designed for diffuse/textured surfaces
require establishing correspondences between image observations and a model of the
object [13]. For specular objects, the highlights on the objects serve as an informa-
tive cue for object detection and pose estimation [8]. Similarly, Gremban and Ikeuchi
[12] use specular highlights for object recognition, and plan novel views that are dis-
criminative between objects with similar highlights. However, these methods do not
generalize to objects with mirror reflectance. In a calibrated setup (camera and envi-
ronment), it is possible to infer about surface normals through image and environment
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Fig. 5. Parabolic curves provide a unique signature for object pose and identity. Shown are the
parabolic curves of four different objects in differnet poses. In each instance, the depth map and
the analytically computed parabolic curves are shown.

correspondences which can be further utilized for estimation algorithms [6,19]. How-
ever the required calibration process is a tedious task. Pose estimation and recognition
in an uncalibrated setup remains to be a challenge and we show that the proposed image
invariants provide necessary information for such tasks.

Pose Estimation: The pose estimation algorithm recovers the 3D rotation and 2D trans-
lation parameters with respect to a nominal pose of the object. Since the camera model
is assumed orthographic, the object pose can only be recovered up to depth ambiguity.
We assume that either the parametric form or the 3D model of the object is given in
advance. Based on the representation, the 3D positions of the parabolic points at object
coordinates are recovered either analytically (using parametric form) or numerically
(using the 3D model). In an offline process, we generate a database of curve templates
by rotating the parabolic curvature points with respect to a set of sampled 3D rotations
and projecting visible points to the image plane. Since rotation of the object along the
principal axes (θz) of the camera results in an in-plane rotation of the parabolic points
on the image plane, it suffices to include only out-of-plane rotations (θx and θy) to the
database which is performed by uniform sampling of the angles on the 2-sphere. A few
samples included into the database is given in Figure 5.

The initial pose of the object is recovered by searching for the database template to-
gether with its optimal 2D Euclidean transformation parameters s = (θz , tx, ty), which
aligns the parabolic points of the template to the image parabolic curvature points. We
use a variant of chamfer matching technique [2] which measures the similarity of two
contours. The precision of the initial pose estimation is limited by the discrete set of
out-of-plane rotations included into the database. We refine the estimation using a com-
bination of iterative closest point (ICP) [3] and Gauss-Newton optimization algorithms.
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curvature

-ve Gaussian 
curvature

Zero Gaussian curvature 
at boundary

Depth map Detected parabolic 
curvature points

(allowed shapes)

(not allowed 
shape)

Fig. 6. A stylistic example showing how the parabolic points provide global shape priors. Such
priors are extremely useful in restricting the solution space in a surface recovery algorithm as
well as in identifying regions where simple parametric models describe the surface accurately.

Recognition: The parabolic curvature points provide unique signatures to recognize
many objects in variable poses. The object recognition algorithm is a simple extension
of the presented pose estimation approach. For each object class we repeat the pose
estimation process and recover the best pose parameters. The object class is then given
by the minimum of the chamfer cost function [2] over all classes.

Shape Priors: Knowledge of the parabolic curvature points gives a strong prior on
the shape of the mirror. It is well known that curves of parabolic curvature separate
regions of elliptic and parabolic curvature. Toward this end, we can constrain the range
of possible shapes (Figure 6). Further, in each region we can use simple non-parametric
surface models such as splines and regularize their parameters to satisfy the curvature
properties. This forms a compelling direction for future research.

6 Experiments

We use both real and synthetically generated images for our experiments. For synthetic
experiments, we use publicly available ray-tracing software POV-Ray for photo realistic
rendering which provides high quality simulations of real world environments including
inter-reflections. Real data was collected with a Canon SLR camera using a 300mm
lens, and placing the mirror approximately 150cm from the camera. Both camera and
mirror were rigidly mounted to a platform, which was moved around to change the
environment features seen on the mirror.

6.1 Detecting Parabolic Curves

In Figure 4, we present results for detection of parabolic curvature points from synthet-
ically rendered images under the ideal imaging condition of orthographic camera and
scene at infinity. We show the performance of the detection when these assumptions are
violated. Figure 7 shows the detection of parabolic points when the scene is at a finite
distance from the mirror. In particular, the detection of parabolic curvature points is
reliable even when the minimum distance of the mirror to the object is the same as that
of the variations in the depth of the object itself. This shows the stability of the detec-
tion statistic to finite scenes. Figure 8 shows stable detection results when the camera is
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(a) Depth map and true 
parabolic curves. The depth of 
the surface varies by 5 cm. 

(c) Parabolic curve decision 
statistic when the environment 
is (approx) 11 cm away. 

(b) Parabolic curve decision 
statistic when the environment 
map is at infinity.

(d) Parabolic curve decision 
statistic when the environment 
is (approx) 5 cm away.

Fig. 7. Detection of parabolic points when the environment is at a finite distance from the mirror

Field of view: 75 degrees
Camera to Object Center: 3 cm

Field of view: 35 degrees
Camera to Object Center: 5 cm

Size of object approx 5cm x 5cm x 5cm

Fig. 8. Detection of parabolic points using a perspective camera under medium to large deviation
from the orthographic case. The parabolic curvature points remain stable in both cases. Note that
as the camera approaches the object and the field of view of the camera is increased, the relative
locations of the (projection of the) parabolic points on the image plane changes. This, in part,
explains the drift of the parabolic curvature points.

Input Images Estimated 
detection statistic

Detection 
Results

Manually marked
ground truth

Fig. 9. Estimation of parabolic points of a real object using multiple images. Results were esti-
mated using 17 images.

heavily perspective. These figures reinforce the detection of parabolic curves based on
the invariant for practical imaging scenarios. In Figures 9 and 10, we show detection of
parabolic curvature points using real images for two highly reflective objects.

6.2 Pose Estimation and Recognition

In the synthetic experiments, we randomly sample six parameters of the 3D object pose
and render the object under several environment rotations. The parabolic curves on the
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An input image. Inset is 
the segmentation mask.

Decision statistic (log scale) with 10 
(left) and 25 (right) images of the mirror.

Detected parabolic 
points with 25 images

(Left) pose matching results and (right) mirror 
synthesized in estimated pose. 

Fig. 10. Estimation of parabolic points of a real surface using variable number of images. The
parametric form of the surface was given in Figure 4 and it is manufactured using a CNC machine.
As the number of images increase, the degeneracies due to environment become incoherent and
detection becomes more reliable.

(a) (b)

Mean Abs. 
Err.

tx ty x y z

Surface-1 1.94 1.60 0.55 0.67 0.46

Surface-2 1.86 2.87 0.96 0.59 0.28

Surface-3 3.54 8.55 2.74 1.04 0.93

Surface-4 4.63 6.69 1.95 1.39 0.48

Fig. 11. (a) Visualization of the pose estimation results. For each test object, we show the pose
estimate at one of the 30 random poses used. (Top) Parabolic curvature points detected from 25
images of the mirror under a rotating environment. (bottom) Estimated pose of the mirror with
the true parabolic curvature points overlaid. (b) Mean pose estimation errors. Translational error
is in pixels and rotational error is in degrees. The results are averaged over 30 trials.

image plane is detected using the 25 rendered images which are then utilized to recover
the object pose via the algorithm described earlier.

We provide results for four different surfaces which are shown in Figure 5. In Fig-
ure 11a, we present several pose estimation results. The simulation is repeated 30 times
for each surface using a different pose and mean absolute estimation errors for five pa-
rameters of the 3D pose is given in Figure 11b. We note that, since the camera model is
orthographic, the object pose can be recovered only up to a depth ambiguity. In all our
trials the pose estimation algorithm converged to the true pose. As shown, the parabolic
curves provide extremely robust features for pose estimation, and average rotation error
is less than 2 degrees and 5 pixels. In Figure 10, we show pose detection results on
real images of a mirror. The estimated pose was (−4.24,−1.66, 1.9) for a ground truth
of (0, 0, 0).

For recognition, we place four objects simultaneously to the environment and
recognize identities of these surfaces. This is a challenging scenario due to heavy inter-
reflections of the surfaces. The same rendering scenario of the pose estimation experi-
ment is repeated. The object identities are given via the minimum of the cost function
after pose estimation. The average recognition rate over 10× 4 trials is 92.5% and typi-
cal recognition examples are shown in Figure 12. We note that, two of the surfaces have
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Recognition results: Objects are rendered in detected pose

Fig. 12. Recognition experiment on synthetic images. Our test setup consisted of arbitrarily plac-
ing all four test objects in a virtual scene and rendering multiple images. The recovered parabolic
curvature points were used to recognize the object and estimate its pose.

exactly the same occluding contour, therefore in this scenario this statistic is expected
to fail whereas parabolic curvature points provide unique signatures.

7 Conclusions

In this paper, we propose a photometric invariant for images of smooth mirror. We
show that images of mirror exhibit degenerate image gradients at parabolic curvature
points when the camera is orthographic and the scene is at infinity. We demonstrate the
practical effectiveness of the invariant even under deviations from this imaging setup. In
particular, the invariant allows for a dense recovery of the point of parabolic curvature
from multiple images of the mirror under motion of the environment. This allows us
to recover a geometric property of the mirror. We show that recovery of the parabolic
curvature points opens up a range of novel applications for mirrors.
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Abstract. Photometric stereo relies on inverting the image formation

process, and doing this accurately requires reasoning about the visibility

of light sources with respect to each image point. While simple heuristics

for shadow detection suffice in some cases, they are susceptible to error.

This paper presents an alternative approach for handling visibility in

photometric stereo, one that is suitable for uncalibrated settings where

the light directions are not known. A surface imaged under a finite set of

light sources can be divided into regions having uniform visibility, and

when the surface is Lambertian, these regions generally map to distinct

three-dimensional illumination subspaces. We show that by identifying

these subspaces, we can locate the regions and their visibilities, and in

the process identify shadows. The result is an automatic method for

uncalibrated Lambertian photometric stereo in the presence of shadows,

both cast and attached.

1 Introduction

Photometric stereo seeks to recover the geometry of a scene by analyzing ap-
pearance changes under varying illumination. In spite of being based on a crude
reflectance model, Lambertian photometric stereo is one approach that is fre-
quent used. One of the reasons for the utility of Lambertian photometric stereo
is its support of auto-calibration. In the ideal case, given a set of images under
varying, but unknown, directional lighting, it is possible to recover both a sur-
face normal field and the light source directions up to a three-parameter family
of solutions [7,33].

Like any photometric stereo technique, uncalibrated Lambertian photometric
stereo relies on inverting the image formation process. It seeks to explain obser-
vations using combinations of light sources, surface normals, and surface albedos;
and in order to succeed, it must be able to reason effectively about which light
sources are visible to each surface point. This problem is deceptively hard be-
cause shadowing is a non-local function of surface geometry, and heuristics for
shadow detection, such as simple thresholding, are unreliable in the presence of
albedo variations and sparse input images.

In this paper, we avoid explicit shadow detection by reasoning about illumi-
nation subspaces instead. It is well-known that the set of images of a convex
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c© Springer-Verlag Berlin Heidelberg 2010
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(a) Input (4 of 8) (b) Visibilities (c) Normals (d) Reconstruction

Fig. 1. Uncalibrated photometric stereo with shadows. From a sparse set of images of

a Lambertian scene (a), we identify regions that can see a common set of lights (b)

through subspace estimation. This provides per-pixel visibility and allows the recovery

of surface normals (c) and light directions up to the standard global linear ambiguity.

Integrating these normals produces a reconstruction (d) that is not corrupted by the

strong shadowing in the input images.

Lambertian surface under directional lighting spans a three-dimensional linear
subspace. It is also well-known that attached shadows and cast shadows vio-
late this subspace property, so that the image-span of a scene with shadows can
grow to a high dimension. What has not been fully exploited is that these high-
dimensional spans have useful structure. We show that the image-span of any
Lambertian scene captured under a discrete set of light sources with arbitrary
shadowing can be decomposed into a set of three-dimensional subspaces. We
refer to these as visibility subspaces because they correspond to sets of surface
points that can see a common set of lights.

Given a sequence of uncalibrated photometric stereo images of a Lambertian
object, the visibility subspaces can be automatically identified—without knowl-
edge of the lighting directions—using well-known subspace clustering techniques.
We show that once these subspaces are identified, the surface is partitioned, the
exact set of lights that is visible to each region can be computed, and the surface
and light directions can be reconstructed up to the usual global linear ambiguity.

2 Related Work

Photometric stereo can produce per-pixel estimates of surface normals and is
a common technique for scene reconstruction. Originally developed for Lam-
bertian surfaces and calibrated directional lighting [29], photometric stereo has
been generalized to handle uncalibrated directional lights [15], specular and
glossy surfaces [20,21,14], symmetric reflectance functions [1,19,25], reflectance
mixtures [18], and uncalibrated environment map lighting [4]. Despite these
generalizations, Lambertian photometric stereo remains useful because of its
simplicity and allowance for uncalibrated acquisition, as well as being an ana-
lytical “stepping stone” for developing more comprehensive techniques.
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In order to obtain accurate reconstructions with any photometric stereo tech-
nique, Lambertian or not, one must identify shadowed regions in the images.
Most approaches for isolating shadows rely on using enough light sources such
that every surface point is illuminated by at least two or three of them, and
then detecting and discarding intensity measurements having low values. The
number of images may be as few as three or four [10,3,16] but can also be many
more [31,30]. Since these methods detect shadows by analyzing the intensities
at individual pixels, they can be unreliable when a surface has texture with low
albedo, and when cast shadows prevent some surface points from being illumi-
nated by a sufficient number of lights.

An alternative approach is proposed by Chandraker et al. [8]. They estimate
which light sources can be seen by each surface point using a Markov random
field in which the per-pixel “data term” is based on Lambertian photometric
stereo and the “smoothness term” acts to encourage spatial coherence. This
approach requires that the light directions are calibrated and known, and like
the methods above, relies on reasoning about the intensities at each pixel. Our
approach also derives from Lambertian photometric stereo, but unlike [8], does
not require the light sources to be calibrated. Moreover, instead of reasoning
about per-pixel intensities, it reasons about illumination subspaces.

Our work is also related to the problem of characterizing the structure of the
set of a scene’s images. There exist bounds on the dimension of the image-span
of convex Lambertian scenes under directional lighting [23] and environment
map lighting [5,22], as well as convex scenes with a single arbitrary reflectance
function [6] and mixtures of reflectance functions [13]. All of these bounds assume
the scene to be convex so that cast shadows are absent. As a by-product of our
analysis, we derive a complimentary bound that accommodates cast shadows and
is valid for any Lambertian scene illuminated by a finite set of directional lights.

Finally, our work leverages insight from subspace clustering techniques, such
as Generalized Principal Component Analysis (GPCA) [28] and Local Sub-
space Affinity (LSA) [32], that have been developed for motion segmentation.
In our case, we perform subspace clustering using RANdom SAmple Consensus
(RANSAC) [12,26,27]. This is quite different from a previous use of RANSAC
in photometric stereo [17], which was aimed at identifying contour generators
within an object’s visual hull.

3 Visibility Subspaces

We begin with background and notation. For a Lambertian surface, the radiance
from a surface point with normal N ∈ S2 and albedo ρ, illuminated with direc-
tional lighting L (i.e., with direction L/||L|| ∈ S2, and magnitude ||L||), is given
by I = max(0, ρLT N). In the absence of shadows, we know that LT N > 0, and
the image observations at m surface points illuminated by n light sources can
be arranged as an n ×m data matrix I that is the product of the 3 × n light-
ing matrix L = [L1, L2, · · · , Ln] and the 3 × m albedo-scaled normals matrix
N = [ρ1N1, ρ2N2, · · · , ρmNm]:

I = LT N. (1)
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L and N are at most rank-three, and therefore, so is matrix I [29,23].
If the scene is imaged under at least three non-coplanar light sources and

these sources are calibrated and known, the surface normals can be estimated
from noisy image intensities as N = (LT )+I, where (·)+ is the pseudo-inverse
operator [29]. If the light sources are not calibrated, we can factor I using singular
value decomposition (SVD) to recover the normals and lights using a rank-three
approximation [15]:

I = UΛVT , L̂T � U3Λ
1
2
3 , N̂ � Λ

1
2
3 VT

3 . (2)

This determines the normals up to a linear 3× 3 linear ambiguity such that:

LT = L̂T A,N = A−1N̂. (3)

for some non-singular matrix A. This ambiguity can be resolved if light source
intensities or surface albedos are known [15]. It can also be resolved up to the
three-parameter generalized bas-relief ambiguity by enforcing an integrability
condition on the normal field [7,33].

Up to this point we have assumed the absence of cast and attached shadows,
or equivalently, that every light source is visible to every surface normal. Now
suppose that shadows exist, and consider the following toy example. A scene is
partitioned into two uniform-visibility regions S1 and S2 that project to m1 and
m2 pixels respectively. The scene is imaged under a set of n light directions that
can be grouped into two (potentially) overlapping subsets L1 and L2, such that
all of the lights L1 are visible to all points in S1, and all of the lights L2 are
visible to all points in S2. Let the number of lights in these overlapping subsets
be denoted by n1 and n2, and since they might overlap, we have n1 + n2 ≥ n.

Now, the data matrix I can be permuted so that the first m1 columns corre-
spond to S1 and last m2 columns to S2, and the first n1 rows correspond to L1
and last n2 rows to L2 with their shared lights lined up in the middle. Then, the
observation matrix can be written as two sub-matrices, and if we denote by Nk

the collection of surface normals in region Sk, the matrix can be factored as:

I = [ I1 | I2 ] =
[

LT
1

0T
n−n1

0T
n−n2

LT
2

] [
N1 0m2

0m1 N2

]
, (4)

with 0x representing a matrix of zeros with size 3 × x. The form of this fac-
torization shows that while the row-space of I spans six dimensions, it actually
consists of two rank-three subspaces corresponding to the two disjoint surface
regions with different visibilities.

To generalize this to multiple regions with arbitrarily overlapping visibilities
(i.e., sets of visible light sources), we define the visibility vector of region Sk to
be the binary vector Vk = [vk1, vk2, · · · , vkn], such that vki = 1 if light source
Li is visible to all the points in Sk and vki = 0 otherwise. The light sources
visible to region Sk can then be expressed (with a slight change in notation from
Eq. 4) as

Lk = L⊗ Vk, (5)
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where ⊗ represents the element-wise Hadamard product applied to every row of
the lighting matrix. As above, we can then factor the observation matrix for a
scene with s distinct visibility regions as:

I = [ I1 | I2 | · · · | Is ] = [ LT
1 | LT

2 | · · · | LT
s ]

⎡⎢⎢⎢⎣
N1

N2
. . .

Ns

⎤⎥⎥⎥⎦ , (6)

where Nk is the surface normal matrix corresponding to region Sk.
Thus, the observation matrix is made up of multiple subspaces, and we call

these visibility subspaces because they correspond to regions in the scene that
each have a consistent set of visible lights. Clearly, each subspace is at most rank-
three, and the row space of a scene with s visibility subspaces has dimension at
most 3s. This leads us to the following:

Proposition. The set of all images of a Lambertian scene illuminated by any
combination of n directional light sources lies in a linear space with dimension
at most 3 · 2n.

Proof: A scene illuminated by n light sources will have at most 2n regions with
distinct visibility configurations. The images of each region span at most a three-
dimensional space, so the dimension of the image-span of the entire scene is at
most 3 · 2n.

This result is complementary to previous work that has established bounds on
the dimensionality of scene appearance. Belhumeur and Kriegman [6] showed
that the images of a scene with an arbitrary uniform BRDF, and illuminated
by distant (environment map) lighting, lie in a linear space whose dimension is
bounded by the number of distinct surface normals in the scene. Garg et al. [13]
generalized this to spatially-varying reflectances that can be expressed as a linear
combination of basis BRDFs. However, these results apply only to convex scenes
without attached or cast shadows. In addition, these results assume that there are
a finite number of normals in the scene to derive a bound on the dimensionality
of scene appearance under arbitrary directional (environment map) lighting. In
contrast, our analysis provides bounds on the appearance of a Lambertian scene
with an arbitrary number of normals but illuminated by a finite number of light
sources, and allows any form of shadowing.

In general, we do not know the visibility subspaces of a scene a priori, and
we cannot permute the rows and columns of the observation matrix to directly
obtain the factorization in Eq. 6. However, as we show next, we can identify the
subspaces automatically using a subspace clustering technique.

4 Estimating Visibility Subspaces

RANSAC [12] is a statistical method for fitting models of known dimensions to
data with noise and outliers. While RANSAC is traditionally used to discard
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outliers from a dataset, we follow [27] and use it to cluster subspaces. In this
context, it can be seen as an alternative to other subspace-estimation techniques,
such as GPCA [28] and LSA [32].

Each visibility subspace of the scene is contained in a three-dimensional space.
If we randomly choose three surface points that happen to be in the same region
Sk, the light estimates L̂k that we obtain by factoring the image intensities at
these three points (using Eq. 2) will accurately explain the intensities for all
pixels in Sk. Thus, we expect a large number of “inliers”. (Of course, there will
be outliers as well because the points in the remainder of the scene will not
have the same set of visible lights, and projecting their intensities onto L̂k will
produce large errors.) Conversely, if we happen to choose three scene points that
are in different regions, the light directions obtained by SVD will be unlikely to
accurately explain the intensities at many other scene points, and we expect the
number of inliers to be small. These observations suggest the following algorithm:

1. Choose three pixels at random and factor their intensities as I3 = L̂T
3 N̂3.

2. Use lights L̂3 to estimate the normal at all the surface points as N̂i =
(L̂T

3 )+Ii.
3. Compute the per-pixel error of the estimated lights and normals as Ei =
||Ii − L̂T

3 N̂i||2.
4. Mark points with error Ei < ε as inliers and recompute the associated opti-

mal lighting L̂k using intensities for all inliers.
5. Repeat steps 1 through 4 for t iterations, or until a sufficiently large set of

inliers has been found. During these iterations, keep track of the largest set
of inliers found.

6. Mark the largest set of points that are inliers as a valid visibility subspace
Sk with associated lighting basis L̂k. Remove these inliers from the point
set, and repeat steps 1 to 5 until all visibility subspaces have been recovered.

This procedure samples the points in the scene to find three points that belong to
the same visibility subspace. Each time the sampling is successful, as measured
by the number of inliers in Step 4, it extracts the subspace and removes it
from the set of unlabeled points. The algorithm does not depend on the scene
geometry or the lighting directions; it depends only on the rank-three condition of
any visibility subspace. The result of the procedure is the set of per-pixel surface
normals N̂, the per-pixel subspace labels S, and a redundant (per-subspace) set
of estimates for the light directions {L̂k}. Note that in an uncalibrated setting,
the set of normals for each subspace and their corresponding lights L̂k are defined
up to their own linear ambiguity per Eqs. 2 and 3.

In our experiments, we use t = 1000 iterations, set the error threshold ε
according to the noise in the input images, and run the procedure until 99% of
the pixels are assigned to a valid visibility subspace. The remaining 1% of pixels
are assigned to the subspace that best explains their intensity variation.

4.1 Degenerate Subspaces

The RANSAC-based method described above assumes that all visibility sub-
spaces have rank-three. This is valid for any region having at least three
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non-coplanar surface normals, and illuminated by at least three non-coplanar
light sources. However, in general, scenes may contain rank-deficient subspaces
that corrupt the clustering. Under the assumption that every point in the scene
sees at least three non-coplanar lights (without which surface normal recovery
is ambiguous), a visibility subspace can only be rank-deficient if it has degen-
erate normals: a region with coplanar normals will have rank two and a planar
region will have rank one. Our task, then, is to check our recovered rank-three
subspaces to see if they are composed of smaller degenerate subspaces.

Given the form of the observation matrix factorization in Eq. 6, it follows that
a rank-three subspace can only be one of the following three types:

1. A region with a single visibility vector and non-coplanar normals (i.e., a true
rank-three subspace).

2. Two regions with distinct visibility vectors, where one region has coplanar
normals, and the other is planar (i.e., a combination of rank-two and rank-
one subspaces).

3. Three regions with distinct visibilities, each of which is planar (i.e., a com-
bination of three rank-one subspaces).

To ensure that our subspaces estimated by RANSAC are not of Type 2 or Type
3, we test every estimated rank-three subspace by searching for embedded rank-
two and rank-one subspaces. If the number of pixels corresponding to the smaller
embedded subspaces subsume more than a fraction α of the original set (α =
0.5 in our experiments) we relabel them as being members of a different rank-
deficient subspace.

5 Subspaces to Surface Normals

This subspace clustering identifies surface regions with uniform visibility, but
does not provide a clean visibility vector Vk (or accurate shadows) for each
region. Put another way, the non-visible entries of each L̂k are not necessarily
zero-valued. To recover the visibility vectors and refine the light matrices, we sep-
arately examine the light estimates in each subspace L̂k = [L̂k1, L̂k2, · · · , L̂kn],
and provided that the subspace is not degenerate, we set

vki = ||L̂T
ki|| > τ, (7)

with τ = 0.25 in our experiments. This simple approach succeeds because the
normals N̂k in each non-degenerate subspace span three dimensions, so the prod-
uct Iki ≈ L̂T

kiN̂k can be zero only if the light strength ||L̂ki|| is zero. Effectively,
we are able to recover the visibility for each subspace by reasoning about the
magnitude of the subspace lighting—an approach that is independent of scene
albedo and is, therefore, not confounded by texture.

To estimate the visibility for degenerate subspaces, we first project the sub-
space lighting onto the column-space of the subspace normals before thresholding
their magnitudes. This removes the component of the lighting orthogonal to the
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subspace normals that could be arbitrarily large while not contributing to the
observed intensities.

Once the visibility vector for each subspace is known, we can recover the
surface normals and reconstruct the surface. In the calibrated case, this is quite
straightforward. Since the light sources L are known, they are combined with
the visibility vectors using Eq. 5, and then the normals in every subspace are
given by:

Nk = (L⊗ Vk)+Ik , k = 1 . . . s. (8)

If the light sources are not calibrated, the situation is more complex because
the subspace clustering induces a distinct linear ambiguity in each subspace,
(i.e., LT

k = L̂T
k Ak,Nk = A−1

k N̂k, k = 1 . . . s). Recovering the entire surface up
to a single global ambiguity A, which is the best we can do without additional
information, requires that we somehow determine the transformations–one per
subspace–that map each set of normals to a common coordinate system. Fortu-
nately, this can be achieved by solving the set of linear equations:

L̂⊗ Vk = L̂kAT
k , k = 1 . . . s, (9)

where both the global lights L̂ (i.e., those defined up to a single global ambiguity)
and the per-subspace ambiguity matrices Ak are unknown. This is an over-
constrained homogeneous system of linear equations since, for n lights and s
subspaces, it contains 3ns constraints and 3n + 9s unknown variables. To avoid
the trivial solution L̂ = Ak = 0 we set the ambiguity matrix for one reference
subspace (chosen to be the non-degenerate subspace with the largest number of
visible lights) to be the identity matrix. Accordingly, we recover the global lights
L̂ and normals N̂ up to a single 3 × 3 ambiguity, which is that of the reference
subspace.

To handle degenerate subspaces in the uncalibrated case, we first solve Eq. 9
using all non-degenerate subspaces, and as long as all of the global lights are
visible to at least one of these regions, we can recover all of them. We then use
these “auto-calibrated” lights to solve for the normals in the degenerate rank-one
and rank-two subspaces using Eq. 8.

As a final step in the uncalibrated scenario, we may reduce or eliminate the
global ambiguity using additional constraints, such as integrability of the nor-
mal field [7,33], specular or glossy highlights [14,11,25], interreflections [9], or a
prior model of object albedo [2,24]. Then, in either calibrated or uncalibrated
conditions, the estimated normals can be integrated to recover scene depth. In
this integration process, one may optionally enforce the depth constraints that
are induced by the visibility vectors and lights, and an elegant procedure for
doing so can be found in [8].

6 Results

We evaluate the uncalibrated instantiation of our approach on two synthetic
datasets and two captured datasets. In each case, we automatically cluster sub-
spaces, determine visibility vectors, and compute lights and surface normals up
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to a global 3×3 linear ambiguity. As mentioned above, there are ways to resolve
this ambiguity, and since this is not the focus of this work, we simply do so by
manual intervention.

For synthetic examples, we evaluate the recovered normals, lights, and vis-
ibility subspaces by comparing them to the ground-truth values that are used
to synthesize the input images. For the captured examples, the “true” values
for comparison are obtained as follows. First, we acquire a dense set of cali-
brated photometric stereo images using approximately 50 different light direc-
tions. From such a dense set of calibrated images, we can robustly estimate
surface albedos, and the image intensities can be reliably thresholded to de-
tect per-pixel shadows and “true” visibilities. Then, we discard the shadowed
measurements and recover the “true” normals via calibrated Lambertian photo-
metric stereo. To make a direct comparison between this ground truth and our
results, we execute our algorithm using a small subset of the dense input images,
with the calibration information held out.

Figure 2 is a synthetic example in which the attached and cast shadows induce
intricate visibility subspaces. From the six input images, our approach recovers
the visibilities and normals almost perfectly. Figure 3 is a similar example, but
in this case, the shadows cast on the back plane create degenerate visibility
subspaces. These degenerate rank-one and rank-two subspaces are successfully
detected by our approach, and the final visibilities and normals computed from
the seven input images are again very close to ground truth. The median angular
errors in surface normals for these two examples are 0.49◦ and 0.51◦, respectively.
Note that both of these synthetic scenes have high-frequency texture and large
variations in albedos. These conditions often lead to poor results when using
intensity-based shadow detection from such a small number of images, but this
is not the case for the proposed method.

In the two captured datasets we consider – the frog (Fig. 4) and scholar (Fig. 6)
sequences – our algorithm was given 8 and 12 input images, respectively. For each

(a) Input images

(b) True subspaces (c) Our subspaces (d) Our normals (e) Reconstruction

Fig. 2. Spheres sequence. Attached and cast shadows divide this scene into intricate

visibility subspaces (b). We are able to recover them almost perfectly (c), and estimate

the surface normals (d) and depth (e) accurately.
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(a) Input images

(b) True subspaces (c) Our subspaces (d) Our normals (e) Reconstruction

Fig. 3. Spheres and plane sequence. The shadows cast by the spheres on the plane

create degenerate subspaces (b). We are able to disambiguate them and recover the

visibility subspaces (c) and surface normals (d), and reconstruct the scene (e).
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(e) Our subspaces (f) Our normals (g) Reconstruction (h) Our error

Fig. 4. Frog dataset. Reconstruction results from sparse input images (shown in Fig. 1).

Despite slight specularity and convexities with mutual illumination, our estimated sub-

spaces (e) match the ground truth (a) reasonably well. The angular differences between

our normals (f) and ground truth normals (b) are most significant in regions having

few non-shadowed measurements (h). For comparison, the normals estimated using cal-

ibrated photometric stereo equipped with perfect shadow detection (c) exhibit similar

deviations from the ground truth (d).
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of these datasets, we compare to the “true” normals and visibilities obtained
from densely-sampled calibrated images as described above. We also compare
the normals to those obtained using calibrated Lambertian photometric stereo
applied to the same smaller set of (8 and 12) images that are available to our
algorithm. We give this algorithm access to both the calibrated light directions
as well as the ground truth visibilities. We refer to these normals as the “best
calibrated” normals because they can be interpreted as calibrated Lambertian
photometric stereo supplied with “perfect” shadow detection, or equivalently,
as the best-possible result from a calibrated shadow-detection method, such
as [8,30] applied on this small set of input images.

The input images have significant cast and attached shadows, and they ex-
hibit non-idealities such as mutual illumination and slight specularity. Despite
this, our method does reasonably well at locating the visibility subspaces (and
shadows) from a small number of images. The median angular errors in the esti-
mated normals (relative to the ground truth) are 7.44◦ and 4.45◦ for the frog and
scholar datasets, respectively. The largest errors are made in regions with few
non-shadowed measurements and where mutual illumination is most significant.
This is not unique to our approach, however, and the errors from calibrated
Lambertian photometric stereo with perfect shadow detection have a very sim-
ilar structure. This suggests that our approach, which automatically handles
shadows and is uncalibrated, introduces limited additional errors compared to
an ideal calibrated algorithm.

7 Conclusion

We formulate shadow-detection in Lambertian photometric stereo as a subspace
clustering task. This avoids heuristic reasoning about the intensities at individ-
ual pixels, and it allows handling cast and attached shadows in uncalibrated
conditions when only a small number of input images are available. In addition,
we derive a bound on the dimension of the image-span of a Lambertian scene un-
der a discrete set of lights, and this bound has the rare property of incorporating
arbitrary shadowing.

Unlike many previous approaches to shadow detection [8,16], ours does not im-
pose a preference for spatial coherence while detecting shadow regions. Indeed,
we find that subspace clustering naturally leads to relatively coherent regions
without this imposition. It is quite likely, however, that incorporating a spatial
coherence constraint during subspace clustering could improve the results, espe-
cially in the presence of non-idealities like mutual illumination, and this may be
a fruitful direction for future research.

Also, we have restricted ourselves to Lambertian scenes illuminated by di-
rectional lights, and it is worth considering how this analysis can be extended
to handle more general conditions. In particular, one might consider general
environment map lighting [4], where a proper consideration of visibility would
overcome the current (and severe) restriction to convex surfaces.
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(a) Input images (8 of 12)

(b) True subspaces (c) Our subspaces

(d) True normals (e) Our normals

(f) “Best calibrated” normals (g) Reconstruction
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(h) “Best calibrated” angular error (i) Our angular error

Fig. 5. Scholar dataset. The left column shows ground truth (b,d) and normals obtained

by calibrated photometric stereo applied to sparse input images (f). Our results with

the same sparse set of images (a) are shown in the right column (c,e,g). The angular

differences between the true normals (d) and our estimates (e) show that most errors are

small and that large errors are restricted to small regions with strong inter-reflections (i).

For comparison, the calibrated result (f) also exhibits similar deviations (h).
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Ring-Light Photometric Stereo
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Abstract. We propose a novel algorithm for uncalibrated photometric

stereo. While most of previous methods rely on various assumptions on

scene properties, we exploit constraints in lighting configurations. We

first derive an ambiguous reconstruction by requiring lights to lie on a

view centered cone. This reconstruction is upgraded to Euclidean by con-

straints derived from lights of equal intensity and multiple view geometry.

Compared to previous methods, our algorithm deals with more general

data and achieves high accuracy. Another advantage of our method is

that we can model weak perspective effects of lighting, while previous

methods often assume orthographical illumination. We use both syn-

thetic and real data to evaluate our algorithm. We further build a hard-

ware prototype to demonstrate our approach.

1 Introduction

Photometric stereo algorithms [1] reconstruct local surface orientations (i.e. nor-
mal directions) from multiple images captured at a fixed viewpoint and vari-
ant illumination conditions. Most of these algorithms assume the illumination
conditions are recorded during data capturing so that the normal directions
are uniquely determined. However, capturing illumination conditions is often
tedious, requiring the insertion of additional calibration objects such as mir-
rored spheres into the scene. These calibration objects can further cause inter-
reflections that are often not modeled in photometric stereo algorithms and
therefore increase reconstruction error.

There is a series of works [2,3,4,5,6,7,8,9,10,11] studying this problem without
recording illumination conditions, known as uncalibrated photometric stereo. Al-
most all these methods rely on various assumptions about scene properties such
as integrable surface, non-Lambertian materials, inter-reflections, six normals of
equal albedo or small albedo entropy.1 Hence, these methods can work for cer-
tain types of scenes that meet their assumptions, but cannot handle other types.
For example, the gift box shown in Figure 1 (a) contains a few discrete planes
with only three different normal directions and no significant non-Lambertian
reflection. Notice that a plane does not provide integrable constraint as a linearly
transformed plane is also integrable. Hence, all these previous methods will fail
on this simple example. Figure 1 (b) is another challenging data which contains
many depth discontinuities. Methods based on integrability must first identify

1 An exception is Hayakawa’s work [2] that used six lights with equal intensity to

partially solve the problem.
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these discontinuities which is a non-trivial task. Indeed previous uncalibrated
photometric stereo algorithms mainly focused on a single segmented, smoothly
curved object. Little work has been proposed to handle challenging data like
those shown in Figure 1.

We propose to study uncalibrated photometric stereo by exploiting constrains
in lighting configurations such that our method can be applied to more general
data. We consider the case where a scene is illuminated by directional lights lo-
cated on a view centered cone as illustrated in Figure 2 (a). We show that with at
least five lights on such a cone, surface normal directions of a Lambertian scene
can be recovered up to two kinds of rotations, and a scaling compounded with
a mirror ambiguity. These ambiguities can be resolved if additional constraints
are available, such as three lights of equal interval, five lights of equal inten-
sity, surface integrability, non-Lambertian reflectance or corresponding normals
from multiple viewpoints. To handle more general data, we choose to combine
constraints derived from lighting configurations to achieve an Euclidean recon-
struction. All we require about the scene is that two corresponding normals can
be identified from two views, a constraint which can be easily satisfied for most
inputs. We use synthetic and real data to evaluate our algorithm and build a
prototype device to demonstrate potential applications.

2 Related Work

We first briefly review uncalibrated photometric stereo methods. Hayakawa [2]
showed that surface normals can be recovered up to a general linear transforma-
tion if lighting directions are unknown. If one can identify six lights with equal
intensity, or six normals with equal albedo, this general linear ambiguity can be
reduced to a 3D rotation ambiguity. This approach can hardly handle surfaces
with smooth varying texture or scenes with only a few different normals like the
gift box example in Figure 1.

Most of the works in uncalibrated photometric stereo follow the seminal work
by Belhumeur et al.[3] that proved the linear ambiguity can be reduced to a gen-
eralized bas-relief (GBR) ambiguity by surface integrability. Since then, many

(a) (b)

Fig. 1. Challenging data for uncalibrated photometric stereo. (a) is too simple and

(b) is too complicate for most of existing methods.
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works have been proposed to study and resolve this ambiguity. Drbohlav and
Chantler [4,5] showed spike-specular reflectance can resolve the GBR ambiguity.
Tan et al. [9,10] further proved any homogenous isotropic reflectance can resolve
it. The GBR ambiguity can also be resolved by inter-reflections [6] and mini-
mizing the entropy of surface albedos [8]. All these methods share a common
limitation that depth discontinuities must be identified before integrability can
be applied to obtain a reconstruction up to the GBR ambiguity. However, this
identification of depth discontinuities is nontrivial in practice. Typically, a mask
image is provided to separate the object from its background and the whole
object surface is assumed to be integrable. This approach cannot handle compli-
cated scenes like the one in Figure 1 (b). Furthermore, a piecewise planar scene,
like Figure 1 (a), does not provide integrability constraints, because a plane is
always integrable after any linear transformation. Hence, these algorithms often
require a pre-segmented, smoothly curved surface.

Different from these previous works, we exploit partial information in the
lighting conditions to resolve the shape ambiguity. Our method makes little as-
sumption about the scene property. Hence, our method can be applied to more
general data which cannot be handled by previous methods. Similar illumina-
tion configuration has been used [12] to minimize the reconstruction error due to
camera sensor noise when lighting directions are known. Alldrin and Kriegman
[13,14] also used the same configuration with known lighting. However, [13] recov-
ers only partial surface geometry and [14] requires much more (about 100) input
images. In comparison, our method requires only five images and our lighting
directions are unknown. Our method is also related to those works that combine
photometric stereo and structure-from-motion[15,16,17]. These methods assume
the surface is differentiable and are difficult to be applied to complicated shapes
like Figure 1 (b).

3 Ring-Light Photometric Stereo

Uncalibrated photometric stereo algorithms typically do not assume any prior
knowledge about lighting conditions. In this section, we show that if the illumi-
nation is partially known, i.e. directional lights lying on a view centered cone,
the problem can be significantly simplified. We first briefly review the shape
ambiguity in uncalibrated photometric stereo. Then we show that lights lying
on a view centered cone significantly reduce the ambiguity. At last, we describe
several ways to resolve the remaining ambiguities.

3.1 Uncalibrated Photometric Stereo

We first briefly review the factorization based formulation of uncalibrated photo-
metric stereo. Suppose F images are captured for a Lambertian surface under a
variant directional lighting and each image contains P pixels. Ignoring shadows,
inter-reflections and non-Lambertian effects, we can formulate the image inten-
sity matrix I as I = NL. Here, I is a P × F matrix formed by pixel intensities.
N and L are P × 3 and 3×F matrices respectively. Each row of N indicates the
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Fig. 2. Ring-light photometric stereo. (a) Lighting directions lie on a view centered

cone. The term ω denotes the cone opening angle. (b) In the projective plane, these

lights lie on a ring centered at origin (i.e. viewing direction). (c) When there is a linear

ambiguity, these lights lie on a general planar conic. Our algorithm resolves this linear

ambiguity by mapping lights back to their canonic positions.

scaled surface normal (unit surface normal multiplied with albedo), and each col-
umn of L is the scaled lighting direction (unit lighting direction multiplied with
its intensity). In uncalibrated photometric stereo, only I is known and both N
and L are unknown. Applying singular value decomposition (SVD), the matrix
I can be decomposed as:

I = UDV � = (UD1/2)(D1/2V �) = N̂ L̂. (1)

N̂ , L̂ could differ from their true values by an arbitrary 3× 3 invertible matrix
A since N̂ L̂ = N̂A−1AL̂. The autocalibration of photometric stereo amounts to
recover A. Once A is estimated, the true surface normals and lighting directions
can be computed as N = N̂A−1, L = AL̂.

3.2 Constraints from a Ring-Light

Suppose the lights are distributed on a cone centered at the viewing direction
as shown in Figure 2 (a). We follow the work [10] to analyze the problem in
the projective plane where a lighting direction (lx, ly, lz) is considered as a point
(lx/lz, ly/lz). We choose a world coordinate system such that the viewing di-
rection is (0, 0, 1) and corresponds to the origin in the projective plane. In the
projective plane, the true lighting directions should lie on a circle centered at
origin as shown in Figure 2 (b). This circle can be denoted by a diagonal ma-
trix C = diag(s2, s2,−1) and C = S�CuS. Here, Cu = diag(1, 1,−1) is the
unit circle and S = diag(s, s, 1) is a uniform scaling matrix. The SVD based
reconstruction Equation (1) recovers lighting and normal directions up to an
arbitrary invertible linear transformation A. The estimated lights form a general
conic Ĉ = A�CA in the projective plane as shown in Figure 2 (c). Hence, we
can resolve the ambiguity A by mapping Ĉ back to C. In this subsection, we
first reduce the ambiguity by mapping Ĉ to the unit circle Cu. The remaining
ambiguities are resolved in Section 3.3.

It is well known [18] that a conic can be computed from five points on it.
Hence, we first use five estimated lighting directions to fit the conic Ĉ which
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is a 3 × 3 symmetric matrix. We can apply SVD again to compute a linear
transformation B that maps Ĉ to Cu, i.e.

Ĉ = UDU� = (UD
1/2
1 )Cu(D1/2

1 U�) = B�CuB.

Here, D
1/2
1 CuD

1/2
1 = D. Then the lighting and surface normal directions can be

updated accordingly by L̃ = BL̂, Ñ = N̂B−1. Now, the general linear ambiguity
is reduced and the estimated lights L̃ are on a view centered ring in the projective
plane. But two kinds of ambiguities remain. First, the scaling matrix S between
C and Cu is still unknown. Second, B can only be estimated up to a circle
invariant transformation P that maps Cu to Cu. In other words, there could
be an ambiguity matrix P such that B�CuB = B�P�CuPB. The following
proposition specifies the structure of P .

Proposition 1: If a 3 × 3 linear transformation P maps the unit circle Cu

to itself, i.e. P�CuP = Cu, then P can be decomposed as P = MnRφHtRθ,
n = 1 or 2. Here, M is a mirror transformation about the y axis, Rφ, Rθ are
rotations in the plane (centered at origin), and Ht is a hyperbolic rotation, i.e.

M =

⎛⎝1 0 0
0 −1 0
0 0 1

⎞⎠ , Rθ =

⎛⎝ cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎞⎠ , Ht =

⎛⎝1 0 0
0 cosh t sinh t
0 sinh t cosh t

⎞⎠ . (2)

Rφ has the same form as Rθ. Please refer to the appendix for a proof of this
proposition. By this proposition, P is a compounded ambiguity that includes
ordinary and hyperbolic rotations and a mirror transformation.

In the next section, we will discuss these ambiguities in more detail and pro-
pose methods to resolve them. Here we summarize these ambiguities by the
following equation. The general conic Ĉ can be decomposed as:

Ĉ = B�CuB = B�P�CuPB
= B�P�S−�CS−1PB = A�CA

(3)

Here, B is known, P and S are unknown transformations. Once P, S are deter-
mined, we can resolve the general linear ambiguity A. In the following, we refer
to the compounded ambiguity S−1P as the ring-light ambiguity. It is also called
the ring-light transformation depending on the context. The auto-calibration of
ring-light photometric stereo amounts to estimate this compound transformation
to upgrade the reconstruction L̃, Ñ to Euclidean as: L = S−1PL̃, N = ÑP−1S.

3.3 Ring-Light Ambiguities

We first briefly study each component of the ring-light ambiguity and later pro-
pose methods to solve it. Figure 3 summarizes these components and their geo-
metric implications. The ambiguity S is a scaling in the projective plane which
corresponds to the classic bas-relief ambiguity. M flips the normal and lighting
directions vertically. It corresponds to the convex vs. concave ambiguity along
the vertical direction. Rθ rotates the lighting and normal directions around the
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Fig. 3. Geometric explanations of the components of the ‘ring-light ambiguity’. The

first row shows the transformations induced to lighting directions in the projective

plane. The second row illustrates the corresponding transformations to a 3D shape.

origin. It preserves all origin centered circles and could map a continuous shape
to a discontinuous one. Ht is a hyperbolic rotation that preserves the unit circle.
The relative positions of points on the unit circle are changed after a hyper-
bolic rotation as shown in Figure 3. It could also map continuous shapes to
discontinuous ones.

In the following, we show various priors that resolve these ambiguities. We
first discuss some widely used priors and later introduce three novel priors.

Integrability: Surface integrability is a widely used scene prior to resolve the
ambiguity in uncalibrated photometric stereo. If the scene is known to be in-
tegrable, the linear ambiguity A can be reduced to a GBR ambiguity [3]. The
intersection of the GBR transformation group with the ring-light transformation
contains only the classic bas-relief transformation. Hence, if applicable, integra-
bility resolves all the other components except the scaling S.

Points with Equal Albedo: Hayakawa [2] showed that six general normals
with the same albedo can reduce the linear ambiguity to a 3D rotation com-
pounded with a mirror reflection. The intersection of this ambiguity with the
ring-light transformation contains only the planar rotation Rφ compounded with
M . Hence, this prior reduces the ring-light ambiguity to a planar rotation with
a mirror reflection.

Lights with Equal Intensity: Hayakawa’s method [2] can also be applied to
six general lights with equal intensity. However, since our lights lie on a view
centered cone, constraints derived this way are degenerated. Both S, M and a
3D rotation cannot be resolved (explained in the next section). Hence, it reduces
the ring-light ambiguity to a planar rotation Rφ compounded with a scaling S
and a mirror M .

Lights with Equal Interval: If lights are uniformly distributed over the view
centered cone, all lighting directions are determined up to a planar rotation
(about the cone axis) and a scaling (corresponding to the unknown cone opening
angle). Hence this constraint can reduce the linear ambiguity to a planar rotation
Rφ compounded with a scaling S.
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Multiple Viewpoint: Suppose a surface is observed from two different view-
points with known relative motion and some corresponding points can be identi-
fied among these views. If the surface normals of both views are reconstructed up
to some ambiguity, these corresponding points give constraints to resolve these
ambiguities. In next section, we show that two corresponding normals from two
views can resolve a planar rotation Rφ and a scaling S in both views.

Clockwise/Counter-Clockwise Lighting: M causes a vertical flipping of the
estimated lighting and normal directions. If the lights on the ring are turned on
one by one in clockwise or counter-clockwise, M reverses this order. Hence, M
can be resolved if the order of lighting is known beforehand.

4 A Complete Stratified Reconstruction

We combine some of the discussed priors to achieve a Euclidean reconstruction.
Those priors derived from lighting configurations are favored to handle more
general scenes. We propose two methods to reduce the linear ambiguity to a
planar rotation compounded with a scaling. In the next, we employ constraints
derived from corresponding normals in different views to resolve the remaining
ambiguities. For this stratified reconstruction, all we need are images from two
viewpoints and five lights of equal interval/intensity distributed clockwise (or
counterclockwise) on a view centered cone for each viewpoint.

4.1 Lights with Equal Interval

Suppose we know the order of lights (clockwise or counterclockwise). All lighting
directions are determined up to the unknown cone opening angle and a planar
rotation. We can assume arbitrary values of these two parameters to get pseudo
lighting directions Ľ up to a scaling S (corresponding to the cone opening angle)
and a planar rotation Rφ (corresponding to the rotation about the cone axis). We
can recover normal directions up to the same ambiguity according to Ň = IĽ−1.
However, as we will see in experiments, this approach generates larger errors.
Hence, we derive a more sophisticated approach in the following.

4.2 Lights with Equal Intensity

We first apply the ring-light constraint described in Section 3.2 to reconstruct
normal directions up to a ring-light ambiguity. Then we apply the equal lighting
intensity constraint to reduce the remaining ambiguities to a mirror transforma-
tion M , a planar rotation Rθ compounded with a scaling S. Afterwards, we use
the known lighting order (clockwise in our experiments) to resolve M .

After applying the ring-light constraint, the estimated lighting direction l̃ lies
on the unit circle in the projective plane and is related to the true lighting
direction l by l = S−1P l̃. Suppose 5 lights are known to have equal intensity, we
obtain
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Fig. 4. The cost as a function of the hypothesized φ1. This functions has a clear global

minimum because φ1, φ2, s1, s2 are uniquely determined in principle.

k1 = li�li = l̃i�P�S−�S−1P l̃i
= l̃i�Rθ

�Ht
�S−2HtRθ l̃i i = 1, 2, · · ·5. (4)

It is easy to verify that M and Rφ are both eliminated from the equation. Here,
k1 is an unknown constant indicating the lighting intensity and i is an index of
the lights. Let F = Rθ

�Ht
�S−2HtRθ. Then Equation (4) is a linear equations

about F , i.e. l̃i
�F l̃i = k1.

Hayakawa [2] used six such equations from different lighting directions to solve
F . However, in our problem there are at most five independent linear equations
because of the special configuration of lights. More specifically, l̃

′ .= HtRθ l̃ must
lie on the unit circle on the projective plane, because l̃ lie on the unit circle
which is invariant under Ht and Rθ. Hence, no matter what S = diag(s, s, 1) is
the expression, l̃i�F l̃i = l̃

′
i
�S−2l̃

′
i is always a constant. In other words, S cannot

be recovered from Equation (4) if these lights all lie on a view centered cone. To
provide an experimental validation, we uniformly sample 360 lights on the unit
circle. The six singular values of all these 360 equations are 17.72, 6.70, 6.70,
0.89, 0.63, 0.00. This suggests one degree of freedom of F cannot be determined.

Hence, we can only solve the 1D null space of F as k1F1 + k2F2. Here, F1, F2
satisfy l̃i�F1l̃i = 1 and l̃i�F2l̃i = 0 respectively, k1 is the unknown but fixed
constant and k2 can vary to generate the whole 1D null space. We substitute
F = k1F1 + k2F2 into F = Rθ

�Ht
�S2HtRθ. We solve s, t, θ, k1 for any given k2

according to the formulas provided in Appendix B. It can be verified that the
solutions of t and θ are independent of k2, while k1 and s vary according to k2.
Hence, we obtain a unique solution of Ht and Rθ but cannot determine S, and
the original ring-light ambiguity is reduced to M , S and Rφ. The result of this
subsection is summarized into the following proposition.

Proposition 2: If five lights with equal intensity can be identified, the ring-
light ambiguity can be reduced to a mirror transformation, a planar rotation
compounded with a scaling.
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4.3 Two Corresponding Normals in Two Views

We further exploit the constraints from multiple views. Suppose n1 and n2 are
two corresponding normals in different views. They are defined in their local
camera coordinate system and are related by the relative rotation between the
two cameras, i.e. n1 = Tn2. The relative rotation T can be computed sepa-
rately, for example, by structure-from-motion. Suppose ñ1, ñ2 are the estimated
normals which are subject to a planar rotation Rφ and scaling S. We have the
following equations:

n1 � S1R−φ1ñ1 n2 � S2R−φ2ñ2 n1 = Tn2. (5)

Here, � means equal up to a scale. Hence,

ñ1 � Rφ1S
−1
1 TS2R−φ2ñ2. (6)

Let E = Rφ1S
−1
1 TS2R−φ2. We get ñ1 � Eñ2. This equation provides two inde-

pendent constraints. Hence, the four ambiguities S1, S2, Rφ1, Rφ2 can be resolved
from two corresponding normals in two views.

Equation (6) can be written as ñ1 × Eñ2 = 0, where × is the vector cross
product. This vector equation expands to the following three equations:

s2A(1)(φ1, φ2) + B(1)(φ1) + s1s2C(1)(φ2) + s1D(1) = 0 (7)
s2A(2)(φ1, φ2) + B(2)(φ1) + s1s2C(2)(φ2) + s1D(2) = 0 (8)

s2A(3)(φ1, φ2) + B(3)(φ1) = 0. (9)

Here,D(i) are constants andA(i),B(i) and C(i) are polynomials of trigonometrical
functions of φ1, φ2.

A(i)(φ1, φ2) = a
(i)
1 cosφ1cosφ2 + a

(i)
2 sinφ1cosφ2+a

(i)
3 cosφ1sinφ2+ a

(i)
4 sinφ1sinφ2

B(i)(φ1) = b
(i)
1 cosφ1 + b

(i)
2 sinφ1 C(i)(φ2) = c

(i)
1 cosφ2 + c

(i)
2 sinφ2

Here, a
(i)
j , b

(i)
j and c

(i)
j are all constants. These constants are provided in

Appendix C.
Given two pairs of corresponding normals, it is nontrivial to derive an analytic

solution for s1, s2, φ1 and φ2. We apply a 1D search for φ1. For each hypothesized
value of φ1, φ2 and s2 can be easily solved from Equation (9) of both pairs.
Then Equation (7) and Equation (8) from both pairs give totally 4 results for
s1. We use the consistency of these four values to choose the optimal φ1 and its
associated φ2, s2, s1. In principle these four parameters are uniquely determined,
so this 1D search has a global minimum and is robust as indicated in Figure 4.
The result of this subsection is summarized in the following proposition.

Proposition 3: Given partial reconstructions of surface normals up to a planar
rotation and a scaling from two views, if two pairs of corresponding normals can
be identified, the reconstructions in both views can be upgraded to Euclidean.
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5 Experiments

We apply our method to the challenging data shown in Figure 1. As explained
earlier, these two examples cannot be handled by previous methods because they
are either too simple (too few normals and planar surfaces) or too complicated
(too many depth discontinuities). Our method first recovers a normal map up
to the ring-light ambiguity as shown in the left column of Figure 5. Here, the
x,y,z components of a normal direction are linearly encoded into the R,G,B
color channels. This result is then upgraded to Euclidean by constraints derived
from equal lighting intensity as shown in the middle. The right is a validation
computed by calibrated photometric stereo where a metal sphere is used to
record lighting directions. The difference between our results and the calibrated
method is small. Some artifacts of the recovered normals on the box surface are
due to the inaccuracy in radiometric calibration and inter-reflections.

Some additional results are shown in Figure 6. From left to right, we show
one of the input images, our reconstructed surface normals and ground truth
(obtained by calibrated photometric stereo). Some of the artifacts are due to
non-Lambertian effects like shadow and highlight which are not modeled in our
method. To handle shadows and highlights, we use simple intensity thresholding
to exclude points with non-Lambertian effects. Our method is applied to Lam-
bertian pixels to calibrate lighting directions. Then non-Lambertian pixels are
processed with recovered lighting directions.

Fig. 5. Results for the challenging data in Figure 1. On the left are results up to

the ring-light ambiguity. In the middle is our reconstructed surface normals. For a

validation, we calibrate all incident lighting directions with a metal sphere and use

calibrated photometric stereo to compute a ground truth in the right. Our result is

very consistent to the ground truth.



Ring-Light Photometric Stereo 275

Fig. 6. Additional results. From left to right, they are one of the input images, our

reconstructed surface normals, ground truth (by calibrated photometric stereo). Some

of the artifacts are due to non-Lambertian effects like shadow and highlight.

Fig. 7. The first and the second row are the angular errors of reconstructed normal

directions by using equal lighting interval and equal lighting intensity constraint respec-

tively. Typically, equal lighting intensity constraint generates more accurate results.

We also compare the two approaches to reduce the general linear ambiguity
to a planar rotation and a scaling. The first and the second row of Figure 7 show
the angular errors of reconstructed normal directions by equal lighting interval
and equal lighting intensity constraints respectively. In the first row, the average
angular errors are 5.8, 16.4 and 7.5 degrees from left to right. In the second row,
these errors are 3.0, 6.0 and 4.4 degrees respectively. Please notice that normals
in the background (a black cloth on table to reduce inter-reflection) are very
noisy which increase the average angular error by 0.5-1 degrees in general. In
our experiments, we find the constraints derived from lights with equal intensity
are often more reliable. The flower example has larger error in both methods
due to its strong shadowing and inter-reflection.
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Fig. 8. Averaged angular error in the recovered normal directions as a function of

the cone opening angle and the angle between two viewpoints. In most of time, the

reconstruction error is smaller than 5 degrees.

(a) (b)

Fig. 9. Shown in (a) is a prototype device. 20 LED bulbs lie on a circle with radius

of 150 millimeters centered at the viewing direction. Our method allows us to consider

the weak perspective effects of the lighting which is critical for a handheld photometric

stereo setup operating at relatively small distance. This weak perspective effects is

illustrated in (b). To ensure the opening angle of the cone is larger than 10 degrees,

the distance between the camera and captured objects should be within 1.7 meters.

Next, we use a synthetic scene containing two spheres to evaluate our system
under various conditions. Images are synthesized at 840×560 resolution. The im-
ages are contaminated by Gaussian noise with zero mean and standard deviation
0.01 (pixel values are within [0,1]). We synthesize the scene from two viewpoints
and at each viewpoint 10 lighting directions are generated on a view centered
cone. Zero mean Gaussian noise with standard deviation of 0.5 pixel is added
to the true corresponding pixel positions. We evaluate the reconstruction accu-
racy with respect to different values of the cone opening angle ω and the angle
between the two viewing directions. The average angular error in reconstructed
normal directions is shown in Figure 8. In most of the cases, the reconstruction
is quite good with average error smaller than 5 degrees.
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5.1 A Prototype Device

We manufacture a prototype device for ring-light photometric stereo according
to our evaluation on synthetic data. The device is shown in Figure 9 (a) and
consists 20 LED bulbs that are synchronized with a video camera to capture
photometric stereo image sequences. The radius of the plate is 150 millimeters.
Hence, according to Figure 8, the operation distance of the device should be less
than 1.7 meters (cone opening angle larger than 10 degrees) to ensure the recon-
struction accuracy. This device is similar to those handheld photometric stereo
setups proposed in [15,16,17]. The advantage of our method is that our algorithm
handles more general data and allows us to consider the weak perspective effects
of lighting as illustrated in Figure 9 (b). We consider the lighting directions de-
pend on the operation distance, e.g. ω1 �= ω2. This effect is important when the
operation distance is relatively small. A consequence is that this device cannot
be pre-calibrated, because the incident lighting directions changes when the op-
eration distance changes. For example, we pre-calibrate lighting directions for
an operation distance of about 0.6 meters and apply it to the operation distance
of about 0.8 meters. This incorrect pre-calibration causes average angular error
on the box scene as large as 8.5 degrees. Almost three times larger than the 3.0
degrees error when our method is applied.

6 Conclusion

We have presented an stratified method for ring-light photometric stereo. We
have shown that five lights on a view centered cone reduce the general linear
ambiguity to two rotations, one mirror reflection compounded with a scaling.
If these lights have equal intensity or equal interval, this compound ring-light
ambiguity can be reduced to a planar rotation plus a scaling. If two corresponding
normals from two viewpoints can be identified, Euclidean reconstruction can be
obtained. Different from previous works on uncalibrated photometric stereo, we
minimize the restriction on scene properties. Hence, our method can be applied
to more general scenes. We also built a prototype device to demonstrate our
method.
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A Appendix A: Proof of Proposition 1

Proposition 1: If a 3 × 3 linear transformation P maps the unit circle Cu to
itself, i.e. P�CuP = Cu, then P can be decomposed as P = MnRφHtRθ,n =
1 or 2.
Proof: Our proof is based on the following two lemmas:

Lemma 1: If a conic C is mapped to another conic C′ by a projective trans-
formation P , then P maps the interior/exterior of C to the interior/exterior
of C′.

Lemma 2: Suppose A and A′ are two points on two different conics C and C′.
B, B′ lies inside of C, C′ respectively. Then there are precisely two projective
transformations which map C to C′, A to A′, and B to B′.

These lemmas can be found in [18]. In the following, for a general linear
transformation P that maps Cu to Cu, we assume the pre-images of (1, 0, 1)
and (0, 0, 1) are A and B respectively. We explicitly derive two transformations
P1, P2, P1 �= P2, with the form MnRφHtRθ that maps A, B to (1, 0, 1) and
(0, 0, 1) respectively. Then according to Lemma 2, we know Proposition 1 is true.

According to the Lemma 1, B is a point within Cu. So we can denote B as
(rcosθ, rsinθ, 1), where 0 < r < 1. It is easy to verify that HtRπ/2−θ maps the
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point B to the origin. Here, t is uniquely decided by r = −sinh(t)/cosh(t). It
is also easy to verify that HtRπ/2−θ maps A to another point A′ on the circle.
We can denote A′ as (cosφ, sinφ, 1). Then a rotation R−φ will maps A′ to the
point (1, 0, 1) and keep the origin invariant. As a result, we get the following
transformation P1 = R−φHtRπ/2−θ, that maps B to (0, 0, 1) and A to (1, 0, 1).
Note that, we can defineP2 = MR−φHtRπ/2−θ. P2 should also maps B to origin
and A to (1, 0, 1). Further, P1 �= P2. Hence, according to Lemma 2, they are the
only two transformations that map A, B to (1, 0, 1) and (0, 0, 1) respectively.

B Appendix B: Determine t, s from F

θ can be directly computed from F , θ = arctan (−F13/F23)
k1can be solved from equation (a2 − b2 − c2)k2

1 − (a + 3c)k1 − 2 = 0
where a = 1

2 (F11 + F22) + 3
2F33 b = 1

2 (F11 + F22 − F33) c = 2F23
cos θ = − 2F13

sin θ
s−2 = 1

2 (k1(F11 + F22 − F33) + 1)

t = 1
2arcsinh

(
2k1F23

cos θ(s−2+1)

)
= 1

2arccosh
(

k1(F11+F22+F33)−s−2

s−2+1

)

C Appendix C: Constants in Equation 7–9

T = {tij}3×3

a
(1)
1 = −t21n21n13 − t22n22n13 a

(2)
1 = +t11n21n13 + t12n22n13

a
(1)
2 = +t11n21n13 + t12n22n13 a

(2)
2 = +t21n21n13 + t22n22n13

a
(1)
3 = −t22n21n13 + t21n22n13 a

(2)
3 = +t12n21n13 − t11n22n13

a
(1)
4 = +t12n21n13 − t11n22n13 a

(2)
4 = +t22n21n13 − t21n22n13

a
(3)
1 = +t21n21n11 + t22n22n11 − t11n21n12 − t12n22n12

a
(3)
2 = −t11n21n11 − t12n22n11 − t21n21n12 − t22n22n12

a
(3)
3 = +t22n21n11 − t21n22n11 − t12n21n12 + t11n22n12

a
(3)
4 = −t12n21n11 + t11n22n11 − t22n21n12 + t21n22n12

b
(1)
1 = −t23n23n13 b

(1)
2 = +t13n23n13 b

(2)
1 = +t13n23n13 b

(2)
2 = +t23n23n13

b
(3)
1 = +t23n23n11 − t13n23n12 b

(3)
2 = −t13n23n11 − t23n23n12

c
(1)
1 = +t31n21n12 + t32n22n12 c

(2)
1 = −t31n21n11 − t32n22n11

c
(1)
2 = +t32n21n12 − t31n22n12 c

(2)
2 = −t32n21n11 + t31n22n11

c
(3)
1 = c

(3)
2 = D(3) = 0 D(1) = +t33n23n12 D(2) = −t33n23n11

(10)
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Abstract. This paper describes a method to recover scene geometry

from the second-bounce of light transport. We show that form factors

(up to a scaling ambiguity) can be derived from the second-bounce com-

ponent of light transport in a Lambertian case. The form factors carry

information of the geometric relationship between every pair of scene

points, i.e., distance between scene points and relative surface orienta-

tions. Modelling the scene as polygonal, we develop a method to recover

the scene geometry up to a scaling ambiguity from the form factors by

optimization. Unlike other shape-from-intensity methods, our method si-

multaneously estimates depth and surface normal; therefore, our method

can handle discontinuous surfaces as it can avoid surface normal inte-

gration. Various simulation and real-world experiments demonstrate the

correctness of the proposed theory of shape recovery from light transport.

1 Introduction

Interreflections, reciprocal reflections among reflecting surfaces, are observed in
all real-world scenes. The way light transports varies with scene geometry and
surface reflectance. Clearly, there is a mutual dependency between the light
transport and scene environment. This fact is used for scene modeling, e.g.,
by Nayar [1] for scene geometry and reflectance, and also by Yu et al . [2] and
Machida et al . [3] for modeling bidirectional reflectance distribution functions
(BRDFs), when prior knowledge of the scene is available (pseudo geometry and
reflectance for [1], and accurate scene geometry for [2,3]). Recent advances in
computational photography enabled modeling of inverse light transport [4,5,6,7]
from photographs without prior knowledge of the environment. These works
open up a new open problem — can we infer scene geometry only from the light
transport without any prior knowledge?

In this paper, we propose a new approach to inferring scene geometry from
the measured light transport without using any prior knowledge about the scene.
We focus our discussion on a Lambertian case and model the scene as composed
of planar patches. Our approach can be viewed as an inverse radiosity method
where the scene geometry is unknown a priori as illustrated in Fig. 1. We first
show a form factor matrix, which represents how much light is transported from
one scene point to another purely by geometric factor, up to a scaling ambiguity,
can be obtained from the second-bounce of light transport. Using the form factor
matrix, we show that scene geometry can be recovered up to a scaling ambiguity.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 280–293, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Geometry Form Factor Light Transport 

Forward: Rendering 

Backward: Geometry recovery (our method) 

Fig. 1. The relationship between scene geometry and light transport. The forward

case is a rendering process where light transport can be computed from known scene

geometry, while the backward case is where the scene geometry is inferred from light

transport.

We develop a solution method for simultaneously estimating surface orientations
and scene depths from the form factor matrix by optimization.

The primary contributions of this paper are twofold. First, it introduces the
use of the second-bounce of light transport for recovering scene geometry. We
describe the relationship between the scene geometry and the light transport
and show what information is carried in the second-bounce component about
the scene. To this end, we show that the scene geometry can be recovered up
to a scaling ambiguity as well as diffuse albedo ratios. Second, the proposed
method is effective even when the surface of interest has discontinuity. Unlike
prior shape-from-intensity methods, our method simultaneously estimates sur-
face orientation and depth (up to scaling ambiguity). This allows us to avoid
integration of surface orientations; therefore, the assumption of continuous sur-
face is no longer needed unlike other shape-from-intensity methods.

1.1 Prior Work

Forward light transport is well studied in computer graphics such as in ray
tracing [8] and radiosity [9,8]. These use known scene geometry and BRDFs
for producing photorealistic images. More recently, photographic modeling of
forward light transport is drawing attention [10,11,12,13]. These methods take a
number of images under different lightings for recording various complex lighting
effects.

In graphics, inverse global illumination was introduced by Yu et al . [14] for
estimating reflectance properties, rather than for geometry estimation. Inverse
light transport is also used in computer vision. Seitz et al . [4] showed a method
for estimating n-bounce component of light transport by probing a scene using
a narrow beam light. Ng et al . [7] extended the method using a stratified matrix
inversion for radiometric compensation of projector-camera systems. Nayar et
al . [5] proposed a fast method for separating direct and global component of
light transport using high frequency illumination. Gupta et al . [6] later discussed
the relation between global illumination and defocused illumination.
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The goal of this paper is shape recovery from the measured light transport.
The closest to our work is Nayar et al . [1]. They proposed an iterative photo-
metric stereo algorithm, which is the first work that uses interreflections as a
useful cue for shape and reflectance estimation. Our method is different from
their approach in that we infer scene geometry directly from the second-bounce
component of light transport instead of relying on photometric stereo. In addi-
tion, our method is not limited to continuous surfaces because our method does
not require integration of the surface orientations, but simultaneously estimates
surface orientation and depth. On the other hand, compared with their method,
our method requires more images as input for obtaining the second-bounce com-
ponent of the light transport.

Apart from shape-from-intensity methods, other prior art on shape or depth
recovery include shape from structured light [15] and structure-from-motion
(SfM) [16]. Both approaches use triangulation for determining depths. In terms
of calibration requirements, these methods require calibration of intrinsic pa-
rameters of the imaging devices, while our method does not require intrinsic
calibration.

Our method uses form factors for shape estimation. The computation of form
factors has a long history back to Lambert in 1760 [17]. Schröder and Hanrahan
derived a closed-form solution for the case of general polygons [18]. Our method
uses form factors in an inverse manner for estimating the scene geometry.

2 Interreflection and Scene Geometry

2.1 Forward Case: The Rendering Equation

The rendering equation [19] is written as

Lout(p, ωo) = Le(p, ωo)+
∫

M2
ρ(p, ωi, ωo)Lout(p′,−ωi)V(p,p′)

cos θi cos θo

‖p− p′‖2 dAp′ ,

(1)
where Lout(p, ωo) is the reflected or outgoing radiance in direction ωo, Le is the
emission corresponding to light sources, ρ is the Bidirectional Reflectance Dis-
tribution Function (BRDF) of the scene, and V is the binary visibility function.
The visibility function V (p,p′) is 1 if scene points p and p′ are connected by
a line of sight and 0 otherwise. The integral is over the area of M2 of all scene
surfaces, and weighted by a purely geometric factor known as the form factor.

The above rendering equation applies for a continuous surface. Discretization
of the surface leads to a matrix representation. For a surface with n facets,1

radiance and albedo values are assumed to be constant over each facet, then the
rendering equation can be written in operator notation as [20]:

lout = le + KGlout = le + Alout, where A = KG. (2)
1 In this paper, we use the term “facet” to describe the smallest piece of a surface

subdivision and the term “patch” for any larger pieces, up to and including the

biggest polygons formed by combining facets.



Shape from Second-Bounce of Light Transport 283

lout is a vector of Lout(p, ωo), le is a vector of Le(p, ωo), G is a purely geometric
operator that takes outgoing or reflected radiance and propagates it within the
scene to obtain incident radiance, and K is a local linear reflection operator
based on the BRDF of the surface:

K=

⎡⎢⎢⎢⎣
ρ1 0 · · · 0
0 ρ2 · · · 0
...

...
. . . 0

0 0 · · · ρn

⎤⎥⎥⎥⎦ ,G=

⎡⎢⎢⎢⎣
0 G12 · · · G1n

G21 0 · · · · · ·
...

...
. . .

...
Gn1 · · · · · · 0

⎤⎥⎥⎥⎦ ,A=

⎡⎢⎢⎢⎣
0 ρ1G12 · · · ρ1G1n

ρ2G21 0 · · · · · ·
...

...
. . .

...
ρnGn1 · · · · · · 0

⎤⎥⎥⎥⎦ .

(3)
The interreflections between two points or facets pi and pj can be described by
the Gij expression2:

Gij =
V (pi,pj) cosα cosβ

‖rij‖2
=

V (pi,pj)(−r̂ij · n̂i)(r̂ij · n̂j)
‖rij‖2

, (4)

where rij = pj − pi, α and β are the angles between rij and their respective
surface normals. Gii is undefined for any i, and Gij vanishes if pi and pj are
mutually invisible.

2.2 Backward Case: From Light Transport T to form Factor G

Following [19] and Eq. (2), we can obtain

lout = (I−A)−1le. (5)

Assuming the camera does not see the light source directly, and we do not have
emissive surfaces, we can replace le with the effective emission that corresponds
to the direct reflection from the light source, le = Flin, where lin is the incident
light from a light source such as a projector, and F is the light transport matrix
that corresponds to the first-bounce reflection. Assuming a focused light source,
the first-bounce matrix F is diagonal. Hence, we have

lout = (I−A)−1Flin = Tlin, T = (I−A)−1F, (6)

where T is the light transport matrix. Hence, we can write A in terms of T as

A = I− FT−1. (7)

With Neumann series expansion, we can expand a light transport matrix into a
matrix series where the second term corresponds to the second-bounce:

T = (I−A)−1F = (I + A + A2 + · · · )F. (8)

We can see that the matrix A is related to the second-bounce of light transport.
2 In [1], the geometric kernel takes into account the effective area of the illuminator

facet. Here, we assume facets i and j are interchangeably the illuminator and reflector

and have sufficiently small area s.t. Gij and Gji are approximately equal.
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According to [4], for a Lambertian scene, the diagonal elements of F are given
by the reciprocals of the diagonal elements of T:

F[i, i] =
1

T−1[i, i]
. (9)

Therefore, if we limit our discussion to the Lambertian case, A can be computed
using Eq. (9) and Eq. (7). For geometry estimation, we can extract G from A.
Given A, we can compute the relative albedo ρij for all the scene points3:

ρij
.=

Aij

Aji
=

ρiGij

ρjGji
=

ρi

ρj
. (10)

Given ρij , we can recover G up to a scale:

A = K̃G̃ and G̃ = K̃−1A, (11)

where

K̃ =
1
ρj

K =

⎡⎢⎢⎢⎣
ρ1j 0 · · · 0
0 ρ2j · · · 0
...

...
. . . 0

0 0 · · · ρnj

⎤⎥⎥⎥⎦ , and G̃ = ρjG. (12)

3 Geometry Extraction from the Geometric Form Factors

For two mutually visible points4 p1 and p3 as shown in Fig. 2 (a), the geometric
form factor is given by G13(r13, n̂1, n̂3) = (−r̂13·n̂1)(r̂13·n̂3)

‖r13‖2 . For mutually visibility,
we need to have (r̂13 · n̂1) > 0 and (r̂13 · n̂3) < 0. Resolving n̂i and rij for all
scene points recovers both depth and surface normal. However, this method is
unable to recover geometry for scene points which are not visible by others, e.g.,
geometry extraction is impossible for a globally convex surface. In this section,
we will examine the settings under which the scene geometry can be extracted.

3.1 Problem Setup and Assumptions

In this work, we consider a light transport acquisition setup with a projector-
camera system. Assuming no serious scattering due to the transmission media or
subsurface scattering, the directional nature of the projector light allows corre-
spondence between the projector pixels and scene points to be established. The
directional light from the projector is perspective in nature. However, if we as-
sume that the scene depth is small, the projection is approximately orthographic.
3 As an observation, given the relative albedo ρij , we can recover the absolute albedo

value for all scene points as long as the absolute albedo value of one of the scene

points is known.
4 A discrete surface is composed of small facets that are often assumed to have uniform

property. Hence, a discrete facet is conceptually similar to a discrete point. For ease

of discussion, we may use the term “facet” and “point” interchangeably.
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Fig. 2. Three different setup for geometry extraction from the geometric form factor

terms

With this assumption, the problem of geometry extraction is greatly simplified,
as we can assume that the correspondence points in the scene approximately
preserve the grid structure of the projector pixels. In a coordinate frame where
the z-axis is aligned with the optical axis of the projector, we can assume that
the x-y coordinate of the scene points form a rectangular grid, which is known
up to a scale, while the z-coordinate is the only unknown.

3.2 A Case with Two Scene Points

In the case with just two scene points as in Fig. 2 (a), knowing the value of the
form factor is not sufficient to recover the surface normal nor the depth uniquely.
To see the set of all possible solutions, we can rewrite Eq. (4) as

r̂13 · n̂1 = −G13‖r13‖2
r̂13 · n̂3

. (13)

In our setting, for the scene point position in R3, only the z-coordinate is un-
known. As Eq. (13) can only be unique up to a relative depth in z-direction,
there is no loss of generality to fix the z-coordinate for one of the scene point,
say p3. Then, the distance vector is governed by z1, i.e., the z-coordinate of p1,
alone. For every n̂1 in Eq. (13), it is possible to find a r13 for all n̂3. As n̂1 and
n̂3 are unit normal vectors, they live in a spherical space S2. Hence, the space of
all solutions (n̂1, n̂3) ∈ S2 × S2, which is highly ambiguous. This also indicates
that having more independent pairs of points does not help, as the normals are
totally unconstrained.

3.3 A Case with Two Patches

To resolve the ambiguity in the form factor expression, we need to introduce more
constraints. One way to do so is to group a set of adjacent points to form a patch
where the points share a common surface normal. Fig. 2 (b) shows an example
of two patches, each having two points. The newly introduced constraints are
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n̂1 = n̂2, n̂3 = n̂4, r̂12 · n̂1 = 0, and r̂34 · n̂3 = 0. (14)

With the four scene points, we have four distinctive and non-zero form factor
terms, i.e., G13, G14, G23 and G24. Altogether, there are 5 unknowns, i.e., n̂1,
n̂3, r̂12, r̂13 and r̂34, with 7 degrees of freedom, where r̂ij has only 1 degree of
freedom as we fix the (x, y) coordinate. Given the 6 equations, the solution space
is 1 dimensional. The system is sufficiently constrained if we add another point
to either patch, as it introduces 1 additional unknown but 3 more equations.
Therefore, in our algorithm, we group 3 points in a patch.

3.4 A Case with Three Patches

As shown in Eq. (12), we can only obtain the form factor up to an unknown
albedo value, therefore the actual expression for the form factor term for two
mutually visible points p1 and p3 is

G13(r13, n̂1, n̂3) = C
(−r̂13 · n̂1)(r̂13 · n̂3)

‖r13‖2
, (15)

where C is an unknown constant. In the case of uncalibrated projector, the
constant C is also needed to account for the unknown scale inherent in the (x, y)
coordinate for scene points.

To disambiguate C, we check for the geometric consistency with three patches
as shown in Fig. 2 (c). As the solution obtained by evaluating the form fac-
tor terms for patch pairs (Π12, Π34) and (Π12, Π56) should agree with that for
(Π12, Π56), we can validate the solution of the former with that of the latter.
The solutions should best tally when we choose a correct constant C. In the
setting of Fig. 2 (c), there are 9 unknowns with 12 degrees of freedom while
having 15 equations gives a sufficiently constrained solution space. Without any
assumption, the constant C in Eq. (15) is fundamentally unresolvable, as there
is a physically feasible surface geometry with a different albedo corresponding
to a C. However, with the orthographic assumption mentioned in Sec. 3.1, the
constant C is no longer linearly related to depth. With an incorrect C, geometry
can be inconsistent in the triangular patch configuration of Fig. 2 (c). Hence,
the orthographic assumption breaks the scale ambiguity.

4 Algorithm

As shown in Sec. 3, we need to group at least three scene points into patches in
order to obtain a sufficiently constrained system. As another issue, the geometry
derived from disjoint point sets will be in different coordinates. In this section, we
will look into the criterion for point grouping and the way to bring the geometry
at disjoint coordinates into the global coordinate. We will also look at efficient
ways for geometry extraction through hierarchical computation or incorporating
the prior knowledge of planar surface in the scene.
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4.1 Point Grouping

The assumption and guiding principle for point grouping is essentially based on
the co-planar property of a point set. An arbitrary set of points is not guaranteed
to be co-planar. Hence, we select points that satisfy the following criterion:

– Adjacency: The points are adjacent to each other.
– Mutual invisibility: Two points with Vij = 0 are not mutually visible. Vij = 0

implies Gij = 0.

Two points satisfying the above criterion are likely to be co-planar. In our im-
plementation, we consider points in a 2× 2 neighborhood as being adjacent.

4.2 Pairwise Patch Selection

To make the form factor expression in Eq. (4) more succinct, for three co-planar
points p1, p2, and p3 sharing a common unit normal vector n̂1, we can express
n̂1 as

n̂1 =
r12 × r23

‖r12 × r23‖
, where rij = pj − pi. (16)

If there is an additional point p4 on the same patch, we need to introduce a
constraint to ensure co-planarity:

(r12 × r23) · r24 = 0. (17)

As two points on a patch are having Gij = 0 to begin with, we assume that the
constraints such as Eq. (17) are automatically satisfied and will not form part of
the equations that we are solving. Hence, for two mutually visible patches with
N points each, there are N × N equations for Gij with 2N unknowns which
correspond to the z-coordinate of the 2N points, thus forming a sufficiently
constrained system.

In practice, as Gij ’s are obtained from measurement, the Gij ’s with a low
intensity tend to have a low signal to noise ratio and should not be used for
computation. As a result, we can have fewer equations while the number of
unknowns remains unchanged. To ensure that a patch pair forms a constrained
system, we use the following criteria to select a pair of patches with Na and Nb

points respectively:

Na∑
i=1

Nb∑
j=1

1(Gij > ε) ≥ Na + Nb where 1(true) = 1 and 1(false) = 0 (18)

In our algorithm, we reconstruct the geometry for a pair of patches at a time
and then bring the resultant disjoint geometry into the same coordinate frame
through the common points connecting the different pairs of patches. However, if
there is no direct or indirect visibility link between two points, bringing them into
a common coordinate is impossible. The condition for the existence of a global
coordinate for all points is that the form factor matrix G forms a fully connected
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Algorithm 1. “Closed-loop” check for reconstructed patches
Require: A list L of valid patch pairs based on Eq. (18)

1: Sort L in descending order of the sum of entries in G for all patch pairs.

2: Start with any patch from the first pair in L and treat it as a parent patch.

3: Record visited patches into a list Lv. List is blank for the initial patch.

4: repeat
5: For a parent patch, identify all its possible branches.

6: Find the best branch based on the sorted list L. If the best branch is in Lv , take

the next one.

7: Reconstruct the patch pair and update the depth map and normal map.

8: Push the traversed patch into Lv .

9: Use the traversed patch as parent and Goto 1.

10: until The branch patch is the same as the starting patch.

11: Compute the depth error between the initial and final patches.

graph. For every point in a common coordinate frame, we verify its geometry by
examining the depth consistency in the closed paths associated to the point. Such
closed paths could be many, therefore we only consider the one with the highest
intensity and involving at least two other points on different patches. In this
process, we are able to identify the reliability of the geometry reconstruction for
a point. This consistency check through a “closed-loop” algorithm is presented
in Algorithm 1. It is also intended to disambiguate the unknown constant as
described in Sec. 3.4.

To increase the reliability of geometry estimation, we perform the above-
mentioned steps in a hierarchical manner, from a finer resolution to a coarser
one. At one level, we estimate the geometry and group points with similar nor-
mals into patches. The patch size grows with increasing level, hence the system
of equations for pairwise reconstruction gets more and more constrained and
produces more reliable estimation.

Fast method for piece-wise planar scenes: If the scene is known to be
piece-wise planar a priori, it is more efficient to adopt a top-down approach
for the reconstruction. Except for convex surfaces that do not interact with each
other, planar surfaces correspond to “blocks” of zeros. It is worth-noting that the
form factor matrix resembles the weight matrix W in the Normalized Cut [21]
problem. With this observation, we can segment the scene into planar surface.

5 Experimental Results

To verify our theoretical results, we performed experiments on both synthetic
and real data. For synthetic scenes, the reconstruction is based on simulated
form factor matrices; while for the real data, the light transport T of the scene
is measured and the form factor matrix G is derived from T.
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Fig. 3. From left to right: A simulated “M” scene with 11×23 facets and its G matrix;

a simulated inverted “V” scene with discontinuity made of 12 × 28 facets and its G
matrix. The inner wedge of the “M” scene is made up of 2 convex planes which do not

illuminate each other. Note the discontinuity between the 2 planes in the inverted “V”

scene. The form factor matrices are log-scaled for display purposes.

Fig. 4. Top row: Reconstruction results for both clean and noisy simulated “M” and

inverted “V” scenes. Bottom row: The recovered surface normal corresponding to the

scenes in the top row (normal plotted in opposite directions for display purpose).

5.1 Synthetic Scene

For this experiment, we focus on recovering the shape of simulated 3-D models.
To demonstrate the robustness of the proposed method, we perturbed the form
factor matrix by additive Gaussian noise. Fig. 3 shows the simulated models and
their corresponding form factor matrices.

Fig. 4 shows the reconstruction results for both simulated scenes, using both
clean and noisy data. In the noiseless case, perfect recovery of both surface nor-
mal and depth can be achieved. Observe that the scale of the reconstruction
is the same as the data as we begin with a form factor matrix in the scene’s
coordinate frame. The recovered structures are subject to a translation in the z-
direction as the global depth reference point was arbitrarily set. For the noisy
case, both form factor matrices are corrupted by zero-mean Gaussian noise of
standard deviation 0.5. In the presence of noise, the shape is better recovered at
places such as the joint of 2 planes where the interreflections are stronger. As
compared to the recovered depth values, the surface normals are better recov-
ered because they are common among all facet pairs in a particular system of
equations. For performance evaluation, we computed the angular error between
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Table 1. Shape recovery result. Normal RMSE and angular error between a pair of

surfaces are shown. (all errors are measured in degree).

Scene Normal Angular RMSE ∠ planes 1&2 ∠ planes 2&3 ∠ planes 3&4

“M” (clean) 0.0018 0.0 0.0 0.0

“M” (noisy) 14.13 5.60 4.30 10.20

inv. “V” (clean) 0.02 0.0 - -

inv. “V” (noisy) 13.11 6.57 - -

all estimated surface normals and their ground truth. We also compared the re-
covered angles between planes with their ground truth in the simulated models.
The results are presented in Table. 1.

Handling surface discontinuity: To highlight the proposed method’s
strength in handling depth discontinuity, we simulated an inverted “V” scene
with a gap in the center. Fig. 4 shows the successful reconstruction of this scene.
Unlike most shape-from-intensity methods which require the surface to be con-
tinuous for the integration of surface orientation, our method is not restricted
by surface continuity. Facets lying on occluding boundaries do not have interac-
tions with the rest and therefore do not form any valid equations with them. As
a result, these facets will be left unreconstructed since there is insufficient infor-
mation to determine their relative positions from the others. The same applies
to facets lying on the joint between 2 planes. As it is co-planar with both planes,
its form factor with facets on both planes equates to 0.

Handling constant factor in G: The constant factor C in Eq. (15) can be
determined empirically through closed-loop checks. As we have fixed the x-, y-
components of the distance vector and evaluate only the z-component, such a
scaling would cause a non-linear change in z. If this factor is not compensated
for, the error will show up in the closed-loop check as it propagates through all
pair-wise depth estimation before looping back to the starting patch. The error
here is defined as the minimum depth error among all close-loop paths. Hence,
we can conduct a coarse-to-fine 1-D search to determine the correct factor to
cancel C off. To see how C affects the reconstruction, we simulated the recovery
of a “V” scene by fitting in different values. The results are presented in Fig. 5.
Note that C is being multiplied into the form factors in this experiment but in
reality we seek to find a reciprocal to compensate for C. As C deviates from 1,
the distortion causes planar surfaces to bend as z changes non-linearly with C.

5.2 Real-World Scene

In this experiment we seek to recover the shape of a real-world scene from its
measured light transport matrix. For experimental setup, we used a Canon 5D
camera and a Dell 2400MP projector. In our experiment, we consider grayscale
light transport for simplicity by assuming that the projector-camera color mixing
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Fig. 5. Top left: A plot of closed-loop error versus C. Second from top left onwards: Re-

construction results by setting C to various values. The recovered shape gets distorted

as C deviates from 1.

(a)

(d) (e)

(b) (c)

Fig. 6. (a) An image of an “M” scene. (b) The derived form factor matrix G. (c) and

(d) The recovered surface normal (plotted in opposite direction for display purpose)

and shape. Closed loop error is minimized when C = 0.5. (e) The recovered shape after

plane fitting.

matrix is diagonal. To ensure interreflections is faithfully measured, we used High
Dynamic Range capturing with 12 stops of exposures to acquire T by a brute-
force method. The acquired T is verified by bounce separation. In general, the
light transport matrix T obtained by a projector-camera system has a dimension
of Nc ×Np, where Nc and Np are respectively the number of camera pixels and
projector pixels. In this work, we establish a pixel mapping between the camera
and the projector by corresponding a camera pixel to the projector pixel that
induces a maximum response on it. In our setup, there are more than one camera
pixels being mapped to a projector pixel and we group these camera pixels to
form a super-pixel. The intensity of a super-pixel is given by the mean of the
group of camera pixels. With super-pixels, the resulting T matrix takes a square
dimension of Np ×Np. If a super-pixel corresponds to a facet in the scene, with
the pixel grouping procedure, we are inherently making uniform-intensity facet
assumption.

Fig. 6(a) shows the result of a real “M” scene. The angle between planes 1
and 2 is 80o and that between planes 3 and 4 is 55o. (b) shows the derived form
factor matrix G. For the real data, we first determine the unknown scale factor
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C (= 0.5) and multiply G by 1
C . Fig. 6(c) and (d) show the recovered normal

map and shape; (e) shows the final result after plane fitting. The reconstructed
shape is quite close to the original scene. The estimated angle between planes 1
and 2 is 70.43o and that between planes 3 and 4 is 50.55o, giving rise to angular
errors of 9.57o and 4.45o respectively.

6 Conclusion and Discussions

In this paper, we present a method to estimate the scene geometry, i.e., both
the depth and the surface normal simultaneously, from a light transport ma-
trix obtained with a projector-camera system. This method can handle a scene
with discontinuity. We focused on extracting the geometry information from
the second-bounce component that encodes scene interreflections. This method
works on convex surface with strong interreflections, which often makes the con-
ventional shape-from-intensity methods fail. Ideally, a complete algorithm for
geometry estimation from a light transport matrix should also make use of the
first-bounce component, which will help on convex portion of a scene and com-
plement our method. We leave the complete algorithm to future work. Light
transport is often applied for relighting applications that assume static light
transport. The capability to estimate geometry will open up opportunities in
fast acquisition of dynamic-scene light transport and make light transport edit-
ing possible for graphics applications. In future, we will look into more robust
signal processing techniques to improve the shape reconstruction.

Limitations. One limitation of the proposed reconstruction algorithm lies in
the concavity of the scene. Standalone convex surface cannot be reconstructed.
However, if there exist other surfaces in the scene forming concave pairs with it,
the geometry of this locally convex surface can still be recovered, e.g., the inner
wedge of the “M” scene can be reconstructed despite its convex nature, as the 2
inner planes interact with the outer planes to form concave pairs.
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Abstract. Inverse light transport seeks to undo global illumination ef-

fects, such as interreflections, that pervade images of most scenes. This

paper presents the theoretical and computational foundations for inverse

light transport as a dual of forward rendering. Mathematically, this du-

ality is established through the existence of underlying Neumann se-

ries expansions. Physically, we show that each term of our inverse series

cancels an interreflection bounce, just as the forward series adds them.

While the convergence properties of the forward series are well-known,

we show that the oscillatory convergence of the inverse series leads to

more interesting conditions on material reflectance. Conceptually, the

inverse problem requires the inversion of a large transport matrix, which

is impractical for realistic resolutions. A natural consequence of our the-

oretical framework is a suite of fast computational algorithms for light

transport inversion – analogous to finite element radiosity, Monte Carlo

and wavelet-based methods in forward rendering – that rely at most

on matrix-vector multiplications. We demonstrate two practical applica-

tions, namely, separation of individual bounces of the light transport and

fast projector radiometric compensation to display images free of global

illumination artifacts in real-world environments.

1 Introduction

Global illumination effects are key visual features of real-world scenes. Simulation
of these effects in forward rendering has been extensively studied in computer
graphics, with a theoretical foundation based on the rendering equation [9]. In
contrast, most computer vision algorithms are forced to simply ignore interreflec-
tions, where one would ideally like to invert the rendering equation to undo their
effects. Recently, Seitz et al. [18] formalized this as the problem of inverse light
transport. However, little is known about the theory and algorithms for efficient
light transport inversion in practical scenes.

This paper lays the mathematical and computational foundations of inverse
light transport, by exposing a strong duality to the already mature framework of
forward light transport. Intuitively, the duality arises because solving the (for-
ward) rendering equation itself involves an operator or matrix inverse. Exploiting
this duality allows us to leverage many theoretical results and algorithms from
forward global illumination for the inverse problem in computer vision.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 294–307, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Application of inverse light transport for projector compensation in a real scene.

Top: The desired projector output (right) leads to significant interreflections when

displayed (left). Bottom: Our theory determines the pattern (left) whose projection

is close to the desired (right). Our fast iterative method involves only matrix-vector

multiplications, with each iteration taking only 0.03 sec. For a transport matrix of size

105 × 105, the full image lin is computed after several iterations in 2-3 secs.

Specifically, forward rendering readily admits to a Neumann series solution.
We derive a similar series for the inverse solution and show formally that just
as each term of the forward Neumann series adds bounces of light transport,
each term of the inverse series zeroes out the corresponding bounce (but unlike
in the forward case, also affects higher-order bounces). However, convergence of
the inverse series is oscillatory. While the forward series convergence condition
corresponds to energy conservation, in the inverse case the condition is more
complex—a sufficient condition is that the albedo of surfaces is below 0.5, so
that the net global illumination is still less than the direct lighting component.

Recent techniques for acquiring the light transport of real scenes [11,16] have
facilitated relighting applications in computer graphics, equivalent to matrix-
vector multiplication. While light transport inversion enables new applications
like illumination estimation, separating bounces of global illumination [18] and
projector radiometric compensation [21], the high resolution of real transport
data (105 × 105 or higher) often makes standard matrix inversion impractical.

Inspired by efficient algorithmic approaches such as finite element radiosity [4]
and Monte Carlo methods [9,20] for the forward problem, we propose fast al-
gorithms for canceling interreflections, which require only matrix-vector mul-
tiplications (as opposed to a full matrix inversion). We demonstrate practical
applications of these algorithms, such as full radiometric compensation of in-
terreflections while projecting complex scenes (Fig. 1), as well as separation of
individual local and global illumination components or bounces (Fig. 2).

To summarize, the main contributions of this paper are:

– A theoretical framework that provides novel insights into light transport
inversion by posing it as a dual to forward rendering.
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Fig. 2. Separation of bounces of interreflection using our iterative light transport in-

version technique, that runs in 3 seconds on a 131K × 131K light transport matrix

– Efficient algorithms for inverting high resolution light transport, with rigor-
ous convergence and error analysis.

– Demonstration of practical applications such as bounce separation and ra-
diometric compensation in complex, non-Lambertian scenes.

2 Previous Work

Our work builds most closely on Seitz et al. [18], who introduce the problem of
inverse light transport. This paper elucidates novel theoretical connections to the
forward problem and proposes new algorithms that are far more efficient (hence,
practical on high resolution data) than the direct matrix inversion of [18]. Nayar
et al. [13] present a fast direct and global separation where the entire scene is lit
by a light source. In contrast, we acquire the full light transport, but can then
separate each bounce of light and consider general illumination conditions.

Our approach is distinct from inverse rendering methods [10,17] that acquire
lighting and reflectance, as well as the inverse global illumination method of [22]
for BRDF estimation, all of which assume known scene geometry. In contrast, we
observe only the light transport matrix—both geometry and reflectance are un-
knowns in this work. We focus on the case where scene elements are illuminated
individually by a single projector, with a camera recording the output [15,16,18].
Extensions to incident (and reflected) light fields [7,11,19] are encompassed by
the theory, but not yet considered in our practical applications.

One important application is projector radiometric compensation, where we
seek to project a desired image, while compensating for global illumination ef-
fects on the display surface. Many recent efforts considered non-uniform scene
reflectance, but not interreflections [5,6,14]. Clusters of camera-projector pix-
els are formed in [21], with a brute-force transport inversion within clusters,
but inter-cluster interactions are ignored. Iterative inverse methods for diffuse
scenes are proposed in [3], and a series expansion for inverse light transport,
denoted as the stratified inverse, is derived by Ng et al. [15]. We show that this
series is a natural analog to the forward Neumann series. Our dual formula-
tion enables us to go much further, by showing that the inverse series subtracts
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lin Incident lighting or projected pattern ld Direct light from sources

lg Global light from interreflections lout Outgoing light (lout = ld + lg)
S Forward transport operator S−1 Inverse transport operator

R Interreflections operator (R = S − I) K Local reflection operator

G Geometric operator A Net global transport, A = KG
F First bounce from projector T Observed light transport, T = SF
N Transport resolution (matrix size N2) p ‖K‖, related to max albedo (p < 1)

Fig. 3. Table of the main notation used in the paper

physical bounces of light, analyzing convergence conditions and providing fast
algorithms that relate to radiosity, wavelet and Monte Carlo methods in forward
rendering.

3 Preliminaries

Owing to the linearity of light transport, the image formation process is governed
by a linear operator S that encodes the effects of global illumination:

lout = Sld, (1)

where lout is the outgoing “global” light, and ld is the direct lighting on surfaces
due to external sources. In continuous form, lout and ld are functions (of spatial
location and outgoing direction), while S is a linear operator that accounts for
global illumination. When discretized for practical applications, lout and ld are
vectors, while S is the interreflection matrix. Note that (1) depends only on
linearity, and holds for the light field, as well as a single camera view (image).

Unlike forward global illumination computations, we do not see the light
source directly, but rather its effect on the scene, which we denote as the direct
component, ld. The inverse light transport problem considered here is simply

ld = S−1lout, (2)

where we seek to invert the operator S−1, undoing the effects of interreflections.

Practical Issues: In practice, it is rare that S is measured directly. Instead,
a projector or illumination source lights the scene,

ld = Flin lout = Tlin = SFlin, (3)

where lin is the incident pattern projected (or distant light sources turned on),
and F is a “first-bounce” matrix or operator. The actual acquired light transport
is T = SF. The above expression holds for any light transport acquisition system.

The remainder of the theoretical development focuses on analyzing and com-
puting S−1. Eventual practical applications do need to convert from T to S,
using S = TF−1. Moreover, applications like radiometric compensation actually
seek to recover lin (rather than ld in (2)) given by lin = T−1lout = F−1ld.
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Since we focus on global illumination S, we will consider setups where S
is easy to obtain from T, i.e., where F is simple and at least approximately
invertible. Therefore, we consider projector-based acquisition, that illuminates a
single spatial location, rather than light sources that illuminate the whole object
(where F is low rank for diffuse surfaces [17]). After geometric calibration, we
can use the same parameterization for projection and camera images [18]. F is
then a diagonal matrix, with F−1 being trivial to compute.

Note that F need not correspond to the actual first bounce for an accurate
light transport inversion. In numerical terms, choosing F = diag(T) amounts to
Jacobi preconditioning, which is convergent if T is diagonally dominant.

4 Dual Forward and Inverse Light Transport

In this section, we show that the structure of the rendering equation exposes a
strong duality between forward and inverse light transport. We derive analogous
inverse and forward Neumann series expansions, and interpret them in terms of
physical bounces of light. Key theoretical results are summarized in Fig. 4.

Forward Inverse

Problem lout = Sld ld = S−1lout

Duality S = (I− A)−1 S−1 = (I + R)−1

Series S = I + A + A2 + . . . S−1 = I − R + R2 − . . .

Bounces Sn =
�n

k=0 Ak = S + O(An+1) S−1
n = S−1 + O(An+1)

Iteration l
(k)
out = ld + Al

(k−1)
out l

(k)
d = lout −Rl

(k−1)
d

Monte Carlo
�

Ai0i1Ai1i2 . . . ld(ik)
�

(−1)kRi0i1Ri1i2 . . . lout(ik)

Fig. 4. Duality of forward and inverse light transport, indicating analogous relations

for some key properties. (Monte Carlo equations abbreviated; full forms in text).

In the operator notation of [1], the rendering equation is written as

lout = ld + KGlout ⇒ lout = (I−A)−1ld, (4)

where K considers the local reflection at a surface, governed by the BRDF, G is
a geometric operator that transports outgoing to incident radiance and A = KG
corresponds to one physical bounce of light.1 It naturally follows that

S = (I−A)−1. (5)

1 This formulation is valid for any opaque BRDF when considering the full light field.

While the theory is fully general, our experiments will consider projection to a single

view, which introduces practical limitations, as discussed in Sec. 7.
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This well known result shows that the forward problem formally involves a matrix
or operator inversion. Also note that if the scene geometry and reflectance (and
hence A) are known, we simply have S−1 = I−A, as noted by [18,12]. We focus
here on cases where we only measure S, but do not know or compute A.

We can separate lout into direct ld and indirect or global lg components,

lout = ld + lg = ld + Rld lout = (I + R)ld (6)

where R = S− I is a linear operator that accounts only for global illumination.
We are now ready to present an expression for inverse light transport:

S−1 = (I + R)−1. (7)

The very similar or dual forms of (5) and (7) is a key insight in this paper, and
allows direct leveraging of many forward rendering theories and algorithms for
inverse rendering and inverse light transport algorithms in computer vision.

Neumann Forward and Inverse Series: The forward equations (4) and (5)
have well-known series expansions corresponding physically to light bounces,

S = I + A + A2 + A3 + . . . . (8)

We can also relate the global illumination operator R to this expansion,

R = S− I = A + A2 + A3 + . . . . (9)

Mathematically, the dual formulation in (7) has a series analogous to (8),

S−1 = I−R + R2 −R3 + . . . . (10)

Note that the positive sign of R implies the series is oscillatory. Intuitively, from
(6), ld = lout−Rld. Since the unknown ld appears on the right hand side, a first
approximation as ld ≈ lout calculates ld ≈ lout −Rlout. This overcompensation
is corrected by higher-order terms, leading to the alternating signs in (10).

With suitable algebraic manipulations, one may note that (10) explains the
stratified inverses of Ng et al. [15] and relates it to the rendering equation.2

Interpretation as Physical Bounces of Light: Consider an approximation
up to order n, that we denote as Sn or S−1

n . In the forward case, it is clear that

Sn =
n∑

k=0

Ak Sn − S = O(An+1) (11)

where the first n physical bounces of light are represented (each term adds the
next bounce), and the error is from neglecting bounces n + 1 onwards.
2 In particular, note that R = S − I, which is TF−1 − I. A final binomial expansion

in TF−1 and using T−1 = F−1S−1 enables one to derive the results in [15].
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Fig. 5. Top: From left to right, we add more terms of the inverse series, going from

the simulated global illumination output lout to the “direct lighting” result ld (shown

leftmost). These terms also correspond to the iterations introduced in Sec. 6. Bottom:
Contributions of individual terms (neutral grey is 0).

A physical interpretation for the inverse series seems non-intuitive, since (10)
is expressed in terms of R, that includes all global illumination terms. Neverthe-
less, in [2], we derive a surprising result: each term of the inverse series cancels or
zeros out the corresponding bounce of light transport, analogous to the forward
case. Formally, we show that S−1

0 = I, S−1
1 = I−A−A2 − . . ., and for n > 1,

S−1
n = I−A +

∞∑
m=2

⎡⎣min(m,n)∑
k=1

(−1)k

(
m− 1
k − 1

)⎤⎦Am. (12)

Now, consider the case when m ≤ n. In this case, the second summation has a
limit of m > 1, and the coefficient of Am becomes

∑m
k=1(−1)k

(
m−1
k−1

)
, which is

the binomial expansion of (1 + x)m−1 with x = −1, thus, identically 0.
This implies a key result, that the Am terms vanish for 2 ≤ m ≤ n,

S−1
n = I−A + O(An+1) S−1

n − S−1 = O(An+1) (13)

analogous to the forward series in (11). An exact expression can be derived as

S−1
n = I −A + (−1)n

∞∑
m=n+1

(
m− 2
n− 1

)
Am. Note the oscillatory series behavior

from the (−1)n. Finally, since S = (I−A)−1,

S−1
n S =

[
(I−A) + O(An+1)

]
[I−A]−1 = I + O(An+1). (14)

In other words, the n term series S−1
n annihilates the first n physical bounces of

light (each term in the series zeroes the corresponding interreflection bounce),
leaving only bounces n+1 and higher. However, as opposed to the forward series
where the higher bounces are simply 0 until they are added in, the values for
the higher bounces in the inverse series oscillate until they are zeroed—this is
related to the oscillatory convergence of the inverse series. An exact result is
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S−1
n S = I + (−1)n

∞∑
m=n+1

(
m− 1

n

)
Am. (15)

5 Convergence and Error Analysis

For the forward case, Arvo et al. [1] prove several results, briefly summarized
here. For a closed enclosure, ‖G‖= 1 (less for open scenes). From energy conser-
vation, excluding perfect reflectors, ‖K‖≤ p < 1, where p relates to the surface
albedo (for non-diffuse materials, it is the maximum over all incident directions
of the fraction of total energy reflected).3 Since ‖A‖≤‖K‖‖G‖, it follows that
‖A‖≤ p < 1, so the forward series always converges.

For the inverse series in (10), a bound from (9) is,

‖R‖≤‖A‖ + ‖A2 ‖ + . . . ≤ p + p2 + . . . =
p

1− p
. (16)

If p < 1
2 , we obtain ‖R ‖< 1, which is sufficient for convergence (though not

necessary). Intuitively, if the diffuse albedo (or maximum fraction of energy
reflected for any incident direction for non-diffuse materials) is less than 1/2, the
norm of the total global illumination operator R is less than that of the direct
lighting operator I. In matrix terms, S = I + R is diagonally dominant. Since
the inverse series is oscillatory, we require to bound the full global illumination,
rather than just each bounce separately as in the forward case.

Error Analysis: The error introduced in an n term expansion (Sn or S−1
n )

for forward and inverse series can be bounded as

‖S− Sn ‖ ≤
∞∑

k=n+1

‖Ak ‖≤
∞∑

k=n+1

pk =
pn+1

1− p
. (17)

‖S−1 − S−1
n ‖ ≤

∞∑
k=n+1

‖Rk ‖≤
∞∑

k=n+1

(
p

1− p

)k

=
pn+1

(1− p)n(1− 2p)
. (18)

Numerical Simulations: For simplicity, we consider a synthetic diffuse box
(closed, so ‖G‖= 1), without shadows but with interreflections. Fig. 5 assumes
that ld is constant on each surface, which have different albedos. From left to
right, addition of more terms from (10) causes oscillations between over and
under-compensating interreflections, till convergence to ld. Interestingly, while
forward global illumination in lout results in predictable red and green color-
bleeding, odd terms of the inverse series give rise to cyan and magenta colors.
The final inverse light transport solution for ld has no color bleeding, as desired.

In Fig. 6, we analyze errors and convergence. Fig. 6a indicates similar oscil-
latory convergence behavior near corners, edges and face centers. Fig. 6b shows
3 These relations hold in any Lp norm, since by reciprocity, ‖K ‖1=‖K ‖∞= p, and

‖·‖q≤ max(‖·‖1, ‖·‖∞).
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(a) Oscillatory convergence at each point
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Fig. 6. Error analysis of inverse

series. (a): Convergence at differ-

ent points (center, edge, corner).

(b): Comparison of error to the-

oretical bound for different albe-

dos showing good agreement. (c):
Convergence for different albedos

(is faster for lower albedos up to

0.5). (d): As expected, an albedo

of 0.62 diverges for a closed box

(6 sides), shows slow convergence

for a 5-sided box and rapid conver-

gence for more open environments.

Fig. 7. Validation of the

theory for shadowed and

non-Lambertian scenes.

Our iterative method re-

covers ld in 10 itera-

tions for the shadowed

scene and 20 for the

glossy one.

excellent agreement, up to a constant factor, between error for the whole S−1

operator and the theoretical bound in (18). Fig. 6c illustrates the inverse rela-
tion of convergence rate and albedo. Even albedos near the theoretical limit (like
0.45) converge in a few iterations, those very close to 0.5 converge slowly and
those greater than 0.51 diverge. Fig. 6d shows the variation of convergence with
geometry (that is, ‖G‖). For an albedo of 0.62, close to the theoretical limit for
a 5-sided box, we observe very slow convergence for a 5-sided box, divergence
for a 6-sided box and rapid convergence for more open geometries.

Finally, Fig. 7 shows a scene with occlusions and glossy surfaces. Similar
behaviors hold as above, with convergence of the inverse series to direct lighting.

6 Exploiting Duality for Fast Light Transport Inversion

We now introduce efficient algorithms for high-resolution light transport inver-
sion, exploring duals to iterative finite element radiosity, wavelet accelerations
and Monte Carlo methods.

Finite Element Methods: Forward rendering rarely computes the series in
(8) to explicitly determine S, due to the high cost of matrix-matrix multiplica-
tions on high-resolution scenes. Instead, finite element and radiosity methods [4]
try to solve lout = ld + Alout, which corresponds directly to (4), iteratively,
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l(k)
out = ld + Al(k−1)

out . (19)

This iteration is numerically stable, and requires only the matrix-vector multipli-
cation for Alout. The superscript stands for the step k, and l(0)out = ld. Note that n
steps simply compute the effect of the first n terms of the series in (8). For inverse
light transport, one can derive a similar relation, starting from ld = lout −Rld,
that follows from (6). The iterative solution naturally follows, dual to (19),

l(k)
d = lout −Rl(k−1)

d , (20)

with l(0)d = lout. Again, the first n steps correspond to the first n terms in (10).
Note the negative sign on R that determines the oscillatory nature of the series.

Matrix Iteration: In cases where we seek to precompute S−1, there is also a
corresponding full matrix iteration. The dual forward and inverse relations are

Sk = I + ASk−1, S−1
k = I−RS−1

k−1, (21)

with S0 = S−1
0 = I. These equations provide a numerically stable iteration.

Wavelet Methods: The matrix-vector multiplication Rld in (20) is the time-
consuming step. We can wavelet-transform and approximate the vector ld, as
well as the rows of R, to speed it up. This is analogous to wavelet radiosity and
light transport in forward rendering [8].

Monte Carlo Methods: For the matrix A, [9] considers all index permutations

lout(i0) = ld(i0) +
∞∑

k=1

∑
i1,i2,...ik

Ai0i1Ai1i2 . . .Aik−1ik
ld(ik), (22)

where the first summation is over all terms k in the series, or all path lengths in
a path tracing context. The different indices correspond to all matrix sums, or
equivalently all paths, where each ij chooses a particular point on the path.

Analogously, the inverse series in (10) has a similar form,
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Effectiveness of Monte Carlo
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resolution is N = 5120.

ld(i0) = lout(i0) +
∞∑

k=1

(−1)k
∑

i1,i2,...ik

Ri0i1Ri1i2 . . .Rik−1ik
lout(ik), (23)

where the oscillatory behavior requires the additional (−1)k factor. A direct
Monte Carlo algorithm uses a number of samples, drawing the indices i1, i2, . . . ik
at random for each. The expectation of these samples gives the desired result.
One may also use fewer samples for the iteration, but compute the final step with
a direct matrix-vector multiplication, akin to final gather in forward rendering.

Numerical Simulations: As timing baseline, we use matrix-matrix multi-
plications to directly compute the series in (10) (explicit matrix inversion is
intractable for high resolutions). In Fig. 6, for transport resolution N , the series
method scales as O(N3) and rapidly becomes impractical. The iterative method
uses only matrix-vector multiplications and is O(N2), with a speedup of three
orders of magnitude for large sizes. Wavelet acceleration leads to linear O(NW )
performance, where the number of wavelets W is relatively insensitive to N .

Fig. 9 shows the expected inverse relation between variance and number of
samples for the Monte Carlo method. The images in the top row show the power
of final gather—Monte Carlo with 30 samples is noisy as expected, but is nearly
smoothed out using one direct iteration. The bottom row shows that, as ex-
pected, pure Monte Carlo converges as the number of samples increases.

7 Experiments with Real Data

Our acquisition setup consists of a Dell 4310WX projector and a Canon EOS 5D
Mark II camera. An accurate, one-time, radiometric calibration of the projector
and camera is performed to ensure linearity of the corresponding signals [2]. We
assemble 8 images at various exposures into a high dynamic range image.

We present two applications of our iterative light transport inversion — pro-
jector radiometric compensation and separating the bounces of light transport.
As mentioned in Sec. 3, choosing F as the diagonal of T is accurate for radio-
metric compensation, even in non-Lambertian scenes. For our single projector-
camera setup, that is only an approximation for applications like bounce
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separation in specular scenes. However, higher bounces rapidly become diffuse
in practice and our experiments show robust results even for non-diffuse scenes.
We refer the reader to [2] for a more complete discussion.

Projector Radiometric Compensation: The ubiquitous use of projectors
may necessitate inverting photometric distortions and interreflection effects to
simulate any desired appearance in non-flat, non-Lambertian spaces. In terms of
our theory, given a desired appearance lout, we seek to invert the light transport
to find ld = S−1lout. As discussed in Sec. 3, we must account for the first bounce
F from the projector, and actually compute lin = T−1lout.

Fig. 1 shows results for radiometric compensation to project a desired im-
age onto a scene with non-Lambertian materials, occlusions and interreflections.
Clearly, the desired appearance is closely matched. The size of the transport
matrix is 131K × 131K, for which our iterative algorithm performs radiometric
compensation in only about 3 secs. While such high resolutions may be infeasible
for a straightforward matrix inversion, based on the patterns in Fig. 6, the strat-
ified inverses method of [15] will require 1 − 2 orders of magnitude more time.
Also, in contrast to the method of [21], our algorithms are physically motivated
and not contingent on any tunable parameters.

Separating Bounces: One consequence of our theory is that once the light
transport has been acquired, we can quickly separate an image into the different
bounces (direct, 1st bounce indirect, 2nd bounce indirect and so on). It follows
from (19), noting that S−1 = I−A, that the k-th indirect bounce is

l(k+1)
out − l(k)

out = ld − S−1l(k)
out. (24)

Thus, each successive run of our iterative inversion algorithm yields a bounce of
light transport. Fig. 10 shows a didactic example demonstrating the accuracy of
the bounce separation. The scene consists of a white dihedral with green light
projected on the left half. Note that successive bounces of indirect illumination
in the bottom row alternate perfectly between the two walls, as expected. Fig. 11
demonstrates the same with a non-Lambertian occluder present in the scene. We
observe that the specular highlight is limited only to the direct component and
absent from the indirect bounces, which is also expected.

This application is the same as [18], but our algorithms are far more efficient.
For instance, our iterative method recovers the direct component as well as each
bounce of indirect illumination in 0.09 sec for the 4K × 4K transport matrix in
Fig. 11, while straightforward matrix inversion requires 4.6 sec. More importantly,
our methods can efficiently operate on much higher resolution scenes that direct
inversion cannot handle—for instance, Fig. 2 demonstrates bounce separation in a
131K×131K transport matrix. While an uncompressed matrix of that size cannot
even be loaded in RAM, extrapolating from Fig. 6, a brute force inversion will
require nearly 150 hours. In contrast, we require only 33ms per iteration in our
(unoptimized) Matlab implementation, for a total of about 3 sec to separate each
bounce. Note that the faster method of [13] yields only the top row of Fig. 10 for
a particular lighting configuration, while we can separate all the bounces for any
lighting, albeit at the expense of a more laborious acquisition.



306 J. Bai et al.

Image Direct Global

Bounce 1 Bounce 2 Bounce 3 Bounce 4

Fig. 10. Separation of individual

bounces. The scene is a white concave

dihedral, with flat green projection on

the left half. Top row: input image

and separated direct and net global

components. Bottom row: recovered

indirect bounces. Note that successive

bounces illuminate alternating walls of

the dihedral, as expected.

Image Direct Global

Bounce 1 Bounce 2 Bounce 3 Bounce 4

Fig. 11. Bounce separation with oc-

clusions and specularities. Top row:
input image and separated direct and

net global components. Bottom row:
recovered indirect bounces. Note that

successive bounces illuminate alternat-

ing walls and the specular highlight is

present only in the direct component.

We share some restrictions with other projector-camera systems, such as shut-
ter speeds limited by projector refresh rates, color bleeding and non-linear color
mixing ratios. For radiometric compensation, the projector cannot display neg-
ative values, which may lead to clipping artifacts in dark regions.

8 Conclusions and Future Work

The main contribution of this paper is a formulation of inverse light transport
in computer vision, as a dual to the theory of forward rendering in computer
graphics. This lends new insights for canceling interreflections in complex scenes,
as well as fast computational methods for doing so. Our efficient algorithms,
analogous to finite element radiosity and Monte Carlo path tracing in forward
rendering, can handle transport resolutions far higher than previous methods.

From a theoretical perspective, we have just scratched the surface of analogies
between forward and inverse methods. It is our hope that the framework of
this paper forms the basis for discovering further insights into the structure of
light transport and developing methods that couple fast acquisition and iterative
inversion to perform radiometric compensation in dynamic scenes.
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Abstract. Illumination variation is one of intractable yet crucial prob-

lems in face recognition and many lighting normalization approaches

have been proposed in the past decades. Nevertheless, most of them pre-

process all the face images in the same way thus without considering the

specific lighting in each face image. In this paper, we propose a lighting

aware preprocessing (LAP) method, which performs adaptive preprocess-

ing for each testing image according to its lighting attribute. Specifically,

the lighting attribute of a testing face image is first estimated by using

spherical harmonic model. Then, a von Mises-Fisher (vMF) distribution

learnt from a training set is exploited to model the probability that the

estimated lighting belongs to normal lighting. Based on this probability,

adaptive preprocessing is performed to normalize the lighting variation in

the input image. Extensive experiments on Extended YaleB and Multi-

PIE face databases show the effectiveness of our proposed method.

1 Introduction

Face recognition has attracted much attention in the past decades for its wide
potential applications in commerce and law enforcement [1]. The challenges that
a face recognition system has to face include variations in lighting, head pose,
facial expression, accessory and so on. Among these factors, varying lighting
conditions such as shadows, underexposure and overexposure in face imaging
are intractable yet crucial problems that a practical face recognition system has
to deal with. In the last decades, many approaches have been proposed to han-
dle illumination variation problem with the goal of illumination normalization,
illumination-insensitive feature extraction or illumination variation modeling.
Among these approaches, many are based on image processing technique for the
reason of simplicity and efficiency. In this paper, we refer these image processing
based approaches as illumination preprocessing, and briefly review them in the
following.

Histogram equalization (HE) [2] is one of the simplest illumination prepro-
cessing approaches for face images, which can enhance the global contrast of
one image. Logarithmic transformation (LT) [3], as a nonlinear transformation,

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 308–321, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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tends to squeeze together the larger intensity values and stretch out the smaller
ones in a face image. Jobson et al. [4] extended Retinex theory [5] to a single-
scale Retinex (SSR) approach which could be used to enhance face images in
improving local contrast and lightness. Based on the gamma correction tech-
nique that is widely used in Computer Graphics (CG), Shan et al. [6] proposed
gamma intensity correction (GIC) in order to correct the overall brightness of a
face image in accordance with a pre-defined face image with canonical lighting.
Through analyzing the relationship between quotient image (QI) [7] algorithm
and Retinex theory based on the reflectance-illumination model, Wang et al.
[8] proposed self-quotient image (SQI) to handle the varying lighting conditions
in face recognition without using a bootstrap set. Nishiyama and Yamaguchi
[9] extended SQI as classified appearance-based quotient image (CAQI) in or-
der to handle face regions with different albedo separately. Xie and Lam [10]
proposed local normalization (LN) to reduce or remove the effect of uneven
lighting conditions in order to get the corresponding face images under normal
lighting. Considering that illumination variation mainly lies in the low-frequency
band, Chen et al. [11] discarded an appropriate proportion of DCT coefficients
in zigzag pattern in order to minimize the variation of face images from the
same individual under different lighting conditions and then inverse DCT trans-
form was performed to get the final illumination normalized images. Based on
the reflectance-illumination imaging model, TV-L1 [12] model was introduced
and analyzed in logarithm domain (LTV) by Chen et al. [13] for the purpose
of decomposing a face image into large-scale and small-scale components, which
correspond to illumination variation and intrinsic facial features respectively.
And then only the small-scale features were used for face recognition. Xie et al.
[14] reconstructed the illumination normalized face image by combining both the
normalized large-scale component and smoothed small-scale component (RLS).
Recently, face recognition using multi-band features are studied by Di et al. [15].
Tan and Triggs [16] presented a simple and efficient image preprocessing (PP)
chain, which incorporated a series of steps such as gamma correction, Difference
of Gaussian (DoG), masking and contrast equalization in order to extract illu-
mination insensitive features for face recognition. However, most of the above
approaches tend to perform illumination preprocessing equally on all the face
images regardless of the particular lighting of each face image. This implies that
a face image with canonical lighting will be processed like a face image with side
lighting using completely the same parameter settings.

Intuitively, the above pattern that most of the existing lighting normaliza-
tion approaches used to handle different lighting conditions is not optimal, since
any preprocessing might bring negative effect if the input image is captured un-
der normal lighting conditions. To reveal this possibility empirically, nine of the
above-mentioned illumination preprocessing approaches, i.e., HE [2], LT [3], SSR
[4], GIC [6], SQI [8], LN [10], DCT [11], LTV [13] and PP [16], are evaluated
on Extended YaleB face database [17] in a traditional lighting unaware pattern.
And Fisherfaces [18] is exploited as the recognition method following different
illumination preprocessing approaches in our evaluation. The measurement of
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the evaluation is the percentage of correcting originally-wrong matches (denoted
as ”positive”) and reversing originally-correct matches (denoted as ”negative”).
The results are shown in Fig. 1, from which it is clear that most of the methods
do bring some negative effects while improving the face recognition performance.
Some of them may even completely counteract the positive effect, which thus
limit the effectiveness of traditional lighting preprocessing approaches in im-
proving variable lighting face recognition performance. Please note that, similar
empirical observation was also reported in [19], which found that some of the pre-
processing methods might result in lower recognition rates if applied to images
with normal lighting.

Mathematically, most of the existing lighting normalization approaches try
to have a universal method to deal with various cases. However, an image is a
mapping of an object under certain lighting condition. To understand all these
factors from a single image is an ill-posed problem. This is why most existing
approaches reversed originally-correct matches in performing lighting normaliza-
tion. In fact, it makes more sense to partition a problem as several sub-problems
in handling an ill-posed problem.

HE LT SSR GIC SQI LN DCT LTV PP
0

5

10

15

20

25

30

35

(%
)

positive  rates
negative rates

Fig. 1. The positive and negative effects of various illumination preprocessing methods

performed in a lighting unaware way. We claim a ”negative” if a face image is correctly

recognized before the given preprocessing but incorrectly recognized after the prepro-

cessing. On the contrary, a ”positive” is reported if a face image originally incorrectly

recognized can be correctly recognized after the specific preprocessing.

Based on the mathematical analysis above, we come to the idea that light-
ing normalization should be performed adaptively, and thus propose a lighting
aware preprocessing (LAP) method for illumination-robust face recognition. Dif-
ferent from CAQI, in LAP, face images with different lighting conditions will be
normalized in an adaptive preprocessing approach, i.e. face images with normal
lighting will undergo minor or no illumination normalization, while face images
with side lighting or abnormal exposure will be normalized by eliminating more
large-scale components corresponding to lighting variations.

The remainder of this paper is structured as follows: Section 2 details the
algorithm of the LAP and then extensive experiments are performed to verify
the proposed approach in Sect. 3. Finally, we conclude this work in Sect. 4.
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Fig. 2. Illustration for the framework of lighting aware preprocessing

2 Lighting Aware Preprocessing

In this section, we describe the details of the proposed LAP method. The algo-
rithm overview of our LAP is shown in Fig. 2. Firstly, the lighting attribution
of a testing face image is estimated by using spherical harmonic model. The es-
timated lighting is then analyzed by modeling the probability that it belongs to
normal lighting. Finally, adaptive preprocessing is proposed to perform lighting
normalization for the images with different lighting conditions. Details of each
step are described below.

2.1 Lighting Attribute Estimation by Using Spherical Harmonic
Model

As above mentioned, face images should be adaptively preprocessed according to
their lighting conditions. Therefore, the lighting in each face image should be es-
timated. With different constraints introduced, many approaches have been pro-
posed to recover the lighting from a single input face image, such as shape from
shading (SFS) [20], 3D subspaces [21], 5D subspace [22], 9D linear subspace[23],
illumination cone [17,24] and so on. In our LAP approach, lighting attribute is
estimated by using spherical harmonic model, which has been used to estimate
the harmonic basis face images that span a linear subspace to approximate a
wide variety of illumination variations [23,25,26,27,28,29].

By simplifying the face imaging procedure as a convex Lambertian object
under distant isotropic illumination, the image intensity is proportional to the
radiance reflected by the face surface and can be approximated by

I(x, y) ≈ λ(x, y)E(α(x, y), β(x, y)) (1)
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where (x, y) ranges over the whole face surface, λ(x, y) is the albedo at point
(x, y), (α, β) is the normal at point (x, y) and E(α, β) is the total irradiance that
arrives at point (x, y), which is a function of the surface normal (α, β) [30]

E(α, β) =
∫ 2π

ϕi=0

∫ π/2

θi=0
Li((x, y), ϕi, θi) cos θi sin θidθidϕi (2)

where θi and ϕi are respectively the elevation and azimuth angles of incident
light. Under the distant illumination assumption, E(α, β) is independent of sur-
face position (x, y) [25]

E(α, β) =
∫ 2π

ϕi=0

∫ π/2

θi=0
Li(ϕi, θi) cos θi sin θidθidϕi (3)

where Li(ϕi, θi) is the radiance of the incident light with direction (ϕi, θi). Hence,
lighting estimation is converted to recovering the coefficients Li(ϕi, θi) given an
input face image I.

As is shown independently by Basri and Jacobs [23] as well as Ramamoorthi
and Hanrahan [25], E(α, β) can be well approximated by a combination of the
first nine spherical harmonics

E(α, β) =
2∑

l=0

l∑
m=−l

(
4π

2l + 1
)1/2AlLl,mYl,m(α, β) (4)

where Al is the spherical harmonic coefficient for transfer function, Ll,m is the
coefficient of incident lighting and Yl,m forms the orthonormal spherical harmonic
basis. It is more convenient to parameterize Yl,m in Cartesian coordinate system
as below [23]

Y0,0 =
√

1
4π Y1,−1 =

√
3
4π y

Y1,0 =
√

3
4π z Y1,1 =

√
3
4π x

Y2,−2 =
√

15
4π xy Y2,−1 =

√
15
4π yz

Y2,0 =
√

5
16π (3z2 − 1) Y2,1 =

√
15
4π zx

Y2,2 =
√

5
16π (x2 − y2)

(5)

where (x, y, z) is the representation for surface normal (α, β) in Cartesian coor-
dinate system. Combining (1) with (4), we will get

I(x, y) ≈
2∑

l=0

l∑
m=−l

( 4π
2l+1 )1/2λ(x, y)AlLl,mYl,m(α(x, y), β(x, y))

=
2∑

l=0

l∑
m=−l

Ll,mbl,m(x, y)
(6)

where bl,m(x, y) is the harmonic image of a face

bl,m(x, y) = (
4π

2l + 1
)1/2λ(x, y)AlYl,m(α(x, y), β(x, y)) (7)
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Fig. 3. The construction of a lighting direction vector

In order to estimate the 9 illumination coefficients Ll,m, one needs to know the
albedo map λ(x, y) and normal map (α(x, y), β(x, y)) of the given face. How-
ever, in practice, they are usually unavailable for a single input face image.
Fortunately, as shown in [27], with a quasi-constant albedo map and a warped
generic 3D facial normal map as the approximations for the real ones, the 9 il-
lumination coefficients Ll,m can be well estimated by solving the following least
squares problem

L̂ = arg min
L
‖I −BL‖L2 (8)

where image I is vectorized as a P -dimensional column vector, B is a P × 9
matrix with bl,m as its columns.

In our implementation, given an input face image, its two eyes are first local-
ized and used to roughly align a generic 3D facial normal map. Then, spherical
harmonic images, i.e. B, of this face are computed based on (7). And finally the
9 coefficients are estimated by solving (8).

According to the spherical harmonics theory, among the 9 illumination coef-
ficients, L0,0 is the DC component reflecting the average energy of the incident
lighting, while the three first-order coefficients, L1,1, L1,−1, L1,0, as illustrated in
Fig. 3, reflect the intensity of incident lights in X, Y, Z directions respectively.
Therefore, they are utilized in our method to form the lighting direction vector
d

′
= [L1,1, L1,−1, L1,0]T . Since we care only the relative quantity of these coeffi-

cients, we further normalize it by dividing its module and thus get a unit vector
in L2 norm d = d

′
/‖d′‖ = [l1,1, l1,−1, l1,0]T , which is then used to analyze the

lighting condition of the input image in the following.

2.2 Lighting Analysis with vMF Model

With the above estimated lighting attribute, what we need to do next is deter-
mining which kind of lighting it belongs to. However, it is difficult to make a
quantitative definition of lighting category, as lighting condition is a subjective
concept. To overcome the uncertainty of imaging procedure and the subjective-
ness in lighting condition definition, we apply a statistical model to determine
the probability that the estimated lighting belongs to normal lighting. The sta-
tistical model, which combines the principle of physics, geometrical model and
the robustness of statistics, thus provides a relative definition of different lighting
conditions instead of an absolute one.
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Fig. 4. The distribution of normal lighting is analogous to a Gaussian distribution on

a sphere surface

In most face recognition testing protocols [17,31], so-called normal lighting
usually means frontal distant lighting. Therefore, the subset with normal light-
ing in the testing protocol of each face database is utilized to learn a statistical
model for normal lighting. In practice, normal lighting should distribute analo-
gously to a Gaussian distribution on a unit sphere as illustrated in Fig. 4 with
d0 = [0, 0, 1]T being the expectation. Thus, normal lighting can be modeled as
a von Mises-Fisher (vMF) distribution [32] which is widely used in directional
statistics.

Specifically, a 3-dimensional unit random vector x(i.e., x ∈ R3 and ‖x‖ = 1)
is of 3-variate von Mises-Fisher distribution if its probability density function is
with the form

p(x|μ, κ) = c(κ) exp(κμT x) (9)

where μ is the mean direction with ‖x‖ = 1, κ(κ ≥ 0) is the concentration
parameter describing how strongly the unit random vectors sampled from the
distribution are concentrated toward the mean direction, and normalization con-
stant c(κ) is defined as

c(κ) =
κ

4π sinh κ
=

κ

2π(eκ − e−κ)
(10)

Given the vMF model, modeling normal lighting is then to estimate the pa-
rameters of the vMF model. In this study, maximum likelihood estimation is
adopted to estimate μ and κ from a learning dataset. Formally, given a training
set containing N face images captured under ”normal” lighting conditions, we
estimate the lighting direction vectors by the method in Section 2.1 for all the
training images and obtain

D = {di ∈ R3, 1 ≤ i ≤ N} (11)

By safely assuming di to be independent with each other, we have the following
likelihood

p(D|μ, κ) =
N∏

i=1

p(di|μ, κ) (12)



Lighting Aware Processing for Face Recognition across Varying Illumination 315

And then the log-likelihood will be

ln p(D|μ, κ) = N ln c(κ) + κμT t (13)

where t =
N∑

i=1
di. In order to get the maximum likelihood estimates for μ and κ,

Lagrange multipliers is used to maximize the log-likelihood objective function

Λ(μ, κ, di, λ) = N ln c(κ) + κμT t + λ(1 − μT μ) (14)

subject to the constraint μT μ = 1(‖μ‖ = 1). Let the derivative dΛ = 0, then we
get the following system of equations

∂Λ
∂μ = κt− 2λμ = 0
∂Λ
∂κ = Nc

′
(κ)

c(κ) + μT t = 0
∂Λ
∂λ = 1− μT μ = 0

(15)

From (15), it is not difficult to get an estimate for μ

μ̂ =
t

‖t‖ (16)

In directional statistics, the concentration parameter κ is usually estimated in an
approximation manner [32,33] and for a 3-variate von Mises-Fisher distribution,
the following approximation will be sufficient

κ̂ =
3t− t

3

1− t
2 (17)

where t = ‖t‖/N
After μ and κ are estimated, the statistical model for describing normal light-

ing is constructed and then the probability that the estimated lighting d of a
testing face image belongs to normal lighting can be calculated based on (9)

p(d|μ̂, κ̂) = c(κ̂) exp(κ̂μ̂T x) (18)

In this paper, the subset#1 from Extended YaleB face database is used as the
training set. The face images in subset#1 are captured with the angle between
the light source direction and the camera axis within 12◦. Details about the
subset division for Extended YaleB can be found in [17].

2.3 Adaptive Lighting Preprocessing

As we have mentioned before, once the lighting condition of a testing face image
has been grouped in a relative manner, facial images will be handled accordingly.
For this purpose, we further propose an adaptive method to perform illumination
normalization for each testing face image. By varying the truncation scale, many
existing approaches, e.g. the Gaussian smoothing filter used in [4,8], the DCT
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Fig. 5. The results of traditional LTV on three face images of one individual

reported in [11] and the TV-L1 model [12] utilized in LTV [13], can reach a
better balance between eliminating extrinsic lighting variation and preserving
intrinsic facial features. Without loss of generality, here TV-L1 model is used to
implement adaptive preprocessing based on the estimated probability that the
lighting in a testing face image belongs to normal lighting.

TV-L1 model aims at decomposing a face image into large-scale component u
which corresponds to illumination variation and small-scale component v which
corresponds to intrinsic facial feature and the large-scale component in a face
image is estimated by solving the following variational problem

μ̂ = arg min
u

∫
|∇u|+ λ‖I − u‖L1 (19)

where
∫
|∇u| is the total variation of u and λ is a scalar constant controlling the

scale truncation. With u solved, the small-scale component v can be calculated
as v = I − u, which can then be used for face recognition across varying lighting
conditions. Evidently, in TV-L1 model, the scale-truncation constant λ actually
balances the illumination removal by u and feature preserving in v. However, in
LTV, it is empirically set and kept the same for all face images. This might be
questionable, since different lighting attributes imply illumination component of
different scales. Figure 5 shows some examples of LTV with fixed λ for images of
the same person but with different lighting attributes. It is clear that the results
are not desirable. Different from LTV, in our adaptive lighting preprocessing,
TV-L1 model are applied in an adaptive pattern based on the above estimated
probability rather than in a fixed pattern.

According to the analysis for parameter λ in [12], a larger truncation scale
is more desirable in order to avoid discarding too much intrinsic facial features
for face images with normal lighting and correspondingly a smaller λ should
be used for TV-L1 model. While the effect introduced by abnormal lighting,
such as the artificial edges caused by side lighting, mainly lies in high frequency
band; therefore a small truncation scale is suitable and correspondingly a larger
λ should be taken.

According to the above analysis, the parameter λ in TV-L1 model can be
approximately determined based on the probability that the lighting in a face
image belongs to normal lighting
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λ = (1− p(d|μ̂, κ̂))β (20)

where p(d|μ̂, κ̂) is the above estimated probability that the lighting in a testing
face image belongs to normal lighting, β is the range for parameter λ. In TV-L1
model, parameter λ can be set as any positive real number, but in practice, for
face image with the size of 64× 80, λ in the range of [0, 1.2] will be sufficient for
handling most of the lighting variations. A linear relationship between p and λ
seems simple but reveals to be effective in our experiments. To be note that in
the theory of TV-L1, features of all scales should be keep in v when λ = 0, i.e.
vλ=0 = I; however, due to the limitation in computation, v cannot be calculated
when λ = 0. Therefore, we force vλ=0 = I in our implementation. When TV-L1
model is substituted by other methods, e.g. Gaussian smoothing filter or DCT,
the parameters can also be determined like in (20). All the gallery images are
also preprocessed in the same way as each testing face image when performing
face recognition.

3 Experimental Results

3.1 Databases and Settings for Experiments

Extended YaleB [17], PIE [34] and Multi-PIE [31] are three representative face
databases in the area, however, many illumination preprocessing approaches,
including the proposed LAP, have gotten 100% recognition performance. There-
fore, two challenging face databases of the three: Extended YaleB [17] and Multi-
PIE [34], are exploited in our experiments to compare our proposed approach
with other illumination preprocessing approaches in face recognition across vary-
ing illumination.

Extended YaleB face database includes the original YaleB face database with
10 individuals under 64 different illumination conditions and the extended part
with 28 individuals that are also captured under 64 different illumination con-
ditions. Totally 2,432 face images of 38 individuals under 64 illumination condi-
tions in frontal view are used for experiments. All the face images are divided
into five subsets according to [17], in which subset#1 is used as the training set
for both lighting estimation and face recognition algorithm. The varying lighting
in Extended YaleB is harsh for illumination-robust recognition as the lighting
directions vary from left 130◦ degrees to right 130◦.

Multi-PIE is a recently published face database, which contains as many as
755,370 images from 337 subjects, imaged under 15 view points and 19 illumi-
nation conditions in up to four recording sessions [31]. According to the testing
protocol in [31], the face images of 14 randomly selected subjects are used for
training and images of all the other 323 subjects are used for testing. Among
all the testing images, only one face image of each individual recorded without
flashes is used as gallery. The huge database size and time span of Multi-PIE
have determined the challenge for variable lighting face recognition. Moreover,
the limitation of 14 subjects for training further increase the difficulty in recog-
nition across varying lighting conditions.
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ORI HE LT SSR GIC SQI LN DCT LTV PP LAP

Fig. 6. Illumination preprocessing on testing face images using different approaches.

Images in the first column are the original input face images under different lighting

conditions. Images in the rest columns are the results of different illumination prepro-

cessing approaches.

Before performing any illumination preprocessing, all the face images are ge-
ometrically normalized to the size of 64× 80 with the distance between two eyes
35 pixels. The proposed LAP is a kind of illumination normalization approach
instead of illumination-insensitive feature extraction or illumination variation
modeling approach, therefore, the state of the art as well as several represen-
tative illumination normalization approaches are taken for comparison, i.e., HE
[2], LT [3], SSR [4], GIC [6], SQI [8], LN [10], DCT [11], LTV [13] and PP [16].
For fair comparison with other methods, we exploited the parameters settings
recommended in the original literature proposing the corresponding methods for
comparison. As what we concern is the comparison between different lighting
preprocessing approaches, Fisherfaces [18] is fixed as the recognition algorithm
for all the illumination preprocessing approaches we compared.

Face recognition is performed on the illumination normalized face images pre-
processed by different approaches and recognition performance is reported to
verify the effectiveness of different lighting preprocessing approaches in improv-
ing the robustness for face recognition across varying lighting conditions. For
the convenience of our description, we denote ”ORI” as the original face images
without any lighting preprocessing.

3.2 Comparisons

The visualization of some illumination normalized face image of different lighting
preprocessing approaches is illustrated in Fig. 6. In the figure, the face images
in the first column are the original input images and those in the rest columns
are the results of different lighting preprocessing approaches labeled above the
column. As can be seen from the figure, the traditional approaches performed
in a lighting unaware pattern tend to produce satisfying results for some kinds
of lighting but not for others. On the contrary, for our LAP, testing images
with normal lighting are kept as close to the original as possible and images
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Table 1. Face recognition performance of Fisherfaces on the preprocessed face images

by different illumination preprocessing approaches from Extended YaleB and Multi-

PIE databases

Approach
Recognition Rate (%)

Extended YaleB Multi-PIE

ORI 54.15 52.77

HE 54.75 62.53

LT 62.79 62.73

SSR 55.45 63.79

GIC 67.73 64.27

SQI 72.58 65.71

LN 67.36 60.74

LDCT 74.10 61.82

LTV 78.02 60.81

PP 71.56 61.18

LAP 86.89 71.15

with abnormal exposure are processed to discard most lighting variations while
preserving more discriminative facial features compared with LTV.

Face recognition experiments are then performed on the two face databases
following different illumination preprocessing approaches and the recognition
rates are reported in Table 1. As shown in the table, our LAP achieves im-
pressively better face recognition performance than all the other methods on
both Extended YaleB and Multi-PIE face databases. On Extended YaleB, com-
pared with LTV, LAP gets more than 8% higher face recognition rate. Even on
the much more challenging Multi-PIE face database, LAP gets the highest face
recognition rate 71.15%. Experimental results on Extended YaleB and Multi-PIE
face databases suggest that our proposed LAP framework is more effective and
robust in improving face recognition performance across varying illumination
compared with the traditional lighting unaware approaches.

4 Conclusions

Traditional illumination preprocessing methods deal with face images in a light-
ing unaware way, so they might suffer from negative effect, for instance, failing to
recognize an image which can correctly recognized before preprocessing. This pa-
per analyzed the problem and proposes a lighting aware preprocessing method.
In the method, face images with different lighting conditions are processed ac-
cording to the lighting attribute in the images. Experiments illustrate impressive
performance improvement compared with the state of the art and representative
illumination preprocessing methods. To be note that although TV-L1 is utilized
in the proposed LAP framework, other methods such as low-pass filtering and
DCT can also be embedded into the proposed LAP framework.

The preliminary studies in this paper show that we still have large space for
improvement for illumination-invariant face recognition. Preprocessing automati-
cally adapted to the lighting attribute of the imagemight be a promisingpossibility.
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Currently, spherical harmonic model is used to estimate the lighting in a test-
ing face image. Simple and efficient approaches without using 3D face informa-
tion, e.g. the method proposed by S. Choi, et al. [35], might be used for lighting
estimation. Moreover, the relationship between the normal lighting probability
and adaptive parameter selection will also be exploited in future work.

Acknowledgments

This paper is partially supported by Natural Science Foundation of China un-
der contracts No.60803084, No.60872077, and No. U0835005; National Basic
Research Program of China (973 Program) under contract 2009CB320902, and
ISVISION Technology Co. Ltd.

References

1. Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.J.: Face recognition: A literature

survey. ACM Computing Surveys 35, 399–458 (2003)

2. Gonzalez, R., Woods, R.: Digital image processing, pp. 91–94. Prentice Hall, USA

(1992)

3. Adini, Y., Moses, Y., Ullman, S.: Face recognition: The problem of compensating

for changes in illumination direction. IEEE Trans. PAMI 19, 721–732 (1997)

4. Jobson, D.J., Rahman, Z., Woodell, G.A.: Properties and performance of a cen-

ter/surround retinex. IEEE Trans. IP 6, 451–462 (1997)

5. Land, E.H.: An alternative technique for the computation of the designator in the

retinex theory of color vision. Proc. Nati. Acad. Sci. USA 83, 3078–3080 (1986)

6. Shan, S., Gao, W., Cao, B., Zhao, D.: Illumination normalization for robust

face recognition against varying lighting conditions. In: Proc. AMFG, Nice,

pp. 157–164 (2003)

7. Shashua, A., Raviv, T.R.: The quotient image: Class-based re-rendering and recog-

nition with varying illuminations. IEEE Trans. PAMI 23, 129–139 (2001)

8. Wang, H., Li, S., Wang, Y.: Face recognition under varying lighting conditions

using self quotient image. In: Proc. FG, Seoul, pp. 819–824 (2004)

9. Nishiyama, M., Yamaguchi, O.: Face recognition using the classified appearancee-

based quotient image. In: Proc. FG, Southampton, pp. 49–54 (2006)

10. Xie, X., Lam, K.: An efficient illumination normalization method for face recogni-

tion. Pattern Recognition Letters 27, 609–617 (2006)

11. Chen, W., Er, M.J., Wu, S.: Illumination compensation and normalization for

robust face recognition using discrete cosine transform in logarithm domain. IEEE

Trans. SMC:B 36, 458–466 (2006)

12. Chan, T., Esedoglu, S.: Aspects of total variation regularized l1 function approxi-

mation. CAM Report, 4–7 (2004)

13. Chen, T., Yin, W., Zhou, X.S., Comaniciu, D., Huang, T.S.: Total variation models

for variable lighting face recognition. IEEE Trans. PAMI 28, 1519–1524 (2006)

14. Xie, X., Zheng, W., Lai, J., Yuen, P.C.: Face illumination normalization on large

and small scale features. In: Proc. CVPR, Alaska, pp. 1–8 (2008)

15. Di, W., Zhang, L., Zhang, D., Pan, Q.: Studies on hyperspectral face recognition

with feature band selection. IEEE Trans. SMC-A (to appear)



Lighting Aware Processing for Face Recognition across Varying Illumination 321

16. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition

under difficult lighting conditions. In: Proc. ICCV Workshop, Rio de Janeiro,

pp. 168–182 (2007)

17. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: Illumi-

nation cone models for face recognition under variable lighting and pose. IEEE

Trans. PAMI 23, 643–660 (2001)

18. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces:

Recognition using class specific linear projection. IEEE Trans. PAMI 19, 711–720

(1997)

19. Du, B., Shan, S., Qing, L., Gao, W.: Empirical comparisons of several prepro-

cessing methods for illumination insensitive face recognition. In: Proc. ICASSP,

Pennsylvania, pp. 981–984 (2005)

20. Horn, B.K.P., Brooks, M.J.: The variational approach to shape from shading.

CVGIP 33, 174–208 (1986)

21. Shashua, A.: On photometric issues in 3d visual recognition from a single 2d image.

IJCV 21, 99–122 (1997)

22. Hallinan, P.W.: A low-dimensional representation of human faces for arbitrary

lighting conditions. In: Proc. CVPR, Seattle, pp. 995–999 (1994)

23. Basri, R., Jacobs, D.W.: Lambertian reectance and linear subspaces. IEEE Trans.

PAMI 25, 218–233 (2003)

24. Belhumeur, P.N., Kriegman, D.J.: What is the set of images of an object under all

possible illumination conditions? IJCV 28, 245–260 (1998)

25. Ramamoorthi, R., Hanrahan, P.: On the relationship between radiance and irra-

diance: determining the illumination from images of a convex lambertian object.

JOSA 18, 2448–2459 (2001)

26. Zhang, L., Samaras, D.: Face recognition from a single training image under arbi-

trary unknown lighting using spherical harmonics. IEEE Trans. PAMI 28, 351–363

(2006)

27. Qing, L., Shan, S., Gao, W., Du, B.: Face recognition under generic illumination

based on harmonic relighting. IJPRAI 19, 513–531 (2005)

28. Wang, Y., Liu, Z., Hua, G., Wen, Z., Zhang, Z., Samaras, D.: Face re-lighting from

a single image under harsh lighting conditions. In: Proc. CVPR, Minnesota, pp.

1–8 (2007)

29. Jiang, X., Kong, Y.O., Huang, J., Zhao, R.-c., Zhang, Y.: Learning from real images

to model lighting variations for face images. In: Forsyth, D., Torr, P., Zisserman,

A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 284–297. Springer, Heidelberg

(2008)

30. Forsyth, D.A., Ponce, J.: Computer vision: A modern approach, pp. 46–58. Prentice

Hall, USA (2002)

31. Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-pie. Image and

Vision Computing 28, 807–813 (2010)

32. Mardia, K.V., Jupp, P.E.: Directional statistics, pp. 36–44. J. Wiley, Chichester

(2000)

33. Banerjee, A., Dhillon, I.S., Ghosh, J., Sra, S.: Clustering on the unit hypersphere

using von mises-fisher distributions. JMLR 9, 1345–1382 (2005)

34. Sim, T., Baker, S., Bsat, M.: The cmu pose, illumination, and expression database.

IEEE Trans. PAMI 25, 1615–1618 (2003)

35. Choi, S., Kim, C., Choi, C.: Shadow compensation in 2d images for face recognition.

Pattern Recognition 40, 2118–2125 (2007)



Detecting Ground Shadows in Outdoor
Consumer Photographs

Jean-François Lalonde, Alexei A. Efros, and Srinivasa G. Narasimhan

School of Computer Science, Carnegie Mellon University

http://graphics.cs.cmu.edu/projects/shadows

Abstract. Detecting shadows from images can significantly improve the

performance of several vision tasks such as object detection and track-

ing. Recent approaches have mainly used illumination invariants which

can fail severely when the qualities of the images are not very good, as is

the case for most consumer-grade photographs, like those on Google or

Flickr. We present a practical algorithm to automatically detect shadows

cast by objects onto the ground, from a single consumer photograph. Our

key hypothesis is that the types of materials constituting the ground in

outdoor scenes is relatively limited, most commonly including asphalt,

brick, stone, mud, grass, concrete, etc. As a result, the appearances of

shadows on the ground are not as widely varying as general shadows

and thus, can be learned from a labelled set of images. Our detector

consists of a three-tier process including (a) training a decision tree clas-

sifier on a set of shadow sensitive features computed around each image

edge, (b) a CRF-based optimization to group detected shadow edges to

generate coherent shadow contours, and (c) incorporating any existing

classifier that is specifically trained to detect grounds in images. Our re-

sults demonstrate good detection accuracy (85%) on several challenging

images. Since most objects of interest to vision applications (like pedes-

trians, vehicles, signs) are attached to the ground, we believe that our

detector can find wide applicability.

1 Introduction

Shadows are everywhere! Yet, the human visual system is so adept at filtering
them out, that we never give shadows a second thought; that is until we need
to deal with them in our algorithms. Since the very beginning of computer vi-
sion, the presence of shadows has been responsible for wreaking havoc on a wide
variety of applications, including segmentation, object detection, scene analysis,
stereo, tracking, etc. On the other hand, shadows play a crucial role in determin-
ing the type of illumination in the scene [1,2] and the shapes of objects that cast
them [3]. But while standard approaches, software, and evaluation datasets exist
for a wide range of important vision tasks, from edge detection to face recogni-
tion, there has been comparatively little work on shadows in the last 40 years.
Approaches that use multiple images [4], time-lapse image sequences [5,6] or
user inputs [7,8,9] have demonstrated impressive results, but detecting shadows

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 322–335, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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reliably and automatically from a single image remains an open problem. This
is because the appearances and shapes of shadows outdoors depend on several
hidden factors such as the color, direction and size of the illuminants (sun, sky,
clouds), the geometry of the objects that are casting the shadows and the shape
and material properties of objects onto which the shadows are cast.

Most works for detecting shadows from a single image are based on computing
illumination invariants that are physically-based and are functions of individual
pixel values [10,11,12,13,14] or the values in a local image neighborhood [15].
Unfortunately, reliable computations of these invariants require high quality im-
ages with wide dynamic range, high intensity resolution and where the camera
radiometry and color transformations are accurately measured and compensated
for. Even slight perturbations (imperfections) in such images can cause the in-
variants to fail severely (see Fig. 4). Thus, they are ill-suited for the regular
consumer-grade photographs such as those from Flickr and Google, that are
noisy and often contain compression, resizing and aliasing artifacts, and effects
due to automatic gain control and color balancing. Since much of current com-
puter vision research is done on consumer photographs (and even worse-quality
photos from the mobile phones), there is an acute need for a shadow detector
that could work on such images.

Our goal is to build a reliable shadow detector for consumer photographs of
outdoor scenes. While detecting all shadows is expected to remain hard, we ex-
plicitly focus on the shadows cast by objects onto the ground plane. Fortunately,
the types of materials constituting the ground in typical outdoor scenes are (rel-
atively) limited, most commonly including concrete, asphalt, grass, mud, stone,
brick, etc. Given this observation, our key hypothesis is that the appearances of
shadows on the ground are not as widely varying as the shadows everywhere in
the scene and can be learned from a set of labelled images of real world scenes.
This restriction by no means makes the problem trivial: the ground shadow de-
tector still needs to contend with myriad other non-shadow visual manifestations
such as markings and potholes on the roads, pavement/road boundaries, grass
patterns on lawns, etc. Further, since many objects (pedestrians, vehicles, traffic
signs, etc) of interest to vision applications, are attached to the ground and cast
shadows onto the ground, we believe such a ground shadow detector will find
wide applicability.

1.1 Overview

Our approach consists of three stages depending on the information in the image
used. In the first stage, we will exploit local information around edges in the
image. For this, we compute a set of shadow sensitive features that include the
ratios of brightness and color filter responses at different scales and orientations
on both sides of the edge. These features are then used with a trained decision
tree classifier to detect whether an edge is a shadow or not. The idea is that
while any single feature may not be useful for detecting all ground shadows,
the classifier is powerful enough to choose the right features depending on the
underlying edge region. In order to make the classifier robust to non-shadow
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edges, a negative training set is constructed from a set of edges not on the ground
and those arising due to road markings, potholes, grass/mud boundaries, etc.
Surprisingly, this simple procedure yields 80% classification accuracy on our test
set of images randomly chosen from Flickr and LabelMe [16].

In the second stage, we enforce a grouping of the shadow edges using a Con-
ditional Random Field (CRF) to create longer contours. This is similar in spirit
to the classical constrained label propagation used in mid-level vision tasks [17].
This procedure connects likely shadow edges, discourages T-junctions which are
highly unlikely on shadow boundaries, and removes isolated weak edges. But
how do we detect the ground in an image? For this, in the third stage, we in-
corporate a global scene layout descriptor within our CRF, such as the 3-way
ground-vertical surface-sky classifier by Hoiem et. al [18]. Since the scene layout
classifier is trained on the general features of the scene and not the shadows, we
are able to reduce the number of false-positive (non-shadow) detections outside
the ground. Our results show that the shadow detection results improve by 5%
with this step.

We demonstrate successful shadow detection on several images of natural
scenes that include beaches, meadows and forest trails, as well as urban scenes
that include numerous pedestrians, vehicles, trees, roads and buildings, cap-
tured under a variety of illumination conditions (sunny, partly cloudy, overcast).
Similarly to the approach of Zhu et al. [19], our method relies on learning the
appearance of shadows based on image features, but does so by using full color
information. We found that using color features and incorporating knowledge of
the ground location improve classification results as much as 10% on our test set.
While our technique can be used as a stand-alone shadow detector, we believe
it can also be tightly integrated into higher level scene understanding tasks.

2 Learning Local Cues for Shadow Detection

Our approach relies on a classifier which is trained to recognize ground shadow
edges by using features computed over a local neighborhood around the edge. We
show that it is indeed possible to obtain good classification accuracy by relying
on local cues, and that it can be used as a building block for subsequent steps.
In this section, we describe how to build, train, and evaluate such a classifier.

2.1 From Pixels to Boundaries

We first describe the underlying representation on which we compute features.
Since working with individual pixels is prone to noise and computationally ex-
pensive, we propose to instead reason about boundaries, or groups of pixels along
an edge in the image. To obtain these boundaries, we first smooth the image with
a bilateral filter [20], compute gradient magnitudes on the filtered image, and
then apply the watershed segmentation algorithm on the gradient map. Fig. 1(b)
shows a close-up example of such boundaries.

An undesirable consequence of the watershed segmentation is that it generates
boundaries in smooth regions of the image (Fig. 1(b)). To compensate for this,
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(a) Input image (b) Boundaries (c) Strong boundaries (d) Output

Fig. 1. Processing stages for the local classifier. The input image (a) is over-segmented

into thousands of regions to obtain boundaries (b). Weak boundaries are filtered out by

a Canny edge detector (c), and the classifier is applied on the remainder. (d) shows the

boundaries i for which P (yi = 1|x) > 0.5. Note the correct classification of occlusion

contours around the person’s legs and the reflectance edges in the white square between

the person’s feet.

we retain only those boundaries which align with the strong edges in the image.
For this, we use the canny edge detector at 4 scales to account for blurry shadow
edges (σ2 = {1, 2, 4, 8}), with a high threshold empirically set to t = 0.3. Under
these conditions, we verified that the initial set of boundaries contain more than
97% of the true shadow edges in our dataset. For example, Fig. 1(c) shows the
set of boundaries on which our classifier is evaluated for that image.

2.2 Local Shadow Features

We now describe the features computed over each boundary in the image. A
useful feature to describe a shadow edge is the ratio of color intensities on both
sides of the edge (e.g. min divided by max) [21]. The intuition is that shadows
should have a specific ratio that is more or less the same across an image, since
it is primarily due to the differences in natural lighting inside and outside the
shadow. Since it is hard to manually determine the best color space [22] or best
scale to compute features, we use 3 different colors spaces (RGB, LAB, [23])
and 4 different scales, and let the classifier automatically select the relevant
features during the training phase. Although color-based features are bound to
be affected by camera non-linearities, we found these ratios to work well across
a wide range of cameras and capture conditions.

For a pixel along a boundary, we compute the intensity on one side of the edge
(say, the left) by evaluating a weighted sum of pixels on the left of the edge. But
which pixels to choose? We could use the watershed segments, but they do not
typically extend very far. Instead, we use an oriented gaussian derivative filter of
variance σ2, but keep only its values which are greater than zero. We align the
filter with the boundary orientation such that its positive weights lie on the left of
the boundary and convolve it with the image to obtain fl. The same operation is
repeated with the filter rotated by 180◦ to obtain the weighted mean of pixels on
its right fr. Color ratios can then be computed at pixel p by min(fl(p),fr(p))

max(fl(p),fr(p)) . This
is done independently for each color channel of the RGB, LAB, and illumination-
invariant [23] color spaces. To account for edge sharpness, we compute each filter
at 4 different scales σ2 = {1, 2, 4, 8} and size 2σ2, to obtain 36 ratios in total.
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We also employ two features suggested in [19] which capture the texture and
intensity distribution differences on both sides of a boundary. The first feature
computes a histogram of textons at 4 different scales, and compares them us-
ing the χ2-distance. The texton dictionary was computed on a non-overlapping
set of images. The second feature computes the difference in skewness of pixel
intensities, again at the same 4 scales.

Finally, we concatenate the absolute value of the minimum filter response
min(fl(p), fr(p)) computed over the intensity channel to obtain the final, over-
complete, 48-dimensional feature vector at every pixel. Boundary feature vectors
are obtained by averaging the features of all pixels that belong to it.

2.3 Classifier

Having computed the feature vector xi at each strong boundary in the image,
we can now use them to train a classifier to learn the probability P (yi|xi) that
boundary i is due to a shadow (which we denote with label yi). We estimate that
distribution using a logistic regression version of Adaboost [24], with twenty 16-
node decision trees as weak learners. This classification method provides good
feature selection and outputs probabilities, and has been successfully used in a
variety of other vision tasks [18,25].

To train the classifier, we selected 170 images from LabelMe [16], Flickr, and
the dataset introduced in [19], with the only conditions being that the ground
must be visible, and there must be shadows. The positive training set contains
manually labelled shadow boundaries, while the negative training set is popu-
lated with an equal amount of strong non-shadow boundaries on the ground (e.g.
street markings) and occlusion boundaries.

We obtain a per-boundary classification accuracy of 79.7% (chance is 50%,
see Fig. 5 for a breakdown per class). See Fig. 1(d) for an example. This result
support out hypothesis: while the appearance of shadows on any type of material
in any condition might be impossible to learn, the space of shadow appearances
on the ground in outdoor scenes may not be that large after all!

3 Creating Shadow Contours

Despite encouraging results, our classifier is limited by its locality since it treats
each boundary independently of the next. However, the color ratios of a shadow
boundary should be consistent with those of its neighbors, since the sources illu-
minating nearby scene points should also be similar. Thus, we can exploit higher
order dependencies across local boundaries to create longer shadow contours as
well as remove isolated/spurious ones.

To model these dependencies, we construct a graph with individual bound-
aries as nodes (such as those in Fig. 1(b)) and drawing an edge across bound-
aries which meet at a junction point. We then define a CRF on that graph,
which expresses the log-likelihood of a particular labeling y (i.e. assignment of
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(a) (b)

Fig. 2. Creating shadow contours by enforcing local consistency. Our CRF formulation

may help to (a) bridge the gap across X-junctions where the local shadow classifier

might be uncertain, and (b) remove spurious T-junctions which should not be caused

by shadows.

shadow/non-shadow to each boundary) given observed data x as a sum of unary
φi(yi) and pairwise potentials ψi,j(yi, yj):

− logP (y|x; λ, β) = λ
∑
i∈B

φi(yi) +
∑

(i,j)∈E
ψi,j(yi, yj)− log Zλ,β , (1)

where B is the set of boundaries, E the set of edges between them, and λ and
β are model parameters. In particular, λ is a weight controlling the relative
importance of the two terms. Zλ,β is the partition function that depends on the
parameters λ and β, but not on the labeling y itself.

Intuitively, we would like the unary potentials to penalize the assignment of
the “shadow” label to boundaries which are not likely to be shadows according
to our local classifier. This can be modeled using

φi(yi) = − logP (yi|xi) . (2)

We would also like the pairwise potentials to penalize the assignment of different
labels to neighboring boundaries that have similar features, which can be written
as

ψi,j(yi, yj) = 1(yi �= yj) exp(−β‖xi − xj‖22) , (3)

where 1(·) is the indicator function, and β is a contrast-normalization constant
as suggested in [26]. In other words, we encourage neighboring shadows which
have similar features and strong local probabilities to be labelled as shadows.

The negative likelihood in (1) can be efficiently minimized using graph cuts
[27,28,29]. The free parameters were assigned the values of λ = 0.5 and β = 16
obtained by 2-fold cross-validation on a non-overlapping set of images.

Applying the CRF on our test images results in an improvement of roughly
1% in total classification accuracy, for a combined score of 80.5% (see Fig. 5-
(b)). But more importantly, in practice, the way the CRF is setup encourages
continuity, crossing through X-junctions, and discourages T-junctions as shown
in Fig. 2. Since shadows are usually signaled by the presence of X-junctions and
the absence of T-junctions [30], this reduces the number of false positives.
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(a) Input (b) Local classifier (c) Shadow contours

(d) Ground likelihood [18] (e) Combining (c) and (d)

Fig. 3. Incorporating scene layout for detecting cast shadows on the ground. Applying

our shadow detector on a complex input image (a) yields false detections in the vertical

structures because of complex effects like occlusion boundaries, self-shadowing, etc. (b)

& (c). Recent work in scene layout extraction from single images [18] can be used to

estimate the location of the ground pixels (d). We show how we can combine scene

layout information with our shadow contour classifier to automatically detect cast

shadows on the ground (e).

4 Incorporating Scene Layout

Until now, we have been considering the problem of detecting cast shadow
boundaries on the ground with a classifier trained on local features and a CRF
formulation which defines pairwise constraints across neighboring boundaries.
While both approaches provide good classification accuracy, we show in Fig. 3
that applying them on the entire image generates false positives in the verti-
cal structures of the scene. Reflections, transparency, occlusion boundaries, self-
shadowing, and complex geometry [30] are common phenomena that can confuse
our classifier. This results in image-wide classification results which might not
be useful for complex scenes (see Figs. 3(b)-(c)).

The advent of recent approaches which estimate a qualitative layout of the
scene from a single image (e.g. splitting an image into three main geometric
classes: the sky, vertical surfaces, and ground [18]) may provide explicit knowl-
edge of where the ground is. Since such a scene layout estimator is specifically
trained on general features of the scene and not the shadows, combining its out-
put with our shadow detector should reduce the number of false positive (non-
shadow) detections outside the ground. We now consider how such high-level
scene reasoning can be used within our shadow detection framework.
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4.1 Combining Scene Layout with Local Shadow Cues

To combine the scene layout probabilities with our local shadow classifier, we
can marginalize the probability of shadows over the three geometric classes sky
S, ground G, and vertical surfaces V :

Pcomb(yi|x) =
∑

c∈{G,V,S}
P (yi|ci,xi)P (ci|xi) , (4)

where ci is the geometric class label of boundary i, P (yi|ci,xi) is given by our
local shadow classifier, and P (ci|xi) by the scene layout classifier (we use the
geometric context algorithm [18]). Unfortunately, this approach does not actually
improve classification results because while it gets rid of false positives in the
vertical structures, it also loses true positives on the ground along the way. This
is due to the fact that shadow likelihoods get down-weighted by low-confidence
ground likelihoods. Thus, we need a different approach.

4.2 Combining Scene Layout with Shadow Contours

Intuitively, we would like to penalize an assignment to the shadow class when
the probability of being on the ground is low. When it is high, however, we
should let the shadow classifier decide. We can encode this behavior simply by
modifying the unary potentials φi(yi) from (2) in our CRF formulation:

φi(yi) =

{
− logP (ci = G|xi)− log P (yi = 1|xi) if yi = 1 (shadow)
(1− P (ci = G|xi))− log P (yi = 0|xi) if yi = 0 (non-shadow) .

(5)
Here, λ = 0.5 and β = 16 was found by cross-validation. They yield a good
compromise between local evidence and smoothness constraints.

This approach effectively combines local and mid-level shadow cues with high-
level scene interpretation results, and yields an overall classification accuracy of
84.8% on our test set (see Fig. 5) without adding to the complexity of training
our model. Observe how the results are significantly improved in Fig. 3(e) as
compared to the other scenarios in Fig. 3(b)-(c).

5 Experimental Results

We evaluate our approach on 135 consumer photographs downloaded from Label-
Me [16], Flickr, and images from the dataset introduced in [19]. In all cases,
we have no control over the acquisition settings, so images contain the typical
sources of distortions [31] such as jpeg compression, sharpening, sampling due
to resizing, non-linear response functions, image noise, etc. We first compare our
method with the current state of the art [12], then show shadow detection and
removal results on several challenging images.
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(a) Original image (b) Invariant img. [12] (c) Result with [12] (d) Our result

Fig. 4. Comparison with the shadow detection method of Finlayson et al. [12]. First
row : Using a high-quality linear image as input (a), our implementation of their method

successfully recovers a shadow-free 1-D invariant image (b), which is used to detect

shadow edges (c). Second row : However, if the input is not linear and corrupted by

noise or jpeg compression typical of consumer photographs, the 1-D invariant image

still contains some shadows (b), making it hard to tell them apart from other types of

edges (c). Our method detects shadows both in high and low quality images (d).

5.1 Comparison with Previous Work

The current state of the art in color-based shadow detection and removal in
single images is the approach of Finlayson et al. [12], which relies on a physics-
based model of shadows to compute an illumination-invariant image. Shadows
are then obtained by finding edges in the original image which are not present
in the invariant image. The first row of Fig. 4 shows that our implementation
of their approach successfully recovers a shadow-free invariant image from the
same high-quality, linear image used in their original paper [10]. Note that our
approach is able to extract similar results to theirs (Fig. 4(d)). When applying
their method on an image from our set, the performance degrades because the
invariant still contains strong traces of shadows (second row of Fig. 4).

This is also demonstrated in the quantitative comparison shown in Fig. 5-
(a), which compares our approach with the original shadow detection technique
of [11], and the most recent version [12]. Note here that we cannot generate
an ROC curve with the results of our CRF formulation, since the output is
binary, so we plot a point at its classification accuracy. To obtain ROC scores
for the competing methods, we first estimate the invariant image, and compute
the difference of gradient magnitudes between the original and the invariant
images. For fairness, we evaluate this score only at the strong boundaries in the
image. The ROC curve shows that our results greatly outperform the previous
work. This is most likely due to the use of features which are robust to artifacts
common in consumer photographs.
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(a) ROC curve comparison with previous work

Shadows Non-shadows Combined
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(b) Quantitative ground shadow classification results

Fig. 5. Quantitative results. We compare our local classifier with the methods pro-

posed by Finlayson et al. [11,12] (a). The table in (b) show the results obtained with

the approaches presented in Sects. 2 (local), 3 (CRF) and 4 (CRF + scene layout).

Integrating scene layout information from [18] results in ground shadow classification

accuracy of 84.8%.

5.2 Ground Shadow Detection and Removal

We summarize the quantitative results obtained by the technique presented in
this paper on our test set in Fig. 5-(b), which shows results obtained on the entire
image by the local classifier and the boundary CRF (Sects. 2 and 3), and those
obtained by combining the geometric context ground likelihoods (Sect. 4). The
best performance (84.8% accuracy) is obtained by our CRF formulation which
combines the scene layout results with our local shadow boundary classifier.

Fig. 6 shows ground shadow detection results on several images from our
dataset. It demonstrates that our method works on challenging outdoor images
with varying illumination conditions, ground colors and textures, and clutter.

The typical errors made by our method are shown in Fig. 7. It may fail to
detect shadows cast by thin structures like the lamppost in Fig. 7(a). Another
failure case arises when the ground has a color that is vastly different from all
the other images in the training set, as in Fig. 7(b). This can likely be improved
by increasing the size and diversity of the training set. A third failure mode is
due to errors in the estimated scene layout probabilities as in Fig. 7(c).

Once we have detected shadow boundaries, we can, as an application, use
the technique introduced in [10] to remove them and recover a shadow-free im-
age. There have been improvements proposed since then [32], but we chose the
original method for its simplicity. This approach involves setting the deriva-
tives of the image at shadow boundaries to zero, and reintegrating the result by
solving the Poisson equation with Neumann boundary conditions. Fig. 8 shows
shadow-free images that were computed using the boundaries detected by our
method.
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Fig. 6. Ground shadow detection results on images downloaded from the web (Flickr,

LabelMe [16]), and the dataset from [19]. First and third columns: input images; sec-

ond and fourth columns: detected ground shadows. Our approach successfully detects

ground shadows in many challenging, real-world conditions.
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(a) Very thin and blurry shadows (b) Unusual ground color

(c) Ground estimation errors

Fig. 7. Failure cases. The downside of using boundaries from an over-segmentation is

the trade-off between spatial support obtained from longer boundaries and the size

of shadow regions that can be detected. In our current setting, it may miss thin and

blurry edges, like the lamppost in (a). Our approach is also sensitive to vastly different

ground colors, which have never been seen by the classifier (b). Although our ratio-

based features are somewhat color independent, they are not able to compensate for

such drastic differences. Increasing the variety of ground colors in the training set

would likely improve performance on such extreme cases. (c) Errors in the scene layout

probabilities can lead to false positives.

Fig. 8. Automatic ground shadow removal from a single image. We apply the original

gradient reintegration method of [10] on the boundaries detected by our method. The

shadows are either completely removed or greatly attenuated, with few visual artifacts.
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5.3 Future Work

While our technique detects ground shadows with good accuracy, shadows that
are not on the ground exhibit significantly larger appearance variations, so de-
tecting them will be challenging. While our technique can be used as a stand-
alone shadow detector, we believe it can also be tightly integrated into higher
level scene understanding tasks. For example, the presence of an object implies
that a shadow should be nearby, and vice versa. We will be pursuing these re-
search avenues as future work.
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Abstract. We propose a model for classification and detection of object

classes where the number of classes may be large and where multiple in-

stances of object classes may be present in an image. The algorithm com-

bines a bottom-up, low-level, procedure of a bag-of-words naive Bayes

phase for winnowing out unlikely object classes with a high-level proce-

dure for detection and classification. The high-level process is a hybrid

of a voting method where votes are filtered using beliefs computed by

a class-specific graphical model. In that sense, shape is both explicit

(determining the voting pattern) and implicit (each object part votes

independently) — hence the term ”semi-explicit shape model”.

1 Introduction

One of the great challenges facing visual recognition is scalability in the face
of large numbers of object classes and detected instances of objects in a single
image. The task requires both classification, i.e., determine if there is a class
instance in the image, and detection where one is required to localize all the
class instances in the image. The scenario of interest is where a class instance
occupies a relatively small part of the image surrounded by clutter and other
instances (of the same class and other classes), and all of that in the face of a
large number of classes, say hundreds or thousands.

The two leading approaches for detecting multiple instances of an object class
in an image are sliding windows (cf. [1,2,3]), and voting methods (cf. [4,5]), which
are based on modeling the probabilities for relative locations of object parts to
the object center or more generally to the Hough transform.

The sliding-window approach applies the state-of-the-art binary (”one versus
many”) classification in a piece-meal fashion systematically over all positions,
scale and aspect ratio. The computational complexity of this scheme is unwieldy
although various techniques have been proposed to deal with this issue where
the most notable is the cascaded evaluation [1,6] where each stage employs a
more powerful (and expensive) classifier. Controlling the false positive rate, given
the very large number of classification attempts per image, places considerable
challenges on the required accuracy of the classifier and is typically dealt by
means of post-processing such as non-maximal suppression.
� This work was partially funded by ISF grant 519/09.
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In contrast to this, the voting approach parametrizes the object hypothesis
(typically, the location of the object center) and lets each local part vote for a
point in hypothesize space. These part-based methods combine large numbers of
local features in a single model by establishing statistical dependencies between
parts and the object hypothesis, i.e., by modeling the probabilities for relative
locations of parts to the object center [4]. In some cases, the spatial relationship
among the parts are not modeled thereby modeling the object as a ”bag of parts”
as in the Implicit Shape Model (ISM) of [4] and in other cases shape is repre-
sented by the mutual position of its parts through a joint probability distribution
[7,8,9,10]. The ISM approach is efficient and is designed to handle multiple in-
stances of an object class, however, the lack of shape modeling contaminates the
voting map with multiple spurious local maxima [5]. The probabilistic models
on the other hand require a daunting learning phase of fitting parameters to
complex probabilistic models although various techniques have been proposed
to deal with the complexity issue such as identifying ”landmark” parts [9,10]
or Tree-based part connectivity graphs [8]. Moreover, the probabilistic models
lack the natural ability to handle multiple instances in parallel (like ISM does),
although in some cases authors [8] propose detecting multiple instances in a se-
quential manner starting from the ”strongest” detected model after which nearby
parts are excluded to find the best remaining instance and so on. Finally, both
ISM and the explicit shape models would be challenged with increasing number
of object classes as there is no built-in filters for winnowing out the less likely
object classes given the image features before the more expensive object-class
by object-class procedures are applied.

Our proposed model combines a bottom-up ”bag of parts” procedure using a
naive Bayes assumption with a top-down probabilistic model (per object class).
The probabilistic model, on one hand, represents the shape by interconnection
of its parts and uses approximate inference over a loopy graphical model to
make inference. However, the inference results are not used explicitly to match
a model to an image but implicitly to filter out the spurious votes in the ISM
procedure. The voting of parts to object centers are constrained by the marginal
probabilities computed from the graphical model representing the object shape.
Therefore, spurious parts not supported by neighboring parts according to the
shape graph would not vote. Furthermore, the locations of maximal votes are
associated with a classification score based on the graphical model rather than
by the amount of votes. Because shape is used both explicitly and implicitly in
our model we refer to the scheme as ”semi explicit shape model”.

2 The Semi-explicit Shape Model

Let C1, ..., Cn stand for the n object categories/classes we wish to detect and
locate in novel images. Let P (Ck) be the prior on class Ck which can be estimated
from the training set (number of images we have from Ck divided by the size
of the training set). We assume that for each class we have a set of training
images where the object is marked by a surrounding bounding box. We describe
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below the training phase which consists of creating a code-book of features,
defining object ”parts” and their probabilistic relation to code words, and the
construction of Part connectivity graph per object class. Following the training
phase we describe in Section 2.2 the details of our classification and detection
algorithm.

2.1 The Training Phase

We start the training phase by constructing a ”code book” W by clustering all
the descriptors gathered around all interest-points from all the training images.
From the training images of the k’th object class we perform the following prepa-
rations: (i) delineate the Parts of the object each consisting of a 2D Gaussian
model and the collection of interest points and their descriptors associated with
the Part, (ii) a Part neighborhood graph which would serve during the visual
recognition phase as a graphical model for enforcing global spatial consistency
among the various Parts of the object, and (iii) construct the probabilistic rep-
resentation of object Parts by the conditional likelihood P (R | w) for all w ∈ W .
We present each step in more details below.

The Code Book: all training images are passed through a difference of Gaus-
sians interest point locator and a SIFT [11] shape descriptor vector is generated
per interest point and per scale. The area under each bounding box is represented
at different scales and recorded with each descriptor. We use an agglomerative
clustering algorithm (such as the Average-Link in [12]) to group together descrip-
tors of similar shape and of the same scale. An agglomerative clustering bounds
the quantization error (which in turn is bounded by the threshold distance pa-
rameter between descriptors) and allows to represent isolated descriptors (such
as those generated by object-specific image fragments) as clusters. A K-means
clustering approach, although superior computational-wise, would force isolated
descriptors to get associated with some larger cluster of common descriptors,
thereby increasing the quantization error. The i’th cluster is denoted by wi and
consists of the descriptor vectors di1 , ..., dimi

and the average descriptor di where
mi is the cluster size. Each code word is associated with some scale (as the clus-
tering is performed for each scale separately). The code-book W is the set of
”code words” wi(s), i = 1, ..., M and s is the scale label.

Object Parts Delineation: we define an object ”part” by a concentration
of interest points, collected over all the training images of the class. We do not
require the interest points to share similar descriptors in order to allow for ap-
pearance variability within the scope of the Part. For example, the area surround-
ing the Eye in a frontal human face is a natural part, yet people wear glasses
which renders the appearance of that area in the image undergo considerable
variation. On the other hand, our working assumption is that concentrations of
interest-points undergo only moderate variability. Thus, radically different view-
ing positions of an object, for example, are not currently included in our model
of an ”object class”. The point concentrations are detected and modeled as
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Fig. 1. Examples of model Parts for some classes of Caltech101 database. Each ellipse

depicts a 2D Gaussian associated with a separate Part.

follows. Given all the training images of class Ck, the bounding boxes around
the object are scale-aligned and interest point locations are measured relative
to the bounding-box center (object center). The collected interest-points over
all the training images of Ck are fed into a Gaussian-Mixture-Model (GMM) us-
ing the Expectation-Maximization algorithm [13]. The number of Parts (Gaus-
sian models) is determined by a minimum-description-length principle described
in [14]. The result is a list of Parts Rk

j represented by N(μk
j , Σk

j ) a 2D Gaussian
model, for j = 1, ..., nk where nk is the number of Parts of object class Ck. Note
that we have tacitly assumed that scale does not influence the Part structure of
the object (number and shape distribution). The assumption holds well in prac-
tice under a large range of scales and simplifies the algorithm. Fig. 1 illustrates
the Parts found in some of the Caltech101 images.

We define for each class a ”context” Part Rk
B which consists of the set of

descriptors from interest points located in the vicinity of the object bounding
box and collected over all the training images of Ck. The Context Part will be
used in the next section as additional evidence for the likelihood of Ck given a
novel image.

In addition, let F k
j be the set of descriptors of the interest points which were

assigned by the GMM algorithm to Part Rk
j . Since GMM provides a probabilistic

assignment of interest points to Parts, each interest point can belong to more
than one Part. We leave only the strong (above threshold) assignments, i.e.,
each interest point is associated with the highest probability Parts. Finally, let
F k =

⋃
j F k

j stand for the set of all descriptors of interest points of class Ck,
and F =

⋃
k F k the set of all descriptors collected from the training set.

Probabilistic Representation of Parts P (Rk
j | wi): we wish to represent

the Part Rk
j by its conditional probability given a word wi. Such a represen-

tation is useful for determining the likelihood of having Rk
j in an image given

interest points and their SIFT descriptors which in turn can be used to obtain
a preliminary classification score based on a naive Bayes model.

To compute P (Rk
j | wi), let |F k

j ∩ wi| denote the number of descriptors that
are in both the part Rk

j and the code word wi. The ratio |F k
j ∩wi|/|wi| is not a

good representation of P (Rk
j | wi) because it makes a tacit assumption that the
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prior P (Ck) is equal to |Fk|/|F | the relative number of descriptors from Ck —
an assumption that is obviously wrong.

We expand P (Rk
j | wi) while noting that P (Rk′

j | Ck) = 0 when k′ �= k:

P (Rk
j | wi) = P (Rk

j | Ck, wi)P (Ck | wi)

= P (Rk
j | Ck, wi)

P (wi | Ck)P (Ck)
P (wi)

=
|F k

j ∩ wi|
|F k ∩ wi|

|F k∩wi|
|F k| P (Ck)

|wi|/|F |

Note that if we substitute |Fk|/|F | for P (Ck) we obtain the ratio |F k
j ∩wi|/|wi|.

Following the cancelation of the term |F k ∩ wi| we obtain:

P (Rk
j | wi) =

|F k
j ∩ wi| · |F | · P (Ck)

|Fk| · |wi|
(1)

Note that the definition above applies to P (Rk
B | wi) as well where F k

j is replaced
by F k

B the set of descriptors of the Context Part.

Constructing the Part Connectivity Graph: an explicit shape model of
class Ck is represented by a connected (undirected) graph G(V k, Ek) whose set
of nodes V k correspond to the Parts Rk

j , j = 1, ..., nk and whose set of edges
Ek defines the ”Part neighborhood” to guarantee a global consistency structure
among the Parts. The neighborhood relations are determined by a Delaunay
triangulation [15] over the Gaussian centers μk

j which form the Part centers.

2.2 Detection and Recognition of Object(s) Instances in a Novel
Image

The training phase described above has generated (i) a code bookW where each
word w(s) ∈ W represents a set of image descriptors of similar appearance and
scale s, (ii) the j’th object Part Rk

j of class Ck represented by a 2D Normal
distribution in object-centered coordinates, (iii) a ”bag of words” association
between object Parts Rk

j and code words wi represented by the scalar P (Rk
j | wi)

(eqn. 1), and (iv) a Part connectivity graph.
Given a novel image I we wish to detect and recognize instances of the object

classes C1, ..., Ck allowing for multiplicity of objects and multiplicity of instances
of each object at different scales. The detection and classification process has two
phases:

– A low-level, bottom-up, ”bag of words” based classification of object classes.
Classification is based on the association P (Rk

j | wi) over all code-words and
Parts of each object class. Classification also forms a ranking of the possible
object classes thereby allowing the system to focus its high-level resources
on the most likely object classes that may be present in the image first.
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– A high-level classification and detection process: for each of the likely classes
Ck, the Part connectivity graph is matched to the image using a Tree-
Reweighted (TRW) approximate inference over a loopy graphical model.
Each Part obtains ”beliefs” on its possible locations in the image (allowing
for multiple instances). The Part locations with high Belief vote for the re-
spective object-class center. The result is a ”heat map” (like with the ISM
method) of possible centers of instances from Ck. Each object-center candi-
date in the heat-map is associated with a score given by the graphical model
inference which serves as a high-level classification score. This high-level pro-
cess is performed sequentially over each object-class limited to those classes
with high likelihood (as determined by the low-level phase).

We describe the two phases in detail below.

Likelihood of Classes as a Low-Level Process: the low-level classification
process is triggered from detected interest points and their associated SIFT de-
scriptors from the novel image. A nearest-neighbor search is performed to match
the descriptor of each interest point to a code-word. Because of the relatively
high dimension of the SIFT descriptor we use the locally-sensitive-hashing (LSH)
method based on random projections [16]. Let wI be the subset of code words
present in the input image, then the conditional likelihood P (Rk

j | I) of the Part
Rk

j existing in novel image I is:

P (Rk
j | I) =

∑
wi∈wI

P (Rk
j | wi)P (wi | I),

and the conditional log-likelihood log P (Ck | I) of the class Ck given the novel
image is determined by a Naive Bayes approach:

log P (Ck | I) =
nk∑
j=1

log P (Rk
j | I) + log P (Rk

B | I), (2)

where Rk
B is the Context part (defined above). The probabilistic representa-

tions above are ”bag of words” type of inference where the likelihoods of Parts
and object classes depend only on the existence of features (code words) and
not through their spatial interconnection. The inference of log P (Ck | I) follows
from a Naive-Bayes assumption on a co-occurrence relation between objects and
parts. This ”weak” form of inference is efficient and allows us to perform a pre-
liminary classification which also serves as a ranking of the possible classes by
means of log P (Ck | I). A similar approach of using nearest-neighbors with a
naive-Bayes approach (but without a code book and other details of Parts and
their probabilistic relation to code words) was introduced by [17].

High-level Classification and Detection: this phase is performed on each ob-
ject class Ck whose classification score log P (Ck | I) was above threshold, i.e., the
high-level process focuses its resources on the most likely object classes first. We
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construct an inference problem defined by a joint probability P (xk
1 , ..., xk

nk
) us-

ing the connectivity graph G(V k, Ek) for defining direct interactions among the
variables. The variable xk

j is defined over a finite set of values representing the
possible locations of the Part Rk

j in the image. The marginal probability distri-
bution P (xk

j ) represents the probability (”belief”) P (xk
j = r) for Rk

j to be found
in location r in the image. Each possible location r votes to Ck’s object center if
P (xk

j = r) is above threshold. The result of the voting process is a ”heat-map” for
instances of Ck in the image. The value of P (xk

1 = r1, ..., x
k
nk

= rnk
) provides a

classification score of an instance of Ck at a specific location in the image where,
unlike the low-level phase where the score was based on a ”bag-of-words” setting,
the score is based on satisfying the connectivity constraints among object parts.
We therefore have both detection (via the heat-map) and classification achieved
simultaneously. We present the scheme in more details as follows.

Let I = I1, ..., IM be the set of interest points and their associated descrip-
tors located in the novel image and let w1, ..., wM the corresponding code-
words (found using LHS nearest-neighbor approximation). Let Ik

j ∈ I be the
subset of interest points for which their corresponding code-words wi satisfy
P (Rk

j | wi) > ε for some threshold ε. In other words, the set Ik
j are the interest

points in the novel image that are likely to belong to the Part Rk
j . We perform

agglomerative clustering on Ik
j where the similarity measure is the Mahalanobis

distance with zero mean and covariance matrix of Rk
j (recall that each Part is

associated with a Normal distribution) for each pair arising from the same scale
and infinity otherwise. Since each code word has an associated scale, interest
points arising from different scales will not be clustered together. Let nk

j be the
number of clusters found and γ1, ..., γnk

j
are the clusters of the respective code

words associated with Ik
j and l1, ..., lnk

j
are the geometric centers of the clusters.

Let xk
j ∈ {1, ..., nk

j } be a random variable associated with the possible locations
of the Part Rk

j (where each location is a cluster of interest points of scale s for
which P (Rk

j | wi(s)) > ε ).
The joint probability distribution over the variables xk

j , j = 1, ..., nk has the
form:

P (xk
1 , ..., xk

nk
) =

1
Z

nk∏
j=1

φj(xk
j )

∏
(i,j)∈Ek

ψi,j(xk
i , xk

j ), (3)

where φj(xk
j ) represents the ”local evidence”, i.e., φj(xk

j = r) is the probability
that Rk

j is located at location r from local evidence alone:

φj(xk
j = r) = 1−

∏
wi∈γr

[
1− P (Rk

j | wi)
]
,

and ψi,j(xk
i , xk

j ) are the pairwise ”potential” functions on pairs of Parts that
are incident in the connectivity graph. The value of ψi,j(xk

i = r, xk
j = q) repre-

sents the likelihood that the two Parts are located in positions r, q (and scale s)
respectively:
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Fig. 2. Each image shows a Part Rk
j (Red Ellipse) with the set of candidate locations xk

j .

Locations with high belief are those who vote and are drawn with an arrow pointing to

the object center. The beliefs generated by the graphical model form a strong constraint

on the voting pattern of Part candidates so that only those locations who have global

shape support end up voting. The images contain multiple instances thus the belief

pattern of P (xk
j ) is multi-modal. Candidate locations from both object instances end

up voting.

ψi,j(xk
i = r, xk

j = q) = N(lr − lq; μij , Σij),

where μij , Σij is the scaled difference Normal distribution where μij = (μk
i −μk

j )s
and Σij = (Σk

i +Σk
j )s2. We set ψ() = 0 in case positions r, q are associated with

different scales.
The marginal probabilities P (xk

j ) hold the likely Part locations, i.e., if P (xk
j =

r) is above threshold then we have a certain ”belief” that lr (the geometric center
of γr the r’th cluster) is where the Part Rk

j is centered. Because we may have
multiple instances of Ck in the image, P (xk

j = r) may have a multi-modal profile
where more than a single Part location is supported by the connectivity graph.

Computing the marginal probabilities is computationally infeasible and in-
stead we resort to ”approximate inference”. Since the connected graph has loops,
the sum-product Belief-Propagation (BP) algorithm is not guaranteed to con-
verge. Moreover, regardless of convergence, the BP algorithm tends to settle on
single-modal beliefs, i.e., P (xk

j ) will come out single-modal even when multiple
instances of Ck exist in the image. We used the Tree-reweighted (TRW) convex-
free-energy variational approximation which is both guaranteed to converge and
is not limited to single-modal solutions. Specifically, we used the sum-TRBP [18]
implementation (even though convergence is not guaranteed). Convergence guar-
anteed TRW algorithms (and general convex-free-energy) can be found in [19].

The marginal probabilities P (xk
j ) play two roles in the high-level detection

and classification process. First is to ”clean up” the voting of Part candidates
to object centers, and second to obtain a high-level (shape-based) classification
score for each detected instance of Ck in the image. Those are detailed below.

Voting: once the (approximate) marginal probabilities P (xk
j ) are estimated we

perform a voting procedure: For each Part Rk
j , the candidate Part centers lr

will vote to the respective object center if P (xk
j = r) is above threshold. Fig. 2

illustrate the constrained voting procedure: in each image a Part is shown marked
by an Ellipse and all candidate locations for the Part are marked by circles. Only
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Fig. 3. From heat-map to classification score: the middle column shows the heat map

generated by ISM (i.e., without our high-level filtering using beliefs generated from

sum-TRBP). The third column shows the heat-map generated by our algorithm. It

is evident that most of the voting contamination has been removed. The centers of

maximal votes found by Mean-Shift are marked on the heat-maps. The righthand

column shows the classification score (generated by the joint probability distribution)

associated with each of the heat map centers. The top and bottom rows show the cases

where the class is the correct one and one can see that the true heat map center has

the (significantly) highest classification score (No. 5 in top, and 5,6 in bottom). The

middle row shows a case where the class is not found in the image. In that case all

classification scores are close to zero (the scale is 10−3).

those locations which received high belief make a vote and are displayed with
an arrow towards the object center. It is evident than only a small fraction of
the possible locations eventually make a vote and that the procedure is able to
concentrate on both instances simultaneously due to the usage of the sum-TRBP
algorithm.

In other words, the voting process is a ”filtered” version of the ISM method.
Rather than having all Part candidates vote for their respective object center,
only those candidates with high Belief perform the voting. This ”high-level fil-
ter” has a dramatic effect on reducing the ”clutter” formed by spurious votes on
the resulting object-centers ”heat map” (see Fig. 3).

High-level Classification: the voting process creates a heat-map where loca-
tions having many votes are likely to form centers of instances of Ck, thus the
”strength” of a candidate instance can be directly tied to the number of votes
the center has received — this is the underlying premise of ISM. However, we
can do better and obtain a classification measure by evaluating P (xk

1 , ..., xk
nk

)
for every instance candidate (a center receiving sufficient votes), as follows. Con-
sider a candidate center c and the set of locations Lc which have voted to it.
Each location is associated with a Part Rk

j and with a value of its corresponding
position label xk

j . Let Lc(j, k) ⊂ Lc be the locations corresponding to Rk
j and

let r1, ..., rb be the values of xk
j corresponding to the locations Lc(j, k). Normally

b = 1, i.e., there is only one location for Rk
j and the value of xk

j is set accordingly
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(to r1). In case b > 1, then xk
j = argmaxqP (xk

j = rq). In case Lc(j, k) = ∅, i.e.,
Part Rk

j did not vote to center c, then xk
j is set to the label with maximal belief.

Once xk
1 , ..., xk

nk
are set to their value, we evaluate P (xk

1 , ..., xk
nk

) according to
eqn. 3. The value of the joint probability measure both local fit of Parts and
global consistency among parts and therefore serves as our classification score
of the candidate instance of Ck at center c. The difference between the Naive-
bayes score P (Ck | I) (eqn. 2) and the high-level classification score is dramatic
at time boosting accuracy of recognition by significant amounts. Fig. 3 shows
examples of heat-maps with the maximal centers (estimated using mean-shift
procedure) together with the classification scores associated with those centers.
It is evident that true center candidates have a much higher classification score
than spurious centers (despite them having a similarly large number of votes).
In images where the object class is not present, all candidate centers have a low
classification score.

3 Experiments

We have tested our model on two standard datasets, Clatech101 [20] and Pascal
VOC 2006 [21]. The Caltech101 dataset contains images containing a single
dominant object from 101 classes including cars, faces, airplanes, motorbikes
among other classes. The instances from those classes appear approximately
at similar scale and pose in all images. Each object class is found in between
100 to 800 images. The Pascal dataset is more challenging as it contains 5000
images, split evenly to training and testing subsets, of ten object classes with
varying scale and viewpoint where each image may contain multiple instances of
object classes. As a result objects are less dominant in the image compared to
Caltech101 thereby making the task of detection and classification challenging.
Fig. 4 shows the Parts detected in test images by taking the locations of highest
belief for each part of the object class in question. One can see the detected
Parts agree with their true locations on the test images.

With the Calctech101 dataset we performed the object versus other objects
categorization experiment, where the goal is to classify an image to one of the
101 object classes. We have removed the Faces easy class, since the objects is
this class are identical to the objects in the class Faces, so the number of classes
in our experiments was 100. In this test we selected a training set of 15 images
per class and a test set of 15 images per class. We collected around 750, 000
features for each object scale (we have used 5 scales) and clustered them into a
code book of sizes ranging from 60, 000 to 80, 000 and the number of Parts per
object varied between 8 to 15. During the testing phase, each image produced
between 100− 1000 interest points and each part had between 10− 30 possible
locations. Mean running time for a test image was under 5 seconds on a standard
3GHZ CPU. We ran both classifiers: our low-level naive Bayes classifier P (Ck | I)
and the high-level detection and classification( in this case the categorization is
performed by selecting the class with highest detection score). Table 1 shows
comparison of our results to other methods on the Caltech101 dataset.
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Fig. 4. Examples of correct detections of classes ’face’, ’car’, ’motorbikes’ and ’air-

planes’ from Caltech101 dataset. Each circle in the images represent most probable

location of a different Part of the object’s shape model. The Red dots inside the circles

are the interest points belonging to this Part.

Table 1. Categorization performance comparison our approach and other methods on

the Caltech101 dataset

Naive Bayes High-Level [17] [22] [23] [24] [25]

51.70% 68.80% 65.00% 59.30% 59.10% 52.00% 56.40%

With the Pascal VOC 2006 dataset, we used the provided training set (of
2500 images) to create a model for each of the four view points of each object
and tested our algorithm in both categorization and detection tasks. From the
training images of the Pascal database we extracted more then 2,500,000 SIFT
features, which resulted in around 100,000 code words for each scale. During the
model creation we have used the view information available in the dataset to
construct separate models for each of the existing four views (left, right, rear
and frontal) in a similar manner to that used for Caltech101.

For the classification test, the classification score is computed (by taking the
center with the highest classification score from the heat map) per object class.
Since an image can contain a number of object classes, an ROC curve is con-
structed and the area under the curve is taken for the performance measure.
Table 2 shows the classification performance of our algorithm for all the ten
classes, compared to the low-level naive Bayes phase of our algorithm. In most
classes the shape model boosts the performance but in some case, such as with
the class of Pedestrians, the performance actually decreases. The reason for that
is that Pedestrians instances are sometimes at a very small scale and the system
does not detect a sufficient number of interest points to enable the graphical
model to perform as expected. On the other hand, those images often contain
multiple Pedestrians thus the ”bag of code words” underlying the naive Bayes
procedure collects evidence from the multiple instances.

For the detection task, performance is measured by the overlap between
bounding boxes. Fig. 5 shows some detection results on a sample of test images
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Table 2. Performance comparison between the high-level classification and the naive

Bayes low-level classification on the Pascal VOC 2006 dataset

bicycle bus car cat cow dog horse motorbike person sheep

High-Level 90% 93% 90.9% 85.4% 88.5% 77.3% 72.4% 86.4% 60% 87.3%

Naive Bayes 87.3% 90.7% 89% 82.5% 85.9% 75.7% 68.4% 78.7% 67.7% 82.7%

Fig. 5. Examples of detections from the Pascal VOC 2006 dataset (see discussion in

text)

Table 3. Performance comparison between the proposed algorithm and published re-

sults by other methods (sliding window and voting) on the Pascal VOC 2006 dataset

bicycle bus car cat cow dog horse motorbike person sheep

Our 0.36 0.184 0.621 0.171 0.39 0.18 0.37 0.55 0.33 0.41

Cambridge 0.249 0.138 0.254 0.151 0.149 0.118 0.091 0.178 0.030 0.131

ENSMP - - 0.398 - 0.159 - - - - -

INRIA Douze 0.414 0.117 0.444 - 0.212 - - 0.390 0.164 0.251

INRIA Laptev 0.44 - - - 0.224 - 0.140 0.318 0.114 -

TUD - - - - - - - 0.153 0.074 -

TKK 0.303 0.169 0.222 0.160 0.252 0.113 0.137 0.265 0.039 0.227

FeiFei09] - - 0.310 - - - - - - -

Felzenszwalb’09 0.619 0.49 0.615 0.188 0.407 0.151 0.392 0.576 0.363 0.404

where we can see the ability of the algorithm to handle occlusions, view and scale
variations and multiple instances of an object appearing in the same image. Ta-
ble 3 summarizes the detection performance of our algorithm in comparison to
other methods. As it can be seen from the table our system outperforms many
methods on most of the classes except the sliding-window method by [3]. The
running time per image in the Pascal dataset is less than 4 seconds compared
to much longer running times by other methods.

4 Summary

We described an object detection and classification scheme based on a voting
mechanism. Our system starts with a bottom-up Naive-Bayes ”bag of words”
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classification for ranking the possible class models present in the image followed
by a top-down voting of visual code words (through Parts) to potential object
classes. The voting mechanism is filtered by explicit shape models represented by
graphical models. The ”beliefs” computed by each of the graphical models leave
intact votes from code-words which gain structural support by other code-words
in the graph. The system is designed to scale gracefully with the number of
classes and achieves comparable, and often superior, detection and classification
accuracies than other systems which have a considerably higher run-time.
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Abstract. We present a novel framework for the recognition of facial

expressions at arbitrary poses that is based on 2D geometric features. We

address the problem by first mapping the 2D locations of landmark points

of facial expressions in non-frontal poses to the corresponding locations

in the frontal pose. Then, recognition of the expressions is performed

by using any state-of-the-art facial expression recognition method (in

our case, multi-class SVM). To learn the mappings that achieve pose

normalization, we use a novel Gaussian Process Regression (GPR) model

which we name Coupled Gaussian Process Regression (CGPR) model.

Instead of learning single GPR model for all target pairs of poses at

once, or learning one GPR model per target pair of poses independently

of other pairs of poses, we propose CGPR model, which also models the

couplings between the GPR models learned independently per target

pairs of poses. To the best of our knowledge, the proposed method is

the first one satisfying all: (i) being face-shape-model-free, (ii) handling

expressive faces in the range from −45◦ to +45◦ pan rotation and from

−30◦ to +30◦ tilt rotation, and (iii) performing accurately for continuous

head pose despite the fact that the training was conducted only on a set

of discrete poses.

1 Introduction

Facial expression recognition has attracted significant attention because of its
usefulness in many applications such as human-computer interaction, face ani-
mation and analysis of social interaction [1,2]. Most existing methods deal with
images (or image sequences) in which depicted persons are relatively still and
exhibit posed expressions in nearly frontal view [1]. However, most of real-world
applications relate to spontaneous human-to-human interactions (e.g., meeting
summarization, political debates analysis, etc.), in which the assumption of hav-
ing immovable subjects is unrealistic. This calls for a joint analysis of head pose
and facial expressions. Nonetheless, this remains a significant research challenge
mainly due to the large variation in the appearance of facial expressions in dif-
ferent views and the difficulty in decoupling these different sources of variation.

Most of the existing approaches that perform pose-invariant facial expression
recognition are based on 3D face models. For example, Chang et al. [3] built

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 350–363, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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a probabilistic model on the generalized expression manifold obtained from 3D
facial expression range data to recognize the prototypic facial expressions. To
the same aim and to analyze the dynamics of facial expressions, Sun and Yin
[4] applied 3D dynamic facial surface descriptors. Furthermore, several works
proposed to apply 3D Active Appearance Models (AAM) for pose-invariant facial
expression analysis (e.g. Sung and Kim [5], Cheon and Kim [6]). Zhu and Ji [7]
used 3D Point Distribution Model (3D-PDM) and normalized SVD to recover
the facial expression and pose. Wang and Lien [8] used similar 3D-PDM to
separate the rigid head rotation from non-rigid facial expressions. Kumano et al.
[9] applied a rigid face shape model to build person-dependent descriptors that
were later used to decompose facial pose and expression simultaneously. Despite
the fact that 3D face models have advantage over 2D approaches in that the
effect of head pose on the facial expression analysis can be removed (although
this usually comes at the expense of the recovered facial expression accuracy), the
main disadvantage is the use of generative models and fitting techniques that can
fail to converge. Also, most of these methods are computationally expensive and
in need of time-consuming initialization process (e.g. due to manual annotation
of more than 60 facial landmark points). Moreover, some of the aforementioned
methods such as AAM need to be trained for each person/ facial expression/
head pose separately which makes those methods difficult to apply in real-world
applications where unknown subjects/ expressions can be expected.

In contrast to increasing interest in pose-invariant facial expression analysis
based on 3D and 2D face-shape models, pose-invariant facial expression analysis
based on 2D shape-free methods has been scarcely investigated. This is mostly
due to the fact that rigid head motions and non-rigid facial expressions are
non-linearly coupled in 2D and difficult to decouple using existing algorithms
[7]. For this reason, most of the proposed 2D pose-invariant methods address
the problem of (expressionless) face recognition but not the problem of facial
expression recognition (e.g. [10]). To the best of our knowledge, the only work
that analyzed the problem of pose-invariant facial expression recognition using a
2D shape-free approach is the work by Hu et al. [11]. They proposed a set of pose-
wise facial expression classifiers that are used to discriminate simultaneously
facial expressions and horizontal head orientations at five pan angles (0◦, 30◦,
45◦, and 90◦). However, the performance of this method has not been analyzed
for unknown head poses, i.e. poses that were not used to train the classifiers.
Moreover, because the classifiers were trained pose-wise, it is not possible to
perform recognition of facial expressions that were not included in the training
dataset for the given pose (in other words, this facial expression recognition
method cannot generalize across poses).

In this paper we propose a 2D face-shape-free method for pose-invariant fa-
cial expression recognition. We address the problem by mapping 2D facial points
(e.g., mouth corners) from non-frontal poses to the frontal pose where the recog-
nition of facial expressions can be performed by using any state-of-the art facial
expression recognition method. The proposed three-step approach is illustrated
in Fig. 1. In the first step, we perform head pose estimation by projecting the
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Fig. 1. The overview of the proposed three-step approach. Legend: p∗ are the 2D

locations of facial landmarks from the input facial image, P (ki|pLDA
∗ ) is the probability

of p∗ belonging to the pose ki, where k0 is the frontal pose. The bidirectional lines in

the pose normalization step represent the coupled head poses, and the directed lines

represent the CGPR models learned per pair of poses (ki, k0). p̂0
∗ is the prediction of p∗

in the frontal pose obtained as a linearly weighted combination of the aforementioned

CGPR models where the weights are proportional to P (ki|pLDA
∗ ).

input datum (i.e. 2D facial points locations) to a low-dimensional manifold (at-
tained by the means of multi-class LDA) and by estimating the probability of it
belonging to each of the discrete poses for which training data are available. In
the second step, we use the novel Coupled Gaussian Process Regression (CGPR)
model to perform pose normalization, that is, to learn mappings between the 2D
locations of landmark points of the facial expressions in non-frontal poses and
their locations in the frontal pose. Instead of using single Gaussian Process Re-
gression (GPR) model for all target pairs of poses at once, or using only one
GPR model per target pair of poses, we propose CGPR models, which also
model the couplings between the GPR models learned independently per tar-
get pairs of poses. To enable accurate performance for continuous head pose
(i.e. for unknown poses), the predictions of the facial landmark locations in the
frontal pose obtained by CGPR models from different poses are linearly com-
bined (where the weights are based on head-pose probabilities obtained by the
pose estimator in the first step of the proposed approach). The last step in our
approach is facial expression classification in the frontal pose attained using the
multi-class Support Vector Machine classifier.

The contributions of the proposed methodology are summarized as follows.

1. We propose a 2D face-shape-model-free approach to pose-invariant facial ex-
pression recognition that can handle expressive faces in the range from −45◦

to +45◦ pan rotation and from −30◦ to +30◦ tilt rotation. The proposed
approach performs accurately for continuous head pose despite the fact that
the training was conducted only on a set of discrete poses. It can also han-
dle successfully the problem of having an unbalanced training dataset (i.e.,
when examples of certain facial expression categories are not included in the
training dataset for a given discrete pose).

2. We propose a novel head pose normalization approach based on the lin-
early weighted combination of the newly proposed Coupled Gaussian Process
Regression (CGPR) models, which model the couplings between the GPR
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models learned per target pairs of poses. We employ GPR model since it
provides not only the predictions of the facial landmark points in the frontal
pose but also the uncertainty in these predictions (obtained through its co-
variance function) [12]. Moreover, the couplings between the GPR models
can be embedded in their covariance structure in a very natural and straight-
forward manner. Although CGPR is a multiple-output GPR model, it does
not model the dependences between its outputs (as done by the dependent-
output GPR model such as the one proposed in [13]). Instead, CGPR models
the dependences between the predictions obtained by different GPR mod-
els (i.e., GPR models learned for different poses). For these newly proposed
CGPR models, we show experimentally that the proposed scheme outper-
forms a linearly weighted combination of GPR models learned per target
pairs of poses which, in turn, outperforms baseline methods for pose nor-
malization as 2D- and 3D-PDM.

The rest of the paper is organized as follows. In Section 2 we present our approach
to pose-invariant facial expression recognition. In Section 3 we describe the newly
proposed CGPR model. Experimental studies are discussed in Section 4, while
Section 5 concludes the paper.

2 Pose-Invariant Facial Expression Recognition

In this section we describe a novel 2D face-shape-model-free approach to pose-
invariant facial expression recognition given the 2D locations p ∈ Rd of L = d/2
facial landmarks of a face at an arbitrary pose. The proposed approach consists
of three main steps: (i) head pose estimation by using a pose classifier on p, (ii)
pose normalization by mapping the positions p of the facial landmarks from a
non-frontal pose to the corresponding 2D positions p0 in the frontal pose, and
(iii) facial expression classification in the frontal pose. These steps are described
in detail in the following sections and are summarized in Alg. 1. The theory
behind the second step, that is the proposed CGPR model, is described in detail
in Section 3.

In what follows, we assume that we have training data for each of P discrete
poses and the correspondences between the points for each target pair of poses
(non-frontal and frontal pose). In our case, we discretized the head pose space
which resulted in P = 35 poses evenly distributed across the range from −45◦

to +45◦ pan rotation and from −30◦ to +30◦ tilt rotation. We denote by Dk =
{pk

1 , ..., p
k
Nk
} the data set from pose k, and by D =

{
D0, ..., Dk, ..., DP−1

}
the

whole training data set, where Nk represents the number of training data in the
pose k.

2.1 Head Pose Estimation

Various head pose estimation methods based on appearance and/or geometric
features are proposed in the literature [14]. We propose to estimate the probabil-
ity of each head pose belonging to a discretized head-pose space represented by
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a low-dimensional manifold attained by means of multi-class LDA. Firstly, we
normalize all examples from D (2D locations of facial landmarks in P poses), to
remove the scale and translation components, as described in [15]. Secondly, to
learn the manifold from such normalized data, we employ multi-class LDA since
it is a simple linear transform that, given a training set with known pose labels,
finds a low dimensional manifold which best represents pose variations while ig-
noring variations due to facial expressions. The estimated probability of input 2D
facial points locations p being in pose k is given by P (plda|k) = G(plda; μk, Σk),
where G is a normal density centered at μk and with covariance Σk. plda is the
projection of p onto the low dimensional manifold. By applying Bayes’ rule, we
obtain the probability of being in pose k as P (k|plda) ∝ P (plda|k)P (k), where
we assume a uniform prior P (k) = 1/P .

2.2 Head Pose Normalization

Given input data p∗ containing the 2D locations of the facial points in an un-
known head pose, our goal is to predict the location of these points in the frontal
pose p̂0

∗. To this end, we learn the functions f
(k)
C (p∗) (1 ≤ k ≤ P ) which are

later used to make predictions for input data p∗. These functions are modeled
by the proposed CGPR models described in detail in Section 3. Thus, given
p∗, P (k|plda

∗ ) and f
(k)
C (p∗), we obtain the locations of the frontal facial land-

marks p̂0∗ as a linearly weighted combination of f
(k)
C (p∗) for all k which satisfy

P (k|plda
∗ ) > Pmin, where the weights are proportional to the head pose prob-

abilities P (k|plda
∗ ). The mathematical formulation of this is given in Step 2 in

Alg. 1. Let us mention here that before f
(k)
C is applied to p∗, it is registered to

a reference face in pose k using a simple affine transform. The latter is calcu-
lated using five referential points: the nasal spine point and the inner and outer
corners of the eyes (because they are stable facial points and the contractions of
the facial muscles do not affect them).

2.3 Facial Expression Classification in Frontal Pose

We address the problem of pose-invariant facial expression recognition by per-
forming pose normalization first, and subsequently applying any 2D-geometric-
feature-based facial expression recognition method to the normalized input data
(see [1]). In this paper, we use the multi-class SVM with decision function is
given by

l = arg max
z

(
∑

i:p0
i ∈Tz

αiK(p0
i , p̂

0
∗) + bz), z = 1...Z, (1)

where αi and bz are the weight and bias parameters, and K(p0
i , p̂

0∗) is a vector of
inner products between the training data p0

i ∈ D0, containing Z facial expres-
sions, and an estimate of p∗ in the frontal pose, p̂0∗. The set Tz contains data
points that depict facial expression z.
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Algorithm 1. Pose-Invariant Facial Expression Recognition
Input: Positions of facial landmarks in an unknown pose (p∗)
Output: Facial expression label (l)
1. Apply the pose estimation (Sec. 2.1) to obtain P (k|plda

∗ ), k = 0 .. P − 1

2. Register p∗ to poses k ∈ K which satisfy P (k|plda
∗ ) > Pmin (Sec. 2.2), and predict

the locations of the facial landmarks points in frontal pose

p̂0
∗ = 1∑

k∈K
P (k|plda∗ )

∑
k∈K

P (k|plda
∗ )f

(k)
C (pk

∗)

3. Facial expression classification in frontal pose (Sec. 2.3)

l ← arg max
z

(
∑

i:p0
i ∈Tz

αiK(p0
i , p̂

0
∗) + bz)

3 Coupled Gaussian Process Regression (CGPR)

In this section we describe a novel methodology for learning functions that map
the 2D locations of facial points p in non-frontal poses to the corresponding 2D
locations in the frontal pose. We learn a set of such functions, denoted by f

(k)
C ,

each one of which is associated with a certain pose k, where k is one of the
discrete poses P for which training examples are available (i.e. 0 ≤ k ≤ P − 1).
Roughly speaking, f

(k)
C (p∗) is expected to provide good mappings for p∗ obtained

at an arbitrary pose that is relatively close to the pose k.
In order to learn f

(k)
C , we learn a set of P−1 mapping functions {f (1), .., f (P−1)}

first, where the function f (k) maps the positions of the landmark points pk in
pose k to the corresponding points p0 in the frontal pose. f (k) is learned using a
GPR model for the target pair of poses (k, 0) based on the datasets Dk and D0,
i.e., the sets that contain landmark points p in pose k and in the frontal pose
denoted by 0.

3.1 Gaussian Process Regression (GPR)

In this section we describe the base GPR model for learning the mapping func-
tions fk. Formally, given a set of Nk examples of facial images containing the
landmark locations in pose k, and the corresponding landmark locations in the
frontal pose 0 (i.e. {Dk, D0}), we learn the function f (k): Rd → Rd that maps
pk

i ∈ Dk to p0
i ∈ D0, where i = 1..Nk. Assuming Gaussian noise εi with zero

mean and covariance matrix σ2
nI, this is expressed by p0

i = f (k)(pk
i )+εi. In GPR

model, a zero mean Gaussian process prior is placed over the function f (k), that
is f (k) ∼ GP (0, K + σ2

nI), where K(Dk, Dk) denotes Nk × Nk matrix of the
covariances evaluated at pairs (pk

i , pk
j ) by applying the kernel

k(pk
i , pk

j ) = σ2
s exp(−1

2
(pk

i − pk
j )T W (pk

i − pk
j )) + σlp

k
i pk

j + σb, (2)

where i, j = 1..Nk. σs and W = diag(w1, ..., wd) are the parameters of the
radial basis function with different length scales for each input dimension (each
coordinate of each landmark point), σl is the process variance which controls
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the scale of the output function f (k), and σb is the model bias. This kernel has
been widely used due to its ability to handle both linear and non-linear data
structures [16]. During inference, we obtain the predictive mean f (k)(pk∗) and
the corresponding variance V (k)(pk

∗) for a new input pk
∗ as

f (k)(pk
∗) = kT

∗ (K + σ2
nI)−1D0 (3)

V (k)(pk
∗) = k(pk

∗ , p
k
∗) − kT

∗ (K + σ2
nI)−1k∗ (4)

where k∗ = k(Dk, pk
∗), and k(·, ·) is given by Eq.( 2). The kernel parameters

θ = {σs, W, σl, σb, σn} are found by maximizing the log marginal likelihood of
the training outputs using the conjugate gradient algorithm [12]. We assume
here that the output dimensions (each coordinate of each landmark point in p0

i )
are a priori identically distributed [12]. This allows us to easily handle multiple
outputs by applying the same covariance matrix to each output.

3.2 Learning Couplings

The mapping functions {f (1), ..., f (k), ..., f (P−1)} are learned independently for
each target pair of poses; however, they need not be independent. Moreover,
if the outputs obtained by different mapping functions are correlated, inferring
the couplings between them may help obtain better predictions [17]. We model
the coupling between two functions, f (k1) and f (k2), for pose k1, using Gaussian
distribution on the differences of their predictions obtained by evaluating these
functions on the training data Dk1 . It is expressed by

P (f (k1), f (k2)|k1) ∝ exp(−1
2
dT Σ−1d), (5)

where d = f (k1)(pk1∗ ) − f (k2)(pk1∗ ), and Σ = σ2
(k1,k2)I. The variance σ2

(k1,k2)

measures the extent to which f (k2) is coupled (i.e., similar) to f (k1). Alternatively,
this can be seen as an independent noise component in the predictions made by
f (k2) because it is evaluated on data from different pose, i.e., pose k1. Since we
assume that this noise is Gaussian and independent of the noise process modeled
by f (k2), their covariances can simply be added [12]. Accordingly, we update the
mean and variance given by Eq.(3) and Eq.(4), respectively, to obtain the mean
and variance of CGPR model, that is

f (k1,k2)(pk1∗ ) = kT
∗ (K2 + (σ2

n + σ2
(k1,k2))I)−1D0 (6)

V (k1,k2)(pk1∗ ) = k(pk1∗ , pk1∗ ) − kT
∗ (K2 + (σ2

n + σ2
(k1,k2))I)−1k∗, (7)

where k∗ = k(Dk2 , pk1∗ ). It is clear that the smaller the coupling between the
functions f (k1) and f (k2), the higher the uncertainty in the predictions obtained
by f (k1,k2). In the case of perfect coupling (when σ2

(k1,k2) → 0), we do not increase
the uncertainty in the predictions obtained by f (k1,k2) (which converges to f (k2)).
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On the other hand, when there is no coupling (σ2
(k1,k2) → ∞), we obtain the prior

mean and covariance of f (k2) (f (k1,k2)(pk1∗ ) → 0 and V (k1,k2)(pk1∗ ) → k(pk1∗ , pk1∗ )).
Because the variance of such prediction is the highest possible (learned by the
model), this prediction will be suppressed by the covariance intersection rule
described in Sec 3.4. Finally, the covariance matrix of CGPR model is guaranteed
to be positive definite (the covariance matrix of the base GPR models learned
in Sec. 3.1 is positive definite) since we only add a positive term to the diagonal
of the covariance matrix in Eq.(6)&(7) [12].

3.3 Pruning CGPR Models

The couplings between all functions pairs (f (k1), f (k2)) can be easily learned.
Nevertheless, inference utilizing all them would be slow. Also, not all of the
coupled functions f (k1,k2) contribute significantly in reducing the uncertainty in
the predictions. As a pruning criterion, we propose using a measure based on the
number of effective degrees of freedom of a GP [18]. In the framework of CGPR
model, it has the following form

C
(k1,k2)
eff =

Nk2∑
i=1

λi

λi + σ2
n + σ2

(k1,k2)
(8)

where λi are the eigenvalues of the matrix K2. If σ2
(k1,k2) is large, C

(k1,k2)
eff → 0

and the predictions made by f (k1,k2) can be neglected. We compare the ra-
tio C

(k1,k2)
eff /C

(k1)
eff to a threshold Cmin to decide which coupled functions are

relevant.

3.4 Covariance Intersection (CI)

In this section we describe how to fuse the predictions obtained by different
mapping functions f (k1) and f (k1,k2) in order to obtain a single prediction f

(k1)
C

associated with pose k1. A straightforward solution would be to select weighting
functions inversely proportional to the variance of the predictions obtained by
the individual functions. However, this fusion rule is optimal only if the pre-
dictions (i.e. their errors) are uncorrelated [17]. Since for a query point p∗ we
do not a priori know whether the predictions are correlated or not, the above
fusion rule may not be optimal. Recently, a fusion rule, called Covariance Inter-
section (CI), for combining predictions in the presence of unknown cross covari-
ance, has been proposed in [19]. To illustrate this, consider two GPR models,
f (k1) and f (k1,k2), with the mean and covariance pairs, {f (k1)(p∗), V (k1)(p∗)}
and {f (k1,k2)(p∗), V (k1,k2)(p∗)}. The CI yields the mean and covariance pair
{f (k1)

C (p∗), V
(k1)
C (p∗)} obtained as

V
(k1)
C

−1
(p∗) = ω(V (k1)(p∗))−1 + (1− ω)(V (k1,k2)(p∗))−1 (9)

f
(k1)
C (p∗)=V k1

C (p∗)(ω(V (k1)(p∗))−1f (k1)(p∗)+(1−ω)(V (k1,k2)(p∗))−1f (k1,k2)(p∗))
(10)
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where ω ∈ [0, 1] is a scalar that minimizes some criterion of uncertainty. In all
our experiments we minimize the trace of V k1

C (p∗) that we use as the uncertainty
criterion, as proposed in [19].

4 Experiments

The experimental evaluation of the proposed methodology has been carried out
using two datasets: the BU-3D Facial Expression (BU3DFE) database [20] con-
taining 3D range data and the CMU Pose, Illumination and Expression Database
(MultiPie) [21] containing multi-view facial expression data. BU3DFE contains
3D scans of 7 facial expressions, Angry, Disgust, Fear, Happy, Sad, Surprise and
Neutral, performed by 100 subjects (60% female of various ethnic origin). All
facial expressions except Neutral were sampled in four different levels of inten-
sity. We generate 2D multi-view images of facial expressions from the available
3D data by rotating 39 facial landmark points provided by the database creators
(see Fig. 3), which were used further as the features in our study. The data in
our experiments include images of 50 subjects (54% female) at ±15◦,±30◦ and
±45◦ pan angles, and ±15◦ and ±30◦ tilt angles (see Fig. 1), with 5◦ increment,
resulting in 1250 images for each of 247 poses. The training data are subsampled
from this dataset to include images of expressive faces in 35 poses (15◦ increment
in pan and tilt angles). These data (referred to as BU-TR dataset in the text
below) as well as the rest of the data (referred to as BU-TST dataset and used
to test the performance of the proposed methods) were partitioned into five folds
in a person-independent manner for use in a 5-fold cross validation procedure.
To evaluate the performance of the method in case of real data (as opposed to
synthetic BU-TR/TST data), we used a subset of MultiPie containing images
of 50 subjects (22% female) displaying 4 expressions (neutral, disgust, surprise,
and happy) captured at 4 pan angles (0◦,−15◦,−30◦ and −45◦), resulting in 200
images per pose. All images were hand labeled in terms of 39 landmark points
and the dataset was partitioned in a person-independent manner for use in a
5-fold cross validation procedure.

The rest of this section is organized as follows. First we present the experi-
ments aimed at evaluation of the accuracy of the proposed head pose normal-
ization method. To measure the accuracy of the method, we used the root-mean
squared (RMSE) distance between the predicted image positions of the facial
landmarks in the frontal pose and the ground truth (the manually annotated
facial landmarks in frontal pose). As suggested by the results attained when
testing on BU-TST dataset (see Fig. 2), the proposed CGPR-based method
outperforms both GPR-based method and the ‘baseline’ methods for pose nor-
malization, namely, 2D-PDM [22] and 3D-PDM [7]. The superior performance
of the proposed CGPR-based method is also shown in the case of noisy data (see
Table 1). Secondly, we evaluate the performance of the proposed pose-invariant
facial expression recognition method. Testing was performed on faces from BU-
TST images in (i) frontal pose (FP), (ii) non-frontal training poses (tp), and
(iii) unknown poses (ntp), where the pose normalization was achieved using
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Fig. 2. Comparison of head pose normalization methods CGPR, GPR, 3D-PDM and

2D-PDM, trained on BU-TR (35 head poses) and tested on BU-TST (247 head poses)

in a person-independent manner in terms of RMSE

(a) (b) (c) (d)

Fig. 3. Prediction of the facial landmarks in the frontal pose for an BU3DFE image of

Happy facial expression in pose (−45◦,−30◦) obtained by using (a) CGPR (b) GPR

(c) 3D-PDM and (d) 2D-PDM. The blue � represent the ground truth and the black

� are the predicted points. As can be seen, the alignment of the predicted and the

corresponding ground truth facial landmarks is far from perfect in case of 3D/2D-

PDM.

the CGPR-based method (Table 2). Finally, to evaluate the performance of the
method in case of real data and in case of unbalanced data (i.e. when the method
is trained on data where some of facial expression categories are missing in certain
poses), we carry out experiments on MultiPie dataset (Table 3). For all experi-
ments carried out on BU-TR/TST datasets, we did the following: the head pose
estimator was trained on BU-TR dataset and when tested on BU-TST data, it
predicted the correct (closest) head pose in 95% of cases. The base GPR mod-
els in Alg. 2 were trained on BU-TR dataset for each of the 34 target pairs of
poses. Furthermore, we set Pmin in Alg. 1 and Cmin in Alg. 2 to experimentally
found optimal values that are 0.1 and 0.75, respectively. The 2D-PDM and 3D-
PDM were trained using the frontal data from BU-TR dataset (for 3D-PDM,
the corresponding 3D data were used), retaining 15 modes of non-rigid shape
variation.
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Table 1. Comparison of head pose normalization methods CGPR, GPR, 3D-PDM

and 2D-PDM, trained on BU-TR (35 head poses) and tested on BU-TST (247 head

poses) corrupted with different levels of Gaussian noise with standard deviation σ, in

a person-independent manner, in terms of RMSE

σ = 0 σ = 0.5 σ = 1 σ = 2 σ = 3

tp ntp tp ntp tp ntp tp ntp tp ntp

3D-PDM 3.1±0.9 3.2±0.6 3.1±0.8 2.9±0.6 3.2±0.7 2.9±0.6 3.7±0.9 3.3±0.6 4.0±0.5 3.8±0.5

2D-PDM 5.2±1.2 4.9±1.1 5.4±1.4 5.3±1.3 5.7±1.4 5.4±1.3 6.0±1.3 5.8±1.3 6.3±1.2 6.1±1.1

GPR 1.1±0.2 1.6±0.3 1.3±0.3 1.5±0.3 1.6±0.2 1.8±0.3 2.4±0.2 2.5±0.2 3.3±0.1 3.4±0.1

CGPR 1.1±0.3 1.4±0.4 1.2±0.3 1.4±0.2 1.5±0.2 1.6±0.2 2.3±0.2 2.4±0.2 3.2±0.2 3.3±0.1

Table 2. Facial expression recognition results using 7-class-SVM trained on frontal-

pose expressive images from BU-TR and tested on BU-TST images in (i) frontal pose

(FP), (ii) non-frontal training poses (tp), and (iii) unknown poses (ntp), where the pose

normalization was achieved using the CGPR-based method. The best results reported

by Hu et al. [11] for BU3DFE are reported for comparison purposes. All results are

given in terms of correct recognition rate percentages.

Disgust Angry Fear Happy Sad Surprise Neutral

FP+SVM 74.5±2.1 69.9±1.8 58.3±1.2 80.4±2.1 76.3±2.0 91.1±1.4 73±2.5

CGPR+SVM (tp) 71.0±3.1 72.8±1.6 58.0±1.7 81.9±2.9 73.8±2.7 89.9±1.9 73±3.0

CGPR+SVM (ntp) 70.1±3.4 71.1±2.2 56.2±2.2 80.2±1.8 72.1±2.9 88.1±2.0 72±2.4

Hu et al. [11] (tp) 69.3 71.3 52.5 78.3 71.5 86.0 -

Evaluation of the accuracy of the proposed head pose normaliza-
tion method – Fig. 2 shows the comparative results in terms of RMSE of the
tested head pose normalization methods along with the results obtained when no
pose normalization is performed and only the translation component has been
removed. As can be seen, both GPR- and CGPR-based methods significantly
outperform the 2D/3D ‘baseline’ methods for pose normalization. Judging from
Fig 3, this is probably due to the fact that the tested 2D/3D deformable face-
shape-based models were not able to accurately model the non-rigid facial move-
ments present in facial expression data. The performance of the aforementioned
models in the presence of noise in test data was evaluated on BU-TST data
corrupted by adding four different levels of noise. As can be seen from Table 1,
even in the presence of high levels of noise the performance of GPR/CGPR-
based methods is comparable to that of 2D/3D-PDM achieved for noise-free
data. The performance of GPR- and CGPR-based methods is highly compa-
rable in the aforementioned experiments where the utilized data were balanced
(i.e. when the method is trained on data containing examples of all facial expres-
sion categories in all target poses). However, the results shown in Table 1 (i.e.
when no noise is present in the data) suggest that the proposed CGPR-based
method slightly outperforms the GPR-based method when tested on unknown
poses (ntp).
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Table 3. Facial expression recognition results using 4-class-SVM trained and tested on

unbalanced data from MultiPie, where the pose normalization was achieved using GPR-

or CGPR-based method. The unbalanced dataset was prepared by removing all exam-

ples of one facial expression category from one of the non-frontal poses. The testing was

performed on the removed examples in a cross-validation person-independent manner

for each expression and each pose. The performance of the classifier trained/tested on

frontal-pose expressive images from MultiPie is also reported for the purposes of base-

line comparison. All results are given in terms of correct recognition rate percentages.

Disgust Happy Surprise Neutral

FP+SVM RR[%] 94.2±2.3 95.6±1.3 97.4±0.9 93.7±1.9

GPR+SVM
RR[%] 68.9±6.2 74.2±4.5 69.4±5.2 73.8±3.9

RMSE 3.10±0.7 3.21±0.9 3.62±0.9 2.80±0.7

CGPR+SVM
RR[%] 85.2±4.3 90.2±3.1 89.8±3.2 88.2±3.1

RMSE 1.95±0.3 1.80±0.4 2.40±0.3 1.90±0.4

Algorithm 2. Learning and inference with CGPR
OFFLINE: Learning base GPR models and coupling parameters

1. Learn P − 1 base GPR models {f (1), ..., f (P−1)} for target pairs of poses (Sec. 3.1)

2. Perform coupling of base GPR models learned in Step 1

for k1=1 to P-1 do
for k2=1 to P-1 & k1 �= k2 do

estimate σ(k1,k2) (Sec. 3.3)

if C
(k1,k2)
eff > Cmin then σk1

C = [σk1
C , σ(k1,k2)] end if

end for
store σk1

C

end for

ONLINE: Inference of the facial landmarks pk1∗ in pose k1

Sk1 : number of the functions coupled to f (k1)

1. Evaluate base GPR model for pose k1 (Sec. 3.1): Pr(0) = {f (k1)(pk1∗ ), V (k1)(pk1∗ )}
2. Evaluate CGPR models for pose k1 (Sec. 3.3)

for i=1 to Sk1 do σ(k1,i) = σk1
C (i) , Pr(i) = {f (k1,i)(pk1∗ ), V (k1,i)(pk1∗ )} end for

3. Combine estimates using CI (Sec. 3.4): {f (k1)
C (pk1∗ ), V

(k1)
C (pk1∗ )} = CI(Pr)

Evaluation of the proposed pose-invariant facial expression recog-
nition method – The results presented in Table 2 clearly suggest that the pro-
posed pose-invariant facial expression recognition method performs accurately
for continuous head pose (i.e. for unknown poses; ntp-case in the Table 2) de-
spite the fact that the training was conducted only on a set of discrete poses
(i.e. on BU-TR). As can be seen further from Table 2, even in case of un-
known poses, the proposed method outperforms the method reported by Hu
et al. [11], where pose-wise SVM classifiers were trained and tested only on known
poses. While the aforementioned experiments suggest that the performance of
GPR- and CGPR-based methods is highly comparable when the utilized data
are balanced, the same is not the case when the utilized data are unbalanced.
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Specifically, the results presented in Table 3 clearly suggest that the proposed
CGPR-based pose-invariant facial expression recognition method significantly
outperforms the GPR-based method in case of unbalanced data, i.e., when one
facial expression category is missing in a certain pose. Judging from Table 3,
RMSE rows, the reason for this is that the CGPR-based head pose normaliza-
tion is significantly better than that obtained by the GPR-based method. In
turn, this can be explained by the non-parametric nature of the GPR-based
method due to which it cannot generalize well beyond the training data. On the
contrary, the CGPR-based method overcomes this by employing the knowledge
(training data) provided by the underlying CGPR models.

5 Conclusion

We presented a novel 2D-shape-free method for the recognition of facial ex-
pressions at arbitrary poses that is based on pose normalization of 2D geometric
features. For pose normalization, we proposed Coupled Gaussian Process Regres-
sion (CGPR) model that learns direct mappings between the facial positions at
an arbitrary pose and the positions in the frontal pose. Experimental results
demonstrate the advantages of the proposed pose normalization in comparison
to generative methods and its robustness to incomplete training data (i.e. expres-
sions and poses that do not belong to the training dataset). For the problem of
expression recognition, the proposed method is shown to demonstrate classifica-
tion performance comparable to the ones obtained by pose-specific classification
schemes for the significantly more difficult problem of expression recognition at
an unknown pose.

Acknowledgments. This work is funded in part by the European Community’s
7th Framework Programme [FP7/2007-2013] under grant agreement no. 211486
(SEMAINE), and in part by the European Research Council under the ERC
Starting Grant agreement no. ERC-2007-StG-203143 (MAHNOB). The work of
Ioannis Patras is partially supported by EPSRC project EP/G033935/1.

References

1. Zeng, Z., Pantic, M., Roisman, G.I., Huang, T.S.: A survey of affect recognition

methods: Audio, visual, and spontaneous expressions. IEEE Trans. Pattern Anal-

ysis and Machine Intelligence 31, 39–58 (2009)

2. Vinciarelli, A., Pantic, M., Bourlard, H.: Social signal processing: Survey of an

emerging domain. Image and Vision Computing 27, 1743–1759 (2009)

3. Chang, Y., Vieira, M., Turk, M., Velho, L.: Automatic 3d facial expression analysis

in videos. In: Proc. Int’l Workshop Analysis and Modelling of Faces and Gestures,

pp. 293–307 (2005)

4. Sun, Y., Yin, L.: Facial expression recognition based on 3d dynamic range model

sequences. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II.

LNCS, vol. 5303, pp. 58–71. Springer, Heidelberg (2008)



CGPR for Pose-Invariant Facial Expression Recognition 363

5. Sung, J., Kim, D.: Real-time facial expression recognition using staam and layered

gda classifier. Image and Vision Computing 27, 1313–1325 (2009)

6. Cheon, Y., Kim, D.: Natural facial expression recognition using differential-aam

and manifold learning. Pattern Recognition 42, 1340–1350 (2009)

7. Zhu, Z., Ji, Q.: Robust real-time face pose and facial expression recovery. In: Proc.

Int’l Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 681–688 (2006)

8. Wang, T.H., Lien, J.J.J.: Facial expression recognition system based on rigid

and non-rigid motion separation and 3d pose estimation. Pattern Recognition 42,

962–977 (2009)

9. Kumano, S., Otsuka, K., Yamato, J., Maeda, E., Sato, Y.: Pose-invariant facial ex-

pression recognition using variable-intensity templates. Int’l J. Computer Vision 83,

178–194 (2009)

10. Chai, X., Shan, S., Chen, X., Gao, W.: Locally linear regression for pose-invariant

face recognition. IEEE Trans. Image Processing 16, 1716–1725 (2007)

11. Hu, Y., Zeng, Z., Yin, L., Wei, X., Tu, J., Huang, T.: A study of non-frontal-view

facial expressions recognition. In: Proc. Int’l Conf. Pattern Recognition, pp. 1–4

(2008)

12. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning

(Adaptive Computation and Machine Learning). The MIT Press, Cambridge

(2005)

13. Boyle, P., Frean, M.: Dependent gaussian processes. In: Advances in Neural Infor-

mation Processing Systems, vol. 17, pp. 217–224. MIT Press, Cambridge (2005)

14. Murphy-Chutorian, E., Trivedi, M.M.: Head pose estimation in computer vision: A

survey. IEEE Trans. Pattern Analysis and Machine Intelligence 31, 607–626 (2009)

15. Rudovic, O., Patras, I., Pantic, M.: Facial expression invariant head pose nor-

malization using gaussian process regression. In: Proceedings of IEEE Int’l Conf.

Computer Vision and Pattern Recognition, vol. 3 (in Press, 2010)

16. Chen, T., Morris, J., Martin, E.: Gaussian process regression for multivariate spec-

troscopic calibration. Chemometrics and Intelligent Laboratory Systems 87, 59–71

(2007)

17. Tresp, V., Taniguchi, M.: Combining estimators using non-constant weighting func-

tions. In: Advances in Neural Information Processing Systems, pp. 419–426 (1995)

18. Tresp, V.: A bayesian committee machine. Neural Computing 12, 2719–2741 (2000)

19. Julier, S.J., Uhlmann, J.K.: A non-divergent estimation algorithm in the presence

of unknown correlations. In: Proc. American Control Conf., pp. 2369–2373 (1997)

20. Wang, J., Yin, L., Wei, X., Sun, Y.: 3d facial expression recognition based on

primitive surface feature distribution. In: Proc. Int’l Conf. Computer Vision and

Pattern Recognition, vol. 2, pp. 1399–1406 (2006)

21. Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-pie. Image and

Vision Computing 28, 807–813 (2010)

22. Cootes, T., Taylor, C.: Active shape models - smart snakes. In: Proc. British Ma-

chine Vision Conf., pp. 266–275 (1992)



Bilinear Kernel Reduced Rank Regression
for Facial Expression Synthesis

Dong Huang and Fernando De la Torre
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Abstract. In the last few years, Facial Expression Synthesis (FES) has been a
flourishing area of research driven by applications in character animation, com-
puter games, and human computer interaction. This paper proposes a photo-
realistic FES method based on Bilinear Kernel Reduced Rank Regression
(BKRRR). BKRRR learns a high-dimensional mapping between the appearance
of a neutral face and a variety of expressions (e.g. smile, surprise, squint). There
are two main contributions in this paper: (1) Propose BKRRR for FES. Several
algorithms for learning the parameters of BKRRR are evaluated. (2) Propose a
new method to preserve subtle person-specific facial characteristics (e.g. wrin-
kles, pimples). Experimental results on the CMU Multi-PIE database and pictures
taken with a regular camera show the effectiveness of our approach.

1 Introduction

Photorealistic facial expression synthesis (FES) has recently become an active research
topic in computer vision and graphics. Applications of FES can be found in diverse
fields such as character animation for movies and advertising, computer games, interac-
tive education [1], video teleconferencing [2], avatars [3,4], and facial surgery planning
[5]. Generating photo-realistic facial expressions still remains an open research problem
due the uncanny ability of people to perceive subtle details in people’s faces.

Learning-based methods (e.g. [6,7]) have become a popular approach for FES. How-
ever, the use of these methods has several challenges: (1) Muscle deformations due to
expression changes can have a large number of degrees of freedom. There are more than
20 groups of facial muscles innervated by facial nerves [8]. The combinations of their
movements are nearly innumerable. To model all this variability learning-based meth-
ods typically require large amounts of training samples for accurate FES. (2) Synthesis
of some facial expressions requires to model subtle facial deformations, for instance
wrinkles during squinting. (3) A good model should be able to decouple the identity of
the subject from the expression, pose, and illumination while preserving person-specific
details (e.g. pimples, beard). (4) Typically the dimensionality of the images is large in
comparison with the amount of training samples which causes over-fitting of the model.
To address these problems, this paper proposes Bilinear Kernel Reduced Rank Regres-
sion (BKRRR) to learn a nonlinear mapping between the frontal neutral image and
images with different facial expressions of a subject. Fig. 1 illustrates the process for
FES using BKRRR.

The two main contributions of this paper are: (1) Propose BKRRR for FES. BKRRR
learns a nonlinear mapping from a neutral face to other facial expressions (e.g. smile,

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 364–377, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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text

Smile SquintSuprise Disgust

Training Faces

Testing
Neutral

BKRRR

Smile SquintSuprise DisgustNeutral

Synthesized Faces

Fig. 1. Synthesizing facial expressions from a neutral face using BKRRR

surprise, squint) that effectively decouples the identity and expression changes. We ex-
plore the use of three algorithms for learning the parameters in KRRR and BKRRR, that
are based on Subspace Iteration (SI), generalized eigen-decomposition, and Alternated
Least Square (ALS). We evaluate the accuracy and computational complexity of each
method. (2) Propose a modification of BKRRR to capture subtle person-specific facial
features (e.g. glasses, pimples, wrinkles, beard).

The rest of the paper is organized as follows. Section 2 reviews related work on
FES. Section 3 describes the KRRR model and three algorithms to learn the KRRR
parameters. Section 4 formulates the Bilinear KRRR model, and explores its use to
preserve subtle facial details not present in the training samples. Section 5 describes the
experimental results, and Section 6 finalizes the paper with the conclusions.

2 Previous Work

Liu et al. [6] proposed a geometric warping algorithm in conjunction with the Expres-
sion Ratio Image (ratio between the neutral image and the image of a given expression)
to synthesize new expressions preserving subtle details such as wrinkles and cast shad-
ows. Zhang et al. [7] synthesized facial expressions using a local face model. Each
region of the face was reconstructed as a convex combination of the corresponding
regions in the training set. The synthesized face regions were later blended along the
region boundaries. Regression-based approaches find solutions as the weighted combi-
nations of the training data. However, it is unclear how the combination of training data
can reproduce subtle local appearance features presented only in the testing samples
such as wrinkles, glasses, beard, or pimples. In related work, Nguyen et al. [9] used
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extensions of Principal Component Analysis (PCA) to remove glasses and beards in
images, and used regression techniques to fill out the missing information.

Tensor-based approaches [10,11,12] perform Higher-Order Singular Value Decom-
position (HOSVD) to factorize the normalized face appearance into identity, expression,
pose, and illumination. Given the factorization, FES [13,14,15] is done by first comput-
ing the identity coefficients of the new testing person, and then reassembling the identity
factor with expression factors learned by the HOSVD. A drawback of tensor-based ap-
proaches is the need of fully labeled examples across illumination, expressions, and
pose. Moreover, it’s also unclear how tensor-based methods can preserve subtle person-
specific features (e.g. wrinkles, pimples).

Other methods learn the dynamics of the facial expression changes given several
video sequences of different subjects performing the same expression. Bettinger et
al. [16] used a sampled mean shift and a variable length Markov model to generate
person-specific sequences of facial expressions. Zalewski et al. [17] clustered the shape
and texture components with a mixture of probabilistic PCA. Each cluster corresponds
to a facial expression and clusters are used for FES. Chang et al. [18] introduced a
probabilistic model to learn a nonlinear dynamical model on a manifold of expressions
containing the neutral and six universal expressions. In the field of computer graphics,
several works used 3D models to dynamically animate avatars [19,20,21]. See [22] for
a more extensive review of facial expression synthesis methods.

3 Kernel Reduced Rank Regression (KRRR)

Since its introduction in the early 1950s by Anderson [23], the reduced-rank regression
(RRR) model has inspired a wealth of diverse applications in several fields such as
signal processing [24] (also known as reduced-rank Wiener filtering), neural networks
[25] (also known as asymmetric PCA), time series [23], and computer vision [26]. This
section describes KRRR and explores three methods to compute its parameters.

3.1 Error Function for Kernel Reduced Rank Regression (KRRR)

Let X = [x1, · · · ,xn] ∈ �dx×n (see the footnote for notation1) be a matrix containing
the vectorized images of neutral faces for n subjects, and Y = [y1, · · · ,yn] ∈ �dy×n

contains the vectorized images of the same subjects with a different expression.
Due to lack of training samples to constrain the regression parameters, learning a

linear regression between two high-dimensional data sets is usually an ill-posed prob-
lem. Consider learning the regression matrix T that optimizes minT ||Y−TX||2F . The
optimal T can be found in closed-form as T = YXT (XXT )−1. If dx > n the matrix
XT X will be rank deficient. In this situation dimensionality reduction or regulariza-
tion is often necessary. A common approach is to independently learn low-dimensional

1 Bold capital letters denote matrices X, bold lower-case letters a column vector x. xj represents
the jth column of the matrix X. All non-bold letters represent scalar variables. xij denotes the
scalar in the row i and column j of the matrix X and the scalar ith element of a column vector
xj . ‖x‖2

2 denotes the L2-norm of the vector x. tr(A) =
∑

i aii is the trace of the matrix
A and diag(a) denotes an operator that generates a diagonal matrix with the elements of the
vector a. ‖A‖2

F = tr(AT A) = tr(AAT ) designates the Frobenious norm of matrix A.
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models for each data set using PCA/KPCA, and then learn a linear or nonlinear relation
between projections using any supervised learning technique (e.g. neural networks).
Applying PCA/KPCA separately to each set preserves the directions of maximum vari-
ance within sets, but these do not necessarily correspond to the direction of maximum
covariation between sets [26]. That is, independently learning low-dimensional models
may result in a loss of important details relevant to the coupling between sets. The RRR
model [23,24,25] finds a linear mapping, T ∈ �dx×dy , that minimizes the LS error
subject to rank constraints on T, effectively reducing the number of free parameters to
estimate. The RRR model minimizes ||Y−TX||2F subject to rank(T) = k. A mathe-
matically convenient way to impose rank(T) = k is to explicitly factorize T = BAT ,
where A ∈ �dϕ×k and B ∈ �dy×k are regression matrices, and k denotes the rank of
the reduced rank model.

The Kernel RRR (KRRR) model minimizes the following energy function:

min
A,B

‖Y −BAT ϕ(X)‖2F , (1)

where ϕ(·) is a nonlinear function that transforms X to a (usually) high-dimensional
feature space. The surface of Eq. (1) has a unique minimum, up to an invertible k × k
affine transformation [27].

3.2 Learning Parameters for KRRR

This section explores three numerical schemes to optimize Eq. (1). The three methods
are the Matlab function eigs to solve Generalized Eigenvalue Problems (GEPs), the
Subspace Iteration (SI) method, and Alternated Least-Squares (ALS) procedure. We
compare the computational cost as well as the error achieved by the algorithms.

1-Matlab Eigs function (EIGS): Without loss of generality the matrix A in Eq. (1)
can be expressed as a linear combination of ϕ(X), i.e. A = ϕ(X)α, where α ∈
�n×k. K = ϕ(X)T ϕ(X) is the kernel matrix such that each entry kij(xi,xj) =
〈ϕ(xi), ϕ(xj)〉measures the similarity between two samples by means of a kernel func-
tion. Optimizing over B (i.e. B = YKα(αT K2α)−1) and substituting the optimal B
value in Eq. (1) results in the following minimization w.r.t α:

min
α

tr
{

(αT K2α)−1(αT KYT YKα)
}

. (2)

Solving α is a GEP, and we used the Matlab eigs function. Once α is known, B ∈
�dy×k can be computed with standard regression as:

B = YKα(αT K2α)−1. (3)

2-Subspace Iteration (SI): The SI method [28] is an extension of the Power method to
solve GEPs. Given two symmetric matrices, S1 ∈ �n×n and S2 ∈ �n×n, and an initial
random matrix α0 ∈ �n×k, the SI method [28] alternates the following steps:

S1α̂t+1 = S2αt (4)

S = α̂T
t+1S1α̂t+1 T = α̂T

t+1S2α̂t+1 (5)

SW = TWΔ (6)

α̂t+1 = α̂t+1W α̂t+1 = α̂t+1/||α̂t+1||F .
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where t denotes the iteration step. In our case, S1 = K2 and S2 = KYT YK. The first
step, Eq. (4), of the SI algorithm solves a linear system of equations to find α̂t+1. In the
second step, Eq. (5), the data is projected onto the estimated subspace. In order to im-
pose the constraints that αT

t+1S1αt+1 = Λ and αT
t+1S2αt+1 = Ik, a normalization is

done by solving the following k × k generalized eigenvalue problem, SW = TWΔ,
Eq. (6), where W ∈ �k×k is the eigenvector matrix. It can be shown [28] that as t
increases, αt+1 will converge to the eigenvectors of problem (2) and Δ to the eigen-

values. The convergence is achieved when |δk+1
t −δk

t |
δk+1

t

< ε ∀i, where δk
i denotes the

kth-largest generalized eigenvalue.

3-Alternated Least Squares (ALS): The ALS algorithm alternates between
fixing α and solving for B with Eq. (3), and fixing B and solving for α, where α =
K−1YT B(BT B)−1.

For all methods we used probabilistic PCA to factorize the matrix K as K≈USUT+
σ2In. This factorization is beneficial to regularize the solution and make some algo-
rithms more efficient (e.g. solving Eq. 4). See [29] for more information.

Comparison of EIGS, SI and ALS
To evaluate the computational complexity and accuracy of the three approaches to com-
pute the parameters in KRRR, we used 50% of the subjects from session 1 in the CMU
Multi-PIE [30] database as training set. The neutral and smiling faces were used for
training. We used a Gaussian kernel and the local bandwidth is selected as the mean
pair-wise distance. The dimension of the images is dy = 35999 pixels. The number of
people n = 125, and k is set to k = 37, that preserves 99.9% of the K2 energy (an
upper bound on the rank of the GEP).

The performance is measured using the Gradient Mean Square Error (GMSE) [12]:

GMSE =
1
rc

rc∑
i=1

∥∥∥∥∥
[
∇Fx(i)
∇Fy(i)

]
true

−
[
∇Fx(i)
∇Fy(i)

]
syn

∥∥∥∥∥
2

F

, (7)

between the synthesized expression and the ground truth image, where F ∈ �r×c is
the face image of size r × c pixels, [F(i)]syn and [F(i)]true represent the gray level
of the ith pixel in the synthesized expression and the ground truth image respectively.[
∇Fx(i)
∇Fy(i)

]
is the gradient at the ith pixel. GMSE measures the difference in gradients.

Fig. 2 (a) shows the average GMSE (Eq. (7)) over 125 training subjects. As shown
in Fig. 2 (a), all methods achieve similar errors. Table 2 (b) shows the computational
complexity to compute α using the Matlab function eigs (EIGS), the SI and ALS pro-
cedure. The time in seconds on a PC with 2.2GHz CPU was 0.077s, 0.036s, and 1.100s
for EIGS, SI and ALS respectively. The SI method achieved comparable accuracy and
was more computationally efficient than ALS or eigs from Matlab.

3.3 FES with KRRR

This section shows experimental results using KRRR for FES. Given a neutral face
of an untrained subject xt, we can synthesize a new facial expression yt as a linear
combination of facial expressions from the training set (i.e. Y):
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Fig. 2. (a) Average GMSE to compute parameters of KRRR using Matlab eigs function (EIGS),
SI, and ALS. (b) Computational complexity to compute α using the EIGS, SI, and ALS methods.

yt ≈ BαT k(·,xt) = YKα(αT K2α)−1αT k(·,xt) = Ygt, (8)

where gt = Kα(αT K2α)−1αT k(·,xt) ∈ �n×1 is the coefficient that weights the
contributions of each training sample. k(·,xt) ∈ �n×1 is the column vector of the
kernel between the training samples and xt.

Note that in Eq. (8), the overall pixel intensity of yt depends on the elements of the
kernel vector k(·,xt), which are close to 1 when xt is close to the training data X.
However, the kernel values are smaller than 1 when xt is far away. To normalize the
kernel (i.e.

∑n
j=1 gtj ≈ 1), we use the Soft-Max kernel [31]:

k(xi,xj) =
exp

(−‖xi−xj‖2
2

σ2

)
∑

l exp
(−‖xl−xj‖2

2
σ2

) , i, j = 1, · · · , n. (9)

Fig. 3 shows an example of smiling facial expression synthesis using KRRR on subjects
from session 1 (249 subjects) of the CMU Multi-PIE [30]. We used 50% of the subjects
for training and the remaining for testing. All selected faces have been manually labeled
with 66 landmarks and warped to a normalized template (see Fig. 3 (a)). The warping
was done by interpolating the triangular meshes between the original landmarks and the
canonical template. Note that the wrapping alone cannot result in realistic synthesis of
expressions because it cannot model appearance changes (e.g. wrinkles and teeth). We
compared the synthesis capabilities for three kernels: linear, Gaussian, and Soft-max.
We provided two measures of error between the synthesized expression (syn) and the
ground truth image (true): the average Gradient Mean Square Error (GMSE) defined in
Eq. (7) and the Normalized Inner-Product (NIP):

NIP =
1
rc

∑rc
i=1[F(i)]true[F(i)]syn

‖[F]true‖F ‖[F]syn‖F

. (10)

GMSE measures the difference in gradients, while NIP measures the correlation be-
tween gray-level values.

As can be seen in Fig. 3 the Soft-Max kernel synthesized more photo-realistic images
being able to reproduce the teeth while preserving the facial hair. It also achieved the
higher NIP value.
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(a)

Original Neu
Linear

(77.60, 0.981)
Gaussian

(60.76, 0.973)
Soft−Max

(71.64, 0.981) Ground Truth

(b)

Fig. 3. (a) 66 facial landmarks and the geometrically normalized face. (b) Synthesizing smil-
ing faces with KRRR. Neutral test image, linear kernel, Gaussian kernel, Soft-Max kernel, and
ground truth. The first number in the brackets indicates the average GMSE and the second repre-
sents the average NIP, defined in Eq. (7) and (10) respectively.

4 Bilinear Kernel Reduced Rank Regression

In the previous section, we have shown how LRRR and KRRR can be used for FES.
However, observe that RRR and KRRR are unsuccessful in preserving details of the
original images (e.g. wrinkles, pimples, glasses). This is because the synthesized image
is a combination of the training set images, and in the training set many of these features
are not present (see Fig. 3). In this section, we propose to use Bilinear KRRR (BKRRR)
to effectively decouple identity and expression factors by enforcing the same identity in
the synthesis of different expressions. The BKRRR is able to preserve person-specific
facial features and greatly improve the synthesis performance.

4.1 Error Function for BKRRR

Let X = {x1, · · · ,xn} ∈ �dx×n be a matrix containing the dx dimensional input
vectors representing neutral faces for n different subjects, and Yl = {y1, · · · ,yn} ∈
�dy×n be a matrix containing the vectorized images of the same n subjects with the lth

expression (l = 1, · · · , r) (e.g. smile, surprise, disgust, squint, and scream). BKRRR
extends KRRR, Eq. (1), by minimizing:

E(α,BExp
l ,BNeu) =

r∑
l=1

‖Yl −BExp
l αT K‖2F + ‖X−BNeuαT K‖2F , (11)

recall that A = ϕ(X)α and it represents the space of identity, while BNeu is a basis to
reconstruct neutral faces and BExp

l is a basis for reconstructing the lth facial expression.
Unlike KRRR, BKRRR seeks to approximate all r expressions and the neutral face with
the same identity coefficients. Observe that reconstructing the neutral testing image
(second term in Eq. 11) will be a key component of our algorithm to decide which
person-specific features will be able to be reconstructed as a combination of the training
set. K ∈ �n×n is the kernel matrix containing the similarity between the neutral faces
in the training samples. α, BNeu and BExp

l are respectively computed as:

min
α

tr

{
(αT K2α)−1

[
αT K

(
r∑

l=1

YT
l Yl + XT X

)
Kα

]}
,
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Original Neu BKRRR Neu Smile Surprise Disgust

Original Neu BKRRR Neu Smile Surprise Disgust

Fig. 4. Synthesis of facial expressions with BKRRR. First column shows the input image, the sec-
ond the synthesized neutral image, the third, fourth and fifth show the synthesized smile, surprise
and disgust expression respectively. Observe that BKRRR can not reconstruct the glasses.

BNeu = XKα(αT K2α)−1, (12)

BExp
l = YlKα(αT K2α)−1, (l = 1, · · · , r). (13)

Similar to Section 2, solving α is a GEP and we use the SI method.
The matrix Θ = αT K ∈ �k×n in BKRRR contains subspace of identity variation.

Given a new testing image xt, the synthesized expression can be obtained as:

yt = BExp
l αT k(·,xt), (14)

where k(·,xt) is the kernel vector for xt. Similarly, for the neutral face:

xNeu
t = BNeuαT k(·,xt), (15)

which approximates the neutral expression of the testing sample using the training data
(2nd column of Fig. 4). The synthesis of the neutral face image from the training images
is important to recover subtle person-specific features and its use will be discussed in
the next section. Fig. 4 also shows other synthesized expressions (smile, surprise and
disgust) using the BKRRR model.

4.2 Preserving Person-Specific Features

Fig. 3 and Fig. 4 show a fundamental problem of regression approaches: the syn-
thesized image is a combination of the data, and it is usually difficult to reconstruct
subtle person-specific features of the testing image as holistic combinations of train-
ing samples. Moreover, it is not realistic to assume that the training data includes all
possible iconic variations (e.g. types of glasses, beards, eyes half closed). In addition,
the BKRRR minimizes a least-square error, which typically does not preserve subtle
person-specific features such as pimples that might have small energy (see Fig. 3 and
4). This section shows how to combine the regression results with the synthesized neu-
tral image to preserve subtle person-specific features.

Fig. 5 illustrates the process to preserve person-specific facial details. Given a neutral
test face xt (Fig. 5 (a)), we first synthesize the neutral image as a combination of the
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Fig. 5. FES using BKRRR that preserves person-specific facial features such as glasses and beard

training data using Eq. (15), this image is denoted as xNeu
t ∈ �dx×1 (Fig. 5 (c)). The

resulting image xNeu
t is warped onto the normalized template of the expression we

want to target, xN2E
t ∈ �dy×1 (Fig. 5 (d)). We then apply BKRRR to generate yt

using Eq. (14) (Fig. 5 (b)). A weighted mask (Fig. 5 (e)) is computed by subtracting

xN2E
t from yt as: mt = exp

( |xN2E
t −yt|

β

)
, where mt ∈ �dy×1 denotes the weighted

mask, β is a scalar selected to ensure that elements of mt are between 0 and 1. The
weighted mask has high values in regions where the appearance changes due to the
expression variation (e.g. teeth and cheeks), and low values where the training data can
not reconstruct person-specific features (e.g. glasses).

An expression layer (Fig. 5 (f)) is computed by multiplying the mask M = diag(mt)
∈ �dy×dy by the synthesized expression yt, that is: Myt. This layer contains only
appearance variations due to expression changes (e.g. teeth and wrinkles on the cheeks).
We normalize the original neutral face xt to the expression template and obtain xExp

t ∈
�dy×1 (Fig. 5 (g)). Later a person-specific texture layer (Fig. 5 (h)) is created as: (I −
M)xExp

t . Finally, the expression face ỹt (Fig. 5 (i)) is computed as the combination of
the expression layer and the texture layer:

ỹt = Myt + (I−M)xExp
t . (16)

The final result ỹt greatly improves the resemblance to the original neutral test face
over the result of BKRRR because it has merged person-specific features that could not
be modeled by the BKRRR model.

4.3 Illumination Adaption

Fig. 6 (c) shows an example of synthesizing a smiling face using one image taken with
a regular camera with uncontrolled illumination (Fig. 6 (a)). As can be observed, the
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Original Neu Illumi Bias No Adaption With Adaption

(a) (b) (c) (d)

Fig. 6. Illumination normalization for FES

poor synthesis is the result of the different illumination conditions between training and
testing. This section proposes a simple method to normalize illumination changes.

Fig. 6 (b) shows the illumination bias computed as the difference between the origi-
nal test face and the mean face of the training set (neutral face). As can be observed, the
high values of the illumination bias on the right cheek show a large difference between
the training and testing lighting conditions. Fig. 6 (d) shows the results obtained after
the illumination normalization.

Given the test image xt ∈ �dx×1, and the mean training face x, we create a repre-
sentation that contains both the spatial and textural information of the image. That is,
Ft = [lh, lv,xt]T ∈ �3×dx and Fmean = [lh, lv,x]T ∈ �3×dx respectively, where
[lh, lv] denotes the spatial location of the pixels along the horizontal and vertical axis
respectively. Then we compute the linear transformation M ∈ �3×3 that minimizes
||Fmean−MFt‖2F . The optimal matrix is M = Fmean(Ft)+, where ()+ denotes gen-
eralized pseudo-inverse. Then F∗

t = [lh, lv,x∗
t ]

T = Fmean(Ft)+Ft, where x∗
t repre-

sents the illumination normalized testing image. Finally, to normalize the contrast of the
image, the image is processed as: x̃t = std(x)

std(x) (x∗
t −mean(x∗

t )) + mean(x∗
t ) , where

x̃t is the resulting normalized image. std(·) and mean(·) are operators that compute
the standard deviation and mean respectively. Then x̃t is used to synthesize the smile
expression ỹt. As shown in Fig. 6 (d), the adaption algorithm greatly improves FES in
images with untrained lighting conditions.

5 Experiments

This section provides quantitative and qualitative (visual) evaluation of the techniques
proposed in this paper. We used all subjects (336) from the four sessions of the CMU
Multi-PIE database [30]. We selected the subset of frontal faces containing 919 neutral
faces, 249 smiling faces from session 1, 203 surprise faces from session 2, 203 squint
faces from session 2, 228 disgust faces from session 3 and 239 scream faces from ses-
sion 4 respectively. All selected faces have been manually labeled with 66 landmarks
and warped to a normalized template (see Fig. 3 (a)).

5.1 FES with BKRRR

This section compares the performance of Linear Reduced Rank Regression(LRRR),
KRRR, BKRRR, Tensor (HOSVD) [13,12] and BKRRRT (BKRRR with texture preser-
vation described in section 4.2). The performance of each method is measured using
GMSE (Eq. (7)) and NIP (Eq. (10)).
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Fig. 7. Comparison of LRRR, KRRR, BKRRR, Tensor (HOSVD) and BKRRRT
(BKRRR+Texture) in terms of the average GMSE (the lower the better) and average NIP
(the higher the better)
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Fig. 8. FES on neutral faces with subtle person-specific features (e.g. hair, wrinkle, glasses, mole
and beard). The first number in brackets indicates the average GMSE and the second average NIP.

We used 50% of the faces from the CMU Multi-PIE database [30] for training (i.e.
125 for smile, 102 for surprise, 102 for squint, 114 for disgust and 120 for scream)
and the remaining 50% for testing and cross-validation. In the tensor method [13], we
selected all bases whose singular values are non-zero, to maximize the expressibility of
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the model (as done in [13]). For LRRR, KRRR, BKRRR, and BKRRRT we selected
the number of basis, k, as the number of eigenvectors that preserve 99.9% of the energy
in K2. This is an upper bound on the rank of the RRR model. For both the KRRR
and BKRRR methods, we used the Soft-Max kernel, and the regression matrices were
computed using the SI method. The bandwidth parameter for the Soft-Max kernel was
selected with cross-validation.

Numerical results are shown in Fig. 7. The LRRR, KRRR, BKRRR and BKRRRT
methods all have smaller average GMSE than the tensor method. The BKRRR and
KRRR have similar performance. However, recall that the BKRRR method is necessary
to synthesize the neutral face as combination of the training samples used in the BKR-
RRT. The BKRRRT outperforms visually and quantitatively (in NIP) both BKRRR and
KRRR. Fig. 8 shows several synthesized faces for all methods. The first column shows
the original test image, the second column the neutral image, the third, fourth fifth and
sixth column the synthesized image with BKRRR, LRRR, Tensor method [13] and
BKRRRT respectively. Finally, the last column shows the ground truth image. Observe
that BKRRRT can reconstruct much more accurately subtle facial features (e.g. glasses,
skin, pimples, eyelids, hairs, mole and wrinkle) than any other method. Moreover, vi-
sually it is able to generate more photo-realistic images. On the other hand, the tensor
method produces artifacts in the synthesized faces which reflects in a larger GMSE
(worse preservation of edges) and smaller NIP (bad appearance matching). BKRRRT
achieves the highest average NIP compared to all other methods. Observe, that occa-
sionally the value for GMSE is higher than LRRR. This is because there is large differ-
ence in subtle edges in the original and synthesized image (e.g. rim of glasses slightly
shifted), but BKRRRT achieves more photo-realistic results. Fig. 9 shows the average
GMSE and NIP error versus the number of bases k to synthesize smile. As expected the
error decreases w.r.t. the number of bases and BKRRRT clearly outperforms competi-
tive approaches. For more results see [32].

5.2 FES with Illumination Adaption

This experiment tests the ability of our algorithm to handle untrained illumination con-
ditions. Fig. 10 shows several images that have been taken with a regular camera under
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Fig. 9. Average GMSE (a) and average NIP (b) versus number of bases. We used 125 testing
images from the session 1 in the CMU-MultiPIE.
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Fig. 10. FES with images taken with a regular camera under different lighting conditions. The
input image is denoted by “original” and the illumination bias as “Illumi bias”.

different illumination conditions. The images contain subjects of varying ethnicity. Af-
ter correcting for illumination as explained in Section 4.3, our FES using BKRRRT
produces very realistic results.

6 Discussion and Future Work

This paper presents a method for FES based on Bilinear KRRR. The BKRRR model
learns a nonlinear mapping between a neutral face image and another image with a dif-
ferent facial expression of the same person. To preserve subtle person-specific features
and be robust to untrained configurations, we proposed a method to combine the result
of BKRRR with the original image. The results of our method are visually realistic
despite the limited amount of training data. Although we have illustrated the BKRRR
in the case of FES, the method is more general and can be applied to other problems
image synthesis problems. In future work, we plan to improve the performance using
local models (e.g. independently modeling eye, mouth and nose regions).
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Abstract. In video surveillance, classification of visual data can be very

hard, due to the scarce resolution and the noise characterizing the sen-

sors’ data. In this paper, we propose a novel feature, the ARray of CO-

variances (ARCO), and a multi-class classification framework operating

on Riemannian manifolds. ARCO is composed by a structure of covari-

ance matrices of image features, able to extract information from data at

prohibitive low resolutions. The proposed classification framework con-

sists in instantiating a new multi-class boosting method, working on the

manifold Sym+
d of symmetric positive definite d × d (covariance) ma-

trices. As practical applications, we consider different surveillance tasks,

such as head pose classification and pedestrian detection, providing novel

state-of-the-art performances on standard datasets.

1 Introduction

An important goal of automated video surveillance is to design algorithms that
can characterize different objects of interest (OIs), especially when immersed
in a cluttered background and captured at low resolution. The detection (e.g.,
of faces or pedestrians) and the classification (e.g., of facial poses) are among
the most studied applications. In the multi-faceted plethora of approaches in
the literature (see [1,2,3] for extensive reviews), boosting-based techniques play
a primary role [4,5,6,7,8,9,10,11,12,13,14]: boosting [15,16,17] is a remarkable,
highly customizable way to create strong and fast classifiers, employing various
features fed into diverse architectures, with specific policies.

Among the different features considered for boosting in object classification
(see [18] for an updated list), covariance features [19] have been exploited as
powerful descriptors of pedestrians [11,12,13], and their effectiveness has been
explicitly investigated in a comparative study [14]. When injected in boosting
systems [11,12,13,14], covariances provide strong detection performances. They
encapsulate the high intra-class variances (due to pose and view changes of the
OI), they are in general stable in presence of noise, and provide an elegant way
to fuse multiple low-level features, as they intrinsically exploit possible inter-
features’ dependencies. Moreover, thanks to the integral image representation,
they can by calculated in a very efficient way.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 378–391, 2010.
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Since covariance matrices lie in the Riemannian manifold of symmetric pos-
itive definite matrices Sym+

d , their usage in a boosting framework requires a
careful treatment. In [11], the input covariance features are projected into the
tangent space at particular points of the manifold, where an Euclidean metric
can be instantiated, and the Logitboost framework can be applied.

In this paper, we propose two main contributions. First, we present a novel
kind of feature, i.e., the ARray of COvariances (ARCO), able to describe visual
objects at prohibitive low resolutions (up to 5 × 5 pixels): it marries the dense
descriptors philosophy, adopted for example in [20], with the expressivity of the
covariance information. Second, we show how such features can be embedded in
a multi-classification framework by boosting, extending [11] to the multi-class
case. We experimentally show that Sym+

d has non positive curvature and in the
areas where the curvature is almost flat the Euclidean metric on the tangent
space at any point on the manifold is a good approximation of the Riemannian
metric. Therefore, unlike [11], we map all the data in a unique tangent space,
and we perform all the computations on this (Euclidean) space where a typical
multi-class LogitBoost algorithm can be applied.

The experimental trials show how we outperform the current methods in two
important applications for surveillance like head pose classification and pedes-
trian detection, without adopting complex boosting schemes such as Floatboost-
ing for pyramids [9], decision trees [6], VectorBoosting for width-first-search trees
[7], or Probabilistic Boosting Networks [21]. We fix novel state-of-the-art per-
formances on standard databases. This encourages the embedding of our Rie-
mannian framework in the above quoted boosting schemes. We stress also the
capability of dealing with compelling image resolutions, promoting the use of
ARCOs for heterogeneous applications, especially in the surveillance field.

The rest of the paper is organized as follows. Sec. 2 describes the proposed
ARCO feature, and Sec. 3 depicts the proposed multi-class framework. Sec. 4
shows the experimental results on several surveillance applications, and finally
we draw our conclusions in Sec. 5.

2 ARCO: ARray of COvariance Matrices

The proposed classification framework has been specifically designed to deal with
low resolution images, typical of a video surveillance scenario. In such conditions,
the number of features that can be extracted are relatively small, and quite
unreliable. This is very challenging in problems like, for instance, head pose
classification, in which the details are crucial to distinguish the different object
classes. Moreover, the classifier must cope with objects (pedestrians, heads) views
in a variety of light conditions. Our solution is based on two main concepts: 1) the
organization of the image into a grid of uniformly spaced and overlapping patches
(Fig. 1); 2) the use of covariance matrices of image features as patch descriptors,
which are classified by multi-class LogitBoost on Riemannian manifolds. In a few
words, each patch classifier votes for a class, and the final classification result is
the class voted by the majority of them.
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p/2
p

Fig. 1. Array of Covariance matrices (ARCO) feature. The image is organized as a grid

of uniformly spaced and overlapping patches. On each patch, a multi-class classifier is

estimated.

In [11], where the use of covariance matrix descriptors is tailored for pedes-
trian detection, LogitBoost was used for both a greedy estimation of the most
discriminative patches among a set of different sizes and positions, and for classi-
fying them, i.e., as feature selection and classification method at the same time.
The same reasoning, using boosting for feature selection and classification, has
been applied to other approaches in the literature, as for example in [22,23]. Here,
instead, a feature selection operation is unfeasible, because low resolution images
contain such scarce and noisy information that the result would be unreliable:
it is more convenient to use all features in a suitable way. Our approach takes
inspiration from the literature on dense image descriptors (see [20] as an exam-
ple). We sample the image I into uniformly distributed and overlapping patches
of the same dimension. Each patch is described by the covariance matrix repre-
sentation, that encodes the local shape and appearance of the (small) region. We
use these patches in a democratic way: we exalt their discriminative power by
boosting a strong multi-class classifier, and we collect their classification results.

More formally, given a set of patches {Pi}i=1,...,NP , we learn a multi-class clas-
sifier for each patch {FPi}i=1,...,NP through the multi-class LogitBoost algorithm
[17], adapted to work on Riemannian manifolds.
Let Δj =

∑NP

i=1(FPi == j) be the number of patches that vote for the class
j ∈ {1, . . . , J}. We assign a class label c to an image, estimating

c = argmax
j

{Δj}, j = 1, . . . , J . (1)

In order to increase robustness to local illumination variations, we apply the nor-
malization operator introduced in [11] before applying the multi-class
framework.

The ARCO representation has several advantages. First, it allows to take into
account different features, inheriting their expressivity, and exploiting possible
correlations. In this sense, it is as a compact and powerful integration of features.
Second, due to the use of integral images, ARCO is fast to compute, making it
suitable for a possible real-time usage. Finally, as a dense representation, it
is robust to occlusions. We will prove all the above characteristics during the
experimental trials in Sec.4.
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3 Multi-class Classification on Riemannian Manifolds

Let C1, C2, . . . , CJ be the data classes whose elements (the covariances) live
in the Riemannian manifold M of d × d symmetric positive definite matrices
denoted by Sym+

d . Let S = {Xi, yi}i=1,...,N be the set of N training examples,
with Xi ∈ M and label yi ∈ {1, . . . , J}. The goal is to produce a function
F (Xi) :M �→ {1, . . . , J} as

F (Xi) = argmax
j

{Fj(Xi)}, j = 1, . . . , J . (2)

Fj is a single-class strong classifier, and it is defined, in turn, as a sum of L
weak classifiers {flj}l=1,...,L. These weak classifiers are learned by multi-class
LogitBoost.

3.1 Riemannian Geometry on Sym+
d

In this section, we briefly review the geometry of Sym+
d , the manifold consisting

of all d×d symmetric definite positive matrices (covariance matrices), extending
the treatment given in [11].

The tangent space TY at any point Y ∈ Sym+
d can be identified with Symd,

the (vector) space of d× d symmetric matrices.
The mapping of X on TY , is given by the point-dependent logY operator:

logY (X) = Y
1
2 log

(
Y − 1

2 XY − 1
2

)
Y

1
2 , (3)

inverse to the exponential map.
The (geodesic) distance on Sym+

d is defined as

d2(X1, X2) = Tr(log(X− 1
2

1 X2X
− 1

2
1 )2) =

d∑
i=1

(log ξi)2 (4)

where the ξi’s are the (positive) eigenvalues of X
− 1

2
1 X2X

− 1
2

1 .
On the tangent space, the Euclidean distance

d2
E(x1, x2) = Tr[(x1 − x2)2], (5)

with x1 = logY X1 and x2 = logY X2 for any Y ∈ Sym+
d , is the first-order

approximation of Eq. (4).
In [11], a boosting framework on Sym+

d for detection (i.e., binary classifi-
cation) is presented. The idea is to build weak learners by regression over the
mappings of the training points on a suitable tangent plane. This tangent plane is
defined over the weighted Karcher mean [24] of the positive training data points,
such to preserve their local layout on Sym+

d . The negative points, instead, (i.e.,
all but pedestrians) are assumed to be spread on the manifold, thus including
them in the mean estimation would bias the result. Once moving from binary to
multi-class classification the above considerations do not hold anymore, because
we have many “positive” classes, each of them localized in a different part of
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the manifold. Therefore, 1) choosing the Karcher mean of one class would priv-
ilege that class with respect to the others, 2) the Karcher mean of all classes is
inadequate.

A thorough analysis of Sym+
d opens a new perspective. First, its sectional

curvature, the natural generalization of the classical Gaussian curvature for sur-
faces, is non-positive. Since Sym+

d is actually a symmetric space, the following
formula holds for computing the sectional curvature κId

at Id – due to the ho-
mogeneity of Sym+

d [25], there is no loss of generality – with x,y ∈ Symd linearly
independent:

κId
(x, y) =

〈R(x, y)x, y〉
‖ x ‖2‖ y ‖2 −〈x, y〉2 =

Tr([[x, y], x]y)
Tr(x2)Tr(y2)− (Tr(xy))2

=

= 2
Tr((xy)2 − x2y2)

Tr(x2)Tr(y2)− (Tr(xy))2
, (6)

by the cyclical property of the trace. Here, [x, y] = xy − yx is the matrix com-
mutator, and R(x, y) : z �→ [[x, y], z] is the Riemann curvature operator (in the
symmetric space framework). It can be shown (for the actual proof, see Appendix
in the additional material), that κId

(x, y) ≤ 0.
Now, an application of Preissmann’s theorem [25] shows that, taking the

geodesic triangle with vertices Id, X1, X2, one gets

dE(logId
X1, logId

X2) ≤ d(X1, X2) (7)

More precisely,

d(X1, X2) = dE(logId
X1, logId

X2) + Ξ(κId
) (8)

where Ξ(κId
) ≥ 0 is a function that depends on the sectional curvature. An

explicit form for Ξ cannot be easily derived, but it is evident that if the sectional
curvature is “small”, one can replace the “true” distance by the Euclidean one.

Notice that the above remark reconcile the present “classical” approach with
the one in [26,27], where the Log-euclidean metric is employed throughout, upon
endowing Sym+ with a Lie group structure.

The reasoning above suggests a practical manoeuvre to check this condition.
We randomly pick a representative set of covariance matrices from the datasets
under observation and we estimate the sectional curvature (Eq. 6) for each pair,
calculating the mean at the end. Experimentally, this mean value results −10−3,
that is far from the standard negative curvature of −1.

In this conditions, one can choose any point on Sym+
d on which to map the

dataset, and execute the learning on that (Euclidean) space. In practice, we
choose the identity matrix Id, as this simplifies the computation. Indeed, Eq. (3)
becomes

logId
(X) = log(X) = U log(D)UT , (9)

where U log(D)UT is the eigenvalue decomposition of X , with X a generic point
in Sym+

d , U is an orthogonal matrix, and log(D) is the diagonal matrix composed
by the eigenvalues’ logarithms.
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Moreover, the tangent space is the space of symmetric matrices, but there
are only d(d + 1)/2 independent coefficients, which are the upper triangular or
lower triangular part of the matrix. Thus, by applying the vector operator, an
orthonormal coordinate system for the tangent space is defined as

vecId
(x) = vec(x) = [x1,1 x1,2 . . . x1,d x2,2 x2,3 . . . xd,d], (10)

where x is the map of X ∈ Sym+
d in the tangent space. This operator relates

the Riemannian metric on the tangent space to the canonical metric defined in
Rm, with m = d(d + 1)/2.

3.2 Algorithm Description

Following the considerations above, we map our dataset S to the tangent Eu-
clidean space TId

, and we perform the classification directly on this space. In
this way, ST = {xi, yi}i=1,...,N is the mapped dataset, with xi = vec(logId

(Xi)).
The essence of a boosting algorithm is an iterative re-weighting system that

tends to focus on the most difficult examples in the training set. In the multi-
class classification there are J different sets of weights built from the posterior
distribution. Let Prj [xi] be the posterior probability for a training example xi

to belong to the j-th class. It is computed as:

Prj [xi] =
eFj(xi)∑J

k=1 eFk(xi)
, Fj(xi) =

L∑
l=1

flj(xi), (11)

where {flj}l=1,...,L is a class-specific set of weak learners. Each example in the
training set ST is associated to a weight that depends on the class considered:

wij = Prj [xi](1− Prj [xi]). (12)

The core of the learning process is the definition of the inter-class decision
boundaries, which is carried out by weak learners. We build weak classifiers
glj : TId

�→ R that solve a binary problem, one class against the others, then the
multi-class classifiers flj : TId

�→ R derive from their combination.
The binary weak learners glj solve a weighted regression problem, whose good-

ness of fit is measured by the response values zij , defined as:

zij =
y∗

ij − Prj [xi]
Prj [xi](1 − Prj [xi])

, (13)

where y∗
ij = (j == yi). The combination of a set of J binary weak learners glj

is provided by the following equation [17]:

flj(xi) =
J − 1

J

(
glj(xi)−

1
J

J∑
k=1

glk(xi)

)
. (14)

Please note that this operation is possible because the glk(·)s live in the same
domain TId

. If the binary classification had been carried out mapping each class
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in a different space, similarly to [11], the combination of the results would have
been much more complicated and unclear. Working on TId represents an elegant
and reasonable solution to the problem.

In the following we explain some details of the algorithm, summed up in
pseudo-code here below.

Algorithm 1. Multi-class LogitBoost on M
Require: (X1, y1), . . . , (XN , yN ) with Xi ∈ M e yi ∈ {1, . . . , J}

- Map the data points to the tangent space TId , by xi = ( logId
(Xi))

- Start with weights wij = 1/N and i = 1, . . . , N , Fj(xi) = 0 e Prj [xi] = 1/J ∀j.
for l = 1, 2, . . . , L do

for j = 1, 2, . . . , J do
- Compute the response values (Eq. 12) and weights (Eq. 13).

- Fit the function glj(xi) : Rm 	→ R by weighted least-square regression of zij

to xi using weights wij .

- Set Fj(xi) ← Fj(xi) + flj(xi) where flj(xi) is defined in Eq. (14).

- Update Prj [xi] as in Eq. (11).

- Save Fj = {glj}.
end for

end for
- Save the ensemble of classifiers {F1, . . . , FJ}.

3.3 Algorithm Details

Binary weak classification strategy. In boosting, it is possible to use very
different types of weak learners. The most common are the decision stumps (or
regression stumps), which are piecewise constant regression functions or linear
regression functions. The original LogitBoost algorithm adopts linear regression
functions as proposed in [17]. In a binary classification task a linear regression
can be sufficient to solve the problem, as shown in [11] for pedestrian detec-
tion. However, a more powerful weak classification strategy is mandatory for the
multi-class classification problem, as evidenced in [21], where piecewise constant
functions are used.

After investigating different solutions, we have selected the weighted regression
trees [28], which are more powerful than global models, like linear or polynomial
regressors, where a single predictive formula is supposed to hold over the entire
data space, and they have lower computational costs, in both the learning and
testing phases. In order to avoid the risk of overtraining of the regression tree,
we establish as stopping rule a minimal number τ of observations per tree leaf,
experimentally estimated (see Sec. 4).

Stop condition. It is important to specify a automatic stop criterion for the
learning phase. The proposed rule is a composition of two terms. The first term
takes into account the accuracy with which the classes are correctly classified:
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we set the maximum accuracy τacc for all the classes. The second term concerns
the learning rate, which is the difference in accuracy between two consecutive
iterations of LogitBoost. If the learning rate is less than τlr for all the classes, we
assume that the boosting process has converged to its optimal solution. More
formally, the learning process is stopped at the l-th iteration, when:

accl(j) ≥ τacc ∨ (accl(j)− accl−1(j)) ≤ τlr, ∀j ∈ {1, . . . , J}, (15)

where accl(j) counts the examples of the j-th class correctly classified at the l-th
iteration. In all the experiments, τacc is set to 99% and τlr to 1%.

Multi-class detection. Our multi-class algorithm can be naturally extended to
detection purposes by simply adding a class that contains background examples.
It is a very large class, because it is potentially composed by all the possible
images that do not contain foreground examples. For this reason, we combine
the LogitBoost classifier with a rejection cascade structure [4].

Algorithm 1 becomes the learning procedure of each cascade level. The stop
condition for a cascade level is given by Eq. (15), except for the background
class that is optimized to correctly classify at least the 35% of the examples in
this class, as in [11]. In practice, we order the examples in the background (BG)
class, according to PrBG[x]. Let xBG be the element with (0.35NBG)-th smallest
probability among all the background examples. We set thk = FBG(xBG), where
k is the current cascade level.

At the cascade level (k+1), the BG class is first pruned using the cascade of k
classifiers, rejecting the samples correctly classified as background. To obtain the
desired rejection rate, the classification response for BG is redefined as FBG(x) =
(FBG(x) − thk).

Computational considerations. The proposed framework inherits some of
the computational characteristics of [11], where the main cost is due to SVD
factorization needed for the projection of the covariance matrices on the tangent
space (see Eq. 9). In our case, the presence of a unique projection point decreases
the number of required SVD factorizations. This means a dramatic reduction of
the computational cost in both the learning and testing phase.

4 Experiments

In this section, we show different video surveillance applications where our frame-
work applies: head pose classification, pedestrian detection, and head detection
+ pose classification. In the first two cases, where comparative tests on shared
databases are feasible, we outperform the relative best performances in the lit-
erature. In the third case, only qualitative results can be appreciated.

4.1 Head Pose Classification

We build a multi-class classifier for head pose classification on the 4 Pose Head
Database1. This dataset contains head images of dimension 50 × 50 (see some
1 http://www.eecs.qmul.ac.uk/~orozco/index_files/Page558.htm

http://www.eecs.qmul.ac.uk/~orozco/index_files/Page558.htm
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samples in Fig. 2a)) obtained from the i-LIDS dataset2. These images come
from a real video surveillance scene, mirroring well typical critical conditions:
they are noisy, motion-blurred, and at low resolution. The images are divided in
4 foreground (FG) classes: Back (4200 examples), Front (3555 examples), Left
(3042 examples), and Right (4554 examples). Moreover, this dataset contains
another set of 2216 background (BG) images. We partition the FG dataset in
2 equal parts, using one partition for training and one for testing. We extract
from each image I a set Φ of d = 12 features, composed by:

Φ =
[
X Y R G B Ix Iy O Gab{0,π/3,π/6,4π/3}

]
. (16)

X, Y represent the spatial layout in I, and R, G, B are the color channels. Ix and
Iy are the directional derivatives of I, and O is the gradient orientation. Finally,
Gab is a set of 4 maps containing the results of Gabor filtering. We would like to
stress that these features are particularly suited for head orientation classifica-
tion. Apart from the general position (X, Y ) and shape information (Ix, Iy), the
covariance of the color channels permits to implicitly detect hair and skin textu-
ral properties. This particularly helps in distinguishing frontal from back views.
Moreover, Gabor filters emphasize facial details, such as the vertical orientation
for the nose, or the horizontal orientation of the mouth, if visible. We tried differ-
ent combination of these filters, and the best results are obtained with dimension
2×4, sinusoidal frequency 16, and directions D = {0, π/3, π/6, 4π/3}. In order to
give an idea on how the choice of the features affects the system’s performances,
Fig. 2b depicts the behavior of the system in terms of mean classification accu-
racy by considering different subsets of Φ. Once the features are extracted, we
calculate the covariance matrices from all the patches of p× p pixels, on a fixed
grid of p/2 pixels steps. This means that the patches remain overlapped by half
of their size. We vary p, in order to investigate how the dimension (and thus, the
number) of the patches modifies the classification performances. The best per-
formance is obtained with p = 0.32s, where s is the image dimension. As visible
in Fig. 2c, enlarging the patch dimension to more than this value diminishes the
accuracy. This highlights that having a high number of small patches is better
than having few large ones. This because with less, large-sized covariances all
the image details are mixed together, losing the spatial information.

For each patch, a 4-class classifier is built, as described in Sec. 3.2. The τ
parameter, that rules the complexity of the regression trees, has been fixed to
the optimal value 150 according to the accuracy test in Fig. 2d. It is interesting
to note that exceeding this value, the performance drops, which is a sign of
overtraining of the system.

A very important result is the ability to maintain a high classification accuracy
on extremely low resolution images. Figure 2e shows the performance of our
classifier varying the image dimension s (and changing proportionally the patch
parameters, with p = �0.32s�). On a 5× 5 image we reach an average accuracy
above 82%.
2 http://scienceandresearch.homeoffice.gov.uk/hosdb/

cctv-imaging-technology/i-lids/
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Fig. 2. Head pose classification analysis. (a) Some images from the considered dataset.
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feature vector Φ, (c) the patch dimensions p, (d) the regression tree stop criterion (the

number τ of elements per leaf), (e) the test image dimensions, and (f) considering

occlusions of different strength.

Moreover, we test the ability of our classifier to deal with occlusions. Indeed,
patch-based classifiers, as part-based classifiers, are naturally able to manage
the presence of occlusions. We depict in Figure 2f the robustness to four types of
occlusions (left-, right-, top- and bottom-side), in different sizes. As visible, top
and bottom occlusions reduce the performances more, because they completely
hide meaningful parts of the face.

Last, we compare our method with Orozco et at. [29], the state-of-the-art
method for head pose classification for low resolution data. It is a head pose
descriptor based on similarity distance maps to mean appearance templates of
head images at different poses. All images in this dataset have their related pose
descriptors, provided by the authors themselves [29]. The classifier is trained by
Support Vector Machines (SVMs) using a polynomial kernel, as done in [29].
The result of the comparison, in terms of confusion matrix, is reported in Fig. 3.
The average rate is 93.5% for our model, against 82.3% for Orozco’s model.

4.2 Pedestrian Detection

We instantiate our framework on the binary problem of pedestrian detection
to verify the performance of our approach on a pure detection task. We con-
sider the INRIA Person dataset [20] for testing. It contains 1212 human images
for the training part of dimension 128 × 64 and 1133 images for the testing
part. We pick a region of interest of 50 × 50 at the center of the pedestrian
images, that corresponds to the actual region where the pedestrian is enclosed
(all positive examples come with a quite large border). Then, we use the same
patch configuration described above (Sec. 4.1), but with a set of features Φ more
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Fig. 3. Confusion matrix for the method proposed in [29] (upper left) and our method

(bottom left) for head pose orientation. On the right, DET curve for pedestrian detec-

tion, compared with the state-of-the-art methods [11,20,30,31,32,33,34].

suitable for the detection task, i.e. the same proposed in [11]. In Fig. 3c, we
compare our framework with [11] and with the methods in [20,30,31,32,33,34].
The performances are evaluated by the Detection Error Tradeoff (DET) curve,
that expresses the proportion of true detections against the proportion of false
positives, on a log-log scale. The curve is estimated by varying the threshold thk

in the range [−1, 1]. We use a rejection cascade of 5 levels in which each level
is populated by 10000 background examples. Please, note that augmenting the
number of cascade levels to more than 5 does not appreciably increase the accu-
racy, since the number of covariance features remains fixed (in [11], instead, at
each step a new feature is selected). Our detector clearly outperforms the other
methods at the state-of-the-art, especially in terms of miss-rate.

4.3 Head Pose Detection and Classification

As we are proposing a multi-class framework, we can simply add a background
class to the problem at hand, to perform detection along with classification.
Here, we show how the system works for the problem of head pose detection and
classification.

As first experiment, we consider the 4 head pose classes of the Pose Head
dataset used in Sec. 4.1, adding its 2215 background examples. We use the
same optimal settings estimated above, and we compare the performance of
our approach with [29]. Even though the original paper performs classification
only, so the comparison is a bit unfair, their template descriptor is provided for
background images as well. We add the background class to the other positive
classes, and we compute the classification stage by using SVMs, as described in
the paper. The comparison, shown in Fig. 4, shows the ability of our system to
naturally deal with this task as well.

On the other hand, the images of this dataset, though challenging for location
and scale variations, are all taken from the same scene, with scarce lighting
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Fig. 4. Confusion matrices for the experiments on head pose detection and classifica-

tion. In (a) e (b), results for the first experiment on 4 Pose Head dataset (Orozco’s

method in (a) [29], our method in (b)). (c) is the result of the second experiment with

the more general dataset (see text for details). The other images are examples of de-

tection and classifications in crowded scenes. The arrows indicate the head orientation.

In green the correct answers provided by classifier, in red the misclassifications.

variations. Thus, the model we built is not general enough to work with different
scenarios. For this reason, we perform a second experiment, building another
model, and enriching the training set with new data coming from a different,
more general, dataset. We use the head dataset employed in [35], composed by
2736 20 × 20 head images, contained in a ROI of 32 × 32 pixels. This dataset
is mostly obtained from the INRIA person dataset, thus the images are taken
from many different scenes and with a large variation of illumination conditions.
The set of negative examples is composed by different real scenarios and other
images containing parts of the body. We organize the data in four classes (plus
background) according to heads’ orientation, since the original dataset does not
contain such information.

The positive examples from the 4 Pose Head dataset are resized to 20 × 20
pixels, whereas for the other dataset the examples are cropped from the center
of the ROI. Half the data are used for training, and the testing set is composed
by just the testing set of [35]. Fig. 4c summarizes the detection and classification
results. Note that due to the variations in scale and position of the head, the
cropped images can contain the head only partially. This is not a problem,
though, since our model is robust to partial occlusions, as shown before. Finally,
the other images in Fig. 4 show some qualitative results in crowded scenes,
obtained with this last classifier.

5 Conclusions

In this paper, we face three classic video surveillance applications. We propose
the novel general-purpose ARCO descriptor, and we adopt a common theoretical
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framework of multi-class classification on Riemannian manifold Sym+
d . Two are

the advancements. From a practical point of view ARCO can describe faces as
well as pedestrians, by including arbitrary features, and exploiting their depen-
dencies via spatially local covariances. From a theoretical point of view, we show
that Sym+

d has non-positive sectional curvature and that where the curvature is
almost flat we can perform multi-class Logitboost projecting the ARCO features
on the tangent plane at any point of Sym+

d . The experimental section validates
the proposed approach, with novel state-of-the-art performances.
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Abstract. Much recent research in human activity recognition has fo-

cused on the problem of recognizing simple repetitive (walking, running,

waving) and punctual actions (sitting up, opening a door, hugging). How-

ever, many interesting human activities are characterized by a complex

temporal composition of simple actions. Automatic recognition of such

complex actions can benefit from a good understanding of the tempo-

ral structures. We present in this paper a framework for modeling mo-

tion by exploiting the temporal structure of the human activities. In our

framework, we represent activities as temporal compositions of motion

segments. We train a discriminative model that encodes a temporal de-

composition of video sequences, and appearance models for each motion

segment. In recognition, a query video is matched to the model according

to the learned appearances and motion segment decomposition. Classi-

fication is made based on the quality of matching between the motion

segment classifiers and the temporal segments in the query sequence. To

validate our approach, we introduce a new dataset of complex Olympic

Sports activities. We show that our algorithm performs better than other

state of the art methods.

Keywords: Activity recognition, discriminative classifiers.

1 Introduction

We argue that to understand motion, it is critical to incorporate temporal con-
text information, particularly the temporal ordering of the movements. In this
paper, we propose a simple discriminative framework for classifying human ac-
tivities by aggregating information from motion segments that are considered
both for their visual features as well as their temporal composition. An input
video is automatically decomposed temporally into motion segments of variable
lengths. The classifier selects a discriminative decomposition and combination
of the segments for matching. Though simple in its form, we highlight a couple
of advantages of our framework compared to the previous work.

First, depending on the time scale of the movement, actions have been tradi-
tionally grouped into: short but punctual actions (e.g. drink, hug), simple but
periodic actions (e.g. walking, boxing), and more complex activities that are
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considered as a composition of shorter or simpler actions (e.g. a long jump,
cooking). Very different algorithms have been proposed for these different types
of motion, most of them take advantage of the special properties within its do-
main, hence perform rather poorly on other types. Our framework is a general
one. No matter how simple or complex the motion is, our classifier relies on a
temporal composition of various motion segments. Our basic philosophy is clear:
temporal information helps action recognition at all time scales.

On the other hand, we note that some work has taken the approach of de-
composing actions into “hidden states” that correspond to meaningful motion
segments (i.e. HMM’s, HCRF’s, etc.). In contrast, we let the model automati-
cally discover a robust combination of motion segments that improve the dis-
criminability of the classifier. The result is a much simpler model that does not
unnecessarily suffer from the difficult intermediate recognition step.

In order to test the efficacy of our method, we introduce a new dataset that
focuses on complex motions in Olympic Sports, which can be difficult to dis-
criminate without modeling the temporal structures. Our algorithm shows very
promising results.

The rest of the paper is organized as follows. Section 1.1 overviews some of the
related work. Section 2 describes a video representation that can be employed in
conjunction with our model. Section 3 presents our model for capturing temporal
structures in the data. We present experimental validation in Section 4 and
conclude the paper in Section 5.

1.1 Related Work

A considerable amount of work has studied the recognition of human actions in
video. Here we overview a few related work but refer the reader to [1,2] for a
more complete survey.

A number of approaches have adopted the bag of spatio-temporal interest
points [3] representation for human action recognition. This representation can
be combined with either discriminative [4,5] classifiers, semi-latent topic models
[6] or unsupervised generative [7,8] models. Such holistic representation of video
sequences ignores temporal ordering and arrangement of features in the sequence.

Some researchers have studied the use of temporal structures for recognizing
human activities. Methods based on dynamical Bayesian networks and Markov
models have shown promise but either require manual design by experts [9]
or detailed training data that can be expensive to collect [10]. Other work has
aimed at constructing plausible temporal structures [11] in the actions of different
agents but does not consider the temporal composition within the movements
of a single subject, in part due to their holistic representation. On the other
hand, discriminative models of temporal context have also being applied for
classification of simple motions in rather simplified environments [12,13,14,15].

In addition to temporal structures, other contextual information can benefit
activity recognition, such as background scene context [4] and object interac-
tions [11,16]. Our paper focuses on incorporating temporal context, but does
not exclude future work for combining more contextual information.
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Our approach to capturing temporal structures is related to part-based models
for object recognition. Both generative [17,18,19,20] and discriminative [21,22]
models have shown promise in leveraging the spatial structures among parts for
object recognition.

In this paper, we present a new representation for human activities in video.
The key observation is that many activities can be described as a temporal com-
position of simple motion segments. At the global temporal level, we model the
distinctive overall statistics of the activity. At shorter temporal ranges, we model
the patterns in motion segments of shorter duration that are arranged temporally
to compose the overall activity. Moreover, such temporal arrangement consid-
ered by our model is not rigid, instead it accounts for the uncertainty in the
exact temporal location of each motion segment.

2 Video Representation

Our model of human actions can be applied over a variety of video descriptors.
The key requirement is that a descriptor can be computed over multiple tempo-
ral scales, since our motion segment classifiers can operate on video segments of
varying length. Frame-based representations and representations based on his-
tograms are particular examples of descriptors that fit well to our framework.
Here, we adopt a representation based on spatio-temporal interest points. In-
terest point based descriptors are attractive specially when tracking the subject
performing the activity is difficult or not available. Several methods have been
proposed for detecting spatio-temporal interest points in sequences [3,23,24]. In
our approach, we use the 3-D Harris corner detector [3]. Each interest point
is described by HoG (Histogram of Gradients) and HoF (Histogram of Flow)
descriptors [5]. Furthermore, we vector quantize the descriptors by computing
memberships with respect to a descriptor codebook, which is obtained by k-
means clustering of the descriptors in the training set. During model learning
and matching, we compute histograms of codebook memberships over particular
temporal ranges of a given video, which are denoted by ψi in the following.

Fig. 1. Our framework can be applied over a variety of video data representations. Here

we adopt a representation based on spatio-temporal interest points. This figure shows

example spatio-temporal interest points detected with the 3D Harris corner method

from [3]. Video patches are extracted around each point, and described by their local

shape and motion patterns.
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3 Modeling Temporal Structures

In this section we present our framework for recognizing complex human activi-
ties in video. We propose a temporal model for recognizing human actions that
incorporates simple motion segment classifiers of multiple temporal scales. Fig. 2
shows a schematic illustration of our human action model. The basic philosophy
is very simple: a video sequence is first decomposed into many temporal segments
of variable length (including the degenerate case of the full sequence itself). Each
video segment is matched against one of the motion segment classifiers by mea-
suring image-based similarities as well as the temporal location of the segment
with respect to the full sequence. The best matching scores from each motion
segment classifier are accumulated to obtain a measure of the matching quality
between the full action model and the query video. As Fig. 2 illustrates, an action
model encodes motion information at multiple temporal scales. It also encodes
the ordering in which the motion segments tend to appear in the sequence. In
the following, we discuss the details of the model, the recognition process and
learning algorithm.

3.1 Model Description

Here we introduce the model of human actions, which is illustrated in Fig. 2. Our
full action model is composed by a set of K motion segment classifiers A1, ..., AK ,
each of them operating at a particular temporal scale. Each motion segment
classifier Ai operates over a histogram of quantized interest points extracted
from a temporal segment whose length is defined by the classifier’s temporal
scale si. In addition to the temporal scale, each motion segment classifier also
specifies a temporal location centered at its preferred anchor point ti. Lastly, the
motion segment classifier is enriched with a flexible displacement model τi that
captures the variability in the exact placement of the motion segment Ai within
the sequence.

We summarize the parameters of our model with the parameter vector w as
the concatenation of the motion segment classifiers and the temporal displace-
ment parameters,

w = (A1, ..., AK , τ1, ..., τK). (1)

3.2 Model Properties

Our model addresses the need to consider temporal structure in the task of
human activity classification. In the following, we discuss some important prop-
erties of our framework.

Coarse-to-fine motion segment classifiers. Our model contains multiple classi-
fiers at different time scales, enabling it to capture characteristic motions of
various temporal granularity. On one end, holistic bag-of-features operate at
the coarsest scale, while frame-based methods operate at the finest scale. Our
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Fig. 2. Model Architecture. Here we show the structure of our model for activity recog-

nition. The input video V is described by histograms of vector quantized interest points,

which are computed over multiple temporal ranges. Each motion segment classifier Ai

has a particular temporal scale, and it is matched to the features ψi(V, hi) from tempo-

ral segments of the input sequence of that temporal extent. The optimal location of each

motion segment classifier is determined by the appearance similarity (Ai ·ψi(V, hi)) and

penalty of temporal displacement from the anchor point ti (τi ·ψ(hi − ti)). The overall

matching score combines scores of individual components. A classification decision is

made by thresholding the resulting matching score. See Sec. 3 for more details.

framework has the flexibility to operate between these two ends of the temporal
spectrum, and it closes the gap by allowing multiple classifiers to reside in a
continuum of temporal scales.

Temporal Context. While discriminative appearance is captured by our multiple
classifiers at different time scales, the location and order in which the motion seg-
ments occur in the overall activity also offer rich information about the activity
itself. Our framework is able to capture such temporal context: the anchor points
of the motion segment classifiers encode the temporal structure of the activity. In
particular, these canonical positions prohibit the classifiers from matching time
segments that are distant from them. This implicitly carries ordering constraints
that are useful for discriminating human activities.

Flexible Model. Equipped with classifiers of multiple time scales and the tempo-
ral structure embedded in their anchor points, our model is capable of searching
for a best match in a query sequence and score it accordingly. However, the
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temporal structure in videos of the same class might not be perfectly aligned.
To handle intra-class variance, our model incorporates a temporal displacement
penalty that allows the optimal placement of the each motion segment to deviate
from its anchor point.

3.3 Recognition

Given a trained model, the task in recognition is to find the best matching of the
model to an input sequence. This requires finding the best scoring placement for
each of the K motion segment classifiers. We denote a particular placement of the
motion segment classifiers within a sequence V by a hypothesis H = (h1, ..., hk).
Each hi defines the temporal position for the i-th motion segment classifier. We
measure the matching quality of motion segment classifier Ai at location hi by
favoring good appearance similarity between the motion segment classifier and
the video features, and penalizing for the temporal misplacement of the motion
segment classifier when hi is far from the anchor point ti. That is, the matching
score for the i-th motion segment classifier is

Ai · ψi(V, hi)− τi · ψdi(hi − ti). (2)

In the first term of Eq. 2, which captures the appearance similarity, ψi(V, hi)
is the appearance feature vector (i.e. histogram of quantized interest points)
extracted at location hi with scale si. In our experiments, we implement the
classifier Ai with a χ2 support vector machine. The kernel function for Ai is
given by

K(xk, xj) = exp

(
− 1

2S

D∑
r=1

(xkr − xjr)2

xkr + xjr

)
, (3)

where S denotes the mean distance among training examples, {xki}i=1...D are
the elements of the histogram xk and D is the histogram dimensionality. In
practice, D is equal to the size of the codebook. In the second term of Eq. 2,
which captures the temporal misplacement penalty, ψdi(hi − ti) denotes the
displacement feature. The penalty, parametrized by τi = {αi, βi}, is a quadratic
function of the motion segment displacement and given by

τi · ψdi(hi − ti) = αi · (hi − ti)2 + βi · (hi − ti). (4)

We obtain an overall matching score for hypothesis H by accumulating the scores
from all motion segment classifiers in the model:

K∑
i=1

Ai · ψi(V, hi)− τi · ψdi(hi − ti). (5)

Let fw(V ) be a scoring function that evaluates sequence V . In recognition, we
consider all possible hypotheses and choose the one with the best matching score:
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fw(V ) = max
H

K∑
i=1

Ai · ψi(V, hi)− τi · ψdi(hi − ti). (6)

A binary classification decision for input video V is done by thresholding the
matching score fw(V ).

There is a large number of hypotheses for a given input video sequence. How-
ever, note that once the appearance similarities between the video sequence and
each motion segment classifier are computed, selecting the hypothesis with the
best matching score can be done efficiently using dynamic programming and
distance transform techniques [18] in a similar fashion to [21,25].

3.4 Learning

Suppose we are given a set of example sequences {V 1, . . . , V N} and their cor-
responding class labels y1:N , with yi ∈ {1,−1}. Our goal is to use the training
examples to learn the model parameters w. This can be formulated as the mini-
mization of a discriminative cost function. In particular, we consider the following
minimization problem:

min
w

1
2
‖w‖2 + C

N∑
i=1

max(0, 1− yifw(V i)), (7)

where C controls the relative weight of the hinge loss term. This is the formula-
tion of a Latent Support Vector Machine (LSVM) [21]. In the LSVM framework,
the scoring function maximizes over the hidden variables. In our method, the hid-
den variables correspond to the best locations of the motion segment classifiers
on each training video. Note that it is not necessary to supervise the locations of
the motion segment classifiers during training, instead this is a weakly supervised
setting, where only a class label is provided for each example.

The optimization problem described above is, in general, non-convex. How-
ever, it has been shown in [21] that the objective function is convex for the
negative examples, and also convex for the positive examples when the hidden
variables are fixed.

This leads to an iterative learning algorithm that alternates between esti-
mating model parameters and estimating the hidden variables for the positive
training examples. In summary the procedure is as follows. In the first step,
the model parameters w are fixed. The best scoring locations H

p of the motion
segment classifiers are selected for each positive example p. This is achieved by
running the matching process described in Section 3.3 on the positive videos. In
the second step, by fixing the hidden variables of the positive examples to the
locations given by H

p , the optimization problem in Eq. 7 becomes convex. We
select negative examples by running the matching process in all negative training
videos and retrieving all hypotheses with large matching score. We train the pa-
rameters w using LIBSVM [26] on the resulting positive and negative examples.
This process is repeated for a fixed small number of iterations.

In most cases, the iterative algorithm described above requires careful initial-
ization. We choose a simple initialization heuristic. First, we train a classifier
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Table 1. Left: Accuracy for action classification in the KTH dataset. Right: Compar-

ison of our model to current state of the art methods.

Action Class Our Model

walking 94.4%

running 79.5%

jogging 78.2%

hand-waving 99.9%

hand-clapping 96.5%

boxing 99.2%

Algorithm Perf.

Ours 91.3%

Wang et al. [28] 92.1%

Laptev et al. [5] 91.8%

Wong et al. [8] 86.7%

Schuldt et al. [27] 71.5%

Kim et al. [29] 95%

with a single motion segment classifier that covers the entire sequence. This is
equivalent to training a χ2-SVM on a holistic bag of features representation. We
then augment the model with the remaining K − 1 motion segment classifiers.
The location and scale of each additional motion segment classifier is selected so
that it covers a temporal range that correlates well with the global motion seg-
ment classifier. This favors temporal segments that exhibit features important
for overall discrimination.

4 Experimental Results

In order to test our framework, we consider three experimental scenarios. First,
we test the ability of our approach to discriminate simple actions on a bench-
mark dataset. Second, we test the effectiveness of our model at leveraging the
temporal structure in human actions on a set of synthesized complex actions.
Last, we present a new challenging Olympic Sports Dataset and show promising
classification results with our method.

4.1 Simple Actions

We use the KTH Human actions dataset [27] to test the ability of our method
to classify simple motions. The dataset contains 6 actions performed by 25 ac-
tors, for a total of 2396 sequences. We follow the experimental settings described
in [27]. In all experiments, we adopt a representation based on spatio-temporal
interest points described by concatenated HoG/HoF descriptors. We construct a
codebook of local spatio-temporal patches from feature descriptors in the train-
ing set. We set the number of codewords to be 1000. Experimental results are
shown in Table 1. A direct comparison is possible to the methods that follow the
same experimental setup [5,8,27,28]. We note that our method shows competi-
tive results, but its classification accuracy is slightly lower than the best result
reported in [28].

4.2 Synthesized Complex Actions

In this experiment, we aim to test the ability of our model to leverage the
temporal structure of human actions. In order to test this property in a controlled
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Fig. 3. An example of our learned model. In this illustration, the horizontal axis repre-

sents time. Each row corresponds to a motion segment classifier learned by our model

whose temporal extent is indicated by its vertical location. The appearance of the mo-

tion segment is illustrated by a few example frames. The associated dot indicates the

anchor position ti of the motion segment relative to the full sequence. The parameters

of the temporal misplacement penalty τi are represented by the parabola centered at

the anchor point. Notice that the vertical arrangement of the motion segments shows

the distinct temporal scales at which each classifier operates.

setting, we construct a synthesized set of complex actions by concatenating 3
simple motions from the Weizmann action database: ‘jump’, ‘wave’ and ’jack’.
In total, we synthesize 6 complex actions classes by concatenating one video of
each simple motion into a long sequence.

In this test, a baseline model that uses a single motion segment classifier
covering the entire video sequence performs at random chance or ≈ 17%. The
simple holistic bag-of-features has trouble differentiating actions in this set since
the overall statistics are nearly identical. On the other hand, our model which
takes advantage of temporal structure and orderings, can easily discriminate the
6 classes and achieve perfect classification performance at 100%. In Fig. 4 we
show a learned model for the complex action composed by ‘wave’-‘jump’-‘jack’.
Notice that our model nicely captures discriminative motion segments such as
the transitions between ‘jump’ and ‘jack’.

4.3 Complex Activities: Olympic Sports Dataset

We have collected a dataset of Olympic Sports activities from YouTube se-
quences. Our dataset contains 16 sport classes, with 50 sequences per class.
See Fig. 5 for example frames from the dataset. The sport activities depicted in
the dataset contain complex motions that go beyond simple punctual or repeti-
tive actions1. For instance, sequences from the long-jump action class, show an
1 In contrast to other sport datasets such as [15], which contains periodic or simple

actions such as walking, running, golf-swing, ball-kicking.
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Fig. 4. A learned model for the synthesized complex action ‘wave’-‘jump’-‘jack’. See

Fig. 3 for a description of the illustration.

Fig. 5. Olympic Sports Dataset. Our dataset contains 50 videos from each of 16 classes:

high jump, long jump, triple jump, pole vault, discus throw, hammer throw, javelin

throw, shot put, basketball layup, bowling, tennis serve, platform (diving), springboard

(diving), snatch (weightlifting), clean and jerk (weightlifting) and vault (gymnastics).

The sequences, obtained from YouTube, contain severe occlusions, camera movements,

compression artifacts, etc. The dataset is available at http://vision.stanford.edu.

http://vision.stanford.edu
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Fig. 6. Learned model for the complex actions in the Olympic Sports Dataset: high-

jump and clean-and-jerk. See Fig. 3 for a description of the illustration.

athlete first standing still, in preparation for his/her jump, followed by running,
jumping, landing and finally standing up. The dataset is available for download
at our website http://vision.stanford.edu.

We split the videos from each class in the dataset into 40 sequences for training
and 10 for testing. We illustrate two of the learned models in Fig. 6. Table 2
shows the classification results of our algorithm. We compare the performance of
our model to the multi-channel method of [5], which incorporates rigid spatio-
temporal binnings and captures a rough temporal ordering of features.

Finally, Fig. 7 shows three learned models of actions in the Olympic Sports
dataset, along with matchings to some testing sequences. In the long jump exam-
ple, the first motion segment classifier covers the running motion at the beginning
of the sequence. This motion segment has a low displacement penalty over a large
temporal range as indicated by its wide parabola. It suggests that the model has

http://vision.stanford.edu
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Fig. 7. We illustrate learned action models for long jump, vault and snatch. Each

group depicts two testing sequences (top and bottom), as well as an illustration of the

temporal displacement penalty parameters (middle). Green boxes surround matched

temporal segments that are most compatible with the corresponding motion segment

classifiers. Red boxes indicate temporal segments that are matched to the motion seg-

ment model with a low matching score. The arrows indicate the automatically selected

best placement for each motion segment.

Table 2. Average Precision (AP) values for the classification task in our Olympic

Sports Dataset

Sport Our Laptev et al. Sport Our Laptev et al.

class Method [5] class Method [5]

high-jump 68.9% 52.4% javelin-throw 74.6% 61.1%

long-jump 74.8% 66.8% hammer-throw 77.5% 65.1%

triple-jump 52.3% 36.1% discus-throw 58.5% 37.4%

pole-vault 82.0% 47.8% diving-platform 87.2% 91.5%
gymnastics-vault 86.1% 88.6% diving-springboard 77.2% 80.7%

shot-put 62.1% 56.2% basketball-layup 77.9% 75.8%

snatch 69.2% 41.8% bowling 72.7% 66.7%

clean-jerk 84.1% 83.2% tennis-serve 49.1% 39.6%

Average (AAP) 72.1% 62.0%
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learned to tolerate large displacements in the running stage of this activity. On
the other hand, in the vault example, the middle motion segment classifier has
a low matching score to the top testing sequence. However, the matching scores
in other temporal segments are high, which provides enough evidence to the full
action model for classifying this sequence correctly. Similarly, the bottom clean
and jerk sequence in the snatch model obtains a high matching score for the last
motion segment, but the evidence from the motion segments is rather low. We
also observe that our learned motion segment classifiers display a wide range of
temporal scales, indicating that our model is able to capture characteristic mo-
tion patterns at multiple scales. For example, the longer segments that contain
the athlete holding the weights in the snatch model, and the shorter segments
that enclose a jumping person in the long jump model.

5 Conclusion and Future Work

In this paper we have empirically shown that incorporating temporal structures
is beneficial for recognizing both complex human activities as well as simple
actions. Future directions include incorporating other types of contextual infor-
mation and richer video representations.
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Abstract. We address the problem of articulated human pose estima-

tion by learning a coarse-to-fine cascade of pictorial structure models.

While the fine-level state-space of poses of individual parts is too large

to permit the use of rich appearance models, most possibilities can be

ruled out by efficient structured models at a coarser scale. We propose

to learn a sequence of structured models at different pose resolutions,

where coarse models filter the pose space for the next level via their

max-marginals. The cascade is trained to prune as much as possible while

preserving true poses for the final level pictorial structure model. The

final level uses much more expensive segmentation, contour and shape

features in the model for the remaining filtered set of candidates. We

evaluate our framework on the challenging Buffy and PASCAL human

pose datasets, improving the state-of-the-art.

1 Introduction

Pictorial structure models [1] are a popular method for human body pose esti-
mation [2,3,4,5,6]. The model is a Conditional Random Field over pose variables
that characterizes local appearance properties of parts and geometric part-part
interactions. The search over the joint pose space is linear time in the number of
parts when the part-part dependencies form a tree. However, the individual part
state-spaces are too large (typically hundreds of thousands of states) to allow
complex appearance models be evaluated densely. Most appearance models are
therefore simple linear filters on edges, color and location [2,4,5,6]. Similarly, be-
cause of quadratic state-space complexity, part-part relationships are typically
restricted to be image-independent deformation costs that allow for convolution
or distance transform tricks to speed up inference [2]. A common problem in
such models is poor localization of parts that have weak appearance cues or
are easily confused with background clutter (accuracy for lower arms in human
figures is almost half of that for torso or head [6]). Localizing these elusive parts
requires richer models of individual part shape and joint part-part appearance,
including contour continuation and segmentation cues, which are prohibitive to
compute densely.

In order to enable richer appearance models, we propose to learn a cascade
of pictorial structures (CPS) of increasing pose resolution which progressively

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 406–420, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Overview: A discriminative coarse-to-fine cascade of pictorial structures filters

the pose space so that expressive and computationally expensive cues can be used in

the final pictorial structure. Shown are 5 levels of our coarse-to-fine cascade for the right

upper and lower arm parts. Green vectors represent position and angle of unpruned

states, the downsampled images correspond to the dimensions of the resepective state

space, and the white rectangles represent classification using our final model.

filter the pose state space. Conceptually, the idea is similar to the work on
cascades for face detection [7,8], but the key difference is the use of structured
models. Each level of the cascade at a given spatial/angular resolution refines the
set of candidates from the previous level and then runs inference to determine
which poses to filter out. For each part, the model selects poses with the largest
max-marginal scores, subject to a computational budget. Unlike conventional
pruning heuristics, where the possible part locations are identified using the
output of a detector, models in our cascade use inference in simpler structured
models to identify what to prune, taking into account global pose in filtering
decisions. As a result, at the final level the CPS model has to deal with a much
smaller hypotheses set which allows us to use a rich combination of features. In
addition to the traditional part detectors and geometric features, we are able
to incorporate object boundary continuity and smoothness, as well as shape
features. The former features represent mid-level and bottom-up cues, while
the latter capture shape information, which is complementary to the traditional
HoG-based part models. The approach is illustrated in the overview Figure 1.
We apply the presented CPS model combined with the richer set of features on
the Buffy and PASCAL stickmen benchmark, improving the state-of-the-art on
arm localization.

2 Related Work

The literature on human pose estimation is vast and varied in settings: appli-
cations range from highly-constrained MOCAP environments (e.g. [9]) to ex-
tremely articulated baseball players (e.g. [10]) to the recently popular “in the
wild” datasets Buffy (from TV) and the PASCAL Stickmen (from amateur pho-
tographs) [5]. We focus our attention here on the work most similar in spirit to
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ours, namely, pictorial structures models. First proposed in [1], efficient inference
methods focusing on tree-based models with quadratic deformation costs were
introduced in [2]. Ramanan [4] proposed learning PS parameters discriminitively
by maximizing conditional likelihood and introduced further improvements using
iterative EM-like parsing [11]. Ferrari et al. [5,12] also prune the search space
for computational efficiency and to avoid false positives. Our end goal is the
same, but we adopt a more principled approach, expressing features on regions
and locations and letting our system learn what to eliminate at run-time given
the image.

For unstructured, binary classification, cascades of classifiers have been quite
successful for reducing computation. Fleuret and Geman [7] propose a coarse-
to-fine sequence of binary tests to detect the presence and pose of objects in
an image. The learned sequence of tests is trained to minimize expected com-
putational cost. The extremely popular Viola-Jones classifier [8] implements a
cascade of boosting ensembles, with earlier stages using fewer features to quickly
reject large portions of the state space.

Our cascade model is inspired by these binary classification cascades, and is
based on the structured prediction cascades framework [13]. In natural language
parsing, several works [14,15] use a coarse-to-fine idea closely related to ours
and [7]: the marginals of a simple context free grammar or dependency model
are used to prune the parse chart for a more complex grammar.

Recently, Felzenszwalb et al. [16] proposed a cascade for a structured parts-
based model. Their cascade works by early stopping while evaluating individual
parts, if the combined part scores are less than fixed thresholds. While the form
of this cascade can be posed in our more general framework (a cascade of models
with an increasing number of parts), we differ from [16] in that our pruning is
based on thresholds that adapt based on inference in each test example, and we
explicitly learn parameters in order to prune safely and efficiently. In [7,8,16],
the focus is on preserving established levels of accuracy while increasing speed.
The focus in this paper is instead developing more complex models—previously
infeasible due to the original intractable complexity—to improve state-of-the-art
performance.

A different approach to reduce the intractable number of state hypotheses is to
instead propose a small set of likely hypotheses based on bottom-up perceptual
grouping principles [10,17]. Mori et al. [10] use bottom-up saliency cues, for
example strength of supporting contours, to generate limb hypotheses. They
then prune via hand-set rules based on part-pair geometry and color consistency.
The shape, color and contour based features we use in our last cascade stage are
inspired by such bottom-up processes. However, our cascade is solely a sequence
of discriminatively-trained top-down models.

3 Framework

We first summarize the basic pictorial structure model and then describe the
inference and learning in the cascaded pictorial structures.
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Classical pictorial structures are a class of graphical models where the nodes
of the graph represents object parts, and edges between parts encode pairwise
geometric relationships. For modeling human pose, the standard PS model de-
composes as a tree structure into unary potentials (also referred to as appearance
terms) and pairwise terms between pairs of physically connected parts. Figure 2
shows a PS model for 6 upper body parts, with lower arms connected to upper
arms, and upper arms and head connected to torso. In previous work [4,2,5,12,6],
the pairwise terms do not depend on data and are hence referred to as a spatial
or structural prior. The state of part Li, denoted as li ∈ Li, encodes the joint
location of the part in image coordinates and the direction of the limb as a unit
vector: li = [lix liy liu liv]T . The state of the model is the collection of states of M
parts: p(L = l) = p(L1 = l1, . . . , LM = lM ). The size of the state space for each
part, |Li|, the number of possible locations in the image times the number of pre-
defined discretized angles. For example, standard PS implementations typically
model the state space of each part in a roughly 100× 100 grid for lix × liy, with
24 different possible values of angles, yielding |Li| = 100× 100× 24 = 240, 000.
The standard PS formulation (see [2]) is usually written in a log-quadratic form:

p(l|x) ∝
∏
ij

exp(−1
2
||Σ−1/2

ij (Tij(li)− lj − μij)||22)×
M∏
i=1

exp(μT
i φi(li, x)) (1)

The parameters of the model are μi, μij and Σij , and φi(li, x) are features of the
(image) data x at location/angle li. The affine mapping Tij transforms the part
coordinates into a relative reference frame. The PS model can be interpreted
as a set of springs at rest in default positions μij , and stretched according to
tightness Σ−1

ij and displacement φij(l) = Tij(li) − lj . The unary terms pull the
springs toward locations li with higher scores μT

i φi(li, x) which are more likely
to be a location for part i.

Fig. 2. Basic PS model with state li for a

part Li

This form of the pairwise po-
tentials allows inference to be per-
formed faster than O(|Li|2): MAP
estimates arg maxl p(l|x) can be
computed efficiently using a gener-
alized distance transform for max-
product message passing in O(|Li|)
time. Marginals of the distribu-
tion, p(li|x), can be computed ef-
ficiently using FFT convolution for
sum-product message passing in
O(|Li| log |Li|) [2].

While fast to compute and intu-
itive from a spring-model perspective, this model has two significant limitations.
One, the pairwise costs are unimodal Gaussians, which cannot capture the true
multimodal interactions between pairs of body parts. Two, the pairwise terms
are only a function of the geometry of the state configuration, and are oblivious
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to the image cues, for example, appearance similarity or contour continuity of
the a pair of parts.

We choose instead to model part configurations as a general log-linear Con-
ditional Random Field over pairwise and unary terms:

p(l|x) ∝ exp

[∑
ij

θT
ijφij(li, lj , x) +

∑
i

θT
i φi(li, x)

]
= eθT φ(l,x). (2)

The parameters of our model are the pairwise and unary weight vectors θij

and θi corresponding to the pairwise and unary feature vectors φij(li, lj , x) and
φi(li, x). For brevity, we stack all the parameters and features into vectors using
notation θT φ(l, x). The key differences with the classical PS model are that (1)
our pairwise costs allow data-dependent terms, and (2) we do not constrain our
parameters to fit any parametric distribution such as a Gaussian. For example,
we can express the pairwise features used in the classical model as li · li, lj ·
lj and li · lj without requiring that their corresponding weights can be combined
into a positive semi-definite covariance matrix.

In this general form, inference can not be performed efficiently with dis-
tance transforms or convolution, and we rely on standard O(|Li|2) dynamic
programming techniques to compute the MAP assignment or part posteriors.
Many highly-effective pairwise features one might design would be intractable
to compute in this manner for a reasonably-sized state space—for example an
100 × 100 image with a part angle discretization of 24 bins yields |Li|2 = 57.6
billion part-part hypotheses.

In the next section, we describe how we circumvent this issue via a cascade of
models which aggressively prune the state space at each stage typically without
discarding the correct sequence. After the state space is pruned, we are left with a
small enough number of states to be able to incorporate powerful data-dependent
pairwise and unary features into our model.

Structured Prediction Cascades

The recently introduced Structured Prediction Cascade framework [13] provides
a principled way to prune the state space of a structured prediction problem
via a sequence of increasingly complex models. There are many possible ways of
defining a sequence of increasingly complex models. In [13] the authors introduce
higher-order cliques into their models in successive stages (first unary, then pair-
wise, ternary, etc.). Another option is to start with simple but computationally
efficient features, and add more complex features downstream as the number of
states decreases. Yet another option is to geometrically coarsen the original state
space and successively prune and refine. We use a coarse-to-fine state space ap-
proach with simple features until we are at a reasonably fine enough state space
resolution and left with few enough states that we can introduce more complex
features. We start with a severely coarsened state space and use standard pic-
torial structures unary detector scores and geometric features to perform quick
exhaustive inference on the coarse state space.
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More specifically, each level of the cascade uses inference to identify which
states to prune away and the next level refines the spatial/angular resolution on
the unpruned states. The key ingredient to the cascade framework is that states
are pruned using max-marginal scores, computed using dynamic programming
techniques. For brevity of notation, define the score of a joint part state l as
θx(l) and the max-marginal score of a part state as follows:

θx(l) = θT φ(l, x) =
∑
ij

θT
ijφij(li, lj , x) +

∑
i

θT
i φi(li, x) (3)

θ
x(li) = max

l′∈L
{θx(l′) : l′i = li} (4)

In words, the max-marginal for location/angle li is the score of the best se-
quence which constrains Li = li. In a pictorial structure model, this corresponds
to fixing limb i at location li, and determining the highest scoring configura-
tion of other part locations and angles under this constraint. A part could have
weak individual image evidence of being at location li but still have a high max-
marginal score if the rest of the model believes this is a likely location. Similarly,
we denote the MAP assignment score as θ

x = maxl∈L θx(l), the unconstrained
best configuration of all parts.

When learning a cascade, we have two competing objectives that we must
trade off, accuracy and efficiency: we want to minimize the number of errors
incurred by each level of the cascade and maximize the number of filtered max
marginals. A natural strategy is to prune away the lowest ranked states based on
max-marginal scores. Instead, [13] prune the states whose max-marginal score is
lower than an data-specific threshold tx: li is pruned if θ

x(li) < tx. This threshold
is defined as a convex combination of the MAP assignment score and the mean
max-marginal score, meant to approximate a percentile threshold:

tx(θ, α) = αθ
x + (1− α)

1
M

M∑
i=1

1
|Li|

∑
li∈Li

θ
x(li),

where α ∈ [0, 1] is a parameter to be chosen that determines how aggressively
to prune. When α = 1, only the best state is kept, which is equivalent to finding
the MAP assignment. When α = 0 approximately half of the states are pruned
(if the median of max-marginals is equal to the mean). The advantage of using
tx(θ, α) is that it is convex in θ, and leads to a convex formulation for parameter
estimation that trades off the proportion of incorrectly pruned states with the
proportion of unpruned states. Note that α controls efficiency, so we focus on
learning the parameters θ that minimize the number of errors for a given filtering
level α. The learning formulation uses a simple fact about max-marginals and the
definition of tx(θ, α) to get a handle on errors of the cascade: if θx(l) > tx(θ, α),
then for all i, θ

x(li) > tx(θ, α), so no part state of l is pruned. Given an example
(x, l), this condition θx(l) > tx(θ, α) is sufficient to ensure that no correct part
is pruned.

To learn one level of the structured cascade model θ for a fixed α, we try
to minimize the number of correct states that are pruned on training data by
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solving the following convex margin optimization problem given N training ex-
amples (xn, ln):

min
θ

λ

2
||θ||2 +

1
N

N∑
n=1

H(θ; xn, ln), (5)

where H is a hinge upper bound H(θ; x, l) = max{0, 1 + tx(θ, α) − θx(l)}. The
upper-bound H is a hinge loss measuring the margin between the filter threshold
txn(θ, α) and the score of the truth θT φ(ln, xn); the loss is zero if the truth scores
above the threshold by margin 1. We solve (5) using stochastic sub-gradient
descent. Given an example (x, l), we apply the following update if H(θ; x, l)
(and the sub-gradient) is non-zero:

θ′ ← θ + η

(
−λθ + φ(l, x)− αφ(l, x)− (1− α)

1
M

∑
i

1
|Li|

∑
li∈Li

φ(l(li), x)

)
.

Above, η is a learning rate parameter, l = argmaxl′ θx(l′) is the highest scoring
assignment and l(li) = argmaxl′:l′i=li θx(l′) are highest scoring assignments
constrained to li for part i. The key distinguishing feature of this update as
compared to structured perceptron is that it subtracts features included in all
max-marginal assignments l(li)1.

The stages of the cascade are learned sequentially, from coarse to fine, and
each has a different θ and Li for each part, as well as α. The states of the
next level are simply refined versions of the states that have not been pruned.
We describe the refinement structure of the cascade in Section 5. In the end
of a coarse-to-fine cascade we are left with a small, sparse set of states that
typically contains the groundtruth states or states relatively close to them—in
practice we are left with around 500 states per part, and 95% of the time we
retain a state the is close enough to be considered a match (see Table 2). At
this point we have the freedom to add a variety of complex unary and pairwise
part interaction features involving geometry, appearance, and compatibility with
perceptual grouping principles which we describe in Section 4.

Why not just detector-based pruning? A naive approach used in a variety
of applications is to simply subsample states by thresholding outputs of part
or sparse feature detectors, possibly combined with non-max suppression. Our
approach, based on pruning on max-marginal values in a first-order model, is
more sophisticated: for articulated parts-based models, strong evidence from
other parts can keep a part which has weak individual evidence, and would be
pruned using only detection scores. The failure of prefiltering part locations in
human pose estimation is also noted by [6], and serves as the primary justification

1 Note that because (5) is λ-strongly convex, if we chose ηt = 1/(λt) and add a

projection step to keep θ in a closed set, the update would correspond to the Pegasos

update with convergence guarantees of Õ(1/ε) iterations for ε-accurate solutions [18].

In our experiments, we found the projection step made no difference and used only

2 passes over the data, with η fixed.
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Fig. 3. Upper right: Detector-based pruning by thresholding (for the lower right arm)

yields many hypotheses far way from the true one. Lower row: The CPS, however,

exploits global information to perform better pruning.

for their use of the dense classical PS. This is illustrated in Figure 3 on an
example image from [5].

4 Features

The introduced CPS model allows us to capture appearance, geometry and shape
information of parts and pairs of parts in the final level of the cascade—much
richer than the standard geometric deformation costs and texture filters of pre-
vious PS models [2,4,5,6]. Each part is modeled as a rectangle anchored at the
part joint with the major axis defined as the line segment between the joints
(see Figure 2). For training and evaluation, our datasets have been annotated
only with this part axis.

Shape: We express the shape of limbs via region and contour information. We
use contour cues to capture the notion that limbs have a long smooth outline
connecting and supporting both the upper and lower parts. Region information
is used to express coarse global shape properties of each limb, attempting to
express the fact the limbs are often supported by a roughly rectangular collection
of regions—the same notion that drives the bottom-up hypothesis generation
in [10,17].

Shape/Contour: We detect long smooth contours from sequences of image
segmentation boundaries obtained via NCut [24]. We define a graph whose nodes
are all boundaries between segments with edges linking touching boundaries.
Each contour is a path in this graph (see Fig. 4, middle left). To reduce the
number of possible paths, we restrict ourselves to all shortest paths. To quantify
the smoothness of a contour, we compute an angle between each two touching
segment boundaries2. The smoothness of a contour is quantified as the maximum
2 This angle is computed as the angle between the lines fitted to the segment boundary

ends, defined as one third of the boundary.
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Fig. 4. Left: input image; Middle left: segmentation with segment boundaries and

their touching points in red. Middle right: contour edges which support part li and

have normals which do not deviate from the part axis normal by more than ω. Right:

first and second order moments of the region lying under the major part axis.

angle between boundaries along this contour. Finally, we find among all shortest
paths those whose length exceeds �th pixels and whose smoothness is less then
sth and denote them by {c1, . . . cm}.3

We can use the above contours to define features for each pair of lower and
upper arms, which encode the notion that those two parts should share a long
smooth contour, which is parallel and close to the part boundaries. For each arm
part li and a contour ck we can estimate the edges of ck which lie inside one
of the halves of the supporting rectangle of li and whose edge normals build an
angle smaller than ω with the normal of the part axis (see Fig. 4, right). We
denote the number of those edges by qik(ω). Intuitively, a contour supports a
limb if it is mostly parallel and enclosed in one of the limb sides, i.e. the value
qik(ω) is large for small angles ω. A pair of arm limbs li, lj should have a high
score if both parts are supported by a contour ck, which can be expressed as the
following two scores

cc(1)
ijk(ω, ω′)=

1
2

(
qik(ω)

hi
+

qjk(ω′)
hj

)
and cc(2)

ijk(ω, ω′)=min
{

qik(ω)
hi

,
qjk(ω′)

hj

}
where we normalize qik by the length of the limb hi to ensure that the score
is in [0, 1]. The first score measures the overall support of the parts, while the
second measures the minimum support. Hence, for li, lj we can find the highest
score among all contours, which expresses the highest degree of support which
this pair of arms can receive from any of the image contours:

cc(t)
ij (ω, ω′) = max

k∈{1,...,m}
cc(t)

ijk(ω, ω′), for t ∈ {1, 2}

By varying the angles ω and ω′ in a set of admissible angles Ω defining parallelism
between the part and the contour, we obtain |Ω|2 contour features4.

Shape/Region Moments: We compute the first and second order moments
of the segments lying under the major part axis (see Fig. 4, right)5 to coarsely
3 We set th = 60 pixels, sth = 45◦ resulting in 15 to 30 contours per image.
4 We set Ω = {10◦, 20◦, 30◦}, which results in 18 features for both scores.
5 We select segments which cover at least 25% of the part axis.



Cascaded Models for Articulated Pose Estimation 415

express shape of limb hypotheses as a collection of segments, Rli . To achieve rota-
tion and translation invariance, we compute the moments in the part coordinate
system. We include convexity information |conv(Rli)|/|Rli |, where conv(·) is the
convex hull of a set of points, and |Rli | is the number of points in the collection
of segments. We also include the number of points on the convex hull, and the
number of part axis points that pass through Rli to express continuity along the
part axis.

Appearance/Texture: Following the edge-based representation used in [19],
we model the appearance the body parts using Histogram of Gradient (HoG)
descriptor. For each of the 6 body parts – head, torso, upper and lower arms –
we learn an individual Gentleboost classifier [20] on the HoG features using the
Limbs Annotated in Movies Dataset6.

Appearance/Color: As opposed to HoG, color drastically varies between peo-
ple. We use the same assumptions as [21] and build color models assuming a fixed
location for the head and torso at run-time for each image. We train Adaboost
classifiers using these pre-defined regions of positive and negative example pix-
els, represented as RGB, Lab, and HSV components. For a particular image, a
5-round Adaboost ensemble [22] is learned for each color model (head, torso)
and reapplied to all the pixels in the image. A similar technique is also used
by [23] to incorporate color. Features are computed as the mean score of each
discrimintative color model on the pixels lying in the rectangle of the part.

We use similarity of appearance between lower and upper arms as features
for the pairwise potentials of CPS. Precisely, we use the χ2 distance between
the color histograms of the pixels lying in the part support. The histograms are
computed using minimum-variance quantization of the RGB color values of each
image into 8 colors.

Geometry: The body part configuration is encoded in two set of features. The
location (lix, liy) and orientation (liu, liv), included in the state of a part, are
used added as absolute location prior features. We express the relative difference
between part li its parent lj in the coordinate frame of the parent part as Tij(li)−
lj . Note we could introduce second-order terms to model a quadratic deformation
cost akin to the classical PS, but we instead adopt more flexible binning or
boosting of these features (see Section 5).

5 Implementation Details

Coarse-to-Fine Cascade. While our fine-level state space has size 80×80×24,
our first level cascade coarsens the state-space down to 10×10×12 = 1200 states
per part, which allows us to do exhaustive inference efficiently. We always train
and prune with α = 0, effectively throwing away half of the states at each stage.
After pruning we double one of the dimensions (first angle, then the minimum
of width or height) and continue (see Table 2). In the coarse-to-fine stages we
only use standard PS features. HoG part detectors are run once over the original
6 LAMDa is available at http://vision.grasp.upenn.edu/video

http://vision.grasp.upenn.edu/video
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Fig. 5. Examples of correctly localized limbs under different conditions (low contrast,

clutter) and poses (different positions of the arms, partial self occlusions)

state space, and their outputs are resized to for features in coarser state spaces.
We also use the standard relative geometric cues as described in Sec. 4. We bin
the values of each feature uniformly, which adds flexibility to the standard PS
model—rather than learning a mean and covariance, multi-modal pairwise costs
can be learned.

Sparse States, Rich Features. To obtain segments, we use NCut[24]. For the
contour features we use 30 segments and for region moments – 125 segments.
As can be seen in Table 2, the coarse-to-fine cascade leaves us with roughly 500
hypotheses per part. For these hypotheses, we generate all features mentioned
in Sec. 4. For pairs of part hypotheses which are farther than 20% of the image
dimensions from the mean connection location, features are not evaluated and
an additional feature expressing this condition is added to the feature set. We
concatenate all unary and pairwise features for part-pairs into a feature vec-
tor and learn boosting ensembles which give us our pairwise clique potentials7.
This method of learning clique potentials has several advantages over stochastic
subgradient learning: it is faster to train, can determine better thresholds on
features than uniform binning, and can combine different features in a tree to
learn complex, non-linear interactions.

6 Experiments

We evaluate our approach on the publicly available Buffy The Vampire Slayer
v2.1 and PASCAL Stickmen datasets [21]. We use the upper body detection
windows provided with the dataset as input to localize and scale normalize the
images before running our experiments as in [21,5,6]. We use the usual 235 Buffy
test images for testing as well as the 360 detected people from PASCAL stickmen.
We use the remaining 513 images from Buffy for training and validation.

Evaluation Measures. The typical measure of performance on this dataset is
a matching criteria based on both endpoints of each part (e.g., matching the
elbow and the wrist correctly): A limb guess is correct if the limb endpoints are
7 We use OpenCV’s implementation of Gentleboost and boost on trees of depth 3,

setting the optimal number of rounds via a hold-out set.
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Fig. 6. Left: PCP curves of our cascade method versus a detection pruning approach,

evaluated using PCP on arm parts (see text). Right: Analysis of incorporating indi-

vidual types of features into the last stage of our system.

on average within r of the corresponding groundtruth segments, where r is a
fraction of the groundtruth part length. By varying r, a performance curve is
produced where the performance is measured in the percentage of correct parts
(PCP) matched with respect to r.

Overall system performance. As shown in Table 1, we perform comparably
with the state-of-the-art on all parts, improving over [25] on upper arms on
both datasets and significantly outperforming earlier work. We also compare to
a much simpler approach, inspired by [16] (detector pruning + rich features):
We prune by thresholding each unary detection map individually to obtain the
same number of states as in our final cascade level, and then apply our final
model with rich features on these states. As can be seen in Figure 6/left, this
baseline performs significantly worse than our method (performing about as well
as a standard PS model as reported in [25]). This makes a strong case for using
max-marginals (e.g., a global image-dependent quantity) for pruning, as well as
learning how to prune safely and efficiently, rather than using static thresholds
on individual part scores as in [16].

Our previous method [25] is the only other PS method which incorporates
image information into the pairwise term of the model. However it is still an
exhaustive inference method. Assuming all features have been pre-computed,
inference in [25] takes an average of 3.2 seconds, whereas inference using the
sparse set of states in the final stage of the cascade takes on average 0.285
seconds—a speedup of 11.2x8.

In Figure 6/right we analyze which features are most effective, measured in L2
distance to the groundtruth state, normalized by the groundtruth length of the
part. We start only with the basic geometry and unary HoG detector features
available to basic PS systems, and add different classes of features individually.
Skin/torso color estimation gives a strong boost in performance, which is consis-
tent with the large performance boost that the results in [21] obtained over their
previous results [12]. Using contours instead of color is nearly as effective. The

8 Run on an Intel Xeon E5450 3.00GHz CPU with an 80×80×24 state space averaged

over 20 trials. [25] uses MATLAB’s optimized fft function for message passing.
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Table 1. Comparison to other methods at PCP0.5. See text for details. We perform

comparably to state-of-the-art on all parts, improving on upper arms.

method torso head upper lower total
arms arms

Buffy

Andriluka et al. [6] 90.7 95.5 79.3 41.2 73.5
Eichner et al. [21] 98.7 97.9 82.8 59.8 80.1

APS [25] 100 100 91.1 65.7 85.9
CPS (ours) 100 96.2 95.3 63.0 85.5

Detector pruning 99.6 87.3 90.0 55.3 79.6
PASCAL stickmen

Eichner et al. [21] 97.22 88.60 73.75 41.53 69.31
APS [25] 100 98.0 83.9 54.0 79.0

CPS (ours) 100 90.0 87.1 49.4 77.2

Fig. 7. Detections with geometry (top) and with additional cues (bottom). Left: con-

tour features support arms along strong contours and avoid false positives along weak

edges. Right: after overlaying the part hypothesis on the segmentation, the incorrect

one does not select an elongated set of segments.

features combine to outperform any individual feature. Examples where different
cues help are shown in Figure 7.

Coarse-to-fine Cascade Evaluation: In Table 2, we evaluate the drop in
performance of our system after each successive stage of pruning. We report
PCP scores of the best possible as-yet unpruned state left in the original space.
We choose a tight PCP0.2 threshold to get an accurate understanding whether we
have lost well-localized limbs. As seen in Table 2, the drop in PCP0.2 is small and
linear, whereas the pruning of the state space is exponential—half of the states
are pruned in the first stage. As a baseline, we evaluate the simple detector-based
pruning described above. This leads to a significant loss of correct hypotheses, to
which we attribute the poor end-system performance of this baseline (in Figure 6
and Table 1), even after adding richer features.

Future work: The addition of more powerful shape-based features could fur-
ther improve performance. Additional levels of pruning could allow for (1) faster
inference, (2) inferring with higher-order cliques to, e.g., express compatabil-
ity between left and right arms or (3) incorporating additional variables into
the state space—relative scale of parts to model foreshortening, or occlusion
variables. Finally, our approach can be naturally extended to pose estimation in
video where the cascaded models can be coarsened over space and time.
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Table 2. For each level of the cascade we present the reduction of the size of the state

space after pruning each stage and the quality of the retained hypotheses measured

using PCP0.2. As a baseline, we compare to pruning the same number of states in the

HoG detection map (see text).

cascade state # states in the state space PCP0.2
stage dimensions original pruned reduction arms

space space % oracle
0 10x10x12 153600 1200 00.00 —
1 10x10x24 72968 1140 52.50 54
3 20x20x24 6704 642 95.64 51
5 40x40x24 2682 671 98.25 50
7 80x80x24 492 492 99.67 50

detection pruning 80x80x24 492 492 99.67 44
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Abstract. This paper proposes a new approach to the estimation of

document states such as interline spacing and text line orientation, which

facilitates a number of tasks in document image processing. The proposed

method can be applied to spatially varying states as well as invariant

ones, so that general cases including images of complex layout, camera-

captured images, and handwritten ones can also be handled. Specifically,

we find CCs (Connected Components) in a document image and assign a

state to each of them. Then the states of CCs are estimated using an en-

ergy minimization framework, where the cost function is designed based

on frequency domain analysis and minimized via graph-cuts. Using the

estimated states, we also develop a new algorithm that performs text

block identification and text line extraction. Roughly speaking, we can

segment an image into text blocks by cutting the distant connections

among the CCs (compared to the estimated interline spacing), and we

can group the CCs into text lines using a bottom-up grouping along the

estimated text line orientation. Experimental results on a variety of doc-

ument images show that our method is efficient and provides promising

results in several document image processing tasks.

Keywords: document image processing, state estimation, graph cuts,

text block identification, text line extraction.

1 Introduction

Text block identification and text line extraction are fundamentally important
steps for OCR (Optical Character Recognition), and they are also essential
for the rectification of camera-captured document images [1,2,3,4,5,6]. However,
most research in this area has assumed scanned documents [1,7,8,9,10] and the
applications to camera-captured images were limited to relatively simple layout
and text-abundant cases [2,4,11]. In order to widen the area of valuable docu-
ment processing tools (such as OCR and TTS for visually impaired, automatic
translation of books and street signs, etc) to the camera-captured inputs, we
propose a novel document state estimation algorithm and present its applica-
tion in text block identification and text line extraction, where the state means
line spacing, orientation, and other parameters describing the local properties of

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 421–434, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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text region. Examples of input and output of our algorithm are shown in Fig.
1-(a) and (f). As can be seen, camera-captured images suffer from perspective
distortion, geometric distortion, uneven illumination, motion blur, un-focussed
blur, non-textual objects, and possibly cluttered background.

1.1 Our Method

Our method consists of two parts. In the former part, we estimate interline spac-
ing and text line orientation for each Connected Component (CC), where we call
two properties as the state of a CC. This step may correspond to a scale selec-
tion step in feature detection methods [12]. As the scale selection is important
in detecting features from unknown measurement data, the state estimation is
essential for unconstrained document image processing. For example, a simple
problem to determine whether two adjacent CCs are in a same word or not may
be ambiguous unless we know their states. Nevertheless, there is little research
on this problem in camera based methods. It is probably because appropriate
states for analysis may be known a priori in controlled situations [3,4,5]. How-
ever, we believe that the state estimation is an essential step for camera-captured
image processing not only for the theoretical aspects but also for a practical sys-
tem that can be demonstrated in uncontrolled environments (unknown character
size, page curl, shot angle, and distance). In the latter part of our method, we
develop a method that identifies text blocks and extracts text lines using the esti-
mated states. Especially, the text line extraction method is based on a bottom-up
grouping as commonly used in other related works [1,3,5,13]. However, unlike the
other works, our method is largely free from conventional drawbacks due to the
estimated states.

State estimation of CCs. The idea of assigning states can be found in the
literature [1,9,10,15]. In docstrum [1], nearest neighbor (NN) angle histogram and
NN distance histogram are computed from the geometric relationship between
K-nearest units. From the histograms, they estimated the orientation, interline
spacing, and within-line spacing. Then, a bottom-up approach is adopted to
cluster CCs into words, text lines, and blocks. Due to the state estimation, the
algorithm can effectively accomplish skew estimation and page segmentation [7],
however, the method cannot handle the spatially varying cases [13]. It is because
the method assumes fixed states (i.e., not spatially-varying) and the same rules
using the same parameters are applied to the whole image. Related works can
be found in [7,9,10,15]. Since camera-captured images, handwritten ones, and
documents having complex layout have spatially varying properties, we assume
that each CC has its own state. Also, we formulate the state estimation problem
as an energy minimization problem. In designing the energy function, we consider
a neighborhood system induced by Delaunay triangulation [14] and a data term
is designed to exploit the periodical property of text lines.

Text block identification and text line detection. For text block identi-
fication and text line extraction, we first segment a graph formed by Delaunay
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Illustration of our algorithm, (a) Input of our algorithm, (b) Binarization

result, (c) Super-pixel representation and Delaunay triangulation [14], (d) Detected

text blocks. See Section 3.1 for details, (e) Our bottom-up grouping result. See Section

3.2 for details, (f) Our final result.

triangulation of CCs (Fig. 1-(c)) into subgraphs (Fig. 1-(d)) by removing long
edges that connect the CCs. Then, we cluster the CCs into text lines using a
bottom-up approach. It is noted that the conventional bottom-up approaches
are sensitive to input variations such as language, character size, and page curl
[16,11] since they required heuristic rules, artificial parameters, and training pro-
cess [5,13,3]. However, our method can be robust to the variations by using the
estimated scale and orientation. Compared to recently developed text line ex-
traction methods that adopt general image segmentation techniques [17,11], our
method is more efficient and detects text lines in a scale/orientation invariant
manner.

However, like other methods, our method also suffers from non-textual objects
as shown in Fig. 1-(e). For non-textual object rejection, a training based method
was proposed in [8] for classifying each block into printed text, handwriting, or
noise. Although their results are very convincing, it is not clear how to construct a
training set that achieves robustness to language variation, poor image quality,
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and complex layout. Since the noise that smears text region [7,8] is seldom
observed in camera-captured images of printed material, we assume that non-
textual objects take place distant from text blocks. Then we can reject non-
textual objects using the properties of clusters. Precisely, we assume that (1) a
cluster in text region tends to be curvilinear, and (2) a cluster in non-textual
region is isolated (represented as black rectangles) or it may be non-curvilinear
as can be seen in Fig. 1-(e). Using these properties, we formulate non-textual
object rejection as a labeling problem with an energy minimization approach.
After the inference, we remove non-textual objects, and refine text blocks and
text lines. The result is illustrated in Fig. 1-(f).

2 The State Estimation of CCs

In this section, we explain our state estimation method based on an energy
minimization framework. This section consists of binarization, CC construction,
energy formulation, and its minimization that gives the state of each CC.

2.1 Binarization and CC Construction

The first step of our algorithm is the binarization of a gray image I. Our bina-
rization method is based on the retinex filtering which is efficient and robust to
uneven illumination:

Bs =
{

1 Is < μ1 ×Gs

0 otherwise (1)

where Is is the intensity at pixel s, G(σ) ∗ I is a Gaussian filtered image of
I, and Gs = (G(σ) ∗ I)s [18]. However, since it produces a number of spurious
responses on dark and homogeneous region, we introduce an additional condition
that suppresses responses on homogeneous region:

|Is −Gs| > μ2 (2)

for Bs = 1. From the binary image {Bs}, we extract CCs of ‘1’ using an 8-
neighborhood system. In this process, we suppress small CCs (containing less
than 10 pixels) and large CCs (containing more than 3000 pixels) for the removal
of noisy ones. We denote the set of extracted CCs as P .

2.2 Energy Formulation

We assign a state to every site p ∈ P , and denote the state as fp = (sp, θp),
where sp is the interline spacing between neighboring text lines and θp is the
orientation of a text line where p belongs. The estimation problem is formulated
as an energy minimization problem whose energy function is given by

E({fp}) =
∑
p∈P

Vp(fp) +
∑

(p,q)∈E
Vp,q(fp, fq) (3)

where Vp(fp) is a data term reflecting local observation, Vp,q(fp, fq) is a pairwise
potential reflecting label smoothness, and E is a set of edges.
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2.3 The Design of Vp(fp)

For the design of Vp(fp), we first explain our projection method, and frequency
domain analysis will be followed.

Super-pixel approximation. Since pixel based approaches are computation-
ally demanding in analyzing local patterns, we reduce complexity by using super-
pixels. Precisely, we compute the mean vector (xp, yp) and the covariance matrix
Σp of pixels in the p-th CC. The covariance matrix is decomposed into Σp =
σ1v1v

T
1 +σ2v2v

T
2 where σ1 > σ2 are eigenvalues, v1 and v2 are eigenvectors. Using

the decomposition, the CC is approximated to an ellipse (whose minor and major
axes are v1 and v2 respectively) as illustrated in Fig. 2-(a). In this process, ellipses
showing large eccentricity (σ1

σ2
> 15) are also removed. Then we define a projected

signal, which is the number of ellipse on the line of projection as illustrated in Fig.
2-(a). Fig. 2-(b) shows an example of projecting the super-pixels in a circle into
some directions.

(a) (b)

Fig. 2. (a) Ellipse approximation of CCs and its projection, (b) Ellipse approximation

of CCs and its projected signals into two directions

Data term based on frequency domain analysis. As illustrated in Fig.
2-(b), when CCs around a site p are projected to the normal direction to a text
line, a periodic pattern (whose period is the interline spacing sp) is observed.
From the observation, we design Vp(fp) so that it decreases as the periodicity
of projected signal is increasing. For this, we first obtain a projected signal x(n)
by projecting CCs to the orientation of θp, and its DFT XN(k) is computed:
XN (k) =

∑N−1
n=0 x(n) exp

(
−j 2πkn

N

)
. The normalized energy of a signal of period

N
k is given by

|XN(k)|2 + |XN(2k)|2 + · · ·
|XN (0)|2 + |XN (1)|2 + |XN(2)|2 + · · · �

|XN (k)|2
|XN (0)|2 (4)

where the numerator of left hand side is the energy of repeating component
(T = N

k ) and the denominator is the overall energy of x(n) [19]. Moreover, we
verified through experiment that this can be replaced as the magnitude of first
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harmonic over the DC term as shown in the right-hand side of (4). Based on this
measure of periodicity, Vp(fp) is defined as

Vp(fp) = − log
|XN (k)|2
|XN (0)|2 . (5)

Finally, we have to choose (sp, Np, kp) satisfying Np

kp
= sp. There are several

factors to be considered. For the good localization in frequency domain, a large
N is desirable. On the other hand, a large N is not good at handling spatially
varying states. We also have to consider computational complexity. Considering
these factors, we select 10 scales from 12.8 ≤ sp ≤ 128 and they are summarized
in Table 1. We also quantize orientations into D = 32 steps:

θp ∈
{

i× π

D

∣∣∣∣i = 0, 1, . . . , D − 1
}

. (6)

In summary, Vp(fp) for label fp = (sp, θp) is computed as follows.

– CCs around the p-th CC are projected to the line whose orientation is θp,
resulting x(n). In the projection, the size of window is determined according
to the Table 1.

Table 1. Discrete levels of interline spacing (sp) used in our algorithm

Discrete levels (sp) 12.8 16.0 21.3 25.6 32.0 42.7 51.2 64.0 85.3 128.0

Np 64 64 64 128 128 128 256 256 256 256

kp 5 4 3 5 4 3 5 4 3 2

– When there are only small number of CCs (i.e., x(n) ≤ 3 for all n) or
|XNp(kp)| is not a local maximum, we set Vp(fp) = ε.

– Otherwise, the data cost is given by

Vp(fp) = − log
|XNp(kp)|2
|XNp(0)|2 . (7)

2.4 Pairwise Potential

For a neighborhood system, we adopt Delaunay triangulation [14] and our pair-
wise potential is given by

Vp,q(fp, fq) = μ(fp, fq)× exp

(
−

k × d2
pq

(s2
p + s2

q)

)
(8)

where dpq is the Euclidean distance between the site p and q. Since dpq/
√

s2
p + s2

q

can be considered as an intrinsic distance (i.e., invariant to camera settings,
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distance between documents and camera, and so on) between two CCs, the
cost function allows label discontinuities between distant sites while impos-
ing smoothness constraints on nearby ones. Moreover, in order to allow small
amount of label discontinuities (which is common in camera-captured docu-
ments), μ(fp, fq) is defined as

μ(fp, fq) =

⎧⎨⎩
0 fp = fq

λ1 |fp − fq| ≤ 3
λ2 otherwise

(9)

where |fp − fq| is the label distance defined as the sum of orientation difference
and scale difference (λ1 < λ2).

2.5 Optimization

In (3), the number of sites (|P|) is usually up to 20, 000 and the number of labels
is 32× 10. We optimize the cost function using Expansion move algorithm [20].

3 Text Block Identification and Text Line Extraction

In this section, we explain the latter part of our algorithm. From the estimate
states, (1) we segment a document image into blocks by removing long edges, (2)
each block is decomposed into clusters, and (3) we reject non-textual clusters by
considering the curvilinearity of each cluster and neighboring relations. Finally,
(4) we refine text blocks and text lines.

3.1 Page Segmentation

For page segmentation, we remove perpendicular edges (which are perpendicular
to text lines) satisfying dpq ≥ ε1×min(sp, sq), and we remove parallel edges sat-
isfying dpq ≥ ε2×min(sp, sq). Since the edges connecting two vertically adjacent
regions are usually longer than edges connecting horizontally adjacent regions,
we can achieve more accurate segmentation by considering orientation as well
as interline spacing. Two constants are determined according to conventional
layout: (ε1, ε2) = (1.2, 0.9).

However, this method may suffer from perspective contraction, coarse quanti-
zation of interline spacing, and noise. That is, a CC on text region and another
CC on a picture region may be linked as Fig. 1-(d). Therefore, non-textual object
rejection should be applied. Since non-textual object rejection is closely related
with our bottom-up grouping method, we explain the method in the next section
and the explanation on non-textual object rejection will be followed.

Skew correction. After page segmentation, we first find the dominant angle
of a text block by using a voting method and compensate the skew in order to
represent a text line as a form of y = f(x) without numerical instability.
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3.2 Bottom-Up Grouping

For grouping, we draw a rectangle for each CC, whose size is wsp × hsp, its
center (xp, yp), and rotated by θp(+ text block skew). Then, each connected
region corresponds to a word or a text line as can be seen in Fig. 3. However,
a single choice of (w, h) is not adequate. When small (w, h) is used, a text line
may be partitioned into several clusters (over-segmentation of a text line) as Fig.
3-(a). On the other hand, more than one line may be merged into a single cluster
(under-segmentation of a text line) when large (w, h) is used as shown in Fig. 3-
(b). Therefore, we develop a method that incrementally increases w value (fixing
h = 0.25). First, we group CCs into clusters using w1 = 0.8, resulting a set of
clusters W . Then, two clusters Ci, Cj ∈ W are merged into a new cluster (i.e.,
Ci and Cj in W are replaced with Ci ∪ Cj) when three conditions are satisfied:

1. Two clusters are connected when a new wi is used.
2. The overlap of two supports (x-domain) is less than 10% of their length.
3. A new cluster (Ci ∪Cj) is still a curvilinear one (the detailed explanation of

this condition will be followed in the next section).

Intuitively, the second and third conditions prevent the merging of neighboring
text lines. We use w2 = 1.0 and w3 = 1.2. Fig 1-(e) shows our bottom-up
grouping result.

(a) (b)

Fig. 3. (a) When we use small (w, h), a text line can be segmented into several small

clusters (over-segmentation), (b) If we use large (w, h), more than one line can be

merged into a single cluster (under-segmentation)

3.3 Curvilinearity Measure

For the curvilinearity measure of a cluster C ∈ W , we define the fitting error of
C and the scale of C. The fitting error of C is defined as

η(C) =
√

1
|C| ×min

f

∑
p∈C

∣∣y′
p − f(x′

p)
∣∣2 (10)

where |C| is the number of CCs in C, the degree of polynomial f is determined
according to |C| (from first to fourth order polynomials), and (x′

p, y
′
p) is the

rotated point of (xp, yp) by the text block skew. Also the scale of C is given by

s(C) =
1
|C|

∑
p∈C

sp. (11)
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Since η(C)/s(C) can be considered as a normalized fitting error, we can measure
the curvilinearity by comparing η(C) and s(C). For example, η(C) � s(C)
means C is a curvilinear cluster. Experiment results show that most of text lines
satisfy η(C) < 0.2× s(C) and we say that C is curvilinear when it satisfies the
inequality.

3.4 Textual/Non-textual Cluster Labeling

Although the proposed curvilinearity test (i.e., η(C) < 0.2 × s(C)) provides a
good rule to reject non-textual clusters, the performance can be improved by
considering neighboring relations. We also formulate the problem as an energy
minimization problem. From W , we construct a new graph where each site is an
element in W , and denote its label li = 0 when Ci ∈ W is a part of text region,
and li = 1 otherwise. Our energy function is given by

E({li}) =
∑

Vi(li) + λ3

∑
eijδ(li, lj) (12)

where

δ(li, lj) =
{

1 li �= lj
0 li = lj.

(13)

In defining Vi(li), we consider two properties that (1) an isolated Ci (|Ci| ≤ 5)
is likely to be a non-textual object and (2) a non-curvilinear Ci is likely to be a
non-textual object. Therefore, when |Ci| ≥ 6, our data term is given by

Vi(li) = |Ci| ×
{

η(Ci) li = 0
0.2× s(Ci) li = 1.

(14)

The pairwise term in (12) is derived from (8), and it is given by

eij =
∑

p∈Ci,q∈Cj ,(p,q)∈E
exp

(
−

k × d2
pq

(s2
p + s2

q)

)
. (15)

The cost function is also minimized by graph-cuts [20].

3.5 Text Line Refinement

After inference, we remove non-textual clusters. Then, we re-detect text blocks
because more than one text block might be merged into a single one via non-
textual objects. Also, we re-detect text lines using the procedures presented
in Section 3.2. However, at this time, we use a different sequence of {wk}
(which will be presented in the experimental section) in order to prevent the
over-segmentation of text lines. The final result can be found in Fig 1-(f). As
shown in the figure, non-textual objects observed in Fig 1-(e) are successfully
rejected.
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4 Experimental Results

We have tested our algorithm with more than 300 images including camera-
captured ones, and scanned ones. Inputs, binarized results, and experimental re-
sults can be found in our website (http://ispl.snu.ac.kr/~hikoo/layout/).
Experiments were performed with parameters: σ = 4.5, μ1 = 0.9, μ2 = 0.1×255,
λ1 = 0.4, λ2 = 5, λ3 = 4, k = 0.125, and ε = 2.8. However, we have found that
different settings of ε1 and ε2 sometimes provide better results than a default
setting (ε1 = 1.2, ε2 = 0.9), and we also present such cases.

4.1 Qualitative Evaluation and Limitations

Fig. 1, Fig. 4, and results in our website show that our algorithm can detect
text lines in scale, orientation, and language invariant manner. However, careful
observation of them also reveals the limitations of our algorithm. First of all,
our method has difficulty in detecting a single-line text because it exploits dis-
tribution pattern of text lines. Another limitation is that it is sensitive to motion

(a)

(b)

Fig. 4. Input and output of our algorithm

http://ispl.snu.ac.kr/~hikoo/layout/
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Fig. 5. The binarization result of the right upper part of Fig. 4-(a). As shown in Fig.

4-(b), text lines are successfully extracted even if the binarization performance is not

good.

(a) (b)

Fig. 6. Expansion move algorithm is sometimes stuck to poor local optima. (a) Our

result for E = 3469, (b) Our result for E = 3524.

blur and shallow field of depth. Blurred inputs result in poor binarized images
and they deteriorate the performance of other processes. Although our method
tolerates the right upper part of Fig. 4-(a) (whose binarization result is shown
in Fig. 5), it fails to handle more blurred inputs as can be found in the left lower
part of Fig. 4-(a). The last problem comes from the Expansion move algorithm
used in the minimization of (3). It sometimes stuck to local minima depending
on its initialization. An example for this case is shown in Fig. 6.

4.2 Quantitative Evaluation on Camera Captured Images

For the quantitative evaluation of our method, we have selected 50 images (all
of them can be found in our website) in our dataset. Fig. 1-(a) is the cropped
version of one of them. For text line refinement, we use w1 = 0.8, w2 = 1.0, w3 =
1.2, w4 = 2.0, w5 = 4.0, and w6 = 6.0. Experimental results show that 95.7%
text blocks among 185 text blocks are correctly detected (we only consider text
blocks having more than one text line), and false positive and false negative
are less than 2%. In text line detection, our algorithm detects 98.4% text lines
correctly (we say that a line is correctly detected when the number of missed
characters is less than 4). False positive and false negative are also less than 2%.
If we ignore two occluded inputs (See the 25 and 36-th images in our dataset),
the results will be improved more than 1%. Our algorithm takes less than 10
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seconds in handling 3264× 2488 inputs having 10, 000 CCs. Since there is much
room for optimization and parallelization (e.g., construction of a data table), we
believe that the computational complexity is reasonable.

4.3 Evaluation on Other Dataset

A direct comparison to existing method(s) is not a simple task. It is because our
method has been developed to handle complex cases compared to conventional
ones [3]. Moreover, our method includes text block identification, which has not
been considered in conventional algorithms [3,16]. Therefore, we have applied our
method to conventional cases (ICDAR dataset [3]) rather than applying conven-
tional methods to our dataset. In this experiment, we use (ε1, ε2) = (10, 10)
rather than a default setting. It is because (1) text block segmentation is not
an issue in this database (at least in terms of performance evaluation) and (2)
our page segmentation method with a default setting is not suitable to detect
subtitles or captions as shown in Fig 7-(b). In the text line refinement step, we
use w1 = 0.8, w2 = 1.0, w3 = 1.2, and w4 = 2.0.

According to the evaluation method in [21,22], the match score is defined as

MatchScore(i, j) =
|Gj ∩Ri|
|Gj ∪Ri|

(16)

where Gj is the set of all pixels in the j-th ground truth text line and Ri is
the set of all pixel in the i-th detected text line. Also, the correct segmentation
accuracy [22] is defined as

100× the number of matched (Gj , Ri) pairs
the number of ground truth text lines

(17)

where we consider (Gj , Ri) is a matched pair when MatchScore(i, j) ≥ 0.95.
Experimental results on 102 images show that the correct segmentation accu-
racy of our method is 92.76%, which is more than 1.7% higher accuracy than
existing methods [22]. Some experimental results can be found in Fig 7. Due to
a relatively small number of CCs, our algorithm takes less than 5 seconds on
average.

4.4 Application to Skew Estimation

Our method can be applied to a skew estimation problem by modeling text lines
as straight lines and computing the average angle of the detected text lines.
Although the accuracy of this method is not high compared to conventional
methods such as [23], our method is able to handle challenging cases. To be
specific, experimental results on 30 vertically flowing text in [23] show that our
method achieves an average error of 0.19◦ with a maximum error of 0.5◦, while
the method in [23] fails for 3 inputs (See. Table. 4 in [23]).
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(a) (b) (c)

Fig. 7. Input and output of our algorithm on the dataset in [3]. (a) Input, (b) Result

using (ε1, ε2) = (1.2, 0.9), (c) Result using (ε1, ε2) = (10, 10). Although the latter setting

does not provide text block information, it can provide better text line extraction

performance. Therefore, we use the latter setting for the evaluation.

5 Conclusion

In this paper, we have presented a novel approach to document image process-
ing: text block identification and text line extraction. In order to handle complex
cases, we assume that the states (line spacing, orientation, and other parame-
ters describing the local properties of text region) of CCs are spatially varying,
and the states are estimated using an energy minimization framework. Using
the estimated states, we have also presented a new algorithm that performs text
block identification and text line extraction. Experimental results on the exten-
sive dataset show that our method is efficient, robust, and provides promising
results.
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Abstract. We address the problem of understanding an indoor scene

from a single image in terms of recovering the layouts of the faces (floor,

ceiling, walls) and furniture. A major challenge of this task arises from

the fact that most indoor scenes are cluttered by furniture and decora-

tions, whose appearances vary drastically across scenes, and can hardly

be modeled (or even hand-labeled) consistently. In this paper we tackle

this problem by introducing latent variables to account for clutters, so

that the observed image is jointly explained by the face and clutter lay-

outs. Model parameters are learned in the maximum margin formulation,

which is constrained by extra prior energy terms that define the role of

the latent variables. Our approach enables taking into account and in-

ferring indoor clutter layouts without hand-labeling of the clutters in the

training set. Yet it outperforms the state-of-the-art method of Hedau et

al. [4] that requires clutter labels.

1 Introduction

In this paper, we focus on holistic understanding of indoor scenes in terms of
recovering the layouts of the major faces (floor, ceiling, walls) and furniture
(Fig. 1). The resulting representation could be useful as a strong geometric
constraint in a variety of tasks such as object detection and motion planning.
Our work is in spirit of recent work on holistic scene understanding, but focuses
on indoor scenes.

For parameterizing the global geometry of an indoor scene, we adopt the
approach of Hedau et al. [4], which models a room as a box. Specifically, given
the inferred three vanishing points, we can generate a parametric family of boxes
characterizing the layouts of the floor, ceiling and walls. The problem can be
formulated as picking the box that best fits the image.

However, a major challenge arises from the fact that most indoor scenes are
cluttered by a lot of furniture and decorations. They often obscure the geometric
structure of the scene, and also occlude boundaries between walls and the floor.
Appearances and layouts of clutters can vary drastically across different indoor
scenes, so it is extremely difficult (if not impossible) to model them consistently.
Moreover, hand-labeling of the furniture and decorations for training can be an
extremely time-consuming (e.g., delineating a chair by hand) and ambiguous
task. For example, should windows and the rug be labeled as clutter?

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 435–449, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Example results of recovering the “box” (1st row) and clutter layouts (2nd

row) for indoor scenes. In the training images we only need to label the “box” but not

clutters.

To tackle this problem, we introduce latent variables to represent the layouts
of clutters. They are treated as latent in that the clutter is not hand-labeled in
the training set. Instead, they participate in the model via a rich set of joint
features, which tries to explain the observed image by the synergy of the box
and the clutter layouts. As we introduce the latent variables we bear in mind
that they should account for the clutter such as chairs, desks, sofa etc. How-
ever, the algorithm has no access to any supervision information on the latent
variables. Given limited training data, it is hopeless to expect the learning pro-
cess to figure out the concept of clutter by itself. We tackle this problem by
introducing prior energy terms that capture our knowledge on what the clut-
ter should be, and the learning algorithm tries to explain the image by the box
and clutter layouts constrained by these prior beliefs. Our approach is attractive
that it effectively incorporates complex and structured prior knowledge into a
discriminative learning process with little human effort.

We evaluated our approach on the same dataset as used in [4]. Without hand-
labeled clutters we achieve the average pixel error rate of 20.1%, in comparison to
26.5% in [4] without hand-labeled clutters, and 21.2% with hand-labeled clutters.
This improvement can be attributed to three main contributions of our work (1)
we introduce latent variables to account for the clutter layouts in a principled
manner without hand-labeling them in the training set; (2) we design a rich set
of joint features to capture the compatibility between image and the box-clutter
layouts; (3) we perform more efficient and accurate inference by making use of
the parameterization of the “box” space. The contribution of all of these aspects
are validated in our experiments.

1.1 Related Work

Our method is closely related to a recent work of Hedau et al [4]. We adopted
their idea of modeling the indoor scene geometry by generating “boxes” from



Dis. Learning with Latent Var. for Cluttered Indoor Scene Understanding 437

the vanishing points, and using struct-SVM to pick the best box. However, they
used supervised classification of surface labels [6] to identify clutters (furniture),
and used the trained surface label classifier to iteratively refine the box layout
estimation. Specifically, they use the estimated box layout to add features to
supervised surface label classification, and use the classification result to lower
the weights of “clutter” image regions in estimating the box layout. Thus their
method requires the user to carefully delineate the clutters in the training set. In
contrast, our latent variable formulation does not require any label of clutters,
yet still accounts for them in a principled manner during learning and inference.
We also design a richer set of joint feature as well as a more efficient inference
method, both of which help boost our performance

Incorporating image context to aid certain vision tasks and to achieve holistic
scene understanding have been receiving increasing concern and efforts recently
[3,5,6]. Our paper is another work in this direction that focuses on indoor scenes,
which demonstrate some unique aspects of due to the geometric and appearance
constraints of the room.

Latent variables has been exploited in the computer vision literature in various
tasks such as object detection, recognition and segmentation. They can be used
to represent visual concepts such as occlusion [11], object parts [2], and image-
specific color models [9]. Introducing latent variables into struct-SVM was shown
to be effective in several applications [12]. It is also an interesting aspect in our
work that latent variables are used in direct correspondence with a concrete
visual concept (clutters in the room), and we can visualize the inference result
on latent variables via recovered furniture and decorations in the room.

2 Model

We begin by introducing notations to formalize our problem. We use x to denote
the input variable, which is an image of an indoor scene; y to denote the output
variable, which is the “box” characterizing the major faces (floor, walls, ceiling)
of the room; and h to denote the latent variables, which specify the clutter
layouts of the scene.

For representing the face layouts variable y we adopt the idea of [4]. Most
indoor scenes are characterized by three dominant vanishing points. Given the
position of these points, we can generate a parametric family of “boxes”. Specif-
ically, taking a similar approach as in [4] we first detect long lines in the image,
then find three dominant groups of lines corresponding to three vanishing points.
In this paper we omit the details of these preprocessing steps, which can be found
in [4] and [8]. As shown in Fig. 2, we compute the average orientation of the lines
corresponding to each vanishing point, and name the vanishing point correspond-
ing to mostly horizontal lines as vp0; the one corresponding to mostly vertical
lines as vp1; and the other one as vp2.

A candidate “box” specifying the face layouts of the scene can be gener-
ated by sending two rays from vp0, two rays from vp1, and connecting the four
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Fig. 2. Lower-Left: We have 3 groups of lines (shown in R, G, B) corresponding to

the 3 vanishing points respectively. There are also “o utlier” lines (shown in yellow)

which do not belong to any group. Upper-Left: A candidate “box” specifying the

boundaries between the ceiling, walls and floor is generated. Right: Candidate boxes

(in yellow frames) generated in this way and the hand-labeled ground truth box layout

(in green frame).

intersections with vp2. We use real parameters {yi}4i=1 to specify the position1

of the four rays sent from vp0 and vp1. Thus the position of the vanishing points
and the value of {yi}4i=1 completely determine a box hypothesis assigning each
pixel a face label, which has five possible values {ceiling, left-wall, right-wall,
front-wall, floor}. Note that some of the face labels could be absent; for example
one might only observe right-wall, front-wall and floor in an image. In that
case, some value of yi would give rise to a ray that does not intersect with the
extent of the image. Therefore we can represent the output variable y by only
4 dimensions {yi}4i=1 thanks to the strong geometric constraint of the vanishing
points2. One can also think of y as the face labels for all pixels. We also define a
base distribution p0(y) over the output space estimated by fitting a multivariate
Gaussian with diagonal covariance via maximum likelihood to the label boxes
in the training set. The base distribution is used in our inference method.

To compactly represent the clutter layout variable h, we first compute an
over-segmentation of the image using mean-shift [1]. Each image is segmented
into a number (typically less than a hundred) of regions, and for each region we
assign it to either clutter or non-clutter. Thus the latent variable h is a binary

1 There could be different design choices for parameterizing the “position” of a ray

sent from a vanishing point. We use the position of its intersection with the image

central line (use vertical and horizontal central line for vp0 and vp1 respectively).
2 Note that y resides in a confined domain. For example, given the prior knowledge

that the camera cannot be above the ceiling or beneath the floor, the two rays sent

by vp0 must be on different sides of vp2. Similar constraints also apply to vp1.
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vector with the same dimensionality as the number of regions in the image that
resulted from the over-segmentation.

We now define the energy function Ew that relates the image, the box and
the clutter layouts:

Ew(x, y, h) = 〈w,Ψ(x, y, h)〉 −E0(x, y, h) . (1)

Ψ is a joint feature mapping that contains a rich set of features measuring the
compatibility between the observed image and the box-clutter layouts, taking
into account image cues from various aspects including color, texture, perspective
consistency, and overall layout. w contains the weights for the features that needs
to be learned. E0 is an energy term that captures our prior knowledge on the
role of the latent variables. Specifically, it measures the appearance consistency
of the major faces (floor and walls) when the clutters are taken out, and also
takes into account the overall clutterness of each face. Intuitively, it defines the
latent variables (clutter) to be things that appears inconsistently in each of the
major faces. Details about Ψ and E0 are introduced in Section 3.3.

The problem of recovering the face and clutter layouts can be formulated as:

(ȳ, h̄) = arg max
(y,h)

Ew(x, y, h) . (2)

3 Learning and Inference

3.1 Learning

Given the training set {(xi, yi)}m
i=1 with hand-labeled box layouts, we learn

the parameters w discriminatively by adapting the large margin formulation of
struct-SVM [10,12],

min
w,ξ

1
2
‖w‖2 +

C

m

m∑
i=1

ξi , s.t. ∀i, ξi ≥ 0 and (3)

∀i, y �= yi, max
hi

Ew(xi, yi, hi)−max
h

Ew(xi, y, h) ≥ 1− ξi

Δ(y, yi)
, (4)

where Δ(y, yi) is the loss function that measures the difference between the can-
didate output y and the ground truth yi. We use pixel error rate (the percentage
of pixels that are labeled differently by the two box layouts) as the loss function.

As E0 encodes the prior knowledge, it is fixed to constrain the learning process
of model parameters w. Without the slack variables ξi the constraints (4) essen-
tially state that, for each training image i, any candidate box layout ŷ cannot
better explain the image than the ground truth layout yi. Maximizing the com-
patibility function over the latent variables gives the clutter layouts that best
explain the image and box layouts under the current model parameters. Since
the model can never fully explain the intrinsic complexity of real-world images,
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we have to slacken the constraints by the slack variables, which are scaled by the
loss function Δ(ŷ, yi) indicating that hypothesis deviates more from the ground
truth violating the constraint would incur a larger penalty.

The learning problem is difficult because the number of constraints in (4) is
infinite. Even if we discretize the parameter space of y in some way, the total
number of constraints is still huge. And each constraint involves an embedded
inference problem for the latent variables. Generally this is tackled by gradually
adding most violated constraints to the optimization problem [7,10], which in-
volves an essential step of loss augmented inference that tries to find the output
variable ŷ for which the constraint is most violated given the current parameters
w. In our problem, it corresponds to following inference problem:

(ŷ, ĥ) = arg max
y,h

(1 + Ew(xi, y, h)−Ew(xi, yi, hi)) ·Δ(y, yi) , (5)

where the latent variables hi should take the value that best explains the ground
truth box layout under current model parameters:

hi = argmax
h

Ew(xi, yi, h) . (6)

The overall learning algorithm (follows from [10]) is shown in Algorithm 1. In
the rest of this section, we will elaborate on the inference problems of (5) and
(6), as well as the details of Ψ and E0.

Algorithm 1. Overall Learning Procedure
1: Input: {(xi, yi)}m

i=1, C, εfinal

2: Output: w
3: Cons ← ∅
4: ε ← ε0
5: repeat
6: for i = 1 to m do
7: find (ŷ, ĥ) by solving (5) using Algorithm 2

8: if the constraint in (4) corresponding to (ŷ, ĥ) is violated more than ε then
9: add the constraint to Cons

10: end if
11: end for
12: update w by solving the QP given Cons
13: for i = 1 to m do
14: update hi by solving (6)

15: end for
16: if # new constraints in last iteration is less than threshold then
17: ε ← ε/2
18: end if
19: until ε < εfinal and # new constraints in last iteration is less than threshold
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3.2 Approximate Inference

Because the joint feature mapping Ψ and prior energy E0 are defined in a rather
complex way in order to take into account various kinds of image cues, the
inference problems (2), (5) and (6) cannot be solved analytically. In [4] there was
no latent variable h, and the space of y is still tractable for simple discretization,
so the constraints for struct-SVM can be pre-computed for each training image
before the main learning procedure. However in our problem we are confronting
the combinatorial complexity of y and h, which makes it impossible to pre-
compute all constraints.

For inferring h given y, we use iterated conditional modes (ICM) [13]. Namely,
we iteratively visit all segments, and flip a segment (between clutter and non-
clutter) if it increase the objective value, and we stop the process if no segment
is flipped in last iteration. To avoid local optima we start from multiple random
initializations. For inferring both y and h, we use stochastic hill climbing for y,
and the algorithm is shown in Algorithm 2.

The test-time inference procedure (2) is handle similarly as the loss augmented
inference (5) but with a different objective. We can use a looser convergence
criterion for (5) to speed up the process as it has to be performed multiple times
in learning. The overall inference process is shown in Algorithm 2.

Algorithm 2. Stochastic Hill-Climbing for Inference
1: Input: w, x
2: Output: ȳ, h̄
3: for a number of random seeds do
4: sample ȳ from p0(y)

5: h̄ ← arg maxh Ew (x, ȳ, h) by ICM

6: repeat
7: repeat
8: perturb a parameter of y as long as it increases the objective

9: until convergence

10: h̄ ← arg maxh Ew (x, ȳ, h) by ICM

11: until convergence

12: end for

In experiments we also compare to another inference method that does not
make use of the continuous parameterization of y. Specifically we independently
generate a large number of candidate boxes from p0(y), infer the latent variable
for each of them, and pick the one with the largest objective value. This is similar
to the inference method used in [4], in which they independently evaluate all
hypothesis boxes generated from a uniform discretization of the output space.

3.3 Priors and Features

For making use of color and texture information, we assign a 21 dimensional
appearance vector to each pixel, including HSV values (3), RGB values (3),
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Gaussian filter in 3 scales on all 3 Lab color channels (9), Sobel filter in 2
directions and 2 scales (4), and Laplacian filter in 2 scales (2). Each dimension
is normalized for each image to have zero mean and unit variance.

The prior energy-term E0 consists of 2 parts,

E0(x, y, h) = αaEa(x, y, h) + αcEc(y, h) . (7)

The first term Ea summarizes the appearance variance of each major face ex-
cluding all clutter segments, which essentially encodes the prior belief that the
major faces should have a relatively consistent appearance after the clutters are
taken out. Specifically Ea is computed as the variance of the appearance value
within a major face excluding clutter, summed over all the 21 dimensions of ap-
pearance values and 5 major faces. The second term Ec penalizes clutterness of
the scene to avoid taking out almost everything and leaving a tiny uniform piece
that is very consistency in appearance. Specifically, for each face we compute
exp(βs), where s is the area percentage of clutter in that face and β is a con-
stant factor. This value is then averaged over the 5 faces weighted by their areas.
The reason for adopting the exponential form is that it demonstrates superlinear
penalty as the percentage of clutter increases. The relative weights between these
2 terms as well as the constant factor β were determined by cross-validation on
the training set and then fixed in the learning process.

The features in Ψ come from various aspects of image cues as summarized
below (228 features in total).

1. Face Boundaries: Ideally the boundaries between the 5 major faces should
either be explained by a long line or occluded by some furniture. Therefore
we introduce 2 features for each of the 8 boundaries3, computed by the
percentage of its length that is (1) in a clutter segment and (2) approximately
overlapping with a line. So there are 16 features in this category.

2. Perspective consistency: The idea behind perspective consistency fea-
tures is adopted from [4]. The lines in the image can be assigned into 3
groups corresponding to the 3 vanishing points (Fig. 2). For each major
face, we are more likely to observe lines from 2 of the 3 groups. For example,
on the front wall we are more likely to observe lines belonging to vp0 and
vp1, but not vp2. In [4] they defined 5 features by computing the length
percentage of lines from the “correct” groups for each face. In our work we
enlarge the number of features to leave the learning algorithm with more
flexibility. Specifically we count the total length of lines from all 3 groups in
all 5 faces, and treating clutter and non-clutter segments separately, which
results in 3× 5× 2 = 30 features in this category.

3. Cross-face difference: For the 21 appearance values, we compute the dif-
ference between the 8 pairs of adjacent faces (excluding clutters), which
results in 168 features.

3 If all 5 faces are present, there are 8 boundaries between them.
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4. Overall layouts: For each of 5 major faces, we use a binary feature indicat-
ing whether it is observable or not, and we also use a real feature for its area
percentage in the image. Finally, we compute the likelihood of each of the 4
parameters {yi}4i=1 under p0(y). So there are 14 features in this category.

4 Experimental Results

For experiments we use the same datast4 as used in [4]. The dataset consists
of 314 images, and each image has hand-labeled box and clutter layouts. They
also provided the training-test split (209 for training, 105 for test) on which they
reported results in [4]. For comparison we use the same training-test split and
achieve a pixel-error-rate of 20.1% without clutter labels, comparing to 26.5%
in [4] without clutter labels and 21.2% with clutter labels. Detailed compar-
isons are shown in Table 1 (the last four columns are explained in the following
subsections).

Table 1. Quantitative results. Row 1: pixel error rate. Row 2 & 3: the number

of test images (out of 105) with pixel error rate under 20% & 10%. Column 1 ([6]):
Hoiem et al.’s region labeling algorithm. Column 2 ( [4] w/o): Hedau et al.’s method

without clutter label. Column 3 ([4] w/) : Hedau et al.’s method with clutter label

(iteratively refined by supervised surface label classification [6]). The first 3 columns

are directly copied from [4]. Column 4 (Ours w/o): Our method (without clutter

label). Column 5 (w/o prior): Our method without the prior knowledge constraint.

Column 6 (h = 0): Our method with latent variables fixed to be zeros (assuming

“no clutter”). Column 7 (h = GT): Our method with latent variables fixed to be

hand-labeled clutters in learning. Column 8 (UB): Our method with latent variables

fixed to be hand-labeled clutters in both learning and inference. In this case the testing

phase is actually “cheating” by making use of the hand-labeled clutters, so the results

can only be regarded as some upperbound. The deviations in the results are due to the

randomization in both learning and inference. They are estimated over multiple runs

of the entire procedure.

[6] [4] w/o [4] w/ Ours w/o w/o prior h = 0 h = GT UB

Pixel 28.9% 26.5% 21.2% 20.1±0.5% 21.5±0.7% 22.2±0.4% 24.9±0.5% 19.2±0.6%

≤20% – – – 62±3 58±4 57±3 46±3 67±3

≤10% – – – 30±3 24±2 25±3 20±2 37±4

In order to validate the effects of prior knowledge in constraining the learning
process, we take out the prior knowledge by adding the two terms Ea and Ec as
ordinary features and try to learn their weights. The performance of recovering
4 The dataset is available at

https://netfiles.uiuc.edu/vhedau2/www/groundtruth.zip

https://netfiles.uiuc.edu/vhedau2/www/groundtruth.zip
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Learning w/ prior knowledge Learning w/o prior knowledge

Inferred box layout Inferred clutter layout Inferred box layout Inferred clutter layout

Fig. 3. Sample results for comparing learning with and without prior constraints. The

1st and 2nd column are the result of learning with prior constraints. The 3rd and

4th column are the result of learning without prior constraints. The clutter layouts are

shown by removing all non-clutter segments. In many cases recovering more reasonable

clutters does help in recovering the correct box layout.
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Inferred box layout Inferred clutter layout Hand-labeled clutter layout

Fig. 4. Sample results for comparing the recovered clutters by our method and the

hand-labeled clutters in the dataset. The 1st and 2nd column are recovered box and

clutter layouts by our method. The 3rd column (right) is the hand-labeled clutter

layouts. Our method usually recovers more objects as “clutter” than people would

bother to delineate by hand. For example, the rug with a different appearance from

the floor in the 2nd image, paintings on the wall in the 1st, 4th, 5th, 6th image, and

the tree in the 5th image. There are also major pieces of furniture that are missing in

the hand-labels but recovered by our method, such as the cabinet and TV in the 1st

image, everything in the 3rd image, and the small sofa in the 5th image.
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Algorithm 2
Baseline

Algorithm 1

Fig. 5. Left: Comparison between the inference method described in Algorithm 2

and the baseline inference method that evaluates hypotheses independently. Right:
Empirical convergence evaluation for the learning procedure.

box layouts in this case is shown in Table 1, column 5. Although the difference
between column 4 and 5 (Table 1) is small, there are many cases where recovering
more reasonable clutters does help in recovering the correct box-layout. Some
examples are shown in Figure 3, where the 1st and 2nd column (from left) are the
box and clutter layouts recovered by the learned model with prior constraints,
and the 3rd and 4th column are the result of learning without prior constraints.
For example, in the case of the 3rd row (Fig. 3), the boundary between the floor
and the front-wall (the wall on the right) is correctly recovered even though it
is largely occluded by the bed, which is correctly inferred as “clutter”, and the
boundary is probably found by the appearance difference between the floor and
the wall. However, with the model learned without prior constraints, the bed
is regarded as non-clutter whereas the major parts of the floor and walls are
inferred as clutter (this is probably because the term Ec is not acting effectively
with the learned weights), so it appears that the boundary between the floor and
the front-wall is decided incorrectly by the difference between the white pillow
and blue sheet.

We tried to fix the latent variables h to be all zeros. The results are shown in
column 6 of Table 1. Note that in obtaining the result of 26.5% without clutter
labels in [4], they only used “perspective consistency” features, although other
kinds of features are incorporated as they resort to the clutter labels and the
supervised surface label classification method in [6]. By fixing h to be all zeros
(assuming no clutter) we actually decomposed our performance improvement
upon [4] into two parts: (1) using the richer set of features, and (2) account-
ing for clutters with latent variables. Although the improvement brought by
the richer set of features is larger, the effect of accounting for clutters is also
significant.
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We also tried fix the latent variables h to be the hand-labeled clutter layouts5

The results are shown in column 7 of Table 1. We quantitatively compared our
recovered clutter to the hand-labeled clutters, and the average pixel difference
is around 30% on both the training and test set. However this value does not
necessarily reflect the quality of our recovered clutters. In order to justify this,
we show some comparisons between the hand-labeled clutters and the recovered
clutters (from the test set) by our method in Fig. 4. Generally the hand labels
include much less clutters than our algorithm recovers. Because delineating ob-
jects by hand is very time consuming, usually only one or two pieces of major
furniture are labeled as clutter. Some salient clutters are missing in the hand-
labels such as the cabinet and the TV in the image of the 1st row (Fig. 4), the
smaller sofa in the image of the 5th row, and nothing is labeled in the image of
the 3rd row. Therefore it is not surprising that learning with the hand-labeled
clutter does not resulting in a better model (Table 1, column 7). Additionally,
we also tried to fix the latent variable to be the hand-labeled clutters in both
learning and inference. Note that the algorithm is actually “cheating” as it has
access to the labeled clutters even in the testing phase. In this case it does give
slightly better results (Table 1, column 8) than our method.

Although our method has improved the state-of-the-art performance on the
dataset, there are still many cases where the performance is not satisfiable. For
example in the 3rd image of Fig. 4, the ceiling is not recovered even though
there are obvious image cues for it, and in the 4th-6th image of Fig. 4, the
boundaries between the floor and the wall are not estimated accurately. There
is around 6-7% (out of the 20.1%) of the pixel error due to incorrect vanishing
point detection results6.

We compare our inference method (Algorithm 2) to the baseline method (eval-
uating hypotheses independently) described in Section 3.2. Fig. 5 (Left) shows
the average pixel error rate over test set versus the number of calls to the joint
feature mapping Ψ in log scale, which could be viewed as a measure of running
time. The difference between the two curves is actually huge as we are plotting
in log-scale. For example, for reaching the same error rate of 0.22 the baseline
method would take roughly 10 times more calls to Ψ.

As we have introduced many approximations into the learning procedure of
latent struct-SVM, it is hard to theoretically guarantee the convergence of the
learning algorithm. In Fig. 5 (Right) we show the performance of the learned
model on test set versus the number of iterations in learning. Empirically the
learning procedure approximately converges in a small number of iterations,

5 The hand-labeled clutters in the dataset are not completely compatible with our

over-segmentation, i.e., some segments may be partly labeled as clutter. In that case,

we assign 1 to a binary latent variable if over 50% of the corresponding segment is

labeled as clutter. The pixel difference brought by this “approximation” is 3.5% over

the entire dataset, which should not significantly affect the learning results.
6 The error rate of 6-7% is estimated by assuming a perfect model that always picks

the best box generated from the vanishing point detection result, and performing

stochastic hill-climbing to infer the box using the perfect model.
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although we do observe some fluctuation due to the randomized approximation
used in the loss augmented inference step of learning.

5 Conclusion

In this paper we addressed the problem of recovering the geometric structure as
well as clutter layouts from a single image. We used latent variables to account for
indoor clutters, and introduced prior terms to define the role of latent variables
and constrain the learning process. The box and clutter layouts recovered by
our method can be used as a geometric constraint for subsequent tasks such
as object detection and motion planning. For example, the box layout suggests
relative depth information, which constrains the scale of the objects we would
expect to detect in the scene.

Our method (without clutter labels) outperforms the state-of-the-art method
(with clutter labels) in recovering the box layout on the same dataset. And we
are also able to recover the clutter layouts without hand-labeling of them in the
training set.
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Abstract. Image segmentation and figure/ground organization are fun-

damental steps in visual perception. This paper introduces an algorithm

that couples these tasks together in a single grouping framework driven

by low-level image cues. By encoding both affinity and ordering prefer-

ences in a common representation and solving an Angular Embedding

problem, we allow segmentation cues to influence figure/ground assign-

ment and figure/ground cues to influence segmentation. Results are com-

parable to state-of-the-art automatic image segmentation systems, while

additionally providing a global figure/ground ordering on regions.

1 Introduction

Segmentation, the task of partitioning an image into homogeneous regions, and
figure/ground organization, the task of assigning ownership of a contour to one
of the two regions it separates, are both active and open problems in computer
vision. Historically, more attention has been paid to segmentation, though some
important studies of figure/ground exist, focusing on contour and junction struc-
ture [13,11,25,32] or specific cues [10] such as convexity [21] or lower-region [29].
Recent work has revived interest on figure/ground discrimination [24,16] and the
related problem of depth ordering [15,26].

Previous work starts from the assumption that figure/ground organization
occurs after contours [24] or regions [16] have been obtained and designs algo-
rithms that require an image segmentation as input. Hoiem et al. [15] fix an
initial oversegmentation and iterate region-merging and depth estimation steps.
It is not yet known where figure/ground discrimination occurs in biological vi-
sual systems [22], with, as noted by Ren et al. [24], some evidence for early
availability of a contour ownership signal [34].

Most automatic image segmentation algorithms ignore figure/ground organi-
zation, producing a two-dimensional partition of the image with no notion of
figure or depth ordering [28,6,30,8,27,1,23,3]. Other work treats depth recovery
itself as an end goal, exploiting segmentation along with scene geometry (e.g. es-
timated horizon location) or object knowledge to help build a three-dimensional
rendering of the image. Examples include the photo pop-up work of Hoiem et
al. [14] and the scene reconstruction work of Gould et al. [12].

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 450–464, 2010.
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This paper takes a different approach, attempting to bring figure/ground cues
into perceptual processing as early as possible. We want to build a generic seg-
mentation and figure/ground reasoning stage with the goal of enriching the image
representation available to tasks such as object recognition.

We accomplish this by extending a leading image segmentation method based
on spectral partitioning into an algorithm that recovers figure/ground organiza-
tion as well. The system we extend is that of Arbeláez et al. [3], which currently
provides the best performance of all automatic segmentation algorithms across
a range of benchmarks on the Berkeley Segmentation Dataset (BSDS) [19,18].
Our key insight is to replace their core grouping machinery, based on Normalized
Cuts [28] and described in Maire et al. [17], with the more general Angular Em-
bedding of Yu [31]. Angular Embedding allows us to represent both segmentation
and figure/ground relations and solve for both at once.

To our knowledge, no previous work recovers segmentation and figure/ground
for natural images in a single step. Yu and Shi [33] attempt to use pairwise
repulsion cues to fuse figure/ground with segmentation in spectral graph theory.
However, they show only one example on T-junctions. A core component of our
solution, Angular Embedding, was only recently introduced [31] and we believe
our work is the first application of this technique to non-synthetic images.

The most closely related work to ours is that of Ren et al. [24] and Leichter and
Lindenbaum [16], both of which focus on solving an easier problem than the one
suggested here. Leichter and Lindenbaum take the human-drawn ground-truth
segmentations [19] and human figure/ground annotations [10] of the BSDS im-
ages and learn a conditional random field (CRF) for assigning boundary owner-
ship. They use curve and junction potentials, exploiting convexity, lower-region,
fold/cut, and parallelism cues. Their impressive results of 82.8% correct fig-
ure/ground assignments (chance being 50%) are only obtained when testing on
human-drawn ground-truth segmentations. Testing on automatically generated
curves, they obtain only 69.1% accuracy, similar to the 68.9% accuracy reported
by Ren et al. [24] on automatically generated contours. In contrast to our inte-
grated approach, both works cast figure/ground assignment as a step to be run
after first solving for a segmentation.

The notion of figure/ground used in this work is that used by Ren et al. [24].
Namely, a figural region is defined according to human perception. We simply
attempt to replicate human behavior by training on human-annotated data. As
previously pointed out [20,16], this means that figure/ground ordering does not
necessarily correspond to depth or occlusion ordering. For example, humans may
indicate strong figure/ground percepts due to markings on flat surfaces.

Our choice to follow this convention for the meaning of figural regions is con-
sistent with the goal of targeting our output for use in perceptual tasks such as
recognition rather than geometric scene reconstruction. It is also partially moti-
vated by convenience, as it allows us to train our figure/ground classifier on the
same dataset, the BSDS, as our segmentation algorithm, due to the availability
of pre-existing annotations [19,10]. Consequently, our work is not directly compa-
rable to that for which depth ordering or three-dimensional reconstruction is the
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ultimate goal [15,26]. However, since our algorithm for the combined segmenta-
tion and figure/ground problem is agnostic to the source of the local figure/ground
cues, it is conceivable that future work could re-purpose our system to solve a
depth ordering problem.

Section 2 describes our new grouping framework for simultaneous segmenta-
tion and figure/ground assignment. It is compatible with any appropriate sources
of pairwise similarity and ordering cues. Section 3 details our particular choice
for the local ordering cues. Section 4 presents both qualitative and quantitative
results for fully automatic segmentation and figure/ground organization. Our
system compares favorably to others on the segmentation task, while producing
a global figural ranking of regions at minimal additional computational cost.

2 Adding Ordering to Segmentation

Figure 1 outlines our algorithm for simultaneous segmentation and figure/ground
organization. We extend previous work on segmentation alone [17,3] to incorpo-
rate figure/ground information through the use of Angular Embedding [31] as a
globalization procedure. Removing the vertical pathway for figure/ground infor-
mation shown on the right side of Figure 1 and replacing Angular Embedding
by Normalized Cuts, one recovers the segmentation-only pipeline of Arbeláez et
al. [3]. To make this paper as self-contained as possible, we briefly review the
core portions of the relevant previous work, before describing how to bring in
figure/ground cues in the form of pairwise ordering preferences.

2.1 Spectral Partitioning

Spectral clustering, and specifically Normalized Cuts [28], have long been popu-
lar techniques for image segmentation. Recently, [17] achieve excellent results by
using Normalized Cuts in a “soft” manner as a globalization stage for contour
detection. The approach taken is to define a sparse affinity matrix connecting
nearby pixels p and q with weight determined by the intervening contour [9] cue:

W (p, q) = exp
(
− max

(x,y)∈pq
{mPb(x, y)}/ρ

)
(1)

where pq is the line segment connecting p and q, ρ is a constant, and mPb stands
for multiscale probability of boundary [18,17] and measures the probability that
the pixel at location (x, y) lies on a boundary contour. A classifier trained using
local brightness, color, and texture cues predicts mPb at each image location.

To obtain global contour strength from these local measurements, one forms
matrix D whose diagonal contains the row-sums of W and solves for the gener-
alized eigenvectors {v0, v1, ..., vn} of the system:

(D −W )v = λDv (2)

corresponding to the n + 1 smallest eigenvalues 0 = λ0 ≤ λ1 ≤ ... ≤ λn. Asso-
ciating with each pixel p the length n descriptor containing the pth entry from
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Fig. 1. Segmentation and figure/ground organization. From the image (top
left) we compute the probability of boundary (pb) [18] using the multiscale detector

(mPb) of [17] (top middle). Nonmax-suppressed mPb contours are fed to a local shape-

based figure/ground classifier (top right), whose output is shown by green vectors with

red tips drawn towards the predicted figural side. The mPb signal defines a pairwise

affinity between neighboring pixels via intervening contour [9]. The figure/ground clas-

sifier defines a longer-range pairwise ordering. A generalized affinity matrix M captures

both sources of information. Solving an Angular Embedding [31] problem yields com-

plex eigenvectors (middle) which encode both segmentation (bottom left) and global

figure/ground ordering (bottom right). Red indicates more figural regions.
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each eigenvector creates an embedding in Rn. Equivalently, {v1, ..., vn} can be
viewed as a stack of n images for which the segmentation problem is now easy.
Convolving with Gaussian directional derivative filters produces a robust mea-
sure of contour strength. Applying tools from image morphology then permits
construction of a hierarchical segmentation from these high-quality contours [3].

For an intuition behind this machinery, note that the first eigenvector v1 is
the exact global minimizer of the following error measure [28]:

inf
vT D1=0

∑
p

∑
q W (p, q)(v(p) − v(q))2∑

p D(p)(v(p))2
(3)

The weight on the squared difference forces the eigenvector to take similar values
for pixels with high affinity.

2.2 Angular Embedding

The spectral partitioning algorithm of the previous section produces real-valued
eigenvectors. Angular Embedding [31] is an alternative technique that produces
complex-valued eigenvectors. Our problem is no longer defined by the symmetric
real-valued matrix W , but instead by a pair of real-valued matrices (C, Θ), where
C is a symmetric confidence matrix analogous to W , and Θ is a skew-symmetric
ordering matrix. The goal is to produce an embedding into the unit circle in the
complex plane such that sorting the resulting points by their angle respects the
pairwise local ordering constraints defined by Θ. Confidence matrix C encodes
the relative importance of each constraint.

Specifically, let z(p) ∈ C denote the embedding of p. We minimize error:

ε =
∑

p

D(p) · |z(p)− z̃(p)|2 (4)

where D is again a diagonal degree matrix with:

D(p) =

∑
q C(p, q)∑

p,q C(p, q)
(5)

and z̃(p) is the position of p estimated from its neighbors through a rotation by
their relative ordering:

z̃(p) =
∑

q

C̃(p, q) · eiΘ(p,q) · z(q) (6)

C̃(p, q) =
C(p, q)∑
q C(p, q)

(7)

|z − z̃| is an appropriate error measure as z and z̃ coincide if and only if the
embedding perfectly fulfills all local orderings with positive confidence [31].
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Rewriting the above in matrix form requires one to minimize:

ε = z∗Wz (8)

subject to z = eiθ for a real-valued vector θ where:

W = (I −M)∗D(I −M) (9)

M = Diag(C1)−1C • eiΘ (10)

D = Diag(C1 · (1∗C1)−1) (11)

and ∗ denotes complex conjugate transpose, • is the matrix Hadamard product,
I is the identity matrix, 1 is a column vector of ones, Diag(·) is a matrix with
its vector argument on the main diagonal, i =

√
−1 and exponentiation acts

element-wise. Relaxing the constraint that z lie on the unit circle to z∗Dz = 1
yields the solution as the angle of the first eigenvector, ∠z0, of the generalized
eigenproblem specified by (W, D). Unlike (2), for nontrivial Θ, we have λ0 �= 0
and all of the eigenvectors, including z0, are meaningful.

2.3 Short-Range Attraction, Long-Range Ordering

We use the additional expressive freedom of Angular Embedding to encode both
pairwise segmentation cues and pairwise figure/ground cues in the common rep-
resentation defined by (C, Θ). Let us now write the affinity matrix defined by in-
tervening contour (1) as Cpb(p, q). It uses the probability of boundary (pb) cue to
place a confidence on the event that pixels p and q lie in the same region. This cue
yields no information on relative figural ordering, so we set Θpb(p, q) = 0 ∀p, q.

Suppose we also have a classifier f(x, y) → [−1, 1] that, at an edge pixel (x, y)
lying on a contour obtained by nonmax-suppression [5] of mPb, predicts which
side of the edge is figural. Let p and q be the pixels located a fixed distance r
from (x, y), on opposite sides (left and right, respectively) of the edge, in the
direction orthogonal to the local edge orientation, as shown in Figure 2. Define:

Cfg(p, q) = Cfg(q, p) = |f(x, y)| ·mPb(x, y) (12)

Θfg(p, q) = −Θfg(q, p) = sign(f(x, y)) · φ (13)

where φ represents a constant angular separation. These equations state that p
and q should be embedded at angular separation φ with confidence that increases
with figure/ground classifier confidence and edge strength. φ must be chosen
sufficiently small such that the number of figure/ground layers in the image
does not exceed π

φ . We set φ = π
8 in experiments.

By choosing r greater than the radius used for local intervening contour affini-
ties, (Cpb, Θpb) and (Cfg, Θfg) have no overlapping nonzero entries. Writing
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Fig. 2. Pairwise attraction and ordering. Left: We connect each pixel to its

8 immediate neighbors with affinity depending on the computed edge strength (pb)
between them (the intervening contour [9]). A sparse matrix Cpb encodes these prefer-

ences. Right: The figure/ground classifier runs on a sampled set of nonmax-suppressed

edge pixels. In each case, it induces a connection between the two pixels p and q lo-

cated a fixed distance r from the edge point, in the direction orthogonal to the edge

orientation. The predicted figural side defines a relative ordering Θfg(p, q), with an

associated confidence Cfg(p, q). Measurement matrix M = Cpb +αCfg • eiΘfg (up to a

normalization factor) encodes both types of information, where • denotes element-wise

product.

Image local figure/ground α large α small

Fig. 3. Competing segmentation and figure/ground cues. Where segmentation

and local figure/ground predictions disagree (blue circle), the relative weighting, α,

of the cues determines which dominates. For large α, locally incorrect figure/ground

classification (middle left) overrules the tendency towards coherent ordering within

regions, resulting in incorrect figure/ground globalization (middle right). For smaller

α, adherence to strong segment boundaries corrects local figure/ground errors (far
right). Setting α = 0 results in recovery of segmentation only and ignores figure/ground

ordering (not shown).
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C = Cpb + αCfg and Θ = Θpb + Θfg, with α weighting the relative importance
of the two signals, a measurement matrix M captures all information (excluding
the normalization term involving C):

M = C • eiΘ = Cpb • eiΘpb + αCfg • eiΘfg = Cpb + αCfg • eiΘfg (14)

The short-range connections (Cpb, Θpb) encode the prior that there is no fig-
ure/ground difference between neighboring pixels, but the confidence in this
prior decreases in the vicinity of a strong edge. The longer-range connections
(Cfg, Θfg) encode relative figure/ground ordering between more distant pixels.
Attempting to satisfy both constraints yields an embedding which can violate
the uniform prior near boundaries (where its confidence is low), in order to
break apart figure and ground regions. Conversely, figure/ground differences are
suppressed within a segment. Figure 3 demonstrates this type of competition.

2.4 Eigenvector Interpretation

Recall from Section 2.2 that the angle of the leading complex-valued eigenvector,
∠z0, assigns each pixel a global figural ordering when solving the Angular Em-
bedding problem specified by (14). We are left with the question of how to extract
a segmentation. Note that in the absence of figure/ground cues, Cfg = 0 and
Θfg = 0, M is real-valued, and we find ∠z0 = 0. Looking at the first n+1 eigen-
vectors {z0, z1, ..., zn} and their corresponding eigenvalues, λ0 ≤ λ1 ≤ ... ≤ λn,
we find a similar situation as for Normalized Cuts (2). In particular, λ0 = 0, but
the remaining eigenvectors provide an embedding in which segmentation is easy.
For the general case with figure/ground cues, the now complex-valued eigenvec-
tors still provide such an embedding (though with λ0 �= 0 and z0 nontrivial).

We therefore extend the idea of extracting contours by computing gradients
on the stack of eigenvector images [17] to the complex-valued case. As Figure 4
shows, we compute the “spectral” contour signal:

sPb(x, y, θ) =
n∑

k=1

1√
λk

·
(
[∇θ�{zk(x, y)}]2 + [∇θ�{zk(x, y)}]2

) 1
2

(15)

Following the procedure of Arbeláez et al. [3], we create a weighted combination
of mPb and sPb and apply their Oriented Watershed Transform - Ultrametric
Contour Map (OWT-UCM) algorithm to construct a hierarchical image segmen-
tation. Averaging ∠z0 over the resulting segments translates our figure/ground
ordering on pixels into an ordering on regions.

3 Local Figure/Ground Classifier

The presentation so far has omitted the details of the figure/ground classifier
introduced in Section 2.3. As previously mentioned, this classifier could predict
depth ordering or a use a perceptual notion of figuralness. We choose the latter
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Fig. 4. Extracting figure/ground and segmentation from eigenvectors. Top:
Real and imaginary components of the first five generalized eigenvectors, z0, ..., z4

obtained via Angular Embedding [31]. Bottom Left: Global figure/ground order-

ing is reported by ∠z0. Bottom Right: Maximum oriented gradients of eigenvectors,

∇zk = maxθ{
(
[∇θ{zk(x, y)}]2 + [∇θ�{zk(x, y)}]2) 1

2 }, encode a global contour signal

(shown here) from which we construct a segmentation.

Fig. 5. Berkeley segmentation dataset (BSDS) with figure/ground labeling.
Left to Right: Image, segment boundaries, and figure/ground annotations on a subset

of those boundaries according to a human subject. Red marks the figural side. We use

pre-existing segment [19] and figure/ground [10] labeling.
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Fig. 6. Local to global figure/ground. Left: Image. Middle: Local figure/ground

assignment by our shape-based classifier for the most salient mPb [17] contours. Vectors

drawn from edge points indicate the predicted figural side by their red tip. Vector length

corresponds to classifier confidence. Right: Recovered global figural ordering.

definition for convenience, keeping in mind that the primary focus of this paper
is the new globalization algorithm for coupling figure/ground organization to
segmentation, and not the engineering of this local classifier.

Rather than hand-design features for the figure/ground classifier, we borrow
the approach of Ren et al. [24] and compute Geometric Blur [4] descriptors on
top of the local mPb contour signal. We rotate each descriptor according to
a local orientation estimate in an imperfect attempt to build-in limited rota-
tion invariance (our final learned figure/ground classifier is not fully rotation
invariant). Clustering these descriptors using K-means (with K = 64) yields a
vocabulary of shapemes [24], which capture local contour configuration. A point
of interest on a test contour is described by the vector measuring the similarity
of its Geometric Blur descriptor to each of the shapemes.
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We transfer human figure/ground labeling to the automatically generated
nonmax-suppressed mPb contours using bipartite matching of edge pixels. We
then train a logistic-regression classifier f that predicts local figure/ground as-
signment using the vector of shapeme similarities. This learned classifier per-
forms at 62% accuracy, similar to the 65% accuracy reported by Ren et al. [24]
for their local classifier. Figure 5 shows example human-annotated training
data for this task and Figure 6 demonstrates local figure/ground predictions
and recovered global ordering. In order to take only fairly reliable predictions
into account during globalization, we sample edge locations (x, y) for which
mPb(x, y) > τ and only run the local figure/ground classifier at those locations.
We set τ = 0.3.

4 Experiments and Discussion

Figures 7 and 8 show output of our algorithm for segmentation and figure/ground
ordering on images from the Berkeley segmentation dataset (BSDS). Figure 9
compares our automatically generated segmentations to those of other algo-
rithms [8,7,6,2,3] using the standard BSDS boundary precision-recall benchmark
[18]. Precision-recall curves for the other algorithms are those reported in [3].
Our segmentations are better than all except those of the leading gPb-owt-ucm
algorithm [3], to which they are fairly close. Though our algorithm can be seen a
generalization of gPb-owt-ucm, there are a few technical differences in our imple-
mentation that may explain the small performance gap. One such difference is
that we compute affinities only between neighboring pixels, reserving long-range
connections for ordering cues, rather than use a larger radius for the intervening
contour computation.

Not captured by these benchmarks is the fact that our system is the only
one to solve for figure/ground. Moreover, our figure/ground output is not just a
local determination of the figural side of each boundary, but is a global ranking
of the regions in the segmentation. Our system offers the benefit of transforming
a local figure/ground property defined on contours into a global one defined on
regions. This may prove useful as a salience measure. For example, using only
our bottom-up cues, the face automatically pops out as a figural region in the
last example in Figure 7.

Our global figure/ground ordering comes at minimal additional computation
cost over the segmentation-only approach. The local figure/ground classifier
is fast to run on sampled edge points and computing eigenvectors for Angu-
lar Embedding is of the same complexity as computing them for Normalized
Cuts.

Acknowledgments. Thanks to Stella X. Yu and Pietro Perona for helpful
discussions.
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Image UCM Segmentation Figure/Ground

Fig. 7. Hierarchical segmentation and figure/ground ordering results. Our

algorithm simultaneously generates a hierarchical image segmentation and a global fig-

ural ranking of regions. Left: Image. Middle Left: Hierarchical segmentation represented

as an Ultrametric Contour Map (UCM) [2]. Middle Right: Regions at the optimal seg-

mentation threshold displayed with their average color. Right: Global figure/ground

ordering of the same regions. Red indicates more figural. All images shown belong to

the test set.
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Image UCM Segmentation Global F/G Local F/G

Fig. 8. Figure/ground failure examples. Left to Right: Image, UCM, segmen-

tation, global and local figure/ground. Globalization errors occur when the local fig-

ure/ground classifier is consistently wrong over long contours (e.g. the left side of the

mushroom or the sides of the statues). Note that good segment boundaries are still

recovered.
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Fig. 9. Evaluation of region boundaries on the BSDS Benchmark. Left: The

segmentation quality of our algorithm is close to that of the current best-performing

algorithm, gPb-owt-ucm [3], and superior to others [8,7,6,2], as benchmarked by [3].

Algorithms are evaluated in terms of precision and recall with respect to human ground-

truth boundaries. The maximum F-measure ( 2·Precision·Recall
Precision+Recall

) is a summary score.

Iso-F curves are shown in green. The dot indicates average human agreement. Our

system is the only one that also solves for figure/ground. Right: Plotting per-image

F-measures shows our segmentations to be competitive with those of gPb-owt-ucm.
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Abstract. The problem of cosegmentation consists of segmenting the

same object (or objects of the same class) in two or more distinct im-

ages. Recently a number of different models have been proposed for this

problem. However, no comparison of such models and corresponding op-

timization techniques has been done so far. We analyze three existing

models: the L1 norm model of Rother et al. [1], the L2 norm model of

Mukherjee et al. [2] and the “reward” model of Hochbaum and Singh [3].

We also study a new model, which is a straightforward extension of the

Boykov-Jolly model for single image segmentation [4].

In terms of optimization, we use a Dual Decomposition (DD) tech-

nique in addition to optimization methods in [1,2]. Experiments show a

significant improvement of DD over published methods. Our main con-

clusion, however, is that the new model is the best overall because it: (i)

has fewest parameters; (ii) is most robust in practice, and (iii) can be

optimized well with an efficient EM-style procedure.

1 Introduction

The task of Figure-Ground segmentation is a widely studied problem in computer
vision. Given a single image there are techniques that attempt to automatically
partition the image into multiple objects and background. If the goal is to have
a single object segmented, i.e. a binary segmentation, there is the natural am-
biguity of which object is the desired one. In this case interactive segmentation
techniques must be considered where the user gives additional hints.

There are many interesting application scenarios where multiple images are
available. This means each image depicts the “same” foreground object in front of
potentially arbitrary backgrounds. In contrast to the single image case, the task
of segmenting the common object automatically in all images is now well-defined.
This task is called “cosegmentation” and was first addressed in [1]. Let us be more
precise on the definition of the “same” foreground object. In this paper we use the
definition of [1,2,3] where the only constraint is that the distribution of some ap-
pearance features of the foreground region in each image have to be similar. The
appearance features can encode different information, like color and texture, and
various similarity measures can be envisioned. This definition allows for a wide
range of applications. One application is to create a visual summary from per-
sonal photo collections, by segmenting automatically all instances of the same ob-
ject, e.g. a person and a dog [5]. Another application is to use the segmentation
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of the common object to efficiently edit all occurrences of this object in one step,
e.g. by changing its contrast [6]. The practical challenge in the case of segmenting
the same object is that distributions may not match exactly, due to changes in
illumination, in viewpoint or object (self-)occlusion. Our definition of cosegmen-
tation can potentially also be used for segmenting different objects of the same
class. An example of an unsupervised object-class recognition and segmentation
system is [7], where more features are used other than appearance, e.g. shape. It
can be expected that for most object classes, appearance features alone are not
strong enough, hence this application is out of the scope of this paper.

Very recently in [8] the authors used a different formulation of the cosegmen-
tation problem. They casted it into a clustering problem with two cluster. They
show results for image pairs and for multiple images of objects of the same class.

It is worth mentioning that several recent papers considered a simplified coseg-
mentation problem where user interaction is available. In [5] the authors seg-
ment several images of the same object, assuming one of those images is hand-
segmented. They model local appearance and edge profiles from the segmented
image in order to “transduct” such segmentation into the remaining images. In
[9,6] the user input is in the form of foreground/background scribbles in one or
many images from the collection. In [9] the authors discuss how the choice of the
seed image influences the performance of their method. In [6] a way of guiding
the user interactions is presented. We envision that the insights of this paper
will also help to improve the task of interactive cosegmentation.

The goal of this paper is to examine theoretically and practically different
models and optimization methods for cosegmentation. To achieve this we limit
ourselves to the task of cosegmenting two images only, with color as the only ap-
pearance feature, and where distributions are expressed in terms of histograms.
We consider three existing models [1,2,3], which differ only in the distance mea-
sure between the two color histograms. We also consider a new model, which
is a straightforward extension from a single to multiple images of Boykov-Jolly
[4]. For a fair comparison we improved on existing optimization methods for the
models in [1,2]. We achieved this by using a Dual Decomposition technique. For
a quantitative comparison we built a dataset of 100 image-pairs with varying
levels of complexity by simulating changes in scale and illumination.

The paper is organized as follows. Section 2 introduces the four different mod-
els and discusses some of their properties. Since the optimization for some models
is NP-hard, it is important to choose the best possible optimization procedure.
In Sect. 3 we review such methods. In Sect. 4 we compare experimentally both
the models and the optimization methods and conclude which are the better
performing methods.

2 Models

We start this section by introducing some notation:
– xp ∈ {0, 1} is the label for pixel p, where p ∈ P = P1 ∪ P2 and P1, P2 are

respectively the set of pixels in image 1 and image 2. We use letter k ∈ {1, 2}
for denoting the image number.
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– zp is the appearance of pixel p (e.g. color or texture) and such measurement
is quantized into a finite number of bins. Variable b ranges over histogram
bins (b ∈ {1, ..., B} where B is the total number of bins), and Pkb denotes
the set of pixels p in image k whose measurement zp falls in bin b.

– hk is the empirical un-normalized histogram of foreground pixels for image
k: it is a vector of size B with components hkb =

∑
p∈Pkb

xp.

As stated earlier, one of the goals of this paper is to compare different coseg-
mentation models that have been previously proposed. Such models fit into a
single framework, where the cosegmentation problem is formulated as an energy
optimization, with an energy of the following form:

E(x) =
∑

p

wpxp +
∑
(p,q)

wpq|xp − xq|+ λEglobal(h1, h2) (1)

Jointly, the first two terms form the traditional MRF term for both images, where
wp is the unary weight for each pixel and wpq is the pairwise weight. The last
term, Eglobal, encodes a similarity measure between the foreground histograms
of both images and λ is the weight for that term.

Following [1], we will use a ballooning term for the first term, constant for
every pixel: wp = μ. This biases the solution to one of the possible labels and it
is important to prevent trivial solutions (i.e. both images being labeled totally
background or foreground). If the bias is not present (i.e. if wp = 0 and the
energy does not have unary terms) such trivial solutions are always a global
optimum of the energy. Alternatively, in [2,3] the authors used user interaction
to compute pixel-dependent unary terms [10]. We are interested in automatic
cosegmentation so unary terms based on user interaction are not available.

The second term is a contrast sensitive smoothness term whose weight is given

by wpq = (λi+λc exp−β‖zp−zq‖2)
dist(p,q) with β =

(
2
〈
(zp − zq)

2
〉)−1

, where 〈·〉 denotes
expectation over the image and λi, λc are respectively the weight for Ising prior
and for the contrast sensitive term.

The models differ in the way the term Eglobal in equation (1) is defined.
Model A: L1-norm. This model was first introduced in [1] and it was derived
from a generative model. The global term in the energy was defined as follows:

Eglobal =
∑

b

|h1b − h2b| (2)

where the L1-norm is used to compute foreground histograms similarity.
Model B: L2-norm. This formulation was introduced in [2] and it was defined
as follows:

Eglobal =
∑

b

(h1b − h2b)
2 (3)

It is similar to the previous formulation in equation (2), with the difference that
the norm used to measure histogram similarity is the L2-norm instead of the L1-
norm. The authors motivate this change by arguing that such a model has some
interesting properties and allows the use of alternative optimization methods.
Model C: Reward model. In [3] the authors used the following global term:

Eglobal = −
∑

b

h1b · h2b (4)
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They motivate the use of such a model by replacing the penalization term with
a rewarding term.

Recall that the original formulation in [2,3] uses pixel-dependent unary terms,
while we use a constant ballooning force: wp = μ.

Both model A and model B lead to NP-hard optimization problems [1], while
model C leads to a submodular problem that can be efficiently optimized with
graph cuts [3].
Model D: Boykov-Jolly model. The last model that we consider is a natural
extension of the generative model for binary image segmentation in [4,1,11]. These
papers use a separate appearance model for each of the two regions (background
and foreground). In our case we have three regions - two separate backgrounds
and one common foreground. Accordingly, we introduce three appearance models
- θB

1 , θB
2 and θF . This leads to a generative model with the posterior described by

the following energy function:

E
(
x, θB

1 , θB
2 , θF

)
=
∑
(p,q)

wpq |xp − xq|+ λ
∑

k

∑
p∈Pk

U(xp, θ
B
k , θF ) (5)

where
U(xp, θ

B, θF ) =
{
− log(Pr(zp|θF )) if xp = 1
− log(Pr(zp|θB)) if xp = 0 (6)

Since we are interested in automatic cosegmentation, the appearance models θB
1 ,

θB
2 and θF are not available in advance. In order to compute them, we minimize

energy (5) jointly over segmentation and appearance models using an EM-style
technique proposed in [11].

Model D is quite similar to the model used by Batra et al. [6] for interactive
cosegmentation; the only difference is that Batra et al. used a single background
model for all images. Model D also bears some resemblance to the generativemodel
of Rother et al. [1] but there are some differences. In [1], the motivation was model
selection, since two competitive models were considered: one where both images
shared the same foreground appearance model and another where they had in-
dependent appearance models. The segmentation was then chosen so that the
first model had higher posterior probability. In our case, we consider only a single
model and try to find jointly the segmentation and appearance models that maxi-
mize the posterior probability. This formulation should be more appropriate when
we know in advance that the two images have a common object. Also, it appears
to lead to a simpler optimization problem: generalizing an EM-style procedure to
the model in [1] is not straightforward.

2.1 An Alternative Formulation of Model D

To gain more insights into model D, we express its energy in a different way
using the approach in [12]. It is known that for a fixed segmentation x, optimal
histograms that minimize energy (5) are simply the empirical histograms:

θF
b =

h1b + h2b

H1 + H2
θB

kb =
hkb

Hk

(7)
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where we introduced the following notation: Hk =
∑

b hkb is the total number
of foreground pixels in image k, hkb = |Pkb| − hkb is the number of background
pixels in image k belonging to bin b, and Hk = |Pk| −Hk is the total number of
background pixels in image k. Note, all quantities hkb, hkb, Hk, Hk are functions
of the segmentation x (recall that hkb =

∑
p∈Pkb

xp).
Following [12], we plug histograms (7) into the energy (5). Then the energy

becomes of the form (1) with no unary terms (wp = μ = 0) and the following
global term:

Eglobal =
∑

b

β (h1b + h2b) +
∑
k,b

β
(
hkb

)
− β (H1 + H2)−

∑
k

β
(
Hk

)
(8)

where β(z) = −z log z is a concave function.
In the case of a single image the Boykov-Jolly model prefers assigning pixels in

the same bin either entirely to the background or entirely to the foreground [12];
this leads to “compact” histograms. A similar fact holds for model D (the proof
is entirely analogous to that in [12]).
Proposition 1. Function (8) has a minimizer x such that for each (k, b), pixels
in Pkb are either all labeled as 0 or all labeled as 1.

2.2 Remarks on Model Properties

Before presenting an experimental comparison of the models, we would like to
give some informal remarks which may give insights into their relative perfor-
mance. We will first consider models A, B and D, and come back to model C at
the end.

We believe that a fundamental difference of model D from other models is
that it takes into account the prior knowledge that all regions are represented by
compact histograms. For the case of a single image, the bias of the Boykov-Jolly
model was discussed in [12]: it prefers segmentations in which pixels that fall
in the same bin are assigned to the same segment (background or foreground),
and among such segmentations the model picks the most balanced one, i.e. the
segmentation in which the areas of the background and the foreground match.
We conjecture that these properties carry over to the cosegmentation case. It
can be shown, for example, that if the two images are identical and all bins are
of the same size (i.e. |Pkb| = const for all k, b) then the global term will be
minimized by a segmentation in which exactly half of the bins are assigned to
the foreground. Due to a bias towards balanced segmentation we did not use the
“ballooning force” for model D, i.e. we chose μ = 0, which produced reasonable
results. In contrast, the other models required this extra parameter μ in order
to avoid trivial solutions.

Unlike model D, models A and B do not impose any penalty if pixels in the
same bin, Pkb, are assigned to two different segments. We argue that this has
both pros and cons, as illustrated by two scenarios below.
Scenario 1. Assume that the background colors do not overlap with the fore-
ground nor with the other background. Furthermore, suppose that the fore-
ground regions in the two images match only partially, for example, due to an
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illumination change or scaling. Thus, we have |Pkb| > |Pkb| for some bin b where
k ∈ {1, 2}, k �= k. Models A and B will bias |Pkb| − |Pkb| pixels to an incorrect
label. In contrast, model D should not be affected; it will assign all pixels in Pkb

and Pkb to the foreground, as desired.
Scenario 2. Let us now assume that we have “camouflage” in one of the images,
i.e. colors of the background and the foreground overlap. Thus, we again have
|Pkb| > |Pkb|, but now the behavior of models A and B will be correct, while
model D will try to incorrectly assign all pixels in Pkb to the foreground (or to
the background).

We conclude that without camouflage model D should cope better with illu-
mination and scale changes than model A and especially than model B. On the
other hand, models A and B should be more robust to a camouflage in one of
the images.

Let us now return to model C. Assume for simplicity that there are no pairwise
terms. The energy can then be written as E(x) =

∑
b Eb(h1b, h2b) where

Eb(h1b, h2b) = μ(h1b + h2b)− λh1b · h2b

We must have μ > 0, otherwise all pixels would be assigned to the foreground.
Minimizing Eb over [0, n1b] × [0, n2b] where n1b = |P1b|, n2b = |P2b| gives the
following rule: if n1b · n2b/(n1b + n2b) ≤ μ/λ then assign pixels in P1b ∪ P2b to
the background, otherwise assign these pixels to the foreground. This reliance
on the harmonic mean of n1b and n2b can lead to unexpected results (Fig. 1). In
our experiments we found that model C performs considerably worse than the
other models.

Input images Model A Model B Model C Model D

Fig. 1. Synthetic example illustrating the properties of the different models. The input

images have only 3 different colors.

3 Optimization Methods

In this section we discuss several optimization methods that can be used for the
models discussed in the previous section.

3.1 Trust Region Graph Cut (TRGC)

This method was proposed in [1] for model A and it can be viewed as a discrete
analogue of trust region methods for continuous optimization. TRGC can be
applied to energy functions of the form E(x) = E1(x) + E2(x) where E1(x)
is submodular and E2(x) is arbitrary. It works by iteratively replacing E2(x)
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with a linear approximation and it produces a sequence of solutions with the
guarantee that in each iteration the energy does not go up.

In [1] the authors used TRGC inside an iterative scheme for cosegmentation
that alternated between updating the segmentation for each image individually
while the foreground histogram of the other image was fixed. This method re-
quires a segmentation for initialization. In our experiments we observed that its
performance is very dependent on that initialization.

We used the implementation of this method from [1]. We also adapted it to
model B, i.e. replaced L1 norm with L2 norm.

3.2 Quadratic Pseudo Boolean Optimization

In [2] the authors observed that model B is represented by a quadratic pseudo-
boolean function. Indeed, histograms h1 and h2 depend linearly on x: hkb =∑

p∈Pkb
xp. Therefore, expanding expression (h1b − h2b)2 yields a sum of lin-

ear terms and quadratic terms of the form cpqxpxq, some of which are non-
submodular. Mukherjee et al. [2] formulated a linear programming relaxation
of the problem, which is equivalent to the roof duality relaxation [13,14] for the
quadratic function E(x). This relaxation can be solved via a maxflow algorithm,
and it yields a partial solution: the nodes are divided into labeled and unlabeled,
with the guarantee that the labels of the labeled nodes are optimal. An impor-
tant question is how to set the segmentation for unlabeled nodes. Mukherjee
et al. [2] use the segmentation obtained by minimizing energy E(x) without
the global term Eglobal. In our experiments we use a constant ballooning force
(wp = μ), so this procedure assigns the same label to all unlabeled nodes.

Note that, model C is also represented by a quadratic function, but unlike the
previous case this quadratic function is submodular. Therefore, model C can be
optimized exactly by a single call to a maxflow algorithm [3].

3.3 Dual Decomposition (DD)

Dual Decomposition (DD) is a popular technique for solving combinatorial op-
timization problems [15], which proved to be very successful for MRF optimiza-
tion [16,17,18,19,12]. The idea of DD is to decompose the original problem into
smaller, easier subproblems that can be efficiently optimized. Combining the so-
lution of such subproblems yields a lower bound for the initial problem. This
lower bound is then maximized over different decompositions. We applied this
technique to models A, B and D as described below.
Dual decompositions for models A and B. Let us write the corresponding
optimization problems as follows:

min
x,y

EMRF (x) +
∑

b

g(yb) (9a)

s.t. yb =
∑

p∈P1b

xp −
∑

p∈P2b

xp ≡
∑
k,p

abpxp b = 1, ..., B (9b)
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where g is a convex function: g(y) = λ|y| for model A and g(y) = λy2 for model
B. Coefficients abp are defined as follows: abp = 1 if p ∈ P1b; abp = −1 if p ∈ P2b

and abp = 0 otherwise.
We form a standard Lagrangian function by relaxing constraints (9b) and

introducing a Lagrangian multiplier θ:

L(x, y, θ) = EMRF (x) +
∑

b

g(yb) +
∑

b

θb

(
yb −

∑
p

abpxp

)
(10)

Minimizing the Lagrangian over (x, y) gives a lower bound on the original prob-
lem:

Φ(θ) = min
x,y

L(x, y, θ) (11a)

= min
x

⎡⎣EMRF (x)−
∑
p,b

abpθbxp

⎤⎦+
∑

b

min
yb

[g(yb) + θbyb] (11b)

Φ(θ) ≤ E(x) (11c)

In order to obtain the tightest bound, we need to solve the following maximiza-
tion problem:

max
θ

Φ(θ) (12)

This problem is dual to (9b). Function Φ(θ) is concave; similar to [17,18,19], we
use a subgradient method to maximize it. In order to compute a subgradient for
a given vector θ, we need to solve 1+B minimization subproblems in (11b). The
first subproblem requires minimizing a submodular energy with pairwise terms,
which can be efficiently done using graph cuts. Solving subproblems for bins b
is straightforward.

It remains to specify how to choose a primal solution x. Let xt be a minimizer
of the first subproblem in (11b) at step t of the subgradient method. Among
labelings xt, we choose the solution with the minimum cost E(xt).
Dual decompositions for model D. We obtained a lower bound by relaxing
constraints Hk =

∑
p xk and using the fact that Hk ≡ |Pk| − Hk. Details are

very similar to those in [12].

4 Experimental Results

In this section we describe the experimental results. We start by giving details
on the setup used to compare the different models. In section 4.1, we compare
the performance of the different optimization methods, and in section 4.2, using
the best optimization procedure for each model, we compare the performance
and robustness of such models.
Dataset. Given the difficulty in acquiring ground truth data for the coseg-
mentation problem, we used composites of 40 different backgrounds with 20
foreground objects from the database in [20], for which high quality alpha mat-
tes are available. The database in [20] has more than 20 images; we selected
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Fig. 2. Some of the images in the dataset. These images are composites using

the same foreground.

objects with fewer transparencies. Representative images out of these 20 pairs
are shown in Fig. 2.

We resized the images so that their maximum side is 150 pixels. Some of
the models and optimization methods discussed are limited to small images, in
particular, model C and QPBO. Both these optimization methods require the
construction of graphs that grow quadratically with the size of the image.

The use of exactly the same foreground object in both images ensures that
the histograms over pure foreground pixels match. The choice of such simplified
dataset is justified by the intuition that if the models and optimization methods
fail in this scenario, they will also fail in a realistic scenario where the foreground
histograms may differ. In section 4.2 we also test more realistic scenarios by
varying the size and illumination in one of the images.
Choosing weights μ and λ. The choice of weights for the different terms in
the energy greatly affects the performance of the methods. We test the different
models with different combinations of these weights. In order to reduce the search
space, we fix λi = 1 and λc = 50 for all methods, similar to what is done in [1]. As
for parameters λ and μ, we used leave-one-out cross-validation for each model,
where parameters are allowed to take values in a discrete domain1. Results are
given in section 4.2. For comparison, we also report results when the weights for
each image are chosen optimally according to GT.

In section 4.1 we are only interested in comparing optimization methods, so
we fix the weights in an ad-hoc way. For model A, we choose λ = 5 and μ = −2,
for model B, λ = 2 and μ = −10 and for model D, λ = 1.
Histograms. We use histograms over RGB colors, using 16 bins for each color
channel. Note that, in previous papers where some of the models were introduced,

1 For model A and model B we test 16 different configurations, where λ ∈
{0.01, 0.1, 1, 10} and μ ∈ {−0.01,−0.1,−1,−10}. Since some of these configurations

lead to trivial solutions, we handpick 8 other intermediate configurations that look

more promising. Thus, there are 24 possible combinations of weights.

Model C allows the use of parametric maxflow for parameter learning. Fixing λ,

we efficiently compute solutions for all possible values of μ using parametric maxflow.

We test 4 different values for λ: 0.001, 0.01, 0.1 and 1.

Model D only has one free parameter, λ, and we test 12 different values for this

weight: 0.01, 0.1, 0.5, 1, 2, 5, 10, 15, 20, 30, 40 and 100.
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other appearance features were used [1,3]. Since our dataset is constructed such
that the foreground histograms over color are very similar, we expect that none
of the models is negatively affected by this choice of histogram quantization.

4.1 Results Comparison for Optimization Algorithms

Here we compare the optimization methods reviewed in section 3. We start by
comparing Dual Decomposition with TRGC for models A and B. Since TRGC
is an iterative method that requires as input an initial segmentation, we test
this method with three different starting points. First, we use the solution of
DD as a starting point. The second starting point is a random segmentation
whose foreground histogram is constructed by having each bin take the minimum
value over the corresponding bins in the full histogram of both images, i.e.,
hb = min(|P1b|, |P2b|). Third, we initialize TRGC with the ground truth (GT).
GT is not available at test time, and we report results only for comparison.

The results for model A are shown in the first part of Table 1. Note that in
[1], where TRGC was proposed, DD was not used as a starting point. For this
model, the difference between TRGC-DD and DD is very small, since TRGC
starting with DD only improves the energy for two images.

Table 1. Comparison of optimization methods for Models A and B. We

compare TRGC (using 3 different initial solutions), Dual Decomposition, and QPBO

(only for model B). For each model, the first row shows for how many images each

method gives the best energy. The second row is the gap between the energy and the

lower bound (LB) obtained by DD. The values are normalized: first we add a constant

to each term of the energy so that the minimum of each term becomes 0, and then

scale the energy so that the lower bound corresponds to 100. The last row is the error

rate: percentage of misclassified pixels over the total number of pixels.

TRGC
DD QPBO

From DD From hist From GT

M
o
d
el

A Best energy: # cases 20 0 0 18 -

Distance from LB 100.24 106.5 101.15 100.24 -

Error rate 3.7% 8.1% 3.2% 3.7% -

M
o
d
el

B Best energy: # cases 13 0 7 3 0

Distance from LB 101.59 107.56 101.77 104.20 197.29

Error rate 3.93% 5.96% 2.85% 3.92% 51.77%

The results for model B are shown in the second part of Table 1. Although
QPBO also provides a lower bound, we used the lower bound obtained by Dual
Decomposition since in our experiments, it was always better than the one pro-
vided by QPBO.
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We conclude that a combination of DD and TRGC, using DD solution as a
starting point for TRGC, is the best performing method for both model A and
B, and this is the method used in the next section for model comparison.

Surprisingly, the performance obtained for the QPBO method contrasts with
the one reported in [2], since for this experiment the number of pixels left un-
labeled by this method was 90%. Note that in [2], the authors used a different
spatially varying unary term which may induce differences. They also report that
the performance of the method deteriorates when weight λ is increased. In the
case considered, where wp is constant, small values of λ lead to trivial solutions.

In order to better understand why QPBO fails, we ran the method with
a fixed ballooning force, μ = −10, and different values of λ. In Table 2, we
show the percentage of pixels that were labeled one, zero, or left unlabeled. For
intermediate values of λ, the number of unlabeled pixels is more than 90%. For
such values, QPBO is not reliable as an optimization method. On the other
hand, for extreme values of λ, QPBO labels more pixels, but the resulting model
is not meaningful, for example, for the case λ = 10−3, all pixels for all images
considered were labeled 1.

Table 2. QPBO results. Percentage of pixels labeled 1, 0 or left unlabeled by the

QPBO method for different values of weight λ.

λ 10−3 10−2 10−1 100 101 102 103

Labeled 1 100 64.49 9.52 0.18 0.03 0.03 0.03

Labeled 0 0 0 0 0 22.68 25.66 24.22

Unlabeled 0 35.51 90.48 99.82 77.30 74.31 75.75

Dual Decomposition for model D. We compared two different optimiza-
tion methods for model D: the EM-style iterative procedure of [11] and a DD
approach. For the EM-style optimization, we initialized the color models in
the same way as discussed before for TRGC initialization when taking the his-
tograms’ intersection. Since DD provides a lower bound, we compared the gap
between the lower bound and the energy obtained by both models. For DD this
gap is 109.5 and for the EM-style optimization it is 103.4. The average gap is
reduced to 103.2, if the best method is chosen for each image. This is very similar
to the gap obtained by the iterative technique and we conclude that the improve-
ment of using DD is only marginal for this problem and we report results using
the EM-style optimization.

4.2 Results Comparison for Models

In this section we compare the four different models. We present results for three
different cases. In the first case, we use the original images (some of the images are
shown in Fig. 2), where the same foreground is composed with two different back-
grounds. This is the simplest case and the error rate is reported in the first row of
Table 3.
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In the second case, we consider images of different sizes, reducing one of the
images to 90% and 80% of the original size. This leads to a more complicated
cosegmentation problem, where the object has different sizes in both images.

In the third case, in order to simulate illumination changes, we add a constant
to all RGB values (ranging from 0 to 255) of one of the images. We show results
for two different values of this constant: 3 and 6.

In Table 3, we also present the histogram similarity for the different cases.
This similarity is given by: 100−100×

∑
b |hGT

1b −hGT
2b |∑

b hGT
1b +hGT

2b

where hGT
k is the histogram

of image k computed over foreground ground truth pixels. This similarity can
be seen as a rough measure of the difficulty of the problem, and the higher it is,
the simpler the problem.

Table 3. Error rate using leave-one-out cross-validation. We compare the error

rate for the different methods in 3 different scenarios. We also report the standard

error of estimating the mean of the error rate. For the first case we use the original

composites. In the second case we consider images of different sizes, reducing one of

the images to 90% and 80% of the original size. In the third case, in order to simulate

illumination changes, we add a constant to all RGB values of one of the images, 3 and

6. The last column shows the similarity of the foreground histograms of both images.

Model A Model B Model C Model D
Histogram

similarity

Original images 4.6% ±0.8 3.9% ±0.7 22.0% ±3.9 4.3% ±0.3 93.4

Resized to 90% 4.7% ±0.4 5.7% ±0.8 16.3% ±2.4 4.9% ±0.5 84.6

Resized to 80% 7.8% ±1.3 9.7% ±1.4 17.4% ±3.0 5.1% ±1.0 74.2

RGB +3 4.4% ±0.4 7.1% ±1.1 21.4% ±4.3 3.7% ±0.3 84.6

RGB +6 5.5% ±0.5 12.3% ±1.7 20.3% ±2.5 4.0% ±0.4 76.3

From the results presented in Table 3 we take the following statistically sig-
nificant observations:

– Models A, B, and D perform similarly for the simplest case.
– Model C is the worst performing model since it produces in every case con-

siderably higher error rates.
– Model D is the most robust to changes in size and illumination.
– Comparing both models based on histogram distances, the L1-norm (Model

A) is more robust than the L2-norm (Model B), for the cases where there
are small variations of foreground.

Some methods may be affected negatively by the way the weighting parameters
are chosen, since image measurements are not taken into account. In order to
fairly compare the methods without introducing this type of bias, we also present
results in Table 4 for the case where the weights λ and μ are chosen independently
for each image, so that the error rate is minimized.
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Table 4. Error rate without cross validation. These results correspond to choosing

the best weights λ and μ according to GT for each image individually. They should be

compared with Table 3.

Model A Model B Model C Model D
Histogram

similarity

Original images 3.2% ±0.3 2.9% ±0.3 8.8% ±1.9 3.2% ±0.3 93.4

Resized to 90% 4.2% ±0.4 4.0% ±0.4 8.1% ±1.7 3.2% ±0.3 84.6

Resized to 80% 5.2% ±0.6 6.2% ±0.6 7.0% ±1.4 3.2% ±0.3 74.2

RGB +3 3.3% ±0.3 4.0% ±0.2 9.3% ±1.8 3.2% ±0.2 84.6

RGB +6 4.3% ±0.4 8.0% ±1.2 9.2% ±1.8 3.3% ±0.2 76.3

Model A Model B Model C Model D

Fig. 3. Results without cross-validation. Segmentation obtained for each model

when reducing the size of the second image.

Comparing tables 3 and 4, it can be seen that model C has the greatest
improvement in error rate when the choice of weights is done independently for
each image. However, it still remains the worst performing model.

In Fig. 3, we show some cosegmentation results for a pair of images for different
sizes of the second image. The results shown agree with the insights discussed in
Sect. 2.2. When the size of the images differ, both models A and B incorrectly
cut some parts of the object, in order to improve the matching of the resulting
foreground histograms. Model C gives unpredictable results due to the mentioned
bias. Model D copes better with the changes in image size.

4.3 Results for Real Images

Following a reviewer’s suggestion, we tested the different models on the real
images used in [3]2.

2 Images andGTare available fromhttp://www.cs.wisc.edu/˜vsingh/pairimages.tar.gz.

We chose 20 pairs of images from this dataset, excluding the ones which were created

in a similar way to our dataset.
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We observed that the histogram quantization used in the rest of the paper
is not appropriate for these images, since there are significant differences in the
foreground color histograms and the overlap of the background color histograms
is large. The overlap for the foreground histograms is 39% which is considerably
lower than the overlap reported in the last column of Table 3. On the other
hand, the overlap of background histograms is 21% compared to 8% for our
dataset of composed images. This affected the results negatively and the error
rates are between 20% and 30% for all image pairs. The use of better histogram
quantization would considerably improve the performance for all methods.

This observation further supports our use of composed images, since the goal
of the paper is to compare the performance of the different methods in a scenario
where external factors with a negative impact could be easily controlled.

Note that, the results reported for the same images in [2,3] used user interac-
tion and the results in [1] used various features to calculate the histograms.

5 Conclusions and Future Work

Recently, several models for cosegmentation have been proposed some of which
lead to challenging optimization problems. We showed that they are outper-
formed by a natural extension of the Boykov-Jolly model, which has not been
considered in the context of cosegmentation before. The improvement of model
D over models B and especially C is substantial. The gap between models D and
A is less significant, and potentially could be affected by the choice of a dataset.
However, model D has two clear advantages: it has one less parameter, and it
allows the use of an effective and fast EM-style optimization.

To enable a fair comparison of models, we had to improve on optimization
techniques in [1,2]. We believe the Dual Decomposition method that we used for
models A and B was adequate for our task. Although, we did not get verifiable
global minima, the gap between the lower bound and the energy was small
enough, and furthermore, using ground truth to initialize an iterative technique
(TRGC) led to higher energies compared to DD.

In the future, we plan to gather a larger and more challenging dataset of
images for cosegmentation, including the ones used in Sect. 4.3. The focus will
be on the construction of discriminative histograms, that take into account not
only color but also other features like SIFT and Gabor filters as in [8].

Acknowledgements. We thank Vikas Singh for answering questions about his
implementation.
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Abstract. Detecting contour closure, i.e., finding a cycle of discon-

nected contour fragments that separates an object from its background,

is an important problem in perceptual grouping. Searching the entire

space of possible groupings is intractable, and previous approaches have

adopted powerful perceptual grouping heuristics, such as proximity and

co-curvilinearity, to manage the search. We introduce a new formulation

of the problem, by transforming the problem of finding cycles of contour

fragments to finding subsets of superpixels whose collective boundary

has strong edge support in the image. Our cost function, a ratio of a

novel learned boundary gap measure to area, promotes spatially coherent

sets of superpixels. Moreover, its properties support a global optimiza-

tion procedure using parametric maxflow. We evaluate our framework by

comparing it to two leading contour closure approaches, and find that it

yields improved performance.

1 Introduction

One of the key challenges in perceptual grouping is computing contour closure,
i.e., linking together a set of fragmented contours into a cycle that separates an
object from its background. What makes the problem particularly hard is the
intractable number of cycles that may exist in the contours extracted from an
image of a real scene. Early perceptual grouping researchers [1] identified a set of
nonaccidental contour relations, such as symmetry, parallelism, collinearity, co-
curvilinearity, etc., that can be used to link together causally related contours.
Such nonaccidental grouping rules can serve as powerful heuristics to help man-
age the complexity of greedily searching for a contour closure that is unlikely
to have arisen by chance [2,3]. However, the space of possible closures is still
overwhelming, particularly when one allows larger and larger boundary gaps in
a closure. Finding an optimal solution is intractable without somehow reducing
the complexity of the problem.

In this paper, we introduce a novel framework for efficiently searching for an
optimal closure. Fig. 1 illustrates an overview of our aproach. Given an image of
extracted contours (Fig. 1(a)), we begin by restricting contour closures to pass
along boundaries of superpixels computed over the contour image (Fig. 1(b)).

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 480–493, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(a) (b) (c) (d)

Fig. 1. Approach Overview: (a) contour image – while we take only contours as input,

we will overlay the original image in the subsequent figures for clarity; (b) superpixel

segmentation, in which superpixel resolution is chosen to ensure that target bound-

aries are reasonably well approximated by superpixel boundaries; (c) a novel, learned

measure of gap reflects the extent to which the superpixel boundary is supported by ev-

idence of a real image contour (line thickness is inversely proportional to gap); (d) our

cost function can be globally optimized to yield the largest set of superpixels bounded

by contours that have the least gaps. In this case the solutions, in increasing cost

(decreasing quality), are organized left to right, top to bottom.

In this way, our first contribution is to reformulate the problem of searching for
cycles of contours as the problem of searching for a subset of superpixels whose
border has strong contour support in the contour image; the assumption we
make here is that those salient contours that define the boundary of the object
(our target closure) will align well with superpixel boundaries. However, while a
cycle of contours represents a single contour closure, our reformulation needs a
mechanism to prefer superpixel subsets that are spatially coherent.

Spatial coherence is an inherent property of a cost function that computes
the ratio of perimeter to area. We modify the ratio cost function of Stahl and
Wang [4] to operate on superpixels rather than contours, and extend it to yield
a cost function that: 1) promotes spatially coherent selections of superpixels; 2)
favors larger closures over smaller ones; and 3) introduces a novel, learned gap
function measuring the agreement between the boundary of the selection and
image contours. The third property adds cost as the number and sizes of gaps
between contours increase. Given a superpixel boundary fragment (e.g., a side
of a superpixel) representing a hypothesized closure component, we assign a gap
cost that’s a function of the proximity of nearby image contours, their strength,
their orientation, and their curvature (Fig. 1(c)). It is in this third property that
our superpixel reformulation plays a second important role – by providing an
appropriate scope of contour over which our gap analysis can be conducted.

In our third and final contribution, the two components of our cost function,
i.e., area and gap, are combined in a simple ratio that can be efficiently optimized
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using parametric maxflow [5] to yield the global optimum. The optimal solution
yields the largest set of superpixels bounded by contours that have the least
gaps (Fig. 1(d)). Moreover, parametric maxflow will yield the top k solutions
(see [6], for example). In an object recognition setting, generating a small set of
such solutions can be thought of as generating a small set of promising shape
hypotheses which, through an indexing process, could invoke candidate models
that could be verified (detected).

In the following sections, we begin by reviewing related work on contour
closure (Sec. 2). Next, in Sec. 3, we introduce our problem formulation that
transforms the problem of finding optimal cycles of contour fragments into the
problem of finding an optimal subset of superpixels. It is here that our cost func-
tion is described. In Sec. 4, we describe our process for learning our gap function
from training data, and in Sec. 5, we present an efficient procedure for finding
the global minimum of our cost function using parametric maxflow. In Sec. 6, we
evaluate our framework, comparing it to two competing approaches for comput-
ing closure, and discuss the strengths and weaknesses of our approach. We also
illustrate the third important role of our superpixel reformulation of providing
an appropriate scope over which appearance can be analyzed, and show how
our grouping framework can easily be augmented to include both contour and
region information. Finally, in Sec. 7, we draw conclusions and outline our plans
for future work.

2 Related Work

Detecting closed contours in an image has been addressed by many researchers
in different ways. One possible taxonomy for categorizing related work is based
on the nature of the prior information used to constrain the grouping process.
We will stop short of reviewing methods which assume object-level priors, for it
is unclear how to make such methods scale up to very large databases. Instead,
we focus on methods that make no assumptions about scene content, although
as we will see, many make assumptions about the nature of parts that make
up the objects in the scene. In fact, some methods incorporate low-, mid-, and
high-level shape priors, as exemplified by Ren et al. [7]. We will also stop short of
reviewing methods focused solely on contour completion, e.g., Ren et al. [8] and
Williams and Jacobs [9], although the regularities exploited by such approaches
can clearly play a powerful role in detecting closure.

Many researchers have exploited the classical Gestalt cues of parallelism and
symmetry to group contours. Lowe’s [10] early work on perceptual grouping was
one of the first to develop a computational model for parallelism, collinearity,
and proximity. Many computational models exist for symmetry-based grouping,
including Brady and Asada [11], Cham and Cipolla [12], Saint-Marc et al. [13],
Ylä-Jääski and Ade [14], and more recently, Stahl and Wang [15]. One signif-
icant challenge faced by these systems is the complexity of pairwise contour
grouping to detect symmetry-related contour pairs. Levinshtein et al. [16] at-
tempt to overcome this computational complexity limitation by constraining the
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symmetric parts to be collections of superpixels. We will draw on this idea of
grouping superpixels, but will focus on the more generic cue of closure.

Further down the spectrum of prior knowledge are methods based on weaker
shape priors than parallelism and symmetry. For example, Jacobs [17] uses con-
vexity as well as gap to extract closed contours by grouping straight line seg-
ments. A less restrictive measure is that of compactness, which can be attained
by normalizing the gap by area (Estrada and Jepson [2,3], Stahl and Wang [4]).
Some measure of internal homogeneity can also be used (Estrada and Jepson [3],
Stahl and Wang [4]), provided that the inside of the region is easily accessible.

Finally we come to the most general methods that compute closure using
only weak shape priors, such as continuity and proximity. The most basic closure-
based cost function uses a notion of boundary gap, which is a measure of missing
image edges along the closed contour. Elder and Zucker [18] model the proba-
bility of a connection between two adjacent contour fragments, and find contour
cycles using a shortest path algorithm. Wang et al. [19] optimize a measure of av-
erage gap using the ratio cut approach. However, a measure based purely on the
total boundary gap is insufficient for perceptual closure, and Elder and Zucker
[20] argue that the distribution of gaps along the contour is also very impor-
tant. Williams and Hanson [21] addressed the problem of perceptual completion
of occluded surfaces, formulated as the problem of computing a labeled knot-
diagram representing a set of occluded surfaces from observed image contours.
While formulated as an elegant combinatorial optimization problem, for which
an optimal solution was available, the approach was not tested on real scenes.

All the above methods suffer from the high complexity of choosing the right
closure from a sea of contour fragments. To cope with this complexity, they either
resort to heuristics to prune the search (e.g., [17]) or constrain the search space
by other means (e.g., restricting the closure to alternating gap/non-gap cycles
[4]). Zhu et al. [22] propose to solve this hard grouping problem by embedding
the edge fragments into polar coordinates such that closed contours correspond
to circles in that space; however, their goal is to better detect object contours,
and they stop short of grouping the contours into closed boundaries. The method
of Jermyn and Ishikawa [23] is perhaps the closest to our work. Similar to [19,4],
they minimize closure costs using ratio cuts, but unlike [19,4] who operate on
contour fragments, [23] works directly with pixels in a 4-connected image grid.
It enables the authors to minimize many different closure costs (including our
own) by globally minimizing ratio cuts in a simply connected planar graph.
However, individual pixels provide poor scope for gap computation. In contrast,
our superpixels not only provide greater scope for gap computation (which, in
our case, is learned), they provide greater scope for the incorporation of internal
appearance-based affinity. Moreover, while their solution is optimal, it does not
provide a set of optimal solutions that capture closures at multiple scales.

In this paper, our goal is to find closed contour groups in an efficient manner.
Drawing on [16], we use superpixels to constrain the search space of the resulting
closures. Superpixels also provide an easy way to access internal region informa-
tion (such as region area). Moreover, superpixel boundaries provide better scope
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for gap computation, as opposed to most previous methods that linearize the
output of an edge detector or operate directly on image pixels. On the optimiza-
tion side, we show that parametric maxflow [5] can be used not only to recover
the global optimum of closure costs similar to that of Stahl and Wang [4] and
Jermyn and Ishikawa [23], but can also be used to recover a multiscale set of
closure hypotheses.

3 Problem Formulation

As mentioned in Sec. 1, our framework reduces grouping complexity by restrict-
ing closure to lie along superpixel boundaries. Given a contour image I(x, y)1,
we first segment it into N superpixels using a modified version of the superpixel
segmentation method of Mori et al. [25] ([25] uses the Pb edge detector [26],
while we use globalPb [24]). If we let Xi be a binary indicator variable for the
i-th superpixel, the vector X yields a full labeling of the superpixels of I as
figure (1) or ground (0). Recall that our goal will be to select a maximal set of
superpixels which have high spatial coherence and whose boundary has strong
contour support in the image. Drawing on Stahl and Wang [4], we define our
closure cost to be C(X) = G(X)

A(X) , where G(X) is the boundary gap along the
perimeter of (the “on” superpixels of) X, and A(X) is its area. Boundary gap
is a measure of the disagreement between the boundary of X and is defined to
be G(X) = P (X)−E(X), where P (X) is the perimeter of X and E(X) is the
“edginess” of the boundary of X. Out of the total number of pixels along the
boundary of X, P (X), edginess is the number of edge pixels, with the edginess
of image boundary pixels defined to be 0.

Fig. 2. Boundary gap computation over superpixel graph. S1, S2, S3, and S4 correspond

to superpixels that were selected. Gi and Gij are the boundary gap of superpixel i and

the gap on the edge between superpixels i and j respectively . The gap along the bound-

ary of the selection (red) is then G1234 =
∑4

i=1 Gi − 2 (G12 + G13 + G14 + G23 + G34).

In order to facilitate the optimization of this cost using an optimal graph cut-
based approach (see Sec. 5), we must decompose the cost function into unary
and pairwise terms of the variables in X . Let Pi be the perimeter length of
1 The contour image takes the form of a globalPb image [24].



Optimal Contour Closure by Superpixel Grouping 485

superpixel i and let Pij be the length of the shared edge between superpixels i
and j. Similarly, let Ei be the edginess of superpixel i’s boundary, and Eij be
the edginess for the shared boundary between superpixels. Let the superpixel
and superpixel edge gaps be Gi = Pi − Ei and Gij = Pij − Eij respectively.
Finally, let Ai be the area of superpixel i. Our closure cost becomes:

C(X) =

∑
i GiXi − 2

∑
i<j GijXiXj∑

i AiXi
(1)

The denominator in the above ratio simply adds the individual areas of all the
superpixels that were selected. Normalization by area not only promotes spatial
coherence but also promotes compactness; as we shall see in Sec. 6, given two
possible paths (with strong edge support) a closure may take, it will prefer a
compact path over one with deep concavities. The numerator in the above cost
is more complicated. To compute the gap along the perimeter, we first add the
individual gaps of all the selected superpixels. However, for selected superpixels
that share boundaries, adding individual superpixel gaps would add gaps that
are not on the boundary of the selection. For every internal boundary, the gap
over that boundary was counted twice (once for each of the superpixels that share
the boundary). Therefore, we subtract the gap twice for all internal boundaries.
Note that if two superpixels do not have a shared boundary, then both Pij and
Eij (and thus Gij) will be 0. Fig. 2 gives an example of gap computation over
a simple superpixel graph. In the next section, we introduce our gap measure,
and show how it can be learned from training data.

4 Learning the Gap Measure

Most approaches to detecting contour closure (e.g., [4]) typically define gap as
simply the length of the missing contour fragments, i.e., the length of that portion
of the closure for which no image edges exist. In order to ground our gap measure
using image evidence, as well as incorporate multiple contour features for gap
computation, we choose to learn the gap from ground truth. Remember from
Sec. 3 that for a pair of superpixels i and j, the gap on the edge between them is
Gij = Pij − Eij . Specifically, if EPij is the set of pixels on the superpixel edge
(i, j), then Pij = |EPij | and Eij =

∑
p∈EPij

Ep
ij , where Ep

ij = [P (fp) > Te]
is an edge indicator for pixel p (P (·) is a logistic regressor and fp is a feature
vector for the pixel p). Te is a necessary threshold on the edginess measure.
Since the distribution of edges in the training set is not necessarily the same
as that for test images, this parameter controls the contribution of weak edges.
Decreasing it results in many smaller structures being detected and causes more
potential solutions to be generated. We analyze the performance of our method
as a function of this parameter in Sec. 6.

Given a pixel p on the superpixel boundary, the feature vector fp is a function
of both the local geometry of the superpixel boundary and the detected image
edge evidence in the neighborhood of the superpixel boundary pixel. This feature
vector consists of four features (see Fig. 3(a)):
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(a)

Only distance + strength + alignment + curvature

(b)

Fig. 3. (a) Contour features for learning the gap measure. Black curves correspond to

superpixel boundaries, while the red curve corresponds to detected image edges. The

features that are used for edge probability computation at superpixel boundary pixel p
are: 1) distance d between p and q, where q is the closest point to p among the detected

image edges; 2) image edge strength at q; 3) the alignment, computed as the absolute

value of the cosine of the angle between v and w; and 4) the smoothness, computed

as the squared curvature at p. (b) Effect of different features on gap (ordered left to

right). For example, the superpixel edges that cross the legs weaken as alignment is

added and the shadow edge on the body weakens as strength is added.

1. Distance to the nearest image edge; closer edges provide stronger evidence.
2. Strength of the nearest image edge; stronger edges provide stronger evidence.
3. Alignment between the tangent to the superpixel boundary pixel and the

tangent to the nearest image edge; aligned edges provide stronger evidence.
4. Squared curvature of the superpixel edge at a point.

Given a dataset of images with manually labeled figure/ground, we map the
ground truth onto superpixels. Our training set is composed of all the pixels
falling on superpixel boundaries and is used to train a logistic classifier over a
feature vector fp. In addition to learning from all four of the above features,
we tried learning from subsets of the features. Fig. 3(b) illustrates the effect
of incrementally adding more features; the thickness of each superpixel edge
corresponds to the average edge probability of its superpixel boundary pixels.
Using all four features results in the best performance, in terms of retaining
object boundary edges while suppressing other edges.

5 Optimization Framework

It has been known for some time that ratios of real variables that adhere to
certain constraints can be minimized globally. Instead of minimizing the ratio
R(x) = P (x)

Q(x) directly, one can minimize a parametrized difference E(x, λ) =
P (x) − λQ(x). It can be shown that the optimal λ corresponds to the optimal
ratio P (x)

Q(x) . The constraints on the ratio guarantee that the resulting difference
is concave and thus can be minimized globally.

In the case of binary variables, ratio minimization can be reduced to solving
a parametric maxflow problem. Kolmogorov et al. [5] showed that under certain
constraints on the ratio R(x), the energy E(x, λ) is submodular and can thus be
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minimized globally in polynomial time using min-cuts. Converting our closure
cost C(X) in Eqn. 1 to a parametrized difference results in a submodular cost
C(X , λ), making the method in [5] applicable for minimizing the ratio C(X).

In fact, the method in [5] does not simply optimize the ratio R(x), but finds
all intervals of λ (and the corresponding x) for which the solution x remains
constant. The interval boundaries are called breakpoints, and while the small-
est breakpoint λ0 corresponds to the optimal ratio R(x), consecutively larger
breakpoints λ1, λ2, . . . are also related to ratio optimization. Kolmogorov et al.
show that the optimal solution x∗ of E(x, λ) in the interval [λi, λi+1], is also an
optimal solution of minQ(x)≥T R(x), where T = Q(x∗). In case of optimizing the
closure cost in Eqn. 1, using parametric maxflow results in a multiscale set of
optimal closure solutions under increasing area thresholds.

The method in [5] can be exponential if the number of breakpoints is expo-
nential, but is polynomial for obtaining a global optimum. In our experiments,
a solution is obtained in a fraction of a second for a superpixel graph of 200
superpixels, as there are typically less than 10 breakpoints.

6 Evaluation

We compare our work, which we refer to as superpixel closure (SC), to two other
contour grouping methods: Estrada and Jepson (EJ) [3] and a version of ratio
contours (RRC) from Stahl and Wang [4]. We provide a qualitative evaluation on
various images (see Fig. 6), as well as a quantitative evaluation on two datasets,
including the Weizmann Horse Database (WHD) [27] and the Weizmann Seg-
mentation Database (WSD) [28]. Learning the gap measure (Sec. 4) is accom-
plished on the first 30 images from WHD. For testing, we use 170 additional
images from WHD and all 100 images from WSD.

6.1 Quantitative Evaluation

For a quantitative evaluation of the results, we use the F-measure, F = 2RP
R+P ,

where R and P are recall and precision, respectively, of the solution relative
to the ground truth. Specifically, if A is the set of pixels corresponding to the
solution and Agt is the ground truth, then R = |A∩Agt|

|Agt| and P = |A∩Agt|
|A| .

Given K solutions, we select the solution with the best F-measure relative to
the ground truth. We average the “per-image” F-measure for all the images (and
three ground truth segmentations in WSD) in a dataset and report the result.

Fig. 4 shows the results of the three methods for increasing values of K. We
chose the best parameters for all three algorithms and fixed them for the entire
experiment. For EJ, we used a Normalized Affinity Threshold (τaffty) of 0.01,
with the line segments generated by fitting the globalPb output. For RRC, we
used λ = 0 and α = 1. Here, we could not give the algorithm globalPb-based
line segments, and thus use the method’s own line segments generated from a
Canny edge response. For our method, we fixed the number of superpixels to
200 and set Te = 0.05, giving us best performance at the high range of K.
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Fig. 4. Quantitative results. We compare our results (SC) to two other algorithms:

Estrada and Jepson [3] (EJ) and Ratio Contours [4] (RRC).

Since the resulting solutions can be thought of as shape hypotheses for object
recognition, we believe that the performance for some reasonably small value of
K > 1 is more important than aiming to obtain a single best contour (K = 1)2.
For K = 10, SC (EJ, RRC) obtains an average F-measure of 79.72% (79.44%,
68.13%) on WHD and 87.19%3 (78.44%, 77.82%) on WSD.

We outperform the competing approaches on both datasets for a setting of
K = 10 (obtaining a comparable performance to EJ on the horses dataset),
which we attribute to the superpixel formulation, as well as the optimal closure
finding method in our framework. On the WHD, both SC and RRC perform
significantly worse than on WSD, while EJ performs the same. This is likely due
to the lower compactness of objects in the horse dataset (average isoperimetric
ratio of 0.15, compared to 0.4 in WSD). Moreover, in many images there is a
more compact path that includes the gap between the horse’s legs due to shadow
or ground edges. In addition, a significant number of images in the horse dataset
have a picture frame boundary around the image. These boundaries provide the
largest and most compact solutions, and are therefore found by SC instead of
finding the horse. Finally, an intersting fact is that EJ still performs well on the
horse dataset (unlike SC and RRC). This is most likely due to its reliance on
internal appearance, which is definetely homogeneous in the case of horses.

Since Te is set so low, our performance is poor for low values of K, but it is
better for high K’s. Fig. 5 shows the change in performance of our algorithm as
we change the number of superpixels and vary Te. Fig. 5(a) illustrates that, in
general, higher superpixel density results in a very marginal performance gain for
large values of K, while for low values of K, coarser superpixel segmentations
prevent very small objects from being detected. Increasing the threshold Te

(Fig. 5(b)) reduces the detection of small objects and improves performance at

2 SC can be tuned (see Fig. 5) to perform better for K = 1 at a small expense of

performance for higher K’s.
3 For WSD, there are three ground truth segmentations per image. If we instead choose

the closest of the three ground truth segmentations per image (as opposed to taking

the average), our score on WSD improves to 88.76%.
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Fig. 5. Varying the parameters of our method. (a) Varying the number of superpixels

for a fixed edge threshold Te = 0.05. (b) Varying the edge threshold Te for a fixed

number of superpixels (200).

the low range of K, but also hurts the detection of objects with weak edges and
thus results in slightly poorer performance at the high range of K.

We also compare the running times of the three methods on WSD (average
image size of 300 × 290 pixels). On a 2.6GHz Dual Core Intel CPU with 4GB
of RAM, setting the methods to retrieve K = 10 best contours, the average
running times per image are: SC (not including edge detection and superpixel
extraction) – 1.3 sec, EJ (not including edge detection) – 23 sec, RRC – 59 sec.

6.2 Qualitative Evaluation

In addition to the quantitative evaluation, we also provide a qualitative evalu-
ation of our method by testing it on images from the two datasets, as well as
other images obtained from the internet. Fig. 6 illustrates the performance of our
method compared to the two competing approaches4. We manually select the
best of 10 solutions for each method. Notice that the detected contours in our
framework lie closer to the true object contours since the superpixel edges, even
in the persence of a gap, lie closer to object edges than the linearized contours
detected by the other algorithms. We pleasantly observed that our framework is
not constrained to obtain compact solutions as is usually the case when one is
normalizing perimeter by area. This is clearly visible in the image of a spider,
where very thin legs are segmented since that represents the best closure solu-
tion. However, this is not always the case, for if there is a more compact contour
that is not losing on gap, it will be preferred. This is the reason for the filled gap
between the horse’s legs or the filled gap between the carriage’s wheels in the
first two images. Note that for the horse image, EJ obtains a better solution by
relying on the homogeneous appearance inside the horse. Finally, our method
relies on superpixels to oversegment the object. We still detect thin structures,
such as the spider’s legs, if good superpixels were found due to strong image
edges. For weaker edges, however, thin structures are harder to capture (the bat
of the baseball player, for example).
4 Supplementary material contains the results of SC for all the images in both datasets.
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Fig. 6. Qualitative results. We compare our results (left) to two other algorithms:

Estrada and Jepson [3] (middle) and Ratio Contours [4] (right).
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6.3 Using Internal Homogeneity

As mentioned in Sec. 1, our superpixel formulation also facilitates the incor-
poration of appearance information, when it is both available and appropriate.
The cost function in Eqn. 1 can be easily modified to incorporate a term which
reflects the degree to which adjacent superpixels inside the superpixel selection,
i.e., inside the closed contour, have high affinity. Assuming that we are given an
affinity matrix W , such that Wij is the affinity between two superpixels i and j,
we modify our closure cost to be:

Caffty(X) =

∑
i GiXi − 2

∑
i<j GijXiXj∑

i<j WijXiXj
(2)

Compared to the cost in Eqn. 1, the numerator remains the same while the
denominator changes to an internal homogeneity measure instead of the total
object area. Minimizing this ratio results in minimizing the gap while maximizing
the total affinity between the selected superpixels. Fig. 7 shows an example where
better results were achieved by exploiting appearance homogeneity.

Fig. 7. Using internal appearance homogeneity. For objects with strong internal homo-

geneity of appearance, optimizing the cost in Eqn. 2 is better (right) than optimizing

the cost in Eqn. 1 (left). Note that the gap between the horse’s legs was not included

on the right due to its hetrogeneous appearance w.r.t. the rest of the horse.

6.4 Multiple Superpixel Scales

Though it might seem that the more superpixels we use, the better SC will
perform, it is not always so. As seen in Fig. 5(a), coarser superpixel scales con-
strain the solution more and thus perform better for low values of K. However,
there is one additional advantage of using coarser superpixel scales. Since our
superpixel algorithm does not produce hierarchical superpixels (since new super-
pixel boundaries may be introduced from finer to coarser scales), it is possible
to occasionally have less undersegmentation at coarser scales. Fig. 8 illustrates
a situation where an object was segmented better at a coarser scale and conse-
quently detected by SC.

We tried a simple multiscale version of SC where we merge the results from
all scales. Specifically, we run SC at four superpixel scales, obtaining 25, 50,
100, and 200 superpixels for each image. Setting K = 10 for each scale results
in 40 solutions once the results are merged together. Since the performance of
SC for a given scale does not significantly vary for K > 10, we do not select 10
of 40 solutions for the multiscale version, but instead retain all 40. Using the
multiscale version increases the performance on WSD from 87.19% to 89.53%.
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Fig. 8. Multiscale results. Choosing the K = 2 top solutions yields better results in

the case of 50 superpixels (left) than in the case of 200 superpixels (right).

7 Conclusions

Our reformulation of the problem of finding cycles of contours as the problem of
finding spatially coherent subsets of superpixels, whose collective boundary has
strong image edge evidence yields an optimal framework for closure detection
that compares favorably with two leading prior approaches. While superpixels
provide an ideal scope for learning a gap measure from training data, they offer
a number of additional advantages that we are currently exploring. We plan to
use superpixel junctions to learn an affinity measure between pairs of superpixels
that are both inside and adjacent to the boundary. Such an affinity measure can
encode a learned measure of continuity and T-junction, and could significantly
strengthen our cost function. Superpixels also provide a convenient mechanism
for incorporating appearance information, if appropriate and if available. For
example, if the object was known to be homogeneous in appearance, our modified
cost function can easily incorporate such a prior, as discussed in Sec. 6.3. Our
framework is flexible, and can easily accommodate many classical non-accidental
regularities. In the future, we also plan to pursue a more elegant coarse-to-fine
framework for finding contour closure using multiple superpixel scales.
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Image and Pattern Analysis Group & HCI

Dept. of Mathematics and Computer Science, University of Heidelberg

{lellmann,breitenreicher,schnoerr}@math.uni-heidelberg.de

Abstract. The saddle point framework provides a convenient way to

formulate many convex variational problems that occur in computer vi-

sion. The framework unifies a broad range of data and regularization

terms, and is particularly suited for nonsmooth problems such as To-

tal Variation-based approaches to image labeling. However, for many

interesting problems the constraint sets involved are difficult to han-

dle numerically. State-of-the-art methods rely on using nested iterative

projections, which induces both theoretical and practical convergence is-

sues. We present a dual multiple-constraint Douglas-Rachford splitting

approach that is globally convergent, avoids inner iterative loops, en-

forces the constraints exactly, and requires only basic operations that

can be easily parallelized. The method outperforms existing methods by

a factor of 4−20 while considerably increasing the numerical robustness.

1 Introduction

Overview and Motivation. In this work, we focus on algorithms for solving
saddle point problems associated with variational formulations in image process-
ing and analysis, which have recently become a very active research area. The
output of a variational method is defined as the minimizer

u∗ := argmin
u∈C

f(u) , (1)

where C is some subset of a space of functions defined on some continuous do-
main, and f a functional depending on the input data. In contrast to “discretize
first” approaches such as grid- or graph based methods, this “analyze first” ap-
proach allows to get a deeper insight into the underlying problem, and to abstract
from inaccuracies caused by the discretization.

The interpretation of u is governed by the problem to be solved: for color
denoising, u : Ω → [0, 1]3 could directly describe the colors of the output image
on the image domain Ω ⊆ Rd; while for segmentation problems, u : Ω → [0, 1]
could assign each point to the foreground (u(x) = 1) or background (u(x) = 0)
class. Recently, interest has risen in a specific class of variational problems of
the form

inf
u∈C

sup
v∈D

{〈u, s〉 + 〈Lu, v〉 − 〈b, v〉} , (2)

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 494–505, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Application of the proposed saddle point optimization method to multi-class

color segmentation. Left: Input image. Right: Segmentation into 12 regions of constant

color. The tight relaxation of the combinatorial labeling problem results in a saddle

point problem with an intricate dual constraint set. In contrast to existing approaches,

the method proposed in this work allows to compute global minimizers of such problems

without requiring inaccurate and time-consuming iterative projections as subroutines.

where the primal and dual constraint sets C ⊆ X and D ⊆ Y are convex subsets
of some function space X with dual space Y , L : X → Y is a linear operator,
s ∈ Y and b ∈ X . These bilinear saddle point problems are very useful in the
context of labeling [4,12,14], and – using a “lifting” technique – can be used to
minimize a large class of common variational problems [18].

As these problems are generally convex, they do not suffer from local minima,
which allows to clearly separate modelling from optimization aspects. The inner
problem turns out to be a convenient way of expressing objective functions f
that contain non-smooth terms, such as Total Variation (TV) regularization, and
allows to apply fast primal-dual optimization schemes that explicitly update the
primal variables u as well as the dual variables v.

First-order methods of this kind have been shown to achieve a good perfor-
mance for many problems while offering excellent parallelization characteristics
[22,17,14]. These methods require to compute projections ΠC and ΠD on the
sets C and D. However, in many cases one faces discretized problems of the form

min
u∈C

max
v∈D1∩...∩Dr

{〈u, s〉 + 〈Lu, v〉 − 〈b, v〉} , (3)

with C ⊆ Rn and Di ⊆ Rm, i = 1, . . . , r. This occurs in particular in connection
with relaxations of the combinatorial labeling problem (Fig. 1) and functional
lifting [4,18,14]. Here the dual constraint set D is only given implicitly as an
intersection, hence projections cannot be computed in closed form.

Current methods to solve such problems are based on approximating the pro-
jection on D by a series of projections on the simpler sets Di. However, this
causes a number of issues. From a theoretical viewpoint, convergence of the outer
algorithms usually requires the inner problem to be solved with an increasing
accuracy at each step, which is impractical. Thus in practice convergence is no
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longer guaranteed. In addition, the projections become very slow, and raise many
issues on how to choose suitable and matching stopping criteria.

Contribution. In this work, we propose a dual multiple-constraint Douglas-
Rachford method for saddle point problems of the class (3), that exactly takes
into account the dual constraint set D while still relying only on simple ex-
act operations. The method is shown to converge to a global optimum and is
suited for massive parallelization. While the method essentially solves the dual
problem, we show that a primal solution can be recovered. As all steps in the
proposed algorithm can be computed explicitly, the theoretical convergence re-
sults directly transfer to the actual implementation. The approach outperforms
state-of-the-art methods on real-world problems with respect to computation
time and numerical robustness by a factor of 4 − 20.

Related Work. Continuous labeling approaches [21,5] constitute a continuous
equivalent to discrete graph cut methods [3]. These discrete methods are difficult
to parallelize and suffer from anisotropy induced by the discretization. This
grid bias can be reduced in some extent by using larger neighborhoods in the
graph construction, but it cannot be completely eliminated and computational
costs quickly increase in the process. In contrast, continuous methods can be
used to construct discretizations that exactly represent the original metric in an
infinitesimal sense [4]. The idea of functional lifting can be found in a discrete
setting in [11] and in a continuous formulation in [4,17], and has also proven to
be useful in the context of optical flow [10].

Regarding optimization, our work extends the approach proposed in [9] for
two-, and in [14] for multiclass labeling. The authors use a similar method, but
require iterative projections at each step. The basic Douglas-Rachford iteration
[6,7] applied to the dual problem can be shown to be equivalent to the Alternating
Direction Method of Multipliers [8] and the recently proposed Alternating Split
Bregman method [9,20], hence our results equally apply in these formulations.

2 Bilinear Saddle-Point Problems in Computer Vision

In the following, we will consider variational problems that can be stated in the
specific saddle point form (3) when discretized. For s ∈ Rn, b ∈ Rm, L ∈ Rm×n,
and some closed convex sets C ⊆ Rn and Di ⊆ Rm, i = 1, . . . , r, define D :=
D1 ∩ . . . ∩ Dr and

g(u, v) := 〈u, s〉 + 〈Lu, v〉 − 〈b, v〉 . (4)

Then problem (3) consists in computing a minimizer of the primal objective
f(u) := maxv∈D g(u, v),

min
u∈C

max
v∈D

g(u, v) = min
u∈C

f(u) . (5)

Under the assumption that at least one of the sets C and D is bounded, it
can be shown that equivalently one may maximize the dual objective fd(v) :=
minu∈C g(u, v) [19, Cor. 37.3.2],
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max
v∈D

min
u∈C

g(u, v) = max
v∈D

fd(v) . (6)

In particular, pairs of primal resp. dual solutions (u∗, v∗) are saddle points of g,

min
u∈C

f(u) = f(u∗) = g(u∗, v∗) = fd(v∗) = max
v∈D

fd(v) (7)

We will now present two prototypical applications of the saddle point method:
multiclass image labeling and generic scalar variational models with gradient-
based regularizers.

Continuous Multiclass Labeling Approaches. Many problems in image
analysis can be reduced to the basic problem of assigning to each point x in
the image domain Ω one of l discrete labels {1, . . . , l}, such as an object class in
segmentation problems, a depth label in stereo reconstruction, or a displacement
vector in image registration [16]. In order to reduce the influence of noise, some
nonlocal spatial coherency constraints are required in addition to the local data
fidelity measure based on the input image.

As for each point a discrete decision must be made, the problem is combina-
torial and nonconvex, and in fact can be shown to be NP-hard even for relatively
simple energies under a graph discretization [3]. However, by relaxing the original
problem to a convex constraint set, good solutions for the original problem can
be recovered using convex optimization [22,4,13,14]. In the continuous setting,
the labeling problem can be relaxed to the variational problem

min
u∈C

〈u, s〉 + J(u) , C := {u ∈ BV(Ω, Rl)|u(x) � 0,
∑

i

ui(x) = 1} , (8)

where BV denotes the space of functions of bounded variation [2]. By embed-
ding the original labels into a higher-dimensional space via the unit vectors
{e1, . . . , el}, the local data fidelity can be completely encoded into the linear
term, irrespective of the complexity of the original data term: assigning label i
to the point x will locally be penalized by si(x).

For the nonlocal regularizer J , we choose some metric d : {1, . . . , l}2 → R,
denote by Du the (distributional) Jacobian of u, and set

J(u) := sup
v∈D

∫
Ω

〈Du, v〉, D := {v ∈ (C∞
c )d×l|v(x) ∈ Dloc∀x ∈ Ω} , (9)

Dloc := {v = (v1, . . . , vl) ∈ Rd×l|‖vi − vj‖ � d(i, j),
∑

k

vk = 0} . (10)

This is a tight relaxation of the requirement that switching from label i to label j
along some curve should be penalized by the curve length, multiplied by a factor
d(i, j) depending on the labels i and j. In terms of graph-based approaches, this
can be thought of as the potentials on the edges of the graph. The formulation (9)
carries over this principle to the continuous domain Ω. By discretizing u, v and
s on a rectangular grid and choosing a forward finite differences discretization
L of the gradient operator D, the above variational formulation can be posed in
the saddle point form (3) without introducing grid bias (cf. [4]).
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The definition of Dloc is derived by locally constructing the convex envelope
of the desired regularizer restricted to the set of u that only assume the “hard”
labels {e1, . . . , el}. As a result, the minimizer of the convex problem (8) is often
a unit vector in almost all points, and provides a very good approximation to
the solution of the original combinatorial labeling problem.

The increased approximation tightness comes at the price of a more compli-
cated optimization process. However, as Dloc is the intersection

Dloc = {v ∈ Rd×l|
∑

i

vi = 0} ∩
⋂
i<j

{v ∈ Rd×l|‖vi − vj‖ � d(i, j)} , (11)

the problem can be put into the form (3). Projections on the individual sets can
be easily computed by subtracting the mean resp. by shrinkage-like operations.

Lifting Approach. For the case where the sought-after function takes scalar
values, such as gray scale or depth, the saddle point formulation permits another
interesting application. Assume we want to minimize over C ⊆ W 1,1(Ω, R) some
functional

min
u′∈C

f ′(u′), f ′(u′) :=
∫

Ω

h(x, u′(x),∇u′(x))dx (12)

with h convex in ∇u′(x), but not necessarily in u′(x). Then, motivated by the
“calibration” idea [1], it was shown in [18] that f ′ can be expressed in terms of
the {0, 1}-indicator function χH(u′) of the hypograph

H(u′) :=
{
(x, t) ∈ Rd × R|u′(x) � t

}
(13)

of u′, i.e. χH(u′)(x, t) = 1 iff u′(x) � t and zero otherwise. Specifically,

f ′(u′) = sup
v∈D

∫
Ω×R

〈v, DχH(u′)〉 , where (14)

D :=
{
(vx, vt) ∈ C∞

c (Ω × R, Rd+1)|∀x, t : vt(x, t) � h∗(x, t, vx(x, t))
}

. (15)

Here h∗ denotes the convex conjugate of h with respect to the last argument.
Intuitively, this lifts the problem to a higher-dimensional space and transforms
it to the problem of finding the set of points below the graph of u′.

Again, the problem is transformed to a convex problem by replacing χH(u′)
with some function u : Ω×R → [0, 1]. This effectively linearizes the nonconvexity
of h with respect to u′(x). The relaxed problem reads

min
u∈C

sup
v∈D

∫
Ω×R

〈v, Du〉 , C := {u ∈ BV(Ω × R, [0, 1])|u(x, t) t→±∞−→ 0/1} , (16)

which after discretization fits into the saddle point framework (3). Again, de-
pending on the integrand h, the dual constraint set D may be very complicated.
The approach can be extended to the full Mumford-Shah functional [15],

f ′(u′) = λ

∫
Ω

(u′ − I)2dx +
∫

Ω\Su′
‖∇u′‖2dx + νHd−1(Su′), λ, ν > 0 , (17)
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Fig. 2. Application of the proposed optimization method to nonsmooth variational de-

noising. Left: Input image. Right: Result of variational denoising using the Mumford-

Shah functional with 8 levels, λ = 0.5 and ν = 5. Noise or fine details can be re-

moved without blurring sharp edges. The lifting approach allows to minimize the full

Mumford-Shah functional within the convex saddle point framework.

where Hd−1 is the (d − 1)-dimensional Hausdorff measure (Fig. 2). The W 1,1

requirement above is relaxed to u′ ∈ SBV(Ω×R), i.e. the set of special functions
of bounded variation [2], such that u′ may have a nonempty set of discontinuities
Su′ . The dual constraint set then becomes [17]

D = C∞
c (Ω × R, Rd+1) ∩R∩

⋂
p�q

Sp,q , (18)

R :=
{

(vx, vt)|vt(x, t) + λ(t − f(x))2 � ‖vx(x, t)‖2

4
∀x, t

}
(19)

Sp,q :=
{

(vx, vt)|
∥∥∥∥∫ q

p

vx(x, t)dt

∥∥∥∥ � ν ∀x, t

}
. (20)

Again, projections on the discrete counterpart of D can only be approximated.
On the other hand, projections on Sp,q and R can be computed explicitly by
using a shrinkage-like method [4] resp. by solving a third-order polynomial using
a solution formula. This motivates our optimization approach below that exactly
takes D into account in terms of individual projections onto Sp,q and R.

3 Dual Multiple-Constraint Douglas-Rachford Splitting

Based on the theory of set-valued operators applied to the subdifferential oper-
ators of convex functions, the Douglas-Rachford approach [6] provides a scheme
to compute a minimizer of the problem

min
u∈Rn

f(u), f(u) := f1(u) + f2(u) , (21)

by iterating a combination of backward (proximal) steps with step size τ > 0,

u′ ← arg min
u′∈Rn

{(2τ)−1‖u′ − u‖2
2 + fi(u′)} (22)
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Algorithm 1. Dual Multiple-Constraint Douglas-Rachford Optimization for
Saddle-Point Problems (DMDR)
1: Choose τ > 0, v̄0

i ∈ Rn×d×l, z̄0 ∈ Rn×d. Set k ← 0.

2: while (not converged) do
3: vk

i ← ΠDi

(
v̄k

i − τ
r
b
)
.

4: z′′k ← ΠC
(

1
τ

(
z̄k − s

))
.

5: v′k ← (
rI + LL�)−1 (∑

i

(
2vk

i − v̄k
i

)− L
(
z̄k − 2τz′′k)).

6: v′k
1 = . . . = v′k

r ← v′k.

7: z′k ← (−L�) v′k.

8: v̄k+1
i ← v̄k

i + v′k
i − vk

i .

9: z̄k+1 ← z′k + τz′′k.

10: k ← k + 1.

11: end while

on each of the fi individually. More precisely, if both f1 and f2 are proper,
convex, and lower semicontinuous functions, and the relative interiors of their
domains have a nonempty intersection, the Douglas-Rachford iteration scheme
converges to a minimizer of f [7, Thm. 3.15; Prop. 3.23, 3.20, 3.19]. A strong
point of the method is that it does not require any part of the objective to be
smooth or finite, which allows to introduce constraints into the fi as required.

Algorithm and Convergence. We will now show how to add auxiliary vari-
ables before splitting the objective in order to avoid the iterative projections
employed in [4,18] and the associated accuracy and convergence issues. Instead
of solving (5) directly, we solve the dual problem (6) and additionally introduce
auxiliary variables z and v1, . . . , vr, leading to the equivalent problem

min
vi∈Rm

δ−L�( 1
r

∑
i vi)=z,v1=...=vr︸ ︷︷ ︸

f1

+
∑

iδvi∈Di + 〈1
r

∑
ivi, b〉 + max

u∈C
〈u, z − s〉︸ ︷︷ ︸

f2

. (23)

The extra constraints are represented as characteristic functions δ taking values
{0, +∞}. Applying the Douglas-Rachford method to the above splitting formu-
lation leads to the complete algorithm as outlined in Alg. 1. Due to the auxiliary
variables, the backward step for f2 requires only separate projections on the Di

instead of the complete set D. The backward step for f1 amounts to solving a
linear equation system. By the Woodbury identity, this can be transformed to(

rI + LL�)−1
x = r−1x − r−1L

(
rI + L�L

)−1
L�x . (24)

In all of the presented applications, L is a forward differences discretization of
the gradient. Thus LL� is the five-point Laplacian and diagonalizes with respect
to the discrete cosine transform, allowing to solve (24) fast and exact using DCT
and diagonal matrix multiplications. We now show convergence of Alg. 1 subject
to a mild condition on the relative interiors ri of the domains.

Proposition 1. Let D1, . . . ,Dr, C be closed convex sets, C bounded such that
ri(D1)∩. . .∩ri(Dr) = ∅ and ri(C) = ∅. Then Alg. 1 converges in (vk

1 , . . . , vk
r , z′′k).
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Proof. As C is closed we have ri(dom f2)∩ ri(dom f1) = ri(dom f2)∩{v1 = . . . =
vr,−L�vi = z} = {

(
v, . . . , v,−L�v

)� |v ∈ ri(D1) ∩ . . . ∩ ri(Dr)}. This set is
nonempty by the assertion, which with the remarks at the beginning of the
section implies convergence. ��

Duality Properties of the Proposed Method. In particular, the conver-
gence property of the Douglas-Rachford approach guarantees that from some
point on the constraints hold exactly. Then vk := vk

1 = . . . = vk
r , and vk con-

verges to a solution v of the dual problem (6). Unfortunately, it is nontrivial to
generate a primal solution u from a single dual solution, as both the dual and
the primal problem are usually not strictly convex. However, it turns out that
the above algorithm additionally returns a primal solution:

Proposition 2. Let (v := v1 = . . . = vr, z
′′) be a fixed point of Alg. 1. Then z′′

is a solution of the primal problem (5).

Proof. We will only provide a sketch the proof as it is quite technical. The point
is to show that the limit (z′′, v) of Alg. 1 is a saddle point of g(u, v) as defined
in (4), i.e.

g(u, ṽ) � g(z′′, v) � g(ũ, v) ∀ũ ∈ C, ṽ ∈ D . (25)
Let z̄ and v̄i be the corresponding limits from Alg. 1, and substitute z := z̄−τz′′.
Denoting by ∂f(x) the subdifferential (i.e. the set of subgradients) of f in x, from
the Douglas-Rachford convergence theorem [7, Prop. 3.19], it follows that

τ−1 (v̄1 − v1, . . . , v̄r − vr, z̄ − z)� ∈ ∂f2(v1, . . . , vr, z) . (26)

Summing up and using the definition of the algorithm leads to

Lz′′ = τ−1
∑

i

(v̄i − vi) ∈
∑

i

NDi(vi) + b = ND(v) + b, (27)

where ND denotes the normal cone of the set D from convex analysis. On the
other hand, from (26) we get

τ−1 (z̄ − z) ∈ argmax
u∈C

〈u, z − s〉, i.e. z′′ ∈ arg max
u∈C

〈u,−L�v − s〉 . (28)

Together, (27) and (28) show the saddle point property of (z′′, v). Thus z′′ must
be a primal solution. ��
By duality, the same scheme can be applied to solve problems where the primal
constraint set is more complicated, i.e. C = C1∩ . . .∩Cr. Also note that for r = 1,
the algorithm reduces to the Douglas-Rachford method from [14]. In case both f
and fd can be numerically evaluated, the gap f(z′′k)− fd(vk) provides a strong
stopping criterion, as for any solution u∗ and dual feasible point vk ∈ D,

f(z′′k) − f(u∗) � f(z′′k) − fd(vk) . (29)

In practice, it is often better to stop depending on the relative gap (f(u) −
fd(v))/fd(v), which overestimates the actual gap and provides some scale invari-
ance. However, in our case f usually cannot be evaluated due to the complexity
of D, and we must resort to a more elementary stopping criterion such as the
difference between two consecutive iterates, ‖z′′k − z′′k−1‖.
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4 Experimental Results

We implemented and evaluated the proposed DMDR method as well as the fast
primal-dual (FPD) [17] and Douglas-Rachford (DR) [14] methods in Matlab on
an Intel Core2 Duo 2.66 GHz with 4 GB of RAM and 64-bit Matlab 2009a. The
full data set for the experiments is available at ipa.iwr.uni-heidelberg.de.

Runtime Comparison. We compared the performance of the above algorithms
on a four-class color segmentation problem (Fig. 3). The input image was gen-
erated by overlaying the synthetical “four colors” image with Gaussian noise,
σ = 1. The data term was set to the �1-RGB distance to the four prototypical
color vectors. For the regularizer we chose the Potts distance, d(i, j) = λ iff
i = j and d(i, j) = 0 otherwise, with λ =

√
2. A reference solution and optimal

dual objective fd were computed using 5000 iterations of the DR method. The
experiment was repeated 10 times with varying noise.

In terms of the number of iterations, the proposed DMDR method converges
as fast as FPD. However, as it requires significantly less effort per iteration, it
outperforms FPD and DR by a factor of 2 − 3 with respect to total runtime.

High Label Count and Improved Numerical Robustness. For a larger
number of labels, the runtime advantage is expected to become more apparent
as the cost per iteration increases. We performed a 12-class segmentation of the

100 200 300 400 500
k

10�6

10�5

10�4

0.001

gap

0 50 100 150 200
t

10�6

10�5

10�4

0.001

0.01

0.1

1
gap

Fig. 3. Runtime comparison on a set of four-class labeling problems. Top row, left
to right: Input image; input overlaid with heavy Gaussian noise; purely local labeling

without regularizer; segmentation computed using the proposed method. The exper-

iment was repeated 10 times with different noise. Bottom row: Gap vs. number of

iterations (left) and time (right) with error indicators at 2σ. The proposed DMDR

method performs comparable to FPD with respect to the number of iterations, but

requires significantly less time per iteration, resulting in a total speedup of 2 − 3.
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15 660
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k
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0.100

0.200

infd

Fig. 4. Runtime performance on segmentation problems with a high label count. Top
row: Input images (top) and segmentation into 12 classes (bottom) computed using

the proposed DMDR method. Bottom left: Dual objective vs. time for 500 iterations

on the “crop” image. The proposed method outperforms DR and FPD by a factor of 10

resp. 17. Bottom right: Infeasibility of the dual iterates vs. number of iterations. Due

to the inexact projections, FPD and DR get stuck and converge to infeasible solutions.

In contrast, DMDR gradually decreases the infeasibility to zero in theory and practice.

real-world images in Fig. 1 and Fig. 4 with the same data term as above with
λ = 0.2 for the lake and fish images, and λ = 0.5 for the palm and crop images.

For this moderate number of labels, the iterative projections for DR and FPD
are already quite slow, so we fixed a maximum of 5 inner iterations per outer
step in order to get a reasonable computation time. The proposed method is
about 6 − 10 times faster than DR, and 7 − 17 times faster than FPD (Fig. 4).

Moreover, due to the inexact projections, DR and FPD converge to infeasible
dual points, i.e. they generate dual solutions v that do not lie inside the dual
constraint set D. In contrast, using DMDR the infeasibility gradually decreases,
and is guaranteed to eventually drop to zero given exact arithmetic (Sect. 3).

Histogram-Based Segmentation and Absolute Distance. Fig. 5 shows the
application of our method to a histogram-based three-class segmentation where
the data term is based on probabilities computed from histograms over regions
preselected by the user. In order to preserve more details, we chose λ = 0.025.
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Fig. 5. Application to histogram-based segmentation. Top row, left to right: Input

image with seed regions marked by the user; minimizer of the three-class variational

segmentation using the proposed approach. Bottom row: Dual objectives (left) and

	2 distance to the reference solution (right) vs. time. With low-accuracy approximate

projections, FPD and DR get stuck in an infeasible solution (solid). Increasing the pro-

jection accuracy reduces the effect but slows down convergence (dashed). The proposed

DMDR method avoids these problems and returns high-quality solutions after only a

few iterations.

As above, it can be seen that FPD and DR get stuck at infeasible solutions,
while DMDR converges smoothly. Increasing the accuracy of the approximate
projections reduces the infeasibility, but leads to a much slower convergence.

It remains to ask how the dual gap relates to actual visual differences. There-
fore at each step we evaluated the �2 distance of the current iterate to a reference
solution computed using 5000 DMDR iterations (Fig. 5). Again it becomes clear
that the inexact projections cause convergence issues for FPD and DR, while
DMDR does not suffer from these problems. After 500 iterations, DMDR recov-
ered a solution uk with ‖uk − u∗‖2 � 10, or 1.3 · 10−4 per pixel, suggesting that
only few iterations are required for visually high quality results.

Note that for all of the examples above, DMDR ran out of the box with τ = 1,
and did not require any parameter tuning.

Conclusion. We presented the DMDR method to efficiently solve saddle point
problems with intricate dual constraints, as arise from tight relaxations of contin-
uous multiclass labeling problems and general nonsmooth variational problems,
using only simple operations that can easily be parallelized. Experiments indi-
cate that it outperforms existing methods by a factor of 4 − 20, and avoids the
inaccuracies and convergence issues of the FPD and DR methods that rely on
inexact projections.
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12. Lellmann, J., Becker, F., Schnörr, C.: Convex optimization for multi-class image

labeling with a novel family of total variation based regularizers. In: Int. Conf.

Comp. Vis (2009)

13. Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex multi-class
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Abstract. We point out a difference between the original mean-shift
formulation of Fukunaga and Hostetler and the common variant in the
computer vision community, namely whether the pairwise comparison is
performed with the original or with the filtered image of the previous
iteration. This leads to a new hybrid algorithm, called Color Mean Shift,
that roughly speaking, treats color as Fukunaga’s algorithm and spa-
tial coordinates as Comaniciu’s algorithm. We perform experiments to
evaluate how different kernel functions and color spaces affect the final
filtering and segmentation results, and the computational speed, using
the Berkeley and Weizmann segmentation databases. We conclude that
the new method gives better results than existing mean shift ones on four
standard comparison measures (� 15%, 22% improvement on RAND and
BDE measures respectively for color images), with slightly higher run-
ning times (� 10%). Overall, the new method produces segmentations
comparable in quality to the ones obtained with current state of the art
segmentation algorithms.

Keywords: image segmentation, image filtering, mean-shift.

1 Introduction

Mean shift is an unsupervised clustering technique that over the last decade
gained popularity and is now widely used in computer vision for color based
segmentation. Though conceptually simple, an extensive amount of mathemati-
cal formalism has been used to precisely describe the method. As a result, some
of the important characteristics of the method were “hidden underneath the
surface”. This paper simplifies the formulation and brings forth its important
features by describing mean shift as an optimization problem. This leads to two
contributions; a) we propose a new variation, denoted Color Mean Shift, that
combines Fukunaga’s mean shift superior cluster ability with most of the compu-
tational advantages of Comaniciu’s variant, and b) we experimentally compare
different variations of the algorithm both in terms of the computational speed
and the segmentation quality. Color Mean Shift is found to outperform the cur-
rent methods in terms of the quality of segmentation, while it is slightly (� 10%)

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 506–519, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



An Experimental Study of Color-Based Segmentation Algorithms 507

slower . More specifically, it produced � 15%, 22% better results on the Berkeley
dataset with the RAND and the BDE measure respectively.

1.1 Related Work

Despite its existence for more than three decades [1], mean-shift only recently
gained popularity in the computer vision community. Cheng [2] first modified
the method and used it for non-parametric clustering and then, Comaniciu and
Meer [3] used it for image filtering and segmentation. Since then, mean-shift
has been used in computer vision for object tracking [4], 3D reconstruction [5],
texture classification [6] and video segmentation [7] among other problems. The
relatively high computational cost of a naive implementation of the method
combined with the need for fast image processing led researchers to propose fast
approximate variations of it. Most notably, two solutions for finding pairs of
points within a radius have been proposed; the Improved Fast Gauss Transform
based mean shift [8] for Normal kernels and the Locality Sensitive Hashing based
mean shift [6].

Cheng [2] was the first to recognize the equivalence of mean shift to a step-
varying gradient ascent optimization problem, and later Fashing and Tomashi [9]
showed that it is equivalent to Newton’s method with piecewise constant kernels,
and is a quadratic bound maximization for all other kernels. Still the dominant
way to describe it is by using density estimation terms [3], namely using kernels
and their shadow and profile functions.

1.2 Contributions

In this paper, we describe mean shift as an optimization problem. The simplicity
of the formulation not only leads to a better understanding of the method, but
also brings forth the difference between the original method and its variation
that is used in computer vision1. In the same section (Sec. 2), we propose our
own variant of mean shift, denoted Color Mean Shift (CMS), that lies between
the two methods. The next two sections contain an experimental comparison be-
tween the methods. First, in Sec. 3, we present the filtering results for different
kernel functions and color spaces. Then, we study the filtering speed of the algo-
rithms with respect to a number of optimization parameters. In Sec. 4 we show
results on two different segmentation datasets (the Berkeley [10] and Weizmann
Institute [11] databases) containing 300 images and 1387 human segmentations
(in total) using 4 standard comparison measures. In these experiments the new
method (i.e, color mean shift) exhibits an improvement of > 15% compared to
the existing method on color images. A similar improvement was also achieved
for the grayscale images of Weizmann dataset. Summary and future work (Sec.
5) conclude the paper.

1 In the recent papers, the original “mean shift” approach is called “blurring mean shift”.
In the rest of the paper we use the abbreviations FHMS and CMMS for Fugunaga
and Hostetler’s and Comaniciu and Meer’s method of mean shift, respectively.
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2 Image Filtering Using the Mean Shift Algorithm

2.1 Notation

We consider the image on the 5D space with spatial and color dimensions. More
specifically, xi is a 2D vector representing the spatial coordinates and si is a
vector that represents the three color channels of pixel i (i = 1 . . .N).

In the following paragraphs we use bold letters to represent vectors and the
notation [xi, si] to indicate a concatenation of vectors. To indicate the evolution
of a vector over time we use superscripts, eg. [x0

i , s
0
i ] indicates pixel xi having

the initial intensity values s0
i .

2.2 Kernel Functions

In our experiments we use two different kernel functions; the Epanechnikov and
the Normal (Gaussian) kernel. The Epanechnikov kernel has the analytic form

KE(x) =

{
cE(1 − xT x) xT x ≤ 1
0 otherwise

, (1)

where cE is the normalization constant.
The multivariate Normal kernel with variance 1 has the analytic form

KN(x) = (2π)−
d
2 exp(−1

2
xT x). (2)

The Normal kernel is symmetrically truncated to obtain a kernel with finite
support.

2.3 Fukunaga and Hostetler’s Mean Shift (FHMS)

The original mean shift formulation [1] (applied to a color image) treats the
image as a set of 5 − D points. Each point is iteratively moved proportionally
to the weighted average of its neighboring points. At the end, clusters of points
are formed. We define mean shift to be the gradient descent solution of the
optimization problem

arg min
[xi,Si]

−
∑
i,j

K([xi, si] − [xj , sj ]), (3)

where
∑
i,j

defines the summation over all pairs of pixels in the image. This prob-

lem has a global minimum when all the pixels “collapse” into a single point. We
seek a local minimum instead. That’s why we initialize the features [xi, si] with
the original position and color of the pixels of the image and perform gradient
descent iterations till we reach the local minimum. The instabilities caused by
this behavior are studied in a recent work of Rao et al. [12].
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2.4 Comaniciu and Meer’s Mean Shift (CMMS)

The modified mean shift formulation proposed by Comaniciu and Meer [3]
(CMMS) can also be expressed as a gradient descent solution of the optimization
problem

arg min
[xi,Si]

−
∑
i,j

K([xi, si] − [x0
j , s

0
j ]). (4)

There is a subtle difference between CMMS and FHMS, that significantly
affects the behavior. In the former formulation each feature point is compared
against the original set of 5 − D points [x0

j , s
0
j ], while in the latter case the

point is compared against the set of points from the previous iteration
[xj , sj ].

Fig. 1 presents the results of both methods in a smoothly varying intensity
image. Notice that the gradient of the kernel function, everywhere but in the
boundaries, is zero and so CMMS filtering only changes the intensity on the
boundaries (that change is not very visible). FHMS, on the other hand, pro-
duces artificial segments of uniform intensity. Intuitively, each iteration of the
process results in more clustered data which in turn leads to better clustering
results in the next iteration. On the downside, a fast FHMS implementation is
challenging (if not impossible) due to the fact that the feature points and the
comparison points do not lie on a regular spatial grid anymore. Thus one would
have to compare the current feature [xi, si] against all the remaining feature
points.

2.5 Color Mean Shift (CMS)

Our method alleviates the computational problem of FHMS by using the origi-
nal spatial location of the points for comparison, while using the updated in-
tensity values of the previous iteration for improved clustering ability. In a
sense, we perform FHMS on the color dimensions and CMMS on the spatial
dimensions (that is the reason for naming the method “color mean shift”). As
above, CMS can be expressed as the gradient descent solution of the optimization
problem

arg min
[xi,Si]

−
∑
i,j

K([xi, si] − [x0
j , sj ]). (5)

We have included the results of color mean shift filtering in the smoothly varying
image of Fig. 1. It is clear that individual clusters of uniform intensities are
formed (as in the case of the original mean shift). Note that in this example
there is not a single right solution for the segmentation problem and one can
argue that a single segment is the best solution. We present this example only
to exhibit one “weakness” of the CMMS algorithm, that is addressed in both our
solution and the original mean shift algorithm. In Fig. 2 we present both CMS
and CMMS algorithms.
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(a) CMMS (b) CMS (c) FHMS

Fig. 1. All the described algorithms applied on a 256 × 100 pixels smoothly varying
image. All the filtering algorithms were executed with spatial resolution hs = 21 and
range resolution hr = 10 and used a Normal kernel.

CMS

Input:
set of pixels x0

i with intensities s0
i

a function g
Output:

feature vector [xi, si]

Algorithm:
initialize feature points [xi, si] ← [x0

i , s
0
i ]

repeat until convergence
for all features [xi, si]

[xi, si] ←
∑

j [xj ,sj ]g(||[xi,si]−[x0
j ,sj ]||2)∑

j g(||[xi,si]−[x0
j ,sj ]||2)

CMMS

Input:
set of pixels x0

i with intensities s0
i

a function g
Output:

feature vector [xi, si]

Algorithm:
initialize feature points [xi, si] ← [x0

i , s
0
i ]

for all features [xi, si]

repeat until convergence

[xi, si] ←
∑

j [xj ,sj ]g(||[xi,si]−[x0
j ,s0j ]||2)∑

j g(||[xi,si]−[x0
j
,s0

j
]||2)

Connected Components Grouping

Input:
set of pixels xi with intensities si

grouping threshold t
Output:

label li for pixel xi

Algorithm:
repeat until convergence

for all pixels xi

for all xj adjacent to xi

if ||si − sj ||2 < t and xi, xj have different labels:
merge the labels of xi and xj (li ≡ lj)

Fig. 2. In all algorithms g(x) = [x ≤ 1] (indicator function in Iverson notation) for the
Epanechnikov and g(x) = exp(−x/2) for the Normal kernel

3 Filtering Comparison

Following the example of Comaniciu and Meer [3], we normalize the spatial
and color coordinates of each pixel vector by dividing by the spatial (hs) and
color (hr) resolutions. Thus, the original feature vector [xi, si] is transformed
to [xi

hs
, si

hr
] (not included in the equations for simplicity). The spatial resolution
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CMMS CMS CMMS CMS

E.

N.

E.

N.

Fig. 3. Epanechnikov vs Normal kernel. We use hs = 5 and hr = 19. All images are
processed in RGB color space. E., N. stand for Epanechnikov kernel and Normal kernel
respectively. The Normal kernel produces smoother regions. Also, CMS produces more
uniform regions even in heavily textured areas, eg. the grass and the roof.

hs affects the size of the neighborhood around each pixel that the algorithm
considers and in all the experiments is constant (hs = 5 corresponding to a
11× 11 window). Then, we perform the optimization; one pixel at a time in the
case of CMMS (Fig. 2, top right), or one iteration of the whole feature set at
a time for FHMS and CMS (Fig. 2, top left). FHMS has a complexity that is
quadratic on the number of pixels of the whole image. Thus, its running time
for a reasonably size image (eg. 640 × 480 pixels) is several minutes, making it
prohibitively slow for any computer vision application. For that reason, we omit
the results of this algorithm in the experiments.

3.1 Filtering Using an Epanechnikov or a Normal Kernel

First we present the effect of using different kernels: Epanechnikov and Normal
(Fig. 3). Each column of the figure depicts the filtering result with a different
algorithm (CMMS or CMS) and each row for a different kernel function (N., E.
stand for Normal and Epanechnikov kernels respectively). In all cases the Normal
kernel produces smoother results, while still preserving edge discontinuities. As a
matter of fact, the color resolution hr is the parameter that defines the gradient
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CMMS CMS CMMS CMS

R.

L.

R.

L.

Fig. 4. Filtering in RGB vs Luv color space. We use hs = 5 and hr = 5. All images are
processed with a Normal kernel. R, L stand for RGB and Luv respectively. Filtering
in Luv makes smoother images. Moreover, CMS produces more uniform regions.

magnitude above which there is an edge (to be preserved). So for the “hand”
image, a color range of hr = 19 results in smoothing most of the texture of the
background, while a value of hr = 10 retains most of it (in RGB with a Normal
kernel).

Overall CMS seems to produce more crisp boundaries between segments while
creating more uniform regions within a segment (eg. it suppresses the skin color
variation on the “hand” image). The former is particularly important for the
segmentation step as we will see in Sec. 4.

3.2 RGB vs. Luv Color Space

In Fig. 4 we present the results when filtering on the RGB or Luv color space.
In general, filtering in Luv produces smoother images.This is due to two facts;
the Euclidean distance between two Luv values is perceptually meaningful, i.e.,
it is proportional to the distance of colors as perceived by a human observer,
and the range of values for each component (L, u, v ) is different (for example
in our implementation L ∈ [0 . . . 100], u ∈ [−100 . . .180], v ∈ [−135 . . .110].),
while each of the red, green and blue components have values from 0 to 255.
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Overall, CMS smoothes the image more than CMMS, while preserving the
boundaries better.

3.3 Filtering Speed Comparison

With the increasing demand for processing large volumes of data computational
speed has become an important characteristic of any algorithm, that along with
accuracy determines its usefulness. That is the reason why a number of ap-
proaches to speed up mean shift filtering have been proposed [6,8]. In this section
we try to compare the speed of the two methods.

An objective comparison of the filtering speed of the different methods is
not a simple task. Besides the implementation details that greatly affect the
speed, there is also a number of algorithmic parameters that can significantly
speedup or slow down the convergence of the optimization procedure. We start
our comparison by evaluating the role of these parameters and then we discuss
whether general speed up techniques that have been proposed in the literature
can be applied to the different methods or not. For fairness sake, we use our own
implementation of all the filtering methods that consists of Matlab files for the
image handling and the general input/output interface, while the optimization
code is written in C2. We perform all the experiments on a desktop computer
with an Intel Core2 Quad CPU @3GHz3.

Image Size. In theory the complexity of both CMS and CMMS increases lin-
early with the number of pixels (if the kernel is bounded), since each pixel rep-
resents a feature vector that needs to be processed4. The theoretical prediction
is verified in practice as Fig. 5a shows.

Spatial Resolution hs. Theoretically, both filtering methods depend quadrat-
ically on the spatial bandwidth. In practice, other parameters, explained below,
make the dependence less than quadratic. Fig. 5b displays the filtering speed
with respect to the spatial resolution for the methods, when all the other pa-
rameters are the same.

Epanechnikov vs. Normal kernel. For each pair of pixels, computation of
the weight using the Epanechnikov kernel only requires a comparison, while the
calculation of an exponential number is necessary for the case of the Normal
kernel. As a result the former operation is much cheaper than the latter and
thus filtering with an Epanechnikov kernel is faster compared to filtering with a
Normal kernel as is shown in Fig. 5b.

The overall speed of the segmentation process is also affected by the quality
of the result of the filtering process. We experimentally found, that a Normal
kernel produced better results and as a consequence sped up the grouping step.

2 All the code is available and can be downloaded from the author’s website
http://www.cs.umd.edu/~kbits/code.htm

3 Due to Matlab’s limitation only one core is used in the experiments.
4 FHMS’s complexity, on the other hand, is not linear with respect to the image size

since whole areas can collapse into single points.
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(a) Speed vs Image Size
(hs = 5)

(b) Speed vs hs (c) Speed vs Convergence
threshold

Fig. 5. We use the “workers” image (size 321 × 481 pixels) and perform the filtering
on the RGB color space with hr = 15. A solid line denotes the use of Epanechnikov
kernel while the dotted line (middle figure) the use of Normal kernel. We also limit
the number of iterations to 20 and the convergence threshold is 0.001. We perform the
filtering 5 times for each image size and only plot the median value.

The use of a Normal kernel still resulted in slower segmentation times, but the
time difference was not as large as Fig. 5b shows.

Convergence Threshold. On each iteration of the optimization procedure
each pixel vector is compared against its neighbors and shifted. If this shift is
less than a predefined value (denoted convergence threshold) then we ignore
that pixel in subsequent iterations of the optimization procedure. Intuitively the
convergence threshold denotes how close to the “true” solution the optimization
should reach before termination. Note that in CMMS the shift of each pixel is a
monotonically decreasing function of the iteration number, while for CMS it is
not. Fig. 5c displays the filtering speed with respect to the convergence threshold.
The higher the threshold the faster the filtering. Especially for thresholds less
than 0.1 the filtering time decreases almost exponentially.

Overall, from Fig. 5, CMS is � 10% slower than CMMS. A number of tech-
niques can be used to perform the filtering faster. In the core of all filtering
algorithms the pairwise distance between feature points needs to be computed.
As suggested in [3] employing data structures and algorithms for multidimen-
sional range searching can significantly improve the running time of all methods.
In CMMS the trajectory of most feature points lay along the path of other feature
points. Christoudias et al. [13] report a speed up of about five times when they
“merge” the feature points together. This trick can directly be used in CMMS.
A variation of the same concept could also be used to speed up CMS. The in-
troduction of multicore CPUs and, especially, GPUs has provided a new way to
improve the execution speed of algorithms through a parallel implementation.
Both filtering algorithms are parallel in nature, so a careful implementation on
a modern GPU is expected to run in real time for VGA or even larger sized
images.
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4 Segmentation Comparison

In a number of applications, like image denoising or deblurring, filtering is the
final step. In most other applications filtering is an intermediate step followed
by image segmentation. We are interested in the latter case. Thus, following the
example of [3], we use the connected component grouping algorithm described
in Fig. 2 to perform color-based segmentation. The simplicity of the grouping
step allows for an objective evaluation of the filtering methods for the task of
image segmentation. This algorithm has a single parameter, namely the grouping
threshold t. In all our experiments t = 0.5 ∗ hr

5.
We use the Berkeley database of human segmentations [10] to evaluate the

performance of the two methods. This is the biggest, publicly available database
containing 200 color, training images and 1087 human created segmentations.
We also present the results from the Weizmann Institute segmentation database
[11], that consists of 100 grayscale images and 300 segmentations into foreground
and background. Before presenting the results we need to describe the different
measures that are used in the evaluation.

We use all the standard measures for the evaluation of the two algorithms,
namely the Global Consistency Error (GCE) [10], the Variation of Informa-
tion (VI) [14], the Probabilistic Rand index (PR) [15] and the average Bound-
ary Displacement Error (BDE) [16]6. From the previous measures for GCE, VI
and BDE the lower the value the better the quality of the segmentation, while
PR is a measure of similarity and as such a value of 0 indicates no similar-
ity with the human created database, while a value of 1 indicates the highest
similarity.

We create the following graphs by varying the color resolution hr of the fil-
tering methods. More specifically, we let hr obtain values from 0.6 to 20 in
increments of 0.3. We keep the remaining filtering parameters constant i.e., the
maximum number of iterations for convergence is set to 20 and the convergence
threshold to 0.1. For comparison we use the algorithm by Felzenswalb and Hut-
tenlocher [18], denoted as GAT (Grouping with an Adaptive Threshold) on the
figures. Again we vary the grouping threshold k (k = [10 . . . 1500] in increments
of 20).

We compute the comparison measures for each image of the database and
further aggregate the results for the whole database using the median value7.
These values are plotted on the Y-axis of each figure. On the X-axis we plot the
average segment size, instead of the color resolution hr. Thus all the plots below
show the implicit curve of one comparison measure with respect to the average
segment size.
5 This is the same value for t that the EDISON system [13] uses. In practice, the

threshold does not affect the resulting segmentation much, as long as it is larger
than the convergence threshold of the optimization problem. In our experiments
t = 0.5 � 0.1 = convergence threshold.

6 We use the code provided by J. Wright and A. Yang [17] to compute them.
7 Since the comparison measures vary significantly for different images we choose the

median value as opposed to the mean value because it is more robust to outliers.
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4.1 Segmentation Results

First we present the collective segmentation results from the Berkeley database.
We compare the two mean shift versions (CMMS and CMS) in two different color
spaces (RGB and Luv) and using two different kernel functions (Epanechnikov
and Normal kernel) for a total of 2 × 2 × 2 = 8 combinations. That is why we
display 8 curves on each graph of Fig. 6 plus a red curve for GAT.

Before analyzing the results any further we want to emphasize two facts. The
results of the Global Consistency Error measure are misleading. As Martin et al.
[10] mention, this measure only produces meaningful results when the number
of segments in the computer segmentation is similar to the one in the human
segmentation. In all other cases, i.e., when the number of computer generated
segments is too high or too low GCE goes to zero. Indeed, as we observe in
Fig. 6, all the curves for the GCE measure start from close to 0 (for very small
average segment size) and asymptotically go to 0 (for very large average segment
sizes). In between the two extremes, GCE values are larger, but since we display

Fig. 6. Segmentation results for the Berkeley database. The solid and dash-dot lines
represent the use of the Epanechnikov (Ep.) and Normal (N.) kernel, and the black
and orange circle the use of the RGB and Luv color space, respectively. Note that the
new method (CMS) is in green, while the existing method (CMMS) is in blue. From
the top graphs it is clear that the green plots are better than the corresponding blue
ones.
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the average value for all the images it is impossible to determine the range of
average segment sizes where GCE values are meaningful. The second fact is that
the values of the Variation of Information measure for all the curves are really
close together, making VI the least discriminative measure. On the other hand,
both the Probabilistic Rand index and the average Boundary Displacement Error
are discriminative enough to compare the different segmentation algorithms in
this setting.

The segmentation results verify our earlier observations about the effect of
the different kernels (Sec. 3.1) and color spaces (Sec. 3.2) on the amount of
smoothing performed (for a given color resolution hr). Filtering on the RGB
color space results in less smoothing of the images and as a consequence in
more image segments (and smaller average segment sizes). This is denoted by
the close placement of the circles on the RGB plots compared to their Luv
counterparts. The same observation, i.e., smaller average segment sizes, is valid
for the Epanechnikov kernel function compared to the Normal kernel.

In the mean shift literature there are references that the Normal function
produces better results than the Epanechnikov kernel [3], but so far a thorough
analysis was not performed. According to the plots of Fig. 6 this prediction
is absolutely right. The use of a Normal kernel produced better results in both
measures (PR and BDE) and for both filtering methods (CMMS and CMS). Fur-
thermore, the coupling of the Normal kernel with the Luv color space produced
far superior results than all the other combinations.

Finally, the newly introduced variant of mean shift, i.e., Color Mean Shift,
outperformed CMMS in all combinations of kernel functions and color spaces.
Overall, CMS filtering on Luv color space with a Normal kernel produced the
best results compared to all other methods. Compared to CMMS filtering on
Luv color space with a Normal kernel (i.e., the next best algorithm) the new
method produced on average � 17% better on the PR index and � 22% better
on the BDE measure. Furthermore, this algorithm in most cases outperformed
the current state of the art segmentation algorithm [18].

On Fig. 7 we present the segmentation results for the Weizmann dataset con-
sisting of 100 images and 300 manual segmentations into foreground and back-
ground. Before analysing them we want to mention that this dataset is different
from the previous one in the following aspects. All the images are grayscale and
not color. Furthermore, the texture variation is significantly less than the one
in the Berkeley database. The purpose of the dataset is to provide a testbed for
segmentation into objects and as such only the single dominant object per image
is marked as forground and the rest is background8. As a result many boundary
edges are not reported in the manual segmentation. Both algorithms performed
very well, with CMS performing better than CMMS on the BDE measure. In
this database CMS performed slightly worse than GAT.

8 The PR measure is misguiding in this dataset because of the existance of only two
segments. Thus, a uniform segmentation of the whole image produces a result of
∼ 0.97, i.e., very close to the maximum 1.
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Fig. 7. Segmentation results for the Weizmann Institute database. The solid and dash-
dot lines represent the use of the Epanechnikov (Epan.) and Normal kernel, respectively.

5 Conclusions

This paper presents the current variations of the mean shift algorithm from an
optimization viewpoint and emphasizes the difference between Fukunaga’s and
Comaniciu’s versions of the method, namely whether the pairwise comparison
for moving each point is performed with the original image or with the filtered
image of the previous iteration. A new variation of the mean shift algorithm,
denoted Color Mean Shift, that lies between the existing two is also proposed.
Extended experiments are presented both for the edge-preserving filtering and
the segmentation tasks. In filtering, we mostly focus on the effect of different
parameters on the speed of the filtering process. For segmentation, we use the
Berkeley and the Weizmann Institute datasets to evaluate the performance of
the algorithms using different kernel functions and color spaces. We conclude
that Color Mean Shift performed on Luv color space using a Normal kernel
function outperforms all other mean shift based algorithms for color images and
is marginally better than current of the art segmentation algorithms. In the
future we want to investigate how the methods perform when they are coupled
with more sophisticated grouping techniques, such as [18].
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Abstract. This paper proposes a framework that provides significant

speed-ups and also improves the effectiveness of general message passing

algorithms based on dual LP relaxations. It is applicable to both pair-

wise and higher order MRFs, as well as to any type of dual relaxation.

It relies on combining two ideas. The first one is inspired by algebraic

multigrid approaches for linear systems, while the second one employs

a novel decimation strategy that carefully fixes the labels for a growing

subset of nodes during the course of a dual LP-based algorithm. Ex-

perimental results on a wide variety of vision problems demonstrate the

great effectiveness of this framework.

1 Introduction

Message passing methods are extremely popular MRF optimization techniques
in computer vision, with BP being the earliest method of this kind. Recently,
many state of the art message-passing techniques have been proposed that rely
on solving dual LP relaxations [1,2,3,4]. Compared to BP, they offer signifi-
cant advantages such as better convergence properties, as well as the ability to
provide suboptimality guarantees based on dual lower bounds. Moreover, they
have been shown to significantly outperform BP and all other MAP estimation
techniques [5]. On the other hand, one main drawback is that they often have
a higher computational cost. As a result, given the large scale nature of the
majority of vision problems, one of the key challenges in energy minimization is
currently the acceleration of these methods. This is even more so considering the
fact that computer vision researchers start gradually to resort to higher order
MRF models, where such dual-based methods are expected to have much wider
applicability due to their generality.

Motivated by the above observations, the goal of this work is to increase
the overall efficiency of dual LP-based algorithms both for pairwise and higher
order MRFs, while at the same time improving their effectiveness (i.e., their
accuracy). To this end, it proposes a framework that combines together two very
general techniques in order to significantly speed up such algorithms. The first
one is inspired by algebraic multigrid techniques for linear systems of equations,
and uses a multiresolution hierarchy of dual relaxations for accelerating the
convergence of dual-LP based methods. It relies on the premise that information
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is expected to propagate faster at lower resolutions. In the past, a geometric
multigrid approach has been used for accelerating the BP algorithm for grid-
structured graphs [6]. Here we extend and generalize such an approach to LP-
based algorithms. Our algebraic multigrid framework can handle MRFs defined
on any kind of graph, or having any kind of potentials. Moreover, it can be
applied to higher order MRFs, as well as to LP relaxations that are tighter than
the standard marginal polytope relaxation.

But to be able to achieve a significant speed up, besides accelerating the
convergence, we also need to significantly reduce the time per iteration of a dual
LP-based algorithm. To this end, we introduce a second technique, which consists
of a decimation strategy that carefully fixes the labels for a growing subset of
nodes during the course of the algorithm and thus one does not need to update
their dual variables thereafter. It is based on the observation that, when using
an algrebraic multigrid approach, a set of nodes typically exists that contribute
a very small increase to the objective of the dual relaxation when their dual
variables are updated. Similarly to the first technique, it is very general, and
is applicable to both pairwise and higher order MRFs. Furthermore, it allows
better primal solutions to be computed. Note that MRF decimation techniques
have also been used in the past, and have been applied either to variants of BP
[7,8] or to dual LP-based algorithms [9,10,11]. However, the latter techniques are
not as widely applicable as our method.

After introducing in the next section the general setting used in the paper,
we describe our framework in §3 - §7, while we discuss some extensions in §8.
We present experimental results in §9 and finally conclude in §10.

2 Dual LP Relaxations for MRF Optimization

The problem of MAP estimation for discrete MRFs is typically formulated as
follows. Given a graph G = (V , E) (where V , E represent the nodes and edges of
the graph) and a discrete set of labels L, we want to assign a label xp to each
node p so that the total MRF energy (i.e., the sum of all MRF potentials) is
minimized, or

MRFG(U,P) := min
x

∑
p∈V

Up(xp) +
∑
pq∈E

Ppq(xp, xq) . (1)

In the above, U = {Up}p∈V and P = {Ppq}pq∈E denote respectively the set of
all unary and pairwise potential functions.

As mentioned in the introduction, here we will concentrate on optimization
methods that rely on dual LP relaxations. The most general setting for describing
all these methods is based on the dual decomposition framework [3]. According
to this framework, the original problem MRFG(U,P) (also called the master
MRF) is decomposed into a set of simpler MRFs that are called the slaves and
are denoted by MRFGi(θGi ,P). Here we assume that each slave MRF is defined
on a subgraph Gi = (Vi, Ei), has its own unary potentials (denoted by θGi),
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while it inherits1 the pairwise potentials P of the master MRF. In this case,
the dual variables are the unary potentials {θGi} of the slave MRFs, and the
key property that these variables have to satisfy is

∑
i θGi = U, i.e., the sum of

the unary potentials of the slaves should give back the unary potentials of the
master MRF.

Based on this property, it is easy to prove that the sum of the optimal energies
of the slaves always provides a lower bound to the optimal energy of the master,
and so the goal of the dual LP relaxation is exactly to adjust the dual variables
so as to maximize this lower bound, or

max{θGi}
∑

i
MRFGi(θ

Gi ,P) (2)

s.t.
∑

i
θGi = U . (3)

Different dual-based optimization algorithms have been proposed in the litera-
ture, all of which try to solve the above dual relaxation, and the key property
that has to be maintained (either implicitly or explicitly) is condition (3).

3 Accelerating Dual LP-Based Optimization Algorithms
via an Algrebraic Multigrid Approach

Due to the decomposition of the master MRF into a set of smaller slave MRFs,
the update of the dual variables is essentially done based only on local informa-
tion. As a result, information travels slowly across the graph, and this has the
undesirable effect of slowing down the convergence of dual LP-based algorithms,
which thus require many iterations to converge to the correct solution. This is-
sue is essentially very similar to the slow convergence problem faced by iterative
algorithms for linear systems. Again, due to the local nature of the updates,
such algorithms can recover very fast (i.e., in few iterations) the high-frequency
part of the solution, but they are very slow at recovering the lower frequencies.
Multigrid is introduced to overcome this problem, where the basic idea is based
on the trivial observation that low frequencies in the original grid reappear as
high frequencies in a grid of lower resolution. A multigrid approach thus replaces
the original linear system with a hierarchical multiresolution set of linear sys-
tems. The two key elements in a multigrid algorithm are the so called restriction
and prolongation operators, that specify the transition between linear systems
at adjacent levels in the hierarchy. These operators are combined to generate a
so called V-cycle, which consists of a fine-to-coarse restriction phase followed by
a coarse-to-fine prolongation phase.

Our aim here will be to apply a similar strategy to dual based MRF algorithms
for quickly solving (2). This will be done by using a hierarchy of dual decom-
positions, defined on a sequence of graphs G = G(0), G(1), . . . , G(T ), where each
1 In general, each slave can have its own pairwise potentials (just like the unary po-

tentials) and does not need to inherit them from the master MRF. Here we assume

they are inherited only to simplify the presentation and to reduce notational clutter,

but everything described can be very easily extended to the more general case.
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graph G(t+1) is assumed to be a “coarser” version of graph G(t) (we will explain
what precisely we mean by “coarser” later). We will also define a restriction and
prolongation operator, denoted hereafter by Proj and Lift respectively. The
role of the restriction operator will be to take as input a master MRF and its
dual decomposition at level t, and to project them onto level t + 1, i.e., create a
corresponding master problem and a corresponding dual decomposition at level
t + 1

MRFG(t)(U(t),P(t)){
MRF

G
(t)
i

(θG
(t)
i ,P(t))

} Proj−→
MRFG(t+1)(U(t+1),P(t+1)){
MRF

G
(t+1)
i

(θG
(t+1)
i ,P(t+1))

} (4)

On the contrary, the role of the prolongation operator Lift will be to take as
input a feasible set of dual variables

{
θG

(t+1)
i

}
for the decomposition defined

at the “coarser” level t + 1, and to lift them to a feasible set of dual variables{
θG

(t)
i

}
for the decomposition that has been previously defined at level t, i.e.,{

θG
(t+1)
i

} Lift−→
{
θG

(t)
i

}
. (5)

Just like in multigrid, a V-cycle in our case will consist of a restriction phase
followed by a prolongation phase (see Fig. 1(a)). In the restriction phase we
sequentially apply operator Proj to all but the last level in the hierarchy, i.e.,
we start from level t = 0 and go up to level t = T − 1. In this manner, a
master MRF along with a dual decomposition is generated for each level. All of
these decompositions are essentially projections of the original master problem
and its dual decomposition. In the prolongation phase, we move in the opposite
direction. This means that for each level t (where t now starts from t = T
and terminates at t = 0) we solve the dual relaxation corresponding to the
decomposition at that level, and then we lift the resulting solution onto the
next finer level (if one exists) via using the operator Lift, thus initializing the
dual variables for the decomposition at level t − 1. Due to the the information
traveling much faster at the “coarser” levels of the hierarchy, the dual relaxations
for these levels can be solved very fast, i.e., in very few iterations. Furthermore,
this quick spreading of the information that took place in the coarser levels is
carried over to the finer levels, thanks to the initialization of the dual variables
via the Lift operator (assuming, of course, that this operator has been properly
defined, which is crucial for the success of this scheme). This, in turn, results
into accelerating the convergence of the dual relaxations at the finer levels as
well.

Having explained the overall structure of our method, it still remains to de-
scribe how to generate the hierarchy of graphs, how the master problems and
their dual decompositions are defined at each level, and, most importantly, how
to efficiently compute the operators Lift and Proj, which is, of course, one of
the key technical issues. Before doing so, we must note that we want our scheme
to be applicable to any kind of graph G, and not only to grids, as well as to
MRFs with any kind of potential functions. Drawing an analogy with multigrid
methods, we want to derive an algebraic (and not a geometric) multigrid solver,
as the former is much more widely applicable.
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4 Defining the Hierarchy of Graphs

Given a graph G = (V , E), where V = {p1, p2, . . . , pn}, we want to define a
“coarser” graph Ḡ = (V̄ , Ē). All that is needed as input for this purpose, is
a partition {p̄1, p̄2, . . . , p̄n̄} of V , i.e., ∪p̄i = V and p̄i ∩ p̄j = ∅. Each node of
the “coarser” graph Ḡ will then correspond to a subset of this partition, i.e., it
will hold V̄ = {p̄1, p̄2, . . . , p̄n̄}, where we hereafter use p̄i to denote both a node
of V̄ as well as a subset of nodes of V . Under this convention, the projection
(denoted by proj(p)) of a node p ∈ V is defined as the unique node p̄ ∈ V̄
that satisfies the condition p ∈ p̄, while the projection of a subset of nodes
{pk} ⊆ V is naturally equal to the union of the individual projections, i.e.,
proj({pk}) = ∪proj(pk). Based on this notation, the set of edges Ē of Ḡ is
then defined as Ē = {proj(pipj)|pipj ∈ E , proj(pi) = proj(pj)}. The resulting
“coarser” graph Ḡ = (V̄ , Ē) is called the projection of graph G, and is denoted
by proj(G) (e.g., see Fig. 1(b)). Therefore, to define a hierarchy of graphs, it
suffices to set G(t+1) = proj(G(t)), where we assume that a partition has been
specified by the user for each of the projections and G(0) = G.

Assigning a label to a node p̄ ∈ V̄ of the “coarser” graph Ḡ = proj(G) will
mean that this label is assigned to all nodes of G in the set {p ∈ V | proj(p) = p̄}.
Based on this convention, if MRFG(U,P) is an MRF2 on the graph G, its pro-
jection on Ḡ will be an MRF, denoted by proj(MRFG(U,P)) := MRFḠ(Ū, P̄),
whose potentials Ū, P̄ are defined as follows3:

Ūp̄(l) =
∑

p:proj(p)=p̄
Up(l), P̄p̄q̄(l, l′) =

∑
pq:proj(pq)=p̄q̄

Ppq(l, l′) . (6)

Naturally, we want the master MRF at each level of our hierarchy to be a
projection of the original MRF.

5 Defining the Restriction Operator Proj

It suffices to show how to define this operator for one level of the hierarchy,
i.e., during a transition from a graph G to a coarser graph Ḡ = proj(G). Let
MRFG(U,P) be the master MRF on G, and let

{
MRFGi(θGi ,P)

}
be its dual

decomposition (i.e., the set of slaves defined on subgraphs {Gi}). The main role
of operator Proj will be to define the corresponding dual decomposition for the
graph Ḡ, denoted by

{
MRFḠj

(θ̄Ḡj , P̄)
}
. To this end, it first needs to determine

the set of subgraphs {Ḡj} on which the new slaves will be defined. This set will
consist of all subgraphs of the form proj(Gi), i.e.,

{Ḡ1, Ḡ2, . . . , ḠJ } = {proj(G1), proj(G2), . . . , proj(GI)} . (7)

2 Depending on the context, MRFG(U,P) denotes either a MRF (on a graph G) with

unary and pairwise potentials U, P or a minimum MRF energy (as in (1)).
3 To reduce notational clutter, we assume it holds P (l, l) = 0 when defining the poten-

tials Ū, otherwise we must set Ūp̄(l) =
∑

p:proj(p)=p̄ Up(l) +
∑

pq:proj(pq)=p̄ Ppq(l, l).
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Fig. 1. (a) V-cycle of the ‘algrebraic multigrid’ approach for dual LP-based algorithms

(b) Ḡ is the projection of graph G based on the partition {a, c}, {b, d}. (c) If G1, G2,

G3, G4 are the subgraphs of the slaves in G, then Ḡ1, Ḡ2, Ḡ3 will be the subgraphs

of the 3 slaves in Ḡ. Note that Ḡ has fewer slaves since both G3, G4 project onto Ḡ3.

Also note that the slaves for Ḡ1, Ḡ2 have no pairwise potentials. (d) The projection of

0 onto C ∩D is computed via alternating projections on C and D (note that although

C and D are drawn here as polytopes, they are actually affine subspaces in our case).

Since it can hold proj(Gi) = proj(Gi′ ) for i = i′, it is important to emphasize that
the number of subgraphs Ḡj may be strictly less than the number of subgraphs
Gi (see Fig. 1(c)). The operator Proj then associates to each different subgraph
Ḡj a slave MRFḠj

(θ̄Ḡj , P̄) whose potential functions are defined as follows:

θ̄
Ḡj

p̄ (l) =
∑

i:proj(Gi)=Ḡj

∑
p:proj(p)=p̄

θGi
p (l) , (8)

P̄p̄q̄(l, l′) =
∑

pq:proj(pq)=p̄q̄
Ppq(l, l′) , (9)

i.e., essentially it holds MRFḠj
(·, ·) =

∑
i:proj(Gi)=Ḡj

MRFGi(·, ·). Eqs. (7)-(9)
completely specify the dual decomposition for graph Ḡ. Furthermore, this de-
composition, in turn, completely specifies the potentials of the master MRF
for Ḡ, denoted by MRFḠ(Ū, P̄), since it must hold Ū =

∑
j θ̄Ḡj due to (3).

However, there still remains one critical question that must be answered: is the
resulting master MRF a projection onto Ḡ of the master MRF for G, as we
want? It turns out that this is indeed the case, as the following theorem certifies:

Theorem 1 ([12]). If MRFḠ(Ū, P̄) is the master MRF resulting from the
dual decomposition defined by eqs. (7)-(9), it then holds MRFḠ(Ū, P̄) =
proj(MRFG(U,P)).
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6 Defining the Prolongation Operator Lift

Let MRFG(U,P),
{
MRFGi(θGi ,P)

}
and MRFḠ(Ū, P̄),

{
MRFḠj

(θ̄Ḡj , P̄)
}

be
the master MRFs along with their set of slaves for two graphs G, Ḡ = proj(G)
that are adjacent in the hierarchy. We assume that all these MRFs have been
constructed during the restriction phase. We are now at the prolongation phase,
where we assume that the dual relaxation for Ḡ has already been solved (i.e.,
the dual variables {θ̄Ḡj} are set to their optimal values), and we now want to
compute the Lift operator whose role is to initialize the dual variables {θGi}
for graph G. Note that, since {θ̄Ḡj} are already set to their optimal values, this
implies that an important amount of information has already been spread across
the whole graph Ḡ (and hence across G as well, since Ḡ = proj(G)). Therefore,
if we manage to properly take into account this information when initializing
{θGi}, we will succeed in accelerating the convergence of the dual relaxation for
graph G as well.

But how can we go about doing that? A first idea that comes in mind is
the following one: Let OptḠ be the already computed optimal value of the dual
relaxation for Ḡ. Recall that our goal is to maximize the dual objective function
for graph G as well. Therefore, perhaps we should aim at initializing the dual
variables {θGi} such that the resulting dual objective is at least as large as OptḠ.
Unfortunately, this is not, in general, possible, as the following theorem shows:

Theorem 2 ([12]). Let OptḠ, OptG denote the optimal values of the dual relax-
ations for graphs Ḡ and G respectively. Then, in general, it holds OptḠ > OptG.

However, dual variables {θ̄Ḡj} still provide very important information about
dual variables {θGi} that we can take advantage of. In particular, they provide
the linear constraints (8), where values θ̄

Ḡj

p̄ (·) are now assumed to be known. By
imposing these constraints when initializing variables {θGi}, we implicitly take
into account all information that is encoded in {θ̄Ḡj} and has propagated across
graph Ḡ. Of course, besides eqs. (8), {θGi} must also satisfy the dual feasibility
constraints (3). Therefore, in total, variables {θGi} should be initialized so as
to satisfy the linear system composed of Eqs. (3) and (8). Among the many
solutions of this underdetermined linear system, we must compute the one that
has minimum Euclidean norm. Intuitively, this regularization of the solution is
important because otherwise the resulting initial dual variables {θGi} for the
finer graph may exhibit large variations in magnitude, which can have as a
result that too much energy/information is concentrated on local parts of the
fine graph. This can destroy the propagation of “information” that took place
at the coarser level and can thus hinder convergence. We next show how to
efficiently perform this minimum norm computation.

6.1 Solving for {θGi}
During this section, in order to make the exposition more clear, we will use
z = {zk}K

k=1 to denote the vector from concatenating all {θGi}. Our goal is to
find the least norm solution of an underdetermined linear system, i.e.,
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min
z

‖z‖2 (10)

s.t. Az = b , (11)

where Az = b encodes the linear constraints (3) and (8). Theoretically, such
a z can be computed as z = AT (AAT )−1b, but this may be too slow for our
purposes. Fortunately, a solution to (10) can be computed extremely fast by
exploiting the special structure existing in the constraints (3), (8). To this end,
we first rewrite the above optimization problem as follows:

min
z

‖z − 0‖2 (12)

s.t. z ∈ C ∩ D , (13)

where C, D denote the linear subspaces of RK corresponding to the linear equa-
tions (3) and (8) respectively. Therefore, the optimal z coincides with the or-
thogonal projection of the zero vector onto the intersection of the two linear
subspaces C and D. To compute this projection, we apply the well known Dyk-
stra algorithm [13], which is an alternating projection method, i.e., it starts from
the zero vector z̄(0) = 0, and then alternately projects onto C and D:

z(n) = PC(z̄(n)), z̄(n+1) = PD(z(n)), n = 0, 1, 2, . . . (14)

wherePC(·) andPD(·) denote projection onto C and D, respectively (see Fig 1(d)).
This generates a sequence z(n) ∈ C which provably converges to the optimal solu-
tion.Theadvantage indoing so is that theprojectionsPC(·),PD(·) canbecomputed
extremely fast in our case due to the special structure of the linear subspaces C and
D. Namely, it is easy to verify that both subspaces are specified by a set of equations
of the following form: ∑

k∈Ij

zk = bj , j = 1, 2, . . . , J , (15)

where the sets {Ij}J
j=1 form a partition of the set of indices I = {1, 2, . . . , K},

i.e., ∪jIj = I and Ij ∩ Ij′ = ∅ for j = j′. The projection of a point z′ onto such
a linear subspace is easily seen to be given by the following vector z:

∀k ∈ Ij , zk = z′k + (bj −
∑
i∈Ij

z′i)/|Ij |, j = 1, 2, . . . , J . (16)

Furthermore, the Dykstra algorithm converges very fast in our case (i.e., ex-
tremely few alternating projections are required). Theoretically this can be at-
tributed to the fact that the rate of convergence of this algorithm increases with
the angle θ ∈ [0, π

2 ] between the two subspaces, i.e., the more orthogonal the
subspaces are, the faster the convergence. Hence, overall, this algorithm leads to
a very fast method for minimizing (10), i.e., for initializing {θGi}.
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7 Accelerating Dual LP-Based Methods via Fixing
Variables

The multigrid approach described above allows information to propagate faster
across the MRF graph, and this helps us to reduce the number of iterations
to convergence at the finest level. But to be able to take full advantage of this
fact and achieve a significant speed up, we also need to reduce the time spent
per iteration at that level. To this end, we now describe a technique that is
applied only at the finest level of the hierarchy during the multigrid approach.
As mentioned above, its main role is to bring a significant reduction in the
time per iteration at that level (but, in addition to that, it also helps us to
speed up the convergence of the algorithm). This reduction is achieved via a
decimation strategy, where we carefully fix the labels for a dynamically growing
subset of nodes during the algorithm, and do not update their dual variables
thereafter. Recall that the cost of an iteration essentially comes from locally
updating the dual variables {θGi

p (·)} for each node p in the graph. These updates
aim to improve the dual objective. However, it is often the case that the rate of
improvement per iteration is very small despite the great computational effort,
i.e., the dual function increases only slightly per iteration, and this in turn
leads to a slow progress towards a good primal solution. The reason for this
behaviour comes from the fact that many nodes cannot contribute a positive
increase when their local dual variables are updated during an iteration. The
following definition is important in this regard: we say that a node p is stabilized
at the t-th iteration if, exactly before the update of the local variables {θGi

p (·)}
at that iteration, there exists a label that optimizes all the current instances of
slaves containing p (any such label will be called stable w.r.t. p). It is easy to
verify the following proposition:

Proposition 1 ([12]). If a node p is stabilized then no update of its local
dual variables {θGi

p (·)} can increase the dual objective. Conversely, if p is non-
stabilized, then there always exists an update of variables {θGi

p (·)} that improves
the dual.

According to this proposition, for example, stabilized nodes leave the dual func-
tion unmodified in sequential algorithms such as TRW-S or max-diffusion. But
stabilized nodes also lead us to the central concept in our decimation method,
that of an R-nested node: we say that node p is R-nested for the t-th iteration
if both p and all other nodes of graph G within distance4 R from p were found
to be stabilized at that iteration (see Fig. 2(a)). Motivated by proposition 1, we
have empirically verified the following two important observations: in practice,
many nodes quickly become stabilized during a dual-based algorithm when a
multigrid scheme is used, and, furthermore, stabilized nodes that consistently
remain R-nested for a number of iterations (with R large enough) turn out to
contribute a very small (even zero) total change to the dual objective thereafter.
This leads to the following decimation strategy (that depends on two positive
4 The distance of two nodes is the number of edges of their minimum connecting path.
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integer parameters R, D): at each iteration, we fix all nodes that are stabilized
at the current iteration and that were R-nested for the past D iterations (each
such node is simply assigned one of its current stable labels). This strategy is
applied after a few initial iterations have passed, while parameters R and D
determine how fast nodes can become fixed, and must be set to some reasonably
large values.

To intuitively understand the necessity for the conditions of the above dec-
imation strategy notice that an R-nested node is essentially surrounded by a
‘layer’ (of width R) of stabilized nodes. Note also that if a node, say q, becomes
non-stabilized at the current iteration, this means that q is able to contribute to
the dual objective. This in turn implies that extra dual information (in the form
of messages) can originate from q and propagate to nearby nodes, thus possibly
affecting the labels of any node p within a certain distance, say R, from q. This
explains why p must be R-nested. On the other hand, if a certain number of
iterations, say D, have passed since the start of this propagation and p has still
remained stabilized during all that time, it is highly likely that the new messages
did not actually affect that node.

(a) (b) (c)

Fig. 2. (a) The red node is 2-nested, if itself and all blue nodes are stabilized. (b)
Distribution of fixed nodes (red pixels) at 3 different iterations. (c) The same part of

the ‘confidence’ map at 2 iterations of Tsukuba. More fixed nodes exist in the right

map, which results into some non-fixed nodes becoming more ‘confident’ (i.e., brighter).

As the dual-based algorithm progresses towards convergence, more and more
nodes become fixed. This results into significant computational savings per iter-
ation as only a very small number of dual variables have to be updated, which in
turn results into a larger rate of improvement of the dual objective per iteration
and thus in faster convergence. Fig. 2(b) shows examples from the distribution
of the fixed nodes at different iterations of the multigrid algorithm for Tsukuba.
Notice the order by which nodes become fixed: ‘easier’ nodes fix their labels
earlier, while ‘uncertain’ nodes are fixed towards the end.

Another very important advantage of the decimation strategy is that, by fix-
ing some of the labels, it manages to propagate additional information into the
graph, which further increases the rate of improvement of the dual. This was
found to considerably speed up convergence in our experiments. This propaga-
tion is illustrated by the ‘confidence’ maps for the ‘tsukuba’ example in Fig. 2(c),
which show that, as a result of the decimation process, the ‘confidence’ of non-
fixed nodes increases as well. Note that the confidence of a node p is calculated
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by computing for each label the sum of its min-marginals for all the slave MRFs
containing p and taking the difference between the two lowest sums.

But how can we empirically test the soundness of the above decimation pro-
cess? A very strong empirical indication comes from the following fact: let us
assume that the original dual LP relaxation is tight (or almost tight), i.e., the re-
sulting labels are (almost) optimal, which is the main case of interest. Note that
each time we fix the label of a node, we are essentially modifying that relaxation.
Moreover, the optimum of the modified dual relaxation increases only whenever
a newly fixed node is assigned a suboptimal label. Therefore, in this case we
can check how well the decimation process performed by simply comparing the
original dual optimum with the dual optimum of the modified relaxation that
results from fixing all the nodes. In all the real examples that we have tried,
the two dual optima were either exactly the same (when the original relaxation
was exact) or differed by a very small amount (when the original relaxation was
almost tight). We have also verified this property with experiments on synthetic
problems. Moreover, the obtained MRF energies were always better than the
ones of the full algorithm (we found no case where this was not true).

Intuitively, the reason that we are able to obtain better primal solutions is be-
cause, by fixing some of the labels, we implicitly manage to gradually tighten the
relaxation. Typically, LP-based solvers for MAP estimation function by solving
the LP and then rounding each node to generate an integer solution. Instead,
a better approach would be that, after rounding each node, we add its fixed
state as an additional constraint to the LP and then solve this new LP before
rounding the next node. This second approach, however, is very expensive but
gives better solutions as the LP guiding the rounding scheme gets progressively
tighter. The proposed decimation strategy can be thought of as an efficient way
to approximately perform such an expensive series of computations. Stable nodes
will have the same reparameterization in the final stage of the LP as they do
now. Therefore, they can be immediately rounded, and their new solution prop-
agated as a constraint. Note that the benefit of a decimation process to solving
difficult problems has also been observed in other cases as well, e.g., for solving
SAT instances using survey propagation [8].

8 Extensions

Higher order MRFs: Due to the generality of the proposed formulation, the
“algebraic multigrid” approach can also be extended to higher-order MRF opti-
mization problems. These problems have the following form:

MRFG(U,H) := min
x

∑
p∈V

Up(xp) +
∑
c∈C

Hc(xc) , (17)

where H = {Hc} are the higher order potential functions, which are now defined
on cliques c ∈ C and replace the pairwise potentials P.

Therefore, the dual objective function (2) now involves higher order potentials
H (instead of P), while the slave MRFs are defined on sub-hypergraphs Gi of
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a hypergraph G [14]. The projection proj(G) of any hypergraph G is defined
analogously to the projection of a graph, i.e., as the projection of its cliques.
Similarly, the projection of an MRF with higher potentials H gives rise to an
MRF with higher potentials H̄, which are again defined analogously to (6), i.e.,

H̄c̄(·) =
∑

c:proj(c)=c̄
Hc(·) . (18)

Hence, by replacing P and P̄ with H and H̄ respectively, the restriction and
prolongation operators Proj and Lift can then be computed using exactly the
same algorithms as described in sections 5 and 6.

Tighter LP relaxations: In the dual decomposition framework, a tighter dual
relaxation can result simply by choosing a set of non tree-structured slave MRFs.
For instance, one can use loopy subgraphs of small tree-width for this purpose
(intuitively, such a relaxation is tighter because the slaves now have higher opti-
mal energies, and thus lead to better lower bounds). As a result, exactly the same
algrebraic multigrid framework can be applied, thus leading to a multiresolution
set of tighter relaxations in this case.

Data-driven projections: Typically the partitions that determine each pro-
jection in the hierarchy are chosen a priori (e.g., for grids, a node at one level can
project to a block of nodes at a coarser level). However, due to the generality of
the proposed formulation, this could very well not be the case. Instead, one can
use data driven partitions for defining these projections. In vision problems, for
instance, it would be very useful to define these partitions so as to align with
some of the edges in the image. If chosen properly, such data driven projections
can lead to even greater computational savings.

9 Experimental Results

We have applied our method to a wide variety of vision problems. We first
report results on pairwise MRFs. To this end, we tested our algorithm on the
Middlebury dataset [5], which contains a variety of MRF problems on stereo
matching, image segmentation and image denoising (all MRF potentials were
set exactly the same as in that dataset). To demonstrate our framework for
pairwise MRFs, we have used it to improve the TRW-S algorithm [2], which is
a popular dual LP-based method for pairwise energies. We thus report results
when we apply that algorithm with and without our framework. In both cases
we use the same implementation of TRW-S as well as the same set of settings.5

Slaves were chosen to be trees, with one tree per horizontal and vertical line
of the input grid structured graph. We show typical plots of how the energy
varies in Figs. 3(a),3(b) and the corresponding solutions in Figs. 3(c),3(d). Notice
the much faster convergence when our framework is used. Further running times
and energies for problems from the middlebury dataset are reported in Fig. 4. As
5 For completeness we also compared our method with the original implementation of

TRW-S by V. Kolmogorov (see the supplemental material [12] for these results).
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Fig. 3. Convergence plots and results for Tsukuba and Venus

can be seen, our method provides a very significant speedup in all cases, while
at the same time it increases the effectiveness of the optimization. In fact, it
always computed solutions whose energy was lower than the best energy reported
in the Middlebury dataset. This behaviour was consistent throughout all our
experiments. For instance, for the ‘tsukuba’ example, our method computed the
global optimum in a time that was at least an order of magnitude faster than
the method in [15] (global optimality can be verified based on the dual lower
bounds). For obtaining these results, we used an MRF hierarchy consisting of
3-5 levels, where the partition at each level was consisting of sets of 2×2 pixels.
Also, parameters R and D (used in the decimation strategy) were set to some
reasonably large values (e.g., R ≥ 30 and D ≥ 10 on average).

We also tested our method on problems with higher order MRFs. To this end,
we applied it to image segmentation and stereo matching problems, where we
used a Pn Potts model [16] and a truncated second order derivative as higher
order potentials, respectively. Both of them were solved using the framework of
pattern-based potentials from [14]. We report indicative energies and running
times for two such cases in Fig. 5(a), while Fig. 5(b) shows the corresponding
result for stereo matching. As can be observed, even for high order MRF prob-
lems, our framework enables us to obtain high quality solutions much faster. It
also increases the effectiveness of the optimization, as it still consistently leads
to solutions of lower energy even in this case.

Finally, for completeness, we also compare our algorithm to the algorithm
from [6] that uses BP in conjunction with a geometric multigrid method. Fig. 5(c)
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Fig. 4. Energies and running times for MRFs from the Middlebury dataset with and

without our framework (energies have been normalized by subtracting a constant)
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Fig. 5. (a) Energies and running times for high order MRFs. (b) Disparity for ‘cones’.

(c) Comparison between our method and the method in [6].

shows the convergence of the energy when these two algorithms are run on the
stereo example from [6]. As can be seen, although the BP algorithm is very fast,
our method computes a solution of lower energy even faster.

10 Conclusions

A framework for significantly improving the overall efficiency and effectiveness
of dual-LP based methods was proposed in this paper, which is currently one of
the main challenges encountered in energy minimization problems for vision. It
relies on an algebraic multigrid approach and an efficient decimation strategy. It
is also extremely general, and can be applied to both pairwise and higher order
MRF problems. Due to this fact, and the very wide applicability of dual-LP
based methods, we hope that our framework will help in making such methods
much more practical for a wider class of vision problems in the future.
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Abstract. Many computer vision problems such as object segmentation or re-
construction can be formulated in terms of labeling a set of pixels or voxels. In
certain scenarios, we may know the number of pixels or voxels which can be as-
signed to a particular label. For instance, in the reconstruction problem, we may
know size of the object to be reconstructed. Such label count constraints are ex-
tremely powerful and have recently been shown to result in good solutions for
many vision problems.

Traditional energy minimization algorithms used in vision cannot handle
label count constraints. This paper proposes a novel algorithm for minimizing
energy functions under constraints on the number of variables which can be as-
signed to a particular label. Our algorithm is deterministic in nature and outputs
ε-approximate solutions for all possible counts of labels. We also develop a vari-
ant of the above algorithm which is much faster, produces solutions under almost
all label count constraints, and can be applied to all submodular quadratic pseudo-
boolean functions. We evaluate the algorithm on the two-label (foreground/back-
ground) image segmentation problem and compare its performance with the
state-of-the-art parametric maximum flow and max-sum diffusion based algo-
rithms. Experimental results show that our method is practical and is able to gen-
erate impressive segmentation results in reasonable time.

1 Introduction

Algorithms for energy minimization have become an indispensable tool in computer vi-
sion. These algorithms enable inference of the Maximum a Posteriori (MAP) solutions
of labelling problems such as image segmentation, optical flow, and stereo. Due to its
wide applicability, the energy minimization problem has received a lot of interest from
both the theoretical computer science [1] and machine learning communities [2,3,4,5].

Most energy minimization methods used in computer vision such as Max-product
Belief Propagation (BP) [6,7], Tree Reweighted message passing (TRW) [8], and
Graph Cuts [9] operate on energy functions defined over discrete variables. They con-
sider unconstrained minimization of the energy function over the discrete domain of
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random variables, and do not allow any direct way of enforcing constraints on the so-
lutions. In contrast, this paper studies the problem of constrained energy minimization.
Specifically, we address the problem of minimizing energy functions under the con-
straint that the number of variables assigned on any given label is equal to some known
constant. This constrained minimization problem is useful for many labelling problems
in computer vision. For instance, in the image segmentation problem, it enables us to
obtain a segmentation of any desired size.

Related Work. During the past few years, researchers have considered practical opti-
mization problems under relevant constraints. One of the most effective examples is the
case of 3D reconstruction, where the silhouette constraint was introduced [10,11]. This
constraint ensured that a ray emanating from any silhouette pixel must pass through one
voxel which belongs to the ‘object’. It was proven to be an effective replacement for the
ballooning term [12] and led to improved results.

Segment connectivity is another example of an equally powerful but much more
sophisticated constraint that was introduced for the two label (foreground/background)
segmentation problem. The energy function corresponding to the segmentation problem
is composed of unary and pairwise potential functions [13] and is well known to be sub-
modular. This property allows the energy function to be minimized in polynomial time
using efficient maximum flow based algorithms. The connectivity constraint enforces
that all variables that have been assigned in the foreground label form one connected
component. Vicente et al. [14] showed that enforcing connectivity while minimizing
the submodular segmentation energy makes the problem NP-hard.

Constraints on Label Counts. Minimization under the so-called label counting con-
straints is not new to the computer science community. Unconstrained energy mini-
mization was studied in theoretical computer science in the context of Metric labelling.
This is the problem of minimizing an energy function where the pairwise potential func-
tions are defined in terms of the weighted uniform distance function that is defined on
the label set [k]. Recently, Naor and Schwartz [15] obtained an approximation algo-
rithm for a constrained version of this problem, which they called the balanced metric
labeling problem.

Balanced labeling means that the number of variables assigned to any particular label

is at most �. They obtain an O
(

log n
ε

)
-approximation randomized algorithm that runs in

polynomial time over n and 1
ε . The algorithm guarantees that at most O

(
log k 1+ε

1−ε

)
· �

many variables in the final solution are assigned to each label. The Naor-Schwartz al-
gorithm works for any underlying graph G, but it cannot be applied for general fixed
label counting constraints. Due to randomness of the assignment, the counting guaran-
tee from their method is still far from the exact counting constraint we want to achieve.
Furthermore, the approximation ratio between its answer and the optimal solution is not
small enough to be useful in practice.

Counting Constraints in Computer Vision. Werner [16] were one of the first to intro-
duce constraints on label counts in energy minimization. They proposed a n-ary max-
sum diffusion algoithm for solving these problems, and demonstrated its performance
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on the binary image denoising problem. However, their algorithm could only produce
solutions or some label counts. It was not able to guarantee an output for any arbitrary
label count desired by the user.

A number of other recent vision papers have also demonstrated how knowledge
about label counts can be used as a useful prior. For instance, Woodford et al. [17]
recently showed how potentials for enforcing a particular distribution in label counts
can be used to improve results in labelling problems such as image denoising and tex-
ture synthesis. They proposed a number of sophisticated algorithms which were able
to minimize energy functions containing higher order potentials encouraging particular
counts of labels. However, their algorithms were not able to enforce label counts as a
hard constraint, and also lacked any worst-case bounds on the quality of the obtained
solution.

The method most closely related to ours is that of Kolmogorov et al. [18]. They
showed that for submodular energy functions, the parametric maxflow algorithm [19]
can be used for energy minimization with label counting constraints. However, this
algorithm outputs optimal solutions for only some label counts, and is not guaranteed
to output solutions for any arbitrary count of labels.

Our Results. We propose a new method for performing energy minimization under
constraints on the label counts. Our algorithm is deterministic in nature and outputs
ε-approximate solutions in a grid graph with N vertices. For all possible labels, the

algorithm runs in O
(
Nk

1
ε

( 1
ε

)2k+2 + Nk
( 1

ε

)2)
time, where k is the number of labels

and N is the number of pixels. This algorithm can also minimize energy functions
containing potentials depending on label counts such as the ones use in [17] as it outputs
the minimum energy solution under all possible label counting constraints.

We also develop a variant of the above algorithm which is much faster and produces
solutions under almost all label count constraints, but can only be applied to submodu-
lar quadratic pseudoboolean functions. We call this algorithm decomposed parametric.
It is inspired from the parametric maxflow based method for obtaining solutions under
label counts. As mentioned earlier, the vanilla parametric maxflow method finds optimal
solutions for a small number of label counts. We propose a new algorithm which dra-
matically increases the number of label counts for which a solution can be found. We
first decompose the original image into a number of subimages. The vanilla parametric
maxflow algorithm is run on each subimage. In this way, we obtain a set of assignments
for each sub-image with minimum energy under some label counts. These sets are merged
to obtain the set of assignments for the whole image with minimum energy under all la-
bel count constraints. Experiments on the binary image segmentation problem show that
our method dramatically outperforms the standard parametric maxflow and max-sum
diffusion based methods for obtaining solutions under label count constraints.

1.1 Organization

Remainder of the paper is organized as follows. We define the problem setup and pro-
vide some preliminaries in section 2. In section 3, we state our main theorem about the
multiplicative error bound guaranteed by our approach. Our parametric maxflow based
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algorithm is explained in section 4. In section 5, we provide the results of our experi-
ments on the image segmentation problem, and compare them with those obtained using
state-of-the-art methods. We conclude by discussing ideas for future work in section 6.

2 Preliminaries and Setup

Energy Minimization. Many labeling problems in computer vision can be formulated
using energy minimization. Energy functions are defined on a pixel-grid graph
G = (V, E), and have the form

H(x) =
∑
v∈V

φv(xv) +
∑

(v,w)∈E

φvw(xv, xw), (1)

where φvw : [k]2 → R+ 
= {x ∈ R : x ≥ 0} and φv : [k] → R+ are assumed to be ar-

bitrary non-negative real-valued functions defined over variables taking values from the
label set [k] = {1, · · · , k}.

We use the positivity of φv’s and φvw’s in the proof of our multiplicative approxi-
mation guarantee. However, our algorithm can also be applied to energy functions with
negative φvw values in the same manner.

In this paper, we are interested in finding an assignment x minimizing H under a
label count defined as follows.

Definition 1 (label count). For an assignment x ∈ [k]N and j ∈ [k], define count(x, j)
to be the number of variables xv : v ∈ V such that xv = j. Let C(N) be the collection
of C = (C1, C2, . . . , Ck) ∈ Z+

k such that C1+C2+. . .+Ck = N . We call C ∈ C(N)
a label count. For C ∈ C(N), let

R(C) = {x ∈ [k]N |∀j ∈ [k], count(x, j) = Cj}.

Our problem is to find such an assignment x∗(C) that minimizes the energy function
H(x) among x ∈ R(C). The problem of finding an assignment that minimizes energy
for fixed label count even for a submodular H(x) is known to be NP-hard [20]. Hence
we consider the following approximation problem.

Definition 2 (ε-approximation). Let 0 < ε < 1. An assignment x̂ is called ε-
approximation of the energy with the label count C, if x̂ ∈ R(C) and

(1 − ε)H(x̂) ≤ H(x∗(C)) ≤ H(x̂).

Definition 3 (submodular function). A pseudoboolean function g(x1, x2) :
{0, 1}2 → R is submodular if the following holds.

g(0, 0) + g(1, 1) ≤ g(0, 1) + g(1, 0).

An energy function is called submodular if all its pairwise terms are submodular. If H is
a submodular, an assignment with the minimum energy can be computed efficiently by
the graph-cut algorithm [21]. Submodular energy functions are widely used for labeling
problems in computer vision.
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Parametric maxflow. Parametric maxflow algorithm [18] is known that it gives some
x’s minimizing H under some label counts and can be applied when xv’s are in {0, 1}
and H is submodular [22]. It deals with parameterized energy function rather than the
original one.

Parametric maxflow

Let G = (V, E) be an undirected graph. Parametric maxflow is to minimize energy
function Hλ(x) for parameter λ ∈ I in the interval I ∈ R where

Hλ(x) = H(x) + λ
∑
v∈V

xv. (2)

Lemma 1. If an assignment x minimizes the energy function Hλ for some λ, H(x) is
minimum under the same label count as x.

Proof. Assume that x does not minimize H under the label count. Let x′ minimize H
under the same label count as x. Because x and x′ have same number of 1’s, they also
have the same second term in (2), therefore Hλ(x) > Hλ(x′). It contradicts that x
minimizes Hλ.

For a fixed λ, note that Hλ is also submodular, hence (2) can be solved in polynomial
time using the graph-cut algorithm. Because F (λ) = minx(Hλ(x)) is a piecewise-
linear concave function of λ, it is enough to compute x’s at all breakpoints of F rather
than for every λ, where a breakpoint is the intersection point of two line segments of
F (λ). The following algorithm finds x’s at each breakpoint and they are minimum of
H under the label counts as that of x.

Parametric maxflow algorithm

– Input : Energy function H .
1. Let I = [λmin, λmax].
2. Compute xmin and xmax solutions for λmin and λmax, respectively.
3. if xmin = xmax then Initialize L as (xmin, [λmin, λmax]).
4. else Initialize L as (xmin, {λmin}), (xmax, {λmax}).
5. while there are adjacent items (xi, Ii), (xj , Ij) such that sup Ii < inf Ij

6. λi = sup Ii, λj = inf Ij .
7. Compute λ∗, a solution of Hλ(xi) = Hλ(xj).
8. if λi = λ∗ then Ij = Ij ∪ [λi, λj ].
9. else if λj = λ∗ then Ii = Ii ∪ [λi, λj ].

10. else λ∗ must be in (λi, λj).
11. Compute x∗ minimizing Hλ∗

(x).
12. if x∗ = xi or x∗ = xj

13. then Ii = Ii ∪ [λi, λ
∗], Ij = Ij ∪ [λ∗, λj ].

14. else (x, {λ∗}) is inserted to L between (xi, Ii) and (xj , Ij)
– Output : list L of pairs (xi, Ii) where Hλ(xi) is minimum for λ ∈ Ii.

This algorithm uses graph-cut algorithm at most (2B + 2) many times where B is
the number of breakpoints. In the worst case, there are at most |V | + 1 breakpoints
since there is at most one break point for each label count. In the rest of this paper, we
will call this parametric maxflow algorithm as the pure parametric algorithm (PP), to
compare it with our new algorithms.
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3 Approximation Algorithm for Energy Minimization

In this section, we provide an algorithm that is guaranteed to compute an ε-approximate
solutions for all label counts in O(|V |) time. Our algorithm can be generalized to more
general class of graphs including 8-connected grid graph and planar graphs, by design-
ing a collection of graph decompositions satisfying the properties of Lemma 2. For
example, when the graph is a planar graph, the collection of decompositions in [23]
satisfies the properties. In this paper, we will prove our result for grid graph for easy
of explanation. Let G be the grid graph of size n × n. Our algorithm is based on a
decomposition of G into small components; computing an array of solutions in each of
these components, then producing a global solution. The algorithm works by exploiting
the sparseness of the graph G. It reduces the original problem with large tree-width to
a number of smaller problems with low tree width. In this process, it inserts a error in
the estimation. We have shown that this error is small because the graph has limited
connectivity.

Theorem 1. There is a deterministic algorithm that outputs ε-approximate solutions

for all C ∈ C(N), which runs in time O
(
Nk

1
ε

( 1
ε

)2k+2 + Nk
( 1

ε

)2)
.

We will call our algorithm DD (decomposed dynamic), since its main procedure is
based on graph decompositions and dynamic programming on each graph components.
A brief sketch of DD is as follows. First, we will obtain a family D of graph decompo-
sitions of G. It satisfies that each decomposition D ∈ D is obtained by removing some
edges of G, and |D| = 1

ε2 . The following is a pseudo-code of our graph decomposition.

Graph Decomposition

– Inputs : G = (V, E), ε > 0, and k1, k2 ∈
{0, 1, 2, . . . , 1

ε}.
1. Remove all the edges of G that connects vertices of the form (a, b) and (a + 1, b)

where a ≡ k1 ( mod 1
ε ).

2. Remove all the edges of G that connects vertices of the form (a, b) and (a, b + 1)
where b ≡ k2 ( mod 1

ε ).
3. The remaining graph is decomposed into connected components.
– Output : G.

Let D be the collection of the decompositions computed for all k1, k2 ∈
{0, 1, 2, . . . , 1

ε}.

Lemma 2. D satisfies the following properties.
(1) For all D ∈ D, the size of each connected component of D is at most 1

ε2 .
(2) For all edge e of G, the number of decompositions in D that remove e is at most

ε|D|.
Now, fix D ∈ D. Let R1, R2, . . . , R� be the connected components of D. For each Ri =
(Vi, Ei), DD computes the following gi values for all C(i) = (Ci1, Ci2, . . . , Cik) ∈
C(|Vi|) by dynamic programming on Ri.

gi(C(i)) = min
x∈ R(C(i))

[ ∑
v∈Vi

φv(xv) +
∑

(v,w)∈Ei

φvw(xv, xw)

]
.
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Note that the tree width of the subgraph Ri is at most 1
ε . The description of compu-

tation of gi for all C(i) ∈ C(|Vi|) by dynamic programming is in Appendix II in the
supplementary material.

Computation of each gi for all C(i) ∈ C(|Vi|) takes O
(
k

1
ε

( 1
ε

)2k
)

time. Since

there are at most O(N) many Ri’s, its total computation time for a fixed D ∈ D is

O
(
Nk

1
ε

( 1
ε

)2k
)

.

Now, Let ED ⊂ E be the union of all the edges of Ri’s. Then for each C ∈ C(N),
we compute

gD(C) = min
x∈ R(C)

⎡⎣∑
v∈V

φv(xv) +
∑

(v,w)∈ED

φvw(xv, xw)

⎤⎦ ,

using gi(·)′s. This can be done in time O(Nk) by the merging process described below.

Merging

– We begin with the regions R1, R2 . . . R�, and their corresponding functions gi’s.
– Repeat the following process until there remains just one region.

• If there are more than one regions, choose any two of them, say Ra and Rb.
Let ga and gb be their corresponding functions.

• Let Rc = Ra ∪ Rb in the sense of graph union. I.e, for Ra = (Va, Ea) and
Rb = (Vb, Eb), let Rc = (Vc, Ec) with Vc = Va ∪ Vb and Ec = Ea ∪ Eb.

• For each C(c) ∈ C(|Vc|), let

gc(C(c)) = min
[
ga(C(a)) + gb(C(b))

]
, (3)

where the minimization is over all C(a) ∈ C(|Va|), C(b) ∈ C(|Vb|) such that
Cai + Cbi = Cci for all 1 ≤ i ≤ k.

• Replace the two regions Ra and Rb by Rc. Also replace ga and gb by gc.
– Output the resulting function for the entire graph.

In the above process, under the assumption that for all C(a) ∈ C(|Va|),

ga(C(a)) = min
x∈ R(C(a))

⎡⎣∑
v∈Va

φv(xv) +
∑

(v,w)∈Ea

φvw(xv, xw)

⎤⎦ ,

and that for all (C(b)) ∈ C(|Vb|),

gb(C(b)) = min
x∈ R(C(b))

⎡⎣∑
v∈Vb

φv(xv) +
∑

(v,w)∈Eb

φvw(xv, xw)

⎤⎦ ,

it is straightforward to see that for all C(c),

gc(C(c)) = min
x∈ R(C(c))

⎡⎣∑
v∈Vc

φv(xv) +
∑

(v,w)∈Ec

φvw(xv, xw)

⎤⎦ .
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Hence by induction, we obtain that the above procedure outputs gD(·), and its total
running time is O(Nk).

Let x̂D(C) be the assignment corresponding to gD(C). Then let

x̂(C) = argminD∈D H(x̂D(C))

be the output of DD for C ∈ C(N). Approximation proof of DD is in Appendix I.

4 Decomposed Parametric

Although DD is guaranteed to output ε-approximation for all label counts, it runs slowly
when the decomposed subimage size becomes large. In this section we provide a more
practical algorithm that works for any submodular pseudoboolean energy function.

Our new algorithm, DP (decomposed parametric) runs on a decomposed image like
in DD. The basic idea is to apply the parametric maxflow to each decomposed subimage
rather than the dynamic programming. While DD outputs optimal assignments under
all label counts in each subimage, DP outputs some of those assignments. However,
by merging the partially optimal results of parametric maxflow, we obtain assignments
under almost all label counts. Although our algorithm can be applied to an image of
arbitrary size, to make explanation easy, we assume a square size image in this section.
Note that since DP uses the parametric maxflow on each subimage, it is only applicable
to binary labeling with submodular while DD can be applied to general labeling with
any energy function.

DP decomposes a given n × n image to � n
m�2 many subimages of size m × m. Let

Iij be the subimage [(i − 1) × m + 1, i × m] × [(j − 1) × m + 1, j × m] and Hij

be the energy function H restricted to Iij where 1 ≤ i, j ≤ � n
m�. Figure 1 depicts

this decomposition. We apply parametric maxflow algorithm to every subimage Iij to
compute assignments minimizing Hij under some label counts. Here we assume that
the output of the pure parametric is a form of an array A such that A[k] is an assignment
having label count k. Then arrays of size m2 +1 are created as results of the parametric
maxflow algorithm on each subimage, and we obtain an array about the whole image
by merging those arrays.

Decomposed Parametric

– Inputs : an image I of size n × n, an integer m.
1. A = ∅.
2. Decompose I to subimages of size m × m.
3. for i 1 to �n/m�
4. for j 1 to �n/m�
5. Aij = Parametric maxflow(Hij).
6. A = Merge(A, Aij ).
– Output : A.
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Merge

– Inputs : two arrays A1 and A2
1. Let n1 and n2 be the size of A1 and A2, respectively.
2. Let A be a new array of size n1 + n2 − 1.
3. Every element of A is set to empty assignment.
4. for every (i, j) ∈ {0, · · · , n1 − 1} × {0, · · · , n2 − 1}
5. if both A1[i] and A2[j] are not empty assignment
5. x = A1[i] concatenated by A2[j].
6. if H(x) < H(A[i + j])
7. A[i + j] = x
– Output : A.

Fig. 1. Decomposition of a n × n image to subimages of size m × m

When two arrays are merged, we get �1×�2 new assignments where �1 is the number
of assignments in the first array and �2 is that in the second array. Although there are
some overlap of label counts, the new array has bigger proportion of nonempty assign-
ments than the two merged arrays. We observe that when m is about n

3 , for almost all
label counts DP outputs assignments.

5 Experimental Results

We did experiments to compare our two algorithms with PP. To that end, we measured
three values: the number of label counts for which the methods returned a solution, the
energy values for the computed assignments, and the running time.

For our image segmentation experiments, we considered the energy function H de-
fined in (1). The potential functions φi of H are obtained using the method described in
[24] which exploits user given hints about the appearance of foreground and background
segments. The pairwise potentials defined over edges connected in a 4-neighbourhood
systems are defined as

φij = |xi − xj |(λ1 + λ2 × g(i, j)),

where λ1 and λ2 are parameters of the model, and g(i, j) is proportional to the distance
of i and j’s RGB colors. We have conducted experiments for various values of λ1 and
λ2. In our experiments, we use DPk and DDk to denote DP and DD , respectively, with
the decomposition of an image into k × k number of subimages. The parameter values
used in the experiments are specified by μ = λ2

λ1
.
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Table 1. Comparison of the number of label counts for the experiment 1. Each value is the average
over 8 images. The ratio of the number of label counts for which each algorithm computes a
solution over the number of possible label counts. For μ = 10 and μ = 30, the results are almost
the same as those with μ = 20. DP3 outputs solutions for almost all label counts regardless of μ.

μ = 20

λ1 PP DP3 DP5

1 0.2786 0.9828 0.9998
2 0.2552 0.9819 0.9997
4 0.2231 0.9795 0.9995
8 0.1862 0.9767 0.9994

16 0.1498 0.9736 0.9986
32 0.1164 0.9698 0.9970
64 0.0875 0.9650 0.9951

128 0.0642 0.9544 0.9925

Experiment 1. Our first experiment compares the average number of assignments min-
imizing the energy function H under some label counts, and the average energy values
of DP with optimal solutions obtained by PP. We used 8 images from [25] for comput-
ing the average each of which was a 300 × 300 size, and simulated DPk, 1 ≤ k ≤ 5,
and PP for all images. For each algorithm, we did tests for λ1 = 2i, 0 ≤ i ≤ 7, and
μ = 10, 20 and 30.

Experimental results are shown in Table 1 and Figure 2. Table 1 shows the average
ratio of the number of computed label counts over N , the number of pixels of the image.
DP3 outputs assignments under almost all label counts while PP about 20% of the label
counts. DP5 outputs assignments under label counts more than 99% regardless of λ1
and λ2.

Figure 2 shows the average energy value ratio of each simulation compared to that
of the optimal solutions obtained by PP . In Figure 2, the energy value of DP over
the optimal energy tends to have bigger error as λ1 or λ2 increases, or the image is
decomposed to more subimages. But in almost all cases, the error is quite small, espe-
cially when λ1 = 8, which is typically used in the image segmentation, the error is less
than 0.5% regardless of λ2. In short, we obtain the results that DP3 is enough to obtain
assignments under almost all label counts with only small error.

Table 2 shows the running time of PP and DPs. Note that DP is quite fast and its
running time is competative to that of PP .

Examples of segmented images of the algorithms, PP and DP, are shown in Figure 3.
Note that the output image of DP3 is almost the same to that of PP. By comparing with
the ground truth, we observe that DP3 is nearly optimal.

We note that adding a constant to the energy function affects the approximation ratio
of the results. In our simulation, we adjusted the constant term for each vertex v so that
one of φv(0) and φv(1) becomes 0.

Experiment 2. The second setup is for comparing the average energy values of DD, DP
and PP. This experiment used 8 images each of which was a 200× 200 size image, and
simulated DP20 and DD20. λ1 and μ were the same as in the setup 1.
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Fig. 2. Comparison of the average energy value for the experiment 1. We computed the average of
EA
ET

over the computed label counts where EA is the average energy value for 8 images of DP ,
and ET is the average energy value of PP for 8 images. μ did not affect the values, so in this
graph the values with μ = 20 are shown.

Table 2. Table for running time of the algorithms for 8 images

Time(seconds)
PP DP2 DP3 DP4 DP5

IM1 8 10 18 24 27
IM2 11 23 31 42 53
IM3 51 22 28 35 42
IM4 4 11 15 18 19
IM5 23 42 48 63 75
IM6 12 38 42 52 62
IM7 26 44 55 76 94
IM8 17 42 46 58 70

(a) original (b) ground truth (c) PP (d) DP3

Fig. 3. (b) is the ground truth for segmentation, (c) is the output of PP for a label count close to
that of the ground truth, and (d) is the output of DPs with similar label count

Table 3 shows the average ratio of the energy values of DP20 and DD20 over the
optimal solutions obtained by PP. It is similar with Figure 2 to increase the energy value
as λ1 or μ increases. Note that DP20 outputs almost the same energy ratio values with
DD which is optimal in each decomposed subimages. Sometimes DP is even slightly
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Table 3. Comparison of the average energy value for the experiment 2. We computed the values
in the same way with Figure 2

μ = 10 μ = 20 μ = 30

λ1 DP20 DD20 DP20 DD20 DP20 DD20

1 1.0061 1.0079 1.0080 1.0104 1.0100 1.0127
2 1.0086 1.0109 1.0111 1.0140 1.0136 1.0172
4 1.0129 1.0157 1.0163 1.0199 1.0194 1.0235
8 1.0197 1.0232 1.0249 1.0295 1.0302 1.0359

16 1.0308 1.0360 1.0388 1.0456 1.0472 1.0558
32 1.0481 1.0492 1.0592 1.0611 1.0711 1.0739
64 1.0706 1.0713 1.0862 1.0877 1.1020 1.1044

128 1.1008 1.1021 1.1228 1.1253 1.1447 1.1484

better. This is because although DD is actually optimal in each subimage, after merging,
it is not guaranteed to have lower energy than the output of the DP on the whole image.

Table 4 shows the running time of DD20 and DD25 for each image. Although DD is
guaranteed to output approximate solutions, its running time is comparably longer than
that of DP.

Table 4. Table for running time of DD20 and DD25 for 8 images

Time
DD20 DD25

IM1 24m 41s 17m
IM2 32m 33s 29m 21s
IM3 24m 16s 16m 21s
IM4 25m 17s 17m 43s
IM5 27m 39s 21m 14s
IM6 26m 26s 19m 14s
IM7 33m 26s 25m 15s
IM8 27m 12s 22m 6s

From experiment 1 and 2, we can conclude that for binary labeling with submodular
energy function, DP3 performs best among PP , DPi, DD when considering the number
of label counts, accuracy, and the running time altogether.

Experiment 3. In this experiment, we compare our algorithm with the Werner’s max-
sum diffusion algorithm [16] on the binary image denoising problem. A binary image
corrupted with Gaussian noise of size 150 × 150 is used. DP3 with D3, λ1 = 8 and
λ2 = 160 and Werner’s were simulated. Figure 4 shows the original image and two
resulting images with the same label count. It can be seen that the DP method produced
assignments for many more label count constraints (21568) while still remaining close
to the ground truth result. In contrast, Werner’s max-sum diffusion algorithm was only
able to find solutions for 12 label counts.
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Fig. 4. (a) Original image of size 150 × 150 corrupted with Gaussian noise. (b) Result of DP
with D3 under label count 7058 among 21568 many outputs. (c) Result of Werner’s max-sum
diffusion algorithm under the same label count among 12 many outputs.

6 Discussion and Future Work

We have proposed novel algorithms for minimizing energy functions under label count-
ing constraints. We first provided an efficient algorithm that outputs ε-approximate so-
lutions for all possible counts of labels for any energy function. We also developed a
variant of this algorithm which can be applied to submodular energy functions, that is
much faster but misses solutions corresponding to some label counts.

In this paper, we have only considered the counting constraint defined on vertices.
Another important counting constraint problem is that of edge counting, ie. the number
of times we see a discontinuity in the labelling which is exactly equal to the boundary
length in the case of image segmentation.

Consider the energy minimization with constraint on the number of boundary edges
(edges having different labels on its two end vertices). This problem corresponds to
segmentation with fixed boundary length. Note that this problem can be partially solved
by considering the following parametric maxflow:

Hλ(x) = H(x) + λ
∑

(v,w)∈E

xvxw ,

where λ ≤ 0 using the same reasoning as vertex counting. However, the algorithm is
partial, since it cannot work for λ ≥ 0 where the energy become non-submodular. As a
future work, we will work on analysis of this algorithm.
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Appendix I

Let C ∈ C(N) be fixed, and let

x∗ = argminx∈R(C)H(x),

be the optimal solution, and let x̂ = x̂(C) be the output of DD for C. For each D ∈ D,
denote x̂D = x̂D(C). From the positivity of φvw , for all D ∈ D,∑

v∈V

φv(x∗
v) +

∑
(v,w)∈ED

φvw(x∗
v , x∗

w) ≤ H(x∗). (4)

From the minimality of x̂D in each connected components of D, for all D ∈ D,∑
v∈V

φv((x̂D)v) +
∑

(v,w)∈ED

φvw((x̂D)v, (x̂D)w)

≤
∑
v∈V

φv(x∗
v) +

∑
(v,w)∈ED

φvw(x∗
v, x∗

w). (5)

From (4), (5) and the definition of x̂,

∑
D∈D

⎡⎣∑
v∈V

φv(x̂v) +
∑

(v,w)∈ED

φvw(x̂v, x̂w)

⎤⎦
≤

∑
D∈D

⎡⎣∑
v∈V

φv((x̂D)v) +
∑

(v,w)∈ED

φvw((x̂D)v, (x̂D)w)

⎤⎦
≤

∑
D∈D

⎡⎣∑
v∈V

φv(x∗
v) +

∑
(v,w)∈ED

φvw(x∗
v, x∗

w)

⎤⎦
≤ |D|H(x∗). (6)

By the property (2) of Lemma 2, i.e. from the property that for each edge e of E, the
number of decompositions in D that removes e is at most ε|D|, we obtain that

(1 − ε)|D|H(x̂)

≤
∑

D∈D

[ ∑
v∈V

φv(x̂v) +
∑

(v,w)∈ED

φvw(x̂v, x̂w)

]
(7)

From (6) and (7), we have

(1 − ε)H(x̂D) ≤ H(x∗).
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Appendix II

Computing gi

– Let Vi = {(a, b)|a, b ∈ {1, 2, . . . 1
ε}} be the set of vertices of Ri.

– Order the elements of Vi by dictionary order, i.e., (a1, b1) < (a2, b2) if a1 < a2 or,
a1 = a2 and b1 < b2. Let v1, v2, . . . , v 1

ε2
be the vertices in that order.

– For t = 0, 1, . . . ,
(
|Vi| − 1

ε

)
= t∗, let

Bt =
{
vt+1, . . . , vt+ 1

ε

}
.

Let Vit = {v ∈ Vi | order of v is less than or equal to
some vertex in Bt}. Let Eit be the set of edges that connect two vertices of Vit.

– For each assignment x̂Bt ∈ [k]|Bt| over Bt, and each C(t) = (Ct1, Ct2, . . . , Ctk) ∈
C(|Vt|), let

R(x̂Bt , C(t)) =

R(C(t))
⋂{

x ∈ [k]|Vit| | xv = x̂Bt
v ∀ v ∈ Bt

}
.

We will compute the following for t = 0, 1, . . . , t∗).

ĝt(x̂Bt , C(t)) =

min
x∈R(x̂B,C(t))

[ ∑
v∈Vit

φv(xv) +
∑

(v,w)∈Eit

φvw(xv,xw)

]
.

– For t = 0, note that Vi0 = B0. Hence we directly compute ĝ0(x̂B0 , C(0)) for all
x̂B0 ∈ [k]|B0| and C(0) ∈ C(|Vi0|).

– For t = 1, 2 . . . t∗,
• For each t, let B′

t = Bt

⋃
Bt−1. For each x̂B′

t ∈ [k]|B
′
t|, and C(t) ∈ C(|Vt|) let

R(x̂B′
t , C(t)) =

R(C(t))
⋂ {

x ∈ [k]|Vit| | xv = x̂B′
t

v ∀ v ∈ B′
t

}
,

and compute

ĝ′t(x̂
B′

t , C(t)) =

min
x∈R(x̂B′

t ,C(t))

[ ∑
v∈Vit

φv(xv) +
∑

(v,w)∈Eit

φvw(xv,xw)

]
by the relation

ĝ′t(x̂B′
t , C(t)) = ĝt−1

((
x̂B′

t

)
Bt−1

, C′
(t)

)
+ φv

t+ 1
ε

((
x̂B′

t

)
v

t+ 1
ε

)

+ φv
t+ 1

ε
,v

t+ 1
ε
−1

((
x̂B′

t

)
v

t+ 1
ε

,
(
x̂B′

t

)
v

t+ 1
ε
−1

)

+ φv
t+ 1

ε
,vt

((
x̂B′

t

)
v

t+ 1
ε

,
(
x̂B′

t

)
vt

)
,
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where C′
tj = Ctj − 1 for j ∈ [k] such that

(
x̂B′

t

)
v

t+ 1
ε

= j, and C′
tj = Ctj for

other j’s. In the above computation, when there is no edge between vt+ 1
ε

and
vt+ 1

ε −1, the term φv
t+ 1

ε
,v

t+ 1
ε
−1

is not computed.

• For x̂Bt ∈ [k]|Bt| and C(t) ∈ C(|Vt|), compute

ĝt(x̂Bt , C(t)) = min
j∈[k]

ĝ′t(
(
j, x̂Bt

)
, C(t)).

– For each C(i) ∈ C(|Vi|), output

gi(C(i)) = min
x̂Bt∗∈[k]|Bt∗ |

ĝt∗(x̂Bt∗ , C(i)).
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Abstract. Histograms are used in almost every aspect of computer

vision, from visual descriptors to image representations. Histogram In-

tersection Kernel (HIK) and SVM classifiers are shown to be very effec-

tive in dealing with histograms. This paper presents three contributions

concerning HIK SVM classification. First, instead of limited to integer

histograms, we present a proof that HIK is a positive definite kernel for

non-negative real-valued feature vectors. This proof reveals some inter-

esting properties of the kernel. Second, we propose ICD, a deterministic

and highly scalable dual space HIK SVM solver. ICD is faster than and

has similar accuracies with general purpose SVM solvers and two recently

proposed stochastic fast HIK SVM training methods. Third, we empir-

ically show that ICD is not sensitive to the C parameter in SVM. ICD

achieves high accuracies using its default parameters in many datasets.

This is a very attractive property because many vision problems are too

large to choose SVM parameters using cross-validation.

1 Introduction

Recently, the Histogram Intersection Kernel (HIK) has attracted a lot of atten-
tion in the computer vision community. The success of HIK can be attributed
to at least two important factors:

– First, histograms are frequently used in solving vision problems. At the fea-
ture level, many visual descriptors are histograms of various image measure-
ments, e.g., SIFT [11], HOG [5], CENTRIST [20], or histogram of LBP [15],
just to name a few. At the image level, histogram is also a popular represen-
tation, e.g., color histogram [17] or bag of visual words.

– Second, it is shown that HIK, as a measure for comparing the similarity
(or dissimilarity) of two histograms, achieves better performances in various
machine learning tasks than other commonly used measures, e.g., l2 distance
or RBF kernel. HIK is shown to have higher accuracies in SVM classifica-
tion [13,19], and in the clustering of histograms [19].

Recently HIK becomes even more attractive for its fast evaluation speed [13,19].
It is shown that ∑n

i=1
ciκHI(q, xi) (1)

� The author is supported by the NTU startup grant.
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can be computed in O(d) steps, where {xi}n
i=1 are a set of n d-dimensional

histograms, q is a query histogram, and κHI(x, y) =
∑d

j=1 min(xj , yj) is the
histogram intersection kernel. Although the effectiveness of HIK and other mea-
sures for comparing histogram (e.g., the χ2 distance) have not been extensively
compared, the fast computing of Eqn. 1 makes HIK particularly attractive.

In this paper we make three contributions related to HIK SVM learning:

1. We show that HIK is a positive definite (PD) kernel for non-negative real-
valued histograms. HIK is known to be a valid kernel for non-negative integer
histograms [14]. We give a proof for non-negative real valued histograms.
Our proof also completes the missing part of [12], which proved that HIK is
conditionally positive definite (CPD).

2. We propose ICD, a fast dual HIK SVM training algorithm. ICD solves the
SVM problem without re-encoding the input (which is a necessary step
in [12]). It explicitly finds the feature space decision boundary, while the
computations are carried out in the input space efficiently. ICD is a deter-
ministic algorithm and do not need to choose a step size for optimization.
We empirically show that ICD not only converges faster than the methods
of [12,18], but also yields higher accuracies.

3. We show that ICD is robust to the SVM parameter C in practice. Choosing
SVM parameters by cross validation is very time consuming, but crucial for
linear and RBF kernels, or the methods in [12,18]. We empirically show that
SVM parameters have only slight effects in ICD thus parameter selection is
not necessary.

2 Related Work

The histogram intersection kernel (HIK) is originally proposed by Swain and
Ballard for color-based object recognition [17]. It is further shown to be a posi-
tive definite kernel when the histograms only contain non-negative integers [14],
which makes HIK suitable for SVM classification. HIK is shown to be a condi-
tionally positive definite (CPD) kernel in real-valued cases [12]. We will give a
proof that HIK on non-negative real-valued vectors is a positive definite kernel
in Sec. 3.1.

HIK has shown to be a suitable similarity measure for comparing two his-
tograms in different machine learning tasks. For example, it achieved higher
accuracies in SVM classification than linear or RBF kernel [13,19] in different
domains, including object recognition, object detection, place recognition, and
scene recognition (whose feature vectors are histograms). In unsupervised learn-
ing tasks, kernel k-means clustering using HIK was also shown to produce better
visual codebooks (and consequently achieved consistently higher accuracies in
the resulting bag of visual words model) than the normal k-means algorithm [19].

A naive method to compute Eqn. 1 will take O(nd) steps, which is very
expensive when either n or d is large. However, Eqn. 1 (with different assignment
of the weights ci) is crucial in the training and testing of HIK SVM classifiers,
and in HIK based clustering. Recently, [13] showed that Eqn. 1 can be computed
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in O(d log n) steps (and O(d) steps if an approximation is allowed with only slight
loss of accuracy). Furthermore, [19] showed that by first quantizing the vectors
to integers, exact answer can be obtained in O(d) steps with less overhead than
the method in [13]. Fast computation of Eqn. 1 enables the testing of HIK SVM
classifiers to have the same complexity as that of linear SVM [13,19], and make
HIK clustering almost as fast as the usual k-means clustering [19]. In Sec. 3.2 we
will show that the method in [19] is not only a way to accelerate computation,
but has a physical interpretation.

These computational methods are also applied in fast training of HIK SVMs,
in which Eqn. 1 is again the speed bottleneck. Stochastic gradient descent (SGD)
methods are used in [18,12] to train an HIK SVM. More than 10 fold acceleration
can be achieved by using the fast method to compute Eqn. 1. PWLSGD [12] is
based on the stochastic method Pegasos (Primal Estimated sub-GrAdient SOlver
for SVM) [16], and SIKMA [18] is another SGD method. One drawback of these
methods is that it is subtle to choose a step size in the gradient descent update,
which is important to the success of SGD methods. Also, SGD methods give
different results in different runs on the same dataset.

3 The Histogram Intersection Kernel

3.1 HIK in R+ Is a Positive Definite Kernel

Let R+ be the set of non-negative real numbers {x ≥ 0|x ∈ R}. We will prove
that the histogram intersection kernel κHI(x1, x2) =

∑d
j=1 min(x1,j , x2,j) is a

valid positive definite kernel for x1, x2 ∈ Rd
+.

We use n to denote the number of data points and d for the dimension, and
xi,j as the j-th component of a vector xi. We will always use i to index a training
example, and use j to index a feature dimension.

We first prove this fact for d = 1. Given n real numbers x1, . . . , xn ∈ R+, we
assume that xi ≤ xi′ whenever 1 ≤ i < i′ ≤ n without the loss of generality.
Thus the kernel matrix K of this set has the property that

Kii′ = min(xi, xi′) = xmin(i,i′). (2)

It is easy to verify that Λ = RT KR, where R and Λ are defined as:

Rij =

⎧⎪⎨⎪⎩
1 if i = j

−1 if i = j − 1
0 otherwise

, and Λij =

⎧⎪⎨⎪⎩
x1 if i = j = 1

xi − xi−1 if i = j > 1
0 otherwise

. (3)

The diagonal matrix Λ is positive semidefinite, so is K. Thus κHI is a positive
definite kernel when d = 1. The generalization to d > 1 is straight forward,
because the sum of Mercer kernels is again a Mercer kernel [4].

HIK is proved to be conditionally positive definite (CPD) in R [12], i.e.,
xT Kx ≥ 0 when

∑
j xj = 0. However, the proof in [12] is incomplete. The

final step of the proof of [12] used the fact that HIK is a positive definite kernel
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in R+, which we have just proved. CPD kernels can be safely used in an SVM if
the bias term is included, but may have problem if we do not use the bias term
(e.g., the SVM in Eqn 11 does not include the bias term.)

One important note is that “HIK is p.d. in R+” can be proved by setting
β = 1 in Proposition 3 of [1]. Our method, though, provides a new intuitive
proof that reveals interesting structures of HIK. It is also worth mentioning that
Proposition 3 in [1] can also be easily proved using our technique.

3.2 Equation 1 and Its Feature Space Interpretation

There is a more intuitive way to illustrate that HIK is a Mercer kernel when
the histograms only contain non-negative integers [14]. Given a d dimensional
histogram x, whose elements are all smaller than or equal to an upper bound v̄.
We define a mapping B : N → Rv̄ as (i.e., the unary representation)

B(x) = [ 1, 1, . . . , 1︸ ︷︷ ︸
x times

, 0, 0, . . . , 0︸ ︷︷ ︸
v̄−x times

], (4)

Then the feature space spanned by κHI is dv̄ dimensional, and a vector x ∈ Nd

is mapped to B(x) = [ B(x1), · · · , B(xd) ] ∈ Rdv̄.
This fact is easy to prove because xy = min(x, y) when x, y ∈ {0, 1}. Thus

κHI(x, y) = B(x)T B(y). Using the feature space for integer histograms, we can
give a clear interpretation of the method presented in [19] for computing Eqn. 1.

Given a dataset {(xi, yi)}n
i=1 in which we assume that the elements of xi

are non-negative integers not larger than v̄, and yi ∈ {−1, +1}. An HIK SVM
classifier will be

f(q) =
∑n

i=1
αiyiκHI(q, xi) − θ (5)

for a test example q, in which αi are the Lagrange multipliers. Note that if we
set ci = αiyi, this equation is a special case of Eqn. 1.

We define a matrix T ∈ Rdv̄ as (in which ci = αiyi) Tj,k =
∑

i:k≥xi,j
cixi,j +

k
∑

i:k<xi,j
ci. Then it is shown in [19] that

f(q) =
∑d

j=1
Tj,qj − θ. (6)

Now consider the dataset {(B(xi), yi)}n
i=1, i.e., we study the same problem in

the feature space instead. Let us assume that a linear SVM in the feature space
results in the solution vector w = [ w1, · · · , wd] ∈ Rdv̄, where wi ∈ Rv̄ is the
weights corresponding to B(xi). Then we must have

f(q) = wT B(q) − θ =
∑d

j=1
wT

j B(qj) − θ. (7)

Comparing Eqn. 7 and 6, we get that

wT
j B(qj) = Tj,qj ∀j ∈ {1, . . . , d}, qj ∈ {0, 1, . . . , v̄}. (8)
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In other words, we have: for all j ∈ {1, . . . , d} and k ∈ {0, 1, . . . , v̄}

Tj,k =
∑k

t=1
wj,t. (9)

In short, we just revealed that there is a bijection between the table T and the
decision boundary w in the feature space. The key benefit of using the table T is
that we do not need to explicitly store {B(x)}n

i=1. Also, Eqn. 6 is very efficient
(O(d)).

3.3 ICD: Intersection Coordinate Descent

This intuition can be used in fast training of HIK SVM classifiers. After quan-
tizing the dataset to integers (with maximum feature value v̄), we will solve a
linear SVM problem in the feature space Rdv̄. However, instead of creating and
storing B(xi) ∈ Rdv̄, i = 1, . . . , n, we will make use of data structures like the
table T to carry out computations in the input space Nd. We do not need to
re-encode the input data as the PWLSGD method in [12].

Our method is based on the SVM solver in LIBLINEAR [8], which uses a dual
coordinate descent method. Given a dataset {(xi, yi)}n

i=1 where yi ∈ {−1, +1},
its corresponding dataset in the feature space is {(B(xi), yi)}n

i=1. A linear SVM
in the feature space solves the following problem:

min
w

1
2
wT w + C

∑n

i=1
ξ (w; B(xi), yi) , (10)

where ξ (w; B(xi), yi) = max(1 − yiw
T B(xi), 0)2 is the L2-loss function. The

parameter C controls a trade-off between maximum margin and empirical errors
on the training set.

The primal problem (Eqn. 10) is equivalent to the following dual form

min
α

g(α) =
1
2
αT Q̄α − eT α

subject to 0 ≤ αi ≤ U, ∀i, (11)

where U = ∞, Q̄ = Q + D, Qii′ = yiyi′B(xi)T B(xi′), D is a diagonal matrix
and Dii = 1/(2C) in an L2-loss SVM. Note that α ∈ Rn and w =

∑
i αiyiB(xi).

In [8] the dual problem is solved using coordinate descent. The values of αi are
updated sequentially for i = 1, 2, . . . , n. When updating αi, a new α′

i is chosen
such that it will reduce g(α) by the largest amount, while still in the range
[0 U ]. The discriminant function w is then incremented by (α′

i − αi)yiB(xi),
i.e., updated using the i-th data point B(xi). A hypothetical algorithm to solve
SVM in the feature space is shown in Algorithm 1.

However, we will not use this algorithm in practice. The main difficulty of ap-
plying Algorithm 1 is to compute line 1, 4, and 9 without explicitly constructing
the high dimensional vectors w and B(xi). Instead we will use the table T .

We do not need to compute line 1 because there is a bijection between w
and T . A proper initialization of T will replace line 1. We simply initialize all
elements of T to 0, which is equivalent to initialize w to 0.
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Algorithm 1. A hypothetical algorithm for HIK SVM in the feature space
1: Given α and correspondingly w =

∑
i αiyiB(xi)

2: while α is not optimal do
3: for i = 1, . . . , n do
4: G = yiw

T B(xi) − 1 + Diiαi

5: PG =

⎧⎪⎨⎪⎩
min(G, 0) if αi = 0

max(G, 0) if αi = U

G if 0 < αi < U

6: if |PG| �= 0 then
7: ᾱi ← αi

8: αi ← min(max(αi − G/Q̄ii, 0), U)

9: w ← w + (αi − ᾱi)yiB(xi)

10: end if
11: end for
12: end while

Similarly, Eqn. 6 can be used to efficiently compute wT B(xi) in O(d) steps,
which makes line 4 easy to compute. The remaining difficulty is then how to
update w, or equivalently, how to update T because we do not store w.

Let us denote (αi − ᾱi)yi as δαi . Then the change of w (line 9) is now Δw =
δαiB(xi), or equivalently (B(xi,j)t is the t-th element of B(xi,j)),

Δwj,t = δαiB(xi,j)t, for all 1 ≤ j ≤ d, 1 ≤ t ≤ v̄.

Using Eqn. 9, it is easy to find that

ΔTj,k =
∑k

t=1
Δwj,t

=
∑k

t=1
δαiB(xi,j)t = δαi

∑k

t=1
B(xi,j)t

= δαi min(xi,j , k). (12)

The last equality in Eqn. 12 follows from the identity
∑k

t=1 B(x)t = min(x, k).
In summary, solving an HIK SVM optimization can be done using the dual

coordinate descent approach. The computations are carried out on the original
histograms instead of in the high dimensional feature space, which maintains the
fast training speed. The HIK SVM training algorithm is shown in Algorithm 2,
in which we assume that Tj,0 = 0 for any j ∈ {1, . . . , d}. We will refer to
Algorithm 2 as the ICD (Intersection Coordinate Descent) method.

After an SVM is trained using ICD, a new example q can be classified in O(d)
steps using Eqn. 6, which is the same complexity as that of a linear SVM.

3.4 L1-Loss, Multi-class, Convergence, and All That

The ICD algorithm is provided at http://www.ntu.edu.sg/home/jxwu inside
the libHIK package. Beyond Algorithm 2, fast HIK SVM training method using

http://www.ntu.edu.sg/home/jxwu
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Algorithm 2. ICD: A method for training HIK SVM
{Replace the following lines in Algorithm 1, the remaining lines of Algorithm 1 will

be omitted here. }
line 1′ : Tj,k ← 0, for all j ∈ {1, . . . , d}, k ∈ {1, . . . , v̄}
{Note that the below commands update the table T using xi }
line 4′ : G = yi

∑d
j=1 Tj,xi,j − 1 + Diiαi

line 9′ : Tj,k ← Tj,k + (αi − ᾱi)yi min(xi,j , k), ∀j ∈ {1, . . . , d}, k ∈ {1, . . . , v̄}

L1-loss, in primal space, and for multi-class datasets are also provided. Due to
the space limit, we will only briefly discuss some important issues.

ICD can use L1-loss function ξ(w; xi, yi) = max(1−yiw
T xi, 0) [8], by setting

U = C and Dii = 0 in Eqn. 11.
We can accelerate the solving of the primal problem (Eqn. 10) using the same

idea of ICD. We maintain both w and the table T during training. There is no
need to explicitly create B(xi). Primal method is preferred when d � n.

We can solve multi-class problems using the one versus rest method. The
Crammer-Singer formulation [3] can also be greatly accelerated by implicit fea-
ture space computations using Eqn. 6.

The global convergence Theorem 1 of [8] readily applies to ICD. Thus the
ICD method obtains an ε-accurate solution in O(log(1/ε)) iterations.

In ICD there are dv̄ numbers to change when updating each αi,1 while in linear
SVM we only need to update d numbers. However, in practice ICD requires a
much smaller number of iterations to converge than that of linear SVM. On
many real world datasets, ICD converges within 30 iterations, while linear SVM
is not converged after 1000 iterations. Thus the training time of ICD is much
faster than v̄ times of the linear SVM training time. On some difficult datasets
ICD is even faster than LIBLINEAR (c.f. Sec. 4).

3.5 Quantization, Default Bin Number, and Default C Parameter

When the feature vectors are not natural integer histograms, we use a simple
method to quantize it so that we can apply ICD. Given a dataset, we find vmin,
the minimum feature value in the training set. We also find vmax, which is the
97.5-th percentile of all training feature values.2 A feature value v is mapped
(quantized) to an integer in [0 v̄] as follows

v → (int) (v̄ × (v − vmin)/(vmax − vmin)) . (13)

1 In practice we do not need to update all these dv̄ numbers. If v̄j is the maximum

feature value in dimension j, then we only need to update Tj,k, k = 1, . . . , v̄j for the

j-th dimension. We usually observe that v̄j � v̄.
2 We do not use the maximum feature value as vmax because in computer vision it

may have an artificial mode at the largest feature value. For example, in the densely

sampled bag of visual words model, possibly more than half of the image patches

will be mapped to the visual word that corresponds to a uniform image region.
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With this simple quantization strategy, we can apply ICD to a much broader
range of problems (e.g., whose feature vectors are not natural histograms and
have negative feature values).

Choosing v̄ is a very important decision. The number of quantization bins, v̄,
not only affects the training time and storage requirements. It is also directly
related to the accuracy of trained classifiers. Obviously a small v̄ value will result
in low accuracy. However, it is adverse to have a large v̄. A large v̄ will eventually
cause over-fitting and uses more memory and CPU cycles.

We experimented with v̄ = 50, 100, and 200. In our experiments different prob-
lems acquired best accuracies at different v̄ values. However, v̄ = 100 achieved a
fair balance between the memory/computation cost and classification accuracy
across almost all the datasets. We use v̄ = 100 if quantization is needed, and if
we do not explicitly specify v̄ otherwise.

The default value for the C parameter in LIBLINEAR is 1, and feature vectors
are usually normalized to the range [−1 1]. In ICD, κHI usually generates much
large kernel values. Consequently, we choose C = 10−3 as the default value
for ICD.

4 Experimental Results

We conducted 4 sets of experiments to test various aspects of the ICD algorithm.
First we compare ICD with two recently proposed fast HIK SVM training algo-
rithm (Sec. 4.1). We then test ICD on a large scale pedestrian detection dataset
(Sec. 4.2). The third set of experiments deal with three different object and scene
recognition problems in computer vision (Sec. 4.3). Finally, we show that when
cross-validation based SVM parameter selection is infeasible for huge datasets,
ICD achieves both faster speed and higher accuracies comparing with linear and
RBF kernels, using their default parameter settings (Sec. 4.4). Our empirical
results show that ICD is very robust to the C parameter in practice.

Before applying ICD, we use Eqn. 13 to quantize a problem if necessary. We
set v̄ = 100 if not otherwise specified. The one versus rest strategy is used for
multi-class problems. We use the default value C = 10−3 whenever ICD is used.

4.1 Comparing with PWLSGD and SIKMA

PWLSGD [12] and SIKMA [18] are two recent stochastic gradient descent (SGD)
methods for fast training of HIK SVM. In this section we compare ICD with these
two, using the software and datasets provided with [12] and [18].

Note that in PWLSGD and SIKMA, we use the SVM parameters that are
carefully chosen using cross validation by their corresponding authors. While
in ICD we simply use the default value C = 10−3. PWLSGD provides sample
data on Caltech 101 [7]. We report in Table 1(a) the results when 15 training
and testing examples are used in each category. The SIKMA software provides
sample data on the PASCAL VOC 2007 images [6]. The comparison results are
reported in Table 1(b). SGD methods yield different results on the same dataset
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Table 1. Comparing training time and accuracy of HIK SVM methods

ICD PWLSGD LIBLINEAR

56.5 51.62% 188.2 49.90% 43.3 48.05%

(a) Comparing ICD with PWLSGD

ICD SIKMA LIBLINEAR

9.2 97.21% 13.2 96.97±.19% 1.9 96.00%

(b) Comparing ICD with SIKMA
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Fig. 1. Effect of different SVM parameters

in multiple runs. Since SIKMA does not fix the seed of its random number
generator, we report its average result in 5 runs. Following the setup of SIKMA,
we set v̄ = 50 for this problem.

For every method, we show the training time (in seconds) followed by the
classification accuracy. As shown in Table 1(a) and 1(b), ICD not only reduces
training time by a large percentage, it also has higher classification accuracies,
despite the fact that we do not tune the C parameter in ICD. An additional
comparison with LIBLINEAR [8] is provided (with the default settings of LI-
BLINEAR). The proposed method enjoys higher accuracy with a reasonable
amount of increase in training time. For example, on the Caltech 101 dataset,
ICD only uses 30% more training time than LIBLINEAR (Table 1(a)).

One attractive property of ICD is that empirically it is not sensitive to SVM
parameters. Let λ0(= 0.0015) and C0(= 0.001) denote the SVM parameters used
in Table 1 for PWLSGD and ICD respectively. In Fig. 1a we show Caltech 101
results of different C and λ values where log10(C/C0) or log10(λ/λ0) ranges from
-2 to 2. ICD has high accuracy at the default value C0, and its accuracy is stable
with larger C values. However, large variations are observed for PWLSGD. Time
consuming cross-validation based parameter selection is needed for PWLSGD to
choose an appropriate λ, but in ICD it is not necessary to choose C. ICD has
stable accuracies when C ≥ 10−4. We observe in Sec. 4.2 again that ICD is
robust to C.
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Table 2. Results on INRIA pedestrian

Time Accuracy Iterations

ICD 160 s 98.56% 21.4

LIBLINEAR 681 s 90.69% 1000

4.2 Pedestrian Detection

Next we use the INRIA pedestrian dataset [5] to evaluate ICD in a large scale
vision problem. We use the 256 dimensional CENTRIST [20] visual descriptor
as our base feature descriptor. A 108 × 36 image patch is divided into 9 × 4
blocks. Any neighboring 2 × 2 blocks are formed into a super-block. The con-
catenation of CENTRIST in all super-blocks generates a feature vector that has
6,144 dimensions. This feature vector is a natural histogram with v̄ = 352. We
evaluate the SVM training algorithms in a “hard” dataset that is the result of
bootstrapping the INRIA dataset (using the procedures in [5]). There are 30,711
examples. This dataset is mostly dense, resulting in a large scale problem with
approximately 82 million non-zero feature values.

We compare ICD with LIBLINEAR. Five-fold cross validation is applied. The
total training time, average accuracy, and average number of iterations needed
to finish the optimization are reported in Table 2. Default C values are used in
both methods in Table 2.

One interesting observation from Table 2 is that ICD only takes about 24%
of the training time of LIBLINEAR. This is related to the number of iterations
which is required to terminate the SVM optimization. HIK SVM has higher
discrimination capability than a linear SVM, and ICD usually requires a small
number of iterations to converge in practice.3 In summary, ICD scales well to
large problems, and is particularly suitable when the feature vectors are natural
histograms.

The effect of SVM parameters are studies in Fig 1b, where the C value ranges
from 10−7 to 103, with step size 10. Linear SVM is sensitive to C, and an overly
large C will lead to a lower accuracy. In this dataset HIK SVM is not sensitive
to C: the accuracy increases with C and a large C value will not lead to a lower
accuracy. The same phenomenon is observed in almost all datasets we tested in
this paper.

It is also interesting to compare with general purpose SVM learners with
linear, RBF, or the histogram intersection kernel. However, on this large scale
dataset, general purpose SVM solvers (e.g., LIBSVM [2]) requires more than 10
hours to converge. This fact makes these solvers impractical for large problems.

4.3 Object and Scene Recognition

In this section we evaluate ICD in 3 more benchmark vision problems: Caltech
101 [7], 15 class scene recognition [9], and 8 class sport events [10]. Images
3 LIBLINEAR terminates when the iteration number is 1000. So the actual iterations

needed for convergence is higher than 1000 in this problem.
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Table 3. Results on various vision problems

caltech scene sports

Time Acc Acc(cv) Time Acc Acc(cv) Time Acc Acc(cv)

ICD 71.5 60.0% 59.9% 20.1 81.9% 82.0% 10.4 81.3% 81.5%

LIBSVM+HIK 66.8 54.6% 54.9% 40.1 81.6% 81.7% 10.7 81.0% 81.0%

LIBLINEAR 6.3 54.1% 54.2% 1.4 75.3% 75.5% 0.5 76.7% 78.5%

LIBSVM+LIN 65.2 51.3% 51.4% 33.5 76.8% 76.8% 8.5 78.8% 78.8%

LIBSVM+RBF 67.3 18.2% 53.4% 58.2 35.2% 79.6% 14.1 12.5% 76.5%

are represented using the bag of visual words model, and feature vectors are
generated by libHIK [19] with k-means visual codebooks. The results from the
first train/test split of libHIK are reported.4

Three kernel types (linear, RBF, and HIK) are compared. The features are
quantized for ICD and LIBSVM+HIK, because we want these two methods to
use exactly the same data. In Table 3, the first two columns for each dataset
report the training time and accuracy of a method when we use the default SVM
parameters. We also use training set cross validation to choose SVM parameters
in the range log10 C ∈ [−5 3], log10 γ ∈ [−5 −1], whose accuracies are reported
in the ‘Acc(cv)’ column.

In terms of classification accuracy, HIK has clear advantages over linear and
RBF kernel types. ICD achieves slightly higher accuracies than the general pur-
pose LIBSVM solver with HIK. The Caltech 101 dataset shows an exception
where ICD has a large 5.4% advantage over LIBSVM. This might be due to the
fact that there are 101 classes in this problem, while the one versus one strategy
of LIBSVM is not suitable for handling large number of classes.

In terms of training time, LIBLINEAR trains much faster than other methods,
while all other methods have comparable training time. It is worth noting that
the feature vectors are d = 6, 200 dimensional in these problems, while the
training set size n ranges from 560 to 1515. Dual space algorithms (including
the proposed method) is not effective while d � n. However, ICD still has
approximately the same training speed as LIBSVM.

Again we observed the phenomenon that ICD is not sensitive to SVM pa-
rameters, since ‘Acc(cv)’ only has slight advantage over ‘Acc’ (the accuracy
using default ICD SVM parameters). The robustness to SVM parameters is
very attractive because cross validation parameter selection is infeasible for huge
datasets, e.g., accuracy of the RBF kernel is heavily affected by SVM and kernel
parameters.

4.4 Working with Non-histograms and Default SVM Parameters

Nowadays many problems are too large to perform cross validation for SVM
parameter selection. Thus it is important to emphasize high accuracies using the
default SVM parameters. In the final set of experiments, we will evaluate ICD
4 Note that the Caltech 101 features are different than those used in Sec. 4.1.
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Table 4. Properties of the non-histogram datasets

train size test size dimension #class

ijcnn1 4,990 91,701 22 2

shuttle 43,500 14,500 9 7

acoustic 78,823 19,705 100 3

rcv1 677,399 20,242 47,236 2

Table 5. Comparing performances using default SVM parameters

ijcnn1 shuttle acoustic rcv1

Time Accuracy Time Accuracy Time Accuracy Time Accuracy

ICD 0.6 94.82% 0.7 99.50% 137.2 82.98% 34.3 97.95%

LIBSVM+HIK 42.9 95.27% 3.7 99.57% 1362.0 83.12% > 50, 000

LIBLINEAR 0.4 91.79% 0.8 92.35% 14.6 80.18% 6.4 97.96%

LIBSVM+LIN 48.4 92.12% 7.4 97.10% 1736.0 80.46% > 50, 000

LIBSVM+RBF 60.1 92.79% 14.3 97.23% 1824.0 79.69% > 50, 000

on problems that are not natural histograms and on huge datasets. The four
problems we experimented with are chosen from the LIBSVM dataset collection:
ijcnn1, shuttle, acoustic (combined), and rcv1 (binary). We choose these datasets
whose features are not histograms, and whose sizes range from medium to huge.
The particulars of these problems are collected in Table 4. We switched the
training and testing set of the rcv1 problem so that we have a huge training set
to test the scalability of ICD.

We compare with LIBLINEAR and LIBSVM using linear, RBF, and HIK.
We use the default value C = 1 for LIBLINEAR and LIBSVM on the original
feature vectors, and use C = 10−3 on quantized versions. Experimental results
are reported in Table 5.

One important observation is that on these datasets both HIK SVM classifiers
(ICD and LIBSVM+HIK) achieve higher accuracies even when their feature
vectors are not natural histograms. We also compare the two pairs of methods
that use the same kernel. Although the LIBSVM+LIN solver sometimes have
noticeable advantage over LIBLINEAR at the cost of much longer training time
(e.g., in the shuttle problem), the proposed ICD method has almost the same
accuracy as LIBSVM+HIK.

ICD, however, trains a lot faster than LIBSVM+HIK, and its speedup is
related to size of the datasets. ICD is about 5 times faster than LIBSVM+HIK
on the shuttle dataset. However, in the rcv1 dataset, the speedup is more than
3 orders of magnitude. For all three kernel types, the LIBSVM solver did not
converge after 50,000 seconds when running the rcv1 problem. Thus LIBSVM’s
accuracies on this dataset is not available in Table 5.

LIBLINEAR is faster than ICD. However, the speedup is usually smaller than
10. Given the fact that the training time is smaller than 1 minute even in the
rcv1 dataset, we believe that the proposed algorithm is preferable for its higher
classification accuracies.
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It is generally accepted that for problems with a large number of feature di-
mensions, linear SVM usually works as well as other more complex kernel types.
Thus it is not surprising to observe that on the rcv1 dataset, ICD requires more
training time than LIBLINEAR, while both methods have approximately the
same classification accuracy. Our experiments on rcv1, though, further illustrate
the scalability of ICD. In computer vision, we usually work with a medium
dimensional feature vector (e.g., around 5000, smaller than that of rcv1). The
experiments on rcv1 illustrate that ICD is able to handle even millions of training
examples in computer vision problems.

5 Conclusions and Future Work

Our contributions are threefold. First, we prove that the histogram intersection
kernel (HIK) is a positive definite kernel for non-negative real numbers. Second,
we give the physical meaning of the computational method that accelerates the
kernel evaluation of HIK. Based on this interpretation, we propose ICD, a fast,
accurate, and scalable HIK SVM solver. Third, we empirically show that ICD is
not sensitive to the C parameter in SVM, and achieve high accuracies using its
default settings on huge datasets.

As a summary of the theoretical analyses and experimental results, we list
the advantages and limitations of the proposed method (+ for advantages and
- for limitations).

Speed (+). ICD trains much faster than general purpose SVM solvers. It also
trains faster than two recent SGD based methods (PWLSGD and SIKMA).
The testing speed has the same complexity as linear classifiers.

Insensitivity to C (+). Accuracy of ICD generally increases with the SVM
parameter C. However, a large C does not lead to low accuracy. This empiri-
cal property is particularly attractive on huge datasets where cross validation
parameter selection is infeasible.

Scalability (+). It scales easily to large problems, and is most efficient for
problems with a medium number of feature dimensions and a huge number
of training examples. Many vision problems fit into this category.

Accuracy (+). It has comparable accuracies to general purpose SVM solvers,
and the PWLSGD or SIKMA HIK SVM solver.

Simplicity (+). There is only 1 parameter in ICD (C), and the default value
C = 10−3 works well in most problems. It is also a deterministic algorithm,
producing the same result on multiple runs. There is no need to re-encode
input data.

Storage (-). The table T increases the storage cost, especially when d is large,
and when the problem contains a large number of classes.

Quantization (-). The need for quantization introduces additional costs (al-
though this cost is small), and the quantized version does not guarantee
higher accuracy than linear SVM in a few cases (e.g., rcv1).

There are possible directions to address certain limitations of the proposed
method. For example, we can make the table T sparse, which will answer the
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storage problem at the cost of a reasonable increase in training and testing time.
A rule of thumb can be developed to automatically choose between a linear SVM
or HIK SVM. Finally, we can explore adaptive quantization methods to achieve
better quantized feature vectors (and higher accuracies).
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Abstract. We study the problem of multimodal dimensionality reduc-

tion assuming that data samples can be missing at training time, and

not all data modalities may be present at application time. Maximum
covariance analysis, as a generalization of PCA, has many desirable prop-

erties, but its application to practical problems is limited by its need for

perfectly paired data. We overcome this limitation by a latent variable

approach that allows working with weakly paired data and is still able to

efficiently process large datasets using standard numerical routines. The

resulting weakly paired maximum covariance analysis often finds better

representations than alternative methods, as we show in two exemplary

tasks: texture discrimination and transfer learning.

1 Introduction

With the increasing availability of cheaper sensors, multimodal data has become
nearly ubiquitous in practical computer vision tasks: images on the web have text
captions, videos have audio tracks, and modern mobile phones can even record
acceleration data in addition to their audio and visual recording capabilities.
However, the field of multimodal data processing so far plays only a minor role
in current computer vision research, where most algorithms are only able to
process one data domain at a time. Those multimodal algorithms that do exist
typically make restrictive assumptions, such as a priori known pairings between
all data samples. They also commonly require that all sensor information is
available reliably at all times, which is not always the case in practical problems
because the use of multiple sensors increases the risk of subsystems failing.

In this paper, we introduce a dimensionality reduction method that can han-
dle weakly paired data, and that is robust again the risk of partially missing
data. Furthermore it incorporates two further advantages, which are of great
importance for practical applications: it is simple, and it is efficient. By sim-
plicity we mean that the method is based on elementary principles, in our case
derived from statistics, which can be easily implemented and understood by a
outsider of the field. An efficient method can be applied to data sets of realistic
size, i.e. at least several thousand data vectors with thousands of dimensions.
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2 Multimodal Dimensionality Reduction

We assume that we are given related data samples in two or more data modalities
of potentially very high dimension. The general goal of multimodal dimensional-
ity reduction is to compute new representations for these data samples that lie
in lower-dimensional feature spaces. In comparison to normal, unimodal, dimen-
sionality reduction, we expect the availability of multiple data representations
to give a better indication of what the true signal in the data is, that we want
to retain, and what parts are noise that can be suppressed. As motivated in
the introduction, we are interested in robust techniques that can handle missing
examples in the original data. Additionally, once good dimensionality reduction
mappings have been found, we want to be able to process each modality sep-
arately, in order to handle situations wherein some modalities are not always
accessible. We formalize these intuitions in the following definitions.

Definition 1 (Inductive Dimensionality Reduction). Let X =(x1, . . . , xn)
⊂ Rd×n be a set of data vectors. We call a procedure inductive dimensionality
reduction if, given the input X, it outputs a functional mapping f : Rd → Rq

with q < d. The image of X under f we call a lower-dimensional represen-
tation of X and denote it by X̂ = (x̂1, . . . , x̂n), i.e. x̂i = f(xi).

In the rest of this paper, we will only consider inductive methods, which include
PCA [25], kernelPCA [28] and autoencoder networks [10]. Non-inductive meth-
ods, e.g. probabilistic latent semantic analysis (pLSA) [11], and Isomap [30],
also compute a lower-dimensional representation X̂ from X , but do not provide
a function f that could be applied to future data.

The two main families of inductive dimensionality reduction techniques,
discriminative and generative, differ in the applications they are suitable for:
discriminative techniques, such as linear discriminant analysis (LDA) [6] and
canonical correlation analysis (CCA) [2,12], identify lower-dimensional repre-
sentations that are suitable for a specific task that has to be known at the time
of data processing, e.g. classification into a known set of classes. By discarding
all signal dimensions that are not relevant for the specified task, discriminative
techniques can often achieve a large reduction in dimensionality without loss of
accuracy. Their drawback is that the representations found might not be well
suited to tasks different from the specified one. In this work we concentrate
on generative dimensionality reduction instead, where the goal is to find lower-
dimensional data representations that are suited for various subsequent tasks,
not just for a specific one. Intuitively, generative dimensionality reduction tech-
niques can be seen as data compression methods, because it is often possible to
recover the original data from the reduced representation with usually only a
small reconstruction error.

Definition 2 (Multimodal Dimensionality Reduction)
Let X(1) = (x(1)

1 , . . . , x
(1)
n1 ) ⊂ Rd1×n1 , . . . , X(m) = (x(m)

1 , . . . , x
(m)
nm ) ⊂ Rdm×nm be

several data sets from potentially different spaces. We call an inductive dimen-
sionality reduction technique multimodal if, given the inputs X(1), . . . , X(m), it
outputs functions f1 : Rd1 → Rq, . . . , fm : Rdm → Rq for all data domains.
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Clearly, every inductive dimensionality reduction technique can in principle be
used in a multimodal framework by just processing each data domain indepen-
dently. However, since in the multimodal setup the functions fi can depend on
all data sets and not just on X(i) itself, one would expect multimodal techniques
to use this information to find better representations than those of unimodal
methods. The canonical way to construct multimodal algorithms is by making
use of dependencies between the data samples that are induced by pairings :

Definition 3 (Weakly Paired Multimodal Data). We call a collection of
data sets X(1), . . . , X(m) weakly paired, if each X(i) is split into k groups as

X(i) = (x(i)
1,1, . . . , x

(i)
1,ni

1
, . . . , x

(i)
k,1, . . . , x

(i)
k,ni

k

) ∈ Rdi×ni (1)

with ni =
∑k

l=1 ni
l. The special cases where ni

l = 1 for all i = 1, . . . , m and
l = 1, . . . , k we call fully paired. The other extremal case is k = 1, which we
call the unpaired situation.

Weakly paired data is common in multimodal data processing. For example,
in video processing the groups could correspond to separate scenes for which
we have data in the modalities: visual content, audio soundtrack, and textual
subtitles. Unfortunately, existing techniques require fully paired data, which can
introduce artificially overconstrained systems. In the above video example, one
could pair each frame with the audio and subtitle content shown simultaneously
with it. However, many of the correspondences introduced this way will be in-
correct, as the synchronization between visual and other content is typically on
a time scale much larger than the individual frame label.

3 Weakly Paired Maximum Covariance Analysis

In this section we derive a method for inductive multimodal dimensionality re-
duction with weakly paired data that we call weakly paired maximum covariance
analysis (WMCA). It can handle weakly paired and even unpaired data, because
it infers suitable pairings directly from the data instead of requiring them a pri-
ori. This makes WMCA robust against missing data and enables it to process
datasets where the domains have different numbers of samples, whereas previous
techniques only worked if n1 = · · · = nm and the data was fully paired.

3.1 Linear Weakly Paired Covariance Maximization

We first study linear multimodal dimensionality reduction, and in order to sim-
plify the notation we restrict the discussion to two modalities X ∈ Rd×n and
X ′ ∈ Rd′×n′

. We will discuss the non-linear case in Section 3.2, and the extension
to more than two modalities in Section 3.3.

In linear dimensionality reduction the dimensionality reduction functions can
be written as f(x) = W tx for a matrix W ∈ Rd×q, and f ′(x′) = W ′tx′ for a
matrix W ′ ∈ Rd′×q′

. The lower dimensional representations are thus X̂ = W tX
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and X̂ ′ = W ′tX ′. Typically, W and W ′ are assumed orthogonal matrices, so they
contain the basis vectors of the linear subspaces of Rd and Rd′

to be retained.
The most popular technique for generative linear dimensionality reduction is

principal component analysis (PCA). PCA finds a lower-dimensional represen-
tation that retains as much of the original signal’s variance as possible. PCA
can also be used to process fully paired multimodal data (by stacking the data
vectors), but this does not qualify as a multimodal technique in the sense of Def-
inition 2, since the construction requires that all modalities are also present in
future data. The truly multimodal counterpart to PCA is maximum covariance
analysis (MCA) [31], which would be ideal for our purposes, except that it also
requires fully paired data.

Definition 4 (Maximum Covariance Analysis). Let X and X ′ be fully
paired datasets, i.e. for X = (x1, . . . , xn) and X ′ = (x′

1, . . . , x
′
n) there is a pair-

ing between each xi and x′
i. Let X and X ′ be centered, i.e. 1

n

∑n
i=1 xi = 0 and

1
n

∑n
i=1 x′

i =0. Maximum covariance analysis (MCA) performs multimodal
dimensionality reduction with projection matrices W, W ′ that solve

maxW,W ′ tr
[
W tXX ′tW ′] (2)

where the maximization runs over all orthogonal d × q and d′ × q matrices.

Note that the condition of centered data is not severe, as we can center every
dataset by subtracting the data mean from all samples.

MCA gets its name from the fact that the objective function (2) measures
the total covariance between the individual dimensions of X̂ = W tX and X̂ ′ =
W ′tX ′, as one can see from rewriting tr[W tXX ′tW ′] =

∑q
p=1[W

tX ]tp[W
′tX ′]p

where [.]p indicates the p-th column.
Even though MCA is a strong method for multimodal dimensionality reduc-

tion, it has found relatively little application in computer vision contexts. We
believe that the main reason for this is that MCA requires fully paired data,
which realistic computer vision tasks often do not provide. In the rest of this
section, we show how MCA can be extended to the weakly paired situation,
calling the result weakly paired maximum covariance analysis (WMCA).

Definition 5 (Weakly Paired Maximum Covariance Analysis). Let X
and X ′ be centered data sets that are weakly paired as specified in Definition 3.
Weakly paired maximum covariance analysis (WMCA) performs multi-
modal dimensionality reduction with projection matrices W and W ′ that solve

maxW,W ′,Π tr
[
W tXΠX ′tW ′], (3)

where W and W ′ run over all orthogonal d × q matrices and d′ × q matrices,
respectively. Π runs over all n×n′ pairing matrices that respect the group struc-
ture of X and X ′, i.e. Π = diag(Π1, . . . , Πk), where for l = 1, . . . , k we have
Π l ∈ {0, 1}nl×n′

l such that
∑nl

i=1 Π l
i,j ≤ 1 for all j = 1, . . . , n′

l and
∑n′

l

j=1 Π l
i,j ≤ 1

for all i = 1, . . . , nl.
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There is no single closed form solution to the optimization (3), as it requires
both continuous optimization for W and W ′, and combinatoric optimization for
Π . Furthermore, it is a high-dimensional non-convex problem, such that finding
the global optimum in a numeric procedure is typically not possible. We can,
however, efficiently find a locally optimal solution by alternating maximization:

• For known Π , solve

W, W ′ = argmaxW,W ′ tr
[
W tXΠX ′tW ′] (4)

Because Π is assumed to be known, the structure of this maximization is
the same as when performing MCA with fully paired data. We obtain the
basis vectors that form W and W ′ by computing the SVD of the matrix
XΠX ′t ∈ Rd×d′

, and keeping the q components in both domains with the
largest singular values. When q is much smaller than d and d′ (which is
the typical case), we can use techniques for accelerated SVD computation,
e.g. based on random projections [24]. This allows the efficient solution of
Equation (4) even when d and d′ are in the range of thousands or larger.

• For known W and W ′, solve

Π = argmaxΠ tr
[
W tXΠX ′tW ′]. (5)

Given that tr
[
W tXΠX ′tW ′] = tr

[
X ′tW ′W tXΠ

]
and Π ’s special proper-

ties, the optimization (5) corresponds to a linear assignment problem with
cost matrix [X ′tW ′W tX ]t ∈ Rn×n′

. Furthermore, because of the diagonal
block structure of Π , we can solve k separate problems of size nk×n′

k instead
of one big one of size n × n′. Consequently, Equation (5) remains solvable
in an efficient way even for large sample sizes, e.g. using the Hungarian
algorithm [14] or LAPJV [13].

In both steps of the algorithm we maximize the same objective function. There-
fore its value will increase monotonically over the iterations, which provides us
with a natural stop criterion; we have reached a local maximum if the objective
value does not increase any further.

To obtain a complete algorithm, we need a start value for Π . Unless some rea-
sonable pairing is known a priori, we use Π = diag(Π1, . . . , Πk) with Πk ≡ 1

nkn′
k
.

This is not a pairing matrix in the sense defined above, but it ensures that all
data samples have influence on the initial choice of W and W ′. The pairing prop-
erty of Π will be established during the first solution of the maximization (5).
As the alternating optimization algorithm is only locally convergent, it could
also be run multiple times from different, e.g. random, start configurations. In
our experiments, this did not lead to noticeable improvement, indicating that
the above choice of Π is already a good heuristic.

3.2 Nonlinear Weakly Paired Covariance Maximization

Nonlinear dimensionality reduction techniques are often more powerful than lin-
ear ones, because they have more flexibility in the dimensionality reduction func-
tion that they output. MCA and WMCA can be made into non-linear techniques
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by kernelization. As the necessary steps are very similar to, e.g., the derivation
of kernelPCA from PCA we only outline them here, and refer the reader to [28]
for a more detailed description of kernelization.

For kernelization, we require positive definite and symmetric similarity mea-
sures between samples, called kernel functions, that we denote by k : Rd ×Rd →
R and k′ : Rd′ × Rd′ → R. Arguments from functional analysis show that any
such kernel function corresponds to an inner product in a latent Hilbert space,
and that it induces a latent feature map from the original data domain to this
space [28]. Kernelized WMCA now consists of mapping the input data into the
latent Hilbert spaces and performing linear WMCA on the resulting data sets.
In the kernelized form, the optimization problem (3) becomes

maxA,A′,Π tr
[
AK̄ΠK̄ ′A′t], (6)

where K̄ and K̄ ′ are the centered kernel matrices. K̄ is computed by forming
the kernel matrix K ∈ Rn×n as [K]ij = k(xi, xj) and then centering it using
the formula K̄ = K − 1

n1nK − 1
nK1n + 1

n2 1nK1n, where 1n denotes the n× n
matrix in which all elements are 1. K̄ ′ is computed from k′ in the analogous
way. Centering the kernels ensures that the implicitly defined feature vectors
have zero mean in the latent feature space.

We solve the optimization problem (6) with the same alternating optimization
scheme described previously with two differences:

• In contrast to W, W ′, the matrices A ∈ Rn×q and A′ ∈ Rn′×q are not orthog-
onal. Instead they have to fulfill conditions AtKA = Id and A′tK ′A′ = Id,
which expresses orthogonality in the latent feature space. We obtain the rows
of A and A′ from a generalized eigenvalue problem:(

0 KΠK ′

K ′ΠtK 0

)(
a
a′

)
= λ

(
K 0
0 K ′

)(
a
a′

)
. (7)

Solving Equation (7) is computationally more costly than solving (4). How-
ever, because we are interested only in the q eigenvectors of highest eigen-
value, we can still solve it efficiently using, e.g., the power method [7].

• When solving for A and A′ in this way, the matrix KΠK is of size n × n′

instead of d × d′. In the case where the number of data samples is smaller
than the number of original data dimensions, it can be advantageous to use
the kernelized formulation (6) also for the linear case. For this, one uses
linear kernels k(x, x̃) = xtx̃ and k′(x′, x̃′) = x′tx̃′ and obtains the solutions
of the problem (4) as W = AtX and W ′ = A′tX ′.

Kernelized WMCA provides reduction functions f : Rd → Rq and f ′ : Rd′ → Rq

by setting f(x) = AtK(x) with K(x) = (k(x, x1), . . . , k(x, xn))t and f ′(x′) =
A′tK ′(x′) with K ′(x′) = (k′(x′, x′

1), . . . , k
′(x′, xn′))t. Thus it is an inductive

multimodal dimensionality reduction technique. Besides its flexibility to learn
nonlinear projection functions, kernelization has another advantage. It allows us
to process data sources that are provided in a different form than as vectors, e.g.
text documents or graphs. In such scenarios, only a similarity measure, with the
properties of a kernel function, needs to be defined to create Equation (6).
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3.3 WMCA for More than Two Modalities

So far, we described WMCA for two data sources. An extension to more than two
modalities is straightforward by reformulating the objective function as the sum
of all pairwise covariances between all modalities. Thus, Equation (3) becomes

max
W (1),...,W (m)

Π(1,2),...,Π(m−1,m)

tr
[ m∑

i,j=1

W (i)X(i)tΠ(i,j)X(j)W (j)t
]
, (8)

with the convention that Π(i,i) = 0 and Π(i,j) = Π(j,i)t, and Equation (6) into

max
A(1),...,A(m)

Π(1,2),...,Π(m−1,m)

tr
[ m∑

i,j=1

A(i)K̄(i)tΠ(i,j)K̄(j)A(j)t
]
. (9)

Both systems can be solved by alternating maximization, where the step of
finding the projection directions is solvable as an eigenvalue problem (general-
ized for the kernelized case), and finding the sample pairings requires solving
1
2m(m−1) linear assignment problems. Note that this quadratic scaling in the
number of modalities does not pose a practical problems, since the majority of
multimodal datasets utilize only a small number of modalities.

4 Related Work

As a classical dimensionality reduction technique, MCA comes from the same
family of standard statistical methods as PCA, LDA and CCA. It also forms the
basis for partial least squares (PLS) regression (PLS) [33]. Over the last 10 years,
all of these techniques have been kernelized into non-linear versions [3,27,28]. The
kernelization approach we take in Section 3.2 is similar to these, and the resulting
expressions resemble the ones for kernel canonical correlation analysis (kernel-
CCA) [9]. KernelCCA also acts on multimodal data, but it would not have been
a suitable basis for our purposes, as it is not generative. Furthermore, kernel-
CCA requires a priori setting of a regularization parameter for each modality,
whereas, except for the number of output dimensions, MCA and WMCA are
parameter-free. Nevertheless, CCA and kernelCCA are probably the most com-
mon methods for multimodal dimensionality reduction, typically in situations
with a single fixed target application, e.g. fMRI analysis [8], image clustering
[5], speaker identification [18], or shape recovery [16]. Alternative approaches
include multimodal pLSA [17] or Hilbert-Schmidt dependence maximization [4],
but these require a more careful experimental setup and are computationally
more demanding. In contrast, the classical methods, and also WMCA, can be
implemented with off-the-shelf components, typically just matrix operations.

To our knowledge, WMCA is the first multimodal dimensionality reduction
technique that can efficiently handle weakly-paired data in the sense of Defi-
nition 3. The idea of treating unknown correspondences as latent variables and
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optimizing over them, however, has been used in previous applications, including
the classical k-means [20] algorithm, where one alternates between the centroid
computation and the cluster assignment. An optimization similar to ours occurs
in [4], which also alternates between a search for projection directions and for
assignments. However in both cases the assignments are between sample and
clusters, not between samples in different data modalities. WMCA’s aspect of
identifying relevant elements in groups of samples is somewhat related to witness
approaches in multiple instance learning [1]. However, the criterion by which the
elements are identified and the overall problem framework are very different.

5 Experimental Evaluation

In this section we show that due to its use of multimodal information, WMCA
is often able to find low dimensional representations that reflect the informa-
tion content of a data source better than a unimodal treatment of the same
data. For this, we perform experiments on two realistic datasets: one for texture
discrimination and one for transfer learning.

5.1 Texture Discrimination

As described in the introduction, generative dimensionality reduction aims at
finding data representations that are suitable for different subsequent tasks. In
this section we study this by performing texture discrimination both as an unsu-
pervised and as a supervised learning problem. Note that both scenarios occur in
real world scenarios. For example, in robot navigation it is important to classify
surfaces into a set of known classes, such as road or quick sand (supervised).
However, in order to collect probes in a new environment, the robot also needs
to be capable of handling previously unobserved surface types, e.g. by grouping
them based on their material properties (unsupervised).

To perform experiments on both setups we use a multimodal Materials dataset1

that consists of images as well as audio signatures for 17 different materials (e.g.
bricks, styrofoam, wallpaper, and woven carpet), see Figure 1. In contrast to
available datasets with artificially constructed perfect pairings, the situation for
this data is closer to the real problems that occur in multimodal data acqui-
sition. The audio signal is recorded by dragging a small audio probe over the
textured surfaces multiple times, and measuring the induced characteristic vi-
brations with a microphone. The images are captured using an ordinary digital
camera. It is a priori unknown how a meaningful pairing should be constructed
between the audio signals, which reflect a trajectory over the surface, and the
rectangular regions depicted in the images. Also the conditions under which both
modalities can be obtained differ: to capture images, one needs acceptable view-
ing conditions (e.g. no dust or fog). However, once this situation is established,
each image contains a large amount of information from different physical lo-
cations. Audio recording in the described setup works by physical contact to
1 The data set and source code are available at http://www.ist.ac.at/~chl

http://www.ist.ac.at/~chl
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the material. The sensor can be shielded from environmental influences, but the
information obtained is only very local.

We demonstrate how multimodal dimensionality reduction can be beneficial
under such conditions by adopting an asymmetric multimodal setup: we use
image and audio data to compute dimensionality reduction function, but we
assume that only audio information is available at the time of application.

Fig. 1. Example images and audio signals from the multimodal Materials dataset

Data. The multimodal Materials dataset contains data from 26 textured plates
made from 17 different material types. From each plate we recorded five audio
signal with 44.1 kHz sampling frequency and segmented them into 450 overlap-
ping sections of 50 ms, which we represented by phase and amplitude invariant
cepstral features [19]. We clustered the resulting 58 500 feature vectors into an
auditory codebook using k-means and represented each recording by a 1000-bin
histogram, like in a bag-of-words representation. For the image data, we took
high resolution photos with different in-plane rotations for a total of four to
eight grayscale images per material. We computed local binary patterns over 8-
neighborhoods considering only uniform patterns [21] such that any image region
can be represented by a 58-dimensional histogram. Note that we intentionally
chose a setup that is simple and easy to reproduce instead of a more powerful
texture representation because our goal is not to improve the state of the art in
texture classification but to examine the properties of multimodal feature extrac-
tion. To match the one-dimensional nature of the audio domain, we extracted
single-pixel image strips with 16 pixel offset between them, resulting in a total
of 32 histograms per image. For both, audio and visual data, we normalized each
feature dimension to have zero mean and unit variance in order to reduce the
influence of some histogram bins being more populated than others.

Experimental Setup. Our experiments reflect the situationwhere image andau-
dio are present during dimensionality reduction itself, but only audio in the later
application tonewdata.For thiswe split thedata into twoequally sizedparts, called
context and task data. We use WMCA to compute projection directions from the
context data. As no perfect pairing between images and audio samples is available,
we rely on the weak pairing information provided by the knowledge of which audio
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Fig. 2. Dimensionality reduction for unsupervised and supervised texture discrimina-

tion. The plots depict the conditional entropy (left, lower is better) and multi-class

accuracy (right, higher is better) for different numbers of output dimensions.

signalwas recording fromwhich surface. In this linear bimodal case, each iteration
of the WMCA algorithm takes only seconds. Convergence takes 2 to 50 iterations,
depending on the output dimensionality.

We use the resulting dimensionality reduction functions to project the audio
part of the task data to a new representation, and we measure the resulting
clustering and classification performance. The unsupervised setup consists of
applying k-means and measuring the quality of the resulting clusters by com-
puting the conditional entropy measure [26,32] with respect to the ground truth.
To simplify the setup we assume that the correct number of clusters is known
a priori. In practical application, this number would have to be estimated from
data. For the supervised setup, we measure the classification accuracy of a leave-
one-out classifier; that is, for every point in the task set we determine its nearest
neighbor and compute how often the labels of both samples coincide. For com-
parison we report the results of two baseline methods: unimodal dimensionality
reduction with PCA that we apply separately to each modality, and fully-paired
CCA, that is applicable when we use the data means of each weakly-paired group
as input instead of the original samples (denoted μCCA). In addition we report
the results without applying any dimensionality reduction.

Results. Figure 2 shows the results of the described procedure as mean and
standard deviation over 100 random stratified splits of the data into context and
task sets. We observe the same effect in both setups: all techniques identify the
relevant output dimensions first and cause better results than when no dimen-
sionality reduction is applied. However, when the number of output dimensions
is increased, PCA starts to recover noise dimensions which decreases the perfor-
mance, whereas WMCA’s performance remains stable. Because μCCA uses the
group means as inputs, it has only as many input samples as there are groups
and therefore it cannot recover more than 17 output dimensions in this setup.
In conclusion, the results of this section show that the main positive effect of
using the multimodal dimensionality reduction in this case is improved noise
suppression, which results in higher robustness in the choice of the number of
output dimensions.
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5.2 Transfer Learning

The previous experiments showed that WMCA is able to use multimodal data
to infer which data dimensions are relevant and which are not. In this section
we show how a similar effect can be used for transfer learning with attribute
representations. Transfer learning consists of solving a learning task by making
use of another, related, learning task, see [23] for a general overview and [22] for
the specific case of transfer learning by dimensionality reduction. In our case, we
want to improve the accuracy of an image classification system by making use
of the data from another image classification task despite the fact that this has
a disjoint set of classes and examples.

Data. For our experiments we use the Animals with Attributes (AwA)2 dataset
that has recently been introduced as a benchmark for attribute-based classifi-
cation [15]. It consists of approximately 30,000 images of 50 animals classes as
well as descriptions of the classes in terms of 85 binary semantic attributes, see
Figure 3. The images are represented by the feature vectors that come with the
dataset (based on SIFT, SURF, colorSIFT, local self similarity and color his-
togram features). We concatenate these into 10688-dimensional feature vectors
and we remove the effect of inhomogeneous feature scaling by normalizing each
dimension to zero mean and unit variance. The transformations necessary for
this are saved in order to apply them to the task data later.

Experimental Setup. In our experiment largely follow the protocol of [15]. We
split the set of classes into a context part consisting of forty classes and a task
part consisting of ten classes. From the context data we chose 100 images per
class, except for the mole category which has only 92 images that we use all, and
we apply WMCA with the attribute representation as a second modality that is
not available at test time. By assuming only a weak pairing between the domains,
WMCA in particular is able to ignore outliers in the training set, whose actual
image contents do not coincide well with the attribute vector. The quality of the
resulting representation is determined by measuring the accuracy of a classifier
for the task data. As baselines we again compute projection directions using PCA
and CCA of the group means (μCCA). Because we assume that the context part
has label information, we are able to also use LDA as a baseline. Additionally,
we also include the case of not doing dimensionality reduction.

On the task set, we perform image classification in a Caltech-like setup. We
randomly select a small number of training images per class, and classify a
disjoint set of 30 randomly chosen test images using the nearest neighbor decision
rule in the feature space induced by the projection directions found during the
context stage. As in the case of texture discrimination our experimental setup
is motivated by easy reproducibility. In particular we avoid free parameters that
require model selection.

Results. Figure 4 shows the results for different numbers of training images
and output dimensions as mean accuracy and standard error over 100 train/test

2 Available for download at http://attributes.kyb.tuebingen.mpg.de

http://attributes.kyb.tuebingen.mpg.de
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otter

black: yes
white: no
brown: yes
stripes: no
water: yes
eats fish: yes

polar bear

black: no
white: yes
brown: no
stripes: no
water: yes
eats fish: yes

zebra

black: yes
white: yes
brown: no
stripes: yes
water: no
eats fish: no

Fig. 3. Example images and attributes from the Animals with Attributes dataset

Fig. 4. Results of attribute-based transfer learning. The plots show the multi-class

accuracy (y-axis) with ntrain training images for different number of output dimensions

(x-axis).

splits. When few training examples are available (top row), the representation
found by WMCA leads to significantly higher classification accuracy than the
representations obtained by PCA and also those by not using dimensionality
reduction. When the number of training examples is increased WMCA is still
superior to PCA when few output dimensions are wanted, but both are not able
to exceed classification accuracy without dimensionality reduction anymore. This
is consistent with the general observation that transfer learning works best in
the regime when few training examples are available. However, dimensionality
reduction can still be beneficial if runtime is an issue, as it makes the nearest
neighbor lookup considerably faster than when the full features vectors are used.

μCCA leads to lower classification accuracy than both generative methods.
Also, the performance does not improve any further when the number of output
dimensions exceeds 10, which we interpret this as an overfitting effect. Because
the data means provide only 40 data points, highly correlated directions can
occur just due to noise effects. The plots in Figure 4 do not contain LDA, which
never achieved classification accuracies that where significantly better than the
chance level. The reason for this is LDA’s discriminative objective. When applied
to the context data it identifies projection directions that best encode the context
class structure, but these do not reflect the class structure in the task set.
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Overall, the results we achieve are comparable with previous work on the
AwA dataset, which is known to be a difficult one. The most similar setup to
ours is [29], where linear distance learning resulted in 23.7% accuracy in a one-
shot setup, and a logistic representation in 27.2%. In [15], accuracies of 27.8%
and 40.5% are reported, but based on a different test situation that made use of
the attribute description at test time.

6 Conclusions

We have introduced weakly-paired maximum covariance analysis (WMCA) for
multimodal dimensionality reduction. It overcomes the main limitation of MCA,
from which it is derived, as it does not require fully paired data. Instead it
treats missing pairings as latent variables which are inferred jointly with the
projection directions. We showed how WMCA can be kernelized to perform
non-linear dimensionality reduction. However, from a practical point of view, the
most satisfactory setup is the linear two-modality case, where solving WMCA
requires only two very efficient standard procedures: solving linear assignment
problems and singular value decompositions.

In our experiments we illustrated two applications where multimodal dimen-
sionality reduction was beneficial. In texture discrimination, WMCA produced
more robust representations than the baselines. In transfer learning, when few
training examples are available, WMCA was able to improve classification accu-
racy by transferring information from a context set to the main task.

Our initial experience with WMCA opens several directions for future work.
Apart from practical application in robotics and video retrieval, we plan to derive
more efficient techniques for applying kernelized WMCA at test time, e.g. based
on reduced set methods and sparsification.
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Abstract. In this paper we develop an algorithm for structured predic-

tion that optimizes against complex performance measures, those which

are a function of false positive and false negative counts. The approach

can be directly applied to performance measures such as Fβ score (natu-

ral language processing), intersection over union (image segmentation),

Precision/Recall at k (search engines) and ROC area (binary classifiers).

We attack this optimization problem by approximating the loss function

with a piecewise linear function and relaxing the obtained QP problem

to a LP which we solve with an off-the-shelf LP solver. We present ex-

periments on object class-specific segmentation and show significant im-

provement over baseline approaches that either use simple loss functions

or simple compatibility functions on VOC 2009.

1 Introduction

Solving challenging vision problems such as image understanding, image seg-
mentation, and video retrieval arguably requires the use of “complex” struc-
tured models – those incorporating relationships between multiple input and
output entities. Evidence for this comes from state-of-the-art approaches to the
aforementioned problems. For example, Hoiem et al. [1] formulate image un-
derstanding models that tie together object locations, camera parameters, and
surfaces. Blaschko and Lampert [2] localize objects using an efficient solution to
a structured output regression model. Desai et al. [3] learn models for simulta-
neously detecting all objects in an image. Non-max suppression and contextual
object co-occurrence statistics are learned in a discriminative fashion. Image seg-
mentation is a canonical example of structured labeling problem (e.g. [4,5,6]).

For many of these problems the natural performance measures are also “com-
plex” – ones that do not decompose into a simple sum of individual terms mea-
sured over each output entity. Examples of such measures are object detection
scores that penalize for multiple detections on a single true positive (e.g PAS-
CAL VOC [7]) and region labeling or object segmentation scores that penalize for
over and under labeling or segmentation (e.g. intersection / union score). Typical
methods for solving these problems learn parameters against other performance
measures, e.g. Hamming loss for segmentation, and then apply post-processing
techniques (e.g. non-maximum suppression in object detection) to address the

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 580–593, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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structure in the performance measure. Instead, in this paper we develop an algo-
rithm for linking these two together and formulate learning as jointly considering
the complex, structured relationships between output variables in the model and
in the learning objective.

The main contribution of this paper is developing a general algorithm for
addressing this type of learning problem with complex models and those complex
loss functions which are a function of false positive and false negative counts.
We specifically apply it to image segmentation, but note that the algorithm can
be applied more broadly. We experiment with a standard Markov Random Field
(MRF) segmentation model that contains both unary terms for labeling pixels
and pairwise terms on the labels of neighbouring pixels. We show that learning
the parameters to this model under an objective directly tied to the performance
measure significantly improves performance relative to baseline algorithms on the
PASCAL VOC Segmentation Challenge.

2 Previous Work

A wide range of learning algorithms exist. Despite technical differences, all of
these approaches rely on a performance measure to define what is a “good” result.
Based on the complexity of the performance measure, two general approaches to
optimize it are imaginable, formulate the learning problem to directly optimize
this measure, or approximate this measure with a simpler one and try to optimize
it aiming to indirectly optimize the original complex performance measure. We
will call the former “direct optimization” and the latter “indirect optimization”.

Due to the complexity of some performance measures, e.g., average preci-
sion and intersection over union, many state-of-the-art approaches in different
challenges exploit an indirect optimization. Looking at PASCAL VOC challenge
2009 [7], for example, average precision and intersection over union are defined
as performance measures for detection and segmentation tasks respectively, but
methods for both tasks use indirect optimizations for solving these problems.

Structured prediction has become popular in computer vision. Taskar et al. [8]
and Tsochantaridis et al. [9] have the same formulation for structured predic-
tion using a max-margin criterion. Both of them need to solve the “most violated
constraint” [9], or loss augmented inference [8] in each iteration of their gradient
descent to find the optimal parameters. They assume the loss function is de-
composable and therefore solving for the most violated constraint is as hard as
doing the inference without the loss function, which is assumed to be tractable.
Joachims [10] proposed an approach to efficiently compute the most violated
constraint when the loss function is not decomposable, but limited the underly-
ing model by allowing only simple compatibility functions, those which involve
only a single input and output. In this paper we provide an algorithm for struc-
tured prediction with a complex compatibility function that optimizes against
complex performance measures, those which are a function of false positive and
false negative counts.
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3 Background

To create a foundation for the proposed approach, we start with an overview
of our learning formulation. Next, we discuss the two common approaches, one
based on a simple loss function with a complex compatibility function and the
other with complex loss function and simple compatibility function. We call a loss
function simple if it can be decomposed into loss on individual training samples.
Likewise, a compatibility function is called simple if it only depends on a single
sample point and its ground-truth label. Finally, we propose a framework to
incorporate certain complex loss functions and complex compatibility functions
in structured prediction.

3.1 Problem Formulation

The goal of our learning problem is defined as finding a function h ∈ H from
the hypothesis space H given training samples S = ((x1, y1), . . . ,(xN , yN )) that
optimizes the expected prediction performance on the new samples S′ of size n′.

RΔ(h) =
∫

Δ((h(x′
1), h(x′

2), . . . , h(x′
n′)), (y′

1, y
′
2, . . . , y

′
n′))dPr(S′). (1)

In general, the loss function Δ cannot be decomposed into a linear combination of
a loss function δ over individual samples. But, for simplicity, most discriminative
learning algorithms (e.g. SVM) assume decomposibility and i.i.d. samples, which
allows for rewriting Eq. 1 as

RΔ(h) = Rδ(h) =
∫

δ(h(x′), y′)dPr(x′, y′). (2)

Instead of solving the estimated risk in Eq. 2, learning algorithms approximate
that with empirical risk R̂δ defined as

R̂δ(h) =
1
n

N∑
i=1

δ(h(xi), yi). (3)

For non-decomposable loss functions, such as F1 score or intersection over union,
optimizing Eq. 2 does not provide the desired answer. Rather, we are interested
in finding an algorithm that can directly optimize the empirical risk based on
the sample loss,

R̂Δ
S (h) = Δ((h(x1), h(x2), . . . , h(xn)), (y1, y2, . . . , yn)). (4)

Note that finding an h ∈ H that optimizes Eq. 4 for an arbitrary loss function
Δ can be computationally challenging.

3.2 Structured Prediction Learning

For non-decomposable loss functions, one can reformulate the SVM based on
the idea of multivariate prediction [10]. Instead of having a mapping function
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h : X → Y from a single example x to its label y, where x ∈ X and y ∈
{−1, +1}, we look at all examples at once and try to learn a mapping function
h̄ : X × · · · × X → Ȳ, where Ȳ ∈ {−1, +1}N . We define x̄ = (x1, . . . , xN ), and
y = (y1, . . . , yN ).

We can define the best labeling using a linear discriminant function

h̄(x̄) = arg max
y′∈Ȳ

wT Ψ(x̄, y′). (5)

Here, function Ψ measures the compatibility of the data points and their assigned
labels. If we define the Ψ function as a simple form

Ψ(x̄, y′) =
N∑

i=1

y′
ixi, (6)

that only depends on individual training points and their labels, the optimal
labeling sequence is

arg max
y′∈Ȳ

wT Ψ(x̄, y′) = arg max
y′∈Ȳ

N∑
i=1

y′
iw

T xi = (h(x1), . . . , h(xN )), (7)

which is exactly the same as the optimal labeling in SVM.
One way of incorporating a loss function Δ in SVM formulation is Margin

Rescaling[9],
min

w,ξ≥0
‖w‖2 + Cξ (8)

s.t. ∀y′ ∈ Ȳ\y, wT [Ψ(x̄, y) − Ψ(x̄, ȳ′)] ≥ Δ(y, y′) − ξ (9)

Similar to the original SVM formulation, ξ in Eq. 8 is an upper bound on
Δ(h̄(x̄), y)[10].

The guarantee for convergence in polynomial time, the potential for incorpo-
rating complex loss functions in the objective and good performance in practice
are the most important reasons why structured prediction has garnered much
attention in computer vision recently.

In the standard approaches for solving Eq. 8, the output vector, ỹ, corre-
sponding to the most violated constraint should be found repeatedly [9],

ỹ = arg max
y′∈Ȳ

Δ(y, y′) + wT Ψ(x̄, y′). (10)

Finding ỹ is computationally challenging given an arbitrary loss function,Δ(y, y′),
and compatibility function, Ψ(x̄, y′). However, solving Eq. 10 in two special cases
has been shown to be efficient. We categorize these approaches based on the
simplicity of their Δ and Ψ functions. We call a loss function simple if it can be
decomposed into individual training samples. Likewise, a compatibility function
is called simple if it decomposes over single sample points and their ground-truth
labels.
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3.3 Simple Δ, Complex Ψ

Optimizing the parameters of a MRF structure when the loss function can be
decomposed into the loss of individual samples falls into this category. One
popular application in this category is foreground-background segmentation with
Hamming loss, which is defined as

ΔH =
∑

i

�[yi �=y′
i]. (11)

Szummer et al. [6] have employed this formulation and reported promising results
for interactive segmentation.

Decomposibility of the loss function results in a MRF form for Eq. 10, because
the loss function can be treated as another unary term that adds up to the unary
terms of the compatibility function. Assuming binary labels, this MRF can be
solved efficiently using graphcut.

The advantage of this approach is to exploit pairwise connections, but it is
only tractable for decomposable loss functions.

3.4 Complex Δ, Simple Ψ

The other special case presented by Joachims [10], is when the Ψ function has a
simple form of

Ψ(x̄, y′) =
N∑

i=1

y′
ixi. (12)

If the loss function, Δ, is just a function of true positive (TP ), false positive
(FP ) and false negative (FN), then there are at most Np × Nn distinct loss
values, where Np and Nn represent the number of positive and negative training
examples, respectively. Hence, Eq. 10 can be solved by iterating over all loss
values and maximizing wT Ψ(x, y′) subject to the value of TP , FP and FN [10].

Unlike the approach of Szummer et al. [6], many standard accuracy measures
that lead to non-decomposable loss functions, such as Fβ score (natural language
processing), intersection over union (image segmentation), Precision/Recall at
k (web search engines) and ROC area (binary classifiers) can be directly opti-
mized by this approach. However, this method cannot benefit from the pairwise
interactions of training samples, which are shown to be advantageous in many
applications, such as object detection [3] and scene interpretation [1].

4 Proposed Approach: Solving Complex Δ, Complex Ψ

Discussing the advantages and shortcomings of the previous methods, we now
propose an approach to directly optimize certain complex loss functions in a
Markov network. Here, we can optimize non-decomposable accuracy measures,
such as Fβ and intersection over union and still be able to benefit from pairwise
interactions between training points.
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We choose to follow the general framework of StructuralSVM [9], shown in
Eq. 8. Solving Eq. 8 requires finding the most violated constraint (Eq. 10) at
each iteration and modifying the parameter vector w accordingly [9]. We propose
a novel method to efficiently solve for an approximate most violated constraint
for certain non-decomposable loss functions in presence of pairwise terms in the
compatibility function, Ψ .

We can summarize the proposed approach as

1. Replacing the original non-decomposable loss function with a piecewise linear
approximation,

2. Writing the problem of finding the most violated constraint as a quadratic
program,

3. Converting the quadratic program to a linear program and solve the relaxed
problem.

4.1 Piecewise Linear Approximation

Many standard accuracy measures, including the one presented in the previous
section, share the property that they can be computed from the contingency
table1. Given the number of positive and negative examples, Np and Nn, the
loss function corresponding to these accuracy measures is just a function of FP
and FN . Using piecewise linear approximation, we can write

Δ(FP, FN) � Δ̃(FP, FN) =
M∑

j=1

�[(FP,FN)∈Rj ] {αjFP + βjFN + γj} (13)

where, M is the number of subregions (pieces), αj , βj and γj represent the jth

plane coefficients and Rjs are the subregions that partition the space spanned
by FP and FN .

a b c

Fig. 1. Intersection over union loss surface in FP and FN space. a) Exact surface, b) a

piecewise linear approximation with 40 subregions, c) a piecewise linear approximation

with 15 subregions.

As an example, Figure 1 illustrates the intersection over union loss function,

Δ∩
∪
(FP, FN) =

FN + FP

Np + FP
, (14)

along with its piecewise linear approximations using 15 and 40 pieces.
Given the subregion Rj , the original non-linear loss function is a linear func-

tion of FP and FN . The next step is to substitute the approximated loss func-
tion, Δ̃ into Eq. 10 and solve for the most violated constraint.
1 Is just a function of TP , FP , TN and FN .
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4.2 Forming the Quadratic Program

Choosing the right form of Ψ function is crucial to achieve high performance. In
segmentation, for example, employing only unary terms in the Ψ function that
model the relationship between an observed pixel and its label result in a lack of
smoothness in the labeling. Hence, methods usually incorporate pairwise terms
in the Ψ function to smooth the output labeling. We define our Ψ with unary
and pairwise terms as

Ψ(x̄, y) =
∑

i

(2yi − 1)φu(xi) +
∑

i

∑
j∈Ni

(yi + yj − 2yiyj)φp(xi, xj). (15)

Here Ni is the set of neighbors of sample i and we have assumed y ∈ {0, 1}. We
rewrite Eq. 10 with approximated loss function, Δ̃ as

ỹ∗ = arg max
y′∈Ȳ

Δ̃(y, y′) + wT Ψ(x̄, y′) (16)

= arg max
y′∈Ȳ

Δ̃(y, y′) + wT
u

∑
i

(2y′
i − 1)φu(xi) (17)

+ wT
p

∑
i

∑
j∈Ni

(y′
i + y′

j − 2y′
iy

′
j)φp(xi, xj)

where w = [wu; wp] (concatenation of the two).
Note that FP =

∑
i (1 − yi)y′

i and FN =
∑

i yi(1 − y′
i), where yi is the true

label and y′
i is the predicted label for the ith example. If we assume that the loss

values fall in subregion Rk, we can write Eq. 17 as

ỹ∗ = arg max
y′∈Ȳ

(
αk

∑
i

(1 − yi)y′
i + βk

∑
i

yi(1 − y′
i) + γk + (18)

wT
u

∑
i

(2y′
i − 1)φu(xi) + wT

p

∑
i

∑
j∈Ni

(y′
i + y′

j − 2y′
iy

′
j)φp(xi, xj)

)
.

Note that Eq. 18 only includes the predicted label y′ in linear and quadratic
forms. Hence, we can write a quadratic program based on Eq. 18 subject to the
loss values being in subregion Rk,

Maximize:
αk

∑
i

(1 − yi)y′
i + βk

∑
i

yi(1 − y′
i) + γk + (19)∑

i

(2y′
i − 1)[wT

u φu(xi)] +
∑

i

∑
j∈Ni

(y′
i + y′

j − 2y′
iy

′
j)[w

T
p φp(xi, xj)]

Subject to:{∑
i

(1 − yi)y′
i,
∑

i

yi(1 − y′
i)

}
∈ Rk, i = 1, . . . , N (20)
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In order to have linear constraints in Eq. 20, the boundary of all subregions
should be definable as a linear function of y′. One way is to separate the sub-
regions by straight lines. If for example, we partition the space spanned by FP
and FN into triangles (Fig. 1b,c) then Eq. 20 will be substituted by three linear
constraints corresponding to the three sides of the triangle.

4.3 Converting Quadratic Program to Linear Program

The quadratic program in Eq. 19 is potentially non-convex, since there is no
constraint on the coefficients of the objective function. So, instead of looking for
a local optima of this non-convex function, we relax the problem (MAP-MRF
LP relaxation [11]) by introducing some variables that substitute the quadratic
terms in the objective function and form a linear program, which is convex. In
detail, we introduce four new variables corresponding to four different possible
configurations of a pair of labels as follows.

y00
ij ≡ (1 − y′

i)(1 − y′
j), y01

ij ≡ (1 − y′
i)y

′
j , y10

ij ≡ y′
i(1 − y′

j), y11
ij ≡ y′

iy
′
j. (21)

We also add a set of constraints to relate the introduced variables to y′ variables.
The final linear program is

Maximize:
αk

∑
i

(1 − yi)y′
i + βk

∑
i

yi(1 − y′
i) + γk + (22)∑

i

(2y′
i − 1)[wT

u φu(xi)] +
∑

i

∑
j∈Ni

(y01
ij + y10

ij )[wT
p φp(xi, xj)]

Subject to:{∑
i

(1 − yi)y′
i,
∑

i

yi(1 − y′
i)

}
∈ Rk, i = 1, . . . , N, j ∈ Ni (23)

y10
ij + y11

ij = y′
i (24)

y01
ij + y11

ij = y′
j (25)

y00
ij + y01

ij + y10
ij + y11

ij = 1 (26)

Solving this LP for thousands of binary variables (labels), is not computationally
tractable. So instead we relax the label values to real numbers between zero and
one and solve for optimal labeling. Later, we map the optimal labels to binary
values by rounding the results. We solve Eq. 22 for each subregion separately,
and return the labeling of the one with the maximum objective as the most
violated constraint.

5 Experiments

As a concrete example, we experiment on object segmentation using our pro-
posed approach. Given an input image, the goal is to produce a 0/1 mask, in
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which a pixel gets label 1 if it is part of a given object category and label 0
otherwise.

Dataset. We run our experiments on the VOC2009 Segmentation [7] dataset.
There are 749 images in the training set, 750 images in the validation set and 750
images in the test set. We train the parameters on the training set and evaluate
performance on the validation set so that we can directly compare to baseline
methods without relying on the VOC server. We compare the results using the
intersection over union accuracy measure on 6 out of 20 object categories that
can be localized the best employing our top-down features. Note that we perform
the experiments on these objects independently. For example, when we segment
object class car, any other object is taken as background. This is different from
the VOC segmentation challenge in which the segmentation result should contain
all object classes simultaneously. To combine our independent segmentations, we
would need to have a score for each foreground pixel. Then, we could assign a
pixel the label with maximum score. One way of scoring labels is the approach of
Kohli [12] that can exactly compute the min marginals for graph cuts, however
it is outside the scope of this paper.

Features. We define an MRF segmentation model with unary and pairwise
features, for which the approximate inference is performed using FastPD [13].
Instead of working on the pixel level we first group the pixels into superpixels,
which are fewer and therefore makes the learning process faster. Also they are
larger so can be represented by more meaningful features. We use the superpixel
extractor of Felzenszwalb et al. [14] that has three parameters. We set these pa-
rameters as k = 200, MinArea = 1330 and σ = 0.01. This setting of parameters
result in an average of 50 superpixels per image of size 300 × 500 pixels.

To represent each superpixel, we use a set of bottom-up and top-down fea-
tures, which form φu(xi) for superpixel i in Eq. 22. To create the bottom-up
features, we compute Color SIFT features [15] on a dense grid with 6 pixel spac-
ing in horizontal and vertical directions. We then turn this into a bag-of-words
representation using a codebook of 1000 visual words.

For top-down features, we take a similar approach to the implicit shape
model [16]. We first learn two appearance models for each of the 6 object cat-
egories using the detector of Felzenszwalb et al. [17]. The result includes two
root filters and 6×2 part filters, where each root filter and 6 corresponding part
filters model the object appearance in one pose. We run this detector on the
training set and collect all bounding boxes that have positive scores. We then
crop the ground-truth images on the bounding box locations and compute the
average shape for the roots and parts, Fig 2.

We explain the rest of the process for one part, but the same process is
applied to all parts and both roots. We find the potential part locations and
their confidences by running the detector on the image in different scales. We
call the result at each scale a confidence map, Fig. 3-b. Each potential part
location casts its vote for the shape of that part proportional to its confidence.
We implement this by convolving the confidence maps (different scales) with the
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Fig. 2. Visualization of the average root and part shapes for person category. Each

row corresponds to shape models obtained from root and part appearance models of

one object pose.

 

D
etector 

M
ax  

a b c d

Fig. 3. The process of computing top-down features. Instead of showing the center of

the detected parts we depict the bounding box for visualization purposes in the second

stage.

average shape for that particular part. We call the convolution result in each
scale a potential mask, Fig. 3-c. To merge the potential masks, we rescale them
to the original image size and get the maximum of the masks, Fig. 3-d. We
accumulate the mask values inside each superpixel to form the top-down feature
corresponding to the part. Fig. 3 depicts the entire process for one part.

To employ the pairwise interaction between neighboring superpixels i and j,
we define a set of pairwise features that represent φp(xi, xj) in Eq. 22. We first
convert the image from RGB to La∗b∗ color space. We define Li, ai and bi to
be the average L, a and b values inside superpixel i, respectively and assign the
length of the common boundary between superpixel i and j to Pij . We then
compute the pairwise features as

φp(xi, xj) = Pij . exp
[
−τ1(Li − Lj)2,−τ2(ai − aj)2,−τ2(bi − bj)2

]
. (27)
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In our experiments the values of τ1 and τ2 are set to 2 × 10−2 and 5 × 10−3,
respectively.

Results. We compare the proposed method to two other methods based on their
intersection over union segmentation accuracy. We use the same set of features
for all methods. All three methods share the same general framework as explained
by Tsochantaridis et al. [9]. The difference is in the form of their loss function Δ
and their compatibility function Ψ . The first approach BL1 uses a decomposable
Hamming loss function and a complex Ψ function including pairwise terms. The
second method BL2 has been presented by Joachims [10] that can optimize a
non-decomposable loss function, intersection over union in our experiment, but
only includes unary terms in the Ψ function. And finally, the third method is the
proposed approach that approximates the intersection over union loss function
and can handle Ψ functions with unary and pairwise terms. We also show some
segmentation results in Fig. 5 for all 6 object categories.

We use the same regularizer coefficient C = 1 for all three methods and set the
number of subregions, M , for our piecewise linear approximation to 40. First,
we triangulate the loss surface in FP, FN space finely. Then, we simplify the
mesh into 40 triangles using a software called “Polygon Cruncher”, which tries
to approximate the original mesh as close as possible. To solve the LP problem
of Eq. 22, we employ an off-the-shelf LP solver, Mosek [18].

Table 1. Intersection over union accuracies for 6 object categories

BL1 BL2 Proposed Method

Δ = Adjusted Hamming Δ = ∩
∪ Δ = ∩

∪
Unary + Pairwise Unary Unary + Pairwise

person 20.73 26.7 32.53

bus 25.49 22.65 31.69

aeroplane 21.23 12.65 32.11

car 23.37 22.86 27.83

horse 0.0 5.2 13.85

tv/monitor 2.24 6.63 12.69

In the training set, the number of superpixels that belong to the object are far
fewer than the number of background superpixels, e.g., 1 foreground superpixel
for every 25 background superpixels in person category. It means that reporting
all superpixels as background gives Hamming score of 24

25 or 96%. However, the
same result obtains zero score based on intersection over union, because the
intersection is simply empty. Therefore, we use adjusted Hamming loss defined
as

ΔAH = κFP + FN. (28)

By changing κ we can adjust the relative contribution of foreground and back-
ground labels. In our experiment we set κ for each object to the ratio of
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foreground and background superpixels in the training set. Without this adjust-
ment BL1 would always return every superpixel as background.

The results reported in Table 1 show significant improvement in segmentation
accuracy by the proposed method. Moreover, the results of BL1 and BL2 are
comparable in a sense that in half of the categories BL1 performs better than
BL2 and performs worse in the other half.

a b c

Fig. 4. Segmentation for person category. Optimizing adjusted Hamming loss (BL1)

against our proposed method. a) input image, b) segmentation considering adjusted

Hamming loss (BL1), c) our proposed method employing intersection over union. Inter-

section over union provides more true positives by possibly creating some false positives.

Adjusted Hamming loss decreases false positive by sacrificing some true positives.

We compare the effect of optimizing adjusted Hamming loss versus intersec-
tion over union in Fig. 5. Adjusted Hamming loss tends to return fewer false
positives, but with the cost of missing many true positives. In fact, it often
marks all pixels as background, while intersection over union actually produces
segmentations.
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Fig. 5. Some segmentation results. Each row corresponds to one object category.

6 Conclusion

In this paper we develop a general algorithm for addressing learning problems with
complex models and complex loss functions, those which are a function of false
positive and false negative counts. We replace the original non-decomposable loss
function with a piecewise linear approximation, and solve it using a linear pro-
gramming relaxation of the original quadratic program. In future work it would
be interesting to analyze the quality of these approximations. However, in this
work we have provided experimental evidence of their effectiveness. In particular
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we apply this method to learning an image segmentation model that contains both
unary terms for labeling pixels and pairwise terms on the labels of neighbouring
pixels. We show that learning the parameters to this model under an objective
directly tied to the performance measure significantly improves performance rel-
ative to baseline algorithms on the PASCAL VOC Segmentation Challenge.
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Abstract. We present a novel algorithm for approximating the param-

eters of a multivariate t-distribution. At the expense of a slightly de-

creased accuracy in the estimates, the proposed algorithm is significantly

faster and easier to implement compared to the maximum likelihood es-

timates computed using the expectation-maximization algorithm. The

formulation of the proposed algorithm also provides theoretical guidance

for solving problems that are intractable with the maximum likelihood

equations. In particular, we show how the proposed algorithm can be

modified to give an incremental solution for fast online parameter esti-

mation. Finally, we validate the effectiveness of the proposed algorithm

by using the approximated t-distribution as a drop in replacement for

the conventional Gaussian distribution in two computer vision applica-

tions: object recognition and tracking. In both cases the t-distribution

gives better performance with no increase in computation.

1 Introduction

Probability models are used in a wide range of applications in order to account
for the uncertainty of processes and observations in a principled way. Often the
true distribution underlying a process or observation is unknown or is difficult to
use. In these cases one option is to use a nonparametric distribution. However,
nonparametric distributions require a large amount of data to train, particularly
in high-dimensional spaces. A common alternative is to fit a generic parametric
probability model to the data.

By far the most commonly used parametric probability model is the multi-
variate Gaussian distribution. The Gaussian distribution is easy to use and has
a number of nice properties. Parameter estimation for the Gaussian distribution
is straightforward since its sufficient statistics are the parameters. Also, it is very
easy to compute the marginal and conditional distributions from the joint distri-
bution. However, for many applications the Gaussian distribution has tails which
are too light; it tends to underestimate the probability of rare events occurring,
which is unrealistic and can have a profound negative impact on performance.
[10, 14, 7]. For example, in a tracking application a target may undergo a sudden
change in illumination or may be partially occluded by another target. If these
rare events are ignored the tracking algorithm will fail.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 594–607, 2010.
� Springer-Verlag Berlin Heidelberg 2010

http://rvl.ecn.purdue.edu


Parameter Estimation for the Multivariate t-Distribution 595

Several alternatives to the Gaussian distribution have been proposed in order
to avoid this issue. One such alternative is the multivariate t-distribution [7]. The
t-distribution has a similar shape as the Gaussian distribution but with much
heavier tails. Because of the heavy tails, the t-distribution is a better model for
situations in which rare events commonly occur. The t-distribution is particularly
better suited for high-dimensional spaces where all events are expected to be rare.
The heavy tails of the t-distribution also increase the robustness in parameter
estimation, since the outliers in the data naturally have little overall impact on
the parameters [5]. This is in stark contrast to the Gaussian for which a few
outliers can dramatically change the parameter estimates of the distribution.

Despite these attractive properties of the t-distribution, it has not been widely
used. We believe this can be attributed to the lack of good estimation techniques
(in an engineering sense) for the parameters of the distribution. Numerous EM-
based iterative algorithms have been developed to compute the maximum like-
lihood estimates for the parameters of the t-distribution [8, 9, 10]. However,
because of their iterative nature, these algorithms are computationally expen-
sive. Also, these algorithms work on the dataset as a whole and cannot be incre-
mentally updated as new data becomes available. This deficiency severely limits
their usefulness in real time applications.

This paper addresses the problem of parameter estimation for the multivariate
t-distribution. We propose a new approximate algorithm which is both computa-
tionally efficient and incrementally updateable. The proposed algorithm provides
comparable estimation accuracy compared to the EM-based algorithms while
achieving a significant improvement in the computation time. Using the approx-
imation formula, we then develop an approximate incremental probabilistic PCA
(PPCA) for the t-distribution. Previous work has extended the idea of PPCA to
the t-distribution [17], but with a focus on extending the EM-based maximum
likelihood techniques. As we mentioned, these EM-based iterative estimators are
computationally expensive and cannot be updated incrementally, posing severe
limitations on the range of applications. We present an approximate incremental
approach which has equivalent computational requirements as the incremental
PPCA approaches for the Gaussian distribution [16, 11].

2 Multivariate t-Distribution

In this section, we will present some useful properties of the t-distribution, many
of which come from the seminal work by Kotz and Nadarajah [6].

2.1 Basic Properties

The pdf of the p-variate t-distribution with ν degrees of freedom is given by

f(x) =
Γ((p + ν)/2)

Γ(ν/2)(πν)p/2|S|1/2

[
1 +

1
ν

(x − c)T S−1(x − c)
]−(p+ν)/2

(1)

where c ∈ Rp is the location parameter and S ∈ Rp×p is the positive definite
scale matrix. Notationally we will write x ∼ t(c, S, ν). The vector c specifies
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the location of the single mode of the distribution. The matrix S specifies the
relative width of the central mode along each dimension and also the correlation
between dimensions. The degrees of freedom ν controls the heaviness of the tails
of the distribution. When ν = 1 we have the Cauchy distribution which has very
heavy tails while ν = ∞ gives the Gaussian distribution.

Many applications require the computation of the marginal distribution of one
or more random variables for which the joint distribution is known. This is easily
done with the multivariate t-distribution by simply partitioning the parameters
c and S, i.e. if x ∼ t(c, S, ν) and we define

x =
[
x1
x2

]
(2)

c =
[
c1
c2

]
(3)

S =
[
S11 S12
S21 S22

]
(4)

then x1 ∼ t(c1, S11, ν) and x2 ∼ t(c2, S22, ν). The conditional distribution
f(x2|x1) is unfortunately not a t-distribution and does not have a particularly
clean form. However, the expectation of x2 given x1 does have a nice form

E{x2|x1} = S21S−1
11 (x1 − c1) + c2 (5)

2.2 Sampling from the Multivariate t-Distribution

Generating samples from a multivariate t-distribution is fairly straightforward.
If y ∼ N (0, I) and γ ∼ χ2(ν) then the random vector

x =
√

ν

γ
TT y + c (6)

is distributed as x ∼ t(c, TT T, ν). Note that every entry in the random vector
x is scaled according to the same value γ. Because of this, even if the scale
matrix is diagonal the entries in x will not be independent. This is an important
limitation of the multivariate t-distribution.

3 Batch Parameter Estimation

3.1 Maximum Likelihood Estimator

The maximum likelihood estimates for the parameters of the t-distribution based
on sample data X = [x1 x2 . . . xn] must satisfy the following equations [10]

c =
∑n

i=1 wixi∑n
i=1 wi

(7)

S =
1
n

n∑
i=1

wi (xi − c) (xi − c)T (8)
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where
wi = (p + ν)

(
ν + (xi − c)T S−1(xi − c)

)−1
(9)

These equations cannot be solved to give closed form estimates for the parame-
ters. An EM-based approach can be used to iteratively estimate c, S, and ν which
satisfy these constraints [8, 9, 12]. While some variations of the implementation
may achieve a faster parameter estimation than others, fundamentally they are
all iterative algorithms, thus computationally expensive. More importantly, none
of these methods can be extended to efficiently update the estimates as new data
becomes available. All of the algorithms are based on computing weighted means
and covariances. Since the weight for each sample is a function of c, S, and ν,
the weights on old data will change as new data becomes available and hence
the old data must be included in the computation.

3.2 Approximate Algorithm

Special Case. To develop an approximate algorithm for computing the param-
eters we begin by considering the special case x ∼ t(0, αI, ν) for some constant
α > 0. In this special case the pdf of the norm of x is given by

f(‖x‖) =
2‖x‖p−1

B(ν/2, p/2)(αν)p/2

(
1 +

1
αν

‖x‖2
)−(ν+p)/2

(10)

where B(x, y) = Γ(x)Γ(y)Γ−1(x+y) is the beta function. The goal is to estimate
ν and α given sample data X = [x1 x2 . . . xn]. This can be done by considering
the following results

E{log ‖x‖2} = log α + log ν + ψ0

(p

2

)
− ψ0

(ν

2

)
(11)

V ar{log ‖x‖2} = ψ1

(ν

2

)
+ ψ1

(p

2

)
(12)

where ψ0(x) is the digamma function and ψ1(x) is the trigamma function.
Let zi = log ‖xi‖2 = logxT

i xi. To estimate ν we need to solve for ν̂ which
satisfies

ψ1

(
ν̂

2

)
=

1
n

n∑
i=1

(zi − z̄)2 − ψ1

(p

2

)
(13)

where z̄ = 1
n

∑n
i=1 zi. Unfortunately we cannot directly solve Eq. (13). However,

by using the approximation

ψ1(x) ≈ x + 1
x2 (14)

we can compute the estimate

ν̂ =
1 +

√
1 + 4b

b
(15)

with

b =
1
n

n∑
i=1

(zi − z̄)2 − ψ1

(p

2

)
(16)
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Fig. 1. An experimental evaluation of Eqs. 15 and 17 when applied to samples from

general t-distributions. Each figure is a normalized histogram over 10000 trials. For

each trial we set ν = 10u where u ∼ U(−1, 1) is a uniform random variable. The scale

matrix for each trial was a random positive definite matrix drawn from a Wishart

distribution and p was set to 50. The left figure compares ν̂ computed using Eq. 15 to

the true value ν. The right figure compares α̂ computed using Eq. 17 to the mean of

the diagonal entries of the scale matrix.

Finally, we use Eq. (11) to compute an estimate for the scaling

α̂ = exp
{

z̄ − log ν̂ + ψ0

(
ν̂

2

)
− ψ0

(p

2

)}
. (17)

General Case. We now consider the general case when x ∼ t(c, S, ν). The
location vector c can be estimated by considering each dimension of the data
separately and computing either the sample median or the mean of the center
25% of the data [13]. We will use ĉ to denote the estimate of the location vector.

Since our goal is a computationally efficient approximation rather than an
exact solution to the parameters we begin by estimating ν and α using the equa-
tions of the preceding section, i. e. we assume for the purpose of approximation
that S = αI for some α. This can be done by first computing zi = log ‖xi − ĉ‖2

and then directly applying Eqs. (15) and (17). In practice, the estimate ν̂ is a
good approximation to ν regardless of the structure of S as is shown in Fig. 1.
The slight positive bias may be due to the error in the approximation for the
trigamma function given in Eq. 14. The scaling estimate α̂ also provides a good
estimate for the mean of the diagonal entries of S, as illustrated by the results
shown in Fig. 1. Hence all that remains is to estimate the relative scaling of the
elements of S.

To estimate the relative scaling of the elements of S we use the auxiliary
matrix

S̄ =
1
n

n∑
i=1

(xi − ĉ)(xi − ĉ)T

‖xi − ĉ‖β
. (18)
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which is similar to the sample covariance except that each sample is first scaled
by the norm raised to a constant power β. We have experimentally validated
that a good choice for β can be given by

β =
2 log2 p

ν̂2 + log2 p
(19)

Note that for many applications p is large and ν̂ is small so we can directly use
β = 2. The scaling term in the denominator of Eq. 18 is necessary in order to
give a good approximation when ν is small. We can now apply the estimated
mean of the diagonal entries α̂ to obtain an estimate for S

Ŝ =
α̂p

tr
(
S̄
) S̄ (20)

This completes the development of the approximation algorithm which is given
in succinct form in Fig. 2.

ĉ = median of each dimension of the data

zi = log ‖xi − ĉ‖2 z̄ =
1

n

n∑
i=1

zi

b =
1

n

n∑
i=1

(zi − z̄)
2 − ψ1

(p

2

)
ν̂ =

1 +
√

1 + 4b

b

α̂ = exp

{
z̄ − log ν̂ + ψ0

(
ν̂

2

)
− ψ0

(p

2

)}
β =

2 log2 p

ν̂2 + log2 p

S̄ =
1

n

n∑
i=1

(xi − ĉ)(xi − ĉ)T

‖xi − ĉ‖β
.

Ŝ =
α̂p

tr
(
S̄
) S̄

Fig. 2. Batch Approximation Algorithm

3.3 Comparative Evaluation of Maximum Likelihood and
Approximation Algorithms

To evaluate the accuracy of the approximation algorithm we performed several
experiments on synthetic data. In three experiments we varied separately the
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Fig. 3. Comparison of the accuracy of the maximum likelihood and approximation

algorithms for estimating the parameters of a multivariate t-distribution. The accuracy

of the maximum likelihood Gaussian distribution is provided for comparison.

dimensionality p, the degree of freedom ν, and the number of training sam-
ples N . In each case we generated synthetic data using the sampling technique
described in section 2.2 and then computed the KL divergence from the true
distribution for both the maximum likelihood parameter estimates (computed
using the method in [9]) and the approximate parameter estimates. We also com-
puted the KL divergence from the true distribution for the maximum likelihood
Gaussian distribution in order to give a basis for comparison. The results are
shown in Fig. 3. As expected, the KL divergence of the approximation algorithm
is higher than that of the maximum likelihood algorithm. However, the approx-
imation algorithm is nearly as good across a broad range of parameter settings
and in particular it is significantly better than the maximum likelihood Gaussian
in every case.

The maximum likelihood estimator has slightly better accuracy but in many
other ways the approximate algorithm is superior. The primary advantages of
the approximate algorithm are
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Fig. 4. Training time on 200 samples as a function of p for the maximum likelihood

and approximate algorithms

– Computational Efficiency: Fig. 4 shows the running time for both meth-
ods as a function of the dimensionality p of the data based on a MATLAB im-
plementation. The approximate algorithm is consistently 50-100 times faster.

– Easy Implementation: Because the approximate algorithm is directly
computed there is no need for iterative looping in the code. This also elimi-
nates the need to check for convergence.

– Useful Theoretical Tool: We can use the approximate parameter estima-
tion equations as a basis for developing additional algorithms which would
not be possible with the maximum likelihood estimator, e.g. incremental
algorithms.

4 Incremental Parameter Estimation

Many real-time applications require online updating of the parameters of the
distribution. To handle this situation we present two incremental approaches
which can be used with the t-distribution based on the batch approximation
algorithm of the preceding section. The first approach is essentially a direct
extension of the batch algorithm. The second approach uses PPCA to estimate
the parameters under the assumption that the underlying dimensionality of the
model is much lower than the true dimensionality. Note that for both algorithms,
we can incrementally estimate ĉ without needing to store previously seen data
by using an online quantile estimator [15, 2].
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4.1 Direct Incremental Algorithm

In order to convert the batch algorithm to an incremental algorithm we need to
rewrite Eqs. (15), (17), and (18) to be incremental. To compute ν̂ and α̂ we need
to incrementally update estimates for the mean and variance of z = log ‖x− ĉ‖2.
After the kth sample, the mean z̄ and variance vz are updated by

z̄(k) =
k − 1

k
z̄(k−1) +

1
k

zk (21)

v(k)
z =

k − 1
k

v(k−1)
z +

k − 1
k2

(
zk − z̄(k−1)

)2
(22)

where zk = log ‖xk − ĉ(k)‖2, i.e. we use the best available estimate for c for each
incremental update. Because the estimate for c changes with each sample these
incremental update formulas will not give exactly the same results as the batch
algorithm. In practice this is typically not a problem. However, when k is very
small we must be careful to ensure that ‖xk − ĉ(k)‖2 = 0. One way to do this is
to store the first few samples and use these to compute a batch estimate before
switching to the incremental estimator.

We can now directly use Eq. (15) to conclude that the estimate for ν after
the kth sample is given by

ν̂(k) =
1 +

√
1 + 4b(k)

b(k) (23)

where
b(k) = v(k)

z − ψ1

(p

2

)
(24)

Similarly, the estimate for α is given by

α̂(k) = exp
{

z̄(k) − log ν̂(k) + ψ0

(
ν̂(k)

2

)
− ψ0

(p

2

)}
. (25)

The last step is to compute an estimate for S̄. Under the assumption that p
is large and ν is small (and hence β = 2 in Eq. (19)) we use the estimate

S̄(k) =
k − 1

k
S̄(k−1) +

1
k

[
(xk − ĉ(k))(xk − ĉ(k))T

‖xk − ĉ(k)‖2

]
(26)

where again we use the best available estimate for c for each update. Again we
must be careful to ensure that ‖xk − ĉ(k)‖2 = 0. This is most likely to occur
when k is very small and as a solution, as already stated, we use the first few
samples to compute a batch estimate of S̄ before switching to the incremental
algorithm.

4.2 PPCA for t-Distribution

Although PPCA was originally developed in the context of the multivariate
Gaussian distribution the idea has been extended to the t-distribution [16, 17].
The idea behind PPCA is to model the scale matrix in the following way

S = sI + WWT (27)
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where s > 0 captures the general level of uncertainty in the random variable
while W ∈ Rp×q, q < p, captures the correlation between dimensions. Since we
typically have q � p, this model for S can be trained with significantly fewer
data samples while still providing a powerful model.

The maximum likelihood estimates for W and s can be obtained through
an iterative EM-based approach [17]. Once again, this approach is too slow for
practical use in many computer vision problems. As an alternative, we present
an incremental algorithm based on the approximate incremental estimator of the
preceding section. The key is to note that the incremental equation for α̂ given
in the preceding section is still applicable and so instead of directly modeling S
as in Eq. 27 we can instead model S̄. Specifically, the goal is to find estimates
for ŝ and Ŵ such that

S̄(k) ≈ ŝ(k)I + Ŵ(k)
(
Ŵ(k)

)T

(28)

Since S̄ is in essence a weighted covariance matrix the incremental update
formulas for PPCA with the multivariate Gaussian distribution can be used as
a template for how to estimate ŝ and Ŵ [11]. The idea is to use

Ŵ(k) = V(k)(Λ(k) − ŝ(k)I)1/2 (29)

where Λ(k) is a diagonal matrix of the q largest eigenvalues of S̄(k) and the
columns of V(k) ∈ Rp×q are the corresponding eigenvectors.

The first step is to rewrite the incremental update equation for S̄ as

S̄(k) =
k − 1

k

(
S̄(k−1) + yyT

)
(30)

where

y =
1√

k − 1
xk − ĉ(k)

‖xk − ĉ(k)‖ (31)

Let L =
[
Ŵ(k−1) y

]
and let Q = LT L. Compute an eigen decomposition of

Q ∈ Rq×q s.t.
Q = UΓUT (32)

where Γ = diag(γ1, . . . , γq+1). Then the first q + 1 eigenvalues of S̄(k) are given
by

λi =
n

n + 1
[ŝ(k−1) + γi] (33)

and the corresponding eigenvectors are given by the columns of

V̂ = LUΓ−1/2 (34)

Note that we keep only the first q eigenvalues and eigenvectors in order to com-
pute Ŵ(k). Finally, we update ŝ

ŝ(k) =
n

n + 1

[
γq+1

p − q
+ ŝ(k−1)

]
(35)
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5 Application to Computer Vision

5.1 Classification

A common task in computer vision is to determine which object from a set
of possible choices is visible in a small subsection of the image. One way to
solve this problem is to first train a probability model for each possible choice
based on training data. The best estimate for which object is visible in a small
subsection of the image is then given by the probability model which assigns the
highest probability to the subsection. This method of classification is known as
the generative approach.

Fig. 5. Objects from the Amsterdam Library of Object Images (ALOI)[3]

In order to compare the power of the Gaussian and t-distributions for solving
the classification problem, we analyzed ten objects (shown in Fig. 5) from the
Amsterdam Library of Object Images [3]. For each object, there are 72 images
taken in 5� increments around the object. We randomly split these images into
36 training images and 36 testing images for each object. For each image, we
then extracted the brightness of the pixels from 100 non-overlapping 10 × 10
squares and used these as the data samples. The data samples from the training
images were used to obtain the maximum likelihood Gaussian distribution and
the approximate t-distribution using the proposed batch algorithm. The prob-
ability models that had been learned for all of the objects were then used to
classify the samples from the testing images.

Under these conditions, the Gaussian distribution led to a classification accu-
racy of 51% while using the t-distribution significantly improved the accuracy to
68%. The reason for this can be seen by considering Table 1 which gives individ-
ual results for each object. The Gaussian distribution gives very poor results for
objects 2, 8, and 9; each of which has substantial changes in brightness due to
the design, specular highlights, and shadows. These changes represent outliers
and are poorly handled by the Gaussian model, resulting in a very broad distri-
bution with poor discrimination. Objects 4 and 6 on the other hand, which give
good results with a Gaussian distribution, are mostly uniform in brightness and
do not undergo significant changes from frame to frame.
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Table 1. Object classification rates in %. Each entry gives the percentage of samples

that were correctly classified for that object.

1 2 3 4 5 6 7 8 9 10

t-distribution 74 66 66 90 61 97 47 62 43 71

Gaussian 74 25 44 91 43 80 63 24 8 55

The parameter estimation algorithm for the t-distribution automatically in-
cludes robustness against outliers and so large changes in brightness have little
effect on the overall parameter estimation. The result is a tighter distribution
compared to the Gaussian. Because of this the t-distribution more effectively
models each object and hence gives better discrimination. Note that the al-
gorithm also performs very well when no outliers are present, giving excellent
results for objects 4 and 6. It is this flexibility to handle a wide range of data
types which makes the t-distribution an ideal choice for many applications.

5.2 Tracking

Tracking is another very important application in computer vision. The goal
in tracking is to identify which pixels in each frame of a video sequence were
generated by one or more targets. This can be done by training a probability
distribution over the brightness of the pixels making up each target. The joint

Fig. 6. Tracking results using the Gaussian distribution and the t-distribution
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distribution is used to identify where a target is located in a given frame. The
marginal distributions can then be used to determine for each pixel if it was
generated by the target or something else, effectively segmenting out the target
from its surroundings.

Using a tracking algorithm based on PPCA for the Gaussian distribution as
a basis we modified the algorithm to use the t-distribution instead [1]. Both
algorithms were tested on a video sequence from PETS2006 [4]. The results for
three frames of the video sequence are shown in Fig. 6. The complete video se-
quence is included with the supplementary material. Although the overall results
are similar regardless of which distribution is used, the t-distribution does show
improved performance. The t-distribution is much less susceptible to shadows
which can be seen by looking at the gray target in the second and third frames.
The t-distribution also handles overlapping targets more cleanly. Because of this
it is able to properly distinguish between the orange and cyan targets in the final
frame while the Gaussian distribution confuses them.

6 Conclusions

The Gaussian distribution is by far the most commonly used parametric prob-
ability model mainly because it is simple to use and computationally tractable
even for high dimensional data. The light tails of the Gaussian distribution, how-
ever, make it a poor model for the randomness present in many sources of data.
We believe the t-distribution represents a viable replacement for the Gaussian.
By developing an approximate algorithm to compute the parameters, we have
shown that the t-distribution can be made as computationally efficient as the
Gaussian. Furthermore, we show that the proposed algorithm can be updated
online for real time applications. Even though the parameter estimation is only
approximate, the results show that the t-distribution outperforms the Gaussian
for two important applications in computer vision. We expect future research
along these lines to touch a large spectrum of domains in computer vision.
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Abstract. Object detection is one of the key tasks in computer vision.

The cascade framework of Viola and Jones has become the de facto
standard. A classifier in each node of the cascade is required to achieve

extremely high detection rates, instead of low overall classification error.

Although there are a few reported methods addressing this requirement

in the context of object detection, there is no a principled feature se-

lection method that explicitly takes into account this asymmetric node

learning objective. We provide such a boosting algorithm in this work.

It is inspired by the linear asymmetric classifier (LAC) of [1] in that our

boosting algorithm optimizes a similar cost function. The new totally-

corrective boosting algorithm is implemented by the column generation

technique in convex optimization. Experimental results on face detection

suggest that our proposed boosting algorithms can improve the state-of-

the-art methods in detection performance.

1 Introduction

Real-time object detection has been extensively studied in the past a few years
due to its important applications in surveillance, intelligent video analysis etc.
Viola and Jones proffered the first real-time face detector [2,3]. To date, it is
still considered one of the state-of-the-art, and their framework is the basis of
many incremental work afterwards. Object detection is a highly asymmetric
classification problem with the exhaustive scanning-window search being used
to locate the target in an image. Only a few are true target objects among the
millions of scanned patches. Cascade classifiers have been proposed for efficient
detection, which takes the asymmetric structure into consideration. Under the
assumption of each node of the cascade classifier makes independent classification
errors, the detection rate and false positive rate of the entire cascade are: Fdr =∏N

t=1 dt and Ffp =
∏N

t=1 ft, respectively. As pointed out in [2,1], these two
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equations suggest a node learning objective: Each node should have an extremely
high detection rate dt (e.g., 99.7%) and a moderate false positive rate ft (e.g.,
50%). With the above values of dt and ft, assume that the cascade has N = 20
nodes, then Fdr ≈ 94% and Ffp ≈ 10−6, which is a reasonable design goal.

A drawback of standard boosting like AdaBoost is that it does not take advan-
tage of the cascade classifier. AdaBoost only minimizes the overall classification
error and does not minimize the number of false negatives. In this sense, the
features selected are not optimal for the purpose of rejecting negative examples.
At the feature selection and classifier training level, Viola and Jones leveraged
the asymmetry property, to some extent, by replacing AdaBoost with Asym-
Boost [3]. AsymBoost incurs more loss for misclassifying a positive example
by simply modifying AdaBoost’s exponential loss. Better detection rates were
observed over the standard AdaBoost. Nevertheless, AsymBoost addresses the
node learning goal indirectly and still may not be the optimal solution. Wu et al.
explicitly studied the node learning goal and they proposed to use linear asym-
metric classifier (LAC) and Fisher linear discriminant analysis (LDA) to adjust
the linear coefficients of the selected weak classifiers [1,4]. Their experiments in-
dicated that with this post-processing technique, the node learning objective can
be better met, which is translated into improved detection rates. In Viola and
Jones’ framework, boosting is used to select features and at the same time to
train a strong classifier. Wu et al.’s work separates these two tasks: they still use
AdaBoost or AsymBoost to select features; and at the second step, they build
a strong classifier using LAC or LDA. Since there are two steps here, in Wu et
al.’s work [1,4], the node learning objective is only considered at the second step.
At the first step—feature selection—the node learning objective is not explicitly
considered. We conjecture that further improvement may be gained if the node
learning objective is explicitly taken into account at both steps. We design new
boosting algorithms to implement this idea and verify this conjecture. Our major
contributions are as follows.

1. We develop new boosting-like algorithms by directly minimizing the objec-
tive function of linear asymmetric classifier, which is termed as LACBoost
(and FisherBoost from Fisher LDA). Both of them can be used to select
features that is optimal for achieving the node learning goal in training a
cascade classifier. To our knowledge, this is the first attempt to design such
a feature selection method.

2. LACBoost and FisherBoost share similarities with LPBoost [5] in the sense
that both use column generation—a technique originally proposed for large-
scale linear programming (LP). Typically, the Lagrange dual problem is
solved at each iteration in column generation. We instead solve the pri-
mal quadratic programming (QP) problem, which has a special structure
and entropic gradient (EG) can be used to solve the problem very effi-
ciently. Compared with general interior-point based QP solvers, EG is much
faster. Considering one needs to solve QP problems a few thousand times
for training a complete cascade detector, the efficiency improvement is enor-
mous. Compared with training an AdaBoost based cascade detector, the
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time needed for LACBoost (or FisherBoost) is comparable. This is because
for both cases, the majority of the time is spent on weak classifier training
and bootstrapping.

3. We apply LACBoost and FisherBoost to face detection and better perfor-
mances are observed over the state-of-the-art methods [1,4]. The results con-
firm our conjecture and show the effectiveness of LACBoost and FisherBoost.
LACBoost can be immediately applied to other asymmetric classification
problems.

4. We also analyze the condition that makes the validity of LAC, and show that
the multi-exit cascade might be more suitable for applying LAC learning of
[1,4] (and our LACBoost) rather than Viola-Jones standard cascade.

Besides these, the LACBoost/FisherBoost algorithm differs from traditional
boosting algorithms in that LACBoost/FisherBoost does not minimize a loss
function. This opens new possibilities for designing new boosting algorithms
for special purposes. We have also extended column generation for optimizing
nonlinear optimization problems.

Related work. There are three important components that make Viola and
Jones’ framework tremendously successful [2]: (1) The cascade classifier that ef-
ficiently filters out most negative patches in early nodes; and also contributes
to enable the final classifier to have a very high detection rate; (2) AdaBoost
that selects informative features and at the same time trains a strong classifier;
(3) The use of integral images, which makes the computation of Haar features
extremely fast. Most of the work later improves one or more of these three com-
ponents. In terms of the cascade classifier, a few different approaches such as soft
cascade [6], dynamic cascade [7], and multi-exit cascade [8]. We have used the
multi-exit cascade in this work. The multi-exit cascade tries to improve the clas-
sification performance by using all the selected weak classifiers for each node.
So for the n-th strong classifier (node), it uses all the weak classifiers in this
node as well as those in the previous n − 1 nodes. We show that the LAC post-
processing can enhance the multi-exit cascade. More importantly, we show that
the multi-exit cascade better meets LAC’s requirement of data being Gaussian
distributions. The second research topic is the learning algorithm for construct-
ing a classifier. Wu et al. proposed LAC to learn a better strong classifier [1]. Li
et al. advocated FloatBoost to discard some redundant weak classifiers during
AdaBoost’s greedy selection procedure [9]. Liu and Shum proposed KLBoost to
select features and train a strong classifier [10]. Other variants of boosting have
been applied to detection.

Notation. The following notation is used. A matrix is denoted by a bold upper-
case letter (X); a column vector is denoted by a bold lower-case letter (x). The
ith row of X is denoted by Xi: and the i-th column X:i. The identity matrix is
I and its size should be clear from the context. 1 and 0 are column vectors of
1’s and 0’s, respectively. We use �, 	 to denote component-wise inequalities.

Let {(xi, yi)}i=1,··· ,m be the set of training data, where xi ∈ X and yi ∈
{−1, +1}, ∀i. The training set consists of m1 positive training points and m2
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negative ones; m1 + m2 = m. Let h(·) ∈ H be a weak classifier that projects an
input vector x into {−1, +1}. Here we only consider discrete classifier outputs.
We assume that the set H is finite and we have n possible weak classifiers. Let
the matrix H ∈ Rm×n where the (i, j) entry of H is Hij = hj(xi). Hij is the
label predicted by weak classifier hj(·) on the training datum xi. We define a
matrix A ∈ Rm×n such that its (i, j) entry is Aij = yihj(xi).

2 Linear Asymmetric Classification

Before we propose our LACBoost and FisherBoost, we briefly overview the con-
cept of LAC. Wu et al. [4] have proposed linear asymmetric classification (LAC)
as a post-processing step for training nodes in the cascade framework. LAC is
guaranteed to get an optimal solution under the assumption of Gaussian data
distributions.

Suppose that we have a linear classifier f(x) = sign(w�x − b), if we want
to find a pair of {w, b} with a very high accuracy on the positive data x1 and
a moderate accuracy on the negative x2, which is expressed as the following
problem:

max
w �=0,b

Pr
x1∼(μ1,Σ1)

{w�x1 ≥ b}, s.t. Pr
x2∼(μ2,Σ2)

{w�x2 ≤ b} = λ, (1)

where x ∼ (μ,Σ) denotes a symmetric distribution with mean μ and covariance
Σ. If we prescribe λ to 0.5 and assume that for any w, w�x1 is Gaussian and
w�x2 is symmetric, then (1) can be approximated by

max
w �=0

w�(μ1 − μ2)√
w�Σ1w

. (2)

(2) is similar to LDA’s optimization problem

max
w �=0

w�(μ1 − μ2)√
w�(Σ1 + Σ2)w

. (3)

(2) can be solved by eigen-decomposition and a close-formed solution can be
derived:

w = Σ−1
1 (μ1 − μ2), b = w�μ2. (4)

On the other hand, each node in cascaded boosting classifiers has the following
form:

f(x) = sign(w�H(x) − b), (5)

We override the symbol H(x) here, which denotes the output vector of all weak
classifiers over the datum x. We can cast each node as a linear classifier over the
feature space constructed by the binary outputs of all weak classifiers. For each
node in cascade classifier, we wish to maximize the detection rate as high as pos-
sible, and meanwhile keep the false positive rate to a moderate level (e.g., 50.0%).
That is to say, the problem (1) expresses the node learning goal. Therefore, we can
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use boosting algorithms (e.g., AdaBoost) as feature selection methods, and then
use LAC to learn a linear classifier over those binary features chosen by boosting.
The advantage is that LAC considers the asymmetric node learning explicitly.

However, there is a precondition of LAC’s validity. That is, for any w, w�x1
is a Gaussian and w�x2 is symmetric. In the case of boosting classifiers, w�x1
and w�x2 can be expressed as the margin of positive data and negative data.
Empirically Wu et al. [4] verified that w�x is Gaussian approximately for a
cascade face detector. We discuss this issue in the experiment part in more detail.

3 Constructing Boosting Algorithms from LDA and LAC

In kernel methods, the original data are nonlinearly mapped to a feature space
and usually the mapping function φ(·) is not explicitly available. It works through
the inner product of φ(xi)�φ(xj). In boosting [11], the mapping function can be
seen as explicitly known through: φ(x) : x  → [h1(x), . . . , hn(x)]. Let us consider
the Fisher LDA case first because the solution to LDA will generalize to LAC
straightforwardly, by looking at the similarity between (2) and (3).

Fisher LDA maximizes the between-class variance and minimizes the within-
class variance. In the binary-class case, we can equivalently rewrite (3) into

max
w

(μ1 − μ2)2

σ1 + σ2
=

w�Cbw
w�Cww

, (6)

where Cb and Cw are the between-class and within-class scatter matrices; μ1
and μ2 are the projected centers of the two classes. The above problem can be
equivalently reformulated as

min
w

w�Cww − θ(μ1 − μ2) (7)

for some certain constant θ and under the assumption that μ1 − μ2 ≥ 0.1 Now
in the feature space, our data are φ(xi), i = 1 . . .m. We have

μ1 =
1

m1
w� ∑

yi=1

φ(xi) =
1

m1

∑
yi=1

Ai:w =
1

m1

∑
yi=1

(Aw)i = e�1Aw, (8)

where Ai: is the i-th row of A.

μ2 =
1

m2
w� ∑

yi=−1

φ(xi) =
1

m2

∑
yi=−1

Hi:w = −e�2Aw, (9)

Here the i-th entry of e1 is defined as e1i = 1/m1 if yi = +1, otherwise e1i = 0.
Similarly e2i = 1/m2 if yi = −1, otherwise e2i = 0. We also define e = e1 + e2.
For ease of exposition, we order the training data according to their labels. So
the vector e ∈ Rm:

e = [1/m1, · · · , 1/m2, · · · ]�, (10)
1 In our face detection experiment, we found that this assumption could always be

satisfied.
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and the first m1 components of ρ correspond to the positive training data and the
remaining ones correspond to the m2 negative data. So we have μ1 − μ2 = e�ρ,
Cw = m1/m · Σ1 + m2/m · Σ2 with Σ1,2 the covariance matrices. By noticing
that

w�Σ1,2w =
1

m1,2(m1,2 − 1)

∑
i>k,yi=yk=±1

(ρi − ρk)2,

we can easily rewrite the original problem into:

min
w,ρ

1
2ρ�Qρ − θe�ρ, s.t. w � 0,1�w = 1, ρi = (Aw)i, i = 1, · · · , m. (11)

Here Q =
[
Q1 0
0 Q2

]
is a block matrix with

Q1 =

⎡⎢⎢⎢⎢⎣
1
m − 1

m(m1−1) . . . − 1
m(m1−1)

− 1
m(m1−1)

1
m . . . − 1

m(m1−1)
...

...
. . .

...
− 1

m(m1−1) − 1
m(m1−1) . . . 1

m

⎤⎥⎥⎥⎥⎦ ,

and Q2 is similarly defined by replacing m1 with m2 in Q1. Also note that we
have introduced a constant 1

2 before the quadratic term for convenience. The
normalization constraint 1�w = 1 removes the scale ambiguity of w. Otherwise
the problem is ill-posed.

In the case of LAC, the covariance matrix of the negative data is not involved,

which corresponds to the matrix Q2 is zero. So we can simply set Q =
[
Q1 0
0 0

]
and (11) becomes the optimization problem of LAC.

At this stage, it remains unclear about how to solve the problem (11) because
we do not know all the weak classifiers. The number of possible weak classifiers
could be infinite—the dimension of the optimization variable w is infinite. So (11)
is a semi-infinite quadratic program (SIQP). We show how column generation
can be used to solve this problem. To make column generation applicable, we
need to derive a specific Lagrange dual of the primal problem.

The Lagrange dual problem. We now derive the Lagrange dual of the quadratic
problem (11). Although we are only interested in the variable w, we need to keep
the auxiliary variable ρ in order to obtain a meaningful dual problem. The La-
grangian of (11) is L(w, ρ︸︷︷︸

primal

, u, r︸︷︷︸
dual

) = 1
2ρ�Qρ − θe�ρ + u�(ρ − Aw) − q�w +

r(1�w − 1) with q � 0. supu,r infw,ρ L(w, ρ,u, r) gives the following Lagrange
dual:

max
u,r

− r −

regularization︷ ︸︸ ︷
1
2 (u − θe)�Q−1(u − θe), s.t.

m∑
i=1

uiAi: 	 r1�. (12)
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In our case, Q is rank-deficient and its inverse does not exist (for both LDA and
LAC). We can simply regularize Q with Q + δI with δ a very small constant.
One of the KKT optimality conditions between the dual and primal is ρ =
−Q−1(u −θe), which can be used to establish the connection between the dual
optimum and the primal optimum. This is obtained by the fact that the gradient
of L w.r.t. ρ must vanish at the optimum, ∂L/∂ρi = 0, ∀i = 1 · · ·n.

Problem (12) can be viewed as a regularized LPBoost problem. Compared
with the hard-margin LPBoost [5], the only difference is the regularization term
in the cost function. The duality gap between the primal (11) and the dual (12)
is zero. In other words, the solutions of (11) and (12) coincide. Instead of solving
(11) directly, one calculates the most violated constraint in (12) iteratively for
the current solution and adds this constraint to the optimization problem. In
theory, any column that violates dual feasibility can be added. To speed up
the convergence, we add the most violated constraint by solving the following
problem:

h′(·) = argmaxh(·)
m∑

i=1

uiyih(xi). (13)

This is exactly the same as the one that standard AdaBoost and LPBoost
use for producing the best weak classifier. That is to say, to find the weak
classifier that has minimum weighted training error. We summarize the LAC-
Boost/FisherBoost algorithm in Algorithm 1. By simply changing Q2, Algo-
rithm 1 can be used to train either LACBoost or FisherBoost. Note that to
obtain an actual strong classifier, one may need to include an offset b, i.e. the
final classifier is

∑n
j=1 hj(x)− b because from the cost function of our algorithm

(7), we can see that the cost function itself does not minimize any classification
error. It only finds a projection direction in which the data can be maximally
separated. A simple line search can find an optimal b. Moreover, when training
a cascade, we need to tune this offset anyway as shown in (5).

The convergence of Algorithm 1 is guaranteed by general column generation
or cutting-plane algorithms, which is easy to establish. When a new h′(·) that
violates dual feasibility is added, the new optimal value of the dual problem
(maximization) would decrease. Accordingly, the optimal value of its primal
problem decreases too because they have the same optimal value due to zero
duality gap. Moreover the primal cost function is convex, therefore in the end it
converges to the global minimum.

At each iteration of column generation, in theory, we can solve either the
dual (12) or the primal problem (11). However, in practice, it could be much
faster to solve the primal problem because (i) Generally, the primal problem
has a smaller size, hence faster to solve. The number of variables of (12) is
m at each iteration, while the number of variables is the number of iterations
for the primal problem. For example, in Viola-Jones’ face detection framework,
the number of training data m = 10, 000 and nmax = 200. In other words, the
primal problem has at most 200 variables in this case; (ii) The dual problem is
a standard QP problem. It has no special structure to exploit. As we will show,
the primal problem belongs to a special class of problems and can be efficiently
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Algorithm 1. Column generation for QP.
Input: Labeled training data (xi, yi), i = 1 · · ·m; termination threshold ε > 0;

regularization parameter θ; maximum number of iterations nmax.

Initialization: m = 0; w = 0; and ui = 1
m

, i = 1· · ·m.1

for iteration = 1 : nmax do2

− Check for the optimality:3

if iteration > 1 and
∑m

i=1 uiyih
′(xi) < r + ε,

then
break; and the problem is solved;

− Add h′(·) to the restricted master problem, which corresponds to a new4

constraint in the dual;

− Solve the dual problem (12) (or the primal problem (11)) and update r5

and ui (i = 1 · · ·m).

− Increment the number of weak classifiers n = n + 1.6

Output: The selected features are h1, h2, . . . , hn. The final strong classifier

is: F (x) =
∑n

j=1 wjhj(x) − b. Here the offset b can be learned by a

simple search.

solved using entropic/exponentiated gradient descent (EG) [12,13]. A fast QP
solver is extremely important for training a object detector because we need to
the solve a few thousand QP problems.

We can recover both of the dual variables u, r easily from the primal variable
w:

u = −Qρ + θe; (14)

r = max
j=1...n

{∑m
i=1 u

i Aij

}
. (15)

The second equation is obtained by the fact that in the dual problem’s con-
straints, at optimum, there must exist at least one u

i such that the equality
holds. That is to say, r is the largest edge over all weak classifiers.

We give a brief introduction to the EG algorithm before we proceed. Let us
first define the unit simplex Δn = {w ∈ Rn : 1�w = 1,w � 0}. EG efficiently
solves the convex optimization problem

min
w

f(w), s.t. w ∈ Δn, (16)

under the assumption that the objective function f(·) is a convex Lipschitz
continuous function with Lipschitz constant Lf w.r.t. a fixed given norm ‖·‖.
The mathematical definition of Lf is that |f(w) − f(z)| ≤ Lf‖x − z‖ holds for
any x, z in the domain of f(·). The EG algorithm is very simple:

1. Initialize with w0 ∈ the interior of Δn;
2. Generate the sequence {wk}, k = 1, 2, · · · with:

wk
j =

wk−1
j exp[−τkf ′

j(w
k−1)]∑n

j=1 wk−1
j exp[−τkf ′

j(wk−1)]
. (17)

Here τk is the step-size. f ′(w) = [f ′
1(w), . . . , f ′

n(w)]� is the gradient of f(·);
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3. Stop if some stopping criteria are met.

The learning step-size can be determined by τk =
√

2 log n
Lf

1√
k
, following [12]. In

[13], the authors have used a simpler strategy to set the learning rate.
EG is a very useful tool for solving large-scale convex minimization problems

over the unit simplex. Compared with standard QP solvers like Mosek [14], EG
is much faster. EG makes it possible to train a detector using almost the same
amount of time as using standard AdaBoost as the majority of time is spent on
weak classifier training and bootstrapping.

In the case that m1 � 1,

Q1 =
1
m

⎡⎢⎢⎢⎣
1 − 1

m1−1 . . . − 1
m1−1

− 1
m1−1 1 . . . − 1

m1−1
...

...
. . .

...
− 1

m1−1 − 1
m1−1 . . . 1

⎤⎥⎥⎥⎦ ≈ 1
m

I.

Similarly, for LDA, Q2 ≈ 1
mI when m2 � 1. Hence,

Q ≈

⎧⎪⎨⎪⎩
1
mI; for Fisher LDA,

1
m

[
I 0
0 0

]
, for LAC.

(18)

Therefore, the problems involved can be simplified when m1 � 1 and m2 � 1
hold. The primal problem (11) equals

min
w,ρ

1
2w

�(A�QA)w − (θe�A)w, s.t. w ∈ Δn. (19)

We can efficiently solve (19) using the EG method. In EG there is an important
parameter Lf , which is used to determine the step-size. Lf can be determined
by the �∞-norm of |f ′(w)|. In our case f ′(w) is a linear function, which is trivial
to compute. The convergence of EG is guaranteed; see [12] for details.

In summary, when using EG to solve the primal problem, Line 5 of Algorithm 1
is:

− Solve the primal problem (19) using EG, and update the dual variables u
with (14), and r with (15).

4 Applications to Face Detection

First, let us show a simple example on a synthetic dataset (more negative data
than positive data) to illustrate the difference between FisherBoost and Ad-
aBoost. Fig. 1 demonstrates the subtle difference of the classification boundaries
obtained by AdaBoost and FisherBoost. We can see that FisherBoost seems to
focus more on correctly classifying positive data points. This might be due to
the fact that AdaBoost only optimizes the overall classification accuracy. This
finding is consistent with the result in [15].
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Fig. 1. Decision boundaries of AdaBoost (left) and FisherBoost (right) on 2D artificial

data (positive data represented by �’s and negative data by ×’s). Weak classifiers are

decision stumps. In this case, FisherBoost tends to correctly classify more positive data

in this case.
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Fig. 2. Normality test (normal probability plot) for the face data’s margin distribution

of nodes 1, 2, 3. The 3 nodes contains 7, 22, 52 weak classifiers respectively. Curves

close to a straight line mean close to a Gaussian.

Face detection. In this section, we compare our algorithm with other state-
of-art face detectors. We first show some results about the validity of LAC (or
Fisher LDA) post-processing for improving node learning in object detection.
Fig. 2 illustrates the normal probability plot of margins of positive training
data, for the first three nodes in the multi-exit with LAC cascade. Clearly, the
larger number of weak classifiers being used, the more closely the margin follows
Gaussian distribution. In other words, LAC may achieve a better performance
if a larger number of weak classifiers are used. The performance could be poor
with too fewer weak classifiers. The same statement applies to Fisher LDA,
and LACBoost, FisherBoost, too. Therefore, we do not apply LAC/LDA in the
first eight nodes because the margin distribution could be far from a Gaussian
distribution. Because the late nodes of a multi-exit cascade contain more weak
classifiers, we conjecture that the multi-exit cascade might meet the Gaussianity
requirement better. We have compared multi-exit cascades with LDA/LAC post-
processing against standard cascades with LDA/LAC post-processing in [4] and
slightly improved performances were obtained.
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Six methods are evaluated with the multi-exit cascade framework [8], which
are AdaBoost with LAC post-processing, or LDA post-processing, AsymBoost
with LAC or LDA post-processing [4], and our FisherBoost, LACBoost. We have
also implemented Viola-Jones’ face detector as the baseline [2]. As in [2], five
basic types of Haar-like features are calculated, which makes up of a 162, 336
dimensional over-complete feature set on an image of 24 × 24 pixels. To speed
up the weak classifier training, as in [4], we uniformly sample 10% of features for
training weak classifiers (decision stumps). The training data are 9, 832 mirrored
24×24 face images (5, 000 for training and 4, 832 for validation) and 7, 323 large
background images, which are the same as in [4].

Multi-exit cascades with 22 exits and 2, 923 weak classifiers are trained with
various methods. For fair comparisons, we have used the same cascade structure
and same number of weak classifiers for all the compared learning methods. The
indexes of exits are pre-set to simplify the training procedure. For our Fisher-
Boost and LACBoost, we have an important parameter θ, which is chosen from
{ 1

10 , 1
12 , 1

15 , 1
20 , 1

25 , 1
30 , 1

40 , 1
50}. We have not carefully tuned this parameter using

cross-validation. Instead, we train a 10-node cascade for each candidate θ, and
choose the one with the best training accuracy.2 At each exit, negative exam-
ples misclassified by current cascade are discarded, and new negative examples
are bootstrapped from the background images pool. Totally, billions of negative
examples are extracted from the pool. The positive training data and validation
data keep unchanged during the training process.

Our experiments are performed on a workstation with 8 Intel Xeon E5520
CPUs and 32GB RAM. It takes about 3 hours to train the multi-exit cascade
with AdaBoost or AsymBoost. For FisherBoost and LACBoost, it takes less than
4 hours to train a complete multi-exit cascade.3 In other words, our EG algorithm
takes less than 1 hour for solving the primal QP problem (we need to solve a
QP at each iteration). A rough estimation of the computational complexity is
as follows. Suppose that the number of training examples is m, number of weak
classifiers is n, At each iteration of the cascade training, the complexity for
solving the primal QP using EG is O(mn + kn2) with k the iterations needed
for EQ’s convergence. The complexity for training the weak classifier is O(md)
with d the number of all Haar-feature patterns. In our experiment, m = 10, 000,
n ≈ 2900, d = 160, 000, k < 500. So the majority of the training computation is
on the weak classifier training.

We have also experimentally observed the speedup of EG against standard QP
solvers. We solve the primal QP defined by (19) using EG and Mosek [14]. The
QP’s size is 1, 000 variables. With the same accuracy tolerance (Mosek’s primal-
dual gap is set to 10−7 and EG’s convergence tolerance is also set to 10−7), Mosek
takes 1.22 seconds and EG is 0.0541 seconds. So EG is about 20 times faster.
Moreover, at iteration n+1 of training the cascade, EG can take advantage of the

2 To train a complete 22-node cascade and choose the best θ on cross-validation data

may give better detection rates.
3 Our implementation is in C++ and only the weak classifier training part is paral-

lelized using OpenMP.
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Fig. 3. Node performances on the validation data. “Ada” means that features are

selected using AdaBoost; “Asym” means that features are selected using AsymBoost.

last iteration’s solution by starting EG from a small perturbation of the previous
solution. Such a warm-start gains a 5 to 10× speedup in our experiment, while
there is no off-the-shelf warm-start QP solvers available yet.

We evaluate the detection performance on the MIT+CMU frontal face test
set. Two performance metrics are used here: each node and the entire cascade.
The node metric is how well the classifiers meet the node learning objective. The
node metric provides useful information about the capability of each method to
achieve the node learning goal. The cascade metric uses the receiver operating
characteristic (ROC) to compare the entire cascade’s peformance. Multiple issues
have impacts on the cascade’s performance: classifiers, the cascade structure,
bootstrapping etc.

We show the node comparison results in Fig. 3. The node performances be-
tween FisherBoost and LACBoost are very similar. From Fig. 3, as reported in
[4], LDA or LAC post-processing can considerably reduce the false negative rates.
As expected, our proposed FisherBoost and LACBoost can further reduce the
false negative rates significantly. This verifies the advantage of selecting features
with the node learning goal being considered.

From the ROC curves in Fig. 4, we can see that FisherBoost and LACBoost
outperform all the other methods. In contrast to the results of the detection
rate for each node, LACBoost is slightly worse than FisherBoost in some cases.
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That might be due to that many factors have impacts on the final result of de-
tection. LAC makes the assumption of Gaussianity and symmetry data distribu-
tions, which may not hold well in the early nodes. This could explain why LAC-
Boost does not always perform the best. Wu et al. have observed the same phe-
nomenon that LAC post-processing does not outperform LDA post-processing
in a few cases. However, we believe that for harder detection tasks, the benefits
of LACBoost would be more impressive.
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Fig. 4. Cascade performances using ROC curves (number of false positives versus de-

tection rate) on the MIT+CMU test data. “Ada” means that features are selected using

AdaBoost. Viola-Jones cascade is the method in [2]. “Asym” means that features are

selected using AsymBoost.

The error reduction results of FisherBoost and LACBoost in Fig. 4 are not
as great as those in Fig. 3. This might be explained by the fact that the cascade
and negative data bootstrapping remove of the error reducing effects, to some
extent. We have also compared our methods with the boosted greedy sparse
LDA (BGSLDA) in [15], which is considered one of the state-of-the-art. We
provide the ROC curves in the supplementary package. Both of our methods
outperform BGSLDA with AdaBoost/AsymBoost by about 2% in the detection
rate. Note that BGSLDA uses the standard cascade. So besides the benefits of
our FisherBoost/LACBoost, the multi-exit cascade also brings effects.



LACBoost and FisherBoost: Optimally Building Cascade Classifiers 621

5 Conclusion

By explicitly taking into account the node learning goal in cascade classifiers,
we have designed new boosting algorithms for more effective object detection.
Experiments validate the superiority of our FisherBoost and LACBoost. We have
also proposed to use entropic gradient to efficiently implement FisherBoost and
LACBoost. The proposed algorithms are easy to implement and can be applied
other asymmetric classification tasks in computer vision. We are also trying
to design new asymmetric boosting algorithms by looking at those asymmetric
kernel classification methods.
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Abstract. We present a novel approach for online shrinkage functions

learning in single image super-resolution. The proposed approach lever-

ages the classical Wavelet Shrinkage denoising technique where a set of

scalar shrinkage functions is applied to the wavelet coefficients of a noisy

image. In the proposed approach, a unique set of learned shrinkage func-

tions is applied to the overcomplete representation coefficients of the

interpolated input image. The super-resolution image is reconstructed

from the post-shrinkage coefficients. During the learning stage, the low-

resolution input image is treated as a reference high-resolution image

and a super-resolution reconstruction process is applied to a scaled-down

version of it. The shapes of all shrinkage functions are jointly learned by

solving a Least Squares optimization problem that minimizes the sum of

squared errors between the reference image and its super-resolution ap-

proximation. Computer simulations demonstrate superior performance

compared to state-of-the-art results.

1 Introduction

Single Image Super-Resolution (SISR) is the process of reconstructing a high-
resolution image from an observed low-resolution image. Typical applications
include zoom-in of still images in digital cameras, scaling-up an image before
printing and conversion from low-definition to high-definition video. SISR is an
inverse problem, associated with the following linear degradation model

y = DHx, (1)

where y ∈ Rn is the observed low-resolution input image (column-stacked),
x ∈ RnL is the unknown high-resolution image, H ∈ RnL×nL is a blurring filter
(block-circulant) convolution matrix and D ∈ Rn×nL is a down-sample operator
matrix, decimating the image by a factor of

√
L along the horizontal and vertical

dimensions.
A solution to the SISR problem is an approximation x̂ to the unknown high-

resolution image x. Since the linear system (1) is underdetermined, there are
infinitely many solutions x̂ that can ”explain” the observed image y. For this
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reason, there are various approaches addressing the SISR problem. The simplest
techniques are the bi-linear and bi-cubic interpolators. These interpolators utilize
a polynomial approximation model to compute each missing pixel from a small
local neighborhood of it, often generating blurry results and stair-case shaped
edges.

State-of-the-art SISR reconstruction is based on a sparse-representation ap-
proach [1], [2] where a set of high-resolution and low-resolution dictionaries are
learned from example images. In this approach, a sparse coding process is ap-
plied to small overlapping patches, extracted in a raster-scan order from the
observed image. The sparse representation coefficients (i.e the outcome of the
sparse coding process) of each low-resolution patch are assumed to faithfully rep-
resent each corresponding (unknown) high-resolution patch by replacing the low-
resolution dictionary with its high-resolution counterpart. The super-resolution
image is reconstructed by fusion of all of the overlapping high-resolution patches.
A similar approach was proposed in [3], where a reduced redundancy dictio-
nary was employed to accelerate the SISR process. The sparse-representation
approach evolved from an example-based approach [4], where a dictionary of
100, 000 pairs of low-resolution and high-resolution images patches was utilized
in conjunction with a markov-network model to search-and-match the corre-
sponding high-resolution patches. A combination of the example-based approach
with multi-frame super-resolution was proposed in [5], where patch repetitions
within an image were exploited in a multi-scale approach. Additional example-
based approaches such as learning the prior parameters, learning the poste-
rior and building example-based regularization expression are reviewed in [6].
A shrinkage-based approach was introduced in [7] where a hard-thresholding
function was iteratively applied to DCT transform coefficients. This approach
was later augmented in [8], where the Contourlet transform was chosen as the
overcomplete transform.

We propose to extend the shrinkage based approach and employ online-learned
shrinkage functions with an overcomplete representation. The proposed approach
leverages the discriminative learning technique suggested in [9] for wavelet de-
noising. In the discriminative approach, the shapes of all shrinkage functions
are learned offline from example images (rather then learning the parameters of
a probability distribution model of the transform coefficients). In the proposed
approach, we apply the discriminative approach to the SISR problem and ex-
ploit the scale-invariant property of natural images [10] to learn the shrinkage
functions directly from the input image.

Contributions. The contributions presented in this paper are two-fold: 1) In-
troduction of the learned shrinkage approach [9] to solve the SISR problem,
in contrast to the hard-thresholding approach previously introduced for SISR
in [8], [7]. 2) Introduction of the online learning approach, where the shrinkage
functions are learned directly from the observed input image - in contrast to
the offline example-based approach as suggested in [9]. The advantage of the
online approach is that online-learned shrinkage functions capture the statistical
properties of the observed image (to be scaled-up), rather than the statistical
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properties of other images. Performance evaluation of the proposed approach
demonstrate superior performance compared to the sparse representation1 state-
of-the-art approach [1], [2].

This paper is organized as follows: Section 2 presents shrinkage-based restora-
tion theory for the unitary and over-complete cases. Section 3 describes the Slice
Transform (SLT) which is a piece-wise linear model utilized for the representation
and learning of the shrinkage functions. Section 4 presents the proposed SISR
algorithm concept along with a detailed explanation of the shrinkage-learning
stage and the super-resolution reconstruction stage. Section 5 overviews perfor-
mance evaluation along with a comparison versus the state-of-the-art approach.

2 Shrinkage-Based Image Restoration

This section provides an overview of shrinkage-based image restoration in the
unitary and overcomplete cases. The discussion evolves from an image denois-
ing problem and the connection to the SISR problem is established in the last
subsection. Consider the following image degradation model,

v = u + m, (2)

where v ∈ Rl is an observed noisy image, u ∈ Rl is the unknown clean image and
m ∈ Rl is white Gaussian noise. In the shrinkage-based approach, the restored
image is given by the following algorithm

û = W †−→Ψ (Wv) , (3)

where W is a unitary or overcomplete transform,
−→
Ψ = [Ψ1, Ψ2, . . . ] is a set of

scalar shrinkage functions and W † is the reverse transform. The utilization of
scalar shrinkage functions is derived in the following subsections.

2.1 The Unitary Case

The shrinkage-based reconstruction (3) can be shown to solve a MAP estima-
tion problem under the assumptions of a unitary transform, independent trans-
form coefficients and white Gaussian noise. The discussion is focused on the
unitary wavelet transform, since it provides a sparse representation of natural
images [11] and its coefficients are assumed independent. These properties of the
unitary wavelet transform play a fundamental role in the formulation of sparsity-
promoting image priors [12] that can be decoupled into a product (or a sum in
the log domain) of scalar probability distributions. The MAP estimator û (v) is
given by maximizing the a-posteriori probability:

û (v) = arg max
u

P (u | v) . (4)

1 In this paper we refer to the work in [1], [2] as ”sparse representation” based, although

the shrinkage based approach also emerges from sparse representation modeling.
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This maximization can be cast also in the transform domain, as follows:

ûW (vW ) = arg max
uW

P (uW | vW ) , (5)

where uW = Wu, vW = Wv and W is a unitary wavelet transform. By utilizing
Bayes rule and the monotonicity of the log function, the wavelet domain MAP
estimator can be reformulated as

ûW (vW ) = argmin
uW

{− logP (vW | uW ) − log P (uW )}. (6)

The term log P (vW | uW ) is the log likelihood and the term log P (uW ) is the
prior. For the white Gaussian noise case, the log likelihood term is given by

− logP (vW | uW ) = λ‖uW − vW ‖2 = λ
∑

i

‖ui
W − vi

W ‖2, (7)

where ui
W and vi

W are the i-th elements of uW and vW , respectively and λ is a
constant inversely proportional to the noise variance. Note, that by utilizing the
l2-norm preserving property of unitary transforms, equation (7) can be rewritten
as

− logP (vW | uW ) = λ‖W (u− v) ‖2 = λ‖u− v‖2 = − log P (v | u). (8)

Thus, the spatial domain MAP estimator (4) and its unitary transform domain
counterpart (5) are equivalent, as long as the prior term is a function of Wu [12].
By utilizing the independence assumption of the unitary wavelet coefficients, the
prior term is reformulated as

log P (uW ) = log
∏

i

Pi

(
ui

W

)
=
∑

i

log Pi

(
ui

W

)
. (9)

The unitary wavelet domain MAP estimator (6) can be rewritten using the
results of equations (7) and (9), leading to a decoupling of the l-dimensional
minimization problem to a set of l scalar minimization problems

ûi
W

(
vi

W

)
= arg min

ui
W

{λ‖ui
W − vi

W ‖2 − log Pi

(
ui

W

)
} ∀i. (10)

The optimization in equation (10) is solved by applying a scalar lookup table
function Ψ i

W , termed shrinkage function, to the wavelet coefficients: ûi
W

(
vi

W

)
=

Ψ i
W

(
vi

W

)
. The shrinkage function depends solely on the noise variance and the

prior term Pi

(
ui

W

)
. The pioneering studies of Donoho and Johnstone [13], [14]

suggested using hard-thresholding and soft-thresholding shrinkage functions. Fur-
thermore, for a K subband wavelet transform, only K distinct shrinkage func-
tions are required to solve the MAP estimation problem. To clarify this property
we follow the notation in [9] and utilize a permutation matrix P to reorder the
rows of the wavelet transform W . The reordering is performed such that wavelet
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transform rows corresponding to a specific subband are co-located in a distinct
block

B = PW =

⎡⎢⎣B1
...

BK

⎤⎥⎦ and vB = Bv =

⎡⎢⎣vB1

...
vBK

⎤⎥⎦ . (11)

The set of K shrinkage functions are denoted by
−→
ΨB = [ΨB1 , ΨB2 , . . . , ΨBK ] and

the restored image (3) is given by

û = BT−→ΨB{vB} =
K∑

k=1

BT
k ΨBk

{vBk
}, (12)

where BT is the reverse transform due to the unitary case assumption.

2.2 The Overcomplete Case

The shrinkage restoration approach in the unitary case provides good results,
however, visual artifacts sometimes appear in the restored image. By utilizing
an overcomplete transform, significant improvements can be achieved. This was
originally discovered by Coifman and Donoho [15] where an undecimated wavelet
transform provided superior shrinkage denoising results compared to the unitary
case. This improvement was later demonstrated in various overcomplete trans-
forms such a Curvelets [16], Contourlets [17], undecimated windowed DCT [9]
and others. By applying equation (11) to the overcomplete case, the noisy image
transform is given by vB = Bv. The overcomplete transform B is an M×l matrix
where M > l . By modifying vB using a vector of shrinkage functions

−→
ΨB{vB} it

is desired that all the post-shrinkage overcomplete components be equal to the
overcomplete transform components of the original (unknown) image

Bu =
−→
ΨB{vB}. (13)

The estimated image is reconstructed using the pseudo-inverse

û =
(
BT B

)−1
BT−→ΨB{vB} =

(
BT B

)−1
K∑

k=1

BT
k ΨBk

{vBk
}. (14)

A key difference between the unitary and overcomplete cases is statistical depen-
dence of the transform coefficients: the scalar shrinkage approach emerged from
the independence assumption of the unitary wavelet coefficients, however, this
assumption no longer holds in the overcomplete case. Traditionally, the unitary
case shrinkage functions were applied also to the overcomplete case, however,
the interband dependencies of the overcomplete transform coefficients should be
taken into account. The most accurate approach to handle this issue is to de-
sign a set of multi-dimensional shrinkage functions, however, such approach is
highly complex. The approach suggested in [9] for image denoising is to learn a
set of scalar shrinkage functions that would take into account interband as well
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as intraband dependencies. In this approach, the shrinkage functions are learned
offline from an example set of pairs of clean and noisy images. In this paper, we
leverage the shrinkage learning technique to the SISR problem and propose to
learn the shrinkage functions online - from the observed image - in a way that
would capture the statistical properties of (only) the image to be scaled-up.

2.3 From Image Denoising to Super-Resolution

The shrinkage-based restoration framework was originally developed for image
denoising. However, it has been successfully utilized for more complex inverse
problems then (2), by designing the shrinkage operation to minimize all struc-
tured noise components inherent to the specific problem. For example, inpainting
by hard-thresholding [18], SISR by hard-thresholding [7], [8] and JPEG deblock-
ing [9]. We Assume a general image degradation model:

v = Ω{u} = u + e, (15)

where Ω{·} is a degradation operator (not necessarily linear) and e is an error
image with unknown statistical properties. We propose to recover the unknown
image u by utilizing the restoration algorithm (14), with a set of shrinkage
functions that were designed to maximize the restored image quality, given the
degradation model (15). For the SISR problem, we utilize the following degra-
dation operator

Ω{u} = Υ↑ (DHu) , (16)

where Υ↑ (·) is a simple interpolator (implemented either by a bi-linear or bi-
cubic interpolator). Note, that this degradation operator simply amounts to an
interpolation of the observed image y in the SISR model (1) and the dimensions
of the degraded image v = Ω{u} = Υ↑ (DHu) are identical to u. Therefore, the
proposed restoration scheme for the SISR problem is as follows

û =
(
BT B

)−1
BT−→ΨB{vB} =

(
BT B

)−1
K∑

k=1

BT
k ΨBk

{vBk
}. (17)

In the proposed approach, the shapes of all shrinkage functions
−→
ΨB are trained

for the SISR problem. The training is performed online (i.e. directly) from the
observed image DHu, exploiting the scale-invariant property of natural images
[10]. The learning procedure relies on a piece-wise linear model of the shrinkage
functions as explained in the following section. The learning process is explained
in section 4.

3 The Slice Transform

The Slice Transform (SLT) [9] enables the approximation of a shrinkage function
in a linear manner

ΨBk
{vBk

} ≈ Sqk
(vBk

)pk. (18)



628 A. Adler, Y. Hel-Or, and M. Elad

Note, that while the shrinkage function is a scalar function, the representation
(18) incorporates the element-wise shrinkage operation for the entire subband
Bk. The i-th row of the sparse matrix Sqk

(vBk
) is determined uniquely by

the i-th element of the vector vBk
and the predefined vector qk. The vector

pk is the design parameter that controls the input-output mapping relation of
the k-th shrinkage function. In the following we explain the concept behind the
representation (18) and begin, for simlicity, with the scalar case.

Assume x ∈ [a, b) is a real value and the half open interval [a, b) is di-
vided into M slots. The boundaries of the slots are contained in the vector
q = [q0, q1, . . . , qM ]T such that q0 = a < q1 < q2 · · · < qM = b. The value x is
located in a single slot π (x) ∈ {1, . . . , M} and associated with a residue r (x),
where π (x) = j if x ∈ [qj−1, qj) and

r (x) =
x − qπ(x)−1

qπ(x) − qπ(x)−1

Note that r (x) ∈ [0, 1), where r (x) = 0 if x = qπ(x)−1 and r (x) → 1 if x → qπ(x).
The value x can be expressed as a follows

x = Sq (x)q = r (x) qπ(x) + (1 − r (x)) qπ(x)−1, (19)

where the row vector Sq (x) ∈ R(M+1) is defined as follows:

Sq (x) = [0, . . . , 0, 1 − r (x) , r (x) , 0, . . . , 0]

and where the values 1 − r (x) and r (x) are located in the (π (x) − 1)th and
(π (x))th entries, respectively. Extending equation (19) to the multi-dimensional
case, we assume that x ∈ RN and that each element satisfies xi ∈ [a, b). The
SLT of x is given by

x = Sq (x)q, (20)

where the matrix Sq (x) ∈ RN×(M+1) is given by

[Sq(x)]i,j =

⎧⎪⎨⎪⎩
r(xi) if π(xi) = j

1 − r(xi) if π(xi) = j + 1
0 otherwise.

(21)

Each row of the matrix Sq(x) is associated with a single element of the vec-
tor x and the representation (20) is composed of linear splines basis functions.
According to [9], substituting the boundary vector q with a different vector p
performs a piece-wise linear mapping of the values in x

Mq,p(x) = Sq (x)p, (22)

where Mq,p (x) performs linear mapping of the values {xi ∈ [qj−1, qj)} to the
interval [pj−1, pj), as depicted in Fig. 1. The substitution property (22) is the
key principal behind the linear representation of the shrinkage functions (18).
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Fig. 1. Piece-wise linear mapping with the Slice Transform

4 The Super-Resolution Algorithm

The proposed Super-Resolution algorithm includes two stages: during the first
stage a pair of example images are utilized in an online discriminative learning
process of the shrinkage functions. In the second stage, the learned shrinkage
functions are applied during the super-resolution reconstruction.

4.1 Stage I: Learning the Shrinkage Functions

The shrinkage functions learning algorithm is inspired by an oracle based ap-
proach. Consider the SISR degradation model (1) and an oracle estimator of the
shrinkage functions that has access to the input image y and to the unknown
high-resolution image x. The oracle learning strategy is based on constructing
a super-resolution approximation x̂ from the interpolated low-resolution image
y↑ = Υ↑ (y) by employing the scheme in (17) such that the unknown shrinkage
functions are represented by the SLT approximation (18)

x̂ (y↑,p) =
(
BT B

)−1
K∑

k=1

BT
k Sqk (y↑Bk

)pk = L (y↑)p, (23)

where p =
[
pT

1 ,pT
2 , . . . ,pT

K

]T and

L (y↑) =
(
BTB

)−1
[H1,H2, . . . ,HK]

where Hi = BT
i Sqi (y↑Bi

). The oracle learns the unknown shrinkage functions
by solving the following Least Squares (LS) optimization problem

p̂ = argmin
p

‖x− x̂ (y↑,p)‖2
2. (24)
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This ideal strategy captures all interband and intraband statistical dependencies
of the reconstructed image such that the spatial domain mean squared error
(MSE) between the reconstructed and true images is minimized. In practice,
only the observed low-resolution image is available and a question arises - can
we learn the shrinkage functions in a similar fashion to the oracle with only y
at hand? Here we exploit the scale-invariant property of natural images [10] and
we approximate it by the following approach: the oracle training pair {x,y↑} is
replaced with the pair {y,g} such that the reference image is now the observed
low-resolution image and its degraded counterpart is given by

g = Υ↑
(
D̃H̃y

)
∈ Rn,

where H̃ ∈ Rn×n is a blurring filter (block-circulant) convolution matrix and
D̃ ∈ R

n
L×n is a down-sampling operator matrix, by a factor of

√
L along the

horizontal and vertical dimensions. Thus, the super-resolution reconstruction is
applied to a scaled-down version of the low-resolution observed image

ŷ (g,p) =
(
BT B

)−1
K∑

k=1

BT
k Sqk (gBk)pk = L (g)p. (25)

The shrinkage functions are jointly learned by solving the following LS problem

p̂ = argmin
p

‖y − ŷ (g,p)‖2
2 (26)

and the solution is given by

p̂ =
(
LTL

)−1
LTy, (27)

where L = L (g).

4.2 Stage II: Super-Resolution Reconstruction

Once the parameters of the shrinkage functions are learned, the super-resolution
image is reconstructed as follows

x̂ (y↑, p̂) =
(
BT B

)−1
K∑

k=1

BT
k Sqk

(
y↑Bk

)
p̂k. (28)

5 Performance Evaluation

The performance of the proposed algorithm was evaluated by computer sim-
ulations and compared versus bi-cubic interpolation and the state-of-the-art
sparse-representation based algorithm [1], [2] (which outperforms the sparse-
representation approach [3]). Performance were not compared to the method [5]
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Fig. 2. The collection of tested images, all images are of size 512 × 512
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Fig. 3. PSNR improvement over bi-cubic interpolation for L = 9
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Table 1. PSNR results for L = 9

Image Bicubic Sparse Shrink. Shrink. Shrink. Offline

Interp. Rep. [1] 4 × 4 6 × 6 8 × 8 Shrink.

Barbara 24.05 24.00 24.18 24.19 24.17 24.06

Peppers 29.82 30.14 30.51 30.76 30.75 29.77

Boat 27.14 27.49 27.58 27.65 27.61 27.31

Lena 30.76 31.17 31.45 31.55 31.53 30.85

Coronado 25.24 25.36 25.53 25.59 25.46 25.36

Cat 28.67 28.73 29.32 29.56 29.59 28.79

Man 28.35 28.77 28.92 28.98 28.91 28.46

Graphics 21.79 22.31 22.36 22.08 22.29 21.94

Baskets 21.13 21.45 21.48 21.54 21.51 21.20

Watch 28.10 28.49 28.60 28.75 28.68 28.18

Mandrill 22.01 22.13 22.24 22.28 22.27 22.86
Carriage 27.41 27.96 27.90 28.02 27.98 27.47

Original Sparse Representation Shrinkage

Fig. 4. Super-resolution of the image barbara for L = 4

Original Sparse Representation Shrinkage

Fig. 5. Super-resolution of the image barbara for L = 4
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Original Sparse Representation Shrinkage

Fig. 6. Super-resolution of the image watch for L = 4

Original Sparse Representation Shrinkage

Fig. 7. Super-resolution of the image watch for L = 4
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as neither quantitative results nor a code of this method were available for eval-
uation. A collection of 12 images presented in Fig. 2 were compared against their
own SISR reconstructions (from their scaled-down versions) with scale-up fac-
tors of L = 4 and L = 9. The undecimated

√
K ×

√
K windowed DCT (UDCT)

was chosen as the overcomplete transform. This transform is defined to include
all possible

√
K ×

√
K = K DCT window shifts, leading to a redundancy factor

of K with K distinct subbands. In this approach, each subband y↑Bk
= Bky↑

is generated by filtering the image with the respective basis kernel. In addition,
the UDCT is a tight frame thus the term

(
BT B

)−1 boils down to the identity
matrix. PSNR results are compared in Fig. 3 for L = 9 and a 6×6 UDCT, where
it can be seen that the proposed approach outperforms the sparse-representation
approach for all the images (excluding the image graphics). The proposed ap-
proach achieved an average gain of 0.54dB over bi-cubic interpolation, versus
an average gain of 0.30dB achieved by the sparse-representation approach. De-
tailed PSNR results are presented in Table 1 for all methods. Three different
UDCT window sizes were compared for online learning and it can be seen that
the 6× 6 window size provided the best results. In addition, the offline learning
approach [9] was evaluated by training the shrinkage functions with an image
from the training collection reported in [9]. The offline training was performed
using equation (24), with a 6 × 6 UDCT. It can be seen that the offline ap-
proach provided inferior results compared to the online approach (excluding the
image mandrill). In the specific case of the image graphics, it is possible that the
assumption of scale-invariance is not as true, explaining the lower performance
obtained. These type of images could be treated using the offline approach with
adequately chosen training examples. Visual comparison of SISR reconstructions
are presented for L = 4 in Figs. 4− 7, it can be seen that various artifacts appear
in the sparse-representation based approach while the proposed approach pro-
duces more natural and pleasant results (figures are best viewed in the electronic
version of this paper). Examples of learned shrinkage functions are presented in
Fig. 8, where it can be seen that for a fixed subband the learned shrinkage func-
tions exhibit significantly different behavior for different images. For instance,
only in subband (6) of the image coronado there is significant boosting effect
with sign inversion for low amplitude coefficients.

6 Conclusions

This paper presented a novel approach for shrinkage functions learning in sin-
gle image super-resolution. By exploiting the scale-invariant property of nat-
ural images, the set of scalar shrinkage functions are jointly learned from the
low-resolution input image. Computer simulations with a simple overcomplete
dictionary - the undecimated windowed DCT - revealed superior performance
versus the state-of-the-art sparse-representation approach. Future research direc-
tions include a joint online-offline learning approach that combines additional
example images into the online learning process. In addition we will consider the
reconstruction of the residual error image in (15) rather then the complete image
- thus focusing the learning process only into the missing high-pass components.
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Abstract. In this paper, we present a method for object of interest

detection. This method is statistical in nature and hinges in a model

which combines salient features using a mixture of linear support vec-

tor machines. It exploits a divide-and-conquer strategy by partitioning

the feature space into sub-regions of linearly separable data-points. This

yields a structured learning approach where we learn a linear support

vector machine for each region, the mixture weights, and the combina-

tion parameters for each of the salient features at hand. Thus, the method

learns the combination of salient features such that a mixture of classi-

fiers can be used to recover objects of interest in the image. We illustrate

the utility of the method by applying our algorithm to the MSRA Salient

Object Database.

1 Introduction

Saliency map is an important tool in vision research [1]. Each pixel in this map
is assigned with a measure of “relevance” or “importance” so as to reflect the
degree to which a region in the image is attractive to visual attention. The
research on visual saliency has generated a vast literature in computer vision
and found applications in many areas, such as region of interest extraction [2],
segmentation [3], tracking [4], object detection [5], thumbnailing [6] and image
retrieval and classification [7].

It has been widely accepted that visual saliency computation can be effected
in a bottom-up manner [8,9,10,11]. Departing from this strategy, Itti et al. [9]
proposed a computational framework for visual saliency which decomposes visual
input into component feature maps. In [12], Alter and Basri used image edges
to construct the saliency map. The work in [12] is in line with the common
approach to model contour or curve saliency, where length and smoothness of
the edge points are often used [13,14].
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The combination of individual features into saliency maps can be greatly influ-
enced by the behavioral goal of human attention [15]. This can be considered as a
top-down modulation mechanism [16]. Note that, when guided by observer pref-
erences, those parts that are less related to the visual targets of visual attention
can be assigned smaller contributions on the saliency map or even completely
ignored. To model this process, Navalpakkam and Itti [17] proposed a method to
maximise the signal-to-noise ratio between the mean salience of the target and
that of the distractor. Berengolts and Lindenbaum [14] also proposed a method
to recover the distribution of the edge lengths and curvature on the region corre-
sponding to the target of interest making use of labelled objects. In [18], saliency
maps were computed as a linear combination of features whose weights were re-
covered through a linear regression model applied to manually labeled images.
Liu et al. [2] formulated the saliency detection problem as a region of interest
segmentation task where learning is performed via a conditional random field.

Note that, in some of the methods above, the same features at different scales
are added together in a linear fashion [9,2] or modelled in a scale-space setting
[19]. This suggest that salient objects or regions with different sizes may gen-
erate the same contribution to the final saliency map. Moreover, the intrinsic
relationships between the individual features is often overlooked. This is due to
the fact that, in existing methods, the optimisation step treats the features as
independent primitives, despite the fact that they may actually be interrelated
or highly correlated. This is even more important since, in the case of saliency
features, we often deal with a large sample size with moderate feature dimension.
Thus, for purposes of saliency learning, the features may span a space which is
nonlinear in nature. This is in contrast with other settings in computer vision
where linear classifiers can be applied on high dimensional features.

Hence, in this paper, we present a method which aims at combining salient
features through a structured learning characterisation of the problem so as to
achieve two desirable properties. Firstly, recovering a classifier model with the
efficiency of linear Support Vector Machines. Secondly, reaching the discrimina-
tion power of nonlinear classifiers. To do this, we adopt a divide-and-conquer
strategy that exploits partitioning the feature space into regions that are lin-
early separable. This is effected through a mixture of Support Vector Machines
(SVMs) where the mixture weights and the feature combination coefficients are
optimised using an Expectation-Maximisation (EM) approach. The method pre-
sented here is quite general in nature and can accommodate a number of saliency
features found in the literature. In our work, we make use of the multi-scale fea-
tures in [9] and [2], and present their natural extensions to neighbourhood-based
descriptors.

2 Structured Learning

As mentioned earlier, our object of interest detection method makes use of saliency
features and structured learning. The structured learning approach hinges in the
notion that non-linear classification can be effected in a piecewise-linear manner
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across the feature space. This provides a means to efficiency through the use of
linear classifiers while preserving the flexibility of non-linear methods. Our prob-
abilistic formulation employs two ingredients. The first one is the prior probability
of the mixture given a feature-set at a pixel-site on the image. The second ingredi-
ent is the posterior probability corresponding to the outputs for each of the linear
SVMs.

2.1 Mixture of SVMs

In this section, we cast the recovery of the saliency map into a structured learning
setting. The aim is to combine the saliency features so as to perform classifica-
tion, i.e. separate salient objects from the background in the image, based upon
objects of interest provided as training data. Here, we formulate the problem
in terms of a generative model over the training data. This joint distribution
model enables us to explicitly incorporate mixture coefficients into the likeli-
hood function. Consequently, we can perform parameter learning and model
selection simultaneously by imposing a proper prior on the mixture co-efficients
based on the minimum message length (MML) criterion [20]. Parameter update
is then achieved making use of the EM algorithm [21]. For model selection, we
start with an overcomplete model and automatically prune vanishing SVM mix-
ture co-efficients. Hence structured learning is implicitly incorporated into the
optimisation process and performed in a top-down manner.

To commence, consider a set of M tuples (X, Y )={(xi,l, yi)|i = 1, . . . , M, yi ∈
{−1, 1}}, where (xi,l, yi) are the ith data-label pair in the training data corre-
sponding to the lth saliency feature, where the total number of salient feature
is N . In practice, Y accounts for the corresponding object of interest regions
provided at input. The linear SVM classifier solves the following optimisation
problem

min
w

||w||2

2
+ C

∑
i

ε(w;xi,l, yi) (1)

where ε(w;xi,l, yi) = max (1 − yiwT xi,l, 0) is the Hinge loss function which spec-
ifies an upper bound on the classification error. The first term on the right hand
side is regularisation term on classifier weights. Without loss of generality, we
have subsumed the bias term b in the above formulation by appending each data
instance with an additional dimension xT

i,l = [xT
i,l, 1] and wT = [wT , b].

We can extend the SVM model above to a two-layer mixture model formulated
using the joint probability distribution over the salient regions provided by the
user and the SVM binary classifier. The model, hence, consists of two parts.
The hidden layer, which is composed of the gating network that produces a soft-
partition of the input space by generating a data-dependent weight distribution.
Each node in the hidden layer is connected to a linear SVM classifier in the input
layer, which is responsible for the salient object recovery.

We establish the link between the proposed mixture model and the associated
generative model using the joint probabilistic distribution over the data in X
and the labels in Y given by
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P (Y |X, Θ) =
∏

i

P (yi|xi,l, Θ) =
∏

i

∑
zi

P (yi|zi,xi,l, Θ)P (xi,l|zi, Θ)P (zi | Θ)

(2)
where i indexes data samples as before, Θ = {α, β, τ, γ} are the parameters
of the underlying model and zi is the hidden variable introduced for the ith
sample for each of the N salient features under study. In the equation above,
α and β are the multinomial parameters that generate the hidden variables
zi’s whereas τ and γ are parameters for the gating nodes and classifiers, whose
specific parametric forms will be explained later. The probability P (xi,l|zi, τ)
represents the posterior for the mixture component with hyperparameters τ , and
P (yi|xi,l, γ) is the posterior probability of corresponding linear SVM output for
the ith sample.

It is worth noting that our mixture of SVMs model can also be viewed from
the perspective of graphical model due to its generative nature. From this view-
point, xi,l and yi are the target random variables whose joint distributions are to
be modeled, and zi is the hidden variable generated from a multinominal distri-
bution with parameters α = {α1, . . . , αK} and β = {β1, . . . , βN} for K-mixtures
and N features. Thus, xi,l is generated from an isotropic Gaussian distribution
with parameter τ conditional on zi, where τ = {(μ1,1, Σ1,1), . . . , (μK,N , ΣK,N )}
and μj,l and Σj,l are the mean vector and the variance for the jth mixture com-
ponent performing inference upon the saliency feature-set indexed l. The target
random variable yi is generated from a probabilistic classifier model with param-
eter γ conditional on xi,l and zi, where γ = {w1,1, . . . ,wK,N}, and wj,l is the
classifier weight-vector for the jth linear SVM corresponding to the lth saliency
feature-set. This yields

P (Y |X, Θ) =
∏

i

∑
zi

P (yi|xi,l, γ)P (xi,l|zi, τ)P (zi | α, β) (3)

The proposed model bears some resemblance with the mixture of experts (HME)
model proposed by Jacobs and Jordan [22]. Nonetheless, they are inherently
different in nature in the sense of the probabilistic distributions they capture.
Our model captures the joint distribution of data and labels, whereas the HME
model is associated with the conditional probability distribution of labels given
the data. In the HME model, the hidden variable zi is generated from a condi-
tional probability distribution while in our method it arises from a multinominal
distribution with parameter α. This enables us to control the complexity of the
model implicitly by enforcing proper sparseness priors on α.

Equation 2 suggests parameter estimation can be effected via Maximum Like-
lihood Estimation (MLE) by maximising the following log-likelihood function

L(Θ) =
∑

i

log P (yi|xi,l, Θ) +
∑

j

Ω(wj,l) (4)

=
∑

i

log
{∑

l

βl

∑
j

αjP (yi|xi,l,wj,l)P (xi,l|zi, τ)
}

+
∑

j

Ω(wj,l)
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where Ω(wj,l) = log{P (wj,l)} is a log-prior term for regularisation purposes.
The last line follows from Equation 3, the definition of γ = {w1,1, . . . ,wK,N}
and the use of the shorthand P (zi | α, β) = αjβl for the jth mixture and the lth

salient feature-set. This responds to the fact that here, we view P (zi | α, β) as a
data-independent term which specifies the prior probability of the mixture and
salient feature pair at a given pixel-site on the image.

In order to incorporate the linear SVM into the log-likelihood above, we view
the associated constrained quadratic optimisation problem corresponding to the
negative log-likelihood from a probabilistic viewpoint. Note that the second term
on the right hand side is related to the prior Ω(w), whereas the first term
corresponds to the conditional probability P (y|x,w) related to classification
errors. These are given by

Ω(wj,l) = −ζ||wj,l||2 (5)

P (yi|xi,l,wj,l) = e−ε(wj,l;xi,l,yi) (6)

Here we have omitted the normalisation factor for the conditional probability
P (yi|xi,l,wj,l), which leads to an approximation of the probability measure. This
is mainly due to the consideration regarding the use of numerical optimisation
which enables us to employ existing fast linear SVM solvers [23] for parameter
estimation. This simplification is still valid in the large margin case where the
probability of the negative class is usually very small. More importantly, the like-
lihood function in Equation 4 is guaranteed to increase using the EM algorithm,
as we discuss in the next section, regardless of whether or not P (yi|xi,l,wj,l) is
a proper probability measure over yi.

2.2 The EM Algorithm

In this section, we describe an EM algorithm for solving the mixture of lin-
ear SVMs presented in the previous section. The E-step updates the posterior
probability of assigning each sample to the component classifiers. Let Θ(t) =
{α(t)

j , β
(t)
l , μ

(t)
j,l , Σ

(t)
j,l , w(t)

j,l |j = 1, . . . , K; l = 1, . . . , N} be the parameters at the
current iteration, the probability of the ith sample given the jth classifier and
the lth saliency feature is given by

q
(t+1)
i,j,l =

α
(t)
j β

(t)
l P (xi,l|μ(t)

j,l , Σ
(t)
j,l )P (yi|xi,l,w

(t)
j,l )∑

s

∑
u

∑
v α

(t)
u β

(t)
v P (xs,v|μ(t)

u,v, Σ
(t)
u,v)P (ys|xs,v,w(t)

u )
(7)

where s ∈ {1, . . . , M}, u ∈ {1, . . . , K}, v ∈ {1, . . . , N}. P (yi|xi,l,w
(t)
j,l ) is given

by Equation 6, and P (xi,l|μ(t)
j,l , Σ

(t)
j,l ) is given by the following multivariate, d-

dimensional Gaussian distribution,

P (xi,l|μ(t)
j,l , Σ

(t)
j,l ) =

1√
(2π)d | Σ

(t)
j,l |

exp
(
−1

2
(xi,l − μ

(t)
j,l )

T
(
Σ

(t)
j,l

)−1(xi,l − μ
(t)
j,l )

)
(8)
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The M-step involves simultaneously updating the parameters for the gating
nodes and SVM classifiers so as to solve two independent optimisation prob-
lems. Parameter estimation for the gating nodes is similar to the estimation of
parameters for the Gaussian mixture model. Specifically, for the jth mixture
component and lth saliency feature we have

α
(t+1)
j =

∑
s

∑
v q

(t+1)
s,j,v∑

s

∑
u

∑
v q

(t+1)
s,u,v

(9)

β
(t+1)
l =

∑
s

∑
u q

(t+1)
s,u,l∑

s

∑
u

∑
v q

(t+1)
s,u,v

(10)

μ
(t+1)
j,l =

∑
s q

(t+1)
s,j,l xs,l∑

s q
(t+1)
s,j,l

(11)

Σ
(t+1)
j,l =

∑
s q

(t+1)
s,j,l (xs,l − μ

(t+1)
j,l )T (xs,l − μ

(t+1)
j,l )∑

s q
(t+1)
s,j,l

(12)

As a result, parameter estimation for the linear SVMs reduces itself to up-
dating the classifiers for reweighted samples where the weights are specified by
the posterior probabilities computed in the E-step. Specifically, for the jth linear
classifier working on the lth saliency feature we solve the following classification
problem

max
∑

i

∑
l

q
(t)
i,j,l log P (yi|xi,l, θj,l) + log P (θj,l) (13)

= max

{
−
∑

i

∑
l

q
(t)
i,j,lε(wj,l;xi,l, yi) − ζ||wj,l||2

}

where θj,l = {αj , βl, μj,l, Σj,l,wj,l} and C =
1
2ζ

. This is exactly the same prob-

lem as training linear SVMs in Equation 1 whose sample weights are given by
q
(t)
i,j,l.

2.3 Convergence

As mentioned in the sections above, the method proceeds in an iterative fashion.
At each iteration t, the method comprises the following steps

– Train the SVMs using the sample weights qt
i,j,l so as to recover the prob-

abilities P (yi | xi,l,w
(t)
j,l ). In practice, this is equivalent to obtaining the

probabilistic output of the SVM classifiers as shown in [24].
– With P (yi | xi,l,w

(t)
j,l ) at hand, compute the updated weights qt+1

i,j,l in Equa-
tion 7. These can be computed making use of the probabilities P (xi,l |
μ

(t)
j,l , Σ

(t)
j,l ) given in Equation 8 and the probabilities P (yi | xi,l,w

(t)
j,l ) re-

covered in the previous step.
– Recover the remaining parameters making use of Equations 9-12.
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It should be noted that each EM iteration increases the log-likelihood given
by Equation 4. This argument can be easily established by making use of the
auxiliary function parameterised with respect to Θ(t) given by

Q(Θ; Θ(t)) =
∑
i,j,l

q
(t)
i,j,l log αj log βiP (xi,l|μj,l, Σj,l)P (yi|xi,l,wj,l)

−
∑

i

∑
j

∑
l q

(t)
i,j,l log q

(t)
i,j,l +

∑
j Ω(wj,l) (14)

which is the lower bound of L(Θ) since

L(Θ) − Q(Θ, Θ(t)) = q
(t)
i,j,l log

q
(t)
i,j,l

qi,j,l
(15)

The gap is non-negative and varnishes if and only if Θ = Θ(t). Hence, the log-
likelihood increases with the following relation

L(Θ(t+1)) ≥ Q(Θ(t+1), Θ(t)) ≥ Q(Θ(t), Θ(t)) = L(Θ(t))

The second inequality is true due to the maximisation step. Therefore, by repeat-
ing the EM steps we can obtain a convergent solution of the original maximum
likelihood estimation problem. Moreover, we can stop the iteration presented ear-
lier when the quantity ||Θ(t+1)−Θ(t)|| is less or equal to a predefined threshold ρ.

3 Feature Extraction

So far, we have assumed the saliency features are at hand as input to our mixture
of linear SVMs. Here, we elaborate further on the saliency features used in
our experiments. It is worth noting that the developments above are general
in nature and can be applied to a large variety of saliency features. Here, we
depart from the feature map extraction methods by Itti et al. [9] and Liu et al.
[2]. We extend these two methods by considering the pixel neighbourhood, which
permits capturing the image structure during the feature extraction process. The
individual features are then used as the input to our structured learning method.

In the Salient Map (SM) method of Itti et al. [9], an input image is first
smoothed using Gaussian filters so as to generate a scale pyramid. Simple fea-
tures are then extracted at each scale to generate three types of visual cues. The
first of these is the intensity feature obtained by averaging the red, green and
blue channel-values at each pixel in the input image. By computing the differ-
ences between seven scales, 6 intensity channels are recovered. The second set of
features is based upon color and simulate the function of the cortex, which is rep-
resented by a set of color opponency between red, green and blue channel values
against the yellow basis. For each set of colour features, differences are recovered
over three scales and, hence, yield 12 channels. The third set is comprised by
orientation features, which are given by the responses of a set of even-symmetric
Gabor filters [25]. In practice, these are treated as a Gaussian envelope mod-
ulated by a complex sinusoidal carrier. Here, we compute the responses at six
scales and four orientations, and thus, recover 24 orientation channels.



Object of Interest Detection by Saliency Learning 643

The method from Liu et al. [2], which we denote LRG, recovers saliency
making use of local, regional and global features. The first of these consists of
the local feature extracted from multi-scale contrast. For a given pixel, the image
contrast is computed as the sum of the 2-norm grayscale differences between
a pixel and its neighborhood. Then, contrast at different scales is combined
linearly. To extract the regional salient feature-set, two bounding boxes are used.
These cover the proposed salient object and its surrounding area. The differences
between the RGB color histograms for the bounding boxes are computed so as
to find the optimal center-surround aspect ratio of the object. Finally, the global
saliency features are computed from spatial color distributions. This feature can
be viewed as that represented by spatial color clusters, where colors with small
spatial variance are assigned higher salience.

Despite effective, the features above may be prone to corruption due to noise
and cluttered background. Furthermore, small objects may generate scattered
salient regions during the feature extraction process. These greatly influence
the final object of interest detection step. To solve these problems, we extend
the above mentioned features to a neighbourhood-based descriptor setting by
considering the interaction of image pixels with the neighboring pixels. Here, we
adopt a second-order Markov setting, that is, including the saliency features of
the pixels in a 3 × 3 neighborhood. In this way, we can generate a descriptor
at each pixel that contains saliency features from both the pixel itself and its
neighborhood. It can be seem in the later experiments that such extension helps
maintain the local consistency in the object of interest detection.

4 Experiments

We perform experiments on the Microsoft Research Asia (MSRA) Salient Object
Database B, which contains 5,000 images. Details on this database can be found
in [2]. Our motivation in using this dataset stems in providing results consistent
to those reported in [2] and, thus, presenting a fair comparison with the alter-
natives reported in the literature. We have randomly divided the images in the
database into two groups of 2,500 images each. One of these is used for training
and the other one for testing. At training, we set the number of SVMs for our
mixture to five, i.e. K = 5. The SVM parameters have been recovered by ten-fold
cross-validation. For our experiments, we have used four sets of features. The
first set is the colour, contrast and center-surround features in [2] (LRG), thus,
N = 3. The second set comprises the 42 channels generated from orientation,
intensity and colour features in [9](SM). In this case, N = 42. We have also used
the extensions of the features in [9] and [2] with a 3×3 neighbourhood N about
each pixel in the imagery, which we denote SM-N with N = 42 and LRG-N
with N = 3, respectively.

To compare the learning performance of our mixture of linear SVMs (MLSVM)
with alternatives elsewhere in the literature, we also provide results yielded by the
Conditional Random Field (CRF) inference algorithm in [2] and the boosting al-
gorithm ADABOOSTREG in [26]. For the CRF algorithm, we have used the pa-
rameters in [2], whereas for the ADABOOSTREG we have used 10 weak learners
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with ten-fold cross validation so as to obtain the best set of parameters. For our
method, we have set the stoping threshold ρ for the EM iteration to 0.001 and ini-
tialised the parameters in Θ as follows. The weights α

(0)
j are set to 1

K , i.e. α(0)
j = 1

5 .

Similarly, we have set the feature weights to 1
N , which yields the value for β

(0)
j . The

means μ
(0)
j,l and covariances Σ

(0)
j,l have been computed via k-means clustering [27].

To do this, we set k = 5 and apply k-means to each of the feature-sets under study.
With the cluster members at hand, the corresponding means and covariances are
computed.

For purposes of testing, we used the trained model to generate saliency val-
ues for each pixel. For the three methods, i.e. our approach, the CRF and the
ADABOOSTREG, the testing output is a saliency map which indicates the prob-
ability of a testing pixel being the salient object. To detect a salient object re-
gion, we apply the optimal threshold recovery method in [28] on the saliency
map. Following [2], we assume that there is only one salient object per image.
Here, we extract the region whose size is largest amongst those yielded after the
method in [28] is applied. Note that such setting is for the sake of providing an
equal comparison with results reported elsewhere rather than a limitation on
our method. More than one objects may be obtained by sequentially extracting
regions in order of their sizes.

To commence, we show sample results yielded by the 12 classifier-feature
pairs used in our experiments (three learning methods against four feature sets).
Figure 1 shows some examples of saliency maps recovered by our method and
the alternatives for the images on the top-most row. The recovered objects of
interest for the images shown in Figure 1 are shown in Figure 2. In the panels, the
bounding boxes show the recovered regions after the application of the method in
[28] to the saliency maps. Note that, despite the LRG-N features with the CRF
inference produces results comparable to our approach, our method provides
bounding boxes more in accordance with the ground truth. This is particularly
evident for the coloured wine glasses and the tulip images. Moreover, for other
images, such as the log-cabin and the CPU images, the LRG-N features with the
CRF has slightly cropped the objects of interest by delivering smaller bounding
boxes.

We now provide a quantitative analysis using a number of performance mea-
sures. The first of these is the precision-recall measure in [2]. The precision-recall
formulation in [2] takes into account the structure of the database in our experi-
ments by using the binary masks provided as ground truth and the ones delivered
by our method and the alternatives. The second of the quantitative measures
used here is the F-score [29]. The F-score is defined as Fη = (1+η)precision×recall

η×precision+recall .
Following [30], we have set η = 0.5, which corresponds to the weighted harmonic
mean of precision-recall. Finally, we have used the boundary displacement error
(BDE) [31]. In our experiments, we have followed [2] and used the fixation area
so as to compute our F-score and BDE plots. The fixation area is the small-
est rectangle containing a fixed percentage of salient pixels as delivered by our
method and the alternatives. As in [2], and so as to provide consistent results to
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Fig. 1. Saliency map samples computed using different features and learning methods.

From top-to-bottom: Ground truth, SM+ADABOOSTREG, SM+CRF, SM+MLSVM,

SM-N+ADABOOSTREG, SM-N+CRF, SM-N+MLSVM, LRG+ADABOOSTREG,

LRG+CRF, LRG+MLSVM, LRG-N+ADABOOSTREG, LRG-N+CRF, LRG-

N+MLSVM.

those reported elsewhere, the fixation area has been recovered through exhaus-
tive search.

In Figure 3 we show the overall dataset-average precision-recall plots for the
12 combinations of saliency feature-sets and inference methods used in our ex-
periments. In the figure, for the sake of clarity, we have divided the plots into
two panels. On the left-hand-side, we show those plots corresponding to the SM
and SM-N features, whereas the other panels shows the results for the LRG and
LRG-N features. Note that our method (MLSVM) performs best with both, the
SM-N and the LRG-N features followed by the CRF with LRG-N features and
the ADABOOSTREG taking LRG-N features as input. Note that the varying
length of the traces in the plot corresponds to the dependence of the precision-
recall measurements upon the fixation area. In our plots, each of the markers



646 P. Khuwuthyakorn, A. Robles-Kelly, and J. Zhou

Fig. 2. Sample object of interest detection results. From top-to-bottom: Ground

truth, SM+ADABOOSTREG, SM+CRF, SM+MLSVM, SM-N+ADABOOSTREG,

SM-N+CRF, SM-N+MLSVM, LRG+ADABOOSTREG, LRG+CRF, LRG+MLSVM,

LRG-N+ADABOOSTREG, LRG-N+CRF, LRG-N+MLSVM.

Fig. 3. Average precision-recall
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Fig. 4. Average F-score as a function of the fixation area percentage

Fig. 5. Boundary Displacement Error as a function of the fixation area percentage

corresponds to fixation area variations from 50% to 100% in increments of 5%.
As a result, the “flatter” and higher the precision-recall traces in the plot the
more stable the classifier-feature pair is to variations of fixation area.

Following the observation that our measures are dependent on fixation area
percentages, in Figures 4 and 5 we show the F-scores and BDE as a function of
fixation area percentage. As in Figure 3, we have plotted, on the left-hand panels,
the traces for the SM and SM-N features, while the right-hand plots correspond
to the LRG and LRG-N feature-sets. On both figures, the neighbourhood-based
saliency descriptors are always the best performers, regardless of the inference
method used. In both accounts, the MLSVM with LRG-N features outperforms
the alternatives, with lower BDEs and higher F-scores across the fixation area
percentages, with ADABOOSTREG consistently delivering the worst results. It
is also worth nothing that the LRG based features shows better F-score and
BDE results than SM based features. This is consistent with Figures 1, where
the topmost six rows, corresponding to the results yielded using the SM and
SM-N features, show regions which are less well defined than the panels in the
bottom rows. The notion that the LRG and LRG-N features provide better per-
formance is confirmed by the F-score results. Nonetheless, for all the quantitative
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measures in our experiments, the MLSVM provided a margin of advantage over
the alternative learning methods.

5 Conclusions

In this paper, we have presented a mixture of Linear SVMs for purposes of
learning how to detect a salient object. The method presented here employs a
mixture of linear SVMs so as to partition the feature space into sub-regions which
are linearly separable. This is a divide-and-conquer approach which allows the
recovery of the mixture weights and the feature combination coefficients making
use of the EM algorithm. We have illustrated the utility of the method for
purposes of recovering objects of interest in the MSRA Salient Object Database
and compared our results to a number of alternatives. We have also provided
neighbourhood-based descriptor extensions to the features presented in [2] and
[9]. Note that the proposed method is quite general and can be applied to many
other types of features which, in contrast with those used here, may not be local
in nature.
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Abstract. In this work we propose a boosting-based approach to boundary de-
tection that advances the current state-of-the-art. To achieve this we introduce
the following novel ideas: (a) we use a training criterion that approximates the
F-measure of the classifier, instead of the exponential loss that is commonly used
in boosting. We optimize this criterion using Anyboost. (b) We deal with the
ambiguous information about orientation of the boundary in the annotation by
treating it as a hidden variable, and train our classifier using Multiple-Instance
Learning. (c) We adapt the Filterboost approach of [1] to leverage information
from the whole training set to train our classifier, instead of using a fixed subset
of points. (d) We extract discriminative features from appearance descriptors that
are computed densely over the image. We demonstrate the performance of our
approach on the Berkeley Segmentation Benchmark.

1 Introduction

The abundant biological evidence that our visual system employs sophisticated bound-
ary detection mechanisms, and the legacy of D. Marr [2] has led early computer vision
researchers to pursue computational approaches to boundary detection, considering it
as the starting point for any subsequent processing. Moreover, the striking ease with
which we recognize shape-based classes, e.g. sketches while being bereft of all appear-
ance information also suggests that boundary detection may be the missing piece in the
current, appearance-dominated, object recognition research.

A revival of research on boundary detection has been observed during the last years,
largely due to the introduction of ground-truth labeled datasets [3,4] which facilitated
the treatment of the problem in a machine learning framework, while weeding out many
of the heuristics previously used in edge detection. Based on the consistent improve-
ments observed during the last years on these benchmarks [5,6,7,8,9,10], boundary de-
tection is anticipated to become an indispensable part of any computer vision ‘toolbox’.

Our work proposes another step in the direction of accurate boundary detection, by
pushing further the machine learning approach. In this work we reconsider the obser-
vation made in earlier works e.g. [4,9], where it was mentioned that using more elab-
orate machine learning techniques does not significantly improve performance. As we
demonstrate here, while using the same cues as [8] we obtain better results based on a
combination of techniques developed around boosting.

For this we build on the Anyboost framework [11] that views Boosting as gradient
descent in function space. Based on this more general point of view, we first develop a
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new variant of boosting that optimizes an approximation to the F-measure of our clas-
sifier during training, instead of the exponential loss which is commonly minimized by
Boosting. As boundary detectors are evaluated based on their F-measure, it is natural
to expect that training also with the F-measure as a cost function will improve perfor-
mance. We note that this contribution can be of broader interest, as the F-measure is
employed in several other problems, such as retrieval, to deal with the case where the
negative class largely outnumbers the positive one.

Second, we deal with ambiguity in the labelling of points by treating the orientation
of the boundary as a hidden variable, and train our classifier using Multiple-Instance
Learning [12].

Third, we leverage information from the whole dataset during training, instead of
using a small set of points, as is commonly the case in other works. As the whole
set of feature-label pairs cannot fit in memory, we use a stochastic gradient descent
method, inspired from the recent Filterboost work [1]. At each round of boosting a
subset of ‘interesting points’ is chosen and used to construct the weak learner for that
round. This is done in a proper way in the setting of Anyboost, by forming a stochastic
approximation to the functional gradient of the training cost with respect to the classifer.
We can thus train complex classifiers without fear of overfitting, thanks to the huge
number of available training samples (� 200 Images x 150000 Pixels).

A further improvement in performance is provided by discriminative information
extracted from appearance descriptors. As in recent works [13] we compute descriptors
densely on the image, thereby capturing the context of any given point, and provide
this as an input to a classification algorithm. This provides additional information, that
complements the local features used in the Berkeley edge detector.

Our contributions are experimentally evaluated on the Berkeley Segmentation Bench-
mark, demonstrating systematic improvements over the current state-of-the-art. As we
intend to provide the source code for our work, we omit several implementation details;
we focus on the major new ideas, leaving a more detailed presentation of the low-level
processing for a longer version of this work.

2 Previous Work

After decades of edge detection research driven by insight and guesswork, a quantum
jump has been the introduction of ground-truth labeled datasets [3,4] and the phrasing of
edge detection as a pattern recognition task. The ‘Berkeley edge detector’ [4] was shown
to outperform most edge detection approaches developed in the previous decades, by
replacing intuitively developed measures, such as the strength of directional derivatives
[14,15], with statistical measures of texture, color and intensity discontinuity, and leav-
ing their combination to machine learning.

This approach has led to improved detectors based on Boosting [6], topological prop-
erties of the image [7], spectral gradients [8], multiscale processing [9] and sparse
dictionaries [10], among others. The most powerful boundary detectors currently in
use [8,16,17] rely on combining different cues for boundary detection, such as texture
gradients, brightness/color gradients, or information extracted from spectral clustering.
Each of these cues is indicative of the presence of an edge, and the task of learning their
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optimal linear combination is typically accomplished with logistic regression. A point
mentioned repeatedly in several works, e.g. [9,4] is that using more intricate machine
learning tools does not substantially improve performance. However both [6] and our
work indicate that substantial improvements can be obtained by using more sophisti-
cated learning approaches, as we will now present.

3 Learning Boundary Detection

We start with a presentation of boosting, where we introduce notation and the Anyboost
technique [11] which is central to the rest of the paper.

Our training data come as sets of input-output pairs, (Xi, yi), Xi ∈ X , yi ∈ Y, i =
1, . . . , N , where N is the size of our training set, typically X = Rd and for classifica-
tion Y = {−1, 1}. Boosting algorithms learn a mapping from the input to the output
space using a linear combination of simpler functions (‘weak learners’):

fT (X) =
T∑

t=1

atht(X). (1)

The weak learners ht are members of a family of simple functions, H but their combi-
nation in fT can result in a complex classifier (‘strong learner’).

Boosting algorithms construct f in a sequential manner, by introducing at each it-
eration t a new component ht ∈ H and a corresponding coefficient at that will most
quickly improve the performance of the classifier. Performance is quantified by a cost
C(f) for the discrepancy between the classifier’s predictions and the labels of the train-
ing set. This is typically a sum of individual costs over the training set, i.e.:

C(f) =
N∑

i=1

c(f(Xi), yi) (2)

For instance c(f(Xi), yi) = exp(−yif(Xi)) gives the exponential loss used in Ad-
aboost training [18], while logistic regression scores have been considered in [19].
Moreover, different algorithms have been proposed to perform the selection steps for
the weak learner and stepsize including Discrete-Adaboost [18], Gentleboost [20], or
Confidence-Rated Boosting among others.

A unifying theme for these algorithms has been provided by the Anyboost algorithm
[11], that views boosting as gradient descent in function space; namely each round
of boosting can be seen as moving the function f in the direction that most rapidly
decreases C(f). In specific, consider that the outputs of the classifier ft at iteration t on
the training set are combined in a vector f , s.t. fi = ft(Xi), i = 1, . . . , N . The negative
gradient of the cost function with respect to the classifier’s responses:

gi = −∂C

∂fi
, (3)

provides the update direction for f on the training set that will most rapidly decrease
the cost being optimized. As we can only change our classifier by adding a member
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of the family H, boosting resorts to finding that function h∗ ∈ H that is closest to the
direction pointed by g, i.e. has maximum inner product with g:

h∗ = argmaxh < g, h >= argminhl(h), l(h) =
∑

i

∂C

∂fi
h(Xi). (4)

At each round we thus train a classifier using a reweighted version of the training set;
each sample has a weight |gi|, while the sign of gi determines whether the weak learner
should have a positive response. At each round a weak learner ht ∈ H is chosen so as
to minimize Eq. 4.

Once the ht is chosen, its coefficient at is determined with line search to minimize
C(ft−1 + atht). The Anyboost algorithm is thus summarized as follows:

fT = ANYBOOST(C, {Xi, Yi}, i = 1 . . .N, T )
Set fi = 0, ∀i
for t = 1 to T do

(a) Compute negative Gradient of C at f : gi = −∂C
∂fi

.
(b) Find the weak learner ht which minimizes: l(h) =

∑
i −gih(Xi)

(c) Choose the step size at that minimizes C(ft−1 + atht) using line search.
(d) Set fi = ft(Xi).

end for
Output fT (x) =

∑T
t=1 atht(x).

We can now proceed with the presentation of our contributions in using Boosting for
boundary detection. These are in the following directions:

– Using a cost C that properly measures the performance of our boundary detector
system, by approximating its F-measure, Sec. 3.1.

– Dealing with ambiguity in labeling using Multiple-Instance Learning in conjunc-
tion with Anyboost, Sec. 3.2.

– Exploiting the whole Berkeley training set by forming a stochastic approximation
to the weak-learner training criterion, l, Sec. 3.3 and the cost C used during line-
search, Sec. 3.3.

3.1 F-Measure Boosting

Most training criteria in Boosting are defined as summations of a sample-based cost
function over the whole training set, as in Eq. 2. This is the case for instance in the
exponential loss or the log-likelihood score. However, such criteria can lead to poor
classifiers when the training sets are imbalanced, which is the case for boundary detec-
tion: there are two orders of magnitude less boundary points than non-boundary points,
so a classifier that errs in favor of non-boundary decisions can have a lower score than
a more balanced one, when using a summation-based cost.

This is reflected in the F-measure that is used to score boundary detectors, defined as
the geometric mean of the classifier’s precision, p and recall, r:

F =
2pr

p + r
, where p =

TP

TP + FA
, r =

TP

TP + MS
(5)
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In Eq. 5 TP is the number of the true positives, MS the number of misses, and FA the
number of false alarms. Precision gives us the proportion of correct detector responses,
while recall indicates the proportion of the true boundaries that have been detected.
Note that the false negatives do not appear anywhere; therefore the classifier does not
get credit for rejecting negatives, but only pays for false alarms. This allows to deal with
a large negative class during evaluation (and training).

Even though the F-measure is broadly used as an evaluation measure, it is not com-
monly used in training as it is harder to optimize. However, algorithms for optimizing
it have been developed in the context of SVMs [21] and logistic regression [22], while
the authors in [8] mention optimizing the F-measure to training their logistic regression-
based classifier. Here we use the Anyboost framework to apply the ideas developed in
[22] to classifiers trained with boosting.

Following [22], we express the TP, MS, FA terms as sums over the training set:

TP =

N∑
i=1

[ŷi = 1][yi = 1], FA=

N∑
i=1

[ŷi = 1][yi = −1], MS =

N∑
i=1

[ŷi = −1][yi = 1] (6)

where ŷi is the label estimated by the classifier (e.g. by thresholding f(Xi) at 0), yi is
the correct label and [·] is indicating the truth of ·.

We then replace the quantities in Eq. 6 with probabilistic approximations, by replac-
ing [ŷi = 1], [ŷi = 0] with the soft measures P (y = 1|f(Xi)), P (y = −1|f(Xi))
respectively. For instance, we approximate the number of false alarms by FA � F̂A =∑N

i=1 P (yi = 1|f(Xi))[yi = −1]. We combine the estimates of precision p̂ = ˆTP
ˆTP+F̂A

and recall r̂ = T̂P
T̂P+M̂S

in an approximation to the classifier’s F-measure:

F̂ =
2p̂r̂

p̂ + r̂
=

T̂ P

ˆTP + (F̂A + M̂S)/2
(7)

We thereby replace the terms showing up in the original F-measure by differentiable
quantities, that smoothly vary as we change the classifier’s output. This allows us to per-
form gradient descent so as to maximize the approximate F-measure. We now present
how to optimize this measure with a classifier trained with Anyboost, using as cost
C(f) = 1 − F̂ .

For now, we consider turning the output of a boosting-based classifier into a soft
estimate by setting P (y = l|f(X)) = σl(f(X)) = 1

1+exp(−lf(X)) , where l indicates
the label of the training point. In Sec. 3.2 we will present a more elaborate expression,
that can be directly incorporated in what we now present.

To apply the Anyboost algorithm, we need to measure how changing the response of
the classifier at point i will affect the classifier’s F-measure. This is given by [22]:

gi =
∂C

∂f t
i

=

[
H [yi = 1] − H2

2
T̂ P

]
σ′

yi
(f t

i ), H =

(
N∑

i=1

[yi = 1] +
1

2
( ˆTP + F̂A)

)−1

,(8)

while for a sigmoidal σ we have σ′
yi

(fi) = dσyi
(fi)

fi
= σyi(fi)(1 − σyi(fi)).
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The expression in Eq. 8 determines the weighting of point i for round t, using the
classifier ft−1 from the previous round: The vector −g indicates how the classifier’s
outputs should change so as to most rapidly increase the F-measure; and as already
mentioned, with Anyboost we choose the ht ∈ H that is closest to this direction, by
maximizing

∑
i −gihi(Xi).

We note that the cost function is not defined as a sum of individual costs, but rather
is combining nonlinearly two global measures, the classifier’s precision and recall. But
at each round we compute the partial derivative of the cost w.r.t. the classifier’s output
on the individual points, which is forming a local linear approximation to the cost; this
is then used to drive the fitting of the weak learner. Of course, the optimization cost is
no longer convex so we may end up in local minima of the cost; nevertheless in our
results we observed that the performance of the classifier trained with this criterion is
better than that of the one trained with the convex criterion of standard Adaboost.

3.2 Multiple Instance Learning with Noisy-OR

So far we have been considering that we are provided with feature-label pairs. But
our classifiers use orientation-dependent features, and classify each point based on an
assumed orientation, say j; a point is labeled as positive if the classifier fires along
any orientation. Using manual annotations to determine the orientation is tricky, since
different users may suggest different orientations for the same image location depending
on the granularity of their segmentation (e.g. on texture boundaries). Moreover, for
points such as corners, or junctions, orientation is not properly defined.

To deal with this we use the adaptation of Multiple Instance Learning to Boosting
by [12], and train a classifier in a way that copes with the missing orientation informa-
tion. In specific, we extract features X for our classifier at all N orientations (we use
N = 8), obtaining a ‘bag’ of features Xi = {Xi,1, . . . , Xi,N} at each point i. For each
orientation our classifier provides us with a probability estimate P (yi = 1|Xi,j) =
1/(1 + exp(−f(Xi,j))). The final decision is taken by a Noisy-OR combination:

pi = P (yi = 1|Xi) = 1 −
N∏

j=1

(1 − P (yi = 1|Xi,j)). (9)

This has a similar behavior with the a maximum-based combination - the left hand side
is large when any of P (yi = 1|φj) is large, and small only when all of them are small -
but is differentiable. We use pi as a shorthand for the result of the noisy-or combination
rule.

This allows us to train this classifier using gradient descent and in specific, with
Anyboost. We now refine our earlier presentation: the probabilistic estimates used in
the approximation of the F-measure in Sec. 3 correspond to the left-hand side of Eq. 9,
namely the combined decision about the point after considering all orientations. How-
ever, the classifier that we train shows up in the the right hand side, and gives the prob-
ability of point i being an edge using the features Xi,j computed for orientation j:
P (y = 1|Xi,j) = (1 + exp(−f(Xi,j)))−1.
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Using Anyboost we consider the classifier responses fi,j on all possible orientations,
and stack the derivative of the cost with respect to them in a vector n. With a slight abuse
of notation we use two indexes for the elements of this vector and denote its elements
by ni,j = ∂C

∂fi,j
. The partial derivatives can be computed using the chain law:

∂C

∂fi,j
=

∂C

∂pi

∂pi

∂gi,j
=
[
H [yi = 1] − H2

2
ˆTP

]
(1 − pi)pi,jyi. (10)

The bracket on the left comes from Eq. 8 while the right hand side can be derived using
the property of the sigmoidal σ′ = σ(1 − σ).

The weak learner is thus trained by maximizing
∑

i,j ni,jh(Xi,j). An inspection of
Eq. 10 reveals that this assigns higher weights to the orientations which give higher
responses, and can thus drive more quickly the change in the cost function.

3.3 Filtering via Stochastic Gradient Descent

Up to now we have considered that at each round a weak learner is trained by optimizing
a quantity obtained by summing over the whole training set as dictated by the Anyboost
algorithm; e.g. for noisy-or we considered minimizing

∑
i,j ni,jh(Xi,j) where i ranges

over all pixels in all images and j ranges over 8 possible orientations.
In practice this can be infeasible, due to both time and memory constraints. It is

therefore common practice to pick at random a subset of the training set initially and
then use it throughout training. This can lead however to overfitting, in particular if
a small training set is given and a complex classifier is trained, while an unfortunate
choice of a subset for training can also result in poor performance. We would like in-
stead to maintain the whole training set throughout training, and use a proper portion of
it at each round.

For this we propose a solution inspired from the recent Filterboost work [1], that
adapts Boosting to the filtering problem; the filtering problem amounts to iteratively
training a classifier with a subset of the training set at a time, while guaranteeing its
good performance over the whole training set.

The adaptation of this idea is straightforward, once the Anyboost interpretation of
Boosting is developed: we replace the criterion l(h) =

∑
i gih(Xi) used in Adaboost

with a stochastic approximation, l̂(h) obtained by using a subset of the training data. In
specific, we first normalize g so that

∑
i |gi| = 1. This does not affect the choice

of h. We then construct a distribution pg(i) = |gi| on the training set and inter-
pret l(h) as the expectation of sgn(gi)h(Xi) with respect to this distribution: l(h) =
Epg(sgn(g)h(X)).

We can then form a Monte Carlo approximation to this expectation, by drawing
samples from the training set according to pg, and averaging the value of sgn(gi)H(Xi)
on those samples:

l(h) = Epg(sgn(g)h(X))� 1
K

K∑
k=1

sgn(gk)h(Xk) ≡ l̂(h) (11)
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where Xk, k = 1 . . .K are samples drawn from pg. We thus replace the original prob-
lem of optimizing l(h) by the optimization of its approximation l̂(h), formed using K
instead of N samples. In practice, while our training set contains N � 3 · 107 points,
we use K = 5 · 105 samples at each iteration.

Using this scheme the points are chosen adaptively at each iteration: they are drawn
from pg, which is quantifying their usefulness for decreasing the cost at the current
round. This allows our training algorithm to make the best use of the training data,
and focus on the harder ones from the whole training set. Contrary, if one works with
a fixed subset of the training set throughout, boosting fine tunes the performance of
the classifier over a small set of points which leads to diminishing returns, or even
overfitting for larger rounds of boosting.

We note that the proposed technique may seem similar to the stochastic Boosting
method of [23]; however in our case the choice of points is driven by the cost gradient
at the current round, instead of being a random sampling of the training set. Moreover,
the same approach can be used to optimize any other training cost, and is not constrained
to the F-measure used here. We therefore believe it can prove useful for a broader range
of problems apart from feature detection.

Step size selection. The scheme described above allows us to find the approximately
optimal weak learner ht at round t; a similar scheme can be used to estimate the optimal
step size at using a stochastic approximation to the cost function. As is known from
Monte Carlo integration, forming a good stochastic approximation of a quantity requires
sampling it more densely where it is larger in magnitude. We therefore use a different
set of samples to estimate the step-size, by sampling more densely points that contribute
to the ˆTP, F̂A, M̂S quantities used to estimate the F-measure. For this, we form the
function di = yi + pi that adds the two quantities which indicate whether the response
pi at point i, can affect the F -measure: being a true positive/false negative, in which
case yi = 1 or being a false positive, in which case pi is large. We normalize di so that
it sums to one, and we see it as a distribution on lthe training set, denoted by pd.

We then express ˆTP, F̂A, M̂S as expectations with respect to this distribution, and
form Monte Carlo approximations to these; for instance for T̂ P we have:

ˆTP =
N∑

i=1

p(y = 1|Xi) =
N∑

i=1

di
p(y = 1|Xi)

di,j
= Epd

(
p(y = 1|Xi)

di,j

)
, (12)

so ˆTP �
∑K

k=1 p(y = 1|Xk)/dk where Xk are samples drawn from pd. A sample here
amounts to the whole bag X = {Xi,1, . . . , Xi,N} at point i.

Summarizing, the optimal step at is found at each round t using line search, based
on the stochastic approximation to C(ft−1 +atht). When estimating the value of C for
a candidate step at we perform the following steps:

– Compute the classifier’s response f(Xi,j) = ft−1(Xi,j) + atht(Xi,j) for all sam-
ples i = 1 . . .K and all instances j = 1, . . . 8, within each bag.

– For each sample i, combine these responses using the noisy-or combination rule, to
provide pi = p(y = 1|Xi).
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– Form the Monte-Carlo approximations to ˆTP, M̂S, F̂A as in Eq. 12 and combine
them to provide an estimate f̂ .

4 Discriminative Features from Descriptors

In our earlier work [24] we have observed that a substantial improvement in perfor-
mance can be gained by extracting discriminative information from descriptors. A sim-
ilar result was preliminarily observed in [25] for the figure-ground assignment task,
where geometric blur descriptors were used to leverage mid-level information.

Here we develop this idea further, and demonstrate the gain obtained by integrating
descriptors with the other cues used during boosting. Specifically, in [24] we extract
SIFT descriptors at multiple scales around candidate edgels to form a high-dimensional
feature vector describing the context in which each edgel appears. We extend this
idea by densely computing descriptors over the image; we can thus use their low-
dimensional projections as regular features during both training and testing. Instead,
in our earlier work we needed to do boundary detection and non-maximum suppression
at the very beginning to extract descriptors around candidate edges. We thus replace our
original two-tiered detection with an integrated version. More importantly, we experi-
mentally demonstrate that even when using a highly optimized detector, using descrip-
tor information yields an additional gain in performance.

We use a log-polar sampling scheme as in [13,26], using a sampling grid with 5
scales and 12 angles. Compared to SIFT, the log-polar sampling allows us to re-use the
same descriptor for multiple orientations, simply by permuting its indexes, while also
taking into account the context from a larger part of the image.

As in the Daisy descriptor [13], at each sampling point we compute derivative-of-
Gaussians along eight orientations; the scales of the Gaussians are set proportional
to scale of the point, and we compute such descriptors for all three channels of the
Lab space. We also use Gabor filters for the L-component to capture texture informa-
tion. Both Gabor and Gaussian filters are implemented using recursive (IIR) filtering to
speedup descriptor computation. In all, we have 4 channels (3 for Lab and 1 for Gabor-
texture), with 6 scales, 12 radii, and 6 orientations each, giving us a high-dimensional
descriptor of the context around a point.

As in [24] we use a pre-processing step that discriminatively compresses descriptors
into a low-dimensional space, and then use the coordinates in this space as inputs to our
classifier. In specific, we use the Spliced Average Variance Estimation technique of [27]
to find such a projection; this provides us with a set of orthogonal projection directions
that can be easily computed in test-time.

In Fig. 1 we visualize the first two projection directions for descriptors extracted
around a presumably horizontal edge. We show two different projections (vertical di-
rection) for three cues (horizontal direction). Each projection is computed by summing
the products of the descriptor values with the corresponding projection elements. Each
needle shows the matrix entry for the corresponding location and orientation of the de-
scriptor: red/blue denotes sign while the length indicates magnitude. Even though not
as easily interpretable as the projections we would obtain from PCA, we observe that
the projection dimensions correspond to geometrically meaningful patterns.
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Fig. 1. Discriminative projections computed for (left) intensity (middle) color and (right) texture
descriptors. The color of the needles indicates the sign, and their length indicates the magnitude
of the projection coefficient for the corresponding descriptor dimension.

5 Application to Boundary Detection

We now focus on the problem of boundary detection. We first describe an adaptation
of F-measure boosting that proved beneficial in tuning our detector, and then provide
experimental results.

Fig. 2. Benchmarking results. Our method achieves an F-measure of 0.712, while together with
descriptors the performance increases to 0.717. This compares favorably to the global-Pb detec-
tor, whose reported F-measure is .70. Please see text for details.
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Fig. 3. Sample results from the Berkeley benchmark: the ground truth is shown on the middle
and on the right we show our detector’s estimate for the probability of a boundary

5.1 Calibrating the F-Measure for Boundary Detection

So far we have considered training a classifier with F-measure boosting in a general
setting. For the boundary detection task in specific, we have realized that the reported
F-measure in the evaluations is affected by two additional factors: First, images in the
Berkeley benchmark are labeled by multiple persons, so certain points receive a ‘bound-
ary’ label multiple times. We therefore take into account the number of times Ni that
each training point i was labelled as positive in the expressions for TP and TM :

TP =
N∑

i=1

Ni[ŷi = 1] � NiP (yi = 1|f(Xi)) = ˆTP (13)

MS =
N∑

i=1

Ni[ŷi = −1] �
N∑

i=1

NiP (yi = −1|f(Xi)) = M̂S (14)

The expressions for TP and MS are the ones that are computed during the evaluation,
according to the code of [4], while the expressions for ˆTP and M̂S are used for train-
ing. These expressions emphasize points that are consistently labeled by more users as
boundaries. This improves the F-measure of the detector on both the training and test
sets.
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Fig. 4. Comparisons of the Global PB detector (left) with our results (right). Both detectors are
thresholded at the value giving the best global F-measure. Overall, we observer that our detector
responds less to textured, or cluttered image areas.
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Second, the boundaries used for evaluating the detector are obtained after non-
maximum suppression. Only a fraction of false positives will thus survive suppression,
and give a false alarm. Scaling the estimate of F̂A in Eq. 14 by a fraction of 1/10 there-
fore yields an estimate of false alarms that is much closer to the one reported by the
evaluation software.

5.2 Experimental Results

In order to systematically evaluate our approach we have conducted systematic experi-
ments on the Berkeley Benchmark.

As mentioned in the introduction, our contributions are in both the learning, and the
feature extraction direction. To validate our contribution in learning, we first train a
classifier using exactly the same features as in [8], namely multi-scale color and texture
gradients, as well as ‘spectral gradients’, obtained from the directional derivatives of the
eigenvectors found from normalized cuts. The difference is in the learning algorithm
(Adaboost) and the fact that we use the whole training set for training. Both we and [8]
use the F-measure for training, so we are optimizing essentially the same cost. In [17] a
combination of the gPb detector with a segmentation algorithm results in a improvement
of the gPb detector’s F-measure from .7 to .71. Our detector achieves an F-measure of
.712 while not using additional information from segmentation. The performance of the
classifier trained using our earlier setup [24] of using a sparse set of training data, with
fixed orientation decreases the performance to F = .7. This demonstrates the merit of
using MIL for orientations and Filterboost.

To validate our contribution in feature extraction we perform the training procedure,
but now introducing the new features obtained from the appearance descriptors by dis-
criminative dimensionality reduction. It becomes clear that the descriptors provide an
additional boost in performance, which increases to .717.

Regarding testing time, extracting the features of [8] takes 80s on a 3Gh machine,
while [16] cut it down to 1s on a GPU. Computing dense descriptors requires 50s in
Matlab, but is also easily parallelizable on GPUs. Once features are extracted, evaluat-
ing our detector takes 20s in Matlab.

6 Conclusions

In this work we have pushed further the machine learning approach to one of the most
basic problems in computer vision, boundary detection. We have obtained state-of-the-
art results in the setting of boosting by (i) using a proper training criterion, based on
the F-measure (b) exploiting the whole training set during training and (iii) introducing
new discriminative features using context information captured by descriptors. In future
work we intend to extend the application of these ideas to the detection of other types
of low-level features, while also pursuing the exploitation of these better boundaries for
object recognition.
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Abstract. Existing methods for video scene analysis are primarily con-

cerned with learning motion patterns or models for anomaly detection.

We present a novel form of video scene analysis where scene element

categories such as roads, parking areas, sidewalks and entrances, can be

segmented and categorized based on the behaviors of moving objects in

and around them. We view the problem from the perspective of categori-

cal object recognition, and present an approach for unsupervised learning

of functional scene element categories. Our approach identifies functional

regions with similar behaviors in the same scene and/or across scenes, by

clustering histograms based on a trajectory-level, behavioral codebook.

Experiments are conducted on two outdoor webcam video scenes with

low frame rates and poor quality. Unsupervised classification results are

presented for each scene independently, and also jointly where models

learned on one scene are applied to the other.

Keywords: functional modeling, unsupervised learning, video analysis.

1 Introduction

We present a new approach to video scene modeling and recognition that is based
on unsupervised, location-independent segmentation of scene element categories.
Existing work in video scene modeling has largely focused on segmenting domi-
nant motion patterns [1,2,3,4,5] and significant regions such as track sources and
sinks [1,6], given observed trajectories and detection algorithms for each scene
element type. Here, we view the problem from the perspective of categorical
object recognition, and present an approach for unsupervised learning and mod-
eling of functional scene element categories – entities that are defined primarily
by their behavior and/or surrounding activity, rather than their appearance or
shape. Typical functional scene elements include vehicular traffic lanes, side-
walks, parking spaces, crosswalks, building entrances/exits, benches, bus stops,
and so on. Many of these functional scene elements can not be distinguished
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by appearance alone. For instance, parking spaces and traffic lanes often appear
nearly identical. However, for applications like normalcy modeling and abnormal
event detection, it may be important to to understand the function of a region.
Functional scene elements can also help identify the functional behavior of mov-
ing objects [16]. Identification of functional scene regions is important, then, as
an enabling technology for event detection and normalcy modeling.

Inspired by the bag-of-words paradigm for object recognition, our approach
identifies regions with similar behaviors in the same scene and/or across scenes,
by clustering histograms based on a trajectory-level, behavioral codebook. The
regions do not need to be spatially contiguous; rather, we seek regions that are
spatially disjoint but have similar functional properties. A cluster of such regions
(in feature space, not scene coordinates) corresponds to a functional category
that can be assigned a conceptual label.

Fig. 1. Left: A typical scene from an outdoor webcam (Ocean City, NJ). Right: The

result of unsupervised scene classification. Regions with the same color are determined

to have the same functional type.

Functional object recognition was pioneered some time ago with work on
recognizing chairs in static images [7]. Recently, work has appeared on inte-
grating observed function in video with appearance for object recognition [8,9].
Maintaining distributions of track-level information at scene locations has been
studied previously [3,10]. Codebooks of local kinematic and object features have
been used to model motion patterns and detect unusual activities [4]. Swears and
Hoogs [15] presented methods to detect specific scene elements which relied on
hand-crafted detectors. Our work differs in that we do not attempt to segment
the various motion patterns in a scene from each other, or to develop detection
algorithms specific to any scene element category; instead we learn and classify
functional regions. In addition, we learn models that are transportable across
scenes.

Another recent technique is [11] where optical flow based features are com-
bined with multi-scale analysis to learn motion patterns. The reliance on optical
flow patterns adds robustness to tracking. Our motivating datasets are webcams
whose low-frame rates ( approx. 1-2 Hz.) provide large displacements with very
sparse temporal sampling for the computation of optical flow features. Instead,
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we incorporate tracking robustness by using a hierarchy of features, including
detection, track, track fragment, and multi-track information.

At a high level, our method consists of: 1) developing a common, hierarchi-
cal feature-space representation for all behavioral scene element categories; 2)
unsupervised learning of behavioral category models which are independent of
scene location and transportable across scenes; 3) segmenting video scenes into
the functional categories. To our knowledge, this has not been done previously.
Our method can represent a variety of behavior-based scene elements in urban,
outdoor scenes. The techniques can be used to learn a generic set of functional
element categories across a variety of scenes, or to learn the specific element
types present in one scene.

As mentioned previously, we operate on webcams, which are highly challeng-
ing due to poor quality and very low frame rates. An example result is shown
in Figure 1, computed from 8 hours of poor quality, 1Hz video from a webcam.
The camera was (manually) calibrated, and the scene was partitioned into a reg-
ular grid in the ground plane. Because of the low frame rate, banded noise and
compression artifacts, detection and tracking were particularly noisy and error-
prone. Nevertheless, grid cells with similar behaviors were successfully clustered
to yield functional categories such as vehicular traffic lane, pedestrian traffic lane
(sidewalk), parking spot, and building entrance.

The method is applicable to generic surveillance cameras as well as webcams.
The latter introduces significant challenges because of poor tracking, but these
are addressed through statistical methods and the hierarchical feature set as de-
scribed below. Calibration to a ground plane is useful if not required; automatic
calibration in video has been studied and is beyond the scope of this work, but
will be utilized in future work.

The method has a few key limitations. Currently, it is assumed that a single
grid cell or region is indicative of its functional type. This effectively bounds
the minimum size of functional regions (spatial resolution of the grid), since a
small portion of a scene element may have insufficient information. Similarly,
cell neighborhoods are not directly considered during clustering, although some
of the features weakly associate nearby cells. Another drawback is that temporal
state transitions are not modeled explicitly. Scene elements with multiple behav-
iors at different times, such as intersections, are represented multiple modes in
the codebook histogram. These shortcomings will be addressed in future work.

Our approach is described in Section 2. Section 3 presents our results and we
conclude in Section 4.

2 Modeling Approach

Our approach adapts the bag-of-words concept to trajectory-level behavioral
analysis. An overview of the method is shown in Figure 2. First, on each video
scene, tracks are computed for a period of time that is sufficient to capture
the range of activity in the scene (typically a few hours or a day depending on
event density and scene complexity). We assume that the cameras are roughly
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Fig. 2. The overall approach. Features describing local behaviors are computed for

each track interval through each cell, and used to generate a codebook. Each cell is

described by a codebook histogram. The histograms are clustered to form functional

element categories, which are used for recognition.

calibrated to the ground plane, so that ground-plane tracking and normalization
may be performed. Each video scene is partitioned into a set of regions, such as
a regular spatial grid in the ground plane.

Next, a descriptive set of behavioral features is computed. For each track, and
for each grid cell that the track intersects, detection and track-level features
capture single-object, local, behavioral and object characteristics. Within each
cell, the these features are accumulated to form feature distributions for the cell.
In addition, cell-level features capture the relationship between cells traversed by
the same track, and localized relationships between tracks over time. In total, the
feature set characterizes local behaviors in the same way that patch descriptors
characterize local appearance for object recognition.

For the scene shown in Figure 1, tens of thousands of feature vectors are
computed from 8 hours of video. These feature vectors are clustered using a
method such as mean-shift or K-means to form a codebook of a size that is
comparable to the number of cells. For each cell, a codebook histogram is formed
by finding the closest centroid for each feature vector in the cell.

For each scene, the cell histograms are clustered using mean-shift [12] on the
L2 histogram distance. Each cluster corresponds to a set of cells with a common
local behavior pattern, i.e. the same functional category.

At this point each scene is segmented into functional types by cluster index,
but the types are not textually labeled. This labeling is simply the assignment
of a string name to each cluster index, which is done manually with little effort.

On a new video scene, the clusters can be used to perform recognition of
functional elements. As in learning, the new scene is spatially partitioned and
tracked, and codebook histograms are computed for each cell. Each cell is then
recognized by initializing mean-shift with the cell histogram, and outputting the
cluster found by mean-shift.

The following subsections describe these steps in more detail.

2.1 Moving Object Detection and Tracking

We used a standard background subtraction algorithm [13] to detect moving ob-
jects and then used two simple data association trackers (one tuned for pedestrians



668 M.W. Turek, A. Hoogs, and R. Collins

and the other for vehicles) to link these objects into tracks. The data association-
based tracking is similar to [14]. These algorithms are completely automatic. A
roughprojective camera is computed by hand, once per scene. This projective cam-
era is used in the tracking algorithms tohelp estimate object ground-planeposition,
size and velocity.

2.2 Behavioral Feature Set Computation

We have developed a hierarchical feature set to provide robustness to tracking
difficulties and to capture multiple levels of behavior detail. Our features include
detection-based features, track-level features, and cell-level features.

Table 1. Detection level features, dj,k, for track j in cell k; track level features, f j,k

for for track j in cell k; and cell level features for cell k

Element Feature

0 Median speed

1 Median change in speed

dj,k 2 Median change in angle

3 Median size

4 Median detection aspect ratio

f j,k 0 Track length

0 Number of track starts in cell

1 Number of track stops in cell

ck 2 Number of tracks through cell

3 Entropy of outgoing heading distribution

4 Entropy of incoming heading distribution

Our detection, track-level, and cell-level features are listed in Table 1. The
first block in the table contains the detection-based features, the second block
contains the track-level features, and the third block contains cell-level features.
Detection-based features incorporate information based solely on moving object
detections that are within a particular cell. All the detections for a particular
track are combined into one feature vector, using summary statistics. Typically,
we use the median of the feature for the track samples (corresponding to a
particular track) within a cell. Track level features f j,k are computed for each
track passing through a cell. Finally, cell level features ck are computed across
all tracks that pass through a cell.

The entropy of the heading distribution for incoming (outgoing) tracks is
computed as in Equation 1, with the distribution taken over the heading of all
start (stop) detections in a cell. Note that the entropy measure is independent
of particular orientations, thus allowing this feature to be built into a codebook
on one scene and then applied on a different scene.

E(τ) = −
∑

i

p(θi) log p(θi) (1)
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Fig. 3. Example features for the Ware scene. Size (left), speed (middle), aspect ratio

(right).

where p(θi) is the probability of the heading of the ith detection on track τ . We
use a histogram of the headings along a track to model the heading probability.

It is important to choose features judiciously, as additional, non-informative,
features can clutter the feature space and effectively add a noise term to feature
distances which leads to misclassifications.

We create an ensemble feature vector xj,k for each track j and cell k as:

xj,k =

⎛⎝ dj,k

f j,k

wcck

⎞⎠ (2)

where wc is a weighting for cell features ck. The collection of all feature vectors
F in a video sequence is:

F = {x0,0, . . . , xj,k, . . . , xn,m} (3)

for n tracks and m cells. One issue arises in simultaneously handling the detec-
tion, track, and cell-level features: there are more track level feature instances
(one per track crossing a cell) than cell level features (one per cell). We handle
this discrepancy by downweighting the influence of the cell features (through
wc). This allows us to build a single code book on a feature space including both
track and cell feature dimensions. Currently we set wc = 1/ncelltracks where
ncelltracks is the number of tracks in a cell.

There are a few alternatives to the approach we have taken for combining
the hierarchy of features. One alternative is to summarize all the track features
into one feature vector per cell. This would inevitably lead to a reduction in
information and cells with a multi-modal distribution of features would end up
with a blended feature vector. On the detection level, we have summarized all the
detections for one track in one cell into a single feature vector. Since the cells are
relatively small and there are typically few detections for one track within a cell
(< 3 is typical), this summarization is less problematic. However, across perhaps
hundreds of tracks that pass through a cell, summarization of track level features
would discard significant information. Another alternative solution would be to
maintain two feature spaces, and create a codebook for each. One significant
disadvantage of this approach, however, is that the centroids (Sec. 2.3) cannot
capture joint information between the spaces.
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2.3 Feature Codebook Generation

The use of codebooks or “visual words” has become immensely popular in visual
recognition tasks, because they are an effective way of compactly representing
high-dimensional, complex feature spaces. We apply them here because the be-
havioral feature space can be complex, but should also contain high-density areas
corresponding to common activities. Stauffer and Grimson previously applied a
codebook to activity analysis [4], where position was included and tracks were
represented by sets of centroid labels. Here, we explicitly avoid dependence on
absolute features such as position and heading, as our goal is to learn behav-
ioral categories independent of locations or location-specific behaviors. Also, our
codebook histogram is defined on cells, not tracks, which enables our hierarchical
feature set.

All ensemble feature vectors in the video scenes, denoted F , are used to cre-
ate the codebook. Before clustering, each feature is normalized by its standard
deviation across the observed data. We generate the codebook by clustering the
ensemble features. We have experimented with both K-means and mean-shift
and have found mean-shift to be considerably more stable than K-means with
random initialization. Mean shift also has the advantage that K does not need to
be specified, although the bandwidth parameter does impact performance. The
mean shift for feature xi with bandwidth parameter h and kernel g() is defined
as [12]:

mh,G(x) =

∑n
i=1 xig

(∥∥x−xi

h

∥∥2
)

∑n
i=1 g

(∥∥x−xi

h

∥∥2
) . (4)

We typically use two iterations of mean shift on the set of features F to gen-
erate representative features. An Epanechnikov kernel is used to represent the
underlying distribution, yielding a mean-shift implementation with a uniform
kernel.

2.4 Cell Histogram Representation and Clustering

Once the codebook is defined, a codebook histogram is created for each cell.
For each integrated feature vector in a cell, the closest codebook centroid is
identified, and the corresponding bin in the histogram is incremented. To assure
statistical significance, we ignore cells with too few feature vectors ( < 20).

The final segmentation step is clustering cells that have similar histograms.
We use mean-shift [12] for clustering, as we do not want to specify the number
of clusters a priori, and we expect the clusters to be non-Gaussian and gener-
ally noisy. Spatial position of the cells is not considered, so that we can group
cells with similar behaviors located in different parts of the same scene or in
different scenes altogether. As mentioned above, we currently do not use cell
neighborhood information in the clustering process, although some features are
computed across neighboring cells.

Ideally, each of the resulting clusters would correspond to a single functional
category such as road or parking spot, and each functional category would have
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exactly one cluster. In practice, any of the categories may have a multi-modal
feature distribution, in which case mean-shift should create multiple modes for
one category. For recognition, all significant modes should be assigned the same
label.

Generally, we expect that many scene elements will have non-trivial distribu-
tions of behavioral features. For simple categories, such as vehicular or pedes-
trian traffic lanes, it is strightforward to compute low-level features on individual
tracks, and perform clustering on the raw features. For these cases, our use of
cell-level features and codebook histogram clustering is perhaps more powerful
(and more complex) than required.

Many other scene categories, however, have more complex and variable be-
haviors. Building entrances and exits, parking spots and crosswalks, for example,
may exhibit a variety of behaviors even at the same locations. Our representation
can support this, as long as the mode patterns are similar across the class. For
one activity pattern in a multi-modal cell, the tracks in that pattern will give
rise to feature vectors in histogram bin hi. For a second activity pattern in the
same cell, the tracks in that pattern will give rise to feature vectors in histogram
bin hj . The cell histogram will have two modes, and should be clustered with
other cells that have the same two modes. This situation should arise for a cell
outside a doorway, for example, if some people walk straight past the doorway
(bin hi) and others enter (bin hj).

2.5 Scene Element Recognition

Once the clusters are formed, scene element recognition can be performed on
a new video scene, or new parts of an existing scene. The spatial scale and
partitioning of the new scene should be comparable to those used in training,
and the scene should have comparable behaviors for the same scene categories
(this may not be true across different regions of the world).

Each cell is recognized independently. Cell features are computed from its tracks
as in training, and the cell histogram is created using the prior codebook. Each
cluster is a collection of codebook histograms, and we label cells using mean-shift
on the cell histogram, and outputting the cluster found by mean-shift.

3 Results

Experiments were conducted on many hours of video data, from two public web-
cams, with over 2500 tracks in each scene. Scene element learning, segmentation
and recognition results are shown on each scene independently, and between
scenes by learning on one and testing on the other.

3.1 Data

One webcam is in Ocean City, NJ, shown in Figure 1. Approximately 8 hours
of data from one day was used. The frame rate is about 1-2 Hz, and the image
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Fig. 4. The size of people in the Ocean City video. In the near-field, people are about

30 pixels in height; in the mid-field, about 16 pixels, and in the far-field, about 10

pixels. Compression artifacts are noticeable, particularly in the far-field.

size is 704 × 480. To provide a sense of scale and image quality, Figure 4 shows
crops of a person in the scene.

The second scene is in Ware, UK. The frame rate is also ≈ 2 Hz, and the
image quality is somewhat better than Ocean City (OC). The near-field has
higher resolution, as the camera is mounted closer to the ground. The far-field
resolution is comparable to OC. Shown in Figure 5, the scenes have a number
of functional entities in common.

Fig. 5. The video scenes used in the experiments. Left is the Ware scene. Manually-

generated ground truth labeling for Ware (resp. Ocean City) is the middle (resp. right).

Ground-truth labeling is used for evaluation of results only.

To evaluate the algorithm, we manually created ground-truth labels for the
roads, sidewalks, parking areas, and building entrances/exits as shown in the
figure. These labels were not used by the algorithm in any way; they were used
only for evaluation of the results.

3.2 Tracking

We used a background subtraction algorithm [13] to detect moving objects and a
simple data association tracker to link these objects into tracks. The algorithms
are completely automatic. We did not use any scene specific information to
improve the moving object detection or tracking, except to use an approximate
projective camera to compensate for the change in object size from the far-field
to the near field.
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Fig. 6. Computed tracks on the Ocean City (left) and Ware (right) scenes

Figure 6 shows the computed tracks used in the experiments for both scenes.
There are more than 2500 tracks in each scene, and the dominant motion patterns
are clearly evident. Recall, however, that we do not attempt to segment these
motion patterns, but rather to group all of the cells into a set of functional
categories. Hence our desired result would match the ground truth in Figure 5,
which does not separate the two lanes of the road.

While the tracking results are good overall, there is significant track fragmen-
tation as pedestrians disappear under overhangs, signs and trees, or seem to
disappear because of saturation effects. There are also a number of false tracks
and track switches caused by false alarms in moving object detections. These
are particularly evident near times of global lighting changes, because the false
alarm rate rises until the background model catches up.

Our approach is quite robust against tracking errors because of its statistical
nature. Many tracks are considered at each cell (≥ 20), and more video can be
added as necessary.

3.3 Unsupervised Scene Segmentation and Classification

We conducted an initial experiment to evaluate the need for hierarchical fea-
tures. We used the detection level features, denoted di,j in Table 1 as the
only feature set, and proceeded to run the remainder of the algorithm, includ-
ing code-book generation and cell clustering. Two representative results for the
Ware scene are provided in Figure 7. (The ground truth for Ware is the mid-
dle image in Figure 5.) The detection level features are able to discriminate
pedestrian/vehicle areas from the background. However, there is little ability
to discriminate between the pedestrian areas and the roadway. In addition, the
segmentation results are quite noisy.

To characterize the performance of the full system, including the full, hier-
archical feature set, we conducted further experiments. We began by running
experiments on the two web-cam datasets. In each case, a codebook was built
on the scene and then that codebook was used to classify the cells in the scene.

On each scene, the system produces cluster IDs corresponding to scene element
types, which are then scored against the ground-truth. In order to do this scoring,
semantic labels must be assigned to the clusters. There is no clear-cut method
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Fig. 7. Two representative clustering results on the Ware scene using detection fea-

tures only. Several clustering experiments were performed using detection level fea-

tures only, with the goal of separating pedestrian and vehicle areas. Results were ei-

ther overly smooth (left) or quite noisy (right). While there is some discrimination

of pedestrian/vehicle areas, the performance does not approach that of the proposed

hierarchical features.

class Background Doorway Parking Road Sidewalk PCC

Background 391 11 1 1 5 0.9560

Doorway 0 4 0 0 4 0.5000

Parking 1 0 2 0 6 0.2222

Road 37 0 0 125 6 0.7440

Sidewalk 119 13 1 0 107 0.4458

Fig. 8. Top: Unsupervised classification result on Ware. Cells in the same cluster

have the same color. Areas outside the ground-plane grid had too few tracks and were

not considered. Other cells with fewer than the minimum number of tracks are blue

and were not considered. Bottom: Confusion matrix. Each row represents the correct

class, and each column is the computed class. The rightmost column is the per-class

probabability of correct classification.

for this, as there may be multiple clusters that should correspond to one ground-
truth label. Conversely, there may be clusters that encompass multiple labels.
We assigned the semantic labels by hand, picking the label which visually made
the most sense for the supplied clusters.
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class Background Doorway Parking Road Sidewalk PCC

Background 621 0 20 19 7 0.9310

Doorway 2 0 0 0 2 0

Parking 1 0 31 0 1 0.9394

Road 0 0 11 39 0 0.7800

Sidewalk 7 0 20 0 15 0.3571

Fig. 9. Top: Unsupervised classification result on OC. Bottom: Confusion matrix.

Results on the Ware and OC scenes (computed independently) are shown
in Figures 8 and 9. All parameters are the same for both scenes, except that
the bandwidth parameter for final clustering was adjusted to compensate for
the different number of grid cells (this could be automated). The grid cell size
is approximately the same as well. The codebook size is 80, computed with
mean-shift. Each feature vector has dimension 11. The final clustering was also
computed with mean-shift.

The results indicate that the more basic categories, road and sidewalk, are
reasonably learned and classified. Doorways and parking are more difficult cat-
egories. There is some confusion between parking and sidewalk in both scenes,
because people exit their cars and walk through the parking areas. The small
parking area in Ware is partitioned into two clusters, because cars frequently
drive through the blue cluster but rarely park there.

Doorways are detected in both scenes, but only partially. The doorway area
on the far right in Ware is detected as cluster. There are three doors there, as
well as a busy pedestrian thoroughfare just in front of the doors. A small patch
in the upper left is clustered into the same class, because this area is a street
corner where people emerge from a side street, and also pause while waiting to
cross the main road.

3.4 Unsupervised Classification across Scenes

We also wished to understand the transferability of a codebook learned from
features on one scene to a classification problem on another scene. In the next
experiment, we learn scene element models (codebook and clusters) on one scene,
still unsupervised, and “classify” cells in the other. Each cell is classified using
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class Background Doorway Parking Road Sidewalk PCC

Background 391 0 0 4 14 0.9560

Doorway 0 0 0 1 7 0

Parking 1 0 0 1 7 0

Road 37 0 0 126 5 0.75

Sidewalk 119 0 0 7 114 0.4750

Fig. 10. Top: Unsupervised classification on Ware using models learned on OC.

Middle: Classification scored against ground-truth for each cell. Bottom: confusion

matrix.

mean-shift as described in the previous section. Semantic labels are applied with
the same mapping from cluster index to semantic label used on the learning
scene. The evaluation procedure is the same as for single-scene scoring. Results
are shown in Figures 10 for models learned on OC and tested on Ware.

The results are quite comparable to those computed independently on Ware,
indicating the that the method can generalize effectively beyond a single scene.
The scenes are geometrically similar, but they are in different parts of the world,
with different types of vehicles, buildings and so on. The cameras are differ-
ent too, with slightly different frame rates, resolutions and quality. Traffic and
pedestrian density is considerably higher in Ware.

Although not shown, we conducted the same experiment but with learning
on Ware and testing on OC. The scores were slightly lower, but still comparable
to the single-scene OC results.

4 Conclusion

We have developed a method that performs unsupervised classification of func-
tional scene element categories observed in video. By abstracting away from
specific locations and scenes, and by introducing a descriptive feature vector
that characterizes local behavior, we learn generic behavior patterns that corre-
spond to functional categories. Multiple, spatially-disjoint instances of the same
scene element type can be identified within a scene, or between different scenes.
Results are shown on two scenes and four categories – a small set, but the results
are encouraging. In future work we plan to address the limitations outlined in
the introduction.
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Abstract. Advanced surveillance systems for behavior recognition in

outdoor traffic scenes depend strongly on the particular configuration

of the scenario. Scene-independent trajectory analysis techniques sta-

tistically infer semantics in locations where motion occurs, and such

inferences are typically limited to abnormality. Thus, it is interesting

to design contributions that automatically categorize more specific se-

mantic regions. State-of-the-art approaches for unsupervised scene la-

beling exploit trajectory data to segment areas like sources, sinks, or

waiting zones. Our method, in addition, incorporates scene-independent

knowledge to assign more meaningful labels like crosswalks, sidewalks,

or parking spaces. First, a spatiotemporal scene model is obtained from

trajectory analysis. Subsequently, a so-called GI-MRF inference process

reinforces spatial coherence, and incorporates taxonomy-guided smooth-

ness constraints. Our method achieves automatic and effective labeling

of conceptual regions in urban scenarios, and is robust to tracking errors.

Experimental validation on 5 surveillance databases has been conducted

to assess the generality and accuracy of the segmentations. The resulting

scene models are used for model-based behavior analysis.

1 Introduction

The automatic analysis of human behaviors in large amounts of video surveil-
lance footage is becoming critical as the number of cameras installed in public
areas increases. This demand has generated novel techniques for the analysis of
large collections of archives containing recordings from different outdoor scenar-
ios during long periods. As a result, events of interest are detected, and alarms
can be raised online according to predefined criteria [1]. Complementary, events
extracted from image sequences can be used for annotation purposes when be-
coming concepts to index surveillance databases.

There is a clear trade-off between the semantic richness of video events and
the robustness of their recognition. The richness of the conceptual knowledge ex-
tracted from surveillance sequences greatly determines the limitations of eventual
user queries. Ideally, indexing would be based on high-level concepts determined
by rich and complete ontologies [2]. However, as events become more specific,
their recognition in surveillance data also becomes more challenging.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 678–692, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Important steps forward have been taken in the computer vision domain,
where interesting approaches appeared related to the automatic interpretation of
human activities within scenes. In surveillance data obtained from static cameras
in outdoor scenes, human activities are commonly represented by trajectories of
points extracted using detection and/or tracking processes.

On the one hand, different statistical properties of these observed trajectories
are computed in order to assess their normal or abnormal nature. There are
several strategies to cluster and merge trajectories, like spatial extension [3], Hi-
erarchical Fuzzy C-Means [4], Hierarchical clusters [5], GMMs [6], or splines [7],
among others. Subsequently, by analyzing the regions where motion is observed,
characteristic regions like roads, walking paths, or entry/exit points can be
learned [8]. Statistical techniques have been also used to model semantic regions
based on activity correlation [9]. These robust bottom-up processes are scene-
independent, and abnormal behaviors like violent struggling can be detected and
annotated, e.g., by observing erratic trajectories with high speed variations.

On the other hand, deterministic models provided beforehand by an expert
have been also applied successfully in the surveillance domain, such as Situa-
tion Graph Trees [10,11], Petri Nets [12], or Symbolic Networks [13], for exam-
ple. These models can represent complex behaviors (such as ‘danger of runover’
or ‘car overtaking’) while performing reasoning based on more simple, but ro-
bustly detected, events (e.g., ‘turning left’ or ‘accelerating’), for example those
ones extracted using the aforementioned bottom-up processes. Hence, high-level
reasoning processes can generate key-words and concepts associated to stronger
semantics that can be searched for.

Towards this end, reasoning on events requires of conceptual scene models
that semantically represent the background of the surveilled scene. The seman-
tics of the regions in which an agent is found at each time step are used to
infer behaviors, such as ‘crossing the street’ or ‘waiting at the crosswalk’. Un-
fortunately, each particular scene requires of its own conceptual scene model.
Therefore, there is a need for automatic and generic learning procedures able to
infer the semantics of thousands of surveillance scenes.

In this paper we present a novel technique for automatic learning of concep-
tual scene models using domain knowledge, which can be successfully used for
further reasoning and annotation of generic surveillance sequences. In essence,
we learn spatiotemporal patterns of moving objects to infer the semantic la-
bels for background regions where motion has been observed, such as pedestrian
crossings, sidewalks, roads, or parking areas. The derivation of site labels is for-
mulated as a MAP-MRF inference in terms of a pairwise Markov network, whose
graph configuration is factored into a joint probability guided by taxonomical
knowledge. Finally, we have applied the SGT formalism to demonstrate the ap-
plicability of our approach, although other deterministic behavior models that
require of conceptual scene models can be used instead.

This paper is structured as follows: Section 2 formally defines our labeling
task in terms of maximization of region compatibility. It comprises two steps:
the compatibility with observed evidence is computed from motion features in
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crosswalk

road

road
wait_vehwait_ped

sidewalk

wait_p

void

Observed trajectories Modeled evidence Smoothed models and labeling

Fig. 1. Scheme of the proposed framework for labeling urban scenarios

Section 3, and inter-region compatibility for smoothness is modeled in Section 4.
A preprocessing stage to improve efficiency is explained in Section 5. The method
is tested thoroughly for experimental validation in Section 6, and applied to the
SGT formalism in Section 7. Finally, we discuss the results and provide some
concluding remarks.

2 Background Labeling by Compatibility

The semantic learning of a background model consists of partitioning an arbi-
trary scenario of the domain into a lattice of regions, and have each region learn
a spatiotemporal model. Each model should be estimated based on trajectory
properties, and finally assigned an explicit label that categorizes it. Here, we
tackle the problem of semantic region learning as one of multiclass semantic
segmentation. Towards this end, efficient techniques have been developed, such
as MRF [14] and its variants, like DRF [15], or LCRF [16], or alternatives like
Semantic Textons [17]. In our case, the categorization of regions from their sta-
tistical models will be posed as a labeling task and formulated as a MAP-MRF
inference problem, defined by irregular sites and discrete labels [18].

2.1 Sites and Labels

The lattice of irregular regions to be labeled is usually defined either by per-
ceptual groups –out of a segmentation process–, or by clusters of recognized
features within the scene [18]. Instead, we aim to define lattices that capture the
condition of far-field projectivity, characteristic of scenarios in our domain.

To do so, we compute the scene to ground-plane homography [19], so that each
lattice is a set of regions R obtained as the projection of a rectangular grid from
ground-plane to scene. In addition to the sites, a set L of seven discrete labels
defines generic, common, and relevant locations in urban surveillance. Labels
are organized taxonomically as shown in Table 1a. A void label (V ) is made
available for those cases in which none of the labels applies, as in [20].

2.2 Inference

Having defined the set of sites and labels, we next describe the process of as-
signing a label l ∈ L to each region r ∈ R. The disparity of labels is assumed
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Table 1. (a) Taxonomy of locations for urban surveillance. (b) Each location is a vector

of the trinary features ped=Pedestrian, veh=Vehicle, wai=Wait, and stp=Stop.

Street

 Sidewalk (S)

Void (V)

Crosswalk (C)

Road (R)

Parking (P)

Waiting zone
cars (WZc)

Waiting zone
pedestrians (WZp)

L Label from L ped veh wai stp

C f1 = [ +1 +1 0 -1 ]

S f2 = [ +1 -1 -1 -1 ]

R f3 = [ -1 +1 -1 -1 ]

WZp f4 = [ +1 -1 +1 -1 ]

WZc f5 = [ -1 +1 +1 -1 ]

P f6 = [ 0 +1 0 +1 ]

V f7 = [ -1 -1 -1 -1 ]

(a) (b)

to be piecewise smooth in the lattice of regions. A series of observation vectors
o = {x, y, a} constitutes the evidence from the trajectories, where (x, y) is the
estimated position of the agents in the image plane –the centroid of the ellipsoid
projected to the ground-plane–, and a is a binary parameter stating whether
the agent is a vehicle or a pedestrian. The derivation of the site labels {l} is
formulated as a MAP-MRF inference in terms of a pairwise Markov network,
whose graph configuration is factored into the joint probability

P ({l}, {o}) =
1
Z

∏
r∈R

φr(lr, or)
∏

{r,s}∈N
ψr,s(lr, ls), (1)

where Z is a normalization factor. The data compatibility function φr(lr, or) is
interpreted as the likelihood of choosing label l for region r, given o observed in
r. This function is learned by trajectory analysis as explained in Section 3.

On the other hand, smoothness constraints are encoded into ψr,s(lr, ls), so-
called internal binding, which models how neighboring regions affect to each
other regarding their classes. In this term, the set N contains all pairs of inter-
acting regions, in our case adjacent 8–connected regions in the projected grids.
In our work, ψr,s(·) is a prior set of constraints directly taken from topological
assumptions that are derived from a defined hierarchy of labels depicting domain
knowledge, as later explained in Section 4.

Once φr(·) and ψr,s(·) are defined, a max-product belief propagation (BP)
algorithm [20] derives an approximate MAP labeling for Eq. (1).

3 Data Compatibility

We define the function φr(lr, or) as the likelihood of region r to be labeled as l,
having observed a series of vectors or in the region, and according to a motion-
based model that encodes prior domain knowledge.

Challenges arisen by semantic scene –similarly, by document analysis or med-
ical imaging– deal with overlapping classes that are not mutually exclusive.
Hence, we characterize scenario regions following the prototype theory, which
defines class labels as conjunctions of required (+1 ), forbidden (-1 ), and irrele-
vant (0 ) features [21]. Here, labels are modeled using 4 features: target (i) is a
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(a) (b) (c) (d)

Fig. 2. Region modeling by trajectory analysis: (a) original image, (b) smoothed tra-

jectories, (c) sampled control points, (d) initial labeling

pedestrian or (ii) a vehicle, (iii) is waiting, and (iv) has stopped, see Table 1b. A
series of prototypical feature vectors {f1 . . . f |L|} results from this step.

Next step consists of online smoothing and sampling data from tracking. To
do so, each new complete trajectory is fitted by iteratively increasing a sequence
of connected cubic b-splines [7], see Fig. 2b: an adjustment step divides a spline
into connected sub-splines more fitted to the trajectory, and a termination step
validates a subsequence when its maximum distance to the trajectory is below
a 10% of the total length. Once the recursion is done, the global sequence of
splines is sampled to generate time-equidistant control points (Fig 2c), each one
having an observation o = {x, y, a}. The position (x, y) is estimated by a multi-
target tracker [22], and the target type (a) is identified using a scene-invariant
discriminative approach as in [23]. When a new control point is generated, its
enclosing region updates an histogram of the 4 features described above. Lastly,
each region is assigned an online averaged vector of observed features fo.

The data compatibility of the observations in region r with label l ∈ L is
a softmax function of the Hamming distance between the averaged vector of
features observed, fo, and the vector defined for that label, f l:

φr(lr, or) =
exp(−dH(fo, f

l))∑
m∈L exp(−dH(fo, fm))

. (2)

Learned data compatibilities provide an initial rough scene model. This initial
labeling omits the inference phase, and simply assigns to each region the label
with a highest value of φr(·), see Fig. 2d. Due to the limited coverage of the
scene by the control points, there is a massive presence of Void labels, in red.

4 Smoothness

The smoothness term ψr,s(lr, ls) specifies inter-region compatibilities, stating
how the system privileges or disfavors label lr at expenses of ls when r and s
are adjacent. In other words, it conditions a priori those neighborhoods formed
by a certain combination of semantic categories. The goal here is to specify
compatibilities that discard unlikely labelings, smooth poorly sampled ones, and
preserve detailed information that are scarce but consistent.
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In our case, advantage is taken on the hierarchical organization of L to con-
strain discontinuities between labels. L fixes topological constraints of set in-
clusion, by establishing relations of particularization as seen in Table 1a; e.g., a
parking is a concrete segment of road, and also constrains the adjacency between
different regions. Consequently, compatibilities are fully specified by

ψr,s(lr, ls) =

⎧⎪⎨⎪⎩
1 lr = ls

α Adj(lr, ls)
β otherwise

(3)

where 1 > α > β > 0, and Adj(lr, ls) states that lr and ls are adjacent in the
topological map, i.e., have direct links in the taxonomy. For example, P–R, C–
R or C–S are adjacent pairs, but WZc–P or R–S are not. This model firstly
maintains the identity of the labels, secondly favors dilation and erosion between
adjacent regions, and ultimately allows relabeling for region smoothness.

5 Geodesic Interpolation

Having defined compatibilities for observed evidence and sought smoothness, the
application of an efficient BP algorithm [20] approximates an optimal labeling
via MAP-MRF inference. Nonetheless, In cases of very poor sampling, e.g., when
estimating models of parkings, the regions obtained by MAP-MRF inference with
the smoothness prior are often still disconnected or not representative, making
it difficult to obtain accurate segmentations.

(a) (b) (c)

Fig. 3. Top: non-smoothed marginal probabilities viewed (a) as a discrete mesh and

(b) as intensity maps, and (c) initial label assignment (best viewed in color). Bottom:

effects of the interpolation.

To solve this problem, a preprocessing stage is used before the inference step
to reinforce spatial coherence by interpolating lines in a geodesical manner. The
idea is to create linear ridges that connect high-valued and isolated samples
in each label’s marginal probability map (Fig. 3a), in order to emphasize the



684 C. Fernández, J. Gonzàlez, and X. Roca

presence of connected structures in them (Fig. 3b). As a result, the subsequent
MAP-MRF process is reinforced with these structures and guides more sensible
inferences for an eventual labeling, as shown in Fig. 3c.

The algorithm recursively finds non-void assigned categories that are isolated,
i.e., have no neighbor with the same category. Regions with the same class as-
signment are searched within an area of influence –we used 1.5 meters in the
calibrated map–, and the two regions are connected with a linear ridge, which
modifies the marginal class of the regions on that line only if the original marginal
value increases. The class probabilities of each region are finally normalized for
each region, and new assignments are applied.

6 Evaluation

The presented framework has been evaluated in 5 urban scenarios with diverse
characteristics, obtained from camera recordings. The Hermes dataset1 presents
an interurban crosswalk scenario with more pedestrians than vehicles; Oxford
centre2 shows an intersection highly populated by both target types; Devil’s
Lake3 presents moderate agitation but challenges with an intense projectivity;
Kingston–1 contains a partially seen bus stop close to a crosswalk, and Kingston–
2 shows a minor street with perpendicular parking spaces used for long periods
of time. These two last scenarios are extracted from the Kingston dataset [24].

Evaluation is carried out using 25 ground truth (GT) images –5 participants
per scenario–, consisting of pixel-level maps segmented into the 7 categories of
Table 1. Participants were asked to visually identify the semantic regions by
observing recorded footage, and partition them accordingly. In order to eval-
uate discriminant capability, and given that manual labeling is prone to vary
across humans, the system will perform well if segmentation errors compare to
inter-observer variability. This validation criterion is commonly used in biomet-
rics [25]. To accomplish this, each GT image has been divided into the cells of its
corresponding grid, and a modal filter has been applied over each cell, assigning
the most repeated pixel label to that region. Finally, each label assignment has
been evaluated against the other GTs and averaged for each GT and scenario.

In order to obtain quantitative comparisons, we have computed 3 different
accuracy scores over the 5 datasets, evaluating both techniques against the GT
assignments. In the evaluation tests, the maximum number of iterations for the
MAP-MRF has been limited to 15. The values of α and β are 0.8 and 0.6
respectively, for all experiments.

The matricial configuration of the lattice reduces computational effort in both
region modeling and label inference. Observations update the region models
online as trajectories are complete. Regarding the final inference over regions
learned, for a grid size of 75×75 geodesic interpolation takes at most 3 seconds to

1 http://www.hermes-project.eu/
2 http://webcam.oii.ox.ac.uk/
3 http://www.gondtc.com/web-cams/main-street-large.htm

http://www.hermes-project.eu/
http://webcam.oii.ox.ac.uk/
http://www.gondtc.com/web-cams/main-street-large.htm
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Table 2. Number of correctly tracked (a) pedestrians and (b) vehicles in each scenario,

and amount of observation errors due to: (c) agent misclassification, (d) lost or missed

tracks, and (e) false detections

Correct Erroneous

Scenario (total tracks) (a) (b) Total (c) (d) (e) Total

Hermes (161) 103 26 129 13 10 9 32

Oxford centre (180) 87 62 149 20 8 3 31

Devil’s Lake (179) 49 98 147 17 10 5 32

Kingston–1 (161) 85 53 138 12 9 2 23

Kingston–2 (87) 35 33 68 7 4 8 19

complete, and the BP algorithm with maximum iterations takes approximately
90 seconds in a Pentium II 3 GHz machine with 2 Gb RAM.

We analyze the consistency of the results by testing over a wide range of
grid size values, which is the main parameter involved in the sampling process:
given that each control point sampled from a trajectory affects uniquely its
enclosing region, the number of cells tesselating the scenario is indicative of the
area of influence of tracked objects during region modeling. The dimensions of
the projected grid in our experiments range from 40×40 to 150×150. Lower cell
resolutions do not capture the details of the scenario, thus not being suitable to
model semantic regions. Greater resolutions show performances that are similar
to the displayed range, but require substantially more computational resources.

Additionally, the tracked trajectories used as observations incorporate errors.
Each error consists of one or more of the following cases: misclassification of
agents, lost tracks, and false detections. Table 2 gives numerical information
on the agents involved in each scenario and the number and type of erroneous
observations. The system has been evaluated with and without the presence of
errors, in order to test its robustness.

6.1 Quality Scores

Performances have been evaluated in terms of accuracy. Three scores have been
considered: overall accuracy (OA), segmentation accuracy (SA), and weighted
segmentation accuracy (WSA). The two former scores are defined by

OA = TP+TN
TP+FP+TN+FN , SA = TP

TP+FP+FN ,

where OA is traditional accuracy, typically overfavored in multiclass contexts
given the high value of True Negatives as the number of classes increments. For
this reason, SA has been increasingly used to evaluate multiclass segmentations,
as in the PASCAL-VOC challenge 4. Additionally, WSA is defined by

WSA = TP∗
TP∗+FP∗+FN∗ ,

4 http://pascallin.ecs.soton.ac.uk/challenges/VOC/

http://pascallin.ecs.soton.ac.uk/challenges/VOC/
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in which an assignment is now considered true positive if the inferred label is
either equal to the ground truth, or is its direct generalization in the taxonomy
of Table 1a; and negative otherwise, thus modifying the account of errors. For
instance, an actual parking is here positively labeled as road, and a pedestrian
waiting zone is correctly labeled as sidewalk. Note that this score does not nec-
essarily benefit our approach, since our smoothness constraints do not award
class generalization. Instead, the goal of this metric is to penalize wrong par-
ticularizations. GT evaluation in Fig. 4a shows that WSA takes into account
consistency in different GT realizations –unlike SA–, while penalizing differences
harder than OA.

6.2 Median Filter

We have compared our method to median filters. They are the most used nonlin-
ear filters to remove impulsive or isolated noise from an image, a typical type of
noise found in our problem domain. Median filters preserve sharp edges, which
makes them more robust than traditional linear filters and a simple and cheap
solution to achieve effective non-linear smoothing. They are commonly used for
applications of denoising, image restoration, and interpolation of missing sam-
ples, all of which are applicable in our context.

We have compared the performances obtained by a median filter after 15 it-
erations and by our proposed inference framework, to evaluate the contributions
of taxonomy-based constraints to the smoothing task. The filter is applied for
each marginal probability map P (fr = l), l = 1 . . . |L|, maintaining the MRF
neighborhood defined. A median-filtered labeling is performed by assigning the
most probable label to each region, once the process has converged or exceeded
the maximum number of iterations allowed.
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Fig. 4. (a) Evaluation of the inter-observer variability in GT segmentations. (b) Sta-

tistical scores for the 5 considered scenarios. More details in the text.
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Table 3. Quantitative OA, SA, and WSA scores for a grid size of 75×75, without and

with the presence of erroneous trajectories

Overall accuracy Segmentation accuracy Weighted segmentation

(OA) (SA) accuracy (WSA)
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ly

c
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rr

e
c
t Hermes 0.98 0.96 0.97 0.98 0.40 0.40 0.45 0.64 0.50 0.44 0.51 0.77

Oxford Centre 0.98 0.97 0.98 0.98 0.46 0.52 0.58 0.61 0.65 0.66 0.75 0.93
Devil’s Lake 0.98 0.99 0.99 0.99 0.37 0.39 0.39 0.44 0.49 0.46 0.52 0.78
Kingston–1 0.98 0.97 0.98 0.99 0.43 0.37 0.50 0.66 0.46 0.44 0.59 0.76
Kingston–2 1.00 0.84 1.00 0.98 0.27 0.24 0.28 0.56 0.36 0.24 0.35 0.69
Average 0.98 0.94 0.98 0.98 0.39 0.38 0.44 0.58 0.49 0.45 0.54 0.78

C
o
rr

e
c
t

a
n
d

e
rr

o
n
e
o
u
s Hermes 0.98 0.97 0.97 0.98 0.40 0.40 0.45 0.53 0.51 0.45 0.52 0.78

Oxford Centre 0.98 0.97 0.98 0.98 0.46 0.53 0.56 0.57 0.66 0.68 0.76 0.94
Devil’s Lake 0.98 0.99 0.99 0.99 0.37 0.39 0.40 0.43 0.50 0.47 0.53 0.78
Kingston–1 0.97 0.98 0.98 0.98 0.43 0.40 0.50 0.65 0.46 0.50 0.60 0.76
Kingston–2 1.00 0.84 0.99 0.98 0.28 0.24 0.34 0.55 0.38 0.26 0.40 0.76
Average 0.98 0.95 0.98 0.98 0.39 0.39 0.46 0.55 0.50 0.47 0.56 0.80

6.3 Results

Fig. 4a shows the results of the inter-observer evaluation for the GT, which
constitute the baseline of the system’s performance. Fig. 4b shows quantitative
scores for OA, SA, and WSA in the 5 scenarios. Each plot draws the results of
4 different approaches, applied to the 5 series of GT available. These approaches
correspond to: (i) assigning labels using only observed evidence from trajecto-
ries, i.e., neglecting smoothness priors (Initial); (ii) using a median filter over
the initial models (Median); (iii) applying MAP-MRF inference (Eq. 1) to the
initial models (MRF ); and (iv) applying a preprocessing step based on geodesic
interpolation to the region models (GI–MRF ).

Results are similar to GT inter-observer variability. Only occasional plot oscil-
lations appear in Kingston2 for the OA measure, due to the non-linear operation
of sampling GT images into lattices of a concrete size. Moreover, increasing the
cell resolution progressively lowers the quality of the initial models, as well as
the accuracy on posterior labelings. Nonetheless, it is shown that interpolation
grants a performance almost invariant to the grid size used. This is emphasized
in case of poor sampling, e.g, parking spaces.

Table 3 shows numerical results for a grid of 75 × 75 cells, with and with-
out noisy trajectories. As seen in this table, OA is excessively favored due to
the high number of true negatives produced in a multiclass context, thus sug-
gesting SA and WSA as more convenient to compare the different techniques.
Particularly, WSA should be interpreted as the precaution to avoid wrong par-
ticularizations. With these metrics, experiments using geodesic interpolation and
smoothness constraints practically always achieve the maximum score, whereas
a median filter fails dramatically as the grid resolution increments, or in case of
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ill-convergence, e.g., it fails to preserve parking regions in Kingston–2. Addition-
ally, it is seen that even by incorporating erroneous trajectories to the datasets,
letting them be about a 20% of the total, the accuracy values remain stable.

Hermes Oxford centre Devil’s Lake Kingston–1 Kingston–2

Crosswalk Sidewalk Road Parking
Pedestrian
waiting zone

Vehicle
waiting zone

Void

Fig. 5. Labeling step results for a 75× 75 grid: First row shows original image, second

row the initial labeling only from observations, third row the labeling with geodesic in-

terpolation, fourth row the inference labeling using both interpolation and smoothness

constraints, and the bottom row shows the GT. Best viewed in color.

Fig 5 depicts qualitative step results of the labeling process for a grid size
of 75 × 75. For visualization purposes, results are shown within a ROI. The de-
picted results represent the activity of the tracked objects, rather than the visual
appearance of the scenario. Instead, appearance is commonly used to guide man-
ual labelings. We also identify an edge-effect of Void regions, given that control
points near the edges often lack of precedent or consecutive samples to update
their regions. This happens especially for vehicles, due to their higher speed and
poorer sampling. Finally, cases of intense projectivity –e.g., Devil’s Lake–, make
it more difficult for the models to emphasize the presence of connected regions,
thus provoking generalized smoothing.
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7 Application

Finally, the conceptual scene model have been used to exploit model-based be-
havior analysis. This has been achieved using the Situation Graph Tree (SGT) [10]
shown in Fig. 6(a,b), although any symbolic approach requiring conceptual scene
models could be used instead, like Petri Nets or Symbolic Networks. We choose
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1160-1184 - enter (Agent17,R4)
1185-1339 - enter (Agent17,Wc1)
1215-1625 - stop (Agent17,Wc1)
1340-1460 - enter (Agent26,S2)
1461-1593 - enter (Agent26,C1)
1461-1593 - give_way_crosswalk 
            (Agent17,Agent26,C1)

SGT RESULTS (GT)

1155-1476 - enter(Agent17,R2)
1215-1625 - stop (Agent17,R2)
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            (Agent26,C1)
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(c) (d) (e) (f)

Fig. 6. SGT used to interpret behaviors of (a) vehicles and (b) pedestrians. (c,d)

Selected frames from each interval. Semantic predicates are generated deterministically

using (e) the learned region maps and (f ) their corresponding GT maps.
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SGTs because they reason about the events observed in the learned semantic
regions, and can annotate situations of interest and traffic behaviors.

The scenario-independent SGT used generates conceptual descriptions when
certain conditions happen, such as vehicles entering sidewalks or pedestrians
entering roads. In addition, basic interpretations are formulated; e.g., if a vehicle
stops in front of a crosswalk where a pedestrian is found, it is giving way to this
person; and if a vehicle stops in a parking, it has parked there. In essence, basic
conceptual predicates are inferred by a fuzzy metric-temporal reasoner, we refer
the reader to [10,11] for implementation details.

Fig. 6 shows predicates generated in OxfordCentre and DevilsLake at differ-
ent time intervals. Most frequently, the generated predicates differ only at the
beginnings or endings of the temporal intervals; this is due to slight variations
among region boundaries. In Fig 6c, two predicates from the left column are
not found in the right one, since a WZc zone has not been identified in the GT
model. Nevertheless, alarms and simple interpretations are correctly generated.

8 Conclusions

We have shown an effective motion-based method to automatically label seman-
tic zones. The method has been applied to different urban scenarios using the
same behavioral models. Our approach enhances state-of-the-art on background
labeling by using taxonomical knowledge to guide consistent inferences during
labeling. It is scene-independent, viewpoint-invariant and of reduced computa-
tional cost, for it does not require to compute costly image descriptors.

Initial region models are learned from trajectory features, and updated as new
trajectories are available. Smoothness is taken into account using a MAP-MRF
inference, whose parameters are conditioned by prior taxonomical domain knowl-
edge. The framework is scenario-independent: it has been applied to 5 datasets
showing different conditions of projectivity, region content and configuration,
and agent activity. Step results are shown at every stage of the process, to cap-
ture the particular contributions of each task. The method has been compared
to a median filter, showing its better performance on the 3 scores tested.

Our work makes it possible to use predefined behavior models in generic
surveillance scenes. By automatically learning the conceptual scene model behind
lots of outdoor scenes, we can evaluate existing deterministic models (SGT, Petri
Nets, Symbolic Networks) in terms of generalization or scaling criteria. Further
steps include improving the accuracy of inter-region boundaries and extending
the system to indoor scenarios. Such environments incorporate more complex
semantics on agent actions and interactions, so deterministic behavior models
using domain knowledge can be used to extract key concepts for annotation.
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Abstract. We develop a video understanding system for scene elements,

such as bus stops, crosswalks, and intersections, that are characterized

more by qualitative activities and geometry than by intrinsic appearance.

The domain models for scene elements are not learned from a corpus of

video, but instead, naturally elicited by humans, and represented as prob-

abilistic logic rules within a Markov Logic Network framework. Human

elicited models, however, represent object interactions as they occur in

the 3D world rather than describing their appearance projection in some

specific 2D image plane. We bridge this gap by recovering qualitative

scene geometry to analyze object interactions in the 3D world and then

reasoning about scene geometry, occlusions and common sense domain

knowledge using a set of meta-rules. The effectiveness of this approach

is demonstrated on a set of videos of public spaces.

Keywords: Scene Understanding, Markov Logic Networks.

1 Introduction

We build on recent research in appearance-based object recognition and track-
ing [1,2,3,4], recovery of qualitative scene geometry from images and video [5,6,7],
and probabilistic relational models for integrating common sense domain mod-
els with uncertain image analysis [8], to develop a video understanding system
that can identify scene elements (cross walks, bus stops, traffic intersections),
characterized more by qualitative geometry and activity than by intrinsic ap-
pearance. The domain models we use are naturally specified by humans, and
characterize scene elements in terms of geometric relationships (sidewalks are
found along roads and are parallel to roads) and activity relationships (people
walk on sidewalks, wait and possibly queue for a bus).

These domain models are related to image analysis (appearance, tracking,
motion) by representing them as probabilistic logical models (Markov Logic
Networks). These logical models, however, describe what typically happens in
the scene and not what is visible in some video of that scene. We bridge this
gap using two methods. First, we recover qualitative scene geometry to analyze
object interactions in the 3D world rather than the 2D image plane. Second,

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 693–706, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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we utilize a set of meta-rules that capture general rules about scene geometry
and occlusion reasoning and fuse them with common sense domain knowledge
to detect these scene elements in videos taken from arbitrary viewpoints. This
involves reasoning about unobserved events and inferring their occurrence based
on other observations. Figure 1 provides an overview of our system.

Proximity Measures

Zone Occlusions

Surface Layout

Horizon Estimate

Zone Segmentation

Object Tracking

Object Detection

Image Analysis

t1:  CarStop(z2,t1), BusSpeedsUp(z8,t1), ...
t2:  CarAppears(z2,t2), BusSpeeds(z8,t2), ...
t3:  BusStops(z2,t3), PersonDisappears(z8,t3), ...
t4:  CarStop(z2,t4), BusSpeedsUp(z8,t4), ...
t5:  CarAppears(z2,t5), BusSpeeds(z8,t5), ...
t6:  BusStops(z2,t6), PersonDisappears(z8,t6), ...
t7:  CarStop(z2,t7), BusSpeedsUp(z8,t7), ...
t8:  BusStops(z2,t8), PersonDisappears(z8,t8), ...

Dynamic Events
z1:  ZoneVertical(z1), ZoneNearZone(z1,z5), ...
z2:  ZoneHorizontal(z2), ZoneNearBoundary(z2), ...
z3:  ZoneHorizontal(z3), ZoneOccludedCar(z3,z7), ...
z4:  ZoneVertical(z4), ZoneNearZone(z4,z5), ...
z5:  ZoneHorizontal(z5), ZoneNearBoundary(z5), ...
z6:  ZoneHorizontal(z6), ZoneOccludedCar(z6,z7), ...
z7:  ZoneVertical(z7), ZoneNearBoundary(z7), ...
z8:  ZoneHorizontal(z8), ZoneNearZone(z8,z1), ...

Zone Characteristics

Knowledge Base

Domain Models

PeopleAppear(z1) ^ ZoneVertical(z2) ^ ZnZ(z1,z2) => Entrance(z1) 
CarsStop(z1,t1) ^ ZoneNearZn(z1,z2) ^ PeopleOrtho(z1,t1) => Crosswalk(z1)
PeopleAppear(z1) ^ ZoneVertical(z2) ^ ZnZ(z1,z2) => Entrance(z1)

PeopleAppear(z1) ^ CarPresent(z2) ^ ZoneOcc(z1,z2) => CarOcc(z1,t1)
PeopleDisappear(z1) ^ CarPresent(z2) ^ ZoneOcc(z1,z2) => CarOcc(z1,t1)
PeopleAppear(z1) ^ CarPresent(z2) ^ ZoneOcc(z1,z2) => CarOcc(z1,t1)

Meta-Rules

Inference
Markov Logic Network

Scene Element Labels

Fig. 1. System overview. Our scene understanding system consists of an image analysis

module (Section 3) that takes an input video and outputs a set of events and zone

characteristics as observational evidence, a knowledge base (Section 4) that stores

human elicited domain models and general rules about scene geometry and occlusion

as a set of first-order logic rules, and an inference engine (Section 5) based on Markov

Logic Networks that uses the logic rules and observational evidence to infer the labels

of visible scene elements.
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As an example, consider a model for a bus-stop. This model might indicate
that people wait and queue at a bus stop, a bus stops at the bus stop, the
doors to the bus open, people leave the bus through the doors, then the people
waiting enter the bus through the doors, the doors close, and finally the bus
leaves. From the viewpoint in Scenario 1 (refer to Figure 2), all of the activities
associated with this bus stop model are observable. Scenario 2 shows a bus stop
seen from another viewpoint, in which the bus occludes the people waiting to
board, and the bus doors are not visible. In this case, our system reasons about
this occlusion, and determines that what we expect to observe are that the people
waiting for the bus will be gone when the bus leaves, and that new people will
be seen after the bus leaves.

People get into the bus. Bus departs.

People gather. Bus departs. People have disappeared.

Sc
en

ar
io

 1
Sc

en
ar

io
 2

Bus arrives. People not visible.

People gather. Bus approaches.

Fig. 2. Two bus stops observed from different viewpoints. In Scenario 1, all activities

associated with a typical bus stop model are observable. In Scenario 2, the bus occludes

people departing and entering the bus.

We demonstrate our video understanding framework on a dataset of videos
of public spaces. These video sequences were collected using cameras overlook-
ing scenes from varying viewpoints. Each contains multiple scene elements of
interest, such as bus stops, traffic intersections, stop signs, crosswalks, garage
entrances, etc. Our system is able to correctly identify a large number of these
scene elements described by the human elicited domain models.

2 Related Work

Methods to categorize scenes from single images by completely bypassing the
tasks of image segmentation and object detection are described in [9,10,11].
Oliva et al. [9] represented holistic image structure using low level features that
captured the degree of naturalness, openness, ruggedness, etc. whereas Fei-Fei
et al. [10] represented scenes as bags of codewords of texture measures. More
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recently, there have been attempts to jointly solve the tasks of object recogni-
tion and scene classification [12,13,14,15]. Bosch et al. [13] detected objects and
then used the object distribution for scene classification. Murphy et al. [14] com-
bined the holistic image representation of [9] with local object detectors using
a tree-structured graphical model. Li et al. [15] proposed a framework to deal
with three problems simultaneously: object detection, segmentation and scene
categorization.

There has also been progress in recovering surface orientations [5,7] and
occlusion boundaries [16], given just a single image. Recently, Hoiem et al. [17]
proposed a framework in which estimates of surface orientations, occlusion bound-
aries, objects, camera viewpoint and relative depth are combined, enabling au-
tomatically reconstructed 3D models.

Research in the domain of scene understanding from videos has mostly fo-
cused on building models of motion patterns of objects and using these to detect
anomalous behaviors [18,19,20,21]. While Hu et al. [20] propose a parametric
approach to model typical scene behaviors, Saleemi et al. use non-parametric
density functions. Building such typical behavior models can help to improve
foreground detection, detect areas of occlusion and identify anomalous motion
patterns. There have also been attempts to learn activity based semantic re-
gion models for locations such as roads, paths, and entry/exits, most notably
by Makris et al. [19] and Swears et al. [22]. Both these approaches involved
designing a detector for every scene element.

Research in object category recognition has typically focused on building vi-
sual classifiers trained on annotated datasets. Recently however, there has been a
growing interest in building object category models directly from human elicited
descriptions [23,24,25]. Such approaches have the potential to learn unseen ob-
ject categories based on their descriptions in terms of known visual attributes.

3 Image Analysis

Our scene understanding framework has three components: an image analysis
module, a knowledge base and an inference module (refer to Figure 1 for a
system overview). The image analysis module first segments the scene into a
set of neighborhoods called zones. It then analyzes appearance characteristics
of each zone as well as motion properties of objects passing through them, to
generate a set of zone attributes that characterize local scene geometry and
capture occlusion relationships between zones. A set of dynamic events is then
generated for every zone, at every time instant, to describe the behavior of
objects in the scene. The knowledge base consists of domain models describing
the scene elements of interest, as well as a set of meta-rules that capture general
knowledge about scene geometry and occlusion. The inference module, based
on Markov Logic Networks (MLN), integrates events generated by the image
analysis component with the rules in the knowledge base to label scene elements.
The knowledge base and inference module are described in Sections 4 and 5
respectively. The components of the image analysis module are described below.
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3.1 Detection and Tracking

We detect and track three classes of objects: humans, cars and buses. Detection is
carried out using the object detection method proposed in [2]1. For the purposes
of human detection, we directly used a trained model provided along with the
code, which was trained on the INRIA pedestrian dataset [1]. The car detector
is trained using the Caltech Car Rear Training Set and the ETHZ Car Side
Training Set [26]. The bus detector is trained using images from Bing Image
Search. A two level association based tracking method is used to link object
detections into tracks. At the low level, detections are linked to form tracklets
using appearance and proximity features. At the second level, these tracklets are
associated into longer tracks using appearance and motion features. Figure 3b
shows car and human tracks obtained for one of the videos in our dataset.

Cars
Humans

(c) (d)

(a) (b)

Fig. 3. Components of the image analysis module. (a) Background image for Scene I.

(b) Trajectories (Sec 3.1). (c) Zones (Sec 3.2). (d) Horizon line estimate (Sec 3.3).

3.2 Zone Segmentation

The MLN based reasoning module utilizes events generated by the image anal-
ysis framework to assign labels to each part of the scene. To avoid performing
inference at the pixel level, we segment the scene spatially into a set of zones, and
perform inference on each zone. Zone segmentation groups pixels based on their
appearance, location and the motion characteristics of objects passing through
them. This results in a set of zones in which objects display distinct behav-
iors. Examples include locations where people gather and stand still for a long
time (at bus stops), locations where vehicles drive in specific directions (along
drive lanes), locations where cars and people cross each other (at cross walks),
etc.
1 Code obtained: http://www.umiacs.umd.edu/~schwartz/softwares.html

http://www.umiacs.umd.edu/~schwartz/softwares.html
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We begin by obtaining a background image by simply constructing an image
for which a pixel p(i, j) is the median of all pixels in the video at that location.
This image is oversegmented by an image segmentation algorithm [27] to create a
set of superpixels2. A set of features are computed for each superpixel, including:
(1) Appearance - 3 histograms (one each for R,G,B) (2) Motion - Velocity mag-
nitude histogram and velocity orientation histograms (weighted by magnitude)
for each class of passing objects. An affinity matrix that includes the similar-
ity between all pairs of superpixels is created for each feature. The distance
metric used for all histograms is the Earth Mover’s Distance (EMD). In addi-
tion, a location based affinity matrix is also created. This captures the minimum
Euclidean distance between all pairs of superpixels and is calculated efficiently
using the distance transform. Spectral clustering is then used to group super-
pixels into zones. We used the self-tuning method proposed by Zelnik-Manor et
al. [28]3, since it automatically selects the scale of analysis as well as the number
of clusters. Figure 3c shows zones obtained for one of the scenes in our dataset.

3.3 Scene Geometry Analysis

Surface Layout. An estimate of the scene surface layout supports reasoning
about the location of many scene elements. For example, entrance and exit zones
(such as doors into buildings) are typically located where horizontal and vertical
surfaces meet. We obtain a rough surface layout using the method of [5]4 which
classifies pixels into three primary classes: horizontal, vertical and sky. This
estimate uses information extracted from individual images. However, we also
have the additional knowledge of object trajectories that can help us obtain
better surface estimates. Our meta-rules (discussed in Section 4) encode common
sense knowledge about surfaces such as: Objects are supported by a horizontal
surface. Objects might appear out of and disappear into vertical surfaces. Such
rules allow us to correct some of the erroneous surface estimates provided by [5].
Figure 4 shows a surface layout before and after inference by our system.

Proximity Measures. Models of scene elements typically contain predicates
corresponding to notions of proximity in the world, such as nearby, far away, next
to, etc. Distances measured directly in the image plane, however, do not maintain
these scene proximity relationships. Under a unit aspect ratio perspective camera
model, we show how to compare segment lengths measured at different parts of
the image based on their true lengths in the 3D world. We break the problem
down into two components: segments parallel to the camera axis (lengths along
a column of pixels) and segments parallel to the camera image plane (lengths
along a row of pixels), shown in Figure 5.

2 Code obtained: http://www.wisdom.weizmann.ac.il/∼ronen/

index files/segmentation.html
3 Code obtained: http://www.vision.caltech.edu/lihi/Demos/

SelfTuningClustering.html
4 Code obtained: http://www.cs.uiuc.edu/homes/dhoiem/
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HorizontalVertical

(a) (b)

Fig. 4. Surface layout estimates before and after inference by our system. The road

visible in the far distance is erroneously labeled as a vertical surface (in (a)), but

corrected after inference (in (b)), due to the presence of objects passing over it.

Fig. 5. Schematic relating image plane distances to ground plane distances

Consider Figure 5a. As in [6], we translate our image co-ordinates (u, v) to
(û, v̂) so that v̂ = 0 for every point on the horizon line and v̂ > 0 below the
horizon line. In this new co-ordinate system f1 represents the foot location in
the image of a person at a distance z1 from the camera and f ′

1 is the foot location
when the person takes a step Δz1 parallel to the camera axis to be located at a
distance z′1 from the camera. Now, f1z1 = f ′

1z
′
1 = fyc. Consider a person at a

second location in the scene taking a step Δz2. This gives us: f2z2 = f ′
2z

′
2 = fyc.

A little algebra yields (f ′
1−f1)f2f ′

2
(f ′

2−f2)f1f ′
1

= Δz1
Δz2

. Now consider Figure 5b. Here the
person moves from foot location f1 to a new location f ′

1 parallel to the camera
image plane. One can obtain: Δi1yc = Δz1f1, where Δi1 represents the image
plane distance between the two feet locations. For a second person at a new
location, we obtain: Δi2yc = Δz2f2. This yields Δi1

Δi2

f2
f1

= Δz1
Δz2

. Given the horizon
line, the above equations relate distances (segment lengths) measured at different
locations in the image plane, based on the true 3D measurements. Measures such
as nearby, far away, etc., when defined at one location in the image, can be thus
transformed to equivalent measures at other locations.

The horizon line is estimated using the method of Lv et al. [29]. Consider two
vertical poles of the same height in the scene. The two lines joining their foot
locations and head locations, respectively, intersect at a point on the horizon
line. Thus, three non-coplanar poles of the same height uniquely determine the



700 A. Kembhavi, T. Yeh, and L.S. Davis

horizon line. In practice, we have a large number of people walking through each
scene. Each pair of detections (from the same human track) provides us with an
estimate of a point lying on the horizon line. A least squares estimate of many
such detection pairs yields a good horizon line estimate (shown in Figure 3d).

Zone Transitions. While the distance measures described above help define no-
tions of proximity in the scene, they do not capture the restrictions imposed on
object trajectories due to the scene layout. For example, a sidewalk is located ad-
jacent to a road, yet vehicles typically do not traverse between roads and side-
walks. We characterize typical traffic patterns in the scene in terms of the average
transition times of objects between one zone and another. These patterns are rep-
resented as transition matrices, one for each object class. Zone pairs that do not
have any traffic flowing between them, are assigned a large transition time by de-
fault. Figure 6 shows examples of proximal zones. Note that cars typically conform
to fixed directions, where as people walk along paths in both directions.

Proximal Zones for Cars Proximal Zones for People

Fig. 6. Examples of proximal zones based on zone transition matrices. (a) Vehicles

travel from red zones onto yellow zones within a short time span. (b) People walk from

blue zones onto yellow within a short time span.

Directionality. User descriptions of scene elements often involve spatial prepo-
sitions which provide a notion of directionality, such as in front of, behind, to the
left of, etc. Under the assumption that objects move in the direction in which
they are facing, we define four directions with respect to the motion of the ob-
ject: left, right, front and behind. Furthermore, some zones in the scene exhibit
a single dominant direction of motion (based on the objects that pass through
them). This is especially true of zones located on the road, on which vehicles
strictly follow a single direction of motion. The four directions defined above are
also noted for such zones, with respect to the centroid of the given zone.

3.4 Zone Occlusion Relationships

As objects move through the scene, they occlude different areas of the scene as
well as objects present at those locations. This is a common source of errors in
a typical computer vision system. Knowledge about typical occlusion areas can
provide valuable information to the scene understanding framework. For exam-
ple, people trajectories ending at a location suggest the presence of a doorway to
a building at that location. However, the observation of a vehicle parked nearby,
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with the knowledge that it may causes occlusions at the former location, can
prevent such an inference error. We represent occlusion relationships between
zones using a binary matrix OC (one for each object class). For every object
that passes through a zone zi, we determine zones in the scene that intersect the
object bounding box in the image plane (indicating potential occlusions), while
the object was within zi. If a zone zj consistently undergoes occlusion by objects
in zi, the indicator variable OC(zi, zj) is set to 1.

3.5 Event Generation

Short time spans of 20 frames are grouped together to form a temporal window. A
set of dynamic events is generated at every zone within each temporal window.
These events characterize the location, motion and trajectory of objects in a
given zone during the given window. This results in a large set of evidence
ground atoms passed to the inference module throughout the duration of the
video sequence. In addition, the image analysis module also generates a set of
zone characteristics and inter zone relationships, as described above. These are
also represented as evidence atoms and passed on to the inference module.

4 Knowledge Base

The knowledge base consists of two components: a set of scene element models
and a set of meta-rules that capture information about scene geometry, occlusion
reasoning as well as common sense knowledge that applies to many domains. We
begin with a description of our approach to represent uncertain knowledge, and
then proceed with outlining the two components of our knowledge base.

4.1 Knowledge Representation

Knowledge is represented as first order production rules. The rules are repre-
sented in clausal form, whereby each rule is a conjunction of clauses and each
clause is a disjunction of literals. Rules are constructed using variables such as
zone, time, etc. Some variables are typed. Such variables have mutually exclu-
sive and exhaustive values. For example, the typed variable appearPersonReason
signifies an explanation for the birth of a person track and must take one of the
following values: {TrackingFailure, OcclusionByCar,...}.

We use two types of predicates. The first represents events in the video and are
associated with a particular zone and time instant (PersonAppear(zone,time)).
The second represents properties of individual zones (ZoneIsVertical(zone)), re-
lationships between zones (ZoneNearZone(zone, zone)) and relationships between
time instants (ShortlyAfter(time, time)). These predicates need only be calculated
once for the entire video sequence.

Each rule in our knowledge base is associated with a weight that indicates
its confidence. We use three degree of confidence for rules of absolute certainty
(weight = M), for ones with lesser certainty (0.5M) and for rules that may be
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true a very small fraction of times (0.25M). One may infer the certainty of a
human elicited rule by frequency adverbs such as always, never, rarely, etc.

Some of the predicates generated by the image analysis module, such as
ZoneIsVertical(zone), have a confidence value associated with them. Such un-
certain predicates are integrated into the first order rules using the method em-
ployed in [8]. Consider a predicate P with a weight w. We introduce a dummy
observation predicate OP along with a rule OP → P and associate the weight w
with this rule. The predicate OP does not have any weight associated with it.

4.2 Scene Element Models

Each scene element is described by a logical model comprising a set of first order
rules. These logical models describe a scene element on the basis of what typically
happens in a scene at that element. For example, the logical model for a cross-
walk consisting of logic rules with confidence measures is given in Figure 75. The
numbers in parentheses represent the weight assigned to each rule (recall that M
represents the highest weight assigned in the knowledge base). The presence of
people walking on the road indicates that they might be passing over a crosswalk
(Rule 1). However, pedestrians often disobey laws and cross the road at other
locations. The presence of a car waiting for people to cross the road is a stronger
indication of a crosswalk and is thus assigned a higher weight (Rule 2).

Rule1: (0.25M)  PeopleMove(z1,t1) ^ ZoneClassA(z1,Road) => ZoneClass(z1,Crosswalk)
Rule2: (0.5M)   PeopleMove(z1,t1) ^ ZoneClassA(z1,Road) ^ CarStop(z2,t1) ^
                ZoneTransitionCar(z2,z1) => ZoneClass(z1,Crosswalk)
Rule3: (0.5M)   ZoneClassA(z1,Road) ^ ZoneTransitionPeople(z2,z1) ^ ZoneClassA(z2,Sidewalk) ^
                ZoneTransitionPeople(z1,z3) ^ ZoneClassA(z3,Sidewalk) => ZoneClass(z1,Crosswalk) 
Rule4: (1.0M)   !ZoneClass(z1,Road) => !ZoneClass(z1,Crosswalk)

Crosswalk Model:

Fig. 7. First order logic rules representing a crosswalk model

4.3 Meta-Rules

In addition to the scene element models, the knowledge base also consists of a
set of meta-rules, which encode information relating to scene geometry, occlusion
handling, common failures of low level computer vision modules as well as com-
mon sense knowledge about the world. They only need to be written once, but
are then widely applicable over a large number of domains. For instance, consider
the scene element Building Entrance/Exit. Entrances and exits are typically char-
acterized as sources and sinks of person tracks. There are however, a variety of
situations that may lead to an initiation of a person track such as: exiting a vehi-
cle, tracker identity switching, occlusion within a group of people, etc. Our meta
rules encode such possibilities. This enables the inference module to reason about
plausible explanations when it encounters a new person track. This reduces the
number of false locations that might be labeled as an entrance-exit.
5 Other models provided at: http://www.umiacs.umd.edu/~ani

http://www.umiacs.umd.edu/~ani
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5 Inference Using Markov Logic Networks

There has been a growing interest in problems related to knowledge representa-
tion and learning in domains that are rich in relational as well as probabilistic
structure. Markov Logic Networks (MLN) are one such representation that com-
bine first order logic with probability theory in finite domains [30]. They support
the specification of statistical models using intuitive and understandable first or-
der rules. A first order knowledge base, by itself, is often impractical to use for
real world problems. Each rule in such a knowledge base is a hard constraint.
A world that does not satisfy a single formula gets assigned a zero probability.
MLNs attempt to relax these hard constraints using weights for each formula.
The probability of a world is dependent upon the number of formulae that the
world satisfies and the weights assigned to those formulae. MLNs can also be
viewed as a template for constructing ordinary Markov networks. Given a set
of formulae and constants, a MLN produces a Markov network. Based on the
constructed network, marginal distributions of events given the observations can
be computed using probabilistic inference. We use the Alchemy system [31] to
represent our rules and perform inference on the resulting MLN6.

5.1 Local Inference Procedures

The image analysis module generates a large number of evidence ground atoms
within every temporal window, for every zone in the scene. Over the entire
video, the number of ground atoms gets prohibitively large, rendering infer-
ence intractable. However, the spatio temporal interactions between objects,
that characterize the scene elements of interest are sufficiently local in nature,
both spatially and temporally. For instance, consider the crosswalk model in
Figure 7 described by the interaction between people walking on the crosswalk
and vehicles waiting on the road adjacent to it. Interactions between objects at
locations far away from the crosswalk do not affect inference about the given
zone. Likewise, interactions between people and vehicles at the crosswalk, at
other times in the video, are largely independent of the current interaction.

We break down the large inference problem into smaller ones, carried out in
every zone and at regularly spaced time instants. For every such spatio temporal
location, the inference procedure takes into consideration events generated at a
set of neighboring zones and time instants. For each zone, votes for each label,
which are generated over the duration of the video, are aggregated to determine
the final scene element label associated with that zone.

6 Experiments

We demonstrate our scene understanding framework on a dataset of 5 videos of
public spaces, totaling over 100,000 frames (about 58 minutes). The video data

6 Code available: http://alchemy.cs.washington.edu/

http://alchemy.cs.washington.edu/
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has been collected using cameras overlooking scenes from varying viewpoints.
Each scene contains a large amount of pedestrian, car and bus traffic passing
through it. Over the entire dataset, the number of pedestrians, cars and buses is
approximately 700, 500 and 25 respectively. The data has been collected in high
definition mode (1920x1080 pixels). Figure 8 shows some representative frames.

The scene elements that we seek to identify are: Road, Sidewalk, Other Path
(other paths taken by people, which are not sidewalks), Bus-stops, Stop-sign
Zones, Crosswalks, Entrances-Exits for People (typically buildings) and
Entrances-Exits for Vehicles (typically garages). Figure 8 shows the labels as-
signed to different regions of the scenes. The system is able to correctly identify
a large number of the scene elements using the human elicited domain models.

Our scene understanding framework is effectively able to reason about the scene
geometry and occlusions to identify scene elements from widely varying viewpoints.
Recall the example of a bus-stop observed from two viewpoints (Figure 2). Scene

III

I

II

II

V

V

Road Bus-Stop
Sidewalk
Other Path
Pedestrian Entrance Vehicle Entrance

Stop Sign Zone
Crosswalk

IV

IV III

I

I

Fig. 8. Scene element labels determined by our system for Scenes I-V along with a

representative image from each scene
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III contains a view of a bus-stop in which we are able to observe people entering
and exiting the bus. Scene II and IV, on the other hand, contain views of bus-stops
in which the doors of the bus are not visible. The system reasons about people that
might have entered and exited the buses that stopped at the location and correctly
identifies all bus stops. Two locations are marked as bus-stops in Scene III, since
buses stop one behind the other in this scene.

Pedestrian crosswalks are also correctly identified in all scenes, with the excep-
tion of a partially visible crosswalk in Scene II. These include the three crosswalks
visible in the far distance in Scene III. A fair number of people tend to cross
roads at locations other than crosswalks. However, cars do not always stop for
such jaywalking violations. The system correctly identifies crosswalk locations
using this additional information and suppresses the false alarms. Vehicle and
pedestrian entrances are identified on the basis of track appearances and dis-
appearances into vertical surfaces. Scene I shows a correctly identified garage
entrance. The other detections in Scene I are not garage entrances, but they
correspond to locations in the scene (away from the image boundary and close
to vertical surfaces) where cars enter and exit the camera frame. Scene V shows
a loading dock correctly marked as an entrance/exit for people. We fail to detect
one of the doorways in Scene III (primarily due to a leafless, yet occluding tree),
but another entrance in the distance away is correctly determined.

Roads, Sidewalks and Other Paths are also identified in each scene. Sidewalks
are defined to be paths adjacent to roads and parallel to them on which people
walk. Zones are considered parallel to one another if the orientations of objects
passing through them are similar. Stop-sign zones are also detected in the scenes.
The system does not merely depend on locations where cars stop-and-go, but
also uses information such as Stop zones are located adjacent to cross-walks and
at intersections. Scene V shows a false alarm caused by cars frequently stopping
at a busy crosswalk. Such false alarms can be reduced by analyzing a larger
amount of data, spanning different times of the day.

Acknowledgements. This research was partially supported by ONR grant
N00014-09-10044.
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Abstract. When given a single static picture, humans can not only

interpret the instantaneous content captured by the image, but also they

are able to infer the chain of dynamic events that are likely to happen in

the near future. Similarly, when a human observes a short video, it is easy

to decide if the event taking place in the video is normal or unexpected,

even if the video depicts a an unfamiliar place for the viewer. This is

in contrast with work in surveillance and outlier event detection, where

the models rely on thousands of hours of video recorded at a single place

in order to identify what constitutes an unusual event. In this work we

present a simple method to identify videos with unusual events in a

large collection of short video clips. The algorithm is inspired by recent

approaches in computer vision that rely on large databases. In this work

we show how, relying on large collections of videos, we can retrieve other

videos similar to the query to build a simple model of the distribution

of expected motions for the query. Consequently, the model can evaluate

how unusual is the video as well as make event predictions. We show how

a very simple retrieval model is able to provide reliable results.

1 Introduction

If we are told to visualize a street scene, we can imagine some composition with
basic elements in it. Moreover, if we are asked to imagine what can happen in
it, we might say there is a car moving through a road, being in contact to the
ground and preserving some velocity and size relationships with respect to other
elements in the scene (say a person or a building). Even when constrained by its

Fig. 1. What do these images have in common? They depict objects moving towards

the right. These images do not contain motion cues such as temporal information or

motion blur. The implied motion is known because we can recognize the image content

and make reliable predictions what would occur if these were movies playing.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 707–720, 2010.
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composition (e.g. when being shown a picture of it) we can predict things like an
approximate speed of the car, and maybe even its direction (see fig. 1). Human
capacity for mental imagery and story telling is driven by the years of prior
knowledge we have about our surroundings. Moreover, it has been found that
static images implying motion are also important in visual perception and are
able to produce motion after-effects [1] and even activate motion sensitive areas
in the human brain [2]. As a consequence, the human visual system is capable
of accurately predicting plausible events in a static scene (or future events in a
video sequence) as well as is finely tuned to flag unusual configurations or events.

Event and action detection are well-studied topics in computer vision. Several
works have proposed models to study, characterize, and classify human actions
ranging from constrained environments [3,4] to actions in the wild such as TV
shows, sporting events, and cluttered backgrounds [5,6]. In this scenario, the
objective is to identify the action class of a previously unknown query video
given a training dataset of action exemplars (captured at different locations). A
different line of work is that of event detection for video surveillance applications.
In this case, the algorithm is given a large corpus of training video captured at
a particular location as input, and the objective is to identify abnormal events
taking place in the future in that same scene [7,8,9,10]. Consequently, deploying
a surveillance system requires days of data acquisition from the target and hours
of training for each new location.

In this paper we look into the problem of generic event prediction for scene
instances different from the ones in some large training corpus. In other words,
given an image (or a short video clip), we want to identify the possible events that
may occur as well as the abnormal ones. We motivate our problem with a par-
allel to object recognition. Event prediction and anomaly detection technologies
for surveillance are now analogous to object instance recognition. Many works
in object recognition are moving towards the more generic problem of object
category recognition [11,12]. We aim to push the envelope in the video aspect by
introducing a framework that can easily adapt to new scene instances without
the requirement of retraining a model for each new location. Moreover, other po-
tential applications lie in the areas of video collection retrieval in online services
such as YouTube, Vimeo, where video clips are captured in different locations
and greatly differ with respect to controlled video sources such as surveillance
feeds and tv programming as was pointed out by Zanetti et al. [13].

Given a query image, our purpose is to identify the events that are likely to
take place in it. We have a rich video corpus with 2401 real world videos acting
as our prior knowledge of the world. In an offline stage, we generate and cluster
motion tracks for each video in the corpus. Using scene-matching, our system
retrieves videos with similar image content. Track information from the retrieved
videos is integrated to make a prediction of where in the image motion is likely
to take place. Alternatively, if the input is a video, we track and cluster salient
features in the query and compare each to the ones in the retrieved neighbor set.
A track cluster can then be flagged as unusual if it does not match any in the
retrieved set.
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2 Related Work

Human action recognition is a popular problem in the video domain. The work
by Efros et al. [14] learns optical flow correlations of human actions in low
resolution video. Schechtman and Irani exploit self similarity correlations in
space-time volumes to find similar actions given an exemplar query. Niebles et
al. [5] characterize and detect human actions under complex video sequences by
learning probability distributions of sparse space-time interest points. Laptev et
al. densely extracts spatio-temporal features in a grid and uses a bag of features
approach to detect actions in movies. Messing et al. models human activities
as mixtures of bags of velocity trajectories, extracted from track data. None of
these works study the task of event prediction and are constrained to human
actions. Similar in concept to our vision is the work by Li et al. [15], where the
objective is action classification given an object and a scene . Our work is geared
towards localized prediction including trajectory generation, not classification.

Extensive work has also taken place in event and anomaly detection for surveil-
lance applications. A family of works relies on detecting, tracking, and classifying
objects of interest and learning features to distinguish events. Dalley et al. de-
tect loitering and bag dropping events using a blob tracker to extract moving
objects and detect humans and bags. The system idenfifies a loitering event if a
person blob does not move for a period of time. Bag dropping events are detected
by checking the distance between a bag and a person; if the distance becomes
larger than some threshold, it is identified as a dropped bag. A second family
of works clusters motion features and learning distributions on motion vectors
across time. Wang et al. [7] uses a non-parametric Bayesian model for trajectory
clustering and analysis. A marginal likelihood is computed for each video clip,
and low likelihood events are flagged as abnormal. One common assumption of
these methods is that training data for each scene instance where the system
will be deployed is available. Therefore, the knowledge built is not transferrable
to new locations, as the algorithm needs to be retrained with video feeds from
each new location to be deployed.

Numerousworks have demonstrated success using a richdatabases for retrieving
and/or transferring information to queries in both image [16,17,18,19] and video
[20,21]. In video applications, Sivic et al. [21], proposed a video representation for
exemplar-based retrieval within the same movie. Moving objects are tracked and
their trajectories grouped. Upon selection of an image crop in some video frame,
the system searches across video key frames for similar image regions and retrieves
portions of the movie containing the queried object instance. The work proposed
by Liu et al. [20] is the closest one to our system. It introduces a method for mo-
tion synthesis from static images by matching a query image to a database of video
clip frames and transferring the moving regions from the nearest neighbor videos
(identified as regions where the optical flow magnitude is nonzero) to the static
query image. This work constructs independent interpretations per nearest neigh-
bors. Instead, our work builds localized motion maps as probability distributions
after merging votes from several nearest neighbors. Moreover, we aim to have a
higher level representation where each moving object is modeled as a track blob
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while [20] generates hypotheses as one motion region per frame. In summary, these
works demonstrate the strong potential of data-driven techniques, which to our
knowledge no prior work has extended into anomaly detection.

3 Scene-Based Video Retrieval

The objective of this project is to use event knowledge from a training database
of videos to construct an event prediction for a given a static query image. To
achieve some semantic coherence, we want to transfer event information only
from similar images. Therefore, we need a good retrieval system that will re-
turn matches with similar scene structures (e.g. a picture of an alley will be
matched with another alley photo shot with a similar viewpoint) even if the
scene instances are different. In this paper we will explore the usage of two scene
matching techniques: GIST [22] and spatial pyramid dense SIFT [23] matching.
The GIST descriptor encodes perceptual dimensions that characterize the domi-
nant spatial structure of a scene. The spatial pyramid SIFT matching technique
works by partitioning an image into subregions and computing histograms of
local features at each sub-region. As a result, images with similar global geo-
metric correspondence can be easily retrieved. The advantage of both the GIST
and dense SIFT retrieval methods is their speed and efficiency at projecting
images into a space where similar semantic scenes are close together. This idea
has proven robust in many non-parametric data-driven techniques such as label
transfer [17] and scene completion [18] amongst many others. To retrieve near-
est videos from a database, we perform matching between the first frame of the
video query and the first frame of each of the videos in the database.

4 Video Event Representation

We introduce a system that models a video as a set of trajectories of keypoints
throughout time. Individual tracks are further clustered into groups with similar
motion. These clusters will be used to represent events in the video.

4.1 Recovering Trajectories

For each video, we extract trajectories of points in the sequence using an imple-
mentation of the KLT tracker [24] by Birchfield [25]. The KLT tracking equation
seeks the displacement d = [dx, dy]T that minimizes the dissimilarity amongst
two windows, given a point p = [x, y]T and two consecutive frames I and J :

ε(w) =
∫ ∫

W

[J(p +
d
2

) − I(p − d
2

)]2w(p)dp (1)

where W is the window neighborhood, and w(d) is the weighing function (set to
1). Using a Taylor series expansion of J and I, the displacement that minimizes
ε is:
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∂ε

∂d
=
∫ ∫

W

[J(p) − I(p) + gT (p)d]g(p)w(p)dp = 0 (2)

where g =
[

∂
∂x

(
I+J

2

)
∂
∂y

(
I+J

2

)]T

The tracker finds salient points by examining the minimum eigenvalue of
each 2 by 2 gradient matrix. We initialize the tracker by extracting 2000 salient
points at the first video frame. The tracker finds the correspondences of the
points sequentially throughout the frames in the video. Whenever a track is
broken (a point is lost due to high error or occlusions), new salient points are
detected to maintain a consistent number of tracks throughout the video. As
a result, the algorithm produces tracks, which are sequences of location tuples
T = (x(t), y(t))t∈D within a duration D for each tracked point. For more details
on the implementation, we refer to the the original KLT tracker paper.

4.2 Clustering Trajectories

Now that we have a set of trajectories for salient points in an image, we proceed
to group them at a higher level. Ideally, tracks from the same object should be
clustered together. We define the following distance function between two tracks

dtrack(Ti,Tj) ≡
1

|Di ∩ Dj |
∑

t∈Di∩Dj

√
(xi(t) − xj(t))2 + (yi(t) − yj(t))2 (3)

We use the distance function to create an affinity matrix between tracks and use
normalized cuts [26] to cluster them. Each entry of the affinity matrix is defined
as Wij = exp(−dtrack(Ti,Tj)/σ2). The clustering output will thus be a group
label assignment to each track. See fig. 3 for a visualization of the data. Since
we do not know the number of clusters for each video in advance, we set a value
of 10. In some cases this will cause an over segmentation of the tracks and will
generate more than one cluster for some objects.

4.3 Comparing Track Clusters

For each track cluster C = {Ti}, we quantize the instantaneous velocity of
each track point into 8 orientations To ensure rough spatial coherency between
clusters, we superimpose a regular grid with a cell spacing of 10 pixels on top of
the image frame to create a spatial histogram containing 8 sub-bins at each cell
in the grid. Let H1 and H2 denote the histograms formed by the track clusters
C1 and C2 such that H1(i, b) and H2(i, b) denote the number of velocity points
from the first and second track clusters respectively that fall into the bth sub-bin
of the ith bin of the histogram, where i ∈ G and G denotes the bins in the grid.
We define the similarity between two track clusters as the intersection of their
velocity histograms:

Sclust(C1,C2) ≡ I(H1, H2) =
∑
i∈G

8∑
b=1

min
(
H1(i, b), H2(i, b)

)
(4)
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e f

Fig. 2. Track clustering. Sample frames from the video sequence (a). The ground truth

annotations denoted by polygons surrounding moving objects (b) can be used to gen-

erate ground truth labels for the tracked points in the video (c). Our track distance

affinity function is used to to automatically cluster tracks into groups and generates

fairly reasonable clusters where each roughly correspond to independent objects in

the scene (d). The track clusters visualizations in (c) and (d) show the first frame of

each video and the spatial location of all tracked points for the duration of the clip

color-coded by the track cluster that each point corresponds to.

This metric was designed in the same spirit as the bottom level of the spatial
pyramid matching method by Lazebnik et al. . We aim for matches that ap-
proximately preserve global spatial correspondences. Since our video neighbor
knowledge-base is assumed to be spatially aligned to our query, a good match
shall also preserve an approximate similar spatial coherence.

5 Video Database and Ground Truth

Our database consists of 2277 videos belonging to 100 scene categories. The cat-
egories with the most videos are: street (809), plaza (135), interior of a church
(103), crosswalk (82), and aquarium (75). Additionally, 14 videos containing un-
usual events were downloaded from the web (see fig. 3 for some sample frames).
500 of the videos originate from the LabelMe video dataset [27]. As these videos
were collected using consumer cameras without a tripod, there is slight cam-
era shake. Using the LabelMe video system, the videos were stabilized. The
object-level ground truth labeling in the LabelMe video database allows us to
easily visualize the ground truth clustering of tracks and compare it with our
automated results (see fig. 2). We split the database into 2301 training videos,
selected 134 fully videos from outdoor urban scenes and the 14 unusual videos
to create a test set with 148 videos.
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Fig. 3. Unusual videos. We define an unusual or anomalous event as one that is not

likely to happen in our training data set. However, we ensured that they belong to

scene classes present in our video corpus.

6 Experiments and Applications

We present two applications of our framework. Given the information from near-
est neighbor videos, what can we say about the image if we were to see it in
action? As an example, we can make good predictions of where motion is bound
to happen in an image. We also present a method for determining the degree of
anomaly of an event in a video clip using our training data.

6.1 Localized Motion Prediction

Given a static image, we can generate a probabilistic map determining the spa-
tial extent of the motion. In order to estimate p(motion|x, y, scene) we use a
parzen window estimator and the trajectories of the N=50 nearest neighbor
videos retrieved with scene matching methods (GIST or dense SIFT-based).

p(motion|x, y, scene) =
1
N

N∑
i

1
Mi

Mi∑
j

∑
t∈D

K(x − xi,j(t), y − yi,j(t); σ) (5)

where N is the number of videos and Mi is the number of tracks in the ith
video and K(x, y; σ) is a gaussian kernel of width σ2. Fig. 4 a shows the per-
pixel prediction ROC curve compared using gist nearest neighbors, dense SIFT
matching, and as a baseline, a random set of nearest neighbors. The evaluation
set is composed of the first frame of each test video. We use the location of
the tracked points in the test set as ground truth. Notice that scenes can have
multiple plausible motions occurring in them but our current ground truth only
provides one explanation. Despite our limited capacity of evaluation, notice the
improvement when using SIFT and GIST matching to retrieve nearest neighbors.
This graph suggests that (1) different sets of motions happen in different scenes,
and (2) scene matching techniques do help filtering out distracting scenes to
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Fig. 4. Localized motion prediction (a) and unusual event detection (b). The algorithm

was compared against two scene matching methods (GIST and dense SIFT) as well

as a baseline supported by random nearest neighbors. Retrieving videos similar to the

query image improves the classification rate.

make more reliable predictions (for example, a person climbing the wall of a
building in a street scene would be considered unusual but a person climbing a
wall in a rock climbing scene is normal). Fig. 6 c and 7 c contain the probability
motion map constructed after integrating the track information from the nearest
neighbors of each query video depicted in column (a). Notice that the location
of high probability regions varies depending on the type of scenes. Moreover, the
reliability of the motion maps depends on (1) how accurately the scene retrieval
system returns nearest neighbors from the same scene category (2) whether the
video corpus contains similar scenes. The reader can get an intuition of this by
looking at column (e), which contains the average nearest neighbor image.

6.2 Event Prediction from a Single Image

Given a static image, we demonstrated that we can generate a probabilistic func-
tion per pixel. However, we are not only constrained to per-pixel information.
We can use the track clusters of videos retrieved from the database and generate
coherent track cluster predictions. One method is by directly transferring track
clusters from nearest neighbors into the query image. However, this might gen-
erate too many similar predictions. Another way lies in clustering the retrieved
track clusters. We use normalized cuts clustering for this step at the track clus-
ter level using the distance function described in equation 4 to compare pairs of
track clusters. Fig. 5 shows example track clusters overlaid on top of the static
query image. A required input to the normalized cuts algorithm is the number of
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Fig. 5. Event prediction. Each row shows a static image with its corresponding event

predictions. For each query image, we retrieve their nearest video clips using scene

matching. The events belonging to the nearest neighbors are resized to match the

dimensions of the query image and are further clustered to create different event pre-

dictions. For example, in a hallway scene, the system predicts motions of different

people; in street scenes, it predicts cars moving along the road, etc.
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clusters. We try a series of values from 1 to 10 and choose the clustering result
that maximizes the distance between clusters. Notice how for different query
scenes different predictions that take the image structure are generated.

6.3 Anomaly Detection

Given a video clip, we can also determine if an unusual event is taking place.
First, we break down the video clip into query track clusters (which roughly
represent object events) using the method described in section 4. We also retrieve
the top 200 nearest videos using scene matching. We negatively correlate the
degree of anomaly of a query track cluster with the maximum track cluster
similarity between the query track cluster and each of the track clusters from
the nearest neighbors:

anomaly(Hquery) = −argmax
Hneigh

(
I(Hquery , Hneigh)

)
(6)

where Hquery is the spatial histogram of the velocity histories of the query track
cluster and Hneigh denotes the histogram of a track cluster originated from a
nearest neighbor. Intuitively, if we find a similar track cluster in a similar video
clip, we consider it as normal. Conversely, a poor similarity score implies that
such event (track cluster) does not usually happen in similar video clips. Fig. 6
shows examples of events that our system identified as common by finding a
nearest neighbor that minimized its anomaly score. Notice how the nearest track
clusters are fairly similar to the query ones and also how the spatial layout of
the nearest neighbor scenes matches that of the query video. As a sanity check,
notice the similarity of the nearest neighbors average image to the query scene
suggesting that the scene retrieval system is picking the right scenes to make
accurate predictions. Fig. 7 shows events with a higher anomaly score. Notice
how the nearest neighbors differ from the queries. Also, the average images are
indicators of noisy and random retrievals. By definition, unusual events will be
less likely to appear in our database. However, if the database does not have
enough examples of particular scenes, their events will be be flagged as unusual.

Fig. 4(b) shows a quantitative evaluation of this test. Our automatic clustering
generates 685 normal and 106 unusual track clusters from our test set. Each of
these clusters was scored achieving in similar classification rates when the system
is powered by either SIFT or GIST matching methods reaching a 70% detection
rate with a 22% false alarm rate. We use the scenario of a random set of nearest
neighbors as a baseline. Due to our track cluster distance function, if a cluster
similar to the query cluster appears in the random set, our algorithm will be able
to identify it and classify the event as common. However, notice that the scene
matching methods are demonstrating great utility cleaning up the retrieval set
and narrowing videos to a fewer relevant ones. Fig. 8 shows some examples of
our system in action.
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Fig. 6. Track cluster retrieval for common events. A frame from a query video (a),

the tracks corresponding to one event in the video (b), the localized motion prediction

map (c) generated after integrating the track information of the nearest neighbors

(some examples shown in d), and the average image of the retrieved nearest neighbors

(e). Notice the definition of high probability motion regions in (c) and how its shape

roughly matches the scene geometry in (a). The maps in (c) were generated with no

motion information originating from the query videos videos.



718 J. Yuen and A. Torralba

Fig. 7. Track cluster retrieval for unusual events (left) and scenes with less samples

in our data set. When presented with unusual events such as a car crashing into the

camera or a person jumping over a car while in motion (left and middle columns; key

frames can be seen in fig. 8) our system is able to flag these as unusual events (b) due

to their disparity with respect to the events taking place in the nearest neighbor videos.

Notice the supporting neighbors belong to the same scene class as the query and the

motion map predicts movements mostly in the car regions. However, our system fails

when an image does not have enough representation in the database (right).
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Fig. 8. Unusual event detection. Videos of a person jumping over a car and running

across it (left) and a car crashing into the camera (right). Our system outputs anomaly

scores for individual events. Common events shown in yellow and unusual ones in red.

The thickness and saturation of the red tracks is proportional to the degree of anomaly.

7 Discussion and Concluding Remarks

We have presented a flexible and robust system for unsupervised localized motion
prediction and anomaly detection powered by two phases: (1) scene matching to
retrieve similar videos given a query video or image, and (2) motion matching
via a scene-inspired and spatially aware histogram matching technique for ve-
locity information. We emphasize that most of the work in the literature focuses
on action recognition and detection and requires training models for each differ-
ent action category. Our method has no training phase, is quick, and naturally
extends into applications that are not available under other supervised learn-
ing scenarios. Experiments demonstrate the validity of our approach when given
enough video samples of real world scenes. We envision its applicability in areas
such as finding unique content in video sharing websites and future extensions
in surveillance applications.
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Abstract. This paper presents an exemplar-based approach to detecting and lo-
calizing human actions, such as running, cycling, and swinging, in realistic videos
with dynamic backgrounds. We show that such activities can be compactly rep-
resented as time series of a few snapshots of human-body parts in their most dis-
criminative postures, relative to other activity classes. This enables our approach
to efficiently store multiple diverse exemplars per activity class, and quickly re-
trieve exemplars that best match the query by aligning their short time-series
representations. Given a set of example videos of all activity classes, we extract
multiscale regions from all their frames, and then learn a sparse dictionary of
most discriminative regions. The Viterbi algorithm is then used to track detec-
tions of the learned codewords across frames of each video, resulting in their
compact time-series representations. Dictionary learning is cast within the large-
margin framework, wherein we study the effects of 	1 and 	2 regularization on the
sparseness of the resulting dictionaries. Our experiments demonstrate robustness
and scalability of our approach on challenging YouTube videos.

1 Introduction

This paper is about efficient, robust, and scalable activity recognition. Our thesis is that
certain human actions, such as cycling, diving, walking, and horseback riding, can be
compactly represented as short time series of a few still snapshots. Such a discrete ac-
tivity representation captures discriminative parts of the human body and participating
objects (e.g., racquet in playing tennis) in moments when they also assume discrimina-
tive postures. Their discriminativeness is defined relative to other human postures and
objects seen across different activity classes, so as to allow robust activity recognition.
Since there may be only a few time instances in which a few human-body parts strike
discriminative poses, the entire space-time volume of a video gets hugely compressed
by representing activities as time series. This allows us to develop a robust and scal-
able, exemplar-based approach to activity recognition in realistic videos with dynamic
backgrounds. Numerous video exemplars per activity class can be efficiently stored as
time series for the purposes of representing diverse, natural, inter- and intra-class vari-
ations. Also, retrieval of exemplars that best match the query can be efficiently done by
aligning their short time-series representations.

Our approach consists of the following four computational steps: (1) extracting use-
ful video features, (2) learning a dictionary of discriminative features extracted from
a given set of exemplar videos, (3) representing videos as temporal sequences of the

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 721–734, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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learned codewords, and (4) detecting and locating activities in a query video by align-
ing the query and exemplar time series. In the following, we give an overview of our
approach, and point out our main contributions.

Feature Extraction: To represent activities, we extract hybrid features from videos,
where the hybrid consists of appearance and local motion cues. Our motivation for
using static appearance features comes from the well-known capability of human per-
ception to recognize human actions from still images of activity-characteristic body
postures [6, 7]. In cases when different actions (e.g., walking and running) produce
similar static features, motion cues that we also extract will help resolve any ambigu-
ity about static features. Prior work also often combines local motion and static fea-
tures [1, 2, 3, 4, 5], since their extraction is reportedly more robust than that of other
types of features, such as 2D+t volumes, optical flow, etc. We segment each video
frame by the standard hierarchical meanshift algorithm, as in [8]. Meanshift regions
are described by the HOG descriptor [9], shown to be stable and discriminative under a
certain amount of partial occlusion, and changes in object pose [10]. HOG is computed
using the spatial derivative of pixel intensities in the frame. HOG’s are invariant to sim-
ilar camera motions (e.g., panning) across videos, which may produce similar motion
features of distinct actions. We also compute the temporal derivative of pixel intensi-
ties between two frames, resulting in the 2D+t HOG descriptor associated with every
meanshift region.

Dictionary Learning: Given a large set of 2D+t HOG’s, extracted from all exemplar
videos, we learn a sparse dictionary of codewords, each representing the most discrim-
inative 2D+t HOG’s in the set. Since the HOG’s are anchored at meanshift regions of
video frames, the learned codewords may correspond to the entire human body, or body
part, as well as to an object taking part in the activity (e.g., horses head in horseback
riding, or swing in swinging). Existing work typically clusters video features by K-
means [1,11,12], yielding codewords that may not be relevant for discriminating among
the action classes. There is very little work on dictionary leaning for activity recogni-
tion, with few exceptions [13, 4]. Their information-bottleneck formulation, however,
is intractable and requires approximation, which may not learn the optimal dictionary.
In contrast, we cast dictionary learning within the large-margin framework, and derive
an efficient, linear-complexity algorithm, with strong theoretical guarantees of small
generalization error. Another key difference from prior work is that our codewords may
represent objects defining the activity, in addition to human-body parts. This is critical
for differentiating between very similar activities in which the human body undergoes
similar motions but interacts with different objects (e.g., eating a banana vs. answer-
ing the phone). Most existing methods, however, do not account for objects that people
interact with while performing the activity. This is because they seek to crop out only
people from the videos by various means of background subtraction [14], or by apply-
ing people detectors [2,12]. Recent studies show that activity recognition may improve
when co-occurring objects in the context are identified [11]. Unlike all previous work,
we use only video labels, i.e., weak supervision, for our dictionary learning.

Time-Series Representation: We represent videos as temporal sequences of code-
words of the dictionary, learned in the previous step. Given a video, its time series
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Fig. 1. Compact video representation: Meanshift regions, extracted from video frames, are
matched with the codewords representing discriminative human-body parts and activity-defining
objects. Best matching candidates are tracked across the frames by the Viterbi algorithm, resulting
in a short time series of a few discriminative, still snapshots (marked red).

is computed by tracking candidate detections of the codewords in each frame, as il-
lustrated in Fig. 1. For this tracking, we use the Viterbi algorithm which sequentially
pursues the bast track at any given state, defined by a product of all codewords and
meanshift segments in the visited frame. The codewords carry the information about
their relative time locations in the exemplar videos from which they have been ex-
tracted. This allows the Viterbi algorithm to enforce the activity-characteristic temporal
consistency of the resulting time-series representation. Prior work also seeks to rep-
resent videos as sequences of shape-motion prototypes [12]. However, they detect the
prototypes in each frame, and thus generate long sequences of prototypes spanning all
frames. Also, their prototypes represent the entire human body, giving our part-based
codewords advantage in the presence of partial occlusions.

Recognition: Given a query video, and its time-series representation, it is aligned with
the exemplar sequences by the cyclic dynamic time warping (CDTW) [15]. The ac-
tivity label of the best aligned exemplar is transferred to the query, where their CDTW
alignment also localizes the activity’s occurrence in the space-time volume of the query.
As shown in Sec. 5, we achieve the average recognition rate of 77.8% on challenging
YouTube videos, outperforming the state-of-the-art result of 71.2% from [4].

Our Contributions include: (i) Four alternative, weakly supervised methods for learn-
ing a sparse dictionary of video features, formulated within the large-margin frame-
work, using �1 or �2 regularizations; (ii) Proofs that the four methods converge to
their respective globally optimal solutions, subject to the four distinct objective func-
tions considered; (iii) Accounting for the co-occurrence statistics of objects and human
actions in the scene, and thus extracting discriminative objects, which participate in
the activity, along with discriminative human postures; and (iii) Robust and scalable
exemplar-based approach to activity detection and localization in videos.

In the following, Sec. 2 explains the video features we use, Sec. 3 presents the four
algorithms for dictionary learning and proofs of their convergence, Sec. 4 describes how
to extract and align the time-series representations of videos for activity recognition,
and Sec. 5 presents our experimental evaluation.
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(a) (b)

Fig. 2. (a) The meanshift regions (green) of all frames (orange) in a video (blue) are character-
ized by the 2D+t HOG descriptors, called hybrid features as they combine static appearance and
motion cues. The 2D+t HOG of a meanshift region uses orientations of spatial and temporal
gradients of pixel intensities, extracted from 16 overlapping windows covering the region. (b)
Computing distances between in-class and out-of-class videos. (best viewed in color).

2 Feature Extraction

This section specifies appearance and local motion features that we use in this paper.
Each frame is first partitioned into segments using the standard hierarchical meanshift
algorithm, as in [8]. The segments provide static appearance features, at multiple scales.
Each meanshift region is then described using a 2D+t HOG descriptor, which addition-
ally incorporates local motion cues. The 2D+t HOG extends the standard HOG [9],
which has been shown to exhibit invariance to partial occlusion and object deforma-
tions [10]. We first use the difference operators in time and space to compute the 2D+t
gradient vectors at every pixel of the meanshift region. Then, we project these 3D vec-
tors onto the x-y, x-t, and y-t planes. Next, each projection is covered by 16 overlapping
blocks, as shown Fig. 2a. From each block we extract a 36-dimensional histogram of
oriented gradients (9 bins for 4 cells within one block). By concatenating the three 36D
histograms from x-y, x-t, and y-t planes, we obtain the 2D+t HOG with 108 dimensions.

3 Learning the Dictionary of Activity Codewords

In this section, we specify four alternative algorithms for learning the dictionary of
discriminative activity features, and present their convergence analysis. We begin by
introducing some notation and basic definitions. Suppose that we are given a set of an-
notated exemplar videos D = {xi, yi}, where xi = [xi1, . . . , xik, . . . ]T denotes all
2D+t HOG’s extracted from all frames of video i, and yi is the associated label of ac-
tivity class. Note that different videos may have different total numbers of features.
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Our goal is to identify the most discriminative features in the entire set D, called code-
words. In this paper, we consider learning two types of dictionaries. If the codewords
are learned so a given class is discriminated well against the other classes, we obtain
the dictionary of that class. If the codewords are learned to discriminate well all classes,
they form the all-class dictionary.

We formulate dictionary learning within the large-margin framework. Margins play a
crucial role in the modern machine learning [17]. They measure the confidence of a clas-
sifier when making a decision. There are two types of margins. The more common type,
called sample-margin, used for example in SVMs, measures how far positive and nega-
tive training examples are separated by the decision surface. In this paper, we consider
the other type called hypothesis-margin. It is defined per data instance, and measures a
distance between the hypothesis and the closest hypothesis that assigns alternative label
to that instance. In particular, for each xi, we seek to maximize its distance to all out-
of-class videos, called misses. At the same time, we wish to minimize its distance to all
videos belonging to the same class, called hits. These two objectives can be achieved by
maximizing the hypothesis-margin of the one-nearest-neighbor classifier (1NN). Max-
imizing the sample-margin of the SVM has been used for dictionary learning in [16].
However, this formulation, is not suitable for videos, since it would lead to a large scale
optimization problem of prohibitive complexity.

To specify the hypothesis-margin of 1NN, we define an asymmetric distance between
two videos, dij = d(xi, xj), as a weighted sum of distances between their best match-
ing features, dij = δT

ijwi. The vector δij = [δij1, . . . , δijk, . . . ]T consists of χ2 dis-
tances between the histograms of each 2D+t HOG descriptor, xik , and its best matching
descriptor in xj , δijk = minl χ

2(xik, xjl). The non-negative weights, wi ≥ 0, and dis-
tances δij are associated with features of the first video in the pair, xi, and thus xi, wi,
and δij have the same length. Note that the weights wi serve to indicate the relevance
of the corresponding features in xi for discriminating between activity classes yi and
yj . Our goal is to learn wi for all videos xi, so as to maximize the hypothesis-margin
of 1NN, and then extract video features with the highest weights to the dictionary. We
specify the hypothesis-margin of specific xi as

ρi = dim − dih = (δim − δih)Twi , (1)

where index m denotes that δim is computed with the nearest miss of xi, and index
h denotes that δih is computed with the nearest hit of xi. From (1), it follows that
maximizing the hypothesis-margin of 1NN will amount to maximizing the distances
of all videos from their respective out-of-class videos, and simultaneously minimizing
the distances of all videos to their respective in-class videos. This can be formulated
using the following notation. Let w be a column vector of concatenated weights wi

for all xi ∈ D; zm be a column vector of concatenated feature distances δim for all
xi ∈ D to their respective nearest misses; and zh be a column vector of concate-
nated feature distances δih for all xi ∈ D to their respective nearest hits. Finally, let
z= max(0, zm−zh). Then, dictionary learning can be specified as the following linear
program (LP):

argmax
w

zTw, s. t. w ≥ 0, and ‖w‖ ≤ γ , (2)
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where γ is a positive constant, and ‖·‖ is either �1 or �2 norm. After solving (2), features
with non-zero weights will be selected as codewords in the dictionary.

When w and z represent the concatenation of feature weights and distances across
all videos, the resulting dictionary will be all-class. Similarly, the dictionary of a specific
class can be derived by concatenating into w and z the appropriate values for only those
videos that belong to that class.

Note that (2) represents an extremely large optimization problem. Any naive use of
general LP solvers, such as simplex or interior point methods, would be computationally
too expensive. In the sequel, we propose four alternative algorithms to solve (2), which
are very efficient, with linear complexity in the number of input video features.

3.1 Logistic-Regression Formulation

In this subsection, we employ the logistic regression formulation to solve our large
LP problem, given by (2). Specifically, to eliminate the constraint ‖w‖ ≤ γ from (2),
we add a penalty term, λ ‖w‖, directly to the objective function, where λ is a non-
negative input parameter. Note, however, that the objective function of (2) represents
maximization, whereas the constraint ‖w‖ ≤ γ requires minimization. This can be
resolved by reformulating (2) as

argmin
w

log[1 + exp(−zTw)] + λ ‖w‖ , s. t. w ≥ 0 . (3)

Note that λ controls the sparseness of the solution, and thus the number of selected
codewords in the dictionary.

Eq. (3) is a constrained convex optimization problem. Due to the non-negative con-
straint on w, it cannot be solved directly by gradient descent. To overcome this diffi-
culty, we use the following substitution w = [v2

1 , . . . , v2
k, . . . ]T, where vk are auxiliary

variables, and k is the index over all 2D+t HOG’s. This gives

argmin
w

log[1 + exp(−
∑

k zkv2
k] + λR(v), (4)

where R(v) = ‖v‖2
2 for �1 regularization, or R(v) =

√∑
k v4

k for �2 regularization.
Consequently, we obtain an unconstrained optimization problem. It is straightforward
to derive the following gradient-descent solution of (4):

LR-�1 : vk ← vk − η

(
λ − exp(−

∑
k zkv2

k)
1 + exp(−

∑
k zkv2

k)

)
· vk, for �1, (5)

LR-�2 : vk ← vk − η

(
λ

v2
k√∑
k v4

k

− exp(−
∑

k zkv2
k)

1 + exp(−
∑

k zkv2
k)

)
· vk, for �2, (6)

where η is the learning rate determined by the standard line search. Once vk are esti-
mated, we then compute the feature relevances as wk = v2

k, k = 1, 2, . . . . The conver-
gence of this logistic-regression based algorithm is explained at the end of this section,
after we specify the other two alternative algorithms.
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3.2 Alternative LP Formulation

In practice, the update rules given by (5) and (6) have a serious limitation. In particular,
if the term

∑
k zkv2

k is large, then exp(−
∑

k zkv2
k) drops exponentially to zero, and the

update depends only on the penalty term. To overcome this problem, we modify the LP
given by (2), as follows.

Without a loss of generality, we replace the constraint ‖w‖ ≤ γ by ‖w‖ = γ, leading
to the following new LP formulation

argmax
w

zT w

‖w‖ , s. t. w ≥ 0. (7)

As in Sec. 3.1, the non-negative constraint in (7) can be reformulated by using the
following substitution w = [v2

1 , . . . , v
2
k, . . . ]T, where vk are auxiliary variables, and k

is the index over all video features. This gives

argmax
w

1
R(v)

∑
k

zkv2
k, w = [v2

1 , . . . , v2
k, . . . ]T, (8)

where, as in (4), R(v)= ‖v‖2
2 for �1, or R(v)=

√∑
k v4

k for �2 regularization. It is
straightforward to derive the following gradient-ascent solution of (8):

LP -�1 : vk ← vk + η

(
zk

√
R(v) −

∑
k zkv2

k

)
R(v)

· vk, for �1, (9)

LP -�2 : vk ← vk + η

(
zk

√
R(v) − v2

k

R(v)

∑
k zkv2

k

)
R(v)

· vk, for �2, (10)

where η is the learning rate determined by the standard line search. Once vk are esti-
mated, we then compute the feature relevances as wk = v2

k, k = 1, 2, . . . .

Convergence: In both LP formulations, presented in Sec. 3.1 and 3.2, we reformulate
the non-negative constraints in (3) and (7). The resulting objective functions, given by
(4) and (8), are convex and concave, respectively. Consequently, the gradient descent in
(5)–(6), and the gradient ascent in (9)–(10) converge to their respective globally optimal
solutions. The full proof that (4) is convex, and (8) is concave is given in the supple-
mental material. The proof first shows that the substitution wk = v2

k, k = 1, 2, . . . , does
not change the concavity of the original LP formulation, given by (2). Then, we use the
classical theoretical results in convex optimization about the convexity and concavity of
a composition of two functions (f ◦ g) to prove that the logistic regression formulation
is convex, and the alternative normed objective is concave.

Complexity of both formulations presented in Sec. 3.1 and 3.2 is linear in the num-
ber of input video features. Since our features are descriptors of meanshift segments,
the total number of our features is significantly smaller than interest-point features, typ-
ically used in existing approaches to activity recognition.

After convergence, all 2D+t HOG’s from all videos in D whose weights are nonzero
are declared as codewords. Finally, the 2D+t HOG descriptor of each codeword is aug-
mented with the time stamp of a frame from which the codeword has been extracted,
normalized relative to the length of the originating video. This is used to enforce the
temporal consistency of codewords along time series representing videos.
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4 Representing Videos as Time Series of Activity Codewords

This section describes how to compute the time-series representation of a video. We
first extract multiscale meanshift regions in each video frame, and then match their
2D+t HOGs with the codewords. The standard Viterbi algorithm is applied to track the
best matches (Fig. 1), where for each frame only one best matching codeword-region
pair is selected. Tracking seeks to maximize the joint likelihood of all matches along the
Viterbi path, under the constraint that the tracked codewords along the path are locally
smooth in the 2D space, and temporally consistent. In the following, we specify the
Viterbi algorithm.

Let Ω = {ωl}l=1,2,... denote the dictionary of activity codewords, and let x(t) =
{x(t)

k }k=1,2,... denote 2D+t HOG’s extracted from frame t of video x. In each frame

t, the goal of the Viterbi algorithm is to select a single, best matching pair (x(t)
k , ωl)

out of the entire product space x(t) × Ω. The selected, unique pair (x(t)
k , ωl) is re-

ferred to as instantiation of codeword ωl in frame t, and denoted as ω̂
(t)
l = (x(t)

k , ωl).
Across all frames, the goal of the Viterbi algorithm is to satisfy the temporal constraints
between the instantiated codewords {ω̂(t)

l }t=1,2,..., and produce a locally smooth tra-
jectory in the 2D space. Temporal consistency is enforced via a Markov chain which
is informed by the time stamps associated with codewords, as mentioned in the previ-
ous section. To formalize the above two goals of the Viterbi algorithm, we below first
specify the likelihood that measures the quality of matches between video features and
codewords, and then define the transition probability of the Markov chain which favors
spatially smooth and temporally consistent codeword instantiations from one frame to
another.

Video feature x
(t)
k matches codeword ωl with likelihood P (x(t)

k |ωl)∝e−αχ2(x(t)
k ,ωl),

where α = 0.01 (empirically found at equal error rate) weights the χ2 histogram dis-
tance (for equal error rate, we get ). The Markov-chain transition probability is de-

fined as P (ω̂(t)
l |ω̂(t−1)

j )∝e−βT|ω̂(t)
l −ω̂

(t−1)
j |, where β = [0.1, 0.1]T (empirically found

at equal error rate), and |·| denotes the absolute difference of the corresponding spatial

and time coordinates of the instantiated codewords ω̂
(t)
l and ω̂

(t−1)
j . Specifically, for

their spatial coordinates, we take the centroids of meanshift regions that got matched to
ωl and ωj in frames t and (t−1). For their time coordinates, we take the time stamps
that ωl and ωj carry from their source exemplar videos. With these definitions, we spec-
ify the Viterbi algorithm as finding the optimal sequence of codewords so the following
Markov chain is maximized:

P (ω̂(t)
l ) = max

ω̂
(t−1)
j , x

(t)
k

P (ω̂(t−1)
j )P (ω̂(t)

l |ω̂(t−1)
j )P (x(t)

k |ω̂(t)
l ), (11)

where P (ω̂(t−1)
j ) is recursively defined. The Viterbi algorithm retrieves the best path

across the frames (Fig. 1) with linear complexity in the number of video features.

Extracting the Compact Representation: The obtained Viterbi path is characterized
by a sequence of likelihoods P (x(t)

k |ω̂(t)
l ), t = 1, 2, . . . . This sequence has modes and

valleys, as illustrated in Fig. 1. The valleys indicate low confidence in the correspond-
ing codeword instantiations. We identify and eliminate the valleys in this likelihood
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sequence by the popular quick-shift mode-seeking algorithm [18]. As a result, we ob-
tain the compact time-series representation.

Exemplar-based Recognition: Given a query video, we use the same algorithm to
extract its time series of codewords. For recognition, we align the time series of the
query and exemplar videos. Note that the sought activity may not start at the beginning,
or finish at the end of the query video. Therefore, the query-exemplar alignment is not
only aimed at finding the best matching exemplar, but also to localize a subsequence
of codewords, in the query time series, that represents the activity. The label of the
best aligned exemplar is taken as the activity class of the query. Also, the codewords
identified to represent the activity in the time series are back-tracked to the space-time
locations of the corresponding meanshift regions in the query video. All this results in
the simultaneous detection and localization of the activity in the query video. In this
paper, two temporal sequences of codewords are aligned by the cyclic dynamic time
warping (CDTW), presented in [15]. CDTW finds correspondences between codewords
of the two sequences by identifying the optimal path in a cost matrix of all pairwise
codeword matches. This is done by respecting the ordering of each input sequence.
The costs are χ2 distance between the 2D+t HOG histograms of each codeword. We
use the cyclic variant of DTW, because it efficiently identifies the optimal start and
end of the alignment path in the cost matrix, regardless of the lengths of the input
sequences. Complexity of CDTW is linear in the total number of elements in the two
sequences.

5 Results

Experiments are conducted on five benchmark datasets: Weizmann activities [14], KTH
[19], UM “Gestures” [12], CMU “Crowded” videos [8], and UCF “YouTube” [4]. KTH
contains a varied set of challenges, including scale changes, variation in the speed of
activity execution, and indoor and outdoor illumination variations. In UM “Gestures”,
training videos are captured by a static, high-resolution camera, with the person stand-
ing in front of a uniform background; whereas test videos are captured by a moving
camera, in the presence of a background clutter, and other moving objects. The CMU
“Crowded” videos are acquired by a hand-held camera, in unconstrained environments,
with moving people or cars in the background. Each CMU video may contain several
target actions, where we identify only one. This dataset is challenging due to signifi-
cant spatial- and temporal-scale differences in how the subjects perform the actions. In
the UCF “YouTube” videos the actors interact with objects, such as a horse, bicycle,
or dog, which define the corresponding activities. This dataset is challenging due to: a
mix of steady and shaky cameras, cluttered background, low resolution, and variations
in scale, viewpoint, and illumination.

For activity recognition, we use 5 exemplars per each class from the considered
dataset. The activity class of a given query is defined by a majority voting of M, best-
aligned exemplars, where M is estimated by the leave-one-out (LOO) strategy. We re-
port the average classification accuracy at equal error rate (EER), where the accuracy is
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(a) (b) (c)

Fig. 3. (a) Average dictionary size per activity class in the UCF “YouTube” dataset as a function
of the regularization parameter λ in LR-	1 and LR-	2. (b) Classification accuracy at EER aver-
aged over the UCF “YouTube” classes vs. the average size of the dictionary generated by LR-	1,
LR-	2, LP -	1, LP -	2, and unsupervised K-means clustering of 2D+t HOGs. (c) Average classi-
fication accuracy on all datasets vs. the number of available exemplar videos, when the dictionary
is learned by LP -	1. (best viewed in color).

averaged over all classes in the dataset. On all datasets, we achieve EER for input pa-
rameters λ = 10−3, α = 0.01, and β = [0.1, 0.1]. In the following, we present evalua-
tion of the individual steps of our approach.

Dictionary Learning: In the following two experiments, we use the UCF “YouTube”
dataset to extract distinct dictionaries for each class (not the all-class dictionary). First,
we evaluate our sensitivity to the specific choice of λ in LR-�1 and LR-�2. Fig. 3a
shows the average dictionary size as a function of input λ values, where each dictionary
is learned on five exemplar videos per class, and the dictionary size is averaged over
all “YouTube” classes. As can be seen, for a wide range of λ values, when λ < 10−2,
both LR-�1 and LR-�2 produce a “stable” number of codewords. Second, we evaluate
our classification accuracy at equal error rate (EER) versus the average size of different
dictionary types produced by LR-�1, LR-�2, LP -�1, LP -�2, as well as by unsuper-
vised K-means clustering. Fig. 3b shows that all our learning methods outperform the
unsupervised clustering of video features by K-means. As can be seen in Fig. 3b, when
using all four learning methods we achieve similar classification accuracy.

Depending on a particular application, one may prefer to work with the dictionary
generated by LP -�1, because LP -�1 yields the sparsest solution with the fewest code-
words, and it does not require any input parameter (unlike LR-�1 and LR-�2). There-
fore, in the following, we continue with evaluation of our approach when using only
LP -�1 for dictionary learning.

Accuracy vs. Number of Exemplars: We test our performance on each dataset versus
the number of randomly selected exemplar videos per class. Classification accuracy
is averaged over all classes within the specific dataset. Fig. 3c shows that only few
exemplars are needed to achieve high accuracy for the challenging datasets.

HOG vs. 2-D+t HOG: We test whether adding motion cues to the standard HOG in-
creases performance. Fig. 4 shows that our performance on the UCF “YouTube” videos
is better with 2D+t HOG’s than that with HOG’s, since the additional motion features
help disambiguate similar static appearance features.
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Fig. 4. Classification accuracy at EER when using HOG’s
and 2D+t HOG’s on the UCF “YouTube” dataset, for LP -	1

Table 1. Recall of detecting rel-
evant video parts for activity
recognition by our Viterbi algo-
rithm, evaluated with respect to
the manually annotated bounding
boxes around actors, and aver-
aged over all videos and classes

Recall
Weizmann 0.95

KTH 0.94
UM “Gestures” 0.95

Viterbi-based Codeword Tracking: We evaluate recall of our Viterbi-based detection
of relevant video parts for activity recognition. To this end, we use the ground-truth
bounding boxes around actors, provided in the Weizmann, KTH and UM “Gestures”
datasets. Ideally, the Viterbi algorithm would associate codewords with those meanshift
regions that fall within the bounding boxes in every video frame. We estimate recall as a
ratio between the number of true positives and the total number of frames, where a true
positive is a detected meanshift region with more than 50% of its area falling within the
bounding box. Our recall averaged over all videos and classes is shown in Table 1.

Viterbi vs. Bag-of-Words: Tracking codewords by the Viterbi algorithm increases
complexity vs. a simpler Bag of Words (BoW) approach, which scans all meanshift
regions, and finds the best matching region-codeword pair, in each frame, irrespective
of the results in other frames. The increased complexity is justified by significant in-
crease in our classification accuracy vs. BoW, as shown in Fig. 5a.

(a) (b)

Fig. 5. Classification accuracy at EER of Bag-of-words, and our approach with LP -	1, on the
UCF “YouTube” dataset: (a) Our approach uses short time series, and long sequence of code-
words as the video representation. The short time series enables faster and more accurate activity
recognition. (b) Our approach uses the all-class dictionary and a set of dictionaries learned per
class. The class-based dictionary learning gives better performance.
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Table 2. AUC for CMU “Crowded”
videos

[3] [8] Ours (LP -�1)
pick-up 0.58 0.47 0.60

one-hand wave 0.59 0.38 0.64
jumping jack 0.43 0.22 0.45

two-hands wave 0.43 0.64 0.65

Table 3. Average classification accuracy at EER

[14] [12] [4] [3] Ours (LP -�1)
Weizmann 97.5 X X X 99.7

KTH X 95.7 91.8 87.8 94.2
UM “Gestures” X 95.2 X X 96.3
UCF “YouTube” X X 71.2 X 77.8

Long vs. Short Time Series: After the Viterbi algorithm has identified the optimal
path of codewords in a video, we eliminate a number of codeword detections with low
confidence, and thus extract the short time series representation. Fig. 5a shows sig-
nificant performance gains, on the the ”YouTube” dataset, when using the short time
series vs. the long sequence of codewords instantiated in every video frame, as the
video representation. In addition, the short time series enable nearly two-orders-of-
magnitude speed ups of recognition. On the ”YouTube” videos, recognition by aligning
long sequences (whose size is the same as the number of video frames) takes on average
302.2ms, whereas short time series are aligned in only 4.6ms. Our implementation is in
C on 2.8GHz 8GB RAM PC.

All-class dictionary vs. class-based dictionaries: Fig. 5b compares our performance,
when using a set of dictionaries learned per class vs. the all-class dictionary. As can be
seen, the all-class dictionary yields inferior performance. This is because the all-class
dictionary is typically very sparse, so that an activity class may not be even represented
by any codeword (see ‘b shooting’, ‘s juggling’ and ‘swinging’). Interestingly, for a
few classes, BoW with the all-class dictionary outperforms our approach with the all-
class dictionary.

Training Transfer: We evaluate whether our approach can be trained on a simple, san-
itized setting of the Weizmann videos, and then used for activity recognition on the
challenging CMU “Crowded” videos. Specifically, we use 5 exemplar videos per class

Fig. 6. Our confusion matrix for KTH Fig. 7. Our confusion matrix for UCF videos
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Fig. 8. Examples of the learned codewords from the UCF “YouTube” dataset. The codewords are
highlighted in the frames of exemplar videos from which the codewords have been extracted.

from the Weizmann dataset, and take queries from the CMU “Crowded” videos. Table 2
shows the area under the ROC curve (AUC) that we have obtained for LP -�1 by varying
the values of input parameters α and β. As can be seen, even when our training occurs
on the sanitized dataset, our AUC values, for four different activity classes, are better
than that of the competing approaches [3, 8].

Other Evaluation: Table 5 shows that we compare favorably with the state-of-the-art.
We also provide confusion matrices for KTH and UCF “YouTube” datasets in Fig. 5
and Fig. 5. Fig. 8 shows two examples of the learned codewords for each class of the
“YouTube” dataset. As can be seen, the codewords may represent only a body part, or
objects defining the activity (the trampoline for ‘t jumping’ or the swinging gear for
‘swinging’).

6 Conclusion

We have shown that certain human actions can be efficiently represented by short time
series of activity codewords. The codewords represent still snapshots of human body
parts in their discriminative postures, relative to other activity classes. In addition, the
codewords may represent discriminative objects that people interact with while per-
forming the activity. Typically, our time series representation compresses the original
hundreds of video frames to only about 10 key human postures. This carries many ad-
vantages for developing a robust, efficient, and scalable activity recognition system. Our
main focus has been on specifying four alternative methods for learning the dictionary
of codewords from a large set of static and local-motion video features, under only weak
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supervision. We have formulated this learning as maximization of the hypothesis mar-
gin of the 1-NN classifier with �1 and �2 regularization. For the four learning methods,
we have presented strong theoretical guarantees of their convergence to the globally op-
timum solution. The methods have linear complexity in the number of video features,
and small generalization error. We have evaluated the proposed time-series representa-
tion on the challenging problem of activity detection and localization in realistic videos
(YouTube) with dynamic, cluttered backgrounds. Our activity recognition yields better
performance when using a set of dictionaries learned per each activity class than the
all-class dictionary. Interestingly, significant classification-accuracy gains are achieved
when using the short time series of codewords vs. a long sequence of codewords (one
per each video frame) as the video representation. Our results show that, with small
computation times, we outperform the state of the art on the benchmark datasets.
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Abstract. Approximate Nearest Neighbor (ANN) methods such as Lo-

cality Sensitive Hashing, Semantic Hashing, and Spectral Hashing, pro-

vide computationally efficient procedures for finding objects similar to

a query object in large datasets. These methods have been successfully

applied to search web-scale datasets that can contain millions of images.

Unfortunately, the key assumption in these procedures is that objects

in the dataset lie in a Euclidean space. This assumption is not always

valid and poses a challenge for several computer vision applications where

data commonly lies in complex non-Euclidean manifolds. In particular,

dynamic data such as human activities are commonly represented as

distributions over bags of video words or as dynamical systems. In this

paper, we propose two new algorithms that extend Spectral Hashing to

non-Euclidean spaces. The first method considers the Riemannian ge-

ometry of the manifold and performs Spectral Hashing in the tangent

space of the manifold at several points. The second method divides the

data into subsets and takes advantage of the kernel trick to perform non-

Euclidean Spectral Hashing. For a data set of N samples the proposed

methods are able to retrieve similar objects in as low as O(K) time com-

plexity, where K is the number of clusters in the data. Since K � N , our

methods are extremely efficient. We test and evaluate our methods on

synthetic data generated from the Unit Hypersphere and the Grassmann

manifold. Finally, we show promising results on a human action database.

Keywords: Approximate Nearest Neighbors, Hashing, Non-Euclidean

Manifolds, Activity Analysis in Videos.

1 Introduction

Human action analysis is considered one of the most important problems in com-
puter vision. It enables such applications as automatic surveillance, behavior
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analysis, elderly care, etc. There has been a tremendous amount of work towards
automatic analysis of human motion in videos. However, due to extensive amount
of computation required for video analysis, this work by necessity is often restricted
to smaller models and datasets. In a real-life surveillance scenario video data is con-
tinuously recorded for a long period of time and saved for later analysis. Search
in such extensive volumes of data remains a difficult task. Toward this goal, this
paper proposes a major step in developing hashing techniques upon which sophis-
ticated and efficient searches for a nearest neighbor in large corpora of video data
can be built. It is often the case when classifying complex data, that using sophis-
ticated features makes even a simple NN technique perform very well. Sampling
from a neighborhood, commonly used in tracking applications, can also benefit
from efficiency of hashing-based NN search. In this work we present two methods
that have a goal of replicating the Nearest Neighbor search to make it applicable
to very large datasets of complex features.

Prior work. Recently, there has been a surge in interest in fast content-based
image retrieval from web-scale databases of tens of millions of images. However
there has been little work in the same direction for videos. In this section we give
a summary of notable work dominant in the field. Karpenko et. al. in [1] intro-
duced a method where all the videos in a dataset were compressed to very small
frame sizes and only a few key-frames. Using intensity statistics in the frames,
the comparison of the new query is performed with the entire dataset. This tech-
nique leads to faster video comparison, but doesn’t use semantically meaningful
features and cannot be performed faster than O(N). Biswas et. al. [2] provided a
method that used two-level hash tables based on the invariant geometric proper-
ties of object shapes for efficient search and retrieval. Turaga et. al. [3] proposed
a dynamical-systems based model for human activities that can be used for clus-
tering different types of activities in a continuous video. Sidenbladh et. al. [4]
used an approximate probabilistic tree search to find the closest match in the
database for a query motion. Ben-Arie et. al. in [5] used a sparsely sampled
sequence of body poses and velocity vectors of body parts as they move in a
scene to construct multi-dimensional hash tables. For a test video, these fea-
tures were extracted and the key was used to find the match in the hash-tables.
Several other methods proposed in [6,7,8] cluster features derived from motion
and appearance information for semantic retrieval.

All of these methods either use exact-match hashing, which generally has
difficulties in performing a neighborhood search, or tree-based approaches, which
often help increase performance, but are not as fast as hashing techniques.

Recently, new hashing algorithms that preserve neighborhood relationship be-
tween derived codes have been developed. Approximate Nearest-Neighbor meth-
ods such as the variants of Locality Sensitive Hashing (LSH), [9], Semantic Hash-
ing, [10], and Spectral Hashing, [11], provide efficient algorithms for constructing
binary codes for points in a high dimensional space. These methods have the
property that codes for points that are nearby in the high-dimensional space are
also close to each other in the binary code space under the Hamming distance.
This provides an excellent method for creating hash tables because even if the
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key for a query object is not in the table, the keys for neighbors in the Hamming
space can then be checked by simply flipping a bit of the binary code.

One important limitation of all the above methods is that they are only ap-
plicable to data that resides in a Euclidean space. However, features frequently
used for activity analysis in dynamic data have strong non-Euclidean character.
For instance, histograms created as part of a bags of video words classification
procedure on local features proposed by Laptev, [12] and Dollar et al. [13], or
dynamical systems proposed in [14,15,16,17], naturally lie on a non-trivial man-
ifold that has strong non-Euclidean properties. Hence the above methods are
not directly applicable. The authors in [11] mentioned this limitation of Spectral
Hashing and assumed that a suitable Euclidean embedding can be used. How-
ever, finding such an embedding is not always possible. A workaround for LSH
that uses the kernel trick to implicitly embed the data in a high-dimensional Eu-
clidean space is proposed by Kulis and Grauman [18]. Further, Kulis and Darrell
in [19] use a similar kernel trick for Spectral Hashing. However as we will explain
later, this method is no faster than performing exact nearest neighbor search.

As shown in [11], LSH usually gives very large codewords, whereas Semantic
Hashing and Spectral Hashing give compact binary codewords and therefore are
more useful for mapping objects directly to memory addresses in a computer. In
this paper, we turn our attention to Spectral Hashing and propose two new fast
approximate methods for performing Spectral Hashing on non-Euclidean data.
In section 2 we summarize standard Euclidean spectral hashing and formulate
the exact problem for non-Euclidean data. In section 3, we explain our proposed
methods and their complexity. In section 4 we test our algorithm on both syn-
thetic and real data sets; and give future directions of research in section 5.

2 Spectral Hashing

As presented by Weiss et al. in [11], given data points, {xi}N
i=1 ∈ Rd, the goal is

to find k-bit binary vectors, {yi}N
i=1 ∈ {−1, 1}k such that similar points in RN ,

under the similarity measure, Wij = exp(− ‖xi−xj‖2

ε2 ) map to binary vectors that
are close to each other under the Hamming distance weighted by W .

If we assume that the data, xi ∈ Rd, is sampled from a probability distribution
p(x), Spectral Hashing (SH) solves the following optimization problem:

minimize
∫

‖y(x1) − y(x2)‖2W (x1,x2)p(x1)p(x2)dx1dx2 (1)

s.t. y(x) ∈ {−1, 1}k,

∫
y(x)p(x)dx = 0, and

∫
y(x)y(x)�p(x)dx = I

Relaxing the first constraint gives the solution of the problem, y as the first k
eigenfunctions of the weighted Laplace-Beltrami operator on the manifold. If p is
the multi-dimensional uniform distribution on a subset of Rd and the weighting
function, W , is defined as above, there exists a one-shot closed form solution
for these eigenfunctions. However, in the case of a Gaussian distribution on Rd,
there exists an iterative solution.
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Spectral hashing has a very appealing mathematical formulation. Ideally, one
could take any probability distribution on a general manifold and a weight-
ing function and analytically compute the eigenfunctions of the corresponding
Laplace-Beltrami operator. However, even in the simpler case of Euclidean data,
a closed form solution might not exist. Thus, analysis of non-Euclidean data
may require solving this problem numerically. Furthermore, the weighting func-
tion, W , is computed from geodesic distances and thus, is no longer a simple
exponential similarity. This makes the exact computation of the solution of the
minimization problem in Eq. (1) computationally intractable.

As part of computing the eigenfunctions, the method in [11] employs PCA to
compute a basis for the dataset, and then computes closed-form one-dimensional
eigenfunctions of the weighted Laplace-Beltrami operator in each principal com-
ponent direction using a rectangular approximation to the spread of the data.
The method then combines these 1-D eigenfunctions to compute the eigenfunc-
tions of the original dataset in Rd. To deal with non-Euclidean data, Kulis et.
al. [19] proposed using Kernel PCA instead of PCA in this step. We will refer to
this method as Kernel Spectral Hashing (KSH). Even though their method is the-
oretically correct, as the kernels would embed the points in a high-dimensional
Euclidean space, finding the value of the eigenfunction at each new test data-
point would involve computing the kernel of the test point with all the points
in the training set used to compute the kernel PCA components. Because of
this, even though a well-chosen kernel might give fine retrieval accuracy, the
computational complexity of this method is at least O(N).

3 Non-Euclidean Spectral Hashing

Noting the difficulty with applying Spectral Hashing techniques to non-Euclidean
manifolds, we propose two new methods for finding compact binary codes for
data lying on such manifolds with which this difficulty can be circumvented.

3.1 Riemannian Spectral Hashing

Since it is hard to compute closed form eigenfunctions in the SH algorithm for
non-Euclidean data, we can embed the data in a Euclidean space. Then, un-
der the assumption that it is drawn from a uniform distribution in that space,
spectral hashing can be applied in this embedding space. Our first method, Rie-
mannian Spectral Hashing (RSH), follows this strategy.

The tangent space, TyM, to a manifold, M at a point y is a Euclidean
space. Therefore, assuming that the manifold is geodesically complete, the data,
{xi}N

i=1, can be projected onto the tangent space at y by using the logarithm
map, Δi = −→yxi = logy(xi). This makes it possible to perform Spectral Hashing
on the tangent space projections, {Δi}N

i=1 locally, around y without introducing
significant projection error. In order to minimize projection errors, the RSH
algrorithm approximates a manifold with a set of tangent hyperplanes, positioned
on a set of representative points (poles) which follow the distribution of the data
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on the manifold. The poles are found by clustering, for which we can use any
extrinsic manifold clustering algorithm such as [20], [21] to cluster the data on
the manifold into K clusters. We use the Riemannian k-means procedure:

1. Initialize cluster centers, {cj}K
j=1 by randomly choosing K points from the

training data.
2. For each point xi in the data set, compute the geodesic distance to each clus-

ter center, d(cj ,xi) = ‖ logcj
(xi)‖. Assign the cluster center that is the clos-

est to the data point as the cluster membership, wi = argminj‖ logcj
(xi)‖.

3. Recompute each cluster center as the Karcher mean of the points in each
cluster, cj = mean{xl|wl = j}. This requires repeated uses of the exponential
map and the logarithm map on the manifold until convergence to a mean.

4. Repeat until convergence.

This clustering algorithm is a simple extension of the k-means algorithm to a
single geodesically complete manifold under the assumption that no two points
in the same cluster are antipodes. This method inherits the convergence proper-
ties of regular Euclidean k-means. Once the clusters, {cj}K

j=1, and memberships,
{wi}N

i=1, have been assigned, all the points in the same cluster are projected
to the tangent space around the cluster center using the corresponding log-
arithm maps. A separate spectral hashing algorithm is then trained on each
tangent space.

For computing the binary code of a new test point, z, we first compute the
geodesic distance of z with all the cluster centers and project it to the tan-
gent space of the closest cluster center, ck, where k = argminj ‖−→cjz‖ to get
Δz = logck

(z) . We then use spectral hashing to find the binary code of Δz.
Since finding the right cluster center, only requires K geodesic distance evalua-
tions, this results in a computational cost of O(K). Even though this is greater
than O(1) as in Spectral Hashing, it is much less than O(N) as in Kernel Spectral
Hashing, where K � N . Moreover, by clustering all the data, we better approx-
imate the uniform distribution assumption in each cluster. We summarize RSH
in Algorithm 1. Figure 1(b) provides an illustration of the method.

Algorithm 1: Riemannian Spectral Hashing
Training

1. Cluster training data using a manifold clustering algorithm, [20], [21].

2. Compute log-maps and project each cluster to the tangent space around center.

3. Train spectral hashing on points in each tangent space separately.

Testing

1. Find closest cluster center using geodesic distances on the manifold.

2. Project onto tangent space around closest cluster center.

3. Compute binary code of the projected point using Spectral Hashing.

4. Retrieve the nearest neighbor.
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(a) Spectral Hashing

(SH)[11]

(b) Riemannian Spectral

Hashing (RSH)

(c) Distributed Kernel Spec-

tral Hashing (DKSH)

Fig. 1. Schematic diagram of state-of-the-art and proposed hashing methods

3.2 Distributed Kernel Spectral Hashing (DKSH)

In certain cases, closed form experssions for the logarithm and exponential maps
for manifolds are not available. This limits the applicability of extrinsic manifold
clustering algorithms as required in Alg. 1. If however, a kernel or other affinity
measure, W (., .) is defined on the manifold, a non-linear dimensionality reduction
method such as Multidimensional Scaling (MDS) [22] can be employed to project
the data into a low-dimensional Euclidean space before performing k-means on
this low-dimensional space. Alternatively, a non-linear clustering algorithm such
as kernel k-means [23] or Spectral Clustering [24] can be used to compute cluster
associations of the data. As a result, we would not have cluster centers but
only cluster associations for the training data. After the clustering stage, one
representative point is chosen in each cluster to represent all data within it. One
method to choose this point is as follows [25]:

1. Compute the N × N affinitiy matrix, W , of the training data based on a
kernel or affinity defined on the manifold.

2. Perform MDS using W to get a low-dimensional Euclidean representation
{ui}N

i=1 and perform k-means on these points to get K cluster centers {vj}K
j=1

in the low-dimensional space.
3. Within each cluster center, choose the point u in the projected data that is

closest to each cluster center vj .
4. Find the original points {xp;j}K

j=1 on the manifold that mapped to the points
{vj}K

j=1 after MDS and use these points as cluster representatives (pivots).

Once a representative, or pivot, for each cluster has been computed, we train
Kernel Spectral Hashing (KSH) separately for each cluster.

As in RSH, to find the binary code for a test point, z, we first compute its
affinity, W (xp;j , z) with each pivot point and assign z to the j-th cluster if xp;j
has the highest affinity with z. We then use Kernel Spectral Hashing trained for
that specific cluster and compute the binary code for z to retrieve the nearest
neighbors. Assuming that in the best case, all the points are equally divided
between K clusters, the query time complexity of this method is O(K + N/K)
on average, which is more computationally expensive that RSH. However, it is
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still significantly better than the complexity of KSH. In the worst case when only
1 cluster is chosen, the complexity is O(N), the same as KSH. We summarize
DKSH in Algorithm 2. Figure 1(c) provides an illustration of the method.

Algorithm 2: Distributed Kernel Spectral Hashing
Training

1. Cluster training data using Non-Linear clustering (MDS, Spectral clustering etc.)

using kernel similarity

2. Pick a pivot point, representing each cluster.

3. Train Kernel Spectral Hashing on points in each cluster separately.

Testing

1. Use kernel similarity to compute pivot with the highest affinity to test point.

2. Compute binary code with kernel spectral hashing for that pivot.

3. Retrieve the nearest neighbor.

4 Experiments

In this section we compare the proposed methods, Riemannian Spectral Hashing
(RSH) and Distributed Kernel Spectral Hashing (DKSH), against exact Nearest
Neihbors (NN), and state-of-the-art Hashing methods: Kernel Locality Sensitive
Hashing (KLSH) [18], Euclidean Spectral Hashing [11] (SH), and Kernel Spectral
Hashing [19] (KSH).

4.1 Synthetic Data

We first test the proposed methods on synthetic datasets of points lying on
two non-Euclidean manifolds: the 100 dimensional unit hypersphere, S99, and
the manifold of all 3-dimensional subspaces of R10, i.e., the Grassmann mani-
fold, G10,3 or G3,10−3. The evaluation is performed on an 8-core Intel Xeon 3.4
GHz machine with 32 GB of RAM. In each experiment, we restrict the number
of processing cores to exactly one so that the run-times of various algorithms
are comparable. When comparing our methods with Spectral Hashing, we treat
the points on both the above mentioned manifolds as points in R100 and R30

respectively.
As a technical detail, it is noted that when the data size grows larger than

104 samples, the memory requirements of the PCA computation in SH and the
kernel PCA in KSH become extremely large and can not be handled by our
computational resources. As an example, consider computing the all pair kernel
matrix for 105 points. Storing the result as a double precision matrix in memory
requires a minimum of (105)2 × 8 = 72 GB of memory, which is not available in
our system. Therefore for datasets larger than 104 points, we randomly sample
1000 points, equally sampling from each class, and pre-train all the hashing
algorithms on this smaller set. We then compute the binary hash codes for all
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the training points and store them for comparison against the test sets. Since
the number of exponential and logarithm map evaluations as well as kernel
evaluations will decrease, we will distinguish the training and testing times for
the hashing methods where all the data was used for training ( 10−104 samples),
and for methods where a pre-training approach was used, (105, 106 samples).

Unit hypersphere - S99. The unit hypersphere, S99, is the set of all points,
x ∈ R100 that satisfy the constraint,

∑100
i=1 x2

i = 1. The geodesic distance between
two points, x and y, on a hypersphere is defined as dG(x,y) = cos−1(x�y).
Moreover, the logarithm and exponential maps on the sphere are defined as,

logx(y) =
y − (x�y)x
‖y − (x�y)x‖ cos−1(x�y),

expx(Δ) = cos(‖Δ‖)x + sin(‖Δ‖) Δ

‖Δ‖ ,

where Δ is a tangent vector at the pole x. Finally, the standard inner product
also defines a kernel on the sphere, i.e. k(x,y) = x�y.

We generate 5 sets of 5-class each training datasets containing 100, 1000, 104,
105 and 106 points on S99. For testing, we generate 100 more points in each case.
Figure 2 displays the difference between the recognition percentages of exact
1-NN and the state-of-the-art methods (Kernel LSH (KLSH), SH and KSH) and
the proposed hashing algorithms (RSH and DKSH). We use 8 bits for all hashing
algorithms and 5 clusters for the proposed methods. Both RSH and DKSH have
the lowest percentage difference compared to the state-of-the-art methods for
all training sizes. Moreover, the error percentages remain within 10-15% of the
exact 1-NN method. This can clearly be attributed to the fact that the proposed
methods specifically take into account the manifold structure of the space and
thus result in better recognition performance.

Table 1 shows the training times required for each algorithm against the num-
ber of training samples. 1-NN does not require any training, whereas SH and

100 1000 1x10^4 1x10^5 1x10^6
0

10

20

30

40

50

60

Number of training samples

P
er

ce
nt

ag
e 

er
ro

r

Recognition difference of ANN methods and 1−NN on Hypersphere data

1−NN
KLSH (8 bit)
SH (8 bit)
KSH (8 bit)
RSH (8 bit, 5 clusters)
DKSH (8 bit, 5 pivots)

Fig. 2. S99 - Comparison of NN and ANN

methods

100 1000 1x10^4 1x10^5 1x10^6
0

5

10

15

20

25

30

35

40

45

50

Number of training samples

P
er

ce
nt

ag
e 

er
ro

r

Recognition difference of ANN methods and 1−NN on Grassmann data

1−NN
KLSH (8 bit)
SH (8 bit)
KSH (8 bit)
RSH (8 bit, 5 clusters)
DKSH (8 bit, 5 pivots)

Fig. 3. G10,3 - Comparison of NN and

ANN methods



Fast ANN Methods for Non-Euclidean Manifolds 743

Table 1. S99 - Training times

Method Training time (sec)

# Training 100 1000 104 105 106

NN 0 0 0 0 0

KLSH 0.01 3.44 1.5h 85.0 11.7m

SH 0.01 0.40 56.02 46.11 6.4m

KSH 0.02 7.30 2.0h 50.7m 7.5h

RSH 0.35 1.90 33.8 70.17 8.8m

DKSH 0.08 7.62 2.0h 72.02 10.1m

Table 2. S99 - Testing times

Method Testing time (sec)

# Training 100 1000 104 105 106

NN 0.01 0.02 0.41 4.81 1.3m

KLSH 0.03 0.02 0.37 1.96 17.0

SH 0.04 0.04 0.04 0.09 1.06

KSH 0.06 3.13 4.1m 2.32 4.02

RSH 0.06 0.06 0.05 0.07 0.28

DKSH 0.06 0.07 10.09 0.07 0.25

Table 3. G10,3 - Training times

Method Training time (sec)

# Training 100 1000 104 105 106

NN 0 0 0 0 0

KLSH 0.01 5.07 1.2h 34.0m 5.5h

SH 0.01 0.08 9.60 16.63 3.9m

KSH 0.12 17.2 2.5h 1.5h 13.2h

RSH 0.56 10.52 6.1m 10.2m 16.6m

DKSH 0.17 21.27 3.2h 36m 6.3h

Table 4. G10,3 - Testing times

Method Testing time (sec)

# Training 100 1000 104 105 106

NN 2.06 21.2 3.3m 41.1m 5.7h

KLSH 0.20 2.29 22.5 4.15 23.1

SH 0.04 0.03 0.04 0.10 1.27

KSH 0.28 3.60 3.5m 4.83 5.47

RSH 0.12 0.11 0.10 0.13 1.21

DKSH 0.17 1.95 1.5m 1.16 1.88

RSH are the fastest to train. The training times for KLSH, KSH and DKSH
increase greatly with the number of training samples. Table 2 provides the to-
tal test time for 100 samples. Coupled with higher accuracy, this is where we
observe the real advantage of the proposed methods. As the size of the training
data increases, not surprisingly, the time taken for 1-NN also increases. All test
times for SH and KSH remain low but are still higher than the test times for
RSH and DKSH. This again illustrates the superiority of the proposed methods.

Finally, Figure 4 displays the dependence of the error rate of RSH on the
algorithm parameters, i.e., the number of bits and the number of clusters. We
can see that if the number of bits is kept constant, increasing the number of
cluster centers decreases the testing error rate. Similarly, keeping the number of
clusters constant, and increasing the number of bits also decreases the testing
error rate. The first quality is highly desirable, since in a real scenario, the binary
code will represent the memory location for a pointer to the data. Thus having
more than 64 bits is not practical. In fact this shows that we can use relatively
fewer number of bits and pack the data points in memory by using more clusters.
Since the clusters can be located arbitrarily in memory, this reduces the need
for large chunks of contiguous memory.

Grassmann manifold - G10,3. In an analogous fashion to the previous section,
we generate several training samples of different sizes on the Grassmann manifold,
G10,3, which is the manifold of all the 3-dimensional subspaces of R10. The
data lies in 5 classes and is generated using the method in [26]. For non-linear
clustering and tangent space to manifold projections and vice-versa, we use the
expressions for the exponential and logarithm maps on the Grassmann manifold
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in [20]. For computing the kernel on the manifold we use the product of the
cosines of the subspace angles between the subspaces [27]. Again, we use 8 bits
for the binary codes for all hashing algorithms and 5 clusters for our proposed
methods. Figure 3 displays the difference between the recognition percentage of
1-NN and all other methods. At first it might seem that SH performs better than
the other methods for small data sizes, the trend is offset drastically with large
training sizes where it performs the worst. Overall, RSH performs better than
all state-of-the-art methods and the error stays within 30% of that of 1-NN.

Table 3 provides the training times for each of the training datasets. We notice
that KLSH, KSH and DKSH require the largest training times, whereas RSH and
SH require the least. For all the methods, the training time increases with the
number of data points but due to the large number of kernel computations during
the training stage, the increase in time is greatest for KLSH, KSH and DKSH.
Table 4 gives the total test time for 100 test samples for each of the training sizes.
We again see the computational advantage of the proposed methods against the
exact method as well as the state of the art KLSH and KSH methods. The test
time increases steeply with the size of the data for the kernel-based methods,
whereas the corresponding increase in test time stays low for RSH.

From the above set of experiments, we have shown that the proposed approx-
imate nearest-neighbor methods, RSH and DKSH, by explicitly considering the
manifold structure of the space of data, provide great computational advantage
against exact Nearest Neighbors while having very low to modest decrease in
accuracy. Moreover, our methods always perform better than KLSH and KSH,
the state-of-the-art non-Euclidean Hashing methods.

4.2 Human Action Dataset

Recent approaches in human activity recognition use features such as (1) distri-
butions over a bag of spatial-temporal keypoints to represent the activity in a
scene, or (2) dynamical systems learnt from a time-series of features extracted
from the frames of the video. Both these features lie in non-Euclidean spaces
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and therefore the proposed approach is directly applicable for the purpose of
retrieving activities from a large dataset of activity videos. Even though, human
activity analysis has been a vibrant field in computer vision, to the best of our
knowledge, no datasets are available that contain more than a few thousand
instances of human actions. Videos of unstructured scenes with multiple activ-
ities and events are available, however, the ground-truth activity segmentation
and tracking is not provided and automatic extraction of these remains an open
problem in computer vision. One of the most popular and largest datasets avail-
able is the KTH human action dataset [28]. This dataset contains six actions:
walking, running, jogging, boxing, handwaving and handclapping. There are 25
persons performing these actions under four different scenarios: outdoors, out-
doors across different scales, outdoors with bulky clothes on and indoors. There
are a total of 2391 sequences in the dataset.

For our first experiment, we use the approach of [13] and extract several
spatio-temporal keypoints and their corresponding descriptors in all the videos.
We divide the data as follows: All the videos of the first 16 subjects are used
for training whereas the videos of the remaining 9 subjects are used for test-
ing. A k-means procedure is used to cluster the descriptors in the training data
to form a dictionary of 100 keypoints. We then learn feature distributions for
each action video around these keypoints. This provides a 100 dimensional his-
togram per video that represents the action in that video. These histograms are
used for training and testing the proposed ANN methods. Note that for a fair
comparison to nearest-neighbor algorithms, we will test our method against the
simple nearest-neighbor algorithm and not against the state-of-the-art methods
for human activity recognition that use sophisticated classification algorithms
to achieve superior performance. The error rates reported below are not state-
of-the-art on the KTH human action database; instead, they are the error rates
achieved when using exact NN and state-of-the-art ANN methods and our pro-
posed methods on the dataset. We emphasize that our goal here is not to find
the best classification algorithm on the KTH database, but to compare the per-
formance of the proposed ANN methods against state-of-the-art ANN and exact
NN methods. Table 5 compares the performance of the proposed methods with
Nearest Neighbors and state-of-the-art hashing methods. All the hashing meth-
ods use 8-bits for the binary codes. The proposed methods, RSH and DKSH
divide the training data into 3 clusters. The results show that RSH has the
highest recognition percentage other than exact NN, whereas the state-of-the-
art KLSH has the worst recognition percentage. Moreover, RSH is also the most
efficient method in terms of retrieval time, even though it requires the largest
training time. Furthermore, the best recognition rate achievable using RSH was
69% with 64 bit code-words and 2 clusters, which is only 7% below the error
rate achieved by exact 1-NN.

For our second experiment, we use the approach in [17] and compute the
Histogram of Oriented Optical Flow (HOOF) features at each frame to get a
normalized histogram time-series for each video. We then learn a linear-state non-
linear dynamical system (NLDS) using the approach in [17] with the Geodesic
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Table 5. BOW histograms

Method Correct % Train t Test t

NN 76 0 11.5

KLSH 24 38.4 1.04

SH 51 3.4 0.45

KSH 51 41.1 81.1

RSH 62 58.6 0.39

DKSH 51 31.1 3.34

Table 6. Observability matrices

Method Correct % Train t Test t

NN 72 0 149.3

KLSH 64 0.547 35.0

SH 22 5.262 1.67

KSH 17 31.24 38.7

RSH 65 321.7 10.3

DKSH 58 266.5 15.8

(Bhattacharya) kernel on histograms. Hence each activity video is now repre-
sented as a non-linear dynamical system. There are several methods for compar-
ing dynamical systems, e.g. those proposed in [17] and the references therein. We
represent the dynamics and output transformation functions using the observ-
ability matrix for each dynamical system. Since we are using the inner-product
on the sphere as the kernel, we can simply use PCA to learn the approximate
dynamical system parameters and thus get the parameter matrices, A ∈ Rn×n

and C ∈ Rp×n. Here n is the system order, and p is the size of the output, 10 and
64, respectively, in our case. The observability matrix can then be computed as
O = [C�, (AC)�(A2C)�, . . . , (An−1C)�]� ∈ Rpn×n. See [17] and the references
therein for more details. Notice that the columns of O span an n-dimensional
subspace of Rnp and thus O lies on the Grassmann manifold, Gnp,n. We can
therefore follow the experiments in section 4.1 using these observability matrices
as the data points.

Since the approach in [17] is directly applicable only for stationary cameras,
we choose sequences from the first scenario, i.e. outdoors with stationary camera
(around 600 sequences) to test our algorithms. We use 64% of the data for
training and the remaining 36% for testing. Moreover, we use 64 bits for the
binary codes and 15 clusters/pivots for the proposed methods.

Table 6 shows the recognition percentages and training and testing times for
exact KNN using the Martin distance for dynamical systems, and the proposed
and state-of-the-art hashing methods. We can see that our method, RSH, has
the best recognition rate, slightly above KLSH. Notice that even though exact
NN does not require any training, which could be as high as 321.7 seconds for
RSH, the speed up in terms of test times is significant. Exact KNN requires 149.3
seconds for testing whereas RSH requires only 10.3 seconds and DKSH requires
15.8 seconds. Even though KLSH performs well in this scenario, due to the many
kernel computations required, its testing time is at least 3 times greater than
RSH, limiting the former’s advantage.

5 Conclusion and Future Work

We have proposed two new methods, Riemannian Spectral Hashing (RSH), and
Distributed Kernel Spectral Hashing (DKSH), for performing fast approximate
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nearest-neighbor matching on non-Euclidean data. We have shown that state-
of-the-art methods either do not take into account the manifold structure of
the data, or are computationally inefficient and can in fact be slower in perfor-
mance than exact nearest neighbors. Moreover, experiments on synthetic and
real data have shown that our methods are applicable to points that lie on sim-
ple manifolds such as the unit hypersphere as well as to points that lie on highly
complicated manifolds such as the space of dynamical systems. The proposed
methods provide immense computational savings at the cost of a small decrease
in accuracy and hence are ideal for approximate nearest neighbor matching in
large datasets. We have provided average-case time complexity for our proposed
methods and are looking into how the parameters such as the number of bits
and number of clusters/pivots, can be set so as to achieve user-defined preci-
sion/recall tolerances. Finally we are working on collecting a very large human
action dataset to further validate the benefits of our proposed methods.

Acknowledgments. The authors would like to thank Kinh Tieu, Ashok Veer-
araghavan and Oncel Tuzel for their comments and discussions that helped im-
prove the presentation of this work.
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Abstract. We present a new histogram distance family, the Quadratic-Chi (QC).
QC members are Quadratic-Form distances with a cross-bin χ2-like normaliza-
tion. The cross-bin χ2-like normalization reduces the effect of large bins having
undo influence. Normalization was shown to be helpful in many cases, where the
χ2 histogram distance outperformed the L2 norm. However, χ2 is sensitive to
quantization effects, such as caused by light changes, shape deformations etc. The
Quadratic-Form part of QC members takes care of cross-bin relationships (e.g.
red and orange), alleviating the quantization problem. We present two new cross-
bin histogram distance properties: Similarity-Matrix-Quantization-Invariance
and Sparseness-Invariance and show that QC distances have these properties. We
also show that experimentally they boost performance. QC distances computation
time complexity is linear in the number of non-zero entries in the bin-similarity
matrix and histograms and it can easily be parallelized. We present results for im-
age retrieval using the Scale Invariant Feature Transform (SIFT) and color image
descriptors. In addition, we present results for shape classification using Shape
Context (SC) and Inner Distance Shape Context (IDSC). We show that the new
QC members outperform state of the art distances for these tasks, while having a
short running time. The experimental results show that both the cross-bin prop-
erty and the normalization are important.

1 Introduction

It is common practice to use bin-to-bin distances such as the L1 and L2 norms for
comparing histograms. This practice assumes that the histogram domains are aligned.
However this assumption is violated in many cases due to quantization, shape deforma-
tion, light changes, etc. Bin-to-bin distances depend on the number of bins. If it is low,
the distance is robust, but not discriminative, if it is high, the distance is discrimina-
tive, but not robust. Distances that take into account cross-bin relationships (cross-bin
distances) can be both robust and discriminative.

There are two kinds of cross-bin distances. The first is the Quadratic-Form distance
[1]. Let P and Q be two histograms and A the bin-similarity matrix. The Quadratic-
Form distance is defined as:

QFA
(P, Q) =

√
(P − Q)T A(P − Q) (1)

When the bin-similarity matrix A is the inverse of the covariance matrix, the
Quadratic-Form distance is called the Mahalanobis distance. If the bin-similarity ma-
trix is positive-definitive, then the Quadratic-Form distance is a metric. In this case the

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 749–762, 2010.
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Fig. 1. This figure should be viewed in color, preferably on a computer screen. A toy example
showing the behavior of distances that reduce the effect of large bins and the behavior of distances
that take cross-bin relationships into account. We show four color histograms, each histogram has
four colors: red, blue, purple, and yellow. The Quadratic-Form (QF), the Earth Mover Distance
(EMD) and the L1 norm do not reduce the effect of large bins. Thus, they rank (query) to
be more similar to (c) than to (a). χ2 considers (a) to be more similar, but as it does not take
cross-bin relationships into account it fails with (b). Our proposed members of the Quadratic-Chi
histogram distance family, QCN and QCS consider (a) to be most similar, (b) the second and (c)
the least similar as they take into account cross-bin relationships and reduce the effect of large
bins, using an appropriate normalization.

Quadratic-Form distance is the L2 norm between linear transformations of P and Q. If
the bin-similarity matrix is positive-semidefinite, then the Quadratic-Form distance is a
semi-metric.

The second type of distance that takes into account cross-bin relationships is the
Earth Mover’s Distance (EMD). EMD was defined by Rubner et al. [2] as the minimal
cost that must be paid to transform one histogram (P ) into the other (Q):

EMDD
(P, Q) = ( min

{Fij}

∑
i,j

FijDij)/(
∑
i,j

Fij) s.t Fij ≥ 0

∑
j

Fij ≤ Pi

∑
i

Fij ≤ Qj

∑
i,j

Fij = min(
∑

i

Pi,
∑

j

Qj)
(2)

where {Fij} denotes the flows. Each Fij represents the amount transported from the
ith supply to the jth demand. We call Dij the ground distance between bin i and bin
j. If Dij is a metric, the EMD as defined by Rubner is a metric only for normalized

histograms. Recently Pele and Werman [3] suggested ÊMD:

ÊMD
D

α (P, Q) = ( min
{Fij}

∑
i,j

FijDij) + |
∑

i

Pi −
∑

j

Qj |α max
i,j

Dij

s.t EMD constraints

(3)

If Dij is a metric and α ≥ 1
2 , ÊMD is a metric for all histograms [3]. For normalized

histograms ÊMD and EMD are equal (e.g. Fig. 1).
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In many natural histograms the difference between large bins is less important than
the difference between small bins and should be reduced. See for example Fig. 1. The
Chi-Squared (χ2) is a histogram distance that takes this into account. It is defined as:

χ2
(P, Q) =

1

2

∑
i

(Pi − Qi)
2

(Pi + Qi)
(4)

The χ2 histogram distance comes from the χ2 test-statistic [4] where it is used to test
the fit between a distribution and observed frequencies. In this paper the histograms
are not necessarily normalized, and thus not probabilities vectors. χ2 was success-
fully used for texture and object categories classification [5,6,7], near duplicate im-
age identification[8], local descriptors matching [9], shape classification [10,11] and
boundary detection [12]. The χ2, like other bin-to-bin distances such as the L1 and the
L2 norms, is sensitive to quantization effects.

2 Our Contribution

In this paper we present a new cross-bin histogram distance family: Quadratic-Chi
(QC). Like the Quadratic-Form, its members take cross-bin relationships into account.
Like the χ2, its members reduce the effect of differences caused by bins with large
values. We discuss QC members’ properties, including a formalization of a two new
cross-bin histogram distance properties: Similarity-Matrix-Quantization-Invariance
and Sparseness-Invariance. We show that all QC members and the EMD have these
properties. We also show importance experimentally.

For full histograms QC distances computation time is linear in the number of non-
zero entries in the bin-similarity matrix. In this case, QC distances can be implemented
with 5 lines of Matlab code (see Algorithm 1). For two sparse histograms (for exam-
ple bag-of-words histograms) with a total of S non-zeros entries and an average of K
non-zeros entries in each row of the similarity matrix, a QC distance computation time
complexity is O(SK). See code (C++ and Matlab wrappers) at:
http://www.cs.huji.ac.il/˜ofirpele/QC/. Finally, QC distances’ paralleliza-
tion is trivial.

We present results for image retrieval on the Corel dataset using the SIFT descrip-
tor [13] and small color images. We also present results for shape classification using

Algorithm 1. Quadratic-Chi Matlab Code for Full Histograms
function dist= QC(P,Q,A,m)

Z= (P+Q)*A;
% 1 can be any number as Z_i==0 iff D_i=0
Z(Z==0)= 1;
Z= Z.ˆm;
D= (P-Q)./Z;
% max is redundant if A is positive-semidefinite
dist= sqrt( max(D*A*D’,0) );

http://www.cs.huji.ac.il/~ofirpele/QC/
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Shape Context (SC) [10] and Inner Distance Shape Context (IDSC) [11]. QC mem-
bers performance is excellent. They outperform state of the art distances including χ2,
QF, L1, L2, ÊMD[14], SIFTDIST[3], EMD-L1[15], Diffusion[16], Bhattacharyya [17],
Kullback-Leibler[18] and Jensen-Shannon[19] while having a short running time. We
have found that the normalization is very important. Surprisingly, excellent performance
was achieved using a new bin-to-bin distance from the QC family, that has a large nor-
malization factor. Its cross-bin version yielded an additional improvement, outperform-
ing all other distances for SIFT, SC and IDSC.

3 The Quadratic-Chi Histogram Distance Family

3.1 The Quadratic-Chi Histogram Distance Definition

Let P and Q be two non-negative bounded histograms. That is, P, Q ∈ [0, U ]N . Let
A be a non-negative symmetric bounded bin-similarity matrix such that each diagonal
element is bigger or equal to every other element in its row (this demand is weaker than
being a strongly dominant matrix). That is, A ∈ [0, U ]N × [0, U ]N and ∀i, j Aii ≥ Aij .
Let 0 ≤ m < 1 be the normalization factor. A Quadratic-Chi (QC) histogram distance
is defined as:

QCA
m(P, Q) =

√√√√∑
ij

( (
Pi − Qi

)(∑
c(Pc + Qc)Aci

)m

)( (
Pj − Qj

)(∑
c(Pc + Qc)Acj

)m

)
Aij (5)

where we define 0
0 = 0. If A is positive-semidefinite, the argument inside the square

root (the sum) is non-negative. If A is not positive-semidefinite we can get non-real
(complex) distances. This is true also for the Quadratic-Form (Eq. 1). We prefer not to
restrict ourselves to positive-semidefinite matrices. On the other hand, we don’t want
non-real distances. So, we define a complex distance as zero. In practice, this was never
needed, even with non-positive-semidefinite matrices. This is due to the fact that the
eigenvectors of the similarity matrices corresponding to negative eigenvalues were very
far from smooth, while the difference vector for natural histograms P and Q is usually
very smooth, see Fig. 2.

Each addend’s denominator inside the square root is zero if and only if the addend’s
numerator is zero. A QCA

m(P, Q) distance is continuous. In particular, if the addend’s
denominator tends to zero, the whole addend tends to zero. Proofs are in [20].

The Quadratic-Chi distance family generalizes both the Quadratic-Form (QF) and
a monotonic transformation of χ2. That is, QCA

0 (P, Q) =QFA(P, Q) and if I is the
identity matrix, QCI

0.5(P, Q) =
√

2χ2(P, Q).

3.2 Metric Properties

There are three conditions for a distance function, D, to be a semi-metric. The first is
non-negativity (i.e. D(P, Q) ≥ 0), the second is symmetry (i.e. D(P, Q) = D(Q, P ))
and the third is subadditivity (i.e. D(P, Q) ≤ D(P, K)+D(K, Q)). D is a metric if it is
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(P ) (Q) (Z) (E)

Fig. 2. This figure illustrates why it is not likely to get negative values in the square root ar-
gument of a QC distance for natural histograms and a typical similarity matrix. P and Q are
two SIFT histograms. Z is the normalized difference vector. That is: Zi =

Pi
(
∑

c(Pc+Qc)Aci)
m −

Qi
(
∑

c(Pc+Qc)Aci)
m . Negative values are represented with red, positive values are represented with

black. E is one of the eigenvectors of the similarity matrix that we used in the experiments which
correspond to a negative eigenvalue. Z is very smooth while E is very non-smooth. This is typical
of eigenvectors with negative values with typical parameters.

a semi-metric and it also has the property of identity of indiscernibles (i.e. D(P, Q) = 0
if and only if P = Q).

A QCA
m distance without the square root, is non-negative if the bin-similarity matrix,

A, is positive-semidefinite. If A is positive-definitive, then it also has the property of
identity of indiscernibles. This follows directly from the fact that the argument inside
the square root in a QC histogram distance is a quadratic-form between two vectors. A
QC histogram distance is symmetric if the bin-similarity matrix, A, is symmetric.

We now discuss subadditivity (i.e. D(P, Q) ≤ D(P, K) +D(K, Q)) for several dis-
tances. The χ2 histogram distance is not subadditive. For example let i = 0, k = 1,
j = 2 we get χ2(i, j) = 1 > χ2(i, k) + χ2(k, j) = 2

3 . However,
√

χ2 is sub-
additive for one and two dimensional non-negative histograms (verified by analysis).
Experimentally it appears that

√
χ2 is subadditive for an N -dimensional non-negative

histograms. Experimentally, QC members with the identity matrix seems to be subaddi-
tive for non-negative histograms. However, QC members with some positive-definitive
bin-similarity matrices are not subadditive. The question when the QC histogram dis-
tances are subadditive is currently unresolved. An additional discussion about triangle
inequality can be found in Jacobs et al. [21].

4 Cross-Bin Histogram Distance Properties

4.1 The Similarity-Matrix-Quantization-Invariance Property

The Similarity-Matrix-Quantization-Invariance property ensures that if two bins in the
histograms have been erroneously quantized, this will not affect the distance. Mathe-
matically we define this as:

Definition 1. Let D be a cross-bin histogram distance between two histograms P and
Q and let A be the bin-similarity/distance matrix. We assume P , Q and A are non-
negative and that A is symmetric. Let Ak,: be the kth row of A. Let V = [V1, . . . , VN ]
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be a non-negative vector and 0 ≤ α ≤ 1. We define V α,k,b = [. . . , αVk, . . . , Vb + (1−
α)Vk, . . .]. That is, V α,k,b is a transformation of V where (1 − α)Vk mass has moved
from bin k to bin b. We define D to be Similarity-Matrix-Quantization-Invariant if:

Ak,: = Ab,: ⇒ ∀ 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 DA
(P, Q) = DA

(P α,k,b, Qβ,k,b
) (6)

We prove that EMD, ÊMD and all the Quadratic-Chi histogram distances are
Similarity-Matrix-Quantization-Invariant in the appendix [20].

4.2 The Sparseness-Invariance Property

The Sparseness-Invariance property ensures that distances between sparse histograms
will be equal to distances between full histograms. Mathematically we define this as:

Definition 2. Let D be a cross-bin histogram distance between two histograms P ∈
RN and Q ∈ RN and let A be the N × N bin similarity/distance matrix. Let A′ be
any (N + 1) × (N + 1) matrix whose upper-left sub-matrix equals A. We define D to
be Sparseness-Invariant if:

DA
([P1, . . . , Pn], [Q1, . . . , Qn]) = DA′

([P1, . . . , Pn,0], [Q1, . . . , Qn,0]) (7)

QC members, EMD and the ÊMD are Sparseness-Invariant directly from their defi-
nitions. A stronger property called Extension-Invariance was proposed by D’Agostino
and Dardanoni for bin-to-bin distances [22]. This property requires that, if both his-
tograms are extended by concatenating each of them with the same vector (not nec-
essarily zeros), the distance is left unaltered. Cross-bin distances assumes dependence
between histogram bins, thus this requirement is too strong for them.

4.3 Cross-Bin Histogram Distance Properties Discussion

A Sparseness-Invariant cross-bin histogram distance does not depend on the specific
representation of the histograms (full or sparse). A Similarity-Matrix-Quantization-
Invariant cross-bin histogram distance encompass its cross-bin relationships only in
the bin-similarity matrix. Intuitively such properties are desirable. In the appendix [20],
we compare experimentally distances which resembles QC distances, but are either not
Similarity-Matrix-Quantization-Invariant or not Sparseness-Invariant. The comparison
shows that these properties considerably boost performance (especially for sparse color
histograms).

Rubner et al. [2,23] claim that one of the key advantages of the Earth Mover’s Dis-
tance is that each compared object may be represented by an individual (possibly with
a different number of bins) binning that is adapted to its specific distribution. The
Quadratic-Form is regarded as not having this property (see for example, Table 1 in
[23]). Since all the Quadratic-Chi histogram distances (including the Quadratic-Form)
are both Similarity-Matrix-Quantization-Invariant and Sparseness-Invariant there is no
obstacle to using them with individual binning; i.e. to use them to compare histograms
that were adapted to each object individually.

Similarity-Matrix-Quantization-Invariant and Sparness-Invariant can contradict.
For example, any distance applied to the transformed vectors P ′

i =
∑

c(Pc)Aci and
Q′

i =
∑

c(Qc)Aci is Similarity-Matrix-Quantization-Invariant. However the χ2 dis-
tance between P ′ and Q′ is not Sparseness-Invariant (with respect to P and Q).
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5 Implementation Notes

5.1 The Similarity Matrix and the Normalization Factor

It is desirable to have a transformation from a distance matrix into a similarity matrix,
as many spaces are equipped with a useful distance (e.g. color space [24]). Hafner et al.
[1] proposed this transformation:

Aij = 1 − Dij

maxij(Dij)
(8)

Another possibility for choosing a similarity matrix is by using cross validation. How-
ever, we think that like for the Quadratic-Form, learning the similarity matrix (and for
QC also the normalization factor) will be the best way to adjust them. This is left for
future work. Currently we suggest to use thresholded ground distances as was used in
[2,25,3,14] and choosing the normalization factor by cross validation.

5.2 Efficient Online Bin-Similarity Matrix Computation

For a fixed histogram configuration (e.g. SIFT, SC and IDSC) the bin-similarity matrix
can be pre-computed once. Then, each distance computation is linear in the number of
non-zero entries in the bin-similarity matrix.

There are cases where the bin-similarity matrix can not be pre-computed. For exam-
ple, in our color experiments (Section 6.1), we used N × M color images as sparse
histograms. That is, the query histogram was: [1, . . . , 1, 0, . . . , 0] and each image being
compared to the query was represented by the histogram: [0, . . . , 0, 1, . . . , 1]. Note that
the full histogram dimension is M ×N × 2563, computing an (M ×N × 2563)2 sim-
ilarity matrix offline is not feasible. We can compute the similarity online for each pair
of sparse histograms in O((NM)2) time. We now discuss how to do it more efficiently.

If we are comparing two images (as in Section 6.1) we can use a similarity matrix
that gives far-away pixels zero similarity (see Eq. 10). Then, we can simply compare
each pixel in one image to its corresponding T × T spatial neighbors in the second
image. This reduces running time to O(NMT 2). Using this technique, it is important
to use a sparse representation for the bin-similarity matrix.

6 Results

We present results using the newly defined distances and state of the art distances, for
image retrieval using SIFT-like descriptors and color image descriptors. In addition,
we present results for shape classification using Inner Distance Shape Context (IDSC).
More results for shape classification using SC, can be found in the appendix [20].

6.1 Image Retrieval Results

In this section we present results for image retrieval using the same benchmark as Pele
and Werman [14]. We employed a database that contained 773 landscape images from
the COREL database that were also used in Wang et al. [26]. The dataset has 10 classes1:

1 The original database contains some visually ambiguous classes such as Africa that also con-
tains images of beaches in Africa. We used the filtered image dataset that was downloaded
from: http://www.cs.huji.ac.il/˜ofirpele/FastEMD/

http://www.cs.huji.ac.il/~ofirpele/FastEMD/
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People in Africa, Beaches, Outdoor Buildings, Buses, Dinosaurs, Elephants, Flowers,
Horses, Mountains and Food. The number of images in each class ranges from 50 to
100. From each class we selected 5 images as query images (images 1, 10, . . . , 40).
Then we searched for the 50 nearest neighbors for each query image. We computed the
distance of each image to the query image and its reflection and took the minimum. We
present results for two types of image representations: SIFT-like descriptors and small
L*a*b* images.

SIFT-like Descriptors. The first representation - SIFT is a 6 × 8 × 8 SIFT descriptor
[13] computed globally on the whole image. The second representation - CSIFT is a
SIFT-like descriptor on a color-edge image. See [14] for more details.

We experimented with two new types of QC distances. The first is QCA
0.5, which is

a cross-bin generalization of
√

2χ2, which we call Quadratic-Chi-Squared (QCS). The
second is QCA

0.9, which has a larger normalization factor, which we call Quadratic-Chi-
Normalized (QCN). We do not use QCA

m with m ≥ 1 due to discontinuity problems,
see appendix [20] (practically, QCA

1 had slightly poorer results compared to QCA
0.9).

We also experimented with the Quadratic-Form (QF) distance which is QCA
0 . For all

of these distances we used the bin-similarity matrix in Eq. 8. Let M = 8 be the num-
ber of orientation bins, as in Pele and Werman [14], the ground distance between bins
(xi, yi, oi) and (xj , yj, oj) is:

dT (i, j) = min

((||(xi, yi) − (xj , yj)||2 + min(|oi − oj |, M − |oi − oj |)
)

, T
)

(9)

We also used the identity matrix as a similarity matrix for all the above distances. We
also compared to L2 and χ2. QFI = L2, and nearest neighbors of χ2 and QCSI are the
same.

We also compared to four EMD variants. The first was ÊMD
D

1 with D = dT (Eq. 9) as

in Pele and Werman [3]. The second was the L1 norm which is equal to ÊMD
D

0.5 with D
equals to the Kronecker delta multiplied by two. The third is SIFTDIST[3] which is the sum
of ÊMD over all the spatial cells (each spatial cell contains one orientation histogram).
The ground distance for the orientation histograms is: min(|oi − oj |, M − |oi − oj |, 2)
(M is the number of orientation bins). The fourth was the EMD-L1[15] which is EMD
with L1 as the ground distance. We also tried non-thresholded ground distances (which
produce non-sparse similarity matrices). However, the results were poor. This is in line
with Pele and Werman’s findings that cross-bin distances should be used with thresh-
olded ground distances [14]. Finally, we compared to the Diffusion distance proposed
by Ling and Okada [16] and to three probabilistic based distances: Bhattacharyya [17],
Kullback-Leibler (KL) [18] and Jensen-Shannon (JS) [19] (we added Matlab’s epsilon
to all histogram bins when computing KL and JS throughout the paper, as they are not
well defined if there is a zero bin, without doing so accuracy was very low).

For each distance measure, we present the descriptor (SIFT/CSIFT) with which it
performed best. The results for all the pairs of descriptors and distance measures can
be found in the appendix[20]. The results are presented in Fig. 3(a) and show that

QCN1− dT=2
2 (QCN with the similarity matrix: Aij = 1 − dT=2(i,j)

2 ) outperformed

all other methods. ÊMDdT=2
1 ranked second. The computation of QCN1− dT=2

2 was 266
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times faster than ÊMDdT=2
1 , see Table 2 in page 760. QCNI ranked third, which shows

the importance of the normalization factor.
All cross-bin distances that use thresholded ground distances outperformed their bin-

by-bin versions. The figure also shows that χ2 and QF improve upon L2. QCN and QCS
which are mathematically sound combinations of χ2 and QF outperformed both.

L*a*b* Images. Our second type of image representation is a small L*a*b* image. We
resized each image to 32× 48 and converted them to L*a*b* space. The state of the art
color distance is Δ00 - CIEDE2000 on L*a*b* color space[24,27]. As it is meaningful
only for small distances we threshold it (as in [2,25,14]).

Again, we experimented with QCS, QCN and QF distances using the bin-similarity
matrix in Eq. 8. The ground distance between two pixels (xi, yi, Li, ai, bi),
(xj , yj, Lj , aj, bj):

s(i, j) = ||(xi, yi) − (xj , yj)||2

dcT1,T2(i, j) =

{
min ((s(i, j) + Δ00((Li, ai, bi), (Lj , aj , bj))), T1) if s(i, j) ≤ T2

T1 otherwise

(10)

This distance is similar to the one used by [14], except that distances with spatial
difference larger than the threshold T2 are set to the maximum threshold T1. This was
done to accelerate the online computation of the bin-similarity matrix. The accuracy
using this distance is the same as using the distance from Pele and Werman [14]. See
appendix [20]. We also used ÊMD with dcT1,T2 (Eq. 10) as a ground distance. Let I1, I2
be the two L*a*b* images. We also used the following distances:

L1Δ00 =
∑
x,y

(Δ00(I1(x, y), I2(x, y))) L1Δ
T
00 =

∑
x,y

(min(Δ00(I1(x, y), I2(x, y)), T ))

L2Δ00 =
∑
x,y

(Δ00(I1(x, y), I2(x, y)))
2 L2Δ

T
00 =

∑
x,y

(min(Δ00(I1(x, y), I2(x, y)), T ))
2

QCNI , χ2, L2, L1, SIFTDIST[3], EMD-L1[15], the Diffusion[16], Bhattacharyya [17],
KL [18] and JS [19] distances cannot be applied to L*a*b* images as they are either
bin-to-bin distances or applicable only to Manhattan networks.

We present results in Fig. 3. As shown, QCS1− dcT1=20,T2=5
20 and ÊMD

dcT1=20,T2=5
1

[14] distances ranked first. QCS1− dcT1=20,T2=5
20 ran 300 times faster (see Table 2). How-

ever, since the computation of the bin-similarity matrix cannot be offline here, the real

gain is a factor of 17. The QF1− dcT1=20,T2=5
20 distance ranked last, which shows the im-

portance of the normalization factor of the QC histogram members.
Although a QC distance alleviates quantization problems, EMD does it better, in-

stead of matching everything to everything it finds the optimal matching. EMD how-
ever, does not reduce the effect of large bins. We conjecture that a variant of EMD
which will reduce the effect of large bins will have an excellent performance.

6.2 Shape Classification Results

In this section we present results for shape classification using the same framework as
Ling et al. [11,15,28]. We test for shape classification with the Inner Distance Shape
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Table 1. Shape classification results. QCN1− dscT=2
2 outperformed all other distances.

Top 1 Top 2 Top 3 Top 4 AUC%

QCN1− dscT=2
2 39 38 38 34 0.950

QCNI 40 37 36 33 0.940

QCS1− dscT=2
2 39 35 38 28 0.912

QCSI 40 34 37 27 0.907
χ2 40 36 36 21 0.902

QF 1− dscT=2
2 40 34 39 19 0.897

L2 39 35 35 18 0.873

Top 1 Top 2 Top 3 Top 4 AUC%

ÊMD
dscT=2
1 39 36 35 27 0.902

L1 39 35 35 25 0.890
SIFTDIST[3] 38 37 27 22 0.848
EMD-L1[15] 39 35 38 30 0.917
Diffusion[16] 39 35 34 23 0.880
Bhattacharyya[17] 40 37 32 23 0.895
KL[18] 40 38 36 29 0.938
JS[19] 40 35 37 21 0.900

Context (IDSC) [11]. The original Shape Context (SC) descriptor was proposed by
Belongie et al. [10]. Belongie et al. [10] and Ling and Jacobs [11] used the χ2 distance
for comparing shape context histograms. Ling and Okada [15] showed that replacing
χ2 with EMD-L1 improves results. We show that QC members yields the best results.

We tested on the articulated shape data set [11,28], that contains 40 images from 8
different objects. Each object has 5 images articulated to different degrees. The dataset
is very challenging because of the similarity between different objects. The original SC
had a very poor performance on this dataset, see appendix [20].

Again, we experimented with QCS, QCN and QF distances with the bin-similarity
matrix in Eq. 8. The ground distance between two bins (ri, oi), (ri, oi) was (M is the
number of orientation bins):

dscT (i, j) = min ((|di − dj | + min(|oi − oj |, M − |oi − oj |), T ) (11)

We also used the identity matrix as a similarity matrix, and thus we also compare to L2.
χ2 and QCSI distances are not equivalent here as the distance is not used for nearest
neighbors. We refer the reader to Belongie et al. paper to see its usage [10]. Practically,
QCSI slightly outperformed χ2 in this task, see Table 1.

We also compared to four EMD variants: ÊMD
D

1 with D = dscT (Eq. 11), the L1
norm, SIFTDIST[3] and EMD-L1[15]. Finally, we compared to the Diffusion distance
proposed by Ling and Okada [16] and to three probabilistic based distances: Bhat-
tacharyya [17], Kullback-Leibler (KL) [18] and Jensen-Shannon (JS) [19].

To evaluate results, for each image, the four most similar matches are chosen from
other images in the dataset. The retrieval result is summarized as the number of 1st,
2nd, 3rd and 4th most similar matches that come from the correct object. Table 1 shows

the retrieval results. The QCN1− dscT=2
2 outperformed all the other methods. QCNI per-

formance is again excellent, which shows the importance of the normalization factor.
Again all cross-bin distances outperformed their bin-by-bin versions. Again, χ2 and

QF improved upon L2. QCN and QCS which are mathematically sound combinations
of χ2 and QF outperformed both.

6.3 Running Time Results

All runs were conducted on a Pentium 2.8GHz. A comparison of the practical running
time of all distances is given in Table 2. Clearly QCN and QCS distances are fast to
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Fig. 3. Results for image retrieval.
(a) SIFT-like descriptors. For each distance measure, we present the descriptor (SIFT/CSIFT)
with which it performed best. The results for all the pairs of descriptors and distance measures
can be found in the appendix[20]. There are several key observations. First, the QC members

performance is excellent. QCN1− dT=2
2 (QCN with the similarity matrix: Aij = 1 − dT=2(i,j)

2
)

outperformed all other distances. ÊMDdT=2
1 ranked second, but its computation was 266 times

slower than QCN1− dT=2
2 computation (see Table 2). Second, all cross-bin versions of the dis-

tances (with dT or a transformation of it) performed better than their bin-by-bin versions (with
the identity matrix or the Kronecker delta function). Third, QCNI ranked third, although its a
bin-to-bin distance. This shows the importance of the normalization factor. Finally, χ2 and QF
improve upon L2. However, χ2 does not take cross-bin relationships into account and QF does
not reduce the effect of large bins. QCS and QCN histogram distances, which are mathematically
sound combinations of χ2 and QF have the two properties and outperformed both.
(b) L*a*b* images results. QCNI , χ2, L2, L1, SIFTDIST[3], EMD-L1[15], Diffusion[16],

Bhattacharyya[17], KL[18] and JS[19] distances are not applicable here. QCS1− dcT1=20,T2=5
20

and ÊMD
dcT1=20,T2=5
1 [14] ranked first. QCS1− dcT1=20,T2=5

20 computation is 300 times faster

than ÊMD
dcT1=20,T2=5
1 without taking the bin-similarity matrix computation into account and 17

times faster when it is taken into account (see Table 2). QF1− dcT1=20,T2=5
20 ranked last, which

shows the importance of the normalization factor in QC members.
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Table 2. (SIFT) 384-dimensional SIFT-like descriptors matching time (in milliseconds). The dis-
tances from left to right are the same as the distances in Fig. 3 (a) from up to down.
(IDSC) 60-dimensional IDSC histograms matching time (in microseconds). The distances from
left to right are the same as the distances in Table 1 from up to down.
(L*a*b*) 32 × 48 L*a*b* images matching time (in milliseconds). The distances from left to
right are the same as the distances in Fig. 3 (b) from up to down. In parentheses is the time it
takes to compute the distance and the bin-similarity matrix as it cannot be computed offline.

Descriptor QCNA2 QCNI QCSA2 QCSI χ2 QFA2 L2 ÊMDD2 [14] L1 SIFTDIST[3]

(SIFT) 0.15 0.1 0.07 0.014 0.013 0.05 0.011 40 0.011 0.07
(IDSC) 6.41 2.99 2.32 0.35 0.34 1.25 0.14 133.75 0.32 0.31

Descriptor EMD-L1[15] Diffusion[16] JS[19] KL[18] Bhattacharyya[17]

(SIFT) 40 0.27 0.088 0.048 0.015
(IDSC) 20.57 3.15 1.40 8.53 17.17

Descriptor QCNA20 QCSA20 QFA20 ÊMDD20 [14] L1ΔT =20
00 L1Δ00 L2ΔT =20

00 L2Δ00

(L*a*b*) 20 (370) 19 (369) 11 (361) 6000 (6350) 3.2 3.2 3.2 3.2

compute. This is consistent with their linear time complexity. The only non-linear time
distances are ÊMD [14] and EMD-L1[15] which are also practically much slower than
the other methods. Our method can be easily parallelized, taking advantage of multi-
core computers or the GPU.

7 Conclusions

We presented a new cross-bin distance family - the Quadratic-Chi (QC). QC distances
have many desirable properties. Like the Quadratic-Form histogram distance they take
into account cross-bin relationships. Like χ2 they reduce the effect of large bins. We for-
malized two new cross-bin properties, Similarity-Matrix-Quantization-Invariance and
Sparseness -Invariance. QC members were shown to have both. Finally, QC distance
computation time is linear in the number of non-zero entries in the bin-similarity ma-
trix. Experimentally, QC outperformed state of the art distances, while having a very
short run-time.

There are several open questions that we still need to explore. The first is for which
QC distances does the the triangle inequality holds for. The second is whether we can
change the Earth Mover’s Distance so that it will also reduce the effect of large bins.
Concave-cost network flow [29] seems to be the right direction for future work although
it presents two major obstacles. First, the concave-cost network flow optimization is NP-
hard [29]. However, there are available approximations [29,30]. Second, simply using
concave-cost flow networks will result in a distance which is not Similarity-Matrix-
Quantization-Invariant. We would also like to explore whether metric learning methods
such as [31,32,33,34,35,36,37,38] can be generalized for the Quadratic-Chi histogram
distance. Assent et al. [39] have suggested methods that accelerate database retrieval
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that uses Quadratic-Form distances. Generalizing these methods for the Quadratic-Chi
distances is of interest. Finally, other computer vision applications such as tracking
can use the QC distances. The project homepage, including code (C++ and Matlab
wrappers) is at: http://www.cs.huji.ac.il/˜ofirpele/QC/.
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Abstract. We introduce a novel nonrigid 2D image registration method

that establishes dense and accurate correspondences across images with-

out the need of any manual intervention. Our key insight is to model

the image as a membrane, i.e., a thin 3D surface, and to constrain its

deformation based on its geometric properties. To do so, we derive a

novel Bayesian formulation. We impose priors on the moving membrane

which act to preserve its shape as it deforms to meet the target. We derive

these as curvature weighted first and second order derivatives that corre-

spond to the changes in stretching and bending potential energies of the

membrane and estimate the registration as the maximum a posteriori.

Experimental results on real data demonstrate the effectiveness of our

method, in particular, its robustness to local minima and its ability to

establish accurate correspondences across the entire image. The results

clearly show that our method overcomes the shortcomings of previous

intensity-based and feature-based approaches with conventional uniform

smoothing or diffeomorphic constraints that suffer from large errors in

textureless regions and in areas in-between specified features.

1 Introduction

The goal of nonrigid image registration is to align a template image to a refer-
ence image by locally deforming the template image. Modeling nonlinear, local
deformations has important applications in many computer vision problems in-
cluding image stabilization [1], subject tracking [2, 3], and medical imaging [4],
to name a few.

There are two primary approaches to nonrigid image registration: intensity-
based and feature-based. Intensity-based approaches [5,6,7] attempt to minimize
the intensity differences across the entire image. Such methods produce dense
correspondences but suffer from ambiguities arising from similar intensity re-
gions. Feature-based methods [8,9,10] compute deformations that align a sparse
set of specifically selected features. These points are then used in conjunction
with a parametric model to interpolate the recovered deformations across the
rest of the image. In addition to the separate challenge of detecting and matching
good features (which often relies on manual intervention), the overall quality of
the registration directly relies on the interpolation method. Consequently, accu-
racy inherently decays rapidly as the distance from the feature points increases.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 763–776, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In this paper, we introduce an automatic nonrigid 2D image registration
method that establishes dense and accurate correspondences across the entire
image without the need to provide feature correspondences a priori. Our key idea
is to model the image as a 2D membrane embedded in a 3D spatial-intensity
space. We then formulate nonrigid image registration as the process of aligning
two membranes by deforming one to the other while preserving its local geomet-
ric structures. In particular, we model the elastic and bending potential energies
of the membrane. By penalizing their changes, the local structures of the tem-
plate membrane are preserved as it deforms to meet the reference membrane.

We derive a probabilistic formulation of this membrane nonrigid image regis-
tration. We model each template image point as a Gaussian and seek the maxi-
mum a posteriori estimate of the template image as a mixture of Gaussians given
the reference image. Our main contributions are a newly derived likelihood and
priors that reflect physically-motivated constraints on the membrane geometry:
Novel likelihood: We construct a Gaussian at each pixel of the template im-

age scaled by the membrane’s original curvature at that point. This naturally
encodes the significance of the underlying image structure, which in turn en-
courages features to align with corresponding features.

Bending energy: We model the inherent flexibility of a membrane by penaliz-
ing local surface deformations in proportion to the membrane’s original curva-
ture. This corresponds to minimizing the change in potential bending energy
which translates into a novel curvature-weighted second order derivative prior.

Stretching energy: We model the inherent elasticity of a membrane by penal-
izing surface stretching and compression. This corresponds to minimizing the
change in potential elastic energy across the membrane which translates into
a novel first order derivative prior.

Intuitively, this formulation leads to surface regions with prominent local struc-
tures (features of the membrane) to be preserved and aligned with each other
while more smooth regions are allowed to deform more flexibly. By preserving the
shape of the membrane features, their appearance in the image being modeled
remain true to their underlying geometry.

We demonstrate the accuracy and effectiveness of our method on 2D slices
of real brain MRIs and images of faces with different expressions. In particular,
we show that in addition to a significant decrease in overall intensity error, our
method establishes accurate correspondences of prominent image structures au-
tomatically. This has strong implications in various applications since local image
structures usually correspond to meaningful geometric structures of the imaged
scene or object, and accurately aligning such structures is of great importance.

2 Related Work

Nonrigid image registration has been a popular area of research. Here we focus
on methods that specifically address the shortcomings of both intensity-based
and feature-based methods. We refer the reader to surveys of the rich literature
[11, 12, 4] for more thorough context.
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Fischer and Modersitzki [13] combine the two approaches on a sliding scale.
They initially register a set of manually established features, then incrementally
shift towards a uniform intensity-based metric. Our curvature-scaled objective
function has a similar effect in that it encourages the rapid registration of feature
rich areas. It does so, however, without requiring predefined features or by giving
priority to the registration of any subregion.

Fischer and Modersitzki [14] also introduced a “curvature-based” normal-
ization term that encourages locally smooth deformations by penalizing sharp
changes in the displacement field. Although we also describe our bending energy
constraint term as “curvature-based,” the two approaches are fundamentally dif-
ferent. Whereas their normalization term is a second-order derivative of the 2D
displacement field, we impose an energy minimization prior on the membrane,
i.e., the image modeled as a 3D spatial-intensity surface. This added dimension
allows us to impose geometrically-induced constraints on the image deformation.

Intensity-based methods assume that corresponding regions in the imaged
scene maintain the same intensity pattern in both images. Previous authors
[15,16] have noted that this assumption can lead to violations of the basic phys-
ical properties of the subject which are present despite changes in illumination.
To address this they use mass or volumetric constraints specific to their given
applications. More general methods like Thirion’s Demons method [5] and the
recent diffeomorphic extension of this work by Vercauteren et al. [7] smooth the
2D deformation field thereby preventing large feature displacements from tearing
or folding the deformation field. Although smooth deformation fields are found,
ambiguities arising from similar intensity patterns of non-corresponding regions
result in undesirable non-local artifacts. In our physically motivated model, we
avoid such local minima by preserving the shape of the image membrane thereby
maintaining local structures as they move across the image. To address folding
we introduce a novel prior which allows pixels to come quite close to each other
without overlapping. This allows us to model the common physical occurrence
of creasing which is impossible under the various smoothing models.

Recently, probabilistic formulations of nonrigid image registration have gained
further attention. Jian and Vemuri [17] use a Gaussian mixture model to register
two point sets by placing a Gaussian at each point. Our work is most closely
related to the extension of this approach by Myronenko et al. [6] that formulates
image registration as a Gaussian mixture estimation with Gaussians centered
on each pixel. By placing quadratic priors on each Gaussian, they preserve the
distance of each pixel to its neighbors thereby avoiding tearing and folding of
the deformation field. This results in a locally smooth deformation with well-
minimized intensity distance on synthetic deformations. Unavoidably, however,
these priors perform less well on real-world data which exhibit more complex
transformations that cannot be modeled with assumptions of smoothness. Since
accurate correspondences are of primary concern in many applications, we show
that the minimization of an intensity distance is an insufficient objective function
without shape preserving constraints.
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3 Bayesian Membrane Registration

We model the image as a 2D membrane in a 3D space. In
order to ensure this membrane approximates the actual im-
aged surface, the intensities are normalized and the height
of each pixel is set proportionately to the log of the normal-
ized intensity.1 As noted by Koenderink and van Doorn [18],
by using the log-intensity we ensure a geometrically invari-
ant intensity encoding which eliminates any effect intensity
magnitude may otherwise have on our geometric constraints while simultane-
ously achieving a degree of symmetry between the Cartesian pixel coordinates
and heights of the points on the membrane.

More precisely, we view the image coordinates x̂ = (x̂u, x̂v) and scaled loga-
rithm of the normalized intensity of each point I(x̂) together as points
x = (x̂u, x̂v, I(x̂)) of a 2D membrane in a 3D space. In many cases we may
assume that this membrane reflects the geometry of the imaged object. For
instance, a Lambertian surface would have its normals roughly encoded in its
shading and the intensity in medical images reflects the density of the subject.

Similar to Myronenko et al. [6], we formulate nonrigid image registration as
a MAP estimation of a product of Gaussian mixture densities. The posterior,
representing the probability of the template image Y given the reference image
X and parameters θ, is formulated as

p(Y|X, θ) ∝ p(X|Y, θ)p(Y|θ) , (1)

where we assume uniform normalization p(X). We have five parameters, θ =
(Y0, σ0, βe, βb, βf), which we describe below. Here X = (x1, . . . ,xN )T is an
N ×3 matrix containing the points in the reference membrane x = (x̂u, x̂v, I(x̂))
and Y = (y1, . . . ,yM )T is an M × 3 matrix containing the final locations of
the registered template membrane’s points y = (ŷu, ŷv, I(ŷ)). We denote the
original, undeformed template membrane as Y0 = (y0

1 , . . . ,y
0
M )T. N and M

are the number of pixels in the images (which need not be equal in size). We
model the likelihood as a product of N independent Gaussian mixture den-
sities p(X|Y, θ) =

∏
n p(xn|Y). Building on this formulation, we introduce a

curvature-based scaling to each point as we discuss next.
Our key contributions lie in the three priors on the template membrane Y,

p(Y|θ) ∝ exp (−βeE(Y) − βbB(Y) − βfF(Y)) . (2)

The first, E(·), quantifies the amount of change in elastic potential energy in the
membrane. The second, B(·), quantifies the change in bending potential energy
in the membrane. Finally, F(·) quantifies the amount of folding, or overlap, in
the membrane. Each function is weighted by a parameter β{e,b,f} ∈ θ. We will
now describe each component of the posterior in more detail.
1 Results are consistent so long as the images are normalized consistently. Since this

formulation is geometrically invariant, the scale only effects the convergence rate.
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Fig. 1. Shown in this 1D example, a Gaussian is established for each pixel of the

template image (solid) with standard deviation (circles) proportional to the curvature

at that point. This allows prominent local structures that usually have high curvature

to travel further and align with corresponding structures of the reference image (dotted)

while preserving their shapes as modeled by their elastic and bending energies.

3.1 Gaussian Mixture Likelihood

The mixture density p(xn) for a pixel of the reference image xn is expressed prob-
abilistically as a Gaussian mixture where each point of the template membrane
is expressed as its own Gaussian distribution

p(xn|Y) =
M∑

m=1

1
M

N (xn|μm, Σm) . (3)

Observing that regions with prominent local structures (features) are more in-
dicative of the membrane’s overall shape, we allow points in these regions a
larger range of motion by scaling the Gaussian centered at each point by the
membrane’s original curvature at that point. Using the squared mean curvature
H2(y0

m) we model this with a per-point mean and standard deviation of

μm = ym, Σm = (H2(y0
m)σ0)2I3 , (4)

where I3 is the identity matrix as each image dimension is statistically inde-
pendent. These feature rich areas maintain their shape due to increased rigidity
constraints (discussed in the next section). Intuitively, this leads to feature-rich
surface regions to be preserved and aligned with each other, guiding the regis-
tration of the rest of the membrane.

We can then express the likelihood across the entire image as an unweighted
product of these Gaussian mixture densities

p(X|Y, σ0) ∝
N∏

n=1

M∑
m=1

exp

[
−1

2

∥∥∥∥ xn − ym

H2(y0
m)σ0

∥∥∥∥2
]

. (5)

In other words, for a given scale parameter σ0, the final pixel locations Y that
maximize this likelihood represent the deformation that maps the points of the
template membrane to regions of the reference membrane.

In Fig. 1 we show a simple one-dimensional, (x, I(x)), example where the
initial template Y0 is shown in red, and the reference X is shown in gray. The
relative standard deviations of the Gaussians are shown as orange circles. As
shown in Fig. 2, this increase in the search space for key regions of the curve is
necessary to avoid local minima and preserve the geometry of membrane features.
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Fig. 2. Two results after registering the curves of Fig. 1 are shown (solid) relative to

the target curve (dotted). Standard smoothing priors [6] (left) can cause local minima

to be found. Here an entire peak is unregistered while two peaks have collapsed into

one. Imposing our physically-based constraints (right) ensures that the structure of the

entire curve is maintained during deformation resulting in a more accurate registration.

The shape of the deformed membrane must now be considered. Without con-
straints on the deformation, the pixel locations can be permuted at will to maxi-
mize the likelihood. To ensure an accurate deformation, we introduce physically-
motivated priors that operate on the local geometry of the membrane.

3.2 Shape-Preserving Priors

The membrane model of an image allows us to incorporate physically-based con-
straints that preserve the local intensity structures of the image as it deforms. In
particular, we model the elastic and bending potential energies of the membrane
and impose geometric constraints that minimize the changes in these energies.

Elastic Energy. The elastic energy of a deformation captures the change in
elastic potential as the membrane deforms. We define this energy as the sum
of the elastic energy across all points E(Y) =

∑
m E(ym). We define the elastic

energy at a point as the change in elastic potential energy at that point y relative
to the potential at that point in the original membrane y0. We evaluate the
potential of a point on a membrane using Hooke’s law E = 1

2kx2. By assuming
the elastic constant (k in Hooke’s law) is uniform across the membrane we let
βe = (k/2)2 which is then used to weight the entire energy term. The relative
displacement (x in Hooke’s law) at each point naturally corresponds to the total
change in distance to the point’s neighbors ne(y).

By squaring the difference in potential of the relaxed and deformed mem-
branes, we naturally quantify the amount of elastic energy at each point as

E(y) =
∑

yi∈ne(y)

(
∥∥yi − y

∥∥2 −
∥∥y0

i − y0
∥∥2

)2. (6)

Note that because the intensity of a pixel does not change this reduces to

E(y) =
∑

yi∈ne(y)

(‖ŷi − ŷ‖2 − 1)2. (7)

This prior differs considerably from stretching or elastic constraints of past work.
Specifically, the first-order smoothing terms used in past work impose smoothing
on the 2D deformation field itself, necessarily resulting in overly smooth local
deformations.
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Bending Energy. We also model the bending potential energy of the mem-
brane and derive an energy term which quantifies the change in this potential as
the membrane deforms. We define the total bending energy as the sum across
all points, B(Y) =

∑
m B(ym). Our bending potential function is based on the

Willmore energy
∫

S
1
2H2 − KdA, where H is the mean curvature function and

K is the Gaussian curvature function. By the Gauss-Bonnet theorem K is a
topological invariant, and so remains constant during the deformation. Since we
are concerned with the change in this energy, this term cancels out. We extend
the Willmore energy to include the inherent rigidity of structural features by
considering the potential of each point separately.

Whereas homogeneous membranes have uniform elasticity, the flexibility of a
membrane varies with the curvature of the undeformed surface [19]. This trans-
lates to weighting the bending energy with a per-point rigidity coefficient equal to
the squared mean curvature of the undeformed membrane at that point H2(Y0).
This term also provides robustness to noise since a corrupt pixel will yield a high
curvature value at that point. Since mean curvature is computationally expen-
sive, we use the Laplacian Δ(·) as an approximation for H2(·) when computing
the change in energy [20]. We define the bending energy as the weighted squared
change in bending potential

B(y) = H2(y0)
(
Δ(y) − Δ(y0)

)2
. (8)

At a given point, the Laplacian of a surface is expressed using the (log) intensity
heights I(·) of the point y = (ŷu, ŷv, I(ŷ)) and its negative direction and positive
direction neighbors y− and y+ respectively

Δ(y) =
(

h−(I(ŷ+) − I(ŷ)) − h+(I(ŷ) − I(ŷ−))
h+h−h±

)2

, (9)

where the distance to the positive direction neighbor h+ the negative direction
neighbor h− and the distance between midpoints h± are used

h+ = ‖ŷ+ − ŷ‖ , h− = ‖ŷ − ŷ−‖ , h± = ‖[(ŷ+ + ŷ) − (ŷ + ŷ−)] /2‖ . (10)

As a time saving approximation we assume h+ = h− = h±. We also note that
the numerator is equal for Δ(y) and Δ(y0) since the intensities of the pixels do
not change. Further, we note that h0

± is constant which allows us to reduce the
horizontal bending penalization of Eq. 8 to

B(y) ∝ H2(y0)
(
h−2
± − 1

)2
. (11)

For 2D images we consider horizontal, vertical, and two diagonal bending ener-
gies by formulating B→, B↓, B↗, and B↘ analogously and take the sum

B(y) = B→(y) + B↓(y) + B↗(y) + B↘(y) . (12)

Folding Prior. During registration, regions of the deforming template mem-
brane will expand and compress to meet the corresponding reference regions. As
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(a) E = 0.0 (b) E = 7.7 (c) E = 5.7 (d) Crease

Fig. 3. The elastic penalization for areas of compression is minimized when neighboring

surface patches fold over one another in featureless regions. We address this with an

explicit prior on folding which allows for creases to form but eliminates folding.

shown in Fig. 3, since our elastic energy constraint encourages uniform spacing
and our bending energy constraint applies primarily to feature rich areas, folding
can occur. Although the bending prior discourages this in textured areas, it is
not sufficient in relatively featureless regions.

Conventional methods decrease this by imposing second order derivative pe-
nalizations on the 2D deformation field [6,14] or by specifically modeling diffeo-
morphic registrations [7]. Problems arise, however, in regions that change in size
dramatically. As real-world objects inevitably experience such large deforma-
tions, a more accurate model should allow sharp boundaries in the deformation
field as neighboring regions converge and creases form.

We allow such sharp boundaries to form with an explicit model of folding that
allows pixels to come quite close to each other without penalty while strongly
penalizing folding. We model this with a sigmoid function on each of the four
neighboring directions of a point y = (ŷu, ŷv, I(ŷ)). The folding energy of a
deformation is then the sum across the deformation of each of these four values

F(Y) =
M∑

m=1

(F→(ym) + F←(ym) + F↑(ym) + F↓(ym)) . (13)

For example, the right neighbor function is given by

F→(y) =
(
1 + exp{c(ŷ+

u − ŷu + t)}
)−1

, (14)

where ŷ+ is the right neighbor of ŷ. We establish the other three functions
similarly. In this formulation a sufficiently high value for c and low value for t
effectively make this a step function that penalizes the folding of neighboring
pixels while allowing pixels to form sharp boundaries without penalty.

3.3 MAP Estimation

Having formulated the likelihood and prior constraints, we may estimate the
maximum a posteriori using energy minimization. Specifically, the log posterior

log p(Y|X, θ)=
N∑

n=1

log
M∑

m=1

e
− 1

2

∥∥∥∥ xn−ym
H(y0

m)σ0

∥∥∥∥2

− βeE(Y) − βbB(Y) − βfF(Y) + C (15)
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(a) Template

Our Method GEN IRTK DD Demons

(b) Reverse deformations at low resolution

(c) Reference (d) Full resolution registrations

(e) Difference (f) Full resolution intensity difference

(g) Detail and
true landmarks

(h) Detail of intensity difference and final landmark locations

Fig. 4. Template and reference images (from BrainWeb [22]) are scaled down and regis-

tration is performed with various methods. The resulting reverse deformation grid (b) is

applied to the original template image (a). These registrations (d) are subtracted from

the reference image (c). The error is then visualized (f) and compared with the differ-

ence of the original template and reference images (e). Increased brightness corresponds

to larger error. Detailed inspections (h) of a region requiring a large transformation (g)

show that our method results in the least error both in terms of the intensity difference

and in the alignment accuracy of features. This example is labeled “Brain1” in Fig. 8.

can be maximized using simulated annealing over the scale parameter σ0 [6]. We
vary σ0 between σmax and σmin which depend only on the size of the images and
are set automatically. The solution for each iteration is found with an interior
trust region method [21]. In practice our rigidity constraints have proven robust
to large values for σmax . Typically σmin = 0.5, σmax = 6, and 6 annealing it-
erations are needed to converge for 100 × 100 images. We set t = 1 and c = 5
in our folding prior F to allow faster convergence of each annealing iteration.
With this smooth penalization, however, resulting registrations occasionally have
some amount of folding of the registration. To address this, after each annealing
iteration points that have folded over each other are merged together. Unfortu-
nately, each iteration is still quite computationally expensive, requiring as much
as forty-five minutes in our current unoptimized implementation. We envision a
significant speed-up with an approximate linearization of the objective function.

4 Experimental Results

We evaluate the accuracy of our model on human facial expressions and 2D slices
of real brain MRIs. We compare the results with four characteristic automatic
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methods. Rueckert et al. [23] introduced an intensity-based approach that uses
b-splines to smooth the deformation field which they released as part of their Im-
age Registration Toolkit (IRTK). Thiron’s well known Demons method [5], uses
gradient information from the reference image to determine the amount of force
the deforming points must exert. This work was later extended by Vercauteren
et al. [7] to specifically model diffeomorphisims in a model termed Diffeomor-
phic Demons (DD). Finally, we compare our work to the generalized elastic net
(GEN) model of Myronenko et al. [6] that uses a Gaussian mixture formulation
similar to ours but with conventional smoothing priors. When possible, we use
publicly available implementations of these algorithms with default parameters.

Past work use synthetic deformations to compare their results to ground-truth
deformations. Synthetic deformations, however, are generated without regard for
the physical structure of the image subject and therefore provide little informa-
tion about real-world accuracy. Instead, we observe that an ideal registration
should conform to the structural properties of the imaged subject. A deforma-
tion field embodying this characteristic should therefore maintain accuracy even
when applied to a higher resolution image. At this increased resolution we may
then compare the intensity error as well as the locations of manually labeled
feature points to test sub-pixel accuracy. What may be termed “under-fitting”
or “over-fitting” occurs when a deformation field appears well-suited at one res-
olution, but reveals significant inaccuracy at higher resolutions.

In Fig. 4 we compare the results of our method on a subject from the Brain-
Web database [22] with the other methods. A lower resolution version of the
template image (4a) is registered to an equally down-sampled reference image
(4c). The resulting inverse deformation fields (4b) show where each pixel in the
resulting registration originated. The resulting high resolution registrations (4d),
formed using a bilinearly interpolated inverse deformation field, are then com-
pared with the reference image (4c) and the absolute difference is visualized as a
heat map (4f) in which the brightness of the pixel increases as the error increases.
Our approach produces a significantly improved registration, as evident by the
greater amount of black (4f). Closer inspection (4h) shows the feature alignment
accuracy of our method as evident by the close proximity of the feature points
to key anatomical landmarks (4g). Here we also see that the error for this region
is less than the interpolation scale (which is 3 in this case), revealing the degree
of sub-pixel accuracy of our method. This example is labeled “Brain1” in Fig. 8.
Note that we achieve a minimum 29% decrease in overall intensity error, while
achieving a 29% decrease in feature alignment error.

Fig. 5 details the importance of shape preservation. When using a smoothing
model, a landmark that was originally at the tip of a long feature looses this dis-
tinction and becomes embedded in a mass. With our method, the local geometry
of the feature is preserved and a more accurate registration is achieved.

In Fig. 6 we qualitatively compare the registrations a neutral face (6a) to a
smiling face (6b) from the Japanese Female Facial Expressions (JAFFE) database
[24]. In analyzing the deformation fields we find that the key challenge in ex-
pression registration is the sudden appearance of dark regions that were not
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(a) Initial (b) Truth

(c) Smoothing (d) Ours

Fig. 5. Our shape pre-

serving priors (d) ensure

that meaningful correspon-

dences are made as com-

pared to smoothing models

[5] (c)

(a) Template (b) Reference (c) Our method

(d) GEN (e) IRTK (f) DD (g) Demon

Fig. 6. Faces (from JAFFE [24]) present a particu-

lar challenge due to dramatic local deformations and

intensity variations in corresponding regions like the

creases of a smile. Our method outperforms past work

by preserving the shape of the features as they deform.

This example is “Face1” in the graphs of Fig. 8.

previously present. In this example the formation of a smile introduces dra-
matic changes in brightness in the cheeks as creases appear. This causes gross
deformations to result in the other, less-structured models. Our method, on the
other hand, achieves a much more accurate registration across the entire face.
Although it is not possible to recreate the creases without changing the intensity
of the pixels, the shape of the lips and raise in cheeks are captured well.

Three more datasets are shown in Fig. 7. The first example shows the registra-
tion of a neutral face to a frown. Note how as the upper lip compresses, a crease
forms in the chin. The co-appearance of these dark regions above and below the
original lip creates a challenging ambiguity. IRTK tries to split this dark region
between the lip and chin whereas the Diffeomorphic Demons method shifts the
mouth down to meet the chin crease. Our method achieves an accurate result
by maintaining the membrane geometry of the whole mouth as it stretches and
curves down. The second example shows the registration of a neutral face to a
sad face. This subtle expression demonstrates the key criticism of intensity-based
methods – despite the reasonable appearance of these results each method fails
to accurately align key landmarks as evidenced by the bright sections of error
surrounding the facial features exhibited by every method except ours. Note also
how the lower lip has been dramatically compressed in various methods to meet
the highlight that shows up in the reference image. The final example shows
two horizontal MRI slices of the same subject. Note how the top left portion of
the ventricle has become almost completely occluded in the reference image. As
is shown in the detail of Fig. 3d, our method correctly models this as a crease
whereas the other models have no way to register a feature that has disappeared.

In Fig. 8 we quantitatively evaluate our results and compare them with these
methods. For each dataset cluster the yellow column (labeled “None”) shows
the value of the error measures when no algorithm is used indicating the relative
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(a) Reference

Our Method GEN IRTK DD Demons

(b) Registrations from Yale Faces database [25]

(c) Template (d) Absolute intensity error

(e) Reference (f) Registrations from Yale Faces database [25]

(g) Template (h) Absolute intensity error

(i) Reference (j) Registrations from BrainWeb [22]

(k) Template (l) Absolute intensity error

Fig. 7. Facial expressions and 2D MRI slices are registered using our method, GEN [6],

IRTK [23], Diffeomorphic Demons (DD) [7], and Demons [5] methods respectively.

These datasets are labeled Face3, Face4, and Brain4, in the graphs of Fig. 8

magnitude of the measures. In Fig. 8a we compare the mean squared error in
intensity [0, 1] of the registration. The results show that our method results in
an average of 32% less error than the next best method. In Fig 8b we compare
the mean error of final landmark locations (in pixels) from the manually labeled
ground-truth locations. For each image pair we annotate between 12 and 27
primary feature correspondences. Here our method achieves an average of 53%
less error in feature alignment than the next best method with values consistently
below the interpolation scale.
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(a) Mean squared intensity error
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(b) Mean landmark error (in pixels)

Fig. 8. In both graphs the yellow (right-most) bar of each grouping indicates the

amount of error if no registration is performed. Our method consistently outperforms

every other benchmark method.

5 Conclusion

Our method demonstrates considerable accuracy that results from our key as-
sumption – that the image as a membrane in 3D spatial-intensity space ap-
proximates the actual surface of the subject and preserving its geometric shape
reflects the true image deformation more accurately. Experimental results have
shown that in many cases the assumption is valid and geometrically induced
constraints increase accuracy dramatically. In particular, our method achieves
higher accuracy in both the overall deformation and resulting feature correspon-
dences. The resulting registrations exhibit a robustness to the common pitfalls
of intensity-based registration techniques while maintaining particularly high ac-
curacy for feature points automatically. This has strong implications in various
applications where the accuracy of correspondences is particularly important.

Acknowledgements. This work was supported in part by National Science
Foundation CAREER Award IIS-0746717 and IIS-0803670.
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Abstract. This paper is addressing the problem of realigning broken

objects without correspondences. We consider linear transformations be-

tween the object fragments and present the method through 2D and 3D

affine transformations. The basic idea is to construct and solve a polyno-

mial system of equations which provides the unknown parameters of the

alignment. We have quantitatively evaluated the proposed algorithm on

a large synthetic dataset containing 2D and 3D images. The results show

that the method performs well and robust against segmentation errors.

We also present experiments on 2D real images as well as on volumetric

medical images applied to surgical planning.

1 Introduction

In this paper we address the problem of reassembling an object from its parts.
This is also known as the puzzle problem, which is not only interesting from a
theoretical point of view [1,2], but also arises in many application domains like
archaeology [3] or medical imaging [4] e.g. bone fracture reduction [5,6,7]. The
affine puzzle problem can be formulated as follows: Given a binary image of an
object (the template) and another binary image (the observation) containing the
fragments of the template, we want to establish the geometric correspondence
between these images which reconstructs the complete template object from
its parts. The overall distortion is a global nonlinear transformation with the
following constraint: 1) the object parts are distinct (i.e. either disconnected or
separated by segmentation), 2) all fragments of the template are available, but
3) each of them is subject to a different affine deformation.

A related problem is partial matching of shapes [8,9,10]. Partial matching
addresses a particularly challenging setting of classical shape matching, where
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two shapes are dissimilar in general, but have significant similar parts. In this
context, our problem would require to find a partial matching between the tem-
plate and each fragments of the observation. Current approaches are usually
based on the Laplace-Beltrami framework [11,10], but classical approaches like
the Iterative Closest Point (ICP) [12] algorithm can also be used assuming an
appropriate shape representation [8]. Considering the rather high computational
complexity of these algorithms, this solution is far from optimal for our problem.

Another related problem is the piece-wise approximation of nonlinear deforma-
tions by locally linear transformations. In [13], the distortion is modeled as locally
affine but globally smooth transformation, which accounts for local and global vari-
ations in image intensities. The classical solution [14] comprises identifying point
correspondences based on salient points between the images and then either a time
consuming optimization procedure or the solution of a system of equations pro-
vide the parameters of the unknown deformation. Finding reliable point correspon-
dences between the images is a difficult problem on its own.

Most of the existing solutions to the puzzle problem [1,2,3] consist in matching
fragment-pairs to find neighbors, which are then reassembled by a rigid body
transformation. In [1], Kong and Kimia propose a 2D curve matching technique
based on the geometric features of puzzle pieces. The solution is obtained by a
recursive grouping of triples using a best-first search strategy. The method can
be extended to 3D fragments scanned by a laser range finder, where a pair of
ridges are matched using a generalization of the 2D curve matching approach.
In [3], the rather high computational complexity of curve matching is reduced by
adopting a multiscale technique. Papaioannou et al. address the problem of 3D
object reconstruction using only the surface geometry of fragments, assuming
no information about the final model to be reconstructed [2]. The basic idea of
the method is that the best fit of two 3D fragments is likely to occur at their
relative pose, which minimizes the point-by-point distance between the mutually
visible faces of the fragments. Matched pieces are then glued via a rigid-body
transformation.

Although classical approaches may account for a template object by incorpo-
rating a set of constraints to improve the overall performance, they are primarily
targeted to problems where a template is not available, e.g. archaeology [3]. On
the other hand, there are many applications where a template object is available:
In industrial applications usually 3D models of manufactured parts can be easily
produced. In medical imaging an atlas can be used or, by taking advantage of
the symmetry of the human body, the intact bone can provide a template for
bone fracture reduction, as shown in Section 5.3. Therefore we address this im-
portant setting of the puzzle problem and propose a generic solution which is
then applied to 2D and 3D transformations. The methodology adopted here is
similar in spirit to the affine matching methods of [15] and [16]. However, none
of these works addresses the puzzle problem. [16] assumes that both images con-
tain the same number of shapes and radiometric information is available. Based
on these informations, Hagege and Francos construct a linear system of equa-
tions which provides the parameters of the aligning transformations. Since the
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partitioning of the template is not available, this method cannot be used here.
In [15], Domokos and Kato presented an elegant solution to recover affine de-
formations between 2D shapes. This method is also unable to solve the puzzle
problem because the deformation is nonlinear and there is no direct correspon-
dence between the template and its observed fragments.

In Section 2, a general solution is proposed followed by Section 3 about the
numerical implementation issues and Section 4 presenting the application of our
method for various linear transformations. Finally, Section 5 presents quantita-
tive results on 2D and 3D synthetic datasets as well as on various real images
and Section 6 concludes the paper.

2 Realigning Object Parts

Given an n dimensional template object and an observation containing its affine
deformed fragments, we want to recover the transformations realigning these
shapes into their original position on the template. Let us denote the homoge-
neous point coordinates of the template and observation by x = [x1, . . . , xn, 1]
and y = [y1, . . . , yn, 1] ∈ Pn. Furthermore, let � ∈ N denote the number of frag-
ments on the observation. The transformation aligning the observation with the
template is a non-linear one, composed of � linear transformations

Ai =

⎡⎢⎢⎢⎣
ai11 ai12 . . . ai1(n+1)

...
. . .

...
ain1 ain2 . . . ain(n+1)
0 0 . . . 1

⎤⎥⎥⎥⎦ i = 1, . . . � . (1)

Since the observation has disjoint parts, we can assume that points of each
deformed shape are labeled by the function λ′ : Pn → {0, 1, . . . , �}, which assigns
0 to the background. Obviously, there is a corresponding hidden labeling λ :
Pn → {0, 1, . . . , �} which assigns the label i to the template points corresponding
to the ith shape. Our goal is to recover the affine matrices {Ai}�

i=1. The main
challenges are that neither the partitioning (i.e. the hidden labeling λ) of the
template nor correspondences between the shapes are known.

2.1 Solution for One Pair of Shapes

Let us first establish a solution for the ith shape. The template and observation
domains are denoted by Di = {x ∈ Pn|λ(x) = i} and D′

i = {y ∈ Pn|λ′(y) = i},
respectively. Note that D′

i is known but Di is unknown. The points of these
domains are related by the unknown transformation Ai:

x = Aiy. (2)

One way to recover Ai is to establish point correspondences and then set up a
system of equations from Eq. (2). Since Di is unknown, finding correspondences
is practically impossible. Therefore we are interested in a direct method without
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solving the correspondence problem. For that purpose, let us notice that that
the relation in Eq. (2) remains valid when a function ω : Pn → R is acting on
both sides of the equation [15]:

ω(x) = ω(Aiy) . (3)

We then integrate out individual point correspondences [15] yielding∫
Di

ω(x)dx = |Ai|
∫
D′

i

ω(Aiy)dy, (4)

where the integral transformation x = Aiy, dx = |Ai|dy has been applied,
and |Ai| is the Jacobian determinant. Based on Eq. (4), we can construct as
many equations as needed by making use of a set of linearly independent func-
tions {ωj}m

j=1, m ≥ n(n + 1). The solution of the resulting nonlinear system of
equations provides the parameters of Ai[15].

2.2 Solving for All Shapes Simultaneously

We have established relations between the ith shape-pair, but we know neither
the correspondence between the shapes nor the partitioning Di of the template.
Would these information available, a pairwise alignment could be recovered by
any standard binary registration method. Unfortunately, that would require to
solve a partial matching problem [8] between each observation shape and the
template, which is far from trivial. Therefore we will sum equations for all shape
domains Di and solve the problem simultaneously, estimating all parameters in
one system of equations. Thus Eq. (4) becomes

�∑
i=1

∫
Di

ωj(x)dx =
�∑

i=1

|Ai|
∫
D′

i

ωj(Aiy)dy . (5)

Let D := ∪�
i=1Di, where D = {x ∈ Pn|λ(x) = 0} is the shape domain cor-

responding to the whole template. Therefore the left hand side of the above
equation can be written as

�∑
i=1

∫
Di

ωj(x)dx =
∫
⋃

�
i=1 Di

ωj(x)dx =
∫
D

ωj(x)dx , (6)

which can be computed directly from the input image without knowing the
partitioning Di. The resulting system of equations has �n(n + 1) unknowns:∫

D
ωj(x)dx =

�∑
i=1

|Ai|
∫
D′

i

ωj(Aiy)dy, j = 1, . . . , m . (7)

The solution of the system Eq. (7) provides all the unknown parameters of the
overall deformation. Since each ωj provides one equation, we need m ≥ �n(n+1)
linearly independent functions to solve for � linear transformations. In practice,
m > �n(n + 1) yielding an over-determined system for which a least squares
solution is obtained.



Affine Puzzle: Realigning Deformed Object Fragments 781

3 Numerical Implementation

Theoretically, any nonlinear function satisfying Eq. (3) could be used to con-
struct the system of equations Eq. (7). In practice, however, the solution
is obtained via iterative least-squares minimization algorithms, like the
Levenberg-Marquardt algorithm [17], requiring a carefully chosen numerical
scheme.

3.1 Normalization

First of all, the coordinates of both images are normalized into the unit hyper-
cube [−0.5, 0.5]n, i.e. ∪�

i=1D′
i  → [−0.5, 0.5]n and D  → [−0.5, 0.5]n. This is

achieved by translating the origin into the center of the mass of the template
and observation followed by an appropriate isotropic scaling with a common
factor corresponding to the maximum size of the template and observation. Of
course, the solution of the nonlinear system has to be unnormalized to get the
right transformations between the original shapes. Denoting the normalizing
transformations of the template and observation by Nt, No, respectively and the
solutions by Ãi, the true transformation is thus obtained as Âi = N−1

t ÃiNo for
all i = 1, . . . , �.

Since a least-squares solution involves minimizing the algebraic error of
Eq. (7), we expect an equal contribution from each equation in order to guar-
antee an unbiased error measure. This is achieved by normalizing the range of
each ωj into [−1, 1]. We found experimentally, that the transformations occur-
ring during the least-squares minimization process do not transform the shapes
out of a hyper-sphere with center in the origin and a radius

√
n/2 (i.e. the

circumscribed hyper-sphere of the unit hyper-cube). Thus the normalization
can be done by dividing the integrals in Eq. (7) with an appropriate constant
cj corresponding to the maximal magnitude of the integral over this domain:

cj =
∫
‖x‖≤

√
n
2

|ωj(x)|dx , j = 1, . . . , m. (8)

3.2 Algorithmic Solution and Complexity

In practice, only a limited precision digital image is available, thus the inte-
grals can only be approximated by a discrete sum over the foreground pixels
introducing an inherent, although negligible error into our computation. The
continuous domains D and D′

i are represented as finite sets of foreground pix-
els denoted by D and D′

i. Thus the discrete form of the normalized Eq. (7)
becomes

1
cj

∑
x∈D

ωj(Ntx) =
1
cj

�∑
i=1

|Ai|
∑
y∈D′

i

ωj(NoAiy) , j = 1, . . . , m . (9)
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The system of Eq. (9) is solved by iterative least squares minimization us-
ing the Levenberg-Marquardt algorithm [17], which requires the evaluation of the
equations at every iteration step. Thus the time complexity of the algorithm is
considerably decreased if the sums can be precomputed, hence avoiding scanning
the image pixels at every iteration. Theoretically, an arbitrary set of ω func-
tions could be used, as long as they generate linearly independent equations.
It is shown in [15], however, that choosing a set of polynomial functions will
result in a polynomial system of equations, where these sums become precom-
puted constants. According to these findings the following set of polynomes are
adopted

{ωj : P
n → R}m

j=1 ={x 	→ xu1
1 . . . xun

n |uk ∈ N, k = 1, . . . , n, 0 ≤
n∑

k=1

uk ≤ d} , (10)

where d is the maximum degree and the number of the polynomes is given by
m = 1

n!

∏n
i=1(d + i).

The simple pseudo code of the algorithm is shown in Algorithm 1. Since
a set of polynomial functions is applied to generate Eq. (9), the unknowns are
eliminated from the sums [15]. Hence the algorithm has a linear time complexity:
the complexity of constructing the system Eq. (9) is O(|D| +

∑�
i=1 |D′

i|); and
the complexity of the solver itself is thus independent from the size of the input
images.

Algorithm 1. Pseudo-code of the proposed algorithm.
Input : The binary template (D) and � observation shapes (D′

i, i = 1, . . . , �)

Output: � estimated linear transformations Âi

Normalize the input coordinates by an appropriate similarity transformation N1

into [−0.5, 0.5]n such that the center of mass becomes the origin.

Choose a set of ωj : Pn → R (j = 1, . . . , m ≥ �n(n + 1)) polynomial functions.2

Construct the (over-determined) system of equations Eq. (9).3

Find a least-squares solution of the system using a Levenberg-Marquardt4

algorithm. The solver is initialized with the parameters of the identity

transformation.

Unnormalizing the solutions Ãi gives the parameters of the aligning5

transformation as Âi = N−1
t ÃiNo.

4 Affine Transformations

Herein we apply the registration framework to important classes of linear de-
formations: 2D and 3D affine, and 3D rigid body. 2D affine transformations are
often used as a linear approximation of projective distortions. 3D rigid body
transformation is important in many medical applications. In particular, when
bony structures need to be aligned in CT volumes then this transformation
should be considered due to the bio-mechanical properties of bones.



Affine Puzzle: Realigning Deformed Object Fragments 783

4.1 2D Affine Transformations

A 2D affine transformation has 6 parameters, hence n = 2 and we have 6�
unknowns. In order to obtain sufficiently many equations by using the set of ω
functions described in Eq. (10), d has to be chosen such that

m =
(d + 1)(d + 2)

2
≥ 6� ⇒ d ≥

⌈√
1 + 48� − 3

2

⌉
, (11)

where �·� denotes the upper integer parts. Eq. (7) becomes for all j = 1, . . . , m

∫
D

xu1
1 xu2

2 dx =

�∑
i=1

∫
D′

i

|Ai|(ai11y1+ai12y2+ai13)
u1(ai21y1+ai22y2+ai23)

u2dy , (12)

where the Jacobian can be easily computed as |Ai| = ai11ai22 − ai12ai21.

4.2 3D Affine Transformations

The extension of the 2D case to 3D is rather straightforward. Here, the tem-
plate parts undergo different 3D affine transformations, having a total of 12�
unknowns. In this case, d has to be chosen such that

m =
(d + 1)(d + 2)(d + 3)

6
≥ 12� ⇒ d ≥

⌈
c

3
+

1
c
− 2

⌉
, where

c = 3

√
3
(
324� +

√
(324�)2 − 3

)
. (13)

The Jacobian can be computed as in the 2D case.

4.3 3D Rigid-Body Transformations

An important special case of 3D linear deformations is the rigid-body trans-
formation. This kind of transformations have six degree of freedom: α1, α2, α3
are the rotation angles and t1, t2, t3 are the translations along the three coordi-
nate axes. A similar set {ω}m

j=1 can be used as in Eq. (13), but we need fewer
polynomes:

d ≥
⌈

c

3
+

1
c
− 2

⌉
, where c = 3

√
3
(
27 + 162� +

√
(27 + 162�)2 − 3

)
. (14)

Since a rigid-body transformation does not change the size of the objects, the
Jacobian determinant equals to 1, hence it is omitted from the equations.
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5 Experimental Results

The proposed method has been evaluated on 2D and 3D synthetic datasets.
In the case of 2D transformations, the dataset consisted of 10 template objects.
Synthetic observations were generated by first cutting each object into 2 parts in
4 different ways, resulting in 4 images for each template. Then 600 observations
of size 700×700 were generated by applying randomly composed affine transfor-
mations to each of these images with the following parameter ranges: rotation
angles of [−π/4; π/4] and along both axes scaling factors from [0.75; 1.25], skew-
ing from [−0.1; 0.1], and translations of [−25; 25]. In the 3D case, 10 template
volumes were randomly cut into 2 parts by a plane, such that the smaller part
is at least 20% of the original volume. By cutting each volume in five different
ways, 50 volume images are obtained. Then random 3D affine transformations
with similar parameters as in the 2D case (the only difference is that transla-
tions were chosen from [-10;10]) have been used to generate a total of 200 3D
observations of size 250 × 250 × 250.

template observation realigned observation realigned

Fig. 1. Sample results on 2D synthetic images

For the evaluation of the results, we defined two kind of error measures: The
first one (denoted by ε) measures the average distance between the true Ai and
the estimated Âi transformation for all object. The second one is the absolute
difference (denoted by δ) between the template and the aligned shapes:

ε =
∑

p∈D′
i,1≤i≤�

‖(Ai − Âi)p‖
|D′| , and δ =

|D̂ $ D|
|D̂| + |D|

· 100%, (15)

where $ means the symmetric difference, while D′ = ∪�
i=1D

′
i and D̂ = ∪�

i=1D̂i

denote the set of pixels of the observation and aligned shape respectively. Intu-
itively, ε shows the average transformation error per pixel. Note that ε can only
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template observation realigned

Fig. 2. Sample results on 3D synthetic images

be used when the true transformation is also known, while δ can always be com-
puted. On the other hand, ε gives a better characterization of the transformation
error as it directly evaluates the mistransformation. As a subjective evaluation
measure, we found experimentally that a δ ≤ 5% in 2D and a δ ≤ 10% in 3D
corresponds to a visually good alignment.

The proposed method was implemented in Matlab and ran under Linux with
3GHz CPU and 3GB memory. The typical runtime was under 3 seconds for 2D
and 10 seconds for 3D shapes. Some results are shown in Fig. 1 and Fig. 2.
Quantitative results in Table 1 clearly show that the proposed method provides
almost perfect alignments in both 2D and 3D.

5.1 Robustness

In practice, segmentation never produces perfect shapes. Therefore, besides us-
ing various kind of real images inherently subject to such errors, we have also
evaluated the robustness of the proposed approach against different type of seg-
mentation errors. In the first testcase, 5%, . . . , 20% of the foreground pixels has
been removed from the observation before registration. In the second case, we
occluded continuous square-shaped regions of size equal to 1%, . . . , 10% of the
shape. Finally, we randomly added or removed squares uniformly around the
boundary of a total size 1%, . . . , 10% of the shape. Note that we do not include
cases where erroneous foreground regions appear as disconnected regions, be-
cause such false regions can be efficiently removed by appropriate morphological
filtering. We therefore concentrate on cases where segmentation errors cannot be
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(a) missing pixels (b) occlusion (c) boundary error

Fig. 3. Sample observations with various degradations

Table 1. Median of error measures achieved by the proposed method on the 2D and

3D synthetic datasets. The first two rows show the results without degradation while

the rest contains the error values vs. various type of segmentation errors as shown in

Fig. 3.

Without degradation ε (pixel) δ (%)

2D affine transformations 0.11 0.13

3D affine transformations 0.7 3.09

(a) missing pixels 1% 5% 10% 20% 1% 5% 10% 20%

2D affine transformations 6.57 21.1 32.83 56.26 2.09 6.24 8.39 12.62

3D affine transformations 1.22 4.65 9.71 19.02 3.99 8.67 15.8 23.54

(b) size of occlusion 1% 2.5% 5% 10% 1% 2.5% 5% 10%

2D affine transformations 9.91 20.45 35.04 58.68 3.54 6.35 9.51 13.75

3D affine transformations 3.27 7.7 14.73 22.74 8.07 13.08 18.47 26.13

(c) size of boundary error 1% 2.5% 5% 10% 1% 2.5% 5% 10%

2D affine transformations 1.9 3.91 6.65 12.23 0.59 1 1.73 3.08

3D affine transformations 0.99 1.44 2.33 4.03 3.23 3.65 4.44 5.8

filtered out. See samples of these errors in Fig. 3. Table 1 shows that our method
is quite robust whenever errors are uniformly distributed over the whole shape
(first and third testcases). However, it becomes less stable in case of larger local-
ized errors, like occlusion and disocclusion. This is a usual behavior of area-based
methods because they are relying on quantities obtained by integrating over the
object area. Thus large missing parts would drastically change these quantities
resulting in false alignments. Nevertheless, in many application areas one can
take images under controlled conditions which guarantees that observations are
not occluded (e.g. medical imaging, industrial inspection).

5.2 Solving the Tangram Puzzle

Tangram is a dissection puzzle consisting of seven flat tiles (called tans), which
are put together to form various shapes. The objective is to form a specific shape
given only by its silhouette. Fig. 4 shows some examples of these shapes and the
solutions found by our method.
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Fig. 4. Solutions of the Tangram puzzle. Top: Template images with overlayed con-

tours of aligned fragments. Bottom: Observations.

The images were taken with a digital camera, then they were thresholded
and the resulting 2D shapes were realigned according to the template. The first
three templates of Fig. 4 are more challenging as they are scanned versions of
the printed shapes found in the Tangram manual, which are only approximate
silhouettes of the final tile configurations. We have used the affine model as an
approximation of the actual plane projective transformation acting between the
shapes.

It is well known that the Levenberg-Marquardt algorithm finds a local min-
ima close to the initialization. Finding a good initial configuration is largely
application-dependent. For example, on these images a global optimization pro-
cedure (e.g. Spectral Gradient Method [18]) provided good initialization, from
which Levenberg-Marquardt gives a better solution than starting from the iden-
tity transform.

Finally, we note that some tiles are slightly overlapping in Fig. 4. This is
because overlaps are invisible for the system of equations. Nevertheless, overlaps
could be prevented by checking the transformed fragments at every iterations,
but this is a rather time consuming procedure.

5.3 Realigning Bone Fractures

Complex bone fracture reduction frequently requires surgical care, especially
when angulation or displacement of bone fragments are large. In such situations,
computer aided surgical planning [5] is done before the actual surgery takes
place, which allows to gather more information about the dislocation of the
fragments and to arrange and analyze the surgical implants to be inserted. A
crucial part of such a system is the relocation of bone fragments to their original
anatomic position. Since the input data is typically a volume CT image, this
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Template obtained by mirroring intact bones Observation

Realigned bone fragments

Fig. 5. Bone fracture reduction (CPU time was 15 sec. for these 1 megavoxel CT

volumes)

repositioning has to be performed in 3D space which requires an expensive special
3D haptic device and quite a lot of manual work. Therefore automatic bone
fracture reduction can save considerable time, providing experts with a rough
alignment which can be manually fine-tuned according to anatomic requirements.

Since surgical planning involves the biomechanical analysis of the bone with
implants, only rigid-body transformations are allowed. In [5], a classical ICP al-
gorithm is used to realign fractures. Winkelbach et al. [6] proposed an approach
for estimating the relative transformations between fragments of a broken cylin-
drical structure by using well known surface registration techniques, like 2D
depth correlation and the ICP algorithm. In [7], registration is solved by using
quadrature filter phase difference to estimate local displacements.

Herein, we apply our puzzle framework to reduce pelvic fractures using 3D
rigid-body transformations. In cases of single side fractures, the template is
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simply obtained by mirroring intact bones of the patient. Fig. 5 shows a typ-
ical result for a pelvic fracture with three fragments. The main challenges are
segmentation errors and, due to the variability of the human body, a slightly
different template. In spite of these difficulties, the alignment of larger parts is
quite accurate, only the small fragment has a noticeable alignment error. Since
the error caused by a misplaced small piece is relatively low, the solver may not
find the best transformation. If we could normalize the terms of Eq. (9) corre-
sponding to each fragment, then the algebraic error would be better balanced
and a precise alignment could be found. Unfortunately, this is impossible as we
should know the partitioning of the template to compute proper normalizing
constants. Since human verification and correction of the result is needed any-
way in a real surgical planning system, these small errors are not critical and
can be easily corrected.

6 Conclusion

A novel framework to solve the affine puzzle problem has been proposed and
applied to 2D and 3D affine transformations. As opposed to classical solutions
based on landmark extraction and correspondences, the proposed solution finds
the aligning transformations without any additional information. Basically, the
method consists in constructing a polynomial system of equations whose solu-
tion directly provides the unknown parameters. Obviously, the number of object
fragments and strength of the deformation may influence the quality of the align-
ment: The more parts we have the more equations are required, which affects
numerical stability. Furthermore, more parts allow more affine transformations
yielding a stronger deformation. A completely random fragment-configuration
corresponds to a complex deformation, for which a stable solution is difficult to
achieve. On the other hand, when pieces are in relative order then a rather accu-
rate solution is obtained. Note, that for the presented medical application, this
is a realistic assumption due to physical constraints. Quantitative evaluations on
both 2D and 3D synthetic datasets demonstrate the performance and robust-
ness of the method and results obtained on real images confirm its relevance in
various application domains.
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Abstract. We present a fast, simple location recognition and image localization
method that leverages feature correspondence and geometry estimated from large
Internet photo collections. Such recovered structure contains a significant amount
of useful information about images and image features that is not available when
considering images in isolation. For instance, we can predict which views will be
the most common, which feature points in a scene are most reliable, and which
features in the scene tend to co-occur in the same image. Based on this informa-
tion, we devise an adaptive, prioritized algorithm for matching a representative
set of SIFT features covering a large scene to a query image for efficient local-
ization. Our approach is based on considering features in the scene database, and
matching them to query image features, as opposed to more conventional meth-
ods that match image features to visual words or database features. We find this
approach results in improved performance, due to the richer knowledge of char-
acteristics of the database features compared to query image features. We present
experiments on two large city-scale photo collections, showing that our algorithm
compares favorably to image retrieval-style approaches to location recognition.

Keywords: Location recognition, image registration, image matching, structure
from motion.

1 Introduction

In the past few years, the massive collections of imagery on the Internet have inspired a
wave of work on location recognition—the problem of determining where a photo was
taken by comparing it to a database of images of previously seen locations. Part of the
recent excitement in this area is due to the vast number of images now at our disposal:
imagine building a world-scale location recognition engine from all of the geotagged
images from online photo collections, such as Flickr and street view databases from
Google and Microsoft. Much of this recent work has posed the problem as that of image
retrieval [1,2,3,4]: given a query image to be recognized, find a set of similar images
from a database using image descriptors or visual features (possibly with a geometric
verification step), often building on bag-of-words techniques [5,6,7,8,9]. In this type of
approach, the database images are largely treated as independent collections of features,
and any structure between the images is ignored. In this paper we consider exploiting
this potentially rich structure for use in location recognition.
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For instance, recent work has shown that it is possible to automatically estimate cor-
respondence information and reconstruct 3D geometry from large, unordered collec-
tions of Internet images of landmarks and cities [10,3,11]. Starting with such structure,
rather than a collection of raw images, as a representation for location recognition and
localization is promising for several reasons. First, the point cloud is a compact “sum-
mary” of the scene—it typically contains orders of magnitude fewer points than there
are features in an image set, in part because each 3D point represents a cluster of re-
lated features, but also because many features extracted by algorithms like SIFT are
noisy and not useful for matching. Second, for each reconstructed scene point we know
the set of views in which a corresponding image feature was detected, and the size of
this set is related to the “stability” of that point, i.e., how reliably it can be detected in
an image, as well as how visible that scene feature is (e.g., a point on a tower might be
more visible than other features, see Figure 1). We can also determine how correlated
two points are—i.e., how often they are detected in the same images. Finally, when us-
ing Internet photo collections to build our reconstruction, the number of times a point is
viewed is related to the “popularity” of a given viewpoint—some parts of a scene may
be photographed much more often than others [12].

Fig. 1. SIFT Features in an image corresponding to reconstructed 3D points in the full model
(left) and the compressed model (right) for Dubrovnik. The feature corresponding to the most
visible point (i.e., seen by the most number of images) is marked in red in the right-hand image.
This feature, the face of a clocktower, is intuitively a highly visible one, and was successfully
matched in 370 images (over 5% of the total database).

In this paper, we explore how these aspects of reconstructed photo collections can be
used to improve location recognition. In particular, we use scene features (correspond-
ing to reconstructed 3D points), rather than images, as a matching primitive, revisiting
nearest-neighbor feature matching for this task. While there is a history of matching
individual features for recognition and localization [13,14,15], we advocate reversing
the usual process of matching. Typically, image features are matched to a database of
features. Instead, we match database features to image features, motivated by the richer
information available about scene features relative to query image features. Towards
this end, we propose a new, prioritized point matching algorithm that matches a subset
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of scene features to features in the query image, ordered by our estimate of how likely
a scene feature is to be matched given our prior knowledge about the database points
as well as which scene features have been successfully matched so far. This prioritized
approach allows “common” views to be localized quickly, sometimes with just a few
hundred nearest neighbor queries, even for large 3D models. In our experiments this ap-
proach also successfully localizes a higher proportion of images than approaches based
on image retrieval. In addition, we show that compressing the model by keeping only
a subset of representative points is beneficial in terms of both speed and accuracy. We
demonstrate results on large Internet databases of city images.

Given the feature correspondences found using our algorithm, we next estimate the
exact pose of the camera. While this final step relies on having an explicit 3D recon-
struction, many of the ideas used in our approach—finding stable points, prioritizing
features to match, etc.— only require knowledge of correspondences between features
across the image database (“feature tracks”), and not 3D geometry per se. However, be-
cause we ultimately produce a camera pose, and because the global geometry imposes
additional consistency constraints on the correspondences, we represent our scene with
explicit geometry, and refer to our database of scene features as a “point cloud.”

2 Related Work

Our work is most closely related to that of Irschara et al. [4], which also uses SfM point
clouds as the basis of a location recognition system. Our work differs from theirs in
several key ways, however. First, while they use a point cloud to summarize a loca-
tion, their recognition algorithm is still based on an initial image retrieval step using
vocabulary trees. In their case, they generate a minimal set of “synthetic” images that
covers the point cloud, and, given a new query image, use a vocabulary tree to retrieve
similar images in this covering. In one sense, our approach is the dual of [4]: instead
of selecting a set of images that cover the 3D points, we select a minimal set of 3D
points that cover the images, and use these points themselves as the matching primi-
tives. Second, while [4] uses images taken by a single person, we use city-scale image
databases taken from the Internet. Such Internet databases differ from more structured
datasets in that have much wider variation in appearance, and also reflect the inherent
“popularity” of given views. Our approach is sensitive to and exploits both of these
properties.

Our work is also related to the city-scale location recognition work of Schindler et
al. [1], who also use image feature stability, as well as the distinctiveness features, as
cues for building a recognition database. As with [4], Schindler et al.use image retrieval
as a basis for location recognition, and use a database of images taken a regular samples
throughout a city.

Like [4], [1], and [15], part of our approach involves reducing the amount of data
used to represent locations, a theme which has been explored by other researchers as
well. For instance, [16] uses epitomes [17] as compact representations of locations
created from videos of different scenes. Li et al. [3] derive “iconic” images derived
from performing clustering on large Internet photo collections, then localize query im-
ages by retrieving similar iconic images using bag-of-words or GIST descriptors [18].
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Similarly, [19] builds a landmark recognition engine by selecting iconic images using a
graph-based algorithm.

Finally, a number of researchers have applied more traditional recognition and ma-
chine learning techniques the problem of location recognition [2,20,21]. Others have
made use of information from image sequences; while this is a common approach in
the SLAM (Simultaneous Localization and Mapping) community, human travel priors
have also been used to georegister personal photo collections [22].

3 Building a Compact Model

Given a large collection of images of a specific area of interest (e.g., “Rome”) down-
loaded from the Internet, we first reconstruct one or more 3D models using image
matching and structure from motion (SfM) techniques. Our reconstruction system is
based on the work of Agarwal et al. [23]; we use a vocabulary tree to propose an
initial set of matching image pairs, do detailed SIFT feature matching to find feature
correspondences between images, then use SfM to reconstruct 3D geometry. Because
Internet photos taken in cities tend to have high density near landmarks or other popu-
lar places, and low density elsewhere, a set of city photos often breaks up into several
connected components (and a large number of “singleton” images that are not matched
to any other photo—we remove these from consideration, as well as other very small
connected components). For instance, the Rome dataset described in Section 5 consists
of 69 large components. An example 3D reconstruction is shown in Figure 2. Each
reconstruction consists of a set of recovered camera locations, as well as a set of re-
constructed 3D points, denoted P . For each point p ∈ P , we know the set of images
in which p was successfully detected and matched during the feature matching process
(and deemed to be a geometrically consistent detection). We also have a 128-byte SIFT
descriptor for each detection (we will assign their mean descriptor to p). Given a new
query image from the same scene, our goal is to find correspondences with these “scene
features,” and determine the camera pose.

One property of Internet photo collections (and current SfM methods) is that there
is a large variability in the number of times each scene feature is matched between
images. While many scene points are matched in only two images, others might be suc-
cessfully matched in hundreds. Consequently, not all scene features are equally useful

Fig. 2. Reconstructed 3D point cloud for Dubrovnik. Left: full model. Right: compressed model
(P c). The bright red regions represent the distribution of reconstructed camera positions.
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when matching with a new query image. This suggests a first step of “compressing” the
set of scene features by keeping only a subset of informative points, reducing computa-
tional cost and suppressing potential sources of confusion.

A naı̈ve way to compress the model is to rank the points by “visibility” (i.e., the
number of images where that point has been detected and matched) and select a set
from the top of the list. However, points selected in such way can (and usually do) have
very uneven spatial distribution, with popular areas having a large number of points,
and other areas having few or none.

Instead, we would like to choose a set of points that are both prominent and that cover
the whole model. To this end, we pose the selection of points as a set covering problem,
where the images in the model are the elements to be covered and each point is regarded
as a set containing the images in which it is visible. In other words, we seek the smallest
subset of P , such that each image is covered by at least one point in the subset. Given
such a subset, we might expect that a query image drawn from the same distribution of
views as the database images would—roughly speaking—match at least one point in the
model. However, because feature matching is a noisy process, and because robust pose
estimation requires more than one a single match, we instead require that the subset
covers each image at least K times (e.g., where K = 100).1 Although computing the
minimum set K-cover is NP-hard, a good approximation can be found using a greedy
algorithm that always selects the point which covers the largest number of not-yet-fully
covered images. Note that this is different from the covering problem in [4], which aims
to cover the points instead of the images. Our covering criterion is also related to the
informative features used in Schindler et al. [1], though our method is different; we
choose features based on explicit correspondences from feature matching and SfM, and
do not use an explicit measure of feature distinctiveness.

For our problem, given our initial point set P , we compute two different K-covers:
one for K = 5 but limited to 2,000 points (via early stopping of the greedy algorithm),
denoted P s, and one for K = 100 (without explicit limit on the number of points),
denoted P c. Intuitively, P s forms an extremely compact “seed” description of the entire
model that can be quickly swept through to find promising areas in which to focus the
search for further feature matches, while P c is a more exhaustive representation that
can be used for more accurate localization. We describe how our matching algorithm
uses these sets in the next section.

In our experiments, the reduction of points from model compression is significant.
For the Dubrovnik set, the point set was reduced from over 2 million in the full model to
under 80,000 in the compressed model P c. Figure 1 shows the features corresponding to
reconstructed 3D points in the full and the compressed Dubrovnik models that are visi-
ble in one particular image. The point clouds corresponding to the full and compressed
models are shown in Figure 2.

4 Registration and Localization

The ultimate goal of our system is to produce an accurate pose estimate of a query im-
age, given a relevant database of images. To register a query image to the 3D model

1 If an image sees fewer than K points in the full model, all of those points are selected.
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using pose estimation, we need to first find a set of correspondences between scene
features in the model and image features in the query image. While many recent ap-
proaches initially pose this as an image retrieval problem, we reconsider an approach
based purely on directly finding correspondences using nearest-neighbor feature match-
ing. In our case, we represent each point in our model with the mean of the correspond-
ing image feature descriptors. While the mean may not necessarily be representative of
clusters of SIFT features that are large or multi-modal, it is a commonly used approach
for creating compact representations (e.g. in k-means clustering) and we have found
this simple approach to work well in practice (though better cluster representations is
an interesting area for future work).

Given a set of SIFT descriptors in a query image (in what follows we refer to these
as “features,” for simplicity) and a set of SIFT descriptors representing the points in our
model (we will refer to these descriptors as “points”), we consider two basic matching
strategies:

– Feature-to-point matching, or F2P, where one takes each feature (in the query im-
age), and finds the best matching point (in the database) and

– Point-to-feature matching, or P2F, where one conversely matches points in the
model to features in the query image.

At first glance, F2P matching seems like the natural choice, since we usually think
of matching a query to a database—not vice versa—and even the compressed model is
usually much larger than the set of features in a single image. However, P2F matching
has the desirable property that we have a significant amount of information about how
informative each database point is, and which database points are likely to appear to-
gether, while we do not necessarily have much prior information about the features in
an image (other than low-level confidence measures provided by the feature detector).
In fact, counter to intuition, we show that P2F matching can be made to find matches
more quickly than F2P—especially for popular images—by choosing an intelligent pri-
ority ordering of the points in the database, such that we often only need to consider
a relatively small subset of the model points before sufficient matches are found. We
evaluate the empirical performance of F2P and P2F matching in Section 5.

For both matching strategies, we find potential matches using the approximate near-
est neighbor search [24]. As in prior work, we found that the priority search algorithm
worked well in pratice. We used a fixed search limit of 250 points per query; increasing
the search limit did not lead to significantly better results in our experiments.

We use a modified version of the ratio test that is common in nearest neighbor match-
ing to classify a match as true or false. For P2F matching, we use the usual ratio test:
a match between a point p from the model and feature f from the query image is con-
sidered a true match if dist(p,f)

dist(p,f ′) < λ, where dist(·, ·) is the distance between the
corresponding SIFT descriptors, f ′ is the second nearest neighbor of p among features
in the query image, and λ is the threshold ratio (0.7 in our implementation). For F2P
matching, we found that the analogous ratio test does not perform as well. We speculate
that this might be because the number of points in the compressed model is larger (and
hence denser) than the typical image feature set, and this increased density in SIFT
space has an effect on the ratio test. Instead, given a feature f and its approximate
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nearest neighbor p in the model, we compute the second nearest neighbor f ′ to p in the
image, and threshold on the ratio dist(f,p)

dist(f ′,p) (note that this ratio could be ≥ 1). We found
this test to perform better for F2P matching.

For P2F matching, we could find correspondences by applying the above procedure
to every point in the model. However, this would be very costly. We can do much better
by prioritizing certain queries over others, as we describe next.

4.1 Prioritized Point-to-Feature (P2F) Matching

As noted earlier, each point in the reconstructed 3D model is associated with the set of
images in which it is successfully detected and matched (“visible”). Topologically, the
model can be regarded as a bipartite graph (which we call the visibility graph) where
each point and each image is a vertex, and where the edges encode the visibility relation.

Based on this relation, we develop a matching algorithm guided by three heuristics:

1. Points with higher degree in the visibility graph should generally be considered
before points with lower degree, since a highly visible point is intuitively more
likely to be visible in a query image. Our matching algorithm thus maintains a
priority for each point, initially equal to its degree in the visibility graph.

2. If two points are often visible in the same set of images, and one of them has been
matched to some feature in the query image, then the other should be more likely
to find a match as well.

3. The algorithm should be able to quickly “explore” the model before “exploiting”
the first two heuristics, so as to avoid being trapped in some part that is irrelevant
to the query image. To this end, a set of highly visible seed points (corresponding
to P s in Section 3) are selected as a preprocess; these seed points are the basis for
an initial exploratory round of matching (before moving on to the more exhaustive
P c model). We limit the size of P s to 2,000 points, which is somewhat arbitrary
but represents a balance between exploration and exploitation.

Our P2F matching algorithm matches model points to query features in priority order
(using a priority queue), always choosing the point with the highest priority as the next
candidate for matching. The priorities of all points are initially set to be proportional
to their degrees in the visibility graph, i.e. di =

∑
j Vij . The priorities of the “seed”

points are further increased by a sufficiently large constant, so that all seed points rank
above the rest. Whenever the algorithm finds a match to a point p that passes the ratio
test, it increases the priority of related points, i.e., points seen in the same images as p.
Thus, if the algorithm finds a true match, it can quickly home in on the correct part of
the model and find additional true matches. If a true match is found early on (especially
likely with a popular image), the image can be localized with a relatively small number
of comparisons.

The matching algorithm terminates (successfully) once it has found a sufficient num-
ber of matches (given by a parameter N ), or (unsuccessfully) when it has tried to match
more than 500N points. On success, the matches are passed onto the pose estimation
routine. The abort criterion is based on our empirically observed “background” match
rate of roughly 1/500, i.e., in expectation every one out 500 points will succeed the
ratio test and be matched to some feature purely by chance (see also Section 5). Hence
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when 500N points have been tried, the rate of finding matches so far is no higher than
the background rate and hence a strong indication that the number of outlier matches
will be very large and hence the image will most likely not be recognized by the model.
The algorithm also depends on a second parameter ω, which is the trade-off between

Algorithm 1. Prioritized P2F Matching

Input: set of seed points P s and compressed points P c, n-by-m visibility matrix V , a query image
Output: Set of matches M

Parameters: Number of uniquely matched features required N , weight factor ω

M,Y ← ∅ (* Initialize the set of matches M and uniquely matched features Y *)
For all i (i = 1 · · ·n), Si ← di, where di =

∑
j Vij (* Initialize priorities S *)

For all i ∈ P , Si is incremented by a sufficiently large constant
t ← 0

while max S > 0 and |Y | < N do
i ← arg max S, t ← t + 1

Search for an admissible match among the features in the query image for Xi

if such a feature y is found do
M ← M ∪ {(Xi, y)}, and Y ← Y ∪ {y}
for each j, s.t. Vij = 1 do (* Update the priorities *)

for each k, s.t. Vkj = 1 do
Sk ← Sk + ω/di

end for
end for

end if
Si ← −∞
If t ≥ 500N , abort

end while

the static (first) heuristic and dynamic (second) heuristic. A higher value of ω makes
the priority of a point depend more on how well nearby points (in the visibility graph)
have been matched, and less on its inherent visibility (i.e. its degree); a zero value for ω,
on the other hand, would disable dynamic priorities altogether. We set ω = 10, which
heavily favors the dynamic priorities.

Our full algorithm for prioritized point-to-feature matching is given in Algorithm 1.
We use a value N = 100, which appears to be sufficient for subsequent localization.
In the case that the output M contains duplicates, i.e., multiple points are matched to
the same feature, only the closest match (in terms of the distance between their SIFT
descriptors) is kept.

Although the update of priorities that corresponds to the two nested inner loops of
Algorithm 1 may seem to be a significant extra computational cost, these updates only
occur when a match is found. The overhead is further reduced by updating the pri-
orities only at fixed intervals, i.e., after every certain number of iterations (100 in our
implementation). This also allows the algorithm to be conveniently parallelized or
ported to a GPU, though we have not yet implemented these enhancements.
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4.2 Feature-to-Point (F2P) Matching

For feature-to-point (F2P) matching, it is not clear if any ordering of image features is
better than another. Therefore all features in the query image are considered for match-
ing. In our experiments, we find that not considering all features always decreases the
registration performance of F2P matching in our experiments.

4.3 Camera Pose Estimation

If the matching algorithm terminates successfully, then the set of matches M links 2D
features in the query image directly to 3D points in the model. These matches are fed
directly into our pose estimation routine. We use the 6-point DLT approach to solve
for the projection matrix of the query camera, followed by a local bundle adjustment to
refine the pose.

5 Experiments

We evaluated the performance of our method on three different image collections. Two
of the models, Dubrovnik and Rome, were built from Internet photos retrieved from
Flickr; the third, Vienna, was built from photos taken by a single calibrated camera
(the same dataset used in [4]). Figure 2 shows part of the reconstructed 3D model for
Dubrovnik and Rome. For each dataset, the number of registered images was in the
thousands, and the number of 3D points in the full model in the millions; statistics are
shown in Table 1.

Table 1. Statistics for each 3D model. Each row lists the name of the model, the number of
cameras used in its construction, the number of points, and number of connected components in
the reconstruction.

Model # Cameras # Points # CCs
Dubrovnik 6844 2,208,645 1

Rome 16,179 4,312,820 69
Vienna 1,324 1,132,745 3

In order to obtain relevant test images (i.e. images that can be registered) for Dubrovnik
and Rome, we first built initial models using all available images. A random subset of the
images that were accepted by the 3D reconstruction process was then removed from these
initial models and withheld as test images. This was done by removing their contribution
to the SIFT descriptors of any points they see, as well as deleting any points that are no
longer visible in at least two images. The resulting model no longer has any information
about the test images, while we can still use the initial camera poses as “ground truth.”
For Dubrovnik and Rome, we also included the relevant test images of the other data set
as negative examples. In all our experiments no irrelevant images were falsely registered.
For Vienna, the set of test images are the same Internet photos as used in [4] (these im-
ages were not used in building the model). In all cases, the test images are downsampled
to a maximum of 1600 pixels in both width and height.
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The Vienna data set is different from Dubrovnik and Rome in that it is taken by
the same camera over a short period of time, and is much more controlled, uniformly
sampled, and homogeneous in appearance. Thus, it does not necessarily generalize
as well to diverse query images, such as the Internet photos used in the test set (e.g,
the stability of a point in the model may not necessarily be a good predictor of its
stability in an arbitrary query image). Indeed, we found that using a model compressed
with K = 100 for this collection was not adequate, likely because a covering for
each image in the model may not also cover a wide variety of images with different
appearance. Hence we used a larger covering (K = 1000) for this data set. Other than
this, all parameters of the our algorithm are the same throughout the experiments.

As an extra validation step, we also created a second model for Vienna in the same
way as we did for Dubrovnik and Rome, first building an initial model including all
images, then removing the test images. We found that the model created in this way
performed no better than the one built without ever involving the test images. This
suggests that our evaluation methodology for Dubrovnik and Rome does not favorably
bias the the results.

Table 2. Results for Dubrovnik. The test set consists of 800 relevant images and 1000 irrelevant
ones (from Rome).

Images NN queries by P2F Time in seconds
registered registered rejected registered rejected

Compressed model P2F 753 9756 46433 0.73 2.70
(76645 points) F2P 667 - - 1.62 1.62

Combined 753 - - 0.70 3.96

Seedless P2F 747 9986 46332 0.75 2.69
Static P2F 693 16722 46558 1.11 2.68
Basic P2F 699 16474 46661 1.09 2.69

Full model P2F 735 7379 49588 1.08 3.84
(1975263 points) F2P 595 - - 2.75 2.75

Combined 742 - - 1.12 5.83

Seedless P2F 691 7620 49499 1.13 3.86
Static P2F 610 21345 49628 1.53 3.03
Basic P2F 605 21117 49706 1.52 3.04

Vocab. tree (all features) 677 - - 1.4 4.0
Vocab. tree (points only) 652 - - 1.3 4.0

For each dataset, we evaluated the performance of localization and pose estimation
using a number of algorithms. These include our proposed method and several of its
variants, as well as a vocabulary tree-based image retrieval approach [6]. For each ex-
periment, we accept a pose estimate as successful if at least twelve inliers to a recov-
ered pose are found (we also discuss localization accuracy below). As in [4], we did not
find false positives at this inlier rate (though some cameras had high localization error
due to poor conditioning). The results of our experiments are shown in Table 2 - 4.
For matching strategies, “F2P” and “P2F” denote feature-to-point and point-to-feature,
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Table 3. Results for Rome. The entire test set consists of 1000 relevant images and 800 irrelevant
ones (from Dubronik).

Images NN queries by P2F Time in seconds
registered registered rejected registered rejected

Compressed model P2F 921 12963 46756 0.91 2.93
(144777 points) F2P 796 - - 1.72 1.72

Combined 924 - - 0.87 4.67

Seedless P2F 888 13841 46779 0.96 2.93
Static P2F 805 21490 46966 1.35 2.87
Basic P2F 808 21300 47150 1.35 2.88

Full model P2F 863 11253 49500 1.57 4.34
(4067119 points) F2P 788 - - 2.91 2.91

Combined 902 - - 1.67 7.20

Seedless P2F 769 10287 49635 1.52 4.33
Static P2F 682 23548 49825 1.77 3.34
Basic P2F 681 23409 49887 1.78 3.34

Vocab. tree (all features) 831 - - 1.2 4.0
Vocab. tree (points only) 815 - - 1.2 4.0

respectively, as described in Section 4. In “Combined”, we use P2F first and, if pose esti-
mation fails, rerun with F2P. The other three variants are simply stripped-down versions
of P2F (Algorithm 1), with no seed points (“seedless”), with no dynamic prioritization
(“static”), or with neither (“basic”). These are included to show how much performance
is gained through each enhancement.

For Dubrovnik and Rome, the results for the vocabulary tree approach are obtained
using our own implementation, using a tree of depth five and branching factor ten (i.e.,
with 100,000 leaf nodes). For each query image, we retrieve the top 10 images from the
vocabulary tree, then perform detailed SIFT matching between the query and candidate
image (similar to [4], but using actual images). We tested two variants, one in which
all image features are used, and one using only features which correspond to points in
the 3D model. When sufficient matches are found, we estimate the pose of the query
camera given these matches.

All times for our implementation are based on running a single-threaded process on
a 2.8GHz Xeon processor. For P2F matching, we show the average number of nearest-
neighbor queries as well as running time for both images that are registered and those
that fail to register. For F2P, however, these numbers are essentially the same for both
cases since we exhaustively match image features to the model.

The results in the tables show that our point matching approach achieves significantly
higher registration rates (without false positives) than the state of the art in 3D location
recognition [4], as well as the vocabulary tree variants we tried. Among various match-
ing strategies, the P2F approach (Algorithm 1) performs significantly better than its
F2P counterpart. In some cases the results can be further improved by combining both
together, at the expense of extra computation time. Although one might think the P2F
would be slower than F2P (since there are generally more 3D points in the model than
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Table 4. Results for Vienna

Images NN queries by P2F Time in seconds
registered registered rejected registered rejected

Compressed model P2F 204 6245 32920 0.55 1.96
(200638 points) F2P 145 - - 2.04 2.04

Combined 205 - - 0.54 3.62

Seedless P2F 182 6201 34360 0.54 2.07
Static P2F 164 14393 39664 0.97 2.30
Basic P2F 166 14274 40056 0.94 2.33

Full model P2F 190 4289 41530 0.63 2.85
(1132745 points) F2P 136 - - 2.78 2.78

Combined 196 - - 0.71 5.32

Seedless P2F 160 4034 44263 0.59 3.00
Static P2F 162 16164 45388 1.11 2.72
Basic P2F 161 16134 45490 1.11 2.67

Vocab. tree (from [4]) 164 - - ≤ 0.27 (GPU)

features per image), this turns not to be the case. The experiments show that utilizing the
extra information associated with the points makes P2F both faster and more accurate
than F2P. The P2F variants that lack either dynamic priorities or seeding points, or both,
perform much worse than the full algorithm, which illustrates the importance of these
enhancements. Moreover, the compressed models generally perform at least as well
as, if not better than, the full models, while being on average an order of a magnitude
smaller in size. Hence they are able to save storage space and computation time without
sacrificing accuracy. For the vocabulary tree approach, the two variants we tested are
comparable, though using all image features gave somewhat better performance than
using just the features corresponding to 3D points in our tests.

One further property of the P2F method is that when it recognizes an image (i.e. is
able to register it), it does so very quickly—much more quickly than in the case when
the image is not recognized—since if a true match is found among the seed points, the
algorithm generally only needs to consider a small subset of points. This resembles the
ability of humans to quickly recognize a familiar place, while deciding that a place is
unknown can take longer. Note that even in the case where the image is not recognized,
our methods is still comparable in speed to the vocabulary tree based approach in terms
of equivalent CPU time, although vocabulary tree methods can be made much faster by
utilizing the GPU; [4] reports that a GPU implementation sped up their algorithm by a
factor of 15-20. Our point matching approach is also amenable to GPU techniques.

5.1 Localization Accuracy

To evaluate localization accuracy we geo-registered the initial model for Dubrovnik
so that each image receives a camera location in real-world coordinates, which we
treat as noisy ground truth. The estimated camera location of each registered image is
then compared with this ground truth, and the localization error is simply the distance



Location Recognition Using Prioritized Feature Matching 803

between the two locations. For our results, this error had a mean of 18.3m, a median
of 9.3m, and quartiles of 7.5m and 13.4m. While 87 percent of the images have errors
below the mean, a small number were rather far off (up to around 400m in the worst
case). This is most likely due to errors in estimated focal lengths (most likely for both
the test image and the model itself), to which location estimates are very sensitive.

6 Summary and Discussions

We have demonstrated a prioritized feature matching algorithm for location recognition
that leverages the significant amount of information that can be estimated about scene
features using image matching and SfM techniques on large, heterogeneous photo col-
lections. In contrast to prior work, we use points, rather than images, as a matching
primitive, based on the idea that even a small number of point matches can convey very
useful information about location.

Our system is also able to utilize other cues as well. While we primarily consider
the visibility of a point when evaluating its relevance, another important cue is its dis-
tinctiveness, i.e., how well it can predict a single location (a feature on a stop sign, for
instance, would not be distinctive). While we did not observe problems due to repeti-
tive features spread around a city model, one future direction would be to incorporate
distinctiveness into our model (as in [15] and [1]).

Our system is designed for Internet photo collections. While these collections are
useful as predictors of the distribution of query photos, they typically do not cover entire
cities. Hence many possible viewpoints may not be recognized. It will be interesting to
augment such collections with more uniformly sampled photos, such as those on Google
Street View or Microsoft Bing Maps.

Finally, while we found that our system works well on city-scale models built from
Internet photos, one question is how well it scales to the entire world. Are there fea-
tures in the world that are stable and distinctive enough to predict a single location
unambiguously? How many seed points do we need to ensure good coverage, at least
of the popular areas around the globe? Answering such questions will reveal interesting
information about the regularity (or lack thereof) of our world.
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Chum, Ondřej III-1

Chung, Albert C.S. III-720

Cipolla, Roberto III-300

Clausi, David A. III-44

Clipp, Brian IV-368

Cohen, Laurent D. V-771

Cohen, Michael I-171

Collins, Robert T. V-324

Collins, Roderic I-549, II-664

Courchay, Jérôme II-85
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Ladický, L’ubor IV-424, V-239

Lalonde, Jean-François II-322

Lampert, Christoph H. II-566, VI-98

Lanman, Douglas I-86

Lao, Shihong VI-238

Larlus, Diane I-720

Latecki, Longin Jan III-411, V-450,

V-757

Lauze, François VI-43

Law, Max W.K. III-720

Lawrence Zitnick, C. I-171

Lazarov, Maxim IV-72

Lazebnik, Svetlana IV-368, V-352

LeCun, Yann VI-140

Lee, David C. I-648

Lee, Jungmin V-492

Lee, Kyoung Mu V-492

Lee, Ping-Han I-271

Lee, Sang Wook IV-115

Lefort, Riwal IV-185

Leibe, Bastian I-397

Leistner, Christian III-776, VI-29

Lellmann, Jan II-494

Lempitsky, Victor II-57

Lensch, Hendrik P.A. V-464

Leonardis, Aleš V-687
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